Teck Coal Limited
Water Quality Management
P.O. Box 1777
421 Pine Avenue +1 250 425 808
Sparwood, B.C. Canada V0B 2G0 www.teck.com

+1 250 425 8086 Tel Technical Report Overview

Report: Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report 2021

Overview: This report presents the 2021 results of the local aquatic effects monitoring program developed for Teck's Line Creek Operations. The report presents data and evaluation of potential effects of the West Line Creek Active Water Treatment Facility on biological productivity and tissue selenium accumulation downstream of the facility.

This report was prepared for Teck by Minnow Environmental Inc.

For More Information

If you have questions regarding this report, please:

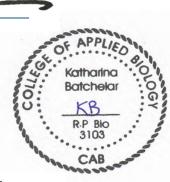
- Phone toll-free to 1.855.806.6854
- Email feedbackteckcoal@teck.com

Future studies will be made available at teck.com/elkvalley.

Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2021

Prepared for: **Teck Coal Limited** Sparwood, British Columbia

Prepared by: **Minnow Environmental Inc.**Victoria, British Columbia


April 2022

Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2021

W. Tyler Mehler, Ph.D., R.P.Bio.

Project Manager

Vesley Tyle Mehler

Katharina Batchelar, M.Sc., R.P. Bio

Senior Project Advisor

EXECUTIVE SUMMARY

The Line Creek Local Aquatic Effects Monitoring Program (LAEMP) was primarily designed to evaluate changes related to the commissioning of the West Line Creek (WLC) Active Water Treatment Facility (AWTF) at the Line Creek Operation (LCO). There are three main foci to the monitoring in relation to the operation of the AWTF. Firstly, the fluidized bed reactor technology used at the WLC AWTF for selenium and nitrate removal requires the addition of phosphorus to the treatment process. Although the WLC AWTF is managed to minimize the amount of residual phosphorus in treated effluent, there is potential for phosphorus concentrations to increase in Line Creek downstream from the WLC AWTF discharge and potentially cause increased algal growth and changes to the trophic status and biotic community structure. Secondly, selenium removal from water involves microbial uptake, which deceases total selenium loads to Line Creek, but has the potential to biotransform selenium into reduced and more readily available forms of selenium to biota (i.e., selenite and organoselenium). The third focus of the LAEMP is to monitor other conditions related to active water treatment that could potentially adversely influence the receiving environment, other than those addressed by the first two foci.

Based on the above, the objectives for the Line Creek LAEMP were expressed as the following study questions: (1) Is active water treatment affecting biological productivity downstream in Line Creek? (2) Are tissue selenium concentrations reduced downstream from the WLC AWTF? and (3) Is WLC AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations, or concentrations of treatment-related constituents other than nutrients or selenium? This report evaluates monitoring data up to the end of the 2021 calendar year.

The WLC AWTF was recommissioned in 2018 with an Advanced Oxidation Process (AOP¹), which is designed to reverse the shift in selenium species in AWTF effluent from chemically-reduced species back to a selenate-dominated condition. This change in treatment process was implemented in response to monitoring in 2016 and 2017 that confirmed elevated aqueous concentrations of chemically-reduced selenium in AWTF effluent (which have greater potential for bioaccumulation than selenate) and correspondingly elevated selenium concentrations in benthic invertebrates. Discharge to the receiving environment from the AWTF with AOP began on October 28, 2018 with variable flow and continued to do so until December 30, 2018, at which time consistent treatment flow near the maximum capacity of the facility began and has continued to do so into 2021.

¹ AOP refers to the advanced oxidation process and associated AWTF process modifications.

Biological productivity downstream in Line Creek did not appear to be influenced by operational activities of the AWTF with AOP in 2021. In 2021, concentrations of nutrients (total phosphorus, orthophosphate, and nitrate) were generally in the ranges of concentrations observed in previous years, with the operation of the AWTF with AOP (2019 to 2021) being more successful at minimizing phosphorus and orthophosphate contributions to the receiving environment than operation of the AWTF without AOP (in 2016 and 2017). Periphyton coverage at both mine-exposed and reference areas was moderate in 2021 (based on visual assessment) and showed temporal consistency with previous years. Areas that had moderately high periphyton coverage in 2020, RG_LILC3 and RG LIDCOM, deceased to moderate coverage in 2021. Benthic invertebrate biomass and density at RG LILC3 and RG LIDSL downstream of the AWTF discharge also showed no significant increases in 2021 relative to previous years that could be related to operation of the AWTF with AOP. Benthic invertebrate community endpoints, as determined from kick and sweep sample collection, indicated no consistent adverse change in community characteristics related to operation of the AWTF with AOP in 2021. For instance, benthic invertebrate total abundance was within regional normal ranges and was largely similar to previous years (2017 to 2020) at mine-exposed areas in 2021. Additionally, a continued increase in the percentage of sensitive taxa (Ephemeroptera and EPT) at most areas of Line Creek downstream from the AWTF during the AWTF with AOP period (2019 to 2021) was suggestive of an improvement in benthic invertebrate community structure. Overall, biological productivity downstream from the WLC AWTF in 2021 did not change relative to previous years.

Consistent with 2019 and 2020, concentrations of non-selenate forms of aqueous selenium and selenium in benthic invertebrate tissues were significantly lower in Line Creek during operation of the AWTF with AOP in 2021 compared to AWTF operation without AOP. As a result, mean benthic invertebrate selenium concentrations in 2021 were below the Level 1 Elk Valley Water Quality Plan (EVWQP; 13 mg/kg) benchmark (for growth, reproduction, and survival of invertebrates) at all areas downstream of the AWTF discharge. Similar to past results during the AWTF with AOP period (2019 and 2021), concentrations of aqueous non-selenate species in 2021 were generally low and reflective of the low bioaccumulation in benthic invertebrates. Comparison of benthic invertebrate selenium concentrations to the selenium bioaccumulation model indicated that selenium bioaccumulation in areas downstream of the AWTF outfall in 2021 were within expectations of the model. Selenium concentrations in westslope cutthroat trout muscle tissue from two areas in Line Creek (RG_FO23 and RG_LIDSL) were also below site-specific benchmarks and the prediction limits of the bioaccumulation model except four of eight replicates at RG_LIDSL, which were above these benchmarks as well as the prediction limits. Fish tissue selenium concentrations at RG_LIDSL were also notably lower (2.4-times)

in 2021 (during AWTF with AOP) when compared to 2017 (during operations without AOP). Combined, the results from the 2021 LCO LAEMP indicated that the recommissioned AWTF with AOP continues to function as intended in decreasing the non-selenate species in AWTF effluent. This is consistent with results from the prior two years of AWTF with AOP operation: 2019 (Minnow 2020a) and 2020 (Minnow 2021a). Additionally, results from these last three years (2019 to 2021) have shown that the AWTF with AOP have resulted in selenium accumulation in benthic invertebrates from Line Creek that would be expected (as based on the selenium bioaccumulation model).

Operation of the AWTF with AOP in 2021 did not result in an obvious change in water temperature or dissolved oxygen concentrations downstream in Line Creek relative to areas upstream of the AWTF. Evaluation of water quality analytes demonstrated no increases in analyte concentrations that resulted in concentrations above guidelines or water quality benchmarks which have been the result of the AWTF with AOP operation in 2021. AWTF effluent samples showed no acute toxicity test failures in 2021. Except for three algae (*P. subcapitata*) results and one water flea (*C. dubia*) result, chronic toxicity results in 2021 were categorized as no adverse effect. The chronic toxicity results in 2021 were similar to or lower than responses in previous years, and the absence of consistent temporal pattern of responses or clear evidence of causal factors for observed effects suggest a lack of influence of the AWTF on chronic toxicity.

Overall, operation of the WLC AWTF with AOP in 2021 functioned as designed to remove aqueous total selenium and nitrate from effluent. Recommissioning of the AWTF with AOP resulted in decreased selenium bioaccumulation downstream in Line Creek relative to AWTF operation without AOP by decreasing the concentrations of non-selenate species in AWTF effluent. In addition, operation of the AWTF with AOP in 2021 did not influence the receiving environment through effects to biological productivity, or through potential effects related to factors other than nutrients or selenium. Results of the 2021 LCO LAEMP provide information that supports Teck's Adaptive Management Plan and inform future monitoring efforts. Overall, after three years of monitoring during the AWTF with AOP period, the results have conclusively shown that AWTF is functioning as expected, that conditions in Line Creek are stable, and that the questions of LCO LAEMP have largely been addressed.

Following the results contained in this report, Teck intends to submit an application to Ministry of Environment and Climate Change Strategy (ENV) to request an amendment to discontinue the LCO LAEMP and migrate LCO LAEMP monitoring into the RAEMP program in 2022. Teck will continue to monitor in accordance with the 2021 LCO LAEMP study design (April 30, 2021; Minnow, 2021b) until an application and subsequent approval to discontinue the LCO LAEMP have been made.

TABLE OF CONTENTS

EXEC	JTIVE SUMMARY	
ACRO	NYMS AND ABBREVIATIONS	VIII
1 INT	FRODUCTION	1
1.1	Background	
1.2	Study Questions	
1.3	WLC AWTF Operational Timeline	
1.4	Linkages to Teck's Adaptive Management Plan	
2 ME	THODS	
2.1	Overview	
2.2	Water Quality	18
2.2	.1 Routine Water Quality	18
2.2	.2 Toxicity Testing	
2.3	Primary Productivity	
2.4	Secondary Productivity and Invertebrate Community Structure (Hess Sampling)	
2.5	Benthic Invertebrate Community Structure (Kick and Sweep Sampling)	
2.6	Tissue Selenium Concentrations	
2.6		
	.2 Westslope Cutthroat Trout	
2.7	Data Analysis	
	.1 Water Quality	
	.2 Secondary Productivity Endpoints	
2.7	· · · · · · · · · · · · · · · · · · ·	
2.7	.4 Tissue Selenium Concentrations	33
3 PR	ODUCTIVITY	
3.1	Overview	
3.2	Site Performance Objectives and Aqueous Nutrient Concentrations	
3.3	Primary Productivity Indicators	
3.4	Secondary Productivity Indicators	
3.5	Benthic Invertebrate Community Structure	
3.6	Summary	55
4 SE	LENIUM CONCENTRATIONS	56
4.1	Overview	
4.2	Tissue Selenium Concentrations	
	.1 Composite-Taxa Benthic Invertebrate Samples	
	.2 Westslope Cutthroat Trout	65
4.3	Aqueous Selenium	
4.4	Bioaccumulation	
4.5	Summary	81
5 OT	HER POTENTIAL INFLUENCES OF THE WLC AWTF	83
5.1	Overview	
5.2	Temperature	
5.3	Dissolved Oxygen	
5.4	Water Quality Analytes	
5.5	Toxicity Results	
5.6	Summary	94

6	SUMMARY		96
7	REFERENCES		.106
ΑF	PPENDIX A	DATA QUALITY REVIEW (DQR)	
AF	PPENDIX B	PRODUCTIVITY	
AF	PPENDIX C	SELENIUM	
AF	PPENDIX D	OTHER INFLUENCES	
AF	PPENDIX E	BIOLOGICAL TRIGGERS	
AF	PPENDIX F	SUPPORTING INFORMATION	
AF	PPENDIX G	LABORATORY REPORTS	

LIST OF FIGURES

Figure 1.1:	Teck's Coal Mine Operations within the Elk River Watershed, Southeast British Columbia	2
Figure 1.2;	Overview of Completed Benthic Invertebrate Tissue Selenium Sampling Events in Relation to Phases of WLC AWTF Operation, 2014 to 2021	5
Figure 2.1:	Line Creek LAEMP Biological Monitoring Areas and Teck Water Quality Stations, 2021	
Figure 2.2:	Line Creek LAEMP Monitoring Areas and Teck Water Quality Stations in Upper Line Creek, 2021	15
Figure 3.1:	Total Phosphorus Concentrations in Water Collected from the Line Creek Compliance Point (LC LCDSSLCC), 2019 to 2021	41
Figure 3.2:	Time Series Plots for Aqueous Total Phosphorus Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021	42
Figure 3.3:	Time Series Plots for Aqueous Total Orthophosphate Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021	43
Figure 3.4:	Total Phosphorus at LC_LC3 During AWTF Operation Relative to Pre-Operational Baseline Concentrations	44
Figure 3.5:	Orthophosphate at LC_LC3 During AWTF Operation Relative to Pre- Operational Baseline Concentrations	
Figure 3.6:	Time Series Plots for Aqueous Nitrate (as N) Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021	
Figure 3.7:	Total Benthic Invertebrate Biomass (Hess Sampling) for RG_LILC3 and RG_LIDSL Relative to RG_SLINE and RG_LI24 (Reference Areas), 2014 to 2021	49
Figure 3.8:	Total Benthic Invertebrate Density (Hess Sampling) for RG_LILC3 and RG_LIDSL Relative to RG_SLINE and RG_LI24 (Reference Areas),2014 to 2021	50

Figure 4.1: Benthic Invertebrate Selenium Concentrations, for A) RG_LILC3 and B) RG_LIDSL (Mine-exposed Areas) Relative to RG_SLINE and RG_LI24 (Reference Areas), 2012 to 2021	57
Figure 4.2: Selenium Concentrations in Composite-taxa Benthic Invertebrate Samples Collected at Reference (Green) and Mine-exposed (Blue) Areas of Line Creek and Fording River, 2021	60
Figure 4.3: Benthic Invertebrate Selenium Concentrations, for RG_FO23 (Fording River Downstream of Line Creek) Relative to RG_FRUL (Fording River Upstream of Line Creek), 2012 to 2021	
Figure 4.4: Selenium Concentrations in Muscle and Ovaries of Westslope Cutthroat (WCT) Trout Sampled From Line Creek and Fording River, 2001 to 2021	
Figure 4.5: Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021	
Figure 4.6: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-Exposed and Reference Stations in Line Creek, LCO LAEMP, January 2019 to December 2021	
Figure 4.7: Selenium Concentrations in Benthic Invertebrate Composite-taxa Samples from Line Creek and Fording River, 2018 to 2021	
Figure 4.8: Observed and Modelled Selenium Concentrations in Benthic Invertebrate Composite Samples Relative to Aqueous Total Selenium Concentrations at Stations Upstream and Downstream of West Line Creek Active Water Treatment Facility, 2012 to 2021	
Figure 4.9: Observed and Modelled Selenium Concentrations in Benthic Invertebrate Composite Samples Relative to Aqueous Total Selenium Concentrations at Stations Upstream and Downstream of West Line Creek Active Water	79
Figure 4.10: Observed and Modelled Selenium Concentrations in Westslope Cutthroat Trout Ovary Samples Relative to Aqueous Total Selenium Concentrations, LCO LAEMP, 2001 to 2021	
Figure 5.1: Mean Daily Water Temperature Recorded by Temperature Loggers, Line Creek LAEMP, 2021	
Figure 5.2: Water Temperatures at Monitoring Stations in Line Creek in 2021 Relative to BCMOE (2001) Guidelines for Maximum (Solid Lines) and Minimum (Dotted Lines) Temperatures for Protection of Fish Species	
Figure 5.3: Dissolved Oxygen Concentrations at Sampling Stations in Line Creek in 2021, Relative to the BCMOE (1997) Criteria for the Protection of Fish Life Stages	
LIST OF TABLES	
Table 1.1: Dates Associated with Phases of WLC AWTF Operation	
Table 2.2: Monitoring Areas Associated with Line Creek LAEMP, 2021	14 16 19
Table 2.6: Primary and Secondary Productivity and Benthic Invertebrate Community Sampling Completed in Line Creek and Fording River in September 2021 Compared to the 2021 LCO LAEMP Study Design (Minnow 2021a)	

Table 2.7:	Benthic Invertebrate Composite-Taxa Tissue Selenium Sampling Completed	
	in Line Creek and Fording River in 2021 Compared to the 2021 LCO LAEMP Study Design (Minnow 2021a)	27
Table 2.8:	Selenium Benchmarks for Benthic Invertebrates and Fish Tissues in the Elk Valley	34
Table 3.1:	Geometric Means of Benthic Invertebrate Density for Hess Sampling in Areas of Line Creek, 2014 to 2021	51
Table 4.1:	Mean Selenium Concentrations (mg/kg dw) in Benthic Invertebrate Composite-Taxa Samples Collected from Line Creek and Fording River, Line Creek LAEMP, 2006 to 2021	61
Table 5.1:	Monthly Mean Dissolved Oxygen Concentrations (mg/L) in Line Creek, 2021	88
Table 5.2:	Summary of Acute Toxicity Test Results for Line Creek Monitoring Stations, 2021 (Teck 2022)	91
Table 5.3:	Results of Quarterly and Semi-Annual Chronic Toxicity Tests at LC_LCDSSLCC in 2015 to 2021 and LC_LC3 in 2019 and 2021 (Golder 2016, 2017a, 2018, 2019, 2020a, 2021a, 2022)	93
Table 6.1:	Summary of Measurement Endpoints, Analyses, and Results of Line Creek LAEMP, 2021	
Table 6.2:	Summary of Findings, Responses and Adjustments Related to the LCO LAEMP in 2021	. 102
Table 6.3:	Summary of Biological Trigger Analysis for Percent EPT, Selenium Benthic Invertebrate Tissue (BIT), and Selenium Westslope Cutthroat Trout (WCT) Muscle Tissue, Line Creek LAEMP, 2021	. 104
	, - , -	

ACRONYMS AND ABBREVIATIONS

AMP – Adaptive Management Plan

ANOVA - Analysis of Variance

AOP – Advanced Oxidation Process

AWTF - Active Water Treatment Facility

BCWQG – British Columbia Water Quality Guideline

CABIN – Canadian Aquatic Biomonitoring Network

CI – Calcite Index

CMO – Coal Mountain Operation

DQR – Data Quality Review

EMC – Environmental Monitoring Committee

ENV – British Columbia Ministry of Environment and Climate Change Strategy

EPT – Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies)

EVFFHC – Elk Valley Fish and Fish Habitat Committee

EVO – Elkview Operation

EVWQP - Elk Valley Water Quality Plan

EWT – Early Warning Trigger

FRO – Fording River Operation

GHO – Greenhills Operation

ICP-MS – Inductively Coupled Plasma Mass Spectrometry

K-M – Kaplan-Meier Method

LAEMP – Local Aquatic Effects Monitoring Program

LCO – Line Creek Operation

LPL – Lowest Practical Level, referring to taxonomic identification of benthic invertebrates

LRL – Laboratory Reporting Limit

QA/QC – Quality Assurance / Quality Control

RAEMP – Regional Aquatic Effects Monitoring Program

SPO – Site Performance Objective

SRC - Saskatchewan Research Council

WLC - West Line Creek

1 INTRODUCTION

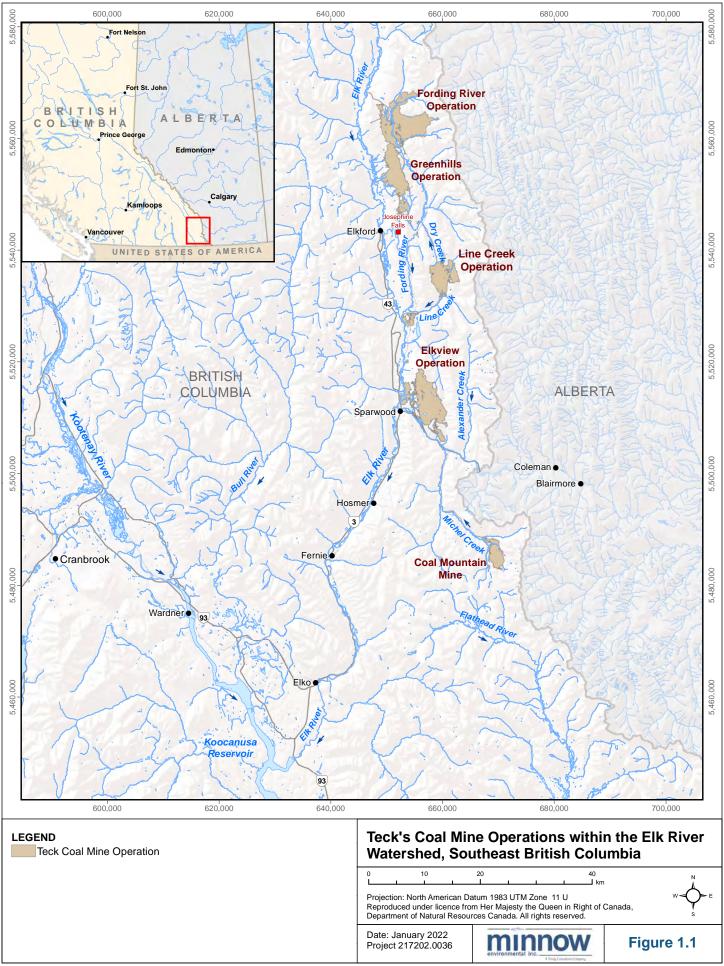
1.1 Background

Teck Coal Limited (Teck) operates four mines in the Elk River watershed to extract steel-making coal. The four mines are the Fording River Operation (FRO), Greenhills Operation (GHO), Line Creek Operation (LCO), and Elkview Operation (EVO; Figure 1.1). A fifth mine, Coal Mountain Mine (CMM), is also owned by Teck and located in the Elk River watershed; however, it is no longer in operation and has been moved into the care and maintenance designation. Discharges from the mines to the Elk River watershed are authorized by the British Columbia Ministry of Environment and Climate Change Strategy (ENV) through permits that are periodically issued under provisions of the *Environmental Management Act*. Permit 107517 specifies the terms and conditions associated with discharges from Teck's Elk Valley mine operations.

Section 8.3.1 of Permit 107517 (version December 1, 2021) outlines the requirements for the Line Creek Local Aquatic Effects Monitoring Program (LAEMP) as follows:

"The Permittee must develop and implement a Local Aquatic Effects Monitoring program to determine the effects of the Line Creek discharge on the receiving environment. An annual study design for the program must be prepared in consultation with the EMC² and submitted to the Director for approval by May 1 each year."

Also, Section 9.5 of Permit 107517 states:


The LAEMP Annual Reports must be reported on in accordance with generally accepted standards of good scientific practice in a written report and submitted to the Director by April 30 of each year following the data collection calendar year.

In addition to monitoring under the LAEMP, Teck's Regional Aquatic Effects Monitoring Program (RAEMP) is a requirement under Permit 107517 and provides comprehensive routine monitoring and assessment of potential mine-related effects on the aquatic environment downstream from Teck's mines in the Elk Valley.

Teck conducts a variety of additional programs to monitor, evaluate, and/or manage the aquatic effects of mining operations within the Elk Valley at local and regional scales, including:

² EMC refers to the Environmental Monitoring Committee, which Teck was required to form under Permit 107517. The EMC consists of representatives from Teck, ENV, the Ministry of Energy and Mines, Environment Canada, the Ktunaxa Nation Council, Interior Health Authority, and an independent scientist. Environment Canada has agreed to provide input on a case-by-case basis when requested by the other members of the EMC but has not yet been called upon to participate. The EMC reviews submissions and provides technical advice to Teck and the ENV Director regarding monitoring programs.

- Water quality monitoring;
- Calcite monitoring;
- Fish and fish habitat management;
- Chronic Toxicity Testing Program;
- Tributary Management Plan; and
- Adaptive Management Plan

The goal of the Line Creek LAEMP is to assess site-specific conditions (e.g., commissioning of active water treatment) on a more frequent and localized basis than the RAEMP, as required until sufficient data have been collected, concerns no longer exist, or relevant monitoring can be incorporated into the RAEMP.

1.2 Study Questions

Although the broader objective of the Line Creek LAEMP is to assess site-specific conditions at LCO relating to potential effects of discharge on the receiving environment, the LAEMP was designed with the primary focus of monitoring aquatic health and evaluating potential effects related to the commissioning of the West Line Creek (WLC) Active Water Treatment Facility (AWTF) at LCO. Monitoring related to the operation of the WLC AWTF includes three main foci for the assessment of potential adverse effects to the receiving environment. These three foci are as follows:

- 1. The potential for changes in productivity, trophic status, and biological community structure downstream of the WLC AWTF. The fluidized bed reactor technology used at the WLC AWTF for selenium and nitrate removal requires the addition of phosphorus to the treatment process. Although the WLC AWTF is managed to minimize the amount of residual phosphorus in treated effluent, there is potential for phosphorus concentrations to increase in Line Creek downstream from the WLC AWTF discharge. Increased phosphorus concentrations in Line Creek could potentially cause increased algal growth and changes to trophic status and biological community structure.
- 2. The potential for a change in the chemical form of selenium released into Line Creek from the WLC AWTF. Selenium in surface waters of the Elk River watershed (including downstream of Teck's mines) is predominantly in the form of selenate, as would be expected in the well-oxygenated, flowing stream habitats that dominate this watershed. At the WLC AWTF, aqueous selenium is removed via uptake into microorganisms within the treatment system where it is transformed to chemically-reduced forms

(e.g., selenite and organoselenium species). In aquatic receiving environments, some reduced selenium species are accumulated into the base of the food web more readily than selenate (Ogle et al. 1988; Riedel et al. 1996; Stewart et al. 2010; Golder 2021c). The WLC AWTF was recommissioned in 2018 with an Advanced Oxidation Process (AOP) to mitigate observed increases in aqueous non-selenate selenium concentrations and in selenium accumulation in aquatic biota in the receiving environment (see Section 1.3 for details).

3. The potential for other conditions related to active water treatment to adversely influence the receiving environment (e.g., an increase in temperature or a decrease in dissolved oxygen concentrations in treated water being released to Line Creek; discharge of treatment-related constituents; or an increase in other aqueous constituents of concern).

Based on the above, the objectives for the Line Creek LAEMP were expressed as the following study questions:

- 1. Is active water treatment affecting biological productivity downstream in Line Creek?
- 2. Are tissue selenium concentrations reduced downstream from the WLC AWTF?
- 3. Is WLC AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations, or concentrations of treatment-related constituents other than nutrients or selenium?

1.3 WLC AWTF Operational Timeline

Sampling for the Line Creek LAEMP began in September 2012 prior to initial commissioning of the WLC AWTF in 2014 (Figure 1.2). Interpretive reports for the Line Creek LAEMP have been submitted each year for annual monitoring that was initiated in 2014 (Minnow 2015, 2016, 2017a, 2018b, 2019a, 2020a, 2021a).

The AWTF operated briefly in 2014 (July 24 to October 16) but was shut down due to challenges with the performance of the facility, which included increased concentrations of selenium in benthic invertebrates downstream of the AWTF relative to baseline (2012; Minnow 2015). It was recommissioned October operational in 2015. with the phase commencing in February 2016 (Figure 1.2, Table 1.1). An increase in selenium concentrations in benthic invertebrates downstream of the AWTF was then noted in September 2016 (Minnow 2017a). Following this, Teck identified challenges in the performance of the WLC AWTF with respect to selenium treatment. Although treatment successfully resulted in lower aqueous total selenium concentrations in Line Creek, aqueous concentrations of chemically-reduced selenium species were elevated in AWTF effluent. These selenium species have greater potential for bioavailability

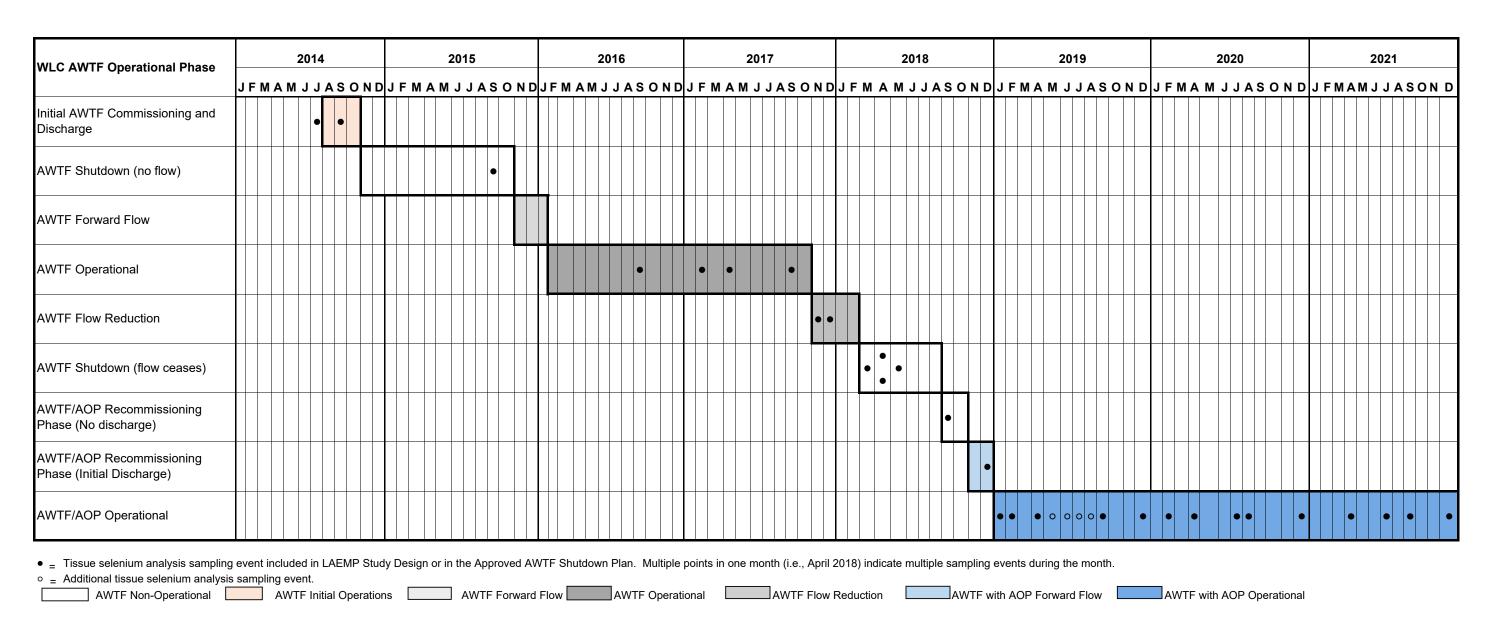


Figure 1.2: Overview of Completed Benthic Invertebrate Tissue Selenium Sampling Events in Relation to Phases of WLC AWTF Operation, 2014 to 2021

Notes: WLC = West Line Creek; AWTF = Active Water Treatment Facility; AOP = Advanced Oxidation Process; LAEMP = Local Aquatic Effects Monitoring Program.

Table 1.1: Dates Associated with Phases of WLC AWTF Operation

Phase		Start	End	Approximate Flow (m³/day)						
Initial AWTF Commissioning Pha	AWTF Commissioning Phase		AWTF Commissioning Phase		AWTF Commissioning Phase		al AWTF Commissioning Phase		26-Aug-14	Variable flow
Initial AWTF Discharge		27-Aug-14	16-Oct-14	Variable flow						
AWTF Shutdown (no flow)		17-Oct-14	26-Oct-15	0						
AWTF Forward Flow During Com	missioning	26-Oct-15	31-Jan-16	Variable flow						
AWTF Operational		01-Feb-16	14-Oct-17	~5,300 to 5,500						
AWTF Flow Reduction		15-Oct-17	08-Mar-18	~2,500						
AWTF Intakes Closed, System D	ewatered	27-Feb-18	8-Mar-18	Variable flow						
AWTF Shutdown (flow ceases)		9-Mar-18	27-Oct-18	0						
AWTF/AOP Recommissioning No Discharge		30-Aug-18	27-Oct-18	0						
Phase ^a Forward Flow (Initial Discharge		28-Oct-18	29-Dec-18 ^a	0 to 5,500						
AWTF/AOP Operational		30-Dec-18	indefinitely	~7,500						

Notes: WLC = West Line Creek. AWTF = Active Water Treatment Facility. AOP = Advanced Oxidation Process.

^a 120 days after recommissioning date.

to aquatic biota than selenate, which is the dominant form in the influent and other areas of the watershed (Minnow 2017a).

Continued monitoring in 2016 and 2017 confirmed that selenium concentrations in benthic invertebrates were significantly elevated downstream of the AWTF discharge relative to historical levels (Minnow 2017a, 2018b), and indicated that aqueous concentrations of chemically-reduced selenium species were elevated in Line Creek downstream of the AWTF. Teck then suspended AWTF operations in response to these results. Specifically, effluent flow through the AWTF was decreased by approximately half³ starting in October 2017 before ceasing temporarily in March 2018 (Figure 1.2, Table 1.1), following the receipt of necessary authorizations from regulators. The AWTF flow reduction and shutdown process was supported by an approved monitoring plan (ENV 2018) that augmented the monitoring outlined in the 2017 Line Creek LAEMP study design (Minnow 2017c). During the shutdown period, concentrations of chemically-reduced aqueous selenium species decreased substantially, as did selenium concentrations in benthic invertebrate tissues (Minnow 2019a).

The AWTF remained shut down until recommissioning with an advanced oxidation process (AOP⁴), which was initiated on August 30, 2018, with no discharge to the environment occurring during this initial recommissioning (Figure 1.2, Table 1.1). The AOP is designed to reverse the shift in selenium species in AWTF effluent from chemically-reduced species back to a (chemically-oxidized) selenate-dominated condition thereby reducing the bioavailability of selenium in Line Creek. Discharge to the receiving environment from the AWTF with AOP began on October 28, 2018 with variable forward flow (Figure 1.2, Table 1.1) and this continued until December 29, 2018 (120 days after the start of recommissioning with AOP)⁵, after which the AWTF with AOP operational phase began. The AWTF with AOP operational phase started on December 20, 2018⁶ and has been operational since (e.g., 2019 to 2021).⁷

 $^{^3}$ AWTF effluent flow was approximately 5,300 - 5,500 m 3 /day during operational phase, then was reduced to approximately 2,500 m 3 /day during the flow reduction period.

⁴ AOP refers to the advanced oxidation process and associated AWTF process modifications.

⁵ AWTF effluent flow was 0 to approximately 5,500 m³/day during operation stabilization of the AWTF with AOP.

⁶ The terminology used to describe the AWTF operational phase that began on December 30, 2018 (i.e., following the AWTF/AOP recommissioning phase; August 30, 2018 to December 29, 2018) was updated to more accurately reflect AWTF/AOP operations during this time frame. Terminology in the 2019 LCO LAEMP report identified two AWTF operational phases following AWTF/AOP recommissioning; "AWTF Operational Stabilization" and "AWTF/AOP Steady State Operation" (Minnow 2020a). In the current report, the time period following AWTF/AOP recommissioning (December 30, 2018 to present) has been identified as a termed as a single "AWTF with AOP Operational" phase.

⁷ The AWTF was shut down for over 24 hours on three occasions in 2021. The AWTF was shut down on June 26, 2021 for inspection/maintenance of the ozone generator (and remained off for ~32.5 hours) and for annual maintenance on two occasions, June 21 and July 27, 2021 (Teck 2022a).

1.4 Linkages to Teck's Adaptive Management Plan

As required in Section 10 of Permit 107517, Teck has developed an Adaptive Management Plan (AMP). The purpose of the AMP is to support implementation of the Elk Valley Water Quality Plan (EVWQP) to achieve water quality and calcite targets, to be protective of human health and the environment, and where necessary, restored and to facilitate continuous improvement of water quality in the Elk Valley (Teck 2021a). Following an adaptive management framework, the AMP identifies six Management Questions that will be re-evaluated at regular intervals as part of AMP updates throughout EVWQP implementation. Data from the RAEMP (Minnow 2018a, 2020b) and the various LAEMPs (including the present monitoring program) feeds into the adaptive management process to address these Management Questions that collectively address the environmental management objectives of the AMP (Teck 2021a) and the EVWQP (Teck 2014). The AMP also identifies key uncertainties that need to be reduced to fill gaps in current understanding and support achievement of the EVWQP objectives.

Information acquired from the Line Creek LAEMP is used in conjunction with studies in the Elk Valley area via the integration of data into the RAEMP (which includes other LAEMPs) to reduce these uncertainties and provide additional context to the ecological conditions of the Elk Valley area as a whole. Monitoring data from the LAEMP contributes to the broader data set assessed every three years within the RAEMP, in addition to addressing questions specific to the Line Creek LAEMP on an annual basis. The RAEMP is designed to evaluate multiple management related questions found in the AMP, such as Management Question #2, (i.e., "Will aquatic ecosystem health be protected by meeting the long-term site performance objectives?) and Management Question #5 (i.e., "Does monitoring indicate that mine-related changes in aquatic ecosystem conditions are consistent with expectations?"). Additionally, for each Management Question a "Key Uncertainty" framework has also been developed to identify data gaps and direct future work as described in annual AMP Reports.

The evaluation of biological triggers is incorporated into the current report as part of Management Question #5 of the AMP (Teck 2021a). Biological triggers were developed in consultation with the EMC for a subset of the biological monitoring endpoints that are effective indicators of changes at the ecosystem level. The purpose of the biological triggers is to quickly identify biological monitoring areas where unexpected biological conditions may be occurring that may require management action. In the current report, percent EPT (Ephemeroptera [mayflies], Plecoptera [stoneflies], and Trichoptera [caddisflies]), composite-taxa benthic invertebrate tissue selenium concentration, and westslope cutthroat trout (WCT; *Oncorhynchus clarkii lewisii* muscle tissue selenium concentrations in 2021 were assessed against their respective biological triggers (additional information and methods pertaining to this analysis can be found in Appendix E).

The third annual AMP report was submitted on July 31, 2021 and included monitoring data collected in 2020 (Teck 2021b). In 2020, concentrations of aqueous total selenium exceeded the SPO (daily maximum) at the Line Creek Compliance Point for a single event (Teck 2021b), and this low number of exceedances is similar to past years (Teck 2018, 2019b). This third annual AMP report indicated that while aqueous sulphate met the early warning trigger (EWT) throughout 2020 at the Line Creek Compliance Point (LC LCDSSLCC), and nitrate concentrations at this area exceeded the Site Performance Objective (SPO; monthly average and daily maximum) with 75% of monthly average concentrations above the permit limits (Teck 2021b). The number of nitrate SPO exceedances observed in 2020 at the Line Creek Compliance Point (Teck 2021b) was lower than 2018 (which was the year which triggered the AMP response framework: Teck 2019b) but was higher than in 2019 (58% of monthly values were higher than the SPO; Teck 2020a). Actions associated with the AMP response to elevated aqueous nitrate concentrations in 2020 included increasing the water throughput of the AWTF as well as continuing to build on the LCO Nitrate Compliance Action Plan as outlined in detail in the 2020 Annual AMP report (Teck 2021b). Similar to past years (Teck 2020a), the investigation of cause identified blasting residue on waste rock (historical and recent) as the major source of nitrate in Line Creek. Several adjustments have been implemented as part of the AMP response framework and operations continue to implement and refine blasting practices, incorporate water management in pit design, continue evaluation of mine plans, monitoring/field data, and climate/hydrology data. Additional mitigation is planned through long-term adjustments outlined in the 2019 Implementation Plan Adjustment (Teck 2019a).

Selenium monitoring related to the LCO LAEMP is focused on concentrations in biota with the primary monitoring objective to evaluate conditions associated with the WLC AWTF operation. Specifically, the Line Creek LAEMP Question #2 is: "Are tissue selenium concentrations reduced downstream from the WLC AWTF?". Adaptive management actions related to the LCO LAEMP monitoring have been implemented based on changes to the AWTF operational status as well as in response to biological tissue selenium results. For example, previous monitoring actions have included the addition of supplemental monthly monitoring of benthic invertebrate selenium concentrations between May and August 2019 (Minnow 2020a). This was completed following forward flow (and discharge to the receiving environment which began in October 2018) from the newly recommissioned AWTF with AOP to support better understanding of the AWTF with AOP performance. In addition, adjustments were made to the 2020 and 2021 LCO LAEMP study design regarding the timing of benthic invertebrate selenium monitoring (in discussion with the EMC) to better reflect spawning events of westslope cutthroat trout (i.e., replacing the February sampling event with a July sampling event) and shifting the May sampling event back to April (to further evaluate the elevated benthic invertebrate tissue noted in April 2019;

Minnow 2020a). The implementation of actions under the adaptive management framework is not constrained to the AMP or LAEMP annual reporting cycles. The adaptive management process can (and has been) triggered at any time during each annual LAEMP cycle (wherein results are reported on April 30th of each year for the preceding calendar year) depending on the answers to site-specific LAEMP questions and on available data. Monitoring plans and schedules will continue to adapt to findings in the field and operational needs.

For more information on the adaptive management framework, the Management Questions, the Key Uncertainties, the Response Framework, Continuous Improvement, linkages between the AMP and other EVWQP programs, and AMP reporting, refer to the AMP (Teck 2021a) and the 2020 Annual AMP report (Teck 2021b).

2 METHODS

2.1 Overview

The general approach for the Line Creek LAEMP (see Table 2.1) includes explanation of the collected data and data evaluation in relation to each of the study questions. This report includes data up to the end of the 2021 calendar year for all parameters. Historical data are also presented where appropriate.

Water quality and biological samples were collected from established monitoring areas in Line Creek and the Fording River (Figure 2.1, Table 2.2). These monitoring areas represent the same locations that have been sampled for the LCO LAEMP since 20178 (Minnow 2018b) and include areas both upstream and downstream of the AWTF discharge in Line Creek, as well as associated reference areas (RG_LI24 and RG_SLINE). Specifically, RG_LCUT is situated upstream from the AWTF discharge and mainly reflects water quality influences farther upstream on the main stem of Line Creek (LC_LCUSWLC) when the AWTF is operating. When West Line Creek flows are not being diverted to the AWTF for treatment (i.e., during reduction of effluent flow through the AWTF or during AWTF shutdown) water quality at RG_LCUT also reflects input from West Line Creek. The monitoring areas RG_LILC3, RG_LISP24, RG_LIDSL, RG_LIDCOM, and RG_LI8 are monitoring areas downstream from the WLC AWTF that provide spatial resolution of the potential influence of the AWTF treatment in Line Creek. Monitoring areas RG_FRUL and RG_FO23 are situated in the Fording River upstream and downstream of the Line Creek confluence, respectively (Figure 2.1, Table 2.2). Continuous water temperature is also monitored at six locations (Figure 2.2, Table 2.3).

To address the study questions described in Section 1.2, the 2021 Line Creek LAEMP included evaluation of the following components:

- Periphyton visual coverage scores;
- Benthic invertebrate density, biomass, community, and tissue selenium concentrations (composite-taxa samples);
- Concentrations of nutrients, total selenium, selenium species, and other analytes (i.e., those listed in Section 2.2.1) in water, based on routine water quality monitoring;

⁸ The LCO LAEMP locations monitored in 2021 were the same as those initially sampled for the LCO LAEMP in 2014 (Minnow 2015), with the addition of RG_LCUT (LC_LCUSWLC) in 2016 (Minnow 2017a), and RG_LISP24 (WL DCP SP24) and RG LIDCOM (LC LCC) in 2017 (Minnow 2018b).

Table 2.1: General Approach for the 2021 Line Creek LAEMP as Presented in the LAEMP Study Design (Minnow 2021b)

Kay Quantians	Accessment Enduciate		Measur	How Data will be Evaluated to Address Key			
Key Questions	Assessment Endpoints	Water	Sampling Areas	Biological	Sampling Areas	Question ^a	
	Biological productivity downstream from the AWTF discharge post-compared to pre-AWTF commissioning, among AWTF operational phases, and relative to productivity observed upstream from the discharge	Nutrient concentrations	LC_LC1, LC_SLC, LC_WLC, LC_LCUSWLC, LC_LC3, WL_DCP_SP24, LC_LCDSSLCC, LC_LCC, LC_LC4, LC_LC6, LC_LC5 (see Table 2.4 for timing)	Periphyton coverage, Benthic invertebrate biomass, Benthic invertebrate community structure	Benthic Invertebrate Biomass - RG_LI24, RG_SLINE, RG_LILC3, RG_LIDSL Periphyton coverage and Benthic Invertebrate Community - RG_LI24, RG_SLINE, RG_LCUT, RG_LILC3, RG_LISP24, RG_LIDSL, RG_LIDCOM, RG_LI8, RG_FRUL, RG_FO23	Determine if there is an increase in periphyton coverage, benthic invertebrate biomass, or shift in community structure that has been demonstrated to correspond with changes in AWTF operational status and changes in parameters associated with productivity (e.g., nutrient concentrations)	
Are tissue selenium concentrations reduced downstream from the	Tissue selenium concentrations downstream from the AWTF discharge post- compared to pre- AWTF commissioning, among AWTF	Total and dissolved selenium concentrations	LC_LC1, LC_SLC, LC_WLC, LC_LCUSWLC, LC_LC3, WL_DCP_SP24, LC_LCDSSLCC, LC_LCC, LC_LC4, LC_LC6, LC_LC5 (see Table 2.4 for timing)	Benthic invertebrate tissue selenium	RG_LI24, RG_SLINE, RG_LCUT, RG_LILC3, RG_LISP24, RG_LIDSL,	Determine if there is a change in benthic invertebrate tissue selenium concentrations over time that corresponds to changes in total selenium concentrations or selenium speciation in water.	
AWTF?	operational phases, and relative to concentrations observed upstream from the discharge	Selenium speciation	LC_LC1, LC_SLC, LC_WLC, LC_LCUSWLC, LC_LC3, WL_DCP_SP24, LC_LCDSSLCC, LC_LCC, LC_LC4, LC_LC6, LC_LC5 (see Table 2.4 for timing)	(composite-taxa samples)	RG_LIDCOM, RG_LI8, RG_FRUL, RG_FO23	Benthic invertebrate community data being collected for other purposes can be used as supporting evidence of ecosystem health status downstream from the AWTF	
			5 locations in the effluent mixing zone, and 1 location upstream of the AWTF discharge (see Figure 2.2 and Table 2.3)			Temperatures that are above/below the guideline, and dissolved oxygen concentrations that are above the threshold for effects to fish outside of the initial mixing zone, and confirmation that the mixing zone is small,	
biota through thermal effects, effects on dissolved oxygen concentrations	AWTF commissioning, among AWTF operational phases, and relative to community structure observed	Dissolved oxygen	LC_LC1, LC_SLC, LC_WLC, LC_LCUSWLC, LC_LC3, WL_DCP_SP24, LC_LCDSSLCC, LC_LCC, LC_LC4, LC_LC6, LC_LC5 (see Table 2.4 for timing)		community structure	RG_LI24, RG_SLINE, RG_LCUT, RG_LILC3, RG_LISP24, RG_LIDSL, RG_LIDCOM, RG_LI8, RG_FRUL, RG_FO23 (annually)	will be indicative of effective management of treated water discharge. Benthic invertebrate community data being collected for other purposes can be used as supporting evidence of ecosystem health status downstream from the AWTF
	upstream from the discharge	Toxicity	LC_SLC, WL_BFWB_OUT_SP21, LC_LC3 LC_LCDSSLCC, LC_LC5 (see Table 2.4 for timing)			Determine if there is a change in benthic invertebrate community endpoints away from the reference condition that does not correspond to observed changes in nutrients or selenium concentrations	

Notes: LAEMP = Local Aquatic Effects Monitoring Program. AWTF = Active Water Treatment Facility.

^a Data evaluation approach presented differs slightly from the evaluation criteria in Table 2.1 of the study design. The data evaluation approach displayed herein is integrated for water and biological endpoints, and these were presented separately in the study design.

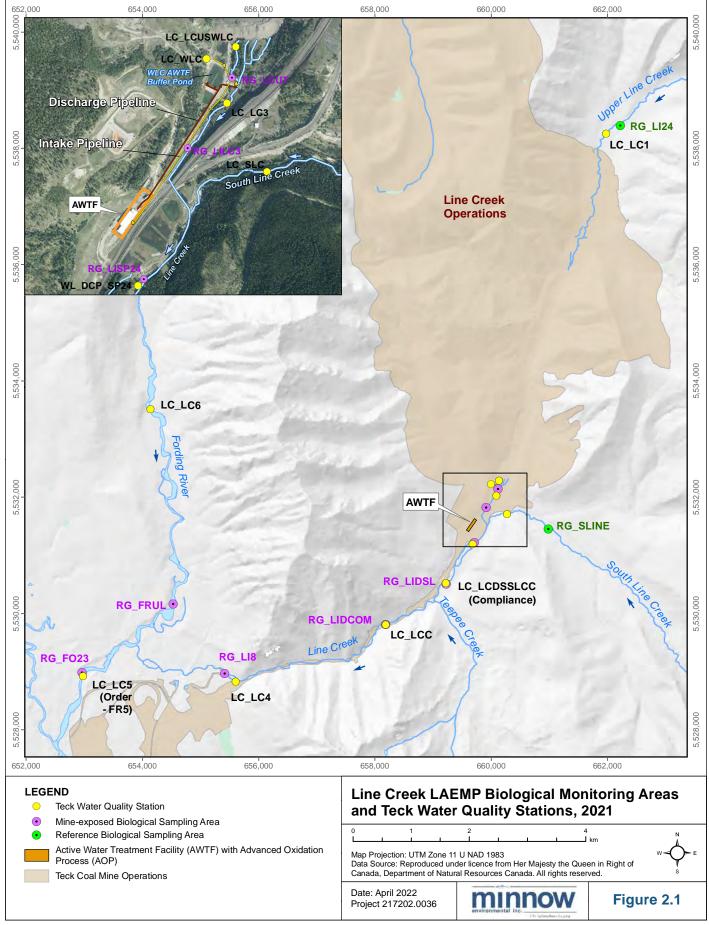
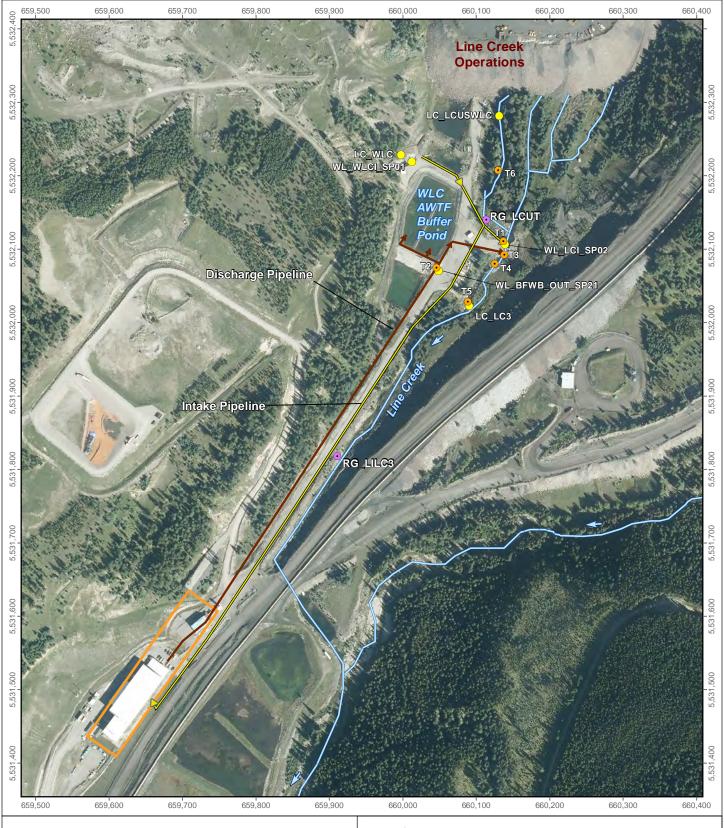



Table 2.2: Monitoring Areas Associated with Line Creek LAEMP, 2021

			Water Quality Sampling Station			Biological Sampling				
Area	Teck Location	EMS	Location Description	UTM	(11U)	Station ID	ation ID Location Description		UTM (11U)	
	Code	Number	Location Description	Easting	Northing	Station ib	Location Description	Easting	Northing	
ence	LC_LC1	E216142	Line Creek upstream of LCO and MSA North Pit	661979	5538254	RG_LI24	South fork of upper Line Creek	662214	5538393	
Reference	LC_SLC	E282149	South Line Creek west side of Main Rock Drain, upstream of Line Creek	660271	5531737	RG_SLINE	South Line Creek upstream of Line Creek and LCO	661122	5531374	
	LC_LCUSWLC	E293369	Line Creek downstream of rock drain, upstream of West Line Creek and AWTF outfall	660114	5532140	RG_LCUT	Line Creek downstream of rock drain, downstream of West Line Creek and upstream of AWTF outfall	660114	5532140	
Creek	LC_LC3	0200337	Line Creek downstream of West Line Creek and AWTF outfall	660090	5532023	RG_LILC3	Line Creek downstream of West Line Creek and AWTF outfall	659911	5531818	
Mine-exposed Line Cr	WL_DCP_SP24	N/A	Line Creek downstream of LC_WTF_OUT, approximately 50 m downstream of contingency pond discharge	659684	5531191	RG_LISP24	Line Creek downstream of LC_WTF_OUT, approximately 50 m downstream of contingency pond discharge	659674	5531168	
Mine-exp	LC_LCDSSLCC (compliance)	E297110	Line Creek immediately downstream of South Line Creek confluence	659218	5530522	RG_LIDSL	Line Creek downstream of South Line Creek confluence	659294	5530583	
	LC_LCC	N/A	Line Creek downstream of the compliance point	658185	5529820	RG_LIDCOM	Line Creek downstream of the compliance point	658184	5529814	
	LC_LC4	020044	Line Creek canyon, upstream of Process Plant	655604	5528824	RG_LI8	Line Creek downstream of the canyon	655426	5528959	
posed	LC_LC6	0200338	Fording River downstream of Grace Creek, upstream of Line Creek	654140	5533513	RG_FRUL	Fording River downstream of Grace Creek, upstream of Line Creek	654530	5530162	
Mine-exposed Fording River	LC_LC5 (Order - FR5)	0200028	Fording River downstream of Line Creek	652977	5528919	RG_FO23	Fording River downstream of Line Creek	652808	5528334	

Notes: UTM = Universal Transverse Mercator. LCO = Line Creek Operation. AWTF = Active Water Treatment Facility.

LEGEND

- Temperature Data Logger
- Biological Monitoring Area
- Teck Water Quality Station

Active Water Treatment Facility (AWTF) with Advanced Oxidation Process (AOP)

Line Creek LAEMP Monitoring Areas and Teck Water Quality Stations in Upper Line Creek, 2021

0 85 170 340

Meters

Projection: North American Datum 1983 UTM Zone 11 U

Reproduced under licence from Her Majesty the Queen in Right of Canada,

Department of Natural Resources Canada. All rights reserved.

Date: April 2022 Project 217202.0036

Figure 2.2

Table 2.3: Temperature Data Logger Locations, 2021

I aggar ID	Location Description	UTM (NAD83, 11			
Logger ID	Location Description	Easting	Northing		
T1	Temperature upstream of LC Intake	660137	5532111		
T2	Temperature of Buffer Pond outlet box	660046	5532074		
ТЗ	Temperature in V-Notch Discharge	660140	5532096		
T4	Temperature 5 m downstream of discharge	660130	5532076		
T5	Temperature at LC3 (100 m DS of outfall)	660092	5532030		
Т6	Temperature at LCUT (upstream of LC Intake and T1 data logger)	660130	5532208		

Notes: UTM = Universal Transverse Mercator. LC = Line Creek..

- In situ water quality (including temperature and dissolved oxygen) at routine water quality monitoring locations;
- Water temperature upstream and downstream of the WLC AWTF recorded continuously with data loggers; and
- Toxicity of WLC AWTF effluent and surface water samples collected downstream of the AWTF outfall, in the Fording River (downstream of Line Creek) 9, and at reference.

Water quality monitoring and acute and chronic water toxicity testing results presented in this report include requirements specified under Permit 107517. Biological sampling in 2021 was completed in accordance with previous LCO LAEMP study designs (2019 to 2021; Minnow 2019b, 2020c, Minnow 2021b) with minor modifications in the timing of sample collections details below. A modification in the timing of sample collection was requested by the EMC to provide more information on the dietary exposure of westslope cutthroat trout to selenium (measured in benthic invertebrate composite-taxa samples) close to their spawning window which occurs in the spring (see Minnow 2020c for details). As such, benthic invertebrate tissue selenium monitoring was completed four times in 2021; in early April10, July, early September, and early December 2021 as specified in the 2021 LCO LAEMP study design (Minnow 2021b). The benthic invertebrate tissue selenium sampling events outlined in the previous LCO LAEMP study designs (2018 and 2019) occurred in February, April, September, and December (Minnow 2018c, 2019b), while sampling events encompassed by the 2020 and 2021 LCO study designs occurred in April, July, September, and December (i.e., compared to prior years the February sampling event was removed and a July sampling event was added).

Fish tissue monitoring was conducted at RG_LIDSL and RG_FO23 for purposes of the RAEMP in 2021 (Minnow 2021c). Additional fish tissue monitoring that was completed in previous years (Minnow 2018b, 2019a, 2020a) was not conducted as it was excluded from the 2020 and 2021 LCO LAEMP monitoring programs in an effort to help reduce the potential for sampling stress on

¹⁰ The 2020 LCO LAEMP study design included a sampling event in early May 2021 (Minnow 2020c) compared to the late April sampling event conducted in 2020 (as specified in the 2019 LCO LAEMP study design [Minnow 2019b]). The sampling event for early May 2021 (which was initially moved to May to correspond with the WCT spawning window as requested by EMC, Minnow 2020c) was shifted back to April 2021 (as requested by EMC) as the EMC expressed interest in further understanding the increase in benthic invertebrate tissue selenium concentrations that was previously observed during April sampling events (i.e., April 2020; Minnow 2021b).

⁹Interpretation of chronic toxicity results in the present report was specifically focused on applicable results for monitoring stations located in Line Creek that were compared to the Line Creek reference (LC_SLC). LC_LC5 is located in the Fording River below the confluence with Line Creek (Figure 2.1), and results from this area were not compared to the Line Creek reference (LC_SLC), but rather compared to the Fording River reference (FR_UFR1; Golder 2021a). Therefore, although chronic toxicity monitoring was competed at LC_LC5 in 2021, results of this monitoring were not integrated into this report. See Golder 2022 for detailed chronic toxicity results for this monitoring area.

bull trout and westslope cutthroat populations in Line Creek related to LAEMP monitoring activities (Minnow 2020c, 2021b). The exclusion of fish tissue monitoring in these years was based on feedback from the EMC and the Elk Valley Fish and Fish Habitat Committee (EVFFHC) and as a proactive measure in response to a decline in the Upper Fording River WCT population in 2019 (Cope 2020). Regardless, fish tissue monitoring results for RG_FO23 and RG_LIDSL from those evaluations are included in this report.

2.2 Water Quality

2.2.1 Routine Water Quality

Water quality data assessed as part of the LCO LAEMP included data for routine monitoring managed by Teck (Tables 2.4 and 2.5), and water samples collected at the biological monitoring stations concurrently with biological sampling (Figure 2.1, Table 2.2)¹¹. Water quality data were downloaded from Teck's EquISTM database, including:

- Nutrient concentrations (i.e., nitrate, nitrite, ammonia, total phosphorus, and orthophosphate); Selenium concentrations (i.e., total and dissolved selenium concentrations, and selenium speciation results including concentrations of selenate, selenite, dimethylselenoxide, methylseleninic acid, selenocyanate, selenomethionine, methaneselenonic acid, selenosulphate, and unknown selenium species);
- Concentrations of analytes with early warning triggers under the AMP [i.e., total dissolved solids, sulphate, total concentrations of antimony, barium, boron, lithium, manganese, molybdenum, nickel, selenium (previously noted above), uranium, and zinc, and dissolved concentrations of cadmium and cobalt];
- Concentrations of analytes with British Columbia Water Quality Guidelines (BCWQGs; BCMOECCS 2021a,b) and/or water quality benchmarks (Teck 2014, Golder 2017b; see Appendix Table D.1 for a list of analytes and associated screening values); and
- In situ water quality data (i.e., temperature, pH, specific conductivity, and dissolved oxygen).

Quality assurance and quality control (QA/QC) associated with routine water quality monitoring were discussed in the annual water quality report for Permit 107517 (Teck 2022b). Quality control results associated with water samples collected concurrently with biological samples are

¹¹ The routine water quality monitoring locations and the biological monitoring locations for some areas differ slightly in exact location (e.g., LC_LCUSWLC; Figure 2.1).

Table 2.4: Summary of Water Quality Monitoring for Permit 107517

	To all Materi Otation Code		LITM /NA	D83, 11U)	Water Quality Samples				
Location Description	Teck Water Station Code (associated Biological	EMS	UTWI (NA	D63, 110)		Field	All Other Parameters Required	To	xicity ^e
20041011 20001 (2001)	Station Code in brackets)	Number	Easting	Northing	Area Type	Parameters ^a	Under Mine Permits ^b	Acute ^f	Chronic ^g
Line Creek upstream of LCO	LC_LC1 (RG_LI24)	E216142	661979	5538254	Reference	М	М	-	-
South Line Creek	LC_SLC (RG_SLINE)	E282149	660271	5531737	Reference	М	М	-	Q/SA
Line Creek upstream of WLC AWTF	LC_LCUSWLC (RG_LCUT)	E293369	660114	5532140	Mine-exposed	М	М	-	-
West Line Creek (WLC)	LC_WLC (RG_LCUT)	E261958	5532227	659998	Mine-exposed	М	М	-	-
Line Creek AWTF Influent	WL_LCI_SP02	E293370	660138	5532109	Mine-exposed	D	М	-	-
West Line Creek AWTF Influent	WL_WLCI_SP01	E293371	660011	5532218	Mine-exposed	D	М	-	-
AWTF Effluent (buffer pond discharge)	WL_BFWB_OUT_SP21	E291569	660050	5532070	Mine-exposed	D	M ^c	Q	-
Line Creek ~200 m downstream of the WLC AWTF	LC_LC3 (RG_LILC3)	0200337	660090	5532023	Mine-exposed	W/M	W/M ^h	-	Q/SA
Line Creek	WL_DCP_SP24 (RG_LISP24)	-	659684	5531191	Mine-exposed	S	S	-	-
Line Creek downstream South Line Creek Confluence	LC_LCDSSLCC (RG_LIDSL)	E297110	659218	5530522	Mine-exposed	W/M	W/M ^{d,h}	-	Q/SA
Line Creek downstream of compliance	LC_LCC (RG_LIDCOM)	-	658185	5529820	Mine-exposed	S	S	-	-
Line Creek upstream of the process plant and ~5,550 m downstream of the WLC AWTF	LC_LC4 (RG_LI8)	0200044	655604	5528824	Mine-exposed	W/M	W/M ⁱ	-	-
Fording River upstream Line Creek	LC_LC6 (RG_FRUL)	0200338	654140	5533513	Mine-exposed	S	S	-	-
Fording River downstream Line Creek	LC_LC5 (RG_FO23)	0200028	652977	5528919	Mine-exposed	W/M	W/M	-	Q/SA

Notes: "-" = Sampling will not be completed at this area; UTM = Universal Transverse Mercator; LCO = Line Creek Operations; AWTF = Active Water Treatment Facility; D = daily; T = twice monthly; M = monthly; W = weekly; W/M = weekly during freshet (March 15 to July 15); Q = quarterly; S = September (once). September sampling at WL_DCP_SP24, LC_LCC, and LC_LC6 is not included in Permit 107517. Sampling frequency is currently managed through the permit, and after one year of data collection during sustained operation of the AWTF with AOP sampling frequency may be adjusted.

^a Dissolved oxygen, water temperature, specific conductance, pH (see Table 2.5).

^b Parameters consistent with Permit 107517 (see Table 2.5 for details).

^c Three times weekly for total selenium and 5-day Biochemical Oxygen Demand. Selenium speciation, sulphide, bromate, hydrogen peroxide, and ozone measured at frequency shown (in addition to parameters listed in footnote b).

^d Total phosphorus every two weeks from June 15th to September 30th.

^e Acute and chronic as per Permit 107517 requirements.

^f Q = Quarterly 96-hr rainbow trout LT₅₀; 48-hr Daphnia spp. LT₅₀.

⁹ Q = Quarterly 7-day *C. dubia* growth and survival, 72-hr *P. subcapitata* growth tests; SA = Semi-annual 28-day *H. azteca* growth and survival tests in spring and fall, 30-day early life stage rainbow trout tests in spring and fall, 30-day early life stage fathead minnow tests in summer and winter.

^h 5-day Biochemical Oxygen Demand, sulfide, bromate, hydrogen peroxide measured at frequency shown (in addition to parameters listed in footnote b).

ⁱ Bromate and hydrogen peroxide measured at frequency shown (in addition to parameters listed in footnote b).

Table 2.5: Water Quality Parameters Required Under Permit 107517^a

Category	Parameters
Field Parameters	temperature, specific conductance, dissolved oxygen (DO), pH
Conventional Parameters	specific conductance, total dissolved solids (TDS), total suspended solids (TSS), hardness, alkalinity, dissolved organic carbon (DOC), total organic carbon (TOC), turbidity
Major Ions	bromide, fluoride, calcium, chloride, magnesium, potassium, sodium, sulphate
Nutrients	ammonia, nitrate, nitrite, total Kjeldahl nitrogen (TKN), orthophosphate, total phosphorus
Total and Dissolved Metals	aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, thallium, tin, titanium, uranium, vanadium, zinc

^a Parameters are consistent with those outlined in Table 24, Appendix 3 of Permit 107517.

discussed in greater detail in the Data Quality Review (DQR) in Appendix A (see Appendix G for applicable laboratory reports).

2.2.2 Toxicity Testing

Effluent samples from the WLC AWTF (WL_BFWB_OUT_SP21) were collected for acute toxicity testing, as stipulated in Permit 107517 (Table 2.4). The following acute toxicity tests were performed:

- Single concentration acute toxicity test (96-hour LT₅₀) using rainbow trout (Oncorhynchus mykiss); universal method: EPS 1/RM/9 (Environment Canada 2007a); and
- Single concentration acute toxicity test (48-hour LT₅₀) using *Daphnia* spp.; universal method: EPS 1/RM/11 (Environment Canada 1996).

Chronic toxicity tests were also completed on water samples collected quarterly and semiannually in 2021 at two mine-exposed areas of Line Creek (Compliance Point [LC_LCDSSLCC] and LC_LC3) and at one mine-exposed area of the Fording River (LC_LC5; Figure 2.1, Table 2.4), as per the Permit 107517. Chronic toxicity tests were also completed on water samples from one reference area (LC_SLC) in 2021 as a within-watershed reference location for Line Creek. The quarterly and semi-annual tests were completed as follows:

Quarterly tests:

- 72-hour growth/inhibition test using a freshwater alga (*Pseudokirchneriella subcapitata*), conducted using method: EPS1/RM/25 (Environment Canada 2007b); and
- 7-day test of reproduction and survival using a cladoceran (*Ceriodaphnia dubia*), conducted using method: EPS1/RM/21 (Environment Canada 2007c)¹².

Semi-annual tests – Q2 and Q4:

• 28-day water-only test of growth and survival using a freshwater amphipod (*Hyalella azteca*), conducted using methods adapted from US EPA (2000)¹³; and

¹³ Additional testing with *H. azteca* was conducted in Q3 of 2021 as *H. azteca* Q2 test organisms were disposed of prior to measuring dry weight due to a lab technician error, and therefore the initial Q2 tests have only survival data. In response to this, tests were repeated in Q3 for all stations.

¹² In the past (2019 and 2020), a single bioassay was used for each test area with the test allowed to continue to 8 days (per request of the EMC) with the lab collecting and compiling data for both 7- and 8-d test lengths. Reporting of the 8-d test length was discontinued in 2021 as past results have shown that differences in reproduction between the 7-and 8- test were negligible (Golder 2022).

30-day early life stage toxicity test using rainbow trout, conducted using method:
 EPS 1/RM/28- 1E (Environment Canada 1998).

Semi-annual tests – Q1 and Q3:

 30-day early life stage toxicity test using fathead minnow (*Pimephales promelas*), conducted using methods adapted from: EPA-712-C-96-121; US EPA 1996; and E1241-05; ASTM 2013.

Chronic toxicity results for each individual endpoint for each species were then categorized into one of the three categories: 'no adverse response', 'possible adverse response', and 'likely adverse response'. Toxicity tests and associated QA/QC measures were completed by an accredited third-party laboratory. Water quality samples were collected during toxicity testing to support evaluation of toxicity results. The results were summarized in annual reports completed in accordance with Permit 107517 (Teck 2022b, Golder 2022). Applicable results (i.e., for monitoring stations in Line Creek associated with the LAEMP) are summarized in this report.

2.3 Primary Productivity

Periphyton coverage was visually scored during the September 2021 sampling event at each of the ten sampling areas where benthic invertebrates were collected by kick sampling (Table 2.6), consistent with the 2021 study design (Minnow 2021b). Scores were recorded for five stations located a minimum of 5 m apart in each area, and were based on the categories defined in the Canadian Aquatic Biomonitoring Network (CABIN) sampling method (Environment Canada 2012a):

- 1. Rocks not slippery, no obvious colour (<0.5 mm thick);
- 2. Rocks slightly slippery, yellow-brown to light green colour (0.5 1 mm thick);
- Rocks have noticeable slippery feel, patches of thicker green to brown algae (1 – 5 mm thick);
- 4. Rocks are very slippery, numerous clumps (5 20 mm thick); and

¹⁴ No adverse response: response not significantly lower than one or more references or response is below the regional normal range with an effect size of <20% relative to the mean of batch-specific references. Possible adverse response: response significantly lower than one or more references in the batch and not below the local normal range with an effect size of 20-50% relative to the mean of batch specific references or response is significantly lower than references and the local normal range, but not below the regional normal range. Likely adverse response: response significantly lower than one or more references in the batch and below the local and regional normal range or response is significantly lower than references but not below the local normal range with an effect size >50% relative to the mean of batch-specific references.

Table 2.6: Primary and Secondary Productivity and Benthic Invertebrate Community Sampling Completed in Line Creek and Fording River in September 2021 Compared to the 2021 LCO LAEMP Study Design (Minnow 2021a)

	Biological Sampling								
		Periphyton	Benthic Invertebrates						
Area Type	Biological Area Code	Visual Coverage Score	Kick Sampling (Community)	Hess Sampling (Density, Biomass, Community)					
Reference	RG_SLINE	n=5 (√)	n=3 (√)	n=5 (√)					
Refer	RG_LI24	n=5 (√)	n=5 (√) ^a	n=5 (√)					
	RG_LCUT	n=5 (√)	n=3 (√) ^a	-					
eek	RG_LILC3	n=5 (√)	n=5 (√) ^a	n=10 (√)					
Mine-exposed Line Creek	RG_LISP24	n=5 (√)	n=1 (√)	-					
e-expose	RG_LIDSL	n=5 (√)	n=5 (√) ^a	n=10 (√)					
Min	RG_LIDCOM	n=5 (√)	n=1 (√)	-					
	RG_LI8	n=5 (√)	n=3 (√)	-					
Mine-exposed Fording River	RG_FRUL	n=5 (√)	n=3 (√) ^a	-					
Mine-exposed Fording River	RG_FO23	n=5 (√)	n=5 (√) ^a	-					

Notes: "-" = not sampled; " $\sqrt{}$ " = target sample size was met.

^aAdditional samples were taken at these areas as required for the purposes of the RAEMP (Minnow 2021a).

5. Rocks mostly obscured by algae mat, may have long strands (>20 mm thick).

2.4 Secondary Productivity and Invertebrate Community Structure (Hess Sampling)

Samples for analysis of benthic invertebrate density, biomass, and community structure were collected in September 2021 from two areas in Line Creek downstream from the WLC AWTF (RG_LILC3 and RG_LIDSL), and at two reference areas (RG_SLINE and RG_LI24). Five samples were collected at each reference area and 10 at each mine-exposed area (Figure 2.1, Table 2.6). The samples were collected using a Hess sampler (0.1 m² sampling area) with 500 µm mesh. Stations were located a minimum of 5 m apart to represent the overall area.

A single sample was collected at each station by carefully inserting the base of the Hess sampler into the substrate to a depth of approximately 5 to 10 cm. Gravel or cobble enclosed within the Hess sampler was carefully washed while allowing the current to carry dislodged organisms into the mesh collection net. Organisms collected into the net were rinsed into the bottom of the net, and then into a labelled wide-mouth plastic jar. Samples were preserved to a nominal concentration of 10% buffered formalin in ambient water within approximately 6 hours of collection, so biomass was not lost through predation or decomposition of tissues before the samples were sorted at the laboratory.

Benthic invertebrate biomass samples were sent to ZEAS Inc. (lead taxonomist Danuta Zaranko) in Nobleton, ON, for sorting and taxonomic identification. At the laboratory, preserved organisms in each sample were sorted from the sample debris, identified, and weighed at the family-level of taxonomy. Each family group of organisms was placed onto a fine cloth to drain excess surface moisture before being weighed to the nearest 0.1 mg. Total and family-level density and biomass were reported for each sample (preserved wet weight; see Appendix G for laboratory reports).

2.5 Benthic Invertebrate Community Structure (Kick and Sweep Sampling)

Three replicate samples were collected during the September 2021 sampling event from areas downstream from the AWTF outfall that have been monitored consistently over time (RG_LILC3, RG_LIDSL, and RG_LI8) and at each reference area (RG_SLINE, RG_LI24; Figure 2.1, Table 2.6). Single kick and sweep samples were also collected from riffle habitat at RG_LCUT (located upstream from the AWTF discharge), RG_LISP24, and RG_LIDCOM to provide additional spatial resolution of community characteristics (Table 2.6). The following samples were also collected from select areas for the purposes of the RAEMP (Minnow 2021c; sample sizes shown are in addition to those listed above): RG_LCUT (n=2, for a total of n=3), RG_LIDSL (n=2, for a total of n=5), RG_FRUL (n=2, for a total of n=5). Replicates were collected from stations spaced a minimum of 50 m apart, where habitat allowed (i.e., riffle habitat was present) and sampling could be completed safely.

Benthic invertebrate community sampling followed the CABIN protocol, which involved a 3-minute travelling kick to dislodge organisms into a net having a triangular aperture measuring 36 cm per side and mesh having 400 µm openings (Environment Canada 2012a). During sampling, the field technician moved across the stream channel (from bank to bank, depending on stream depth and width) in an upstream direction. With the net being held immediately downstream of the technician's feet, the detritus and invertebrates disturbed from the substrate were passively collected in the kick-net by the stream current. After three minutes of sampling time, the sampler returned to the stream bank with the sample. The kick-net was rinsed with water to move all debris and invertebrates into the collection cup at the bottom of the net. The collection cup was then removed, and the contents poured into a labelled plastic jar and preserved to a nominal concentration of 10% buffered formalin in ambient water.

Benthic invertebrate community samples were sent to Cordillera Consulting (lead taxonomist Scott Finlayson), in Summerland BC, for sorting and taxonomic identification to the lowest practical level (LPL; typically genus or species). At the beginning of the sorting process, the total number of preserved organisms in each sample was estimated. If the total number was estimated to be greater than 300, then the sample was sub-sampled for sorting and enumeration. A minimum of 5% of each sample was sorted, consistent with requirements specified by Environment Canada (2012b, 2014). Sorting efficiency and sub-sampling accuracy and precision were quantified using methods outlined by Environment Canada (2012b, 2014). Total organism abundance was reported for each sample (see Appendix G for laboratory reports).

Consistent with the requirements of the CABIN sampling protocol, supporting habitat information (i.e., water velocity and depth, in situ water quality [temperature, dissolved oxygen, specific conductivity, pH], canopy cover, substrate characteristics [100 pebble count], etc.) with was documented concurrent benthic invertebrate community samples (Environment Canada 2012a; see Appendix F). In addition to the CABIN requirements, measurements of calcite presence and concretion were conducted on 100 particles (pebbles) at each biological sampling location concurrent with (and using the same particles as) the 100pebble count. Calcite presence (Cp) has historically been a binary assessment (i.e., presence [score = 1] or absence [score = 0]; Teck 2016, Lotic 2021). In 2021, an additional method for assessing calcite presence in lotic environments was included (Cp', Lotic 2021, Zathey et al. 2021a, Robinson et al. 2022) that scored the percent of the particle surface area covered by calcite as a decimal to the nearest 10th percentile (0.1, 0.2, 0.3, etc.;

see Appendix F)¹⁵. The degree of concretion (Cc) was assessed by determining if the particle was removed with negligible resistance (not concreted; score = 0), noticeable resistance but removable (partially concreted; score = 1), or immovable (fully concreted; score = 2). If distinct particles were not visible due to heavy calcification, values of 1 (for presence) and 2 (for concretion) were recorded. If fines were encountered and calcite presence could not be visually confirmed, values of 0 (for presence) and 0 (for concretion) were recorded. If rocks were visible under fine material, the rock was selected for calcite measurements.

The results for the 100 particles was expressed as a Calcite Index (CI and CI') based on the following equations (Lotic 2021, Zathey et al. 2021a, Robinson et al. 2022):

$$CI = C_p + C_c$$
 or $CI = C_p' + C_c$

Where:

CI or CI' = Calcite Index
16

$$C_p = Calcite\ Presence\ Score = \frac{Number\ of\ particles\ with\ calcite}{100\ (binary\ score)}$$

$$C_p' = Calcite\ Presence\ Score = \frac{Number\ of\ particles\ with\ calcite}{100\ (proportional\ score)}$$

$$C_c = Calcite\ Concretion\ Score = \frac{Sum\ of\ particle\ concretion\ scores}{100}$$

2.6 Tissue Selenium Concentrations

2.6.1 Benthic Invertebrates

As outlined in Section 2.1, benthic invertebrate tissue selenium sampling in 2021 was completed in accordance with the 2020 and 2021 LCO LAEMP study designs (Minnow 2020c, 2021b). Four sampling events were completed in 2021: April, July, September, and December (Minnow 2021b). Five replicate benthic invertebrate tissue samples were collected from each sampling area (Table 2.7).

Benthic invertebrate tissue samples were collected for selenium analysis using the CABIN kick and sweep sampling method described in Section 2.5, except that sampling was not timed. All sampling events included collection of a composite sample of a variety of benthic invertebrate taxa (composite-taxa samples). These samples are useful for comparison to

¹⁶ CI refers to the binary assessment of Cp and CI refers to the proportional assessment of Cp.

¹⁵ The new calcite assessment method was developed under the Regional Calcite Monitoring Program as a means to better describe the degree, extent, and trends of calcite deposition (Zathey et al. 2021a)

Table 2.7: Benthic Invertebrate Composite-Taxa Tissue Selenium Sampling Completed in Line Creek and Fording River in 2021 Compared to the 2021 LCO LAEMP Study Design (Minnow 2021a)

Area Type	Biological Area Code	Apr 26 to 29	Jul 12 to 15	Sept 9 to 16	Nov 29 to Dec 2				
Reference	RG_SLINE	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)				
	RG_LI24	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)				
	RG_LCUT	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)				
	RG_LILC3	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)				
	RG_LISP24	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)				
NA:	RG_LIDSL	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)				
Mine- exposed	RG_LIDCOM	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)				
	RG_LI8	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)				
	RG_FRUL	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)				
	RG_FO23	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)				

Notes: AWTF = Active Water Treatment Facility. AOP = Advanced Oxidation Process. " $\sqrt{}$ " = target sample size was met.

baseline data, and as an estimate of dietary selenium exposure for consumer organisms (e.g., fish, birds).

Upon collection of the sample using the kick and sweep sampling method at each replicate station, organisms were carefully removed from sample debris using tweezers until about 0.5 g of wet tissue was obtained. Field crews paid particular attention to proportions of annelids in kick and sweep collections, as these organisms have been known to hyperaccumulate some metals resulting in potentially biased results (Golder 2021b). If annelids occurred at a proportion greater than 5% of the total sample biomass at a given replicate station, then these organisms were included in the composite sample (at that same proportion). Additionally in this scenario, a separate 'annelid only' sample was collected for analysis from the replicate station. If the proportion of annelids represented less than 5% of the sample biomass for a given station, these organisms were not included in the composite-taxa sample.

Each benthic invertebrate tissue sample was photographed to document taxa composition, placed into a labelled vial, and stored in a cooler with ice packs until transfer to a freezer later in the day. Tissue samples were kept in a freezer until they were transported by courier in coolers with ice packs to TrichAnalytics Inc. in Saanichton, BC.¹⁷ Samples were dehydrated (<60°C) upon receipt by the laboratory and analyzed using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Quality assurance/quality control measures associated with the tissue chemistry analyses included evaluation of laboratory duplicates and certified refence materials, discussed in greater detail in the Data Quality Review (DQR) in Appendix A (see Appendix G for applicable laboratory reports).

Results for selenium and other parameters were reported on a dry weight basis along with moisture content to allow conversion to wet weight values, as required (see Appendix G for laboratory reports).

2.6.2 Westslope Cutthroat Trout

Fish tissue monitoring (which was completed in previous years; Minnow 2018b, 2019a, 2020a) was excluded from the 2020 and 2021¹⁸ LCO LAEMP monitoring programs in an effort to help

¹⁷ In previous LCO LAEMP studies (Minnow 2018b, 2019a, 2020a, 2021a), benthic invertebrate tissue quality samples were analyzed by Saskatchewan Research Council (SRC) in Saskatoon, SK. Beginning in April 2020, benthic invertebrate tissue quality samples were submitted to TrichAnalytics Inc. instead of SRC for analyses based on the results of an Interlaboratory Tissue Analysis Validation Study (Golder 2020b).

¹⁸ Although, fish tissue monitoring was included in past LCO LAEMP study designs (2017 to 2019; Minnow 2017c, 2018c, and 2019b), the 2021 LCO LAEMP study design did not include fish tissue selenium monitoring. The initial 2020 LCO LAEMP study design (Minnow 2020c) included fish tissue selenium monitoring in the scope of work, however it was later removed (June 3rd, 2020, Minnow 2020d) as a proactive measure in response to declines in the Upper Fording River westslope cutthroat trout population (Cope 2020) and feedback from the Environmental Monitoring Committee (EMC) and the EVFFHC. The exclusion of fish tissue monitoring from the 2021 LCO LAEMP study design is consistent with the revised 2020 LCO LAEMP study design and discussed with the EMC on March 8th, 2021.

reduce the potential for sampling stress on bull trout and westslope cutthroat populations (Cope 2020) in Line Creek related to LAEMP monitoring activities. However, fish monitoring was conducted at LCO in 2021 as part of the RAEMP following the approved study design (Minnow 2021c) and methods associated with that monitoring are described herein.

Eight mature WCT were collected by angling from RG_LIDSL and RG_FO23 in September 2021. Upon capture, fish were anesthetized using clove oil prior to processing. Measures of body weight were collected using appropriately sized spring scales (e.g., 100 g, 500 g, 1,000 g), and total and fork lengths were recorded using a measuring board equipped with a metre stick (± 1 mm). All fish were inspected for any deformities, erosions (fin and gill), lesions, tumors, or parasites during processing and representative photographs were collected. A biopsy punch was used to collect a non-lethal muscle sample from each fish, and Vetbond™ tissue adhesive was used to seal the wound and prevent infection. Skin was removed from each muscle sample using a scalpel and the remaining tissue was placed into a sterile microcentrifuge tube. Samples were stored on ice in the field and transferred to a freezer later in the day. Tissue samples were kept in a freezer until they were transported overnight in coolers with ice packs to an accredited laboratory.

Fish tissue samples were analyzed by a qualified third-party laboratory (Trich Analytics, Victoria, BC) for metals concentrations (including mercury and selenium), according to the methods detailed above for benthic invertebrate tissue analyses.

2.7 Data Analysis

2.7.1 Water Quality

Water quality data were downloaded from Teck's EquIS database and included both routine monitoring results collected by Teck and samples collected concurrently with biological sampling. Routine water quality results were paired with the closest biological monitoring station (Table 2.2). The location of routine water quality and biological monitoring stations differed slightly for some areas, therefore samples collected concurrently with biological sampling were named according to the biological monitoring location (Table 2.2). For instance, the biological monitoring area RG_LCUT is situated upstream from the AWTF and mainly reflects water quality influences farther upstream on the main stem of Line Creek (LC_LCUSWLC) when the AWTF is operating, but also reflects input from West Line Creek (LC_WLC) when the AWTF is not operational (and flows are not being diverted to the AWTF for treatment; see Section 2.1). Accordingly, water quality data

for RG_LCUT in 2021 (similar to 2019 and 2020) were associated with routine water quality monitoring data from LC_LCUSWLC for data analysis because the AWTF was operational throughout the year (Figure 1.2)¹⁹.

Annual means of water quality data were computed by first taking a mean of results within months and then averaging monthly means. If replicate sample results were available, the Kaplan-Meier (K-M) mean of the replicates was used. Monthly means were also calculated using the K-M method. This method involved transforming the left censored (i.e., < value) dataset to a right censored (i.e., > value) dataset, and then using the K-M estimator (used to estimate the mean survival time in survival analysis) to estimate the mean. The calculation was conducted using the survfit() function in the *survival* package (Therneau 2017) in R software (R Core Team 2021) and involved calculating the area under the K-M *survival* curve. The K-M method is non-parametric and can accommodate multiple Laboratory Reporting Limits (LRLs).

The method described in Minnow (2017b) was used to visually explore temporal changes in total phosphorus and orthophosphate concentrations during AWTF operation. The method involves two steps. First, the monthly upper limits of total phosphorus and orthophosphate concentrations (97.5th percentile) were computed for the baseline (pre-AWTF operation) period at LC LC3. Second, the monthly concentrations were plotted as a ratio of the monthly baseline 97.5th percentile concentrations (i.e., monthly mean concentration: monthly baseline 97.5th percentile concentration). These trend plots help visualize deviations from the pre-AWTF range. Total phosphorus concentrations at the Compliance Point (LC LCDSSLCC [RG LIDSL]) between June 15th and September 30th were also plotted relative to the phosphorus Site Performance Objective (≤ 0.02 mg/L) outlined in Permit 107517.

Routine water quality monitoring results were screened against BCWQG (BCMOECCS 2021a,b) as part of Teck's Annual Water Quality Monitoring Report (Teck 2022b) under Permit 107517. In addition, further screening against BCWQG and water quality benchmarks (Teck 2014, Golder 2017b; see Appendix Table D.1 for screening values) was completed for select analytes during the 2021 calendar year. These analytes included nutrients (i.e., nitrate, nitrite, total phosphorus, and orthophosphate); total and dissolved selenium, analytes with early warning triggers under the AMP (total dissolved solids, sulphate, total concentrations of antimony, barium, boron, lithium, manganese, molybdenum, nickel, uranium and zinc, and dissolved concentrations of cadmium and cobalt; Section 2.2.1), and analytes with BCWQG and/or water

¹⁹ The AWTF was shut down for periods of over 24 hours on three occasions in 2021. The AWTF was shut down on June 26, 2021 for inspection/maintenance of the ozone generator (~32.5 hours) and for annual maintenance on two occasions, June 21 and July 27, 2021 (Teck 2022a). As the duration of these events were short, water quality data for RG_LCUT from the brief shut down periods were reported in relation to those from LC_LCUSWLC for data interpretation.

quality benchmarks. Plots of the analytes with early warning triggers under the AMP were prepared using available data from 2012 to 2021 for each monitoring station individually relative to BCWQG and water quality benchmarks (where applicable), and as combined plots to allow for visual comparison among stations. Aqueous selenium speciation results were plotted as monthly mean concentrations for each monitoring area.

Temperature and dissolved oxygen concentrations in Line Creek were graphically evaluated relative to BCWQG. British Columbia water temperature guidelines for bull trout and westslope cutthroat trout²⁰ specify a maximum ± 1 °C change from the optimum temperature range for different life stages of these species (spawning, incubation, and rearing; BCMOE 2001). Dissolved oxygen guidelines are also specific to life stage (buried embryo/alevin and all other life stages; BCMOE 1997). Guidelines for both these parameters were applied to periods of the year relevant to the specific life stage of each of the two species, with the time periods approximated from available literature (McPhail and Baxter 1996; McPhail 2007; COSEWIC 2016). Temperature data recorded continuously at locations immediately upstream and downstream of the AWTF discharge (using data loggers) were plotted relative to temperature measurements recorded further upstream at LC_LCUSWLC (also recorded using data loggers; Figure 2.2, Table 2.3).

2.7.2 Secondary Productivity Endpoints

Potential effects of AWTF operation on benthic invertebrate biomass and density were analyzed among areas and years using an Analysis of Variance (ANOVA) model. The model was used to assess changes in the difference in benthic invertebrate biomass or density between mine-exposed and reference areas among years. Data were included for the two mine-exposed areas (RG LIDSL and RG LILC3) and two reference areas (RG SLINE and RG LI24) sampled in 2021 and included all available results from 2014 to 2021. As recommended by the EMC, the analyses were completed by separately evaluating changes at each mine-exposed area relative to the two reference areas. Outliers with studentized residuals with magnitude greater than four were removed from the analysis, and one sample from RG SLINE in 2018 was excluded due to issues with sample preservation identified by the laboratory.

The ANOVA model that was fit to the data for each mine-exposed area (and both reference areas) was:

²⁰ Three species make up the fish community of Line Creek including bull trout, westslope cutthroat trout, and mountain whitefish. Westslope cutthroat trout and bull trout are the dominant species, while mountain whitefish are present only of in certain reaches of Line Creek and only as adult and at low densities (Zathey 2021b). Therefore, data interpretation in relation to only bull trout and westslope cutthroat trout was the focus of this report.

$$Y = CI + Year + Area(CI) + Year \times CI + Year \times Area(CI) + \epsilon$$

where:

- *Y* = response variable;
- *CI* = a fixed factor for area type with two levels (control [reference] and impact [mine-exposed]);
- Year = a fixed factor for year (2014 to 2021);
- Area(CI) = a fixed factor for area because there are two reference areas (nested in CI because each area can only be assigned to one level of CI);
- Year × CI = the interaction between Year and CI with a significant effect suggesting the difference between mine-exposed and reference areas varies among years;
- Year × Area(CI) = the interaction between Year and Area with a significant effect suggesting the difference between mine-exposed and reference results depends on which reference area the mine-exposed area is being compared to; and
- ϵ = the error term.

The ANOVA model was used to test for CI effects (i.e., changes in the difference between mine-exposed and reference areas among years). These changes were assessed by testing the significance of the interaction terms containing the Year and CI terms. An α of 0.1 was used to test the significance of the interaction terms.

Interpretation of the ANOVA table began by assessing the significance of the interaction between Area(CI) and Year. If the interaction term was significant, then the differences among areas changed over time, but it depended on which years and areas were compared. In that case, separate ANOVA models were run for each reference area with factors for Area (one mine-exposed and one reference), Year and $Year \times Area$. If there was a significant interaction, contrasts were conducted (with Bonferroni correction for the number of tests) to test for significant changes between the mine-exposed area and reference area among years.

If the interaction term between Area(CI) and Year was not significant, then the interpretation of the ANOVA table continued by assessing the significance of the interaction between CI and Year. This term in the model assessed whether the relative differences among area types depended on year. If this interaction term was significant, then contrasts were conducted to determine the changes between the mine-exposed area and the pooled reference areas among years.

Testing the significance of the interaction terms is the key hypothesis of interest in the ANOVA model as it tests for changes in the relative differences among areas over time. If all interaction

terms are not significant, then it can be concluded that there are no Year effects that can be compared to AWTF operation schedules. Data were log_{10} -transformed prior to analysis.

Temporal differences in benthic invertebrate biomass and density at mine-exposed areas (RG_LILC3 and RG_LIDSL) were also assessed over the same time period (2014 to 2021) using an ANOVA for each area and endpoint. Prior to analysis, data were log10 transformed to better meet the assumptions of the analysis. When the overall ANOVA was significant (α < 0.1), a Tukey's Honestly Significant Difference *post hoc* test was conducted for all pairwise comparisons.

The ANOVA models and contrasts as well as plots for visualizing the ANOVA results were conducted in R (R Core Team 2021) using customized scripts, and data were presented on log₁₀-transformed y-axes for consistency with the statistical approach. Letters were used on the plots to indicate which years differed significantly from one another based on the results of the ANOVA model for temporal evaluation of biomass and density at each mine-exposed areas.

2.7.3 Benthic Invertebrate Community Data

Community endpoints that were evaluated included density (Hess samples) or sample abundance (kick samples), family richness (Hess and kick samples), richness at the LPL of taxonomy (LPL richness; kick samples), and the abundances of major taxonomic groups, including the combined orders of Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), collectively known as EPT, Ephemeroptera alone, and Chironomidae (midges; absolute and relative abundances for kick samples, and density for Hess samples). Community data for kick samples were plotted to show changes over time relative to regional normal ranges²¹ as well as site-specific normal ranges.²²

2.7.4 Tissue Selenium Concentrations

2.7.4.1 Benthic Invertebrates

Selenium concentrations measured in composite-taxa benthic invertebrate tissues were plotted over time relative to corresponding site-specific effect benchmarks (Table 2.8) and relative to the regional normal range²³. Potential effects of AWTF operation on tissue selenium concentrations

²³ The reference normal range as presented in the RAEMP represents the 2.5th and 97.5th percentiles of reference area data from 1996 to 2019 (Minnow 2020b).

²¹ The reference normal range as presented in the RAEMP represents the 2.5th and 97.5th percentiles of the 2012 to 2019 (Minnow 2020b).

²² Site-specific normal ranges represent the 2.5th and 97.5th percentile for a given area as determined by habitat predictors for that area in relation to the complete set of Elk Valley monitoring areas. The site-specific normal ranges were estimated using regression modelling as presented in the RAEMP (Minnow 2020b).

Table 2.8: Selenium Benchmarks for Benthic Invertebrate and Westslope Cutthroat Trout Tissues in the Elk Valley

Endpoint	Tissue Type	Value (µg/g dw)	Туре	Description	Source		
	Whole body	4ª	BC guideline	Interim guideline for aquatic dietary tissue based on weight of evidence of lowest published toxicity thresholds and no uncertainty factor applied	BCMOE (2014)		
	Whole body	13	Site-specific benchmark	Level 1 (~10% effect) benchmark for growth, reproduction and survival of invertebrates	Teck (2014)		
	Whole body	20	Site-specific benchmark	Level 2 (~20% effect) benchmark for growth, reproduction and survival of invertebrates	Teck (2014)		
	Whole body	27 Site-specific benchmark		Level 3 (~50% effect) benchmark for growth, reproduction and survival of invertebrates	Golder (2014)		
Benthic Invertebrate	Whole body	11 ^b	Site-specific benchmark	Level 1 (~10% effect) benchmark for dietary effects to juvenile fish (growth)	Teck (2014)		
Tissue	Whole body	18	Site-specific benchmark	Level 2 (~20% effect) benchmark for dietary effects to juvenile fish (growth)	Teck (2014)		
	Whole body	26	Site-specific benchmark	Level 3 (~50% effect) benchmark for dietary effects to juvenile fish (growth)	Golder (2014)		
	Whole body	15	Site-specific benchmark	Level 1 (~10% effect) benchmark for dietary effects to juvenile birds	Teck (2014)		
	Whole body	22	Site-specific benchmark	Level 2 (~20% effect) benchmark for dietary effects to juvenile birds	Teck (2014)		
	Whole body	body 41 Site-specific benchmark		Level 3 (~50% effect) benchmark for dietary effects to juvenile birds	Golder (2014)		
	Egg/ovary	25	Site-specific benchmark	Level 1 (~10% effect) benchmark for westslope cutthroat trout reproduction	Teck (2014)		
Westslope Cutthroat Trout	Egg/ovary	27	Site-specific benchmark	Level 2 (~20% effect) benchmark for westslope cutthroat trout reproduction	Teck (2014)		
	Egg/ovary	33	Site-specific benchmark	Level 3 (~50% effect) benchmark for westslope cutthroat trout reproduction	Teck (2014)		
	Muscle/muscle plug	15.5	Site-specific benchmark	Muscle equivalent to the 25 mg/kg dw ovary benchmark, based on the relationship observed between selenium in muscle and ovary in westslope cutthroat trout	Nautilus Environmental and Interior Reforestation (2011)		

Notes: µg/g = microgram per gram. dw = dry weight. BC = British Columbia. BCMOE = British Columbia Ministry of the Environment.

^a BC guidelines were not used in assessment of benthic invertebrate tissue selenium concentrations. Assessment was completed relative to site-specific benchmarks only.

^b Site-specific benchmark is not applicable to effects to juvenile westslope cutthroat trout because studies with Yellowstone cutthroat trout have reported no effects at the Level 1 benchmark (see Teck [2014], Annex E, Appendix D [Elk Valley Water Quality Plan – Selenium Toxicity Literature Review]).

were evaluated for composite-taxa benthic invertebrate samples from each of the eight mine-exposed sampling areas (Table 2.7) using an ANOVA model. As recommended by the EMC, the analyses were completed by separately evaluating changes at each mine-exposed area relative to the two reference areas.

The ANOVA model that was fit to the data for each mine-exposed area (and both reference areas²⁴) was:

$$Y = CI + Period + Time(Period) + Period \times CI + Time(Period) \times CI + \epsilon$$

where:

- *Y* = response variable;
- CI = a fixed factor for area type with two levels (control [reference] and impact [mine-exposed]);
- Period = a fixed factor for time with up to six levels (Before [September 2012], Initial AWTF
 Operational Phase [August to October 2014], AWTF Operational [February 2016
 to October 2017], Shutdown [October 2014 to October 2015, March to October 2018]²⁵,
 Restart of AWTF with AOP [October 2018 to December 2018], and AWTF with AOP
 Operational Phase [December 2018 to December 2021]) depending on data availability,
 where each period included between one to eighteen individual sampling events and
 reflected the operational status of the WLC AWTF;
- Period × CI = the interaction between Period and CI with a significant effect suggesting the difference between mine-exposed and reference areas varies among periods;
- $Time(Period) \times CI$ = the interaction between Time(Period) and CI with a significant effect suggesting the difference between mine-exposed and reference areas varies among periods, but it depends on which sampling months are being compared; and
- ϵ = the error term.

²⁵ Commissioning-phase discharge from the AWTF began August 27, 2014, and the facility was shut down on October 17, 2014, and recommissioned with forward flow occurring on October 26, 2015. Composite-taxa benthic invertebrate tissue selenium monitoring was completed in September 2015. Due to the brief period of exposure to less-than-capacity AWTF effluent, benthic invertebrate tissue selenium data from September 2015 are not considered representative of the AWTF operational phase but also do not represent a no-discharge condition. They were therefore excluded from ANOVA analyses, but are displayed in plots for context.

²⁴ Benthic invertebrate selenium concentration data from both reference areas (RG_LI24 and RG_SLINE) were used in the ANOVA model, if available. If data from both reference areas were not available for a given sampling event, data from a single reference area were used. Results reported for RG_LI24 on May 3, 2018 were excluded from analyses because these were identified as anomalous and likely the result of a field error (see Minnow 2019a).

Only one data-point was collected for a given area in some years (i.e., no replicate sampling). Individual data points were used in the analyses rather than means (where n > 1 at an area), thus variation was assumed to be consistent across years. Because replicates within areas were not available for all years, an $Area(CI) \times Year$ interaction could not be tested, and this term was excluded from the model.

Interpretation of the ANOVA table began by assessing the significance of the interaction between Time(Period) and CI. If the interaction was significant, then the differences among mine-exposed and reference areas varied among periods, but this difference could be dependent on which sample months were compared. In that case, contrasts were conducted to determine differences between periods for each sampling event using an $\alpha = 0.1$, with a Bonferroni correction for the number of tests. Contrasts were limited to those between the "AWTF with AOP Operational Phase" period (2021) relative to the "Before" and "AWTF Operational Phase" periods (contrasts to the "Initial Operations" and "Shutdown" periods were excluded), because these were the most relevant contrasts for evaluating AWTF performance during the "AWTF with AOP Operational Phase". Differences among sampling events within a given period were not statistically contrasted, except for data from within the "AWTF with AOP Operational" period. The differences within the "AWTF with AOP Operational" period were completed using two approaches: 1) contrasts within 2021 to evaluate of AWTF with AOP performance in 2021 (the focus of the 2021 LCO LAEMP)²⁶; and 2) contrasts of similar sampling events (e.g. April 2019 to April 2020 to April 2021) within the entire "AWTF with AOP Operational" period (i.e., January 2019 to December 2021) to better understand the stability of conditions throughout this operational period.

The magnitude of difference for a significant contrast was expressed in terms of the number of standard deviations as follows:

Magnitude of Difference =
$$\frac{(\bar{X}_1 - \bar{X}_2)}{S_r}$$

where:

• \bar{X}_1 = difference between the $\log_{10}(\text{mean})$ for the mine-exposed and the $\log_{10}(\text{mean})$ for the reference areas in Sampling Event 1;

²⁶ The terminology used to describe the AWTF with AOP operational phase initiated on December 30, 2018 in the present report is consistent with the 2020 LCO LAEMP (Minnow 2021a), but differs from terminology in the 2019 LCO LAEMP report, which identified two AWTF operational phases after December 30, 2018: "AWTF Operational Stabilization" and "AWTF/AOP Steady State Operation" (Minnow 2020a). In the 2020 and the current LCO LAEMP report, after December 30, 2018 has been termed as a single "AWTF with AOP Operational" phase (see Section 1.3 for more details).

- \bar{X}_2 = difference between the \log_{10} (mean) for the mine-exposed and the \log_{10} (mean) for the reference areas in Sampling Event 2, and
- S_r = the standard deviation of the residuals in the ANOVA.

If the interaction term between Time(Period) and CI was not significant, then the interpretation of the ANOVA table continued by assessing the significance of the interaction between Period and CI. This term in the model assessed whether the relative differences between mine-exposed and reference area depended on period and if significant, contrasts (with Bonferroni correction) were used to compare among all time periods.

The magnitude of difference for a significant contrast was expressed in terms of the number of standard deviations using the equation above, where:

- \bar{X}_1 = difference between the $\log_{10}(\text{mean})$ for the mine-exposed and the $\log_{10}(\text{mean})$ for the reference areas in Time Period 1;
- \bar{X}_2 = difference between the $\log_{10}(\text{mean})$ for the mine-exposed and the $\log_{10}(\text{mean})$ for the reference areas in Time Period 2; and
- S_r = the standard deviation of the residuals in the ANOVA.

The ANOVA model outlined above was also used to evaluate changes in the difference of tissue selenium concentrations between sampling areas located upstream (RG_FRUL) and downstream (RG_FO23) of Line Creek on the Fording River.

Similar to the ANOVA model used to assess secondary productivity, testing the significance of the interaction terms is the key hypothesis of interest in these ANOVA models, as it tests for changes in the relative differences between the mine-exposed and reference areas over time. If all interaction terms are not significant, then it can be concluded that there are no period effects that can be attributed to AWTF operation schedule. If the interaction terms are significant, then the contrasts among sampling events within the "AWTF with AOP Operational Phase" period also present a key tool for the purpose of evaluating AWTF performance during operation with AOP. Data were log₁₀-transformed prior to analysis using ANOVA. The ANOVA models and contrasts as well as plots for visualizing those results were conducted in R (R Core Team 2021), and data were presented on log₁₀-transformed y-axes for consistency with the statistical approach.

Spatial differences in tissue selenium concentrations among areas during each sampling event in 2021 were tested using an ANOVA. Prior to analysis, data were \log_{10} transformed to better meet the assumptions of the analysis. When the overall ANOVA was significant (α < 0.05), a Tukey's Honestly Significant Difference *post hoc* test was conducted for all pairwise comparisons. The ANOVA models and contrasts as well as graphical plots were conducted in R

(R Core Team 2021) using customized scripts, with letters used to indicate which years differed significantly from one another.

Composite-taxa benthic invertebrate tissue selenium results from September 2012 to December 2021 were plotted relative to total selenium concentrations measured in water samples collected at or near the same time (within approximately three days) and location as the tissue samples. A line representing the regional one-step water-to-invertebrate selenium bioaccumulation model was also presented on the plot (Golder 2020c). Prediction intervals (95% percentile) for the model were calculated using the formula below (as described in Whitmore 1986):

$$\hat{Y} \pm t_{\frac{\alpha}{2},n-2} S_r \sqrt{(1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{(n-1)S_x^2})}$$

where:

- \hat{Y} = the fitted regression value at X
- S_r = the root mean square deviation of the fitted regression model (= 0.148; \log_{10} transformed)
- n = sample size (= 530)
- \bar{X} = mean of the sample X_i values (= 0.817)
- S_x^2 = variance of the sample X_i values (= 0.866).

A possible increase in benthic invertebrate selenium concentrations at the reference area RG_SLINE since 2017 was noted and flagged by the EMC for further investigation. To better understand this trend, temporal changes in benthic invertebrate tissue concentrations at RG_SLINE were quantified using an ANOVA with factors *Year* and *Month* and their interaction. When the interaction the interaction between *Year* and *Month* was significant, it indicated that the differences among years varied among the months. Post-hoc comparisons were then conducted to test for differences among years for each month using a Tukey's Honestly Significant Difference *post hoc* test. Magnitudes of difference were calculated as a percent difference from the base year of monitoring

$$MOD = \frac{MCT_{Yeari} - MCT_{baseyear}}{MCT_{baseyear}} \times 100\%$$

Where the measures of central tendency (MCT) were the estimated marginal means from the ANOVA model. The ANOVA model and contrasts were conducted in R (R Core Team 2022).

2.7.4.2 Westslope Cutthroat Trout

Fish tissue data²⁷ collected from Line Creek as part of the RAEMP (Minnow 2021c) were incorporated into this report to continue the evaluation of fish tissue quality monitoring included in prior years of the LCO LAEMP (Minnow 2017c, 2018c, 2019b). Muscle selenium concentrations of WCT from RG_LIDSL and RG_FO23 in 2021 were tabulated with corresponding meristics data (total weight, length and fork length). Selenium concentrations in WCT muscle were plotted in comparison to the applicable site-specific muscle benchmark (15.5 mg/kg dw; Table 2.8). Ovary selenium concentrations of WCT from these areas were estimated from the muscle tissue concentrations based on the ovary-to-muscle concentration relationship of 1.6:1 (Nautilus and Interior Reforestation 2011) and plotted in comparison to site-specific effect benchmarks (Teck 2014; Table 2.8). Data from 2021 were plotted relative to WCT tissue selenium concentrations in areas of Line Creek and the Fording River from previous years (2001 to 2021).

Estimated WCT ovary tissue selenium results from 2001 to 2021 were plotted relative to total selenium concentrations measured in water samples collected at or near the same location and time as WCT tissue collection. A line representing the regional two-step model from water-to-invertebrates-to-fish egg/ovary selenium bioaccumulation model²⁸ was also presented on the plot (Golder 2018a). Prediction intervals (95% percentile) for the model were calculated using the same formula used for the benthic invertebrate model, but using the following parameters:

- $S_r = 0.161$; \log_{10} transformed
- n = 112
- $\bar{X} = 0.867$
- $S_x^2 = 0.580$.

Although fish tissue monitoring was limited to RG_LIDSL and RG_FO23 in 2021, benthic invertebrate and fish tissue quality monitoring completed for the LCO LAEMP has demonstrated that changes in fish tissue selenium concentrations between 2017 and 2019 were corroborated by those reported for benthic invertebrates (Minnow 2020a). As such, benthic invertebrate tissue selenium monitoring is expected to be sufficient to evaluate potential effects of AWTF with AOP steady-state operation on selenium concentrations in biota in the receiving environment.

²⁷ The DQR for the fish tissue chemistry collected at RG_LIDSL and RG_FO23 will be presented in the 2020-2022 RAEMP report.

²⁸ A two-step model from water-to-invertebrates-to-fish muscle selenium bioaccumulation model is not available as a focus has been on eggs of various organisms including fish, birds, and amphibians (Golder 2018a).

3 PRODUCTIVITY

3.1 Overview

Monitoring data were evaluated in this section to address Study Question #1: Is active water treatment affecting biological productivity downstream in Line Creek? To address this study question, primary and secondary productivity monitoring endpoints and concentrations of aqueous nutrients were evaluated in relation to the AWTF operational status. The AWTF with AOP was operational throughout 2021 with discharge to the receiving environment occurring throughout the year (see Section 1.3 for details).

3.2 Site Performance Objectives and Aqueous Nutrient Concentrations

As outlined in Section 1.2, the AWTF treatment process requires the addition of phosphorus, and there is the potential for increased phosphorus concentrations downstream in Line Creek during AWTF operation. Aqueous total phosphorus concentrations at the Compliance Point were consistently below the SPO of 0.02 mg/L throughout 2021, including the growing season (June 15 to September 30) to which the SPO applies (Figure 3.1).

In 2021, aqueous total phosphorus concentrations downstream of the AWTF discharge were within the range of concentrations reported prior to AWTF operation (i.e., 2012 to 2015, excluding initial operations in 2014; Figure 3.2; Appendix Figure B.1). Aqueous orthophosphate concentrations in 2021 were also within the range of results reported prior to AWTF operation (i.e., 2012 to 2015, excluding initial operations in 2014; Figure 3.3; Appendix Figure B.2).

Total phosphorus and orthophosphate concentrations were further evaluated using an approach recommended in the Proposal to Update the Site Performance Objective for Phosphorus in Line Creek (see Section 2.7.1; Minnow 2017b²⁹). The purpose of this approach was to facilitate the early detection of potential changes in concentrations of these aqueous nutrients downstream of the AWTF. The evaluation involves the comparison of monthly mean concentrations of total phosphorus and orthophosphate to the upper range (97.5th percentile) of concentrations observed in each month during the baseline (pre-AWTF) period at LC_LC3 (upper panels in Figures 3.4 and 3.5). Monthly mean concentrations were then expressed as a ratio of the baseline 97.5th percentile for each month (bottom panels in Figures 3.4 and 3.5).

Throughout 2021, total phosphorus and orthophosphate concentrations at LC_LC3 were below the baseline 97.5th percentiles, with one exception (Figures 3.4 and 3.5). Specifically, the mean total phosphorus concentration at LC LC3 was slightly higher than the baseline 97.5th percentile

²⁹ Included as Appendix C in Minnow (2017b).

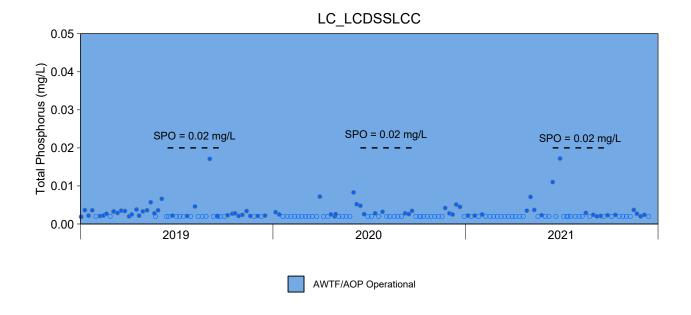


Figure 3.1: Total Phosphorus Concentrations in Water Collected from the Line Creek Compliance Point (LC_LCDSSLCC), 2019 to 2021

Notes: SPO = Site Performance Objective (0.02 mg/L). This pertains to the compliance point (LC_LCDSSLCC) only, as a growing season average calculated from measurements collected every two weeks between June 15th and September 30th, annually. If multiple results existed for a given location and day, the Kaplan-Meier mean of the duplicates was presented. Open symbols represent results below the laboratory reporting limit (LRL).

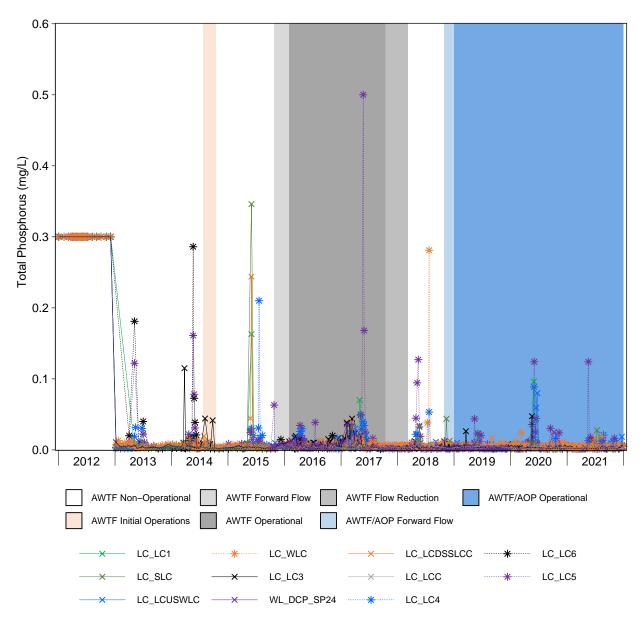


Figure 3.2: Time Series Plots for Aqueous Total Phosphorus Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRL ranged from 0.0010 and 0.30 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

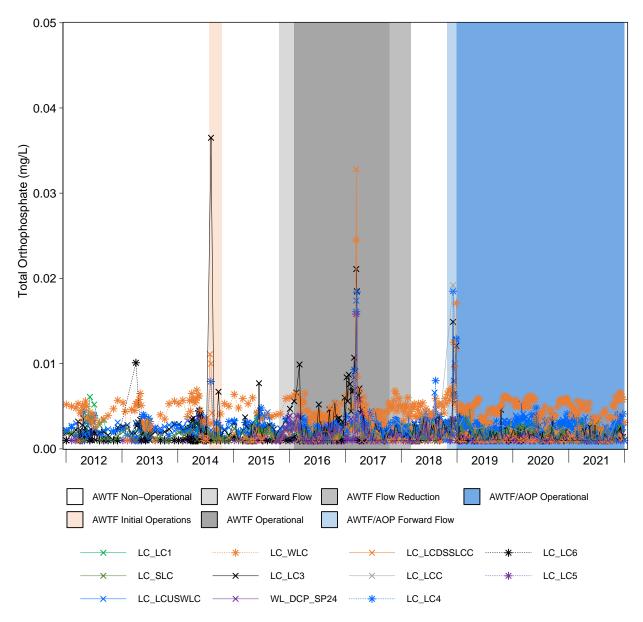


Figure 3.3: Time Series Plots for Aqueous Total Orthophosphate Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRL = 0.0010 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

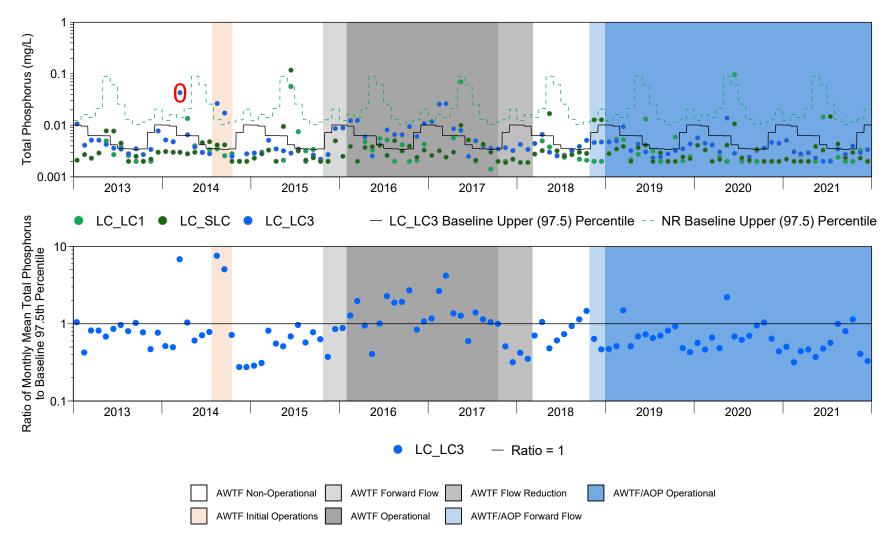


Figure 3.4: Total Phosphorus at LC_LC3 During AWTF Operation Relative to Pre-Operational Baseline Concentrations

Notes: Top panel shows monthly mean concentrations at LC_LC3 and reference stations relative to the monthly percentiles for the baseline period prior to AWTF operation. The data used to define the baseline 97.5th percentile for each month were concentrations for the specified month, the preceding month and the following month for unshaded months prior to 2018 shown in panels. The normal range (NR) was calculated from the 97.5 percentile in the Nutrient Evaluation (Minnow 2020b). Red circle indicates outlier excluded from the calculation of baseline percentile. Bottom panel presents the ratio of monthly mean concentrations at LC_LC3 relative to the baseline 97.5th percentile for the corresponding month.



Figure 3.5: Orthophosphate at LC_LC3 During AWTF Operation Relative to Pre-Operational Baseline Concentrations

Notes: Top panel shows monthly mean concentrations at LC_LC3 and reference stations relative to the monthly percentiles for the baseline period prior to AWTF operation. The data used to define the baseline 97.5th percentile for each month were concentrations for the specified month, the preceding month and the following month for unshaded months prior to 2018 shown in panels. The normal range (NR) was calculated from the 97.5 percentile in the Nutrient Evaluation (Minnow 2020b). Bottom panel presents the ratio of monthly mean concentrations at LC_LC3 relative to the baseline 97.5th percentile for the corresponding month.

in October 2021 (Figure 3.4). These results are consistent with the 2019 and 2020 LCO LAEMP (i.e., monitoring which also occurred during the AWTF with AOP operational phase), which demonstrated that total phosphorus and orthophosphate concentrations were below the baseline 97.5th percentile with only a few exceptions including total phosphorus in March 2019 and May and October of 2020 (Figure 3.4; Minnow 2020a, 2021a). In contrast, the total phosphorus and orthophosphate concentrations during AWTF without AOP operation (in 2016 and 2017) were frequently greater than the baseline 97.5th percentiles at LC_LC3 (more frequently for total phosphorus than orthophosphate; Figures 3.4 and 3.5). Overall, operation of the AWTF with AOP (from 2019 to 2021) has been more successful at minimizing phosphorus and orthophosphate contributions to the receiving environment than operations of the AWTF without AOP (in 2016 and 2017).

One function of the AWTF is to decrease nitrate loads to the receiving environment, and the AWTF with AOP removed 35,469 kg of nitrate during operations in 2021 (Teck 2022a), which is similar to 2020 (36,766 kg of nitrate in 2020, Teck 2021c). Aqueous nitrate concentrations at the Compliance Point were below the SPO Daily Maximum Limit of 9 mg/L during the majority of 2021 (65%; Teck 2022b) but were higher than the daily SPO on 19 occasions as well as the monthly average compliance limit (7 mg/L) in all months except May, June, and August (see Teck 2022b for details). Exceedances of the daily SPOs and monthly average compliance limits, however, were always low (1.3 and 1.5-folds higher, respectively: Teck 2022b) and aqueous nitrate concentrations downstream of the AWTF discharge in 2021 were towards the low end of the range of concentrations reported prior to AWTF operation (i.e., 2012 to 2015, excluding initial operations in 2014; Figure 3.6; Appendix Figure B.3). In 2021, as with previous years, nitrate concentrations in samples from mine-exposed monitoring stations upstream and downstream of the AWTF discharge were above the long-term BCWQG (96 to 100% of samples in each area; Appendix Figure B.3; Appendix Tables D.2 and D.3). Although nitrate concentrations exceeded the EVWQP Level 1 benchmark at both areas upstream of the AWTF discharge in 2021 (34% [21 of 61 sampling events] and 53% [30 of 57 sampling events] of LC LCUSWLC and LC WLC samples, respectively), this was not the case at mine-exposed areas in Line Creek downstream of the discharge (LC LC3, WL DCP SP24, LC LCDSSLCC, LC LCC, and LC LC4 were all below the benchmark; Appendix Figure B.3, Appendix Tables D.2 and D.3) suggesting that the AWTF is functioning as expected in reducing nitrate concentrations. Nitrate concentrations at LC LC3 (which is the nearest downstream area to the AWTF) were below the EVWQP Level 1 benchmark throughout 2021, which is a lower frequency of exceedance than in 2020 and 2019 (4% and 33% of samples, respectively; Minnow 2020a, 2021a).

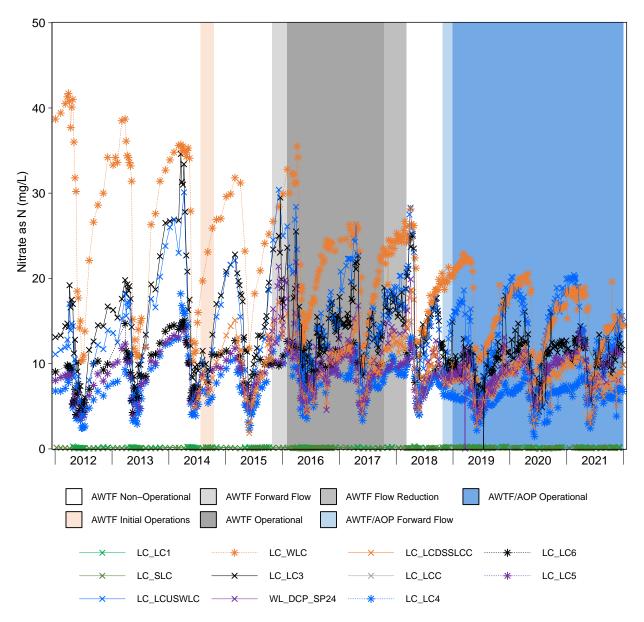


Figure 3.6: Time Series Plots for Aqueous Nitrate (as N) Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRL = 0.025 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

3.3 Primary Productivity Indicators

In 2021, mean periphyton coverage was moderate at nine of the ten study areas (Appendix Figure B.4; Appendix Table B.1), with visual scores at these areas between two and three (of a possible range from one [rocks not slippery and no obvious colour] to five [rocks mostly obscured by algae mat]). The one exception was RG_FRUL, which had a mean visual score of 1.8. The moderate visual periphyton scores for 2021 are similar to those from 2020, with the exception of RG_LILC3 and RG_LIDCOM, which both had lower periphyton scores in 2021 compared to those in 2020 (mean score of 4 in 2020; Minnow 2021a). The results for RG_LILC3 and RG_LIDCOM in 2021 was more similar to those prior to 2020 (mean score = 3 at both areas in 2017 to 2019; Minnow 2018b, 2019a, 2020a). As such, it is likely that the increased periphyton coverage noted in 2020 was an isolated event that may have been related to environmental factors that could have influenced periphyton growth during that year (e.g., lower water depth and flows, and/or increased temperature).

3.4 Secondary Productivity Indicators

Analyses of the potential changes in benthic invertebrate biomass and density at mine-exposed areas RG_LILC3 and RG_LIDSL (sampling areas immediately downstream of the AWTF discharge and the Compliance Point, respectively) relative to changes at the reference areas (RG_LI24 and RG_SLINE) over the same time period were performed excluding two outlying values for the reference area RG_SLINE – one in 2017 and one in 2018 (Figures 3.7 and 3.8; see Section 2.7.2 for data ANOVA methods, including outlier removal).

Benthic invertebrate biomass at RG_LILC3 (based on Hess sampling) in 2021 was not significantly different to previous years, with no significant temporal differences noted between 2014 and 2021 when evaluated either for RG_LILC3 only or for RG_LILC3 relative to reference over time (Figure 3.7; Appendix Tables B.2 and B.3). No significant temporal differences were noted for biomass at RG_LIDSL from 2014 to 2021 when evaluated at the mine-exposed area only, but subtle temporal differences were noted relative to changes at the reference area (p = 0.055), in which case biomass in 2019 was significantly lower compared to 2014. Otherwise, biomass at RG_LIDSL has been stable over the three years of AWTF with AOP operation (2019 to 2021) when evaluated alone or relative to reference (Figure 3.7; Appendix Tables B.2 and B.3). Combined, the biomass results at RG_LILC3 and RG_LIDSL did not indicate an increase in benthic invertebrate biomass associated with AWTF operation with AOP in 2019 to 2021.

Density at RG_LILC3 has been stable from 2014 to 2021 based on the evaluation of temporal changes at RG_LILC3 only (i.e., no significant differences among years; Figure 3.8, Table 3.1;

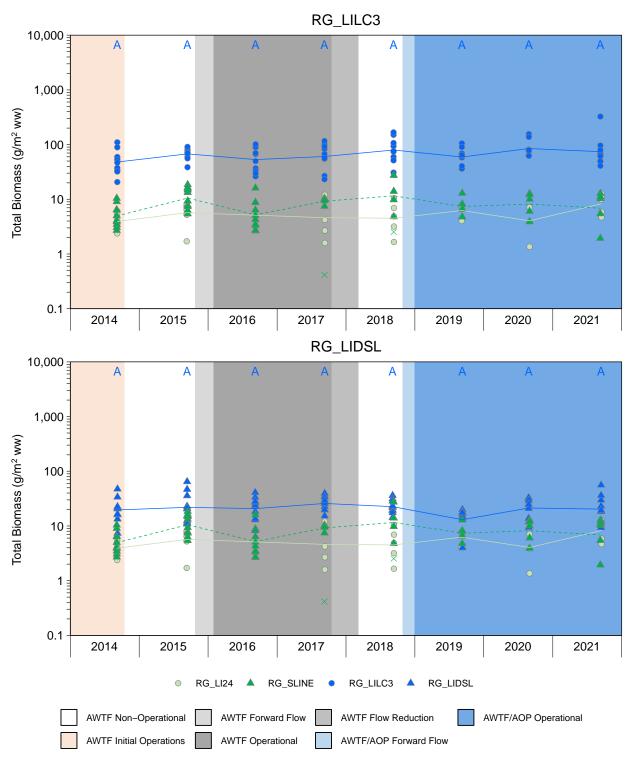


Figure 3.7: Total Benthic Invertebrate Biomass (Hess Sampling) for RG_LILC3 and RG_LIDSL Relative to RG_SLINE and RG_LI24 (Reference Areas), 2014 to 2021

Notes: West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge. Years that share a letter (e.g., A,B) were not significantly different (*p* value > 0.1) in a Tukey HSD post–hoc contrast among years for the respective exposed station. Outliers not used in analysis plotted with an 'X'. g/m² = grams per metre squared. ww = wet weight.

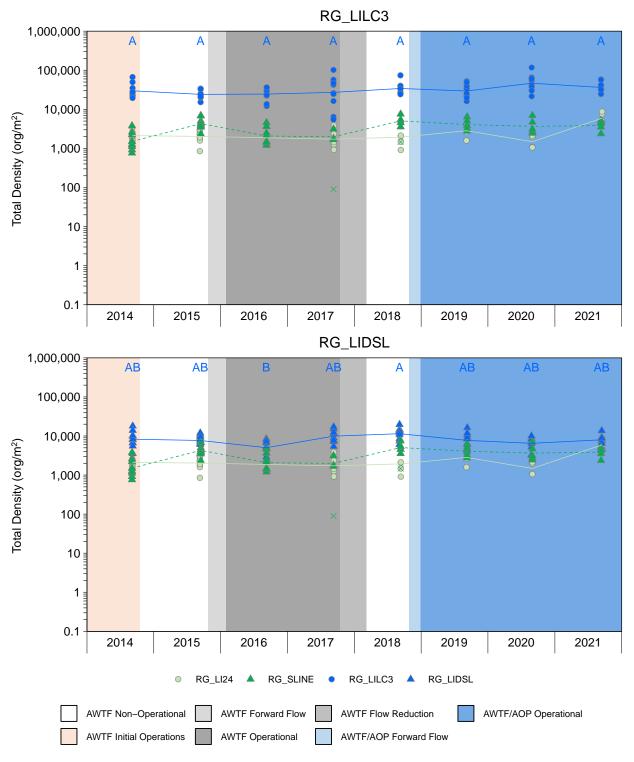


Figure 3.8: Total Benthic Invertebrate Density (Hess Sampling) for RG_LILC3 and RG_LIDSL Relative to RG_SLINE and RG_LI24 (Reference Areas), 2014 to 2021

Notes: West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge. Years that share a letter (e.g., A,B) were not significantly different (*p* value > 0.1) in a Tukey HSD post–hoc contrast among years for the respective exposed station. Outliers not used in analysis plotted with an 'X'. org/m² = organisms per metre squared.

Table 3.1: Geometric Means of Benthic Invertebrate Density for Hess Sampling in Areas of Line Creek, 2014 to 2021

Area	Benthic Invertebrate Density (# organisms/m²)													
	2014	2015	2016	2017	2018	2019	2020	2021						
RG_LI24	2,120	2,028	-	1,723	1,933	3,182	1,482	5,940						
RG_SLINE	1,508 4,30		2,072	1,072	5,062	4,067	3,659	3,857						
RG_SLINE ^a	SLINE ^a 1,508 4		2,072	1,993	3,947	4,067	3,659	3,857						
RG_LILC3	29,805	24,136	24,564	27,162	34,153	29,481	46,510	36,405						
RG_LIDSL	8,276	7,690	5,024	9,910	11,452	7,718	6,506	7,992						

Note: "-" = no data

^a One outlier removed in 2017 and 2018.

Appendix Table B.4).31 Density at RG LILC3 relative to RG SLINE in 2021 was similar to prior years, while density at RG LILC3 in 2021 relative to RG LI24 was either similar (2014, 2015, 2017, and 2019) or lower than previous years (2018 and 2020). Overall, no increases in density at RG LILC3 were noted (when compared to either reference area) when comparing years of AWTF with AOP (2019 to 2021) to previous years of evaluation (including pre-AWTF operation). Similarly, density at RG LIDSL in 2021 showed no significant differences when compared to previous years (2014 to 2020) based on the evaluation of temporal changes at RG_LIDSL only. However, temporal differences were observed when density at RG LIDSL was evaluated in relation to changes in reference over the same time frame, with the differences dependent on reference area. Benthic invertebrate density at RG LIDSL was significantly higher in 2021 when compared to previous years (excluding 2019) when evaluated in relation to changes in RG LI24 but showed no differences to those same years (except for 2014) when evaluated in relation to changes at RG SLINE (Figure 3.8; Appendix Table B.4). Combined, the density results at RG LILC3 and RG LIDSL did not indicate an increase in benthic invertebrate density compared to both reference areas that was associated with AWTF operation with AOP in 2021 (which is similar to results from 2019 and 2020).

Benthic invertebrate abundance in kick and sweep samples from 2021 were within or above the regional and site-specific normal ranges at mine-exposed areas in Line Creek (both upstream and downstream of the AWTF discharge) and in the Fording River (upstream and downstream of the Line Creek; Appendix Figure B.5, Appendix Table B.5). Total sample abundance at mine-exposed areas downstream³² of the AWTF discharge in 2021 was within the range of previous AWTF operational years (without AOP [2016, 2017] or with AOP [2019, 2020]; Appendix Figure B.5). Two areas of Line Creek downstream of the AWTF with longer-term datasets (RG_LIDSL and RG_LI8), have shown slightly higher abundance during AWTF with AOP operation (2019 to 2021) compared to pre-AWTF (2012 to 2015; Appendix Figure B.5). However, benthic invertebrate abundance results for RG_LILC3 (the area located closest to the AWTF discharge) from 2019 to 2021 were within the range of pre-AWTF results, suggesting that temporal increases in abundance observed at areas further downstream were likely not AWTF-related. These results are consistent with the benthic invertebrate biomass and density results discussed above.

In summary, monitoring data indicated that secondary productivity in Line Creek was not affected by AWTF with AOP operations in 2021. This is consistent with the similarity in aqueous

³² Areas downstream of AWTF discharge include RG_LILC3, RG_LISP 24, RG_LIDSL, RG_LIDCOM, RG_LI8, and RG FO23. Pre-AWTF operational abundance values were not available for RG_LISP24 or RG_LIDCOM.

³¹ Benthic density data were not available for RG_LI24 in 2016 for comparison.

nutrient concentrations (Section 3.2) and primary productivity results (Section 3.3) in 2021 relative to previous years (namely 2019 and 2020) but also those prior to AWTF operation.

3.5 Benthic Invertebrate Community Structure

Endpoints related to benthic invertebrate community structure were evaluated relative to regional normal ranges and site-specific ranges defined in the RAEMP (Minnow 2020b). Community taxon richness (i.e., number of different taxa identified to LPL of identification) was within or above the regional normal range and site-specific normal range at mine-exposed and reference sampling areas in 2021 (Appendix Figure B.6, Appendix Table B.5). Taxon richness at RG_LILC3 in 2021 was similar to 2020 and higher than 2018 and 2019 (Appendix Figure B.6). An increase in taxon richness in 2020 and 2021 relative to 2018 and 2019 was also observed at RG_LCUT (Appendix Figure B.6), which is upstream of the AWTF discharge, suggesting that these increases are likely due to natural variability or conditions further upstream (Appendix Figure B.6).

Percent EPT in 2021 fell below the regional normal and site-specific ranges at mine-exposed areas upstream (RG_LCUT) of the AWTF as well as three of the six downstream areas of the AWTF discharge (RG_LILC3, RG_LISP24, RG_FO23 [1 of 5 replicates]; Appendix Figure B.7, Appendix Table B.5). Although percent EPT fell below the regional and site-specific ranges for these three areas, percent EPT was either within (RG_FO23) or higher than results from the previous three years (RG_LILC3 and RG_LISP24; i.e., 2018 to 2020). At the other areas located downstream of AWTF in Line Creek (RG_LIDSL, RG_LIDCOM, and RG_LI8), EPT percentages were within the regional and site-specific ranges in 2021 (Appendix Figure B.7, Appendix Table B.5) as well as higher than the last three years of evaluation (2018 to 2020).

Percent Ephemeroptera (mayflies) results in 2021 showed a spatial pattern generally consistent with the percent EPT results. Ephemeroptera percentages fell below the regional and site-specific ranges at mine-exposed areas upstream (RG_LCUT) of the AWTF and immediately downstream of the AWTF discharge (RG_LILC3; Appendix Figure B.8, Appendix Table B.5), which is consistent with results from 2020 (Minnow 2021a). Percent Ephemeroptera at areas located further downstream in Line Creek and in the Fording River were within the regional normal range but below the site-specific normal range at RG_LISP24, RG_LIDSL (1 of 5 replicates), RG_LIDCOM, and RG_FO23 (2 of 5 replicates; Appendix Figure B.8, Appendix Table B.5). Despite this, results from mine-exposed areas of Line Creek in 2021 were within or higher than the range of previous years, including prior to the commissioning of the AOP. Specifically, percent Ephemeroptera was higher in 2021 at RG_LILC3 than seven of the nine previous years of evaluation (2012, 2014, 2016 to 2020; Appendix Figure B.7). Similarly, higher percent Ephemeroptera at areas further downstream, specifically RG_LISP24, RG_LIDSL, RG_LIDCOM,

and RG_LI8, have been observed during AWTF with AOP Operation (2019 to 2021) when compared to AWTF without AOP (Appendix Figure B.7). It should be noted, however, that increases in percent Ephemeroptera as well as percent EPT were also noted at RG_LCUT (upstream of the AWTF discharge), and thus increases in these endpoints may be attributed to the influences other than those related to the AWTF with AOP operation. Regardless, increases in these indices (percent EPT and percent Ephemeroptera) during the AWTF with AOP period (when compared to AWTF without AOP) at most downstream areas of the AWTF discharge is suggestive of an improvement in benthic invertebrate community structure.

Percent Chironomidae in 2021 was above the reference normal range at areas immediately upstream (RG_LCUT) and at two of the six areas downstream from the AWTF (RG_LILC3 and RG_LISP24; Appendix Figure B.9, Appendix Table B.5). The percentage of Chironomidae at RG_LCUT, RG_LILC3, and RG_LISP24 was lower than previous years, with percent Chironomidae being only slight above the reference normal range for RG_LISP24 (Appendix Figure B.9). Percent Chironomidae at these three areas has decreased from 2019 which compliments the increase in percent EPT during this same time frame (Appendix Figures B.7 and B.9). Remaining sampling areas located furthest downstream of the AWTF (RG_LI8, RG_LIDSL, RG_LIDCOM, and RG_FO23) showed Chironomidae percentages in 2021 that were within the reference normal range as well as lower than results from 2020 (Appendix Figure B.9).

Percent EPT was also assessed against the biological trigger established for this endpoint (information pertaining to the determination of the biological trigger value can be found in Appendix E). This was completed for LCO LAEMP monitoring areas with available water quality predictions (i.e., five mine-exposed areas [RG_LCUT, RG_LILC3, RG_LIDSL, RG_LI8, and RG_FO23] and the two reference areas [RG_SLINE and RG_LI24]; see Appendix E for details). In 2021, three of the five mine exposed areas evaluated had percent EPT for all replicates which corresponded to a biological trigger (i.e., percent EPT was below the biological trigger), including RG_LCUT (the area upstream of the AWTF discharge), RG_LILC3 (the area in closest proximity to the AWTF discharge), and RG_FO23 (area at the confluence of the Fording River and Line Creek). In contrast, all five mine-exposed areas in 2020 had at least one replicate that corresponded to a biological trigger suggesting an increase in percent EPT from 2020 to 2021 (Minnow 2021a). Percent EPT at these areas has previously been flagged for further investigation in the RAEMP based on benthic invertebrate community results (Minnow 2020b). Further information regarding the percent EPT biological trigger as it pertains to the LCO LAEMP can be found in Appendix E.

3.6 Summary

Total phosphorus concentrations at the Compliance Point (LC_LCDSSLCC) were below the SPO of 0.02 mg/L during the 2021 growing season (June 15 to September 30), consistent with previous years. Aqueous nutrient concentrations (total phosphorus, orthophosphate, and nitrate) in 2021 were generally within the range observed prior to AWTF operation. In addition, results suggest that operation of the AWTF with AOP from 2019 to 2021 was more successful at minimizing phosphorus and orthophosphate contributions to the receiving environment than during the AWTF operational phase without AOP (in 2016 and 2017).

Periphyton coverage at all mine-exposed areas (as well as reference) was moderate in 2021 (based on the CABIN visual assessment, see Section 2.3) and was consistent with results from previous years. This included areas RG LILC3 and RG LIDCOM, which showed lower periphyton coverage in 2021 in comparison periphyton coverage in 2020 (RG LILC3 and RG LIDCOM had periphyton scores of 4) but were similar to results from 2017 to 2019 suggesting that results in 2020 were an isolated event likely associated with variability in environmental factors. Benthic invertebrate biomass and density at mine-exposed areas of Line Creek showed no significant increases in 2021 when compared to previous years that could be related to operation of the AWTF with AOP, and has been stable during the AWTF with AOP period (2019 to 2021). Benthic invertebrate total abundance (measured by kick and sweep) in all areas in 2021 were similar to results from 2019 and 2020 (i.e., the other years of operation of AWTF with AOP), and although higher in some cases than pre-AWTF conditions (2012 to 2015), were all still within the regional normal range. Additionally, the absence of an increase in abundance at the closest area to the AWTF discharge (RG_LILC3) during AWTF with AOP operations (2019 to 2021) compared to pre-AWTF conditions 2017, suggests that marginal increases in abundance over this period further downstream were likely unrelated to the AWTF with AOP (consistent with the biomass and density results). Benthic invertebrate community endpoints indicated no adverse change in community characteristics related to AWTF with AOP operations in 2021. Rather, an increase in the percentage of sensitive taxa (as measured through evaluations of percent EPT and percent Ephemeroptera) in 2019, 2020, and 2021 at most downstream areas of Line Creek (as well as the upstream area, RG LCUT) relative to past years suggestive of an improvement in benthic invertebrate community structure. Overall, biological productivity downstream from the WLC AWTF did not appear to be affected by AWTF with AOP operations throughout 2021, which is consistent with past evaluations during this operational period (2019 and 2020).

4 SELENIUM CONCENTRATIONS

4.1 Overview

Monitoring data were evaluated in this section to address Study Question #2: Are tissue selenium concentrations reduced downstream from the WLC AWTF? To address this study question, selenium concentrations in benthic invertebrate tissue were evaluated in relation to the AWTF operational status. The AWTF with AOP was operational throughout 2021 with discharge to the receiving environment occurring throughout the year (see Section 1.3 for details).

4.2 Tissue Selenium Concentrations

4.2.1 Composite-Taxa Benthic Invertebrate Samples

Two areas sampled in September 2021, RG_LILC3 (n=1) and RG_LI8 (n=3), had a proportion of annelids that met the criteria to evaluate annelids separately³³. The 'annelid only' tissue replicates for both areas were either just slightly higher (<4 mg/kg dw higher; RG_LILC3) or within the range of the corresponding composite taxa samples (RG_LI8; Appendix Table C.1). Overall, the presence of annelids in these four samples (of the 50 samples taken throughout Line Creek in September) are not expected to affect the results of the study and the analysis will focus on composite-taxa benthic invertebrate results.

Benthic invertebrate tissue selenium concentrations at mine-exposed areas downstream of the AWTF in Line Creek (RG_LILC3, RG_LISP24, RG_LIDSL, RG_LIDCOM, and RG_LI8) were significantly lower during each of the AWTF with AOP operational phase sampling events in 2021 than each of the sampling events during AWTF without AOP operations (2016 and 2017), compared to changes at the reference areas over the same time frame (Figure 4.1; Appendix Figures C.1 to C.2, Appendix Tables C.1 to C.6). Furthermore, benthic invertebrate selenium concentrations in 2021 for these areas were either similar to or lower than concentrations prior to AWTF operation (2012) when considered relative to changes at the reference area over the same period (where data exist for this comparison: RG_LILC3, RG_LIDSL, RG_LI8; Figure 4.1; Appendix Figure C.2, Appendix Tables C.2, C.4, C.6). In contrast, RG_LCUT, which is upstream of the AWTF outfall (and thus would not be influenced by the AWTF), did not show consistent differences between the 2021 AWTF with AOP period and the AWTF without AOP period (2016 and 2017) as 5 of the 12 comparisons showed no differences (Appendix Table C.7).

³³ As noted in the methods, annelids were only included in the composite-taxa tissue sample if the proportion of annelids was >5% of the total biomass sample, and if so, an additional 'annelids only' sample was also evaluated. This process started in September 2021 as previous assessments have suggested that the presence of annelids in composite-taxa benthic invertebrate tissue sample may bias the results high (Golder 2021b). Annelids were not found at a high enough proportion in December sampling for any area to be evaluated separately.

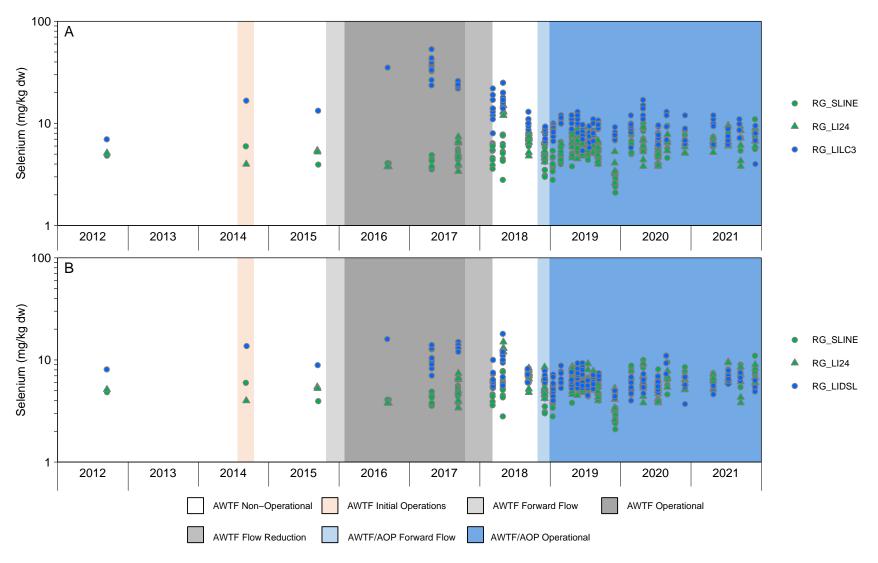


Figure 4.1: Benthic Invertebrate Selenium Concentrations, for A) RG_LILC3 and B) RG_LIDSL (Mine-exposed Areas) Relative to RG_SLINE and RG_LI24 (Reference Areas), 2012 to 2021

Notes: Blue symbols represent mine-exposed areas and green symbols represent reference areas. Due to a brief period of exposure to less—than—capacity AWTF effluent in 2014, benthic invertebrate tissue selenium data from September 2015 were not considered representative of AWTF operation, but also not representative of a no-discharge condition. These data were therefore excluded from analyses and are displayed in plots for context only. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine- exposed monitoring areas located downstream of the AWTF discharge

Within the 2021 AWTF with AOP operational phase, changes in benthic invertebrate selenium concentrations at each downstream area in Line Creek were compared to changes at the reference areas over the same time frame (Appendix Table C.8 to C.12). The purpose of this comparison was to evaluate AWTF with AOP performance during 2021 and better understand how seasonality may influence benthic invertebrate tissue selenium concentrations. Results of this analysis indicated that selenium concentrations in benthic invertebrates (as a function of changes in reference areas) changed differently at each of the mine-exposed areas in Line Creek during this period (Appendix Tables C.8 to C.12). Relatively few patterns in the significant changes within 2021 were consistently observed among the mine-exposed areas relative to reference. The possible exception was significantly lower selenium tissue concentrations in December samples when compared to those collected in April or Benthic invertebrate tissue selenium concentrations were significantly higher in April when compared to December in three of five areas (RG LILC3, RG LISP24, and RG LIDCOM), while all five areas had significantly higher benthic invertebrate tissue selenium concentrations in September when compared to samples from December (Figure 4.1; Appendix Figures C.1 and C.2, Appendix Tables C.8 to C.12). Similar seasonality observations were noted with the area upstream of the AWTF as well, as RG LCUT also had higher benthic invertebrate tissue selenium concentrations in April and September when compared to December (as well as July; Appendix Table C.13). Taxon composition of benthic invertebrate samples was also largely consistent throughout the year among monitoring areas (Appendix Table C.1), suggesting that the increased tissue selenium concentrations in September and April were not related to sample composition. Overall, these results suggest that seasonality is a factor influencing benthic invertebrate tissue selenium concentrations, with higher concentrations noted in April and September.

Changes in benthic invertebrate tissue selenium concentrations at each area were also evaluated relative to changes at the reference areas throughout the AWTF with AOP operational phase (i.e., January 2019 to December 2021) to assess the stability of tissue selenium concentrations over this period. Benthic invertebrate tissue selenium concentrations were grouped by month and then compared amongst years (i.e., comparing the same month in 2019 to 2020 to 2021) and overall few differences were noted at each of the mine-exposed areas downstream of the AWTF (Appendix Tables C.14 to C.19). The notable exception was sampling events in December, as benthic tissue selenium concentrations in December were generally significantly lower than the previous sampling event(s). For instance, RG_LILC3 showed lower concentrations in 2021 and 2020 when compared to 2019 (which was also the case for RG_LISP24, RG_LIDSL, RG_LIDCOM and RG_FO23). This trend was also apparent in the area upstream of the AWTF outfall, RG LCUT (Appendix Table C.20), which suggests that benthic invertebrate tissue

selenium concentrations in Line Creek were lower overall (both upstream and downstream of the AWTF outfall) in December 2020 and 2021 when compared to December 2019. Regardless, areas downstream of the AWTF outfall showed either no significant difference or a significant decrease with each preceding year ($2019 \ge 2020 \ge 2021$) in benthic invertebrate tissue selenium concentrations (when comparing similar months between years), suggesting that the AWTF with AOP is functioning as expected and that benthic invertebrate tissue concentrations in the area are stable.

Selenium concentrations in benthic invertebrates collected from the six areas downstream of the AWTF discharge in Line Creek were similar to or lower than reference and/or upstream of the discharge (RG LCUT) throughout the 2021 sampling period (Figure 4.2, Table 4.1). In addition, mean benthic invertebrate selenium concentrations at areas downstream of the AWTF in 2021 were within the regional normal range and below the Level 1 EVWQP Benchmark for effects to invertebrates (13 mg/kg dw), except concentrations at RG LILC3 in April and September which were higher than the regional normal range (Figure 4.2, Table 4.1). The benthic invertebrate selenium concentrations at RG LILC3 in 2021 (as well as in the other years of AWTF with AOP operation; 2019 and 2020) represent a substantial improvement relative to 2016 and 2017 (during the AWTF operational phase without AOP) when tissue selenium concentrations exceeded the EVWQP Level 2 and Level 3 benchmarks for effects to benthic invertebrates at this area (Table 4.1; Minnow 2017a, 2018b). Similar to the results in 2020 (Minnow 2021a) and 2019 (Minnow 2020a), results from 2021 continued to indicate that the spatial and temporal extent of benthic invertebrate selenium concentrations was substantially decreased compared to AWTF operation without AOP (e.g., Minnow 2018b) and in the few events mean concentrations were above the reginal normal range (such as at RG LILC3 in April and Sept 2021) it was only in the area immediately downstream of the AWTF (specifically RG LILC3).

Selenium concentrations in benthic invertebrates from the Fording River downstream of Line Creek (RG_FO23) were similar to the Fording River upstream of Line Creek (RG_FRUL; Figure 4.3, Table 4.1) in all four sampling events in 2021 (April, September, July, November/December). The slight (but non-significant) difference in benthic invertebrate selenium concentrations between RG_FRUL and RG_FO23 was stable throughout 2021 (Figure 4.3; Appendix Table C.21), with mean selenium concentrations that were slightly lower downstream (RG_FO23) compared to upstream of Line Creek (but not significantly so; Figure 4.3). In addition, the difference in benthic invertebrate selenium concentrations between RG_FO23 and RG_FRUL was similar in 2021 (during the 2021 AWTF with AOP operational phase) compared to baseline and AWTF without AOP with a single exception. Specifically, benthic invertebrate tissue selenium concentrations at RG_FO23 in September 2021

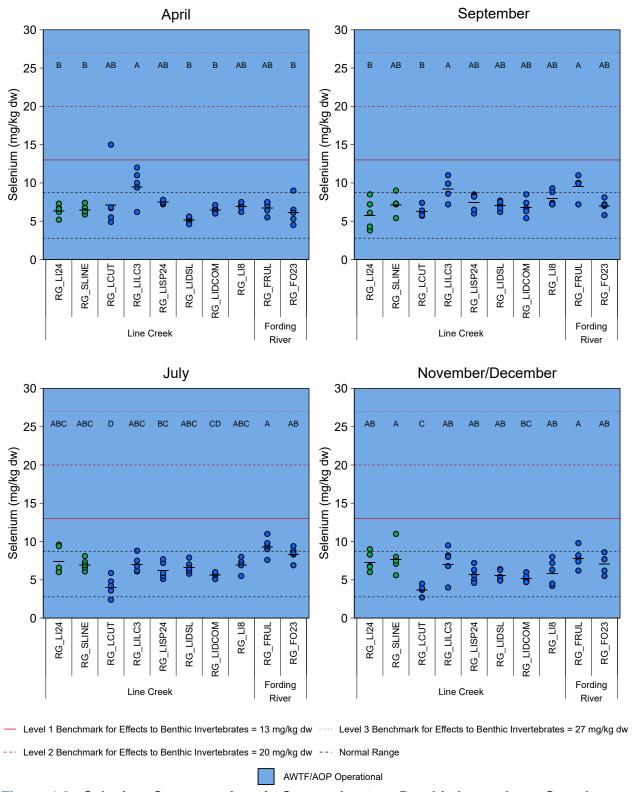


Figure 4.2: Selenium Concentrations in Composite–taxa Benthic Invertebrate Samples Collected at Reference (Green) and Mine–exposed (Blue) Areas of Line Creek and Fording River, 2021

Notes: West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine–exposed monitoring areas downstream of the AWTF discharge. Dashed black lines represent the normal range defined as the 2.5th and 97.5th percentiles of the 1996 to 2019 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP). Areas that do not share a letter (e.g. a,b,c) are significantly different (a = 0.05) in a Tukey's HSD test following a two–way ANOVA by area with Selenium log10 transformed.

Table 4.1: Mean^a Selenium Concentrations (mg/kg dw) in Benthic Invertebrate Composite-Taxa Samples Collected from Line Creek and Fording River, Line Creek LAEMP, 2006 to 2021

Area		Biological Biological Area Description Area Code	Prior to AWTF Operation							Initial AWTF Operation (July 24 to Oct 16, 2014	No AWTF Operation (Oct 17, 2014 to Oct 26, 2015)	AWTF Operation (Feb 1, 2016 to Oct 14, 2017)				Redu (Oct 19	F Flow action 5, 2017 o , 2018)	AWTF Operation Suspended (Mar 9, 2018 to Oct 27, 2018)						
	a Biological Area Code		2006 (August)	2009 (May/ June)	2009 (August/ September)	2010 (May)	2010 (August)	2011 (August)	2012 (September)	2013 (July)	2014 (July)	2014 (September)	2015 (September)	2016 (September)	2017 (February/ March)	2017 (April)	2017 (September)	2017 (November)	2017 (December)	2018 (March)	2018 (April)	2018 (April/May)	2018 (May)	2018 (September)
	•	Sample Size (n)	1	1	4	3	3	1	1	1	1	1	1	1	5	10	10	10	10	10	10	10	10	10
	RG_LI24	South fork of upper Line Creek upstream of LCO and Teck water station LC_LC1	1.4	4.4	-	-	-	-	5.1	-	-	4.0	5.3	3.8	-	-	5.2	-	-	(frozen)	-	13	-	7.0
	RG_SLINE	South Line Creek upstream of Line Creek and LCO	-	-	-	-	-	-	4.8	1	-	6.0	3.9	4.1	-	4.1	4.8	-	-	5.2	-	5.7	1	6.6
	RG_LCUT	Line Creek downstream of rock drain, downstream of West Line Creek and upstream of AWTF outfall	-	-	-	-	-	-	-	ı	-	-	-	6.2	5.0	6.4	5.9	6.7	6.9	6.3	7.0	7.6	7.5	7.9
reek	RG_LILC3	Line Creek downstream of West Line Creek and AWTF outfall	-	-	-	-	-	-	7.0	-	-	17	13	35	27	37	24	26	27	14	19	18	15	10
Line Creek	RG_LISP24	Line Creek downstream of LC_WTF_OUT, approximately 50 m downstream of contingency pond discharge	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16	14	13	7.4	11	10	8.9	8.2
	RG_LIDSL	Line Creek downstream of South Line Creek confluence	-	-	-	-	-	-	8.1	-	5.6	14	8.9	16	12	10	14	12	11	6.6	9.3	10	9.3	7.2
	RG_LIDCOM	Line Creek downstream of the compliance point	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9.6	7.4	9.4	7.7	9.3	9.1	9.4	7.7
	RG_LI8	Line Creek downstream of the canyon	7.8	11	9.0	-	6.3 ^d	8.4	7.8	4.3	-	8.4	9.3	12	8.9	8.6	11	8.3	8.9	6.9	10	12	8.6	9.0
Fording River	RG_FRUL	Fording River downstream of Grace Creek, upstream of Line Creek	-	-	-	-	-	-	7.9	-	-	-	7.5	1	-	7.0	8.1	-	-	6.9	-	8.1	-	11
Fordin	RG_FO23	Fording River downstream of Line Creek	10	5.8	8.83	5.0	5.9	8.8	7.5	11	8.8	-	6.4	6.7	-	6.6	8.9	-	-	6.4	7.9	8.7	7.6	9.4

Notes: "-" = no data. FRUL=FOUL prior to 2016. Calculation of the mean for RG_LI24 in Sept 2018 included results from both RG_LI24 and RG_DSLI24, RG_DSLI24 was sampled in Sept 2018 to investigate anomalous results at RG_LI24 reported in May 2018, but results from both areas were similar in Sept 2018, therefore data were pooled (Minnow 2019a).

^a Means are only presented where the number of samples > 1, all other data are individual values.

^b Sample size n = 9.

^c Sample size n = 5.

d Sample size n = 1.

^e Sample size n = 4.

f Sample size n = 6.

Table 4.1: Mean^a Selenium Concentrations (mg/kg dw) in Benthic Invertebrate Composite-Taxa Samples Collected from Line Creek and Fording River, Line Creek LAEMP, 2006 to 2021

			AWTF/ AOP Forward Flow (Oct 28 to Dec 29, 2018)		AWTF/AOP Operational (December 29, 2018 to Present)																	
Area	Biological Area Code	Biological Area Description	Biological Area Description	2018 (December)	2019 (January)	2019 (February/March)	2019 (April)	2019 (May)	2019 (June)	2019 (July)	2019 (August)	2019 (September)	2019 (December)	2020 (February)	2020 (April)	2020 (July)	2020 (August/September)	2020 (November/December)	2021 (April)	2021 (July)	2021 (September)	2021 (November/December)
		Sample Size (n)	10	10	10	10	10	10	10	10	10	10	10	10	10	5	5	5	5	5	5	
Reference	RG_LI24	South fork of upper Line Creek upstream of LCO and Teck water station LC_LC1	5.6	(frozen)	6.3 ^d	6.8	6.7	5.4	6.6	6.8	5.4	3.7 ^f	(frozen)	6.1	4.9	6.6	5.9	6.4	7.5	6.0	7.4	
Refe	RG_SLINE	South Line Creek upstream of Line Creek and LCO	4.3	4.0	4.9	5.9	5.9	6.1	5.7	6.0	5.1	2.7	7.0	7.7	6.2	6.5	7.2	6.5	7.0	7.2	7.8	
	RG_LCUT	Line Creek downstream of rock drain, downstream of West Line Creek and upstream of AWTF outfall	6.5	6.1 ^b	(frozen)	8.7 ^c	4.0 ^b	4.2	3.3	5.5	7.8	4.6	7.4	8.2	3.9	7.2	5.8	7.8	4.2	6.3	3.7	
reek	RG_LILC3	Line Creek downstream of West Line Creek and AWTF outfall	8.2	8.5	11	11	10	7.8	7.2	8.1	9.7	7.6	9.2	14	7.4	11	9	9.7	7.1	9.3	7.3	
Line Creek Mine-exposed	RG_LISP24	Line Creek downstream of LC_WTF_OUT, approximately 50 m downstream of contingency pond discharge	6.7	6.2	7.1	7.4	-	-	-	-	6.6	5.9	6.5	6.8	5.7	9.2	7.9	7.5	6.3	7.5	5.7	
Mine	RG_LIDSL	Line Creek downstream of South Line Creek confluence	6.7	5.7	6.6	6.0	7.1	6.8	5.4	6.0	7.0	4.7	5.5	5.9	5.8	9.9	5.5	5.2	6.7	7.0	5.6	
	RG_LIDCOM	Line Creek downstream of the compliance point	7.4	7.0	7.7	8.0	-	-	-	1	6.5	5.3	5.7	6.6	5.2	6.4	5.5	6.5	5.7	6.9	5.2	
	RG_LI8	Line Creek downstream of the canyon	7.2	5.8	6.6	7.4	6.1	6.7	6.4	6.7	6.5	4.2	5.1	6.7	5.3	10	8	6.9	7.0	8.0	6.0	
Fording River Mine-exposed	RG_FRUL	Fording River downstream of Grace Creek, upstream of Line Creek	10	7.5 ^c	6.9	8.1	-	-	-	-	10	8.5	7.8	6.9	11	11	10	6.8	9.4	9.6	7.9	
Fordin Mine-e	RG_FO23	Fording River downstream of Line Creek	9.8	7.3	5.7 ^e	7.6	-	-	-	-	8.5	6.7	5.1	8.0	7.8	7.5	7.2	6.3	8.4	7.0	7.1	

Notes: "-" = no data. FRUL=FOUL prior to 2016. Calculation of the mean for RG_LI24 in Sept 2018 included results from both RG_LI24 and RG_DSLI24, RG_DSLI24 was sampled in Sept 2018 to investigate anomalous results at RG_LI24 reported in May 2018, but results from both areas were similar in Sept 2018, therefore data were pooled (Minnow 2019a).

^a Means are only presented where the number of samples > 1, all other data are individual values.

^b Sample size n = 9.

^c Sample size n = 5.

^d Sample size n = 1.

^e Sample size n = 4.

f Sample size n = 6.

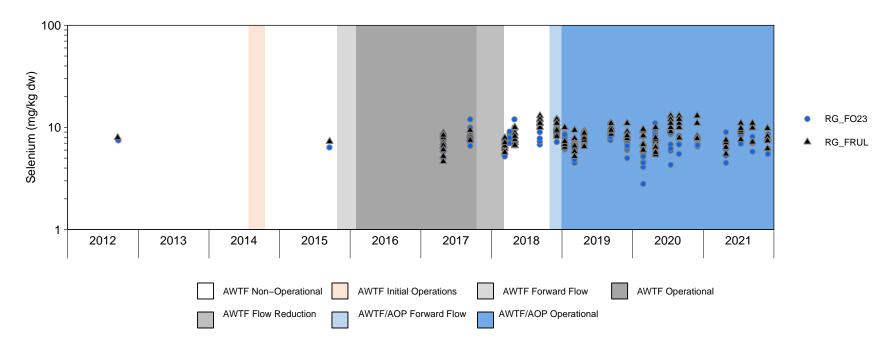


Figure 4.3: Benthic Invertebrate Selenium Concentrations, for RG_FO23 (Fording River Downstream of Line Creek) Relative to RG_FRUL (Fording River Upstream of Line Creek), 2012 to 2021

Notes: Due to a brief period of exposure to less—than—capacity AWTF effluent in 2014, benthic invertebrate tissue selenium data from September 2015 were not considered representative of AWTF operation, but also not representative of a no–discharge condition. These data were therefore excluded from analyses, and are displayed in plots for context only. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine—exposed monitoring areas located downstream of the AWTF discharge.

were lower relative to RG_FRUL in comparison September 2017 when concentrations at both areas were similar (Figure 4.3; Appendix Table C.22). Overall, the temporal and spatial similarity of benthic invertebrate tissue selenium concentrations in the Fording River downstream of Line Creek compared to upstream, combined with slightly lower mean selenium concentrations downstream, indicate there was no influence of Line Creek on benthic invertebrate tissue selenium concentrations in the Fording River in 2021. This is consistent with previous findings (Minnow 2018b, 2019a, 2020d, 2021a).

A slight but significant increase in benthic invertebrate selenium concentrations at the South Line Creek reference area (RG SLINE) was noted between 2017 and 2021 and flagged by the EMC for further investigation (Figure 4.1). Statistical evaluation indicated that the change was unlikely an artefact of the laboratory change that occurred in 2020 (see Section 2.6.1 for more details) since increases were noted prior to the laboratory change (Appendix Table C.23). There has not been mine-related operational activity in the vicinity of RG SLINE, and stable aqueous selenium concentrations (which were below the long-term BC WQG) combined with consistently low concentrations of non-selenate selenium species (as discussed further in Section 4.3) at this area indicate that the increase in unlikely related to mining activities. It is possible that variation in the composition of composite-taxa samples might have contributed, at least in part, to some of the changes observed in benthic invertebrate selenium concentrations. Specifically, composite-taxa benthic invertebrate samples had higher Trichoptera content and lower tissue selenium concentrations in 2018 and 2019, while more recent results (2020 and 2021) had a higher Ephemeroptera content and selenium concentrations (Appendix Table C.24). Similar temporal changes in family-level biomass results (as measured by Hess sampling, see Section 2.4) were not evident from 2018 to 2021 (Appendix Table C.25), suggesting that changes in sample composition were not due to a change community structure and relative taxon biomass, but rather potentially related to variability in field sampling. Without more information it remains unclear whether temporal variability in sample composition may be related to the observed increase in benthic invertebrate selenium concentrations. Despite this, mean concentrations remain within the regional normal range and continued monitoring will help to better understand the potential cause of the observed increase.

Selenium concentrations in benthic invertebrate tissue was also assessed against the biological trigger established for this endpoint (information pertaining to the determination of the biological trigger value can be found in Appendix E). This was completed for each replicate from LCO LAEMP monitoring areas with available water quality predictions (i.e., five mine-exposed areas [RG_LCUT, RG_LILC3, RG_LIDSL, RG_LI8, and RG_FO23] and the two reference areas [RG_SLINE] and RG_LI24]; see Appendix E for details). Aside from one replicate at

RG_SLINE (reference) and one replicate at RG_LCUT (which is located upstream from the AWTF discharge), replicate samples from mine-exposed and reference areas of Line Creek had selenium concentrations that below the biological trigger. Further information regarding the benthic invertebrate tissue selenium biological trigger as it pertains to the LCO LAEMP can be found in Appendix E.

4.2.2 Westslope Cutthroat Trout

As noted in the methods, fish tissue sampling was not conducted as part of the LCO LAEMP in 2021. Fish tissue was, however, collected for purposes of the RAEMP (Minnow 2021c) in September 2021. Eight westslope cutthroat trout (WCT) were caught in the vicinity of RG_LIDSL and RG_FO23. Selenium concentrations in muscle tissue of individuals caught from RG_LIDSL ranged from 4.3 to 18 mg/kg dw (with a mean selenium concentration of 11.5 ± 5.6 mg/kg dw), while those individuals caught from RG_FO23 had mean selenium concentrations in muscle tissue ranging from 6.9 to 10 mg/kg dw (with a mean selenium concentration of 8.7 ± 1.5 mg/kg dw; Figure 4.4; Appendix Table C.26). Of the sixteen WCT sampled, four individuals at RG_LIDSL had muscle selenium concentrations that exceeded (by no more than 1.2-times) the site-specific muscle benchmark (15.5 mg/kg dw; Nautilus Environmental and Interior Reforestation 2011). In contrast, mean selenium concentration in WCT tissue at RG_LIC3 (n=4) and RG_LIDSL (n=2) in 2017 (when the AWTF was operational without AOP) had selenium concentrations in WCT muscle tissue of 27 mg/kg dw and 30 mg/kg dw, respectively (or 1.7 to 1.9 times higher than the site-specific muscle benchmark).

Measurement of selenium in eggs or ripening ovaries is the most direct way to evaluate potential effects of selenium on fish reproduction compared to measurement of selenium in water or other tissue types (Janz et al. 2010; Golder 2014; USEPA 2016). For this reason, site-specific benchmarks were derived in the EVWQP based on fish egg/ovary selenium concentrations (Golder 2014). However, it is challenging to align sampling events with when fish are ripe so that eggs can be harvested non-lethally from females (by applying gentle abdominal pressure). If non-lethal expression of eggs is not possible, collection of ovaries requires that fish be sacrificed. Therefore, monitoring of selenium in fish has often involved non-lethal collection of muscle plugs for selenium analysis. Typically, non-lethal muscle sampling is conducted during the same timeframe just prior to spawning, however, a comparison of WCT muscle selenium concentrations from May (i.e., prior to spawning) and late August/September (i.e., post-spawning) in 2015 under the RAEMP showed no differences among seasons (Minnow 2018a). Subsequent WCT sampling efforts targeting non-lethal muscle samples under the RAEMP were planned for early September to avoid capture stress on gravid females (Minnow 2018d, 2021c). Selenium concentrations in fish eggs/ovaries can be estimated from muscle for fish species that

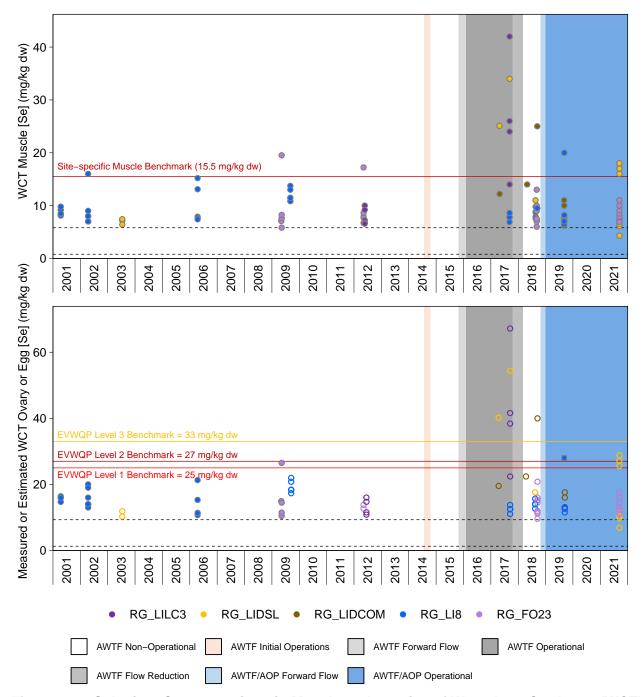


Figure 4.4: Selenium Concentrations in Muscle and Ovaries of Westslope Cutthroat (WCT) Trout Sampled From Line Creek and Fording River, 2001 to 2021

Notes: Measured muscle and ovary selenium concentrations are plotted as solid circles. Selenium was measured in ripe eggs collected non–lethally from one adult female in 2019, and this is plotted as a solid square. Ovary concentrations that were estimated from muscle selenium concentrations (based on the ovary–to–muscle concentration relationship of 1.6:1 presented by Nautilus and Interior Reforestation 2011) are plotted with open circles. Ovary selenium was estimated only for individuals lacking measured egg/ovary concentrations (if female). Dashed black lines represent the muscle normal range defined as the 2.5th and 97.5th percentiles of the 1998 to 2019 reference area muscle data from the Regional Aquatic Environmental Monitoring Program (RAEMP).

exhibit a strong muscle-to-ovary selenium relationship, as an indirect means of evaluating potential effects of selenium on fish reproduction. A strong ovary-to-muscle relationship for selenium concentrations has been characterized for westslope cutthroat trout, which indicates that egg/ovary selenium concentrations are typically about 1.6-times the concentrations in muscle of the same fish (Nautilus and Interior Reforestation 2011). Similar to muscle tissue, all fish (n=8) collected at RG FO23 and four of eight fish collected at RG LIDSL had ovary selenium concentrations below the EVWQP Level 1 Benchmark (25 mg/kg dw; Figure 4.4 Golder 2014). The remaining four fish at RG LIDSL had ovary selenium concentrations that were higher than the EVWQP Level 1 Benchmark, with three of these exceeding the EVWQP Level 2 Benchmark (27 mg/kg dw). However, the ovary concentrations reported in 2021 (as estimated from muscle concentrations) were substantially lower than those from 2017 when the AWTF was operational without AOP, when mean selenium concentrations were 40.2 54.4 mg/kg dw, respectively (Appendix Table C.27). It should be noted that resident and migratory life forms of WCT are known to exist in the Elk Valley with home ranges that can vary dramatically; individual home ranges for WCT documented near the Fording River Operation ranged from 0.7 to 31.6 km (Cope et al. 2016). As such, the selenium tissue concentrations in WCT reported for some individuals (muscle or estimated ovary) caught near RG LIDSL could represent dietary selenium exposure from a larger area. Further information regarding fish abundance, density, and spawning as well as supporting fish habitat information for Line Creek can be found in the Line Creek Aquatic Monitoring Program report (Zathey et al. 2021b).

Selenium concentrations in WCT muscle tissue were assessed against the biological trigger established for this endpoint (information pertaining to the determination of the biological trigger value can be found in Appendix E). This was completed for each replicate from the LCO LAEMP monitoring areas with available fish tissue quality data and water quality predictions (which was RG_LIDSL and RG_FO23 areas; see Appendix E for details). While no individual WCT muscle tissue replicates had selenium concentrations that were above the biological trigger at RG_FO23, four of the eight replicates at RG_LIDSL exceeded the biological trigger. Additional investigations into fish tissue Se in Line Creek will be undertaken in the 2022 field season. This confirmatory sampling will be incorporated into the LCO LAEMP 2022 data review. Further information regarding the selenium concentrations in WCT muscle tissue biological trigger at RG_LIDSL and RG FO23 can be found in Appendix E.

4.3 Aqueous Selenium

The AWTF with AOP was effective throughout 2021 in decreasing the aqueous total selenium concentrations downstream in Line Creek, removing a similar amount of selenium from WLC

influent in 2021 (536 kg, Teck 2022a) as 2020 (540 kg, Teck 2021c) but more than 2019 (475 kg; Teck 2020b). The decrease in aqueous total selenium concentrations in 2021 (similar to results in 2020 and 2019; Minnow 2020a, 2021a) was particularly evident at LC LC3 compared to when the AWTF was not operational (Figure 4.5; Appendix Figures C.3 and C.434). Aqueous concentrations of total selenium at the compliance point, LC LCDSSLCC, did not exceed permit limits (50 µg/L) in 2021 (Teck 2022b), but was detected in all samples above the long-term BCWQG at mine-exposed stations in 2021 (Appendix Figure C.4, Appendix Table D.3). This was true for stations both upstream and downstream of the AWTF discharge in Line Creek and in the Fording River upstream and downstream of the Line Creek confluence. Aqueous total selenium concentrations were also consistently (i.e., 100% of sampling events) above the Level 1 EVWQP Benchmark throughout 2021 for mine-exposed areas upstream and downstream of the AWTF in Line Creek (excluding LC LCDSSLCC [96%] and LC LC4 [88%], while concentrations directly upstream of the AWTF (LC WLC) also exceeded the Level 2 EVWQP in 100% of sampling events in 2021 (which was similar to 2020; Minnow 2021a). It should be noted that while aqueous total selenium concentrations at the reference LC SLC (which corresponds with RG SLINE) was below the long-term BCWQG for a majority of 2021 (<3% of samples were above the guideline), aqueous total selenium concentrations at the reference LC LC1 (which corresponds to the RG LI24) was above this guideline in 71% of samples take in 2021, suggesting some natural variability of this consistent in the area. Nevertheless, the difference between LC WLC and those areas downstream of the AWTF indicate that treatment is working as expected in decreasing selenium concentrations in effluent.

Aqueous selenium in all study areas was primarily in the oxidized form selenate (Figure 4.6; Appendix Table C.28). Aqueous selenium in chemically-reduced forms such as selenite or organoselenium species are present at much lower concentrations than selenate. The combined total of non-selenate selenium species typically represents <1% of the agueous total selenium in waters from upstream of the AWTF discharge in Line Creek (i.e., LC LCUSWLC in 2021 mean Σnon-selenate species: 0.23%, range: 0.13 to 0.53%; Appendix Table C.28). Some of these non-selenate selenium species are known to be more readily accumulated by aquatic biota than selenate (Ogle et al. 1988; Riedel et al. 1996; Stewart et al. 2010). As described in Section 1.3, in response to increased concentrations of chemically-reduced forms of aqueous selenium in AWTF effluent, the AWTF was recommissioned with an AOP to reverse the shift in selenium species back to a selenate-dominated condition. Concentrations non-selenate species (including organoselenium species such as dimethylseleneoxide and methylseleninic acid) at LC LC3 in 2021 (Figure 4.6) were similar to past years of AWTF with

³⁴ Appendix Figure C.3 presents aqueous total selenium results with LC_WLC excluded for greater resolution of results.

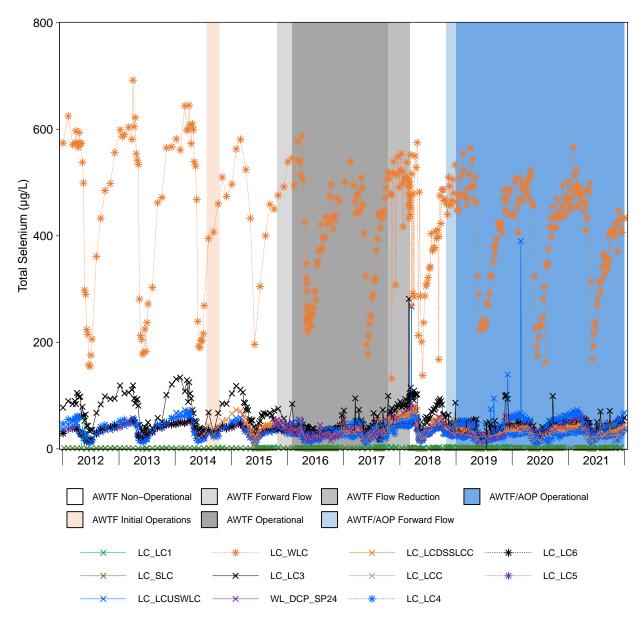


Figure 4.5: Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations were above the LRL in all samples. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine— exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

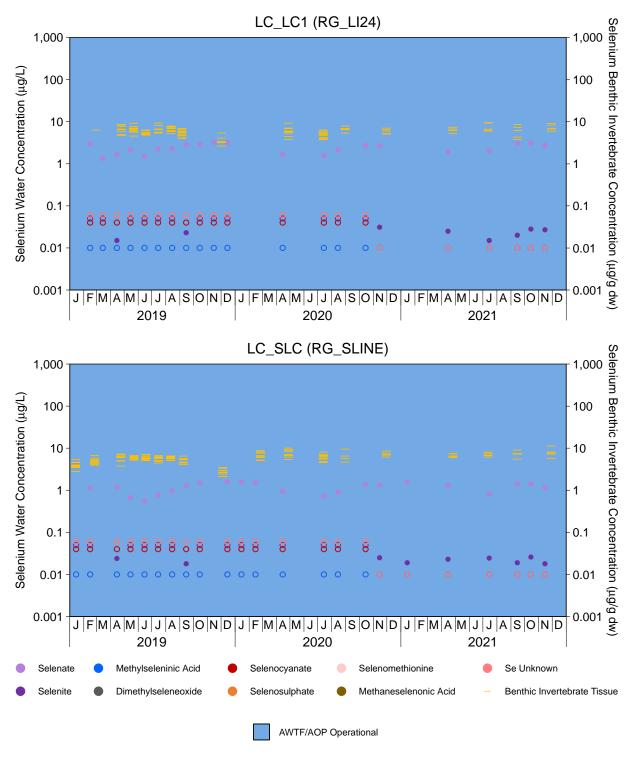


Figure 4.6: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-Exposed and Reference Stations in Line Creek, LCO LAEMP, January 2019 to December 2021

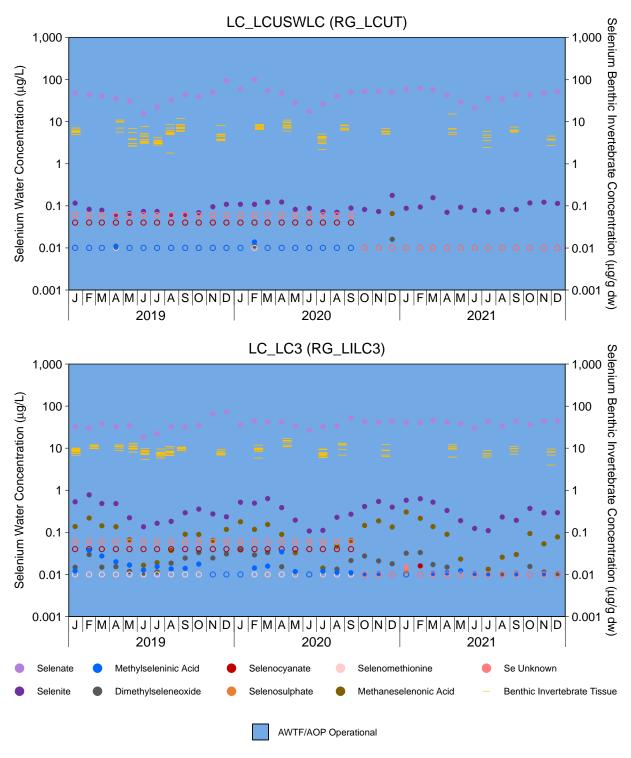


Figure 4.6: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-Exposed and Reference Stations in Line Creek, LCO LAEMP, January 2019 to December 2021

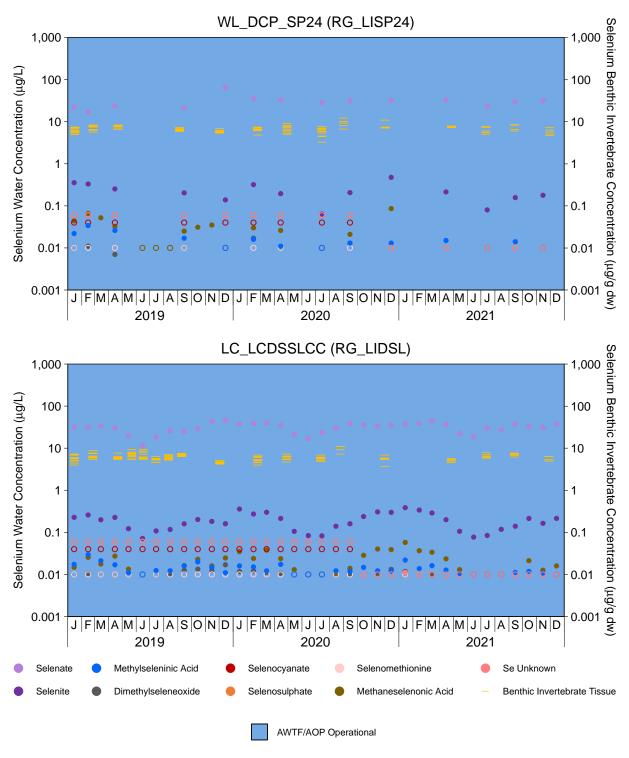


Figure 4.6: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-Exposed and Reference Stations in Line Creek, LCO LAEMP, January 2019 to December 2021

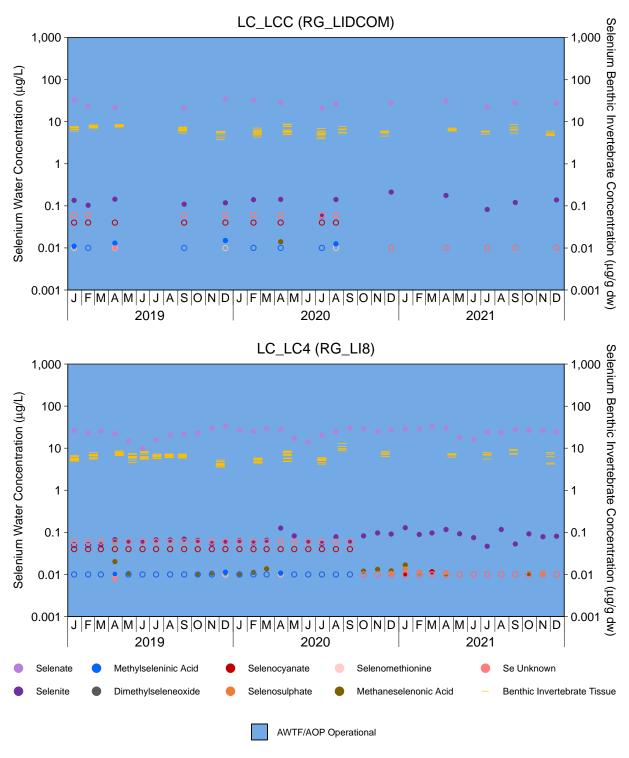


Figure 4.6: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-Exposed and Reference Stations in Line Creek, LCO LAEMP, January 2019 to December 2021

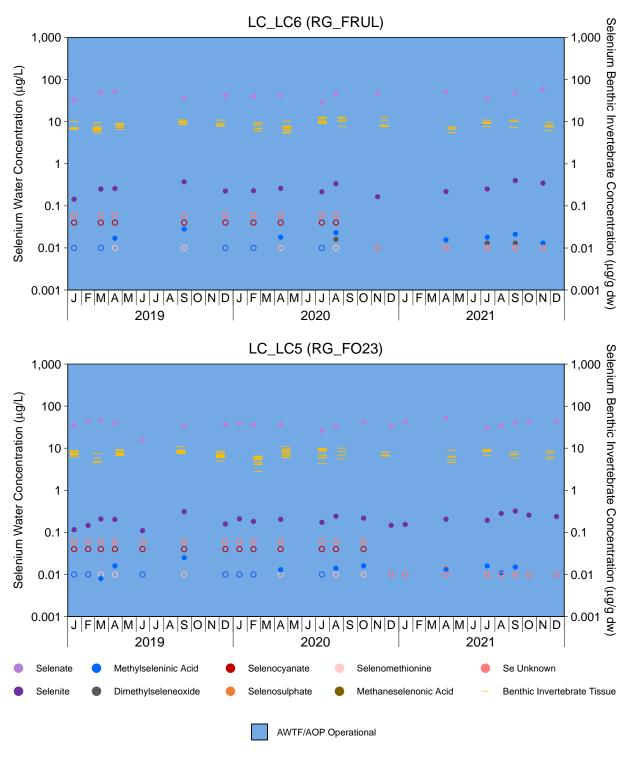


Figure 4.6: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-Exposed and Reference Stations in Line Creek, LCO LAEMP, January 2019 to December 2021

AOP operation (2020 and 2019; Minnow 2020a, 2021a), and substantially lower than during AWTF operation without AOP in 2017 (Minnow 2018b). These results were corroborated by selenium concentrations in benthic invertebrates from downstream of the AWTF discharge in Line Creek, which were significantly lower during AWTF with AOP operation than during AWTF operation without AOP, relative to reference (see Section 4.2.1).

Seasonal trends in selenium speciation were noted during AWTF with AOP operation (2019 to 2021), with higher concentrations of non-selenate species observed in winter months (specifically January to March) and lower concentrations observed in summer (i.e., June, July; Figure 4.6; Appendix Table C.28). This trend of higher aqueous concentrations in winter months has also been observed for analytes that include total dissolved solids and sulphate (Appendix Figures D.1, D.2, D.5, D.6), suggesting that the observed seasonal increases may be related to decreased baseflow in Line Creek over the winter. In 2021, the highest selenite, and methaneselenonic acid concentrations (0.70, 0.052 dimethylselenoxide, 0.38 µg/L, respectively) were reported at LC LC3 (or RG LILC3) on January 18th, 2021. This represents a 2.2-fold increase in selenite for LC LC3 when compared to the remainder of the year (mean concentration: 0.31 µg/L; Appendix Table C.28). Although a majority of the organoselenium species were not frequently detected, when they were it was generally in winter (Figure 4.6; Appendix Table C.28). For instance, dimethylselenoxide was detected in 24 of 50 samples at LC LC3, with 46% of those detections (or 11 samples) being collected between the months of January and March. These peaks in non-selenate species observed in winter (in January to March) at RG LILC3 were followed by benthic invertebrate selenium concentrations at RG LILC3 in April that were elevated in comparison to concentrations to other sampling events in 2021 (Figures 4.6 and 4.7; see Section 4.2.1 for details), suggesting that the seasonal increase in non-selenate species observed in the winter or early spring of 2021 may be linked to an increase in benthic invertebrate tissue selenium at this area. Regardless, benthic invertebrate tissue selenium concentrations at RG LILC3 in April 2021 remained similar to upstream of the AWTF (at RG LCUT) in 2021, significantly lower than during AWTF without AOP operation (relative to reference in 2016 and 2017; see Section 4.2.1 for details), and lower than those observed in 2018 immediately following shutdown of the ATWF without AOP (although not tested statistically; Figure 4.7, Table 4.1). It should be noted that benthic invertebrate tissue selenium concentrations at RG LILC3 in September 2021, which were slightly above the regional normal range, did not show similar pattens in elevated selenium speciation concentration (selenite and other non-selenate species were lower than in winter 2021; Figure 4.6). Regardless, benthic invertebrate tissue selenium concentrations at RG LILC3 in September were not significantly higher than the reference area (RG SLINE; Figure 4.2) suggesting that this slight increase over the regional normal range at this area during this sampling

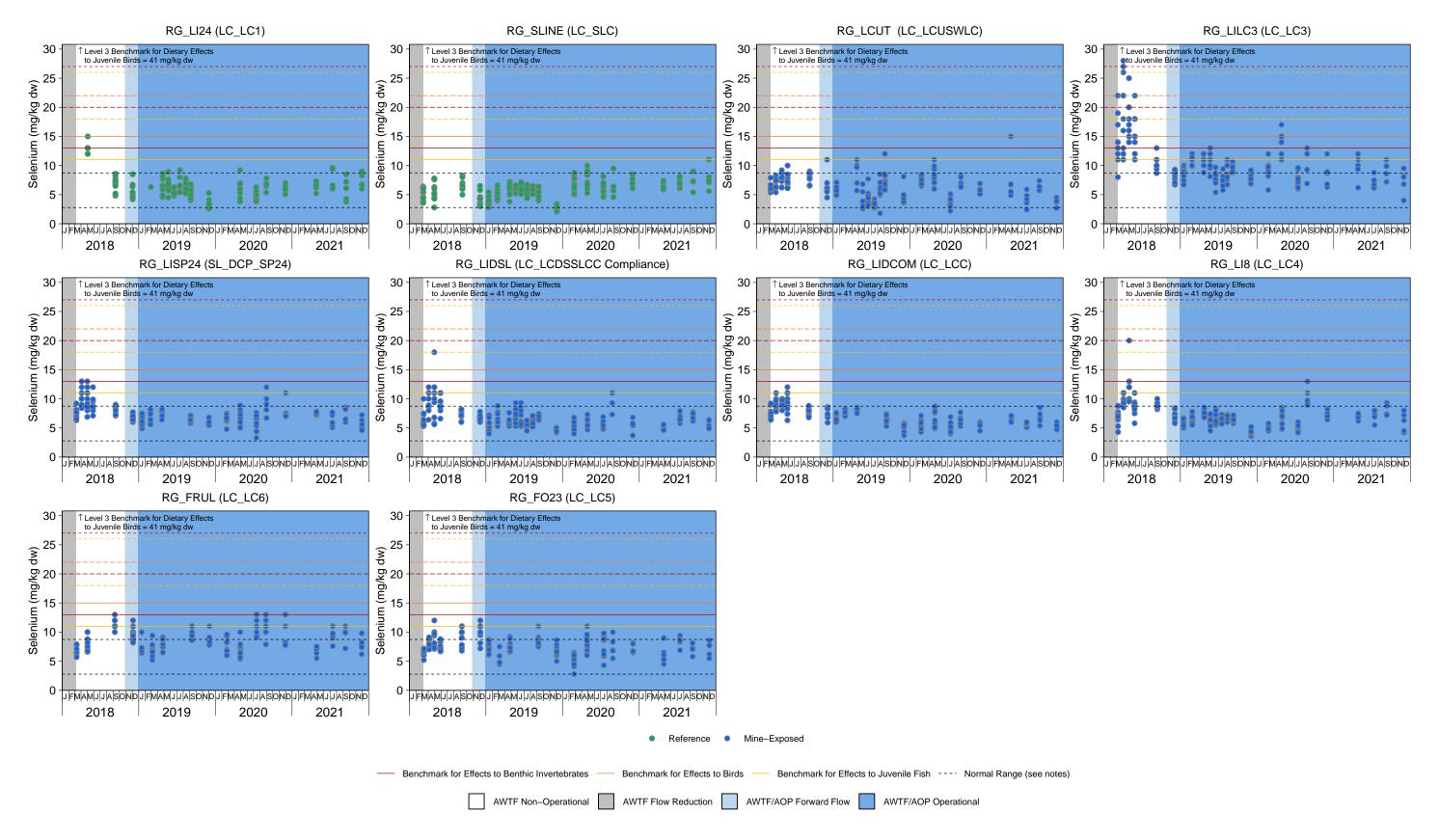


Figure 4.7: Selenium Concentrations in Benthic Invertebrate Composite-taxa Samples from Line Creek and Fording River, 2018 to 2021

Notes: Dashed black lines represent the normal range defined as the 2.5th and 97.5th percentiles of the 1996 to 2019 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP). Solid lines indicate Level 1 benchmarks, long dashed lines indicate level 2 benchmarks, and short dashed lines indicate Level 3 benchmarks. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.

76

event maybe due to natural variability. Overall, the results from 2021 continued to indicate that the AWTF with AOP functioned as intended to limit selenium accumulation by aquatic biota downstream (compared to AWTF operation without AOP).

4.4 Bioaccumulation

Benthic invertebrate tissue selenium results from 2012 to 2021 were plotted relative to the one-step water-to-invertebrate lotic selenium accumulation regional model (Figure 4.8; Golder 2020c). The model is based on observed relationships between aqueous and benthic invertebrate tissue selenium values from samples collected previously in Line Creek and in other areas of the Elk River watershed (Golder 2020c). Plotted values in areas downstream of the AWTF discharge were within or below the 95% prediction limits of the model in 2021 (Figures 4.8 and 4.9), which is similar to the other years of AWTF with AOP operation (excluding three individuals samples from RG LILC3 in April 2020 [Minnow 2021a]). This coincides with past observations, as the majority of plotted values have largely been within the model predictions, except for samples collected nearest the AWTF in 2016 and 2017 during AWTF operation without AOP (e.g., RG LILC3 in Figure 4.9). It should be noted that although complete removal of organoselenium species is not expected with the addition of AOP, lower selenium bioaccumulation was evident during all years of AWTF operation with AOP (2019 to 2021) than without. Combined, the results support the conclusion that selenium accumulation in Line Creek during AWTF operation without AOP was related to higher-than-normal concentrations of non-selenate forms of selenium, and that the recommissioning of the AWTF with AOP has been functioning to decrease non-selenate forms and associated accumulation in aquatic biota.

Westslope cutthroat trout ovary tissue selenium results from 2001 to 2021³⁵ (either from actual ovary samples or estimated from muscle) were plotted relative to the regional two-step water-to-invertebrate-to-fish egg/ovary selenium bioaccumulation model (Figure 4.10; Golder 2018a). As noted earlier, fish sampling was completed in two areas in 2021, RG_LIDSL and RG_FO23, as part of RAEMP monitoring (Minnow 2021c). Although modelled WCT ovary selenium concentrations of four of the eight replicates fell slightly above the 95% prediction limits of the model for RG_LIDSL in 2021 (11% to 25% above the prediction interval), individual results for RG_FO23 fell within the prediction limits as did mean results for both areas in 2021 (Figure 4.10). This was similar to the other years of AWTF with AOP operation (2019 and 2020), wherein the majority of replicates fell within the prediction limits (with the exception of one individual replicate at RG_LI8 in 2019, Minnow 2020a). In contrast, modelled mean WCT ovary

³⁵ Seven fish were not included in this analysis as concurrent aqueous selenium concentrations were not available. Fish were from 2001 (n=3; RG_LI8), 2003 (n=2, RG_LIDSL), 2017 (n=1; RG_LIDCOM), and 2018 [n=1; RG_LIDCOM] with concentrations ranging from 14.7 to 22.4 mg/kg dw and are shown in Figure 4.4.

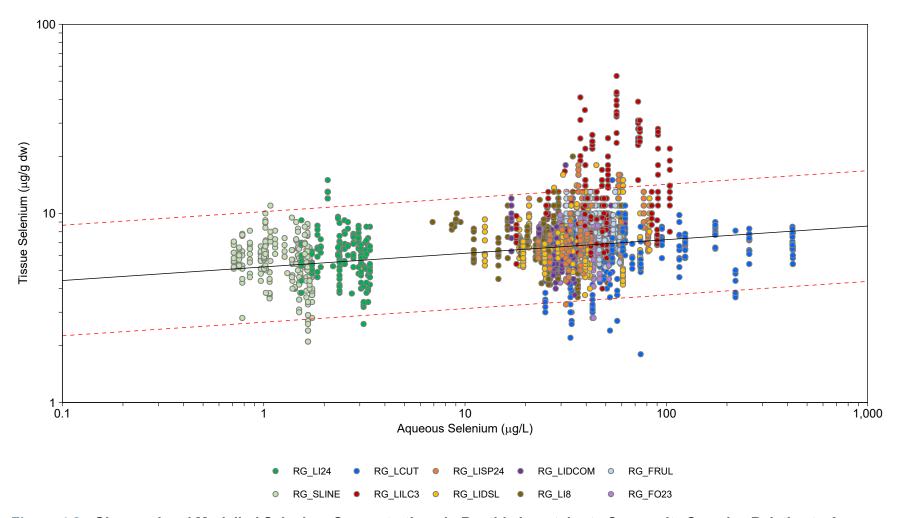


Figure 4.8: Observed and Modelled Selenium Concentrations in Benthic Invertebrate Composite Samples Relative to Aqueous Total Selenium Concentrations at Stations Upstream and Downstream of West Line Creek Active Water Treatment Facility, 2012 to 2021

Notes: Mean benthic invertebrate selenium concentrations (solid black line) were estimated using a one-step water to benthic invertebrate selenium accumulation model: log₁₀[Se]benthic invertebrate=0.717+0.072 x log₁₀[Se]_{aq} (Golder 2020c). The 95% prediction limits for a single value from the one-step water to benthic invertebrate selenium accumulation model are plotted as dashed red lines. Reference areas are shown in green. One data point for station RG_FO23 on September 16th, 2015 is the average of two duplicate measurements.

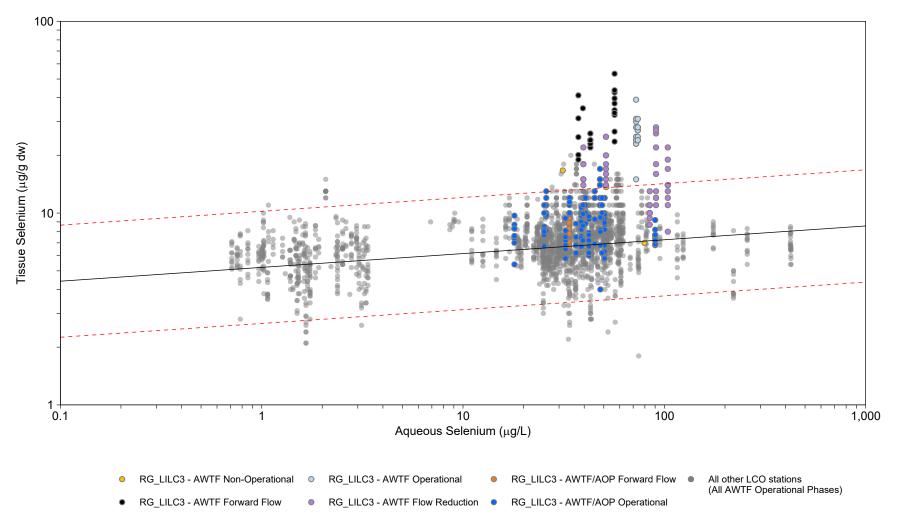


Figure 4.9: Observed and Modelled Selenium Concentrations in Benthic Invertebrate Composite Samples Relative to Aqueous Total Selenium Concentrations at Stations Upstream and Downstream of West Line Creek Active Water Treatment Facility, 2012 to 2021

Notes: Mean benthic invertebrate selenium concentrations (solid black line) were estimated using a one-step water to benthic invertebrate selenium accumulation model: log10[Se]benthic invertebrate=0.717+0.072 x log₁₀[Se]_{aq} (Golder 2020c). The 95% prediction limits for a single value from the one-step water to benthic invertebrate selenium accumulation model are plotted as dashed red lines. One data point for station RG_FO23 on September 16th, 2015 is the average of two duplicate measurements.

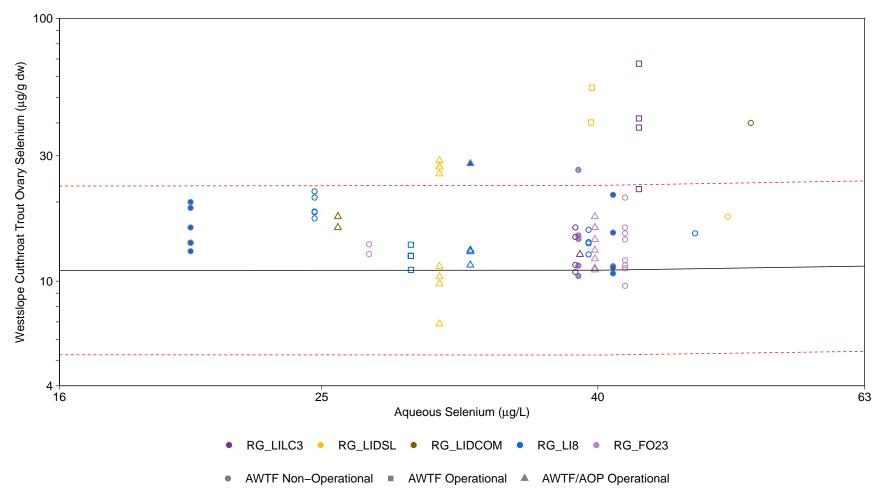


Figure 4.10: Observed and Modelled Selenium Concentrations in Westslope Cutthroat Trout Ovary Samples Relative to Aqueous Total Selenium Concentrations, LCO LAEMP, 2001 to 2021

Notes: Measured ovary selenium concentrations are plotted as filled shapes and ovary concentrations that were estimated from muscle selenium concentrations (based on the ovary–to–muscle concentration relationship of 1.6:1 presented by Nautilus and Interior Reforestation 2011) are plotted as open symbols. Mean egg and ovary selenium concentrations (solid black line) were estimated using a two–step water to fish egg selenium accumulation model: step 1 – log10[Se]benthic invertebrate = 0.717+0.072 x log10[Se]aq and step 2 – log10[Se]fish = 1.02 + 0.026 x log10[Se]inv when [Se]inv < 6.8 and log10[Se]fish = 1.26 + 1.10 x log10[Se]inv when [Se]inv >= 6.8 (Golder 2018). The 95% prediction limits for a single value from the two–step water to fish egg selenium accumulation model are plotted as dashed red lines. Seven replicates (from 2001 (n=3; RG_LIB), 2003 (n=2, RG_LIDSL), 2017 (n=1; RG_LIDCOM), and 2018 (n=1; RG_LIDCOM) did not have concurrent aqueous selenium concentrations and thus are not shown, fish muscle tissue selenium concentrations for these fish ranged from 14.7 to 22.4 mg/kg dw and are shown in Figure 4.4.

selenium concentrations in years prior to the AWTF with AOP, namely 2017 (AWTF without AOP) and 2018 (AWTF non-operational) were substantially above (up to 2.4-times) the 95% prediction limits of the model. Selenium concentration in WCT tissue at RG_LIDSL and RG_FO23 will be further evaluated in the larger context of the Elk Valley as part of the RAEMP to better understand both spatial and temporal trends for this endpoint.

Overall, the selenium bioaccumulation results during the AWTF with AOP operation relative to the AWTF operation without AOP clearly indicate that the AWTF with AOP functioned as intended throughout 2021 to limit selenium accumulation by aquatic biota.

4.5 Summary

Concentrations of non-selenate forms of aqueous selenium in Line Creek were lower during operation of the AWTF with AOP in 2021, compared to AWTF operation without AOP, which is consistent with past results from AWTF with AOP operation (2019 and 2020). Benthic invertebrate tissue monitoring in Line Creek identified substantially lower selenium concentrations in 2021 during AWTF with AOP operations (similar to other years of AWTF with AOP operation; 2019 and 2020) compared to concentrations that were observed during AWTF without AOP operation. Mean benthic invertebrate selenium concentrations were below the EVWQP Level 1 benchmark at all areas downstream of the AWTF discharge in 2021, which is similar to other years of AWTF with AOP operation (with the one exception being three replicates in April 2020 at RG LILC3). Similarly, mean benthic invertebrate selenium concentrations in areas downstream of the AWTF discharge were largely within the regional normal range and had similar concentrations to the reference areas (excluding two sampling events at RG LILC3 (in April and September). Comparison of benthic invertebrate selenium concentrations to the selenium bioaccumulation model in areas downstream of the ATWF discharge indicated that selenium bioaccumulation in 2021 was within expectations of the model. This is similar to past results of these areas during AWTF with AOP operation (2019 and 2020), with selenium concentrations in benthic invertebrate tissues in these samples being more similar to the selenium bioaccumulation model predictions than those during ATWF operation without AOP. In westslope cutthroat trout, mean tissue selenium concentrations were below the site-specific benchmarks for muscle and ovary in fish from RG LIDSL and RG FO23, although tissues from four of eight individual fish from RG LIDSL exceeded the benchmarks. Similarly, the majority of the estimated ovary concentrations (as predicted from muscle concentrations) from westslope cutthroat in 2021 were within the prediction interval of the ovary bioaccumulation model, with the exception of the four individuals from RG LIDSL. Furthermore, WCT selenium concentrations at RG LIDSL in 2021 (during AWTF with AOP operation) were substantially lower than those observed in 2017 (during AWTF without AOP operation). Combined, the aqueous selenium speciation and benthic

invertebrate tissue selenium monitoring results all indicated that the recommissioned AWTF with AOP has been functioning as intended to shift selenium speciation in AWTF effluent from chemically-reduced species back to a selenate-dominated condition since 2019, thereby reducing the bioavailability of selenium in Line Creek.

5 OTHER POTENTIAL INFLUENCES OF THE WLC AWTF

5.1 Overview

Monitoring data were evaluated in this section to address Study Question #3: Is WLC AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations, or concentrations of treatment-related constituents other than nutrients or selenium? To address this study question, water temperature and dissolved oxygen results in 2021 were evaluated upstream and downstream of the AWTF, and water quality and toxicity testing results were evaluated in relation to changes in AWTF operational status. The AWTF with AOP was operational throughout 2021 with discharge to the receiving environment occurring throughout the year (see Section 1.3 for details).

5.2 Temperature

measured by continuous loggers in Line Creek upstream temperatures (LC Intake Pond [Data logger T1]) and downstream (LC Mixing Zone Discharge [Data logger T4] and LC3 Downstream [Data logger T5]) of the AWTF in 2021 were largely similar to one another in 2021, with the exception of slightly higher temperatures recorded at data logger T5 (at LC3 Downstream) from June to December when compared to the two other loggers which were located further upstream (T1 [upstream of the AWTF discharge] and T4 [immediately downstream of the AWTF discharge]; Figure 5.1). The slightly higher temperatures at data logger T5 compared to T4 cannot be attributed to an AWTF-influence because T5 is located further downstream of the AWTF discharge than T4 (which is immediately downstream of the AWTF discharge), therefore the observed differences were likely due to an absence of canopy coverage at LC LC3. The temperatures at data logger T5 were also slightly (~1°C) warmer than those collected upstream of the AWTF discharge at LC LCUSWLC (Data logger T6) and LC Intake Pond (Data Logger T1) from January to June³⁶. Canopy cover at LC LCUSWLC (Data logger T6), although limited, is denser than the complete absence of canopy cover where the temperature loggers further downstream are located, and the LC Intake Pond data logger (Data logger T1) is situated in a ponded area, whereas the Data logger T6 (at LC LCUSWLC) is in a free-flowing lotic area. Therefore, the slightly higher temperatures at monitoring locations downstream of LC LCUSWLC are likely attributable to these habitat differences. Although water temperatures downstream of the AWTF discharge (Data logger T4 and Data logger T5)

³⁶ Temperature recordings at LC_LCUSWLC (Data logger T6) are not reported after December 1, 2021 as the data logger was retrieved, downloaded, and redeployed at this time (see Section 2.7.1).

Figure 5.1: Mean Daily Water Temperature Recorded by Temperature Loggers, Line Creek LAEMP, 2021

Notes: The horizonal solid black line indicates the maximum temperature at T2 and T3 in 2020. The horizontal dashed black line indicates the maximum temperature at T1, T4, T5, and T6. Spot measurements from SP21A were used as a proxy for T3: V-notch discharge after April 22 due to the logger malfunctioning. Values between May 25th and June 30th were removed for T5: LC3 Downstream due to the logger malfunctioning. Temperature data from the LC_LCUSWLC temperature logger (T6) is reported up until Dec 1st, which corresponds to the last date when data was retrieved.

were slightly higher than observed at the more covered area upstream (LC_LCUSWLC; Data logger T6), the similarity to temperatures measured directly upstream of the AWTF discharge (Data logger T1) indicates that AWTF with AOP operation in 2021 did not influence water temperatures downstream (Figure 5.1).

British Columbia guidelines for water temperature are defined as a maximum ± 1° C change from the optimum temperature range for different fish life stages (BCMOE 2001). Line Creek water temperatures throughout 2021 were within, or lower than, the optimum temperature ranges specified for different life stages of bull trout and westslope cutthroat trout (Figure 5.2). The use of temperature loggers and routine water quality monitoring also allows for the investigation of extreme weather events, such as the heat wave that occurred in the summer of 2021. To address input from the EMC concerning potential effects of the heat wave in 2021 on benthic invertebrate, water temperatures in Line Creek were compared between 2020 and 2021. This analysis showed that effects of the heat wave on water temperature were limited to July and August 2021, with daily mean temperatures in 2021 at LC LC3 (based on continuous temperature logger data) that was similar to or lower than 2020 in all months excluding July (9 of 31 days or 29% of the month) and August (18 of 31 days or 58% of the month; Figure 5.1; Minnow 2021a). This was consistent with results from routine water quality monitoring, with water temperatures at both the reference (LC LC1 and LC SLC) and mine-exposed areas (LC LCUSWLC and LC LCDSSLCC) that were consistently higher (>2°C) in July and August in 2021 when compared to 2020, which was not the case for the remaining months (with the exception of LC LC1 in May; Appendix Table D.1).

5.3 Dissolved Oxygen

Dissolved oxygen concentrations measured in 2021 upstream and downstream of the AWTF discharge were above the instantaneous minimum criterion for the protection of the most sensitive fish (embryo/alevin) life stages (9 mg/L; BCMOE 1997) except for single sampling events at the mine-exposed areas LC_LC4 and LC_LCDSSLCC and two sampling events at the reference area LC_SLC (Figure 5.3). The occurrence of dissolved oxygen concentrations below the instantaneous minimum criterion at both mine-exposed and reference areas indicates that this was not related to AWTF operation. Dissolved oxygen concentrations were above the 30-day mean for all other fish life stages throughout 2021 (8 mg/L; Figure 5.3). Monthly mean concentrations of dissolved oxygen were below the 30-day mean criterion of 11 mg/L for the most sensitive fish life stages (buried embryo/alevin) at all mine-exposed and reference areas from May to August, while all areas were above the criterion in January, February, and April (Table 5.1). The most frequent occurrence of dissolved oxygen concentrations below the 30-day mean criterion of 11 mg/L was in the area upstream of the AWTF discharge (LC LCUSWLC; 9 months)

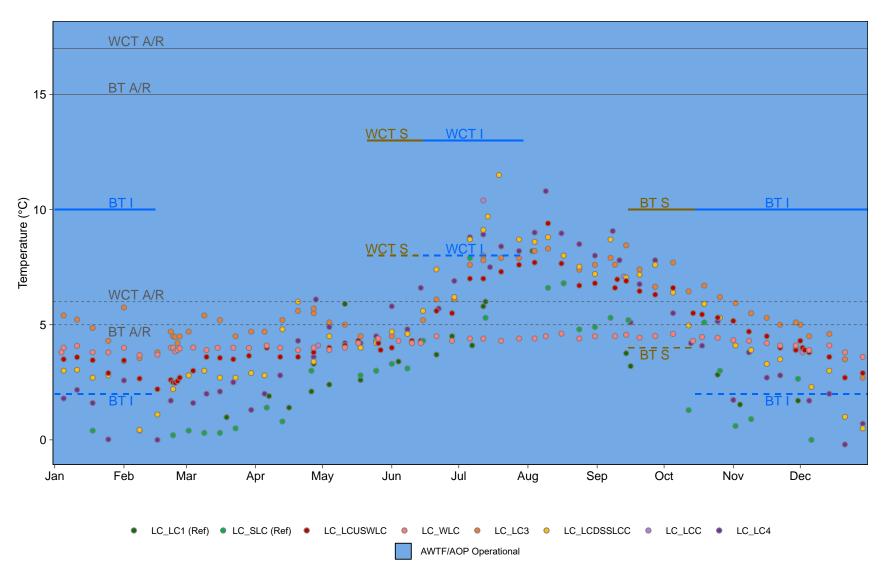


Figure 5.2: Water Temperatures at Monitoring Stations in Line Creek in 2021 Relative to BCMOE (2001) Guidelines for Maximum (Solid Lines) and Minimum (Dotted Lines) Temperatures for Protection of Fish Species

Notes: BT = bull trout; WCT = westslope cutthroat trout; S = spawning; I = incubation; A/R = alevin/rearing. The timing of fish life history stages was approximated from COSEWIC (2016), McPhail and Baxter (1996), and McPhail (2007).

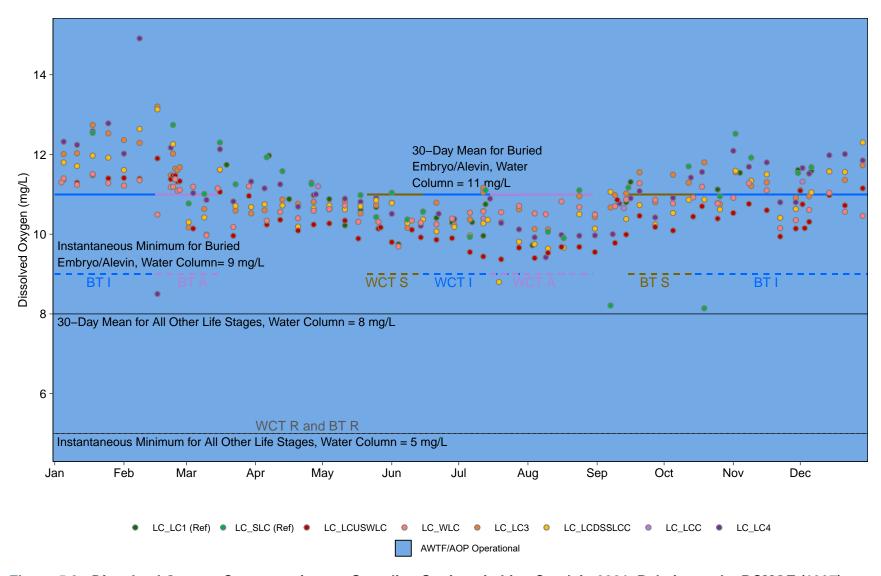


Figure 5.3: Dissolved Oxygen Concentrations at Sampling Stations in Line Creek in 2021, Relative to the BCMOE (1997) Criteria for the Protection of Fish Life Stages

Notes: BT = bull trout; WCT = westslope cutthroat trout; S = spawning; I = incubation; A/R = alevin/rearing. The timing of fish life history stages was approximated from COSEWIC (2016), McPhail and Baxter (1996), and McPhail (2007). Spawning, incubation, and alevin stages were included in application of buried embryo/alevin guideline values.

Table 5.1: Monthly Mean Dissolved Oxygen Concentrations (mg/L) in Line Creek, 2021

Month	LC_LC1	LC_SLC	LC_LCUSWLC	LC_WLC	LC_LC3	LC_LCDSSLCC	LC_LCC	LC_LC4
January	-	12.5	11.4	11.3	12.3	11.9	-	12.5
February	-	12.7	11.5	11.1	12.0	12.4	-	11.9
March	11.7	11.3	10.4	10.7	10.7	10.7	-	11.2
April	11.2	11.6	10.2	10.5	10.7	10.6	11.2	11.0
May	10.6	10.7	10.2	10.5	10.7	10.7	-	10.8
June	10.2	10.7	9.92	10.2	10.5	10.3	-	10.4
July	10.3	10.5	9.51	10.6	10.7	9.84	10.4	10.4
August	9.72	10.4	9.57	10.6	10.3	9.94	-	9.85
September	11.1	9.69	10.3	10.9	11.0	10.6	10.7	10.6
October	11.1	10.3	10.4	10.9	11.3	10.7	-	11.2
November	11.6	12.0	10.4	10.8	11.1	11.1	-	11.4
December	11.6	11.7	10.7	10.7	11.3	11.6	11.3	11.8

Less than 30-day water column mean criterion of 11 mg/L for buried embryo/alevin life stages (guideline was applied to all months except April, see notes for details).

Notes: "-" = no data/not recorded. Spawning, incubation, and alevin stages for bull trout and westslope cutthroat trout were included in the application of buried embryo/ alevin guideline values, and were applicable to at least some portion of each month except April. The timing of life history stages for these species was approximated from COSEWIC (2016), McPhail and Baxter (1996), and McPhail (2007). See Figure 5.3 for graphical display of these life history stages.

compared to areas downstream of the AWTF (LC_LCDSSLCC [7 months], LC_LC1 [4 months], LC_LC3 and LC_LC4 [5 months]; Table 5.1). Furthermore, areas downstream of the AWTF discharge showed a similar occurrence of dissolved oxygen concentrations below the 30-day mean as the reference areas (LC_LC1 and LC_SLC), except for March (wherein both upstream [LC_LCUSWLC and LC_WLC] and two of the four downstream areas [LC_LC3 and LC_LCDSSLCC] were below the criterion while both references were not). Regardless, in all circumstances where dissolved oxygen concentrations were below the criterion for areas downstream of the AWTF the same trend was also apparent for upstream areas, indicating that these exceedances were not related to AWTF operation in 2021.

5.4 Water Quality Analytes

Evaluation of analytes with early warning triggers under the AMP and those with BCWQG and/or water quality benchmarks (see Sections 2.2.1 and 2.7.1; Appendix Figures D.1 to D.28, C.3 and C.4, Appendix Tables D.2 and D.3) indicated that nitrate was detected with high frequency (ranging from 96% to 100% of samples for an area) above the long-term BCWQG at mine-exposed stations (see Section 3.2 for the influence of nitrate on productivity). This was true for stations both upstream and downstream of the AWTF discharge in Line Creek and in the Fording River upstream and downstream of the Line Creek confluence. concentrations at LC LC3 (e.g., the area in closest proximity downstream of the AWTF outfall) were below the Level 1 EVWQP benchmark for the entirety of 2021 (Figure 3.6; Appendix Figure B.3, Appendix Table D.3), which is slightly lower than in 2020 when the exceedance frequency was 4% of samples (2 out of 53 sampling events; Minnow 2021a). The results at LC LC3 were similar to areas further downstream in 2021, as total nitrate concentrations did not exceed the Level 1 EVWQP Benchmark at these areas either throughout 2021 (Figure 3.6; Appendix Figure B.3, Appendix Table D.3). In contrast, concentrations of total nitrate upstream of the AWTF discharge (LC WLC and LC LCUSWLC) showed а higher (53 and 34%, respectively) of exceeding the Level 1 EVWQP Benchmarks. Thus, the higher concentrations upstream of the AWTF suggest that the AWTF is functioning as expected in decreasing concentrations of nitrate downstream. Evaluation of selenium was also included in the assessment of water quality analytes and is discussed in detail in Section 4.3, therefore it is excluded here.

Concentrations of six other analytes had concentrations higher than applicable BCWQG and/or water quality benchmarks (i.e., EVWQP Benchmarks, Interim Screening Values [for nickel], or Level 1 Screening Value [for total dissolved solids]) downstream of the AWTF discharge. These included total dissolved solids (18% > Level 1 Screening Value at LC_LC3), sulphate (25% > long-term BCWQG and Level 1 EVWQP Benchmark at LC_LC3), total

nickel (> Level 1 interim screening value at LC_LC3 [100%], WL_DCP_SP24 [100%], and LC_LCDSSLCC [15%]), dissolved cadmium (10% >Level 1 EVWQP Benchmark at LC_LC3), dissolved copper (> long-term BCWQG at LC_LC3 [13%] and LC_LC4 [2%]), and total mercury (> long-term BCWQG at LC_LC4 [4%] and LC_LC5 [8%]; Appendix Figures D.1 to D.28, Appendix Table D.3). However, annual mean concentrations of these analytes were lower downstream of the AWTF when compared to upstream of the AWTF discharge, as evidenced by fewer benchmark exceedances than at areas upstream of the AWTF outfall [RG_LCUSWLC and LC_WLC]. In the case of mercury at LC_LC4 and LC_LC5, past studies have shown that mercury inputs (total and methyl) in the Elk Valley Area are not related to mining activities (Azimuth 2019); furthermore, total mercury concentrations at the two reference areas (LC_LC1 and LC_SLC) were also higher than the long-term BCWQG at a similar frequency (3 to 7% of sampling events) as LC_LC5 (8%; Appendix Table D.3) suggesting naturally elevated mercury concentrations in the area.

Visual inspection of results from 2012 to 2021 indicated temporal increases in analyte concentrations at monitoring stations downstream of the AWTF discharge (i.e., comparing results during AWTF with AOP operations to years without AOP or pre-AWTF) for three analytes, which was similar to results from 2020 (Minnow 2021a). Specifically, temporal increases in dissolved cobalt, total manganese, and total molybdenum concentrations were noted during AWTF with AOP operation (2019 to 2021) at areas downstream and in close proximity of the AWTF discharge (namely LC LC3; Appendix Figures D.15, D.16, and D.19 to D.22) in comparison to earlier years (2017 to 2018). Mean concentrations of total manganese and total molybdenum at LC LC3 remained well below (approximately 46- and 1,980-times lower) the long-term BCWQG (Appendix Figures D.19 and D.22, Appendix Table D.3), while dissolved cobalt, which does not have an applicable BCWQG, was within the range of pre-AWTF results (i.e., 2014 and earlier; Appendix Figures D.15 and D.16, Appendix Table D.3). Additionally, aqueous concentrations of these three constituents were also lower in 2021 at LC LC3 when compared to 2020 (Appendix Figures D.15, D.19, and D.21). The increase in molybdenum could be related to the use of antiscalant (which contains molybdenum) which started in 2018 (pers. Comm. Traverse 2021).

5.5 Toxicity Results

Acute toxicity testing with was conducted with 31 effluent samples from WL_BFWB_OUT_SP21 using the water flea (*Daphnia magna*) and rainbow trout in 2021 (Teck 2022a). No samples failed the test criteria for acute toxicity (i.e., did not cause > 50% mortality to either organism) although two sampling events causing 10% mortality to rainbow trout (Table 5.2; Appendix Table D.4).

Table 5.2: Summary of Acute Toxicity Test Results for Line Creek Monitoring Stations, 2021 (Teck 2022)

Water S	Station		Wateı (Daphnia		Rainbow Trout (Oncorhynchus mykiss)		
Teck Code	Description Year		# Tests > 50% Mortality	Total # tests	# Tests > 50% Mortality	Total # tests	
WL_BFWB_OUT_SP21	West Line Creek AWTF effluent outfall	2021	0	31	0	31	

Acute toxicity test failure(s) (> 50% test mortality).

Chronic toxicity testing was performed quarterly on samples collected at LC_LC3 and the Compliance Point (LC_LCDSSLCC) to evaluate potential effects to *C. dubia* and *P. subcapitata*, while semi-annual chronic toxicity tests were conducted to evaluate potential effects to *H. azteca*, fathead minnow, and rainbow trout; results are discussed on species-specific basis below.

Effects to *C. dubia* (survival and reproduction) were not significantly different when compared to reference throughout most of 2021 (for both monitoring areas [LC_LC3 and LC_LCDSSLCC]), except for the reproduction endpoint for LC_LC3 in Q4. Reproduction at LC_LC3 in Q4 was significantly different than three of the four reference areas evaluated and was categorized as 'possible adverse response' (Table 5.3; Golder 2022). Nickel showed the greatest evidence as the likely cause of the observed response, as aqueous analyte concentrations (13 μ g/L) exceeded the Level 1 interim screening value (Golder 2022) and was higher than the reproduction EC₂₀ for Nickel (10 μ g/L; Nautilus 2018). The magnitude of response at LC_LC3 in 2021 Q4 (25% reduction in reproduction), which was categorized as a 'possible adverse response', was similar to 2020 Q4 (22% reduction in reproduction) and Q4 2019 (24% reduction in reproduction), which were both categorized as 'no adverse response' during those years of testing.

Effects to cell yield for P. subcapitata at LC LC3 were observed in Q1 ('possible adverse effects') and Q2 ('likely adverse effects') for LC_LC3 and in Q4 for LC_LCDSSLCC ('possible adverse effects'). All other responses in 2021 were either not significantly different when compared to reference or were categorized as 'no adverse response' despite significantly lower cell yield than one or more reference areas (Golder 2022; Table 5.3). No water quality analytes were identified as potentially contributing to the observed responses in 2021 (Golder 2022). However, it should be noted that mean cell yields in both Q1 and Q4 were affected by systematically reduced growth across all areas evaluated (despite variability in water chemistry) which adds a level of uncertainty around the observed effects for LC LC3 in Q1 and LC LCDSSLCC in Q4 Golder 2022). The frequency of an adverse effect (either 'possible adverse response' or 'likely adverse response') for P. subcapitata in 2021 was higher than in 2020 when a single 'possible adverse response' was reported for LC LC3 in Q3 (remaining 2020) results indicated 'no adverse response'; Golder 2022). However, as noted above there is additional uncertainty associated with the effects observed in Q1 and Q4 of 2021 due to systematic reduction in cell yield among areas in these quarters (Golder 2022). Fewer adverse effects were reported in 2021 compared to 2019 when both LC LC3 and LC LCDSSLCC reported a 'likely adverse response' in P. subcapitata cell yield in Q3, but it should be noted that the P. subcapitata results from Q3 2019 were considered anomalous due to reduced cell yield among areas (including reference; Golder 2020a).

Table 5.3: Results of Quarterly and Semi-Annual Chronic Toxicity Tests at LC_LCDSSLCC in 2015 to 2021 and LC_LC3 in 2019 and 2021 (Golder 2016, 2017a, 2018, 2019, 2020a, 2021a, 2022)

	Quarter		Water Flea (Ceriodaphnia dubia) ^b		Amphipod (<i>Hyalella azteca</i>) ^c		Green Alga (Pseudokirchneriella subcapitata)			w Trout hus mykiss)		Fathead Minnow (<i>Pimephales promelas</i>) ^d				
Area			Survival (% control- normalized)	Reproduction (% control- normalized; Protocol- specified)	Survival (% control- normalized)	Dry Weight (% control- normalized)	Cell Yield (x10 ⁴ cells/ml)	Survival (% control- normalized)	Viability (% control- normalized)	Length (% control- normalized)	Wet Weight (% control- normalized)	Hatch (% control- normalized)	Survival (% control- normalized)	Biomass (% control- normalized)	Length (% control- normalized)	Normal Development (% control- normalized)
		Q1	100 ± 0	98 ± 14	-	-	117 ± 2.2	=	-	-	=	=	=	-	-	=
	2015	Q2	100 ± 0	<u>82 ± 12</u>	-	-	<u>69.2 ± 5.7</u>	102 ± 3	101 ± 6	101 ± 4	101 ± 5	-	-	-	-	-
	2010	Q3	100 ± 0	107 ± 20	-	-	83 ± 21	-	-	-	-	-	-	-	-	-
		Q4	100 ± 0	80 ± 24	-	-	94 ± 18	88 ± 9	87 ± 9	98 ± 4	103 ± 4	-	-	-	-	-
		Q1	100 ± 0	109 ± 16	-	-	129.5 ± 5.3	=	-	-	-	=	=	-	-	-
	2016	Q2	100 ± 0	67 ± 39	-	-	<u>91.0 ± 4.8</u>	<u>78 ± 6</u>	<u>88 ± 16</u>	104 ± 2	97 ± 12	=	=	-	-	-
	20.0	Q3	100 ± 0	83 ± 21	-	-	119.5 ± 5.5	=	-	-	-	=	=	-	-	-
		Q4	100 ± 0	94 ± 18		-	156.0 ± 4.5	<u>70 ± 10</u>	<u>69 ± 8</u>	104 ± 1	116 ± 11	-	=	•	-	-
		Q1	100 ± 0	92 ± 38	•	-	211.8 ± 15.4	=	-	-	-	-	-	•	-	-
	2017	Q2	100 ± 0	124 ± 11	-	-	134.0 ± 4.2	99 ± 8	93 ± 18	107 ± 6	125 ± 10	-	-	-	-	-
1	2011	Q3	100 ± 0	104 ± 25	-	-	146.8 ± 10.1	-	-	-	-	-	-	-	-	-
C_LCDSSLCC		Q4	100 ± 0	127 ± 15	-	-	103.5 ± 4.4	<u>41 ± 44</u>	<u>41 ± 44</u>	109 ± 3	119 ± 5	-	-	-	-	-
l ss	2018 2019 2020	Q1	100 ± 0	75 ± 19	-	-	164.3 ± 10.3	-	-	-	-	-	-	-	-	-
80		Q2	100 ± 0	40 ± 12	96 ± 15	108 ± 35	147.5 ± 4.8	102 ± 3	103 ± 2	104 ± 5	109 ± 16	-	-	-	-	-
<u> </u>		Q3	100 ± 0	106 ± 18	109 ± 10	150 ± 30	97.0 ± 12.2	-	-	-	-	-	-	-	-	-
ပ္'		Q4	100 ± 35	63 ± 23	74 ± 30	<u>35 ± 20</u>	87.7 ± 8.2	100 ± 9	103 ± 11	106 ± 1	110 ± 4	-	-		-	-
1 - 1		Q1	100 ± 0	92 ± 21	-	-	81.5 ± 4.5	-	-	-		100 ± 0	89 ± 14	87 ± 6	<u>90 ± 3</u>	98 ± 5
		Q2	100 ± 0	81 ± 6	-	-	110.8 ± 2.6	101 ± 11	101 ± 15	104 ± 3	115 ± 5	-	-	-	-	-
		Q3	80 ± 42	92 ± 23	90 ± 17	51 ± 26	29.8 ± 3.3	-	-	-	-	100 ± 0	64 ± 12	71 ± 8	104 ± 5	96 ± 7
		Q4	100 ± 0	88 ± 17	<u>73 ± 35</u>	84 ± 51	104.0 ± 10.0	90 ± 6	86 ± 4	103 ± 2	107 ± 3	-	-	-	-	-
		Q1	111 ± 0	93 ± 9	-	-	74 ± 5.3	-	-	-	-	98 ± 3	<u>39 ± 29</u>	<u>52 ± 35</u>	117 ± 7	112 ± 0
		Q2	90 ± 32	86 ± 34	107 ± 5	92 ± 18	111 ± 5.6	113 ± 18	109 ± 24	100 ± 7	103 ± 16	-	-	-	-	-
		Q3	90 ± 32	70 ± 22	-	-	105 ± 9.0	-	- 07 1 10	-	-	100 ± 0	96 ± 10	87 ± 6	90 ± 6	100 ± 0
		Q4	100 ± 0	74 ± 15 91 ± 27	88 ± 17	63 ± 30	119 ± 4.4	89 ± 8	87 ± 10	102 ± 0	111 ± 8	- 405 : 0	-	90 ± 9	96 ± 2	400 : 4
		Q1 Q2	100 ± 0		- 104 ± 5	- e	86 ± 3.4 55 ± 2.2	- 100 ± 2	- 106 ± 2	- 106 ± 0.4	- 135 ± 16	105 ± 0	104 ± 8			100 ± 4
	2021	Q2 Q3	90 ± 32 90 ± 32	87 ± 29 91 ± 30	98 ± 9	61 ± 8	85.8 ± 5.0	100 ± 2	100 ± 2	100 ± 0.4	135 ± 10	- 102 ± 4	- 76 ± 18	- 87 ± 15	93 ± 3	104 ± 5
		Q3 Q4	90 ± 32 100 ± 0	91 ± 30 93 ± 21	98 ± 9 107 ± 5	115 ± 19	61.5 ± 7.6	101 ± 12	100 ± 14	108 ± 5	107 ± 12	102 ± 4	70 ± 18	87 ± 15	93±3	104 ± 5
		Q1	100 ± 0	86 ± 12	107 ± 3	-	79.5 ± 8.0	101 ± 12	100 ± 14	100 ± 3	107 ± 12	100 ± 0	86 ± 4	89 ± 4	96 ± 1	100 ± 0
		Q2	100 ± 0	85 ± 12	<u>-</u>	_	19.5 ± 8.0	92 ± 14	94 ± 13	104 ± 2	118 ± 8	100 ± 0	00 ± 4	09 ± 4	90 ± 1	100 ± 0
	2019	Q2 Q3	100 ± 0	105 ± 20	75 ± 17	67 ± 26	27.0 ± 3.6	92 ± 14	94 ± 13	104 ± Z	110 ± 0	100 ± 0	95 ± 13	92 ± 5	105 ± 2	100 ± 0
		Q4	90 ± 32	76 ± 22	67 ± 45	153 ± 25	122.8 ± 8.5	90 ± 5	83 ± 17	101 ± 3	104 ± 10	-	93 ± 13	-	103 ± 2	100 ± 0
		Q1	111 ± 0	88 ± 20	<u>07 ± 43</u>	-	75 ± 3.8	90 ± 3		-	104 ± 10	100 ± 0	96 ± 7	84 ± 4	96 ± 2	100 ± 0
רכ־רכז		Q2	100 ± 0	87 ± 18	76 ± 46	75 ± 29	120 ± 3.9	96 ± 29	91 ± 33	99 ± 8	116 ± 22	-	-	<u>04 ± 4</u>	90 1 2	100 ± 0
1,	2020	Q3	100 ± 0	82 ± 18	<u>70 ± 40</u> -	-	83 ± 7.4	90 1 29	91 ± 33	- 99 1 0	-	92 ± 6	73 ± 12	98 ± 7	104 ± 5	94 ± 13
		Q4	100 ± 0	78 ± 18	96 ± 9	49 ± 19	114 ± 5.5	90 ± 2	91 ± 2	101 ± 1	106 ± 12	-	-	-	-	-
]		Q1	90 ± 32	93 ± 40	-	-	74.5 ± 9	-		-	-	105 ± 0	104 ± 10	89 ± 6	96 ± 4	98 ± 4
		Q2	100 ± 0	99 ± 20	104 ± 5	_e	47.2 ± 2.4	98 ± 3	101 ± 6	105 ± 1	122 ± 21	-	-	-	-	-
	2021	Q3	100 ± 0	91 ± 11	100 ± 6	59 ± 7	80.8 ± 5.6	-	-	-	-	105 ± 0	91 ± 15	102 ± 8	93 ± 7	102 ± 5
		Q4	90 ± 32	75 ± 28	100 ± 0	122 ± 9	75 ± 3.4	113 ± 4	110 ± 5	106 ± 4	104 ± 9	-	-	-	-	102 1 0
		α.	00 1 01	10 = 20	102 2 10	122 2 0	10 = 0.1	110 1	110 ± 0	100 ± 1	10120				I .	l

result significantly lower than at least one reference area

result significantly lower than Fording River reference (FR_UFR1).

<u>Underline</u> result significantly lower than Elk River reference (GH_ER2).

result significantly lower than Michel Creek reference (CM_MC1).

result significantly lower than South Line Creek reference (LC_SLC).

 $[\]overline{\text{Notes: Q}_{x}}$ = Calendar year quarters. "-" = no data available.

^a Results presented as percent survival or endpoint ± standard deviation. Chronic toxicity testing at LC_LC3 was initiated in 2019.

b Two test lengths were used to evaluate potential effects on Ceriodaphnia dubia reproduction in 2019. These included: 1) a protocol-specified test length (i.e., reproduction was measured when ≥60 % of controls produced three or more broods; as per Environment Canada [2007c]); and 2) an 8-day test duration (Golder 2020). These two test lengths were used in 2019 to evaluate potential brood effect. Prior to 2019, the protocol-specified test length was used.

^c Based on the Permit 107517 and 106970 Chronic Toxicity Program integration amendment (ENV 2019), chronic toxicity testing of *Hyalella azteca* (28-day test) is required on a semi-annual basis (spring and fall; see Section 2.2.2). Collection of toxicity test samples in early 2019 (Q1) began before the amendment was issued. Therefore, toxicity testing of *H. azteca* in Q1 was completed according to the previous requirements (Permit 107517). *H. azteca* testing was completed in Q3 and Q4 in 2019.

^d Fathead minnow chronic toxicity testing (30-day early life stage test) at LC_LCDSSLC and LC_LC3 was initiated in 2019.

e H. azteca Q2 test organisms were disposed of prior to measuring dry weight due to a lab technician error (see Section 2.2.2), and therefore the initial Q2 tests have only survival data. In response to this, tests were repeated in Q3 for all stations.

Effects to survival and growth of *H. azteca* were categorized as either not significantly different when compared to reference or were categorized as 'no adverse response' for both LC_LC3 and LCDSSLCC in 2021 (Q2, Q3³⁷, and Q4; Golder 2022). Similar results were encountered for fathead minnows (Q1 and Q3; via evaluation of hatch, survival, biomass, length, and normal development) and rainbow trout (Q2 and Q4; survival, viability, length, and wet weight) as effects were either not significantly different from reference or were categorized as "no adverse response" (Golder 2022). The lack of toxicity to *H. azteca* and both fish species (fathead minnow and rainbow trout) from water at both areas in 2021 contrasts with a higher frequency of reported effects for these species in previous years of evaluation (2018, 2019; Golder 2019, 2020a, 2021a).

Overall, acute toxicity testing of AWTF effluent showed no test failures in 2021 (Teck 2022a). Chronic toxicity responses were noted on a few occasions for *P. subcapitata* in 2021 but there is additional uncertainty associated with the observed effects observed due to systematic reduction in cell yield among all test areas in these quarters. The remaining four test species (*C. dubia, H. azteca,* fathead minnow, and rainbow trout) showed 'no adverse effects' throughout most of 2021, with only *C. dubia* at LC_LC3 in Q4 being categorized as 'possible adverse effects'. Temporal comparisons of chronic toxicity results for LC_LC3 and LC_LCDSSLCC indicated that observed organism responses (or lack thereof) for chronic toxicity testing in 2021 were similar to or lower than previous years. In addition, few adverse responses have been observed at either area since initiation of testing, there is no apparent consistent pattern of responses, and there is no clear evidence of casual factors (Golder 2022), suggesting a lack of influence of the AWTF. Combined, these results indicated the toxicity responses observed in 2021 were likely not related to AWTF with AOP operation. This conclusion is consistent with findings of benthic invertebrate community monitoring over the same time-period that indicated no obvious adverse change in community characteristics associated with the AWTF with AOP operation in 2021.

5.6 Summary

Operation of the AWTF with AOP in 2021 did not significantly change water temperature or dissolved oxygen concentrations downstream in Line Creek. Evaluation of water quality analytes demonstrated no increases in analyte concentrations that resulted in concentrations above guidelines or water quality benchmarks during AWTF with AOP operation in 2021. Additionally, chronic toxicity testing in most cases (except with the possibly of a few green algae toxicity results), suggested that toxicity was either similar to or lower than previous years.

³⁷ *H. azteca* Q2 test organisms were disposed of prior to measuring dry weight due to a lab technician error (see Section 2.2.2), and therefore the initial Q2 tests have only survival data. In response to this, tests were repeated in Q3 for all stations.

Overall, there did not appear to be influences on aquatic biota associated with the WLC AWTF with AOP operations in 2021 that were not already being addressed through monitoring related to Study Questions #1 (productivity) and #2 (tissue selenium accumulation), which is consistent with past evaluations during this operational period (2019 and 2020).

6 SUMMARY

Potential effects to the aquatic environment related to the commissioning of the WLC AWTF were evaluated by addressing three study questions, which focus on: 1) potential effects to biological productivity; 2) selenium concentrations in biota; and 3) potential effects related to factors other than nutrients or selenium.

Evaluation of Study Question #1 (potential influences on biological productivity) indicated that aqueous total phosphorus concentrations at the Compliance Point (LC_LCDSSLCC) were consistently below the SPO of 0.02 mg/L during 2021. In 2021, concentrations of nutrients (total phosphorus, orthophosphate, and nitrate) were generally in the ranges of concentrations observed in previous years. Additionally, the results suggested that the operation of the AWTF with AOP (2019 to 2021) was more successful at minimizing phosphorus and orthophosphate contributions to the receiving environment than operation of the AWTF without AOP (in 2016 and 2017).

Periphyton coverage at all mine-exposed and reference areas was moderate in 2021 (based on visual assessment) and was consistent with past results. Periphyton coverage at RG LILC3 and RG LIDCOM was moderate in 2021 (similar to results from 2017 to 2019), and decreased from 2020, suggesting results from 2020 were an isolated event. Benthic invertebrate biomass and density at RG LIDSL and RG LILC3 (the two downstream areas in closest proximity to the AWTF discharge) showed no significant increase in 2021 related to during operation of the AWTF with AOP. Benthic invertebrate total abundance (measured by kick and sweep) was within regional normal ranges and was largely similar to previous years (2017 to 2020) at mine-exposed areas in 2021. Where abundance was increased relative to pre-AWTF results, the absence of a change closest to the AWTF discharge indicated that the increase was likely unrelated to AWTF with AOP operation (consistent with the biomass and density results). Benthic invertebrate community endpoints, as determined from kick and sweep sample collection, indicated no consistent adverse changes in community characteristics related to operation stabilization of the AWTF with AOP in 2021. Rather, continued increase in the percentage of sensitive taxa (Ephemeroptera and EPT) at most areas of Line Creek downstream from the AWTF during the AWTF with AOP period (2019 to 2021) was suggestive of an improvement in benthic invertebrate community structure (Table 6.1).

Overall, assessment of Study Question #1 indicated that biological productivity downstream from the AWTF has not been affected by the operation of the AWTF with AOP (2019 to 2021) relative to previous years of operation.

Table 6.1: Summary of Measurement Endpoints, Analyses, and Results of Line Creek LAEMP, 2021

			Water		Biological							
Study Question	Measurement Endpoint	Indicator	Analysis/Evaluation	Result	Measurement Endpoint	Indicator	Analysis/Evaluation	Result				
					Periphyton productivity	Visual Coverage Scores	Coverage scored according to CABIN guidance (Environment Canada 2012)	Coverage scored as moderate at all mine-exposed areas (which for RG_LILC3 and RG_LIDCOM was lower than 2020) and mild-moderate at reference stations, similar to previous years.				
		Nitrate	1) Comparison to SPO	Nitrate was below the SPO during a majority of 2021 (65% of sampling events)		Biomass		No adverse effect associated with AWTF with AOP operation in 2021. No significant differences in biomass at RG_LILC3 or RG_LIDSL in 2021 when compared to previous years (or when compared to previous years relative to reference).				
Is active water treatment affecting biological productivity downstream in Line	Nutrient concentrations		2) Comparison to BCWQG and Water Quality Benchmarks	Concentrations > BCWQG at all mine-exposed areas. Concentrations < Level 1 benchmark for all areas downstream of discharge.	Benthic invertebrate productivity	Density	ANOVA analysis among years = 2014 to 2021 Areas: Ref = RG_SLINE, RG_LI24; Exp = RG_LILC3, RG_LIDSL	No adverse effect associated with AWTF with AOP operation in 2021. Density at RG_LIDSL in 2021 was not significantly different than previous years or when compared to previous years relative to RG_SLINE, however density at RG_LIDSL was significantly higher in 2021 than all previous years (excluding 2019) when comparisons among years was relative to changes at the reference RG_LI24. Density at RG_LILC3 in 2021 was not significantly different than previous years or when compared to previous years relative to RG_SLINE, while density at RG_LILC3 in 2021 relative to RG_LI24 was either similar (2014, 2015, 2017, and 2019) or lower than previous years (2018 and 2020).				
Creek?		Fotal Phosphorus 2	1) Comparison to SPO 2) Comparison to the LC_LC3	1) Phosphorus did not exceed SPO in 2021. 2) Concentrations in 2021 were below the LC_LC3 baseline with the exception of one sample in October.	Benthic invertebrate community structure	Abundance	Comparison to past observations and reference normal range (NR)	No evidence of adverse effect on secondary productivity associated with AWTF with AOP operation in 2021. Average organism abundance at Exp areas were within NR in 2021 and within range of previous AWTF operational years. Abundance at RG_LIDSL and RG_LI8 in 2021 was higher than pre-ATWF conditions on occasion, but a lack of increase at RG_LILC3 (immediately downstream of AWTF discharge) indicates increase is likely not AWTF-related.				
			baseline 97.5th percentile			Richness	Comparison to past observations and reference normal range (NR)	No evidence of adverse effect associated with AWTF with AOP operation in 2021. Average species richness at all mine-exposed area were within both NR and SNR (except RG_LIDCOM which was slightly above SNR).				
		Orthophosphate	Comparison to the LC_LC3 baseline 97.5th percentile	Concentrations in 2021 were below the LC_LC3 baseline.		%EPT, %Ephemeroptera (%E), %Chironomidae (%C)	Comparison to past observations and reference normal range (NR)	No evidence of adverse effect associated with AWTF with AOP operation in 2021. Average %EPT was within NR except immediately downstream of the AWTF discharge (at RG_LILC3 and RG_LISP24) and within or above range of previous years. %E in 2021 was similar or increased in comparison to previous years, with all areas were within NR except for RG_LILC3. Higher percent Ephemeroptera at areas further downstream, specifically RG_LISP24, RG_LIDSL, LIDCOM, and LI8, have been observed during AWTF with AOP Operation (2019 to 2021) when compared to AWTF without AOP. %C downstream of AWTF discharge were within range of previous years or showed decreases in composition.				

Notes: Ref = Reference sampling station/area; Exp = Mine-exposed sampling station/area; SPO = Site Performance Objective; BCWQG = British Columbia Water Quality Guideline; NR and SNR = Regional normal range and site-specific normal range of reference area data, respectively from the RAEMP (see Minnow 2020b for details); Water quality benchmarks are those outlined in Teck (2014). It should be noted that the terminology used to describe the AWTF operational phase initiated on December 30, 2018 has been updated in the present report. Terminology in the 2019 LCO LAEMP report identified two AWTF operational phases after December 30, 2018: "AWTF Operational Stabilization" and "AWTF/AOP Steady State Operation" (Minnow 2020a). In the current report, after December 30, 2018 has been termed as a single "AWTF with AOP Operational" phase (see Section 1.3 for more details).

Table 6.1: Summary of Measurement Endpoints, Analyses, and Results of Line Creek LAEMP, 2021

Otrodo Occastino			Water				Biol	ogical
Study Question	Measurement In Endpoint	ndicator	Analysis/Evaluation	Result	Measurement Endpoint	Indicator	Analysis/Evaluation	Result
	Total and dissolved selenium concentrations			General decrease in total [Se] downstream of the AWTF discharge during AWTF with AOP operation in 2021.	Composite-taxa selenium tissue samples		1) ANOVA analysis: Before = 2012; Initial Operations = 2014; AWTF without AOP = 2016 to 2017; Shutdown = Mar to Aug 2018; AWTF with AOP Restart = Oct 2018 to Dec 2018; AWTF with AOP Restart = Oct 2018 to Dec 2018; AWTF with AOP (2019 to 2021); Post-hoc contrasts limited to AWTF with AOP (2021) vs. AWTF without AOP and Before, within AWTF with AOP (2021), and AWTF with AOP (2019 to 2021; grouped by season). Areas: Ref = RG_SLINE, RG_LI24; Exp = RG_LCUT, RG_LILC3, RG_LISP24, RG_LIDSL, RG_LIDCOM, RG_LI8, RG_FRUL, RG_FO23 2) Spatial analysis using ANOVA during each sampling event (April 2021 to Dec 2021) 3) Comparison to reference normal range (NR) 4) Comparison to site-specific benchmarks 5) Temporal analysis (ANOVA) for RG_SLINE and visual evaluation of benthic invertebrate composite taxa samples	1) Significant decrease in tissue [Se] during AWTF with AOP in 2021 compared to without AOP at all Exp areas downstream of the AWTF, relative to change at reference over the same period. Tissue [Se] in 2021 similar to Before period (where data available), relative to change at reference. Tissue [Se] during the AWTF with AOP period show few differences suggesting stability in conditions during this operational period. 2) Tissue [Se] downstream of AWTF discharge were similar to reference and/or upstream of AWTF (RG_LCUT) throughout 2021. 3) Mean tissue [Se] results at Exp areas of Line Creek downstream of the AWTF were within or only slightly higher than NR except for two sampling event at RG_LILC3 in April and September. 4) Average tissue [Se] downstream of AWTF discharge were below the EVWQP Level 1 Benchmark throughout 2021 5) Benthic invertebrate tissue [Se] concentration at RG_SLINE has increased since 2017, the observed increase is not believed to be due to operational activities or the laboratory change (2020), changes in benthic invertebrate taxa present in composite samples may be partially responsible for observed increase.
Are tissue selenium concentrations reduced downstream from the AWTF?	Selenium speciation		Comparison downstream relative to upstream from the AWTF, and of Line Creek input to Fording River	Lower concentrations of selenite and other non-selenate species in Line Creek downstream of the AWTF discharge during AWTF with AOP relative to concentrations during operation without AOP. Concentrations of non-selenate concentrations in Line Creek downstream of the AWTF in 2021 were higher in winter (January to March) and lowest during summer (June and July).	WCT selenium (RG_LIDSL and	tissue samples I RG_FO23 Only)	1) Comparison to site-specific benchmarks for muscle and estimated ovary concentrations 2) Comparison to reference normal range (NR) 3) Visual inspection of 2001 to 2021 data	1) Mean WCT muscle selenium tissue and estimated ovary selenium tissue concentrations were below their respective site specific benchmarks except 4 of 8 replicates at RG_LIDSL that exceeded those benchmarks. 2) Mean WCT muscle selenium tissue and estimated ovary selenium tissue concentrations were above the NR 3) Mean WCT muscle selenium concentrations were substantially lower during 2021 (in the AWTF with AOP Period) when compared to 2017 (AWTF without AOP period).
			Comparison of composite-taxa benthic tissue selenium results to one-step water-to-invertebrate model	Tissue selenium concentrations reported during 2021 AWTF with AOP fall within the model prediction intervals.		Abundance	Comparison to past observations and reference normal range (NR)	No evidence of adverse effect on secondary productivity associated with AWTF with AOP operation in 2021. Average organism abundance at Exp areas were within NR in 2021 and within range of previous AWTF operational years. Abundance at RG_LIDSL and RG_LI8 in 2021 was higher than pre-ATWF conditions on occasion, but a lack of increase at RG_LILC3 (immediately downstream of AWTF discharge) indicates increase is likely not AWTF-related.
	Selenium bioaccumula	ation model		Mean WCT tissue selenium concentrations reported	Benthic invertebrate	Richness	Comparison to past observations and reference normal range (NR)	No evidence of adverse effect associated with AWTF with AOP operation in 2021. Average species richness at all mine-exposed area were within both NR and SNR (except RG_LIDCOM which was slightly above SNR).
	(RG_LIDSL and RG_FO23 Only)	selenium results to two-step water- to-invertebrate-to-fish model	during 2021 at RG_LIDSL and RG_FO23 fall within the model prediction intervals except 4 of 8 replicates at RG_LIDSL. WCT at RG_LIDSL in 2021 were substantially lower in 2021 (during AWTF with AOP) when compared to 2017 (during AWTF without AOP).	community structure	%EPT, %Ephemeroptera (%E), %Chironomidae (%C)	Comparison to past observations and reference normal range (NR)	No evidence of adverse effect associated with AWTF with AOP operation in 2021. Average %EPT was within NR except immediately downstream of the AWTF discharge (at RG_LILC3 and RG_LISP24) and within or above range of previous years. %E in 2021 was similar or increased in comparison to previous years, with all areas were within NR except for RG_LILC3. Higher percent Ephemeroptera at areas further downstream, specifically RG_LISP24, RG_LIDSL, LIDCOM, and LI8, have been observed during AWTF with AOP Operation (2019 to 2021) when compared to AWTF without AOP. %C downstream of AWTF discharge were within range of previous years or showed decreases in composition.	

Notes: Ref = Reference sampling station/area; Exp = Mine-exposed sampling station/area; SPO = Site Performance Objective; BCWQG = British Columbia Water Quality Guideline; NR and SNR = Regional normal range and site-specific normal range of reference area data, respectively from the RAEMP (see Minnow 2020b for details); Water quality benchmarks are those outlined in Teck (2014). It should be noted that the terminology used to describe the AWTF operational phase initiated on December 30, 2018 has been updated in the present report. Terminology in the 2019 LCO LAEMP report identified two AWTF operational phases after December 30, 2018: "AWTF Operational Stabilization" and "AWTF/AOP Steady State Operation" (Minnow 2020a). In the current report, after December 30, 2018 has been termed as a single "AWTF with AOP Operational" phase (see Section 1.3 for more details).

Table 6.1: Summary of Measurement Endpoints, Analyses, and Results of Line Creek LAEMP, 2021

			Water			Biological					
Study Question	Measurement Endpoint Indicator		Analysis/Evaluation	on Result		Indicator	Analysis/Evaluation	Result			
	·	Data loggers	to upstream of the AWTF 2) Comparison of 2020 to 2021	1) No evidence that AWTF with AOP operation increased downstream temperature in 2021 when compared to upstream data loggers in similar habitat. 2) Increased temperatures from 2020 to 2021 were limited to July and August (not an influence of the AWTF)			Comparison to past observations and reference normal range (NR)	No evidence of adverse effect on secondary productivity associated with AWTF with AOP operation in 2021. Average organism abundance at Exp areas were within NR in 2021 and within range of previous AWTF operational years. Abundance at RG_LIDSL			
	Temperature	Routine	1) Comparison to BCWQG	Temperatures were within or below guideline temperature ranges for both bull trout and westslope cutthroat trout.		Abundance		and RG_LI8 in 2021 was higher than pre-ATWF conditions on occasion, but a lack of increase at RG_LILC3 (immediately downstream of AWTF discharge) indicates increase is likely not AWTF-related.			
		monitoring		Increased temperatures from 2020 to 2021 were limited to July and August (not an influence of the AWTF)							
	Dissolved oxygen		Comparison to BCWQG	DO concentrations in 2021 > instantaneous minimum criterion and > 30-day average for all other life stages but < 30-day criterion for sensitive life stages (namely during summer months [May to October]). Similar trends were noted in areas both upstream and downstream of AWTF as well as reference, suggesting this was not due to AWTF with AOP operation.		Richness					
Is AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations or concentrations of treatment-related constituents other than nutrients or selenium?	Analytes with Early Warning Triggers 2) Con Bench Compa		1) Comparison to past results 2) Comparison to BCWQG 3) Comparison to Water Quality Benchmarks	1) No obvious temporal increases in analyte concentrations associated with AWTF with AOP operation in 2021. Concentrations of dissolved cobalt, total manganese, total molybdenum which were identified in the 2020 report, were lower in 2021 than 2020 and were still well below benchmark values [Mn and Mo] or within the pre-AWTF range [Co]). 2) Long-term BCWQG were exceeded for [NO ₃], [SO ₄], total [Se], dissolved [Cu], and dissolved [Cd] both upstream and downstream of AWTF discharge, and for total [Hg] downstream of AWTF discharge and at reference. 3) Level 1 EVWQP benchmark was exceeded for [TDS], [SO ₄], total [Ni], total [Se] and dissolved [Cd] in both upstream and downstream areas. Exceedances in downstream areas were generally confined to areas directly downstream of the discharge (such as LC_LC3). Upstream areas showed a greater level of exceedance as LC_WLC exceeded Level 2 EVWQP benchmark for total [Se] as well as Interim Level 3 benchmark for total [Ni].	Benthic invertebrate community structure		Comparison to past observations and reference normal range (NR)	No evidence of adverse effect associated with AWTF with AOP operation in 2021. Average species richness at all mine-exposed area were within both NR and SNR (except RG_LIDCOM which was slightly above SNR).			
			past results	No acute toxicity failed the criterion in 2021 (< 50% mortality). Majority of chronic toxicity testing results were either similar to or lower than previous years, with the exception of possibly a few algae results that were associated with increased uncertainty due to low cell yield among all areas.		%EPT, %Ephemeroptera (%E), %Chironomidae (%C)	Comparison to past observations and reference normal range (NR)	No evidence of adverse effect associated with AWTF with AOP operation in 2021. Average %EPT was within NR except immediately downstream of the AWTF discharge (at RG_LILC3 and RG_LISP24) and within or above range of previous years. %E in 2021 was similar or increased in comparison to previous years, with all areas were within NR except for RG_LILC3. Higher percent Ephemeroptera at areas further downstream, specifically RG_LISP24, RG_LIDSL, LIDCOM, and LI8, have been observed during AWTF with AOP Operation (2019 to 2021) when compared to AWTF without AOP. %C downstream of AWTF discharge were within range of previous years or showed decreases in composition.			

Notes: Ref = Reference sampling station/area; Exp = Mine-exposed sampling station/area; SPO = Site Performance Objective; BCWQG = British Columbia Water Quality Guideline; NR and SNR = Regional normal range and site-specific normal range of reference area data, respectively from the RAEMP (see Minnow 2020b for details); Water quality benchmarks are those outlined in Teck (2014). It should be noted that the terminology used to describe the AWTF operational phase initiated on December 30, 2018 has been updated in the present report. Terminology in the 2019 LCO LAEMP report identified two AWTF operational phases after December 30, 2018: "AWTF Operational Stabilization" and "AWTF/AOP Steady State Operation" (Minnow 2020a). In the current report, after December 30, 2018 has been termed as a single "AWTF with AOP Operational" phase (see Section 1.3 for more details).

Evaluation of Study Question #2 (assessment of selenium concentrations) focused on aqueous selenium concentrations and selenium concentrations in biota. Aqueous selenium throughout Line Creek is primarily in the oxidized form, selenate, and chemically-reduced forms of aqueous selenium (such as selenite or organoselenium species) are present at much lower concentrations (typically <1% of the aqueous total selenium). Although the WLC AWTF without AOP successfully decreased concentrations of total selenium in Line Creek, the effluent contained higher proportions of chemically-reduced selenium species, some of which are known to be more readily accumulated than selenate by aquatic biota. The AWTF was recommissioned in 2018 with an AOP, which is designed to reverse the shift in selenium species in AWTF effluent from chemically-reduced species back to a selenate-dominated condition, thereby reducing the bioavailability of selenium in Line Creek.

Benthic invertebrate tissue monitoring in Line Creek identified substantially lower selenium concentrations throughout the operational phase with AOP (2019 to 2021) compared to concentrations during the operational phase of AWTF without AOP at all mine-exposed areas downstream of the AWTF discharge. In 2021, mean benthic invertebrate selenium concentrations were below the EVWQP Level 1 benchmark at all areas downstream of the AWTF discharge, and were largely within the regional normal range of the Elk Valley (excluding results from April and September at RG LILC3 which were slightly higher than the normal range). Comparison of benthic invertebrate selenium concentrations to the selenium bioaccumulation model indicated that bioaccumulation in 2021 was within model limits. This suggests that bioaccumulation was occurring as "expected" (including from April and September at RG LILC3) which is similar to results from other years of AWTF with AOP operation (2019 and 2020, with the exception of three samples in 2020) and is in contrast to results collected during ATWF operation without AOP. Mean selenium concentrations in westslope cutthroat trout muscle tissue from two areas in Line Creek (RG FO23 and RG LIDSL) in 2021 were below site-specific benchmarks and estimated ovary concentrations were below prediction limits of the bioaccumulation model, except four of eight replicates from RG LIDSL. Fish muscle and estimated ovary selenium concentrations at RG LIDSL were notably lower (2.4-times) in 2021 (during AWTF with AOP) when compared to 2017 (during operations without AOP).

Overall, assessment of Study Question #2 in 2021 (similar to other years of AWTF with AOP operation [2019 and 2020]) indicated that aqueous selenium speciation and benthic invertebrate tissue selenium monitoring results support the conclusion that the recommissioned AWTF with AOP is functioning as intended to decrease the concentrations of non-selenate species in AWTF effluent resulting in reduced selenium bioaccumulation in Line Creek.

Evaluation of Study Question #3 (potential effects related to factors other than nutrients or selenium) indicated that the operation of the AWTF with AOP in 2021 did not significantly change water temperature or dissolved oxygen concentrations downstream in Line Creek. Evaluation of water quality analytes with early warning triggers also demonstrated no increases in concentrations in 2021 related to operation of the AWTF with AOP. AWTF effluent samples showed no acute toxicity test failures in 2021. Except for three algae (*P. subcapitata*) results and one water flea (*C. dubia*) result, chronic toxicity results in 2021 were categorized as no adverse effect. The chronic toxicity results in 2021 were similar to or lower than responses in previous years, and the absence of consistent temporal pattern of responses or clear evidence of causal factors for observed effects suggest a lack of influence of the AWTF on chronic toxicity. Overall, there did not appear to be influences on aquatic biota associated with the WLC AWTF operations throughout the AWTF with AOP operational period (2019 to 2021) that were not already being addressed through monitoring related to Study Questions #1 (productivity) and #2 (tissue selenium accumulation; Table 6.1).

The results from the Line Creek LAEMP provide information that supports Teck's Adaptive Management Plan (Teck 2021a) and Table 6.2 summarizes material presented in this report that is relevant to the AMP. The results from this study also supported the evaluation of biological triggers which are intended to identify unexpected monitoring results that may lead to responses under the AMP response framework. Biological trigger results indicated that three of the five mine-exposed areas evaluated (RG LCUT [upstream of the AWTF outfall], RG LILC3, and RG LIDSL) had %EPT for all replicates which corresponded to a biological trigger (i.e., %EPT was below the biological trigger; Table 6.3). Although uncertainty remains around the cause of biological responses associated with the change in %EPT at the areas identified by the biological triggers, this trigger will continue to be monitored as part of the RAEMP. Other efforts are also currently underway, namely predictive modeling, to resolve mine-related uncertainty around effects of stressors on benthic community endpoints. Aside from one replicate at RG SLINE (reference) and one replicate at RG LCUT (which is located upstream from the AWTF discharge), replicate benthic invertebrate tissue selenium samples from mine-exposed and reference areas of Line Creek had selenium concentrations that were below the biological trigger. Selenium concentrations in WCT muscle tissue was assessed against the biological trigger for RG LIDSL and RG FO23 (which were sampled as part of the RAEMP), while no individual replicates had WCT muscle tissue selenium concentrations that were above the biological trigger at RG FO23, four of the eight replicates at RG LIDSL exceeded the biological trigger. Additional confirmatory investigations into fish tissue Se in Line Creek will be undertaken in the 2022 field season. The selenium concentrations in

Table 6.2: Summary of Findings, Responses and Adjustments Related to the LCO LAEMP in 2021

Key Question(s)	Data Evaluation Process	Outcome(s)	Responses & Adjustments in 2021	EMC Engagement
Is active water treatment affecting biological productivity downstream in Line Creek?	1. Determine if there is an increase in benthic invertebrate biomass, or shift in community structure that has been demonstrated to correspond with changes in AWTF operational status and changes in parameters associated with productivity (e.g., nutrient concentrations) No evidence of effect on productivity associated with AOP operation in 2021. None None	None	Proposed 2021 LCO LAEMP Study Design discussed by tele- conference March 8, 2021. 2021 Study Design submitted to ENV/EMC May 1, 2021. Draft data package of 2021 results and outline of proposal to	
Are tissue selenium concentrations reduced downstream from the WLC AWTF?	2. Determine if there is a change in benthic invertebrate and fish tissue selenium concentrations over time that corresponds to changes in total selenium concentrations or selenium speciation in water. Benthic invertebrate community data being collected for other purposes can be used as supporting evidence of ecosystem health status downstream from the AWTF.	The WLC AWTF was recommissioned with an AOP in late 2018 in response to significantly increased concentrations of chemically-reduced aqueous selenium species and increase selenium concentrations in tissues of aquatic biota downstream of the AWTF outfall in Line Creek in 2016 and 2017. Monitoring results from 2021 indicated the recommissioned AWTF with AOP is functioning as intended to decrease aqueous concentrations of non-selenate species in AWTF effluent and reduce selenium bioaccumulation in Line Creek.	WLC AWTF was recommissioned in August 2018 with AOP to modify chemically reduced selenium species in effluent back to a selenate-dominated condition having lower selenium bioavailability. The AWTF with AOP was operational throughout 2021 with few exceptions.	transition the LCO LAEMP to the RAEMP submitted to EMC February 22, 2022 and discussed by tele-conference March 1, 2022. Written input from EMC on March draft data package and proposal to transition LCO LAEMP into the RAEMP received on March 24, 2022.

Notes: WLC = West Line Creek; ATWF = Active Water Treatment Facility; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process.

Table 6.2: Summary of Findings, Responses and Adjustments Related to the LCO LAEMP in 2021

Key Question(s)	Data Evaluation Process	Outcome(s)	Responses & Adjustments in 2021	EMC Engagement
Is AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations or concentrations of treatment-related constituents other than nutrients or selenium?	3a. Temperatures that are above/below the guideline, and dissolved oxygen concentrations that are above the threshold for effects to fish outside of the initial mixing zone, and confirmation that the mixing zone is small, will be indicative of effective management of treated water discharge. Benthic invertebrate community data being collected for other purposes can be used as supporting evidence of ecosystem health status downstream from the AWTF. 3b. Determine if there is a change in benthic invertebrate community endpoints away from the reference condition that does not correspond to observed changes in nutrients or selenium concentrations. 3c. Determine if there is a change in acute or chronic toxicity testing results that corresponds with a change in WLC AWTF operational status.	AWTF operations did not significantly influence water temperature or dissolved oxygen concentrations. Evaluation of most water quality parameters, including treatment-related constituents, demonstrated no obvious increases in concentrations during AWTF with AOP operation with a few exceptions. Dissolved cobalt, total manganese, and total molybdenum increased in relation to initiation of AWTF with AOP operations, but remain either well below guidelines (manganese and molybdenum) or within the range of per-AWTF conditions (dissolved cobalt). Additionally, concentrations of these three analytes were lower in 2021 than 2020 and 2019. Ongoing monitoring of these analytes will provide further information regarding the nature of these increases. Effluent samples showed no acute toxicity. Chronic toxicity at LC_LC3 or LCLCDSSLCC for most species was either not-significantly different from reference areas or was similar to or lower than prior years, with the exception of several algae results that were associated with increased uncertainty due to low cell yield among all areas.	None	

Notes: WLC = West Line Creek; ATWF = Active Water Treatment Facility; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process.

Table 6.3: Summary of Biological Trigger Analysis for Percent EPT, Selenium Benthic Invertebrate Tissue (BIT), and Selenium Westslope Cutthroat Trout (WCT) Muscle Tissue, Line Creek LAEMP, 2021

			Q	% EPT ^a	Sel	enium BIT ^b	Selenium WCT Muscle Tissue ^a		
Waterbody	Area		Number Replicates Evaluated	Number of Replicates Reaching Biological Trigger ^c	Number Replicates Evaluated	Number of Replicates Reaching Biological Trigger ^d	Number Replicates Evaluated	Number of Replicates Reaching Biological Trigger ^e	
	RG_SLINE	Reference	5	0	40	0	-	-	
	RG_LI24	Reference	5	1	30	0	-	-	
Line	RG_LCUT		1	1	40	0	-	-	
Creek	RG_LILC3	Mine-exposed	5	5	40	4	-	-	
	RG_LIDSL		5	5	40	0	8	4	
	RG_LI8		3	1	40	0	-	-	
Fording River	RG_FO23	Mine-exposed	5	4	40	0	8	0	

Notes: "-" = not evaluated; % EPT = Percent EPT (Ephemeroptera ([mayflies], Plecoptera [stoneflies], and Trichoptera [caddisflies]); Selenium BIT = Selenium concentrations in benthic invertebrate tissue (mg/kg dw); WCT = Westslope Cutthroat Trout.

^a Biological Trigger analysis for %EPT and selenium WCT muscle tissue was for the September sampling event.

^b Biological Trigger analysis for Selenium BIT was for the April, July, September, and November/December sampling events.

^c Number of Replicates Reaching Biological Trigger for % EPT refers to those replicates which were below both triggering steps (i.e., below the lower 2.5th percentile of the habitat-adjusted normal range and expectations [as based on predicted ADIT Scores]). See Section E.2.2 for more details.

d Number of Replicates Reaching Biological Trigger for Selenium BIT refers to those replicates which were above both triggering steps (i.e., above the upper 97.5th percentile prediction limit of the regional normal range and expectations [as based on the predicted 95% percentile from the water to benthic invertebrate selenium bioaccumulation model]). See section E.2.3 for more details.

^e Number of Replicates Reaching Biological Trigger for Selenium WCT Muscle Tissue refers to those replicates which were above triggering steps (i.e., above the upper 97.5th percentile prediction limit of the regional normal range and expectations [as based on the predicted 95% percentile from the 2-step bioaccumulation model - water to benthic invertebrates, invertebrates to fish]). See section E.2.4 for more details.

WCT muscle tissue from this confirmatory investigation will be further evaluated in the larger context of the Elk Valley as part of the RAEMP to better understand both spatial and temporal trends for this biological trigger. Further information regarding the selenium concentrations in benthic invertebrate tissue and WCT muscle tissue biological trigger as it pertains to the LCO LAEMP can be found in Appendix E. Given that current biological triggers were sufficient to identify monitoring areas where biological responses are occurring, no additional triggers are recommended at this time.

After three years of monitoring during the AWTF with AOP period, the results have conclusively shown that the AWTF is decreasing selenium concentrations in aquatic biota and has not influenced biological productivity or other water quality parameters (such as temperature, dissolved oxygen, or aqueous concentrations of mine-related analytes). Monitoring efforts in Line Creek have over this three-year timeframe have shown that conditions in the creek are stable and that the questions of the LCO LAEMP have been answered.

7 REFERENCES

- Azimuth (Azimuth Consulting Group Partnership). 2018. Proposed Water Quality Triggers for the Elk Valley Adaptive Management Plan. Prepared for Teck Resources Limited, Vancouver, BC. June 2018.
- Azimuth. 2019. Evaluation of water quality data mercury and methyl mercury in the Elk Valley. Technical Memorandum. March 5th, 2019.
- ASTM (American Society for Testing and Materials). 2013. Standard Guide for Conducting Early Life-Stage Toxicity Tests with Fishes. E1241-05, 29 p.
- BCMOE (British Columbia Ministry of Environment). 1997. Ambient Water Quality Criteria for Dissolved Oxygen. February 1997.
- BCMOE. 2001. Water Quality Guidelines for Temperature. August 2001.
- BCMOE. 2014. Ambient Water Quality Guidelines for Selenium Technical Report Update. Prepared by: J.M Beatty and G.A. Russo, Environmental Protection Division, Victoria, British Columbia. April 2014.
- BCMOECCS (British Columbia Ministry of Environment and Climate Change Strategy). 2021a. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Guideline Summary. Water Quality Guideline Series, WQG-20. Prov. B.C., Victoria B.C.
- BCMOECCS. 2021b. Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Quality Guideline Series, WQG-08. Prov. B.C., Victoria B.C.
- Cope, S. 2020. Proprietor, Westslope Fisheries Ltd. Email conversation with Cait Good (Teck). January 7, 2020.
- Cope, S. Schwarz, C.J., Prince, A., Bisset, J. 2016. Upper Fording River Westslope Cutthroat Trout Population Assessment and Telemetry Project: Final Report. Report Prepared for Teck Coal Limited, Sparwood, BC. Report Prepared by Westslope Fisheries Ltd., Cranbrook, BC. 266 p.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2016. COSEWIC Assessment and Update Status Report on the Westslope Cutthroat Trout *Oncorhynchus clarkii lewisii* (British Columbia population and Alberta population) in Canada. COSEWIC, Ottawa. Available: www.cosewic.gc.ca/. March 2018).
- Ecofish (Ecofish Research Ltd.). 2020. Line Creek Operations Fish and Fish Habitat Baseline Report. Prepared for Teck Coal Limited. December 2020
- Environment Canada. 1996. Biological Test Method: Acute Lethality Test Using Daphnia Species. Environmental Protections Series. Method Development and Applications Section. Environmental Technology Centre. July 1990 (with May 1996 Amendments).
- Environment Canada. 1998. Biological Test Method: Toxicity Tests Using Early Life Stages of Salmonid Fish (Rainbow Trout). Environmental Technology Centre, Ottawa, Ontario. Environmental Protection Series. Report 1/RM/28. July 1998.
- Environment Canada. 2007a. Biological Test Method: Acute Lethality Test Using Rainbow Trout. Environmental Protections Series. Method Development and Applications Section. Environmental Technology Centre. May 2007.

- Environment Canada. 2007b. Biological Test Method: Growth Inhibition Test Using a Freshwater Alga. Environmental Technology Centre, Ottawa, Ontario. Environmental Protection Series. Report 1/RM/25. Second Edition. March 2007.
- Environment Canada. 2007c. Biological Test Method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*. Environmental Technology Centre, Ottawa, Ontario. Environmental Protection Series. Report EPS 1/RM/21. Second Edition. February 2007.
- Environment Canada. 2012a. Field Manual: Wadeable Streams. Canadian Aquatic Biomonitoring Network (CABIN). Government of Canada.
- Environment Canada. 2012b. Metal Mining Technical Guidance for Environmental Effects Monitoring.
- Environment Canada. 2014. Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. Canadian Aquatic Biomonitoring Network (CABIN). May.
- ENV (British Columbia Ministry of Environment and Climate Change Strategy). 2018. Re: West Line Creek Active Water Treatment Facility Bypass Approval (Corrected). February 26, 2018.
- ENV. 2019. Re: Approval of the Request to Integrate the Chronic Toxicity Test Requirements of Permit 107517 Section 9.8 (ii) and Permit 106970. March 4, 2019.
- Golder (Golder Associates Ltd.). 2005. Elk Valley Selenium Lotic Monitoring Study (2001-2003). Submitted to the Elk Valley Mines Environmental Management Committee. April.
- Golder. 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited. July.
- Golder. 2016. 2015 Chronic Toxicity Testing Program Interpretive Report. Submitted to Teck Coal Ltd. March.
- Golder. 2017a. Chronic Toxicity Testing Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. March.
- Golder. 2017b. Coal Mountain Operations Aquatic Health Assessment Report. Submitted to Teck Coal Ltd. December.
- Golder. 2018a. Elk Valley Selenium Bioaccumulation Model Update. Submitted to Teck Coal Ltd. January.
- Golder. 2018b. 2017 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. April.
- Golder. 2019. 2018 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. April.
- Golder. 2020a. 2019 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements: Interpretive Report. Submitted to Teck Coal Ltd. April.
- Golder. 2020b. Interlaboratory Tissue Analysis Validation Study. Submitted to Teck Coal Limited. Vancouver, British Columbia, 15 December 2020.
- Golder. 2020c. Technical memorandum Updates to the Lotic and Lentic Statistical Bioaccumulation Models for Selenium in the Elk Valley. Prepared for Teck Coal Limited. November 2020.

- Golder. 2021a. 2020 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. April 2021.
- Golder. 2021b. Preliminary Annelid Bioaccumulation Analysis. Prepared for Teck Coal Limited. June 2021.
- Golder. 2021c. Elk Valley Selenium Speciation Program: State of the Science Report. Submitted to Teck Coal Ltd. March 2021.
- Golder. 2022. 2021 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. April 2022.
- Janz, D.M., D.K. Deforest, J.L. Brooks, P.M. Chapman, G. Gilron, D. Hoff, A. Hopkins, D.O. McIntyre, C.A. Mebane, V.P. Palace, J.P. Skorupa, and M. Wayland. 2010. Selenium Toxicity to Aquatic Organisms. In: p. 141-231, P.M. Chapman et al. (Eds.), Ecological Assessment of Selenium in the Aquatic Environment. CRC Press, Boca Raton, London, New York.
- Lotic (Lotic Environment Ltd.). 2021. Regional Calcite Monitoring Plan: Field Manual. Prepared for Teck Coal Limited by Lotic Environmental Ltd. May 2021.
- McPhail, J.D. 2007. The Freshwater Fishes of British Columbia, University of Alberta Press, Edmonton, AB.
- McPhail, J. D., and J. S. Baxter. 1996. A Review of Bull Trout (*Salvelinus confluentus*) Life-History and Habitat Use in Relation to Compensation and Improvement Opportunities. Fisheries Management Report No. 104, 35 p.
- Minnow (Minnow Environmental Inc.). 2004. Selenium Uptake in Biota Inhabiting Lentic and Lotic Areas of the Elk River Watershed Technical Memorandum Prepared for Elk Valley Selenium Task Force. November 2004. Project 2073.
- Minnow Environmental Inc., Interior Reforestation Co. Ltd., and Paine, Ledge and Associates. 2007. Selenium Monitoring in the Elk River Watershed, BC (2006). Report Prepared for Elk Valley Selenium Task Force. December 2007. Project 2160.
- Minnow Environmental Inc., Interior Reforestation Co. Ltd., and Paine, Ledge, and Associates. 2011. Selenium monitoring in the Elk River Watershed, BC (2009). Report Elk Valley Selenium Task Force, Elk Valley, British Columbia, Canada. February 2011. Project 2275.
- Minnow. 2014. 2012 Biological Monitoring Program for Coal Mines in the Elk River Valley, B.C. Report Prepared for Teck Coal Limited. March. Project 2456.
- Minnow. 2015. Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2014. Report Prepared for Teck Coal Limited. May. Project 2516.
- Minnow. 2016. Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2015. Report Prepared for Teck Resources Limited. May. Project 2578.
- Minnow. 2017a. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2016. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 167202.0074.
- Minnow. 2017b. Proposal to Update the Site Performance Objectives for Phosphorus Management in Line Creek. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 167202.0074.
- Minnow. 2017c. Study Design for the 2017 Line Creek Local Aquatic Effects Monitoring Program (LAEMP). May. Project 167202.0074.

- Minnow. 2018a. Elk River Watershed Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2015-2016. Prepared for Teck Coal Limited, Sparwood, BC. January. Project 2561.
- Minnow. 2018b. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2017. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 17202.0023.
- Minnow. 2018c. Study Design for Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2018. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 177202.0023.
- Minnow. 2018d. Study Design for the Regional Aquatic Effects Monitoring Program, 2018 to 2020. Prepared for Teck Coal Limited, Sparwood, BC. March. Project 177202.0053.
- Minnow. 2019a. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2018. Prepared for Teck Coal Limited, Sparwood, BC. April. Project 187202.0026.
- Minnow. 2019b. Study Design for Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2019. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 187202.0026
- Minnow. 2020a. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2019. Prepared for Teck Coal Limited, Sparwood, BC. April. Project 197202.0006.
- Minnow. 2020b. Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2017 to 2019. Prepared for Teck Coal Limited, Sparwood, BC. November. Project 187202.0011.
- Minnow. 2020c. Study Design for Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2020. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 197202.0006.
- Minnow. 2020d. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Revised Study Design, 2020. Prepared for Teck Coal Limited, Sparwood, BC. June. Project 207202.0015.
- Minnow. 2021a. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2020. Prepared for Teck Coal Limited, Sparwood, BC. April. Project 207202.0015.
- Minnow. 2021b. Study Design for Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2021. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 207202.0015.
- Minnow. 2021c. Study Design for the Regional Aquatic Effects Monitoring Program, 2021 to 2023. Prepared for Teck Coal Limited, Sparwood, BC. March. Project 207202.0006.
- Nautilus (Nautilus Environmental Company Inc.). 2018. Toxicity Identification Evaluation for CM_MC2. Prepared for Teck Coal Limited. September 2018.
- Nautilus and Interior Reforestation. 2011. Evaluation of the Effects of Selenium on Early Life Stage Development of Westslope Cutthroat Trout from the Elk Valley, BC. Prepared for the Elk Valley Selenium Task Force. November 2011.
- Ogden, B. 2021. Environmental Technician, Teck Coal Limited. Email conversation with Carlie Meyer (Teck Coal Limited). April 8, 2021.
- Ogle, R.S., K.J. Maier, P. Kiffney, M.J. Williams, A. Brasher, L.A. Melton, and A.W. Knight. 1988. Bioaccumulation of selenium in aquatic ecosystems. Lake Reservoir Manage. 4: 165-173.

- R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org
- Riedel, G.F., Sanders, J.G., Gilmour, C.C. 1996. Uptake, Transformation, and Impact of Selenium in Freshwater Phytoplankton and Bacterioplankton Communities. Aquat. Microbial. Ecol., 11: 43-51.
- Robinson, M.D., Gordon, S., Otto, M. 2022. Teck Coal Ltd. 2021 Calcite Monitoring Program Annual Report. Prepared for Teck Coal Ltd. by Lotic Environmental Ltd. April 2022.
- Stewart, R., M. Grosell, D. Buchwalter, N. Fisher, S. Luoma, T. Mathews, P. Orr, and W.-X. Wang. 2010. Bioaccumulation and Trophic Transfer of Selenium. In: P.M. Chapman et al. (Eds.), pp. 93-139, Ecological Assessment of Selenium in the Aquatic Environment. CRC Press, Boca Raton, London, New York.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2016. Water Quality Adaptive Management Plan (AMP) for Teck Coal Operations in the Elk Valley. July 2016.
- Teck. 2019a. Elk Valley Water Quality Plan 2019 Implementation Plan Adjustment Summary. Prepared by Teck Coal Limited. February 2019.
- Teck. 2019b. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2018 Annual Report. Prepared by Teck Coal Limited. July 31, 2019.
- Teck. 2020a. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2019 Annual Report. Prepared by Teck Coal Limited. July 31, 2020.
- Teck. 2020b. Annual Water Treatment Performance Report 2019. Prepared by Teck Coal Limited. March 31, 2020.
- Teck. 2021a. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2021 Update. Prepared by Teck Coal Limited. December 15, 2021.
- Teck. 2021b. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2020 Annual Report. Prepared by Teck Coal Limited. July 31, 2021.
- Teck. 2021c. Annual Water Treatment Performance Report 2020. Prepared by Teck Coal Limited. March 31, 2021.
- Teck. 2022a. Annual Water Treatment Performance Report 2021. Prepared by Teck Coal Limited. March 31, 2022.
- Teck. 2022b. Annual Water Quality Report 2021. Prepared by Teck Coal Limited. March 31, 2022.
- Therneau, T.M. 2017. Survival analysis. Package "survival" for R. April 4, 2017. https://cran.r-project.org/web/packages/survival/survival.pdf
- Traverse, J. 2021. Lead Water Compliance, Teck Coal Limited. Email conversation with Tyler Mehler (Minnow). April 28, 2021.
- USEPA (United States Environmental Protection Agency). 1996. Ecological Effects Test Guidelines. OPPTS 850.1400 Fish Early-Life Stage Toxicity Test. EPA-712-C-96-121, Public Draft.

- USEPA. 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates. 2nd Edition. EPA/600/R-99/064. Office of Water, Washington, DC, USA.
- USEPA. 2016. Aquatic Life Ambient Water Quality Criterion for Selenium –Freshwater 2016. EPA 822-R-16-006. United States
- Whitmore, G.A. 1986. Prediction Limits for a Univariate Normal Observation. The American Statistician, 40: 141-143.
- Zathey, N., Mitchell, S., and Robinson, M.D. 2021a. Teck Coal Ltd. 2020 Calcite Monitoring Program Annual Report. Prepared for Teck Coal Ltd. By Lotic Environmental Ltd.
- Zathey, N., Brooks, J., and Robinson, M.D. 2021b. 2020 Line Creek Aquatic Monitoring Program. Prepared for Teck Coal Limited. December 2021.

APPENDIX A DATA QUALITY REVIEW (DQR)

APPENDIX A DATA QUALITY REVIEW

APPENDIX A DATA QUALITY REVIEW

A 1	INTRODUCTION	1
A1.1	Background	1
A1.2	Quality Control Samples	
A2	WATER CHEMISTRY	4
A2.1	Laboratory Reporting Limits	4
A2.2	Laboratory and Field Blanks	4
A2.3	Data Precision	5
A2.4	Data Accuracy	6
A2.5	Hold Times	7
A2.6	Data Quality Statement	8
A3	BENTHIC COMMUNITY	9
A3.1	Benthic Invertebrate Sub-Sampling Accuracy	
A3.2	Organism Sorting Efficiency	
A3.3	Taxonomic Identification Accuracy	9
A3.4	Data Quality Statement	
A 4	BENTHIC INVERTEBRATE TISSUE CHEMISTRY	10
A4.1	Laboratory Reporting Limits	
A4.2	Data Accuracy and Precision	
A4.3	Data Quality Statement	
A 5	DATA QUALITY REVIEW SUMMARY	11
A6	REFERENCES	12

A1 INTRODUCTION

A1.1 Background

A variety of factors can influence the physical, chemical, and biological measurements made in an environmental study and thus affect the accuracy and/or precision of the data. Depending on their magnitude, inaccuracy, or imprecision have the potential to affect the reliability of conclusions made from data. Therefore, it is important to ensure that programs incorporate appropriate steps to control non-natural sources of data variability (i.e., minimize variability that does not reflect authentic spatial and temporal variability in the environment) and thus assure the quality of the data. Data quality as a concept is meaningful only when it relates to the intended use of the data. That is, one must know the context in which the data will be interpreted in order to establish a relevant basis for judging whether or not the data set is adequate. A data quality review (DQR) involves the comparison of field and laboratory measurement performance to Data Quality Objectives (DQOs) established for a particular study, such as evaluation of Laboratory Reporting Limits (LRL), blank sample data, data precision (based on field and laboratory duplicate samples), and data accuracy (based on matrix spike recoveries and/or analysis of standards or certified reference materials). Trusted analytical laboratories certified by Canadian Association for Laboratory Accreditation (CALA) or the National Environmental Laboratory Accreditation Program (NELAP) with a rigorous internal quality assurance program were selected to ensure the highest possible data quality. DQOs were established a priori to reflect reasonable and achievable performance expectations (Table A.1). Programs involving many samples and analytes usually yield some results that exceed DQOs. This is particularly so for multi-element scans, as the analytical conditions are not necessarily optimal for every element included in the scan. Generally, scan results may be considered acceptable if no more than 20% of the parameters fail to meet DQOs. Overall, the intent of a DQR is not to reject any measurement that did not meet a DQO, but to ensure that any questionable data received more scrutiny to determine what effect, if any, this had on interpretation of results within the context of the project.

A1.2 Quality Control Samples

A Data Quality Review (DQR) was conducted on all laboratory data collected as part of the 2021 Line Creek Local Aquatic Effects Monitoring Program (LAEMP). The objective of a DQR is to define the overall quality of the data presented in the report, and, by extension, the confidence with which the data can be used to derive conclusions.

Table A.1: Laboratory Data Quality Objectives for the Line Creek LAEMP, 2021

		Study Component									
Quality Control Measure	Quality Control Sample Type/Check	Water Chemistry	Selenium Speciation	Benthic Invertebrate Community	Benthic Invertebrate Tissue Chemistry						
		ALS Environmental	Brooks Applied Labs	Cordillera Consulting	TrichAnalytics						
Analytical Laboratory LRLs	Comparison of actual LRL versus target LRL	LRL for each parameter should be at least as low as applicable guidelines, benchmarks, and screening values	LRL for each parameter should be at least as low as applicable guidelines, benchmarks, and screening values	-	LRL for each parameter should be at least as low as applicable guidelines and benchmarks						
Blank Analysis	Field, Trip, or Laboratory Blank	Concentrations measured in blank samples should be < LRL	Concentrations measured in blank samples should be < LRL	-	-						
Laboratory Precision	Laboratory Duplicates	< 4% (pH) <10% (conductivity) ≤15% RPD or <2x LRL (ORP, turbidity) ≤20% RPD or <2x LRL (all remaining analytes)	≤25% RPD (selenium species) ≤20% RPD (total selenium)	-	≤60% RPD (calcium and strontium) ≤40% RPD (all remaining analytes)						
	Organism Sorting Efficiency	-	-	≥ 95%	-						
	Organism Sub-Sampling Precision and Accuracy	-	-	<20% between subsamples	-						
	Recovery of Blank Spike	-	75 to 125% (methylseleninic acid, selenate, selenite, selenocyanate, selenomethionine, total selenium)	-	-						
	Recovery of Matrix Spike	70 to 130% (TKN, orthophosphate, phosphorus, TOC, DOC, total and dissolved metals) 75 to 125% (ammonia, bromide, chloride, fluoride, nitrate, nitrite, sulphate)	75 to 125% (selenate, selenite, selenocyanate, selenomethionine, total selenium)	-	-						
	Matrix Spike Duplicate	-	75 to 125% (selenate, selenite, selenocyanate, selenomethionine, total selenium)	-	-						
Accuracy	Recovery of Certified Reference Material	-	75 to 125% (total selenium)		60 to 140% (antimony, barium, boron, silver, tin, titanium) 90 to 110% (selenium) 70 to 130% (all remaining analytes)						
	Laboratory Control Sample	6.9 to 7.1 (pH) 75 to 125% (TKN) 80 to 120% (orthophosphate, phosphorus, DOC, TOC, total and dissolved metals) 85 to 115% (acidity, alkalinity, ammonia, bromide, TDS, TSS, turbidity) 90 to 110% (conductivity, chloride, fluoride, nitrate, nitrite, sulphate) 95.4 to 104% (ORP)	-	-	-						
	Taxonomic Accuracy	_	_	<5% TIR	_						

Notes: LRL = Laboratory Reporting Limit; "-" = not applicable; < = less than; \le = less than or equal to; % = percent; RPD = Relative Percent Difference; ORP = oxidation-reduction potential; TKN = Total Kjeldahl Nitrogen; TOC = total organic carbon; DOC = dissolved organic carbon; TSS = total suspended solids; TDS = total dissolved solids; mg/kg dw = milligrams per kilogram dry weight; TIR = total identification error rate.

A DQR involves the examination of analytical results associated with several types of Quality Control (QC) samples collected or prepared in the field and laboratory. General QC samples collected for this project include the following:

- Blanks are samples of de-ionized water and/or appropriate reagent(s) that are handled
 and analyzed in the same way as regular samples. These samples will reflect any
 contamination of samples occurring in the field (in the case of field or travel blanks)
 or in the laboratory (in the case of laboratory or method blanks). Analyte concentrations
 should be below detection.
- Laboratory Duplicates are replicate sub-samples created in the laboratory from randomly selected field samples which are sub-sampled and then analyzed independently using identical analytical methods. The laboratory duplicate sample results reflect any variability introduced during laboratory sample handling and analysis and thus provide a measure of laboratory precision.
- Field Duplicates are samples collected from a randomly selected field station that are homogenized to the extent possible, split and analyzed separately in the laboratory.
 The duplicate samples are handled and analyzed in an identical manner in the laboratory.
- Spike Recovery Samples are created in the laboratory by adding a known amount/concentration of a given analyte (or mixture of analytes) to a randomly selected test sample previously divided to create two sub-samples. The spiked and regular sub-samples are then analyzed in an identical manner. The spike recovery represents the difference between the measured spike amount (total amount in the spiked sample minus the amount in the original sample) relative to the known spike amount (as a percentage). Two types of spike recovery samples are commonly analyzed: spiked blanks (or blank spikes) are created using laboratory control materials whereas matrix spikes (MS) are created using field-collected samples. The analysis of spiked samples provides an indication of the accuracy of analytical results.
- Certified Reference Materials (CRM) or Reference Materials (RM) are commercially prepared (or commercially homogenized) samples containing known chemical concentrations that are processed and analyzed along with batches of environmental samples. The sample results are then compared to the known concentrations to provide a measure of analytical accuracy. The results are reported as the percent of the known concentration that was recovered in the analysis.

- Laboratory Control Samples are created in the laboratory to have a known analyte concentration in a matrix free of interferences, such as deionized water or reference sand. The sample results are compared to the target results to confirm that the analytical method is accurate in a purified reference sample. The results are reported as the percent of the known concentration that was recovered in the analysis.
- Laboratory Sorting Duplicates are randomly selected grabs of the initially sorted community material. These samples are recounted and the number of invertebrates that were not recovered during the initial sort was determined. In order to reduce bias, recounting is conducted by an analyst uninvolved in the initial sample processing. This check is performed on 10% of samples and determines the accuracy through assessment of recovery (sorting) efficiency and quantifies any under-estimation of organism enumeration.
- Taxonomic Quality Control Samples are a randomly selected portion of a benthic invertebrate community field sample to be assessed by the laboratory using an internal quality control audit. A blind re-enumeration and re-identification of random samples is performed by an analyst uninvolved in the original sample processing. This assessment quantifies taxonomic misidentification among laboratory analysts and ensures accurate organism identities are reported.
- Laboratory Subsamples are community samples prepared by the laboratory to
 ensure that the fraction of the total sample examined was an accurate representation
 of the total number of organisms. By comparing the amount recovered between at
 least two sub-samples, one can assess the analytical precision. In addition,
 comparisons of the sub-samples from the whole community sample allows for an
 evaluation of sub-sampling accuracy.

A2 WATER CHEMISTRY

A2.1 Laboratory Reporting Limits

The analytical reports for water chemistry from ALS Environmental (ALS; CG2102635, CG2102605, CG2102545, CG2101123, CG2101100, CG2101066, CG2101142, CG2102562, CG2106222, CG2106271, CG2106342, CG2104006, CG2104078, CG2104115, CG2104190, and CG2104208; Appendix G) and Brooks Applied Labs (BAL; 2105072, 2112095, 2107238, 2109310, and 2109236; Appendix G) were examined to assess LRLs relative to analyte concentrations and applicable guidelines (Tables A.2 and A.3). Water quality data from 2021 were entered directly into Teck's EQuIS database, and thus were assessed as part of Teck's annual water quality reporting in 2021. The LRLs for water quality analytes were assessed relative to British Columbia Water Quality Guidelines (BC WQG; BCMOECCS 2021a,b) for the protection of freshwater aquatic life, Elk Valley Water Quality Plan (EVWQP; Teck 2014) benchmarks, screening values for water quality (Teck 2020), and relevant site-specific benchmarks. Several analytes were reported at concentrations below the LRL in 100% of samples (Tables A.2 and A.3). For those analytes with one or more result(s) below the LRL, achieved LRLs were consistently lower than the BC WQG, EVWQP benchmarks, and screening values for water quality, if relevant guidelines exist. Therefore, the achieved LRLs were appropriate for this study.

A2.2 Laboratory and Field Blanks

A total of 326 method blank (MB) samples were analyzed in the ALS laboratory reports (Appendix G). Of the 1,604 reported method blank individual analyte results, all concentrations were non-detectable and indicate that there was no inadvertent laboratory contamination.

A total of 40 method blank (MB) samples were analyzed in the BAL laboratory reports (Appendix G). Of the 168 reported method blank results, five total selenium results had detectable concentrations (3.0% of results; see laboratory reports 2109236 and 2109310 in Appendix G) and did not meet the DQO. However, total selenium concentrations from BAL were not used for interpretations. Therefore, no analytes of interest were affected by possible laboratory contamination.

Four field blank samples and three trip blank samples were submitted to ALS for water chemistry analyses to assess the potential for field sampling contamination (see laboratory reports CG2101066, CG2106271, CG2102545, CG2101142, CG2104006, and CG2106222 in Appendix G). The same DQOs that were used for laboratory blanks were also used for field

Table A.2: Laboratory Reporting Limit (LRL) Evaluation for Water Chemistry Analyses

Parameter	Units	BC WQG ^a		EVWQP Level 1 Benchmarks/ Relevant	Range of LRLs	No. LRLs >	No. Sample
i didiletei	Omis	Long-term	Short-term	Screening Values ^b	Range of LIKES	Guideline ^c	Results < LRL
Physical Tests		ı					
Total Suspended Solids	mg/L	-	-	-	1	-	29 (72.5%)
Turbidity	NTU	-	-	-	0.1	-	5 (12.5%)
Anions and Nutrients		I			0		20 (05 00/)
Acidity (as CaCO ₃) Alkalinity, Carbonate (as CO ₃)	mg/L mg/L	-	-	-	1	-	38 (95.0%) 13 (56.5%)
Alkalinity, Carbonate (as CaCO ₃)	mg/L	-	-	_	1	<u>-</u>	21 (52.5%)
Alkalinity, Hydroxide (as CaCO ₃)	mg/L	<u>-</u>	-	_	1		40 (100%)
Alkalinity, Hydroxide (as OH)	mg/L	_	-	_	1		23 (100%)
Bromide (Br)	mg/L	_	-	_	0.05 to 0.25		40 (100%)
Ammonia, Total (as N) ^d	mg/L	0.102	0.752	_	0.005	0	24 (60.0%)
Nitrite (as N) ^e	mg/L	0.060	0.020	_	0.001 to 0.005	0	22 (55.0%)
Total Kjeldahl Nitrogen	mg/L	-	-	_	0.05	-	16 (40.0%)
Orthophosphate - Dissolved	mg/L	_	_	-	0.001	-	17 (42.5%)
Phosphorus (P) - Total	mg/L	_	-	-	0.002	-	19 (47.5%)
Cation - Anion Difference	%	-	-	-	0.01	-	2 (5.00%)
Organic / Inorganic Carbon							
Dissolved Organic Carbon	mg/L	-	-	-	0.5	-	4 (10.0%)
Total Organic Carbon	mg/L	-	-	-	0.5	-	4 (10.0%)
Total Metals							
Aluminum	mg/L	-	-	-	0.003	-	12 (30.0%)
Antimony	mg/L	0.0090	-	-	0.0001	0	8 (20.0%)
Arsenic	mg/L	-	0.0050	-	0.0001	0	3 (7.50%)
Beryllium	μg/L	0.13	-	-	0.02	0	40 (100%)
Bismuth	mg/L	-	-	-	0.00005	-	40 (100%)
Boron	mg/L	1.2	-	-	0.01	0	11 (27.5%)
Chromium ^f	mg/L	0.001	-	-	0.0001	0	4 (10.0%)
Cobalt	μg/L	4.00	110	-	0.1	0	38 (95.0%)
Copper	mg/L	-	-	-	0.0005	-	37 (92.5%)
Iron	mg/L	- 0.0000	1.00	-	0.01	0	21 (52.5%)
Lead ^g	mg/L	0.00838	0.130	-	0.00005	0	39 (97.5%)
Manganese ^g	mg/L	1.24	0.130	-	0.0001	0	2 (5.00%)
Mercury ^h Nickel ^g	μg/L mg/L	0.00125 0.126	-	0.0053	0.0005 0.0005	0	40 (100%) 6 (15.0%)
Silver ^g	mg/L	0.001500	0.00300	0.0055	0.0003	0	40 (100%)
Thallium	mg/L	0.00080	-	_	0.00001	0	31 (77.5%)
Tin	mg/L	0.00000	_	_	0.0001	-	40 (100%)
Titanium	mg/L	_	-	_	0.0003 to 0.0009	<u>-</u>	39 (97.5%)
Vanadium	mg/L	_	_	_	0.0005	_	39 (97.5%)
Zinc ^g	mg/L	0.048	0.0735	_	0.003	0	13 (32.5%)
Dissolved Metals	13/ =					•	(==:::)
Aluminum ⁱ	mg/L	0.0500	0.100	-	0.001	0	19 (47.5%)
Antimony	mg/L	-	-	-	0.0001	-	9 (22.5%)
Arsenic	mg/L	-	-	-	0.0001	-	17 (42.5%)
Beryllium	μg/L	-	-	-	0.02	-	40 (100%)
Bismuth	mg/L	-	-	-	0.00005	-	40 (100%)
Boron	mg/L	-	-	-	0.01	-	11 (27.5%)
Chromium	mg/L	-	-	-	0.0001	-	13 (32.5%)
Cobalt	μg/L	-	-	-	0.1	-	39 (97.5%)
Copper	mg/L	-	-	-	0.0002	-	21 (52.5%)
Iron	mg/L	-	0.350	-	0.01	0	39 (97.5%)
Lead	mg/L	-	-	-	0.00005	-	40 (100%)
Manganese	mg/L	-	-	-	0.0001	-	7 (17.5%)
Mercury	μg/L	-	-	-	0.000005	-	40 (100%)
Nickel	mg/L	-	-	-	0.0005	-	6 (15.0%)
Silver	mg/L	-	-	-	0.00001	-	40 (100%)
Thallium	mg/L	-	-	-	0.00001	-	31 (77.5%)
Tin	mg/L	-	-	-	0.0001	-	40 (100%)
Titanium	mg/L	-	-	-	0.0003	-	40 (100%)
Vanadium	mg/L	-	-	-	0.0005	-	40 (100%)
Zinc	mg/L	-	-	-	0.001	-	4 (10.0%)

Notes: Only analytes with at least one result < Laboratory Reporting Limit (L RL) or LRL were above guidelines were displayed. The total number of samples in 2021 (n) was 40, which included four field duplicate samples. EVWQP = Elk Valley Water Quality Plan; "-" = no applicable guideline exists.

^a British Columbia Water Quality Guidelines for the protection of Aquatic Life (BCMOECCS 2021a,b)

^b Where more than one EVWQP Level 1 Benchmark or screening value was applicable, the most conservative (lowest) value was used.

^c The LRLs for all analytes were consistently less than the applicable EVWQP Level 1 benchmarks (Teck 2014) or screening values (Golder 2014; Teck 2020).

^d Guideline is the most conservative (lowest), based on estimates of a maximum temperature of 20 °C and a minimum pH of 9.0.

e Minimum water quality guidelines for Nitrite (as N) reported in BCMOECCS (2021a) for chloride concentrations < 2 mg/L.

^f Guideline for Chromium VI (0.001 mg/L) was selected, as this is the principal species found in surface waters.

⁹ Hardness-based guidelines calculated using the minimum hardness observed for all samples (144 mg/L).

 $^{^{\}text{h}}$ The most conservative guideline (0.00125 $\mu\text{g}/\text{L})$ was applied.

ⁱ Guideline based on minimum field pH (7.51).

Table A.3: Laboratory Reporting Limit (LRL) Evaluation for Selenium Speciation Analyses

Danamatan	Units	BC WQG ^a		EVWQP Level 1 Benchmarks/	Danna of I Di a	No. LRLs >	No. Sample
Parameter		Long-term	Short-term	Relevant Screening Values ^b	Range of LRLs	Guideline	Results < LRL
DMSeO - Dimethylselenoxide	mg/L	-	-	-	0.01	-	39 (95.1%)
MeSe(IV) - Methylseleninic Acid	mg/L	-	-	-	0.01	-	31 (75.6%)
MeSe(VI) - Methaneselenonic Acid	mg/L	-	-	-	0.01	-	32 (78.0%)
SeCN - Selenocyanate	mg/L	-	-	-	0.01	-	41 (100%)
SeMe - Selenomethionine	mg/L	-	-	-	0.01	-	41 (100%)
Selenosulfate	mg/L	-	-	-	0.01	-	41 (100%)
Selenium Unknown	mg/L	-	-	-	0.01	-	41 (100%)

Notes: The total number of samples in 2021 (n) was 41 including 4 field duplicate samples. EVWQP = Elk Valley Water Quality Plan; LRL = Laboratory Reporting Limit, "-"= no applicable guideline exists. Only analytes with at least one result < LRL or an LRL above guidelines were displayed.

^a British Columbia Water Quality Guidelines for the protection of Aquatic Life (BCMOECCS 2021a,b).

^b Where more than one EVWQP Level 1 Benchmark or screening value was applicable, the most conservative (lowest) value was used.

blanks (i.e., concentrations should be below the LRL). Of the 388 individual analyte results measured in the field blanks, only two (0.52% of results; acidity in one sample and total manganese in another) were above the LRL and so did not meet the laboratory DQO (Table A.4). Out of 192 individual analyte results for trip blank samples, only two results (0.81% of results; ammonia in two samples) were above the LRL and did not meet the laboratory DQO (Table A.4). Acidity, total ammonia, and total manganese are generally analytes of low concern in the LCO LAEMP, and when taken in the larger context of samples overall, the implications of detectable concentrations of these analytes in 25% of field blank samples is negligible.

Two field blank samples were submitted to BAL for aqueous selenium speciation analyses to assess potential field sampling contamination (see laboratory reports 2112095 and 2109236 in Appendix G). Total and dissolved selenium were detectable in one sample each (Table A.5). However, measures of total and dissolved selenium from BAL are not used in interpretations, so this potential field contamination does not affect the conclusions of the study. No trip blank samples were collected for selenium speciation.

Overall, field and trip blank analyses indicated few instances of inadvertent sampling contamination that may impact conclusions drawn from the data.

A2.3 Data Precision

A total of 44 laboratory duplicate samples were used to evaluate precision within the ALS laboratory reports (Appendix G). Out of the 1,569 individual analyte results, only one result was flagged by the laboratory (0.06% of results). This result for Total Kjeldahl Nitrogen (TKN) was biased low due to high concentrations of nitrate (see laboratory report CG2104006 in Appendix G). This bias towards lower TKN will be considered during interpretation. Overall, ALS laboratory analytical precision was considered good.

A total of 10 laboratory duplicate samples were used to evaluate precision within the BAL laboratory reports (Appendix G). Of the 34 individual analyte results, all met the laboratory DQO. Therefore, BAL laboratory analytical precision was considered excellent.

Three sets of field duplicate samples were collected to assess field sampling precision for water chemistry analyzed by ALS (Table A.6). Relative percent differences (RPDs) could not be calculated if both analyte concentrations were below the LRL. Of the RPDs that could be calculated, only 13 RPDs were greater than 30%, which consisted of RPDs for total ammonia, organic carbon (TOC), aluminum, lead, and manganese, and dissolved aluminum and manganese in one duplicate pair each, and turbidity, TKN, and dissolved copper in two duplicate pairs (7.0% of comparisons; Table A.6). Of those 13 RPDs, five

Table A.4: Field Blank and Trip Blank Evaluation for Water Chemistry Analyses

Parameter	Units	Range of LRLs	No. Field Blank Results > LRL	No. Trip Blank Results > LRL						
Anions and Nutrients										
Acidity (as CaCO ₃)	mg/L	2	1 (25%)	0						
Ammonia, Total (as N)	Ammonia, Total (as N) mg/L		0	2 (66.7%)						
Total Metals	Total Metals									
Manganese mg		0.0001	1 (25%)	0						

Notes: LRL = Laboratory Reporting Limit. Four field blank samples and three trip blank sample were collected in 2021. Only analytes with at least one blank results > LRL were displayed. Calcium, magnesium, potassium, and sodium are the only dissolved metals measured in trip blank samples.

Table A.5: Field Blank Evaluation for Selenium Speciation Analyses

Parameter			No. Field Blank Results > LRL		
Selenium (Se)-Total	μg/L	0.165 to 0.198	1 (50%)		
Selenium (Se)-Dissolved	μg/L	0.165 to 0.198	1 (50%)		

Notes: EVWQP = Elk Valley Water Quality Plan; LRL = Laboratory Reporting Limit. Two field blank samples were collected in 2021. Only analytes with at least one blank results > LRL were displayed.

Table A.6: Field Duplicate Results for Water Chemistry Analyses

Parameter	Units	RG_LILC3_WS_LAE MP_LCO_ 2021-09-09_NP	RG_RIVER_WS _2021-09- 09_NP	RPD (%)	RG_LCUT_WS_ LAEMP_LCO_2021- 07_NP	RG_RIVER_WS _2021-07_NP	RPD (%)	RG_LISP24_WS_LA EMP_LCO_2021- 12_NP	RG_RIVER_WS _2021-12_NP	RPD (%)
Physical Tests Conductivity (@ 25°C)	μS/cm	945	946	0.106	904	900	0.443	846	845	0.118
Hardness (as CaCO ₃)	mg/L	515	508	1.37	492	486	1.23	438	441	0.118
pH	рН	8.37	8.38	0.119	8.15	8.20	0.612	8.13	8.14	0.123
ORP Total Suspended Solids	mV mg/L	446 <1	434 <1	2.73	442 <1	448 <1	1.35	420 <1	483 <1	14.0
Total Dissolved Solids	mg/L	680	690	1.46	716	704	1.69	588	576	2.06
Turbidity	NTU	0.140	0.160	13.3	0.100	0.220	75.0	0.100	0.160	46.2
Anions and Nutrients Acidity (as CaCO ₃)	mg/L	<2	<2	-	4.20	3.60	15.4	<2	<2	_
Alkalinity, Bicarbonate (as HCO ₃)	mg/L	250	243	2.84	-	-	-	207	210	1.44
Alkalinity, Bicarbonate (as CaCO ₃) Alkalinity, Carbonate (as CO ₃)	mg/L	205 7.60	199 8.80	2.97 14.6	204	204	0	170 <1	172 <1	1.17
Alkalinity, Carbonate (as CaCO ₃)	mg/L mg/L	12.6	14.6	14.7	<1	- <1	-	<1	<1	-
Alkalinity, Hydroxide (as CaCO ₃)	mg/L	<1	<1	-	<1	<1	-	<1	<1	-
Alkalinity, Hydroxide (as OH) Alkalinity, Total (as CaCO ₃)	mg/L mg/L	<1 217	<1 214	1.39	204	204	- 0	<1 207	<1 210	1.44
Bromide (Br)	mg/L	<0.05	<0.05	-	<0.25	<0.25	-	<0.05	<0.05	-
Chloride (CI)	mg/L	14.3	14.3	0	7.78	8.07	3.66	12.8	12.8	0
Fluoride Ammonia, Total (as N)	mg/L mg/L	0.166 <0.005	0.169 <0.005	1.79	0.162 <0.005	0.174 0.0139	7.14 94.2	0.190 <0.005	0.192 <0.005	1.05
Nitrate (as N)	mg/L	9.76	9.78	0.205	15.4	16.0	3.82	8.04	8.02	0.249
Nitrite (as N)	mg/L	0.00180	0.00140	25.0	<0.005	<0.005	-	0.00100	<0.001	0
Total Kjeldahl Nitrogen Orthophosphate - Dissolved	mg/L mg/L	0.248 0.00120	<0.05 0.00120	133 ^a	<0.05 <0.001	<0.05 <0.001	-	0.315 0.00200	0.171 0.00210	59.3 4.88
Phosphorus (P) - Total	mg/L	0.00220	0.00250	12.8	<0.002	<0.002	-	0.00270	0.00240	11.8
Sulfate	mg/L	267	267	0	259	264	1.91	246	246	0
Organic / Inorganic Carbon Dissolved Organic Carbon	mg/L	1.05	1.31	22.0	0.570	0.580	1.74	0.910	0.830	9.20
Total Organic Carbon	mg/L	0.990	1.36	31.5	0.800	0.840	4.88	0.970	0.810	18.0
Total Metals		0.00450				0.00010	40.5		.0.000	
Aluminum Antimony	mg/L mg/L	0.00450 0.000320	<0.003 0.000310	40.0 3.17	<0.003 0.000430	0.00340 0.000450	12.5 4.55	<0.003 0.000220	<0.003 0.000220	- 0
Arsenic	mg/L	0.000320	<0.0001	0	0.000430	0.000430	8.70	0.000110	0.000220	8.70
Barium	mg/L	0.0573	0.0571	0.350	0.0389	0.0399	2.54	0.0544	0.0524	3.75
Beryllium Bismuth	μg/L mg/L	<0.02 <0.00005	<0.02 <0.00005	-	<0.02 <0.00005	<0.02 <0.00005	-	<0.02 <0.0005	<0.02 <0.00005	-
Boron	mg/L	0.0180	0.0190	5.41	0.0200	0.0200	0	0.0160	0.0160	0
Cadmium	μg/L	0.296	0.322	8.41	0.663	0.693	4.42	0.170	0.181	6.27
Calcium Chromium	mg/L mg/L	116 0.000110	116 0.000110	0	111 0.000130	111 0.000140	0 7.41	102 0.000120	102 0.000100	0 18.2
Cobalt	μg/L	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-
Copper	mg/L	<0.0005	<0.0005	-	0.000590	0.000510	14.5	<0.0005	<0.0005	-
Iron Lead	mg/L mg/L	0.0200 0.000112	0.0200 <0.00005	76.5	<0.01 <0.00005	<0.01 <0.00005	-	0.0180 <0.0005	0.0200 <0.00005	10.5
Lithium	mg/L	0.0539	0.0534	0.932	0.0678	0.0678	0	0.0467	0.0462	1.08
Magnesium	mg/L	52.0	51.0	1.94	50.7	51.0	0.590	49.0	49.1	0.204
Manganese Mercury	mg/L μg/L	0.0102 <0.0005	0.0100 <0.0005	1.98	0.000190 <0.0005	0.000140 <0.0005	30.3	0.00832 <0.0005	0.00819 <0.0005	1.57
Molybdenum	mg/L	0.00293	0.00299	2.03	0.00198	0.00204	2.99	0.00259	0.00257	0.775
Nickel	mg/L	0.00855	0.00831	2.85	0.0136	0.0142	4.32	0.00565	0.00548	3.05
Potassium Selenium	mg/L μg/L	1.72 39.4	1.68 39.4	2.35	1.80 52.5	1.81 53.0	0.554 0.948	1.49 32.8	1.44 35.0	3.41 6.49
Silicon	mg/L	2.22	2.23	0.449	2.13	2.07	2.86	2.08	2.10	0.957
Silver	mg/L	<0.00001	<0.00001	-	<0.00001	<0.00001	-	<0.00001	<0.00001	-
Sodium Strontium	mg/L mg/L	8.72 0.214	8.50 0.217	2.56 1.39	9.08 0.243	9.42 0.249	3.68 2.44	8.40 0.202	8.21 0.201	2.29 0.496
Sulphur	mg/L	95.4	96.6	1.25	92.4	90.8	1.75	88.5	87.8	0.794
Thallium	mg/L	<0.00001	<0.00001	-	0.0000180	0.0000170	5.71	<0.00001	<0.00001	-
Tin Titanium	mg/L mg/L	<0.0001 <0.0003	<0.0001 <0.0003	-	<0.0001 <0.0003	<0.0001 <0.0003	-	<0.0001 <0.0003	<0.0001 <0.0003	-
Uranium	mg/L	0.00400	0.00405	1.24	0.00396	0.00396	0	0.00342	0.00343	0.292
Vanadium	mg/L	<0.0005	<0.0005	- 0.007	<0.0005	<0.0005	-	<0.0005	<0.0005	-
Zinc Dissolved Metals	mg/L	0.0119	0.0120	0.837	0.0249	0.0247	0.806	0.00690	0.00730	5.63
Aluminum	mg/L	0.00100	<0.001	0	<0.001	0.00240	82.4	<0.001	<0.001	-
Antimony	mg/L	0.000300	0.000300	0	0.000420	0.000420	0	0.000210	0.000210	0
Arsenic Barium	mg/L mg/L	<0.0001 0.0590	<0.0001 0.0575	2.58	0.000140 0.0419	0.000140 0.0411	1.93	0.000110 0.0515	<0.0001 0.0514	9.52 0.194
Beryllium	μg/L	<0.02	<0.02	-	<0.02	<0.02	-	<0.02	<0.02	-
Bismuth	mg/L	<0.00005	<0.00005	-	<0.00005	<0.00005	-	<0.00005	<0.00005	-
Boron Cadmium	mg/L μg/L	0.0180 0.299	0.0180 0.276	0 8.00	0.0190 0.693	0.0190 0.678	0 2.19	0.0140 0.167	0.0140 0.154	0 8.10
Calcium	mg/L	116	117	0.858	108	107	0.930	99.0	100	1.01
Chromium	mg/L	<0.0001	<0.0001	-	0.000170	0.000140	19.4	<0.0001	<0.0001	-
Cobalt Copper	μg/L mg/L	<0.1 0.000440	<0.1 0.000270	47.9	<0.1 0.000510	<0.1 0.000570	11.1	<0.1 0.000300	<0.1 0.000210	35.3
Iron	mg/L	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-
Lead	mg/L	<0.00005	<0.00005	-	<0.00005	<0.00005	-	<0.00005	<0.00005	- 0.400
Lithium Magnesium	mg/L mg/L	0.0556 54.7	0.0535 52.4	3.85 4.30	0.0720 54.1	0.0689 53.1	4.40 1.87	0.0436 46.4	0.0434 46.4	0.460
Manganese	mg/L	0.00936	0.00903	3.59	0.000150	0.000250	50.0	0.00646	0.00636	1.56
Mercury Melybdonum	μg/L	<0.005	<0.005	- 0.690	<0.005	<0.005	-	<0.005	<0.005	- 0.707
Molybdenum Nickel	mg/L mg/L	0.00295 0.00834	0.00293 0.00812	0.680 2.67	0.00194 0.0146	0.00192 0.0142	1.04 2.78	0.00252 0.00529	0.00250 0.00528	0.797
Potassium	mg/L	1.90	1.81	4.85	2.06	2.02	1.96	1.53	1.51	1.32
Selenium	μg/L	41.9	41.4	1.20	63.8	59.5	6.97	36.0	36.4	1.10
Silicon Silver	mg/L mg/L	2.05 <0.00001	2.08	1.45	2.16 <0.00001	2.14 <0.00001	0.930	2.06 <0.00001	2.19 <0.00001	6.12
Sodium	mg/L	9.66	`	2.62	9.70	9.78	0.821	8.16	8.16	0
Sulphur	mg/L	0.223	0.217	2.73	0.232	0.229	1.30	0.208	0.209	0.480
Strontium Thallium	mg/L mg/L	96.2 0.0000120	96.8 0.0000120	0.622	99.4 0.0000200	95.9 0.0000230	3.58 14.0	85.1 <0.00001	85.6 <0.00001	0.586
Tin	mg/L	<0.000120	<0.0001	-	<0.0001	<0.0001	-	<0.0001	<0.0001	-
Titanium	mg/L	<0.0003	<0.0003	-	<0.0003	<0.0003	-	<0.0003	<0.0003	-
Uranium Vanadium	mg/L mg/L	0.00362 <0.0005	0.00363 <0.0005	0.276	0.00404 <0.0005	0.00400 <0.0005	0.995	0.00328 <0.0005	0.00336 <0.0005	2.41
	9/∟	-0.0000	-0.0000	_	-0.0000	0.0287	2.11	0.00600	-0.0000	4.88

ndicates RPD exceeded 30%

Notes: RPD = relative percent difference; "-"= no data/not calculated; LRL = Laboratory Reporting Limit. The RPD was calculated using < LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were < LRL.

^a Both results for TKN that contributed to this RPD were reported as being biased low due to high concentrations of nitrate in the samples. Therefore, this RPD may not accurately represent differences in TKN between samples due to sample heterogeneity.

RPDs (total ammonia, aluminum, lead, and dissolved aluminum, and one RPD for TKN) resulted from one concentration in the pair being below the LRL, where greater variability is expected. There were eight analytes that had RPDs greater than 30% and the analyte was detectable in both samples (TOC, total manganese, dissolved manganese, one RPD for TKN, and both RPDs for turbidity and dissolved copper), but these analytes were of low concern for interpretation. Additionally, TKN concentrations in one pair of duplicate samples were both biased low due to high concentrations of nitrate in the sample; therefore, this RPD may not differences in TKN between represent samples due heterogeneity (Table A.6). As a relatively low percentage of comparisons failed the DQO (and most of those analytes were of low concern in regard to data interpretation), field sampling precision was considered good.

Four sets of field duplicate samples were collected to assess field sampling precision for selenium speciation (Table A.7). RPDs could not be calculated for several selenium speciation duplicate samples as the analyte concentrations in both samples were below the LRL. Of the 18 comparisons that could be calculated, only one did not meet the DQO of 30% (methaneselenonic acid; Table A.7). Greater variability was expected with this comparison since one sample concentration in the pair was below the LRL. Overall, field sampling precision was considered good.

Overall, as very few calculable RPDs exceeded the DQO of 30% and all RPDs for analytes of concern met the DQO, laboratory and field precision were considered excellent.

A2.4 Data Accuracy

Data accuracy within the ALS laboratory reports was evaluated based on results of 339 Laboratory Control Samples (LCS) and 35 Matrix Spike (MS) samples (Appendix G). Three of the 1,537 LCS individual analyte results (0.13% of LCS results) failed the laboratory DQO but were considered acceptable as per the Ontario Ministry of Environment (OMOE) and the Canadian Council of Ministers of the Environment (CCME) as DQOs were only slightly exceeded (by less than 10%) for less than 10% of analytes in a multi-parameter scan (see laboratory reports CG2104208 and CG2106271 in Appendix G). Out of 1,361 MS individual analyte results, one result for TKN was biased low due to a high nitrate concentration (see laboratory report CG2106342). This bias towards lower TKN will be considered during data interpretation. Recovery could not be calculated in 15.7% of MS samples as background levels were greater than or equal to the initial spike concentration. However, as several other QC tests were successful and matrix spike issues due to high background presence is not uncommon, MS recovery not being calculable in several MS

Table A.7: Field Duplicate Results for Selenium Speciation Analyses

Parameter	Units	RG_LILC3_WS_ LAEMP_ LCO_2021-09-09	_WS_2021-	RPD (%)	RG_LCUT_WS_ LAEMP_ LCO_2021-04- 27	RG_RIVER _WS_2021- 04-27	RPD (%)	RG_LILC3_WS_ LAEMP_ LCO_2021-07-12	RG_RIVER _WS_2021- 07-12	RPD (%)	RG_LISP24_WS_ LAEMP_ LCO_2021-11-30	RG_RIVER _WS_2021- 11-30	RPD (%)
Selenium (Se)-Total	μg/L	0.0350	0.0347	0.861	46.9	46.0	1.94	35.0	34.5	1.44	30.9	31.7	2.56
Selenium (Se)-Dissolved	μg/L	0.0348	0.0340	2.33	48.6	45.6	6.37	33.8	35.9	6.03	31.3	31.2	0.320
DMSeO - Dimethylselenoxide	mg/L	<0.00001	<0.00001	-	<0.00001	<0.00001	-	<0.00001	<0.00001	-	<0.00001	<0.00001	-
MeSe(IV) - Methylseleninic Acid	mg/L	<0.00001	<0.00001	-	<0.00001	<0.00001	-	<0.00001	<0.00001	-	<0.00001	<0.00001	-
MeSe(VI) - Methaneselenonic Acid	mg/L	0.0000170	<0.00001	51.9	<0.00001	<0.00001	-	<0.00001	<0.00001	-	0.0000140	0.0000110	24.0
Se(IV) - Selenite	mg/L	0.000179	0.000156	13.7	0.0000670	0.0000720	7.19	0.0000940	0.0000990	5.18	0.000178	0.000161	10.0
Se(VI) - Selenate	mg/L	0.0371	0.0304	19.9	0.0440	0.0500	12.8	0.0352	0.0341	3.17	0.0317	0.0312	1.59
SeCN - Selenocyanate	mg/L	<0.00001	<0.00001	-	<0.00001	<0.00001	-	<0.00001	<0.00001	-	<0.00001	<0.00001	-
SeMe - Selenomethionine	mg/L	<0.00001	<0.00001	-	<0.00001	<0.00001	-	<0.00001	<0.00001	-	<0.00001	<0.00001	-
Selenosulfate	mg/L	<0.00001	<0.00001	-	<0.00001	<0.00001	-	<0.00001	<0.00001	-	<0.00001	<0.00001	-
Selenium Unknown	mg/L	<0.00001	<0.00001	-	<0.00001	<0.00001	-	<0.00001	<0.00001	-	<0.00001	<0.00001	-

Indicates RPD exceeded 30%.

Notes: RPD = relative percent difference; "-"= no data/not calculated; LRL = Laboratory Reporting Limit. The RPD was calculated using < LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were <LRL.

samples is not of great concern. Overall, the accuracy achieved by the laboratory in this study was considered good.

Data accuracy within the BAL laboratory reports was evaluated based on results of 30 LCS, 10 MS samples, 19 Matrix Spike Duplicate (MSD) samples, and 24 Reference Material (RM) samples (Appendix G). All 50 LCS, 19 MS, 19 MSD, and 24 RM individual analyte results met the laboratory DQO. Therefore, the accuracy achieved by the laboratory in this study was considered excellent.

A2.5 Hold Times

The recommended hold times for pH and oxidation-reduction potential (ORP) analyses (0.25 to 0.34 hrs) were exceeded in all samples collected. As *in situ* pH was used for data interpretation, these pH exceedances had no impact on data interpretability. ORP is not used a great extent in any analyses. Turbidity exceeded hold times in three samples for one day and in one sample for less than a day (see laboratory reports CG2104006 and CG2104078 in Appendix G). Nitrate and nitrite exceeded hold times by one day in one sample (see laboratory report CG2104078) and by three days in two samples due to re-analysis or re-dilution (see laboratory report CG2104115 in Appendix G). The hold time for dissolved orthophosphate was exceeded by one day in two samples (see laboratory reports CG2104115 and CG2104208 in Appendix G). All hold times were met for selenium speciation samples. Overall, few samples exceeded hold times, and thus hold time exceedances are expected to have little effect on the interpretation of results.

A2.6 Other Concerns

TKN concentrations in 23 water samples may have been biased low due to high nitrate concentrations (see laboratory reports CG2104006, CG2102635, CG2102605, CG2104078, CG2106342, CG2106271, CG2106222, CG2106342, CG2104115 in Appendix G). This bias to low TKN concentrations due to high nitrate was also observed in one laboratory duplicate sample (see laboratory report CG2104006 in Appendix G) and in one MS (see laboratory report CG2106342). Two of the above water samples had TKN results below the LRL (RG_RIVER_WS_2021-09-09_NP and RG_LCUT_WS_2021-09-10_NP), which impacted the RPD calculated between the two field duplicate samples (Table A.6). TKN remained detectable in the remaining 21 water samples, and undetectable TKN concentrations are expected to have little effect on the overall interpretation of TKN or other water chemistry results.

A2.7 Data Quality Statement

Water chemistry data collected for the 2021 Line Creek LAEMP were of acceptable quality as characterized by good detectability, negligible analyte concentrations in method blanks, little field contamination, excellent laboratory precision and accuracy, and few hold time exceedances. Some field imprecision was indicated but was marginal and will be considered during data interpretation. Some TKN samples were biased low due to high concentration of nitrate, and this will also be considered during interpretation. Overall, the associated data from ALS and BAL can be used with a high level of confidence in the derivation of conclusions.

A3 BENTHIC COMMUNITY

A3.1 Sub-Sampling Precision and Accuracy

The analytical reports from Cordillera Consulting Inc. (benthic invertebrate community structure; see Appendix G for laboratory reports) were examined to assess sub-sampling accuracy. For all samples, Canadian Aquatic Biomonitoring Network (CABIN) protocols were followed for sub-sampling (i.e., identification of a minimum 300 invertebrates), with a minimum of 5% of a sample being assessed. All benthic invertebrate community structure samples (n = 34) were subject to sub-sampling (Table A.8). Both the precision and accuracy of the sub-samples randomly chosen for sub-sample assessment (n = 3) met the DQO in all sub-samples (Table A.9). Thus, the precision and accuracy for sub-sampling of the benthic invertebrate community samples was considered excellent.

A3.2 Organism Sorting Efficiency

To measure the effectiveness of the sorters, at least 10% of samples were selected at random for resorting analysis by a different sorter. Sorting efficiency (i.e., percent recovery) of benthic invertebrate samples was excellent, achieving an average of 98% for the three community structure samples evaluated (Table A.10). Recovery in quality control samples was above the laboratory's DQO (95%), and thus organism sorting efficiency was considered excellent.

A3.3 Taxonomic Identification Accuracy

Cordillera Consulting Inc. performed an internal audit of taxonomic identification for at least 10% of all community structure samples (n = 3; Table A.11). The analysts reported a total identification error rate (TIR) of 0 to 0.310%, a percent difference in enumeration (PDE) of 0.122 to 0.194%, a percent taxonomic disagreement (PTD) of 0.612 to 0.967%, and a Bray Curtis Dissimilarity Index (BCDI [which is a measure of the differences in identifications between different analysts] of 0.005 to 0.008). The laboratory DQO was based on TIR as per CABIN laboratory methods (< 5% TIR; Environment Canada 2014). As TIR was below 5% for all samples examined, the taxonomic accuracy of the analysis was considered excellent.

A3.4 Data Quality Statement

Benthic invertebrate community data collected for the present study were of excellent quality as characterized by excellent sorting efficiency and excellent taxonomic identification accuracy. Therefore, the associated data can be used with a high level of confidence in the derivation of conclusions.

Table A.8: Percent of Sample Sorted and the Total Number of Invertebrates Recovered from the Sampled Fraction, 2021

Laboratory	Sample ID	Date	Laboratory ID	% Sampled	# Invertebrates
	RG_LILC3_BIC_1_2021-09-09	9-Sep-21	CC221341	5%	625
	RG_LILC3_BIC_2_2021-09-09	9-Sep-21	CC221342	5%	411
	RG_LILC3_BIC_3_2021-09-09	9-Sep-21	CC221343	5%	936
(; (;	RG_FRUL_BIC_1_2021-09-12	12-Sep-21	CC221344	5%	411
<u> </u>	RG_FRUL_BIC_2_2021-09-12	12-Sep-21	CC221345	5%	307
ii.	RG_FRUL_BIC_3_2021-09-12	12-Sep-21	CC221346	10%	492
.lns	RG_LIDSL_BIC_1_2021-09-14	14-Sep-21	CC221347	5%	587
on:	RG_LIDSL_BIC_2_2021-09-14	14-Sep-21	CC221348	5%	728
Ö	RG_LIDSL_BIC_3_2021-09-14	14-Sep-21	CC221349	5%	515
ers	RG_LIDSL_BIC_4_2021-09-14	14-Sep-21	CC221350	5%	374
≣	RG_LIDSL_BIC_5_2021-09-14	14-Sep-21	CC221351	5%	564
jo	RG_LCUT_BIC_1_2021-09-10	10-Sep-21	CC221352	5%	495
0) (RG_LCUT_BIC_2_2021-09-10	10-Sep-21	CC221353	5%	466
<u>e</u>	RG_LCUT_BIC_3_2021-09-10	10-Sep-21	CC221354	5%	521
ш	RG_SLINE_BIC_1_2021-09-15	15-Sep-21	CC221355	10%	314
sa	RG_SLINE_BIC_2_2021-09-15	15-Sep-21	CC221356	5%	356
Ē	RG_SLINE_BIC_3_2021-09-15	15-Sep-21	CC221357	7%	326
स्	RG_LIDCOM_BIC_1_2021-09-13	13-Sep-21	CC221358	5%	1,165
itru	RG_LISP24_BIC_1_2021-09-13	13-Sep-21	CC221359	5%	497
<i>∞</i> >-	RG_FO23_BIC_1_2021-09-12	12-Sep-21	CC221360	12%	350
ınit	RG_FO23_BIC_2_2021-09-12	12-Sep-21	CC221361	5%	409
E	RG_FO23_BIC_3_2021-09-12	12-Sep-21	CC221362	5%	472
E O	RG_FO23_BIC_4_2021-09-12	12-Sep-21	CC221363	5%	333
Ö	RG_FO23_BIC_5_2021-09-12	12-Sep-21	CC221364	5%	402
ate	RG_LI8_BIC_1_2021-09-11	11-Sep-21	CC221365	5%	730
epı	RG_LI8_BIC_2_2021-09-11	11-Sep-21	CC221366	5%	546
ert	RG_LI8_BIC_3_2021-09-11	11-Sep-21	CC221367	5%	489
. <u>≥</u>	RG_LILC3_BIC_4_2021-09-10	10-Sep-21	CC221368	5%	1,219
. <u>⊆</u>	RG_LILC3_BIC_5_2021-09-10	10-Sep-21	CC221369	5%	923
Benthic invertebrate community structure samples (Cordillera Consulting Inc.)	RG_LI24_BIC_1_2021-09-16	16-Sep-21	CC221370	5%	444
Be	RG_LI24_BIC_2_2021-09-16	16-Sep-21	CC221371	5%	459
	RG_LI24_BIC_3_2021-09-16	16-Sep-21	CC221372	5%	484
	RG_LI24_BIC_4_2021-09-16	16-Sep-21	CC221373	6%	332
	RG_LI24_BIC_5_2021-09-16	16-Sep-21	CC221374	5%	663

Table A.9: Benthic Invertebrate Community Sub-sampling Precision and Accuracy, 2021

Station ID			Organisma in Subsemble										Precision Error		Accuracy Error	
Sample ID	Laboratory ID	Organisms in Subsample									Total	Min (%)	May (%)	Min (%)	Max (%)	
		1	2	3	4	5	6	7	8	9	10		(70)	111UX (70)	1 (70)	Mux (70)
RG_SLINE_BIC_1_2021-09-15	CC221355	270	267	280	282	313	253	279	304	252	269	2,769	0.36	19.49	0.76	13.04
RG_FRUL_BIC_1_2021-09-12	CC221344	352	347	337	351	346	ı	-	-	-	•	1,733	0.28	4.26	0.12	2.77
RG_FRUL_BIC_3_2021-09-12	CC221346	488	472	444	495	478	ı	-	-	-	•	2,377	1.26	10.30	0.55	6.60
													0.63	11.35	0.48	7.47

Note: "-" indicates no data available.

Table A.10: Benthic Invertebrate Community Sorting Efficiency, 2021

Sample ID	Laboratory ID	Number of Organisms Recovered (Initial Sort)	Number of Organisms in Re-sort	Sorting Efficiency	
RG_LILC3_BIC_3_2021-09-09	CC221343	936	24	97%	
RG_FO23_BIC_1_2021-09-12	CC221360	350	5	99%	
RG_LI8_BIC_3_2021-09-11	CC221367	489	3	99%	
				98%	

Table A.11: Percent Benthic Invertebrate Community Organism Recovery^a, 2021

Sample ID	Laboratory ID	Percent Sampled (%)	Taxa Identified	TIR (%)	PDE (%)	PTD (%)	BCDI
RG_LILC3_BIC_2_2021-09-09	CC221342	5	410	0	0.122	0.730	0.006
RG_LIDSL_BIC_3_2021-09-14	CC221349	5	517	0	0.194	0.967	0.008
RG_SLINE_BIC_3_2021-09-15	CC221357	7	327	0.310	0.153	0.612	0.005

Notes: TIR = Total Identification Error Rate, PDE = Percent Difference in Enumeration, PTD = Percent Taxonomic Disagreement, BCDI = Bray Curtis Dissimilarity Index to quantify differences in identifications.

^a For error rationale and calculations, refer to Cordillera report (Appendix G).

A4 BENTHIC INVERTEBRATE TISSUE CHEMISTRY

A4.1 Laboratory Reporting Limits

Analytical reports of benthic invertebrate tissue metal concentrations from TrichAnalytics (see laboratory reports 2021-216, 2021-264, 2021-282, 2021-240 in Appendix G) were examined to provide an inventory of analyte results below the LRL and to compare the LRLs for these analytes to available benchmarks (Table A.12). Arsenic and mercury were the only analytes that had at least one result below the LRL (Table A.12). However, the sole focus of interpretation of benthic invertebrate tissue chemistry results for the Line Creek LAEMP was selenium. Selenium was detectable (i.e., above the LRL) in all benthic invertebrate samples, therefore comparison of the selenium LRL to the applicable benchmark (i.e., Elk Valley Water Quality Plan Level 1 benchmark for effects to invertebrates [13 mg/kg dry weight]; Teck 2014) was not necessary to assess whether adequate detectability was achieved. Overall, the detectability of selenium in all samples (i.e., below the LRL) indicates that the achieved LRLs were suitable for the study.

A4.2 Data Accuracy and Precision

Laboratory precision of benthic invertebrate tissue samples were evaluated based on 24 CRM samples and 21 duplicate pairs. All 720 CRM individual analyte results met the laboratory DQO, except for two results for tin (precision results of 21 and 27%) and one result for antimony (precision result of 36%). All 630 laboratory duplicate individual analyte results met the laboratory DQO. Since selenium is the focus of benthic invertebrate tissue chemistry interpretation for the Line Creek LAEMP and all CRM and LSC results for selenium met the laboratory DQO, laboratory analytical precision was considered excellent.

A4.3 Data Quality Statement

Benthic invertebrate tissue data collected for the 2021 LCO LAEMP were of good quality as characterized by good detectability, appropriate LRLs, and excellent laboratory precision and accuracy. Therefore, the associated data can be used with a good level of confidence in the derivation of conclusions for this study.

Table A.12: Laboratory Reporting Limit (LRL) Evaluation for Benthic Invertebrate Tissue Chemistry Analyses

Parameter	Units	BC WQG (Short-term ^a)	Range of LRLs	No. Sample Results < LRL	
Arsenic	mg/kg dw	-	0.436 to 0.496	31 (15.2%)	
Mercury	mg/kg dw	-	0.024 to 0.04	8 (3.92%)	

Notes: "-" = no applicable guideline exists; LRL = Laboratory Reporting Limit; dw = dry weight. Only analytes with at least one sample results < LRL are displayed. Total number of samples was 50 (n=50). LRLs for selenium were below the BC WQG short-term guideline (13 mg/kg dry weight; BCMOECCS 2021a,b).

^a British Columbia Water Quality Guidelines for the protection of Aquatic Life (BCMOECCS 2021a,b) ·

A5 DATA QUALITY REVIEW SUMMARY

Overall, the quality of the data collected for this project was considered acceptable for the derivation of conclusions associated with the objectives of the 2021 Line Creek LAEMP. The few parameters that did not meet DQOs, including hold time exceedances for nitrate and nitrate, biased TKN concentrations, and low frequencies of possible field contamination, were be considered during data interpretation.

A6 REFERENCES

- BCMOECCS (British Columbia Ministry of Environment and Climate Change Strategy). 2021a. Working Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Water Quality Guideline Series, WQG-08. Water Protection and Sustainability Branch, Province of British Columbia, Victoria, B.C.
- BCMOECCS. 2021b. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture Guideline Summary. Water Quality Guideline Series, WQG-20. Water Protection and Sustainability Branch, Province of British Columbia, Victoria, B.C.
- Environment Canada. 2014. CABIN (Canadian Aquatic Biomonitoring Network) Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. Environment Canada. May 2014.
- Golder. 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited. July 2014.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2020. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2019 Annual Report. Prepared by Teck Coal Limited. July 31, 2020.

APPENDIX B PRODUCTIVITY

APPENDIX B PRODUCTIVITY

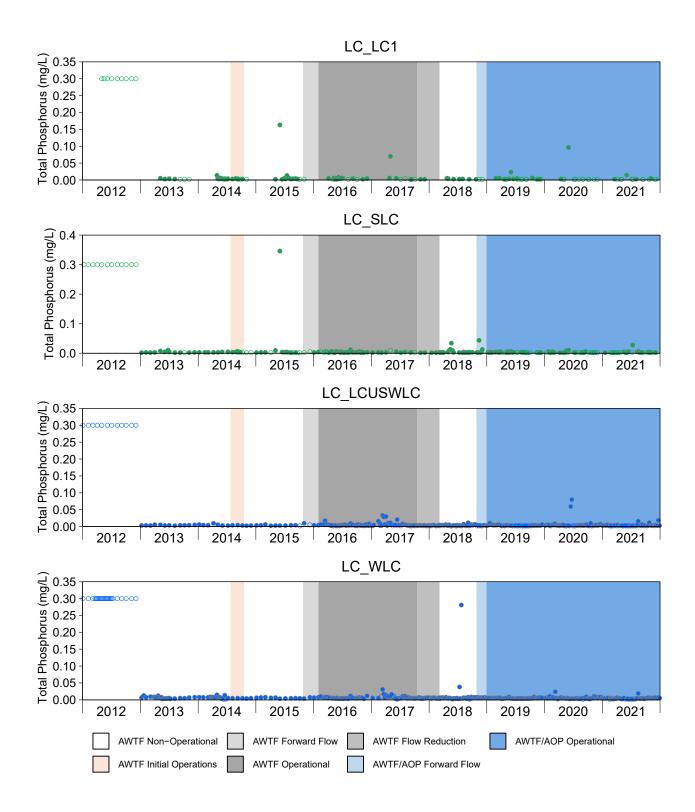


Figure B.1: Time Series Plots for Total Phosphorus Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

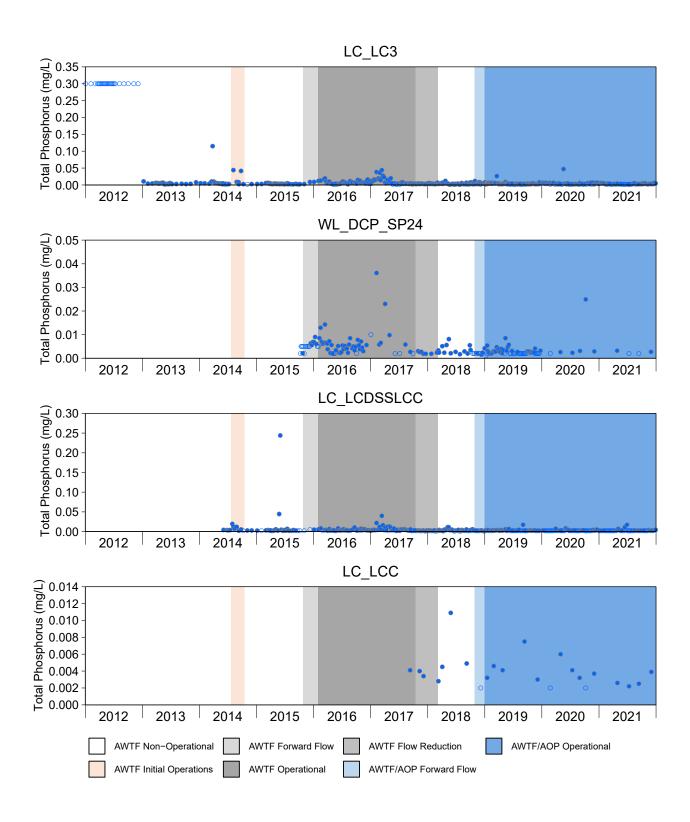


Figure B.1: Time Series Plots for Total Phosphorus Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL.

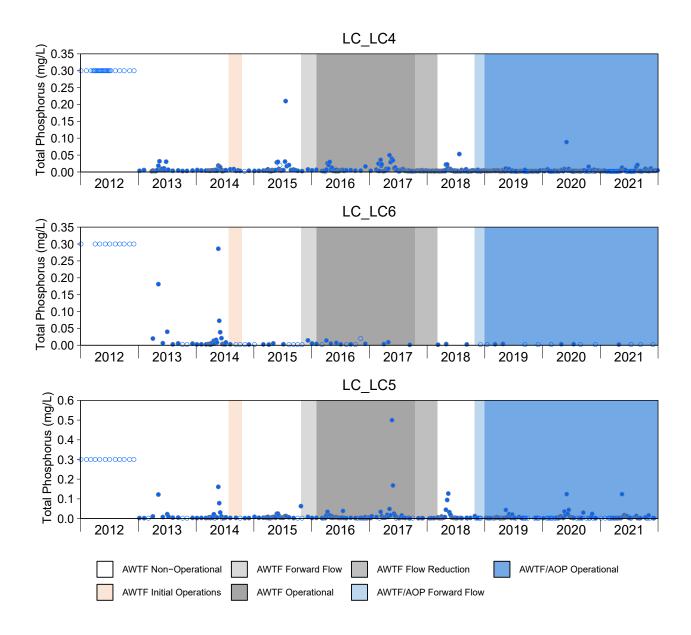


Figure B.1: Time Series Plots for Total Phosphorus Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL.

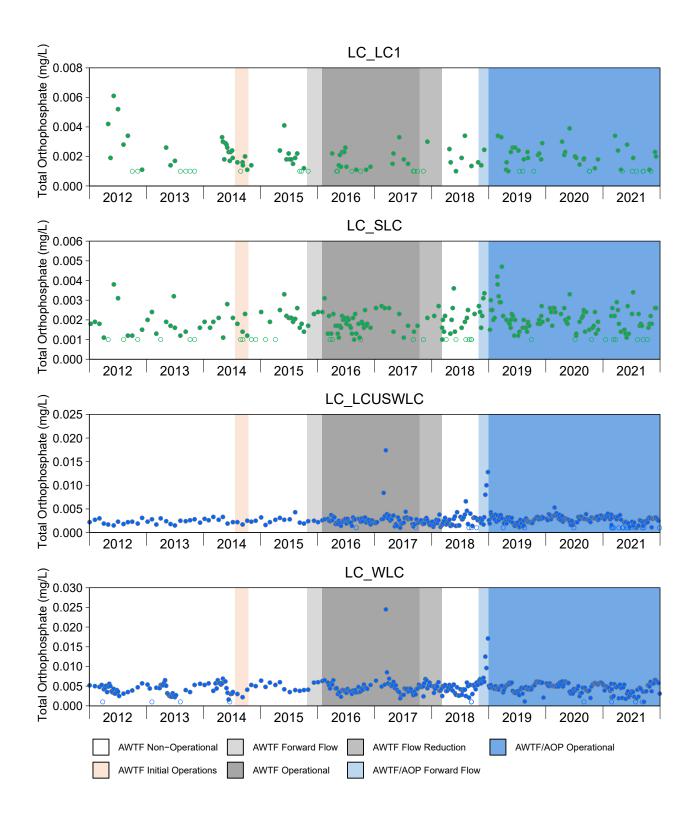


Figure B.2: Time Series Plots for Total Orthophosphate Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

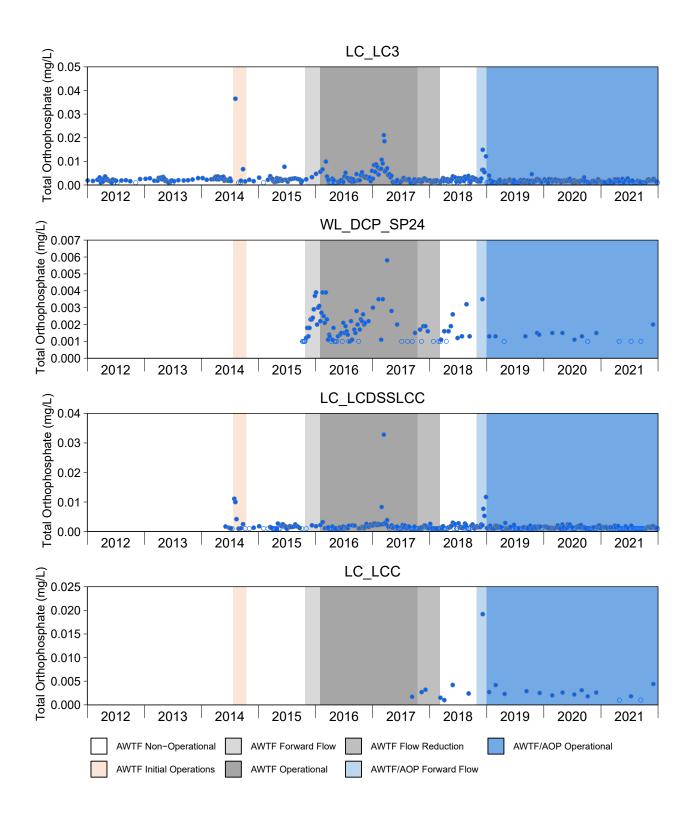


Figure B.2: Time Series Plots for Total Orthophosphate Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL.

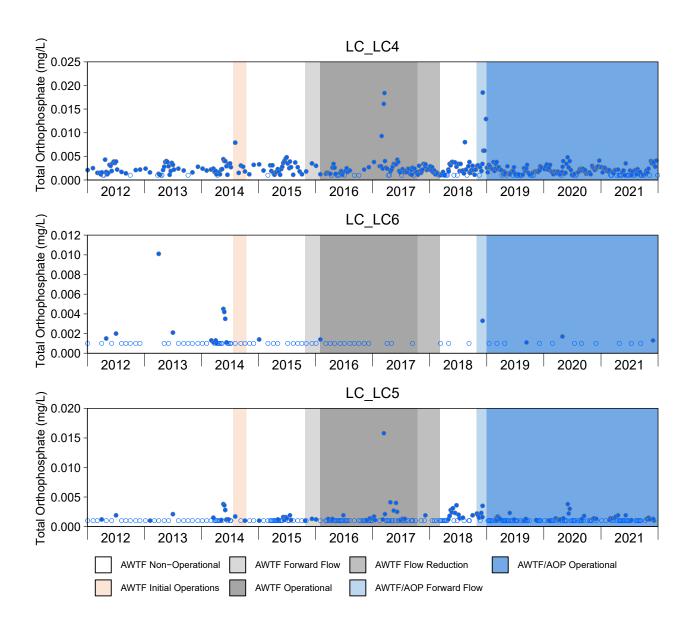


Figure B.2: Time Series Plots for Total Orthophosphate Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL.

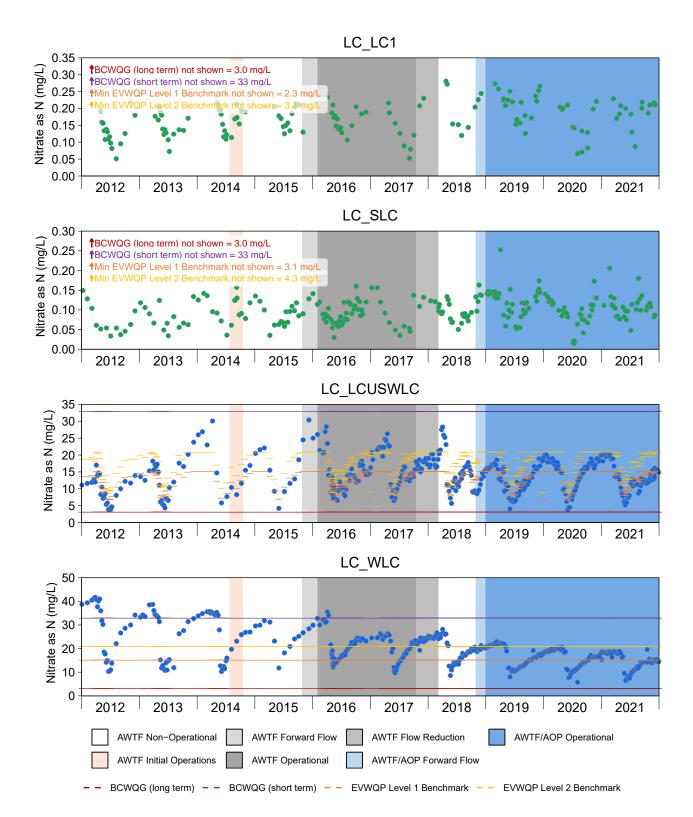


Figure B.3: Time Series Plots for Nitrate (as N) Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

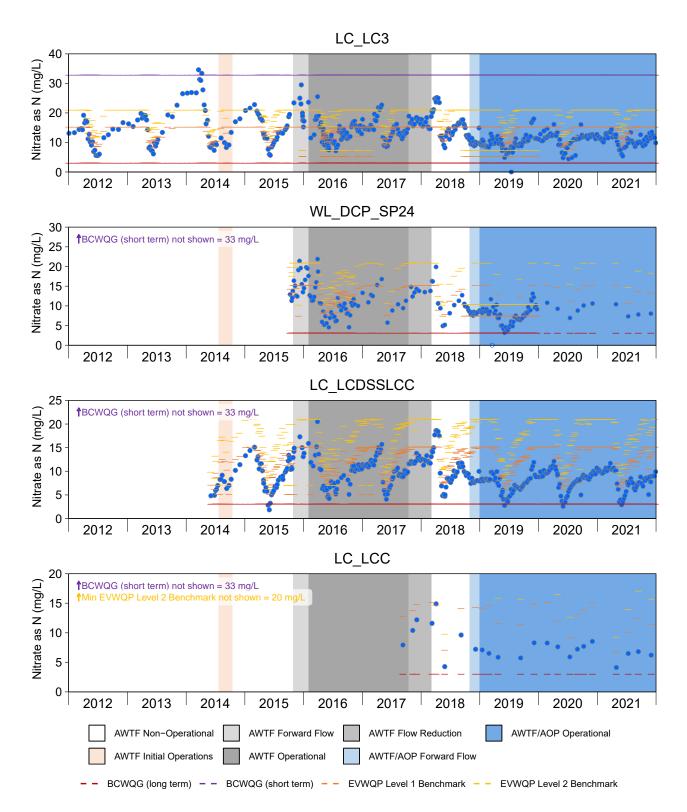


Figure B.3: Time Series Plots for Nitrate (as N) Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness.

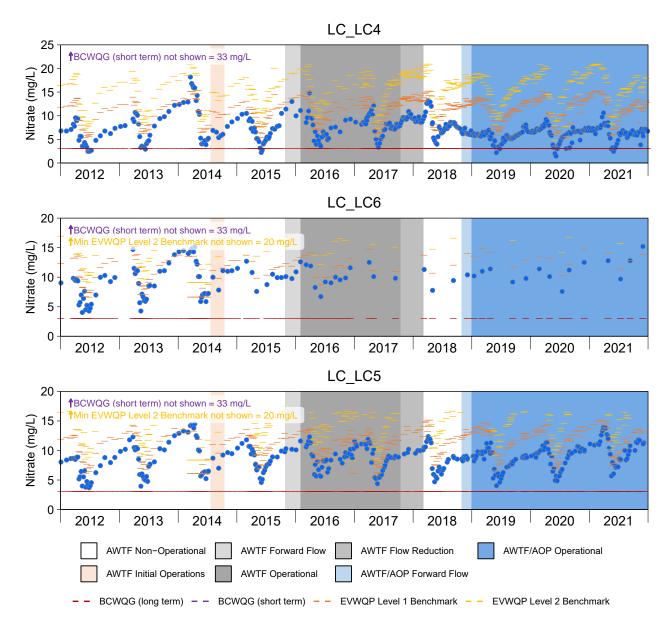


Figure B.3: Time Series Plots for Nitrate (as N) Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness.

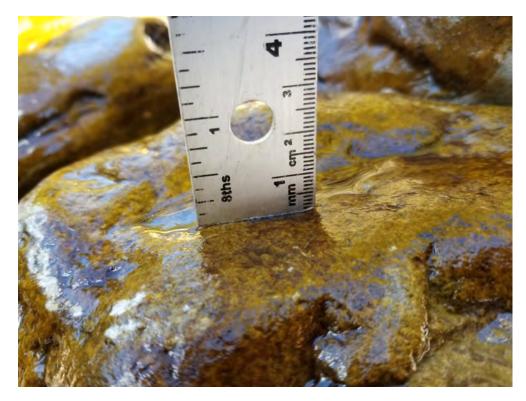


Figure B.4: Periphyton Coverage and Site Photograph at RG_LI24 (Reference), September 2021

Figure B.4: Periphyton Coverage and Site Photograph at RG_SLINE (Reference), September 2021

Figure B.4: Periphyton Coverage and Site Photograph at RG_LCUT (Exposed), September 2021

Figure B.4: Periphyton Coverage and Site Photograph at Station RG_LILC3 (Exposed), September 2021

Figure B.4: Periphyton Coverage and Site Photograph at RG_LISP24 (Exposed), September 2021

Figure B.4: Periphyton Coverage and Site Photograph at RG_LIDSL (Exposed), September 2021

Figure B.4: Periphyton Coverage and Site Photograph at RG_LIDCOM (Exposed), September 2021

Figure B.4: Periphyton Coverage and Site Photograph at Station RG_LI8 (Exposed), September 2021

Figure B.4: Periphyton Coverage and Site Photograph at Station RG_FRUL (Exposed), September 2021

Figure B.4: Periphyton Coverage and Site Photograph at Station RG_FO23 (Exposed), September 2021

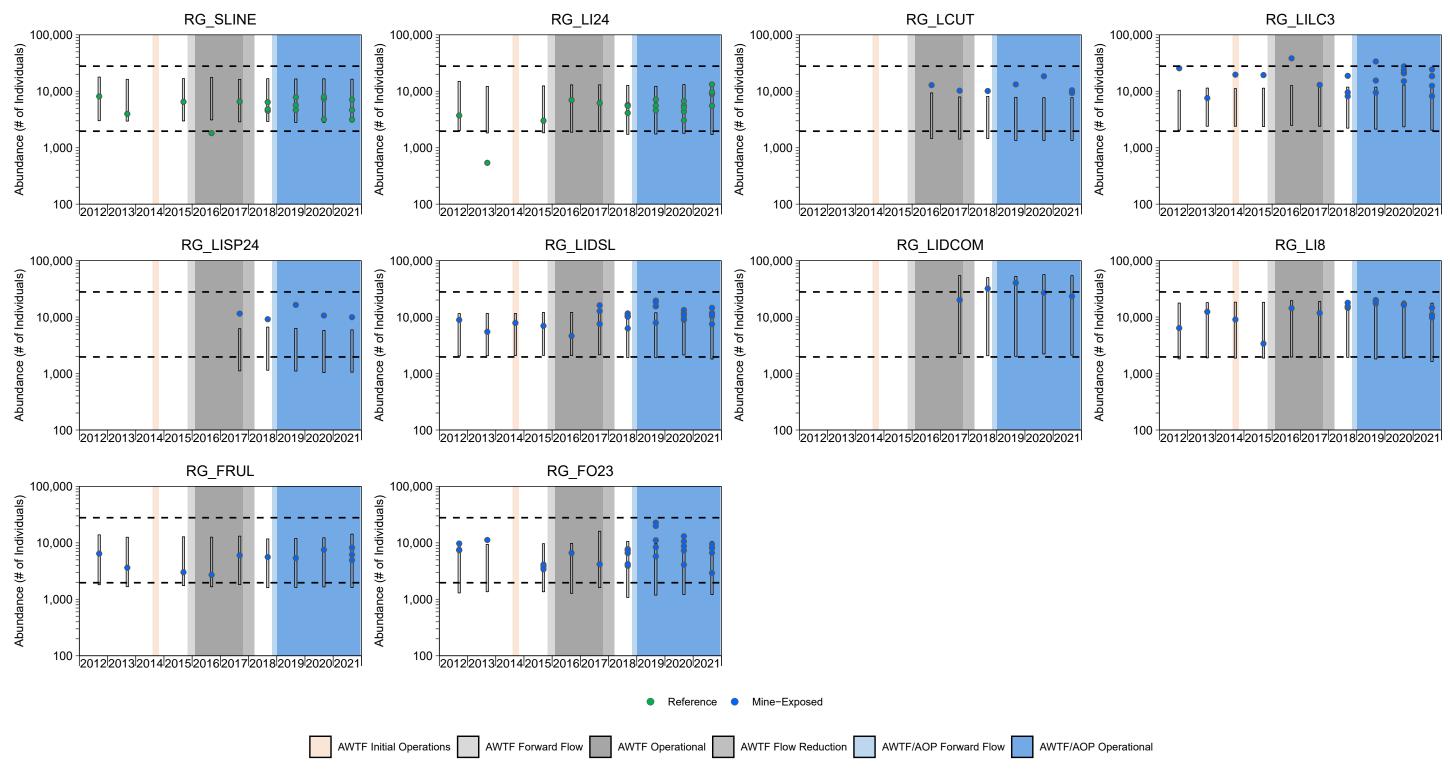


Figure B.5: Benthic Invertebrate Community Abundance (3-minute Kick and Sweep Sampling) from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Site specific normal ranges using regression models shown with grey shading and black rectangle. Dashed black lines represent the normal range defined as the 2.5th and 97.5 percentiles of the 2012 to 2019 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP).

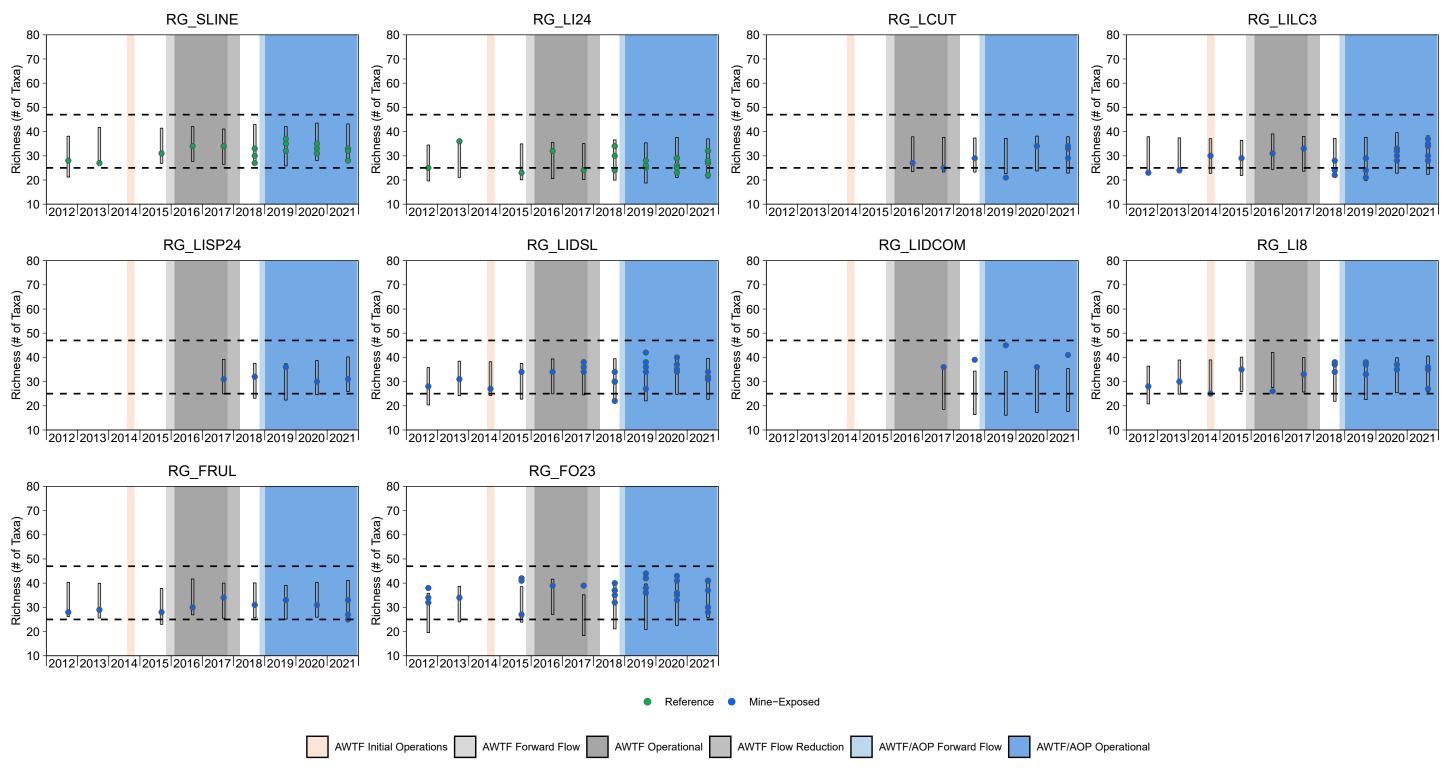


Figure B.6: Benthic Invertebrate Richness (Lowest Practical Level; 3-Minute Kick and Sweep Sampling) from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Site specific normal ranges using regression models shown with grey shading and black rectangle. Dashed black lines represent the normal range defined as the 2.5th and 97.5 percentiles of the 2012 to 2019 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP).

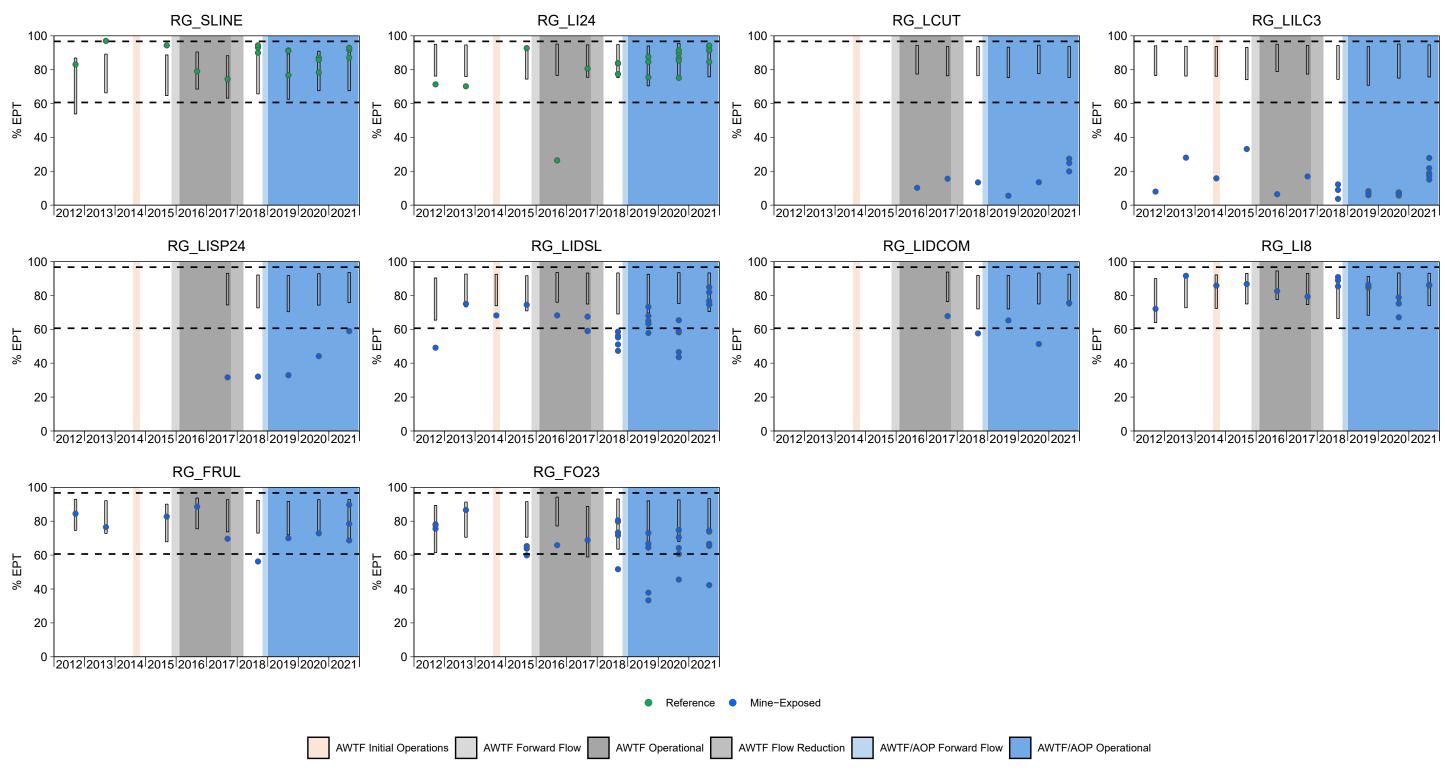


Figure B.7: Benthic Invertebrate Community Relative Ephemeroptera, Plecoptera, and Trichoptera Abundance (%EPT; 3-Minute Kick and Sweep Sampling) from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Site specific normal ranges using regression models shown with grey shading and black rectangle. Dashed black lines represent the normal range defined as the 2.5th and 97.5 percentiles of the 2012 to 2019 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP).

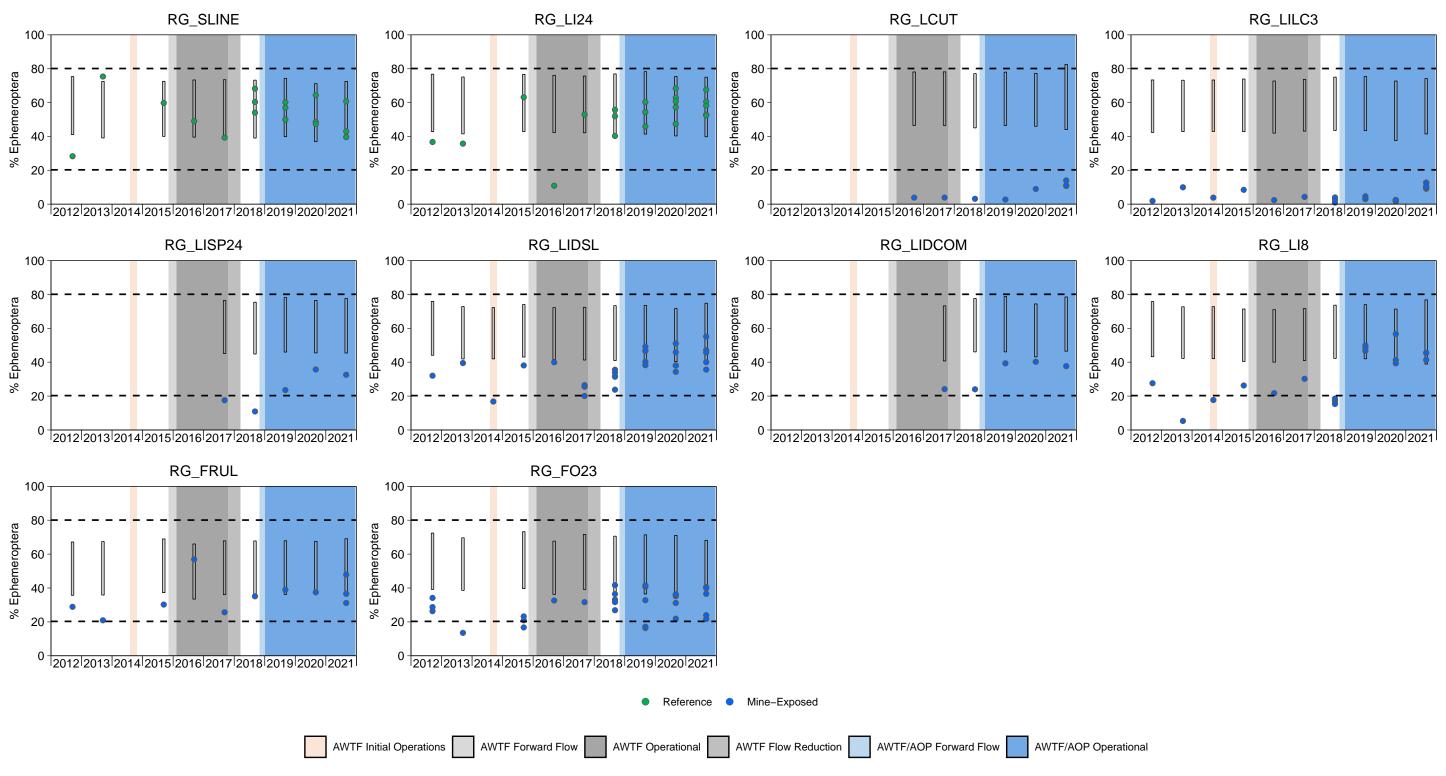


Figure B.8: Benthic Invertebrate Community Relative Ephemeroptera Abundance (%Ephemeroptera; 3-Minute Kick and Sweep Sampling) from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Site specific normal ranges using regression models shown with grey shading and black rectangle. Dashed black lines represent the normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data fro the Regional Aquatic Environmental Program (RAEMP).

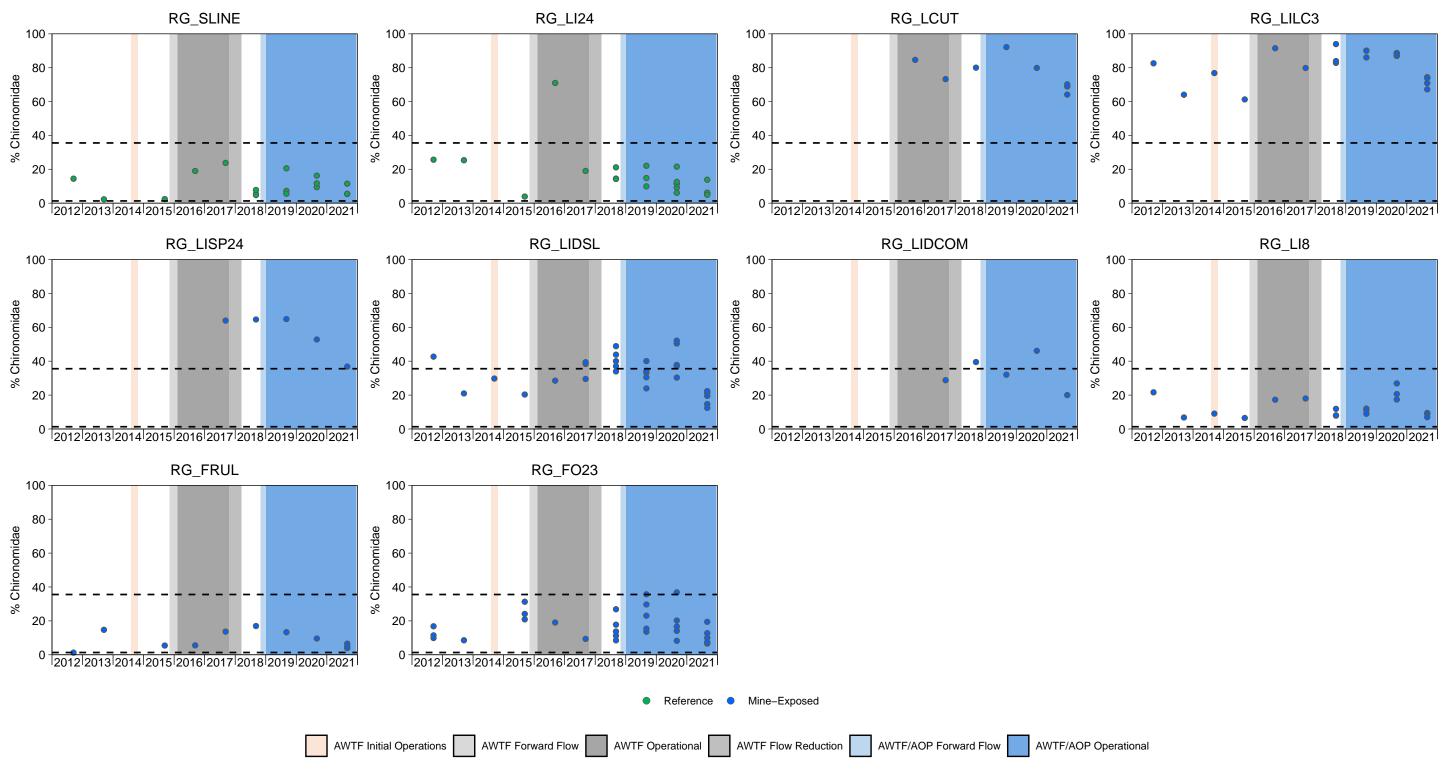


Figure B.9: Benthic Invertebrate Community Relative Chironomidae Abundance (%Chironomidae; 3-Minute Kick and Sweep Sampling) from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Site specific normal ranges using regression models shown with grey shading and black rectangle. Dashed black lines represent the normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 data from the Regional Aquatic Environmental Monitoring Program (RAEMP).

Table B.1: Visual Periphyton Coverage Scores from Line Creek and Fording River, September 2021

Aroo Typo	Biological			Mean	Standard			
Area Type	Area Code	1	1 2		4	5	Weall	Deviation
Reference	RG_SLINE	2	2	2	2	2	2.0	0.0
Reference	RG_LI24	2	2	2	2	2	2.0	0.0
Mine-Exposed	RG_LCUT	3	3	3	3	3	3.0	0.0
Mine-Exposed	RG_LILC3	3	3	3	3	3	3.0	0.0
Mine-Exposed	RG_LISP24	3	3	3	3	4	3.2	0.4
Mine-Exposed	RG_LIDSL	4	3	3	2	3	3.0	0.7
Mine-Exposed	RG_LIDCOM	3	3	3	3	3	3.0	0.0
Mine-Exposed	RG_LI8	2	2	2	2	3	2.2	0.4
Mine-Exposed	RG_FRUL	2	2	1	2	2	1.8	0.4
Mine-Exposed	RG_FO23	3	3	3	2	2	2.6	0.5

Periphyton Coverage Scores (Environment Canada, 2012b):

- 1 = Rocks not slippery, no obvious colour (<0.5mm thick)
- 2 = Rocks slightly slippery, yellow-brown to light green colour (0.5-1mm thick)
- 3 = Rocks have noticeable slippery feel, patches of thicker green to brown algae (1-5mm thick)
- 4 = Rocks are very slippery, numerous clumps (5-20mm thick)
- 5 = Rocks mostly obscured by algae mat, may have long strands (>20mm thick)

Table B.2: Statistical Comparisons of Total Benthic Invertebrate Biomass (Hess Samples) Over Time and Relative to Reference (RG_SLINE and RG_LI24) for RG_LIDSL and RG_LILC3, 2014 to 2021

A **0.0	Comparison	Term	DF	F-Statistic	P-value			Comp	arisons	Among `	ears/		
Area	Comparison		DF			2014	2015	2016	2017	2018	2019	2020	2021
		RG_LILC3 over	time			Α	Α	Α	Α	Α	Α	Α	Α
		Year	7	4.01	<0.001								
	DC 111 C2 va	CI	1	950	<0.001								
RG_LILC3	RG_LILC3 vs RG_SLINE and	Area(CI)	1	16.7	<0.001								
	RG_LI24 over time	Cl×Year	7	0.696	0.675	Α	Α	Α	Α	Α	Α	Α	Α
		Area(CI)×Year	6	1.64	0.140								
		Error	155	-	-								
		RG_LIDSL over	time			Α	Α	Α	Α	Α	Α	Α	Α
		Year	7	2.53	0.017								
	DC LIDCL va	CI	1	237	<0.001								
RG_LIDSL	RG_LIDSL vs RG_SLINE and	Area(CI)	1	16.1	<0.001								
	RG_SLINE and RG_LI24 over time	Cl×Year	7	2.02	0.055	В	AB	AB	AB	AB	Α	AB	AB
	NG_LIZ4 over tillle	Area(CI)×Year	6	1.59	0.154								
		Error	155	-	-								

Relevant p-value < 0.1.

Notes: "-" = no data. Years that share a letter (e.g., A,B) are not significantly different (*p* value=0.1). Letters assigned such that the year with the highest mean value (for the Year term) or highest difference between mine-exposed and reference (for the Area×Year term) is assigned the letter A. The p-value used to determine differences were adjusted using Tukey's honestly significant differences method. One outlier removed in 2017 and 2018.

Table B.3: Summary Metrics for Benthic Invertebrate Endpoints Collected by Hess Sampler at Line Creek, September 2021

Area	Biological Area Code	Sample Code	Total Density (org/m²) ^a	Biomass (g/m² ww) ^a	EPT Density (org/m²)	Ephemeroptera Density (org/m²)	Chironomidae Density (org/m²)
		RG_LI24_HESS-1	7,560	13	6,980	5,320	460
		RG_LI24_HESS-2	4,930	9.9	4,260	3,190	480
	RG_LI24	RG_LI24_HESS-3	5,000	4.7	4,680	3,400	200
မွ		RG_LI24_HESS-3	8,720	11	7,300	5,200	880
en (RG_LI24_HESS-4	4,550	5.9	4,230	3,270	120
Reference		RG_SLINE_HESS-1	3,530	10	2,830	1,270	120
ď		RG_SLINE_HESS-2	4,640	5.4	3,600	1,940	640
	RG_SLINE	RG_SLINE_HESS-3	2,370	1.9	1,480	470	70
		RG_SLINE_HESS-4	5,150	13	4,470	2,750	100
		RG_SLINE_HESS-5	4,270	11	3,770	2,750	150
		RG_LILC3_HESS-1	32,960	74	3,200	1,520	23,200
	RG_LILC3	RG_LILC3_HESS-2	24,490	66	2,410	440	16,840
		RG_LILC3_HESS-3	39,010	50	3,290	1,800	22,840
		RG_LILC3_HESS-4	33,590	50	2,170	880	18,960
		RG_LILC3_HESS-5	57,050	325	6,160	2,880	30,960
		RG_LILC3_HESS-6	34,590	67	3,970	1,440	19,840
		RG_LILC3_HESS-7	42,080	80	3,680	1,680	23,960
5		RG_LILC3_HESS-8	25,030	41	1,630	680	14,920
Se		RG_LILC3_HESS-9	31,820	61	2,530	920	18,360
Mine-exposed		RG_LILC3_HESS-10	58,450	96	3,970	1,760	36,640
9-e		RG_LIDSL_HESS-1	8,210	18	4,500	3,080	1,760
Min		RG_LIDSL_HESS-2	8,370	23	5,840	3,960	1,340
_		RG_LIDSL_HESS-3	13,820	30	8,580	5,580	1,260
		RG_LIDSL_HESS-4	7,250	12	5,320	3,130	480
	RG_LIDSL	RG_LIDSL_HESS-5	4,690	11	3,140	1,380	550
	KG_LIDSL	RG_LIDSL_HESS-6	13,640	36	9,060	6,060	2,640
		RG_LIDSL_HESS-7	8,840	19	7,070	4,530	450
		RG_LIDSL_HESS-8	4,510	9.4	2,970	1,660	430
		RG_LIDSL_HESS-9	6,470	19	4,660	2,560	600
		RG_LIDSL_HESS-10	9,360	56	7,320	3,720	520

Notes: org = organism; ww = wet weight; EPT = Ephemeroptera, Plecoptera, Trichoptera

^a Total density and biomass are reported for all organisms in the sample.

Table B.4: Statistical Comparisons of Total Benthic Invertebrate Density (Hess Samples) Over Time and Relative to Reference (RG_SLINE and RG_LI24) for RG_LIDSL and RG_LILC3, 2014 to 2021

Area	Companicon	Term	DF	F-Statistic	P-value			Com	parisons	Among	Years		
Area	Comparison	rerm	DF	r-Statistic	P-value	2014	2015	2016	2017	2018	2019	2020	2021
		RG_LILC3 ove	er time			Α	Α	Α	Α	Α	Α	Α	Α
-		Year	7	6.52	<0.001								
	DC LILC2 va	CI	1	1,331	<0.001								
	RG_LILC3 vs RG_SLINE and	Area(CI)	1	9.75	0.002								
	RG_SLINE and RG_LI24 over time	Cl×Year	7	3.40	0.002								
	NO_LIZ4 OVEI UITIE	Area(CI)×Year	6	5.39	<0.001			CI×Ye	ear effect o	depends o	on Area		
		Error	155	-	-								
RG_LILC3		Area	1	802	<0.001								
	RG_LILC3 vs	Year	7	5.51	<0.001								
	RG_SLINE over time	Area×Year	7	3.72	0.001	В	Α	AB	AB	Α	Α	AB	AB
		Error	117	-	-								
		Area	1	876	<0.001								
	RG_LILC3 vs RG_LI24	Year	7	3.45	0.002								
	over time	Area×Year	6	3.89	0.001	ABC	BC	-	ABC	AC	ВС	Α	В
		Error	110	-	-								
	RG_LIDSL over time						AB	В	AB	Α	AB	AB	AB
		Year	7	7.92	<0.001								
	DC LIDCL va	CI	1	316	<0.001								
	RG_LIDSL vs RG_SLINE and	Area(CI)	1	11.6	<0.001								
	RG_SLINE and RG_LI24 over time	Cl×Year	7	4.69	<0.001								
	TO_LIZ4 OVER UNIC	Area(CI)×Year	6	6.39	<0.001			CI×Ye	ear effect of	depends o	on Area		
		Error	155	-	-								
RG_LIDSL		Area	1	167	<0.001								
	RG_LIDSL vs	Year	7	7.35	<0.001								
	RG_SLINE over time	Area×Year	7	4.93	<0.001	С	В	AB	AC	AB	В	В	AB
		Error	117	-	-								
		Area	1	272	<0.001								
	RG_LIDSL vs RG_LI24	Year	7	4.81	<0.001								
	over time	Area×Year	6	5.39	<0.001	В	В	-	В	В	AB	В	Α
		Error	110	-	-								

Relevant p-value < 0.1.

Notes: "-" = no data. Years that share a letter (e.g., A,B) are not significantly different (p-value=0.1). Letters assigned such that the year with the highest mean value (for the Year term) or highest difference between mine-exposed and reference (for the Area×Year term) is assigned the letter A. The p-value used to determine differences were adjusted using Tukey's honestly significant differences method. One outlier removed in 2017 and 2018.

Table B.5: Summary of Benthic Invertebrate Endpoints Collected by 3-Minute Kick and Sweep Sampling at Line Creek and Fording River, September 2021

			Abundance			EP	PT	Ephemo	eroptera	Chirono	midae
Area	Biological Area Code	Sample Code	(# org/ 3-min kick)	LPL Richness (# of taxa)	Family Richness	Abundance (# org/ 3-min kick)	Relative Abundance (%)	Abundance (# org/ 3-min kick)	Relative Abundance (%)	Abundance (# org/ 3-min kick)	Relative Abundance (%)
		RG_SLINE-01	3,140	33	20	2,880	92	1,350	43	170	5.4
	RG_SLINE	RG SLINE-02	7,120	28	16	6,200	87	2,820	40	820	12
ø		RG_SLINE-03	4,657	32	18	4,329	93	2,829	61	257	5.5
Reference		RG_LI24-01	8,880	22	15	8,340	94	6,000	68	460	5.2
fer		RG_LI24-02	9,180	27	16	8,380	91	5,560	61	560	6.1
Re	RG_LI24	RG_LI24-03	9,680	27	19	8,880	92	5,120	53	600	6.2
		RG_LI24-04	5,533	32	18	4,683	85	2,900	52	767	14
		RG_LI24-05	13,260	28	15	12,500	94	7,720	58	660	5.0
		RG_LCUT-01	9,900	33	18	2,460	25	1,060	11	6,820	69
	RG_LCUT	RG_LCUT-02	9,320	29	15	1,860	20	1,040	11	6,540	70
		RG_LCUT-03	10,420	34	17	2,860	27	1,460	14	6,680	64
		RG_LILC3-01	12,500	30	17	2,360	19	1,140	9.1	9,300	74
	RG_LILC3	RG_LILC3-02	8,220	28	18	1,240	15	820	10.0	6,100	74
		RG_LILC3-03	18,720	34	17	5,220	28	2,380	13	12,579	67
		RG_LILC3-04	24,380	37	18	5,320	22	3,100	13	17,280	71
		RG_LILC3-05	18,460	35	20	3,200	17	1,980	11	13,620	74
	RG_LISP24	RG_LISP24-01	9,940	31	16	5,860	59	3,240	33	3,660	37
		RG_LIDSL-01	11,740	32	19	8,780	75	4,700	40	2,480	21
-		RG_LIDSL-02	14,560	34	19	11,920	82	6,860	47	2,140	15
sec	RG_LIDSL	RG_LIDSL-03	10,300	31	17	8,740	85	5,680	55	1,280	12
Çpo		RG_LIDSL-04	7,480	31	16	5,740	77	3,420	46	1,460	20
()		RG_LIDSL-05	11,280	31	18	8,420	75	4,020	36	2,520	22
Mine-exposed	RG_LIDCOM	RG_LIDCOM-01	23,300	41	23	17,600	76	8,780	38	4,660	20
~		RG_LI8-01	14,600	35	19	12,540	86	6,040	41	1,380	9.5
	RG_LI8	RG_LI8-02	10,920	36	21	9,400	86	4,960	45	960	8.8
		RG_LI8-03	9,780	27	18	8,440	86	4,460	46	680	7.0
		RG_FRUL-01	8,220	25	18	7,380	90	2,560	31	540	6.6
	RG_FRUL	RG_FRUL-02	6,140	27	20	4,820	78	2,940	48	240	3.9
		RG_FRUL-03	4,920	33	23	3,380	69	1,800	37	240	4.9
		RG_FO23-01	2,917	41	27	1,233	42	633	22	567	19
		RG_FO23-02	8,180	30	21	6,040	74	3,320	41	1,040	13
	RG_FO23	RG_F023-03	9,440	37	27	6,180	66	2,260	24	940	10.0
		RG_FO23-04	6,660	28	20	4,960	74	2,660	40	440	6.6
		RG_FO23-05	8,040	41	26	5,360	67	2,940	37	600	7.5

Notes: LPL= Lowest Practical Level; EPT= Ephemeroptera, Plecoptera, and Trichoptera.

APPENDIX C SELENIUM

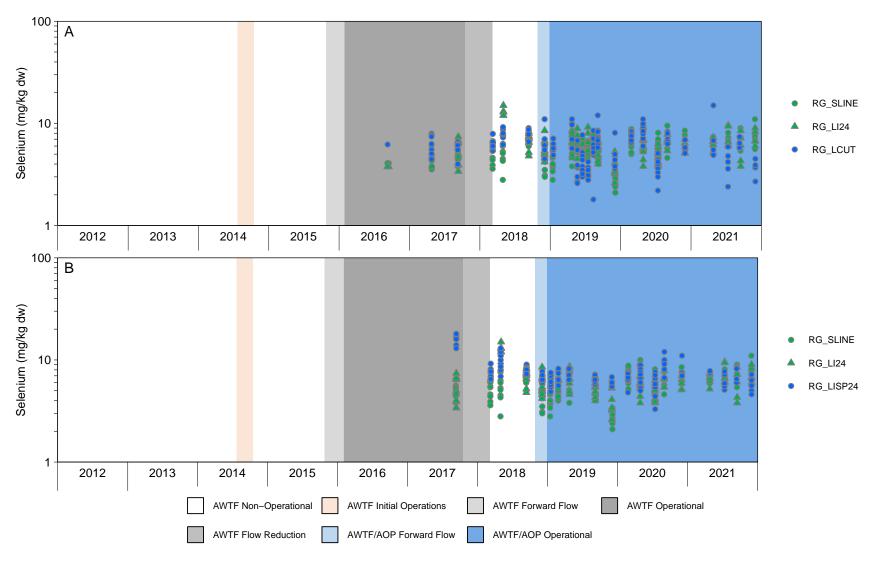


Figure C.1: Benthic Invertebrate Selenium Concentrations, for A) RG_LCUT and B) RG_LISP24 (Mine-exposed Areas) Relative to RG_SLINE and RG_LI24 (Reference Areas), 2012 to 2021

Notes: Blue symbols represent mine-exposed areas and green symbols represent reference areas. Due to a brief period of exposure to less—than—capacity AWTF effluent in 2014, benthic invertebrate tissue selenium data from September 2015 were not considered representative of AWTF operation, but also not representative of a no–discharge condition. These data were therefore excluded from analyses and are displayed in plots for context only. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge.

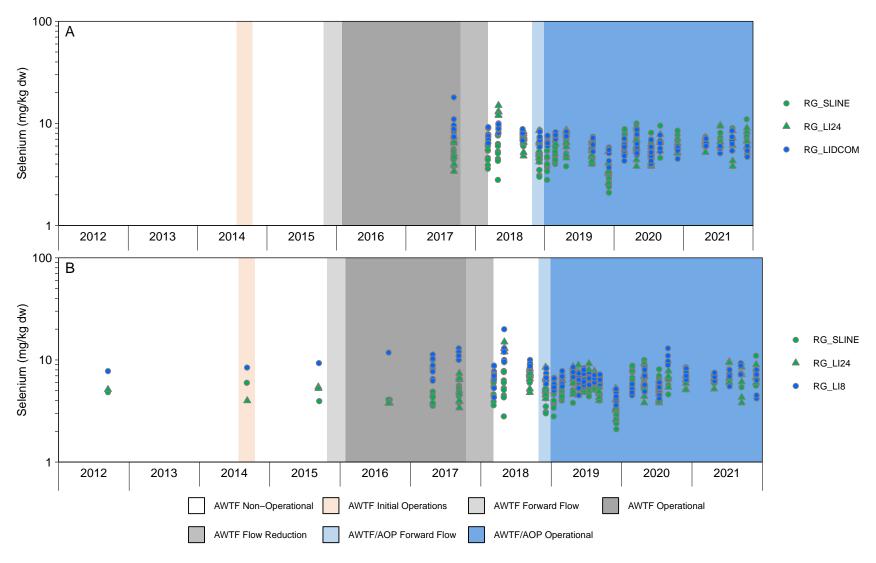


Figure C.2: Benthic Invertebrate Selenium Concentrations, for A) RG_LIDCOM, and B) RG_LI8 (Mine-exposed Areas) Relative to RG_SLINE and RG_LI24 (Reference Areas), 2012 to 2021

Notes: Blue symbols represent mine-exposed areas and green symbols represent reference areas. Due to a brief period of exposure to less—than—capacity AWTF effluent in 2014, benthic invertebrate tissue selenium data from September 2015 were not considered representative of AWTF operation, but also not representative of a no–discharge condition. These data were therefore excluded from analyses and are displayed in plots for context only. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge.

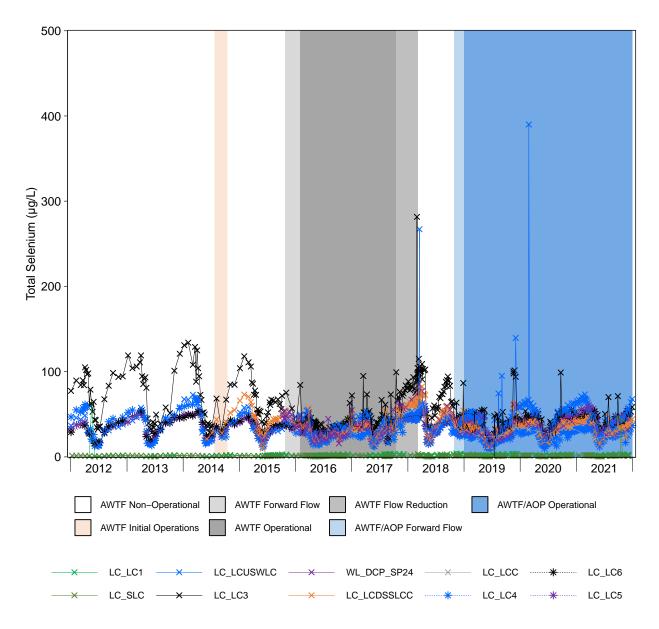


Figure C.3: Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations were above the LRL in all samples. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine— exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017. This plot excludes data from LC_WLC.

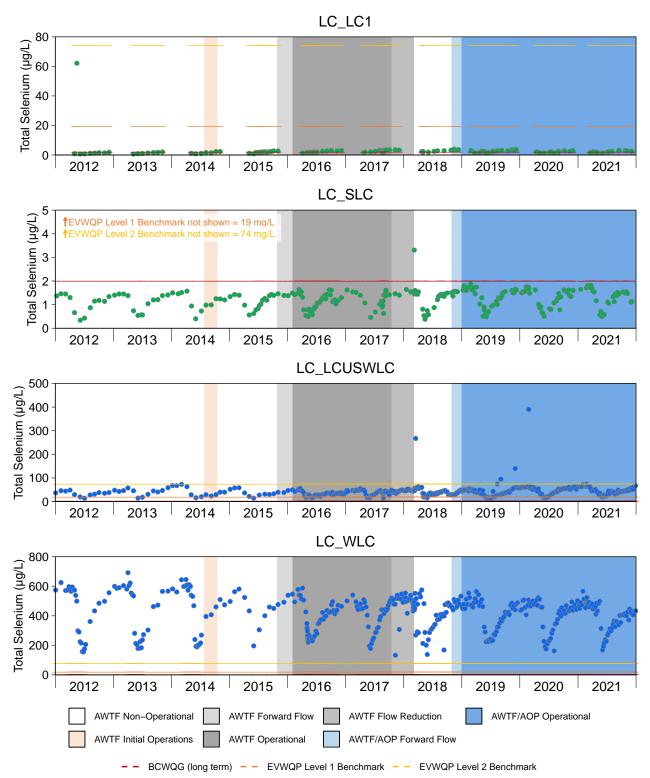


Figure C.4: Time Series Plots for Total Selenium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017. On one sampling event (October 18, 2021), LC_SLC had a total Se concentration of 44.1 μ g/L, this value is a suspected outlier (as the corresponding dissolved concentration was much lower [1.5 μ g/L]), as such this value is not shown in the plot.

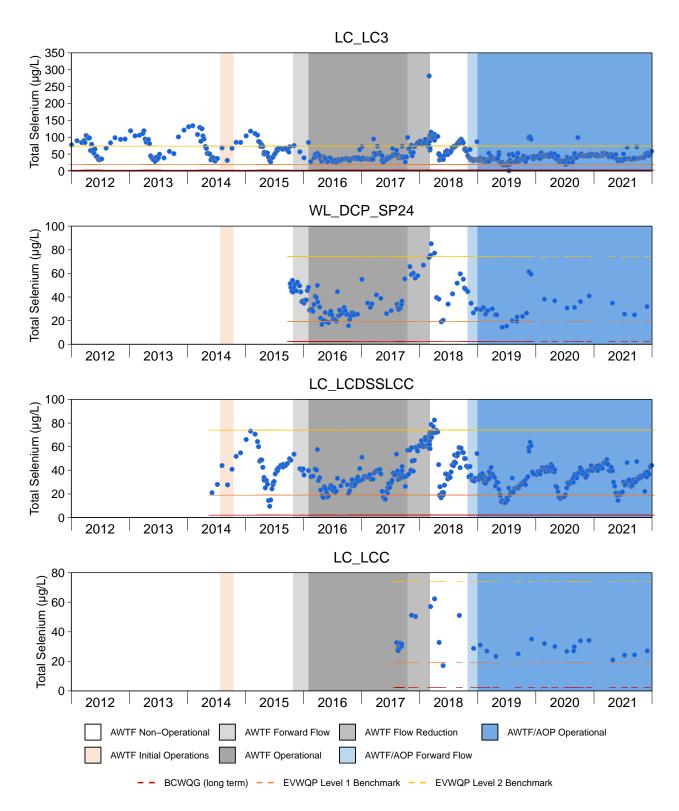


Figure C.4: Time Series Plots for Total Selenium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL.

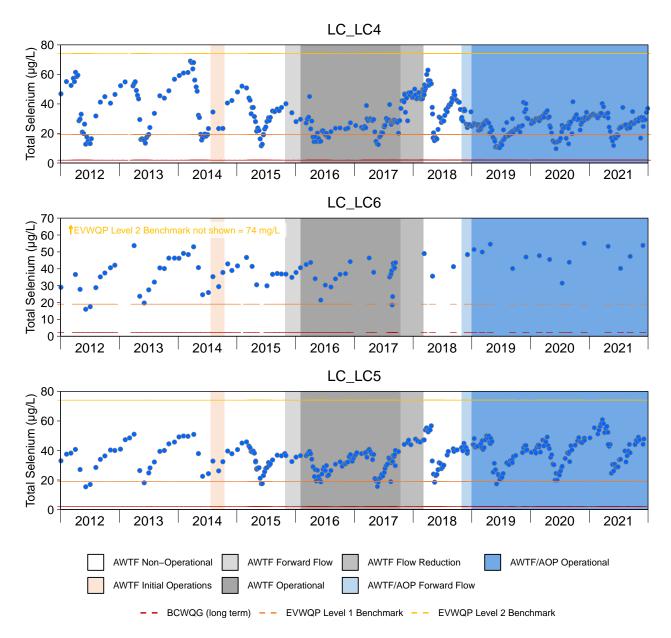


Figure C.4: Time Series Plots for Total Selenium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

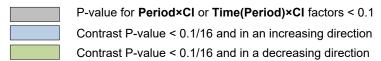
Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL.

Table C.1: Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples Collected from Line Creek and Fording River, Line Creek LAEMP, 2021

		_	_			Seler	nium Concen	tration (mg/k	g dw)	
Vaterbody	Area Code	Sample Code	Sample Date	Dominant Taxa	Sample	Area Median	Area Minimum	Area Maximum	Area Mean	Area Standard Deviation
		RG_LI24_INV-1 RG_LI24_INV-2	26-Apr-21 26-Apr-21	Ephem, Plec Plec, Ephem, Tipul	6.7 6.2					
		RG_LI24_INV-3	26-Apr-21	Ephem, Plec, Rhyac	7.3	6.6	5.2	7.3	6.4	0.8
		RG_LI24_INV-4 RG_LI24_INV-5	26-Apr-21 26-Apr-21	Ephem, Plec, Trich Plec, Ephem, Trich	6.6 5.2					
		RG_LI24_INV-1	13-Jul-21	Ephem, Plec, Trich	9.6					
		RG_LI24_INV-2 RG_LI24_INV-3	13-Jul-21 13-Jul-21	Ephem, Plec, Trich Ephem, Plec, Trich	6.1 6.6	6.6	6.0	9.6	7.5	1.8
	4:	RG_LI24_INV-4	13-Jul-21	Ephem, Plec, Trich	9.4	0.0	0.0	9.0	7.5	1.0
	RG_LI24	RG_LI24_INV-5 RG_LI24_INV-1	13-Jul-21 16-Sep-21	Ephem, Plec, Trich	6.0 7.2					
	RG	RG_LI24_INV-2	16-Sep-21	Plec, Ephem Plec, Ephem	6.1					
		RG_LI24_INV-3 RG_LI24_INV-4	16-Sep-21 16-Sep-21	Plec, Ephem Plec, Ephem	3.8 4.3	6.1	3.8	8.5	6.0	2.0
		RG_LI24_INV-4 RG_LI24_INV-5	16-Sep-21	Plec, Ephem	8.5					
		RG_LI24_INV-1	30-Nov-21	Ephem, Plec	6.8					
		RG_LI24_INV-2 RG_LI24_INV-3	30-Nov-21 30-Nov-21	Ephem, Plec Ephem, Plec, Tipul	6.0 8.3	6.8	6.0	9.0	7.4	1.2
JCe		RG_LI24_INV-4	30-Nov-21	Ephem, Plec	9.0					
Reference		RG_LI24_INV-5 RG_SLINE_INV-1	30-Nov-21 26-Apr-21	Ephem, Plec Ephem, Plec, Rhyac	6.7 6.8					
Re		RG_SLINE_INV-2	26-Apr-21	Plec, Ephem, Rhyac	5.9					
		RG_SLINE_INV-3 RG_SLINE_INV-4	26-Apr-21 26-Apr-21	Plec, Ephem, Rhyac Plec, Ephem	5.9 6.3	6.3	5.9	7.4	6.5	0.6
		RG_SLINE_INV-5	26-Apr-21	Ephem, Plec, Rhyac	7.4					
		RG_SLINE_INV-1 RG_SLINE_INV-2	13-Jul-21 13-Jul-21	Ephem, Plec, Trich Ephem, Plec, Rhyac	7.3 8.1					
		RG_SLINE_INV-3	13-Jul-21	Ephem, Plec, Rhyac	6.1	6.9	6.1	8.1	7.0	0.8
	R	RG_SLINE_INV-4	13-Jul-21	Ephem, Plec, Rhyac	6.6					
	RG_SLINE	RG_SLINE_INV-5 RG_SLINE_INV-1	13-Jul-21 15-Sep-21	Ephem, Plec, Rhyac Ephem, Plec, Trich	6.9 7.3					
	RG	RG_SLINE_INV-2	15-Sep-21	Ephem, Plec, Trich	7.2					1.3
		RG_SLINE_INV-3 RG_SLINE_INV-4	15-Sep-21 15-Sep-21	Ephem, Plec, Trich Ephem, Plec, Trich	9.0 5.4	7.3	5.4	9.0	7.2	
		RG_SLINE_INV-5	15-Sep-21	Ephem, Plec, Trich	7.3					
		RG_SLINE_INV-1 RG_SLINE_INV-2	29-Nov-21 29-Nov-21	Plec, Ephem, Para Plec, Ephem, Rhyac	7.1 8.0					
		RG_SLINE_INV-2	29-Nov-21	Ephem, Plec, Rhyac	5.6	7.5	5.6	11.0	7.8	2.0
		RG_SLINE_INV-4	29-Nov-21	Ephem, Plec, Trich Plec, Ephem, Rhyac	11.0					
		RG_SLINE_INV-5 RG_LCUT_INV-1	29-Nov-21 27-Apr-21	Piec, Epnem, Rhyac Para, Trich, Plec	7.5 15.0					
		RG_LCUT_INV-2	27-Apr-21	Para, Plec, Chiron	6.7					
		RG_LCUT_INV-3 RG_LCUT_INV-4	27-Apr-21 27-Apr-21	Para, Plec, Trich Para, Trich, Plec	4.9 6.8	6.7	4.9	15.0	7.8	4.1
		RG_LCUT_INV-5	27-Apr-21	Plec, Trich, Rhyac	5.5					
		RG_LCUT_INV-1	12-Jul-21	Para, Chiron, Rhyac	3.6				4.2	
		RG_LCUT_INV-2 RG_LCUT_INV-3	12-Jul-21 12-Jul-21	Para, Chiron, Rhyac Para, Chiron, Rhyac	2.4 4.8	4.2	2.4	5.9		1.3
*	Ĺ.	RG_LCUT_INV-4	12-Jul-21	Plec, Rhyac, Chiron	4.2					
Line Creek	RG_LCUT	RG_LCUT_INV-5 RG LCUT INV-1	12-Jul-21 10-Sep-21	Chiron, Rhyac, Para Chiron, Trich, Plec	5.9 5.7			_	+	
ine ine	RG	RG_LCUT_INV-2	10-Sep-21	Chiron, Plec, Trich	6.2					
_		RG_LCUT_INV-3 RG_LCUT_INV-4	10-Sep-21 10-Sep-21	Chiron, Plec, Trich Chiron, Plec	5.8 7.4	6.2	5.7	7.4	6.3	0.7
		RG_LCUT_INV-5	10-Sep-21	Chiron, Plec, Trich	6.4					
		RG_LCUT_INV-1	1-Dec-21	Plec, Para, Rhyac	4.5					
		RG_LCUT_INV-2 RG_LCUT_INV-3	1-Dec-21 1-Dec-21	Plec, Para, Trich Plec, Para, Trich	3.7	3.7	2.7	4.5	3.7	0.6
		RG_LCUT_INV-4	1-Dec-21	Plec, Para, Chiron	3.9					
		RG_LCUT_INV-5 RG_LILC3_INV-1	1-Dec-21 27-Apr-21	Plec, Para, Trich Para, Chiron, Trich	2.7 6.2					
		RG_LILC3_INV-2	27-Apr-21	Rhyac, Para, Chiron	10.0					
		RG_LILC3_INV-3 RG_LILC3_INV-4	27-Apr-21 27-Apr-21	Para, Rhyac, Chiron Para, Rhyac, Trich	11.0 12.0	10.0	6.2	12.0	9.7	2.2
		RG_LILC3_INV-5	27-Apr-21	Para, Rhyac, Plec	9.4					
		RG_LILC3_INV-1	12-Jul-21	Para, Rhyac, Chiron	6.1					
		RG_LILC3_INV-2 RG_LILC3_INV-3	12-Jul-21 12-Jul-21	Para, Rhyac, Chiron Para, Rhyac, Chiron	6.2 8.8	6.8	6.1	8.8	7.1	1.1
sed	33	RG_LILC3_INV-4	12-Jul-21	Para, Rhyac, Plec	6.8					
Mine-exposed	RG_LILC3	RG_LILC3_INV-5 RG_LILC3_INV-1	12-Jul-21 9-Sep-21	Rhyac, Plec, Chiron Trich	7.5 9.9					
ine-6	RG_	RG_LILC3_INV-2	9-Sep-21	Trich, Rhyac, Plec	8.6	2.2	7.0	44.0	0.0	
Σ		RG_LILC3_INV-3 RG_LILC3_INV-4	9-Sep-21 10-Sep-21	Trich, Oligo, Plec Trich, Plec, Chiron	11.0 7.2	9.9	7.2	11.0	9.3	1.5
		RG_LILC3_INV-5	10-Sep-21	Trich, Plec, Chiron	9.9					
		RG_LILC3_LUM-3 RG_LILC3_INV-1	9-Sep-21 1-Dec-21	Oligo Only Plec, Para, Chiron	15.0 9.5	NA	NA	NA	NA	NA
		RG_LILC3_INV-2	1-Dec-21	Plec, Para, Chiron	4.0					
		RG_LILC3_INV-3	1-Dec-21	Para, Plec, Chiron Para, Plec, Chiron	6.8	8.0	4.0	9.5	7.3	2.1
		RG_LILC3_INV-4 RG_LILC3_INV-5	1-Dec-21 1-Dec-21	Plec, Chiron, Para	8.2 8.0					
		RG_LISP24_INV-1	27-Apr-21	Para, Rhyac, Ephem	7.2					
		RG_LISP24_INV-2 RG_LISP24_INV-3	27-Apr-21 27-Apr-21	Plec, Para, Ephem Para, Plec, Rhyac	7.3 7.6	7.5	7.2	7.8	7.5	0.2
		RG_LISP24_INV-4	27-Apr-21	Rhyac, Ephem, Para	7.5					
		RG_LISP24_INV-5 RG_LISP24_INV-1	27-Apr-21 12-Jul-21	Plec, Para, Ephem Plec, Para, Ephem	7.8 7.2					
		RG_LISP24_INV-2	12-Jul-21	Rhyac, Ephem, Para	5.1					
	4 :	RG_LISP24_INV-3 RG_LISP24_INV-4	12-Jul-21	Plec, Para, Ephem Ephem, Para, Chiron	5.5 5.9	5.9	5.1	7.7	6.3	1.1
	RG_LISP24	RG_LISP24_INV-4 RG_LISP24_INV-5	12-Jul-21 12-Jul-21	Plec, Para, Ephem	7.7					
		RG_LISP24_INV-1	13-Sep-21	Plec, Chiron, Ephem, Trich	6.0					
	R	RG_LISP24_INV-2 RG_LISP24_INV-3	13-Sep-21 13-Sep-21	Plec, Chiron, Ephem, Trich Plec, Chiron, Ephem, Trich	6.5 8.5	8.2	6.0	8.5	7.5	1.2
		RG_LISP24_INV-4	13-Sep-21	Plec, Chiron, Ephem, Trich	8.3	0.2	0.0	0.0	7.0	
		RG_LISP24_INV-5	13-Sep-21	Plec, Chiron, Ephem, Trich	8.2					
		RG_LISP24_INV-1 RG_LISP24_INV-2	30-Nov-21 30-Nov-21	Para, Rhyac, Plec Plec, Rhyac, Para	5.0 6.3					
			-01.07 21			5.6	4.6	7.2	5.7	1.0
		RG_LISP24_INV-3 RG_LISP24_INV-4	30-Nov-21 30-Nov-21	Plec, Ephem, Rhyac Plec, Ephem, Para	4.6 7.2	5.6	4.6	7.2	5.7	1.0

Notes: Abbreviation of taxa was used. Plec = Plecoptera (stonefly). Ephem = Ephemeroptera (mayfly). Trich = Trichoptera (caddisfly). Dipt = Diptera (true flies). Oligo = Oligo (worms). Chiron = Chironomidae (non-biting midge). Tipul = Tipulidae (crane fly). Rhyac = Rhyacophilidae. Para = Parapsyche. Nema = Nematoda. Oligo Only = annelids only samples (which is not included in the analysis of composite-taxa and were collected based on annelids at >5% of the total biomass sample [Golder 2021b]).

Table C.1: Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples Collected from Line Creek and Fording River, Line Creek LAEMP, 2021


	B		O			Seler	nium Concen	tration (mg/k	g dw)	
Waterbo	Area Code	•	Sample Date	Dominant Taxa	Sample	Area Median	Area Minimum	Area Maximum	Area Mean	Area Standard Deviation
		RG_LIDSL_INV-1 RG_LIDSL_INV-2	27-Apr-21 27-Apr-21	Para, Plec, Rhyac Para, Plec, Rhyac	5.0 5.2					
		RG_LIDSL_INV-3	27-Apr-21	Para, Plec, Ephem	5.4	5.2	4.6	5.6	5.2	0.4
		RG_LIDSL_INV-4	27-Apr-21	Para, Plec, Ephem	5.6					
		RG_LIDSL_INV-5 RG_LIDSL_INV-1	27-Apr-21 14-Jul-21	Para, Plec, Ephem Ephem, Chiron, Rhyac	4.6 7.9					
		RG_LIDSL_INV-2	14-Jul-21	Ephem, Chiron, Para	5.8					
	یا ا	RG_LIDSL_INV-3 RG_LIDSL_INV-4	14-Jul-21 14-Jul-21	Ephem, Chiron, Para Ephem, Chiron, Rhyac	7.0 6.2	6.5	5.8	7.9	6.7	0.8
	RG_LIDSL	RG_LIDSL_INV-5	14-Jul-21	Ephem, Chiron, Para	6.5					
	า_อู	RG_LIDSL_INV-1 RG_LIDSL_INV-2	14-Sep-21 14-Sep-21	Plec, Ephem, Trich Plec, Ephem, Trich	7.1					
	~	RG_LIDSL_INV-2	14-Sep-21 14-Sep-21	Plec, Ephem, Trich, Chiron	6.2 7.7	7.1	6.2	7.7	7.0	0.6
		RG_LIDSL_INV-4	14-Sep-21	Plec, Ephem, Trich, Chiron	6.7					
		RG_LIDSL_INV-5 RG_LIDSL_INV-1	14-Sep-21 29-Nov-21	Plec, Ephem, Trich, Chiron Rhyac, Para, Plec	7.5 5.0					
		RG_LIDSL_INV-2	29-Nov-21	Plec, Ephem, Para	6.4					
		RG_LIDSL_INV-3 RG_LIDSL_INV-4	29-Nov-21 29-Nov-21	Para, Plec, Rhyac Plec, Ephem, Para	5.4 4.9	5.4	4.9	6.4	5.6	0.7
		RG_LIDSL_INV-5	29-Nov-21	Rhyac, Plec, Para	6.3					
		RG_LIDCOM_INV-1	29-Apr-21	Para, Ephem, Plec	6.6					
		RG_LIDCOM_INV-2 RG_LIDCOM_INV-3	29-Apr-21 29-Apr-21	Para, Ephem, Plec Para, Ephem, Plec	6.2 6.4	6.4	6.0	7.1	6.5	0.4
		RG_LIDCOM_INV-4	29-Apr-21	Para, Ephem, Rhyac	7.1					
		RG_LIDCOM_INV-5 RG_LIDCOM_INV-1	29-Apr-21 12-Jul-21	Ephem, Para, Plec Ephem, Chiron, Plec	6.0 5.1					
		RG_LIDCOM_INV-2	12-Jul-21	Ephem, Chiron, Rhyac	5.8					
	Σ	RG_LIDCOM_INV-3	12-Jul-21	Ephem, Para, Trich	5.6	5.8	5.1	6.0	5.7	0.3
_	-exposed RG_LIDCOM	RG_LIDCOM_INV-4 RG_LIDCOM_INV-5	12-Jul-21 12-Jul-21	Ephem, Para, Trich Ephem, Chiron, Para	5.8 6.0					
ree	bood	RG_LIDCOM_INV-1	13-Sep-21	Plec, Ephem, Trich	6.7					1.2
Line Creek	Mine-exposed	RG_LIDCOM_INV-2 RG_LIDCOM_INV-3	13-Sep-21 13-Sep-21	Plec, Ephem, Trich Plec, Ephem, Trich	7.4 8.5	6.7	5.4	8.5	6.9	
<u> </u>	Ĕ N	RG_LIDCOM_INV-4	13-Sep-21	Plec, Ephem, Trich	5.4	0.7	0.4	0.0	0.0	
		RG_LIDCOM_INV-5	13-Sep-21	Plec, Ephem Para, Rhyac, Plec	6.3					
		RG_LIDCOM_INV-1 RG_LIDCOM_INV-2	2-Dec-21 2-Dec-21	Plec, Para, Rhyac	5.0 4.8					
		RG_LIDCOM_INV-3	2-Dec-21	Plec, Rhyac, Ephem	6.0	5.0	4.7	6.0	5.2	0.5
		RG_LIDCOM_INV-4 RG_LIDCOM_INV-5	2-Dec-21 2-Dec-21	Plec, Para, Rhyac Plec, Rhyac, Para	4.7 5.4					
		RG_LI8_INV-1	28-Apr-21	Ephem, Plec, Rhyac	6.2					
		RG_LI8_INV-2 RG_LI8_INV-3	28-Apr-21 28-Apr-21	Ephem, Plec, Para Ephem, Plec, Para	7.1 7.0	7.0	6.2	7.5	6.9	0.5
		RG_LI8_INV-4	28-Apr-21	Para, Rhyac, Plec	6.8	7.0	0.2	7.5	0.9	0.5
		RG_LI8_INV-5	28-Apr-21	Para, Ephem, Plec	7.5					
		RG_LI8_INV-1 RG_LI8_INV-2	15-Jul-21 15-Jul-21	Ephem, Rhyac, Plec Ephem, Rhyac, Chiron	7.3 7.3					
		RG_LI8_INV-3	15-Jul-21	Ephem, Rhyac, Plec	6.9	7.3	5.5	8.0	7.0	0.9
		RG_LI8_INV-4 RG_LI8_INV-5	15-Jul-21 15-Jul-21	Ephem, Rhyac, Plec	8.0 5.5					
	<u> </u>	RG_LI8_INV-1	11-Sep-21	Ephem, Rhyac, Para Plec, Trich, Ephem	9.3			9.3	8.0	
	RG_LI8	RG_LI8_INV-2	11-Sep-21	Plec, Trich, Ephem	7.4		7.2			1.0
	€	RG_LI8_INV-3 RG_LI8_INV-4	11-Sep-21 11-Sep-21	Plec, Trich, Ephem Plec, Trich, Ephem	7.2 8.8	7.4 NA				
		RG_LI8_INV-5	11-Sep-21	Plec, Trich, Ephem	7.2					
		RG_LI8_LUM-1 RG_LI8_LUM-2	11-Sep-21 11-Sep-21	Oligo Only Oligo Only	7.9 5.5		NA	NA	NA	NA
		RG_LI8_LUM-3	11-Sep-21	Oligo Only	7.7					
		RG_LI8_INV-1 RG_LI8_INV-2	2-Dec-21 2-Dec-21	Plec, Rhyac, Ephem Rhyac, Plec, Ephem	4.2 6.3					
		RG_LI8_INV-3	2-Dec-21	Plec, Ephem, Rhyac	4.5	6.3	4.2	8.0	6.0	1.7
		RG_LI8_INV-4	2-Dec-21	Rhyac, Plec, Ephem	8.0					
		RG_LI8_INV-5 RG_FRUL_INV-1	2-Dec-21 28-Apr-21	Plec, Rhyac, Ephem Plec, Ephem, Trich	7.2 6.4					
		RG_FRUL_INV-2	28-Apr-21	Plec, Ephem, Dipt	7.5					
		RG_FRUL_INV-3 RG_FRUL_INV-4	28-Apr-21 28-Apr-21	Plec, Ephem, Trich Ephem, Plec, Rhyac	7.1 5.5	7.1	5.5	7.5	6.8	0.9
		RG_FRUL_INV-5	28-Apr-21	Plec, Ephem, Dipt	7.5					
		RG_FRUL_INV-1	14-Jul-21	Plec, Ephem, Dipt	11.0					
		RG_FRUL_INV-2 RG_FRUL_INV-3	14-Jul-21 14-Jul-21	Plec, Ephem, Nema Plec, Ephem, Nema	9.0 9.4	9.4	7.6	11.0	9.4	1.2
	, J	RG_FRUL_INV-4	14-Jul-21	Plec, Ephem, Rhyac	7.6					
	RG_FRUL	RG_FRUL_INV-5 RG_FRUL_INV-1	14-Jul-21 12-Sep-21	Plec, Ephem, Rhyac Plec	9.8 10.0					
	RG	RG_FRUL_INV-2	12-Sep-21	Tipul, Plec	10.0					
		RG_FRUL_INV-3 RG_FRUL_INV-4	12-Sep-21 12-Sep-21	Plec, Ephem Tipul, Plec	7.2 9.9	10.0	7.2	11.0	9.6	1.4
		RG_FRUL_INV-5	12-Sep-21 12-Sep-21	Plec, Tipul, Dipt	9.9					
		RG_FRUL_INV-1	29-Nov-21	Plec, Ephem	7.8					
	0	RG_FRUL_INV-2 RG_FRUL_INV-3	29-Nov-21 29-Nov-21	Plec, Ephem, Tipul Plec, Ephem, Tipul	8.2 7.4	7.8	6.2	9.8	7.9	1.3
Rive	Ose	RG_FRUL_INV-4	29-Nov-21	Plec, Tipul, Dipt	9.8					
ng F	ф ф	RG_FRUL_INV-5 RG FO23 INV-1	29-Nov-21 28-Apr-21	Plec, Dipt, Ephem Ephem, Plec, Rhyac	6.2 9.0					
Fording River	Mine-exposed	RG_F023_INV-1 RG_F023_INV-2	28-Apr-21 28-Apr-21	Ephem, Plec, Rhyac Ephem, Plec, Trich	6.5					
ш	2	RG_FO23_INV-3	28-Apr-21	Plec, Ephem, Rhyac	6.1	6.1	4.5	9.0	6.3	1.7
		RG_FO23_INV-4 RG_FO23_INV-5	28-Apr-21 28-Apr-21	Plec, Ephem, Dipt Plec, Ephem, Trich	4.5 5.3					
		RG_FO23_INV-1	14-Jul-21	Plec, Ephem, Rhyac	9.4					
		RG_FO23_INV-2 RG_FO23_INV-3	14-Jul-21	Plec, Ephem, Rhyac Plec, Ephem, Rhyac	6.9	8.5	6.9	9.4	8.4	0.9
	ξi.	RG_F023_INV-3 RG_F023_INV-4	14-Jul-21 14-Jul-21	Plec, Ephem, Rhyac Plec, Ephem, Rhyac	8.3 8.8	0.0	0.9	9.4	0.4	0.9
	RG-F023	RG_FO23_INV-5	14-Jul-21	Plec, Ephem, Rhyac	8.5					
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	RG_FO23_INV-1 RG FO23 INV-2	12-Sep-21 12-Sep-21	Plec, Ephem Plec, Ephem, Trich	8.1 7.2					
		RG_FO23_INV-2 RG_FO23_INV-3	12-Sep-21 12-Sep-21	Plec, Ephem, Trich	5.8	7.1	5.8	8.1	7.0	0.8
		RG_FO23_INV-4	12-Sep-21	Plec, Ephem	7.0			-	-	
		RG_FO23_INV-5	12-Sep-21	Plec, Ephem	7.1					
		RG_FO23_INV-1 RG_FO23_INV-2	1-Dec-21 1-Dec-21	Plec, Ephem Ephem, Plec, Rhyac	7.7					
		RG_FO23_INV-3	1-Dec-21	Plec, Ephem, Rhyac	6.2	7.7	5.5	8.6	7.1	1.3
		RG FO23 INV-4	1-Dec-21	Ephem, Plec	8.6	i.	1	1		

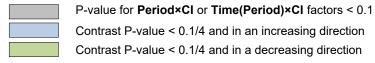
Notes: Abbreviation of taxa was used. Plec = Plecoptera (stonefly). Ephem = Ephemeroptera (mayfly). Trich = Trichoptera (caddisfly). Dipt = Diptera (true flies). Oligo = Oligo (worms). Chiron = Chironomidae (non-biting midge). Tipul = Tipulidae (crane fly). Rhyac = Rhyacophilidae. Para = Parapsyche. Nema = Nematoda. Oligo Only = annelids only samples (which is not included in the analysis of composite-taxa and were collected based on annelids at >5% of the total biomass sample [Golder 2021b]). NA = not applicable.

Table C.2: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations During Each Operational Period^a at RG_LILC3 Area Relative to the Reference (RG_LI24 and RG_SLINE) Areas

		ANOVA M	odel			
	Term	DF	SS ^b	MS ^c	F-Ratio	P-Value
F	Period	5	1.4	0.28	44	<0.001
	CI	1	10	10	1487	<0.001
Pe	Period×CI		4.5	0.89	140	<0.001
Time	e(Period)	20	2.1	0.10	16	<0.001
Time(Period)×CI	20	1.7	0.086	13	<0.001
	Error	510			=	
	Contrasts (P-va	alue and Mag	nitude of D	ifference) ^d		
Period 1	Period 2				P-value	MOD
	AOP (2021_4)				ns	-

	CUITTASIS (F-Vai	ue and Magnitude of Difference)		
Period 1	Period 2		P-value	MOD
	AOP (2021_4)		ns	-
В	AOP (2021_7)		ns	-
ь	AOP (2021_9)		ns	-
	AOP (2021_12)		ns	-
	AOP (2021_4)		<0.001	-9.8 SD
AWTF (2016_9)	AOP (2021_7)		<0.001	-12.0 SD
AVVIF (2016_9)	AOP (2021_9)		<0.001	-9.9 SD
	AOP (2021_12)		<0.001	-12.2 SD
	AOP (2021_4)		<0.001	-9.7 SD
AWTF (2017 4)	AOP (2021_7)		<0.001	-11.9 SD
AVVIF (2017_4)	AOP (2021_9)		<0.001	-9.8 SD
	AOP (2021_12)		<0.001	-12.1 SD
	AOP (2021_4)		<0.001	-6.5 SD
AWTF (2017_9)	AOP (2021_7)		<0.001	-8.7 SD
AVVIF (2017_9)	AOP (2021_9)		<0.001	-6.6 SD
	AOP (2021_12)		<0.001	-9.0 SD

^a Operational periods include: the Before (B), AWTF Operational (AWTF), Initial Operation (IO), Shut Down (SD), Restart (RS), and AWTF with AOP Operational (AOP) Periods.


^b SS = sum of squares of ANOVA model.

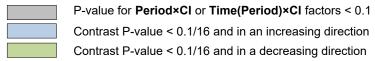
^c MS = mean sum of squares of ANOVA model.

^d Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.3: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations During Each Operational Period^a at RG_LISP24 Relative to the Reference (RG_LI24 and RG_SLINE) Areas

		ANOVA N	lodel				
Те	rm	DF	SS ^b	MS ^c	F-Ratio	P-Value	
Per	riod	3	0.56	0.19	27	<0.001	
C	Cl	1	1.4	1.4	208	<0.001	
Perio	od×CI	3	1.2	0.40	58	<0.001	
Time(Period)		14	1.7	0.12	18	<0.001	
Time(Period)×CI		14	0.82	0.058	8	<0.001	
Er	ror	373	-				
	Contrasts (P-va	lue and Ma	gnitude of D	ifference) ^d			
Period 1	Period 2				P-value	MOD	
	AOP (2021_4)				<0.001	-5.4 SD	
A\A/TE (2017_0)	AOP (2021_7)				<0.001	-7.0 SD	
AWTF (2017_9)	AOP (2021_9)				<0.001	-5.4 SD	
	AOP (2021_12)				<0.001	-7.7 SD	

^a Operational periods include: the Before (B), AWTF Operational (AWTF), Initial Operation (IO), Shut Down (SD), Restart (RS), and AWTF with AOP Operational (AOP) Periods


^b SS = sum of squares of ANOVA model.

^cMS = mean sum of squares of ANOVA model.

^d Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.4: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations During Each Operational Period^a at RG_LIDSL Relative to the Reference (RG_LI24 and RG_SLINE) Areas

		ANOVA Mo	dal			
т	erm	DF	SS ^b	MS ^c	F-Ratio	P-Value
	eriod	5	0.41	0.082	13	<0.001
	Cl	1	0.89	0.89	140	<0.001
Per	iod×CI	5	2.2	0.43	68	<0.001
	(Period)	19	2.1	0.11	18	<0.001
	eriod)×CI	19	1.0	0.050	7.9	<0.001
	Error	501	1.0	0.000	- 7.5	١٥.٥٥١
	Contrasts (P-value		itudo of Dif	foronco) d		
Period 1	Period 2	anu magn	itude oi Dii	ierence)	P-value	MOD
Period i	AOP (2021 4)				0.005	-3.8 SD
	` - /					-3.0 3D
В	AOP (2021_7)				ns	-
	AOP (2021_9)				ns	-
	AOP (2021_12)				0.002	-4.2 SD
	AOP (2021_4)				<0.001	-8.9 SD
AWTF (2016 9)	AOP (2021_7)				<0.001	-8.1 SD
7(0010_0)	AOP (2021_9)				<0.001	-7.2 SD
	AOP (2021_12)				<0.001	-9.3 SD
	AOP (2021_4)				<0.001	-6.4 SD
AWTF (2017 4)	AOP (2021_7)				<0.001	-5.6 SD
AVVIF (2017_4)	AOP (2021_9)				<0.001	-4.7 SD
	AOP (2021_12)				<0.001	-6.8 SD
	AOP (2021_4)				<0.001	-6.8 SD
AWTF (2017 9)	AOP (2021_7)				<0.001	-6.0 SD
AVVIF (2017_9)	AOP (2021_9)				<0.001	-5.1 SD
	AOP (2021_12)				<0.001	-7.2 SD

^a Operational periods include: the Before (B), AWTF Operational (AWTF), Initial Operation (IO), Shut Down (SD), Restart (RS), and AWTF with AOP Operational (AOP) Periods

^b SS = sum of squares of ANOVA model.

^c MS = mean sum of squares of ANOVA model.

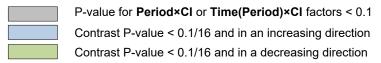
^d Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.5: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations During Each Operational Period^a at RG_LIDCOM Relative to the Reference (RG_LI24 and RG_SLINE) Areas

	ANOVA Model						
Te	rm	DF	SS ^b	MS ^c	F-Ratio	P-Value	
Per	riod	3	0.31	0.10	15	<0.001	
	Cl	1	0.68	0.68	101	<0.001	
Perio	od×CI	3	0.43	0.14	21	<0.001	
Time(Period)		14	1.6	0.11	17	<0.001	
Time(Period)×CI		14	1.1	0.079	12	<0.001	
Er	ror	373	373 -				
	Contrasts (P-valu	ie and Mag	nitude of D	ifference) ^d			
Period 1	Period 2				P-value	MOD	
	AOP (2021_4)				<0.001	-3.4 SD	
AWTF (2017 9)	AOP (2021_7)				<0.001	-4.7 SD	
AVVIF (2017_9)	AOP (2021_9)				<0.001	-3.1 SD	
	AOP (2021_12)				<0.001	-5.3 SD	

P-value for Period×CI or Time(Period)×CI factors < 0.1
Contrast P-value < 0.1/4 and in an increasing direction
Contrast P-value < 0.1/4 and in a decreasing direction

^a Operational periods include: the Before (B), AWTF Operational (AWTF), Initial Operation (IO), Shut Down (SD), Restart (RS), and AWTF with AOP Operational (AOP) Periods.


^b SS = sum of squares of ANOVA model.

^c MS = mean sum of squares of ANOVA model.

^d Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.6: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations During Each Operational Period^a at RG_LI8 Relative to the Reference (RG_LI24 and RG_SLINE) Areas

		ANOVA Mo	odel			
Te	rm	DF	SS ^b	MS ^c	F-Ratio	P-Value
Per	riod	5	0.61	0.12	21	<0.001
C	Cl	1	1.4	1.4	236	<0.001
Perio	od×CI	5	1.5	0.29	50	<0.001
Time(F	Period)	22	2.8	0.13	22	<0.001
Time(Pe	eriod)×CI	22	0.82	0.037	6.4	<0.001
Er	ror	509			-	
	Contrasts (P-valu	ie and Mag	nitude of D	ifference) ^d		
Period 1	Period 2				P-value	MOD
	AOP (2021_4)				ns	-
В	AOP (2021_7)				ns	-
D	AOP (2021_9)				ns	-
	AOP (2021_12)	l			0.004	-3.9 SD
	AOP (2021_4)				<0.001	-5.8 SD
ANATE (2016 D)	AOP (2021_7)				<0.001	-6.4 SD
AWTF (2016_9)	AOP (2021_9)				<0.001	-5.0 SD
	AOP (2021_12)	<u></u>			<0.001	-7.6 SD
	AOP (2021_4)				<0.001	-3.7 SD
^\^/TF /2017 /\	AOP (2021_7)				<0.001	-4.3 SD
AWTF (2017_4)	AOP (2021_9)	1			<0.001	-2.9 SD
	AOP (2021_12)				<0.001	-5.5 SD
	AOP (2021_4)				<0.001	-4.4 SD
AVA/TE (0047_0)	AOP (2021_7)				<0.001	-5.0 SD
AWTF (2017_9)	AOP (2021_9)	•			<0.001	-3.6 SD

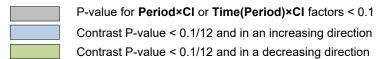
AOP (2021 12)

Notes: "-" = not relevant. Selenium results from RG_LI24 collected on May 3, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

< 0.001

-6.2 SD

^a Operational periods include: the Before (B), AWTF Operational (AWTF), Initial Operation (IO), Shut Down (SD), Restart (RS), and AWTF with AOP Operational (AOP) Periods.


^b SS = sum of squares of ANOVA model.

^c MS = mean sum of squares of ANOVA model.

^d Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.7: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations During Each Operational Period^a at RG_LCUT Area Relative to the Reference (RG_LI24 and RG_SLINE) Areas

		ANOVA N	/lodel			
٦	Term		SS ^b	MS ^c	F-Ratio	P-Value
F	Period	3	0.51	0.17	21	<0.001
	CI	1	0.0026	0.0026	0.32	0.573
Per	riod×CI	3	0.57	0.19	23	<0.001
Time	e(Period)	19	2.5	0.13	16	<0.001
Time(I	Period)×CI	19	2.3	0.12	15	<0.001
	Error	482		,	-	
Contrasts (P-value and Magnitude of Difference) ^d						
Period 1	Period 2				P-value	MOD
	AOP (2021_4)				ns	-
AWTF (2016_9)	AOP (2021_7)			<0.001	-5.0 SD	
AVVII (2010_9)	AOP (2021_9)			ns	-	
	AOP (2021_12)				<0.001	-5.7 SD
	AOP (2021_4)				ns	-
AWTF (2017_4)	AOP (2021_7)				<0.001	-4.9 SD
AWII (2017_4)	AOP (2021_9)				0.002	-2.2 SD
	AOP (2021_12)				<0.001	-5.5 SD
	AOP (2021_4)				ns	-
AWTF (2017_9)	AOP (2021_7)				<0.001	-3.7 SD
AVVII (2017_9)	AOP (2021_9)				ns	-
	AOP (2021_12)				<0.001	-4.4 SD

^a Operational periods include: the Before (B), AWTF Operational (AWTF), Initial Operation (IO), Shut Down (SD), Restart (RS), and AWTF with AOP Operational (AOP) Periods.

^b SS = sum of squares of ANOVA model.

^c MS = mean sum of squares of ANOVA model.

^d Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.8: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LILC3 Within 2021 Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOVA I	Model			
To	erm	DF	SSª	MS ^b	F-Ratio	P-Value
Pe	eriod	5	1.4	0.28	44	<0.001
	CI	1	10	10	1487	<0.001
Peri	od×CI	5	4.5	0.89	140	<0.001
Time(Period)	20	2.1	0.10	16	<0.001
Time(P	eriod)×CI	20	1.7	0.086	13	<0.001
Е	rror	510			-	
	Contrasts (P-va	alue and Ma	gnitude of I	Difference) ^c		
Period 1	Period 2				P-value	MOD
	2021_7				0.004	-2.3 SD
2021_4	2021_9				ns	-
	2021_12				0.001	-2.5 SD
2021 7	2021_9				0.007	2.1 SD
2021_7	2021_12				ns	-
2021_9	2021_12				0.003	-2.3 SD

	P-value for Period×CI or Time(Period)×CI factors < 0.1
	Contrast P-value < 0.1/6 and in an increasing direction
	Contrast P-value < 0.1/6 and in a decreasing direction

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.9: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LISP24 Within 2021 Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOVA M	odel			
Te	rm	DF	SS ^a	MS ^b	F-Ratio	P-Value
Per	riod	3	0.56	0.19	27	<0.001
(Cl	1	1.4	1.4	208	<0.001
Perio	od×CI	3	1.2	0.40	58	<0.001
Time(F	Period)	14	1.7	0.12	18	<0.001
Time(Pe	Time(Period)×CI		0.82	0.058	8	<0.001
Error		373			_	
Contrasts (P-value and Magnitude of Difference) ^c						
Period 1	Period 2				P-value	MOD
	2021_7				ns	-
2021_4	2021_9				ns	-
	2021_12				0.004	-2.2 SD
2021 7	2021_9				ns	-
2021_1	2021_12				ns	-
2021_9	2021_12				0.004	-2.2 SD

P-value for Period×CI or Time(Period)×CI factors < 0.1
Contrast P-value < 0.1/6 and in an increasing direction
Contrast P-value < 0.1/6 and in a decreasing direction

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.10: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LIDSL Within 2021 Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOVA M	odel			
To	erm	DF	SS ^a	MS ^b	F-Ratio	P-Value
Pe	eriod	5	0.41	0.082	13	<0.001
	CI	1	0.89	0.89	140	<0.001
Peri	od×CI	5	2.2	0.43	68	<0.001
Time((Period)	19	2.1	0.11	18	<0.001
Time(P	Time(Period)×CI		1.0	0.050	7.9	<0.001
E	Error				-	
	Contrasts (P-val	ue and Mag	nitude of D	oifference) ^c		
Period 1	Period 2				P-value	MOD
	2021_7				ns	-
2021_4	2021_9				ns	-
	2021_12				ns	-
2021 7	2021_9				ns	-
2021_1	2021_12	1			ns	-
2021_9	2021_12				0.007	-2.1 SD

P-value for Period×CI or Time(Period)×CI factors < 0.1

Contrast P-value < 0.1/6 and in an increasing direction

Contrast P-value < 0.1/6 and in a decreasing direction

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.11: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LIDCOM Within 2021 Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOVA I	Model			,
Т	erm	DF	SSª	MS ^b	F-Ratio	P-Value
Pe	eriod	3	0.31	0.10	15	<0.001
	CI	1	0.68	0.68	101	<0.001
Peri	od×Cl	3	0.43	0.14	21	<0.001
Time	(Period)	14	1.6	0.11	17	<0.001
Time(P	Time(Period)×CI		1.1	0.079	12	<0.001
Error		373			-	
	Contrasts (P-va	alue and Ma	gnitude of	Difference)	С	
Period 1	Period 2				P-value	MOD
	2021_7				ns	-
2021_4	2021_9				ns	-
	2021_12				0.011	-2.0 SD
0004 7	2021_9				ns	-
2021_7	2021_12				ns	-
2021_9	2021_12				0.004	-2.3 SD

P-value for Period×CI or Time(Period)×CI factors < 0.1
Contrast P-value < 0.1/6 and in an increasing direction
Contrast P-value < 0.1/6 and in a decreasing direction

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.12: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LI8 Within 2021 Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOVA M	odel			
Te	rm	DF	SS ^a	MS ^b	F-Ratio	P-Value
Pe	riod	5	0.61	0.12	21	<0.001
(Cl	1	1.4	1.4	236	<0.001
Perio	od×CI	5	1.5	0.29	50	<0.001
Time(F	Period)	22	2.8	0.13	22	<0.001
Time(Pe	Time(Period)×CI		0.82	0.037	6.4	<0.001
Error		509			-	
	Contrasts (P-valu	ue and Mag	nitude of D	ifference) ^c		
Period 1	Period 2				P-value	MOD
	2021_7				ns	-
2021_4	2021_9				ns	-
	2021_12				ns	-
2021 7	2021_9				ns	-
2021_1	2021_12				ns	-
2021_9	2021_12				<0.001	-2.6 SD

P-value for Period×CI or Time(Period)×CI factors < 0.1
Contrast P-value < 0.1/6 and in an increasing direction
Contrast P-value < 0.1/6 and in a decreasing direction

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.13: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LCUT Within 2021 Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOVA I	Model			
T	erm	DF	SSª	MS ^b	F-Ratio	P-Value
Pe	eriod	3	0.51	0.17	21	<0.001
	CI	1	0.0026	0.0026	0.32	0.573
Peri	od×Cl	3	0.57	0.19	23	<0.001
Time	(Period)	19	2.5	0.13	16	<0.001
Time(P	Time(Period)×CI		2.3	0.12	15	<0.001
E	Error		-			
	Contrasts (P-v	alue and Ma	gnitude of	Difference)	С	
Period 1	Period 2				P-value	MOD
	2021_7	1			<0.001	-3.3 SD
2021_4	2021_9				ns	-
	2021_12				<0.001	-4.0 SD
2004 7	2021_9				<0.001	2.7 SD
2021_7	2021_12				ns	-
2021_9	2021_12				<0.001	-3.4 SD

P-value for Period×CI or Time(Period)×CI factors < 0.1
Contrast P-value < 0.1/6 and in an increasing direction
Contrast P-value < 0.1/6 and in a decreasing direction

^a SS = sum of squares of ANOVA model.

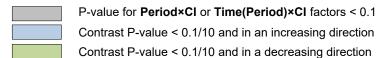
^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.14: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LILC3 Within the AWTF with AOP Operational Period Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOVA	Model			
Т	erm	DF	SSª	MS ^b	F-Ratio	P-Value
Р	eriod	5	1.4	0.28	44	<0.001
	CI	1	10	10	1487	<0.001
Per	iod×Cl	5	4.5	0.89	140	<0.001
Time	(Period)	20	2.1	0.10	16	<0.001
Time(F	Period)×CI	20	1.7	0.086	13	<0.001
E	Error	510			-	
	Contrasts (P-v	alue and Ma	gnitude of	Difference) ^c		
Period 1	Period 2				P-value	MOD
2019_4	2020_4				ns	-
2013_4	2021_4				ns	-
2020_4	2021_4				ns	-
2019_7	2020_7				ns	-
2019_1	2021_7				ns	-
2020_7	2021_7				ns	-
2019_9	2020_9				ns	-
2019_9	2021_9				ns	-
2020_9	2021_9				ns	-
2010 12	2020_12				<0.001	-3.8 SD
2019_12	2021_12				<0.001	-5.5 SD
2020_12	2021_12				ns	-

P-value for Period×CI or Time(Period)×CI factors < 0.1
Contrast P-value < 0.1/12 and in an increasing direction
Contrast P-value < 0.1/12 and in a decreasing direction

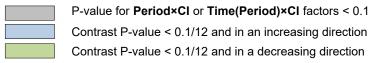

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.15: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LISP24 Within the AWTF with AOP Operational Period Relative to the Reference Areas (RG_LI24 and RG_SLINE)

·		ANOVA I	Model					
To	erm	DF	SSª	MS ^b	F-Ratio	P-Value		
Pe	eriod	3	0.56	0.19	27	<0.001		
	CI	1	1.4	1.4	208	<0.001		
Peri	od×CI	3	1.2	0.40	58	<0.001		
Time((Period)	14	1.7	0.12	18	<0.001		
Time(P	eriod)×CI	14	0.82	0.058	8	<0.001		
E	rror	373 -						
Contrasts (P-value and Magnitude of Difference) ^c								
Period 1	Period 2				P-value	MOD		
2040 4	2020_4				ns	-		
2019_4	2021_4				ns	-		
2020_4	2021_4				ns	-		
2020_7	2021_7				ns	-		
0040 0	2020_9				ns	-		
2019_9	2021_9	7			ns	-		
2020_9	2021_9	1			ns	-		
0040 40	2020_12				<0.001	-2.6 SD		
2019_12	2021_12	=			<0.001	-5.0 SD		
2020 12	2021 12	=			0.002	-2.4 SD		

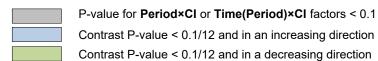

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.16: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LIDSL Within the AWTF with AOP Operational Period Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOVA	Model				
To	erm	DF	SSª	MS ^b	F-Ratio	P-Value	
Pe	eriod	5	0.41	0.082	13	<0.001	
	CI	1	0.89	0.89 0.89 140 <0.0			
Peri	od×CI	5	2.2	0.43	68	<0.001	
Time((Period)	19	2.1	0.11	18	<0.001	
Time(P	eriod)×CI	19	1.0	0.050	7.9	<0.001	
E	Error 501 -						
	Contrasts (F	P-value and M	lagnitude of	Difference)	•		
Period 1	Period 2				P-value	MOD	
2019_4	2020_4]			ns	-	
	2021_4				ns	-	
2020_4	2021_4				ns	-	
2010. 7	2020_7				ns	-	
2019_7	2021_7				ns	-	
2020_7	2021_7	1			ns	-	
2010 0	2020_9				ns	-	
2019_9	2021_9	1			ns	-	
2020_9	2021_9	1			ns	-	
2010 12	2020_12				<0.001	-3.5 SD	
2019_12	2021_12	1			<0.001	-4.1 SD	
2020 12	2021 12	1			ns	_	

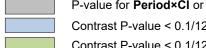

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.17: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LIDCOM Within the AWTF with AOP Operational Period Relative to the Reference Areas (RG_LI24 and RG_SLINE)

	ANOVA Model									
Te	erm	DF	SSª	MS ^b	F-Ratio	P-Value				
Pe	riod	3	0.31	0.10	15	<0.001				
(CI	1	0.68	0.68	101	<0.001				
Perio	od×CI	3	0.43	0.14	21	<0.001				
Time(I	Period)	14	1.6	0.11	17	<0.001				
Time(Pe	eriod)×CI	14	1.1	0.079	12	<0.001				
Er	ror	373			-					
Contrasts (P-value and Magnitude of Difference) ^c										
Period 1	Period 2				P-value	MOD				
2019_4	2020_4				0.007	-1.5 SD				
2019_4	2021_4				ns	-				
2020_4	2021_4				ns	-				
2019_7	2020_7				ns	-				
2019_1	2021_7				ns	-				
2020_7	2021_7				ns	-				
2019 9	2020_9				ns	-				
2019_9	2021_9				ns	-				
2020_9	2021_9				ns	-				
2010 12	2020_12				<0.001	-4.0 SD				
2019_12	2021_12				<0.001	-5.0 SD				
2020_12	2021_12				ns	-				


^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.18: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LI8 Within the AWTF with AOP Operational Period Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOVA I	/lodel					
Те	erm	DF	SS ^a	MS ^b	F-Ratio	P-Value		
Pe	riod	5	0.61	0.12	21	<0.001		
(CI	1	1.4	1.4	236	<0.001		
Perio	od×CI	5	1.5	0.29	50	<0.001		
Time(I	Period)	22	2.8	0.13	22	<0.001		
Time(Pe	eriod)×CI	22	0.82	0.037	6.4	<0.001		
Error 509 -					-			
Contrasts (P-value and Magnitude of Difference) ^c								
Period 1	Period 2				P-value	MOD		
2019_4	2020_4				ns	-		
2019_4	2021_4				ns	-		
2020_4	2021_4				ns	-		
2010. 7	2020_7				ns	-		
2019_7	2021_7				ns	-		
2020_7	2021_7				ns	-		
2010 0	2020_9	_			ns	-		
2019_9	2021_9				ns	-		
2020_9	2021_9				ns	-		
2010 12	2020_12				ns	-		
2019_12	2021_12				<0.001	-3.4 SD		
2020_12	2021_12				0.006	-2.1 SD		

P-value for **Period×CI** or **Time(Period)×CI** factors < 0.1

Contrast P-value < 0.1/12 and in an increasing direction

Contrast P-value < 0.1/12 and in a decreasing direction

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.19: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_FO23 Within the AWTF with AOP Operational Period Relative to the Reference Areas (RG_LI24 and RG_SLINE)

	ANOVA Model									
Te	erm	DF	SSª	MS ^b	F-Ratio	P-Value				
Pe	Period 4 0.38 0.094					<0.001				
(CI	1	2.2	2.2	303	<0.001				
Perio	od×CI	4	0.61	0.15	21	<0.001				
Time(I	Period)	17	1.8	0.11	14	<0.001				
Time(Pe	eriod)×CI	17	1.2	0.072	10	<0.001				
Er	Error 403 -									
Contrasts (P-value and Magnitude of Difference) ^c										
Period 1	Period 2				P-value	MOD				
2019 4	2020_4	1			ns	-				
2019_4	2021_4				ns	-				
2020_4	2021_4				ns	-				
2020_7	2021_7				ns	-				
2010 0	2020_9				0.007	-1.8 SD				
2019_9	2021_9				0.003	-2.0 SD				
2020_9	2021_9	1			ns	-				
2010 12	2020_12				<0.001	-3.6 SD				
2019_12	2021_12	1			<0.001	-4.4 SD				
2020_12	2021_12	1			ns	_				

P-value for **Period×CI** or **Time(Period)×CI** factors < 0.1

Contrast P-value < 0.1/10 and in an increasing direction

Contrast P-value < 0.1/10 and in a decreasing direction

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.20: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LCUT Within the AWTF with AOP Operational Period Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOVA	Model						
T	erm	DF	SSª	MS ^b	F-Ratio	P-Value			
Pe	eriod	3	0.51	0.17	21	<0.001			
	CI	1	0.0026	0.0026	0.32	0.573			
Peri	od×CI	3	0.57	0.19	23	<0.001			
Time	(Period)	19	2.5	0.13	16	<0.001			
Time(P	eriod)×CI	19	2.3	0.12	15	<0.001			
E	rror	482		•	-				
Contrasts (P-value and Magnitude of Difference) ^c									
Period 1	Period 2				P-value	MOD			
2019_4	2020_4				ns	-			
2019_4	2021_4				ns	-			
2020_4	2021_4				ns	-			
2019_7	2020_7				ns	-			
2019_1	2021_7				ns	-			
2020_7	2021_7				ns	-			
2019_9	2020_9				ns	-			
2010_0	2021_9				0.004	-2.0 SD			
2020_9	2021_9				ns	-			
2019_12	2020_12				<0.001	-2.5 SD			
	2021_12				<0.001	-5.4 SD			
2020 12	2021 12				< 0.001	-2.9 SD			

P-value for **Period×CI** or **Time(Period)×CI** factors < 0.1

Contrast P-value < 0.1/12 and in an increasing direction

Contrast P-value < 0.1/12 and in a decreasing direction

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.21: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_FO23 Within 2021 Relative to RG_FRUL (Upstream of Line Creek)

	ANOVA Mo	del					
Term		DF	SSª	MS ^b	F-Ratio	P-Value	
Period		4	0.24	0.059	12	<0.001	
CI		1	0.23	0.23	48	<0.001	
Period×	CI	4	0.095 0.024 5 <0.00				
Time(Peri	od)	16	1.1 0.072 15 <0.00				
Time(Period	d)×CI	16	0.29	0.29 0.018 4 <0.00			
Error		300			=		
Con	trasts (P-value	e and N	lagnitude	of Differe	ence) ^c		
Period 1	Period 2				P-value	MOD	
	2021_7]			ns	-	
2021_4	2021_9				ns	-	
	2021_12				ns	-	
2021 7	2021_9				ns	-	
2021_1	2021_12				ns	-	
2021_9	2021_12				ns	-	

P-value for Period×CI or Time(Period)×CI factors < 0.1
Contrast P-value < 0.1/6 and in an increasing direction
Contrast P-value < 0.1/6 and in a decreasing direction

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

 $^{^{\}rm c}$ Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.22: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations During Each Operational Period^a at RG_FO23 (Downstream of Line Creek) Relative to RG_FRUL (Upstream of Line Creek)

	ANOVA Mode	I							
7	Term Term	DF	SS⁵	MS ^c	F-Ratio	P-Value			
Р	eriod	4	0.24	0.059	12	<0.001			
CI			0.23	0.23	48	<0.001			
Per	riod×CI	4	0.095	0.024	5	<0.001			
Time	e(Period)	16	1.1	0.072	15	<0.001			
Time(F	16	0.29	0.018	4	<0.001				
E	Error	300			-				
Contrasts (P-value and Magnitude of Difference) ^d									
Period 1	Period 2				P-value	MOD			
	AOP (2021_4)				ns	-			
В	AOP (2021_7)				ns	-			
Ь	AOP (2021_9)				ns	-			
	AOP (2021_12)				ns	-			
	AOP (2021_4)				ns	-			
AWTF (2017 4)	AOP (2021_7)				ns	-			
AVVII (2017_4)	AOP (2021_9)				ns	-			
	AOP (2021_12)				ns	-			
	AOP (2021_4)				ns	-			
A)A/TE (0047-0)	AOP (2021_7)				ns	-			
AWTF (2017_9)	AOP (2021_9)				0.002	-2.4 SD			
	AOP (2021_12)				ns	-			

P-value for Period×CI or Time(Period)×CI factors < 0.1

Contrast P-value < 0.1/12 and in an increasing direction

Contrast P-value < 0.1/12 and in a decreasing direction

^a Operational periods include: the Before (B), AWTF Operational (AWTF), Initial Operation (IO), Shut Down (SD), Restart (RS), and AWTF with AOP Operational (AOP) Periods.

^b SS = sum of squares of ANOVA model.

^cMS = mean sum of squares of ANOVA model.

^d Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table C.23: ANOVA Comparison of Benthic Tissue Concentrations at Among Years Before and After at Lab Change at RG_SLINE, 2017 to 2021

ANOVA Mont			Мад	Magnitude of Differences from Base Year ^a					Differences Among Years ^b				
		Month	Before		After		Before			After			
			2017 2018 2019 2020 2021		2021	2017	2018	2019	2020	2021			
Term	P-value	April	Base Year	33	41	84	56	С	В	В	Α	AB	
Year	<0.001	July	-	-	Base Year	7.8	24	-	-	Α	Α	Α	
Month	<0.001	September	Base Year	36	5.5	32	49	В	Α	В	AB	Α	
Year x Month	<0.001	December	-	Base Year	-36	73	84	-	В	С	Α	Α	

Relevant p-value < 0.05

> 20% Decrease in concentration

> 33% Decrease in concentration

> 43% Decrease in concentration

> 50% Decrease in concentration

> 25% Increase in concentration

> 50% Increase in concentration

> 75% Increase in concentration

> 100% Increase in concentration

> 30% Increase in concentration

> 75% Increase in concentration

> 100% Increase or decrease from base year (α = 0.05)

Note: "-" = no data.

^a Magnitude of difference calculated as (Year_i - Base Year)/Base Year x 100% with the significance of the comparison determined using a Tukey's Honestly Significant Difference (HSD) test.

^b Years that do not share a letter were identified as being significantly different in a Tukey's HSD test (α = 0.05).

Table C.24: Dominant Taxa in Composite-Taxa Tissue Samples Collected at RG_SLINE, 2014 to 2021^a

Year	April	July	September ^b	December
2014	-	-	-	-
2015	-	-	-	-
2016	-	-	-	-
2017	-	-	-	-
2018	-	-	Trichoptera, Plecoptera	Plecoptera, Trichoptera
2019	Plecoptera, Trichoptera, Ephemeroptera	-	Trichoptera, Plecoptera	-
2020	Plecoptera, Trichoptera, Ephemeroptera	-	Trichoptera, Ephemeroptera, Plecoptera	Plecoptera, Ephemeroptera, Trichoptera
2021	Ephemeroptera, Plecoptera, Trichoptera	Ephemeroptera, Trichoptera, Plecoptera	Plecoptera, Ephemeroptera, Trichoptera	Plecoptera, Trichoptera, Ephemeroptera

Note: "-" indicates no data available.

^a Dominant taxa were assessed using visual estimates of biomass. Taxa in table represent a summary of taxa dominance across stations.

^b September sampling for composite-taxa tissue was sampled concurrently with Hess sampling (see Table C.23).

Table C.25: Biomass of Major Taxonomic Groups Over Time at RG_SLINE, 2014 to 2021 a

				Hess Samp	le Biomass			
	Ephem	eroptera	Pled	coptera	Trich	optera	Dip	otera
Year	Median Biomass (g/m²)	Median % of Total Biomass						
2014	1.83	44.1	1.25	25.6	0.578	16.8	0.360	10.4
2015	2.84	29.7	3.86	41.0	1.41	17.4	0.724	5.57
2016	1.51	31.8	1.43	25.4	1.26	27.8	0.624	11.8
2017	1.57	32.3	2.28	23.5	3.64	35.3	0.327	4.39
2018	2.25	16.1	1.42	22.7	2.17	22.1	0.304	8.52
2019	2.56	36.9	2.00	24.4	1.47	17.9	0.550	8.48
2020	3.56	35.4	1.54	21.8	2.62	30.4	0.373	9.56
2021	2.19	23.4	4.03	40.0	1.50	15.1	0.440	8.28

^a Biomass samples were collected in September.

Table C.26: Physical Measures and Tissue Selenium Concentrations for Westslope Cutthroat Trout Sampled from Line Creek, 2001 to 2021

AWTF Operation Phase	Waterbody	Area	Year	Capture Location UTM (NAD83, 11U)	Study	Processing Date	Fish ID		Fork Length	Body Weight	Sexª	Age	Tissue Selenium (mg/kg dw)			Recorded Deformities (DELT) ^d	
				Easting Northing				(cm)	(cm)	(g)	_		Muscle	Ovary	Egg ^b	Estimated Ovary ^c	(DELI)
		RG_LI8	2001	654480 5529034		Apr-2001	L1-1	-	34.0	530	М	5	9.2	-	-	-	-
		RG_LI8	2001	654480 5529034		Apr-2001	L1-2	_	32.0	475	М	3	8.1	-	-	-	-
		RG_LI8	2001	654480 5529034		Apr-2001	L1-4	-	34.6	680	М	4	8.5	-	-	-	-
		RG_LI8	2001	654480 5529034		Apr-2001	L1-3	-	36.1	725	F	4	8.4	15	-	-	-
	Line Creek	RG_LI8	2001	654480 5529034	Golder 2005	Apr-2001	L1-5	-	32.9	550	F	4	9.8	16	-	-	-
		RG_LI8	2001	654480 5529034		Apr-2001	L1-6	-	32.5	500	F	5	8.5	16	-	-	-
		RG_LI8	2002	654480 5529034		Apr-2002	LN-1	-	38.5	780	М	7	8.0	-	-	-	-
		RG_LI8	2002	654480 5529034		Apr-2002	LN-2	-	39.0	750	F	7	16	20	-	-	-
		RG_LI8	2002	654480 5529034		Apr-2002	LN-3	-	34.7	615	F	5	7.0	14	-	-	-
		RG_LI8	2002	654480 5529034		Apr-2002	LN-4	-	32.5	480	F	6	8.0	19	-	-	-
		RG_LI8	2002	654480 5529034		Apr-2002	LN-5	-	34.5	550	F	7	7.0	14	-	-	-
Prior to AWTF		RG_LI8	2002	654480 5529034		Apr-2002	LN-6	-	37.8	785	F	6	7.0	14	-	-	-
Operation		RG_LI8	2002	654480 5529034		Apr-2002	LN-7	-	38.5	850	F	7	9.0	16	-	-	-
		RG_LI8	2002	654480 5529034		Apr-2002	LN-8	-	33.6	525	F	6	7.0	13	-	-	-
		RG_LI8	2002	654480 5529034		Apr-2002	LN-9	-	30.1	400	F	5	7.0	14	-	-	-
		RG_LI8	2002	654480 5529034		Apr-2002	LN-10	-	37.8	675	F	6	8.0	14	-	-	-
		RG_LIDSL	2003	659281 5530548	Minnow 2004	Jul-2003	LC-CT1	-	39.1	800	М	6	7.2	-	-	-	-
		RG_LIDSL	2003	659281 5530548		Jul-2003	LC-CT2	-	34.8	700	F	4	6.4	-	-	10	-
		RG_LIDSL	2003	659281 5530548		Jul-2003	LC-CT3	-	31.5	470	F	4	7.4	-	-	12	-
		RG_LI8	2006	657406 5529218	Minnow et al. 2007	Apr-2006	LI8001	-	30.6	435	F	5	7.9	11	-	-	-
		RG_LI8	2006	657406 5529218		Apr-2006	LI8002	-	31.7	427	F	5	7.7	11	-	-	-
		RG_LI8	2006	657406 5529218		Apr-2006	LI8003	-	27.4	288	F	5	7.4	21	-	-	-
		RG_LI8	2006	657406 5529218		Apr-2006	L18004	-	21.4	132	F	6	15	11	-	-	-
		RG_LI8	2006	657406 5529218		Apr-2006	L18005	-	20.5	117	F	5	13	15	-	-	-

Muscle selenium concentration exceeding the site-specific benchmark for WCT of 15.5 mg/kg dw (Nautilus and Interior Reforestation 2011).

Ovary selenium concentration exceeding the Level 1 site-specific benchmark (equivalent of EC₁₀) for WCT of 25 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 2 site-specific benchmark (equivalent of EC₂₀) for WCT of 27 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 3 site-specific benchmark (equivalent of EC50) for WCT of 33 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Notes: "-" = no data recorded; AWTF = Active Water Treatment Facility; LCO = Line Creek Operations; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process.

^a F = female; M = male; U = unknown (sex of fish could not be determined, either because fish was not sufficiently mature or samples were collected non-lethally and sex could not be determined based on non-lethal evaluation of physical characteristics).

b Ripe egg tissue was collected from one individual sampled non-lethally in 2019. Although westslope cutthroat trout spawn in the spring, this female released ripe eggs with minimal abdominal pressure during the collection of physical measures (length and weight).

^c Ovary concentrations were estimated from muscle selenium concentrations based on the average ovary-to-muscle concentration relationship of 1.6:1 presented by Nautilus and Interior Reforestation (2011). Ovary selenium was estimated only for individuals lacking measured egg/ovary concentrations (if female) or if sex was unknown.

^d DELT = Deformities, erosions, lesions, tumors. - = DELT observations were not recorded. DELT observations were initiated in 2017 following the start of AWTF operation.

Table C.26: Physical Measures and Tissue Selenium Concentrations for Westslope Cutthroat Trout Sampled from Line Creek, 2001 to 2021

AWTF Operation Phase	Waterbody	Area	Year	Capture Locat UTM (NAD83, 11U	044	Processing Date	S I Fish ID	Total Length (cm)	Fork Length (cm)	Body Weight	Sexª	Age	Tissue Selenium (mg/kg dw)				Recorded Deformities
				Easting Nort		Date							Muscle	Ovary	Egg ^b	Estimated Ovary ^c	(DELT) ^d
		RG_LI8	2009	657406 5529		Sep-2009	LI8a	-	30.5	435	F	5	12	-	-	18	-
		RG_LI8	2009	657406 5529		Sep-2009	LI8b	-	28.8	327	F	6	11	-	-	17	-
		RG_LI8	2009	657406 5529	Minnow et al. 2011	Sep-2009	LI8c	-	22.1	184	F	6	11	-	-	18	-
		RG_LI8	2009	657406 5529		Sep-2009	LI8d	-	21.2	112	F	4	14	-	-	22	-
Prior to	Line Creek	RG_LI8	2009	657406 5529	218	Sep-2009	LI8e	-	21.3	132	F	4	13	-	-	21	-
AWTF Operation		RG_LILC3	2012	660085 5532)21	24-May-12	LILC3-WCT1	-	21.1	135	F	-	10	-	-	16	-
		RG_LILC3	2012	660085 5532)21	24-May-12	LILC3-WCT2	-	18.2	63	U	-	7.2	-	-	12	-
		RG_LILC3	2012	660085 5532)21 Minnow 2014	24-May-12	LILC3-WCT3	-	18.0	58	U	-	9.2	-	-	15	-
		RG_LILC3	2012	660085 5532)21	24-May-12	LILC3-WCT4	-	17.7	57	U	-	6.8	-	-	11	-
		RG_LILC3	2012	660085 5532)21	1-Jun-12	LILC3-WCT5	-	20.0	79	М	-	6.6	-	-	-	-
	Line Creek	RG_LI8	2017	655320 5529)59	7-Sep-17	LI8-WCT-01	36.7	35.1	645	U	-	6.9	-	-	11	none
		RG_LI8	2017	655320 5529)59	7-Sep-17	LI8-WCT-02	44.6	42.8	1,005	U	-	7.8	-	-	12	slight jaw malformation
		RG_LI8	2017	655320 5529)59	7-Sep-17	LI8-WCT-03	32.1	30.4	382	U	-	7.8	-	-	12	none
		RG_LI8	2017	655320 5529)59	8-Sep-17	LI8-WCT-04	40.1	38.7	750	U	-	7.8	-	ı	12	bite on stomach from another fish
		RG_LI8	2017	655320 5529	059 2017 LCO	8-Sep-17	LI8-WCT-05	31.7	30.5	355	U	-	8.6	-	•	14	none
AWTF		RG_LIDCOM	2017	658185 5529		28-Apr-17	LIDCOM-WCT-01	36.5	35.5	570	U	-	12	-	-	20	none
Operation		RG_LIDSL	2017	659293 5530		26-Apr-17	LIDSL-WCT-01	27.0	26.5	220	U	-	25	-	ı	40	none
		RG_LIDSL	2017	659293 5530	2018b)	8-Sep-17	LIDSL-WCT-01	41.4	39.8	885	U	-	34	-	-	54	none
		RG_LILC3	2017	659892 5531	560	8-Sep-17	LILC3-WCT-02	30.7	29.4	345	U	-	26	-	-	42	bite marks from another fish
		RG_LILC3	2017	659892 5531	560	8-Sep-17	LILC3-WCT-03	26.2	25.3	230	U	-	14	-	-	22	none
		RG_LILC3	2017	659892 5531	560	8-Sep-17	LILC3-WCT-04	27.4	26.2	230	U	-	24	-	-	38	none
		RG_LILC3	2017	659892 5531	560	8-Sep-17	LILC3-WCT-05	23.4	22.2	122	U	-	42	-	-	67	none

Muscle selenium concentration exceeding the site-specific benchmark for WCT of 15.5 mg/kg dw (Nautilus and Interior Reforestation 2011).

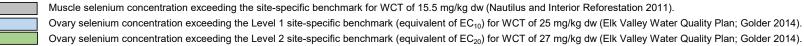
Ovary selenium concentration exceeding the Level 1 site-specific benchmark (equivalent of EC₁₀) for WCT of 25 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 2 site-specific benchmark (equivalent of EC20) for WCT of 27 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 3 site-specific benchmark (equivalent of EC50) for WCT of 33 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Notes: "-" = no data recorded; AWTF = Active Water Treatment Facility; LCO = Line Creek Operations; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process.

^a F = female; M = male; U = unknown (sex of fish could not be determined, either because fish was not sufficiently mature or samples were collected non-lethally and sex could not be determined based on non-lethal evaluation of physical characteristics).


b Ripe egg tissue was collected from one individual sampled non-lethally in 2019. Although westslope cutthroat trout spawn in the spring, this female released ripe eggs with minimal abdominal pressure during the collection of physical measures (length and weight).

^c Ovary concentrations were estimated from muscle selenium concentrations based on the average ovary-to-muscle concentration relationship of 1.6:1 presented by Nautilus and Interior Reforestation (2011). Ovary selenium was estimated only for individuals lacking measured egg/ovary concentrations (if female) or if sex was unknown.

d DELT = Deformities, erosions, lesions, tumors. - = DELT observations were not recorded. DELT observations were initiated in 2017 following the start of AWTF operation.

Table C.26: Physical Measures and Tissue Selenium Concentrations for Westslope Cutthroat Trout Sampled from Line Creek, 2001 to 2021

AWTF Operation Phase	Waterbody	Area	Year	Capture Location UTM (NAD83, 11U)	Study	Processing Date	Fish ID	Total Length	Fork Length	Body Weight	Sexª	Age		Tissue S (mg/k	g dw)	Estimated Ovary ^c	Recorded Deformities (DELT) ^d
				Easting Northing				(cm)	(cm)	(g)			Muscle	Ovary	Egg ^b		
		RG_LIDCOM	2018	658135 5529841		30-Apr-18	LIDCOM-WCT-01	35.2	34.6	450	U	-	14	-	-	22	-
		RG_LIDSL	2018	659232 5530500		20-Aug-18	RG_LIDSL_WCT-2-M_20180820	-	17.8	83	U	-	11	-	-	18	none
		Mid-Canyon	2018	656825 5529140		21-Aug-18	RG_LI8_WCT-2-M_20180821	-	19.5	99	U	-	7.9	-	-	13	none
	Line Creek	Mid-Canyon	2018	656825 5529140		21-Aug-18	RG_LI8_WCT-3-M_20180821	-	30.3	315	U	-	8.7	-	-	14	none
	Line Creek	Mid-Canyon	2018	656825 5529140		21-Aug-18	RG_LI8_WCT-4-M_20180821	-	32.0	414	U	-	9.8	-	-	16	none
		Mid-Canyon	2018	656825 5529140		21-Aug-18	RG_LI8_WCT-5-M_20180821	-	24.6	182	U	-	8.8	-	-	14	none
1		RG_LIDCOM	2018	658185 5529798	LAEMP (Minnow 2019a)	12-Sep-18	RG_LIDCOM_WCT-1-M_20180912	30.4	29.1	345	U	-	25	-	-	40	none
AWTF		RG_LI8	2018	654584 5529020		12-Sep-18	RG_LI8_WCT-1-M_20180912	26.2	24.9	210	U	-	9.5	-	-	15	none
Shutdown	Fording River	RG_FO23	2018	652956 5528903		05-Sep-18	RG_FO23_WCT-1-M_20180905	40.0	38.5	710	U	-	10	-	-	16	none
		RG_FO23	2018	652956 5528903		05-Sep-18	RG_FO23_WCT-2-M_20180905	41.4	38.8	730	U	-	7.2	-	-	12	angling scarring around mouth
		RG_FO23	2018	652956 5528903		05-Sep-18	RG_FO23_WCT-3-M_20180905	34.9	33.4	455	U	-	7.0	-	-	11	none
		RG_FO23	2018	652956 5528903		05-Sep-18	RG_FO23_WCT-4-M_20180905	32.4	30.3	310	U	-	9.5	-	-	15	none
		RG_FO23	2018	652956 5528903		05-Sep-18	RG_FO23_WCT-5-M_20180905	22.7	21.5	121	U	-	7.5	-	-	12	none
		RG_FO23	2018	652874 5528402		05-Sep-18	RG_FO23_WCT-6-M_20180905	42.0	40.2	750	U	-	9.0	-	-	14	none
		RG_FO23	2018	652874 5528402		05-Sep-18	RG_FO23_WCT-7-M_20180905	33.2	31.4	385	U	-	6.0	-	-	10	scarring around mouth
		RG_FO23	2018	652874 5528402		05-Sep-18	RG_FO23_WCT-8-M_20180905	30.8	29.2	315	U	-	13	-	-	21	none
		RG_LILC3	2019	659870 5531576	0040100	05-Sep-19	RG_LILC3_WCT-01	20.7	19.7	98	F	SA	7.9	-	-	13	none
		RG_LILC3	2019	659870 5531576		06-Sep-19	RG_LILC3_WCT-04	41.7	39.2	945	М	Α	10	-	-	16	none
		RG_LIDCOM	2019	658185 5529820		05-Sep-19	RG_LIDCOM_WCT-02	37.5	35.5	625	F	Α	11	-	-	18	none
		RG_LIDCOM	2019	658185 5529820		05-Sep-19	RG_LIDCOM_WCT-03	40.7	39.0	840	М	Α	6.2	-	-	10	none
		RG_LIDCOM	2019	658185 5529820		06-Sep-19	RG_LIDCOM_WCT-05	32.2	30.7	420	М	Α	7.6	-	-	12	none
		RG_LIDCOM	2019	658185 5529820		06-Sep-19	RG_LIDCOM_WCT-06	38.1	36.5	840	М	Α	7.4	-	-	12	none
AWTF with		RG_LIDCOM	2019	658185 5529820		06-Sep-19	RG_LIDCOM_WCT-07	34.3	32.9	545	М	Α	7.9	-	-	13	none
AOP	Line Creek	RG_LIDCOM	2019	658185 5529820	2019 LCO LAEMP	06-Sep-19	RG_LIDCOM_WCT-08	29.9	28.7	360	F	Α	10	-	-	16	none
Operation		RG_LI8	2019	655378 5529048	LAEIVIP	06-Sep-19	RG_LI8_WCT-01	48.5	46.8	1,140	М	Α	7.7	-	-	12	none
		RG_LI8	2019	655378 5529048		06-Sep-19	RG_LI8_WCT-02	33.2	32.0	410	F	Α	7.2	-	-	12	none
		RG_LI8	2019	654671 5529013		07-Sep-19	RG_LI8_WCT-03	36.3	35.0	515	F	Α	8.1	-	-	13	none
		RG_LI8	2019	654671 5529013		07-Sep-19	RG_LI8_WCT-04	25.6	24.5	195	М	Α	6.5	-	-	10	none
		RG_LI8	2019	654671 5529013		07-Sep-19	RG_LI8_WCT-05	44.7	43.3	900	F	Α	20	-	28	-	none
		RG_LI8	2019	655378 5529048		07-Sep-19	RG_LI8_WCT-06	45.2	43.4	980	F	Α	8.2	-	-	13	none
		RG_LI8	2019	655378 5529048		07-Sep-19	RG_LI8_WCT-07	40.6	39	760	М	Α	7.0		-	11	none

Ovary selenium concentration exceeding the Level 1 site-specific benchmark (equivalent of EC₁₀) for WCT of 25 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 3 site-specific benchmark (equivalent of EC50) for WCT of 33 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Notes: "-" = no data recorded; AWTF = Active Water Treatment Facility; LCO = Line Creek Operations; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process.

^a F = female; M = male; U = unknown (sex of fish could not be determined, either because fish was not sufficiently mature or samples were collected non-lethally and sex could not be determined based on non-lethal evaluation of physical characteristics).

b Ripe egg tissue was collected from one individual sampled non-lethally in 2019. Although westslope cutthroat trout spawn in the spring, this female released ripe eggs with minimal abdominal pressure during the collection of physical measures (length and weight).

^c Ovary concentrations were estimated from muscle selenium concentrations based on the average ovary-to-muscle concentration (if female) or if

d DELT = Deformities, erosions, lesions, tumors. - = DELT observations were not recorded. DELT observations were initiated in 2017 following the start of AWTF operation.

Table C.26: Physical Measures and Tissue Selenium Concentrations for Westslope Cutthroat Trout Sampled from Line Creek, 2001 to 2021

AWTF Operation	Waterbody	Area	Year	Capture Location UTM (NAD83, 11U)		Study	Processing	Fish ID	Total Length	Fork Length	Body Weight	Sexª	Age	Tissue Selenium (mg/kg dw)				Recorded Deformities
Phase	-					-	Date							Muscle	Ovary	Egg ^b	Estimated	(DELT) ^d
				Easting	Northing				(cm)	(cm)	(g)				,	-99	Ovary ^c	
		RG_LIDSL	2021	659232	5530500		13-Sep-21	RG_LIDSL_WCT-01	22.7	21.6	125	U	-	16.0	-	-	26	-
		RG_LIDSL	2021	659232	5530500		13-Sep-21	RG_LIDSL_WCT-02	27.2	26.1	216	U	-	6.1	-	-	10	-
		RG_LIDSL	2021	659232	5530500		13-Sep-21	RG_LIDSL_WCT-03	31.4	29.9	395	U	-	18.0	-	-	29	-
	Line Creek	RG_LIDSL	2021	659232	5530500		13-Sep-21	RG_LIDSL_WCT-04	29.4	28.2	315	U	-	17.0	-	-	27	-
		RG_LIDSL	2021	659232	5530500		13-Sep-21	RG_LIDSL_WCT-05	32.7	31.4	440	U	-	17.0	-	-	27	-
		RG_LIDSL	2021	659232	5530500		13-Sep-21	RG_LIDSL_WCT-06	27.4	26.5	256	U	-	7.1	-	-	11	-
		RG_LIDSL	2021	659232	5530500		13-Sep-21	RG_LIDSL_WCT-07	44.5	42.4	1,075	U	-	4.3	-	-	7	-
AWTF with AOP		RG_LIDSL	2021	659232	5530500	2021 LCO	13-Sep-21	RG_LIDSL_WCT-08	29.9	28.7	355	U	-	6.5	-	-	10	-
Operation		RG_FO23	2021	652956	5528903	LAEMP	13-Sep-21	RG_FO23_WCT-01	27.9	26.4	255	U	-	9.0	-	-	14	-
		RG_FO23	2021	652956	5528903		13-Sep-21	RG_FO23_WCT-02	38.4	36.6	595	U	-	8.2	-	-	13	-
		RG_FO23	2021	652956	5528903		13-Sep-21	RG_FO23_WCT-03	45.8	43.7	1,110	U	-	11.0	-	-	18	-
	Fording	RG_FO23	2021	652956	5528903		14-Sep-21	RG_FO23_WCT-04	34.9	33.2	490	U	-	7.6	-	-	12	-
	River	RG_FO23	2021	652956	5528903		14-Sep-21	RG_FO23_WCT-05	32.1	30.9	395	U	-	10.0	-	-	16	-
		RG_FO23	2021	652874	5528402		14-Sep-21	RG_FO23_WCT-06	34.5	32.7	455	U	-	7.0	-	-	11	-
		RG_FO23	2021	652874	5528402		14-Sep-21	RG_FO23_WCT-07	29.9	28.3	305	U	-	6.9	-	-	11	-
		RG_FO23	2021	652874	5528402		14-Sep-21	RG_FO23_WCT-08	31.4	29.9	340	U	-	10.0	-	-	16	-

Muscle selenium concentration exceeding the site-specific benchmark for WCT of 15.5 mg/kg dw (Nautilus and Interior Reforestation 2011).

Ovary selenium concentration exceeding the Level 1 site-specific benchmark (equivalent of EC₁₀) for WCT of 25 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 2 site-specific benchmark (equivalent of EC20) for WCT of 27 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 3 site-specific benchmark (equivalent of EC50) for WCT of 33 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Notes: "-" = no data recorded; AWTF = Active Water Treatment Facility; LCO = Line Creek Operations; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process.

^a F = female; M = male; U = unknown (sex of fish could not be determined, either because fish was not sufficiently mature or samples were collected non-lethally and sex could not be determined based on non-lethal evaluation of physical characteristics).

b Ripe egg tissue was collected from one individual sampled non-lethally in 2019. Although westslope cutthroat trout spawn in the spring, this female released ripe eggs with minimal abdominal pressure during the collection of physical measures (length and weight).

^c Ovary concentrations were estimated from muscle selenium concentrations based on the average ovary-to-muscle concentration relationship of 1.6:1 presented by Nautilus and Interior Reforestation (2011). Ovary selenium was estimated only for individuals lacking measured egg/ovary concentrations (if female) or if sex was unknown.

d DELT = Deformities, erosions, lesions, tumors. - = DELT observations were not recorded. DELT observations were initiated in 2017 following the start of AWTF operation.

Table C.27: Mean and Predicted Westslope Cutthroat Trout Ovary Selenium Tissue Concentrations, LCO LAEMP, 2002 to 2021

Area	Date	Ovary Tissue Selenium	Prediction Interval (mg/kg dw)						
Alea	Date	(mg/kg dw)	Lower (2.5%)	Mean	Upper (97.5%)				
	1-Jun-12	13.3	5.24	11.0	23.1				
RG_LILC3	1-Sep-17	42.4	5.26	11.1	23.3				
	1-Sep-19	12.6	5.24	11.0	23.1				
	1-Apr-17	40.2	5.23	11.0	23.1				
DC LIDGI	1-Sep-17	54.4	5.23	11.0	23.1				
RG_LIDSL	1-Aug-18	17.6	5.32	11.2	23.6				
	1-Sep-21	18.4	5.24	11.0	23.1				
DC LIDCOM	1-Sep-18	40.0	5.33	11.2	23.7				
RG_LIDCOM	1-Sep-19	16.8	5.24	11.0	23.1				
	1-Apr-02	15.3	5.25	11.0	23.0				
	1-Apr-06	14.0	5.24	11.0	23.2				
	1-Sep-09	19.4	5.24	11.0	23.1				
RG_LI8	1-Sep-17	12.4	5.24	11.0	23.1				
	1-Aug-18	14.1	5.23	11.0	23.1				
	1-Sep-18	15.2	5.30	11.2	23.5				
	1-Sep-19	16.4	5.24	11.0	23.1				
	1-May-09	15.6	5.24	11.0	23.1				
RG_FO23	1-May-12	13.2	5.24	11.0	23.1				
NG_FO23	1-Sep-18	13.8	5.25	11.0	23.1 23.1 23.1 23.6 23.1 23.7 23.1 23.0 23.2 23.1 23.1 23.1 23.5 23.1				
	1-Sep-21	13.9	5.23	11.0	23.1				

Mean Concentration exceeds upper predicted limit.

Mean Concentration is below lower predicted limit.

Notes: WCT ovary tissue selenium concentrations for seven individual replicates are not shown as concurrent water samples were not available. mg/kg dw = milligrams per kilogram dry weight.

Table C.28: Concentrations of Selenium Species Measured in Water Samples from Line Creek and Fording River, 2021

						Φ		elenium S _l		/L)	c)		
Waterbody		Teck Water Station Code	Sample Date	Selenate	Selenite	Dimethylselenoxid	Methylseleninic Aci	Selenocyanate	Selenomethionine	Selenosulphate	Methaneselenoni Acid	Unknown Specie	Sum of Species
	_	LC_LC1 (RG_LI24)	7-Apr-21	2.03	0.021	<0.01	<0.01 <0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
		LC_LC1 (RG_LI24)	13-Jul-21	2.04	0.015	<0.01	<0.01	<0.01	<0.01	<0.01	-	<0.01	2.06
Line Creek		LC_LC1 (RG_LI24) LC LC1 (RG LI24)	16-Sep-21 25-Oct-21	3.06	0.02 0.028	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01	
		LC_LC1 (RG_LI24)	4-Nov-21	2.88	0.032	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Reference	LC_LC1 (RG_LI24) LC_SLC (RG_SLINE)	18-Jan-21	1.59	0.022	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
		LC_SLC (RG_SLINE)	6-Apr-21	1.46	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
		LC_SLC (RG_SLINE)	6-Jul-21	0.766	0.035	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.80
	_	= \ = /									-		
		LC_SLC (RG_SLINE)	12-Oct-21	1.43	0.026	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
		LC_LCUSWLC (RG_LCUT)	5-Jan-21	56.4	0.079	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
					0.095 0.085	<0.01 <0.01	<0.01 <0.01						
		LC_LCUSWLC (RG_LCUT)	25-Jan-21	60	0.091	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	60.0
	_	LC_LCUSWLC (RG_LCUT) LC_LCUSWLC (RG_LCUT)	1-Feb-21 8-Feb-21	61.1 62.1	0.096 0.0815	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01		
		LC_LCUSWLC (RG_LCUT)	22-Feb-21	62	0.103	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
		LC_LCUSWLC (RG_LCUT)	10-Mar-21	67.4	0.328	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		67.7
		LC_LCUSWLC (RG_LCUT)	16-Mar-21	64.8 52.6	0.091	<0.01	<0.01				<0.01		
	_	LC_LCUSWLC (RG_LCUT)	29-Mar-21	40.8	0.073	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	40.8
	_	_									<0.01 <0.01		
	_	LC_LCUSWLC (RG_LCUT)	20-Apr-21	39.7	0.053	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	39.7
	_	LC_LCUSWLC (RG_LCUT) LC_LCUSWLC (RG_LCUT)	4-May-21	37.2	0.075	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
		LC_LCUSWLC (RG_LCUT)	11-May-21	25 31.3	0.084	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
		LC_LCUSWLC (RG_LCUT)	27-May-21	21.6	0.076	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
					0.097	<0.01 <0.01	<0.01 <0.01				<0.01 <0.01		
		LC_LCUSWLC (RG_LCUT)	14-Jun-21	23.4	0.062	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	23.
	_	_ \ /	21-Jun-21 28-Jun-21	22.5 25.2	0.074 0.082	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01		
	_	LC_LCUSWLC (RG_LCUT)	6-Jul-21	28.9	0.079	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		28.
	_	LC_LCUSWLC (RG_LCUT)	20-Jul-21	31.8	0.08	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
		_ \ _ /	28-Jul-21 4-Aug-21	38.8	0.058	<0.01	<0.01				<0.01		
		LC_LCUSWLC (RG_LCUT)	10-Aug-21	33.7	0.071	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	33.7
	_	_ ` _ /	•	40.2 30.3	0.095 0.088	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01		
		LC_LCUSWLC (RG_LCUT)	31-Aug-21	32.5	0.085	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
		LC_LCUSWLC (RG_LCUT)	10-Sep-21	51.3	0.078	<0.01	<0.01	<0.01	<0.01	<0.01	-		
		LC_LCUSWLC (RG_LCUT)	14-Sep-21 16-Sep-21		0.074		<0.01 <0.01				<0.01	<0.01	
		LC_LCUSWLC (RG_LCUT)	20-Sep-21	43.4	0.073	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	43.4
	Mine-		27-Sep-21 5-Oct-21	43.4	0.097 0.105	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01		 <0.01 	
геек	exposed	LC_LCUSWLC (RG_LCUT)	14-Oct-21	41.2	0.112	<0.01	<0.01	<0.01	<0.01	<0.01			41.3
		LC_LCUSWLC (RG_LCUT)	25-Oct-21	44.1	0.111	<0.01	<0.01	<0.01	<0.01	<0.01			
	_	LC_LCUSWLC (RG_LCUT)	1-Nov-21	48.3	0.151	<0.01	<0.01	<0.01	<0.01	<0.01			
	_	LC_LCUSWLC (RG_LCUT)	16-Nov-21	49.7	0.119	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	49.
	_	_ ` _ /		54.1 44	0.099	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01			
		LC_LCUSWLC (RG_LCUT)	1-Dec-21	49.4	0.097	<0.01	<0.01	<0.01	<0.01	<0.01			
		LC_LC3 (RG_LILC3)	5-Jan-21	38.2	0.132	0.025	<0.01	<0.01	<0.01	<0.01	0.235		
		LC_LC3 (RG_LILC3)	11-Jan-21	39.6 45.2	0.523	0.021	<0.01	<0.01	<0.01	<0.01			
LC SLC (RG SLINE)	<0.01	<0.01	<0.01	<0.01	0.284	0.03	42.						
	_	_ ` _ /											
		C. CLE RG LED Page 2 20. 5027 A011 A0											
	Teck Water Station Code Sample Debt Part Part												
		LC_LC3 (RG_LILC3)	Bample B	<0.01	42.								
							+						
		LC_LC3 (RG_LILC3)	20-Apr-21	38.4	0.317	0.019	<0.01	<0.01	The color The	38.			
		= \ ; = /											
		LC_LC3 (RG_LILC3)	11-May-21	42.8	0.177	<0.01	0.012	<0.01	<0.01	<0.01	0.023	<0.01	43.
	-	LC_LC3 (RG_LILC3)	25-May-21	32.2	0.168			<0.01		<0.01			
		LC_LC3 (RG_LILC3)	1-Jun-21	28.8	0.158		<0.01		<0.01				28.
		LC_LC3 (RG_LILC3)	15-Jun-21	29.3	0.093	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	29.
						1							
		LC_LC3 (RG_LILC3)	6-Jul-21	45.4	0.098	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	45.
		_ (_ /											

Note: "-" indicates that data is not available or was not measured.

Table C.28: Concentrations of Selenium Species Measured in Water Samples from Line Creek and Fording River, 2021

Treat Water Button Code			T					Se	elenium S	pecies (ua	/L)			.01 33.71				
	Waterbody		Teck Water Station Code	•	Selenate	Selenite	Dimethylselenoxide	Acid				Methaneselenonic Acid	Unknown Species	Sum of Species				
C. C. C. C. C. C. C. C.			_ \ _ /															
C. C. P. C. C. P. C. C.			= \ - /															
C. C. Gr. D. C. C. C. C. C. C. C			LC_LC3 (RG_LILC3)	31-Aug-21	33				COD COD									
C. C. Graph C. C. C. C. C. C. C. C																		
C. C. Price L. C. C. C. C. C. C. C.			LC_LC3 (RG_LILC3)	14-Sep-21		0.209	0.012	<0.01	<0.01	<0.01	<0.01			37.55				
C. C. C. C. C. C. C. C.			_ \ _ /															
10.123 10.00 10.			= \ - /															
C. C. 20 G. L. C. 20 G. 20 C. 20			_ \ _ /															
LC LCD (Fig. LLCS) Feb. 10. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12			= \ - /															
LC CLORE (LLCS) 19-Nov-21 857 0278 0201 0201 0201 0201 0201 0201 0201 020			= \ - /															
Line																		
Inc. Care Registration Care Service 428 0.719 0.010 0.01			_ \ _ /															
W. D.C. BYSELER (1972) 27 Apr 21 331 224 403 405 405 405 405 405 405 405 328			= \ - /															
Mill DQP 9974 (RG LISPIC) 150-base 225 0.08 0.091 0.001 0.																		
William Will			,															
Li_LC_COSSICC Complanes (Right Disk) Salane 2 346 0.041 0.011 0.012 0.011 0.011 0.011 0.015 0.011 0.01			WL_DCP_SP24 (RG_LISP24)		29.5				<0.01					29.67				
L. CLOSSICC Complanency RG UDSL 15-jan-21 37.9 39.81 50.91																		
LC LCOSSICC (Complanee) (RG LDSI) 25-bar-2 309 0.391 0.015 0.01 0.011 0.011 0.011 0.011 0.015 37.30			LC_LCDSSLCC (Compliance) (RG_LIDSL)	11-Jan-21	37.9	0.361	<0.01	0.032	<0.01					38.34				
LC_LCOSSLCC (Complaners) (R) LUSS), 15-86-27 389 0.395 0.011																		
LC_LCDSSLCC (Complaner) (RC_LDSSL) 23 Feb. 24 As 2			LC_LCDSSLCC (Compliance) (RG_LIDSL)	1-Feb-21	36.9	0.399	<0.01	0.018	<0.01	<0.01	<0.01	0.041	<0.01	37.36				
LC_LCDSSLCC (Compliance) (RC_LDSS), Subar2 43,3 0.29 0.01 0.01 0.01 0.01 0.068 0.011 45,71																		
LC_CLOSSLCC (Complanen) PRG_LUSIS, 1548-621 47.1 0.32 40.01 40.01 40.01 40.01 0.001 0.003 40.01 42.66			LC_LCDSSLCC (Compliance) (RG_LIDSL)	2-Mar-21	43.3	0.29	<0.01	0.016	<0.01	<0.01	<0.01	0.026	<0.01	43.63				
C. CLOSSLCC (Complanen) (RG. LIDSL) 3544a-71 42.4 0.238 40.01 40.0																		
C. CLOSISLOC (Compliance) [RG LDISL) 5-Apr-21 37.5 0.22 40.01 0.013 40.01 40.01 40.01 0.031 40.01 37.78 1.0			LC_LCDSSLCC (Compliance) (RG_LIDSL)	23-Mar-21		0.236		<0.01	<0.01	<0.01	<0.01			42.66				
C. L.COSSICC (Complane) (RG LUSS), 15Apr.21 39.3 0.297 4001 0.013 4001 4001 4001 0.0025 4001 39.55																		
C. CLOSSICC Complanne (RG LUSS) 2-App-27 36 0.189 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 285 0.188 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 285 0.188 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 285 0.188 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 285 0.188 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 183 0.077 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 183 0.077 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 183 0.098 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 193 0.098 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 193 0.098 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 193 0.098 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 193 0.098 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 193 0.098 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 193 0.098 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 193 0.098 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 193 0.098 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 193 0.098 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 193 0.098 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 193 0.098 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 193 0.098 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 193 0.098 IC. CLOSSICC Complanne (RG LUSS) 1-App-27 193 0.098 IC. CLOSSICC Compl			LC_LCDSSLCC (Compliance) (RG_LIDSL)	13-Apr-21	39.3	0.207								39.55				
LC_CCOSSLCC (Complance) [RG_UDSL] 1-May-27] 28.5 0.148																		

Note: "-" indicates that data is not available or was not measured.

Table C.28: Concentrations of Selenium Species Measured in Water Samples from Line Creek and Fording River, 2021

Waterbody							Sc	elenium S	pecies (µg	/L)			
		Teck Water Station Code	Sample Date	Selenate	Selenite	Dimethylselenoxide	Methylseleninic Acid	Selenocyanate	Selenomethionine	Selenosulphate	Methaneselenonic Acid	Unknown Species	Sum of Species
		LC_LC4 (RG_LI8)	25-May-21	14.4	0.082	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	14.48
		LC_LC4 (RG_LI8)	1-Jun-21	11.8	0.125	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	11.93
		LC_LC4 (RG_LI8)	8-Jun-21	17.6	0.093	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	17.69
	_	LC_LC4 (RG_LI8)	14-Jun-21	13.7	0.045	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		13.75
	_	LC_LC4 (RG_LI8)	22-Jun-21	16.8	0.043	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	16.84
		LC_LC4 (RG_LI8)	29-Jun-21	20.4	0.069	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		20.47
		LC_LC4 (RG_LI8)	6-Jul-21	21.3	0.047	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
		LC_LC4 (RG_LI8)	15-Jul-21	21.1	0.041	<0.01	<0.01	<0.01	<0.01	<0.01	-		21.14
		LC_LC4 (RG_LI8)	20-Jul-21	22.4	0.063	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	-	LC_LC4 (RG_LI8)	28-Jul-21	32.4	0.036	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	-	LC_LC4 (RG_LI8)	4-Aug-21	22.7	0.062	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	ŀ	LC_LC4 (RG_LI8)	9-Aug-21	22.3	0.098	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01 22.76 <0.01 22.40 <0.01 27.06 <0.01 21.76 <0.01 23.80 <0.01 27.05 <0.01 24.66
		LC_LC4 (RG_LI8)	16-Aug-21	27	0.058	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01		
	F	LC_LC4 (RG_LI8) LC_LC4 (RG_LI8)	24-Aug-21 31-Aug-21	1 23.6 0.204 <0.01 <0.01 <0.01 <	<0.01	<0.01	<0.01						
Line	Mine-	LC_LC4 (RG_LI8)	8-Sep-21				1 <0.01 <0.01	<0.01	<0.01	<0.01			
Creek	exposed	LC LC4 (RG LI8)	11-Sep-21	24.6	0.055	<0.01	<0.01	<0.01	<0.01	<0.01	-0.01		
		LC LC4 (RG LI8)	16-Sep-21	28	0.048	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	01 <0.01	
	-	LC LC4 (RG LI8)	20-Sep-21	27.6	0.07	<0.01	<0.01	<0.01	<0.01	<0.01 <0.01			
	ŀ	LC LC4 (RG LI8)	27-Sep-21	30.7	0.04	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		30.74
		LC LC4 (RG LI8)	5-Oct-21	26.6	0.088	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		26.69
	F	LC LC4 (RG LI8)	13-Oct-21	26.3	0.097	<0.01	<0.01	<0.01	<0.01	<0.01			26.40
	F	LC_LC4 (RG_LI8)	18-Oct-21	26.5	0.091	<0.01	<0.01	<0.01	<0.01	<0.01	0.011		26.60
	F	LC LC4 (RG LI8)	25-Oct-21	26.8	0.093	<0.01	<0.01	<0.01	<0.01	<0.01	0.011	<0.01	26.90
	ŀ	LC LC4 (RG LI8)	1-Nov-21	29.3	0.067	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	29.37
	ŀ	LC_LC4 (RG_LI8)	8-Nov-21	29.3	0.068	<0.01	<0.01	<0.01	<0.01	0.014	<0.01	<0.01	29.38
	Ē	LC_LC4 (RG_LI8)	16-Nov-21	18.1	0.112	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	18.21
	ļ	LC_LC4 (RG_LI8)	22-Nov-21	31.1	0.072	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	31.17
	Ī	LC_LC4 (RG_LI8)	29-Nov-21	24.7	0.075	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01 <0.01	24.78	
		LC_LC4 (RG_LI8)	2-Dec-21	19.3	0.074	<0.01	<0.01	<0.01	<0.01	<0.01	-	<0.01	19.37
		LC_LC4 (RG_LI8)	14-Dec-21	29.3	0.088	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	29.39
	<u> </u>	LC_LC6 (RG_FRUL)	28-Apr-21	50.6	0.218	<0.01	0.0155	<0.01	<0.01	<0.01	-		50.83
		LC_LC6 (RG_FRUL)	14-Jul-21	35.8	0.251	0.013	0.018	<0.01	<0.01	<0.01	-	<0.01	36.08
		LC_LC6 (RG_FRUL)	12-Sep-21	48.1	0.399	0.013	0.021	<0.01	<0.01	<0.01	-		48.53
		LC_LC6 (RG_FRUL)	30-Nov-21	59.5	0.345	<0.01	0.013	<0.01	<0.01	<0.01	-		59.86
		LC_LC5 (RG_FO23)	5-Jan-21	42.8	0.154	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	42.95
Fording	Mine-	LC_LC5 (RG_F023)	6-Apr-21	56.5	0.199	<0.01	<0.01	<0.01	<0.01	0.018	<0.01		
River	exposed	LC_LC5 (RG_FO23)	28-Apr-21	48	0.211	<0.01	0.016	<0.01	<0.01	<0.01	-		
	-	LC_LC5 (RG_FO23)	14-Jul-21	30.8	0.194	<0.01	0.016	<0.01	<0.01	<0.01	-0.01		
	ļ	LC_LC5 (RG_FO23) LC_LC5 (RG_FO23)	17-Aug-21	32.9 35.6	0.316 0.248	<0.01 <0.01	<0.01 0.012	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01		
	-	LC_LC5 (RG_F023) LC_LC5 (RG_F023)	24-Aug-21 12-Sep-21	40.8	0.248	<0.01	0.012	<0.01	<0.01	<0.01	<0.01		41.14
	-	LC_LC5 (RG_F023) LC LC5 (RG F023)	12-Sep-21 12-Oct-21	40.8	0.322	<0.01	<0.015	<0.01	<0.01	<0.01	<0.01		41.14
		LC_LC5 (RG_F023) LC LC5 (RG F023)	12-Oct-21	44.1	0.238	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		42.56
	Mine-	LO_LOJ (NG_FO23)	1-066-21	44.1	0.230	~ 0.01	NO.01	\U.U1	\U.U1	\U.U1	<u> </u>	\U.U1	44.34

Note: "-" indicates that data is not available or was not measured.

APPENDIX D OTHER INFLUENCES

APPENDIX D OTHER INFLUENCES

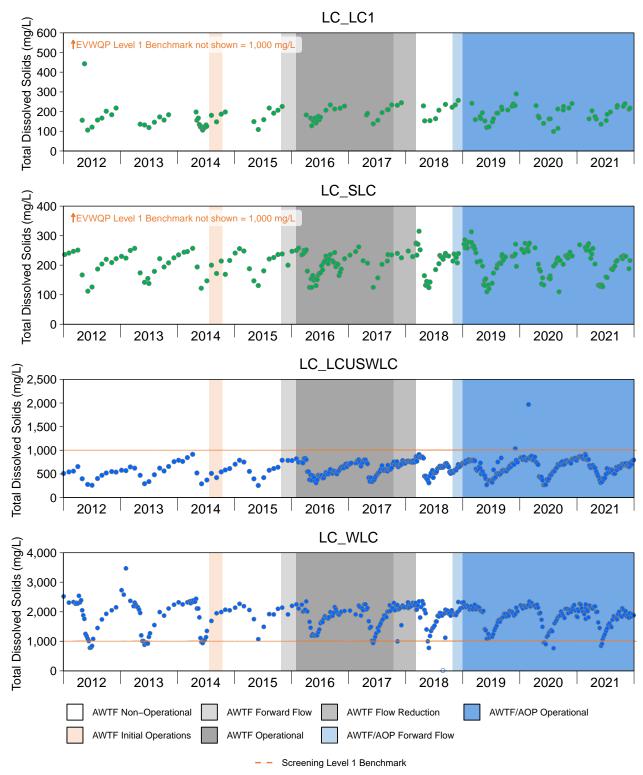


Figure D.1: Time Series Plots for Total Dissolved Solids Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

Page 1 of 3

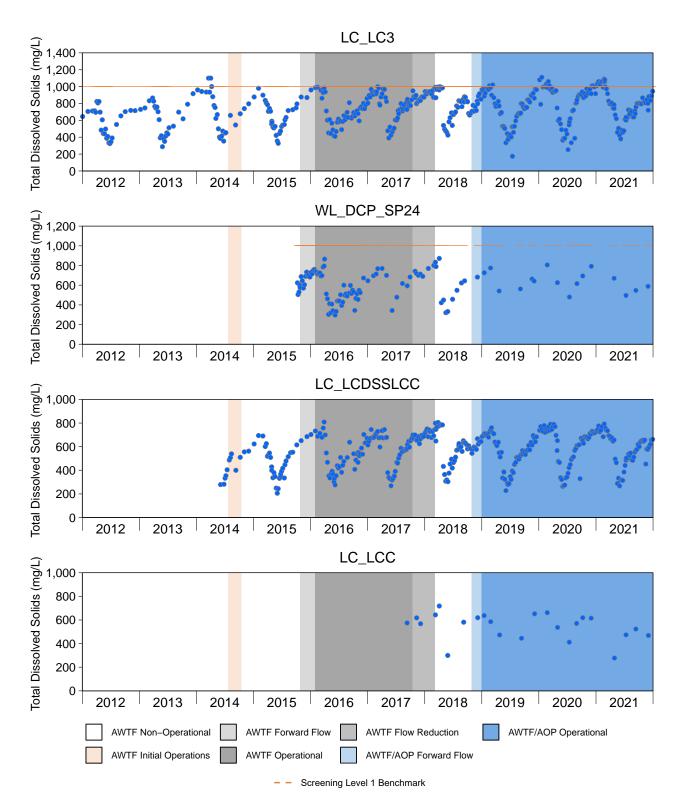


Figure D.1: Time Series Plots for Total Dissolved Solids Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

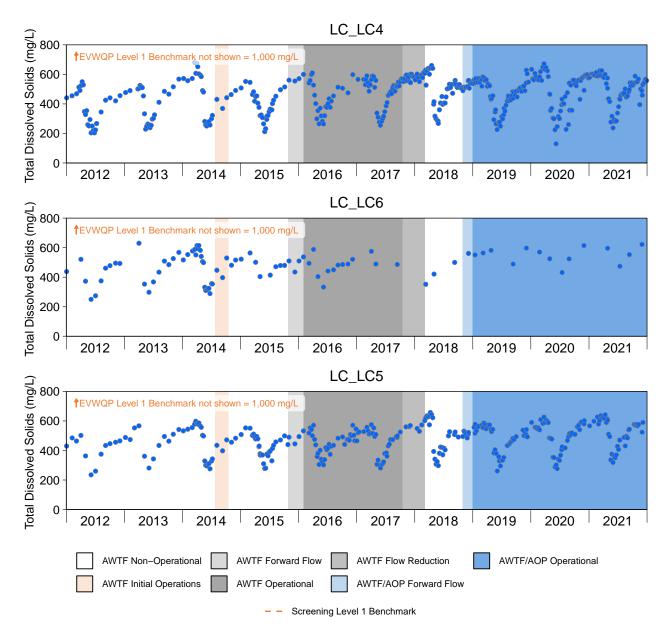


Figure D.1: Time Series Plots for Total Dissolved Solids Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

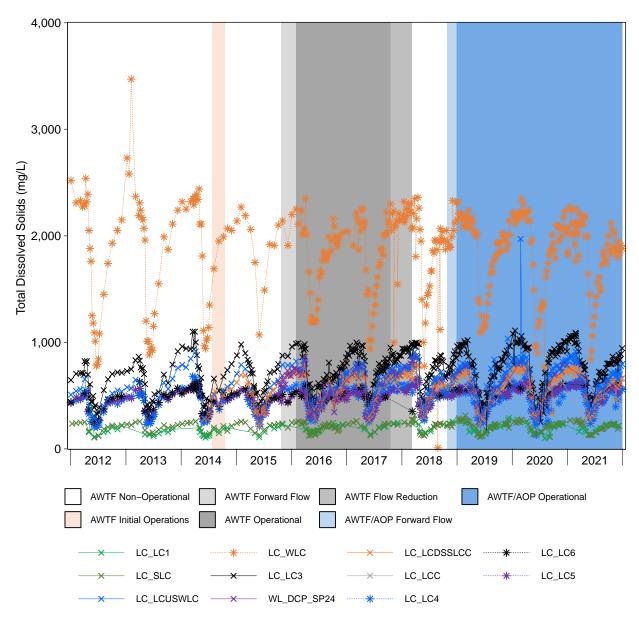


Figure D.2: Time Series Plots for Aqueous Total Dissolved Solids Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRL = 10 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine –exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

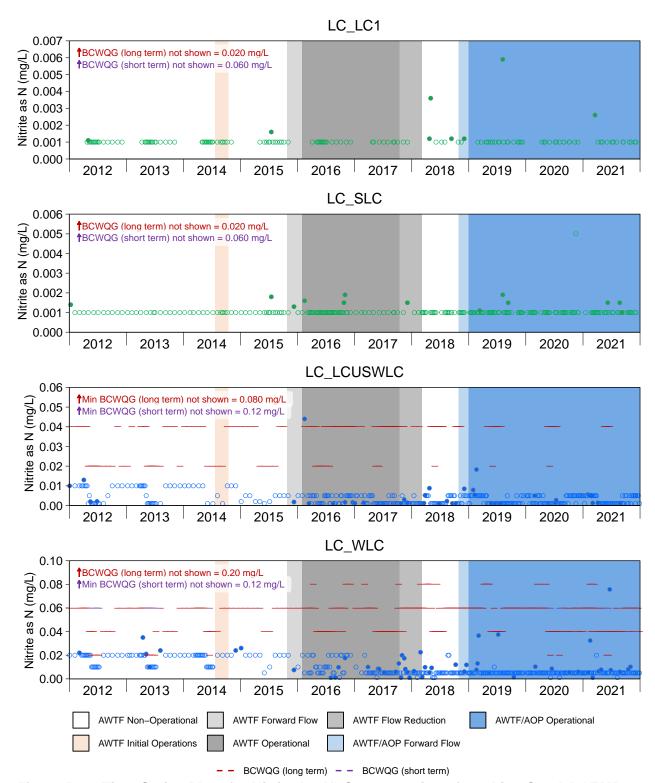


Figure D.3: Time Series Plots for Nitrite (as N) Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water chloride concentrations. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG LCUT has been monitored since Sept 2017.

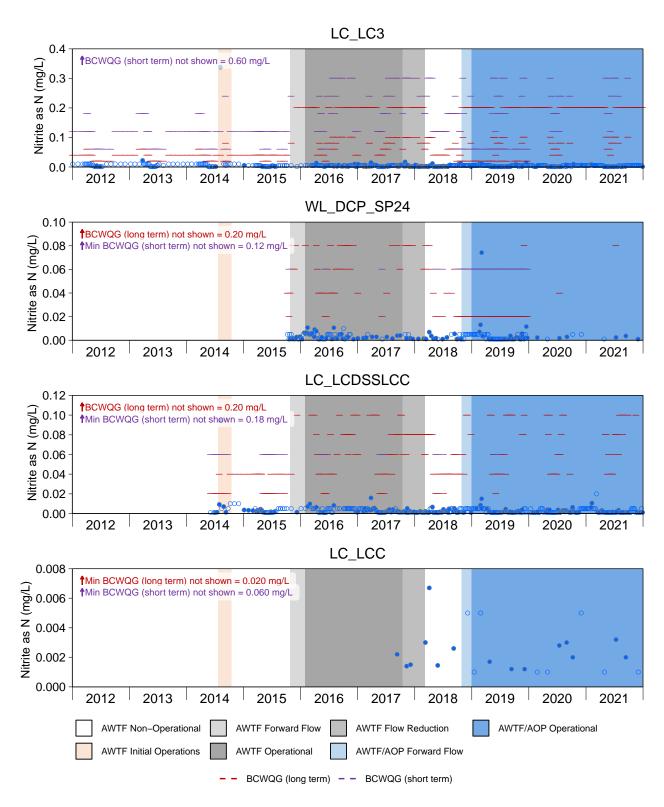


Figure D.3: Time Series Plots for Nitrite (as N) Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water chloride concentrations. Constituent was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

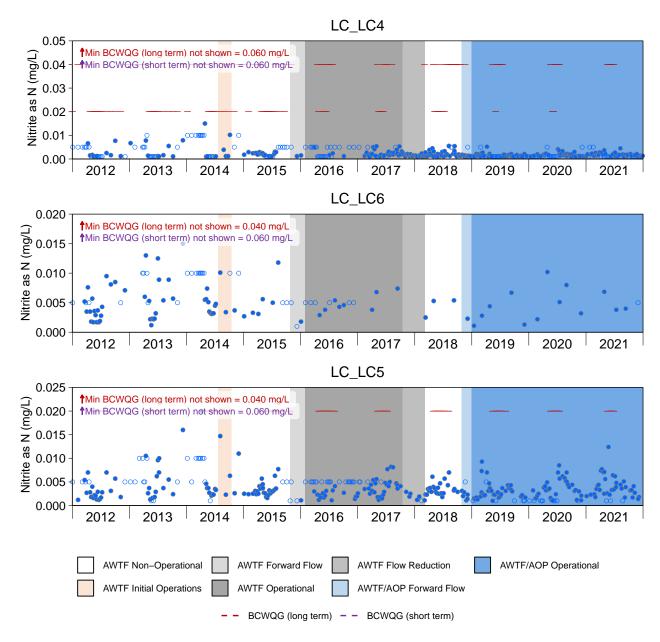


Figure D.3: Time Series Plots for Nitrite (as N) Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water chloride concentrations. Constituent was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

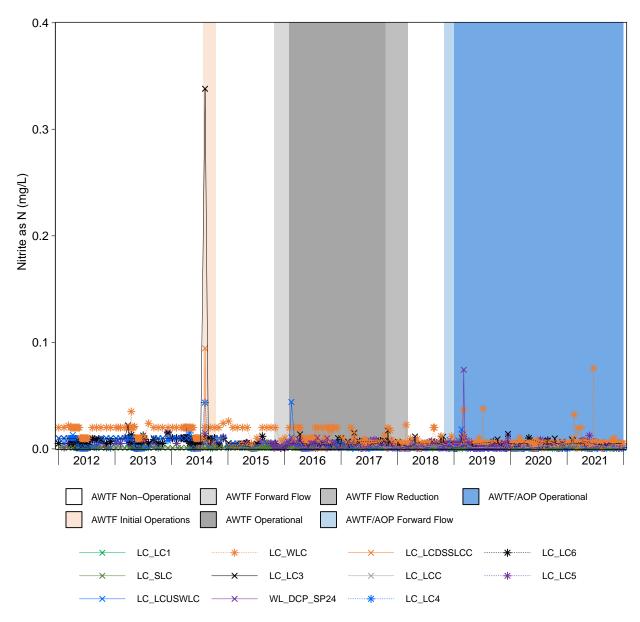


Figure D.4: Time Series Plots for Aqueous Nitrite (as N) Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRL ranged from 0.0010 to 0.020 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since September 2017.

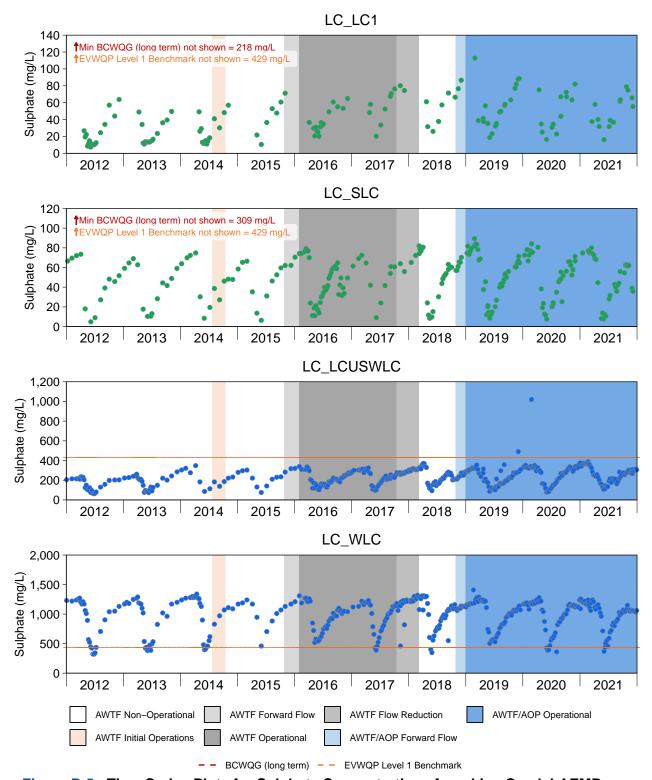


Figure D.5: Time Series Plots for Sulphate Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Guidelines are dependent on water hardness. EVWQP Level 1 Benchmark is shown in plots where the EVWQP Level 1 Benchmark and the BCWQG are equal. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

Page 1 of 3

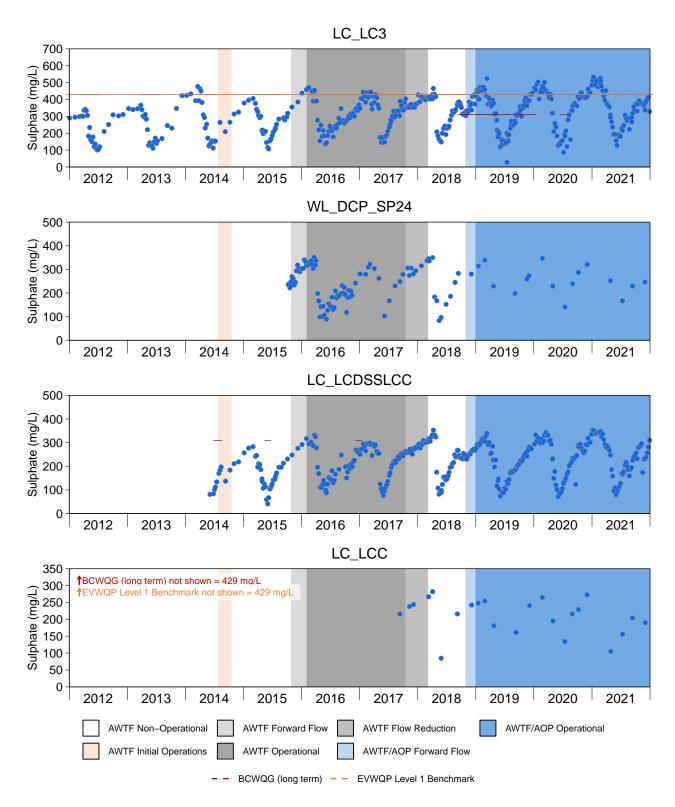


Figure D.5: Time Series Plots for Sulphate Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Guidelines are dependent on water hardness. EVWQP Level 1 Benchmark is shown in plots where the EVWQP Level 1 Benchmark and the BCWQG are equal. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

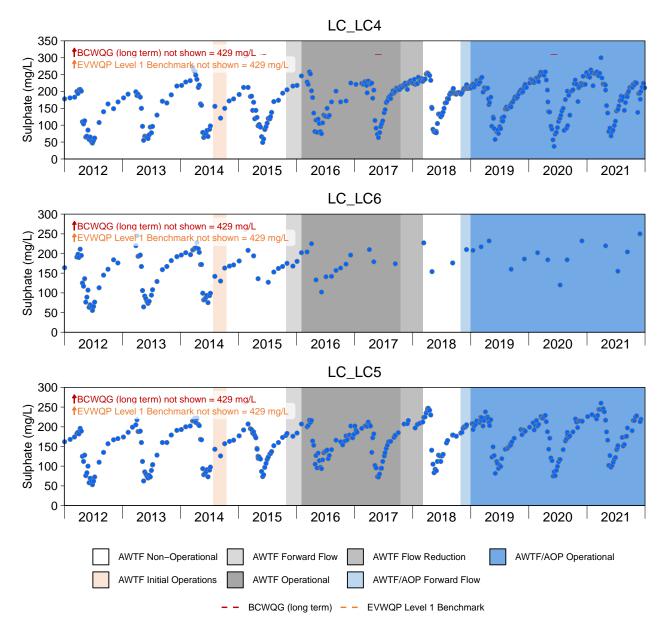


Figure D.5: Time Series Plots for Sulphate Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Guidelines are dependent on water hardness. EVWQP Level 1 Benchmark is shown in plots where the EVWQP Level 1 Benchmark and the BCWQG are equal. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

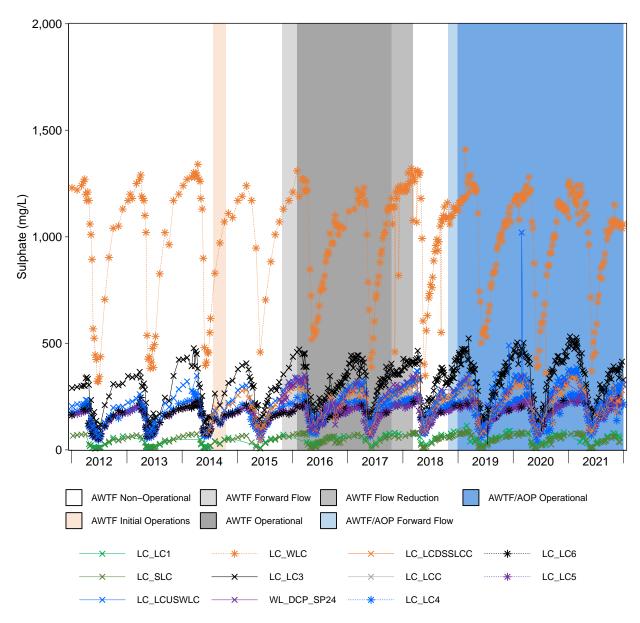


Figure D.6: Time Series Plots for Aqueous Sulphate Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations were above the LRL in all samples. Guidelines are dependent on water hardness. EVWQP Level 1 Benchmark is shown in plots where the EVWQP Level 1 Benchmark and the BCWQG are equal. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine— exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since September 2017.

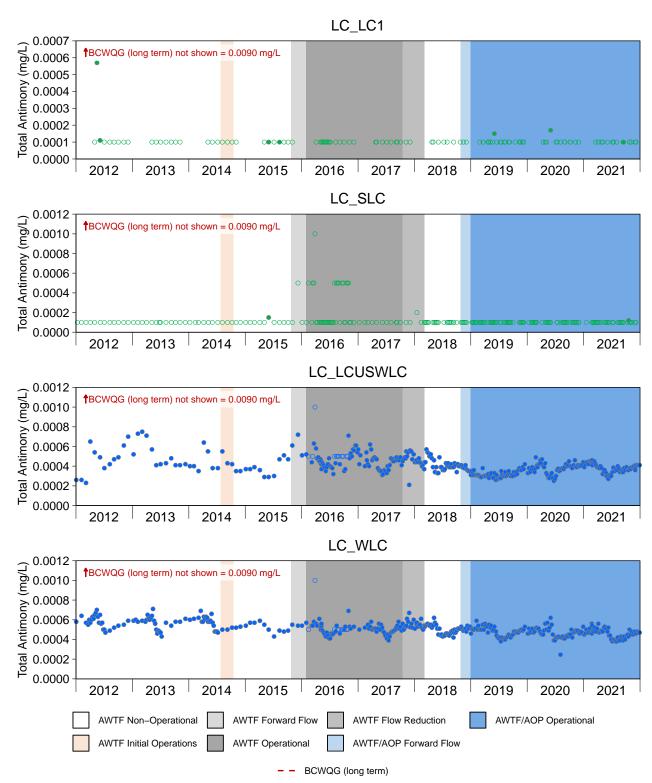


Figure D.7: Time Series Plots for Total Antimony Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

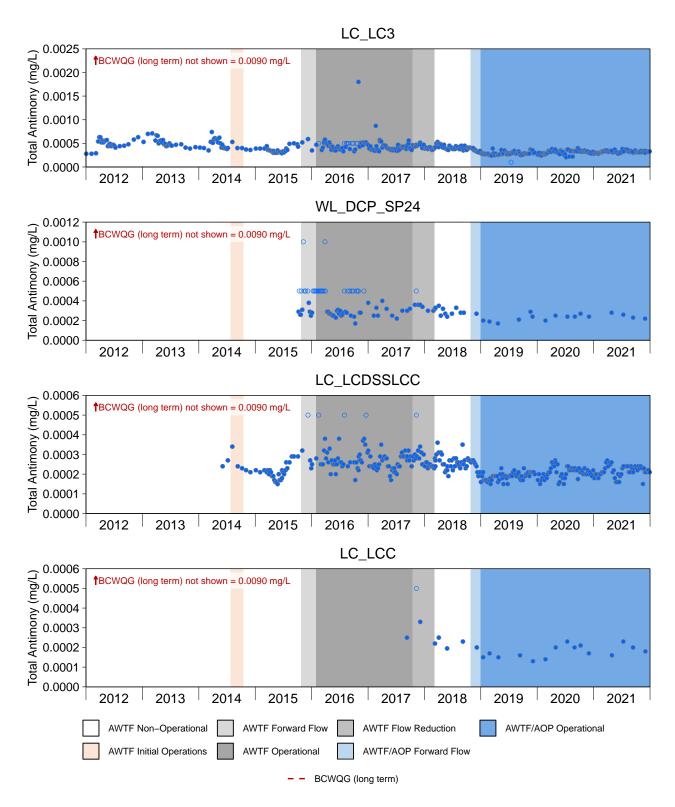


Figure D.7: Time Series Plots for Total Antimony Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

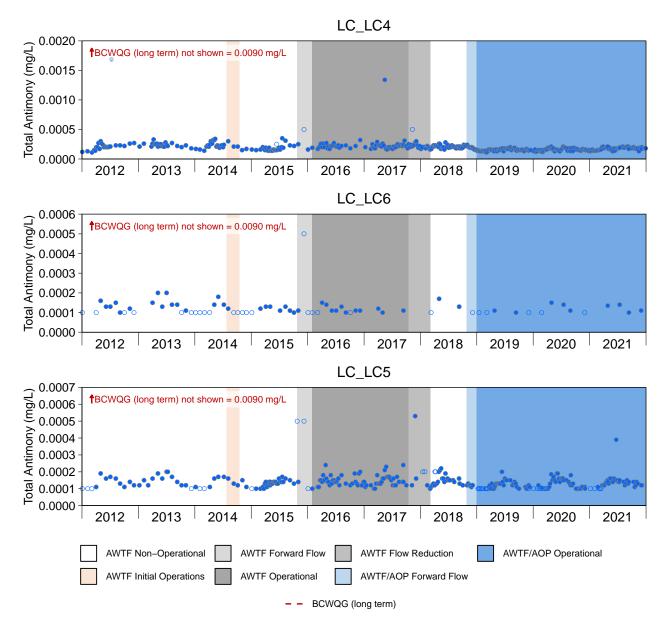


Figure D.7: Time Series Plots for Total Antimony Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

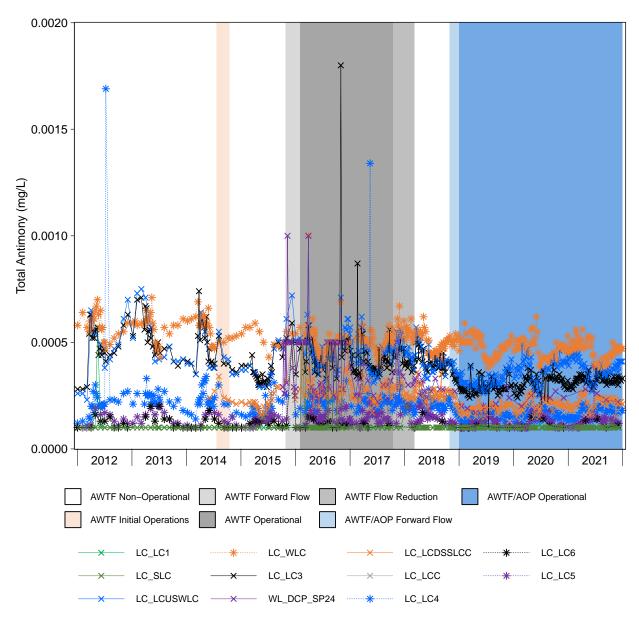


Figure D.8: Time Series Plots for Aqueous Total Antimony Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRL ranged from 0.00010 to 0.0010 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since September 2017.

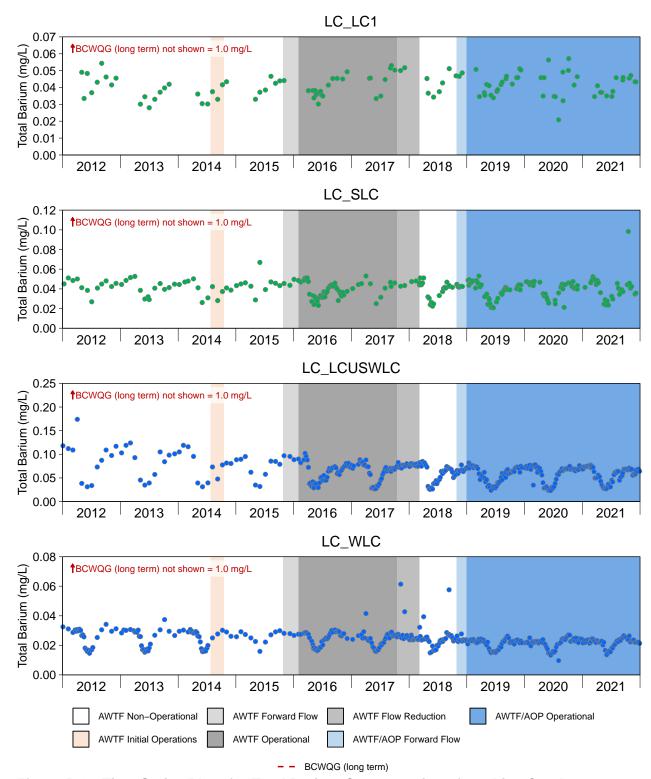


Figure D.9: Time Series Plots for Total Barium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

Page 1 of 3

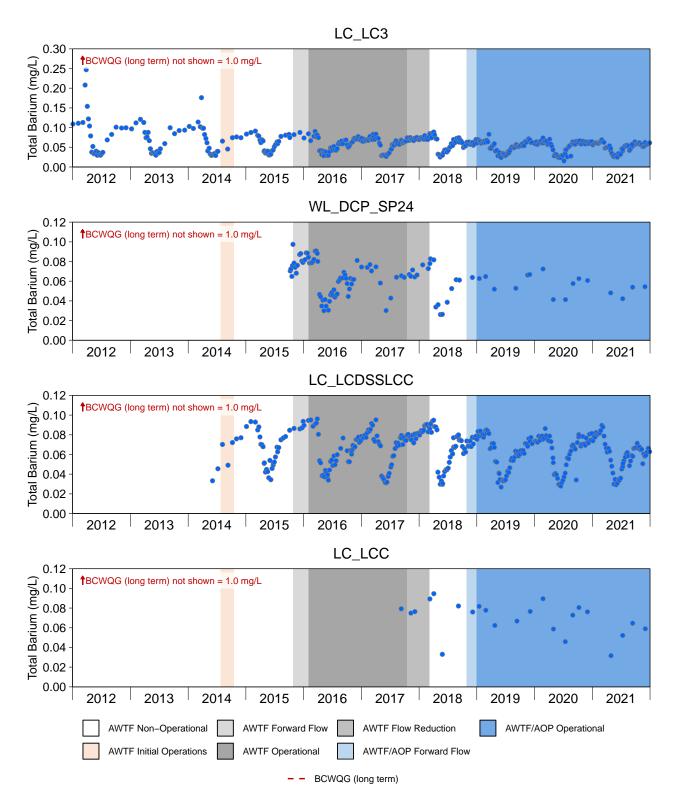


Figure D.9: Time Series Plots for Total Barium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

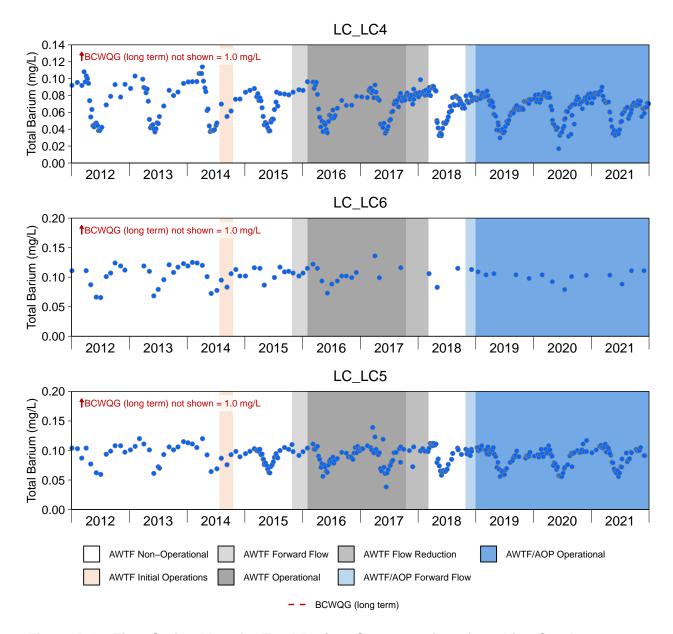


Figure D.9: Time Series Plots for Total Barium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

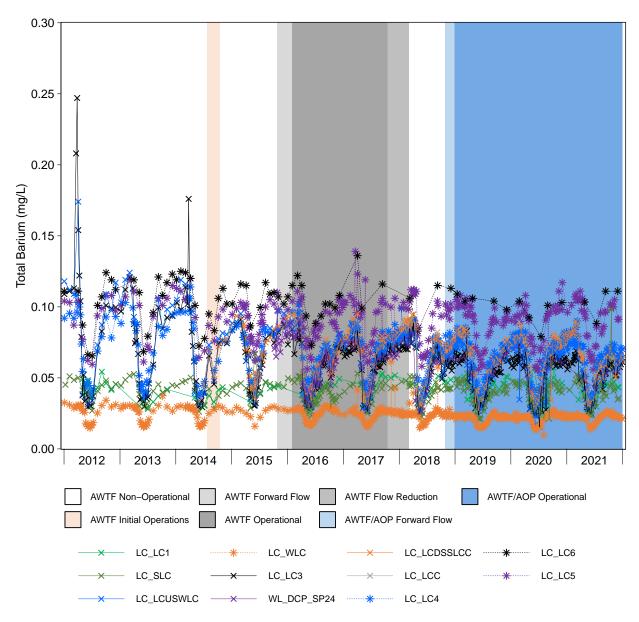


Figure D.10: Time Series Plots for Aqueous Total Barium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations were above the LRL in all samples. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine— exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

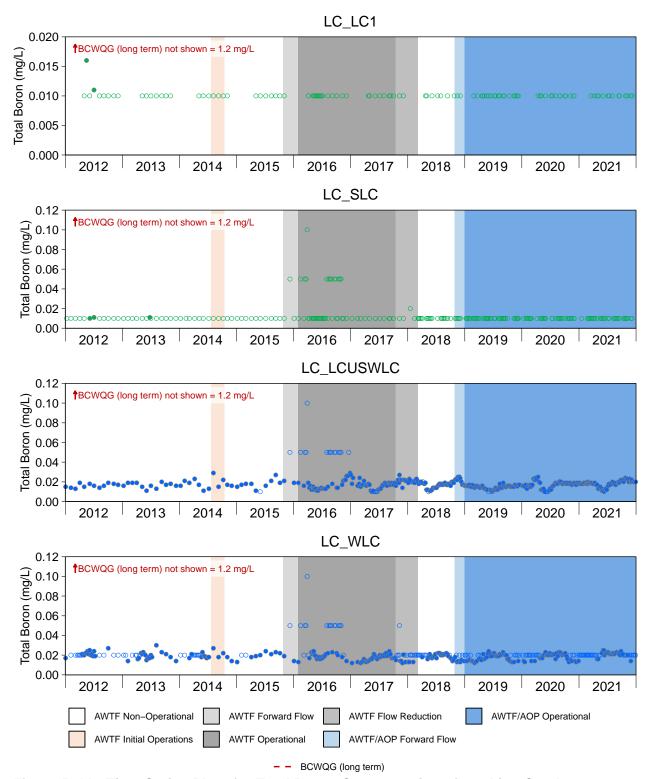


Figure D.11: Time Series Plots for Total Boron Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

Page 1 of 3

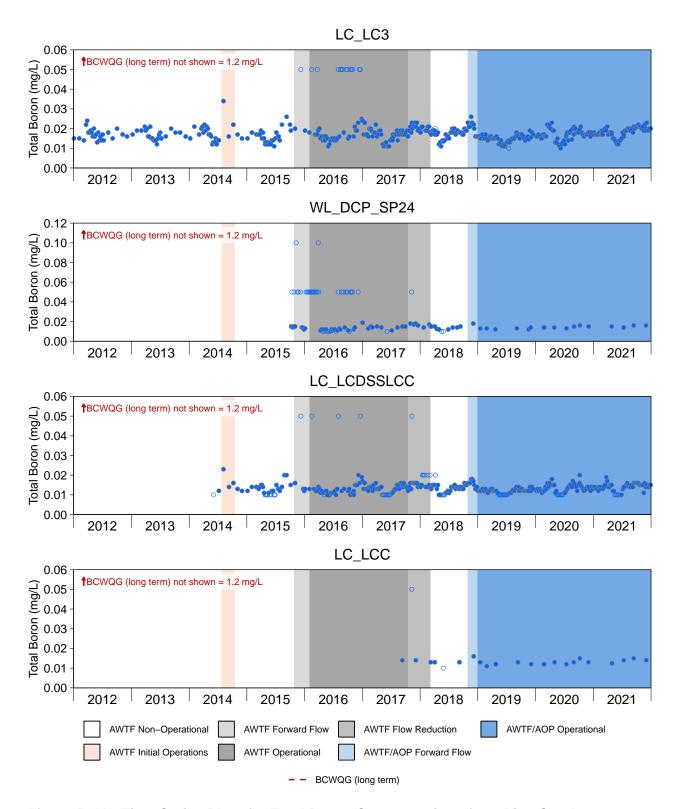


Figure D.11: Time Series Plots for Total Boron Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

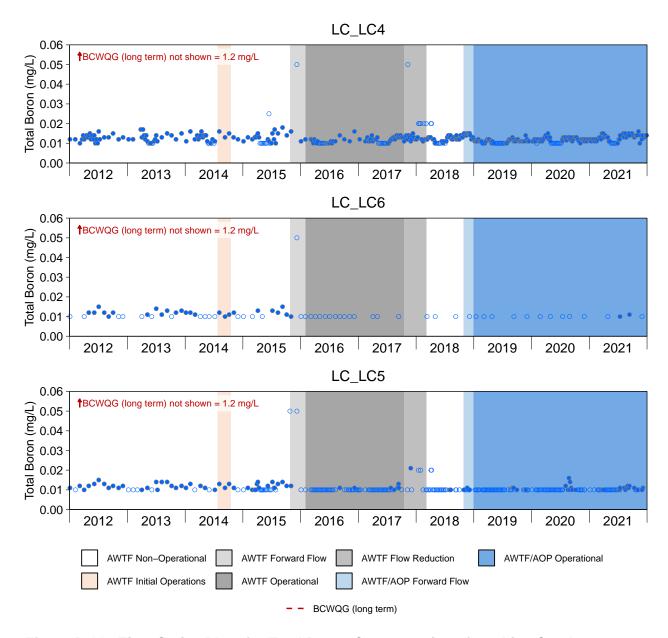


Figure D.11: Time Series Plots for Total Boron Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

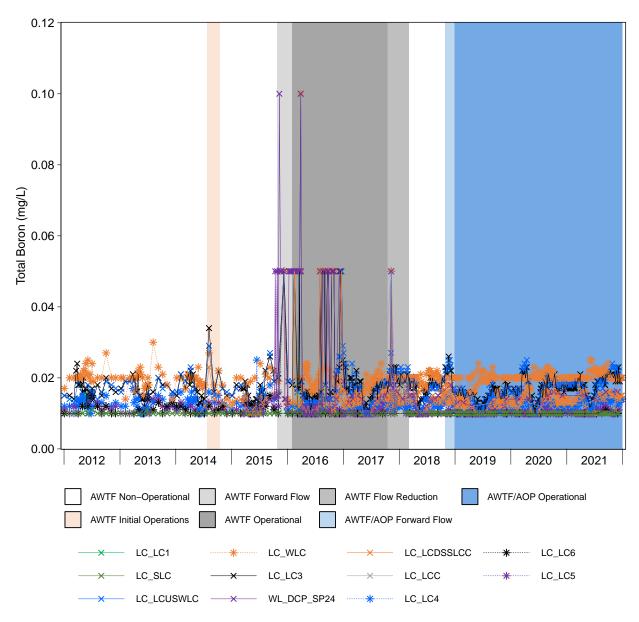


Figure D.12: Time Series Plots for Aqueous Total Boron Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

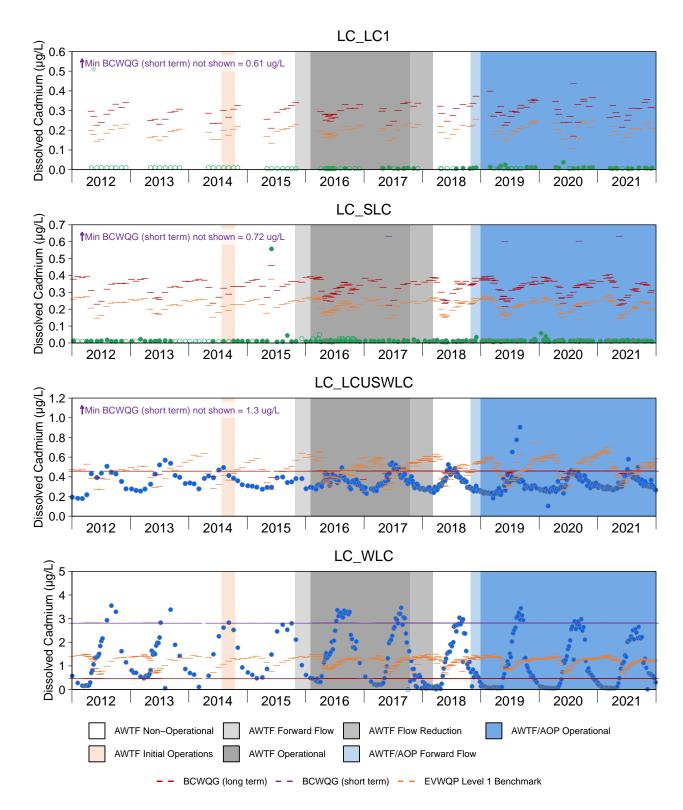


Figure D.13: Time Series Plots for Dissolved Cadmium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: otes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Constituent was plotted because it was identified as a mine –related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since September 2017.

Page 1 of 3

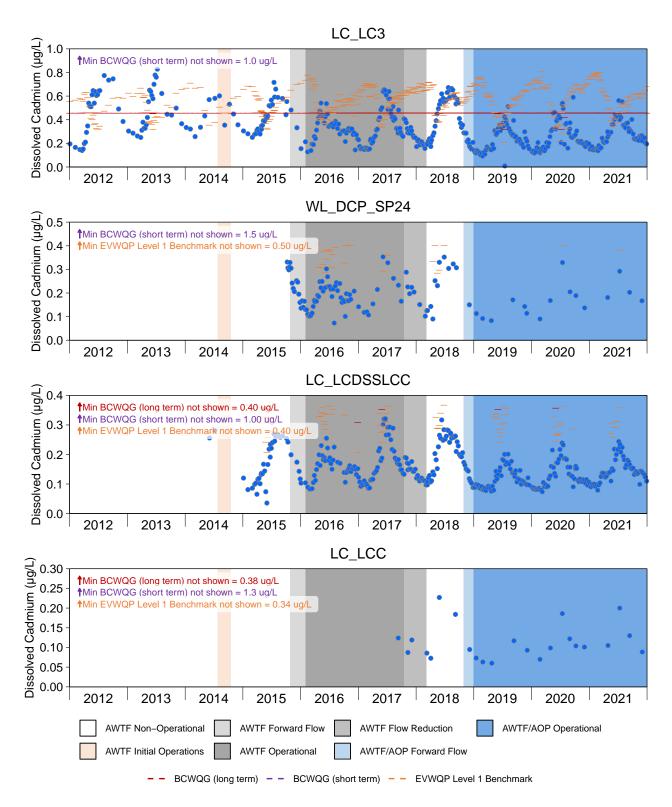


Figure D.13: Time Series Plots for Dissolved Cadmium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Constituent was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

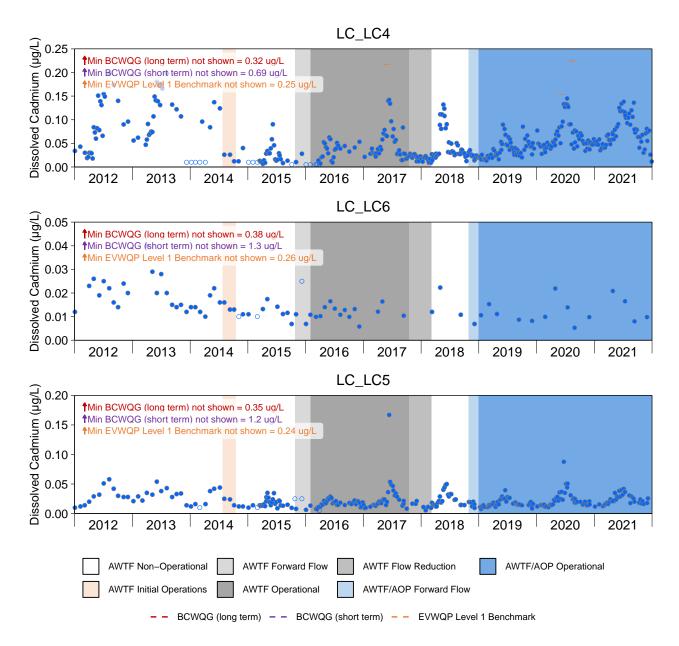


Figure D.13: Time Series Plots for Dissolved Cadmium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Constituent was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

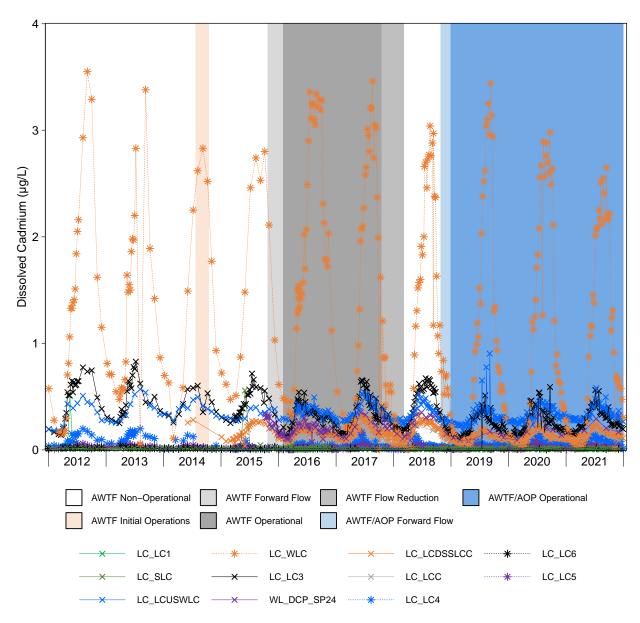


Figure D.14: Time Series Plots for Aqueous Dissolved Cadmium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRL ranged from 0.0050 to 0.050 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since September 2017.

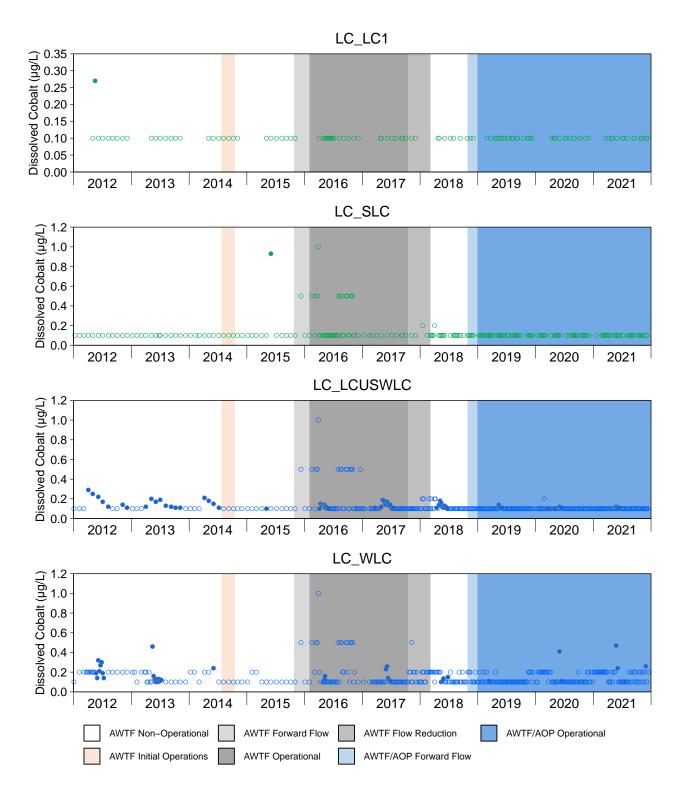


Figure D.15: Time Series Plots for Dissolved Cobalt Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

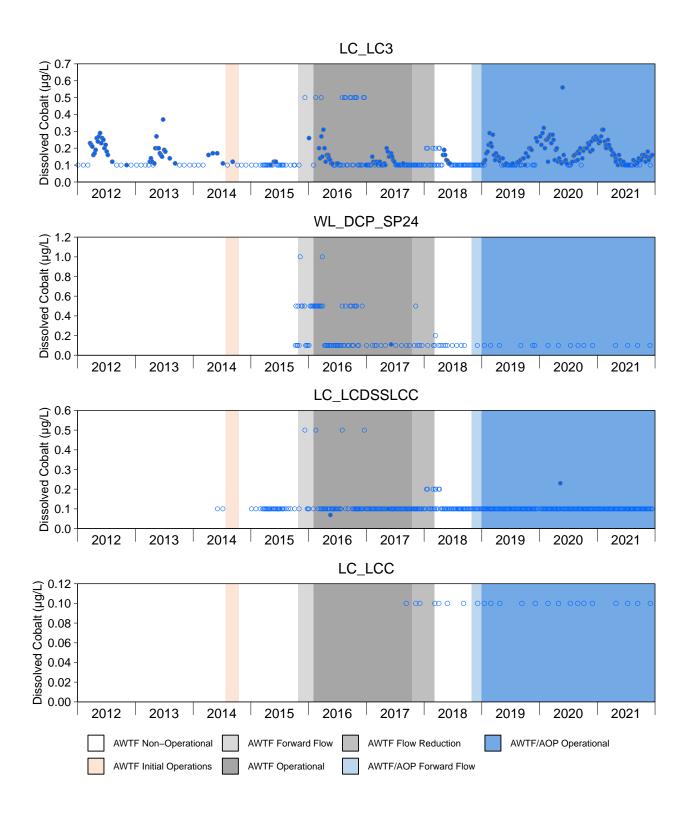


Figure D.15: Time Series Plots for Dissolved Cobalt Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

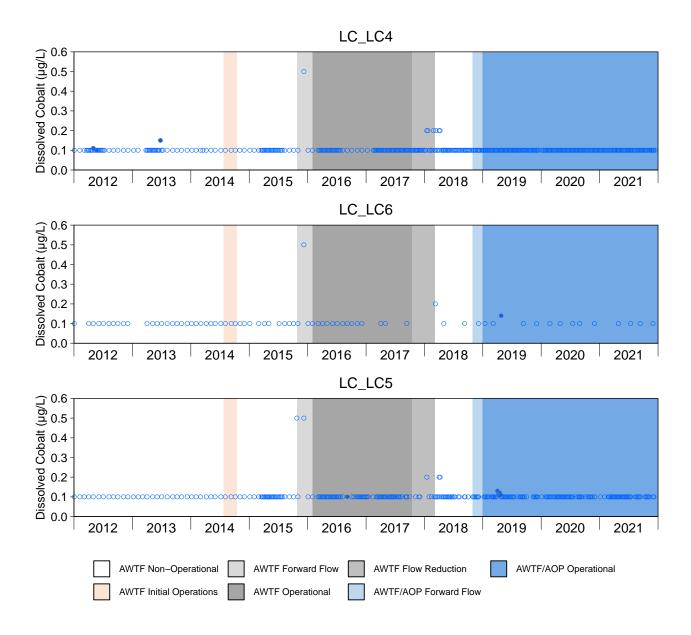


Figure D.15: Time Series Plots for Dissolved Cobalt Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

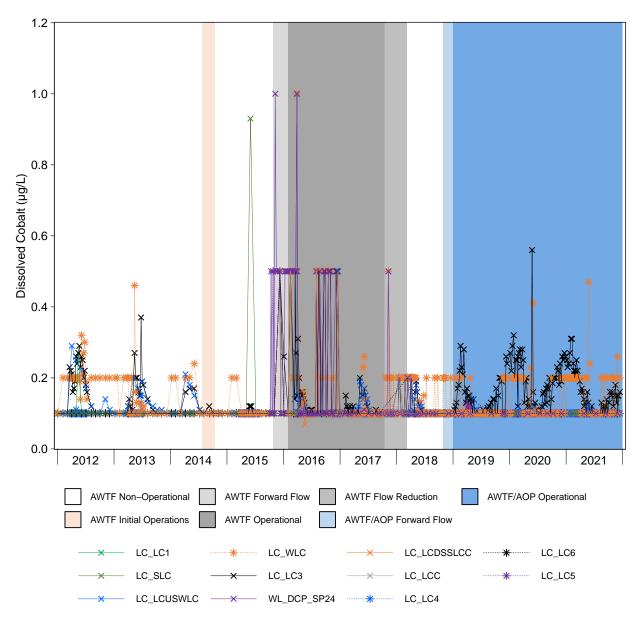


Figure D.16: Time Series Plots for Aqueous Dissolved Cobalt Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRL ranged from 0.10 and 1.0 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since September 2017.

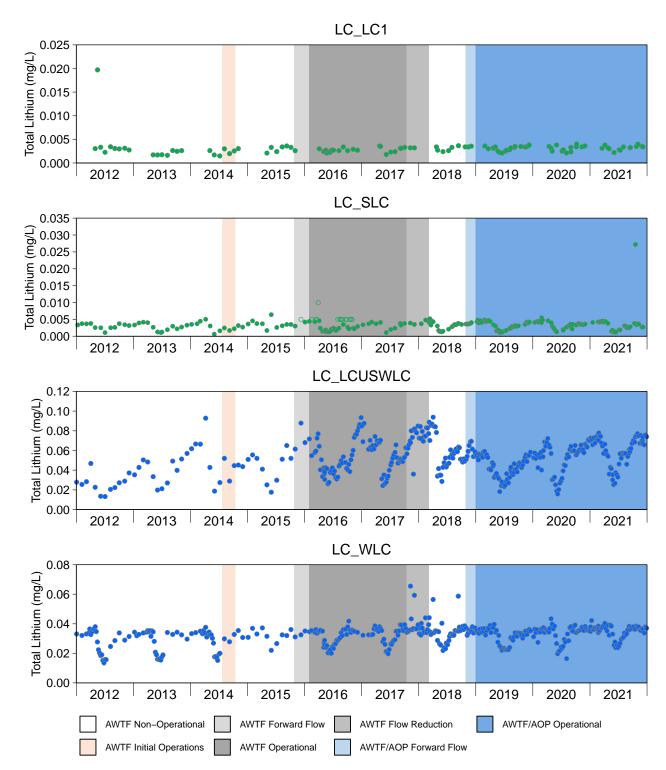


Figure D.17: Time Series Plots for Total Lithium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

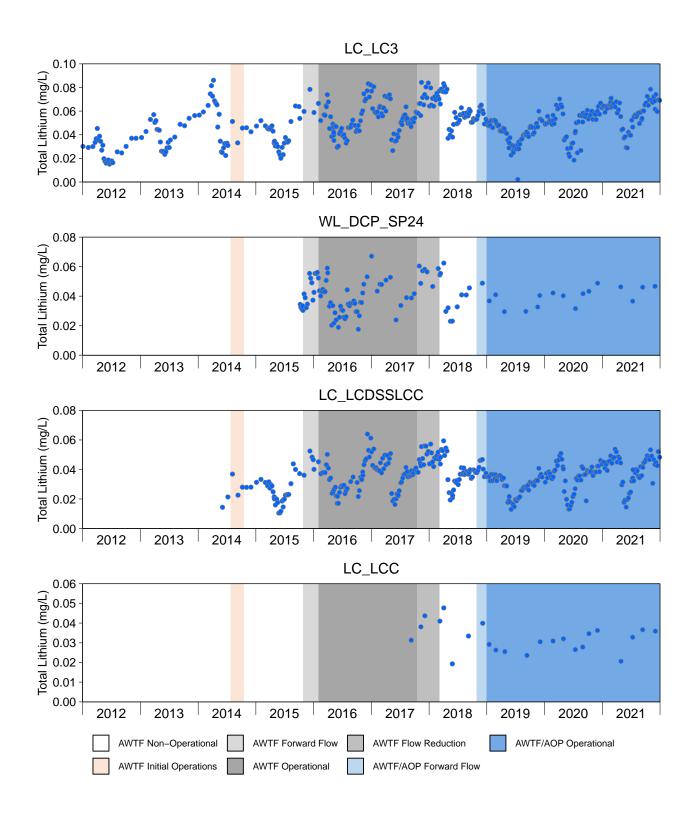


Figure D.17: Time Series Plots for Total Lithium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

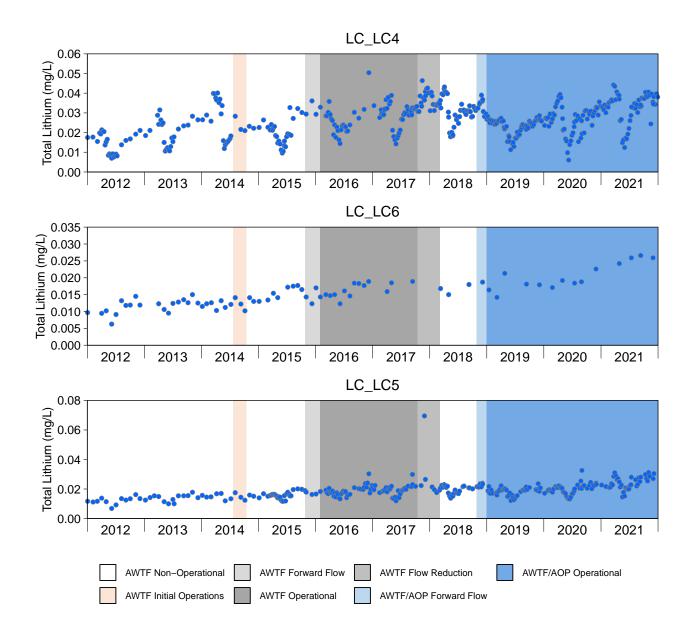


Figure D.17: Time Series Plots for Total Lithium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

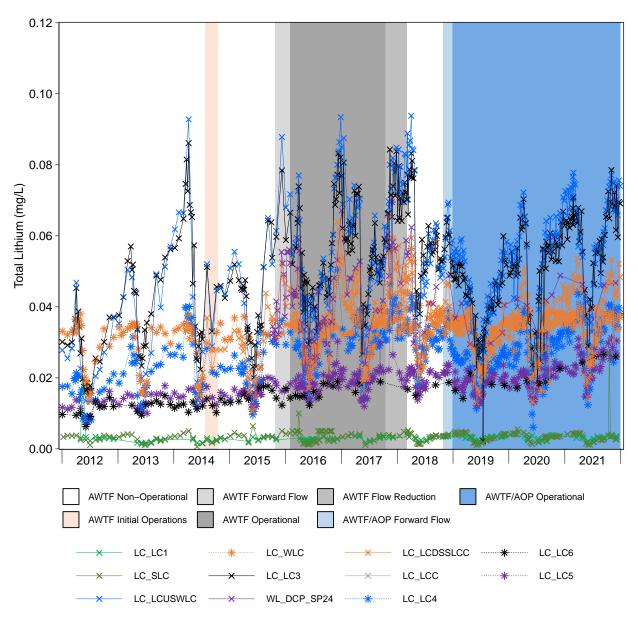


Figure D.18: Time Series Plots for Aqueous Total Lithium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRL ranged from 0.0050 to 0.010 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

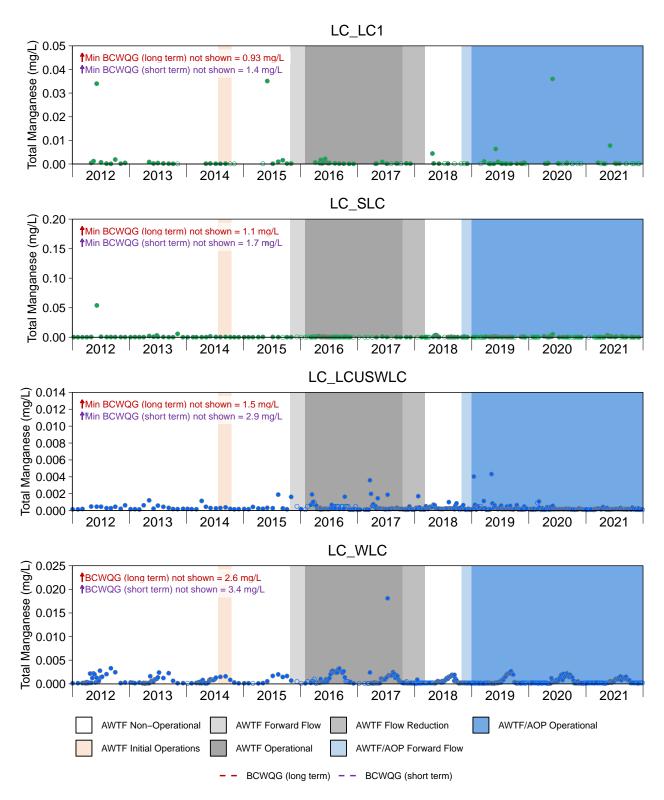


Figure D.19: Time Series Plots for Total Manganese Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

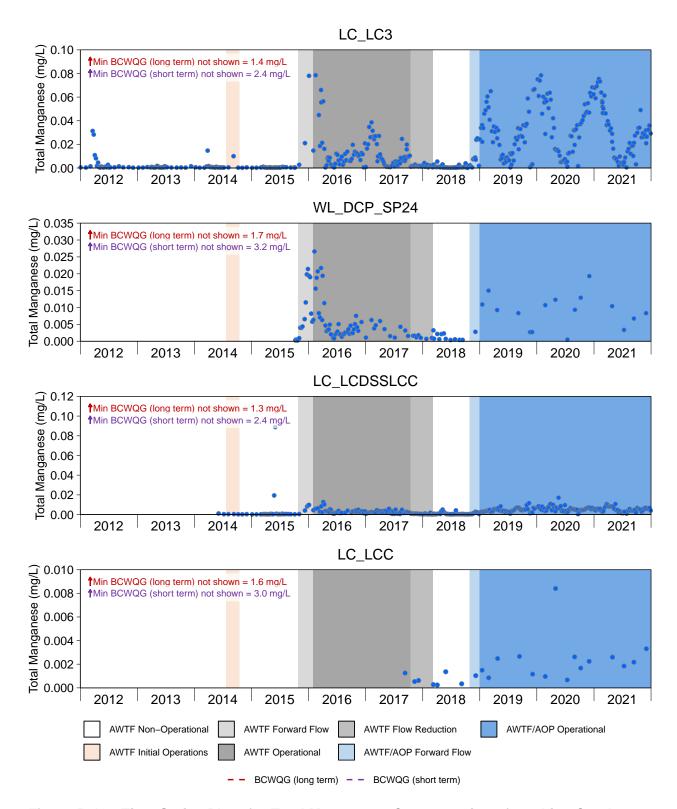


Figure D.19: Time Series Plots for Total Manganese Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Figure D.19: Time Series Plots for Total Manganese Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

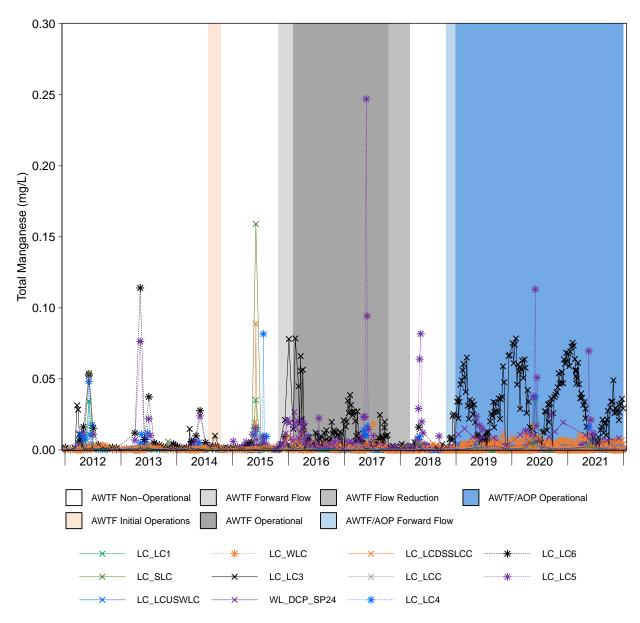


Figure D.20: Time Series Plots for Aqueous Total Manganese Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRL ranged from 0.000050 to 0.0010 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

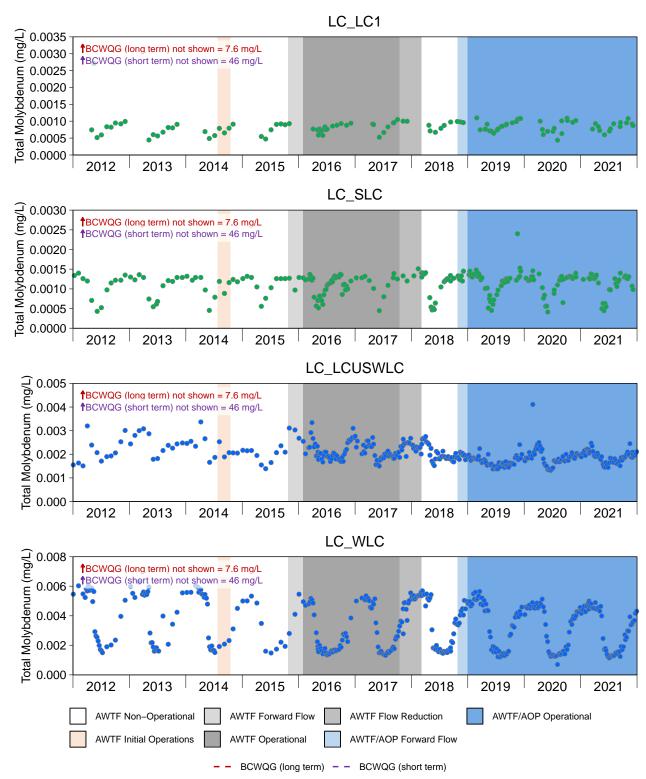


Figure D.21: Time Series Plots for Total Molybdenum Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

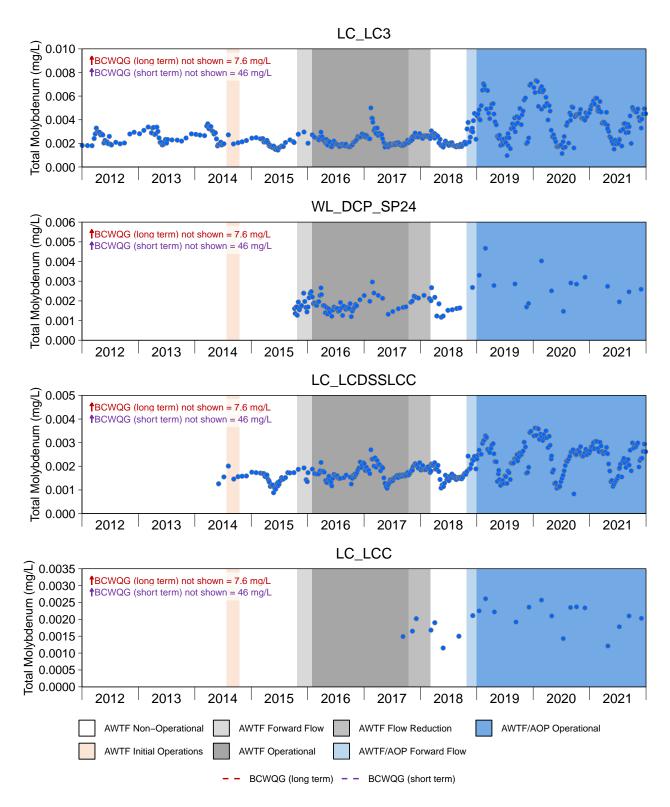


Figure D.21: Time Series Plots for Total Molybdenum Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

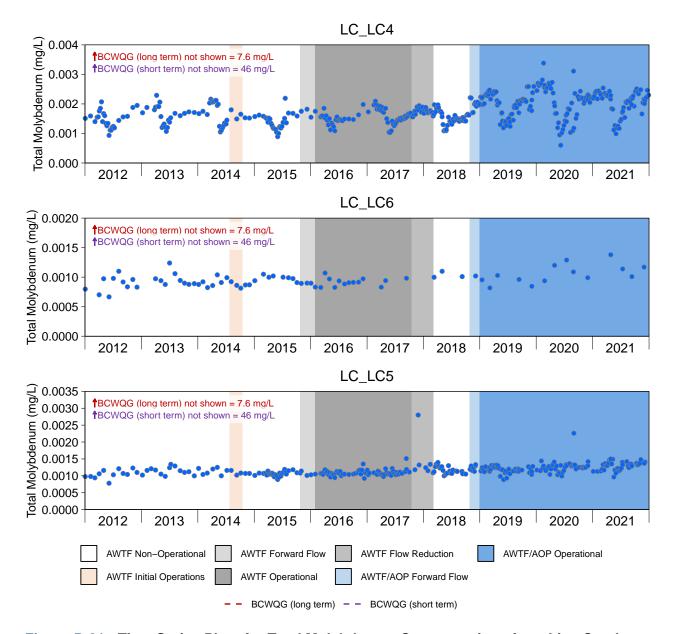


Figure D.21: Time Series Plots for Total Molybdenum Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

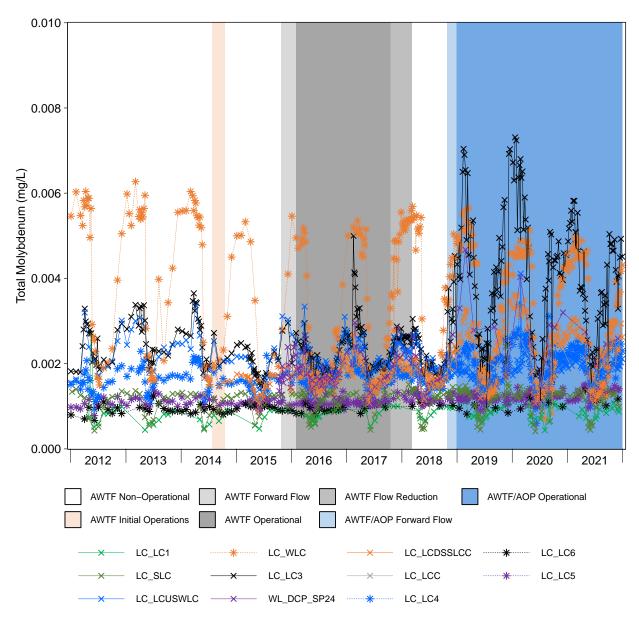


Figure D.22: Time Series Plots for Aqueous Total Molybdenum Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations were above the LRL in all samples. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine— exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

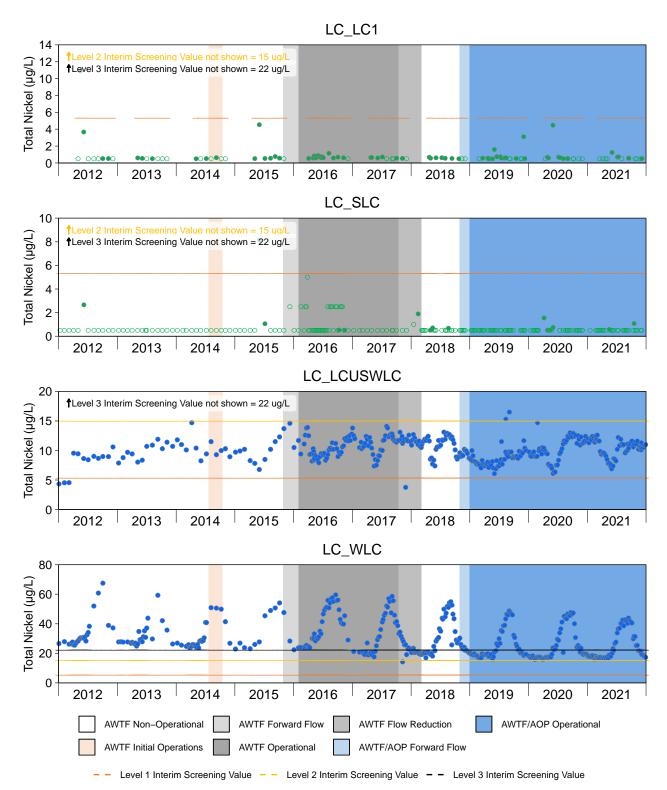


Figure D.23: Time Series Plots for Total Nickel Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

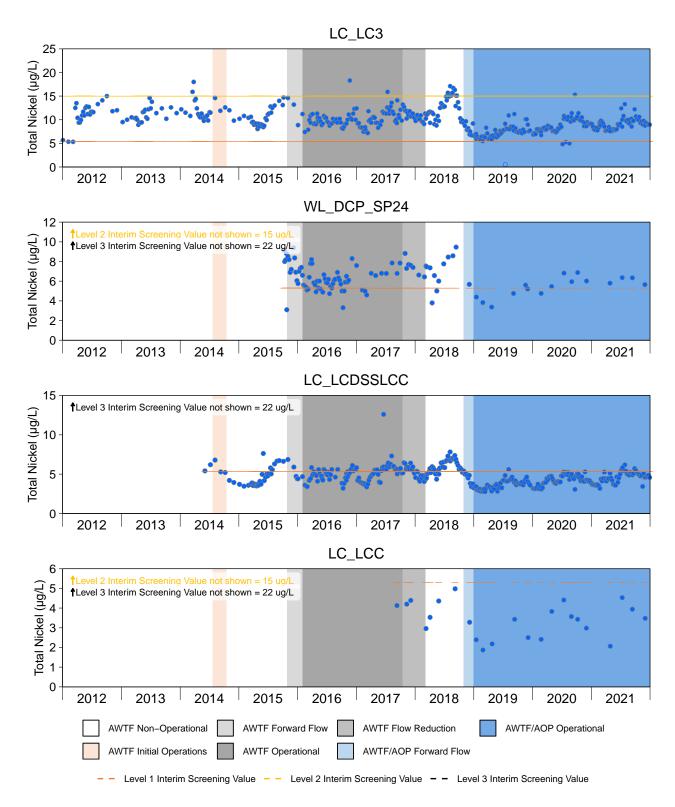


Figure D.23: Time Series Plots for Total Nickel Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

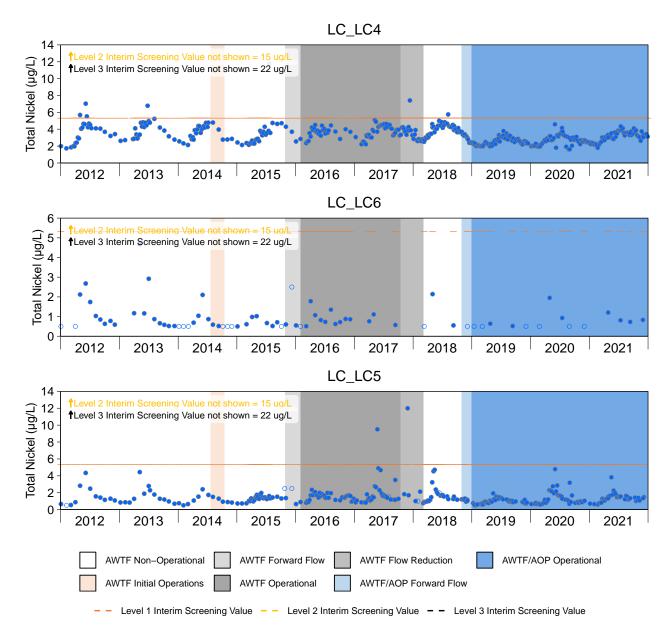


Figure D.23: Time Series Plots for Total Nickel Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

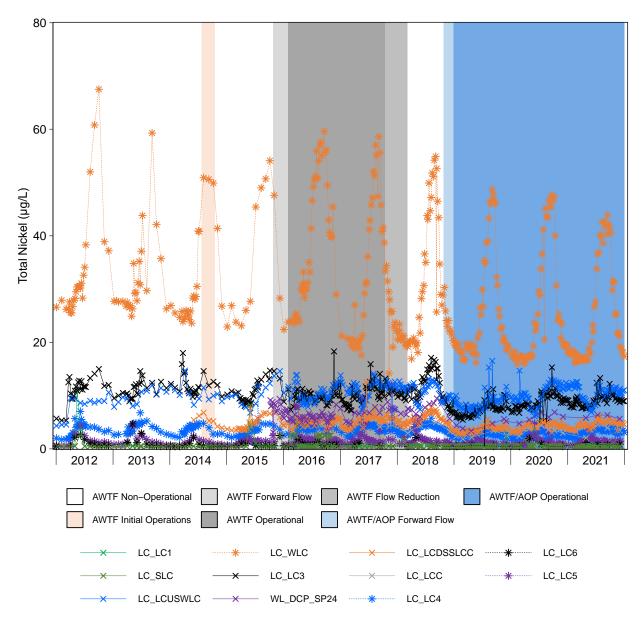


Figure D.24: Time Series Plots for Aqueous Total Nickel Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRL ranged from 0.50 to 5.0 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

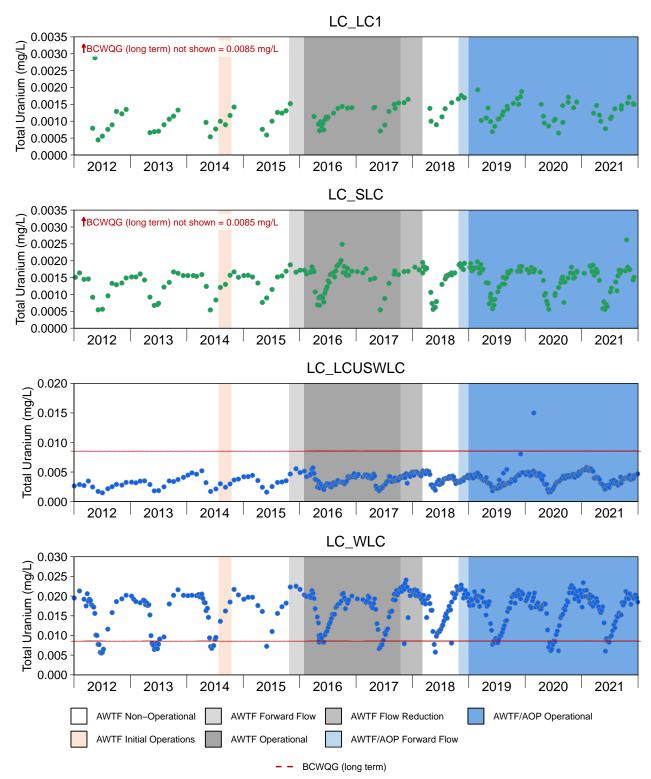


Figure D.25: Time Series Plots for Total Uranium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

Page 1 of 3

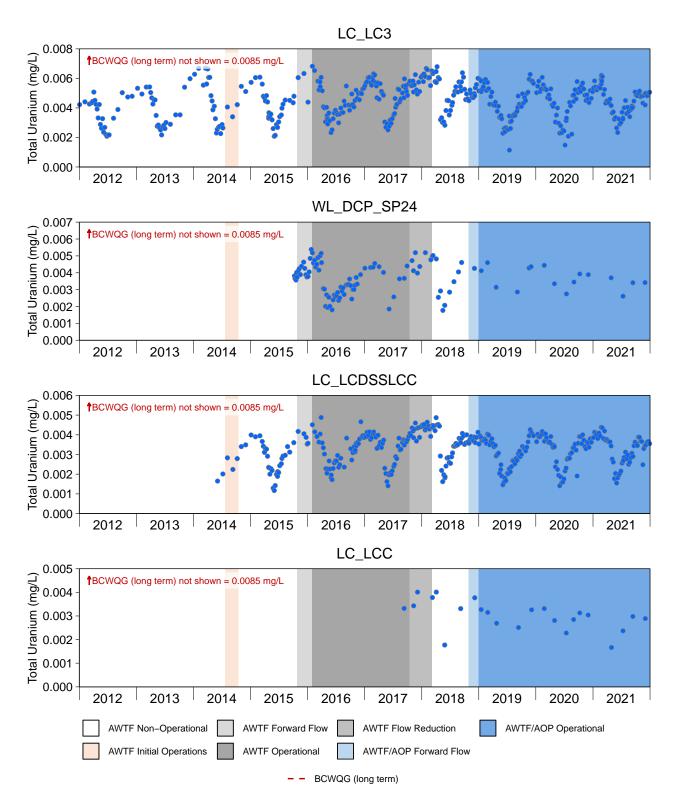


Figure D.25: Time Series Plots for Total Uranium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

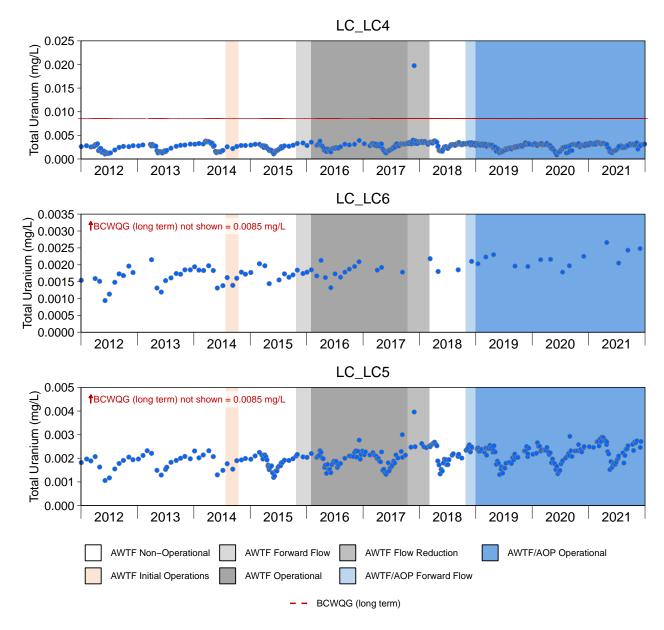


Figure D.25: Time Series Plots for Total Uranium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

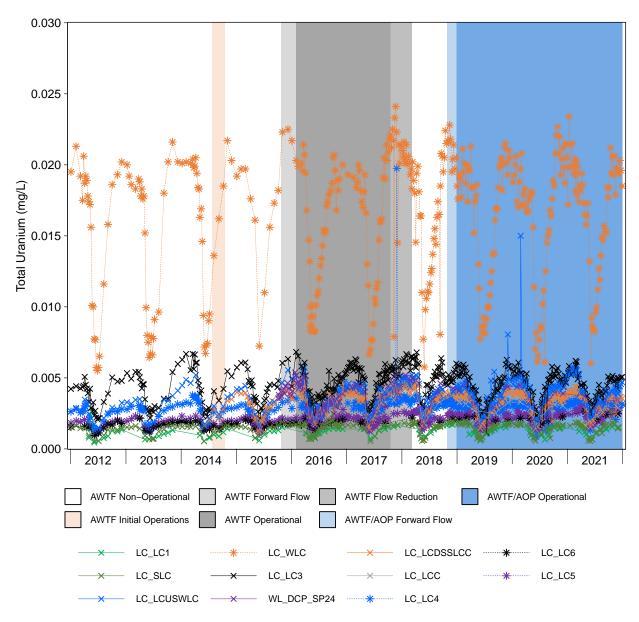


Figure D.26: Time Series Plots for Aqueous Total Uranium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations were above the LRL in all samples. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine– exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and

RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

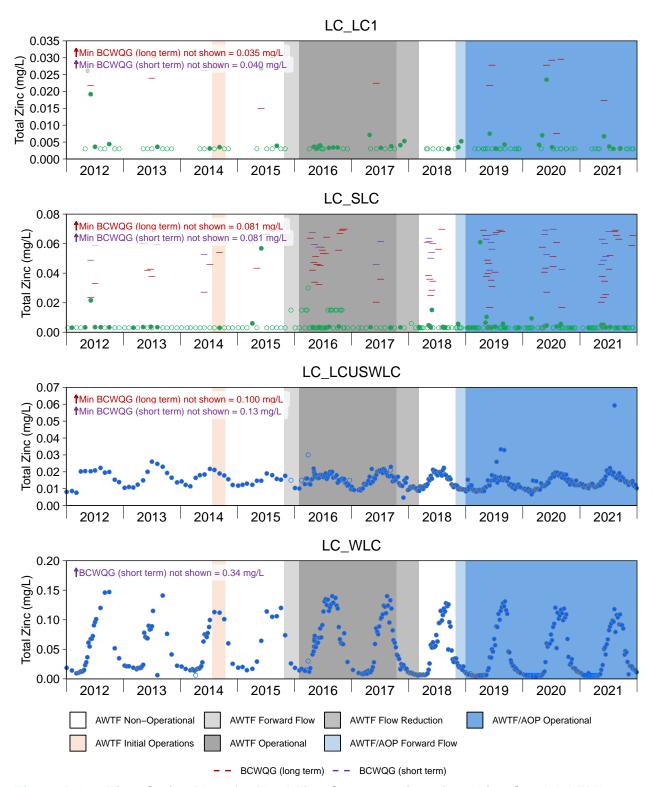


Figure D.27: Time Series Plots for Total Zinc Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

Notes: Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Constituent was plotted because it was identified as a mine –related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

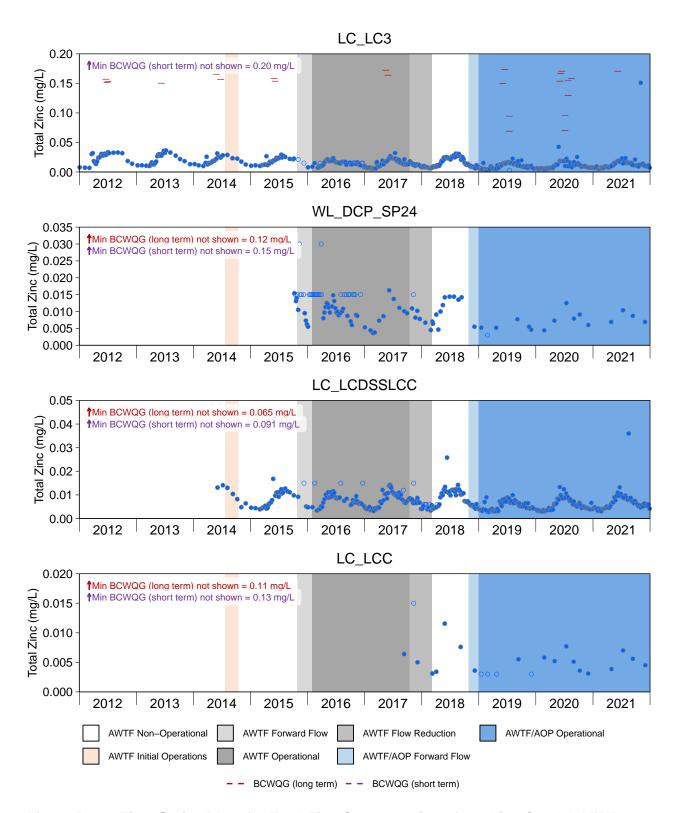


Figure D.27: Time Series Plots for Total Zinc Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

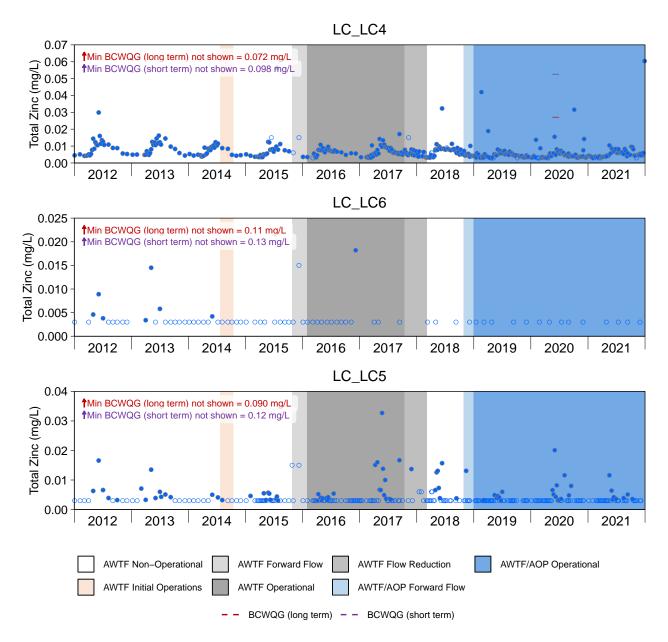


Figure D.27: Time Series Plots for Total Zinc Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2021

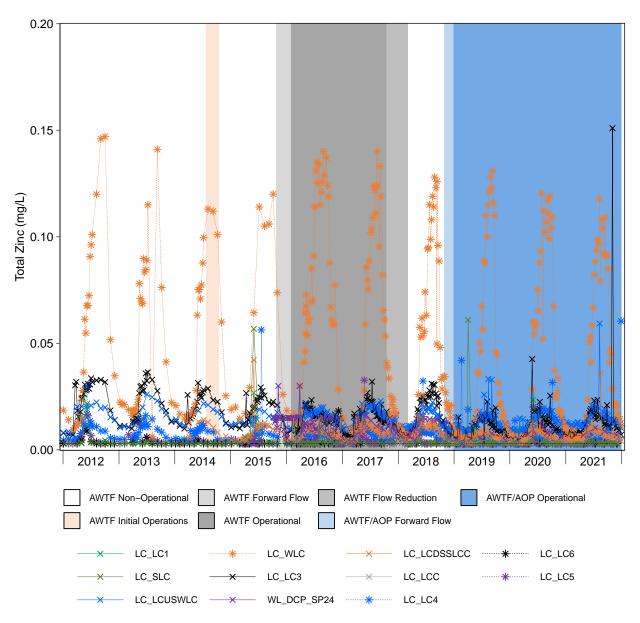


Figure D.28: Time Series Plots for Aqueous Total Zinc Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRL ranged from 0.0030 to 0.030 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine–exposed monitoring areas located downstream of the AWTF discharge. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

Table D.1: Monthly Temperature (°C) Difference between 2020 and 2021 in Line Creek

Month	LC_LC1	LC_SLC	LC_LCUSWLC	LC_WLC	LC_LC3	LC_LCDSSLCC	LC_LCC	LC_LC4
January	-	-0.200	0.390	0.180	0	0.440	-	0.470
February	-	-2.76	-1.45	0.200	1.65	0.920	-	1.48
March	-	-0.200	-0.150	-0.190	0.800	0.400	-	0.400
April	1.3	-0.100	0.200	-0.100	0.400	1.00	0.400	1.20
May	2.9	-0.100	0.500	0.200	0.700	0.500	-	-0.200
June	0	1.50	0.400	0.400	0.600	1.60	-	0.900
July	2.20	2.30	1.10	0	0.500	3.40	1.90	0.520
August	2.90	0	3.00	0.211	0.200	-1.00	-	0.600
September	-2.36	-0.370	0.482	0.150	1.45	1.000	0.5 ^a	0.938
October	-3.17	0.200	0.700	0.300	0.0500	-0.400	-	-1.00
November	1.50	0.850	0.564	0.127	0.141	-0.300	-	-1.20
December	-	0	0.550	0.1000	0.1000	0.200	1.80	2.10

Indicates an increase of >2°C from 2021 to 2020.

Notes: "-" indicates no data recorded. Temperature difference is shown as the difference between 2021 and 2020, meaning that a positive number indicates 2021 was warmer than 2020, while a negative number indicates 2021 was colder than 2020.

^a The 2021 September water quality sample (n=1) was compared to the 2020 August water quality sample (n=1), as no water samples were taken in September at this area in 2020.

Table D.2: British Columbia Water Quality Guidelines (BCWQG), Site-Specific Elk Valley Water Quality Plan (EVWQP) Benchmarks, and Interim Screening Values for Parameters Assessed in Line Creek LAEMP, 2021

	,	Variable	Units	British Columb	ia Water Quality Guidelines ^a			Sita Spacific Banchmark ^b
		variable	Units	Long-term Average	Short-term Maximum	Year	Status	Site-Specific Benchmark ^b
		Total Alkalinity	mg/L	For dissolved calcium = < 4mg/L, BCWQG = <10 For dissolved calcium = 4 to 8 mg/L, BCWQG = 10 to 20 For dissolved calcium = > 8 mg/L, BCWQG = > 20	-	2015	Working	-
		Unionized Ammonia ^c	mg/L	pH and Temperature dependent (tabular)	pH and Temperature dependent (tabular)	2009	Approved	-
	•	Chloride	mg/L	150	600	2003	Approved	-
		Fluoride	mg/L	-	For hardness ≤ 10 mg/L, BCWQG = 0.4 For hardness > 10 mg/L, BCWQG = [-51.73 + 92.57 × log10(hardness)]×0.01 Maximum applicable hardness = 385 mg/L	1990	Approved	-
S S S S S S S S S S S S S S S S S S S	Non-Metals	Nitrate-N	mg/L	3	33	2009	Approved	Level 1 EVWQP benchmark= 10 ^{1.0003[log(hardness)]-1.52} Maximum applicable hardness = 500 mg/L Level 2 EVWQP benchmark= 10 ^{1.0003[log(hardness)]-1.38} Maximum applicable hardness = 500 mg/L
		Nitrite-N ^d	mg/L	0.02 to 0.20	0.06 to 0.60	2009	Approved	-
		Dissolved oxygen ^e	mg/L	For buried embryo/alevin life stages, BCWQG (water column) = 11 BCWQG (interstitial) = 8; for other life stages, BCWQG (water column) = 8	For buried embryo/alevin life stages, BCWQG (water column) = 9 BCWQG (interstitial) = 6 For other life stages, BCWQG (water column) = 5	1997	Approved	-
		рН ^f	pH units		6.5 - 9.0	1991	Approved	-
	•	Sulphate ^g	mg/L	128 to 429 Maximum applicable hardness = 250 mg/L	-	2013	Approved	Level 1 EVWQP Benchmark = BCWQG = 429
	•	Total Dissolved Solids	mg/L	-	-	-	-	Screening Level 1 Benchmark = 1,000
-		Antimony (III)	mg/L	0.009	_	2015	Working	_
	•	Arsenic	mg/L	-	0.005	2002	Approved	-
		Barium	mg/L	1	-	2015	Working	-
		Beryllium	mg/L	0.00013	-	2015	Working	-
		Boron	mg/L	1.2	-	2003	Approved	-
		Chromium ^h	mg/L	For Cr(VI), BCWQG = 0.001 For Cr(III), BCWQG = 0.0089	-	2015	Working	-
	•	Cobalt	μg/L	4	110	2004	Approved	-
		Iron	mg/L	-	1	2008	Approved	-
		Lead ^g	mg/L	For hardness ≤ 8 mg/L, none proposed For hardness 8 to 360 mg/L, BCWQG = 0.001×{3.31+ exp[1.273 × ln(hardness) - 4.704]} No more than 20% of samples in a 30-d period should be >1.5X the guideline. Maximum applicable hardness = 360 mg/L	For hardness ≤ 8 mg/L, BCWQG ≤ 0.003 For hardness 8 to 360 mg/L, BCWQG = 0.001×{exp[1.273 × ln(hardness) - 1.460]} Maximum applicable hardness = 360 mg/L	1987	Approved	-
		Manganese ^g	ma/l	For hardness 37 to 450 mg/L, BCWQG ≤ 0.004 × hardness + 0.605	For hardness 25 to 259 mg/L, BCWQG ≤ 0.01102 × hardness + 0.54	2001	Approved	-
			mg/L	Maximum applicable hardness = 450 mg/L	Maximum applicable hardness = 259 mg/L			
talloids	Total	Mercury ⁱ	mg/L	Maximum applicable hardness = 450 mg/L MeHg ≤ 0.5% of THg, BCWQG = 0.00002 Else, BCWQG = [0.0001/(MeHg/THg)] OR When MeHg = 0.5% of THg, BCWQG= 0.00002 When MeHg = 1.0% of THg, BCWQG = 0.00001 When MeHg = 8.0% of THg, BCWQG= 0.00000125	Maximum applicable hardness = 259 mg/L -	2001	Approved	-
1 Metalloids	Total	Mercury ⁱ Molybdenum		MeHg ≤ 0.5% of THg, BCWQG = 0.00002 Else, BCWQG = [0.0001/(MeHg/THg)] OR When MeHg = 0.5% of THg, BCWQG= 0.00002 When MeHg = 1.0% of THg, BCWQG = 0.00001 When MeHg = 8.0% of THg, BCWQG=	Maximum applicable hardness = 259 mg/L - 46	2001	Approved	- -
Metals and Metalloids	Total	,	mg/L	MeHg ≤ 0.5% of THg, BCWQG = 0.00002 Else, BCWQG = [0.0001/(MeHg/THg)] OR When MeHg = 0.5% of THg, BCWQG= 0.00002 When MeHg = 1.0% of THg, BCWQG = 0.00001 When MeHg = 8.0% of THg, BCWQG= 0.00000125	-			- Level 1 Interim Screening Value = 5.3 Level 2 Interim Screening Value = 15 Level 3 Interim Screening Value = 22
Metals and Metalloids	Total	Molybdenum	mg/L	MeHg ≤ 0.5% of THg, BCWQG = 0.00002 Else, BCWQG = [0.0001/(MeHg/THg)] OR When MeHg = 0.5% of THg, BCWQG= 0.00002 When MeHg = 1.0% of THg, BCWQG = 0.00001 When MeHg = 8.0% of THg, BCWQG= 0.00000125	-		Approved -	Level 1 Interim Screening Value = 5.3 Level 2 Interim Screening Value = 15
Metals and Metalloids	Total	Molybdenum Nickel	mg/L mg/L μg/L	MeHg ≤ 0.5% of THg, BCWQG = 0.00002 Else, BCWQG = [0.0001/(MeHg/THg)] OR When MeHg = 0.5% of THg, BCWQG= 0.00002 When MeHg = 1.0% of THg, BCWQG = 0.00001 When MeHg = 8.0% of THg, BCWQG= 0.00000125 7.6	-	2021	Approved -	Level 1 Interim Screening Value = 5.3 Level 2 Interim Screening Value = 15 Level 3 Interim Screening Value = 22 Level 1 EVWQP Benchmark = 19
Metals and Metalloids	Total	Molybdenum Nickel Selenium Silver ^f Thallium	mg/L mg/L µg/L µg/L mg/L mg/L	MeHg ≤ 0.5% of THg, BCWQG = 0.00002 Else, BCWQG = [0.0001/(MeHg/THg)] OR When MeHg = 0.5% of THg, BCWQG= 0.00002 When MeHg = 1.0% of THg, BCWQG = 0.00001 When MeHg = 8.0% of THg, BCWQG= 0.00000125 7.6 2 For hardness ≤ 100 mg/L, BCWQG = 0.00005 For hardness > 100 mg/L, BCWQG = 0.0015 0.0008	- 46	2021 - 2014 1996	Approved Approved Working	Level 1 Interim Screening Value = 5.3 Level 2 Interim Screening Value = 15 Level 3 Interim Screening Value = 22 Level 1 EVWQP Benchmark = 19
Metals and Metalloids	Total	Molybdenum Nickel Selenium Silver ^f	mg/L mg/L μg/L μg/L mg/L	MeHg ≤ 0.5% of THg, BCWQG = 0.00002 Else, BCWQG = [0.0001/(MeHg/THg)] OR When MeHg = 0.5% of THg, BCWQG= 0.00002 When MeHg = 1.0% of THg, BCWQG = 0.00001 When MeHg = 8.0% of THg, BCWQG= 0.00000125 7.6 2 For hardness ≤ 100 mg/L, BCWQG = 0.00005 For hardness > 100 mg/L, BCWQG = 0.0015 0.0008 0.00085	- 46	2021 - 2014 1996	Approved Approved	Level 1 Interim Screening Value = 5.3 Level 2 Interim Screening Value = 15 Level 3 Interim Screening Value = 22 Level 1 EVWQP Benchmark = 19
Metals and Metalloids	Total	Molybdenum Nickel Selenium Silver ^f Thallium	mg/L mg/L µg/L µg/L mg/L mg/L	MeHg ≤ 0.5% of THg, BCWQG = 0.00002 Else, BCWQG = [0.0001/(MeHg/THg)] OR When MeHg = 0.5% of THg, BCWQG= 0.00002 When MeHg = 1.0% of THg, BCWQG = 0.00001 When MeHg = 8.0% of THg, BCWQG= 0.00000125 7.6 2 For hardness ≤ 100 mg/L, BCWQG = 0.00005 For hardness > 100 mg/L, BCWQG = 0.0015 0.0008 0.0085 For hardness ≤ 90 mg/L, BCWQG = 0.0075 For hardness ≤ 90 to 330 mg/L, BCWQG = [7.5 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 330 mg/L	- 46 For hardness ≤ 100 mg/L, BCWQG = 0.0001 For hardness > 100 mg/L, BCWQG = 0.003 For hardness ≤ 90 mg/L, BCWQG = 0.033 For hardness 90 to 500 mg/L, BCWQG = [33 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 500 mg/L	2021 - 2014 1996 1997 2011	Approved Approved Working	Level 1 Interim Screening Value = 5.3 Level 2 Interim Screening Value = 15 Level 3 Interim Screening Value = 22 Level 1 EVWQP Benchmark = 19
Metals and Metalloids		Molybdenum Nickel Selenium Silver ^f Thallium Uranium	mg/L mg/L µg/L mg/L mg/L mg/L	MeHg ≤ 0.5% of THg, BCWQG = 0.00002 Else, BCWQG = [0.0001/(MeHg/THg)] OR When MeHg = 0.5% of THg, BCWQG= 0.00002 When MeHg = 1.0% of THg, BCWQG = 0.00001 When MeHg = 8.0% of THg, BCWQG= 0.00000125 7.6 2 For hardness ≤ 100 mg/L, BCWQG = 0.00005 For hardness > 100 mg/L, BCWQG = 0.0015 0.0008 0.0085 For hardness ≤ 90 mg/L, BCWQG = 0.0075 For hardness > 90 to 330 mg/L, BCWQG = [7.5 + 0.75 (hardness - 90)]×0.001;	- 46 - For hardness ≤ 100 mg/L, BCWQG = 0.0001 For hardness > 100 mg/L, BCWQG = 0.003 For hardness ≤ 90 mg/L, BCWQG = 0.033 For hardness 90 to 500 mg/L, BCWQG = [33 + 0.75 (hardness - 90)]×0.001;	2021 - 2014 1996 1997 2011	Approved Approved Working Working	Level 1 Interim Screening Value = 5.3 Level 2 Interim Screening Value = 15 Level 3 Interim Screening Value = 22 Level 1 EVWQP Benchmark = 19 Level 2 EVWQP Benchmark = 74
Metals and Metalloids	Dissolved	Molybdenum Nickel Selenium Silver ^f Thallium Uranium Zinc ^g	mg/L mg/L mg/L mg/L mg/L mg/L	MeHg ≤ 0.5% of THg, BCWQG = 0.00002 Else, BCWQG = [0.0001/(MeHg/THg)] OR When MeHg = 0.5% of THg, BCWQG= 0.00002 When MeHg = 1.0% of THg, BCWQG = 0.00001 When MeHg = 8.0% of THg, BCWQG= 0.00000125 7.6 2 For hardness ≤ 100 mg/L, BCWQG = 0.00005 For hardness > 100 mg/L, BCWQG = 0.0015 0.0008 0.0008 For hardness ≤ 90 mg/L, BCWQG = 0.0075 For hardness 90 to 330 mg/L, BCWQG = [7.5 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 330 mg/L When pH ≥ 6.5, BCWQG = 0.05 When pH < 6.5, BCWQG = exp[1.6 - 3.327(median pH)+	- 46 For hardness ≤ 100 mg/L, BCWQG = 0.0001 For hardness > 100 mg/L, BCWQG = 0.003 For hardness ≤ 90 mg/L, BCWQG = 0.033 For hardness 90 to 500 mg/L, BCWQG = [33 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 500 mg/L When pH ≥ 6.5, BCWQG = 0.1 When pH < 6.5, BCWQG = exp[1.209 - 2.426(pH)+ 0.286	2021 - 2014 1996 1997 2011 1999	Approved Approved Working Working Approved	Level 1 Interim Screening Value = 5.3 Level 2 Interim Screening Value = 15 Level 3 Interim Screening Value = 22 Level 1 EVWQP Benchmark = 19
Metals and Metalloids		Molybdenum Nickel Selenium Silver ^f Thallium Uranium Zinc ^g Aluminum	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	MeHg ≤ 0.5% of THg, BCWQG = 0.00002 Else, BCWQG = [0.0001/(MeHg/THg)] OR When MeHg = 0.5% of THg, BCWQG= 0.00002 When MeHg = 1.0% of THg, BCWQG = 0.00001 When MeHg = 8.0% of THg, BCWQG= 0.00000125 7.6 2 For hardness ≤ 100 mg/L, BCWQG = 0.00005 For hardness > 100 mg/L, BCWQG = 0.0015 0.0008 0.0008 0.0085 For hardness ≤ 90 mg/L, BCWQG = 0.0075 For hardness > 90 to 330 mg/L, BCWQG = [7.5 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 330 mg/L When pH ≥ 6.5, BCWQG = 0.05 When pH < 6.5, BCWQG = exp[1.6 - 3.327(median pH)+ 0.402(median pH)2] For hardness = 3.4 to 285 mg/L, BCWQG = {exp[0.736×ln(hardness) - 4.943]}	- 46	2021 - 2014 1996 1997 2011 1999 2001 2015	Approved Approved Working Working Approved Approved	Level 1 Interim Screening Value = 5.3 Level 2 Interim Screening Value = 15 Level 3 Interim Screening Value = 22 Level 1 EVWQP Benchmark = 19 Level 2 EVWQP Benchmark = 74 Level 1 EVWQP Benchmark = 100.83(log(hardness))-2.53 Maximum applicable

Note: "-" = no data available.

^a British Columbia Working (BCMOECCS 2021a) or Accepted (BCMOECCS 2021b) Water Quality Guidelines for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness), guidelines were screened using concurrent values.

b When appropriate, site-specific Elk Valley Water Quality Plan Benchmarks (EVWQP; Teck 2014) or interim screening values were applied in addition to or instead of BC water quality guidelines. Interim screening values are displayed for nickel (Golder 2017b).

^c Temperature and pH dependent; range of minimum and maximum values.

^d Dependent on concurrent chloride, range of values reported (BCMOECCS 2021b).

^e Dissolved oxygen guidelines represent a minimum value, and so exceedances were quantified below this guideline.

f Unrestricted change permitted within this pH range.

⁹ For hardness-based guidelines, concurrent hardness values were used for calculating guidelines. If hardness values exceeding the maximum applicable hardness, then guidelines were determined using the maximum applicable hardness. If hardness values is lower than the minimum hardness, then guidelines were determined using the minimum hardness.

^h Chromium(VI) is the dominant oxidation state in oxygenated environments, and so its guideline was applied.

ⁱ The most conservative guideline (0.00000125 mg/L) was applied.

Table D.3: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2021

Otation	0	Total	1 -111	Elada all	Dissolved	Alkalinity	Nitrate-N	Nitrite-N	Ammonia	Sulphate	Total	Total	Total	Total	Total	Total	Total Boron	Total
Station	Summary Statistic	Dissolved Solids (ma/L)	Lab pH	Field pH	Oxygen (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Chloride (mg/L)	Fluoride (mg/L)	Antimony (mg/L)	Arsenic (mg/L)	Barium (mg/L)	Beryllium (mg/L)	(mg/L)	Chromium (mg/L)
	n	14	14	0	22	14	14	14	14	14	14	14	14	14	14	14	14	14
	Annual Minimum	136	7.98	-	9.72	99.3	0.0869	<0.001	<0.005	16.2	0.140	0.200	<0.0001	0.000130	0.0346	<0.00002	<0.01	0.000130
	Annual Maximum	240	8.38	-	12.0	135	0.229	0.00260	0.0163	78.9	0.350	0.432	0.000100	0.000300	0.0471	<0.00002	<0.01	0.000640
	Annual Mean	195	8.16	-	10.8	118	0.188	0.00111	0.00708	49.4	0.214	0.291	0.000100	0.000165	0.0409	<0.00002	<0.01	0.000246
	Annual Median	201	8.16	-	10.8	120	0.200	<0.001	<0.005	47.7	0.215	0.277	<0.0001	0.000155	0.0422	<0.00002	<0.01	0.000210
LC_LC1	% < LRL	0%	0%	-	0%	0%	0%	93%	64%	0%	0%	0%	93%	0%	0%	100%	100%	0%
	% > BCWQG ^a	-	-	-	0%	0%	0%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-
	% > Level 1 Benchmark	0%	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n Annual Minimum	30	30	0	29 8.14	30	30	30	30	30	30	30	30 <0.0001	30	30	30	30	30
	Annual Minimum Annual Maximum	127 273	7.92 8.48	-	12.7	102 163	0.0477 0.206	<0.001 0.00150	<0.005 0.0264	7.73 80.0	0.100 0.770	0.136 0.387	0.000120	<0.0001 0.000190	0.0235 0.0983	<0.00002 <0.00002	<0.01 <0.01	0.000120 0.000320
	Annual Maximum Annual Mean	273	8.22	-	11.0	137	0.206	0.00130	0.0264	48.8	0.770	0.367	0.000120	0.000190	0.0963	<0.00002	<0.01	0.000320
	Annual Median	216	8.23	-	11.1	142	0.107	<0.001	<0.005	49.6	0.320	0.298	<0.000101	0.000120	0.0411	<0.00002	<0.01	0.000173
LC_SLC	% < LRL	0%	0%	_	0%	0%	0%	90%	70%	0%	0%	0%	97%	3%	0%	100%	100%	0%
10_010	% > BCWQG ^a	-		_	0%	0%	0%	0%	0%	0%	0%	_	0%	-	0%	0%	0%	0%
	% > BCWQG ^b	_		_	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-
	% > Level 1 Benchmark	0%	-	_	-	_	0%	-	-	0%	-	-	_	-	_	_	_	_
	% > Level 2 Benchmark	-		-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	60	61	0	61	61	61	61	61	61	61	61	61	61	61	61	61	61
	Annual Minimum	315	7.71	-	9.37	153	5.17	<0.001	<0.005	107	2.69	<0.1	0.000270	<0.0001	0.0268	<0.00002	0.0100	<0.0001
	Annual Maximum	916	8.46	-	11.9	269	20.4	0.00560	0.0211	388	14.4	0.369	0.000460	0.000190	0.0773	<0.00002	0.0240	<0.0004
	Annual Mean	651	8.15	-	10.4	215	13.6	0.00124	0.00701	261	8.30	0.191	0.000382	0.000135	0.0580	<0.00002	0.0183	0.000127
	Annual Median	655	8.16	-	10.3	220	13.0	<0.001	<0.005	269	8.47	0.189	0.000385	0.000130	0.0618	<0.00002	0.0190	0.000120
LC_LCUSWLC	% < LRL	0%	0%	-	0%	0%	0.0%	90%	70%	0%	0%	3%	0%	3%	0%	100%	0%	15%
	% > BCWQG ^a	-	-	-	0%	0%	100%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-
	% > Level 1 Benchmark % > Level 2 Benchmark	0%	-	-	-	-	34% 0%	-	-	0%	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark % > Level 3 Benchmark	-	-	-	<u> </u>	-	U% -	-	-	-	-	-		-	-	-	-	-
	% > Level 3 Belicilliark	- 57	- 57	0	<u>-</u> 57	- 57	- 57	- 57	57	- 57	57	57	57	57	57	57	57	57
	Annual Minimum	843	7.92	-	9.69	273	6.49	<0.001	<0.005	369	1.52	<0.1	0.000380	0.000130	0.0136	<0.00002	0.0140	<0.0001
	Annual Maximum	2,270	8.43	-	11.5	452	19.6	0.0757	0.0305	1,260	8.14	<0.4	0.000560	0.000370	0.0266	<0.00004	0.0250	<0.0003
	Annual Mean	1,834	8.20	-	10.8	354	14.9	0.00366	0.00696	1,000	4.08	0.149	0.000462	0.000231	0.0220	<0.00002	0.0178	0.000120
	Annual Median	1,900	8.20	-	10.7	350	15.2	0.00100	<0.005	1,060	4.10	0.144	0.000470	0.000230	0.0225	<0.00004	0.0160	<0.0001
LC_WLC	% < LRL	0%	0%	-	0%	0%	0.0%	82%	75%	0%	0%	21%	0%	18%	0%	100%	58%	86%
_	% > BCWQG ^a	-	-	-	0%	0%	100%	2%	0%	98%	0%	-	0%	-	0%	0%	0%	0%
	% > BCWQG ^b	-		-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-
	% > Level 1 Benchmark	96%	ı	-	-	-	53%	-	-	98%	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.

Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guidelines were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

> 50% of samples exceed the guideline or benchmark. > 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

Table D.3: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2021

Station	Summan, Statistic	Total	الم ماما	Field pH	Dissolved	Alkalinity	Nitrate-N	Nitrite-N	Ammonia	Sulphate	Total Chloride	Total	Total	Total	Total Barium	Total Beryllium	Total Boron	Total
Station	Summary Statistic	Dissolved Solids (ma/L)	Lab pH	гіеіа рп	Oxygen (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Fluoride (mg/L)	Antimony (mg/L)	Arsenic (mg/L)	(mg/L)	(mg/L)	(mg/L)	Chromium (mg/L)
	n	60	60	0	60	60	60	60	60	60	60	60	60	60	60	60	60	60
	Annual Minimum	380	7.81	-	9.91	163	5.37	<0.001	< 0.005	128	3.63	<0.1	0.000280	<0.0001	0.0248	<0.00002	0.0120	<0.0001
-	Annual Maximum	1,090	8.54	-	13.2	271	14.4	0.00880	0.0217	532	70.5	0.301	0.000380	0.000210	0.0691	<0.00002	0.0230	0.000510
	Annual Mean	790	8.17	-	11.1	221	10.8	0.00156	0.00716	350	25.0	0.183	0.000323	0.000126	0.0522	<0.00002	0.0182	0.000141
	Annual Median	798	8.17	-	10.9	224	11.2	0.00100	<0.005	360	23.6	0.180	0.000320	0.000120	0.0549	<0.00002	0.0180	0.000130
LC_LC3	% < LRL	0%	0%	-	0%	0%	0%	78%	58%	0%	0%	7%	0%	18%	0%	100%	0%	10%
	% > BCWQG ^a	-		-	0%	0%	100%	0%	0%	25%	0%	-	0%	-	0%	0%	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-
-	% > Level 1 Benchmark	18%	•	-	-	-	0%	-	-	25%	-	-	-	-	-	-	-	-
=	% > Level 2 Benchmark	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	- 0	<u>-</u> 4	4	-	4	4	<u>-</u> 4	4	- 4	- 4	4	- 4	4	- 4	4
-	n Annual Minimum	4 496	4 8.13	-	10.6	169	7.33	<0.001	<0.005	167	6.71	0.188	0.000220	0.000110	0.0422	<0.00002	0.0140	0.000120
	Annual Minimum Annual Maximum	496 670	8.13	-	11.3	207	10.4	0.00360	0.005	252	12.8	0.188	0.000220	0.000110	0.0422	<0.00002	0.0140	0.000120
-	Annual Maximum Annual Mean	575	8.28	-	10.8	194	8.40	0.00360	0.0224	232	11.1	0.262	0.000280	0.000120	0.0544	<0.00002	0.0160	0.000200
	Annual Median	568	8.28	_	10.7	199	7.93	0.00170	<0.005	238	12.4	0.212	0.000245	0.000110	0.0510	<0.00002	0.0155	0.000150
WL DCP SP24	% < LRL	0%	0%	_	0%	0%	0.0%	25%	75%	0%	0%	0%	0%	0%	0%	100%	0%	0%
	% > BCWQG ^a	-		_	0%	0%	100%	0%	0%	0%	0%	_	0%	_	0%	0%	0%	0%
-	% > BCWQG ^b	-		_	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-
=	% > Level 1 Benchmark	0%		-	-	-	0%	-	-	0%	-	-	-	-	-	-	-	-
-	% > Level 2 Benchmark	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-
-	% > Level 3 Benchmark	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	53	53	0	53	53	53	53	53	53	53	53	53	53	53	53	53	53
	Annual Minimum	268	8.09	-	8.80	140	2.90	<0.001	<0.005	79.4	2.55	<0.1	0.000150	<0.0001	0.0292	<0.00002	<0.01	<0.0001
=	Annual Maximum	792	8.55	-	13.1	255	11.7	<0.02	0.0298	353	25.7	<0.4	0.000270	0.000170	0.0896	<0.00002	0.0190	<0.0004
=	Annual Mean	580	8.30	-	10.8	198	8.07	0.00157	0.00757	237	13.1	0.201	0.000217	0.000121	0.0605	<0.00002	0.0139	0.000143
	Annual Median	600	8.29 0%	-	10.7 0%	205 0%	8.35 0.0%	0.00100 60%	<0.005 53%	238 0%	12.7 0%	0.199 4%	0.000220	0.000120	0.0624 0%	<0.00002 100%	0.0140 9%	0.000130 6%
LC_LCDSSLCC	% < LRL	0%	0%	-	0%	0%	98%			0%	0%			13%	0%	0%	0%	
-	% > BCWQG ^a		•	-				0%	0%			- 00/	0%	- 00/	0%			0%
-	% > BCWQG ^b % > Level 1 Benchmark	- 0%	-	-	0%	-	0% 0%	0%	0%	- 0%	0%	0%	-	0%	-	-	-	-
	% > Level 2 Benchmark	-	-	-	<u> </u>	-	0%	-	-	-	-	_		-	-	-		-
	% > Level 3 Benchmark	_	-	_		_	-	_	_	_	_	_	_	_	_	_	_	
	n	4	4	0	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	Annual Minimum	278	6.86	-	10.4	98.0	4.12	<0.001	<0.005	105	5.40	0.0985	0.000160	0.000120	0.0316	<0.00002	0.0125	0.000140
	Annual Maximum	523	8.43	-	11.3	221	6.80	0.00320	0.0142	204	10.5	0.251	0.000230	0.000145	0.0646	<0.00002	0.0150	0.000150
	Annual Mean	436	7.95	-	10.9	173	5.91	0.00180	0.00761	164	8.15	0.195	0.000193	0.000129	0.0519	<0.00002	0.0139	0.000142
	Annual Median	472	8.26	-	10.9	186	6.36	0.00150	0.00565	173	8.35	0.215	0.000190	0.000125	0.0556	<0.00002	0.0140	0.000140
LC_LCC	% < LRL	0%	0%	-	0%	0%	0.0%	50%	50%	0%	0%	0%	0%	0%	0%	100%	0%	0%
	% > BCWQG ^a	-	-	-	0%	0%	100%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-
	% > Level 1 Benchmark	0%		-	-	-	0%	-	-	0%	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.

Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

Table D.3: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2021

Station	Summary Statistic	Total Dissolved Solids (mg/L)	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Boron (mg/L)	Total Chromium (mg/L)
	n	56	56	0	56	56	56	56	56	56	56	56	56	56	56	56	56	56
	Annual Minimum	237	7.93	-	8.50	131	2.43	<0.001	< 0.005	68.1	2.20	<0.1	0.000130	<0.0001	0.0326	<0.00002	<0.01	0.000100
	Annual Maximum	625	8.49	-	14.9	223	10.6	<0.005	0.0680	300	18.0	0.337	0.000210	0.000200	0.0900	<0.00002	0.0160	<0.0004
	Annual Mean	499	8.33	-	11.1	184	6.38	0.00159	0.00884	192	10.4	0.232	0.000177	0.000126	0.0637	<0.00002	0.0128	0.000164
	Annual Median	528	8.34	-	10.9	188	6.43	0.00135	0.00500	202	10.6	0.230	0.000180	0.000120	0.0661	<0.00002	0.0130	0.000150
LC_LC4	% < LRL	0%	0%	-	0%	0%	0.0%	36%	50%	0%	0%	2%	0%	7%	0%	100%	11%	2%
	% > BCWQG ^a	-	-	-	0%	0%	96%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-
	% > Level 1 Benchmark	0%	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	4	4	0	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	Annual Minimum	474	8.23	-	9.99	173	9.69	0.00380	<0.005	155	1.40	0.124	0.000100	<0.0001	0.0883	<0.00002	<0.01	<0.0001
	Annual Maximum	622	8.38	-	11.8	219	15.2	0.00685	0.00805	250	3.44	0.187	0.000140	0.000125	0.111	<0.00002	0.0110	0.000170
	Annual Mean	561	8.33	-	10.8	194	12.6	0.00464	0.00584	207	2.16	0.152	0.000121	0.000116	0.103	<0.00002	0.0102	0.000132
	Annual Median	574	8.36	-	10.8	193	12.8	0.00400	0.00515	212	1.91	0.149	0.000122	0.000120	0.107	<0.00002	0.0100	0.000130
LC_LC6	% < LRL	0%	0%	-	0%	0%	0.0%	25%	50%	0%	0%	0%	0%	25%	0%	100%	50%	25%
	% > BCWQG ^a	-	-	-	0%	0%	100%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-
	% > Level 1 Benchmark	0%	-	-	-	-	50%	-	-	0%	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	•	-	-	-	1	-	-	1	-	-	-	-	-	-	-	-
	n	38	38	0	37	38	38	38	38	38	38	38	38	38	38	38	38	38
	Annual Minimum	319	8.11	-	9.26	147	5.68	<0.001	<0.005	97.5	1.33	0.107	<0.0001	<0.0001	0.0557	<0.00002	<0.01	<0.0001
	Annual Maximum	642	8.55	-	13.1	221	13.9	0.0124	0.0246	260	6.27	0.253	0.000390	0.000510	0.111	0.0000560	0.0120	0.00102
	Annual Mean	521	8.32	-	11.0	189	10.3	0.00386	0.00770	188	4.00	0.179	0.000138	0.000142	0.0902	0.0000209	0.0103	0.000200
	Annual Median	556	8.32	-	10.8	194	10.9	0.00335	<0.005	205	4.14	0.182	0.000135	0.000120	0.0958	<0.00002	<0.01	0.000150
LC_LC5	% < LRL	0%	0%	-	0%	0%	0.0%	8%	61%	0%	0%	0%	13%	11%	0%	97%	61%	3%
	% > BCWQG ^a	-	-	-	0%	0%	100%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	3%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-
	% > Level 1 Benchmark	0%	-			-	3%	-	-	0%	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-		-	-	-	0%	-	-	ı	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.

Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

> 50% of samples exceed the guideline or benchmark. > 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

Table D.3: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2021

Station	Summary Statistic	Total Cobalt (µg/L)	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Manganese (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Nickel (µg/L)	Total Selenium (µg/L)	Total Silver (mg/L)	Total Thallium (mg/L)	Total Uranium (mg/L)	Total Zinc (mg/L)	Dissolved Aluminum (mg/L)	Dissolved Cadmium (µg/L)	Dissolved Cobalt (µg/L)	Dissolved Copper (mg/L)	Dissolved Iron (mg/L)
	n	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14
	Annual Minimum	<0.1	<0.01	<0.00005	0.00220	<0.0001	<0.0000005	0.000598	<0.5	1.37	<0.00001	<0.00001	0.000777	< 0.003	0.00100	<0.005	<0.1	<0.0002	<0.01
	Annual Maximum	<0.1	0.147	0.000183	0.00400	0.00777	0.00000157	0.00108	1.24	3.20	<0.00001	<0.00001	0.00171	0.00670	0.00360	0.00990	<0.1	<0.0002	<0.01
	Annual Mean	<0.1	0.0199	0.0000595	0.00322	0.000701	0.00000576	0.000849	0.595	2.31	<0.00001	<0.00001	0.00131	0.00333	0.00197	0.00658	<0.1	<0.0002	<0.01
	Annual Median	<0.1	<0.01	<0.00005	0.00325	<0.0001	<0.000005	0.000856	<0.5	2.36	<0.00001	<0.00001	0.00136	<0.003	0.00170	0.00560	<0.1	<0.0002	<0.01
LC_LC1	% < LRL	100%	86%	93%	0%	57%	93%	0%	57%	0%	100%	100%	0%	71%	7%	21%	100%	100%	100%
	% > BCWQG ^a	0%	-	0%	-	0%	7%	0%	-	71%	0%	0%	0%	0%	0%	0%	-	0%	-
	% > BCWQG ^b	0%	0%	0%		0%	-	0%	-	-	0%	-	-	0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-	•	-	0%	0%	-	-	-	-	-	0%	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-		-	-	-	0%	-	-	-	-	-	-	-	-	-	-
	n A	30	30	30	30	30	29	30	30	30	30	30	30	30	30	30	30	30	30
	Annual Minimum	<0.1	<0.01	<0.00005	0.00120	<0.0001	<0.0000005	0.000446	<0.5	0.494	<0.00001	<0.00001	0.000558	<0.003	<0.001	0.00880	<0.1	<0.0002	<0.01
	Annual Maximum	<0.1 <0.1	0.0940	0.0000790	0.0272	0.00341 0.000496	0.00000191	0.00140	1.08 0.522	44.4	<0.00001	<0.00001 <0.00001	0.00262 0.00147	0.00510	<0.005	0.0170	<0.1	0.000210 0.000201	<0.01 <0.01
	Annual Mean Annual Median	<0.1	0.0174 <0.01	0.0000510 <0.00005	0.00390 0.00325	0.000496	0.000000643 <0.0000005	0.00111 0.00124	<0.52	2.75 1.46	<0.00001 <0.00001	<0.00001	0.00147	0.00320 <0.003	0.00152 0.00120	0.0121 0.0120	<0.1 <0.1	<0.000201	<0.01
10 810	% < LRL	100%	77%	97%	0.00325	43%	72%	0.00124	93%	0%	100%	100%	0.00164	70%	43%	0.0120	100%	93%	100%
LC_SLC	% > ERL % > BCWQG ^a	0%	-	0%		0%	3%	0%		3%	0%	0%	0%	0%	0%	0%		0%	10076
				1	-	0%		_	-		·			1	0%	1	-		0%
	% > BCWQG ^b % > Level 1 Benchmark	0%	0%	0%	-		-	0%	- 0%	3%	0%	-	-	0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark		-	-	-	-	-	-	0%	0%	-	-	-	-	-	070	-	-	-
	% > Level 3 Benchmark		-	_		_		-	0%	-		-	-	-			-		
	n	61	61	61	61	61	59	61	61	61	61	61	61	61	61	61	59	61	61
	Annual Minimum	<0.1	<0.01	<0.00005	0.0253	<0.0001	<0.0000005	0.00144	6.89	19.9	<0.00001	0.0000100	0.00206	0.0102	<0.001	0.265	<0.1	0.000220	<0.01
	Annual Maximum	0.120	0.0140	<0.00005	0.0778	0.000420	0.00000121	0.00247	12.6	73.3	<0.00001	0.0000190	0.00578	0.0593	0.0100	0.580	0.120	0.000890	0.0140
	Annual Mean	0.101	0.0101	<0.00005	0.0610	0.000160	0.000000558	0.00190	10.5	47.8	<0.00001	0.0000145	0.00400	0.0148	0.00152	0.334	0.101	0.000352	0.0101
	Annual Median	<0.1	<0.01	<0.00005	0.0664	0.000140	<0.0000005	0.00190	10.9	45.7	<0.00001	0.0000140	0.00397	0.0133	<0.001	0.310	<0.1	0.000310	<0.01
LC_LCUSWLC	% < LRL	90%	98%	100%	0%	25%	81%	0%	0%	0%	100%	0%	0%	0%	74%	0%	95%	0%	98%
_	% > BCWQG ^a	0%	-	0%	-	0%	0%	0%	-	100%	0%	0%	0%	0%	0%	5%	-	16%	-
	% > BCWQG ^b	0%	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-		-	100%	100%	-	-	-	-	-	13%	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	1	-	0%	•	-	-	-	-	-	-	-	-	-
	n	57	57	57	57	57	54	57	57	59	57	57	57	57	57	57	54	57	57
	Annual Minimum	<0.1	<0.01	<0.00005	0.0238	<0.0001	<0.000005	0.00114	16.1	168	<0.00001	0.0000200	0.00602	0.00530	<0.001	0.0122	<0.1	<0.0004	<0.01
	Annual Maximum	0.260	<0.02	<0.0001	0.0422	0.00156	0.00000176	0.00500	43.9	566	<0.00002	0.0000470	0.0234	0.118	0.00600	2.65	0.470	0.00456	0.0520
	Annual Mean	0.103	0.0101	0.0000533	0.0349	0.000384	0.00000102	0.00324	24.8	404	<0.00001	0.0000265	0.0169	0.0366	0.00164	0.881	0.112	0.000884	0.0117
	Annual Median	<0.2	<0.01	<0.00005	0.0363	0.000100	0.00000106	0.00368	18.8	425	<0.00002	0.0000260	0.0182	0.0157	<0.001	0.576	<0.2	0.000790	<0.01
LC_WLC	% < LRL	98%	98%	98%	0%	56%	2%	0%	0%	0%	100%	0%	0%	26%	70%	0%	94%	2%	89%
	% > BCWQG ^a	0%	-	0%	-	0%	4%	0%	-	100%	0%	0%	95%	0%	0%	54%	-	32%	-
	% > BCWQG ^b	0%	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	0%	-	2%	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	-	100%	100%	-	-	-	-	-	35%	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	100%	100%	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	39%	-	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark. > 95% of samples exceed the guideline or benchmark.

Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

Table D.3: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2021

21.11	0 0/ 1/ 1/	Total	Total Iron	Total Lead	Total	Total	Total	Total	Total Nickel	Total	Total Silver	Total	Total	Total Zinc	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
Station	Summary Statistic	Cobalt (µg/L)	(mg/L)	(mg/L)	Lithium (mg/L)	Manganese (mg/L)	Mercury (mg/L)	Molybdenum (mg/L)	(µg/L)	Selenium (µg/L)	(mg/L)	Thallium (mg/L)	Uranium (mg/L)	(mg/L)	Aluminum (mg/L)	Cadmium (µg/L)	Cobalt (µg/L)	Copper (mg/L)	Iron (mg/L)
	n	<u>(ру/L)</u> 60	60	60	60	60	(111 9/L) 57	(mg/L) 60	60	(μ g/L) 61	60	60	60	60	60	(μ g/L) 60	(µg/L) 58	(Hig/L)	60
-	Annual Minimum	<0.1	<0.01	<0.00005	0.0288	0.000500	<0.0000005	0.00151	7.57	29.2	<0.00001	<0.00001	0.00233	0.00550	<0.001	0.137	<0.1	<0.0002	<0.01
	Annual Maximum	0.320	0.222	0.000112	0.0785	0.0754	0.000000840	0.00582	13.3	71.2	<0.00001	0.0000180	0.00620	0.151	0.00530	0.562	0.310	0.00214	0.0680
	Annual Mean	0.177	0.0640	0.0000510	0.0590	0.0303	0.000000538	0.00384	9.14	43.8	<0.00001	0.0000119	0.00448	0.0141	0.00138	0.273	0.158	0.000343	0.0123
	Annual Median	0.160	0.0540	<0.00005	0.0620	0.0284	<0.0000005	0.00386	9.06	44.1	<0.00001	0.0000110	0.00450	0.0111	<0.001	0.253	0.145	0.000305	<0.01
LC LC3	% < LRL	8%	7%	98%	0%	0%	82%	0%	0%	0%	100%	37%	0%	0%	72%	0%	17%	5%	87%
	% > BCWQG ^a	0%	-	0%	-	0%	0%	0%	-	100%	0%	0%	0%	0%	0%	3%	-	13%	-
	% > BCWQG ^b	0%	0%	0%		0%	-	0%	-	-	0%	-	-	0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	-	100%	100%	-	-	-	-	-	10%	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-
	n	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
[Annual Minimum	<0.1	0.0110	<0.00005	0.0366	0.00337	<0.000005	0.00195	5.65	24.9	<0.00001	<0.00001	0.00261	0.00690	<0.001	0.167	<0.1	0.000200	<0.01
	Annual Maximum	<0.1	0.0270	<0.00005	0.0467	0.0104	<0.000005	0.00274	6.36	34.9	<0.00001	<0.00001	0.00370	0.0104	0.00190	0.292	<0.1	0.000300	<0.01
	Annual Mean	<0.1	0.0175	<0.00005	0.0439	0.00720	<0.000005	0.00243	6.04	29.3	<0.00001	<0.00001	0.00328	0.00822	0.00122	0.211	<0.1	0.000265	<0.01
	Annual Median	<0.1	0.0160	<0.00005	0.0462	0.00752	<0.000005	0.00252	6.07	28.7	<0.00001	<0.00001	0.00341	0.00780	<0.001	0.192	<0.1	0.000280	<0.01
WL_DCP_SP24	% < LRL	100%	0%	100%	0%	0%	100%	0%	0%	0%	100%	100%	0%	0%	75%	0%	100%	0%	100%
	% > BCWQG ^a	0%	-	0%	-	0%	0%	0%	-	100%	0%	0%	0%	0%	0%	0%	-	0%	-
	% > BCWQG ^b	0%	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	-	100%	100%	-	-	-	-	-	0%	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-		-	-	-	0%	-	-	-	-	-	-	-	-	-	-
-	n	53	53	53	53	53	51	53	53	54	53	53	53	53	53	53	51	53	53
-	Annual Minimum	<0.1	<0.01	<0.00005	0.0145	0.000970	<0.0000005	0.00115	3.19	14.4	<0.00001	<0.00001	0.00155	0.00310	<0.001	0.0790	<0.1	<0.0002	<0.01
	Annual Maximum	0.150	0.0540	0.0000850 0.0000507	0.0537	0.0107	0.00000122	0.00306	6.18	49.2 34.5	<0.00001	0.0000110	0.00438	0.0360	0.00310	0.244	<0.1	0.000460	<0.01
	Annual Mean Annual Median	0.101 <0.1	0.0163 0.0120	<0.00005	0.0400 0.0435	0.00509 0.00481	0.000000573 <0.0000005	0.00233 0.00253	4.61 4.64	34.5	<0.00001 <0.00001	0.0000100 <0.00001	0.00323 0.00345	0.00706 0.00600	0.00119 <0.001	0.146 0.138	<0.1 <0.1	0.000227 <0.0002	<0.01 <0.01
LC LCDSSLCC	% < LRL	98%	32%	98%	0.0433	0.00481	76%	0.00253	0%	0%	100%	92%	0.00343	0.0000	70%	0.138	100%	55%	100%
LC_LCD33LCC	% > BCWQG ^a	0%	JZ 70	0%	-	0%	0%	0%	-	100%	0%	0%	0%	0%	0%	0%	-	0%	-
	% > BCWQG ^b	0%	0%	0%		0%	070	0%			0%	070		0%	0%	0%		0%	0%
-	% > BCWQG % > Level 1 Benchmark	-	U% -	U% -	-		-		15%	96%	0%	-	-	0%	0%	0%	-	*	0%
	% > Level 1 Benchmark	<u> </u>	-	-		-		-	0%	0%	-	-	-	-	-	0%	-	-	-
	% > Level 3 Benchmark		-	-		-	-	-	0%	-		-	-		-	-	-	-	-
	n	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
 	Annual Minimum	<0.1	<0.01	<0.00005	0.0206	0.00184	<0.0000005	0.00121	2.06	20.9	<0.00001	<0.00001	0.00166	0.00385	<0.001	0.0886	<0.1	<0.0002	<0.01
	Annual Maximum	<0.1	0.0215	<0.00005	0.0366	0.00331	<0.0000005	0.00210	4.53	27.1	<0.00001	<0.00001	0.00298	0.00700	0.00250	0.200	<0.1	0.000340	<0.01
 	Annual Mean	<0.1	0.0141	<0.00005	0.0315	0.00248	<0.0000005	0.00178	3.50	24.1	<0.00001	<0.00001	0.00248	0.00524	0.00158	0.131	<0.1	0.000248	<0.01
 	Annual Median	<0.1	0.0125	<0.00005	0.0344	0.00238	<0.000005	0.00190	3.71	24.3	<0.00001	<0.00001	0.00263	0.00505	0.00140	0.118	<0.1	0.000225	<0.01
LC LCC	% < LRL	100%	50%	100%	0%	0%	100%	0%	0%	0%	100%	100%	0%	0%	25%	0%	100%	50%	100%
	% > BCWQG ^a	0%	-	0%	-	0%	0%	0%	-	100%	0%	0%	0%	0%	0%	0%	-	0%	-
	% > BCWQG ^b	0%	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	0%	-	0%	0%
 	% > Level 1 Benchmark	-	-	-	-	-	-	-	0%	100%	-	-	-	-	-	0%	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-	-
1	% > Level 3 Benchmark	-	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.

Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

> 50% of samples exceed the guideline or benchmark. > 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

Table D.3: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2021

Station	Summary Statistic	Total Cobalt	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium	Total Manganese	Total Mercury	Total Molybdenum	Total Nickel	Total Selenium	Total Silver (mg/L)	Total Thallium	Total Uranium	Total Zinc (mg/L)	Dissolved Aluminum	Dissolved Cadmium	Dissolved Cobalt	Dissolved Copper	Dissolved Iron (mg/L)
		(µg/L)	` • ,		(mg/L)	(mg/L)	(mg/L)	(mg/L)	0 /	(μg/L)	` • /	(mg/L)	(mg/L)	` • ,	(mg/L)	(µg/L)	(µg/L)	(mg/L)	` • /
	n	56	56	56	56	56	54	56	56	56	56	56	56	56	56	56	54	56	56
	Annual Minimum	<0.1	<0.01	<0.00005	0.0124	0.000500	<0.000005	0.000988	1.80	11.8	<0.00001	<0.00001	0.00132	<0.003	<0.001	0.0115	<0.1	<0.0002	<0.01
	Annual Maximum	0.170	0.143	0.000121	0.0442	0.0162	<0.000005	0.00254	4.34	40.2	<0.00001	0.0000120	0.00352	0.0604	0.00560	0.138	<0.1	0.00475	0.0110
	Annual Mean	0.101	0.0187	0.0000513	0.0329	0.00219	0.000000600	0.00204	3.16	27.8	<0.00001	0.0000100	0.00279	0.00634	0.00153	0.0735	<0.1	0.000302	0.0100
	Annual Median	<0.1	<0.01	<0.00005	0.0343	0.00141	<0.000005	0.00218	3.21	28.7	<0.00001	<0.00001	0.00299	0.00490	0.00120	0.0690	<0.1	<0.0002	<0.01
LC_LC4	% < LRL	98%	54%	98%	0%	0%	72%	0%	0%	0%	100%	98%	0%	7%	46%	0%	100%	70%	98%
	% > BCWQG ^a	0%	-	0%	-	0%	4%	0%	-	100%	0%	0%	0%	0%	0%	0%	-	2%	-
	% > BCWQG ^b	0%	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	-	0%	88%	-	-	-	-	-	0%	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-
	n	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	Annual Minimum	<0.1	<0.01	<0.00005	0.0242	0.000550	<0.000005	0.00101	0.730	40.2	<0.00001	<0.00001	0.00205	< 0.003	<0.001	0.00800	<0.1	<0.0002	<0.01
	Annual Maximum	<0.1	0.0240	<0.00005	0.0266	0.00206	<0.000005	0.00138	1.20	53.8	<0.00001	<0.00001	0.00266	< 0.003	0.00630	0.0208	<0.1	<0.0002	<0.01
	Annual Mean	<0.1	0.0148	<0.00005	0.0256	0.00123	<0.000005	0.00118	0.894	48.7	<0.00001	<0.00001	0.00240	< 0.003	0.00232	0.0138	<0.1	<0.0002	<0.01
	Annual Median	<0.1	0.0125	<0.00005	0.0259	0.00115	<0.000005	0.00116	0.820	50.3	<0.00001	<0.00001	0.00245	< 0.003	<0.001	0.0132	<0.1	<0.0002	<0.01
LC_LC6	% < LRL	100%	50%	100%	0%	0%	100%	0%	0%	0%	100%	100%	0%	100%	75%	0%	100%	100%	100%
	% > BCWQG ^a	0%	-	0%	-	0%	0%	0%	-	100%	0%	0%	0%	0%	0%	0%	-	0%	-
	% > BCWQG ^b	0%	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	-	0%	100%	-	-	-	-	-	0%	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-
	n	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
	Annual Minimum	<0.1	<0.01	< 0.00005	0.0146	0.000240	<0.0000005	0.000962	0.600	24.6	<0.00001	<0.00001	0.00152	< 0.003	<0.001	0.0118	<0.1	<0.0002	<0.01
	Annual Maximum	0.590	0.900	0.000743	0.0312	0.0696	0.00000531	0.00150	3.82	60.9	0.0000160	0.0000280	0.00290	0.0116	< 0.003	0.0417	<0.1	0.000670	<0.01
	Annual Mean	0.117	0.0671	0.0000804	0.0243	0.00496	0.00000733	0.00129	1.39	43.3	0.0000102	0.0000105	0.00235	0.00347	0.00123	0.0239	<0.1	0.000218	<0.01
	Annual Median	<0.1	0.0200	<0.00005	0.0242	0.00188	<0.000005	0.00132	1.34	44.1	<0.00001	<0.00001	0.00246	< 0.003	<0.001	0.0217	<0.1	<0.0002	<0.01
LC_LC5	% < LRL	89%	26%	79%	0%	0%	71%	0%	0%	0%	97%	95%	0%	79%	66%	0%	100%	82%	100%
_	% > BCWQG ^a	0%	-	0%	-	0%	8%	0%	-	100%	0%	0%	0%	0%	0%	0%	-	0%	-
	% > BCWQG ^b	0%	0%	0%	_	0%	_	0%	_	_	0%	_	_	0%	0%	0%	_	0%	0%
	% > Level 1 Benchmark	_	_	-	_	-	_	-	0%	100%	-	_	_	_	-	0%	_	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-

>

Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

Table D.4: Acute Toxicity Results for Line Creek Operations, 2021

Water S	tation	Daphnia	magna	Oncorhyno	hus mykiss
Teck Code	Description	Date	Percent Mortality	Date	Percent Mortality
		25-Jan-21	0%	25-Jan-21	0%
		8-Feb-21	0%	8-Feb-21	10%
		22-Feb-21	0%	22-Feb-21	0%
		23-Feb-21	0%	23-Feb-21	0%
		24-Feb-21	0%	24-Feb-21	0%
		25-Feb-21	0%	25-Feb-21	0%
		26-Feb-21	0%	26-Feb-21	0%
		8-Mar-21	0%	8-Mar-21	0%
		22-Mar-21	0%	22-Mar-21	0%
		5-Apr-21	0%	5-Apr-21	0%
		19-Apr-21	0%	19-Apr-21	0%
		3-May-21	0%	3-May-21	0%
		17-May-21	0%	17-May-21	0%
		26-May-21	0%	26-May-21	0%
	Most Line Onest	31-May-21	0%	31-May-21	0%
WL_BFWB_OUT_SP21	West Line Creek AWTF Effluent Outfall	14-Jun-21	0%	14-Jun-21	0%
	AVVII Lilident Odtiali	28-Jun-21	0%	28-Jun-21	0%
		12-Jul-21	0%	12-Jul-21	0%
		26-Jul-21	0%	26-Jul-21	0%
		9-Aug-21	0%	9-Aug-21	0%
		23-Aug-21	0%	23-Aug-21	0%
		6-Sep-21	0%	6-Sep-21	0%
		20-Sep-21	0%	20-Sep-21	0%
		4-Oct-21	0%	4-Oct-21	0%
		19-Oct-21	0%	19-Oct-21	0%
		1-Nov-21	0%	1-Nov-21	0%
	-	15-Nov-21	0%	15-Nov-21	10%
		22-Nov-21	0%	22-Nov-21	0%
		29-Nov-21	0%	29-Nov-21	0%
		13-Dec-21	0%	13-Dec-21	0%
		28-Dec-21	0%	28-Dec-21	0%

APPENDIX E BIOLOGICAL TRIGGERS

BIOLOGICAL TRIGGERS APPENDIX E

E1	INTRODUCTION	
	Background	
E2	METHODS	3
	Overview	
E2.2	Percent EPT	3
E2.3	Benthic Invertebrate Tissue Selenium (BIT Se)	4
E2.4	Westslope cutthroat trout muscle tissue selenium (WCT Se)	5
E3	RESULTS	
	Percent EPT	
E3.2	Benthic Invertebrate Tissue Selenium (BIT Se)	6
	Westslope cutthroat trout muscle tissue selenium (WCT Se)	
	SUMMARY	
C C	REFERENCES	0

E1 INTRODUCTION

E1.1 Background

Biological triggers were developed and implemented to assist with identifying and communicating unexpected and potentially important changes in aquatic ecosystem conditions and are required as part of Teck's Adaptive Management Plan (AMP; Teck 2018). Biological triggers were developed in consultation with the EMC for a subset of the biological monitoring endpoints that are effective indicators of changes at the ecosystem level. The purpose of the biological triggers is to quickly identify biological monitoring areas where unexpected biological conditions may be occurring that may require management action. Additionally, information provided from the analysis of biological triggers may lead to responses under the AMP response framework.

Draft biological triggers were developed in the 2018 AMP (Teck 2018) under Management Question 5, with these initially reported on in 2021 in the 2020 LAEMP reports and RAEMP data package, and summarized in the 2020 Annual AMP Report (Teck 2021a). When the 2018 AMP was approved, there was an expectation that the 2018 AMP draft/interim biological triggers would be finalized, through engagement with the EMC, prior to December 15, 2021 AMP Update. The biological triggers were finalized in 2021 (Teck 2021b) and the methods applied in this report reflect the finalized biological triggers (Teck 2021b). It is important to note that the process and/or biological triggers may adjust over time as the purpose of the biological triggers is to be reflective of not only changes in the Elk Valley, but also the current state of knowledge in the area.

The finalized biological triggers (Teck 2021b) include three measurement endpoints:

- Percent EPT (% EPT; Ephemeroptera, Plecoptera, and Trichoptera) based on travelling kick samples (CABIN protocol), generally three replicates per location per sampling event.
- Benthic invertebrate tissue selenium (BIT Se) generally several replicates collected per location per sampling event, where each replicate is a composite sample of invertebrates (i.e., composite-taxa sample).
- Westslope cutthroat trout muscle tissue selenium (WCT Se) generally 8 replicates collected per location per sampling event, where each replicate corresponds to a sample from a single fish.

Evaluation of these three biological trigger endpoints is complementary to the fulsome evaluation of biological endpoints that is integrated into the Local Aquatic Effects

Monitoring Program (LAEMP) and the Regional Aquatic Effects Monitoring Program (RAEMP) data evaluations. The more fulsome evaluation of biological endpoints is used to support answering the specific LAEMP and RAEMP study questions through the consideration of not only the endpoints used in the biological trigger evaluation, but also a full suite of additional biological, chemical, and physical endpoints. Biological triggers do not provide information on cause and effect, report on trends, or feed directly into decision-making processes. Instead, the biological triggers act to flag areas for further evaluation, which would then take place under existing monitoring programs, through the development of supporting studies or through the response framework, as necessary.

Biological monitoring data are compared to triggers annually, and summaries of the LAEMP and RAEMP trigger evaluations and responses are summarized within annual AMP reports.

E2 METHODS

E2.1 Overview

As outlined in Section E1.1, analyses for biological triggers are meant to be complementary to other analyses conducted in the LAEMPs and RAEMP. Biological trigger analyses included all three trigger endpoints (%EPT and BIT Se [collected under the 2021 LCO LAEMP], westslope cutthroat trout [WCT] muscle tissue Se at RG_FO23 and RG_LIDSL [collected under the RAEMP; Minnow 2021b]).

For the purpose of application of the biological triggers, expectations for the endpoints evaluated (%EPT, BIT Se, and WCT muscle tissue Se) were based on projected water quality, not on measured water quality. Thus, the triggers should detect biological results that were unexpected, regardless of whether those results are due to unexpected water quality or due to unexpected relationships between water quality and biological endpoints. Biological triggers were therefore only applied at locations where water quality projections were available. Specifically, five of the mine-exposed areas (RG_LCUT, RG_LILC3, RG_LIDSL, RG_LI8, and RG_FO23) and both reference areas (RG_LI24 and RG_SLINE) included in the LCO LAEMP were evaluated for biological trigger events. Data for other areas studied under the LCO LAEMP (RG_LIDCOM, RG_LISP24, and RG_FRUL) were not available to be evaluated relative to biological triggers but were assessed elsewhere as part of the main LCO LAEMP report.

Methodological details are discussed for each of the biological trigger metrics below.

E2.2 Percent EPT

Data for percent EPT were compared to:

- Normal range: The lower limit of habitat-adjusted normal range (2.5th percentile).
 Up-to-date limits of normal ranges¹ are provided in the RAEMP and LAEMPs, where they are recalculated as needed as new data become available (Teck 2019).
 The derivation of habitat-adjusted normal ranges is described in Appendix J of the 2020 RAEMP, and was based on consideration of more than 30 habitat, substrate, GIS, and land cover variables (Minnow 2020).
- <u>Expectations:</u> The lower limit of the range of %EPT corresponds to the predicted aquatic data integration tool (ADIT) score. The predicted ADIT scores correspond to potential effects on benthic invertebrate community (BIC) endpoints, based on

¹ The normal range will be updated as part of the three year reporting cycle of the RAEMP (Minnow 2021b).

relationships between water quality projections (for nitrate, sulphate and cadmium)² and invertebrate toxicity endpoints originally developed for the EVWQP (Teck 2014; Golder 2020a). A predicted ADIT score of 3 corresponds to 50% or greater effects to reproduction of the water flea Ceriodaphnia dubia, 2 corresponds to 20 to 50% effects, 1 corresponds to 10 to 20% effects, and 0 corresponds to effect levels of 10% or less. Once %EPT is actually measured, the measured results are converted to a measured ADIT score in relation to the habitat adjusted normal range as follows: An ADIT score of 0 corresponds to expected %EPT ≥ the 10th percentile of the habitat-adjusted normal range; an ADIT score of 1 corresponds to expected %EPT between the 10th percentile and the 2.5th percentile of the habitat-adjusted normal range (and is therefore identical in application to the lower limit of normal range); an ADIT score of 2 corresponds to expected %EPT between the 2.5th percentile and half of the 2.5th percentile of the habitat-adjusted normal range; finally, an ADIT score of 3 corresponds to expected %EPT ≤ half of the 2.5th percentile and ≥ 0. Individual replicate habitat-adjusted normal ranges were used at each location for establishing the %EPT limits associated with each ADIT score. In summary, this component of the biological trigger for %EPT asks whether the measured ADIT score - calculated based on measured %EPT relative to normal ranges - is greater than the ADIT score that was predicted based on water quality projections.

Benthic invertebrate community data for %EPT collected in the fall (September) for the 2021 LCO LAEMP were included in the biological trigger analysis.

E2.3 Benthic Invertebrate Tissue Selenium (BIT Se)

Data for BIT Se were compared to:

- <u>Normal range:</u> The upper limit of regional normal range (97.5th percentile) for individual replicates. Up-to-date limits of normal ranges³ are provided in the RAEMP and LAEMPs, where they are recalculated as needed as new data become available (Teck 2019).
- Expectations: The upper limit of the 95% prediction interval based on the water to BIT bioaccumulation model for lotic environments. The model originally developed in the EVWQP (Golder 2014) was updated (Golder 2020b) and the updated data set was used to calculate prediction intervals for individual replicates. Methodology for estimating the upper limit of the 95% prediction for BIT Se (given any projected value)

³ The normal range will be updated as part of the three-year reporting cycle of the RAEMP (Minnow 2021b).

² Selenium was not included because selenium effects on BIC endpoints are not expected. Projections were based on the highest maximum monthly mean across all flow scenarios (low, average, and high).

of aqueous selenium) is discussed further in the Biological Trigger Development for the Elk Valley Adaptive Management Plan (Azimuth 2021 [In Preparation]).

Benthic invertebrate tissue selenium data from sampling events completed throughout 2021 for the LCO LAEMP (April, July, September, and November/December) were included in the biological trigger analysis although normal range information is based on fall (September) information.

Although effects benchmarks are not part of the trigger, they are relevant for interpreting potential significance and responses. Consequently, the level 1, 2 and 3 benchmarks for the most sensitive receptor (juvenile fish via dietary exposure) are included in plots (11, 18, and 26 mg/kg, respectively).

E2.4 Westslope cutthroat trout muscle tissue selenium (WCT Se)

Data for WCT muscle tissue Se were compared to:

- Normal range: The upper limit of regional normal range (97.5th percentile). Up-to-date limits of normal ranges⁴ are provided in the RAEMP and LAEMPs, where they are recalculated as needed as new data become available (Teck 2019).
- Expectations: The upper limit of the 95% prediction interval based on bioaccumulation models. For a given selenium concentration in water, the best estimate of expected concentration WCT muscle tissue is in generated usina bioaccumulation model water to invertebrates. and invertebrates fish eggs --after which a conversion factor is used to convert muscle selenium concentration from egg selenium concentrations. Prediction errors for new replicate samples (i.e., individual fish) are based on a different data set that relates fish directly to water. Methodology for estimating the upper limit of the 95% prediction interval for WCT muscle Se (given any projected value of aqueous selenium) is discussed further in the Biological Trigger Development for the Elk Valley Adaptive Management Plan (Azimuth 2021 [In Preparation]).

Although effects benchmarks are not part of the trigger, they are relevant for interpreting potential significance and responses. Consequently, the site-specific muscle benchmark are included in the plots (15.5 mg/kg dw; Nautilus Environmental and Interior Reforestation 2011).

⁴ The normal range will be updated as part of the three-year reporting cycle of the RAEMP (Minnow 2021b).

E3 RESULTS

E3.1 Percent EPT

Individual replicates for the %EPT endpoint for each of the five mine-exposed areas (RG LCUT, RG LILC3, RG LIDSL, RG LI8, and RG FO23) as well as the reference areas (RG_LI24 and RG_SLINE) were each assessed against their respective biological triggers for the September sampling period (Appendix Table E.1 and Appendix Figure E.1). Three mine-exposed areas (RG_LCUT [3 of 3 replicates], RG_LILC3 [5 of 5 replicates], and RG FO23 [5 of 5 replicates] had % EPT results that were lower than the biological trigger value. RG LILC3 (the area closest in downstream proximity to the AWTF) had %EPT ranging from 15.1 to 27.9% which is substantially lower than the lower 2.5th percentile prediction limit of the biological trigger (which ranged from 75.8 to 78.7%), while %EPT values from areas further downstream did not show the same magnitude of difference. Specifically, %EPT at RG LIDSL and RG LI8 did not reach the biological trigger (i.e., were higher than the trigger value). RG FO23 had %EPT which was lower than the trigger (42.3 to 74.5 %EPT [reported value] compared to 74.3 to 75.6 %EPT [lower 2.5th percentile trigger prediction limit]; Table E.1) but this area is located in the Fording River downstream of Line Creek and did not follow the same spatial pattern observed in Line Creek (i.e., fewer results lower than the trigger with increasing distance from the ATWF) indicating the results were not AWTF-related. Replicates from the reference areas, RG LI24 [5 of 5 replicates] and RG SLINE [3 of 3 replicates], did not reach the biological trigger (i.e., were higher than the trigger value; Appendix Table E.1 and Appendix Figure E.1).

E3.2 Benthic Invertebrate Tissue Selenium (BIT Se)

Benthic invertebrate tissue selenium concentrations for each mine-exposed and reference area were assessed against their respective biological trigger for individual replicate samples from each of the four sampling events (April, July, September, and November/December; Appendix Table E.2 and Appendix Figure E.2). A single replicate exceeded the biological trigger at RG_LCUT in April (1 of 20 replicates at this area in 2021) and at RG_SLINE in November (1 of 20 replicates at this area in 2021) but otherwise no other replicates downstream of the AWTF discharge reached the biological trigger. These areas are located upstream of the AWTF discharge (and thus not influenced by the AWTF), and the single replicates from RG_LCUT and RG_SLINE exceeded the biological trigger by 3% (15.0 vs 14.5 mg/kg dw) and 4% (11.0 vs 10.6 mg/kg), respectively. It should be noted that with 40 replicates, 2 of 40 results would be expected to exceed the upper 95th prediction limit by chance. The remaining mine-exposed areas downstream of the outfall

(RG_LILC3, RG_LIDSL, RG_LI8, and RG_FO23) and reference area (RG_LI24) had selenium concentrations that were below the biological trigger (Appendix Table E.2, Appendix Figure E.2].

E3.3 Westslope cutthroat trout muscle tissue selenium (WCT Se)

Westslope cutthroat trout muscle tissue selenium concentrations for two of the five mine-exposed areas, RG_LIDSL and RG_FO23, were assessed against their respective biological trigger for individual replicates collected in the September sampling event (as collected for the RAEMP, Minnow 2021b). Four of the eight WCT muscle tissue samples collected at RG_LIDSL exceeded the biological trigger (Appendix Table E.3, Appendix Figure E.3). Concentrations in these tissue samples ranged from 16.0 to 18.0 mg/kg dw, which exceeded the upper 95% prediction limit of the biological trigger of 14.8 mg/kg dw by 8% to 22%. Tissue selenium concentration in the four remaining collected fish from RG_LIDSL had substantially lower selenium concentrations (4.3 to 7.1 mg/kg) and were all below the biological trigger. Tissue selenium concentrations in all eight replicates of the area further downstream, RG_FO23, were all below the biological trigger.

E4 SUMMARY

Each of the replicates at RG LCUT, RG LILC3, and RG FO23 exceeded the %EPT biological trigger. The %EPT results for these mine-exposed areas were consistent with results classified as 'unexpected' in the most recent RAEMP (Minnow 2020). The biological trigger for benthic invertebrate tissue selenium concentrations was only exceeded in an individual replicate from both RG LCUT and RG SLINE (during the April and November sampling events, respectively). The biological trigger exceedance for these replicates was small (<4%) and does not likely represent the BIT Se concentrations for these areas, as the BIT Se concentration of the remaining four replicates for each area were well below the threshold. The WCT muscle selenium concentrations at RG LIDSL exceeded the biological trigger in four of the eight replicates evaluated, while further downstream in Line Creek at RG FO23, none of the eight replicates exceeded the biological trigger. Although the cause of the elevated muscle selenium concentrations at RG LIDSL is currently unknown, it is likely that these fish were not confined to the area around RG LIDSL as these fish can be highly mobile. A more comprehensive evaluation of WCT muscle Se concentrations will be undertaken as of part of the RAEMP program, and confirmation sampling will be conducted in September 2022 for that program.

The results from the biological triggers evaluation are consistent with the findings of the LCO LAEMP. Current biological triggers were sufficient to identify monitoring areas where biological responses are occurring, based on the integrated assessment conducted in the LAEMP, and no additional triggers are recommended at this time. Uncertainty, however, remains around the cause of the observed %EPT response as well as the elevated WCT Se concentrations in four of the eight replicates at RG_LIDSL. In an effort to resolve uncertainty around the combined and individual effects of water quality, habitat, and other mine-related stressors on benthic invertebrate communities in lotic areas in the Elk River watershed, Minnow is developing a predictive model for benthic invertebrate community endpoints. Uncertainty around the WCT Se concentrations will be further addressed in the RAEMP and through consultation with the Elk Valley Fish and Fish Habitat Monitoring Committee and Teck's Fish Monitoring Team. Uncertainties are expected to be reduced through these efforts, and additional monitoring or potential management responses will continue to be assessed through Teck's adaptive management framework.

E5 REFERENCES

- Azimuth (Azimuth Consulting Group Inc). 2021 (In Prep). Development of biological triggers for the Elk Valley Adaptive Management Plan. Prepared for Teck Coal Limited. December.
- Golder (Golder Associates). 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited. July.
- Golder. 2020a. User's Manual Aquatic Data Integration Tool (ADIT) for the Elk Valley. Prepared for Teck Coal Ltd. 15 September 2020.
- Golder. 2020b. Updates to the lotic and lentic statistical bioaccumulation models for selenium in the Elk Valley. Technical memorandum to Teck Coal Limited. 27 November 2020.
- Minnow (Minnow Environmental Inc). 2020. Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2017 to 2019. Prepared for Teck Coal Ltd. November 2020.
- Minnow. 2021a. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2020. Prepared for Teck Coal Limited, Sparwood, BC. April. Project 207202.0015.
- Minnow. 2021b. Study Design for the Regional Aquatic Effects Monitoring Program, 2021 to 2023. Prepared for Teck Coal Limited, Sparwood, BC. March. Project 207202.0006.
- Nautilus and Interior Reforestation. 2011. Evaluation of the Effects of Selenium on Early Life Stage Development of Westslope Cutthroat Trout from the Elk Valley, BC. Prepared for the Elk Valley Selenium Task Force. November 2011.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2018. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley. December 21, 2018.
- Teck. 2019. Elk Valley Water Quality Plan 2019 Implementation Plan Adjustment. July 2019.
- Teck. 2021a. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2020 Annual Report. Prepared by Teck Coal Limited. July 31, 2021.
- Teck. 2021b. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2021 Update. Prepared by Teck Coal Limited. December 15, 2021.

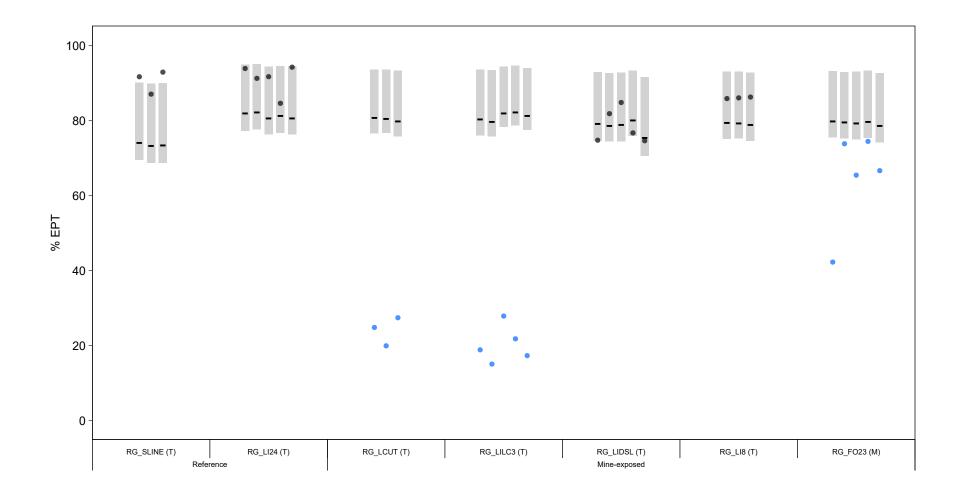


Figure E.1: Percent EPT (%EPT) Compared to Predicted Values, Line Creek LAEMP, 2021

Notes: EPT = Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies). Black bars indicate the lower limit of the predicted ADIT score for the location. Gray shading represents the habitat-adjusted normal range for each replicate. Blue dots represent values below the trigger (below 2.5th percentile of NR and below lower limit of predicted ADIT score). Black dots represent values that did not reach the biological trigger (i.e., were higher than the trigger value). T = Tributary, M = Mainstem.

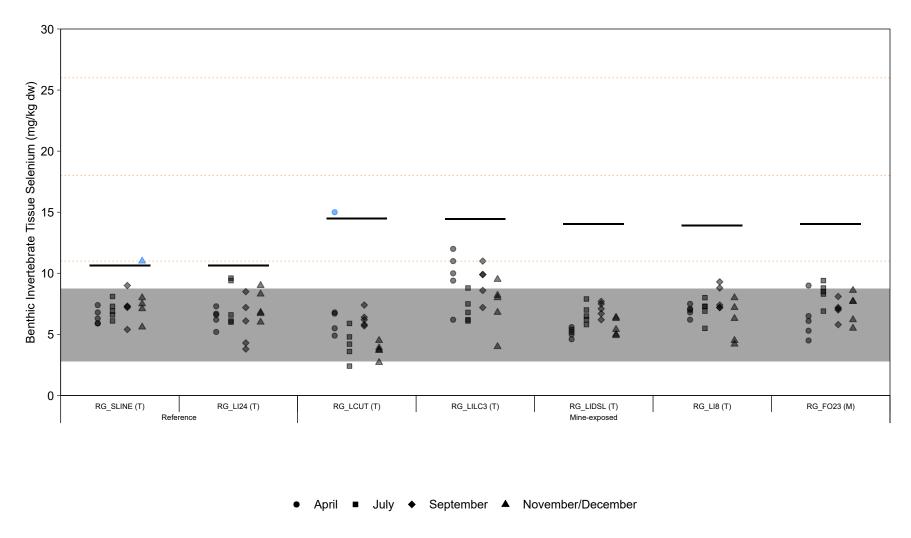


Figure E.2: Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples Compared to Predicted Values, Line Creek LAEMP, 2021

Notes: Black bars indicate the upper 95th prediction interval of the bioaccumulation model. Blue dots represent values exceeding the trigger (above the 97.5th percentile of normal range and above upper 95% prediction interval). Dotted lines indicate EVWQP benchmarks (11, 18, and 26 mg/kg respectively) for juvenile fish. Gray shading represents the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) reported in the RAEMP.

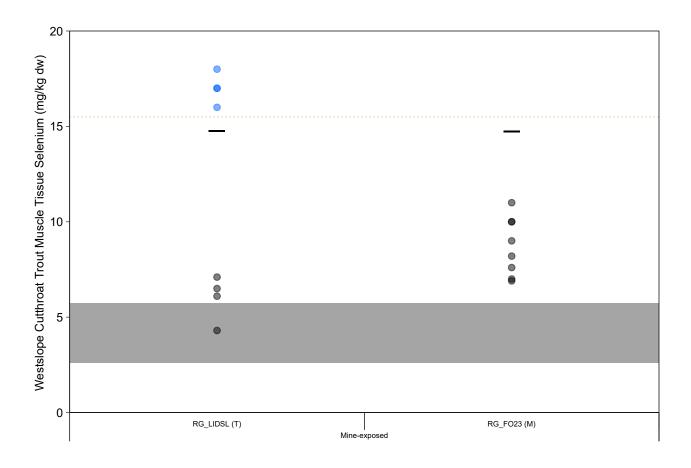


Figure E.3: Selenium Concentrations in Westslope Cutthroat Trout Samples Compared to Predicted Values, LCO LAEMP, 2021

Notes: Black bars indicate the upper 95th prediction interval of the bioaccumulation model. Blue dots represent values exceeding the trigger (above the 97.5th percentile of normal range and above upper 95% prediction interval). Dotted line indicates site-specific muscle benchmark (15.5 mg/kg respectively; Nautilus and Interior Reforestation 2011). Gray shading represents the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) reported in the RAEMP.

Table E.1: Biological trigger analysis for %EPT in Line Creek LAEMP, September 2021

Waterbody	Exposure	Area	Stream Type	Replicate	Reported Value	ADIT Value ^a	Lower 2.5th Percentile of the Habitat Adjusted Normal Range
		RG_SLINE	T	1	91.7	74.1	69.5
		RG_SLINE	T	2	87.1	73.3	68.7
		RG_SLINE	Т	3	92.9	73.4	68.8
	Reference	RG_LI24	T	1	93.9	82.0	77.3
	Reference	RG_LI24	T	2	91.3	82.2	77.7
		RG_LI24	T	3	91.7	80.7	76.3
		RG_LI24	T	4	84.6	81.3	76.7
		RG_LI24	Т	5	94.3	80.7	76.3
		RG_LCUT	Т	1	24.8	80.7	76.6
		RG_LCUT	T	2	20.0	80.5	76.7
		RG_LCUT	Т	3	27.4	79.9	75.8
Line Creek		RG_LILC3	Т	1	18.9	80.3	76.0
Line Creek		RG_LILC3	Т	2	15.1	79.8	75.8
		RG_LILC3	Т	3	27.9	82.0	78.3
		RG_LILC3	Т	4	21.8	82.3	78.7
	Mine-	RG_LILC3	Т	5	17.3	81.4	77.6
	exposed	RG_LIDSL	T	1	74.8	79.1	74.7
		RG_LIDSL	Т	2	81.9	78.7	74.5
		RG_LIDSL	Т	3	84.9	79.0	74.5
		RG_LIDSL	T	4	76.7	80.1	76.0
		RG_LIDSL	Т	5	74.6	75.4	70.7
		RG_LI8	T	1	85.9	79.5	75.2
		RG_LI8	T	2	86.1	79.3	75.3
		RG_LI8	Τ	3	86.3	78.9	74.6
		RG_F023	М	1	42.3	79.8	75.6
	Mine-	RG_FO23	М	2	73.8	79.6	75.4
Fording River	exposed	RG_FO23	М	3	65.5	79.3	75.0
	exposed	RG_F023	М	4	74.5	79.8	75.4
		RG_FO23	М	5	66.7	78.6	74.3

Shaded cells signify those individual replicates that were associated with a biological trigger (i.e. lower than both the ADIT value [as based on predicted water quality] and the lower 2.5th percentile of habitat-adjusted normal range).

Notes: M= Mainstem and T = Tributary. ETP = Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies).

^a Information pertaining to the calculation of the ADIT value is shown in Section E2.2. In short, all LCO areas evaluated had an ADIT score of 0, which corresponds to the 80% lower limit of the expected %EPT (as based on water quality projections).

Table E.2: Biological Trigger Analysis for Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples in Line Creek LAEMP, 2021

					Predicted	Benthio	Invertebrate Sele	nium Tissue
Wat	terbody	Stream Type	Area	Date	Selenium Water Concentration (mg/L)	Upper 95% Prediction Limit (mg/kg dw)	Upper 97.5th Percentile of Normal Range (mg/kg dw)	Reported Concentration (mg/kg dw)
		Т	RG_SLINE	26-Apr-21	1.06	10.6	8.74	6.80
		Т	RG_SLINE	26-Apr-21	1.06	10.6	8.74	5.90
		Т	RG_SLINE	26-Apr-21	1.06	10.6	8.74	5.90
		Т	RG_SLINE	26-Apr-21	1.06	10.6	8.74	6.30
		Т	RG_SLINE	26-Apr-21	1.06	10.6	8.74	7.40
		Т	RG_SLINE	13-Jul-21	1.06	10.6	8.74	7.30
		Т	RG_SLINE	13-Jul-21	1.06	10.6	8.74	8.10
		Т	RG_SLINE	13-Jul-21	1.06	10.6	8.74	6.10
		Т	RG_SLINE	13-Jul-21	1.06	10.6	8.74	6.60
		Т	RG_SLINE	13-Jul-21	1.06	10.6	8.74	6.90
		Т	RG_SLINE	15-Sep-21	1.06	10.6	8.74	7.30
		Т	RG_SLINE	15-Sep-21	1.06	10.6	8.74	7.20
		Т	RG_SLINE	15-Sep-21	1.06	10.6	8.74	9.00
		Т	RG_SLINE	15-Sep-21	1.06	10.6	8.74	5.40
		Т	RG SLINE	15-Sep-21	1.06	10.6	8.74	7.30
		Т	RG SLINE	29-Nov-21	1.06	10.6	8.74	7.10
		Т	RG SLINE	29-Nov-21	1.06	10.6	8.74	8.00
		Т	RG SLINE	29-Nov-21	1.06	10.6	8.74	5.60
		Т	RG SLINE	29-Nov-21	1.06	10.6	8.74	11.0
		Т	RG SLINE	29-Nov-21	1.06	10.6	8.74	7.50
	Reference -	Т	RG LI24	26-Apr-21	1.06	10.6	8.74	6.70
		Т	RG_LI24	26-Apr-21	1.06	10.6	8.74	6.20
		Т	RG LI24	26-Apr-21	1.06	10.6	8.74	7.30
Line		T	RG LI24	26-Apr-21	1.06	10.6	8.74	6.60
Creek		T	RG LI24	26-Apr-21	1.06	10.6	8.74	5.20
		T	RG LI24	13-Jul-21	1.06	10.6	8.74	9.60
		T	RG LI24	13-Jul-21	1.06	10.6	8.74	6.10
		T	RG LI24	13-Jul-21	1.06	10.6	8.74	6.60
		T .	RG LI24	13-Jul-21	1.06	10.6	8.74	9.40
		T	RG LI24	13-Jul-21	1.06	10.6	8.74	6.00
		T	RG LI24	16-Sep-21	1.06	10.6	8.74	7.20
		T	RG LI24	16-Sep-21	1.06	10.6	8.74	6.10
		T	RG_LI24 RG_LI24	16-Sep-21	1.06	10.6	8.74	3.80
		T	RG_LI24 RG_LI24	16-Sep-21	1.06	10.6	8.74	4.30
		T	RG_LI24 RG_LI24	16-Sep-21	1.06	10.6	8.74	8.50
		T	RG_LI24 RG_LI24	30-Nov-21	1.06	10.6	8.74	6.80
		T	RG_LI24 RG_LI24		1.06	10.6	8.74	6.80
			_	30-Nov-21				
		T	RG_LI24	30-Nov-21	1.06	10.6	8.74	8.30
		T	RG_LI24	30-Nov-21	1.06	10.6	8.74	9.00
		T	RG_LI24	30-Nov-21	1.06	10.6	8.74	6.70
		T	RG_LCUT	27-Apr-21	84.0	14.5	8.74	15.0
		T	RG_LCUT	27-Apr-21	84.0	14.5	8.74	6.70
	Mine-	T	RG_LCUT	27-Apr-21	84.0	14.5	8.74	4.90
	exposed	T	RG_LCUT	27-Apr-21	84.0	14.5	8.74	6.80
		T	RG_LCUT	27-Apr-21	84.0	14.5	8.74	5.50
		T	RG_LCUT	12-Jul-21	84.0	14.5	8.74	3.60
		Т	RG_LCUT	12-Jul-21	84.0	14.5	8.74	2.40

Shaded cells signify those individual replicates that were associated with a biological trigger (i.e. higher than both the upper 95% prediction limit [as based on predicted water quality] and the upper 97.5th percentile of normal range).

Notes: M= Mainstem. T = Tributary.

Table E.2: Biological Trigger Analysis for Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples in Line Creek LAEMP, 2021

					Donalists d	Benthio	c Invertebrate Sele	nium Tissue
Wate	erbody	Stream Type	Area	Date	Predicted Selenium Water Concentration (mg/L)	Upper 95% Prediction Limit (mg/kg dw)	Upper 97.5th Percentile of Normal Range (mg/kg dw)	Reported Concentration (mg/kg dw)
		Т	RG_LCUT	12-Jul-21	84.0	14.5	8.74	4.80
		Т	RG_LCUT	12-Jul-21	84.0	14.5	8.74	4.20
		Т	RG_LCUT	12-Jul-21	84.0	14.5	8.74	5.90
		Т	RG_LCUT	10-Sep-21	84.0	14.5	8.74	5.70
		Т	RG_LCUT	10-Sep-21	84.0	14.5	8.74	6.20
		Т	RG_LCUT	10-Sep-21	84.0	14.5	8.74	5.80
		Т	RG_LCUT	10-Sep-21	84.0	14.5	8.74	7.40
		Т	RG_LCUT	10-Sep-21	84.0	14.5	8.74	6.40
		Т	RG LCUT	01-Dec-21	84.0	14.5	8.74	4.50
		Т	RG_LCUT	01-Dec-21	84.0	14.5	8.74	3.70
		Т	RG LCUT	01-Dec-21	84.0	14.5	8.74	3.70
		Т	RG LCUT	01-Dec-21	84.0	14.5	8.74	3.90
		Т	RG LCUT	01-Dec-21	84.0	14.5	8.74	2.70
		Т	RG LILC3	27-Apr-21	78.5	14.4	8.74	6.20
		Т	RG LILC3	27-Apr-21	78.5	14.4	8.74	10.0
		Т	RG LILC3	27-Apr-21	78.5	14.4	8.74	11.0
		Т	RG LILC3	27-Apr-21	78.5	14.4	8.74	12.0
		Т	RG LILC3	27-Apr-21	78.5	14.4	8.74	9.40
		T	RG LILC3	12-Jul-21	78.5	14.4	8.74	6.10
		T	RG LILC3	12-Jul-21	78.5	14.4	8.74	6.20
		T	RG LILC3	12-Jul-21	78.5	14.4	8.74	8.80
		T	RG LILC3	12-Jul-21	78.5	14.4	8.74	6.80
		T	RG LILC3	12-Jul-21	78.5	14.4	8.74	7.50
Line	Mine-	T	RG LILC3	09-Sep-21	78.5	14.4	8.74	9.90
Creek	exposed	T	RG LILC3	09-Sep-21	78.5	14.4	8.74	8.60
		T	RG LILC3	09-Sep-21	78.5	14.4	8.74	11.0
		T	RG LILC3	10-Sep-21	78.5	14.4	8.74	7.20
		T	RG LILC3	10-Sep-21	78.5	14.4	8.74	9.90
		т	RG LILC3	01-Dec-21	78.5	14.4	8.74	9.50
		T	RG LILC3	01-Dec-21	78.5	14.4	8.74	4.00
		т	RG LILC3	01-Dec-21	78.5	14.4	8.74	6.80
		T	RG LILC3	01-Dec-21	78.5	14.4	8.74	8.20
		T	RG LILC3	01-Dec-21	78.5	14.4	8.74	8.00
		T	RG LIDSL	27-Apr-21	53.9	14.0	8.74	5.00
		T	RG LIDSL	27-Apr-21	53.9	14.0	8.74	5.20
		т	RG LIDSL	27-Apr-21	53.9	14.0	8.74	5.40
		T	RG_LIDSL RG_LIDSL	27-Apr-21 27-Apr-21	53.9	14.0	8.74	5.60
		T	RG_LIDSL	27-Apr-21 27-Apr-21	53.9	14.0	8.74	4.60
		T	RG_LIDSL	14-Jul-21	53.9	14.0	8.74	7.90
		T		14-Jul-21 14-Jul-21	53.9	14.0	8.74	5.80
		T	RG_LIDSL				8.74	7.00
		T	RG_LIDSL RG_LIDSL	14-Jul-21 14-Jul-21	53.9	14.0	8.74	6.20
			_		53.9	14.0		
		T	RG_LIDSL	14-Jul-21	53.9	14.0	8.74	6.50
		T	RG_LIDSL	14-Sep-21	53.9	14.0	8.74	7.10
		T	RG_LIDSL	14-Sep-21	53.9	14.0	8.74	6.20
		T	RG_LIDSL	14-Sep-21	53.9	14.0	8.74	7.70
		T	RG_LIDSL	14-Sep-21	53.9	14.0	8.74	6.70

Shaded cells signify those individual replicates that were associated with a biological trigger (i.e. higher than both the upper 95% prediction limit [as based on predicted water quality] and the upper 97.5th percentile of normal range).

Notes: M= Mainstem. T = Tributary.

Table E.2: Biological Trigger Analysis for Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples in Line Creek LAEMP, 2021

Waterbody		Predicted	Benthio	nium Tissue	
T RG_LIDSL T RG_LIDSL T RG_LIDSL T RG_LIDSL T RG_LIDSL T RG_LIBSL T RG_LIB	Date	Selenium Water Concentration (mg/L)	Upper 95% Prediction Limit (mg/kg dw)	Upper 97.5th Percentile of Normal Range (mg/kg dw)	Reported Concentration (mg/kg dw)
T RG_LIDSL T RG_LIDSL T RG_LIDSL T RG_LIDSL T RG_LIDSL T RG_LIDSL T RG_LIB	14-Sep-21	53.9	14.0	8.74	7.50
T RG_LIDSL T RG_LIDSL T RG_LIDSL T RG_LIDSL T RG_LIB T RG	29-Nov-21	53.9	14.0	8.74	5.00
T RG_LIDSL T RG_LIDSL T RG_LIDSL T RG_LIB T RG_L	29-Nov-21	53.9	14.0	8.74	6.40
T RG_LIDSL T RG_LIDSL T RG_LIB	29-Nov-21	53.9	14.0	8.74	5.40
T RG_LIBSL T RG_LIB T	29-Nov-21	53.9	14.0	8.74	4.90
Line Creek Mine-Creek Mine-Exposed Mine-Expos	29-Nov-21	53.9	14.0	8.74	6.30
Line Creek Mine-Creek Exposed T RG_LI8 T RG_L	28-Apr-21	46.7	13.9	8.74	6.20
T RG_LI8 T R	28-Apr-21	46.7	13.9	8.74	7.10
Line Creek exposed T RG_LI8 T	28-Apr-21	46.7	13.9	8.74	7.00
Line Creek exposed T RG_LI8 T RG_LO23 M RG_FO23	28-Apr-21	46.7	13.9	8.74	6.80
Line Creek exposed T RG_LI8 T RG_LO23 M RG_FO23	28-Apr-21	46.7	13.9	8.74	7.50
Line Creek Creek Mine- exposed T RG_LI8 T RG_LO23 M RG_FO23	<u> </u>				
Creek exposed T RG_LI8 T RG_LI8 T RG_LI8 M RG_F023 M RG_F023 M RG_F023 M RG_F023 M RG_F023 M RG_F023 M <t< td=""><td>15-Jul-21</td><td>46.7</td><td>13.9</td><td>8.74</td><td>7.30</td></t<>	15-Jul-21	46.7	13.9	8.74	7.30
T RG_LI8 T RG_CI8 T RG_LI8 T R	15-Jul-21	46.7	13.9	8.74	7.30
T RG_LI8 RG_F023 M RG_F023	15-Jul-21	46.7	13.9	8.74	6.90
T RG_LI8 T RG_CI8 T R	15-Jul-21	46.7	13.9	8.74	8.00
T RG_LI8 T RG_CI8 T RG_CI8 M RG_F023	15-Jul-21	46.7	13.9	8.74	5.50
Fording River Reposed M RG_F023	11-Sep-21	46.7	13.9	8.74	9.30
Fording River Mine- River	11-Sep-21	46.7	13.9	8.74	7.40
Fording River Mine- River	11-Sep-21	46.7	13.9	8.74	7.20
Fording River Mine- River River Mine-	11-Sep-21	46.7	13.9	8.74	8.80
Fording River Mine- River	11-Sep-21	46.7	13.9	8.74	7.20
Fording River Mine-	2-Dec-21	46.7	13.9	8.74	4.20
Fording River Mine- exposed Mine- exposed	2-Dec-21	46.7	13.9	8.74	6.30
Fording River Mine- exposed Mine- exposed	2-Dec-21	46.7	13.9	8.74	4.50
Fording River Mine- exposed M RG_F023	2-Dec-21	46.7	13.9	8.74	8.00
Fording River Mine-exposed M RG_F023	2-Dec-21	46.7	13.9	8.74	7.20
Fording River Mine-exposed M RG_F023	28-Apr-21	52.8	14.0	8.74	9.00
Fording River Mine- exposed M RG_F023	28-Apr-21	52.8	14.0	8.74	6.50
Fording River M RG_F023	28-Apr-21	52.8	14.0	8.74	6.10
Fording River M RG_F023	28-Apr-21	52.8	14.0	8.74	4.50
Fording River	28-Apr-21	52.8	14.0	8.74	5.30
Fording River	14-Jul-21	52.8	14.0	8.74	9.40
Fording River	14-Jul-21	52.8	14.0	8.74	6.90
Fording River	14-Jul-21	52.8	14.0	8.74	8.30
River exposed M RG_F023 M RG_F023 M RG_F023 M RG_F023 M RG_F023 M RG_F023	14-Jul-21	52.8	14.0	8.74	8.80
M RG_F023 M RG_F023 M RG_F023 M RG_F023	14-Jul-21	52.8	14.0	8.74	8.50
M RG_F023 M RG_F023 M RG_F023	12-Sep-21	52.8	14.0	8.74	8.10
M RG_F023 M RG_F023	12-Sep-21 12-Sep-21	52.8 52.8	14.0	8.74	7.20
M RG_FO23	12-Sep-21 12-Sep-21	52.8 52.8	14.0 14.0	8.74 8.74	5.80 7.00
_	12-Sep-21 12-Sep-21	52.8 52.8	14.0	8.74	7.00
M RG_FO23	12-Sep-21 1-Dec-21	52.8 52.8	14.0	8.74	7.10
M RG_F023 M RG F023	1-Dec-21	52.8 52.8	14.0	8.74	7.70
M RG_F023	1-Dec-21	52.8 52.8	14.0	8.74	6.20
M RG_F023	1-Dec-21	52.8 52.8	14.0	8.74	8.60
M RG_F023 M RG F023	1-Dec-21	52.8	14.0	8.74	5.50

Shaded cells signify those individual replicates that were associated with a biological trigger (i.e. higher than both the upper 95% prediction limit [as based on predicted water quality] and the upper 97.5th percentile of normal range).

Notes: M= Mainstem. T = Tributary.

Table E.3: Biological Trigger Analysis for Westslope Cutthroat Trout Muscle Selenium Concentrations, Line Creek LAEMP, 2021

				Upper 95%	Westslope	Cutthroat Trout Mus	cle Tissue
Water	body	Area	Date	Prediction Limit (mg/kg dw)	Upper 95% Prediction Limit (mg/kg dw)	Upper 97.5 th Percentile of Normal Range (mg/kg dw)	Reported Concentration (mg/kg dw)
		RG_LIDSL	13-Sep-21	53.9	14.8	11.3	18.0
		RG_LIDSL	13-Sep-21	53.9	14.8	11.3	17.0
		RG_LIDSL	13-Sep-21	53.9	14.8	11.3	17.0
Line Creek	Mine- exposed	RG_LIDSL	13-Sep-21	53.9	14.8	11.3	16.0
Line Creek		RG_LIDSL	13-Sep-21	53.9	14.8	11.3	7.10
		RG_LIDSL	13-Sep-21	53.9	14.8	11.3	6.50
		RG_LIDSL	13-Sep-21	53.9	14.8	11.3	6.10
		RG_LIDSL	13-Sep-21	53.9	14.8	11.3	4.30
		RG_FO23	13-Sep-21	52.8	14.7	11.3	11.0
		RG_FO23	14-Sep-21	52.8	14.7	11.3	10.0
		RG_FO23	14-Sep-21	52.8	14.7	11.3	10.0
Fording	Mine-	RG_FO23	13-Sep-21	52.8	14.7	11.3	9.00
River	exposed	RG_FO23	13-Sep-21	52.8	14.7	11.3	8.20
		RG_FO23	14-Sep-21	52.8	14.7	11.3	7.60
		RG_FO23	14-Sep-21	52.8	14.7	11.3	7.00
		RG_FO23	14-Sep-21	52.8	14.7	11.3	6.90

Shaded cells signify those individual replicates that were associated with a biological trigger (i.e. higher than both the upper 95% prediction limit [as based on predicted water quality] and the upper 97.5th percentile of normal range).

APPENDIX F SUPPORTING INFORMATION

APPENDIX F SUPPORTING INFORMATION

Table F.1: In Situ Water Quality Taken at Biological Monitoring Areas in Line Creek and Fording River, September 2021

	Field Parameters	Reference	Reference	Mine-Exposed							
	r leid i didilieters	RG_SLINE	RG_LI24	RG_LCUT	RG_LILC3	RG_LISP24	RG_LIDSL	RG_LIDCOM	RG_LI8	RG_FRUL	RG_FO23
	Date	15-Sep-21	16-Sep-21	11-Sep-21	10-Sep-21	13-Sep-21	14-Sep-21	13-Sep-21	11-Sep-21	12-Sep-21	12-Sep-21
	Temperature (°C)	5.2	3.2	7.2	7.6	8.3	6.5	7.1	7.8	9.6	9.1
7	Dissolved Oxygen (mg/L)	11.17	11.31	11.14	10.98	10.59	9.7	10.65	10.77	10.21	10.18
Station	Dissolved Oxygen (%)	105.8	103.3	109.7	107.7	106.6	92.8	103.3	105	103.9	102
Sts	Conductivity (µS/cm)	224.3	215	651	651	580	549	517	489	572	545
	Specific Conductivity (µS/cm)	361	369	990	976	850	850	790	729	811	780
	рН	8.1	8.28	7.65	8.03	8.13	8.06	8.23	8.34	8.36	8.2
	Date	15-Sep-21	16-Sep-21	11-Sep-21	10-Sep-21	-	14-Sep-21	-	11-Sep-21	12-Sep-21	12-Sep-21
	Temperature (°C)	5.3	3.2	7.3	8.9	-	6.9	-	8.3	9.7	9.3
12	Dissolved Oxygen (mg/L)	11	10.63	10.94	10.87	-	9.74	-	10.77	10.21	10.42
Station	Dissolved Oxygen (%)	104.2	97	106.9	106.4	-	94.2	-	106.4	103.7	104.7
Sta	Conductivity (µS/cm)	224.3	215.6	656	647	-	554	-	497.4	577	547
	Specific Conductivity (µS/cm)	360	369	990	984	-	850	-	729	814	780
	рН	8.12	8.24	7.68	8.04	-	8.11	-	8.39	8.42	8.24
	Date	15-Sep-21	16-Sep-21	11-Sep-21	10-Sep-21	-	14-Sep-21	-	11-Sep-21	12-Sep-21	12-Sep-21
	Temperature (°C)	5.6	3.4	6.4	8.8	-	8.2	-	9.2	10.1	9.6
3	Dissolved Oxygen (mg/L)	11.17	11.35	10.5	10.63	-	9.42	-	10.39	10.02	10.19
Station	Dissolved Oxygen (%)	106.6	104.6	101.4	104	-	95	-	104.9	103.3	103.5
Sta	Conductivity (µS/cm)	225.4	214.5	630	649	-	575	-	509	567	551
	Specific Conductivity (µS/cm)	358	365	980	988	-	850	-	730	792	780
	рН	8.18	8.35	7.51	8.01	-	8.15	-	8.45	8.45	8.28
	Date	-	16-Sep-21	-	10-Sep-21	-	14-Sep-21	-	-	-	12-Sep-21
	Temperature (°C)	-	3.9	-	7.1	-	8.7	-	-	-	9.9
4 ر	Dissolved Oxygen (mg/L)	-	10.77	-	10.58	-	9.55	-	-	-	10.08
Station	Dissolved Oxygen (%)	-	99.8	-	103.9	-	97.4	-	-	-	103.4
Sta	Conductivity (µS/cm)	-	219	-	647	-	586	-	-	-	555
	Specific Conductivity (µS/cm)	-	367	-	982	-	850	-	-	-	780
	рН	-	8.51	-	8.02	-	8.23	-	-	-	8.3
	Date	-	16-Sep-21	-	10-Sep-21	-	14-Sep-21	-	-	-	12-Sep-21
	Temperature (°C)	-	4	-	7.7	-	9.1	-	-	-	9.9
5 ر	Dissolved Oxygen (mg/L)	-	10.92	-	10.67	-	9.47	-	-	-	10.01
Station	Dissolved Oxygen (%)	-	101.6	-	105.8	-	97.3	-	-	-	102.1
Sta	Conductivity (µS/cm)	-	220.3	-	647	-	593	-	-	-	552
	Specific Conductivity (µS/cm)	-	367	-	967	-	850	-	-	-	780
L	рН	-	8.42	-	8.01	-	8.23	-	-	-	8.3

Note: "-" indicates no data.

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

			SLINE-1 -Sep-21						SLINE-2 Sep-21		
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1 2	0	0	0	7.5 4.6	-	1 2	0	0	0	3.5 5	-
3 4	0	0	0	11	-	3	- 0	- 0	- 0	0.2	-
5	0	0	0	5.2 9.1	-	4 5	0	0	0	1 16	-
6 7	0	0	0	12.4 3.8	-	6 7	0 -	0 -	0	6.5 0.2	-
8	0	0	0	7.5	-	8	0	0	0	0.5	-
9 10	0	0	0	20.1 11.3	0	9 10	0	0	0	14 1.5	0.5
11 12	0	0	0	28.4 11.4	-	11 12	0	0	0	4.5 1.5	-
13	0	0	0	9.1	-	13	0	0	0	16	-
14 15	0	0	0	6.6 7.2	-	14 15	0	0	0	6 7.5	-
16	0	0	0	6.5	-	16	0	0	0	9	-
17 18	0	0	0	7.5 17.3	<u>-</u> -	17 18	0	0	0	6 7	-
19 20	0	0	0	9.1 6.9	- 0.25	19 20	0	0	0	4.5 8	0.5
21	0	0	0	8.4	-	21	0	0	0	20.5	-
22 23	0	0	0	3 6.1	<u>-</u>	22 23	0	0	0	12 37	-
24	0	0	0	6.7	-	24	0	0	0	6	-
25 26	0	0	0	3.1 6.2	-	25 26	0	0	0	28 27.5	-
27	0	0	0	10.8	-	27	0	0	0	15	-
28 29	0	0	0	14.6 23.1	-	28 29	0	0	0	17.5 7	-
30 31	0	0	0	11.4 17.5	0 -	30 31	0	0	0	5 11	0.5
32	0	0	0	14.4	-	32	0	0	0	6.5	-
33 34	0	0	0	26 11.2	-	33 34	0	0	0	3 6	-
35	0	0	0	9.5	-	35	0	0	0	3.5	-
36 37	0	0	0	6.8 22	-	36 37	0	0	0	17 3	-
38 39	0	0	0	7.8 13.5	-	38 39	0	0	0	9.5 16	-
40	0	0	0	7.2	0	40	0	0	0	6.5	0.25
41 42	0	0	0	16.4 12.1	-	41 42	0	0	0	16 3	-
43 44	0	0	0	4.2 8.3	-	43 44	0	0	0	7 5.5	=
45	0	0	0	27.4	-	45	0	0	0	5.5	-
46 47	0	0	0	7.2 10.1	-	46 47	0	0	0	10 13	-
48	0	0	0	25.1	-	48	0	0	0	19	=
49 50	0	0	0	18.3 6.5	- 0	49 50	0	0	0	10.5 14	0.5
51 52	0	0	0	6.8 5.5	-	51 52	0	0	0	6.5	=
53	0	0	0	14.8	-	53	0	0	0	10.5 9	-
54 55	0	0	0	10.4 13.6	-	54 55	0	0	0	6.5 7.5	-
56	0	0	0	12.1	-	56	0	0	0	7.5	-
57 58	0	0	0	5.6 8.5	-	57 58	0 -	0 -	0 -	5.5 0.2	-
59 60	0	0	0	11.2 3.3	- 0.25	59 60	0	0	0	1.5	0.25
61	0	0	0	30.5	0.25	61	0	0	0	3	-
62 63	0	0	0	10.3 7.5	-	62 63	0	0	0	8 4	-
64	0	0	0	4.2	-	64	0	0	0	2	-
65 66	0	0	0	13.5 10.5	=	65 66	0	0	0	4	-
67 68	0	0	0	5.1 7.4	-	67 68	0	0	0	4 6	-
69	0	0	0	7.2	-	69	0	0	0	12	-
70 71	0	0	0	11.3 10.6	-	70 71	0	0	0	8.5 10	0.75
72	0	0	0	5.8	-	72	0	0	0	7.5	-
73 74	0	0	0	11.3 12.6	-	73 74	0	0	0	20 26	-
75 76	0	0	0	9.2 6.4	-	75 76	0	0	0	12 6	-
77	0	0	0	8.4	-	77	0	0	0	7	=
78 79	0	0	0	14.1 9.4	-	78 79	0	0	0	6.5 8.5	-
80	0	0	0	5.6	0	80	0	0	0	7.5	0.5
81 82	0	0	0	7.2 13.1	-	81 82	0	0	0	6.5 6	-
83 84	0	0	0	39.3 10.2	-	83 84	0	0	0	7 4	-
85	0	0	0	4.6	-	85	-	-	-	0.2	-
86 87	0	0	0	10.4 11.2	-	86 87	0	0	0	9.5 4	-
88 89	0	0	0	8.5 11.2	-	88 89	0	0	0	9.5	-
90	0	0	0	4.1	0	90	0	0	0	4.5 4	0.5
91 92	0	0	0	10.5 15.4	-	91 92	0	0	0	6 7	-
93	0	0	0	10.2	-	93	0	0	0	5.5	-
94 95	0	0	0	7.1 4.3	-	94 95	0	0	0	31 24.5	-
96 97	0	0	0	5.2	-	96 97	0	0	0	12	-
98	0	0	0	5.8 2.3	-	98	0	0	0	4.5 6	-
99 100	0	0	0	1.8 7.1	- 0	99 100	0	0	0	6 6.5	0.75
Average Cic, Cip and Embed. =	0	0	0	10.5	0.05	Average Cic, Cip and Embed. =	-	0	0	8.68	0.50
Old Calcit	e Index (CI) =		<u> </u>	0		Old Calcit	e Index (CI) =		<u> </u>	0	
Now Coloite	Index (CI') =		· · · · · · · · · · · · · · · · · · ·	0		New Calcite	Index (CI') =			0	

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

	RG_SLINE-3 15-Sep-21							RG_LI24-1 16-Sep-21						
	Concreted	Calcite	-Sep-21 Calcite	Intermediate	Embeddedness		Concreted	Calcite	-Sep-21 Calcite	Intermediate	Embeddedness			
Pebble	Status	Proportion	Presence	Axis (cm)	(%)	Pebble	Status	Proportion	Presence	Axis (cm)	(%)			
1 2	0	0	0	4.7 5.2	-	1 2	0	0	0	8.1 10.2	-			
3	0	0	0	14.3	-	3	0	0	0	4.4	-			
4 5	0	0	0	38 4.4	-	<u>4</u> 5	0	0	0	5.1 9	-			
6	0	0	0	6	-	6	0	0	0	7.5	-			
7 8	0	0	0	2.5 18.5	-	7 8	0	0	0	8.8 23.4	-			
9 10	- 0	- 0	- 0	0.2 2.5	- 0.25	9 10	0	0	0	3.5 6.7	- 0			
11	0	0	0	5.6	-	11	0	0	0	4.4	-			
12 13	0	0	0	5.9 9.3	-	12 13	0	0	0	7.5	-			
14	0	0	0	8.4	-	14	0	0	0	5.1	-			
15 16	0	0	0	5.4 16.2	-	15 16	0	0	0	21 5.2	-			
17	0	0	0	14.1	-	17	0	0	0	8.3	-			
18 19	0	0	0	1.5 13.9	-	18 19	0	0	0	9.1	-			
20	0	0	0	18.5	0.75	20	0	0	0	5.1	0.25			
21 22	0	0	0	10.4 9.4	-	21 22	0	0	0	9.2 6.3	-			
23 24	0	0	0	19.9	-	23 24	0	0	0	14.2	-			
25	0	0	0	11.2 7.2	-	25	0	0	0	3.4 8.2	-			
26 27	0	0	0	3.5 0.2	-	26 27	0	0	0	6.1	-			
28	0	0	0	10.2	-	28	0	0	0	13.5	-			
29 30	0	0	0	3.5 12.6	0.75	29 30	0	0	0	6.5 6.2	0.25			
31	0	0	0	7.5	-	31	0	0	0	5.8	-			
32 33	0	0	0	8	-	32 33	0	0	0	10.5 5.1	-			
34	0	0	0	9.1	-	34	0	0	0	10.2	-			
35 36	0	0	0	6.7 5.5	-	35 36	0	0	0	8.1	-			
37 38	0	0	0	6.9	-	37 38	0	0	0	4.6	-			
39	0	0	0	2.4 19.5	-	39	0	0	0	5.1 6	-			
40 41	0	0	0	9.4 1.5	0.5	40 41	0	0	0	9.5 7.2	0 -			
42	0	0	0	8.5	-	42	0	0	0	10.5	-			
43 44	0	0	0	7.4	-	43 44	0	0	0	36.1 2	-			
45	0	0	0	1.3	-	45	0	0	0	2.7	-			
46 47	0	0	0	1.6 14.2	-	46 47	0	0	0	7.2 8.1	-			
48	0	0	0	10.1	-	48	0	0	0	9.7	-			
49 50	0	0	0	5 5.2	0.5	49 50	0	0	0	7.2 14.5	0.5			
51	0	0	0	13.2	-	51	0	0	0	9.3	-			
52 53	0	0	0	8.5 11	-	52 53	0	0	0	8.2 8.5	-			
54 55	- 0	- 0	- 0	0.2 3.1	-	54 55	0	0	0	4.5 4.4	-			
56	0	0	0	9.2	-	56	0	0	0	21	-			
57 58	0	0	0	2.7 3.2	-	57 58	0	0	0	6.3 13	-			
59	0	0	0	5	-	59	0	0	0	3.9	-			
60 61	0	0	0	5 14	0.5	60 61	0	0	0	8.2 4.6	0.25			
62	0	0	0	13.5	-	62	0	0	0	14.6	-			
63 64	0	0	0	15 24.5	-	63 64	0	0	0	8.5 7.2	-			
65	0	0	0	7.9	-	65	0	0	0	4.4	-			
66 67	0	0	0	17.4 10	-	66 67	0	0	0	8.4 5.3	-			
68 69	0	0	0	1.8 21	-	68 69	0	0	0	4 9.9	-			
70	0	0	0	11.2	0.75	70	0	0	0	11.1	0.5			
71 72	0	0	0	28 6.5	-	71 72	0	0	0	7.1 9	-			
73	0	0	0	12.5	-	73	0	0	0	6.2	-			
74 75	0	0	0	23.4 4.2	-	74 75	0	0	0	7.2 5.1	-			
76	0	0	0	3.9	-	76	0	0	0	9.5	-			
77 78	0	0	0	1.3 3.4	-	77 78	0	0	0	7.3 8	-			
79	0	0	0	6	-	79	0	0	0	9.2	-			
80 81	0	0	0	7.2 7.2	0.25	80 81	0	0	0	10 9.1	0.25			
82 83	0	0	0	17.1 20.8	-	82 83	0	0	0	8.2 10.5	-			
84	-	-	-	0.2	-	84	0	0	0	6.6	-			
85 86	0	0	0	0.8 5.2	-	85 86	0	0	0	2.5 18.5	-			
87	0	0	0	7.6	-	87	0	0	0	13.2	-			
88 89	0	0	0	7 11	-	88 89	0	0	0	4.2 3.1	-			
90	0	0	0	52	0.5	90	0	0	0	4.1	0.25			
91 92	0	0	0	4.5 9.6	-	91 92	0	0	0	6.8 9.2	-			
93	0	0	0	11.8	-	93	0	0	0	3.3	-			
94 95	0	0	0	0.6 1.1	-	94 95	0	0	0	6 6.9	-			
96	-	-	-	0.2	-	96	0	0	0	5.4	-			
97 98	0	0	0	4.2 4.7	-	97 98	0	0	0	8.8 8.5	-			
99	0	0	0	4	-	99	0	0	0	9	-			
100 Average	0	0	0	18	0.75	100 Average	0	0	0	1.5	0.25			
Cic, Cip and	0	0	0	8.96	0.55	Cic, Cip and	0	0	0	8.12	0.25			
Embed. =						Embed. =								
	e Index (CI) =			0			e Index (CI) =			0				
	(01)					- Jaioitt	(01)							

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

			_LI24-2 -Sep-21			RG_LI24-3 16-Sep-21						
5 · · ·	Concreted	16- Calcite	-Sep-21 Calcite	Intermediate	Embeddedness	.	Concreted	Calcite	-Sep-21 Calcite	Intermediate	Embeddedness	
Pebble	Status	Proportion	Presence	Axis (cm)	(%)	Pebble	Status	Proportion	Presence	Axis (cm)	(%)	
1 2	0	0	0	9.3	-	2	0	0	0	4.2 9	-	
3	0	0	0	14.2 23.5	-	3 4	0	0	0	11.4	-	
5	0	0	0	4.1	-	5	0	0	0	7.5	-	
7	0	0	0	5.6 7.3	-	6 7	0	0	0	6.3 12.6	-	
8	0	0	0	6.3 8.2	-	8	0	0	0	8.6 11.7	-	
10	0	0	0	4.1	0.25	10	0	0	0	9.5	0.5	
11 12	0	0	0	6.2 5.4	-	11 12	0	0	0	8.9 8.2	-	
13 14	0	0	0	6.5 8.4	-	13 14	0	0	0	18.1 12.4	-	
15	0	0	0	4.5	-	15	0	0	0	16.8	-	
16 17	0	0	0	4.2 14.6	-	16 17	0	0	0	8.5 20	-	
18 19	0	0	0	11.2 10.3	-	18 19	0	0	0	17.8 7.8	-	
20	0	0	0	5.2	0	20	0	0	0	4	0.25	
21 22	0	0	0	9.6 11.4	-	21 22	0	0	0	9.1 9	-	
23 24	0	0	0	10.5 5.4	-	23 24	0	0	0	6.5 14.4	-	
25	0	0	0	4.1	-	25	0	0	0	11	-	
26 27	0	0	0	31.7 10.1	-	26 27	0	0	0	8.9 14	-	
28	0	0	0	4.5	-	28	0	0	0	10.5	-	
29 30	0	0	0	14.2 5.1	0.25	29 30	0	0	0	14.2 4.6	0.25	
31 32	0	0	0	2.1 9.5	-	31 32	0	0	0	13.2 4.6	-	
33 34	0	0	0	3.2 8.7	-	33 34	0	0	0	8.1 9.2	-	
35	0	0	0	4.4	-	35	0	0	0	9.6	-	
36 37	0	0	0	8.5 5.8	-	36 37	0	0	0	13.1 7.2	-	
38 39	0	0	0	7.2 10.8	-	38 39	0	0	0	6 12.1	-	
40	0	0	0	8.2	0.5	40	0	0	0	10.2	0.25	
41 42	0	0	0	8.1 3.1	-	41 42	0	0	0	10.6 10.1	-	
43 44	0	0	0	5.5 7.8	-	43 44	0	0	0	6 7.6	-	
45	0	0	0	8.8	-	45	0	0	0	3.9	-	
46 47	0	0	0	8.4 2.2	-	46 47	0	0	0	12 13.7	-	
48 49	0	0	0	7.5 4.8	-	48 49	0	0	0	5.3 4.5	-	
50	0	0	0	8.4	0.25	50	0	0	0	9.2	0.25	
51 52	0	0	0	5.5 4.2	-	51 52	0	0	0	7 6.6	-	
53	0	0	0	4.7	-	53	0	0	0	5.8	-	
54 55	0	0	0	5.9 13.4	-	54 55	0	0	0	7.3 4.9	-	
56 57	0	0	0	9.5 9.7	-	56 57	0	0	0	5.2 6.6	-	
58 59	0	0	0	8.1	-	58 59	0	0	0	14.5	-	
60	0	0	0	6 5.3	0.75	60	0	0	0	5.7 14.9	0.5	
61 62	0	0	0	6.1 7.8	-	61 62	0	0	0	41 10.6	-	
63	0	0	0	7.5	-	63	0	0	0	5.6	-	
64 65	0	0	0	10.1 7.8	-	64 65	0	0	0	4.7 3.9	-	
66 67	0	0	0	8.2	-	66 67	0	0	0	5 19.1	-	
68	0	0	0	6.8	-	68	0	0	0	6.4	-	
69 70	0	0	0	2.5 6.4	0.25	69 70	0	0	0	8 5.9	0.25	
71 72	0	0	0	5.3 3.2		71 72	0	0	0	7.9 7.8	-	
73 74	0	0	0	4.8	-	73 74	0	0	0	14.3	-	
75	0	0	0	6.8 4.4	-	75	0	0	0	6 7.4	-	
76 77	0	0	0	2.8 7.6	-	76 77	0	0	0	11.6 13.2	-	
78	0	0	0	4.4	-	78	0	0	0	5.5	-	
79 80	0	0	0	3.9	0	79 80	0	0	0	7.2 10.2	0.5	
81 82	0	0	0	6.4 7.2	-	81 82	0	0	0	6 6.7	-	
83 84	0	0	0	6.3	-	83 84	0	0	0	15.2	-	
85	0	0	0	4.9 20.4	-	85	0	0	0	5.1 13.7	-	
86 87	0	0	0	3.8 6.9	-	86 87	0	0	0	10 7.7	-	
88	0	0	0	9.2	-	88	0	0	0	6	-	
89 90	0	0	0	11.4 3.9	0	89 90	0	0	0	7.1 8	0.25	
91 92	0	0	0	6.3 10.4		91 92	0	0	0	32 8.5	-	
93	0	0	0	3.9	-	93	0	0	0	8	-	
94 95	0	0	0	21.4 4.8	-	94 95	0	0	0	9.8 9.1	-	
96 97	0	0	0	3.8 2.9	-	96 97	0	0	0	4 4.8	-	
98	0	0	0	2.8	-	98	0	0	0	5	-	
99 100	0	0	0	8.8 7.1	0.25	99 100	0	0	0	11 12.8	0.25	
Average		_			0.00	Average						
Cic, Cip and Embed. =	0	0	0	7.49	0.25	Cic, Cip and Embed. =	0	0	0	9.6	0.33	
Old Calcite	e Index (CI) =			0		Old Calcit	e Index (CI) =		I	0		
New Calcite	Index (CI') =			0		New Calcite	e Index (CI') =			0		

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

	RG_Li24-4 16-Sep-21								S_LI24-5 -Sep-21		
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddednes
1 2 3	0 0	0 0 0	0 0 0	4.5 6.1 7.2	-	1 2 3	0 0 0	0 0 0	0 0	7 9.1 15	-
4	0	0	0	5.2 9.4	-	4	0	0	0	8.8	-
5 6	0	0	0	8.1	-	5 6	0	0	0	14.5 13.2	-
7 8	0	0	0	7.8 5.3	-	7 8	0	0	0	8.2 21.8	-
9 10	0	0	0	7.2 7.8	0.25	9 10	0	0	0	6.4 8.1	0.25
11 12	0	0	0	7.2 18.3	-	11 12	0	0	0	6.1 10	-
13 14	0	0	0	9.2 5.4	-	13 14	0	0	0	8.5 12.9	-
15 16	0	0	0	7.5 6.9	-	15 16	0	0	0	9.3 7.1	-
17 18	0	0	0	9.1 6.3	-	17 18	0	0	0	8.7 7.5	-
19 20	0	0	0	14.2 5	- 0.25	19 20	0	0	0	10.2 11	0.5
21	0	0	0	4.4 8.1	-	21 22	0	0	0	8.5 4.2	-
23	0	0	0	3.3	-	23 24	0	0	0	12.6 10.2	-
25	0	0	0	5.4	-	25	0	0	0	13.4	-
26 27	0	0	0	12.4 7.1	-	26 27	0	0	0	7 9.4	-
28 29	0	0	0	7.2 4.5	-	28 29	0	0	0	8	-
30 31	0	0	0	4.4 27.2	0.25	30 31	0	0	0	5 14.2	0.25
32	0	0	0	4.4 13.5	-	32 33	0	0	0	2.4	-
34	0	0	0	8.3	-	34	0	0	0	15.2	-
35 36	0	0	0	7.2	-	35 36	0	0	0	10 8.4	-
37 38	0	0	0	6.5 4.2	-	37 38	0	0	0	4.2 7	-
39 40	0	0	0	11.8 3	- 0	39 40	0	0	0	5.5 11.2	0.5
41 42	0	0	0	5.1 9.9	-	41 42	0	0	0	8.5 15	-
43 44	0	0	0	4.2 7.4	-	43 44	0	0	0	6.2 7.4	-
45	0	0	0	8.1	-	45	0	0	0	5	-
46 47	0	0	0	3.4	-	46 47	0	0	0	8.2 7	-
48 49	0	0	0	10 12.4	-	48 49	0	0	0	6 4.5	-
50 51	0	0	0	3.4 2.5	0 -	50 51	0	0	0	4.2 2.9	0.5
52 53	0	0	0	29.1 12.1	-	52 53	0	0	0	5.2 11.6	-
54 55	0	0	0	5.5 7.1	-	54 55	0	0	0	4 48	-
56	0	0	0	4.4	-	56	0	0	0	6.2	-
57 58	0	0	0	5 7.1	-	57 58	0	0	0	3.8 16	-
59 60	0	0	0	8.5 8.9	0.75	59 60	0	0	0	19.2 15	0.25
61 62	0	0	0	9.1 9.9	-	61 62	0	0	0	6.9 5.6	-
63 64	0	0	0	5.4 5.7	-	63 64	0	0	0	7.2 7	-
65 66	0	0	0	5.8 12.6	-	65 66	0	0	0	8 2.2	-
67	0	0	0	4.8	-	67	0	0	0	2.6	-
68 69	0	0	0	4.9 15	-	68 69	0	0	0	5.9 3.5	-
70 71	0	0	0	6.7 4.6	0.25	70 71	0	0	0	4.1 5.8	0.5
72 73	0	0	0	4.7 4.3	-	72 73	0	0	0	8.2 6.1	-
74 75	0	0	0	4.9 8.1	-	74 75	0	0	0	6.6 6.2	-
76 77	0	0	0	13.1 6.5	-	76 77	0	0	0	5.8 12.5	-
78 79	0	0	0	7.1 9.4	-	78 79	0	0	0	8.1 17	-
80	0	0	0	14.2	0.25	80	0	0	0	8.5	0.25
81 82	0	0	0	3.5 8.4	-	81 82	0	0	0	8 6.5	-
83 84	0	0	0	9.4 11.6	-	83 84	0	0	0	7.1 8.2	-
85 86	0	0	0	7.5 12.5	-	85 86	0	0	0	9 8.4	-
87 88	0	0	0	16.2 5.3	-	87 88	0	0	0	6.6	-
89 90	0	0	0	5.1 7.5	- 0	89 90	0	0	0	7.2 7.1	- 0
91	0	0	0	6	-	91	0	0	0	8.1	-
92 93	0	0	0	5.4 9.1	-	92 93	0	0	0	8 8.6	-
94 95	0	0	0	6.3 8.2	-	94 95	0	0	0	14.2 8.4	-
96 97	0	0	0	10.5 19.2	-	96 97	0	0	0	7.4	-
98	0	0	0	4.4	-	98 99	0	0	0	6.1	-
100	0	0	0	8.8 8.6	0.75	100	0	0	0	2.8	0
Average ic, Cip and	0	0	0	8.04	0.28	Average Cic, Cip and	0	0	0	8.77	0.30
Embed. =			<u> </u>		3.23	Embed. =			Ť		0.50
	te Index (CI) =			0			e Index (CI) =	-		0	

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

			_LCUT-1 -Sep-21					RG_LCUT-2 11-Sep-21						
Dobble	Concreted	Calcite	-Sep-21 Calcite	Intermediate	Embeddedness	Dahhl-	Concreted	Calcite	Calcite	Intermediate	Embeddedness			
Pebble	Status	Proportion	Presence	Axis (cm)	(%)	Pebble	Status	Proportion	Presence	Axis (cm)	(%)			
1 2	0	0.9 0.4	1 1	7.2 18.4	-	1 2	0	0.4	1	10.8 16.4	-			
3	0	0.1	1	8.6	-	3	0	0.3	1	12.5	-			
4 5	0	0.7 0.9	1 1	4.6 16.2	-	<u>4</u> 5	0	0.2	1 1	11.8 11.8	-			
6 7	0	0.1 0.9	1	2.7 18	-	6 7	0	0.4 0.4	1	16.7 17.6	-			
8	0	0.9	1	5	-	8	0	0.4	1	7.2	-			
9 10	0	0.6 0.3	1 1	6.5 4.2	- 0	9 10	0	0.1 0.1	1 1	4.6 1.5	- 0			
11	0	0.4	1	9.4	-	11	0	0.1	1	8.5	-			
12 13	0	0.2 0.7	<u> </u>	8.2 10.2	-	12 13	0	0.3	1	7.5 12	-			
14	0	0.8	1	5	-	14	0	0.1	1	8.7	-			
15 16	0	0.1	1 1	4.6 11.6	-	15 16	0	0.2	1	10.5 11.3	-			
17	0	0.5	1	13.7	-	17	0	0.5	1	18.8	-			
18 19	0	0.2 0.6	<u> </u>	4.5 18	-	18 19	0	0.2	1	11.4 30.2	-			
20	0	0.2	1	4.9 4.5	0	20 21	0	0.1 0.3	1	4 20.8	0			
21 22	0	0.1 0.8	1	6.6	-	21	0	0.3	1	9.8	-			
23 24	0	0.1 0.6	1 1	3 8.5	-	23 24	0	0.1 0.3	1	3.1 5.7	-			
25	0	0.6	1	5.6	-	25	0	0.3	1	6.1	-			
26 27	0	0.4	<u> </u>	5.7 10.1	-	26 27	0	0.1	1	3.8	-			
28	0	0.4	1	3.2	-	28	0	0.2	1	6.2	-			
29 30	0	0.6	1 1	5.7 5.6	- 0	29 30	0	0.4 0.5	1	11.5 15.1	-			
31	0	0.8	1	5.6	-	31	0	0.2	1	14.5	-			
32 33	0	0.9 0.5	1 1	10.6 3.4	-	32 33	0	0.1 0.2	1	1.5 8.5	0.25			
34 35	0	0.9 0.5	1	10 7.1	-	34 35	0	0.2	1	3 15.5	-			
36	0	0.5	1	2.4	-	36	0	0.2	1	9	-			
37 38	0	0.6 0.4	1	8.6 12.7	-	37 38	0	0.1 0.5	1	3.8 8.2	-			
39	0	0.3	1	6.2	-	39	0	0.4	1	7.5	-			
40 41	0	0.2	<u> </u>	4.6	0.25	40 41	0	0.3	1	8.2 7.5	- 0			
42	0	0.8	1	1.7	-	42	0	0.3	1	13.2	-			
43 44	0	0.6 0.5	<u> </u>	3.9 9	-	43 44	0	0.3 0.2	1	9.8 6.8	-			
45	0	0.6	1	3.9	-	45	0	0.5	1	3.1	-			
46 47	0	0.6 0.6	<u> </u>	17 8.6	-	46 47	0	0.1 0.5	1	2.1 8.8	-			
48	0	0.8	1	10.2	-	48	0	0.6	1	9.9	-			
49 50	0	0.6 0.4	1 1	5.4 5.7	0.5	49 50	0	0.5 0.1	1	9.9 6.9	0			
51 52	0	0.8	<u> </u>	27.2 7.4	-	51 52	0	0.3 0.1	1	18.3 4	-			
53	0	0.3	1	11	-	53	0	0.3	1	14.8	-			
54 55	0	0.8	<u> </u>	7 12	-	54 55	0	0.3 0.2	1	17.1 4.8	-			
56	0	0.5	1	10.1	-	56	0	0.4	1	13	-			
57 58	0	0.2 0.5	<u> </u>	9.5 11.6	-	57 58	0	0.1 0.1	1	6.1	-			
59	0	0.2	1	12	-	59	0	0.4	1	6.5	-			
60 61	0	0.3 0.6	<u> </u>	7.3 11.7	0.25	60 61	0	0.4	1	13.3 11.1	0 -			
62	0	0.1	1	7.6	-	62	0	0.6	1	3	-			
63 64	0	0.7 0.8	<u> </u>	19.5 7.1	-	63 64	0	0.5 0.8	1	6.1 5.1	-			
65 66	0	0.5 0.6	1 1	17.2 7.6	-	65 66	0	0.2 0.6	1	7.4 10	-			
67	0	0.9	1	13.2	-	67	0	0.3	1	5.5	-			
68 69	0	0.8	<u> </u>	13 5.8	-	68 69	0	0.6 0.1	1	39.8 4.1	-			
70	0	0.8	1	10	0.25	70	0	0.3	1	16.4	-			
71 72	0	0.1 0.7	<u> </u>	12.1 11.5	-	71 72	0	0.2 0.1	1	6.2 3.2	0.25			
73	0	0.6	1	14.6	-	73	0	0.2	1	8.1	-			
74 75	0	0.8 0.1	<u>1</u> 1	13 5.4	-	74 75	0	0.4 0.5	1	11.2 9.2	-			
76	0	0.2	1	8	-	76	0	0.5	1	8.8	-			
77 78	0	0.4 0.4	1 1	9 10.2	-	77 78	0	0.4 0.4	1	4.3 12.5	-			
79 80	0	0.5 0.4	1	10 5.2	0.75	79 80	0	0.6 0.3	1	29.6 6.2	- 0			
81	0	0.6	1	9.8	0.75	81	0	0.3	1	17.3	-			
82 83	0	0.7 0.6	1 1	12.1 14	-	82 83	0	0 0.3	0	3.2 8.7	-			
84	0	0.5	1	10	-	84	0	0.1	1	3.2	-			
85 86	0	0.6 0.4	1 1	7.2 14	-	85 86	0	0.5	1 0	6.3 5.1	-			
87	0	0.4	1	7.7	-	87	0	0	0	2.2	-			
88 89	0	0.6 0.5	<u>1</u> 1	12.2 8.2	-	88 89	0	0.9 0.5	1	9.9 8.8	-			
90	0	0.5	1	15.2	0.25	90	0	0.5	1	17.7	0			
91 92	0	0.4 0.7	<u> </u>	20.6 17.6	-	91 92	0	0.5 0.3	1	2.1 8.8	-			
93	0	0.3	1	12.6	-	93	0	0.2	1	10.1	-			
94 95	0	0.6 0.7	<u> </u>	14.7 5.7		94 95	0	0.1	1	3.5 8.5	-			
96	0	0.6	1	8.8	-	96	0	0.3	1	10.8	-			
97 98	0	0.7 0.5	1 1	19.3 14.7	-	97 98	0	0.3 0.4	1 1	5.7 18.4	-			
99 100	0	0.8 0.4	1 1	13 6	0.5	99 100	0	0.2 0.5	1	9.2 3.5	- 0			
100 Average	U	0.4	1	O	0.0	Average	U	0.0	I	3.3	U			
Cic, Cip and	0	0.52	1.00	9.60	0.28	Cic, Cip and	0	0.30	0.97	9.55	0.05			
Embed. =	e Index (CI) =			1.00		Embed. =	to Index (2"			0.07				
	. maex (CI) =	I.		1.00		UIG CAICI	te Index (CI) =	1		0.97				

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

			LCUT-3 -Sep-21						_LILC3-1 -Sep-21		
D. L.L.	Concreted	Calcite	Calcite	Intermediate	Embeddedness	D. L.L.	Concreted	Calcite	Calcite	Intermediate	Embeddedness
Pebble	Status	Proportion	Presence	Axis (cm)	(%)	Pebble	Status	Proportion	Presence	Axis (cm)	(%)
1 2	0	0.5 0.1	1 1	15.2 5.5	-	1 2	1 0	0.9	1	7.2	-
3	0	0	0	8.2	-	3	0	0.4	1	7.5	-
5	0	0.3	<u>1</u> 1	14.6 10.2	-	<u>4</u> 5	0	0.3 0.5	1	4.6 17.1	-
6	0	0.2	1	11.2	-	6	0	0.6	1	7.8	-
7 8	0	0.2 0.8	<u>1</u> 1	9.1 2.5	-	7 8	0	0.7 0.4	1	5.1 7.9	-
9	0	0.4	1	2.7	-	9	0	0.2	1	6.3	0.5
10 11	0	0.4	<u>1</u> 0	22.6 1.1	0	10 11	0	0.3	1	8.2 12.5	-
12	0	0.1	1	10.3	-	12	0	0.6	1	12.5	-
13 14	0	0.1	1 1	5.5 7.5	-	13 14	0	0.2	0	12.4 3.6	-
15	0	-	-	101	-	15	0	0.3	1	16.6	-
16 17	0	0.2 0.6	1 1	11.2 15.5	-	16 17	0	0.5 0.5	1	16.5 12.5	-
18	0	0.1	1	7.2	-	18	0	0.3	1	10.4	-
19 20	0	0.2 0.7	<u> </u>	9.9 22.5	0.75	19 20	0	0.4	0	10.5	0.25
21	0	0.2	1	12.1	-	21	0	0.6	1	16.2	-
22	0	0.2 0.4	1 1	9.8 9.5	-	22 23	0	0.3	1	5.6 14.2	-
24	0	0.3	1	11.8	-	24	0	0.7	1	5.8	-
25 26	0	0.2	<u> </u>	13.5 11.8	-	25 26	0	0.6	1	7.7 1.5	-
27	0	0.2	1	8.8	-	27	0	0.1	1	4.6	-
28 29	0	0.3	<u>1</u> 0	9.9 1.4	-	28 29	0	0.6 0.9	1	10.1 7.8	-
30	0	0.4	1	31.3	0.5	30	0	0.9	1	9.7	0.25
31 32	0	0.3 0.4	<u> </u>	10.8 26.4	-	31 32	0	0.9	1	19 7.2	-
33	0	0.2	1	5.5	-	33	0	0.4	1	10.3	-
34 35	0	0.1 0.1	<u>1</u> 1	8.7 4.5	-	34 35	0	0.6 0.3	1	22.2 14	-
36	0	0.1	1	17	-	36	0	0.2	1	2.5	-
37 38	0	0.5	<u>-</u> 1	101 12.2	-	37 38	0	0.8	1	14.5 6.3	-
39	0	0.5	1	10.3	-	39	0	0	0	2.7	-
40 41	0	0.7 0.1	1 1	6.3	0	40 41	0	0.3	1	4.5 5.4	0
42	0	0.4	1	8.8	-	42	0	0.7	1	16	-
43 44	0	0.3 0.2	<u> </u>	8.7 4.6	-	43 44	0	0.7 0.3	1	22 6.5	-
45	0	0.4	1	11.2	-	45	1	0.2	1	4.7	-
46 47	0	0.1 0.2	<u> </u>	6.1 3.8	-	46 47	0	0.5 0.8	1	8.8 11.1	-
48	0	0.3	1	17.5	-	48	0	0	0	6.1	-
49 50	0	0.4 0.4	<u> </u>	2.7 6.8	- 0	49 50	0	0	0	1.2 12.5	0.25
51	0	0.1	1	3.9	-	51	0	0.8	1	13.2	-
52 53	0	0.6 0.3	<u> </u>	7.7 10.8	-	52 53	0	0.7 0.1	1	42 11.5	=
54	0	0.6	1	19.9	-	54	0	0.6	1	8.8	-
55 56	0	0.3 0.1	<u> </u>	18.5 4.1	-	55 56	0	0.8	1	7.1 13.8	-
57	0	0.6	1	23.3	-	57	0	0	0	1	-
58 59	0	0.5 0.4	1 1	11.4 4.7	-	58 59	0	0.5 0.6	1	9.4 13.8	-
60	0	0.8	1	5.4	0.25	60	0	0.2	1	1.7	0.5
61 62	0	0.3	1 1	8.8 10.2	-	61 62	0	0.5	0	0.2 9	-
63	0	0.1	1	4.1	-	63	0	0.4	1	17	-
64 65	0	0.3	<u> </u>	13.8 7.3	-	64 65	0	0.5 0.2	1	14 4.5	-
66	0	0	0	0.4	-	66	1	0.5	1	14.6	-
67 68	0	0.3 0.1	1 1	50.3 15.2	-	67 68	0	0.3 0.5	1	17 14.5	-
69	0	0.1	1	2.1	-	69	0	0.4	1	10.2	-
70 71	0	0.4	- 1	101 9.5	- 0	70 71	0	0.5 0	1 0	16.4 1.5	0.5
72	0	0.7	1	9.2	-	72	0	0.2	1	7.3	-
73 74	0	0.3 0.2	<u>1</u> 1	6.3 5.2	-	73 74	0	0.1	0	2.6 6	-
75	0	0.4	1	2.5	-	75	0	0.5	1	4.7	-
76 77	0	0.2	1 1	15.5 5.8	-	76 77	0	0.2 0.7	1	12.5 9.1	-
78	0	0.2	1	9.3	-	78	0	0.2	1	6.5	-
79 80	0	0.2	<u> </u>	9.7 11.2	- 0	79 80	0	0.5 0.5	1	15 11	0.75
81	0	0.1	1	8.1	-	81	0	0	0	0.3	-
82 83	0	0.5 0.1	<u> </u>	10.9 3.1	-	82 83	0	0.3	0	14 0.4	-
84	0	0.4	1	31.3	-	84	0	0.5	1	13.5	-
85 86	0	0.8	<u> </u>	0.5 12.4	-	85 86	0	0	0	0.6 0.4	-
87	0	0.3	1	10.7	-	87	0	0.3	1	3.5	-
88 89	0	0.3 0.4	<u> </u>	4.3 7.2	-	88 89	0	0.9 0.5	1	19.3 23	-
90	0	0.1	1	6.4	0	90	0	0.6	1	23	0.25
91 92	0	0.1 0.6	1 1	6.1 20.6	-	91 92	0	0.4 0.1	1	39 4.2	-
93	0	0.5	1	9.8	-	93	0	0	0	2.5	=
94 95	0	0.3	<u> </u>	3.1 2.6	-	94 95	0	0.7 0.4	1	7.8 4.5	-
96	0	0.3	1	6.9	-	96	0	0.2	1	5.1	-
97 98	0	0.2	<u>1</u>	6.1 101	-	97 98	0	0	0	0.5 13.2	-
99	0	0.2	1	6.1	-	99	0	0.7	1	6.4	-
100 Average	0	0.3	1	9.5	0	100 Average	0	0.6	1	9.1	0.5
Average Cic, Cip and	0	0.30	0.95	13.7	0.15	Average Cic, Cip and	0.04	0.43	0.85	9.89	0.38
Embed. =						Embed. =					
	e Index (CI) =	L		0.95	i i		e Index (CI) =			0.89	

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

			_LILC3-2 -Sep-21			RG_LILC3-3 10-Sep-21								
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)			
1 2	0	0.1 0.7	1 1	5.7 10.2	-	1 2	0	0.3 0.9	1	5.3 8.1	-			
3	0	0.3	1 0	7.5	-	3 4	0	0.2	1	3.2 7.2	-			
5	0	0.6	1	0.9 13	-	5	0	1	1	9.3	-			
6 7	0	0 0.5	<u> </u>	1.9 11.3	-	7	0	0.8	1	4.7 6.7	-			
8	0	0.7	1	16.4	-	8	0	0	0	0.3	-			
9 10	0	0.6	<u> </u>	14.4 8.3	-	9 10	0	0.9 0.1	1	7.4 4.1	0.75			
11 12	0	0.9	1	7.8 8.1	-	11 12	0	0.9 0.6	1	6 9.6	-			
13	0	0.4 0.6	1	16.1	-	13	0	0.9	1	10	-			
14 15	0	0.3 0.8	<u> </u>	7.2 7.2	-	14 15	0	0.5	0	8.4 0.3	-			
16	0	0.3	1	7.5	-	16	0	0.7	1	4	-			
17 18	0	0	0	1.2 0.5	-	17 18	0	0.5 0.5	1	22.5 5.3	-			
19 20	0	0.4 0.6	1	15.4 8.1	-	19 20	0	0.8	1	17.3 8.6	0.25			
21	0	0.5	1	5.4	-	21	0	0.5	1	21	-			
22 23	0	0.5 0.5	<u> </u>	52 19.2	-	22 23	0	0.9 0.6	1	7 13.7	-			
24	0	1	1	4.8	-	24	0	0.9	1	8.5	-			
25 26	0	0.8	0	7.5 1.5	-	25 26	0	0.7 0.8	1	14.3 5	-			
27 28	0	0.5 0.7	1	7.5 6.6	-	27 28	0	0 0.9	0	2 1.6	-			
29	0	0.5	1	7.8	-	29	0	1	1	7.7	-			
30 31	0	0.5 0.4	1	16 9	- 0	30 31	0	0.8	1	7 6.2	0 -			
32	1	0.4	1	4.6	-	32	0	1	1	7	-			
33 34	0	0.5	0	15.5 0.7	-	33 34	0	0.3	1	4.8 5.5	-			
35 36	0	0.9 0.5	1	3.8 19.5	- 0.5	35 36	0	1 0.1	1	10.3 4.5	-			
36	0	0.5	1 1	15.5	-	37	0	0.1	1	5	-			
38 39	0	0	0	2.5 2.5	-	38 39	0	1 0.8	1	4.5 7.2	-			
40	1	0.4	1	3.5	-	40	0	0.4	1	12.9	0.5			
41 42	0	0.5 0.8	<u> </u>	16.5 13.5	0.5	41 42	0	0.4 0.6	1	10.3 14	-			
43 44	0	0.7 0.7	1	6.8 17	-	43 44	0	0.1 0.4	1	2	-			
45	0	0.7	1	15	-	45	0	0.5	1	30.5	-			
46 47	0	0.3 0.8	<u> </u>	13.5 15	0.75	46 47	0	0.5 0.9	1	10.5 13.6	-			
48	0	0.2	1	7	-	48	0	0.1	1	3.2	-			
49 50	0	0 0.4	<u> </u>	0.7 6	-	49 50	0	0.9	0	7.5 0.7	- 1			
51	0	0.7	1	12	0.25	51	0	1	1	8	-			
52 53	0	0.5 0.8	<u> </u>	7 5.2	-	52 53	0	0.1 0.8	1 1	3.9 9	-			
54 55	0	0.6 0.5	1 1	18 5.6	-	54 55	0	0.9 0.2	1	9.4 5	-			
56	0	0.9	1	15.5	-	56	0	0.8	1	8.1	-			
57 58	0	0.5	<u> </u>	24.5 0.5	-	57 58	0	0.7 0.8	1	6 8.3	-			
59	0	0.9	1	8	-	59	0	0.6	1	10.8	-			
60 61	0	0.5 0.8	1 1	15.5 15	0.5	60 61	0	0.6 0.7	1 1	12.2 14.5	0.5			
62 63	0	0 0.4	0	0.5 6.6	-	62 63	0	0.6 0.8	1	8.1 6.2	-			
64	0	0.4	1	3	-	64	0	0.6	1	7.3	-			
65 66	0	0.5 0.5	<u> </u>	12 8.5	-	65 66	0	0.9	1	6.1	-			
67	0	0.6	1	4.5	-	67	0	0.6	1	10.2	-			
68 69	0	0.1 0.8	1 1	3.5 13.5	-	68 69	0	0.9 0.8	1	7 11.1	-			
70 71	0	1 0.7	1	7.5 14.5	0 -	70 71	0	0.4 0.5	1	8 5.3	-			
72	0	0.6	1	8.2	-	72	0	0.9	1	8.2	-			
73 74	0	0.5 0.4	<u> </u>	8.4 12.2	-	73 74	0	0.2	1	9.5 3.9	0.75			
75	0	0.5	1	9	-	75	0	0.6	1	14.2	-			
76 77	0	0.5 1	1	6.5 6.2	-	76 77	0	0.2	1	2.7 9	-			
78 79	0	0.1 0.7	1	2.5 18	-	78 79	0	0.6	1 0	5.5 0.4	-			
80	0	0.5	1	15.4	0.25	80	0	0.8	1	5	0			
81 82	0	0.1 0.6	<u> </u>	8.5 16.5	-	81 82	0	1	1	9.7 1.2	-			
83	0	0.8	1	20.5	-	83	0	0.8	1	6.9	-			
84 85	0	0.4 0.4	1 1	7.5 5	-	84 85	0	0.8 0.7	1	8 19.2	-			
86 87	1 0	0.4 0.4	1	12 15.5	-	86 87	0	0.8	1	10.7 10.6	-			
88	0	0.5	1	17	-	88	0	0.4	1	6.6	-			
89 90	<u> </u>	0.6 0.9	<u> </u>	5.7 6	0.25	89 90	0	0.4 0.4	1	12 10.5	0.25			
91	0	0.5	1	14.5	-	91	0	0.7	1	7.6	-			
92 93	0	0.7 0.6	1 1	5 10.7	-	92 93	0	0.8 0.7	1	0.8 18.6	-			
94 95	0	1 0.4	1	11 9	-	94 95	0	0.5 0.2	1	6.4 6	-			
96	0	0	0	1.3	-	96	0	0.5	1	6.6	-			
97 98	0	0.6 0.1	<u> </u>	2.1 1.7	-	97 98	0	0.8	1 1	11.4 8.5	-			
99	0	0.7	1	10	-	99	0	0.4	1	17	-			
Average Cic, Cip and	0 0.05	0.6 0.50	0.88	9.62	0.5 0.35	Average Cic, Cip and	0 0	0.4	0.95	8.4 8.24	0.75 0.48			
Embed. =	e Index (CI) =			0.93		Embed. =	e Index (CI) =			0.95				
Old Calcite				-		- u vaivil				-				

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

			_LILC3-4 -Sep-21						_LILC3-5)-Sep-21		
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1 2	0	0.5 0.4	1	20 10.2	-	1 2	0	1 0.7	1	19.2 13	-
3	0	0.4	1	8.3	-	3	0	0.3	1	6.3	-
4 5	0	0.3 0.5	<u> </u>	13 3.4	-	4 5	0	0.3 0.7	1	23 15.5	-
6	0	0.3	1	3.5	-	6	0	0.2	1	7.8	-
7 8	0	0.6 0.3	<u>1</u> 1	10.1 10.2	-	7 8	0	0.6	1	10.7 9.3	-
9 10	0	0.2 0.6	1	14.2 11.2	- 0.25	9 10	0	0 0.7	0	0.6 18.1	0.5
11	0	0.6	1	14.6	0.25	11	0	0.7	0	2.6	- 0.5
12 13	0	0.3 0.5	1	11.7 13.6	-	12 13	0	0.4	1	5.7 4.3	-
14	0	0.5	0	4.9	-	14	0	0.8	1	5	-
15 16	0	0.4	<u> </u>	6.5 5.5	-	15 16	0	0.1	0	1.8 5.2	-
17	0	0.1	1	5.5	-	17	0	0	0	3.1	-
18 19	0	0 0.4	0 1	1.1 6.3	-	18 19	0	0.2	1	10.3 8.5	-
20	0	0.8	1	5.1	0	20	0	0	0	0.8	1
21 22	0	0.8	<u> </u>	5.9 8.1	-	21 22	0	0.6 0.4	1	11.5 8	-
23	0	0.9	1	11.7	-	23	0	0.4	1	7.4	-
24 25	0	0.6 0.2	<u> </u>	5.6 6.3	-	24 25	0	0 0.4	0	1.8 1.2	-
26	0	0.5	1	7	-	26	0	0.4	1	9.8	-
27 28	0	0.6 0.4	1	6.7 5.2	-	27 28	0	0.5 0.3	1	13 25	-
29	0	0.5	1	8.4	-	29	0	0.2	1	7.2	-
30 31	0	0.9 0.5	1	12.6 8.1	0	30 31	0	0.2 0.3	1	6 9	0 -
32	0	1	1	8	-	32	0	0.2	1	7	-
33 34	0	0.5 0	1 0	7.2 1.6	-	33 34	0	0.3 0.3	1	4.6 10.2	-
35	0	0.9	1	5	-	35	0	0.6	1	9	-
36 37	0	0.9	<u> </u>	10.6 6.1	-	36 37	0	0.3 0.4	1	33 5	-
38	0	0	0	0.6	-	38	0	0.2	1	12.2	-
39 40	0	0.9	<u> </u>	6.7 7.6	- 0	39 40	0	0.8	1	7 15.1	0.75
41	0	0	0	0.2	-	41	0	0.3	1	7.3	-
42 43	0	1	<u> </u>	11 4.5	-	42 43	0	0.6 0.6	1	25.5 13	-
44	0	0.2	1	5.5	-	44	0	0.1	1	3.1	-
45 46	0	0.4	<u> </u>	1.5 9.6	-	45 46	0	0.3 0.9	1	10 8.4	-
47	0	1	1	6.5	-	47	0	0.8	1	9	-
48 49	0	0.5 0.9	<u> </u>	3.1 6	-	48 49	0	0	0	3.7 7	-
50	0	0.5	1	7.1	0.5	50	0	0.9	1	9.3	0.25
51 52	0	0.4	<u> </u>	13.3 4.7	-	51 52	0	0.1	1	6 7.6	-
53	0	0.6	1	5.8	-	53	0	0.4	1	11	-
54 55	0	0.5	<u>1</u> 1	29 8.3	-	54 55	0	0.7 0.9	1	11.6 9	-
56	0	0.7	1	37.5	-	56	0	0.9	1	11	-
57 58	0	0.7 0.6	<u> </u>	12.5 29	-	57 58	0	0.8	1	9.1 9.6	-
59	0	0.0	1	7	-	59	0	0.5	1	12	-
60 61	0	0 0.5	<u> </u>	6.5 10.5	0.25	60 61	0	0.2 0.7	1	11.5 13.6	0.75
62	0	0	0	1.8	-	62	0	0.8	1	12	-
63 64	0	0.8	<u> </u>	8.6 5.5	-	63 64	0	0.9 0.9	1	15.7 7.6	-
65	0	0.8	1	18.5	-	65	0	0.3	1	4.2	-
66 67	0	0.8 0.5	<u> </u>	10.5 5	-	66 67	0	0.1 0.8	1	1.8 18	-
68	0	0.9	1	8.6	-	68	0	0.8	1	7.4	-
69 70	0	0.4 0.2	1	7.6 6	0.5	69 70	0	0.8 0.6	1	6.8 14.2	0.25
71	0	0.5	1	19.5	-	71	0	1	1	11	-
72 73	0	0.4 0.5	<u>1</u> 1	7.8	-	72 73	0	0.7 0.2	1	9.8	-
74	0	0.5	1	5.6	-	74	0	0.2	1	13.1	-
75 76	0	0.3 0.1	<u> </u>	5 5.8	-	75 76	0	0.4 0.9	1	5.6 12.5	-
77	0	0.4	1	8	-	77	0	0.7	1	5.3	-
78 79	0	0.4 0.4	<u> </u>	21.5 4.1	-	78 79	0	0.8	1	15.7 7.6	-
80	0	0.4	1	3.8	0.5	80	0	0.6	1	6.3	0
81 82	0	0.4	<u> </u>	7.5 8.3	-	81 82	0	0.8 0.5	1	14 11.8	-
83	0	0.5	1	20.5	-	83	0	0.3	1	5.3	-
84 85	0	0.3	<u>1</u> 0	4.8 0.7	-	84 85	0	0.7 0.8	1	14.9 11.5	-
86	0	0	0	2.5	-	86	0	0.3	1	14	-
87 88	0	0.4	<u> </u>	5 4.5	-	87 88	0	0.4	1	7 10.5	-
89	0	0.9	1	9	-	89	0	0.4	1	2.3	-
90 91	0	0.7 0.9	<u> </u>	5.4 5.1	0.25	90 91	0	0.8	1	12.5 4.3	0.25
92	0	0.5	1	9.6	-	92	0	0.8	1	5	-
93 94	0	0.6 0.6	<u> </u>	10.4 12.2	-	93 94	0	0.4	1	12 8.6	-
95	0	0.7	1	9	-	95	0	0.7	1	11	-
96 97	0	0 0.2	0 1	0.4 4.5	-	96 97	0	0.8 0.7	1	13 9	-
98	0	0.3	1	13	-	98	0	8.0	1	19.9	-
99 100	0	0.5	<u> </u>	10.4 11	- 0	99 100	0	0.4	1	3.8	- 0
Average Cic, Cip and	-	0.53	0.90	8.48		Average Cic, Cip and Embed. =	0	0.52	0.93	9.64	0.38
Cmrt	i e	1		1	1	-mned =		1	1	II.	ii.
Embed. =	e Index (CI) =			0.90			e Index (CI) =			0.93	

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

			LISP24-1 -Sep-21						_LIDSL-1 -Sep-21		
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1 2	0	0 0.1	0	7.5 9.1	-	1 2	0	0 0.1	0	13 7.2	-
3	0	0	0	8.2	-	3	0	0	0	6.7	-
5	0	0	0	11.1 6.1	-	5	0	0.1	0	15.8 4.7	-
6 7	0	0	<u> </u>	3.2 9.5	-	6 7	0	0	0	6.4 9.1	-
8	0	0	0	7.2	-	8	0	0	0	12.6	-
9 10	0	0	0	9.5 8.5	0.25	9 10	0	0.1	1	9.3 10.2	0.25
11 12	0	0.1	1 0	11.2 9.5	-	11 12	0	0.1	1 0	10.1 5.6	-
13	0	0	0	5.5	-	13	0	0.1	1	8.7	-
14 15	0	0	0	9.3 5.2	-	14 15	0	0	0	6.1 5.3	-
16	0	0	0	16.5	-	16	0	0	0	5.6	-
17 18	0	0	0	7.2 14.8	-	17 18	0	0	0	8.2 20.4	-
19 20	0	0 0.1	0	8.1 15.3	0.5	19 20	0	0.1	1 0	12.1 17.3	0.5
21	0	0	0	7.2	-	21	0	0.1	1	9.3	-
22 23	0	0	0	9.8 6.2	-	22 23	0	0.1	0	12.2 8.1	-
24	0	0.1	1	9.1	-	24	0	0.2	1	20.3	-
25 26	0	0	0	6.6 6.2	-	25 26	0	0.2	0	12.6 5.3	-
27 28	0	0	0	5.2 10.1	-	27 28	0	0.2 0.1	1	15.3 11.1	-
29	0	0	0	8.2	-	29	0	0	0	20.4	-
30 31	0	0	0	6.3 13.8	0 -	30 31	0	0	0	12.2 8.5	0.25
32	0	0	0	12.8	-	32	0	0	0	3.6	-
33 34	0	0	0	2.4 10.9	-	33 34	0	0.1	0	15.2 1.2	-
35 36	0	0.1	1 0	8.8 6.5	-	35 36	0	0	0	12.1 6.5	-
36	0	0	0	10.2	-	37	0	0	0	8.2	-
38 39	0	0 -	0	5.5 101	-	38 39	0	0	0	3 10.1	-
40	0	0	0	0.8	0	40	0	0	0	7.4	0.25
41 42	0	0.2	<u> </u>	14.2 10.8	-	41 42	0	0	0	9.6 9.3	-
43 44	0	0	0	12.5 13.1	-	43 44	0	0 0.1	0	7.5 5.9	-
45	0	0	0	5.8	-	45	0	0.1	0	19.2	-
46 47	0	0	0	2.8 9.2	-	46 47	0	0.1	0	6.6 7.1	-
48	0	0	0	5.5	-	48	0	0	0	10.2	-
49 50	0	0	0	6.2 3.3	- 0	49 50	0	0.1	0	10 9.1	0.25
51 52	0	0 0.2	0 1	3.4 14.2	-	51 52	0	0	0	7.8 9.1	-
53	0	0	0	10.2	-	53	0	0	0	5.6	-
54 55	0	0	0	28.3 3.3	-	54 55	0	0	0	22.6 1.3	-
56	0	0	0	7.2	-	56	0	0.1	1	18.1	-
57 58	0	0	0	6.1 2.5	-	57 58	0	0	0	9.2 7.1	-
59 60	0	0.2	1 0	44 11.2	- 0.25	59 60	0	0.3	1 0	25.5 8.1	- 0
61	0	0	0	3.3	-	61	0	0	0	7.5	-
62 63	0	0	0	0.8 9.1	-	62 63	0	0.1	0	4.3 6.1	-
64	0	0	0	3.3	-	64	0	0.1	1	9.1	-
65 66	0	0.3	0 1	8.8 16	-	65 66	0	0.2	0	28.2 4.1	-
67 68	0	0	0	11.4 10.8	-	67 68	0	0	0	8.4 6.5	-
69	0	0	0	14.2	-	69	0	0	0	12.6	-
70 71	0	0.1	<u>0</u> 1	2 17.2	0 -	70 71	0	0	0	5.1 4.3	0 -
72	0	0	0	11.8	-	72	0	0	0	7.6	-
73 74	0	0	0	9.2 10.1	-	73 74	0	0 0.3	0	8.2 40	-
75 76	0	0.2 0.1	1 1	15.5 10.5	-	75 76	0	0.1	1 0	8.5 5.1	-
77	0	0	0	11.5	-	77	0	0	0	11.8	-
78 79	0	0	0	3.8 9.1	-	78 79	0	0	0	1.6 3.7	-
80	0	0	0	4.5	0	80	0	0	0	4.6	0.75
81 82	0	0	0	7.1 8.2	-	81 82	0 0	0	0	10.1 17.9	-
83 84	0	0	0	0.5 7.3	-	83 84	0	0.1	1 0	13.5 8.5	-
85	0	0	0	6.8	-	85	0	0	0	15.9	-
86 87	0	0	0	9.8 14.8	-	86 87	0	0	0	2.4 6.6	-
88 89	0	0	0	6.8 4.3	-	88 89	0	0	0	8.7	-
90	0	0	0	6.8	0	90	0	0	0	9.9 1.3	0
91 92	0	0	0	4.4 12.5	-	91 92	0	0.1	1 0	6.1 1.3	-
93	0	0	0	3.3	-	93	0	0	0	10.8	-
94 95	0	0.1	0 1	6 7.2	-	94 95	0	0	0	5.6 7.6	-
96 97	0	0	0	5.1	-	96 97	0	0 0.1	0	14.2 10.3	-
98	0	0.1	1	10.8	-	98	0	0	0	37	-
99 100	0	0 0.1	0	9.3 8.5	-	99 100	0	0.1	1 0	10.8 9.6	- 0
Average Cic, Cip and Embed. =	0	0.02	0.17	9.67		Average Cic, Cip and Embed. =	0	0.04	0.27	10.0	0.23
Old Calcite	e Index (CI) =			0.17		Old Calcit	e Index (CI) =		<u> </u>	0.27	<u></u>
	Index (CI') =	1 		0.02			Index (Cl') =		-	0.04	<u>-</u>

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

			_LIDSL-2 -Sep-21						_LIDSL-3 I-Sep-21		
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1 2	0	0 0.1	0	10.5 18.5	-	1 2	0	0 0.1	0 1	9.2 10.8	-
3	0	0	0	2.8 4.8	-	3 4	0	0.2	1 0	14.2 12	-
5	0	0	0	12.2	-	5	0	0	0	8.5	-
7	0	0	0	9.9 12.5	-	6 7	0	0.2 0.1	1	14.8 9.6	-
8	0	0	0	3.7	-	8	0	0	0	7.4	-
9 10	0	0	0	1.2 16	0.25	9 10	0	0.1	0	16.9 16.8	0.25
11	0	0	0	6	-	11	0	0	0	1.6	-
12 13	0	0.1	0	12.7 4.6	-	12 13	0	0	0	9 6.2	-
14 15	0	0	0	20 19.5	-	14 15	0	0	0	8.3	-
16	0	0	0	5.2	-	16	0	0	0	21.5	-
17 18	0	0	0	6.2 6.5	-	17 18	0	0	0	8.3 6.5	-
19 20	0	0	0	28 8.7	0.5	19 20	0	0	0	10.2 11.5	0.25
21	0	0.1	1	24	-	21	0	0	0	10.7	0.25
22 23	0	0	0	0.3	-	22 23	0	0	0	5.2 9.6	-
24	0	0	0	7.5	-	24	0	0	0	9.3	-
25 26	0	0	0	5.1 8.1	-	25 26	0	0.1	0	5 10.1	-
27	0	0	0	22.5	-	27	0	0	0	26	-
28 29	0	0.1 0.1	1 1	11.2 11.3	-	28 29	0	0.1	0	16.5 12.3	-
30 31	0	0.1	1 0	8.2 18	0.5	30 31	0	0.2	1 0	20 6.5	0.5
32	0	0	0	3	-	32	0	0.1	1	15	-
33 34	0	0 0.1	0 1	13.2 11.7	-	33 34	0	0.1	0	7.6 14	-
35	0	0	0	5.2	-	35	0	0	0	5	-
36 37	0	0	0	8.5 12.1	-	36 37	0	0	0	28.5 9.8	-
38 39	0	0.4 0.1	1 1	50.5 9.2	-	38 39	0	0.1	1 0	9.6 8.7	-
40	0	0.3	1	11.5	0.25	40	0	0	0	5.1	0
41 42	0	0 0.1	0 1	5.5 13.2	-	41 42	0	0.2	0	34 10.1	-
43	0	0	0	8.1	-	43	0	0	0	11.4	-
44 45	0	0.5	0	19.5 14.2	-	44 45	0	0	0	10.7 6.1	-
46 47	0	0 0.1	0	10.1 10.9	-	46 47	0	0	0	10.2 6.5	-
48	0	0	0	3.1	-	48	0	0	0	7.4	-
49 50	0	0 0.4	0 1	6.2 10.5	- 0	49 50	0	0.2	0	20 27.3	0.25
51	0	0.1	1	5.5	-	51	0	0	0	10.6	-
52 53	0	0.1 0.1	1	11.8 14.1	-	52 53	0	0	0	11.2 10.5	-
54	0	0	0	12	-	54	0	0	0	8.1	-
55 56	0	0	0	4.2 9.1	-	55 56	0	0	0	8.6 8.8	-
57 58	0	0 0.3	0	7.2 23.5	-	57 58	0	0	0	9.1 2.6	-
59	0	0.1	1	44.5	-	59	0	0	0	6.6	-
60 61	0	0	0	3.3	-	60 61	0	0.1	0	9.1 25.2	0.25
62	0	0.1	1	10.1	0	62	0	0	0	6.2	-
63 64	0	0	0	4.3 6.3	-	63 64	0	0.1 0.2	1 1	19.5 34.7	-
65 66	0	0	0	7.4 6.2	-	65 66	0	0	0	3.2 10.1	-
67	0	0	0	5	-	67	0	0	0	0.2	-
68 69	0	0.1	0	7.9	-	68 69	0	0	0	2.1 9.2	-
70	0	0	0	7.2	-	70	0	0	0	10.3	0
71 72	0	0	0	5.5 15	-	71 72	0	0 0.1	0 1	23 9.5	-
73 74	0	0 0.1	0	0.5 14.2	1 -	73 74	0	0	0	14.4 16.3	-
75	0	0	0	4.8	-	75	0	0	0	18	-
76 77	0	0	0	8.1 8.2	-	76 77	0	0	0	15.2 10.4	-
78	0	0	0	9.1	-	78	0	0	0	8.5	-
79 80	0	0.5	1 0	29 7.2	0.25	79 80	0	0	0	9.5 7.6	0
81 82	0	0 0.1	0	7.4 6	-	81 82	0	0	0	7.7 4.2	-
83	0	0	0	5.5	-	83	0	0	0	7.7	-
84 85	0	0.2 0.1	1 1	19.5 14.5	-	84 85	0	0	0	8.6 8.4	-
86	0	0	0	6.5	-	86	0	0	0	8.5	-
87 88	0	0	0	13.2 4.2	-	87 88	0	0	0	10.6 7	-
89 90	0	0	0	16.8 6.2	- 0	89 90	0	0	0	7.1 6.1	- 0
91	0	0	0	8.2	-	91	0	0	0	6.3	-
92 93	0	0.1	1 0	15.5 19.1	-	92 93	0	0	0	11.1 7.5	-
94	0	0	0	3.6	-	94	0	0	0	6.4	-
95 96	0	0 0.1	0 1	7.2 8.5	-	95 96	0	0	0	5.6 8.5	-
97 98	0	0	0	5.5 1.7	-	97 98	0	0 0.2	0	11.1 45.5	-
99	0	0	0	11.5	-	99	0	0	0	5.9	-
100 Average	0	0.3	1	15	0.75	100 Average	0	0.2	1	4.5	0.75
Average	0	0.05	0.29	10.7	0.35	Average Cic, Cip and	0	0.03	0.19	11.2	0.23
Cic, Cip and								A. Control of the Con	i .		
Embed. =	te Index (CI) =			0.29		Embed. =	e Index (CI) =			0.19	

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

			LIDSL-4 -Sep-21						_LIDSL-5 I-Sep-21		
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1 2	0	0 0.1	0	9 9.2	-	1 2	0	0 0.3	0	9.3 28	-
3	0	0	0	7	-	3	0	0	0	4	-
4 5	0	0.2	<u> </u>	9.2 45.3	-	<u>4</u> 5	0	0	0	5.2 1.2	-
6	0	0	0	3.2	-	6	0	0	0	3.3	-
7 8	0	0.1	<u>1</u> 0	11.3 7.5	-	7 8	0	0	0	22.5 7.8	-
9	0	0	0	10.5	-	9	0	0	0	10.4	-
10	0	0	0	5.3	0	10	0	0	0	4.5	0.75
11 12	0	0	0	9.9	-	11 12	0	0	0	2.1 8.3	-
13	0	0	0	6.5	-	13	0	0	0	17.5	-
14 15	0	0	0	7.4 14.2	-	14 15	0	0	0	19.5 1.8	-
16	0	0	0	28.1	-	16	0	0	0	10.2	-
17 18	0	0	0	8.5 6.2	-	17 18	0	0.1	0	15 25	-
19	0	0	0	2.5	-	19	0	0	0	24.5	-
20 21	0	0.1	<u>1</u> 0	5.1 13.1	0	20 21	0	0.3	0	26 25.5	0.25
22	0	0	0	13.6	-	22	0	0.3	0	2.7	-
23	0	0	0	9	-	23	0	0.3	1	27.2	-
24 25	0	0.1	1 0	7.2 6.9	-	24 25	0	0.1	0	8.5 6.2	-
26	0	0	0	4.1	-	26	0	0	0	10.9	-
27 28	0	0.1	1 0	8.1 36.4	-	27 28	0	0.2	0	11.5 17.8	-
29	0	0.1	1	7	-	29	0	0	0	3.6	-
30	0	0	0	16.4	0.25	30	0	0.3	1	40	0.25
31 32	0	0	0	7.1 4.8	-	31 32	0	0.1	0	20 14	-
33	0	0	0	10.5	-	33	0	0	0	7.3	-
34 35	0	0	0	9.1	-	34 35	0	0.2	1	14 12.5	-
36	0	0.2	1	16.2	-	36	0	0.4	1	20	-
37 38	0	0.1	<u>1</u> 0	10.8 6.5	-	37 38	0	0.5 0.5	1	18 9	-
39	0	0	0	3.8	-	39	0	0.5	1	13	-
40 41	0	0	0	9.8	0	40 41	0	0	0	3.5	0
42	0	0	0	8.8 9.9	-	42	0	0.3	0	15.5	-
43	0	0	0	8.4	-	43	0	0	0	9.1	-
44 45	0	0	0	25.2 11.1	-	44 45	0	0.2	0	11.2 14.8	-
46	0	0	0	9.7	-	46	0	0	0	13.5	-
47 48	0	0	0	10.5 20.1	-	47 48	0	0.6	0	36 5.5	-
49	0	0	0	10	-	49	0	0.1	1	12.3	-
50 51	0	0	0	20.1 11.9	0.25	50 51	0	0	0	13.5 14.5	0.5
52	0	0	0	9.2	-	52	0	0	0	2.2	-
53	0	0.1	<u>1</u> 0	9.6	-	53	0	0.1	1	18.2	-
54 55	0	0.1	1	8.1 9.3	-	54 55	0	0.1	0	18.2 5.8	-
56	0	0.2	1	10.1	-	56	0	0	0	7.8	-
57 58	0	0	0	22.4 11.4	-	57 58	0	0.1	0	24.5 9.3	-
59	0	0	0	7.1	-	59	0	0	0	7.3	-
60 61	0	0	0	13.6 8.9	0.25	60 61	0	0	0	3.8 1.9	0
62	0	0	0	7.5	-	62	0	0	0	7.2	-
63 64	0	0 0.1	<u> </u>	9 10.2	-	63 64	0	0	0	0.5 8	-
65	0	0.1	0	9.6	-	65	0	0	0	14	-
66	0	0	0	10	-	66	0	0	0	23.5	-
67 68	0	0.1	0 1	7.1 20.4	-	67 68	0	0	0	12.6 6.3	-
69	0	0.2	1	43	-	69	0	0	0	5.2	- 0.75
70 71	0	0	0	4.4 9.4	0.25	70 71	0	0	0	10.2 8	0.75
72	0	0	0	8	-	72	0	0	0	4.2	-
73 74	0	0	0	10.1 7.5	-	73 74	0	0	0	10.4 5.5	-
75	0	0	0	1.1	-	75	0	0	0	6.1	-
76 77	0	0	0	8.1 7.6	-	76 77	0	0.3	0	7 45.5	-
78	0	0.3	1	1.1	-	78	0	0.3	1	9.5	-
79 80	0	0	0	13.1	-	79 80	0	0	0	1.7	- 0.25
80 81	0	0	0	7.6 5.4	-	80 81	0	0	0	5.9 2.8	0.25
82	0	0	0	5.9	-	82	0	0	0	1.1	-
83 84	0	0	0	1.6 10	-	83 84	0	0.2	1	8.5 11	-
85	0	0	0	12.2	-	85	0	0	0	13.5	-
86 87	0	0	0	18.6 9	-	86 87	0	0.5 0.1	1	20 12.5	-
88	0	0	0	6.1	-	88	0	0	0	12.5	-
89 90	0	0	0	6.1 12.4	- 0.25	89 90	0	0.2	1 0	25.5 8.8	0.25
91	0	0	0	10.2	0.25	91	0	0	0	4.1	0.25
92	0	0	0	5.5	-	92	0	0.1	1	11.5	-
93 94	0	0.1	1 0	11.2 13	-	93 94	0	0.2	1	18.2 34	-
95	0	0.2	1	20.2	-	95	0	0	0	4.1	-
96 97	0	0	0	10.6 9.8	-	96 97	0	0.3 0.3	1	75 9.5	-
98	0	0	0	4.9	-	98	0	0	0	5	-
99	0	0	0	6	-	99	0	0	0	4.2	- 0.5
100 Average	0	0	0	5.9	0	100 Average	0	0.4	1	19	0.5
Cic, Cip and	0	0.03	0.18	10.6	0.13	Cic, Cip and	0	0.09	0.34	13.0	0.35
Embed. =						Embed. =					
	e Index (CI) =			0.18			te Index (CI) =			0.34	
new Calcite	Index (CI') =			0.03		new Calcit	e Index (CI') =			0.09	

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

			LIDCOM-1 -Sep-21			RG_Li8-1 11-Sep-21							
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis	Embeddedness (%)		
1	0	0	0	(cm) 5.2	-	1	0	0	0	(cm) 1.3	-		
3	0	0	0	9.1 10.2	-	2 3	0	0.2 0.1	1	1.2 3.4	-		
4	0	0	0	5.1	-	4	0	0	0	12.1	-		
5 6	0	0.2	1 0	17.8 9.5	-	<u>5</u>	0	0.1	0	14.6 2.5	-		
7	0	0.1	1	9.8	-	7	0	0	0	10.5	-		
8 9	0	0	0	6.2 3.5	-	<u>8</u> 9	0	0.3	1	7.7 8.9	-		
10	0	0	0	7.1	0	10	0	0.1	1	5.9	0		
11 12	0	0	0	10.8 7.2	-	11 12	0	0.3	0	4.1 6.8	-		
13	0	0.1	1	11	-	13	0	0	0	7.9	-		
14 15	0	0	0	9.5 10.5	-	14 15	0	0.2	0	8.9 14.1	-		
16	0	0	0	4.3	-	16	0	0.2	1	8.1	-		
17	0	0	0	10.8	-	17	0	0	0	12.2	-		
18 19	0	0	0	2.2 14.8	-	18 19	0	0.1	0	12.1 6.3	-		
20	0	0	0	11.2	0	20	0	0	0	10	0.25		
21 22	0	0 -	<u> </u>	9.8 101	-	21 22	0	0.1	1	10.2 16.1	-		
23	0	0	0	5	-	23	0	0.2	1	11.4	-		
24 25	0	0.1	<u> </u>	9.3 11.2	-	24 25	0	0.3	1	7.4 7.6	-		
26	0	0	0	8.2	-	26	0	0.1	1	9.6	-		
27	0	0	0	8.2	-	27	0	0.2	1	8.6	-		
28 29	0	0	0	10.3 8.5	-	28 29	0	0.3 0.1	1	13.4 10.1	-		
30	0	0	0	14.1	0	30	0	0.2	1	6.6	0.25		
31 32	0	0	0	8.5 6.7	-	31 32	0	0.2 0.1	1	8.9 6	-		
33	0	0.1	1	11.1	-	33	0	0.1	1	4.5	-		
34 35	0	0.1	1 0	10.3 6.2	-	34 35	0	0.3	1	13.2 16.5	-		
36	0	0	0	10.8	-	36	0	0.3	1	10.2	-		
37 38	0	0	0	8.2 15.5	-	37 38	0	0.3 0.4	1	21.4 9.8	-		
39	0	0	0	7.4	-	39	0	0.3	1	14.1	-		
40 41	0	0	0	4.6 9.2	0	40 41	0	0.1	1	7.8 12.4	0.5		
42	0	0	0	7.6	-	42	0	0.3	1	12.4	-		
43	0	0	0	7.5	-	43	0	0.1	1	13.3	-		
44 45	0	0	0	12.4 7.2	-	44 45	0	0.3 0.1	1	11.7 7	-		
46	0	0	0	7.5	-	46	0	0.2	1	7.8	-		
47 48	0	0.3 0.2	<u> </u>	21.1 16.2	-	47 48	0	0.1	1	7.3 5.1	-		
49	0	0	0	17.3	-	49	0	0.3	1	12.3	-		
50 51	0	0	0	13.5 8.1	0	50 51	0	0.1 0.1	1	12.1 10.2	0.25		
52	0	0.3	1	21.3	-	52	0	0.1	1	7.8	-		
53 54	0	0	0	5.3 16.5	-	53 54	0	0.4	1	6.1 9.8	-		
55	0	0	0	6.2	-	55	0	0.3	1	6.2	-		
56	0	0	0	3.5	-	56	0	0.1	1	7.9	-		
57 58	0	0	- 0	101 6.9	-	57 58	0	0.1 0.1	1	7.1 17.6	-		
59	0	0	0	7.1	-	59	0	0.1	1	12.4	-		
60 61	0	0	0	8.2 7.3	0	60 61	0	0.1	0	8.6 8.3	0		
62	0	0.1	1	29.2	-	62	0	0.1	1	6.1	-		
63 64	0	0	0	8.1 6.3	-	63 64	0	0.2 0.1	1	11.2 10.2	-		
65	0	0	0	5.3	-	65	0	0.1	1	14.2	-		
66	0	0.2	1	14.5	-	66	0	0.1	1	9.8	-		
67 68	0	0	0	6.2 8.5	-	67 68	0	0.2	1	5.2 9.8	-		
69	0	0	0	8.4	- 0.25	69	0	0	0	3	-		
70 71	0	0	0	4.4 4.6	0.25	70 71	0	0.1	0	2.8 4.5	0 -		
72	0	0	0	4.2	-	72	0	0	0	7.4	-		
73 74	0	0 0.2	0 1	7.3 42.2	-	73 74	0	0.1	0	18.5 6.8	-		
75	0	0.1	1	7.5	-	75	0	0	0	4.6	-		
76 77	0	0	0	9.3 7.2	-	76 77	0	0	0	2.6 2.1	-		
78	0	0	0	7.6	-	78	0	0.2	1	6.1	-		
79 80	0	0.2	1 0	7.2 4.2	- 0	79 80	0	0.3 0.1	1	7.2 12.1	0.25		
80 81	0	0	0	6.5	-	80 81	0	0.1	0	6.6	0.25		
82	0	0	0	6.4	-	82	0	0.1	1	8.1	-		
83 84	0	0	0	9.3 3.8	-	83 84	0	0	0	5.6 7.1	-		
85	0	0	0	8.8	-	85	0	0.1	1	13.2	-		
86 87	0	0 0.2	0 1	7.2 14.3	-	86 87	0	0.1	1	9.2 6.1	-		
88	0	0	0	6.6	-	88	0	0.3	1	12.8	-		
89 90	0	0	0	11.1 14.2	- 0	89 90	0	0.1 0.1	1 1	13.2 8.6	0.25		
91	0	0	0	4.8	-	91	0	0.1	1	8.7	-		
92	0	0	0	15.2	-	92	0	0	0	10.3	-		
93 94	0	0	0	11.6 7.3	-	93 94	0	0.1	0	15.6 7	-		
95	0	0	0	6.2	-	95	0	0	0	10.3	-		
96 97	0	0	0	7.3 7.1	-	96 97	0	0.2	0	6.2 11.6	-		
98	0	0.1	1	10.1	-	98	0	0.1	1	6.2	-		
99 100	0	0	0	7.3 6.1	- 0.25	99 100	0	0.1 0.1	1	12.2 8.7	- 0		
Average	U	U	U	U. I	0.20	Average	U	U. I	ı	0.1	U		
Cic, Cip and	0	0.03	0.16	11.3	0.05	Cic, Cip and	0	0.14	0.75	9.06	0.18		
Embed. =						Embed. =							
	Index (CI) =			0.16 0.03			te Index (CI) =			0.75 0.14			
110W Calcile	uex (OI) =	1		0.00		HEW CAICIL	uex (OI) =	ĺ		VT			

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

			G_LI8-2 -Sep-21			RG_LI8-3 11-Sep-21							
D.L.	Concreted	11- Calcite	-Sep-21 Calcite	Intermediate	Embeddedness	D-L-1	Concreted	Calcite	-Sep-21 Calcite	Intermediate	Embeddedness		
Pebble	Status	Proportion	Presence	Axis (cm)	(%)	Pebble	Status	Proportion	Presence	Axis (cm)	(%)		
1 2	0	0 0.1	0	13 11.2	-	1 2	0	0.2	0	8.3 10.5	-		
3	0	0.1	1	11.5 4.7	-	3	0	0	0	8.1 6.9	-		
5	0	0	0	6.1	-	5	0	0	0	6.1	-		
6 7	0	0	0	8.2 4.6	-	6 7	0	0	0	9.9 8.8	-		
8	0	0	0	8.6 7.1	-	8 9	0	0 0.1	0	9.2 7.1	-		
10	0	0	0	4.9	0.25	10	0	0	0	12.2	0		
11 12	0	0.1	1 0	11.1 8.9	-	11 12	0	0.2	0	8.6 24.2	-		
13 14	0	0 0.1	0	7.9 9.7	-	13 14	0	0.1	1 0	16.8 9.3	-		
15	0	0.1	1	12.6	-	15	0	0	0	10.7	-		
16 17	0	0	0	8.9 12.6	-	16 17	0	0	0	7.2 7.9	-		
18 19	0	0.1	1 0	9.7 15.1	-	18 19	0	0.2	1 0	14.6 7.9	-		
20	0	0	0	6.4	0	20	0	0.1	1	10.5	0.5		
21 22	0	0	0	11.9 10.1	-	21 22	0	0.3	0	13.3 5.2	-		
23 24	0	0	0	11.6	-	23 24	0	0	0	10.3	-		
24 25	0	0	0	11 14.1	-	25	0	0.3	1	10.3 23.3	-		
26 27	0	0	0	8.1 8.2	-	26 27	0	0.1	0	7.4 22.4	-		
28	0	0	0	5.6	-	28	0	0	0	7.6	-		
29 30	0	0	0	13.1 5	0.5	29 30	0	0 0.2	0	7.1 17.7	0.25		
31 32	0	0 0.4	0	6.8 7.2	-	31 32	0	0	0	14.1 9.3	-		
33	0	0.1	1	11.4	-	33	0	0	0	10.2	-		
34 35	0	0.1	0 1	7.5 7.8	-	34 35	0	0	0	9.3 4.7	-		
36 37	0	- 0	- 0	101 8.4	-	36 37	0	0	0	9.4 11.7	-		
38	0	0	0	16.5	-	38	0	0	0	10.4	-		
39 40	0	0 0.4	0 1	7.5 15.2	0.25	39 40	0	- 0	0	101 9.9	-		
41 42	0	0	0	10.2 7.1	-	41 42	0	0 0.1	0	7.9 26.6	0		
43	0	0.1	1	9.2	-	43	0	0	0	10.6	-		
44 45	0	0	0	7 5.8	-	44 45	0	0	0	7.2	-		
46 47	0	0	0	12.6 8.9	-	46 47	0	0	0	10.8 25.4	-		
48	0	0	0	11.6	-	48	0	0	0	10.9	-		
49 50	0	0 0.1	<u> </u>	8.4 10.6	0.5	49 50	0	0.4	0	9.2 9.3	- 0		
51 52	0	0.1	1 0	9.5 9.1	-	51 52	0	0	0	7.6 13.3	=		
53	0	0	0	5.6	-	53	0	0	0	9.2	-		
54 55	0	0	0	7.8 10	-	54 55	0	0	0	10.2 9.8	-		
56 57	0	0.1	1 0	7.2 12.1	-	56 57	0	0	0	12.5 4.2	-		
58	0	0	0	10.2	-	58	0	0	0	13.8	-		
59 60	0	0	0	12.2 9.8	0.5	59 60	0	0	0	15.5 10	- 0		
61 62	0	0	0	8.2 6.4	-	61 62	0	0	0	5.6 10.9	-		
63	0	0	0	11.4	-	63	0	0	0	8.8	-		
64 65	0	0	0	12.1 9.3	-	64 65	0	0	0	10.4 12.6	-		
66 67	0	0	0	21.4 7.2	-	66 67	0	0	0	13.1 11	-		
68	0	0	0	6.8	-	68	0	0	0	12.2	-		
69 70	0	0 0.1	0 1	11.6 9.8	- 0	69 70	0	0	0	9.7 5	- 0		
71 72	0	0	0	10.4 101	-	71 72	0	0	0	1.8 13.1	-		
73	0	0.2	1	8.9	-	73	0	0	0	5.8	-		
74 75	0	0.4 0.1	<u> </u>	5.8 6	-	74 75	0	0	0	10.5 11.2	-		
76 77	0	0.1	1	12.1 11.2	-	76 77	0	0	0	5.3	-		
78	0	0	0	6.8	-	78	0	0	0	11.4	-		
79 80	0	0	0	16.6 10	- 0	79 80	0	0	0	10.7 6.1	-		
81 82	0	0.3	1 0	18.2 9.6	-	81 82	0	0	0	10.4	-		
83	0	0	0	8.7	-	83	0	0	0	4.9	-		
84 85	0	0.1	1 0	10.8 7.4	-	84 85	0	0	0	0.8 6.2	-		
86 87	0	0.4	1 0	10.4	-	86 87	0	0 0.1	0	12.7	-		
88	0	0.4	1	8	-	88	0	0.3	1	17.4	-		
89 90	0	0.5 0.2	<u> </u>	9.8 14.2	0.5	89 90	0	0	0	15.1 6.2	0.25		
91	0	0.1	1 -	6 101	-	91	0	0.4 0.2	1	10.7	-		
92 93	0	0	0	5.5	-	92 93	0	0	0	22.3 11.3	-		
94 95	0	0 0.1	0	10.1 9.2	-	94 95	0	0.4	1 0	17.2 12.8	-		
96	0	0	0	10.4	-	96	0	0	0	4.8	-		
97 98	0	0	0	9.7 12.2	-	97 98	0	0	0	2.5 9.2	-		
99 100	0	0	0	7.7 8.7	0.5	99 100	0	0	0	7.8 14.6	- 0		
Average	<u> </u>		-			Average					-		
Cic, Cip and Embed. =	0	0.06	0.29	12.4	0.30	Cic, Cip and Embed. =	0	0.04	0.18	11.4	0.11		
	e Index (CI) =			0.29			te Index (CI) =			0.18			
	Index (CI') =			0.06			e Index (CI') =			0.04			

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

			FRUL-1 -Sep-21						_FRUL-2 -Sep-21		
Dobblo	Concreted	Calcite	-Sep-21 Calcite	Intermediate	Embeddedness	Dabbla	Concreted	Calcite	-Sep-21 Calcite	Intermediate	Embeddedness
Pebble	Status	Proportion	Presence	Axis (cm)	(%)	Pebble	Status	Proportion	Presence	Axis (cm)	(%)
2	0	0	0	1.9 2.8	-	<u>1</u>	0	0	0	7.5 1.3	-
3	0	0	0	2.2	-	3	0	0	0	2.8	-
4 5	0	0	0	2.4 5.3	-	5	0	0	0	6.3 9	-
6 7	0	0	0	3 3.4	-	6 7	0	0	0	2.5 21	-
8	0	0	0	2.1	-	8	0	0	0	21.5	-
9 10	0	0	0	4.1 4.4	- 0	9 10	0	0	0	5.5 34	0.75
11	0	0	0	5.5	-	11	0	0	0	25	-
12 13	0	0	0	4.6 7.2	-	12 13	0	0	0	9.2 6.8	-
14	0	0	0	3	-	14	0	0	0	2.6	-
15 16	0	0	0	9.2 6.6	-	15 16	0	0	0	6.3	-
17	0	0	0	5.2	-	17	0	0	0	5	-
18 19	0	0	0	7	-	18 19	0	0	0	32 15.8	-
20	0	0	0	4.5 6.1	0.5	20 21	0	0	0	0.2 5	1
21 22	0	0	0	4.5	-	21	0	0	0	11.5	-
23 24	0	0	0	7.3 7.4	-	23 24	0	0	0	3 10.5	-
25	0	0	0	7.4	-	25	0	0	0	10	-
26 27	0	0	0	10.4 2.4	-	26 27	0	0	0	6.2 15	-
28	0	0	0	7.3	-	28	0	0	0	14	-
29 30	0	0	0	10.4 7.5	- 0.25	29 30	0	0	0	7 23.5	0.25
31	0	0	0	2.2	- 0.25	31	0	0	0	11.2	-
32 33	0	0 0.1	0	5.4 11	-	32 33	0	0	0	2.6 4.5	-
34	0	0	0	3.7	-	34	-	-	-	-	-
35 36	0	0	0	9.8 15	-	35 36	0	0	0	6.2 3.7	-
37	0	0	0	9.6	-	37	0	0	0	4.8	-
38 39	0	0	0	12 9.5	-	38 39	0	0	0	4.6	-
40	0	0	0	4.6	0	40	0	0	0	24.5	0.75
41 42	0	0	0	38 5.2	-	41 42	0	0	0	4.2 6.7	-
43 44	0	0	0	5.7 14.2	-	43 44	0	0	0	9.5 5.7	-
45	0	0	0	7.1	-	45	0	0	0	12	-
46 47	0	0	0	5.3 4.4	-	46 47	0	0	0	17.5 11	-
48	0	0	0	6.1	-	48	0	0	0	5	-
49 50	0	0	0	3 13	- 0	49 50	0	0	0	5.8 20	0.75
51	0	0	0	6	-	51	0	0	0	5.3	-
52 53	0	0	0	2.6 2.1	-	52 53	0	0	0	14.5 5	-
54	0	0	0	0.8	-	54	0	0	0	5.6	-
55 56	0	0	0	3.6	-	55 56	0	0	0	3.5	-
57 58	0	0	0	10.5 6.1	-	57 58	0	0	0	1.9 6.2	-
59	0	0	0	2.6	-	59	0	0	0	7.8	-
60 61	0	0	0	5.5 0.7	-	60 61	0	0	0	2.5 7.1	0
62	0	0	0	8.7	0	62	0	0	0	7.5	-
63 64	0	0.2	<u>1</u> 0	9.3 3.1	-	63 64	0	0	0	7.8 5.2	-
65	0	0	0	5	-	65	0	0	0	3.4	-
66 67	0	0	0	1.4 5.9	-	66 67	0	0	0	3.2 27.5	-
68	0	0	0	4	-	68	0	0	0	4.8	-
69 70	0	0	0	12.4 13.6	- 0	69 70	0	0	0	10.5 5	0.5
71	0	0	0	4.8	-	71	0	0	0	11.3	-
72 73	0	0	0	11.7 5.6	-	72 73	0	0	0	6.4	-
74 75	0	0	0	4.7 9.7	-	74 75	0	0	0	8 8.5	-
76	0	0	0	4.1	-	76	0	0	0	1.8	-
77 78	0	0	0	7.6 0.8	-	77 78	0	0	0	8 14.5	-
79	0	0	0	9.6	-	79	0	0	0	17.4	-
80 81	0	0	0	7.1 15.3	0.5	80 81	0	0	0	5 9.4	0 -
82	0	0	0	10	-	82	0	0	0	9.3	-
83 84	0	0	0	6.2 2.9	-	83 84	0	0	0	15.2 7.4	-
85	0	0	0	15.1	-	85	0	0	0	7.3	-
86 87	0	0	0	4.1 9.6	-	86 87	0	0	0	5 13.5	-
88	0	0	0	13.8	-	88	0	0	0	13.2	-
89 90	0	0	0	2.1 9.2	0.75	89 90	0	0	0	11.5 1.9	0.5
91	0	0	0	5.4	-	91	0	0	0	0.8	-
92 93	0	0	0	9.9 3.1	-	92 93	0	0	0	1.1 5	-
94	0	0	0	6.8	-	94	0	0	0	11.3	-
95 96	0	0	0	10.1 12.2	-	95 96	0	0	0	5 4.8	-
97 98	0	0	0	6 3.5	-	97 98	0	0	0	4.9	-
99	0	0	0	3.2	-	99	0	0	0	11.1 5.8	-
100	0	0	0	7.2	0	100	0	0	0	6.4	-
Average Cic, Cip and	0	0	0.02	6.71	0.20	Average Cic, Cip and	0	0	0	8.69	0.50
Embed. =						Embed. =					
	e Index (CI) =			0.02			e Index (CI) =			0	
MEW Calcite	muex (CI) =	<u> </u>		U		HEW CAICIL	= IIIuex (Cl') =	<u>I</u>		U	

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

				_FRUL-3 -Sep-21			RG_F023-1 12-Sep-21						
	Pahhla		Calcite	Calcite			Pehhle		Calcite	Calcite		Embeddedness	
2			•		(cm)				Proportion		(cm)	(%)	
4	2	0	0	0	3.7		2	0		1	15.2	-	
S			-									-	
7 0 9 0 92 0 93 7 0 0 1 439 8 8 8 8 8 8 8 9 8 7 9 0 1 1 439 8 8 8 8 8 9 1 1 1 1 1 1 1 1 1												-	
P	7	0	0	0	9.8		7	0	0.1	1	4.9	-	
191										-		-	
Total Tota		0	-		9.4				0.5		11.3	0.5	
14	12	0	0	0	7.9		12	0	0.1	1	10.7	-	
15												-	
172			-		7.2							-	
19	17	0	0	0	11.2		17	0	0.1	1	6.8	-	
21 0 0 0 0 0 0 2 22 22 0 0 0.1 1 1 9.8 2			-									-	
22												0.25	
24	22	0	0	0	12.2		22	0	0.3	1	12.7	-	
25												-	
27 0 0 0 0 28 - 27 0 0 0 1 1 889 28 0 0 0 0 0 88 - 27 0 0 0 11 1 889 30 0 0 0 0 88 - 30 0 0 0 1 1 1 889 30 0 0 0 0 1 1 1 889 30 0 0 0 0 1 1 1 889 30 0 0 0 0 1 1 1 889 30 0 0 0 0 1 1 1 889 30 0 0 0 0 1 1 1 889 30 0 0 0 0 1 1 1 889 30 0 0 0 0 0 1 1 1 889 30 0 0 0 0 0 1 1 1 889 30 0 0 0 0 0 1 1 1 889 30 0 0 0 0 0 1 1 1 889 30 0 0 0 0 0 1 1 1 889 30 0 0 0 0 0 1 1 1 889 30 0 0 0 0 0 1 1 1 889 30 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-		12							-	
280	27	0	0	0	28		27	0	0.1	1	8.8	-	
38			-									-	
32 0 0 0 0 0 133 - 32 0 0 03 1 1 107 107 133 33 0 0 01 1 1 955 33 0 0 0 0 0 255 - 334 0 0 01 1 1 955 33 0 0 0 0 0 255 - 336 0 0 0 0 1 1 1 955 33 0 0 0 0 0 255 - 336 0 0 0 0 0 1 1 1 955 33 0 0 0 0 0 0 1 1 1 1 955 33 0 0 0 0 0 0 1 1 1 1 955 33 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1	30	0	0	0	16.5		30	0	0.3	1	8.4	0	
34	32	0	0	0	13.5		32	0	0.3	1	10.7	-	
38 0 0 0 0 0 98 - 38 0 0 0.1 11 100												-	
37			-									-	
39	37	0	0	0	8.5	-	37	0	0.1	1	9.7	-	
40										-		-	
442			-								7.2	0.25	
444	42	0	0	0	4		42	0	0.1	1	6.5	-	
46			-							-		-	
47											7.3	-	
49	47	0	0	0	10.5		47	0	0.6	1	22.7	-	
Section Sect												-	
SS2							50		0		7.8	0	
Set O	52	0	0	0	7.4		52	0	0.1	1	13.8	-	
Section Sect												-	
ST	55				4.6		55	0	0.4		6.3	-	
Sep	57	0	0	0	12.6		57	0	0.1	1	8.1	-	
Sep												-	
682 0 0 0 5.5 - 62 0 0.1 1 13.1 1 13.1 1 13.1 1 13.1 1 13.1 1 13.1 1 13.1 1 13.1 1 13.1 1 13.1 1 13.1 1 13.1 1 13.1 1 13.1 1 13.1 1 14.6 1 0 0 0.2 1 1 1.1 1 1.1 1 1.1 1 1.1 1 1.1 1 7.1 66 0	60	0			16.5		60	0	0.1	1	11.2	0.25	
684	62	0	0	0	5.5		62	0	0.1	1	13.1	-	
666												-	
67 0 0 0 0.3 - 67 0 0 6.2 1 12.8 69 0 0 0 0.5.8 - 69 0 0 0 8.1 - 7.0 0 0 0 8.1 - 7.0 0 0 0 8.1 - 7.2 0 0 0 1.1 1.8.9 9.1 0 0 0 1.1 1.9.2 0 0 0 1.1 1.9.2 0 0 0 0 1.1 1.9.2 0 0 0 1.1 1.0 8.9 1.7 0 0.1 1 1.0 1.0 1.1 1.0 8.9 1.7 0 1.1 1.1 8.2 0 0 0 1.1<	65	0	0	0	2.4		65	0	0	0	6.7	-	
69 0 0 0 12 - 69 0 0 0 8.1 92 0 70 0 0 0 19 0.25 70 0 0.1 1 9.2 0 71 0 0 0 12 - 71 0 0.1 1 8.9 72 0 0 0 18 - 72 0 0.1 1 10.8 73 0 0 0 0 15.2 - 74 0 0.1 1 11.5 5.4 75 0 0 0 4 - 75 0 0.1 1 15.5 4 76 0 0.1 1 8.2 1 77 0 0 0 11.9 1 8.2 1 77 0 0 0 11.9 1 8.2 1 77 0 0 0 <t< td=""><td>67</td><td>0</td><td>0</td><td>0</td><td>0.3</td><td></td><td>67</td><td>0</td><td>0</td><td>0</td><td>6.2</td><td>-</td></t<>	67	0	0	0	0.3		67	0	0	0	6.2	-	
TO			-									-	
72 0 0 18 - 72 0 0.1 1 10.8 73 0 0 0 0 8 - 73 0 0 0 6.1 74 0 0 0 4 - 75 0 0.1 1 11.5 75 0 0 0 4 - 75 0 0.1 1 5.4 76 0 0 0 0 14 - 76 0 0.1 1 8.2 77 0 0 0 9.5 - 77 0 0 0 11.9 18.2 78 0 0 0 0 5.3 - 78 0 0.2 1 1.8 8.5 0 79 0 0 0.3 1 8.6 0 0.1 1 8.5 0 81 0 0 <td>70</td> <td>0</td> <td></td> <td></td> <td>19</td> <td></td> <td>70</td> <td>0</td> <td>0.1</td> <td>1</td> <td>9.2</td> <td>0.25</td>	70	0			19		70	0	0.1	1	9.2	0.25	
74 0 0 0 15.2 - 74 0 0.1 1 11.5 - 75 0 0.1 1 5.4 - 76 0 0.1 1 5.4 - 76 0 0.1 1 5.4 - 77 0 0 0 1 1 8.2 - 77 0 0 0 11.9 - 77 0 0 0 11.9 - 77 0 0 0 11.9 - 78 0 0 0 11.9 - 78 0 0 0 11.9 - 78 0 0 0 11.9 - 78 0 0 0 11.9 - 78 0 0 0 11.9 8.8 0 0 0 0 3.5 5 1 81 0 0 0 1 1 8.5 0 0 0 <th< td=""><td>72</td><td>0</td><td>0</td><td>0</td><td>18</td><td>-</td><td>72</td><td>0</td><td>0.1</td><td>1</td><td>10.8</td><td>-</td></th<>	72	0	0	0	18	-	72	0	0.1	1	10.8	-	
75 0 0 0 4 - 75 0 0.1 1 5.4 76 76 0 0 0 14 - 76 0 0.1 1 8.2 77 0 0 0 0 0 0.11 1 8.2 78 0 0 0 0 0 0 0 11.9 79 0 0 0 0 7.3 - 79 0 0.3 1 6.8 80 0 0 0 13.3 0.25 80 0 0.1 1 8.5 0 81 0 0 0 15.5 - 81 0 0.1 1 6.8 82 0 0 0 16.1 - 83 0 0 0 8.1 15 83 0 0 0 0 25.5 - 8												-	
77 0 0 0 9.5 - 77 0 0 0 11.9 78 0 0 0 0 5.3 - 78 0 0.2 1 3.5 79 0 0 0 0 7.3 - 79 0 0.3 1 6.8 80 0 0 0 0 13.3 0.25 80 0 0.1 1 6.8 81 0 0 0 0 15.5 - 81 0 0.1 1 6.3 82 0 0 0 16.1 - 82 0 0.2 1.5 83 0 0 0 25.5 - 84 0 0.1 1 15.6 84 0 0 0 20.3 - 85 0 0.1 1 6.6 85 0 0 0	75	0	0	0	4	-	75	0	0.1	1	5.4	-	
79 0 0 0 7.3 - 79 0 0.3 1 6.8 80 0 0 0 13.3 0.25 80 0 0.1 1 8.5 0 81 0 0 0 5.5 - 81 0 0.1 1 6.3 82 0 0 0 12.3 - 82 0 0.2 1 15 83 0 0 0 16.1 - 83 0 0 0 8.1 15 84 0 0 0 25.5 - 84 0 0.1 1 13.5 1 86 0 0.1 1 16.6 8 0 0.1 1 1 6.6 8 0 0.1 1 1 6.5 1 8 0 0.1 1 1 6.6 1 8 0 0.1 1	77	0	0	0	9.5	-	77	0	0	0	11.9	-	
80 0 0 13.3 0.25 80 0 0.1 1 8.5 0 81 0 0 0 5.5 - 81 0 0.1 1 6.3 1 82 0 0 0 16.1 - 83 0 0 0 8.1 15 83 0 0 0 16.1 - 83 0 0 0 8.1 15 84 0 0 0 0 25.5 - 84 0 0.1 1 13.5 1 6.6 6 6 0 0.1 1 13.5 1 6.6 6 0 0.1 1 13.5 1 6.6 6 0 0.1 1 13.5 1 8.8 0 0.0 0.1 1 13.5 1 8.8 0 0.0 0 7.2 1 1 10.5 1			-									-	
82 0 0 12.3 - 82 0 0.2 1 15 83 0 0 0 16.1 - 83 0 0 0 8.1 84 0 0 0 25.5 - 84 0 0.1 1 13.5 85 0 0 0 20.3 - 85 0 0.1 1 6.6 86 0 0 0 3 - 86 0 0.1 1 9.1 88 0 0 0 5.6 - 87 0 0.1 1 6.5 88 0 0 0 1.6 - 88 0 0 0 7.2 89 0 0 0 5.2 - 89 0 0.1 1 9.5 90 0 0 0 7 - 91 0 0.	80	0	0	0	13.3	0.25	80	0	0.1	1	8.5	0.5	
84 0 0 0 25.5 - 84 0 0.1 1 13.5 85 0 0 0 20.3 - 85 0 0.1 1 6.6 86 0 0 0 0 3 - 86 0 0.1 1 9.1 87 0 0 0 5.6 - 87 0 0.1 1 6.5 88 0 0 0 1.6 - 88 0 0 0 7.2 89 0 0 0 5.2 - 89 0 0.1 1 9.5 90 0 0 0 38 0.5 90 0 0.1 1 10.7 0 91 0 0 0 7 - 91 0 0.2 1 9.1 92 0 0 0 4.6	82	0	0	0	12.3	-	82	0	0.2	1	15	-	
85 0 0 0 20.3 - 85 0 0.1 1 6.6 86 0 0 0 3 - 86 0 0.1 1 9.1 87 0 0 0 0 5.6 - 87 0 0.1 1 6.5 88 0 0 0 1.6 - 88 0 0 0 7.2 0 89 0 0 0 0 5.2 - 89 0 0.1 1 9.5 90 0 0 0 38 0.5 90 0 0.1 1 10.7 0 91 0 0 0 7 - 91 0 0.2 1 9.1 0 92 0 0 0 4.5 - 93 0 0.1 1 11.5 11.5 94												-	
87 0 0 0 5.6 - 87 0 0.1 1 6.5 88 0 0 0 1.6 - 88 0 0 0 7.2 89 0 0 0 0 5.2 - 89 0 0.1 1 9.5 90 0 0 0 0 38 0.5 90 0 0.1 1 10.7 0 91 0 0 0 7 - 91 0 0.2 1 9.1 10.7 0 92 0 0 0 4.6 - 92 0 0.1 1 7.6 11.5 9.6 93 0 0.1 1 11.5 9.6 0 0.1 1 11.5 9.6 0 0.1 1 14.6 11.5 9.6 0 0 0 8.7 9.6 0 0 0<	85	0	0	0	20.3	-	85	0	0.1	1	6.6	-	
89 0 0 5.2 - 89 0 0.1 1 9.5 90 0 0 0 38 0.5 90 0 0.1 1 10.7 0 91 0 0 0 7 - 91 0 0.2 1 9.1 92 0 0 0 4.6 - 92 0 0.1 1 7.6 93 0 0 0 4.5 - 93 0 0.1 1 11.5 94 0 0 0 7.3 - 94 0 0.1 1 1.5 95 0 0 0 14.1 - 95 0 0.3 1 10 96 0 0 0 9.2 - 96 0 0 0 8.7 97 0 0 0 0 16 - 9	87	0	0	0	5.6		87	0	0.1	1	6.5	-	
90 0 0 0 38 0.5 90 0 0.1 1 10.7 0 91 0 0.2 1 10.7 0 91 0 0.2 1 9.2 9.2 9.2			-									-	
92 0 0 0 4.6 - 92 0 0.1 1 7.6 93 0 0.1 1 11.5 11.5 94 0 0.1 1 11.5 11.5 11.5 94 0 0.1 1 11.5 11.5 11.5 94 0 0.1 1 11.5 11.5 11.5 94 0 0.1 1 11.5 11.5 11.5 94 0 0.1 1 11.5 11.5 11.5 94 0 0.1 1 11.5 11.5 94 0 0.1 1 11.6 95 0 0.3 1 10.0 10.3 1 10.0 10.0 <	90	0	0	0	38	0.5	90	0	0.1	1	10.7	0.75	
94 0 0 0 7.3 - 94 0 0.1 1 4.6 95 0 0 0 14.1 - 95 0 0.3 1 10 96 0 0 0 0 9.2 - 96 0 0 0 8.7 97 0 0 0 0 29 - 97 0 0.1 1 13.5 98 0 0 0 16 - 98 0 0.1 1 3.8 99 0 0 0 10.1 - 99 0 0.1 1 8 100 0 0 0.6 0.5 100 0 0.1 1 4.3 0 Average Cic, Cip and Embed. = 0 0 0.16 0.81 9.62 0	92	0	0	0	4.6		92	0	0.1	1	7.6	-	
95 0 0 0 14.1 - 95 0 0.3 1 10 96 0 0 0 9.2 - 96 0 0 0 8.7 97 0 0 0 0 29 - 97 0 0.1 1 13.5 98 0 0 0 16 - 98 0 0.1 1 3.8 99 0 0 0 10.1 - 99 0 0.1 1 8 100 0 0 0 6.6 0.5 100 0 0.1 1 4.3 0 Average Cic, Cip and Embed. = 0 0.16 0.81 9.62 0 0												-	
97 0 0 0 29 - 97 0 0.1 1 13.5 98 0 0 0 16 - 98 0 0.1 1 3.8 99 0 0 0 0 10.1 - 99 0 0.1 1 8 100 0 0 0 6.6 0.5 100 0 0.1 1 4.3 0 Average Cic, Cip and Embed. = 0 0.16 0.81 9.62 0.81 9.62 0.80	95	0	0	0	14.1	-	95	0	0.3	1	10	-	
99 0 0 0 10.1 - 99 0 0.1 1 8 100 0 0 0 6.6 0.5 100 0 0.1 1 4.3 0 Average Cic, Cip and Embed. = 0 0 0.16 0.81 9.62 0.81 9.62 0.81	97	0	0	0	29		97	0	0.1		13.5	-	
100 0 0 0 6.6 0.5 100 0 0.1 1 4.3 0 Average Cic, Cip and Embed. = 0 0 11.1 0.25 Cic, Cip and Embed. = 0 0.16 0.81 9.62 0	98						98		0.1		3.8	-	
Cic, Cip and Embed. = 0 0 11.1 0.25 Cic, Cip and Embed. = 0 0.16 0.81 9.62 0.81												0.5	
Embed. = Embed. = Embed. =		n	n	0	11 1	0.25		n	0 16	N 81	9 62	0.33	
Old Calcite Index (CI) = 0 Old Calcite Index (CI) = 0.84						3.23	Embed. =			3.51	J.J2	0.00	
New Calcite Index (CI) = 0 0 0.16					0						0.81		

Notes: nm = not measurable, "-" indicates no data. Intermediate axis is the measurement across the intermediate access of the pebble and presented in cm. Cic = calcite index concretion. Cip = calcite index

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

RG_FO23-2 12-Sep-21						RG_F023-3 12-Sep-21						
Pebble	Concreted	Calcite	Calcite	Intermediate Axis	Embeddedness	Pebble	Concreted	Calcite	Calcite	Intermediate Axis	Embeddedness	
	Status	Proportion	Presence	(cm)	(%)		Status	Proportion	Presence	(cm)	(%)	
1 2	0	0.4	0	8.1 8.1	-	1 2	0	0	0	5.8 8.3	-	
3 4	0	0.1 0.1	1	7.8 5.7	-	3 4	0	0 0.1	0	9.2 9.6	-	
5	0	0.1	1	5.3	-	5	0	0.1	0	7.1	-	
6 7	0	0.1 0.1	1 1	9.2 9.8	-	<u>6</u> 7	0	0	0	10.7 9.7	-	
8	0	0.1	1	9	-	8	0	0.1	1	16.3	-	
9 10	0	0.1 0.1	1 1	9.8	- 0	9 10	0	0.1	1	6.4 11.4	0.25	
11	0	0	0	12.1	-	11	0	0	0	8.9	-	
12 13	0	0.1	0	7.1 7.3	-	12 13	0	0.1	0	7.7 5.6	-	
14	0	0	0	7.6 8.9	-	14	0	0	0	6.8 8.3	-	
15 16	0	0	0	10.5	-	15 16	0	0.3	1	6.8	-	
17 18	0	0.1 0.1	1 1	9.8 13.1	-	17 18	0	0 0.1	0	7.4 11.5	-	
19	0	0.1	1	11.4	-	19	0	0	0	9	-	
20 21	0	0.4 0.1	<u> </u>	11.8 13	0.5	20 21	0	0	0	1.6 5.3	0 -	
22	0	0	0	14.6	-	22	0	0	0	5.1	-	
23 24	0	0.1 0.1	<u> </u>	16.2 11.6	-	23 24	0	0.2	0	8.6 9.8	-	
25	0	0.1	1	10.1	-	25	0	0	0	6.3	-	
26 27	0	0 0.1	0 1	8.6 5.8	-	26 27	0	0.5	0	15.5 1.7	-	
28	0	0.1	1	7.1	-	28	0	0	0	0.5	-	
29 30	0	0.1	0 1	6.1 13	0.25	29 30	0	0	0	3.4	0.5	
31	0	0.1	1	9.5	-	31	0	0	0	0.5	-	
32 33	0	0 0.1	0 1	10.6 7.6	-	32 33	0	0.1	1 0	12.7 5.9	-	
34 35	0	0.1 0.1	1	9.1 10	-	34 35	0	0	0	7.8 5.6	-	
36	0	0.1	1	6.5	-	36	0	0.1	1	6.7	-	
37 38	0	0.1	<u>1</u> 0	8.2 10.8	-	37 38	0	0.1 0.2	1	7.1 8.4	-	
39	0	0.1	1	5.3	-	39	0	0	0	6.3	-	
40 41	0	0.1	1 0	9.7 9.2	0 -	40 41	0	0.2	1	24.8 14.4	0.25	
42	0	0.1	1	7.2	-	42	0	0	0	2.7	-	
43 44	0	0	0	9.7 29.2	-	43 44	0	0.1	0	10.6 15.1	-	
45	0	0.1	1	11.8	-	45	0	0.1	1	22.5	-	
46 47	0	0	0	6.1 5.2	-	46 47	0	0.2	0	13.1 5.4	-	
48 49	0	0 0.1	0	7.2 8.3	-	48 49	0	0	0	4.2 2.5	-	
50	0	0.1	1	8.7	0.25	50	0	0.1	1	7.4	0	
51 52	0	0.2 0.1	<u> </u>	14.8 9.1	-	51 52	0	0.1	0	10.5 11.3	-	
53	0	0.1	1	13.6	-	53	0	0	0	5.4	-	
54 55	0	0.1	1 0	11.1 9.2	-	54 55	0	0.2 0.1	1	4.8 12.1	-	
56	0	0	0	9.5	-	56	0	0	0	4.9	-	
57 58	0	0.2	<u> </u>	8.9 10.1	-	57 58	0	0	0	10.8 9.4	-	
59 60	0	0.1	1 0	7.9 12	- 0.25	59 60	0	0.1	1	2.7 2.1	0.25	
60 61	0	0	0	10.6	-	61	0	0	0	2.8	0.25	
62 63	0	0	0	12.2 15.6	-	62 63	0	0	0	1.7 0.6	-	
64	0	0	0	9.1	-	64	0	0	0	2.3	-	
65 66	0	0 0.1	0 1	14.2 15.1	-	65 66	0	0	0	5.4 19.1	-	
67	0	0	0	11.6	-	67	0	0	0	7.9	-	
68 69	0	0.1	1 0	12.2 15.9	-	68 69	0	0	0	4.6 6.8	-	
70	0	0	0	12.5	0	70	0	0	0	7.9	0.5	
71 72	0	0.1 0.2	1 1	8.4 12.8	-	71 72	0	0	0	3.4 2.8	-	
73 74	0	0	0	8.1 9.2	-	73 74	0	0 0.1	0	6.9 7.7	-	
75	0	0	0	8.8	-	75	0	0	0	4.1	-	
76 77	0	0.1 0.1	<u> </u>	18.3 30.3	-	76 77	0	0	0	5.2 3.9	-	
78	0	0.1	1	11.3	-	78	0	0	0	3.1	-	
79 80	0	0.2 0.1	<u> </u>	12.8 11.5	0.25	79 80	0	0	0	8.2 8.5	- 0	
81	0	0.2	1	12.2	-	81	0	0	0	10.4	-	
82 83	0	0.1	0	11.4 6.6	-	82 83	0	0	0	2.8 2.1	-	
84 85	0	0	0	7.4 12.5	-	84 85	0	0 0.1	0	9.9 7.5	-	
86	0	0.1	1	15	-	86	0	0.2	1	2.2	-	
87 88	0	0.2	1 0	11.5 11.1	-	87 88	0	0	0	3.1 11.2	-	
89	0	0	0	11.3	-	89	0	0	0	10.1	-	
90 91	0	0	0	5.5 10	0 -	90 91	0	0	0	5.6 1.7	0.25	
92	0	0.1	1	9.4	-	92	0	0	0	1.2	-	
93 94	0	0.1	<u>1</u> 0	7 9	-	93 94	0	0.2	0	5.3 8.1	-	
95	0	0.1	1	12.8	-	95	0	0.1	1	4.2	-	
96 97	0	0 0.2	0 1	4.2 19.5	-	96 97	0	0	0	4.8 5.7	-	
98 99	0	0.1 0.1	1	11.2 10.8	-	98 99	0	0.1	1 0	14.2 3.9	-	
100	0	0.1	1	9.4	0	100	0	0	0	3.9 5.4	0.5	
Average						Average						
Cic, Cip and Embed. =	0	0.07	0.59	10.5	0.15	Cic, Cip and Embed. =	0	0.04	0.29	7.15	0.25	
Old Calcite	e Index (CI) =			0.59		Old Calcit	e Index (CI) =		<u> </u>	0.29	<u> </u>	
	Index (CI') =		•	0.07			Index (CI') =			0.04	-	

Notes: nm = not measurable, "-" indicates no data. Intermediate axis is the measurement across the intermediate access of the pebble and presented in cm. Cic = calcite index concretion. Cip = calcite index

Table F.2: Pebble Counts and Calcite Measurements at Areas in Line Creek and Fording River, September 2021

RG_F023-4 12-Sep-21						RG_F023-5 12-Sep-21						
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	
1	0	0	0	6.3	-	1	0	0	0	5	-	
3	0	0	0	8.1 4.5	-	2 3	0	0	0	2.6 5.2	-	
4 5	0	0 0.1	0 1	5.2 5.9	-	<u>4</u> 5	0	0	0	2.9 5.4	-	
6	0	0	0	5.8	-	6	0	0	0	8.6	-	
7 8	0	0	0	4.5 10.5	-	7 8	0	0.1	0	4.9 15.2	-	
9	0	0.1	1	7.5	-	9	0	0	0	6	-	
10 11	0	0.1	0	11.6 4.8	0 -	10 11	0	0.1	1 1	6.9 9.2	0 -	
12 13	0	0.1 0.1	1	12 7.5	-	12 13	0	0	0	5.8 12.6	-	
14	0	0	0	7	-	14	0	0	0	12.3	-	
15 16	0	0 0.1	<u> </u>	5.1 10.6	-	15 16	0	0.2	0	7.4 9.2	-	
17	0	0	0	12.2	-	17	0	0	0	8.6	-	
18 19	0	0	0	10.5 4.1	-	18 19	0	0	0	12.1 9.1	-	
20	0	0	0	9.3	0	20	0	0	0	8	0.5	
21 22	0	0.2 0.1	<u> </u>	9.1	-	21 22	0	0.1 0.1	1 1	9.3 5.8	-	
23 24	0	0	0	3.1 4.1	-	23 24	0	0.1 0.1	1	4.1 6.5	-	
25	0	0	0	10.2	-	25	0	0	0	5.2	-	
26 27	0	0	0	12 6.4	-	26 27	0	0.1	1	9.1	-	
28	0	0	0	5.2	-	28	0	0.1	1	8.2	-	
29 30	0	0	0	7.3	- 0	29 30	0	0.2	0	7.2 19.6	0.25	
31	0	0.1	1	14.5	-	31	0	0	0	1.5	-	
32 33	0	0 0.1	0 1	10.2 8.5	-	32 33	0	0.1 0.1	1	5.1 17.8	-	
34 35	0	0 0.2	0	9.4 13.2	-	34 35	0	0	0	12.6 6.2	-	
36	0	0.2	0	7.1	-	36	0	0	0	8.3	-	
37 38	0	0.1	1 0	13.9 10.8	-	37 38	0	0.1	1 0	8.3 11	-	
39	0	0	0	4.6	-	39	0	0	0	8.5	-	
40 41	0	0	0	4.6 9.6	0.25	40 41	0	0	0	10.6 14.2	0 -	
42	0	0	0	8.2	-	42	0	0	0	5.8	-	
43 44	0	0	0	10 15.5	-	43 44	0	0.1 0.1	1 1	8.1 7.6	-	
45	0	0	0	10.6	-	45	0	0	0	7.9	-	
46 47	0	0.1 0.1	1 1	5.7 11.2	-	46 47	0	0 0.1	0 1	9.5 9.6	-	
48 49	0	0.1 0.1	1 1	9.1 3.1	-	48 49	0	0	0	14.1 7.8	-	
50	0	0	0	9.8	0	50	0	0.1	1	14.2	0.5	
51 52	0	0.1	<u> </u>	4.1 6.1	-	51 52	0	0.1	0	7.5 20.2	-	
53	0	0	0	19.4	-	53	0	0.1	1	9.6	-	
54 55	0	0	0	7.2 7.7	-	54 55	0	0.1	0	7.5 9.1	-	
56	0	0	0	8.2	-	56	0	0.1	1	6	-	
57 58	0	0.1	1 0	5.4 21.5	-	57 58	0	0	0	6.5 8.9	-	
59 60	0	0 0.1	0	3.5 10.2	- 0	59 60	0	0.1	1 0	9.9 4.2	0.25	
61	0	0	0	5.3	-	61	0	0.1	1	13.5	-	
62 63	0	0.1 0.1	<u> </u>	6.5 3.2	-	62 63	0	0.1	0	12 4.8	-	
64	0	0.1	1	8.5	-	64	0	0.1	1	13	-	
65 66	0	0 0.1	0 1	7.2 5.6	-	65 66	0	0.1 0.1	1	10.6 7.6	-	
67	0	0	0	3.6	-	67	0	0	0	4.2	-	
68 69	0	0	0	7.6 2.1	-	68 69	0	0	0	4.7 24	-	
70	0	0	0	10.2	0	70	0	0.1	1	11.6	0.5	
71 72	0	0	0	2.9 1.1	-	71 72	0	0.1 0.1	1	8.1 10.1	-	
73 74	0	0.1	1 0	4.5 0.7	-	73 74	0	0	0	38.1 7.5	-	
75	0	0.1	1	10.6	-	75	0	0	0	6.2	-	
76 77	0	0 0.1	0	1.2 9.7	-	76 77	0	0	0	9 9.5	-	
78	0	0.1	1	13.8	-	78	0	0.2	1	7	-	
79 80	0	0	0	7.1 8.7	0.25	79 80	0	0.1	0	6.1 8.9	0.75	
81	0	0.1	1	8.1	-	81	0	0	0	24.3	-	
82 83	0	0	0	5.1 8.2	-	82 83	0	0 0.1	0	6.1 10.2	-	
84 85	0	0 0.2	0	7.5 5.3	-	84 85	0	0.1	1 0	7.5 15.2	-	
86	0	0	0	16.4	-	86	0	0	0	5.7	-	
87 88	0	0 0.1	0	9.7 3.2	-	87 88	0	0	0	8.2 7.3	-	
89	0	0	0	7	-	89	0	0.1	1	12.7	-	
90 91	0	0	0	3.5 4.8	0.25	90 91	0	0.2	0	11.5 15	0.25	
92	0	0.1	1	27.6	-	92	0	0	0	5.6	-	
93 94	0	0	0	4.8 5.4	-	93 94	0	0.1	0	12.1 5.2	-	
95	0	0	0	5	-	95	0	0	0	11.6	-	
96 97	0	0.1	1 0	7.6 7.9	-	96 97	0	0 0.1	0	19.5 10.5	-	
98 99	0	0	0	8.1 37	-	98 99	0	0 0.1	0	9.1 9.2	-	
100	0	0	0	9.2	0	100	0	0.1	0	15.9	0.25	
Average Cic, Cip and	0	0.04	0.32	8.21	0.08	Average Cic, Cip and	0	0.05	0.40	9.59	0.33	
Embed. =						Embed. =						
Old Calcite				0.32		Old Calci	6a la-1 / ^ "			0.40		

Notes: nm = not measurable, "-" indicates no data. Intermediate axis is the measurement across the intermediate access of the pebble and presented in cm. Cic = calcite index concretion. Cip = calcite index

Table F.3: Hess Sample Depth and Flow Information at Areas in Line Creek and Fording River, September 2021

Area	Replicate	Date	Associated K&S Sample	Easting	Northing	Depth (cm)	Flow (m/s)
RG_LI24	1	16-Sep-21	1	662080	5538365	14	0.340
RG_LI24	2	16-Sep-21	2	662107	5538285	14	0.445
RG_LI24	3	16-Sep-21	3	662180	5538403	11	0.345
RG_LI24	4	16-Sep-21	4	662202	5538389	23	0.343
RG_LI24	5	16-Sep-21	5	662223	5538431	20	0.383
RG_SLINE	1	15-Sep-21	1	661080	5531418	19	0.343
RG_SLINE	2	15-Sep-21	2	661136	5531372	12	0.383
RG_SLINE	3	15-Sep-21	2	661149	5531356	12	0.26
RG_SLINE	4	15-Sep-21	3	661191	5531337	11	0.345
RG_SLINE	5	15-Sep-21	3	661177	5531399	12	0.322
RG_LILC3	1	09-Sep-21	1	659851	5531714	16	0.329
RG_LILC3	2	09-Sep-21	1	659851	5531726	26	0.279
RG_LILC3	3	09-Sep-21	2	659891	5531771	31	0.353
RG_LILC3	4	09-Sep-21	2	659895	5531777	18	0.345
RG_LILC3	5	09-Sep-21	3	659931	5531841	22	0.315
RG_LILC3	6	09-Sep-21	3	659941	5531836	16	0.276
RG_LILC3	7	10-Sep-21	4	659961	5531873	16	0.375
RG_LILC3	8	10-Sep-21	4	659965	5531871	15	0.389
RG_LILC3	9	10-Sep-21	5	659965	5531891	22	0.284
RG_LILC3	10	15-Sep-21	5	659967	5531897	15	0.439
RG_LIDSL	1	14-Sep-21	1	659263	5530527	34	0.324
RG_LIDSL	2	14-Sep-21	1	659272	5530527	17	0.429
RG_LIDSL	3	14-Sep-21	2	659291	5530585	15	0.374
RG_LIDSL	4	14-Sep-21	2	659306	5530594	21	0.42
RG_LIDSL	5	14-Sep-21	3	659317	5530627	16	0.449
RG_LIDSL	6	14-Sep-21	3	659316	5530626	26	0.464
RG_LIDSL	7	14-Sep-21	4	659342	5530664	17	0.446
RG_LIDSL	8	14-Sep-21	4	659342	5530677	12	0.296
RG_LIDSL	9	14-Sep-21	5	659365	5530723	17	0.404
RG_LIDSL	10	14-Sep-21	5	659351	5530711	17	0.287

Notes: "-" indicates no data. K&S = 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling.

Table F.4: Supporting Measures Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling at Areas in Line Creek and Fording River, September 2021

	Station Parameters	Reference	Reference	Mine-Exposed							
	station Farameters	RG_SLINE	RG_LI24	RG_LCUT	RG_LILC3	RG_LISP24	RG_LIDSL	RG_LIDCOM	RG_LI8	RG_FRUL	RG_FO23
	Easting	661080	662084	660113	659849	659673	659262	658183	655453	654518	652808
l _	Northing	5531418	5538370	5532141	5531716	5531169	5530538	5529815	5528953	5530129	5528334
on 1	Date	15-Sep-21	16-Sep-21	11-Sep-21	10-Sep-21	13-Sep-21	14-Sep-21	13-Sep-21	11-Sep-21	12-Sep-21	12-Sep-21
Station	Number of Jars	1	1	1	1	1	1	1	1	1	1
0)	Total Kick Distance (m)	14	16	28	28	20	24	30	22	21	10
	Number of Transects	2.5	4	4	3.5	2	2.5	3	2	3	6
	Easting	661132	662123	660148	659893	-	659288	-	655499	654549	652856
01	Northing	5531380	5538389	5532155	5531779	-	5530577	-	5528889	5530169	5528378
on 2	Date	15-Sep-21	16-Sep-21	11-Sep-21	10-Sep-21	-	14-Sep-21	-	11-Sep-21	12-Sep-21	12-Sep-21
Station	Number of Jars	1	1	1	1	-	1	-	1	1	1
O)	Total Kick Distance (m)	10	17	24	28	-	24	-	22	20	15
	Number of Transects	2	4	4	4.5	-	2.5	-	2	4	4
	Easting	661191	662165	660104	659926	-	659316	-	655555	654553	652950
	Northing	5531337	5538411	5532170	5531830	-	5530615	-	5528832	5530220	5528532
on 3	Date	15-Sep-21	16-Sep-21	11-Sep-21	10-Sep-21	-	14-Sep-21	-	11-Sep-21	12-Sep-21	12-Sep-21
Station	Number of Jars	1	1	1	2	-	1	-	1	1	1
0)	Total Kick Distance (m)	15	20	24	28	-	21	-	26	24	6
	Number of Transects	2	4	4	4	-	2.5	-	2	4	4
	Easting	-	662205	-	659962	-	659345	-	-	-	652929
	Northing	-	5538393	-	5531868	-	5530663	-	-	-	5528648
on 4	Date	-	16-Sep-21	-	10-Sep-21	-	14-Sep-21	-	-	-	12-Sep-21
Station	Number of Jars	-	1	-	2	-	1	-	-	-	1
U)	Total Kick Distance (m)	-	18	-	30	-	18	-	-	-	12
	Number of Transects	-	4	-	4	-	2.5	-	-	-	3
	Easting	-	662221	-	659967	-	659361	-	-	-	652933
10	Northing	-	5538429	-	5531892	-	5530715	-	-	-	5520766
on 5	Date	-	16-Sep-21	-	10-Sep-21	-	14-Sep-21	-	-	-	12-Sep-21
Station	Number of Jars	-	1	-	2	-	1	-	-	-	1
0)	Total Kick Distance (m)	-	16	-	18	-	22	-	-	-	8
	Number of Transects	-	4	-	4	-	2.5	-	-	-	5

Table F.5: Depth and Velocity Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling at Areas in Line Creek and Fording River, September 2021

		Replicate	1	2	3	4	5	Mean
		RG_SLINE						
		Depth (cm)	22	33	27	14	14	22
		Velocity (m/s)	0.312	0.233	0.4999	0.276	0.534	0.37098
	1	Bankfull Width (m)			5.81			-
		Wetted Width (m)			5.05			-
		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	19	13	9	20	23	16.8
		Velocity (m/s)	0.422	0.5506				
	2	Bankfull Width (m)			8.57			-
		Wetted Width (m)			6.52			-
		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	19	10	17	15	29	18
		Velocity (m/s)	0.225	0.41	0.503	0.532	0.761	0.4862
	3	Bankfull Width (m)			8.7			-
		Wetted Width (m)			4.5			-
		Bankfull-Wetted Depth (cm)			42			-
		RG_LI24			1		1	T
		Depth (cm)	17	16	15	17	16	16.2
		Velocity (m/s)	0.536	0.801	0.153	0.432	0.163	0.417
Reference	1	Bankfull Width (m)			7.49			-
irer		Wetted Width (m)			4.12			-
efe		Bankfull-Wetted Depth (cm)			-			-
₾		Depth (cm)	13	14	18	18	19	16.4
	_	Velocity (m/s)	0.397	0.272	0.2648	0.585	0.436	0.39096
	2	Bankfull Width (m)			6.77			-
		Wetted Width (m)			4.21			-
		Bankfull-Wetted Depth (cm)	4.0		-			-
		Depth (cm)	12	15	16	12	15	14
	_	Velocity (m/s)	0.315	0.221	0.344	0.377	0.615	0.3744
		Bankfull Width (m)			10.74			-
		Wetted Width (m)			10.12			-
		Bankfull-Wetted Depth (cm)	4.5	40	-		0.4	-
		Depth (cm)	15	19	23	20	21	19.6
	4	Velocity (m/s)	0.28	0.493	0.516 7.34	0.525	0.411	0.445
	4	Bankfull Width (m) Wetted Width (m)			3.15			-
		Bankfull-Wetted Depth (cm)			3.13			-
•		Depth (cm)	12	17	19	14	15	15.4
		Velocity (m/s)	0.308	0.655	0.447	0.328	0.389	0.4254
	5	Bankfull Width (m)	0.000	0.000	4.9	0.020	0.503	0.4204
		Wetted Width (m)			3.82			-
		Bankfull-Wetted Depth (cm)			64			_
		RG LCUT			<u> </u>			
		Depth (cm)	10	19	21	26	14	18
		Velocity (m/s)	0.204	0.56	0.557	0.821	0.469	0.5222
	1	Bankfull Width (m)			7.14			-
		Wetted Width (m)			4.42			-
		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	19.1	16.2	26.8	19.5	13	18.92
		Velocity (m/s)	0.256	0.246	0.56	0.72	0.462	0.4488
	2	Bankfull Width (m)			7.62		<u>.</u>	-
		Wetted Width (m)			6.2			-
		Bankfull-Wetted Depth (cm)			-			-
99		Depth (cm)	13.8	19.3	25.6	30.8	12.4	20.38
sod		Velocity (m/s)	0.244	0.412	0.434	0.833	0.268	0.4382
Mine-Exposed	3	Bankfull Width (m)			6.62			-
je j		Wetted Width (m)			6.02		<u> </u>	-
Ξ̈́		Bankfull-Wetted Depth (cm)			26		<u> </u>	-
		RG_LILC3						
		Depth (cm)	22	29	25	35	33	28.8
		Velocity (m/s)	0.265	0.893	0.588	0.218	0.301	0.453
	1	Bankfull Width (m)			6.43			-
		Wetted Width (m)			6.12			-
		Bankfull-Wetted Depth (cm)			-		1	-
		Depth (cm)	23	27	36	30	39	31
				0.005	0.774	0.01	0.695	0.6222
		Velocity (m/s)	0.397	0.335		0.91	0.093	0.0222
	2	Bankfull Width (m)	0.397	0.335	7.21	0.91	0.093	-
	2		0.397	0.335		0.91	0.093	-

Table F.5: Depth and Velocity Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling at Areas in Line Creek and Fording River, September 2021

		Danlianta		0	0	4	_	N 4 = = :=
<u> </u>	I	Replicate	1	2	3	4	5	Mean
		Depth (cm)	16	26	25	22	17	21.2
		Velocity (m/s)	0.215	0.678	0.912	0.546	0.609	0.592
	3	Bankfull Width (m)			9.29			-
		Wetted Width (m)			8.42			-
		Bankfull-Wetted Depth (cm)	40		-	4.4	40	-
		Depth (cm)	10	29	29	11	12	18.2
		Velocity (m/s)	0.32	0.623	0.529	0.406	0.257	0.427
	4	Bankfull Width (m)			13.26			-
		Wetted Width (m)			10.82			-
		Bankfull-Wetted Depth (cm)		20	30	00	00	- 40.4
		Depth (cm)	8 0.122	20	24	22	23	19.4
	5	Velocity (m/s)	0.122	0.601	0.516 5.52	0.648	0.67	0.5114
	5	Bankfull Width (m) Wetted Width (m)			4.61			-
		Bankfull-Wetted Depth (cm)			-			-
		RG LISP24						_
		Depth (cm)	24	17	19	29	38	25.4
		Velocity (m/s)	0.556	0.445	0.49	0.337	0.685	0.5026
	1	Bankfull Width (m)	0.550	0.443	11.92	0.337	0.003	-
		Wetted Width (m)			10.41			
		Bankfull-Wetted Depth (cm)			38			
		RG LIDSL						
		Depth (cm)	23.4	39.8	35.2	42.7	34	35.02
		Velocity (m/s)	0.531	0.619	0.768	0.732	0.409	0.6118
	1	Bankfull Width (m)			12.2			-
		Wetted Width (m)			11.7			-
		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	12	22	27	31	26	23.6
		Velocity (m/s)	0.459	0.122	1.012	0.686	0.438	0.5434
	2	Bankfull Width (m)			16.2	1		-
		Wetted Width (m)			14.5			-
		Bankfull-Wetted Depth (cm)			-			-
Mine-Exposed		Depth (cm)	23	47	23	25	25	28.6
od o		Velocity (m/s)	0.024	0.198	0.533	0.788	0.424	0.3934
Ä	3	Bankfull Width (m)			14			-
ė		Wetted Width (m)			8.8			-
≅		Bankfull-Wetted Depth (cm)			-	,		-
		Depth (cm)	36	23	27	27	20	26.6
		Velocity (m/s)	0.711	0.348	0.628	0.517	0.406	0.522
	4	Bankfull Width (m)			12.71			-
		Wetted Width (m)			10.62			-
		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	28	32	28	38	30	31.2
	_	Velocity (m/s)	0.304	0.397	0.973	0.406	0.759	0.5678
	5	Bankfull Width (m)			10			-
		Wetted Width (m)			8.3 38			-
		Bankfull-Wetted Depth (cm) RG LIDCOM			30			-
		, 	36.4	5.8	13.1	31.4	37.5	24.84
		Depth (cm) Velocity (m/s)	0.774	0.525	0.448	0.606	0.696	0.6098
	1	Bankfull Width (m)	0.114	0.020	13.05	0.000	0.030	-
		Wetted Width (m)			12.29			-
		Bankfull-Wetted Depth (cm)			26			-
		RG LI8						
		Depth (cm)	31.2	26.8	25.3	24.1	29.6	27.4
		Velocity (m/s)	0.538	0.644	0.506	0.72	0.753	0.6322
	1	Bankfull Width (m)			12.75		, , , , ,	-
		Wetted Width (m)			10.62			-
		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	38.8	28.1	32	34.3	32.3	33.1
		Velocity (m/s)	0.844	0.514	0.443	0.609	0.859	0.6538
	2	Bankfull Width (m)	·		12.22	·		-
		Wetted Width (m)		-	11.03			-
		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	14.8	28.6 0.47	27.2 0.755	31.8 0.845	24.8	25.44
		Velocity (m/s)	0.438	0.492	0.6			
	3	Bankfull Width (m)			-			
		Wetted Width (m)			12.46			-
		Bankfull-Wetted Depth (cm)			21			-

Table F.5: Depth and Velocity Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling at Areas in Line Creek and Fording River, September 2021

		Replicate	1	2	3	4	5	Mean
		RG_FRUL						
-		Depth (cm)	10	16	23	25	20	18.8
		Velocity (m/s)	0.401	0.762	1.129	1.534	1.085	0.9822
	1	Bankfull Width (m)			-			
		Wetted Width (m)			-			
		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	14	23	37	30	44	29.6
		Velocity (m/s)	0.542	0.443	0.939	1.329	1.172	0.885
	2	Bankfull Width (m)			19.4			-
		Wetted Width (m)			13.7			-
		Bankfull-Wetted Depth (cm)			35			-
		Depth (cm)	16.5	22.5	29	41	41	30
		Velocity (m/s)	0.313	0.313	0.767	1.329	1.329	0.8102
	3	Bankfull Width (m)		Į.	17.1	Į.		-
		Wetted Width (m)			14.3			-
		Bankfull-Wetted Depth (cm)			-			-
		RG_FO23						
		Depth (cm)	7	28	44	56	70	41
73		Velocity (m/s)	0.111	0.313	0.364	0.435	0.587	0.362
sec	1	Bankfull Width (m)			26.6			-
δά		Wetted Width (m)			24.8			-
Mine-Exposed		Bankfull-Wetted Depth (cm)			24			-
Min.		Depth (cm)	26	11	25	33	34	25.8
		Velocity (m/s)	0.162	0.314	0.194	0.395	0.857	0.3844
	2	Bankfull Width (m)		-				
		Wetted Width (m)			-			
		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	16	4.3	31.3	32.5	35	23.82
		Velocity (m/s)	0.603	0.646	0.718	0.837	0.737	0.7082
	3	Bankfull Width (m)			28.2			-
		Wetted Width (m)			24.4			-
		Bankfull-Wetted Depth (cm)		ı	-	ı		-
		Depth (cm)	14.6	21.4	31.4	37.8	49	30.84
		Velocity (m/s)	0.348	0.583	0.456	0.588	0.756	0.5462
	4	Bankfull Width (m)			18.9			-
		Wetted Width (m)			17.8			-
		Bankfull-Wetted Depth (cm)		1	-	1		-
		Depth (cm)	43	36.5	29	30	20.5	31.8
		Velocity (m/s)	0.209	0.636	0.64 26.5	0.582	0.673	0.548
	5	Bankfull Width (m)		-				
		Wetted Width (m)		-				
		Bankfull-Wetted Depth (cm)			-			-

Table F.6: Habitat Information Associated with Mine-exposed and Reference Areas Sampled during the Benthic Invertebrate Survey 2021

C4-4:	on ID	Reference	Reference	Mine-Exposed	Mine-Exposed	Mine-Exposed	Mine-Exposed	Mine-Exposed	Mine-Exposed	Mine-Exposed	Mine-Exposed
Stati	טו וט	RG_SLINE	RG_LI24	RG_LCUT	RG_LILC3	RG_LISP24	RG_LIDSL	RG_LIDCOM	RG_LI8	RG_FRUL	RG_FO23
Waterbody		South Line Creek	Line Creek	Line Creek	Line Creek	Line Creek	Line Creek	Line Creek	Line Creek	Fording River	Fording River
Date Sampled		15-Sep-21	16-Sep-21	11-Sep-21	10-Sep-21	13-Sep-21	14-Sep-21	13-Sep-21	11-Sep-21	12-Sep-21	12-Sep-21
Weather		Cloudy	Sunny	Smokey, overcast	Smokey, cloud free	Sunny	Partly cloudy, warm	-	Rainy, then sunny	Cool, overcast, rainy	Partly cloudy, rainy
Air Temperature	e (°C)	17	19	-	-	18	21	-	-	10	-
Habitat Charac	teristics										
Surrounding Lar	nd Use	Mining	Mining	Mining	Mining	Mining	Mining	Mining	Mining	Mining	Mining, Other
Length of Reach	n Assessed (m)	100	50	50	50	100	100	100	100	100	100
	% Bedrock	0	0	0	0	0	0	0	0	0	0
	% Boulder	5	20	40	20	10	30	10	20	20	15
Substrate	% Cobble	45	70	50	70	70	40	80	70	50	50
Substrate	% Gravel	35	10	10	10	20	15	10	10	20	15
	% Sand	10	0	0	0	0	10	0	0	10	15
	% Fines	5	0	0	0	0	5	0	0	0	5
Water Clarity		Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear
Water Colour		Colourless	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless
Vegetation											
Canopy Covera	ge (%)	1-25	26-50	1-25	0	0	1-25	0	51-75	1-25	0
Streamside Veg	etation	Coniferous Trees, Deciduous trees, Ferns/Grasses, Shrubs	Coniferous Trees, Ferns/Grasses, Shrubs	Coniferous Trees, Deciduous trees, Ferns/Grasses, Shrubs	Coniferous Trees, Deciduous trees, Ferns/Grasses, Shrubs	Coniferous Trees, Ferns/Grasses, Shrubs	Coniferous Trees, Deciduous trees, Ferns/Grasses, Shrubs				
Dominant Veget	ation	•	-	Shrubs	Shrubs	Shrubs	Coniferous trees	Shrubs	Deciduous trees	Shrubs	Coniferous trees
Macrophyte Cov	/erage (%)	1-25	1-25	0	1-25	26-50	0	1-25	0	0	0
Dominant Macro	ophyte	Moss	Moss (heavy on some rocks)	moss, very sparse coverage	Moss (sparse coverage)	Moss (moderate)	-	Moss (moderate to low)	-	-	-
Periphyton Cove	er (1-5)	2, 2, 2, 2, 2	2, 2, 2, 2, 2	3, 3, 3, 3, 3	3, 3, 3, 3, 3	3, 3, 3, 3, 4	4, 3, 3, 2, 3	3, 3, 3, 3, 3	2, 2, 2, 2, 3	2, 2, 1, 2, 2	3, 3, 3, 2, 2
Comments		-	-	-	-	-	-	-	-	-	-

Note: "-" indicates no data available.

APPENDIX G LABORATORY REPORTS

APPENDIX G LABORATORY REPORTS

WATER CHEMISTRY

ALS Laboratory Report CG2101066 (Finalized May 4, 2021)

CERTIFICATE OF ANALYSIS

Work Order : CG2101066

Client : Teck Coal Limited

Contact : Cait Good

Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone : 250 425 8202

Project : Regional Effects Program

PO : VPO00748510

C-O-C number : Regional Effects Program

Sampler : Rick Smit

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 7

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

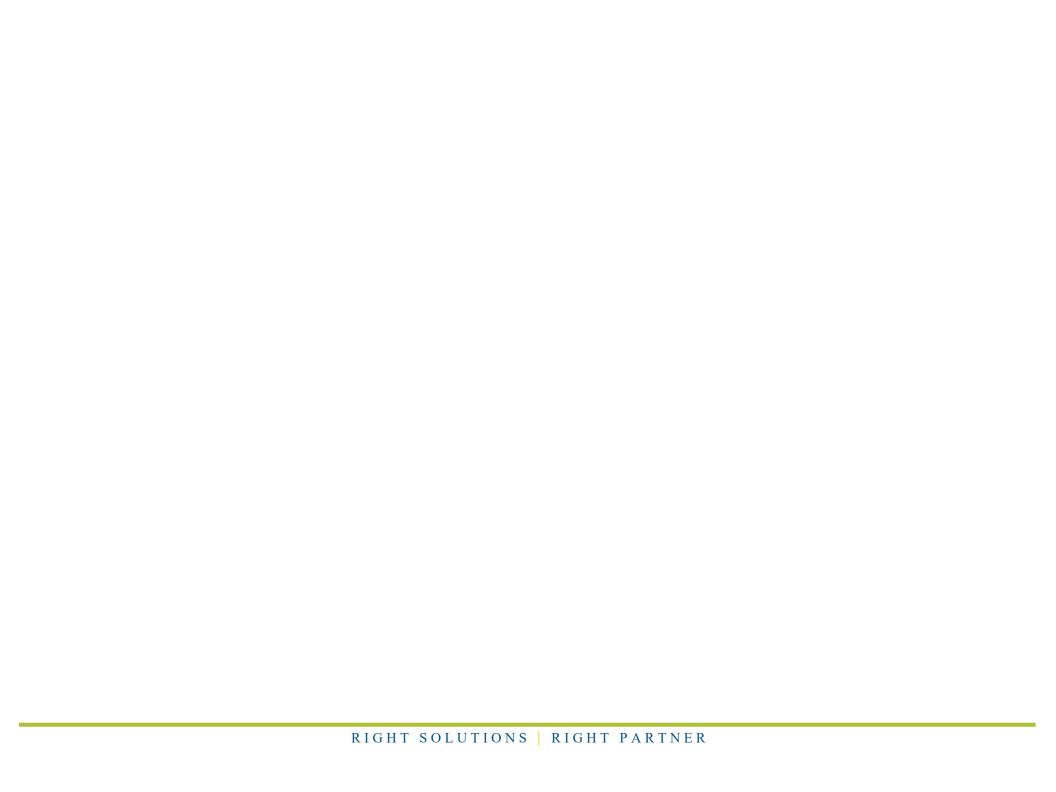
Date Samples Received : 27-Apr-2021 09:05

Date Analysis Commenced : 27-Apr-2021

Issue Date : 04-May-2021 17:50

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:


- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia	
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Arishna Nand	Lab Assistant	Inorganics, Calgary, Alberta	
Elke Tabora		Inorganics, Calgary, Alberta	
Gloria Chan	Lab Analyst	Metals, Burnaby, British Columbia	
Jorden Fanson	Analyst	Inorganics, Calgary, Alberta	
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia	
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta	
Naeun Kim	Analyst	Inorganics, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Saron Kim	Analyst	Metals, Burnaby, British Columbia	
Shirley Li		Inorganics, Calgary, Alberta	

Page : 3 of 7

Work Order : CG2101066
Client : Teck Coal Limited

Project : Regional Effects Program

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Page : 4 of 7
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water (Matrix: Water)						RG_SLINE_WS_ LAEMP_LCO_2 021-04_NP	RG_FBLANK_W S_LAEMP_LCO _2021-04_NP		
			Client samp	ling date / time	26-Apr-2021 11:05	26-Apr-2021 14:00	26-Apr-2021 11:00		
Analyte	CAS Number	Method	LOR	Unit	CG2101066-001	CG2101066-002	CG2101066-003		
					Result	Result	Result		
Physical Tests		5000					0.0		
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0		
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	118	140	<1.0		
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0		
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0		
alkalinity, total (as CaCO3)		E290	1.0	mg/L	118	140	<1.0		
conductivity		E100	2.0	μS/cm	301	339	<2.0		
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	153	180	<0.50		
oxidation-reduction potential [ORP]		E125	0.10	mV	314	328	448		
pH		E108	0.10	pH units	8.17	8.24	5.35		
solids, total dissolved [TDS]		E162	10	mg/L	175	204	<10		
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	<1.0		
turbidity		E121	0.10	NTU	<0.10	0.14	<0.10		
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	<0.0050		
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050		
chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.21	0.27	<0.10		
fluoride	16984-48-8	E235.F	0.020	mg/L	0.319	0.338	<0.020		
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.062	0.147	<0.050		
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.184	0.0764	<0.0050		
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	<0.0010		
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0011	0.0014	<0.0010		
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	<0.0020		
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	40.0	44.6	<0.30		
Organic / Inorganic Carbon				-					
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.06	1.20	<0.50		
carbon, total organic [TOC]		E355-L	0.50	mg/L	0.76	1.00	<0.50		
Ion Balance									
anion sum		EC101	0.10	meq/L	3.23	3.76	<0.10		
cation sum		EC101	0.10	meq/L	3.14	3.64	<0.10		
1			1			1 3.3.	1	l	

Page : 5 of 7
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_LI24_WS_L AEMP_LCO_20 21-04_NP	RG_SLINE_WS_ LAEMP_LCO_2 021-04_NP	RG_FBLANK_W S_LAEMP_LCO _2021-04_NP	
			Client samp	ling date / time	26-Apr-2021 11:05	26-Apr-2021 14:00	26-Apr-2021 11:00	
Analyte	CAS Number	Method	LOR	Unit	CG2101066-001	CG2101066-002	CG2101066-003	
					Result	Result	Result	
Ion Balance								
ion balance (cations/anions ratio)		EC101	0.010	%	97.2	96.8	100	
ion balance (cation-anion difference)		EC101	0.010	%	1.41	1.62	<0.010	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	<0.0030	<0.0030	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00016	0.00012	<0.00010	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0371	0.0362	<0.00010	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	<0.010	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0099	0.0124	<0.0050	
calcium, total	7440-70-2	E420	0.050	mg/L	43.0	47.2	<0.050	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00020	0.00016	<0.00010	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0032	0.0038	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	11.5	14.9	<0.0050	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00010	0.00012	<0.00010	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	<0.00050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000836	0.00115	<0.000050	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
potassium, total	7440-09-7	E420	0.050	mg/L	0.290	0.382	<0.050	
selenium, total	7782-49-2	E420	0.050	μg/L	1.92	1.27	<0.050	
silicon, total	7440-21-3	E420	0.10	mg/L	1.74	2.03	<0.10	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, total	17341-25-2	E420	0.050	mg/L	1.54	0.748	<0.050	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.163	0.170	<0.00020	
sulfur, total	7704-34-9	E420	0.50	mg/L	15.0	16.3	<0.50	

Page : 6 of 7
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	RG_LI24_WS_L	RG_SLINE_WS_	RG_FBLANK_W	
(Matrix: Water)					AEMP_LCO_20 21-04_NP	LAEMP_LCO_2 021-04_NP	S_LAEMP_LCO _2021-04_NP	
			Client sampl	ing date / time	26-Apr-2021 11:05	26-Apr-2021 14:00	26-Apr-2021 11:00	
Analyte	CAS Number	Method	LOR	Unit	CG2101066-001	CG2101066-002	CG2101066-003	
					Result	Result	Result	
Total Metals								
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00118	0.00142	<0.000010	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	<0.0030	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0017	<0.0010	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00015	0.00012	<0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0402	0.0393	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	<0.010	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0081	0.0131	<0.0050	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	43.0	47.3	<0.050	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00018	0.00014	<0.00010	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0031	0.0036	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	11.2	15.0	<0.0050	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	
molybdenum, dissolved	7439-97-0	E421	0.000050	mg/L	0.000844	0.00110	<0.000050	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
potassium, dissolved	7440-02-0	E421	0.050	mg/L	0.282	0.380	<0.050	
selenium, dissolved	7782-49-2	E421	0.050		2.17	1.36	<0.050	
		E421	0.050	μg/L mg/l	1.59	1.90	<0.050	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.59	1.90	\U.U0U	

Page : 7 of 7
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_LI24_WS_L	RG_SLINE_WS_	RG_FBLANK_W	
(Matrix: Water)					AEMP_LCO_20 21-04 NP	LAEMP_LCO_2 021-04 NP	S_LAEMP_LCO _2021-04_NP	
			Client samp	ling date / time	26-Apr-2021 11:05	26-Apr-2021 14:00	26-Apr-2021 11:00	
Analyte	CAS Number	Method	LOR	Unit	CG2101066-001	CG2101066-002	CG2101066-003	
					Result	Result	Result	
Dissolved Metals								
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	1.48	0.743	<0.050	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.162	0.166	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	14.7	15.9	<0.50	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00120	0.00142	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0020	0.0020	<0.0010	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL REPORT

: 1 of 18

Laboratory Department

Work Order Page CG2101066

Client : Teck Coal Limited Laboratory : Calgary - Environmental

Contact : Cait Good **Account Manager** : Lyudmyla Shvets Address

Address :421 Pine Avenue : 2559 29th Street NE Sparwood BC Canada V0B 2G0

Calgary, Alberta Canada T1Y 7B5 :250 425 8202 Telephone :+1 403 407 1800

Project : Regional Effects Program **Date Samples Received** : 27-Apr-2021 09:05

Date Analysis Commenced :27-Apr-2021 : VPO00748510

C-O-C number : Regional Effects Program Issue Date :04-May-2021 17:50

Sampler : Rick Smit

Site Quote number

No. of samples received : 3 No. of samples analysed : 3

Position

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

: Teck Coal Master Quote

Signatories

Signatories

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

orgination oc	1 CONTON	East atoly Department	
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia	
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Arishna Nand	Lab Assistant	Inorganics, Calgary, Alberta	
Elke Tabora		Inorganics, Calgary, Alberta	
Gloria Chan	Lab Analyst	Metals, Burnaby, British Columbia	
Jorden Fanson	Analyst	Inorganics, Calgary, Alberta	
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia	
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta	
Naeun Kim	Analyst	Inorganics, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Saron Kim	Analyst	Metals, Burnaby, British Columbia	
Shirley Li		Inorganics, Calgary, Alberta	

 Page
 : 2 of 18

 Work Order
 : CG2101066

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Page : 3 of 18 Work Order : CG2101066 : Teck Coal Limited Client Project : Regional Effects Program

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

ub-Matrix: Water							Labora	ntory Duplicate (D	TOP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 186649)										
CG2101064-003	Anonymous	turbidity		E121	0.10	NTU	15.2	14.8	2.66%	15%	
Physical Tests (QC	Lot: 188177)										
CG2101064-008	Anonymous	solids, total dissolved [TDS]		E162	10	mg/L	<10	<10	0	Diff <2x LOR	
Physical Tests (QC	Lot: 188190)										
CG2101065-001	Anonymous	conductivity		E100	2.0	μS/cm	275	272	1.10%	10%	
Physical Tests (QC	Lot: 188191)										
CG2101065-001	Anonymous	pH		E108	0.10	pH units	8.08	8.12	0.494%	4%	
Physical Tests (QC	Lot: 188192)										
CG2101065-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	111	110	0.999%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	111	110	0.999%	20%	
Physical Tests (QC	Lot: 188201)										
CG2101065-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 189797)										
CG2101065-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	354	349	1.34%	15%	
Anions and Nutrien	ts (QC Lot: 186178)										
CG2101064-005	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0131	0.0132	0.387%	20%	
Anions and Nutrien	ts (QC Lot: 186394)										
CG2101065-006	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 186395)										
CG2101065-006	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	<0.30	<0.30	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 186396)										
CG2101065-006	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 186397)										
CG2101065-006	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	<0.10	<0.10	0	Diff <2x LOR	
Anions and Nutrion	ts (QC Lot: 186398)										
CG2101065-006	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrion	ts (QC Lot: 186399)										
CG2101065-006	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
	ts (QC Lot: 187643)	, ,				ŭ					

Page : 4 of 18
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (D	ver) keport		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
	ts (QC Lot: 187643) - c	continued									
CG2101064-005	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	3.33	3.51	5.41%	20%	
Anions and Nutrien	ts (QC Lot: 189667)										
CG2101065-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0101	0.0089	0.0012	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 190216)										
CG2101065-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0114	0.0118	0.0004	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 1894	97)									
CG2101062-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.10	1.23	0.13	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 1894	98)									
CG2101062-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	1.31	1.24	0.08	Diff <2x LOR	
Total Metals (QC Lo	ot: 187030)										
CG2101062-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0147	0.0153	0.0006	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00017	0.00014	0.00003	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0462	0.0469	1.49%	20%	
		beryllium, total	7440-41-7	E420	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0050	mg/L	0.0170 μg/L	0.0000167	0.0000003	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	78.4	77.9	0.651%	20%	
		cobalt, total	7440-48-4	E420	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.016	0.017	0.0007	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0072	0.0071	0.0001	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	44.0	44.0	0.00122%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00173	0.00164	5.19%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000878	0.000909	3.50%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00098	0.00082	0.00015	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	0.956	0.956	0.0628%	20%	
		selenium, total	7782-49-2	E420	0.050	mg/L	40.0 μg/L	0.0411	2.69%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	1.79	1.85	3.24%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	17341-25-2	E420	0.050	mg/L	1.64	1.68	2.33%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.117	0.117	0.150%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	68.0	69.2	1.68%	20%	

Page : 5 of 18
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Total Metals (QC Lot: 1	187030) - continued nonymous	thallium, total tin, total titanium, total uranium, total	7440-28-0 7440-31-5 7440-32-6	Method E420 E420	0.000010	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
the state of the s	<u> </u>	tin, total titanium, total uranium, total	7440-31-5 7440-32-6		0.000010						
CG2101062-001 Ar	nonymous	tin, total titanium, total uranium, total	7440-31-5 7440-32-6		0.000010						
		titanium, total uranium, total	7440-32-6	E420		mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		uranium, total			0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		, i		E420	0.00030	mg/L	<0.00030	0.00033	0.00003	Diff <2x LOR	
			7440-61-1	E420	0.000010	mg/L	0.00250	0.00249	0.323%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
Fotal Metals (QC Lot: 1	187031)										
CG2101062-001 An	nonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00015	0.00014	0.000008	Diff <2x LOR	
Total Metals (QC Lot: 1	189793)										
<u> </u>	nonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR	
Dissolved Metals (QC L	Lot: 186880)										
CG2101066-001 RG	G_LI24_WS_LAEMP_LC 2021-04 NP	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00018	0.00019	0.00001	Diff <2x LOR	
Dissolved Metals (QC I	Lot: 186881)										
	G_LI24_WS_LAEMP_LC _2021-04_NP	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0017	0.0018	0.0001	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00015	0.00016	0.000002	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0402	0.0406	0.891%	20%	
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	0.0081 µg/L	0.0000087	0.0000006	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	43.0	42.2	2.02%	20%	
		cobalt, dissolved	7440-48-4	E421	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0031	0.0031	0.000008	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	11.2	11.5	2.88%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000844	0.000858	1.56%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.282	0.289	0.007	Diff <2x LOR	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	2.17 µg/L	0.00217	0.204%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.59	1.58	0.568%	20%	

Page : 6 of 18
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (DU	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (Dissolved Metals (QC Lot: 186881) - continued										
CG2101066-001	RG_LI24_WS_LAEMP_LC O_2021-04_NP	silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.050	mg/L	1.48	1.53	3.69%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.162	0.164	1.29%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	14.7	14.3	2.92%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00120	0.00119	0.498%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0020	0.0019	0.0002	Diff <2x LOR	
Dissolved Metals (QC Lot: 188913)										
CG2101064-006	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.000050	0	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2101066

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method		LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 186649)						
turbidity	E121		0.1	NTU	<0.10	
Physical Tests (QCLot: 188171)						
solids, total suspended [TSS]	E160-L		1	mg/L	<1.0	
Physical Tests (QCLot: 188172)						
solids, total suspended [TSS]	E160-L		1	mg/L	<1.0	
Physical Tests (QCLot: 188177)						
solids, total dissolved [TDS]	E162		10	mg/L	<10	
Physical Tests (QCLot: 188190)						
conductivity	E100		1	μS/cm	<1.0	
Physical Tests (QCLot: 188192)						
alkalinity, bicarbonate (as CaCO3)	E290		1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290		1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290		1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290		1	mg/L	<1.0	
Physical Tests (QCLot: 188201)						
acidity (as CaCO3)	E283		2	mg/L	<2.0	
Anions and Nutrients (QCLot: 186178)						
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U		0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 186394)						
fluoride	16984-48-8 E235.F		0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 186395)						
sulfate (as SO4)	14808-79-8 E235.SO	4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 186396)						
bromide	24959-67-9 E235.Br-l		0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 186397)						
chloride	16887-00-6 E235.CI-l	_	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 186398)						
nitrate (as N)	14797-55-8 E235.NO	3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 186399)						
nitrite (as N)	14797-65-0 E235.NO	2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 187643)						
Kjeldahl nitrogen, total [TKN]	E318		0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 189667)						

Page : 8 of 18
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Analyte	CAS Number Meti	hod	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 189667						
ammonia, total (as N)	7664-41-7 E298	3	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 190216	5)					
phosphorus, total	7723-14-0 E372	2-U	0.002	mg/L	<0.0020	
Organic / Inorganic Carbon (QCLot: 1	189497)					
carbon, dissolved organic [DOC]	E358	3-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 1	189498)					
carbon, total organic [TOC]	E35	5-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 187030)						
aluminum, total	7429-90-5 E420)	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420)	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420)	0.0001	mg/L	<0.00010	
parium, total	7440-39-3 E420	0	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7 E420)	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9 E420)	0.00005	mg/L	<0.000050	
poron, total	7440-42-8 E420)	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420)	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E420)	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E420)	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420)	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E420)	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420)	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2 E420)	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E420)	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5 E420)	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7 E420)	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420)	0.0005	mg/L	<0.00050	
ootassium, total	7440-09-7 E420)	0.05	mg/L	<0.050	
selenium, total	7782-49-2 E420)	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420)	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420)	0.00001	mg/L	<0.000010	
sodium, total	17341-25-2 E420)	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E420)	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 E420)	0.5	mg/L	<0.50	
hallium, total	7440-28-0 E420)	0.00001	mg/L	<0.00010	
in, total	7440-31-5 E420)	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6 E420)	0.0003	mg/L	<0.00030	

Page : 9 of 18
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 187030) - c	ontinued					
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Fotal Metals (QCLot: 187031)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Fotal Metals (QCLot: 189793)						
mercury, total	7439-97-6	E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 18688)	0)					
hromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 18688						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
sismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
oron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.000050	
alcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
obalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
opper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
thium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
nagnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
nanganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
nolybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
ickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	<0.050	
trontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	

Page : 10 of 18
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier				
Dissolved Metals (QCLot: 186881) - co	Dissolved Metals (QCLot: 186881) - continued									
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010					
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030					
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010					
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050					
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010					
Dissolved Metals (QCLot: 188913)										
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.0000050					

 Page
 : 11 of 18

 Work Order
 : CG2101066

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Report	_		
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 186649)									
turbidity		E121	0.1	NTU	200 NTU	99.0	85.0	115	
Physical Tests (QCLot: 188171)									
solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	97.2	85.0	115	
Physical Tests (QCLot: 188172)									
solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	103	85.0	115	
Physical Tests (QCLot: 188177)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	102	85.0	115	
Physical Tests (QCLot: 188190)									
conductivity		E100	1	μS/cm	146.9 μS/cm	103	90.0	110	
Physical Tests (QCLot: 188191)									
рН		E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 188192)									
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	103	85.0	115	
Physical Tests (QCLot: 188201)									
acidity (as CaCO3)		E283	2	mg/L	50 mg/L	105	85.0	115	
Physical Tests (QCLot: 189797)									
oxidation-reduction potential [ORP]		E125		mV	220 mV	100	95.4	104	
Anions and Nutrients (QCLot: 186178)		5050.11	0.004						ı
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.1 mg/L	95.0	80.0	120	
Anions and Nutrients (QCLot: 186394)	10001 10 0	5005 5	0.00						ı
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	98.2	90.0	110	
Anions and Nutrients (QCLot: 186395)	44000 70 0	5005.004							ı
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	99.3	90.0	110	
Anions and Nutrients (QCLot: 186396)									ı
bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	98.1	85.0	115	
Anions and Nutrients (QCLot: 186397)	1005	5005.011							ı
chloride	16887-00-6	E235.Cl-L	0.1	mg/L	100 mg/L	96.5	90.0	110	
Anions and Nutrients (QCLot: 186398)	1175	5005 1100 1							ı
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	99.9	90.0	110	
Anions and Nutrients (QCLot: 186399)									ı
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 187643)									

Page : 12 of 18
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Anions and Nutrients (QCLot: 187643) - contin	nued										
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	87.5	75.0	125			
Anions and Nutrients (QCLot: 189667)											
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.1 mg/L	89.4	85.0	115			
Anions and Nutrients (QCLot: 190216)											
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	8.32 mg/L	103	80.0	120			
Organic / Inorganic Carbon (QCLot: 189497)											
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	10 mg/L	95.2	80.0	120			
Organic / Inorganic Carbon (QCLot: 189498)											
carbon, total organic [TOC]		E355-L	0.5	mg/L	10 mg/L	101	80.0	120			
Total Metals (QCLot: 187030)											
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	102	80.0	120			
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	103	80.0	120			
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	98.1	80.0	120			
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	96.6	80.0	120			
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	102	80.0	120			
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	94.5	80.0	120			
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	98.7	80.0	120			
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	97.1	80.0	120			
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	99.8	80.0	120			
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	100	80.0	120			
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	98.0	80.0	120			
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	101	80.0	120			
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	94.4	80.0	120			
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	101	80.0	120			
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	98.4	80.0	120			
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	98.1	80.0	120			
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	103	80.0	120			
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	99.1	80.0	120			
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	105	80.0	120			
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	95.6	80.0	120			
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	104	80.0	120			
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	100	80.0	120			
sodium, total	17341-25-2	E420	0.05	mg/L	50 mg/L	103	80.0	120			
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	106	80.0	120			
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	90.9	80.0	120			

Page : 13 of 18
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report							
					Spike Recovery (%) Recovery Limits (%)							
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Total Metals (QCLot: 187030) - continued												
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	94.6	80.0	120				
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	95.8	80.0	120				
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	100	80.0	120				
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	95.7	80.0	120				
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	101	80.0	120				
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	98.6	80.0	120				
Total Metals (QCLot: 187031)												
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	102	80.0	120				
Total Metals (QCLot: 189793)												
mercury, total	7439-97-6	E508-L	0.5	ng/L	5 ng/L	100	80.0	120				
Dissolved Metals (QCLot: 186880)												
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	103	80.0	120				
Dissolved Metals (QCLot: 186881)												
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	101	80.0	120				
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	106	80.0	120				
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	100	80.0	120				
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	107	80.0	120				
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	94.6	80.0	120				
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	96.7	80.0	120				
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	93.8	80.0	120				
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	97.7	80.0	120				
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	97.6	80.0	120				
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	99.4	80.0	120				
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	98.6	80.0	120				
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	98.0	80.0	120				
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	97.9	80.0	120				
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	90.9	80.0	120				
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	97.7	80.0	120				
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	99.0	80.0	120				
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	103	80.0	120				
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	98.2	80.0	120				
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	102	80.0	120				
selenium, dissolved	7782-49-2		0.00005	mg/L	1 mg/L	97.7	80.0	120				
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	92.6	80.0	120				
silver, dissolved	7440-22-4		0.00001	mg/L	0.1 mg/L	104	80.0	120				
sodium, dissolved	17341-25-2		0.05	mg/L	50 mg/L	102	80.0	120				

Page : 14 of 18
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Dissolved Metals (QCLot: 186881) - cont	inued									
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	105	80.0	120		
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	86.5	80.0	120		
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	99.1	80.0	120		
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	97.4	80.0	120		
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	103	80.0	120		
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	97.6	80.0	120		
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	100	80.0	120		
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	102	80.0	120		
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	101	80.0	120		

 Page
 : 15 of 18

 Work Order
 : CG2101066

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water	Matrix: Water					Matrix Spike (MS) Report							
					Spike		Recovery (%)	Recovery	Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
Anions and Nutr	ients (QCLot: 186178)												
CG2101064-006	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0502 mg/L	0.05 mg/L	100	70.0	130				
Anions and Nutr	ients (QCLot: 186394)												
CG2101065-006	Anonymous	fluoride	16984-48-8	E235.F	1.13 mg/L	1 mg/L	113	75.0	125				
Anions and Nutr	ients (QCLot: 186395)												
CG2101065-006	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	114 mg/L	100 mg/L	114	75.0	125				
Anions and Nutr	ients (QCLot: 186396)												
CG2101065-006	Anonymous	bromide	24959-67-9	E235.Br-L	0.499 mg/L	0.5 mg/L	99.8	75.0	125				
Anions and Nutr	ients (QCLot: 186397)												
CG2101065-006	Anonymous	chloride	16887-00-6	E235.CI-L	115 mg/L	100 mg/L	115	75.0	125				
Anions and Nutr	ients (QCLot: 186398)												
CG2101065-006	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.84 mg/L	2.5 mg/L	114	75.0	125				
Anions and Nutr	ients (QCLot: 186399)												
CG2101065-006	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.597 mg/L	0.5 mg/L	119	75.0	125				
Anions and Nutr	ients (QCLot: 187643)												
CG2101064-006	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	1.85 mg/L	2.5 mg/L	74.1	70.0	130				
Anions and Nutr	ients (QCLot: 189667)												
CG2101065-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0998 mg/L	0.1 mg/L	99.8	75.0	125				
Anions and Nutr	ients (QCLot: 190216)												
CG2101065-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0546 mg/L	0.0676 mg/L	80.8	70.0	130				
Organic / Inorgai	nic Carbon (QCLot: 189	497)											
CG2101062-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	21.4 mg/L	23.9 mg/L	89.7	70.0	130				
Organic / Inorgai	nic Carbon (QCLot: 189	498)											
CG2101062-001	Anonymous	carbon, total organic [TOC]		E355-L	22.7 mg/L	23.9 mg/L	95.1	70.0	130				
Total Metals (QC	Lot: 187030)												
CG2101062-001	Anonymous	aluminum, total	7429-90-5	E420	0.195 mg/L	0.2 mg/L	97.4	70.0	130				
		antimony, total	7440-36-0	E420	0.0198 mg/L	0.02 mg/L	98.8	70.0	130				
		arsenic, total	7440-38-2	E420	0.0197 mg/L	0.02 mg/L	98.5	70.0	130				
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130				

Page : 16 of 18
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
otal Metals (QC	Lot: 187030) - continue	d								
CG2101062-001	Anonymous	beryllium, total	7440-41-7	E420	0.0402 mg/L	0.04 mg/L	100	70.0	130	
		bismuth, total	7440-69-9	E420	0.00907 mg/L	0.01 mg/L	90.7	70.0	130	
		boron, total	7440-42-8	E420	0.101 mg/L	0.1 mg/L	101	70.0	130	
		cadmium, total	7440-43-9	E420	0.00411 mg/L	0.004 mg/L	103	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0192 mg/L	0.02 mg/L	96.0	70.0	130	
		copper, total	7440-50-8	E420	0.0189 mg/L	0.02 mg/L	94.5	70.0	130	
		iron, total	7439-89-6	E420	1.97 mg/L	2 mg/L	98.4	70.0	130	
		lead, total	7439-92-1	E420	0.0185 mg/L	0.02 mg/L	92.3	70.0	130	
		lithium, total	7439-93-2	E420	0.0982 mg/L	0.1 mg/L	98.2	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0189 mg/L	0.02 mg/L	94.7	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0205 mg/L	0.02 mg/L	102	70.0	130	
		nickel, total	7440-02-0	E420	0.0375 mg/L	0.04 mg/L	93.8	70.0	130	
		potassium, total	7440-09-7	E420	4.03 mg/L	4 mg/L	101	70.0	130	
		selenium, total	7782-49-2	E420	0.0415 mg/L	0.04 mg/L	104	70.0	130	
		silicon, total	7440-21-3	E420	9.32 mg/L	10 mg/L	93.2	70.0	130	
		silver, total	7440-22-4	E420	0.00391 mg/L	0.004 mg/L	97.9	70.0	130	
		sodium, total	17341-25-2	E420	2.04 mg/L	2 mg/L	102	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.00358 mg/L	0.004 mg/L	89.4	70.0	130	
		tin, total	7440-31-5	E420	0.0192 mg/L	0.02 mg/L	96.0	70.0	130	
		titanium, total	7440-32-6	E420	0.0393 mg/L	0.04 mg/L	98.2	70.0	130	
		uranium, total	7440-61-1	E420	0.00380 mg/L	0.004 mg/L	95.0	70.0	130	
		vanadium, total	7440-62-2	E420	0.101 mg/L	0.1 mg/L	101	70.0	130	
		zinc, total	7440-66-6	E420	0.380 mg/L	0.4 mg/L	95.0	70.0	130	
otal Metals (QC	Lot: 187031)									
CG2101062-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0401 mg/L	0.04 mg/L	100	70.0	130	
otal Metals (QC	Lot: 189793)									
CG2101062-002	Anonymous	mercury, total	7439-97-6	E508-L	4.04 ng/L	5 ng/L	80.8	70.0	130	
issolved Metals	(QCLot: 186880)									
CG2101066-001	RG_LI24_WS_LAEMP_LCO _2021-04_NP	chromium, dissolved	7440-47-3	E421.Cr-L	0.0389 mg/L	0.04 mg/L	97.2	70.0	130	
issolved Metals	(QCLot: 186881)									

Page : 17 of 18
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water	Matrix: Water					Matrix Spike (MS) Report						
					Spi	ike	Recovery (%)					
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Dissolved Metals	(QCLot: 186881) - con	tinued										
CG2101066-001	RG_LI24_WS_LAEMP_LCO	aluminum, dissolved	7429-90-5	E421	0.199 mg/L	0.2 mg/L	99.5	70.0	130			
	_2021-04_NP	antimony, dissolved	7440-36-0	E421	0.0201 mg/L	0.02 mg/L	100	70.0	130			
		arsenic, dissolved	7440-38-2	E421	0.0198 mg/L	0.02 mg/L	99.3	70.0	130			
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		beryllium, dissolved	7440-41-7	E421	0.0380 mg/L	0.04 mg/L	94.9	70.0	130			
		bismuth, dissolved	7440-69-9	E421	0.00832 mg/L	0.01 mg/L	83.2	70.0	130			
		boron, dissolved	7440-42-8	E421	0.096 mg/L	0.1 mg/L	96.5	70.0	130			
		cadmium, dissolved	7440-43-9	E421	0.00396 mg/L	0.004 mg/L	98.9	70.0	130			
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130			
		cobalt, dissolved	7440-48-4	E421	0.0187 mg/L	0.02 mg/L	93.4	70.0	130			
		copper, dissolved	7440-50-8	E421	0.0188 mg/L	0.02 mg/L	94.0	70.0	130			
		iron, dissolved	7439-89-6	E421	1.85 mg/L	2 mg/L	92.7	70.0	130			
		lead, dissolved	7439-92-1	E421	0.0191 mg/L	0.02 mg/L	95.6	70.0	130			
		lithium, dissolved	7439-93-2	E421	0.0889 mg/L	0.1 mg/L	88.9	70.0	130			
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130			
		manganese, dissolved	7439-96-5	E421	0.0190 mg/L	0.02 mg/L	94.9	70.0	130			
		molybdenum, dissolved	7439-98-7	E421	0.0200 mg/L	0.02 mg/L	100	70.0	130			
		nickel, dissolved	7440-02-0	E421	0.0370 mg/L	0.04 mg/L	92.6	70.0	130			
		potassium, dissolved	7440-09-7	E421	3.87 mg/L	4 mg/L	96.7	70.0	130			
		selenium, dissolved	7782-49-2	E421	0.0400 mg/L	0.04 mg/L	100	70.0	130			
		silicon, dissolved	7440-21-3	E421	8.37 mg/L	10 mg/L	83.7	70.0	130			
		silver, dissolved	7440-22-4	E421	0.00398 mg/L	0.004 mg/L	99.6	70.0	130			
		sodium, dissolved	17341-25-2	E421	1.88 mg/L	2 mg/L	94.0	70.0	130			
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		sulfur, dissolved	7704-34-9	E421	17.0 mg/L	20 mg/L	85.1	70.0	130			
		thallium, dissolved	7440-28-0	E421	0.00374 mg/L	0.004 mg/L	93.6	70.0	130			
		tin, dissolved	7440-31-5	E421	0.0191 mg/L	0.02 mg/L	95.5	70.0	130			
		titanium, dissolved	7440-32-6	E421	0.0401 mg/L	0.04 mg/L	100	70.0	130			
		uranium, dissolved	7440-61-1	E421	0.00376 mg/L	0.004 mg/L	94.1	70.0	130			
		vanadium, dissolved	7440-62-2	E421	0.0972 mg/L	0.1 mg/L	97.2	70.0	130			
		zinc, dissolved	7440-66-6	E421	0.396 mg/L	0.4 mg/L	99.1	70.0	130			
Dissolved Metals	(QCLot: 188913)											
CG2101064-007	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000992 mg/L	0.0001 mg/L	99.2	70.0	130			

Page : 18 of 18
Work Order : CG2101066
Client : Teck Coal Limited
Project : Regional Effects Program

Teck Regional Effects Program TURNAROUND TIME: COC ID: LABORATORY OTHER INFO PROJECT/CLIENT INFO Lab Name ALS Calgary Excel PDF Facility Name Regional Effects Program Report Format / Distribution Lab Contact Lyuda Shyets Project Manager Cait Good calt.good@teck.com Email Lyudmyla Shvets@ALSGlobal.com Email 2: Email cait.good@teck.com Address 2559 29 Street NE Address 421 Pine Avenue Email 3: Email 4: City Calgary Sparwood Province Province AB Email 5: Carla.FroymanParker@teck.com X **Environmental Division** C. Postal Code T1 Y 7B5 Canada Country Canada VOB 2G0 Country Calgary
Work Order Reference
CG2101066 Phone Number 403-407-1800 er 250-425-8202 PO number SAMPLE DETAILS ANALYSIS REQUESTED Filtered - F: Field, L. Lab, Fl.: Field & Lab, N: None Ħ N Ų. NONE H2SO4 H2SO4 HCI BNO3 HN O3 NONE Hazardous Material (Yes/No) ALS_Package IKN/TOC G‡Grab C≒Com p # Of Sample Location Field Cont Sample ID Matrix NO 2021/04/26 11:05 X 1724 LIS LAEM LCO. 2021-STEND WS Õ RG. SLINE LISLARMY LLO. 2011-01-NP RG_SLIME W\$ R.G. F.BLANK LUS LAEMPLEORED BY B.G. F.BLANK G 7 WS NO 11:06 /G WS NO ∦c WS NO WS NO /G WS NO WS NO \ G ${\bf C}{\bf G}$ WS NO WS NO RELINQUISHED BY/AFFILIATION DATE/TIME ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS ACCEPTED BY/AFFILIATION Rich Smit/Lotic environmental VPO748510 SERVICE REQUEST (rush - subject to availability) 403-586-3241 Mobile # Sampler's Name Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge Sampler's Signature Date/Time For Emergency <1 Day, ASAP or Weekend - Contact ALS

WATER CHEMISTRY

ALS Laboratory Report CG2101100 (Finalized May 7, 2021)

CERTIFICATE OF ANALYSIS

Work Order : CG2101100

Client : Teck Coal Limited

Contact : Cait Good

Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone : 250 425 8202

Project : Regional Effects Program

PO : VPO00748510

C-O-C number : Regional Effects Program

Sampler : Rick Smit

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 28-Apr-2021 08:50

Date Analysis Commenced : 29-Apr-2021

Issue Date : 07-May-2021 12:10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Position	Laboratory Department	
Lab Assistant	Metals, Burnaby, British Columbia	
Team Leader - Inorganics	Inorganics, Calgary, Alberta	
	Inorganics, Calgary, Alberta	
Lab Analyst	Metals, Burnaby, British Columbia	
Lab Assistant	Inorganics, Calgary, Alberta	
Analyst	Inorganics, Calgary, Alberta	
Department Manager - Metals	Metals, Burnaby, British Columbia	
Analyst	Inorganics, Calgary, Alberta	
Laboratory Analyst	Inorganics, Calgary, Alberta	
Team Leader - Metals	Metals, Burnaby, British Columbia	
Analyst	Inorganics, Calgary, Alberta	
	Inorganics, Calgary, Alberta	
	Inorganics, Calgary, Alberta	
	Lab Assistant Team Leader - Inorganics Lab Analyst Lab Assistant Analyst Department Manager - Metals Analyst Laboratory Analyst Team Leader - Metals	Lab Assistant Team Leader - Inorganics Inorganics, Calgary, Alberta Inorganics, Calgary, Alberta Lab Analyst Lab Assistant Inorganics, Calgary, Alberta Lab Assistant Inorganics, Calgary, Alberta Inorganics, Calgary, Alberta Inorganics, Calgary, Alberta Inorganics, Calgary, Alberta Department Manager - Metals Metals, Burnaby, British Columbia Inorganics, Calgary, Alberta Laboratory Analyst Inorganics, Calgary, Alberta Inorganics, Calgary, Alberta Team Leader - Metals Metals, Burnaby, British Columbia Inorganics, Calgary, Alberta Inorganics, Calgary, Alberta Inorganics, Calgary, Alberta Inorganics, Calgary, Alberta

Page : 2 of 6
Work Order : CG2101100
Client : Teck Coal Limited
Project : Regional Effects Program

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Page : 3 of 6
Work Order : CG2101100
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	RG_LCUT_WS_ LAEMP_LCO_2 021-04_NP	RG_LILC3_WS_ LAEMP_LCO_2 021-04_NP	RG_LISP24_WS _LAEMP_LCO_ 2021-04_NP	RG_RIVER_WS _LAEMP_LCO_ 2021-04_NP	
			Client samp	ling date / time	27-Apr-2021 10:15	27-Apr-2021 12:22	27-Apr-2021 14:20	27-Apr-2021 10:00	
Analyte	CAS Number	Method	LOR	Unit	CG2101100-001	CG2101100-002	CG2101100-003	CG2101100-004	
					Result	Result	Result	Result	
Physical Tests									
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0	<2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	206	213	198	204	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	206	213	198	204	
conductivity		E100	2.0	μS/cm	938	991	884	940	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	547	563	509	556	
oxidation-reduction potential [ORP]		E125	0.10	mV	327	458	427	440	
рН		E108	0.10	pH units	8.15	8.14	8.22	8.19	
solids, total dissolved [TDS]		E162	10	mg/L	722	741	670	717	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
turbidity		E121	0.10	NTU	0.24	0.41	0.26	0.30	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0166	<0.0050	<0.0050	0.0071	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	8.12	15.1	12.7	8.05	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.217	0.213	0.235	0.214	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	14.4	12.6	10.4	14.4	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0024	<0.0010	<0.0010	<0.0010	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0020	0.0014	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0028	0.0038	0.0032	0.0042	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	268	295	252	267	
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.35	1.37	1.62	1.28	
carbon, total organic [TOC]		E355-L	0.50	mg/L	0.91	1.38	1.68	1.15	
Ion Balance									
anion sum		EC101	0.10	meq/L	11.0	11.7	10.3	10.9	
cation sum		EC101	0.10	meq/L	11.4	11.7	10.6	11.6	

Page : 4 of 6
Work Order : CG2101100
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_LCUT_WS_ LAEMP_LCO_2 021-04_NP	RG_LILC3_WS_ LAEMP_LCO_2 021-04_NP	RG_LISP24_WS _LAEMP_LCO_ 2021-04_NP	RG_RIVER_WS _LAEMP_LCO_ 2021-04_NP	
			Client samp	ling date / time	27-Apr-2021 10:15	27-Apr-2021 12:22	27-Apr-2021 14:20	27-Apr-2021 10:00	
Analyte	CAS Number	Method	LOR	Unit	CG2101100-001	CG2101100-002	CG2101100-003	CG2101100-004	
					Result	Result	Result	Result	
Ion Balance									
ion balance (cations/anions ratio)		EC101	0.010	%	104	100	103	106	
ion balance (cation-anion difference)		EC101	0.010	%	1.78	<0.010	1.44	3.11	
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0064	0.0973	0.0069	0.0086	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00039	0.00034	0.00028	0.00039	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00014	0.00016	0.00012	0.00015	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0417	0.0473	0.0481	0.0425	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.017	0.017	0.015	0.017	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.344	0.273	0.184	0.352	
calcium, total	7440-70-2	E420	0.050	mg/L	119	123	111	118	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00013	0.00030	0.00015	0.00016	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	0.25	<0.10	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	0.096	0.027	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0586	0.0554	0.0463	0.0599	
magnesium, total	7439-95-4	E420	0.0050	mg/L	51.5	54.9	48.7	51.4	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00010	0.0289	0.0104	0.00012	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	<0.00050	<0.00050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00202	0.00324	0.00274	0.00206	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00915	0.00757	0.00580	0.00918	
potassium, total	7440-09-7	E420	0.050	mg/L	1.71	1.82	1.59	1.72	
selenium, total	7782-49-2	E420	0.050	μg/L	53.9	49.0	40.4	53.0	
silicon, total	7440-21-3	E420	0.10	mg/L	2.28	2.44	2.16	2.13	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total	17341-25-2	E420	0.050	mg/L	8.04	9.37	8.20	8.00	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.226	0.224	0.218	0.232	
sulfur, total	7704-34-9	E420	0.50	mg/L	102	112	95.0	100	

Page : 5 of 6
Work Order : CG2101100
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_LCUT_WS_ LAEMP_LCO_2 021-04_NP	RG_LILC3_WS_ LAEMP_LCO_2 021-04_NP	RG_LISP24_WS _LAEMP_LCO_ 2021-04_NP	RG_RIVER_WS _LAEMP_LCO_ 2021-04_NP	
			Client samp	ling date / time	27-Apr-2021 10:15	27-Apr-2021 12:22	27-Apr-2021 14:20	27-Apr-2021 10:00	
Analyte	CAS Number	Method	LOR	Unit	CG2101100-001	CG2101100-002	CG2101100-003	CG2101100-004	
					Result	Result	Result	Result	
Total Metals									
thallium, total	7440-28-0	E420	0.000010	mg/L	0.000015	0.000012	<0.000010	0.000013	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	0.00365	<0.00030	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00427	0.00417	0.00370	0.00419	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0130	0.0096	0.0069	0.0130	
Dissolved Metals								,	
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0010	0.0026	0.0019	0.0012	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00037	0.00032	0.00027	0.00038	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	0.00011	<0.00010	0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0434	0.0487	0.0483	0.0449	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.017	0.017	0.014	0.017	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.341	0.298	0.181	0.375	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	128	131	120	127	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00012	<0.00010	0.00012	0.00013	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	0.12	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00030	0.00027	0.00020	0.00030	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	0.016	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0613	0.0562	0.0414	0.0597	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	55.3	57.2	50.8	58.1	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	0.0119	0.00700	<0.00010	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.0000050	<0.0000050	<0.0000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00195	0.00280	0.00265	0.00196	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00948	0.00714	0.00547	0.00925	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.71	1.74	1.56	1.80	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	53.0	48.7	39.2	52.9	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.09	2.03	1.96	2.10	

Page : 6 of 6
Work Order : CG2101100
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water (Matrix: Water)			CI	ient sample ID	RG_LCUT_WS_ LAEMP_LCO_2 021-04_NP	RG_LILC3_WS_ LAEMP_LCO_2 021-04_NP	RG_LISP24_WS _LAEMP_LCO_ 2021-04_NP	RG_RIVER_WS _LAEMP_LCO_ 2021-04_NP	
			Client samp	ling date / time	27-Apr-2021 10:15	27-Apr-2021 12:22	27-Apr-2021 14:20	27-Apr-2021 10:00	
Analyte	CAS Number	Method	LOR	Unit	CG2101100-001	CG2101100-002	CG2101100-003	CG2101100-004	
					Result	Result	Result	Result	
Dissolved Metals									
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	8.83	10.2	8.89	9.13	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.233	0.232	0.216	0.239	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	96.7	106	88.2	97.5	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000012	<0.000010	<0.000010	0.000011	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00408	0.00400	0.00348	0.00407	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0128	0.0093	0.0063	0.0131	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL REPORT

Work Order : **CG2101100** Page : 1 of 18

Client : Teck Coal Limited : Calgary - Environmental

Contact : Cait Good Account Manager : Lyudmyla Shvets
Address : 421 Pine Avenue Address : 2559 20th Street N

: 421 Pine Avenue Address : 2559 29th Street NE

 Sparwood BC Canada V0B 2G0
 Calgary, Alberta Canada T1Y 7B5

 : 250 425 8202
 Telephone
 : +1 403 407 1800

Laboratory Department

 Telephone
 :250 425 8202
 Telephone
 :+1 403 407 1800

 Project
 :Regional Effects Program
 Date Samples Received
 :28-Apr-2021 08:50

PO VPO00748510 Date Analysis Commenced : 29-Apr-2021

C-O-C number : Regional Effects Program Issue Date : 07-May-2021 12:10

Sampler : Rick Smit

Site :---

No. of samples received : 4

No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Position

Matrix Spike (MS) Report; Recovery and Acceptance Limits

: Teck Coal Master Quote

- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Signatories

Quote number

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

3			
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia	
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Elke Tabora		Inorganics, Calgary, Alberta	
Gloria Chan	Lab Analyst	Metals, Burnaby, British Columbia	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Jorden Fanson	Analyst	Inorganics, Calgary, Alberta	
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia	
Naeun Kim	Analyst	Inorganics, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Shirley Li		Inorganics, Calgary, Alberta	

 Page
 : 2 of 18

 Work Order
 : CG2101100

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 3 of 18

 Work Order
 : CG2101100

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water							Labora	ntory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 188153)										
CG2101072-001	Anonymous	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR	
Physical Tests (QC	Lot: 188423)										
CG2101099-006	Anonymous	turbidity		E121	0.10	NTU	0.47	0.48	0.008	Diff <2x LOR	
Physical Tests (QC	Lot: 189583)										
CG2101094-002	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	465	466	0.107%	20%	
Physical Tests (QC	Lot: 189803)										
CG2101099-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 189819)									I.	
CG2101094-003	Anonymous	pH		E108	0.10	pH units	7.65	7.65	0.00%	4%	
Physical Tests (QC	Lot: 189820)										
CG2101094-003	Anonymous	conductivity		E100	2.0	μS/cm	1700	1720	0.878%	10%	
Physical Tests (QC	Lot: 189821)										
CG2101099-004	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 189822)										
CG2101100-004	RG_RIVER_WS_LAEMP_ LCO_2021-04_NP	pH		E108	0.10	pH units	8.19	8.18	0.122%	4%	
Physical Tests (QC	Lot: 189823)										
CG2101100-004	RG_RIVER_WS_LAEMP_ LCO_2021-04_NP	conductivity		E100	2.0	μS/cm	940	936	0.426%	10%	
Physical Tests (QC	Lot: 191127)										
CG2101096-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	342	335	1.95%	15%	
Anions and Nutrien	ts (QC Lot: 187626)										
CG2101080-010	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0094	0.0093	0.0001	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 187983)										
CG2101080-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.106	0.092	0.014	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 187985)							<u>'</u>			
CG2101080-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	72.7	73.1	0.576%	20%	
Anions and Nutr <u>ien</u>	its (QC Lot: 187988)									1	
CG2101101-004	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	

Page : 4 of 18
Work Order : CG2101100
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrier	its (QC Lot: 187989)										
CG2101101-004	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	<0.10	<0.10	0	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 187990)										
CG2101101-004	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	0.0066	0.0016	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 187991)										
CG2101101-004	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	0.0010	0	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 188674)										
CG2101072-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 190448)										
CG2101094-003	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0026	0.0037	0.0010	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 190449)										
CG2101100-004	RG_RIVER_WS_LAEMP_ LCO_2021-04_NP	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0042	0.0038	0.0003	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 190726)										
CG2101094-003	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0053	0.0051	0.0002	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 190727)										
CG2101100-004	RG_RIVER_WS_LAEMP_ LCO_2021-04_NP	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0071	<0.0050	0.0021	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 19056	66)									
CG2101085-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.84	2.15	0.31	Diff <2x LOR	
	Carbon (QC Lot: 19056	8)									
CG2101085-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	1.58	1.67	0.08	Diff <2x LOR	
Total Metals (QC L	ot: 188893)										
CG2101095-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00010	<0.00010	0.000005	Diff <2x LOR	
Total Metals (QC L	ot: 188894)										
CG2101095-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0090	0.0114	0.0024	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.108	0.108	0.522%	20%	
		beryllium, total	7440-41-7	E420	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.010	<0.010	0.00006	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0050	mg/L	0.0428 µg/L	0.0000419	0.0000009	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	63.2	61.7	2.40%	20%	
		cobalt, total	7440-48-4	E420	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00613	0.00570	7.41%	20%	
		iron, total	7439-89-6	E420	0.010	mg/L	0.110	0.118	7.14%	20%	

 Page
 : 5 of 18

 Work Order
 : CG2101100

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC L	ot: 188894) - continued										
CG2101095-001	Anonymous	lead, total	7439-92-1	E420	0.000050	mg/L	0.000156	0.000156	0.0000006	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0063	0.0061	0.0001	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	15.6	16.0	2.69%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00911	0.00936	2.71%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00122	0.00120	2.06%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	0.669	0.675	0.834%	20%	
		selenium, total	7782-49-2	E420	0.050	mg/L	7.91 µg/L	0.00776	1.86%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.93	2.92	0.614%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	17341-25-2	E420	0.050	mg/L	3.59	3.62	0.862%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.234	0.240	2.42%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	17.9	17.9	0.136%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	0.00019	0.00018	0.000009	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000758	0.000752	0.849%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
otal Metals (QC L											
CG2101097-003	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 188915)										
CG2101098-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 188916)										
CG2101098-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0021	0.0025	0.0004	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00013	0.00013	0.000001	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00014	0.00014	0.000005	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0638	0.0621	2.71%	20%	
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.018	0.018	0.0002	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	0.0181 µg/L	0.0000183	0.0000002	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	123	128	3.96%	20%	
		cobalt, dissolved	7440-48-4	E421	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	

Page : 6 of 18
Work Order : CG2101100
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Dissolved Metals (QC Lot: 188916) - contir	nued									
CG2101098-001	Anonymous	iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0151	0.0151	0.203%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	69.4	67.2	3.22%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00336	0.00325	3.26%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00137	0.00132	3.09%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00115	0.00111	0.00004	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.48	1.45	1.78%	20%	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	62.9 μg/L	0.0619	1.57%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	3.27	3.24	0.839%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.050	mg/L	7.06	6.94	1.75%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.334	0.336	0.487%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	138	135	1.95%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00255	0.00252	0.953%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Dissolved Metals (OC Lot: 190750)										
G2101100-001	RG LCUT WS LAEMP L	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
	CO_2021-04_NP	.,,				3					

 Page
 : 7 of 18

 Work Order
 : CG2101100

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte CAS Number Method Physical Tests (QCLot: 188153) turbidity E121 Physical Tests (QCLot: 188423) turbidity E121 Physical Tests (QCLot: 189578) solids, total suspended [TSS] E160-L Physical Tests (QCLot: 189583) solids, total dissolved [TDS] E162 Physical Tests (QCLot: 189803) acidity (as CaCO3) E283 Physical Tests (QCLot: 189820) conductivity E100 Physical Tests (QCLot: 189821) alkalinity, bicarbonate (as CaCO3) E290 alkalinity, hydroxide (as CaCO3) E290 alkalinity, total (as CaCO3) E290	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Unit NTU NTU mg/L mg/L μS/cm mg/L mg/L	<pre></pre>	Qualifier
turbidity E121 Physical Tests (QCLot: 188423) turbidity E121 Physical Tests (QCLot: 189578) solids, total suspended [TSS] E160-L Physical Tests (QCLot: 189583) solids, total dissolved [TDS] E162 Physical Tests (QCLot: 189803) acidity (as CaCO3) E283 Physical Tests (QCLot: 189820) conductivity E100 Physical Tests (QCLot: 189821) alkalinity, bicarbonate (as CaCO3) E290 alkalinity, carbonate (as CaCO3) E290 alkalinity, hydroxide (as CaCO3) E290	0.1 1 10 2 1 1 1	MTU mg/L mg/L μS/cm mg/L mg/L mg/L	<0.10	
Physical Tests (QCLot: 188423) turbidity E121 Physical Tests (QCLot: 189578) solids, total suspended [TSS] E160-L Physical Tests (QCLot: 189583) solids, total dissolved [TDS] E162 Physical Tests (QCLot: 189803) acidity (as CaCO3) E283 Physical Tests (QCLot: 189820) conductivity E100 Physical Tests (QCLot: 189821) alkalinity, bicarbonate (as CaCO3) E290 alkalinity, carbonate (as CaCO3) E290 alkalinity, hydroxide (as CaCO3) E290	0.1 1 10 2 1 1 1	MTU mg/L mg/L μS/cm mg/L mg/L mg/L	<0.10	
turbidity E121 Physical Tests (QCLot: 189578) solids, total suspended [TSS] E160-L Physical Tests (QCLot: 189583) solids, total dissolved [TDS] E162 Physical Tests (QCLot: 189803) acidity (as CaCO3) E283 Physical Tests (QCLot: 189820) conductivity E100 Physical Tests (QCLot: 189821) alkalinity, bicarbonate (as CaCO3) E290 alkalinity, carbonate (as CaCO3) E290 alkalinity, hydroxide (as CaCO3) E290	1 10 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/L mg/L μS/cm mg/L mg/L	<1.0 <10 <2.0 <1.0	
Physical Tests (QCLot: 189578) solids, total suspended [TSS] E160-L Physical Tests (QCLot: 189583) solids, total dissolved [TDS] E162 Physical Tests (QCLot: 189803) acidity (as CaCO3) E283 Physical Tests (QCLot: 189820) conductivity E100 Physical Tests (QCLot: 189821) alkalinity, bicarbonate (as CaCO3) E290 alkalinity, carbonate (as CaCO3) E290 alkalinity, hydroxide (as CaCO3) E290	1 10 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/L mg/L μS/cm mg/L mg/L	<1.0 <10 <2.0 <1.0	
E160-L	10 2 1 1 1 1 1 1	mg/L mg/L μS/cm mg/L mg/L	<1.0 <1.0 <1.0	
Physical Tests (QCLot: 189583) solids, total dissolved [TDS] E162 Physical Tests (QCLot: 189803) acidity (as CaCO3) E283 Physical Tests (QCLot: 189820) conductivity E100 Physical Tests (QCLot: 189821) alkalinity, bicarbonate (as CaCO3) E290 alkalinity, carbonate (as CaCO3) E290 alkalinity, hydroxide (as CaCO3) E290	10 2 1 1 1 1 1 1	mg/L mg/L μS/cm mg/L mg/L	<1.0 <1.0 <1.0	
solids, total dissolved [TDS] E162 Physical Tests (QCLot: 189803) acidity (as CaCO3) E283 Physical Tests (QCLot: 189820) conductivity E100 Physical Tests (QCLot: 189821) alkalinity, bicarbonate (as CaCO3) E290 alkalinity, carbonate (as CaCO3) E290 alkalinity, hydroxide (as CaCO3) E290	1 1 1	mg/L μS/cm mg/L mg/L	<2.0 <1.0 <1.0	
Physical Tests (QCLot: 189803) acidity (as CaCO3) E283 Physical Tests (QCLot: 189820) conductivity E100 Physical Tests (QCLot: 189821) alkalinity, bicarbonate (as CaCO3) E290 alkalinity, carbonate (as CaCO3) E290 alkalinity, hydroxide (as CaCO3) E290	1 1 1	mg/L μS/cm mg/L mg/L	<2.0 <1.0 <1.0	
### E283 Physical Tests (QCLot: 189820)	1 1 1	μS/cm mg/L mg/L	<1.0	
Physical Tests (QCLot: 189820) conductivity E100 Physical Tests (QCLot: 189821) alkalinity, bicarbonate (as CaCO3) E290 alkalinity, carbonate (as CaCO3) E290 alkalinity, hydroxide (as CaCO3) E290	1 1 1	μS/cm mg/L mg/L	<1.0	
Physical Tests (QCLot: 189821) Alkalinity, bicarbonate (as CaCO3) Alkalinity, carbonate (as CaCO3)	1 1	mg/L	<1.0	
Physical Tests (QCLot: 189821) alkalinity, bicarbonate (as CaCO3) E290 alkalinity, carbonate (as CaCO3) E290 alkalinity, hydroxide (as CaCO3) E290	1 1	mg/L	<1.0	
alkalinity, bicarbonate (as CaCO3) E290 alkalinity, carbonate (as CaCO3) E290 alkalinity, hydroxide (as CaCO3) E290	1	mg/L		
alkalinity, carbonate (as CaCO3) E290 alkalinity, hydroxide (as CaCO3) E290	1	mg/L		
alkalinity, hydroxide (as CaCO3) E290		•	<1.0	
	1			
alkalinity, total (as CaCO3) E290		mg/L	<1.0	
	1	mg/L	<1.0	
Physical Tests (QCLot: 189823)				
conductivity E100	1	μS/cm	<1.0	
Anions and Nutrients (QCLot: 187626)				
phosphate, ortho-, dissolved (as P) 14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 187983)				
luoride 16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 187985)				
sulfate (as SO4) 14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 187988)				
bromide 24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 187989)		-		
chloride 16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 187990)		<u> </u>		
Anions and Nutrients (QCLot: 187990) 14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
(
Anions and Nutrients (QCLot: 187991) nitrite (as N)	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 188674)	0.001	mg/L	10.0010	

Page : 8 of 18
Work Order : CG2101100
Client : Teck Coal Limited
Project : Regional Effects Program

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 1886)	74) - continued					
(jeldahl nitrogen, total [TKN]		E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 1904						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 1904						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 1907)						
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 1907)						
immonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCLot:						
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot:						
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 188893)						
hromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
otal Metals (QCLot: 188894)						
ıluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
intimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
rsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
sismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8	E420	0.01	mg/L	<0.010	
admium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
alcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
obalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6	E420	0.01	mg/L	<0.010	
ead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
thium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
ootassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	

 Page
 : 9 of 18

 Work Order
 : CG2101100

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 188894) - continu	ed					
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	17341-25-2	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
hallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
in, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
ranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
rinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 191387)						
nercury, total	7439-97-6	E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 188915)						
hromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 188916)						
luminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
ntimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
rsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
arium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
sismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
oron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
eadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
obalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
thium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
nagnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
nanganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
nolybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	

Page : 10 of 18
Work Order : CG2101100
Client : Teck Coal Limited
Project : Regional Effects Program

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 1889	16) - continued				
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 1907	50)				
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	

 Page
 : 11 of 18

 Work Order
 : CG2101100

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	/ Limits (%)			
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 188153)										
turbidity	E121	0.1	NTU	200 NTU	100.0	85.0	115			
Physical Tests (QCLot: 188423)										
turbidity	E121	0.1	NTU	200 NTU	99.4	85.0	115			
Physical Tests (QCLot: 189578)										
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	90.9	85.0	115			
Physical Tests (QCLot: 189583)										
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	103	85.0	115			
Physical Tests (QCLot: 189803)				_						
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	95.9	85.0	115			
Physical Tests (QCLot: 189819)								ı		
рН	E108		pH units	7 pH units	101	98.6	101			
Physical Tests (QCLot: 189820)	E 400							ı		
conductivity	E100	1	μS/cm	146.9 μS/cm	103	90.0	110			
Physical Tests (QCLot: 189821)	5000							ı		
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	102	85.0	115			
Physical Tests (QCLot: 189822)	E400							ı		
рН	E108		pH units	7 pH units	100	98.6	101			
Physical Tests (QCLot: 189823)	E400	4			100			ı		
conductivity	E100	1	μS/cm	146.9 μS/cm	103	90.0	110			
Physical Tests (QCLot: 191127)	E125		\	202 1/	101			ı		
oxidation-reduction potential [ORP]	E125		mV	220 mV	101	95.4	104			
Anions and Nutrients (QCLot: 187626) phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	0.1 mg/L	93.6	80.0	120			
				0.1 mg/L	33.0	00.0	120			
Anions and Nutrients (QCLot: 187983)	16984-48-8 E235.F	0.02	mg/L	1 mg/L	105	90.0	110			
		5.52		i ilig/L	155	00.0	110			
Anions and Nutrients (QCLot: 187985) sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	100 mg/L	106	90.0	110			
			J.							
Anions and Nutrients (QCLot: 187988) bromide	24959-67-9 E235.Br-L	0.05	mg/L	0.5 mg/L	110	85.0	115			
Anions and Nutrients (QCLot: 187989)	16887-00-6 E235.CI-L	0.1	mg/L	100 mg/L	103	90.0	110			
Anions and Nutrients (OCL et: 487000)										
Anions and Nutrients (QCLot: 187990)										

 Page
 : 12 of 18

 Work Order
 : CG2101100

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water					Laboratory Cor	ntrol Sample (LCS)	Report		
				Spike	Recovery (%)	Recovery	Limits (%)		
Analyte CAS Num	per Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Anions and Nutrients (QCLot: 187990) - continued									
nitrate (as N) 14797-5	5-8 E235.NO3-L	0.005	mg/L	2.5 mg/L	104	90.0	110		
Anions and Nutrients (QCLot: 187991)									
nitrite (as N) 14797-6	5-0 E235.NO2-L	0.001	mg/L	0.5 mg/L	109	90.0	110		
Anions and Nutrients (QCLot: 188674)									
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	82.7	75.0	125		
Anions and Nutrients (QCLot: 190448)									
	I-0 E372-U	0.002	mg/L	8.32 mg/L	105	80.0	120		
Anions and Nutrients (QCLot: 190449)									
	I-0 E372-U	0.002	mg/L	8.32 mg/L	102	80.0	120		
Anions and Nutrients (QCLot: 190726)									
	-7 E298	0.005	mg/L	0.1 mg/L	107	85.0	115		
Anions and Nutrients (QCLot: 190727)							1	1	
	-7 E298	0.005	mg/L	0.1 mg/L	96.6	85.0	115		
				_					
Organic / Inorganic Carbon (QCLot: 190566)								1	
	E358-L	0.5	mg/L	10 mg/L	116	80.0	120		
Organic / Inorganic Carbon (QCLot: 190568)									
	E355-L	0.5	mg/L	10 mg/L	109	80.0	120		
Total Metals (QCLot: 188893)									
	′-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	99.7	80.0	120		
Total Metals (QCLot: 188894)									
)-5 E420	0.003	mg/L	2 mg/L	98.4	80.0	120		
antimony, total 7440-3	6-0 E420	0.0001	mg/L	1 mg/L	104	80.0	120		
arsenic, total 7440-3	3-2 E420	0.0001	mg/L	1 mg/L	98.8	80.0	120		
barium, total 7440-3	0-3 E420	0.0001	mg/L	0.25 mg/L	97.3	80.0	120		
beryllium, total 7440-4	-7 E420	0.00002	mg/L	0.1 mg/L	97.6	80.0	120		
bismuth, total 7440-6	9-9 E420	0.00005	mg/L	1 mg/L	104	80.0	120		
boron, total 7440-4:	2-8 E420	0.01	mg/L	1 mg/L	94.2	80.0	120		
cadmium, total 7440-4	3-9 E420	0.000005	mg/L	0.1 mg/L	101	80.0	120		
calcium, total 7440-70)-2 E420	0.05	mg/L	50 mg/L	99.0	80.0	120		
cobalt, total 7440-4	3-4 E420	0.0001	mg/L	0.25 mg/L	101	80.0	120		
							The second secon		
copper, total 7440-5)-8 E420	0.0005	mg/L	0.25 mg/L	96.6	80.0	120		
1	0-8 E420 0-6 E420	0.0005 0.01	mg/L mg/L	0.25 mg/L 1 mg/L	96.6 102	80.0 80.0	120 120		
iron, total 7439-8			_						
iron, total 7439-8: lead, total 7439-9:	9-6 E420	0.01	mg/L	1 mg/L	102	80.0	120		

Page : 13 of 18
Work Order : CG2101100
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water						Laboratory Co	entrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Meti	thod	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Total Metals (QCLot: 188894) - continued									
manganese, total	7439-96-5 E420	20	0.0001	mg/L	0.25 mg/L	99.1	80.0	120	
molybdenum, total	7439-98-7 E420	20	0.00005	mg/L	0.25 mg/L	102	80.0	120	
nickel, total	7440-02-0 E420	20	0.0005	mg/L	0.5 mg/L	99.0	80.0	120	
potassium, total	7440-09-7 E420	20	0.05	mg/L	50 mg/L	102	80.0	120	
selenium, total	7782-49-2 E420	20	0.00005	mg/L	1 mg/L	102	80.0	120	
silicon, total	7440-21-3 E420	20	0.1	mg/L	10 mg/L	104	80.0	120	
silver, total	7440-22-4 E420	20	0.00001	mg/L	0.1 mg/L	100	80.0	120	
sodium, total	17341-25-2 E420	20	0.05	mg/L	50 mg/L	101	80.0	120	
strontium, total	7440-24-6 E420	20	0.0002	mg/L	0.25 mg/L	100	80.0	120	
sulfur, total	7704-34-9 E420	20	0.5	mg/L	50 mg/L	103	80.0	120	
thallium, total	7440-28-0 E420	20	0.00001	mg/L	1 mg/L	101	80.0	120	
tin, total	7440-31-5 E420	20	0.0001	mg/L	0.5 mg/L	99.3	80.0	120	
titanium, total	7440-32-6 E420	20	0.0003	mg/L	0.25 mg/L	93.6	80.0	120	
uranium, total	7440-61-1 E420	20	0.00001	mg/L	0.005 mg/L	101	80.0	120	
vanadium, total	7440-62-2 E420	20	0.0005	mg/L	0.5 mg/L	99.2	80.0	120	
zinc, total	7440-66-6 E420	20	0.003	mg/L	0.5 mg/L	101	80.0	120	
Total Metals (QCLot: 191387)					_				
mercury, total	7439-97-6 E508	08-L	0.5	ng/L	5 ng/L	95.2	80.0	120	
•				-					
Dissolved Metals (QCLot: 188915)									
chromium, dissolved	7440-47-3 E42	1.Cr-L	0.0001	mg/L	0.25 mg/L	105	80.0	120	
Dissolved Metals (QCLot: 188916)									
aluminum, dissolved	7429-90-5 E42°	21	0.001	mg/L	2 mg/L	106	80.0	120	
antimony, dissolved	7440-36-0 E42 ⁻	21	0.0001	mg/L	1 mg/L	101	80.0	120	
arsenic, dissolved	7440-38-2 E42	21	0.0001	mg/L	1 mg/L	104	80.0	120	
barium, dissolved	7440-39-3 E42	21	0.0001	mg/L	0.25 mg/L	107	80.0	120	
beryllium, dissolved	7440-41-7 E42	21	0.00002	mg/L	0.1 mg/L	94.4	80.0	120	
bismuth, dissolved	7440-69-9 E42		0.00005	mg/L	1 mg/L	109	80.0	120	
boron, dissolved	7440-42-8 E42		0.01	mg/L	1 mg/L	97.5	80.0	120	
cadmium, dissolved	7440-43-9 E42		0.000005	mg/L	0.1 mg/L	106	80.0	120	
calcium, dissolved	7440-70-2 E42 ⁻		0.05	mg/L	50 mg/L	98.3	80.0	120	
cobalt, dissolved	7440-48-4 E42		0.0001	mg/L	0.25 mg/L	106	80.0	120	
copper, dissolved	7440-50-8 E42		0.0001	mg/L	0.25 mg/L	104	80.0	120	
iron, dissolved	7439-89-6 E42		0.002	mg/L	0.25 mg/L 1 mg/L	97.5	80.0	120	
lead, dissolved	7439-92-1 E42		0.00005	mg/L	_		80.0	120	
ieaa, aissoivea Iithium. dissolved	7439-92-1 E42 7439-93-2 E42		0.0005	_	0.5 mg/L	100			
'				mg/L	0.25 mg/L	90.9	80.0	120	
magnesium, dissolved	7439-95-4 E42	. 1	0.005	mg/L	50 mg/L	101	80.0	120	

 Page
 : 14 of 18

 Work Order
 : CG2101100

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Dissolved Metals (QCLot: 188916) - co	ontinued										
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	99.8	80.0	120			
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	101	80.0	120			
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	105	80.0	120			
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	109	80.0	120			
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	100.0	80.0	120			
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	101	80.0	120			
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	104	80.0	120			
sodium, dissolved	17341-25-2	E421	0.05	mg/L	50 mg/L	108	80.0	120			
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	102	80.0	120			
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	99.1	80.0	120			
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	102	80.0	120			
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	100.0	80.0	120			
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	98.7	80.0	120			
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	111	80.0	120			
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	105	80.0	120			
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	106	80.0	120			
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	99.8	80.0	120			

Page : 15 of 18 Work Order : CG2101100 Client : Teck Coal Limited Project : Regional Effects Program

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND - Recovery not determined, background level >= 1x spike level.

esults for the assoc	lated sample (or similar sa	imples) may be subject to bias. ND - I	recovery not deteri	miled, background level	- IX Spike level.						
Sub-Matrix: Water					Matrix Spike (MS) Report						
					Sp	ike	Recovery (%)	Recovery	Limits (%)		
_aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie	
Anions and Nutr	ients (QCLot: 187626)										
CG2101083-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0484 mg/L	0.05 mg/L	96.9	70.0	130		
Anions and Nutr	ients (QCLot: 187983)										
CG2101080-002	Anonymous	fluoride	16984-48-8	E235.F	1.05 mg/L	1 mg/L	105	75.0	125		
Anions and Nutr	ients (QCLot: 187985)										
CG2101080-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	94.9 mg/L	100 mg/L	94.9	75.0	125		
nions and Nutr	ients (QCLot: 187988)										
CG2101101-004	Anonymous	bromide	24959-67-9	E235.Br-L	0.557 mg/L	0.5 mg/L	111	75.0	125		
Anions and Nutr	ients (QCLot: 187989)										
CG2101101-004	Anonymous	chloride	16887-00-6	E235.CI-L	104 mg/L	100 mg/L	104	75.0	125		
Anions and Nutr	ients (QCLot: 187990)										
CG2101101-004	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.55 mg/L	2.5 mg/L	102	75.0	125		
Anions and Nutr	ients (QCLot: 187991)										
CG2101101-004	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.559 mg/L	0.5 mg/L	112	75.0	125		
Anions and Nutr	ients (QCLot: 188674)										
CG2101072-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.59 mg/L	2.5 mg/L	103	70.0	130		
Anions and Nutr	ients (QCLot: 190448)										
CG2101095-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0607 mg/L	0.0676 mg/L	89.8	70.0	130		
Anions and Nutr	ients (QCLot: 190449)										
CG2101101-003	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0564 mg/L	0.0676 mg/L	83.5	70.0	130		
Anions and Nutr	ients (QCLot: 190726)										
CG2101095-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.108 mg/L	0.1 mg/L	108	75.0	125		
Anions and Nutr	ients (QCLot: 190727)										
CG2101101-003	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0981 mg/L	0.1 mg/L	98.1	75.0	125		
Organic / Inorga	nic Carbon (QCLot: 190	0566)									
CG2101085-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	21.9 mg/L	23.9 mg/L	91.5	70.0	130		
Organic / Inorga	nic Carbon (QCLot: 190	0568)									
CG2101085-001	Anonymous	carbon, total organic [TOC]		E355-L	23.0 mg/L	23.9 mg/L	96.3	70.0	130		
	·			·		•					

Page : 16 of 18
Work Order : CG2101100
Client : Teck Coal Limited
Project : Regional Effects Program

ub-Matrix: Water					Matrix Spike (MS) Report					
					Spi	ke	Recovery (%)	Recovery	Recovery Limits (%)	
boratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
al Metals (QC	Lot: 188893)									
G2101095-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0393 mg/L	0.04 mg/L	98.2	70.0	130	
tal Metals (QC	Lot: 188894)									
G2101095-001	Anonymous	aluminum, total	7429-90-5	E420	0.195 mg/L	0.2 mg/L	97.7	70.0	130	
		antimony, total	7440-36-0	E420	0.0194 mg/L	0.02 mg/L	97.0	70.0	130	
		arsenic, total	7440-38-2	E420	0.0196 mg/L	0.02 mg/L	98.1	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0376 mg/L	0.04 mg/L	94.1	70.0	130	
		bismuth, total	7440-69-9	E420	0.00957 mg/L	0.01 mg/L	95.7	70.0	130	
		boron, total	7440-42-8	E420	0.099 mg/L	0.1 mg/L	98.7	70.0	130	
		cadmium, total	7440-43-9	E420	0.00412 mg/L	0.004 mg/L	103	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0193 mg/L	0.02 mg/L	96.6	70.0	130	
		copper, total	7440-50-8	E420	0.0181 mg/L	0.02 mg/L	90.7	70.0	130	
		iron, total	7439-89-6	E420	1.92 mg/L	2 mg/L	96.2	70.0	130	
		lead, total	7439-92-1	E420	0.0191 mg/L	0.02 mg/L	95.3	70.0	130	
		lithium, total	7439-93-2	E420	0.0921 mg/L	0.1 mg/L	92.1	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0190 mg/L	0.02 mg/L	95.1	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0199 mg/L	0.02 mg/L	99.7	70.0	130	
		nickel, total	7440-02-0	E420	0.0384 mg/L	0.04 mg/L	95.9	70.0	130	
		potassium, total	7440-02-0	E420	3.98 mg/L	4 mg/L	99.4	70.0	130	
		selenium, total	7782-49-2	E420	0.0407 mg/L	0.04 mg/L	102	70.0	130	
		silicon, total	7440-21-3	E420	9.19 mg/L	10 mg/L	91.9	70.0	130	
		silver, total	7440-21-3 7440-22-4		0.00392 mg/L	•		70.0		
		sodium, total		E420	_	0.004 mg/L	98.0		130	
		strontium, total	17341-25-2	E420	ND mg/L	2 mg/L	ND	70.0	130	
		sulfur, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
			7704-34-9	E420	20.5 mg/L	20 mg/L	103	70.0	130	
		thallium, total	7440-28-0	E420	0.00379 mg/L	0.004 mg/L	94.7	70.0	130	
		tin, total	7440-31-5	E420	0.0196 mg/L	0.02 mg/L	98.2	70.0	130	
		titanium, total	7440-32-6	E420	0.0376 mg/L	0.04 mg/L	94.0	70.0	130	
		uranium, total	7440-61-1	E420	0.00402 mg/L	0.004 mg/L	100	70.0	130	
		vanadium, total	7440-62-2	E420	0.0998 mg/L	0.1 mg/L	99.8	70.0	130	
)	zinc, total	7440-66-6	E420	0.389 mg/L	0.4 mg/L	97.2	70.0	130	
tal Metals (QC		marguny total			. = 0	- "			400	
G2101097-004	Anonymous	mercury, total	7439-97-6	E508-L	4.76 ng/L	5 ng/L	95.3	70.0	130	

Page : 17 of 18
Work Order : CG2101100
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water							Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
	(QCLot: 188915) - con	tinued											
CG2101098-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0396 mg/L	0.04 mg/L	99.1	70.0	130				
Dissolved Metals	(QCLot: 188916)												
CG2101098-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.213 mg/L	0.2 mg/L	106	70.0	130				
		antimony, dissolved	7440-36-0	E421	0.0194 mg/L	0.02 mg/L	97.1	70.0	130				
		arsenic, dissolved	7440-38-2	E421	0.0204 mg/L	0.02 mg/L	102	70.0	130				
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130				
		beryllium, dissolved	7440-41-7	E421	0.0373 mg/L	0.04 mg/L	93.3	70.0	130				
		bismuth, dissolved	7440-69-9	E421	0.00844 mg/L	0.01 mg/L	84.4	70.0	130				
		boron, dissolved	7440-42-8	E421	0.096 mg/L	0.1 mg/L	95.9	70.0	130				
		cadmium, dissolved	7440-43-9	E421	0.00386 mg/L	0.004 mg/L	96.4	70.0	130				
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130				
		cobalt, dissolved	7440-48-4	E421	0.0189 mg/L	0.02 mg/L	94.7	70.0	130				
		copper, dissolved	7440-50-8	E421	0.0188 mg/L	0.02 mg/L	93.8	70.0	130				
		iron, dissolved	7439-89-6	E421	2.00 mg/L	2 mg/L	100	70.0	130				
		lead, dissolved	7439-92-1	E421	0.0178 mg/L	0.02 mg/L	89.0	70.0	130				
		lithium, dissolved	7439-93-2	E421	0.0898 mg/L	0.1 mg/L	89.8	70.0	130				
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130				
		manganese, dissolved	7439-96-5	E421	0.0194 mg/L	0.02 mg/L	96.8	70.0	130				
		molybdenum, dissolved	7439-98-7	E421	0.0198 mg/L	0.02 mg/L	99.1	70.0	130				
		nickel, dissolved	7440-02-0	E421	0.0370 mg/L	0.04 mg/L	92.4	70.0	130				
		potassium, dissolved	7440-09-7	E421	3.90 mg/L	4 mg/L	97.6	70.0	130				
		selenium, dissolved	7782-49-2	E421	ND mg/L	0.04 mg/L	ND	70.0	130				
		silicon, dissolved	7440-21-3	E421	8.97 mg/L	10 mg/L	89.7	70.0	130				
		silver, dissolved	7440-22-4	E421	0.00382 mg/L	0.004 mg/L	95.4	70.0	130				
		sodium, dissolved	17341-25-2	E421	ND mg/L	2 mg/L	ND	70.0	130				
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130				
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130				
		thallium, dissolved	7440-28-0	E421	0.00362 mg/L	0.004 mg/L	90.4	70.0	130				
		tin, dissolved	7440-31-5	E421	0.0189 mg/L	0.02 mg/L	94.5	70.0	130				
		titanium, dissolved	7440-32-6	E421	0.0411 mg/L	0.04 mg/L	103	70.0	130				
		uranium, dissolved	7440-61-1	E421	0.00364 mg/L	0.004 mg/L	91.1	70.0	130				
		vanadium, dissolved	7440-62-2	E421	0.100 mg/L	0.1 mg/L	100	70.0	130				
		zinc, dissolved	7440-66-6	E421	0.402 mg/L	0.4 mg/L	100	70.0	130				
Dissolved Metals	(QCLot: 190750)									<u> </u>			
CG2101100-002	RG_LILC3_WS_LAEMP_LC	mercury, dissolved	7439-97-6	E509	0.0000989 mg/L	0.0001 mg/L	98.9	70.0	130				
	O_2021-04_NP												

Page : 18 of 18
Work Order : CG2101100
Client : Teck Coal Limited
Project : Regional Effects Program

Teck TURNAROUND TIME: COC ID: Regional Effects Program LABORATORY PROJECT/CLIENT INFO OTHER INFO Lab Name ALS Calgary Facility Name Regional Effects Program Report Format / Distribution PDF EDD Excel Lab Contact Lyuda Shvets Project Manager Cait Good Email 1: cait.good@teck.com Email Lyudmyla. Shvets@ALSGlobal.com Email cait.good@teck.com Email 2: certie.mever@teck.com Address 2559 29 Street NE Address 421 Pine Avenue Email 3: Email 4: -City Calgary **Environmental Division** BC Email 5: Sparwood Province Province Tyler, mehlera mmou, ca V0B 2G0 Canada Postal Code T1Y 7B5 Country Canada Country Calgary Phone Number 403-407-1800 PO number Work Order Reference 250-425-8202 SAMPLE DETAILS ANALYSIS REQUESTED Pillered - F: Field, L: Lab, FL: Field & Lab, N: None CG2101100 Ħ N NONE R2SO4 H2SO4 HNO3 HNO3 NONE Material (Yes/No) G=Grab Ć∓Com Sample Location Field # Of Sam ple ID (sys loc code) Matrix Time (24hr) Cont X RG_LCUT_WS_LAEMPLCO_2021-D4_NP RG_LCUT \times X × X X WS NO 21/04/27 X 10:15 RG_LILC3_WS_LAEMP_LCO_2021-64_NP RG_LILCS WS NO 21/04/27 12:22 ! G 7 X X X RG_ L15924_WS_LAENEP_L(0-2021-04_NA RG-LISP24 NO 21/04/27 14:20 X X WS İG × X X 7 BG-RIVER NO. LAEMP. LCO-2021-64 NA RGI RIVER WS NO 21/04/27 10:00 , G X X X × × G WS NO WS ||G NO /\c WS NO WS 1)G NO WS NO l.G WS RELINQUISHED BY/AFFILIATION DATE/TIME ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS CCEPTED BY/AFFILIATION DATE/TIME Rich Smitt / Lolic Erwiconmental 21/4/127 16:15 VPO748510 SERVICE REQUEST (rush - subject to availability) 403-586-3241 Regular (default) X Sampler's Name Rick Smitt Mobile # Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge 21/04/27 16:15 Sampler's Signature Date/Time For Emergency <1 Day, ASAP or Weekend - Contact ALS

WATER CHEMISTRY

ALS Laboratory Report CG2101142 (Finalized May 7, 2021)

CERTIFICATE OF ANALYSIS

Work Order : CG2101142

Client : Teck Coal Limited

Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Cait Good

Telephone : 250 425 8202

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00748510

C-O-C number : Regional Effects Program

Sampler : Rick Smit

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 7

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 30-Apr-2021 09:40

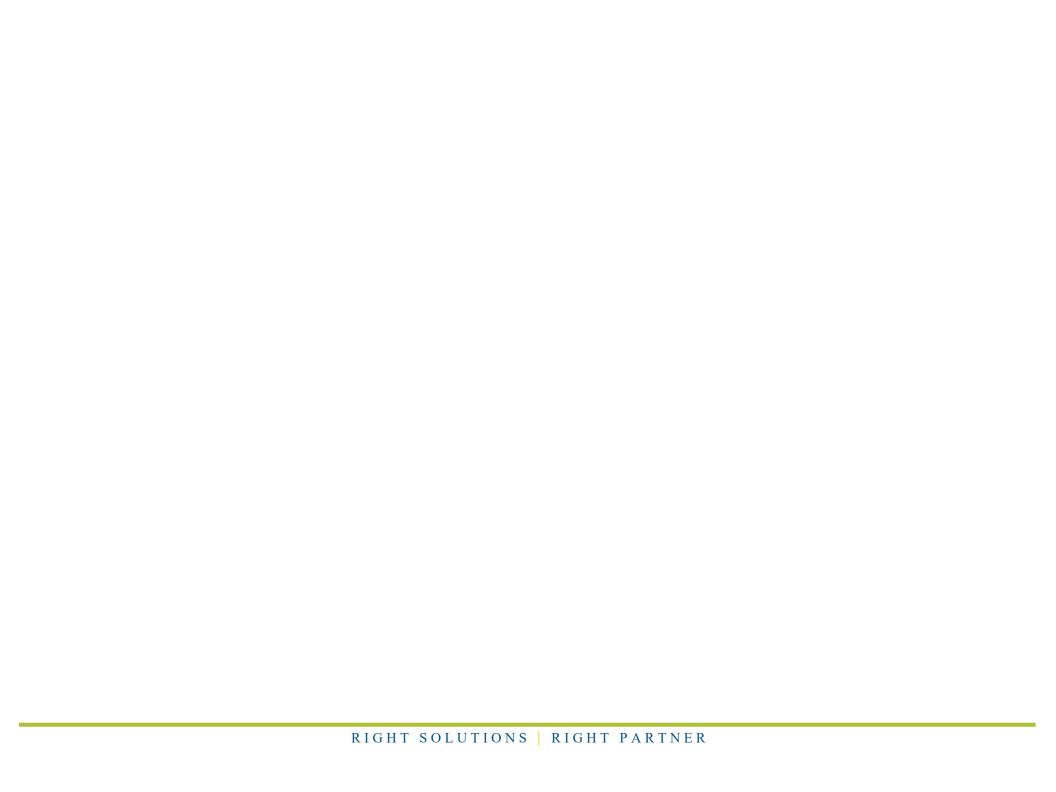
Date Analysis Commenced : 30-Apr-2021

Issue Date : 07-May-2021 18:16

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results


Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

Contact

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Elke Tabora		Inorganics, Calgary, Alberta	
Gloria Chan	Lab Analyst	Metals, Burnaby, British Columbia	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
James Diacon	Laboratory Analyst	Metals, Calgary, Alberta	
Jorden Fanson	Analyst	Inorganics, Calgary, Alberta	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia	
Naeun Kim	Analyst	Inorganics, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Saron Kim	Analyst	Metals, Burnaby, British Columbia	
Shirley Li		Inorganics, Calgary, Alberta	

Page : 3 of 7
Work Order : CG2101142

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

pH units	pH units
NTU	nephelometric turbidity units
mV	millivolts
mg/L	milligrams per litre
meq/L	milliequivalents per litre
μS/cm	Microsiemens per centimetre
μg/L	micrograms per litre
%	percent
-	No Unit
Unit	Description

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).
RRV	Reported result verified by repeat analysis.

Page : 4 of 7
Work Order : CG2101142
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water Client sample ID (Matrix: Water)						RG_TRIP_WS_L AEMP_LCO_20 21-04_NP	 	
	Client sampling date / time			29-Apr-2021 08:30	29-Apr-2021 10:00	 		
Analyte	CAS Number	Method	LOR	Unit	CG2101142-001	CG2101142-002	 	
					Result	Result	 	
Physical Tests								
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	185	<1.0	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	9.6	<1.0	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	195	<1.0	 	
conductivity		E100	2.0	μS/cm	821	<2.0	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	444	<0.50	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	487	474	 	
pH		E108	0.10	pH units	8.34	5.38	 	
solids, total dissolved [TDS]		E162	10	mg/L	545	<10	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.3	<1.0	 	
turbidity		E121	0.10	NTU	1.54	<0.10	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0187	0.0096 RRV	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	10.7	<0.10	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.177	<0.020	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	8.24	<0.0050	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0032	<0.0020	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	210	<0.30	 	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50		 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	 	
Ion Balance								
anion sum		EC101	0.10	meq/L	9.17	<0.10	 	
cation sum		EC101	0.10	meq/L	9.25	<0.10	 	

Page : 5 of 7
Work Order : CG2101142
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water Client sample IE (Matrix: Water)					RG_LIDCOM_W S_LAEMP_LCO _2021-04_NP	RG_TRIP_WS_L AEMP_LCO_20 21-04_NP	 	
		Client sampling date / time				29-Apr-2021 10:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2101142-001	CG2101142-002	 	
Ion Balance					Result	Result	 	
ion balance (cations/anions ratio)		EC101	0.010	%	101	100	 	
ion balance (cation-anion difference)		EC101	0.010	%	0.434	<0.010	 	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0312	<0.0030	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00022	<0.00010	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00019	<0.00010	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0632	<0.00010	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	0.015	<0.010	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.120	<0.0050	 	
calcium, total	7440-70-2	E420	0.050	mg/L	108	<0.050	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00020	<0.00010	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	0.033	<0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0402	<0.0010	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	45.7	<0.0050	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00509	<0.00010	 	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00237	<0.000050	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00363	<0.00050	 	
potassium, total	7440-09-7	E420	0.050	mg/L	1.31	<0.050	 	
selenium, total	7782-49-2	E420	0.050	μg/L	33.8	<0.050	 	
silicon, total	7440-21-3	E420	0.10	mg/L	2.24	<0.10	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, total	17341-25-2	E420	0.050	mg/L	7.45	<0.050	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.209	<0.00020	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	77.0	<0.50	 	

Page : 6 of 7
Work Order : CG2101142
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water			Cli	ient sample ID	RG_LIDCOM_W	RG_TRIP_WS_L		
(Matrix: Water)					S_LAEMP_LCO _2021-04_NP	AEMP_LCO_20 21-04_NP		
		Client sampling date / time				29-Apr-2021 10:00		
Analyte	CAS Number	Method	LOR	Unit	CG2101142-001	CG2101142-002		
Total Metals					Result	Result		
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010		
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010		
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00060 DLM	<0.00030		
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00332	<0.000010		
vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00060	<0.00050		
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0047	<0.0030		
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0017			
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00022			
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00012			
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0654			
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020			
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050			
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.013			
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.105			
calcium, dissolved	7440-70-2	E421	0.050	mg/L	100	<0.050		
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010			
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10			
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020			
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010			
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050			
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0396			
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	47.1	<0.0050		
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00237			
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050			
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00229			
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00375			
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.41	<0.050		
selenium, dissolved	7782-49-2	E421	0.050	μg/L	34.6			
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.14			

Page : 7 of 7
Work Order : CG2101142
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)	Client sample ID					RG_TRIP_WS_L AEMP_LCO_20 21-04_NP	 	
		Client sampling date / time		29-Apr-2021 08:30	29-Apr-2021 10:00	 		
Analyte	CAS Number	Method	LOR	Unit	CG2101142-001	CG2101142-002	 	
					Result	Result	 	
Dissolved Metals								
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010		 	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	8.08	<0.050	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.229		 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	81.4		 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010		 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010		 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030		 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00321		 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050		 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0042		 	
dissolved mercury filtration location		EP509	-	-	Field		 	
dissolved metals filtration location		EP421	-	-	Field	Laboratory	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2101142** Page : 1 of 14

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cait Good
 Account Manager
 : Lyudmyla Shvets

Address : 421 Pine Avenue Address : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5

 Telephone
 : 250 425 8202
 Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 30-Apr-2021 09:40

C-O-C number : Regional Effects Program

Sampler : Rick Smit

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 2 of 14
Work Order : CG2101142

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: × =	Holding time exce	edance ; •	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / P	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E298	29-Apr-2021	06-May-2021		8 days	✓	06-May-2021	28 days	1 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_TRIP_WS_LAEMP_LCO_2021-04_NP	E298	29-Apr-2021	06-May-2021		8 days	✓	06-May-2021	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E235.Br-L	29-Apr-2021					30-Apr-2021	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE	E005 D. I	00 4 0004						00.1		,
RG_TRIP_WS_LAEMP_LCO_2021-04_NP	E235.Br-L	29-Apr-2021					30-Apr-2021	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE	E235.CI-L	29-Apr-2021					30-Apr-2021	20 days	O dovo	1
RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E235.CI-L	29-Apr-2021					30-Apr-2021	28 days	2 days	•
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG TRIP WS LAEMP LCO 2021-04 NP	E235.CI-L	29-Apr-2021					30-Apr-2021	28 days	2 days	1
NG_TRIP_WG_LAEIWIP_LGG_2021-04_NP	LZ55.OFL	23-Apr-2021					30-Apr-2021	20 days	2 uays	•
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace HDPE	Level)									
RG LIDCOM WS LAEMP LCO 2021-04 NP	E378-U	29-Apr-2021					30-Apr-2021	3 days	2 days	✓
1.0_LIBOOM_170_LILINII _LOO_2021-04_141	20,00						30 / 151 2021	3 44,5	_ 44,5	•

 Page
 : 3 of 14

 Work Order
 : CG2101142

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Method Sampling Date Extraction / Preparation Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Actual Rec Actual Date **Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)** HDPE RG_TRIP_WS_LAEMP_LCO_2021-04_NP E378-U 29-Apr-2021 30-Apr-2021 3 days ✓ 2 days Anions and Nutrients: Fluoride in Water by IC HDPE ✓ RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP E235.F 29-Apr-2021 30-Apr-2021 28 days 2 days ----Anions and Nutrients: Fluoride in Water by IC **HDPE** E235.F 30-Apr-2021 28 days 2 days ✓ RG_TRIP_WS_LAEMP_LCO_2021-04_NP 29-Apr-2021 Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG LIDCOM WS LAEMP LCO 2021-04 NP E235.NO3-L 29-Apr-2021 30-Apr-2021 3 days 2 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 29-Apr-2021 30-Apr-2021 ✓ RG_TRIP_WS_LAEMP_LCO_2021-04_NP 3 days 2 days Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE E235.NO2-L ✓ RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP 29-Apr-2021 30-Apr-2021 3 days 2 days Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_TRIP_WS_LAEMP_LCO_2021-04_NP E235.NO2-L 29-Apr-2021 30-Apr-2021 ✓ 3 days 2 days Anions and Nutrients : Sulfate in Water by IC **HDPE** ✓ RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP E235.SO4 29-Apr-2021 30-Apr-2021 28 days 2 days Anions and Nutrients : Sulfate in Water by IC HDPE RG TRIP WS LAEMP LCO 2021-04 NP E235.SO4 29-Apr-2021 30-Apr-2021 28 days 2 days ✓

 Page
 : 4 of 14

 Work Order
 : CG2101142

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

viatrix: water					L v	aldation. • -	Holding time exce	cuarioc , .	- *************************************	riolaling rill		
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation		Analysis					
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval		
			Date	Rec	Actual		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Rec	Actual			
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)												
Amber glass total (sulfuric acid)												
RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E318	29-Apr-2021	04-May-2021		5 days	✓	04-May-2021	28 days	1 days	✓		
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)												
Amber glass total (sulfuric acid)												
RG_TRIP_WS_LAEMP_LCO_2021-04_NP	E318	29-Apr-2021	04-May-2021		5 days	✓	04-May-2021	28 days	1 days	✓		
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)												
Amber glass total (sulfuric acid)												
RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E372-U	29-Apr-2021	06-May-2021		7 days	✓	06-May-2021	28 days	1 days	✓		
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)												
Amber glass total (sulfuric acid)	E070 II	00 4 0004	00 Mari 0004		7		00.140004	00.1	4 1	,		
RG_TRIP_WS_LAEMP_LCO_2021-04_NP	E372-U	29-Apr-2021	06-May-2021		7 days	✓	06-May-2021	28 days	1 days	✓		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)												
HDPE dissolved (nitric acid)	E421.Cr-L	29-Apr-2021	03-May-2021		5 days	✓	03-May-2021	400	1 days	✓		
RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E421.01-L	29-Apr-2021	03-May-2021		5 days	•	03-May-2021	180	Tuays	•		
								days				
Dissolved Metals : Dissolved Mercury in Water by CVAAS												
Glass vial dissolved (hydrochloric acid) RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E509	29-Apr-2021	05-May-2021		7 days	✓	05-May-2021	28 days	1 days	✓		
NO_LIDOOM_WO_LALIMI _LOO_2021-04_INI	2003	25-7 (\$1-2021	00-Way-2021		7 days	·	00-Way-2021	20 days	1 days	•		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS												
HDPE dissolved (nitric acid)												
RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E421	29-Apr-2021	03-May-2021		5 days	✓	03-May-2021	180	1 days	✓		
		·	,				,	days	,			
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS												
HDPE dissolved (nitric acid)												
RG_TRIP_WS_LAEMP_LCO_2021-04_NP	E421	29-Apr-2021	05-May-2021		6 days	✓	05-May-2021	180	1 days	✓		
								days				
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low	Level)											
Amber glass dissolved (sulfuric acid)												
RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E358-L	29-Apr-2021	06-May-2021		8 days	✓	06-May-2021	28 days	1 days	✓		

Page : 5 of 14 Work Order : CG2101142

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: water						raidation. • –	Holding time exce	cuarice, .	_ vviti iii	Holding Till	
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval	
			Date	Rec	Actual		,	Rec	Actual		
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combust	ion (Low Level)										
Amber glass total (sulfuric acid)											
RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E355-L	29-Apr-2021	06-May-2021		8 days	✓	06-May-2021	28 days	1 days	✓	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combust	ion (Low Level)										
Amber glass total (sulfuric acid)										,	
RG_TRIP_WS_LAEMP_LCO_2021-04_NP	E355-L	29-Apr-2021	06-May-2021		8 days	✓	06-May-2021	28 days	1 days	✓	
Physical Tests : Acidity by Titration							I				
HDPE RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E283	29-Apr-2021					04-May-2021	14 days	6 days	√	
No_EBBOOM_WO_ENEMI	2200	20 7 (5) 2021					01 May 2021	i i dayo	o dayo		
Physical Tests : Acidity by Titration							<u> </u>				
HDPE											
RG_TRIP_WS_LAEMP_LCO_2021-04_NP	E283	29-Apr-2021					04-May-2021	14 days	6 days	✓	
Physical Tests : Alkalinity Species by Titration											
HDPE											
RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E290	29-Apr-2021					04-May-2021	14 days	6 days	✓	
Physical Tests : Alkalinity Species by Titration				I			I		l		
HDPE RG_TRIP_WS_LAEMP_LCO_2021-04_NP	E290	29-Apr-2021					04-May-2021	14 days	6 days	✓	
NG_TNIF_WS_LALIWIF_LOO_2021-04_NF	L230	23-Apr-2021					04-Way-2021	14 days	0 days	•	
Physical Tests : Conductivity in Water											
HDPE											
RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E100	29-Apr-2021					04-May-2021	28 days	6 days	✓	
							-		-		
Physical Tests : Conductivity in Water											
HDPE											
RG_TRIP_WS_LAEMP_LCO_2021-04_NP	E100	29-Apr-2021					04-May-2021	28 days	6 days	✓	
Physical Tests : ORP by Electrode											
HDPE	E405	20. 4 = = 2004					07 May 2004		400 h	4-	
RG_TRIP_WS_LAEMP_LCO_2021-04_NP	E125	29-Apr-2021					07-May-2021	0.34	188 hrs	# EHTR-FM	
								hrs		EDIK-FIV	

 Page
 : 6 of 14

 Work Order
 : CG2101142

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Analyte Group Method Sampling Date Extraction / Preparation Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date **Holding Times** Eval Rec Actual Rec Actual Date Physical Tests: ORP by Electrode HDPE E125 07-May-2021 189 hrs RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP 29-Apr-2021 0.34 EHTR-FM hrs Physical Tests : pH by Meter HDPE RG_TRIP_WS_LAEMP_LCO_2021-04_NP E108 29-Apr-2021 04-May-2021 0.25 121 hrs ---hrs EHTR-FM Physical Tests : pH by Meter **HDPE** E108 122 hrs RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP 29-Apr-2021 04-May-2021 0.25 EHTR-FM hrs **Physical Tests: TDS by Gravimetry** HDPE RG_TRIP_WS_LAEMP_LCO_2021-04_NP E162 29-Apr-2021 05-May-2021 7 days 6 days **Physical Tests: TDS by Gravimetry** HDPE E162 29-Apr-2021 ✓ RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP 05-May-2021 7 days 7 days Physical Tests: TSS by Gravimetry (Low Level) HDPE [TSS-WB] E160-L ✓ RG_TRIP_WS_LAEMP_LCO_2021-04_NP 29-Apr-2021 05-May-2021 7 days 6 days Physical Tests: TSS by Gravimetry (Low Level) HDPE [TSS-WB] RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP E160-L 29-Apr-2021 05-May-2021 7 days ✓ 7 days **Physical Tests: Turbidity by Nephelometry** HDPE ✓ RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP E121 29-Apr-2021 01-May-2021 3 days 2 days **Physical Tests: Turbidity by Nephelometry** HDPE E121 01-May-2021 3 days ✓ RG_TRIP_WS_LAEMP_LCO_2021-04_NP 29-Apr-2021 2 days

Page : 7 of 14
Work Order : CG2101142

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

wattix. water					L.	aldation. • -	Holding time excel	cuarioc , .	- *************************************	riolaling rill
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid) RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E420.Cr-L	29-Apr-2021					03-May-2021	180 days	5 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid) RG_TRIP_WS_LAEMP_LCO_2021-04_NP	E420.Cr-L	29-Apr-2021					03-May-2021	180 days	5 days	✓
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved) RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E508-L	29-Apr-2021					07-May-2021	28 days	9 days	✓
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved) RG_TRIP_WS_LAEMP_LCO_2021-04_NP	E508-L	29-Apr-2021					07-May-2021	28 days	9 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP	E420	29-Apr-2021					03-May-2021	180 days	5 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_TRIP_WS_LAEMP_LCO_2021-04_NP	E420	29-Apr-2021					03-May-2021	180 days	5 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

Page : 8 of 14
Work Order : CG2101142

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			0	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	190701	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	189851	1	20	5.0	5.0	√
Ammonia by Fluorescence	E298	192160	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	188795	1	5	20.0	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	188796	1	5	20.0	5.0	√
Conductivity in Water	E100	189850	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	190046	1	4	25.0	5.0	√
Dissolved Mercury in Water by CVAAS	E509	191556	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	190045	2	11	18.1	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	192298	1	15	6.6	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	188493	1	20	5.0	5.0	√
Fluoride in Water by IC	E235.F	188793	1	5	20.0	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	188797	1	5	20.0	5.0	√
Nitrite in Water by IC (Low Level)	E235.NO2-L	188798	1	5	20.0	5.0	1
ORP by Electrode	E125	192847	1	20	5.0	5.0	1
pH by Meter	E108	189849	1	20	5.0	5.0	√
Sulfate in Water by IC	E235.SO4	188794	1	5	20.0	5.0	1
TDS by Gravimetry	E162	191138	1	20	5.0	5.0	√
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	189392	1	9	11.1	5.0	1
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	189675	1	20	5.0	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	193036	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	189393	1	18	5.5	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	192300	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	191248	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	188935	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	190701	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	189851	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	192160	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	188795	1	5	20.0	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	188796	1	5	20.0	5.0	✓
Conductivity in Water	E100	189850	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	190046	1	4	25.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	191556	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	190045	1	11	9.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	192298	1	15	6.6	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	188493	1	20	5.0	5.0	1

 Page
 : 9 of 14

 Work Order
 : CG2101142

TSS by Gravimetry (Low Level)

Turbidity by Nephelometry

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	188793	1	5	20.0	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	188797	1	5	20.0	5.0	<u> </u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	188798	1	5	20.0	5.0	<u> </u>
ORP by Electrode	E125	192847	1	20	5.0	5.0	<u> </u>
oH by Meter	E108	189849	1	20	5.0	5.0	
Sulfate in Water by IC	E235.SO4	188794	1	5	20.0	5.0	<u> </u>
TDS by Gravimetry	E162	191138	1	20	5.0	5.0	<u> </u>
Fotal Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	189392	1	9	11.1	5.0	<u>√</u>
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	189675	1	20	5.0	5.0	<u> </u>
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	193036	1	20	5.0	5.0	<u> </u>
Total Metals in Water by CRC ICPMS	E420	189393	1	18	5.5	5.0	
Fotal Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	192300	1	16	6.2	5.0	<u> </u>
Fotal Phosphorus by Colourimetry (Ultra Trace)	E372-U	191248	1	20	5.0	5.0	
rss by Gravimetry (Low Level)	E160-L	191133	1	20	5.0	5.0	
urbidity by Nephelometry	E121	188935	1	20	5.0	5.0	
Method Blanks (MB)							
Acidity by Titration	E283	190701	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	189851	1	20	5.0	5.0	
Ammonia by Fluorescence	E298	192160	1	20	5.0	5.0	
Bromide in Water by IC (Low Level)	E235.Br-L	188795	1	5	20.0	5.0	
Chloride in Water by IC (Low Level)	E235.CI-L	188796	1	5	20.0	5.0	<u>√</u>
Conductivity in Water	E100	189850	1	20	5.0	5.0	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	190046	1	4	25.0	5.0	
Dissolved Mercury in Water by CVAAS	E509	191556	1	20	5.0	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	190045	1	11	9.0	5.0	<u>√</u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	192298	1	15	6.6	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	188493	1	20	5.0	5.0	
Fluoride in Water by IC	E235.F	188793	1	5	20.0	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	188797	1	5	20.0	5.0	
Nitrite in Water by IC (Low Level)	E235.NO2-L	188798	1	5	20.0	5.0	√
Sulfate in Water by IC	E235.SO4	188794	1	5	20.0	5.0	√
TDS by Gravimetry	E162	191138	1	20	5.0	5.0	<u>√</u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	189392	1	9	11.1	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	189675	1	20	5.0	5.0	<u>√</u>
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	193036	1	20	5.0	5.0	√
Total Metals in Water by CRC ICPMS	E420	189393	1	18	5.5	5.0	<u>√</u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	192300	1	16	6.2	5.0	<u> </u>
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	191248	1	20	5.0	5.0	<u> </u>
	======		-		F ^		-

E160-L

E121

191133

188935

1

20

20

5.0

5.0

5.0

5.0

Page : 10 of 14 Work Order : CG2101142

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Width. Water		Lvaladi	on Qo nega	crity outside spe	cincultori, -	QO nequency wit	imi opoomoan
Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	192160	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	188795	1	5	20.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	188796	1	5	20.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	190046	1	4	25.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	191556	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	190045	1	11	9.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	192298	1	15	6.6	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	188493	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	188793	1	5	20.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	188797	1	5	20.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	188798	1	5	20.0	5.0	✓
Sulfate in Water by IC	E235.SO4	188794	1	5	20.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	189392	1	9	11.1	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	189675	1	20	5.0	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	193036	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	189393	1	18	5.5	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	192300	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	191248	1	20	5.0	5.0	√

Page : 11 of 14
Work Order : CG2101142

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
	Calgary - Environmental			at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
Trushidita ha Nambalamatan	0 7	\A/-4	ADUA 0400 D (pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			scatter under defined conditions.
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the
				platinum metal-reference electrode employed, measured in mV. For high accuracy test
	Calgary - Environmental			results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
	Colores Forders and a			filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
	_ 192			filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Outros Francisco de la la			detection.
Chlorida in Water build (Lovel avel)	Calgary - Environmental	\A/-4	EDA 200 4 (
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			detection.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
·				detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
I with a te in water by 10 (Low Level)	E235.NO3-L	vvater	Li A 300.1 (mod)	detection.
	Calgary - Environmental			dottolion.
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3
	Calgary - Environmental			
	Jaigary - Environmental			

Page : 12 of 14 Work Order : CG2101142

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
Ammonia by Fluorescence	E298	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	alkalinity values. Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
	Calgary - Environmental			
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 13 of 14 Work Order : CG2101142

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by	EP355	Water		D (T.110 ()
Combustion	Calgary - Environmental			Preparation for Total Organic Carbon by Combustion
Combustion Preparation for Dissolved Organic Carbon for Combustion		Water	APHA 5310 B (mod)	Preparation for Total Organic Carbon by Combustion Preparation for Dissolved Organic Carbon
Preparation for Dissolved Organic Carbon for	Calgary - Environmental EP358		APHA 5310 B (mod) APHA 4500-P E (mod).	
Preparation for Dissolved Organic Carbon for Combustion	Calgary - Environmental EP358 Calgary - Environmental EP372	Water	, ,	Preparation for Dissolved Organic Carbon

Page : 14 of 14 Work Order : CG2101142

Client : Teck Coal Limited

QUALITY CONTROL REPORT

Work Order Page :CG2101142 : 1 of 22

Client : Teck Coal Limited Laboratory : Calgary - Environmental

Contact : Cait Good **Account Manager** : Lyudmyla Shvets Address

Address :421 Pine Avenue : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5

Laboratory Department

Telephone :250 425 8202 Telephone :+1 403 407 1800 Project : REGIONAL EFFECTS PROGRAM **Date Samples Received** :30-Apr-2021 09:40

PO **Date Analysis Commenced** : 30-Apr-2021 : VPO00748510

C-O-C number : Regional Effects Program Issue Date :07-May-2021 18:16

Sampler : Rick Smit

Position

Site

No. of samples received : 2 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

: Teck Coal Master Quote

Signatories

Signatories

Quote number

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Elke Tabora		Inorganics, Calgary, Alberta	
Gloria Chan	Lab Analyst	Metals, Burnaby, British Columbia	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
James Diacon	Laboratory Analyst	Metals, Calgary, Alberta	
Jorden Fanson	Analyst	Inorganics, Calgary, Alberta	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia	
Naeun Kim	Analyst	Inorganics, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Saron Kim	Analyst	Metals, Burnaby, British Columbia	

 Page
 : 3 of 22

 Work Order
 : CG2101142

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 4 of 22

 Work Order
 : CG2101142

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

ub-Matrix: Water							Labora	atory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 188935)										
CG2101126-021	Anonymous	turbidity		E121	0.10	NTU	26.3	26.0	1.15%	15%	
Physical Tests (QC	Lot: 189849)										
CG2101136-001	Anonymous	pH		E108	0.10	pH units	8.19	8.20	0.122%	4%	
Physical Tests (QC	Lot: 189850)										
CG2101136-001	Anonymous	conductivity		E100	2.0	μS/cm	1390	1380	0.648%	10%	
Physical Tests (QC	Lot: 189851)										
CG2101136-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	352	425	18.8%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	352	348	0.972%	20%	
Physical Tests (QC	Lot: 190701)										
CG2101126-021	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	68.1	67.5	0.885%	20%	
Physical Tests (QC	L ot: 191138)										
CG2101126-021	Anonymous	solids, total dissolved [TDS]		E162	40	mg/L	3040	3060	0.557%	20%	
Physical Tests (QC	Lot: 192847)					-					
CG2101126-027	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	354	354	0.00%	15%	
Anions and Nutrion	ts (QC Lot: 188493)										
CG2101136-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0016	0.0015	0.0002	Diff <2x LOR	
	,	prisopriato, eraio , alecentea (ae :)			0.00.0	9			******		
Anions and Nutrien CG2101142-002	ts (QC Lot: 188793) RG TRIP WS LAEMP LC	fluoride	16984-48-8	E235.F	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
002101142 002	O_2021-04_NP	nuonue	10001 10 0	2200.1	0.020	mg/L	-0.020	-0.020		Biii Excort	
Anions and Nutrien	ts (QC Lot: 188794)										
CG2101142-002	RG_TRIP_WS_LAEMP_LC O_2021-04_NP	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	<0.30	<0.30	0	Diff <2x LOR	
nions and Nutrien	ts (QC Lot: 188795)										
CG2101142-002	RG_TRIP_WS_LAEMP_LC O_2021-04_NP	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
nions and Nutrien	ts (QC Lot: 188796)										
CG2101142-002	RG_TRIP_WS_LAEMP_LC O_2021-04_NP	chloride	16887-00-6	E235.CI-L	0.10	mg/L	<0.10	<0.10	0	Diff <2x LOR	
nions and Nutrien	ts (QC Lot: 188797)										
CG2101142-002	RG_TRIP_WS_LAEMP_LC O 2021-04 NP	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	

Page : 5 of 22
Work Order : CG2101142
Client : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Anions and Nutrien	ts (QC Lot: 188798) - c	ontinued									
CG2101142-002	RG_TRIP_WS_LAEMP_LC O_2021-04_NP	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 189675)										
CG2101128-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 191248)										
CG2101126-021	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 192160)										
CG2101126-021	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0500	mg/L	1.21	1.22	0.321%	20%	
Organic / Inorganic	Carbon (QC Lot: 19229	18)									
CG2101128-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.81	1.02	0.21	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 19230	(0)									
CG2101128-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	1.91	1.84	0.07	Diff <2x LOR	
Fotal Metals (QC Lo	ot: 189392)										
CG2101125-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00013	0.00012	0.000010	Diff <2x LOR	
otal Metals (QC Lo	of: 189393)										
CG2101125-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0139	0.0131	0.0008	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00106	0.00100	5.01%	20%	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00025	0.00025	0.000004	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0668	0.0652	2.47%	20%	
		beryllium, total	7440-41-7	E420	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.016	0.015	0.0004	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0050	mg/L	0.0982 µg/L	0.0000957	2.57%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	65.3	63.7	2.55%	20%	
		cobalt, total	7440-48-4	E420	0.10	mg/L	0.23 μg/L	0.00023	0.0000002	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00520	0.00473	0.00046	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000192	0.000193	0.0000007	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0452	0.0443	1.95%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	42.8	41.5	3.10%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00844	0.00831	1.60%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00304	0.00294	0.00010	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.79	1.71	4.95%	20%	
		selenium, total	7782-49-2	E420	0.050	mg/L	206 µg/L	0.208	0.903%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	0.67	0.66	0.003	Diff <2x LOR	
		Silicon, total	1440-21-3	L-720	0.10	mg/L	0.07	0.00	0.003	Dill >ZX LOR	

 Page
 : 6 of 22

 Work Order
 : CG2101142

 Client
 : Teck Coal Limited

Sub-Matrix: Water						mg/L <0.000010					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit					Qualifie
Total Metals (QC Lo	ot: 189393) - continued										
CG2101125-001	Anonymous	silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	17341-25-2	E420	0.050	mg/L	2.82	2.79	1.14%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.0962	0.0942	2.13%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	62.7	63.4	1.14%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00039	0.00049	0.00010	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00383	0.00378	1.45%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00057	0.00062	0.00005	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0066	0.0067	0.0001	Diff <2x LOR	
Total Metals (QC Lo	ot: 193036)									-	
CG2101128-001	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 µg/L	0.58	0.08	Diff <2x LOR	
Dissolved Metals (QC Lot: 190045)										
CG2101126-027	Anonymous	zinc, dissolved	7440-66-6	E421	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
CG2101126-027	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0020	mg/L	0.0025	<0.0020	0.0005	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00020	mg/L	0.00033	0.00028	0.00005	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00020	mg/L	0.00950	0.00920	3.31%	20%	
		beryllium, dissolved	7440-41-7	E421	0.040	mg/L	<0.040 µg/L	<0.000040	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.020	mg/L	0.099	0.097	0.002	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0100	mg/L	<0.0100 µg/L	<0.0000100	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.100	mg/L	496	491	1.11%	20%	
		cobalt, dissolved	7440-48-4	E421	0.20	mg/L	26.4 μg/L	0.0252	4.56%	20%	
		copper, dissolved	7440-50-8	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.020	mg/L	2.76	2.60	5.97%	20%	
		lead, dissolved	7439-92-1	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0020	mg/L	0.122	0.121	0.884%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0100	mg/L	266	249	6.66%	20%	
		manganese, dissolved	7439-96-5	E421	0.00020	mg/L	0.684	0.652	4.81%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000100	mg/L	0.000588	0.000614	0.000026	Diff <2x LOR	
		nickel, dissolved	7440-02-0	E421	0.00100	mg/L	0.129	0.122	5.04%	20%	
		potassium, dissolved	7440-09-7	E421	0.100	mg/L	12.8	12.3	4.42%	20%	
		selenium, dissolved	7782-49-2	E421	0.100	mg/L	<0.100 µg/L	0.000144	0.000044	Diff <2x LOR	
		silicon, dissolved	7440-21-3	E421	0.100	mg/L	3.56	3.45	3.01%	20%	
		Sincolly allowers at									

Page : 7 of 22
Work Order : CG2101142
Client : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	ог) кероп		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Dissolved Metals (C	QC Lot: 190045) - contin	ued									
CG2101126-027	Anonymous	silver, dissolved	7440-22-4	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.100	mg/L	8.27	7.76	6.29%	20%	
		strontium, dissolved	7440-24-6	E421	0.00040	mg/L	0.630	0.626	0.536%	20%	
		sulfur, dissolved	7704-34-9	E421	1.00	mg/L	583	584	0.203%	20%	
		thallium, dissolved	7440-28-0	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000020	mg/L	0.0338	0.0333	1.53%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
issolved Metals (C	, , , , , , , , , , , , , , , , , , ,								,		
CG2101126-027	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00020	mg/L	0.00120	0.00108	0.00012	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 190813)										
CG2101142-002	RG_TRIP_WS_LAEMP_LC O_2021-04_NP	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.050		<0.050	<0.050	0	Diff <2x LOR	

Page : 8 of 22
Work Order : CG2101142
Client : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 190813) - contin	ued									
CG2101142-002	RG_TRIP_WS_LAEMP_LC O 2021-04 NP	strontium, dissolved	7440-24-6	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 191556)										
CG2101126-025	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Page : 9 of 22
Work Order : CG2101142
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 188935)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 189850)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 189851)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 190701)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 191133)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 191138)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 188493)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 188793)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 188794)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 188795)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 188796)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 188797)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 188798)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 189675)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 191248)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 192160)					

Page : 10 of 22
Work Order : CG2101142
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
nions and Nutrients (QCLot: 1921	·					
mmonia, total (as N)	7664-41-7 I	E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon(QCLo	· · · · · · · · · · · · · · · · · · ·					
arbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon(QCLo	: 192300)					
arbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 189392)						
hromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 189393)						
lluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
intimony, total	7440-36-0 I	E420	0.0001	mg/L	<0.00010	
rsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
eryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
sismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8	E420	0.01	mg/L	<0.010	
admium, total	7440-43-9	E420	0.000005	mg/L	<0.0000050	
alcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
obalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
opper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6	E420	0.01	mg/L	<0.010	
ead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
thium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
ickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
otassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
elenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
ilicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
ilver, total	7440-22-4	E420	0.00001	mg/L	<0.00010	
odium, total	17341-25-2	E420	0.05	mg/L	<0.050	
trontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
ulfur, total	7704-34-9		0.5	mg/L	<0.50	
hallium, total	7440-28-0		0.00001	mg/L	<0.00010	
in, total	7440-31-5		0.0001	mg/L	<0.00010	
itanium, total	7440-32-6		0.0003	mg/L	<0.00030	

Page : 11 of 22
Work Order : CG2101142
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 189393) - co	ntinued					
ıranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Fotal Metals (QCLot: 193036)						
mercury, total	7439-97-6	E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 190045)						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
ooron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
nolybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
ilver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
hallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
in, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
itanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	

Page : 12 of 22
Work Order : CG2101142
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 190045) - conti	nued				
rinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 190046)					
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 190813)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
oron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
nagnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
nanganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
nolybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
odium, dissolved	17341-25-2 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
hallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.00010	
in, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
itanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
ıranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
ranadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	

Page : 13 of 22
Work Order : CG2101142
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 191556) - continued					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.0000050	

Page : 14 of 22 Work Order : CG2101142

: Teck Coal Limited Client

: REGIONAL EFFECTS PROGRAM Project

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Physical Tests (OCLot: 188935)	Sub-Matrix: Water						Laboratory Con	trol Sample (LCS)	Report	
Physical Tosts (OCLot: 188935)						Spike	Recovery (%)	Recovery	Limits (%)	
Description Physical Tests (OCLot: 189849) Physical Tests (OCLot: 189849) Physical Tests (OCLot: 189849) Physical Tests (OCLot: 189850) Physical Tests (OCLot: 189750) Physical Tests (OCLot: 189750) Physical Tests (OCLot: 191130) Physical Tests (OCLot: 18100) Physical	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (OCLot: 189849) pt	Physical Tests (QCLot: 188935)									
Physical Tests (QCLot: 189850) Physical Tests (QCLot: 189850) Physical Tests (QCLot: 189850) Physical Tests (QCLot: 189851) acidary (as CaCO3) Physical Tests (QCLot: 189701) acidary (as CaCO3) Physical Tests (QCLot: 189701) acidary (as CaCO3) Physical Tests (QCLot: 19130) Physical Tests (QCLot: 19130) The CaCO3 acidary (as CaCO3) Physical Tests (QCLot: 191130) The CaCO3 acidary (as CaCO3) Physical Tests (QCLot: 191130) The CaCO3 acidary (as CaCO3) Physical Tests (QCLot: 191130) The CaCO3 acidary (as CaCO3) The CaCo3 acidar	turbidity		E121	0.1	NTU	200 NTU	100	85.0	115	
Physical Tests (QCLot: 189850)	Physical Tests (QCLot: 189849)									
	рН		E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 189851) aiklainily, lotal (as CaCO3)	Physical Tests (QCLot: 189850)									
Physical Tests (QCLot: 190701)	conductivity		E100	1	μS/cm	146.9 μS/cm	104	90.0	110	
Physical Tests (QCLot: 190701) acidity (ac QCC03)	Physical Tests (QCLot: 189851)									
Physical Tests (QCLot: 191133)	alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	103	85.0	115	
Physical Tests (QCLot: 191133) solids, total suspended [TSS]	Physical Tests (QCLot: 190701)									
E160-L 1 mg/L 150 mg/L 97.7 85.0 115	acidity (as CaCO3)		E283	2	mg/L	50 mg/L	98.2	85.0	115	
Physical Tests (QCLot: 191138) solids, total dissolved (TDS) — E162 10 mg/L 1000 mg/L 98.7 85.0 115 — Physical Tests (QCLot: 192847) oxidation-reduction potential (QRP) — E125 — mV 220 mV 102 95.4 104 — Anions and Nutrients (QCLot: 188493) phosphate, orthor, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L 0.1 mg/L 94.0 80.0 120 — Anions and Nutrients (QCLot: 188793) fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 90.2 90.0 110 — Anions and Nutrients (QCLot: 188794) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 96.0 90.0 110 — Anions and Nutrients (QCLot: 188795) bronide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 109 85.0 115 — Anions and Nutrients (QCLot: 188796) chloride 16887-00-6 E235.NO3-L 0.1 mg/L 100 mg/L 96.4 90.0 110 — Anions and Nutrients (QCLot: 188797) intrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 97.4 90.0 110 — Anions and Nutrients (QCLot: 188798) intrate (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 — Anions and Nutrients (QCLot: 188798) intrate (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 — Anions and Nutrients (QCLot: 188798)	Physical Tests (QCLot: 191133)									
E162 10 mg/L 1000 mg/L 98.7 85.0 115	solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	97.7	85.0	115	
E162 10 mg/L 1000 mg/L 98.7 85.0 115	Physical Tests (QCLot: 191138)									
Anions and Nutrients (QCLot: 188493) Anions and Nutrients (QCLot: 188793) Horizon and Nutrients (QCLot: 188795) Anions and Nutrients (QCLot: 188796) Anions and Nutrients (QCLot: 188796) Anions and Nutrients (QCLot: 188797) Italia (as N) It	solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	98.7	85.0	115	
Anions and Nutrients (QCLot: 188493) phosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L 0.1 mg/L 94.0 80.0 120 Anions and Nutrients (QCLot: 188793) fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 90.2 90.0 110 Anions and Nutrients (QCLot: 188794) sulfate (as SO4) 14808-79-8 E235.Br-L 0.05 mg/L 0.5 mg/L 100 mg/L 96.0 90.0 110 Anions and Nutrients (QCLot: 188795) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 100 mg/L 96.4 90.0 110 Anions and Nutrients (QCLot: 188796) chloride 16887-00-6 E235.Cr-L 0.1 mg/L 100 mg/L 96.4 90.0 110 Anions and Nutrients (QCLot: 188797) mitrite (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 97.4 90.0 110 Anions and Nutrients (QCLot: 188798) mitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 188798) mitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 188798) mitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110	Physical Tests (QCLot: 192847)									
Anions and Nutrients (QCLot: 188794) Anions and Nutrients (QCLot: 188794) Builde (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 0.5 mg/L 0.5 mg/L 199 85.0 115 Anions and Nutrients (QCLot: 188795) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 100 mg/L 96.4 90.0 110 Anions and Nutrients (QCLot: 188796) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 96.4 90.0 110 Anions and Nutrients (QCLot: 188797) mitrate (as N) 14797-55-8 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 188798) mitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 188798) mitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110	oxidation-reduction potential [ORP]		E125		mV	220 mV	102	95.4	104	
Anions and Nutrients (QCLot: 188794) Anions and Nutrients (QCLot: 188794) Builde (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 0.5 mg/L 0.5 mg/L 199 85.0 115 Anions and Nutrients (QCLot: 188795) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 100 mg/L 96.4 90.0 110 Anions and Nutrients (QCLot: 188796) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 96.4 90.0 110 Anions and Nutrients (QCLot: 188797) mitrate (as N) 14797-55-8 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 188798) mitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 188798) mitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110										
Anions and Nutrients (QCLot: 188793) fluoride	Anions and Nutrients (QCLot: 188493)									
Fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 90.2 90.0 110	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.1 mg/L	94.0	80.0	120	
Anions and Nutrients (QCLot: 188794) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 96.0 90.0 110 Anions and Nutrients (QCLot: 188795) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 109 85.0 115 Anions and Nutrients (QCLot: 188796) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 96.4 90.0 110 Anions and Nutrients (QCLot: 188797) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 97.4 90.0 110 Anions and Nutrients (QCLot: 188798) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 188798)	Anions and Nutrients (QCLot: 188793)									
sulfate (as SO4) 14808-79-8 E235.SO4	fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	90.2	90.0	110	
Anions and Nutrients (QCLot: 188795) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 109 85.0 115 Anions and Nutrients (QCLot: 188796) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 96.4 90.0 110 Anions and Nutrients (QCLot: 188797) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 97.4 90.0 110 Anions and Nutrients (QCLot: 188798) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 188798) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110	Anions and Nutrients (QCLot: 188794)									
Anions and Nutrients (QCLot: 188796) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 96.4 90.0 110 Anions and Nutrients (QCLot: 188797) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 97.4 90.0 110 Anions and Nutrients (QCLot: 188798) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 188798) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 189675)	sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	96.0	90.0	110	
Anions and Nutrients (QCLot: 188796) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 96.4 90.0 110 Anions and Nutrients (QCLot: 188797) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 97.4 90.0 110 Anions and Nutrients (QCLot: 188798) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 189675)	Anions and Nutrients (QCLot: 188795)									
Anions and Nutrients (QCLot: 188797) Anions and Nutrients (QCLot: 188797) Anions and Nutrients (QCLot: 188798) Itrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 189675)	bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	109	85.0	115	
Anions and Nutrients (QCLot: 188797) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 97.4 90.0 110 Anions and Nutrients (QCLot: 188798) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 189675)	Anions and Nutrients (QCLot: 188796)									
Anions and Nutrients (QCLot: 188798) nitrite (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 97.4 90.0 110 Anions and Nutrients (QCLot: 188798) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 189675)	chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	96.4	90.0	110	
Anions and Nutrients (QCLot: 188798) nitrite (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 97.4 90.0 110 Anions and Nutrients (QCLot: 188798) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 189675)	Anions and Nutrients (QCLot: 188797)									
nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 189675)	nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	97.4	90.0	110	
nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 189675)	Anions and Nutrients (QCLot: 188798)									
	nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	97.7	90.0	110	
	Anions and Nutrients (QCLot: 189675)									
	Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	82.7	75.0	125	
Anions and Nutrients (QCLot: 191248)	Anions and Nutrients (QCLot: 191248)									1

 Page
 : 15 of 22

 Work Order
 : CG2101142

 Client
 : Teck Coal Limited

Anions and Nutrients (OCLot: 191248) - continued Anions and Nutrients (OCLot: 192160) Anions and Nutrients (OCLot: 192280) Anions anions (OCLot: 192380) Anions anions (OC	Sub-Matrix: Water					Laboratory Co	ntrol Sample (LCS)	Report	
Anions and Nutrients (OCLot: 191248) - continued Anions and Nutrients (OCLot: 192160) Anions and Nutrients (OCLot: 192280) Anions anions anions (OCLot: 192280) Anions					Spike	Recovery (%)	Recovery	Limits (%)	
### Propriess 172-14-0 1872-14	Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 192460) T664-41-7 E298 0.005 mgL 0.1 mgL 108 85.0 115	Anions and Nutrients (QCLot: 191248)	- continued							
Organic / Inorganic Carbon (QCLot: 192298) 288 0.005 mg/L 0.1 mg/L 108 85.0 115	phosphorus, total	7723-14-0 E372-U	0.002	mg/L	8.32 mg/L	97.7	80.0	120	
Organic / Inorganic Carbon (QCLot: 192298) 288 0.005 mg/L 0.1 mg/L 108 85.0 115	Anions and Nutrients (QCLot: 192160)								
Carbon, disalved organic Dick) E38-L 0.5 mg/L 10 mg/L 88.1 80.0 120 mg/L	ammonia, total (as N)		0.005	mg/L	0.1 mg/L	108	85.0	115	
Carbon, disalved organic Dick) E38-L 0.5 mg/L 10 mg/L 88.1 80.0 120 mg/L									
Carbon, disalved organic Dick) E38-L 0.5 mg/L 10 mg/L 88.1 80.0 120 mg/L	Organic / Inorganic Carbon (QCLot: 19	92298)							
Carbon, total organic (TOC)	carbon, dissolved organic [DOC]		0.5	mg/L	10 mg/L	88.1	80.0	120	
Carbon, total organic (TOC)	Organic / Inorganic Carbon (QCLot: 19	92300)							
Total Michaels (QCLot: 189393) Total Michaels (QCLot: 18938) Total Michaels (QCLot: 18938) Total Michaels (QCLot: 18938) T	carbon, total organic [TOC]		0.5	mg/L	10 mg/L	95.2	80.0	120	
Total Michaels (QCLot: 189393) Total Michaels (QCLot: 18938) Total Michaels (QCLot: 18938) Total Michaels (QCLot: 18938) T									
Total Michaels (QCLot: 189393) Total Michaels (QCLot: 18938) Total Michaels (QCLot: 18938) Total Michaels (QCLot: 18938) T	Total Metals (QCLot: 189392)								
aluminum, total 7429-90-5 E420 0.003 mg/L 2 mg/L 100.0 80.0 120	chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	97.7	80.0	120	
aluminum, total 7429-90-5 E420 0.003 mg/L 2 mg/L 100.0 80.0 120	Total Metals (QCLot: 189393)								
arsenic, total 7440-38-2 E420 0.0001 mg/L 1 mg/L 98.6 80.0 120 barium, total 7440-39-3 E420 0.0001 mg/L 0.25 mg/L 101 80.0 120 berylium, total 7440-41-7 E420 0.00002 mg/L 0.1 mg/L 101 80.0 120 berylium, total 7440-41-7 E420 0.00005 mg/L 1 mg/L 103 80.0 120 bimuth, total 7440-89-9 E420 0.0005 mg/L 1 mg/L 100 80.0 120 cadmium, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 100 80.0 120 cadmium, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 102 80.0 120 cadmium, total 7440-43-9 E420 0.00005 mg/L 50 mg/L 104 80.0 120 calcium, total 7440-44-4 E420 0.001 mg/L 0.25 mg/L 100 80.0 120 cooper, total 7440-84-4 E420 0.0001 mg/L 0.25 mg/L 100 80.0 120 cooper, total 7440-84-8 E420 0.0005 mg/L 0.25 mg/L 99.6 80.0 120 cooper, total 749-89-8 E420 0.0005 mg/L 0.5 mg/L 99.6 80.0 120 liead, total 7439-89-6 E420 0.0005 mg/L 0.5 mg/L 99.6 80.0 120 magnesium, total 7439-89-6 E420 0.0005 mg/L 0.5 mg/L 99.9 80.0 120 magnesium, total 7439-89-7 E420 0.0005 mg/L 0.5 mg/L 99.9 80.0 120 magnesium, total 7439-89-7 E420 0.0005 mg/L 0.5 mg/L 99.9 80.0 120 magnesium, total 7439-89-7 E420 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 mangnesium, total 7439-89-7 E420 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 mangnesium, total 7439-99-7 E420 0.0005 mg/L 0.5 mg/L 106 80.0 120 mangnesium, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 106 80.0 120 manglesium, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 101 80.0 120 manglesium, total 7440-02-1 E420 0.0005 mg/L 0.5 mg/L 101 80.0 120 manglesium, total 7440-02-1 E420 0.0005 mg/L 0.5 mg/L 101 80.0 120 manglesium, total 7440-02-1 E420 0.0005 mg/L 0.5 mg/L 101 80.0 120 manglesium, total 7440-02-1 E420 0.0005 mg/L 0.5 mg/L 101 80.0 120 manglesium, total 7440-02-1 E420 0.0005 mg/L 100 80.0 120 manglesium, total 7440-02-1 E420 0.0005 mg/L 100 80.0 120	aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	100.0	80.0	120	
barlum, total 7440-39-3 [420 0.0001 mg/L 0.25 mg/L 101 80.0 120	antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	108	80.0	120	
beryllium, total 7440-41-7 E420 0.00002 mg/L 0.1 mg/L 101 80.0 120	arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	98.6	80.0	120	
bismuth, total 7440-69-9 E420 0.00005 mg/L 1 mg/L 103 80.0 120	barium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	101	80.0	120	
boron, total 7440-42-8 E420 0.01 mg/L 1 mg/L 100 80.0 120	beryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	101	80.0	120	
cadmium, total 7440-43-9 E420 0.000005 mg/L 0.1 mg/L 102 80.0 120	bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	103	80.0	120	
calcium, total 7440-70-2 E420 0.05 mg/L 50 mg/L 104 80.0 120	boron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	100	80.0	120	
cobalt, total 7440-48-4 420 0.0001 mg/L 0.25 mg/L 100 80.0 120	cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	102	80.0	120	
copper, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 99.6 80.0 120	calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	104	80.0	120	
iron, total 7439-89-6 E420 0.01 mg/L 1 mg/L 98.2 80.0 120	cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	100	80.0	120	
lead, total 7439-92-1 E420 0.0005 mg/L 0.5 mg/L 98.8 80.0 120	copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	99.6	80.0	120	
lithium, total 7439-93-2 E420 0.001 mg/L 0.25 mg/L 102 80.0 120 magnesium, total 7439-95-4 E420 0.005 mg/L 50 mg/L 99.9 80.0 120 magnesium, total 7439-96-5 E420 0.0001 mg/L 0.25 mg/L 99.2 80.0 120 molybdenum, total 7439-98-7 E420 0.00005 mg/L 0.25 mg/L 106 80.0 120 molybdenum, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 100 80.0 120 molybdenum, total 7440-09-7 E420 0.005 mg/L 50 mg/L 101 80.0 120 molybdenum, total 7440-09-7 E420 0.05 mg/L 50 mg/L 101 80.0 120 molybdenum, total 7440-21-3 E420 0.0005 mg/L 1 mg/L 98.5 80.0 120 molybdenum, total 7440-21-3 E420 0.0005 mg/L 1 mg/L 10	iron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	98.2	80.0	120	
magnesium, total 7439-95-4 E420 0.005 mg/L 50 mg/L 99.9 80.0 120 manganese, total 7439-96-5 E420 0.0001 mg/L 0.25 mg/L 99.2 80.0 120 molybdenum, total 7439-98-7 E420 0.00005 mg/L 0.25 mg/L 106 80.0 120 nickel, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 100 80.0 120 potassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 101 80.0 120 selenium, total 7782-49-2 E420 0.0005 mg/L 1 mg/L 98.5 80.0 120 selenium, total 7440-21-3 E420 0.0005 mg/L 1 mg/L 10 mg/	lead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	98.8	80.0	120	
manganese, total 7439-96-5 E420 0.0001 mg/L 0.25 mg/L 99.2 80.0 120 molybdenum, total 7439-98-7 E420 0.00005 mg/L 0.25 mg/L 106 80.0 120 nickel, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 100 80.0 120 potassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 101 80.0 120 selenium, total 7782-49-2 E420 0.0005 mg/L 1 mg/L 98.5 80.0 120 selenium, total 7440-21-3 E420 0.0005 mg/L 10 mg/L 10 mg/L 98.5 80.0 120	lithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	102	80.0	120	
molybdenum, total 7439-98-7 E420 0.00005 mg/L 0.25 mg/L 106 80.0 120 nickel, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 100 80.0 120 potassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 101 80.0 120 selenium, total 7782-49-2 E420 0.0005 mg/L 1 mg/L 98.5 80.0 120 selenium, total 7440-21-3 E420 0.1 mg/L 10 mg/L 10 mg/L 101 80.0 120	magnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	99.9	80.0	120	
nickel, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 100 80.0 120 potassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 101 80.0 120 selenium, total 7782-49-2 E420 0.0005 mg/L 1 mg/L 98.5 80.0 120 silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 10 mg/L 101 80.0 120	manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	99.2	80.0	120	
potassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 101 80.0 120 selenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 98.5 80.0 120 silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 10 mg/L 101 80.0 120	molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	106	80.0	120	
selenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 98.5 80.0 120 silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 101 80.0 120	nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	100	80.0	120	
silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 101 80.0 120	potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	101	80.0	120	
	selenium, total	7782-49-2 E420	0.00005	mg/L	1 mg/L	98.5	80.0	120	
	silicon, total	7440-21-3 E420	0.1	mg/L	10 mg/L	101	80.0	120	
	silver, total	7440-22-4 E420	0.00001	mg/L	_	103	80.0	120	
	sodium, total	17341-25-2 E420	0.05	mg/L	_	106	80.0	120	
strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 103 80.0 120	strontium, total	7440-24-6 E420	0.0002	mg/L	0.25 mg/L	103	80.0	120	
	sulfur, total	7704-34-9 E420	0.5	mg/L	,		80.0	120	

Page : 16 of 22
Work Order : CG2101142
Client : Teck Coal Limited

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 189393) - conti	nued								
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	100.0	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	103	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	96.2	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	105	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	100	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	99.6	80.0	120	
Total Metals (QCLot: 193036)									
mercury, total	7439-97-6	E508-L	0.5	ng/L	5 ng/L	104	80.0	120	
Dissolved Metals (QCLot: 190045)									
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	101	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	104	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	98.9	80.0	120	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	98.0	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	102	80.0	120	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	109	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	97.3	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	95.7	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	95.6	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	102	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	98.5	80.0	120	
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	103	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	101	80.0	120	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	97.6	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	99.8	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	103	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	96.9	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	100	80.0	120	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	103	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	98.5	80.0	120	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	99.0	80.0	120	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	101	80.0	120	
sodium, dissolved	17341-25-2		0.05	mg/L	50 mg/L	106	80.0	120	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	110	80.0	120	
sulfur, dissolved	7704-34-9		0.5	mg/L	50 mg/L	107	80.0	120	
thallium, dissolved	7440-28-0		0.00001	mg/L	1 mg/L	104	80.0	120	
tin, dissolved	7440-31-5		0.0001	mg/L	0.5 mg/L	95.9	80.0	120	
,			1	J.	0.0 1119/2	00.0	00.0	120	

 Page
 : 17 of 22

 Work Order
 : CG2101142

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike Recovery (%) Recovery Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Dissolved Metals (QCLot: 190045) - conti	nued									
titanium, dissolved	7440-32-6 E	Ξ421	0.0003	mg/L	0.25 mg/L	103	80.0	120		
uranium, dissolved	7440-61-1 E	E421	0.00001	mg/L	0.005 mg/L	98.9	80.0	120		
vanadium, dissolved	7440-62-2 E	E421	0.0005	mg/L	0.5 mg/L	101	80.0	120		
zinc, dissolved	7440-66-6 E	E421	0.001	mg/L	0.5 mg/L	101	80.0	120		
Dissolved Metals (QCLot: 190046)										
chromium, dissolved	7440-47-3 E	E421.Cr-L	0.0001	mg/L	0.25 mg/L	101	80.0	120		
Dissolved Metals (QCLot: 190813)										
aluminum, dissolved	7429-90-5 E	E421	0.001	mg/L	2 mg/L	97.0	80.0	120		
antimony, dissolved	7440-36-0 E		0.0001	mg/L	1 mg/L	98.7	80.0	120		
arsenic, dissolved	7440-38-2 E	E421	0.0001	mg/L	1 mg/L	92.7	80.0	120		
barium, dissolved	7440-39-3 E	E421	0.0001	mg/L	0.25 mg/L	95.1	80.0	120		
beryllium, dissolved	7440-41-7 E	E421	0.00002	mg/L	0.1 mg/L	109	80.0	120		
bismuth, dissolved	7440-69-9 E	E421	0.00005	mg/L	1 mg/L	97.4	80.0	120		
boron, dissolved	7440-42-8 E	≣ 421	0.01	mg/L	1 mg/L	108	80.0	120		
cadmium, dissolved	7440-43-9 E	≣ 421	0.000005	mg/L	0.1 mg/L	93.2	80.0	120		
calcium, dissolved	7440-70-2 E	E421	0.05	mg/L	50 mg/L	94.6	80.0	120		
cobalt, dissolved	7440-48-4 E	E421	0.0001	mg/L	0.25 mg/L	95.8	80.0	120		
copper, dissolved	7440-50-8 E	E421	0.0002	mg/L	0.25 mg/L	94.1	80.0	120		
iron, dissolved	7439-89-6 E	E421	0.01	mg/L	1 mg/L	99.3	80.0	120		
lead, dissolved	7439-92-1 E	E421	0.00005	mg/L	0.5 mg/L	96.8	80.0	120		
lithium, dissolved	7439-93-2 E	E421	0.001	mg/L	0.25 mg/L	112	80.0	120		
magnesium, dissolved	7439-95-4 E	E421	0.005	mg/L	50 mg/L	97.6	80.0	120		
manganese, dissolved	7439-96-5 E	E421	0.0001	mg/L	0.25 mg/L	96.2	80.0	120		
molybdenum, dissolved	7439-98-7 E	E421	0.00005	mg/L	0.25 mg/L	97.2	80.0	120		
nickel, dissolved	7440-02-0 E	 421	0.0005	mg/L	0.5 mg/L	91.5	80.0	120		
potassium, dissolved	7440-09-7 E	 421	0.05	mg/L	50 mg/L	93.9	80.0	120		
selenium, dissolved	7782-49-2 E	 421	0.00005	mg/L	1 mg/L	87.6	80.0	120		
silicon, dissolved	7440-21-3 E	Ξ421	0.05	mg/L	10 mg/L	96.3	60.0	140		
silver, dissolved	7440-22-4 E	Ξ421	0.00001	mg/L	0.1 mg/L	98.1	80.0	120		
sodium, dissolved	17341-25-2 E	Ξ421	0.05	mg/L	50 mg/L	97.6	80.0	120		
strontium, dissolved	7440-24-6 E	 421	0.0002	mg/L	0.25 mg/L	99.9	80.0	120		
sulfur, dissolved	7704-34-9 E	 421	0.5	mg/L	50 mg/L	99.6	80.0	120		
thallium, dissolved	7440-28-0 E	 421	0.00001	mg/L	1 mg/L	96.7	80.0	120		
tin, dissolved	7440-31-5 E	 421	0.0001	mg/L	0.5 mg/L	95.5	80.0	120		
titanium, dissolved	7440-32-6 E	 421	0.0003	mg/L	0.25 mg/L	91.6	80.0	120		
uranium, dissolved	7440-61-1 E	 421	0.00001	mg/L	0.005 mg/L	94.2	80.0	120		
vanadium, dissolved	7440-62-2 E	E421	0.0005	mg/L	0.5 mg/L	95.8	80.0	120		

Page : 18 of 22
Work Order : CG2101142
Client : Teck Coal Limited

Sub-Matrix: Water						Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Recovery Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Dissolved Metals (QCLot: 190813) - co	ontinued											
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	90.0	80.0	120				
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	96.6	80.0	120				

Page : 19 of 22 Work Order : CG2101142 Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND - Recovery not determined, background level >= 1x spike level.

ub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutr	ients (QCLot: 188493)									
CG2101137-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0456 mg/L	0.05 mg/L	91.3	70.0	130	
Anions and Nutr	ients (QCLot: 188793)									
CG2101142-002	RG_TRIP_WS_LAEMP_LC O_2021-04_NP	fluoride	16984-48-8	E235.F	0.923 mg/L	1 mg/L	92.3	75.0	125	
Anions and Nutr	ients (QCLot: 188794)									
CG2101142-002	RG_TRIP_WS_LAEMP_LC O_2021-04_NP	sulfate (as SO4)	14808-79-8	E235.SO4	92.1 mg/L	100 mg/L	92.1	75.0	125	
Anions and Nutr	ients (QCLot: 188795)									
CG2101142-002	RG_TRIP_WS_LAEMP_LC O_2021-04_NP	bromide	24959-67-9	E235.Br-L	0.494 mg/L	0.5 mg/L	98.8	75.0	125	
Anions and Nutr	ients (QCLot: 188796)									
CG2101142-002	RG_TRIP_WS_LAEMP_LC O_2021-04_NP	chloride	16887-00-6	E235.CI-L	92.4 mg/L	100 mg/L	92.4	75.0	125	
Anions and Nutr	ients (QCLot: 188797)									
CG2101142-002	RG_TRIP_WS_LAEMP_LC O_2021-04_NP	nitrate (as N)	14797-55-8	E235.NO3-L	2.31 mg/L	2.5 mg/L	92.4	75.0	125	
Anions and Nutr	ients (QCLot: 188798)									
CG2101142-002	RG_TRIP_WS_LAEMP_LC O_2021-04_NP	nitrite (as N)	14797-65-0	E235.NO2-L	0.481 mg/L	0.5 mg/L	96.3	75.0	125	
Anions and Nutr	ients (QCLot: 189675)									
CG2101130-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	ND mg/L	2.5 mg/L	ND	70.0	130	
Anions and Nutr	ients (QCLot: 191248)									
CG2101126-022	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0561 mg/L	0.0676 mg/L	83.0	70.0	130	
Anions and Nutr	ients (QCLot: 192160)									
CG2101142-002	RG_TRIP_WS_LAEMP_LC O_2021-04_NP	ammonia, total (as N)	7664-41-7	E298	0.105 mg/L	0.1 mg/L	105	75.0	125	
Organic / Inorga	nic Carbon (QCLot: 1922	298)								
CG2101128-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	28.1 mg/L	23.9 mg/L	117	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 1923	300)								
CG2101128-001	Anonymous	carbon, total organic [TOC]		E355-L	22.7 mg/L	23.9 mg/L	94.8	70.0	130	
otal Metals (QC	Lot: 189392)									
CG2101125-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0373 mg/L	0.04 mg/L	93.2	70.0	130	

Page : 20 of 22
Work Order : CG2101142
Client : Teck Coal Limited

ub-Matrix: Water							Matrix Spike	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
otal Metals (QC	Lot: 189393)									
CG2101125-001	Anonymous	aluminum, total	7429-90-5	E420	0.183 mg/L	0.2 mg/L	91.4	70.0	130	
		antimony, total	7440-36-0	E420	0.0190 mg/L	0.02 mg/L	94.8	70.0	130	
		arsenic, total	7440-38-2	E420	0.0190 mg/L	0.02 mg/L	95.0	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0385 mg/L	0.04 mg/L	96.3	70.0	130	
		bismuth, total	7440-69-9	E420	0.00915 mg/L	0.01 mg/L	91.5	70.0	130	
		boron, total	7440-42-8	E420	0.102 mg/L	0.1 mg/L	102	70.0	130	
		cadmium, total	7440-43-9	E420	0.00389 mg/L	0.004 mg/L	97.2	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0184 mg/L	0.02 mg/L	92.0	70.0	130	
		copper, total	7440-50-8	E420	0.0177 mg/L	0.02 mg/L	88.5	70.0	130	
		iron, total	7439-89-6	E420	1.89 mg/L	2 mg/L	94.5	70.0	130	
		lead, total	7439-92-1	E420	0.0176 mg/L	0.02 mg/L	88.1	70.0	130	
		lithium, total	7439-93-2	E420	0.0910 mg/L	0.1 mg/L	91.0	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0188 mg/L	0.02 mg/L	94.0	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0194 mg/L	0.02 mg/L	97.1	70.0	130	
		nickel, total	7440-02-0	E420	0.0365 mg/L	0.04 mg/L	91.2	70.0	130	
		potassium, total	7440-09-7	E420	3.68 mg/L	4 mg/L	92.1	70.0	130	
		selenium, total	7782-49-2	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		silicon, total	7440-21-3	E420	9.40 mg/L	10 mg/L	94.0	70.0	130	
		silver, total	7440-22-4	E420	0.00386 mg/L	0.004 mg/L	96.6	70.0	130	
		sodium, total	17341-25-2	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.00360 mg/L	0.004 mg/L	90.0	70.0	130	
		tin, total	7440-31-5	E420	0.0197 mg/L	0.02 mg/L	98.6	70.0	130	
		titanium, total	7440-32-6	E420	0.0381 mg/L	0.04 mg/L	95.4	70.0	130	
		uranium, total	7440-61-1	E420	0.00370 mg/L	0.004 mg/L	92.6	70.0	130	
		vanadium, total	7440-62-2	E420	0.0963 mg/L	0.1 mg/L	96.3	70.0	130	
		zinc, total	7440-66-6	E420	0.376 mg/L	0.4 mg/L	94.0	70.0	130	
otal Metals (QC	Lot: 193036)									1
G2101137-001	Anonymous	mercury, total	7439-97-6	E508-L	4.11 ng/L	5 ng/L	82.2	70.0	130	
issolved Metals	(QCLot: 190045)									
G2101126-027	Anonymous	aluminum, dissolved	7429-90-5	E421	0.389 mg/L	0.4 mg/L	97.3	70.0	130	
	•	antimony, dissolved	7440-36-0	E421	0.0393 mg/L	0.04 mg/L	98.2	70.0	130	

Page : 21 of 22
Work Order : CG2101142
Client : Teck Coal Limited

ub-Matrix: Water		Matrix Spike (MS) Report								
					Spike		Recovery (%)	Recovery Limits (%)		
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
ssolved Metal	s (QCLot: 190045) - cor	ntinued								
G2101126-027	Anonymous	arsenic, dissolved	7440-38-2	E421	0.0430 mg/L	0.04 mg/L	107	70.0	130	
		barium, dissolved	7440-39-3	E421	0.0393 mg/L	0.04 mg/L	98.2	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0771 mg/L	0.08 mg/L	96.4	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.0191 mg/L	0.02 mg/L	95.4	70.0	130	
		boron, dissolved	7440-42-8	E421	0.190 mg/L	0.2 mg/L	95.0	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00787 mg/L	0.008 mg/L	98.3	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	8 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0367 mg/L	0.04 mg/L	91.8	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0370 mg/L	0.04 mg/L	92.4	70.0	130	
		iron, dissolved	7439-89-6	E421	3.82 mg/L	4 mg/L	95.6	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0385 mg/L	0.04 mg/L	96.3	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.183 mg/L	0.2 mg/L	91.3	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	2 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.04 mg/L	ND	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0402 mg/L	0.04 mg/L	101	70.0	130	
		nickel, dissolved	7440-02-0	E421	ND mg/L	0.08 mg/L	ND	70.0	130	
		potassium, dissolved	7440-09-7	E421	ND mg/L	8 mg/L	ND	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0906 mg/L	0.08 mg/L	113	70.0	130	
		silicon, dissolved	7440-21-3	E421	18.0 mg/L	20 mg/L	90.3	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00665 mg/L	0.008 mg/L	83.2	70.0	130	
		sodium, dissolved	17341-25-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.04 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	40 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00768 mg/L	0.008 mg/L	96.0	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0393 mg/L	0.04 mg/L	98.2	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0853 mg/L	0.08 mg/L	107	70.0	130	
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.008 mg/L	ND	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.208 mg/L	0.2 mg/L	104	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.779 mg/L	0.8 mg/L	97.4	70.0	130	
ssolved Metal	s (QCLot: 190046)									
G2101126-027	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0807 mg/L	0.08 mg/L	101	70.0	130	
issolved Metal	s (QCLot: 190813)									
G2101142-002	RG_TRIP_WS_LAEMP_LC	aluminum, dissolved	7429-90-5	E421	2.05 mg/L	2 mg/L	103	70.0	130	
	O_2021-04_NP	antimony, dissolved	7440-36-0	E421	0.200 mg/L	0.2 mg/L	100	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.199 mg/L	0.2 mg/L	99.5	70.0	130	
	I	barium, dissolved	7440-39-3	E421	0.197 mg/L	0.2 mg/L	98.3	70.0	130	

 Page
 : 22 of 22

 Work Order
 : CG2101142

 Client
 : Teck Coal Limited

ub-Matrix: Water					Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)	nits (%)	
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
	(QCLot: 190813) - con	tinued									
CG2101142-002	RG_TRIP_WS_LAEMP_LC	beryllium, dissolved	7440-41-7	E421	0.457 mg/L	0.4 mg/L	114	70.0	130		
	O_2021-04_NP	bismuth, dissolved	7440-69-9	E421	0.102 mg/L	0.1 mg/L	102	70.0	130		
		boron, dissolved	7440-42-8	E421	1.16 mg/L	1 mg/L	116	70.0	130		
		cadmium, dissolved	7440-43-9	E421	0.0404 mg/L	0.04 mg/L	101	70.0	130		
		calcium, dissolved	7440-70-2	E421	40.3 mg/L	40 mg/L	101	70.0	130		
		cobalt, dissolved	7440-48-4	E421	0.205 mg/L	0.2 mg/L	102	70.0	130		
		copper, dissolved	7440-50-8	E421	0.204 mg/L	0.2 mg/L	102	70.0	130		
		iron, dissolved	7439-89-6	E421	20.2 mg/L	20 mg/L	101	70.0	130		
		lead, dissolved	7439-92-1	E421	0.204 mg/L	0.2 mg/L	102	70.0	130		
		lithium, dissolved	7439-93-2	E421	1.17 mg/L	1 mg/L	117	70.0	130		
		magnesium, dissolved	7439-95-4	E421	10.0 mg/L	10 mg/L	100	70.0	130		
		manganese, dissolved	7439-96-5	E421	0.203 mg/L	0.2 mg/L	102	70.0	130		
		molybdenum, dissolved	7439-98-7	E421	0.197 mg/L	0.2 mg/L	98.4	70.0	130		
		nickel, dissolved	7440-02-0	E421	0.404 mg/L	0.4 mg/L	101	70.0	130		
		potassium, dissolved	7440-09-7	E421	39.7 mg/L	40 mg/L	99.3	70.0	130		
		selenium, dissolved	7782-49-2	E421	0.398 mg/L	0.4 mg/L	99.4	70.0	130		
		silicon, dissolved	7440-21-3	E421	101 mg/L	100 mg/L	101	70.0	130		
		silver, dissolved	7440-22-4	E421	0.0413 mg/L	0.04 mg/L	103	70.0	130		
		sodium, dissolved	17341-25-2	E421	21.8 mg/L	20 mg/L	109	70.0	130		
		strontium, dissolved	7440-24-6	E421	0.202 mg/L	0.2 mg/L	101	70.0	130		
		sulfur, dissolved	7704-34-9	E421	219 mg/L	200 mg/L	110	70.0	130		
		thallium, dissolved	7440-28-0	E421	0.0403 mg/L	0.04 mg/L	101	70.0	130		
		tin, dissolved	7440-31-5	E421	0.196 mg/L	0.2 mg/L	97.8	70.0	130		
		titanium, dissolved	7440-32-6	E421	0.404 mg/L	0.4 mg/L	101	70.0	130		
		uranium, dissolved	7440-61-1	E421	0.0400 mg/L	0.04 mg/L	100	70.0	130		
		vanadium, dissolved	7440-62-2	E421	1.00 mg/L	1 mg/L	100	70.0	130		
		zinc, dissolved	7440-66-6	E421	4.08 mg/L	4 mg/L	102	70.0	130		
issolved Metals	(QCLot: 191556)										
CG2101126-026	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000969 mg/L	0.0001 mg/L	96.9	70.0	130		

Teck Regional Effects Program TURNAROUND TIME: COC ID: OTHER INFO PROJECT/CLIENT INFO LABORATORY Lab Name ALS Calgary Report Format / Distribution Excel PDF Facility Name Regional Effects Program Lab Contact Lyuda Shyets Email 1: Project Manager Cait Good cait.good@teck.com Email Lyudniyla.Shvets@ALSGlobal.com Email 2: Email cait.good@teck.com Address 2559 29 Street NE Email 3: Address 421 Pine Avenue Email 4: Province BC Email 5: City Calgary Province AB City Sparwood Carta.FroymanParker@teck.com y eler medica mignes se VOB 2G0 Country Canada 1 Postal Code T1 Y 7B5 Country Canada Postal Code Phone Number 250-425-8202 Phone Number 403-407-1800 PO number SAMPLE DETAILS ANALYSIS REQUESTED Filtered - F: Field, L: Lab, FL: Field & Jab, N: Nene É NONE B2SO4 HZSO4 BNO3 HN O3 Hazardous Material (Yes/No) HG-T-U-CVAF-VA ALS_Package TKN/TOC G=Grab C=Com Field Sample Location Time (24hr) Sample ID (sys loc code) Matrix Date Cont 7 × X RG-LIDCOM-WS-LAEMP_LCO 2021-91-NP 08:30 Ġ, Х RG_LIXOM NO 2/04/29 Х 21/04/29 X NO 10:00 G RG TRIP WS-LAEMP LOU-2021-04-NP B6 UDOM WS G WS NO **Environmental Division** G WS NO Calgary Work Order Reference CG2101142 ١Ġ WS NO ÌG WS NO G WS NO ·∫G WS NO G ws NO ws NO ٩G RELINQUISHED BY/AFFILIATION DATE/TIME ACCEPTED BY/AFFILIATION STRUCTIONS 21/04/29 10:31 Fick Smitt./Latic Environmental Telephone: +1 403 407 1800 SERVICE REQUEST (rush - subject to availability) Mobile # Sampler's Name Rick Smitt Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge 21/04/29 10:31 Sampler's Signature Date/Time

For Emergency <1 Day, ASAP or Weekend - Contact ALS

4

WATER CHEMISTRY

ALS Laboratory Report CG2101123 (Finalized May 7, 2021)

CERTIFICATE OF ANALYSIS

Work Order : CG2101123

Client : Teck Coal Limited

Contact : Cait Good

Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone : 250 425 8202

Project : Regional Effects Program

PO : VPO00748510

C-O-C number : Regional Effects Program

Sampler : Rick Smit

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 29-Apr-2021 09:1

Date Samples Received : 29-Apr-2021 09:10

Date Analysis Commenced : 29-Apr-2021

Issue Date : 07-May-2021 17:20

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia	
Elke Tabora		Inorganics, Calgary, Alberta	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Jorden Fanson	Analyst	Inorganics, Calgary, Alberta	
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia	
Naeun Kim	Analyst	Inorganics, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Shirley Li		Inorganics, Calgary, Alberta	

Page : 2 of 6
Work Order : CG2101123
Client : Teck Coal Limited
Project : Regional Effects Program

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

>: greater than.

Page : 3 of 6
Work Order : CG2101123
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	RG_FRUL_WS_ LAEMP_LCO_2 021-04_NP	RG_FO23_WS_ LAEMP_LCO_2 021-04_NP	RG_LI8_WS_LA EMP_LCO_202 1-04_NP	
			Client samp	ling date / time	28-Apr-2021 09:40	28-Apr-2021 11:50	28-Apr-2021 14:20	
Analyte	CAS Number	Method	LOR	Unit	CG2101123-001	CG2101123-002	CG2101123-003	
					Result	Result	Result	
Physical Tests		5000				0.0		
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	189	188	174	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	10.0	10.4	9.6	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	199	199	183	
conductivity		E100	2.0	μS/cm	864	846	796	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	473	454	407	
oxidation-reduction potential [ORP]		E125	0.10	mV	496	490	490	
pH		E108	0.10	pH units	8.35	8.35	8.36	
solids, total dissolved [TDS]		E162	10	mg/L	588	604	506	
solids, total suspended [TSS]		E160-L	1.0	mg/L	2.1	2.0	2.4	
turbidity		E121	0.10	NTU	0.83	0.62	0.31	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0063	0.0098	0.0065	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	2.47	4.41	10.2	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.118	0.145	0.210	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	<0.050	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	13.6	12.0	7.87	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0066	0.0071	0.0037	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0020	0.0028	<0.0020	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	222	217	204	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.83	1.43	1.17	
carbon, total organic [TOC]		E355-L	0.50	mg/L	1.58	1.47	1.27	
Ion Balance								
anion sum		EC101	0.10	meq/L	9.65	9.48	8.76	
cation sum		EC101	0.10	meq/L	9.60	9.27	8.45	

Page : 4 of 6
Work Order : CG2101123
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	RG_FRUL_WS_ LAEMP_LCO_2	RG_FO23_WS_ LAEMP_LCO_2	RG_LI8_WS_LA EMP_LCO_202	
					021-04_NP	021-04_NP	1-04_NP	
			Client samp	ing date / time	28-Apr-2021 09:40	28-Apr-2021 11:50	28-Apr-2021 14:20	
Analyte	CAS Number	Method	LOR	Unit	CG2101123-001	CG2101123-002	CG2101123-003	
					Result	Result	Result	
Ion Balance								
ion balance (cations/anions ratio)		EC101	0.010	%	99.5	97.8	96.5	
ion balance (cation-anion difference)		EC101	0.010	%	0.260	1.12	1.80	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0199	0.0241	0.0098	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00013	0.00014	0.00021	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00012	0.00013	0.00012	
barium, total	7440-39-3	E420	0.00010	mg/L	0.112	0.0948	0.0602	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0.013	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0223	0.0344	0.103	
calcium, total	7440-70-2	E420	0.050	mg/L	112	104	99.4	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00013	0.00021	0.00013	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	0.024	0.024	0.011	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0236	0.0248	0.0370	
magnesium, total	7439-95-4	E420	0.0050	mg/L	47.9	45.0	41.5	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00234	0.00178	0.00244	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	<0.00050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00126	0.00150	0.00229	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00109	0.00132	0.00304	
potassium, total	7440-09-7	E420	0.050	mg/L	1.42	1.34	1.29	
selenium, total	7782-49-2	E420	0.050	μg/L	58.6	51.9	32.9	
silicon, total	7440-21-3	E420	0.10	mg/L	2.02	2.11	2.11	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, total	17341-25-2	E420	0.050	mg/L	2.65	3.57	6.86	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.171	0.182	0.211	
sulfur, total	7704-34-9	E420	0.50	mg/L	87.2	85.4	79.5	
Tanan, 12111	1104-34-9	L 120	0.00	g, =	O	00.1	, , , ,	

Page : 5 of 6
Work Order : CG2101123
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water			Cli	ent sample ID	RG_FRUL_WS_	RG_FO23_WS_	RG_LI8_WS_LA	
(Matrix: Water)					LAEMP_LCO_2 021-04_NP	LAEMP_LCO_2 021-04_NP	EMP_LCO_202 1-04_NP	
			Client sampl	ing date / time	28-Apr-2021 09:40	28-Apr-2021 11:50	28-Apr-2021 14:20	
Analyte	CAS Number	Method	LOR	Unit	CG2101123-001	CG2101123-002	CG2101123-003	
					Result	Result	Result	
Total Metals								
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00060 DLM	<0.00090 DLM	<0.00060 DLM	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00263	0.00269	0.00309	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0.0038	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00012	0.00014	0.00019	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	0.00011	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.113	0.104	0.0598	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	0.010	0.013	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0203	0.0214	0.0692	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	111	108	95.4	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0246	0.0273	0.0383	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	47.6	44.9	40.9	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00070	0.00058	0.00129	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	
molybdenum, dissolved	7439-97-0	E421	0.000050	mg/L	0.00130	0.00158	0.00229	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00107	0.00124	0.00289	
potassium, dissolved	7440-02-0	E421	0.050	mg/L	1.40	1.31	1.25	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	60.6	52.6	32.9	
		E421	0.050		1.94	2.04	2.00	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.94	2.04	2.00	

Page : 6 of 6
Work Order : CG2101123
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water (Matrix: Water)				lient sample ID	RG_FRUL_WS_ LAEMP_LCO_2 021-04 NP	RG_FO23_WS_ LAEMP_LCO_2 021-04 NP	RG_LI8_WS_LA EMP_LCO_202 1-04 NP	
			Client samp	ling date / time	_	28-Apr-2021 11:50	28-Apr-2021 14:20	
Analyte	CAS Number	Method	LOR	Unit	CG2101123-001	CG2101123-002	CG2101123-003	
					Result	Result	Result	
Dissolved Metals								
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	2.64	3.59	6.79	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.163	0.184	0.200	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	85.5	85.4	75.7	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00271	0.00290	0.00307	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0.0026	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL REPORT

Work Order : **CG2101123** Page : 1 of 18

Client : Teck Coal Limited Laboratory : Calgary - Environmental

Contact : Cait Good Account Manager : Lyudmyla Shvets

Address : 421 Pine Avenue Address : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5

; 250 425 8202 Telephone ; +1 403 407 1800

Project : Regional Effects Program Date Samples Received : 29-Apr-2021 09:10

 PO
 : VPO00748510
 Date Analysis Commenced
 : 29-Apr-2021

 C-O-C number
 : Regional Effects Program
 Issue Date
 : 07-May-2021 17:21

Sampler : Rick Smit

Site · ____

Quote number : Teck Coal Master Quote

No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

: 3

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

No. of samples received

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia
Elke Tabora		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Jorden Fanson	Analyst	Inorganics, Calgary, Alberta
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Naeun Kim	Analyst	Inorganics, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Shirley Li		Inorganics, Calgary, Alberta

 Page
 : 2 of 18

 Work Order
 : CG2101123

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Page : 3 of 18 Work Order : CG2101123 : Teck Coal Limited Client Project : Regional Effects Program

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

ub-Matrix: Water				1			245010	atory Duplicate (D		1	
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifi
Physical Tests (QC	Lot: 188427)										
CG2101119-001	Anonymous	turbidity		E121	0.10	NTU	0.90	0.90	0.003	Diff <2x LOR	
Physical Tests (QC	Lot: 189843)										
CG2101120-002	Anonymous	conductivity		E100	2.0	μS/cm	740	727	1.77%	10%	
Physical Tests (QC	Lot: 189844)										
CG2101120-002	Anonymous	pH		E108	0.10	pH units	8.12	8.16	0.491%	4%	
Physical Tests (QC	Lot: 189845)										
CG2101120-002	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	280	288	2.61%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	280	288	2.61%	20%	
Physical Tests (QC	Lot: 190394)										
CG2101119-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	128	123	5	Diff <2x LOR	
Physical Tests (QC	Lot: 190539)										
CG2101120-002	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 191938)										
CG2101120-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	346	333	4.00%	15%	
Anions and Nutrien	ts (QC Lot: 188491)										
CG2101120-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 188787)										
CG2101124-006	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 188788)										
CG2101124-006	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrion	ts (QC Lot: 188789)										
CG2101124-006	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	<0.10	<0.10	0	Diff <2x LOR	
Anions and Nutrion	ts (QC Lot: 188790)					-					
CG2101124-006	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
niono and Nutries	ts (QC Lot: 188791)	- ()				<u> </u>					
CG2101124-006	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
	,	(45 11)			5.5570	9. =	0.00.0	0.00.0			
Anions and Nutrien CG2101124-006	ts (QC Lot: 188792) Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	<0.30	<0.30	0	Diff <2x LOR	
/OZ 10 1 12T-000	, alonymous	Sullate (as 504)	17000-13-0	2200.004	0.50	mg/L	-0.00	-0.00		DIII YEA LOIK	

 Page
 : 4 of 18

 Work Order
 : CG2101123

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualific
Anions and Nutrien	its (QC Lot: 188806) - c	continued									
CG2101120-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.130	0.131	0.001	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 191242)										
CG2101119-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0100	mg/L	0.0188	0.0189	0.0001	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 191313)										
CG2101120-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0129	0.0154	0.0025	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 1909	96)									
CG2101115-002	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 1909	97)									
CG2101123-002	RG_F023_WS_LAEMP_L CO_2021-04_NP	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.43	1.45	0.02	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 1909	98)									
CG2101115-002	Anonymous	carbon, total organic [TOC]		E355-L	5.00	mg/L	38.6	41.4	2.74	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 1909	99)									
CG2101123-002	RG_F023_WS_LAEMP_L CO_2021-04_NP	carbon, total organic [TOC]		E355-L	0.50	mg/L	1.47	1.40	0.08	Diff <2x LOR	
Total Metals (QC L	ot: 188893)										
CG2101095-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00010	<0.00010	0.000005	Diff <2x LOR	
Total Metals (QC L	ot: 188894)										
CG2101095-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0090	0.0114	0.0024	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.108	0.108	0.522%	20%	
		beryllium, total	7440-41-7	E420	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.010	<0.010	0.00006	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0050	mg/L	0.0428 μg/L	0.0000419	0.0000009	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	63.2	61.7	2.40%	20%	
		cobalt, total	7440-48-4	E420	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00613	0.00570	7.41%	20%	
		iron, total	7439-89-6	E420	0.010	mg/L	0.110	0.118	7.14%	20%	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000156	0.000156	0.0000006	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0063	0.0061	0.0001	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	15.6	16.0	2.69%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00911	0.00936	2.71%	20%	
		manganese, total				-					
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00122	0.00120	2.06%	20%	

Page : 5 of 18
Work Order : CG2101123
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
	ot: 188894) - continue	d									
CG2101095-001	Anonymous	potassium, total	7440-09-7	E420	0.050	mg/L	0.669	0.675	0.834%	20%	
		selenium, total	7782-49-2	E420	0.050	mg/L	7.91 µg/L	0.00776	1.86%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.93	2.92	0.614%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	17341-25-2	E420	0.050	mg/L	3.59	3.62	0.862%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.234	0.240	2.42%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	17.9	17.9	0.136%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	0.00019	0.00018	0.000009	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000758	0.000752	0.849%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
Total Metals (QC L	ot: 192102)										
CG2101119-001	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	0.00266 µg/L	2.61	0.05	Diff <2x LOR	
Dissolved Metals (QC Lot: 188921)										
CG2101097-003	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals (OC L of: 188922)										
CG2101097-003	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0013	0.0017	0.0004	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0307	0.0299	2.47%	20%	
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	0.0347 µg/L	0.0000311	0.000036	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	97.5	92.3	5.46%	20%	
		,	7440-70-2	E421	0.030	_		<0.00010	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.00020	mg/L	<0.10 µg/L <0.00020	<0.00010	0	Diff <2x LOR	
		copper, dissolved				mg/L			-		
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0172	0.0162	6.46%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	41.0	40.9	0.407%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00741	0.00726	2.06%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00107	0.000989	7.64%	20%	

 Page
 : 6 of 18

 Work Order
 : CG2101123

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 188922) - coi	ntinued									
CG2101097-003	Anonymous	nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00192	0.00187	0.00005	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.16	1.14	1.77%	20%	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	41.6 μg/L	0.0410	1.46%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.40	1.40	0.0562%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.050	mg/L	0.763	0.755	1.04%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.140	0.130	6.82%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	85.0	84.5	0.661%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00191	0.00184	3.53%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0012	0.0017	0.0005	Diff <2x LOR	
Dissolved Metals (QC Lot: 191151)										
CG2101116-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2101123

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 188427)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 189843)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 189845)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 190388)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 190394)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 190539)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Anions and Nutrients (QCLot: 188491)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 188787)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 188788)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 188789)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 188790)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 188791)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 188792)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 188806)	F040				
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 191242)		0.000			
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 191313)					

Page : 8 of 18
Work Order : CG2101123
Client : Teck Coal Limited
Project : Regional Effects Program

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 191313) - continued					
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCLot: 1	90996)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 1	90997)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 1	90998)					
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 1	90999)					
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 188893)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 188894)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.0000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6	E420	0.01	mg/L	<0.010	
ead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
elenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	17341-25-2	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	

Page : 9 of 18
Work Order : CG2101123
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 188894) - continue	ed					
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
hallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
in, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
ıranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
ranadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Fotal Metals (QCLot: 192102)						
nercury, total	7439-97-6	E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 188921)						
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 188922)						
luminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
ntimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
rsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
eryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
sismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
oron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
obalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
thium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
nagnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
nanganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
nolybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
sickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
otassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
elenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
ilver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	

Page : 10 of 18
Work Order : CG2101123
Client : Teck Coal Limited
Project : Regional Effects Program

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 188922) - continued	ı				
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 191151)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.0000050	

 Page
 : 11 of 18

 Work Order
 : CG2101123

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water			Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 188427)										
turbidity		E121	0.1	NTU	200 NTU	100.0	85.0	115		
Physical Tests (QCLot: 189843)										
conductivity		E100	1	μS/cm	146.9 μS/cm	105	90.0	110		
Physical Tests (QCLot: 189844)										
pH		E108		pH units	7 pH units	99.8	98.6	101		
Physical Tests (QCLot: 189845)										
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	105	85.0	115		
Physical Tests (QCLot: 190388)										
solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	96.2	85.0	115		
Physical Tests (QCLot: 190394)										
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	94.4	85.0	115		
Physical Tests (QCLot: 190539)										
acidity (as CaCO3)		E283	2	mg/L	50 mg/L	104	85.0	115		
Physical Tests (QCLot: 191938)										
oxidation-reduction potential [ORP]		E125		mV	220 mV	102	95.4	104		
Anions and Nutrients (QCLot: 188491)										
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.1 mg/L	106	80.0	120		
Anions and Nutrients (QCLot: 188787)										
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	93.3	90.0	110		
Anions and Nutrients (QCLot: 188788)										
bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	106	85.0	115		
Anions and Nutrients (QCLot: 188789)										
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	96.8	90.0	110		
Anions and Nutrients (QCLot: 188790)										
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	97.5	90.0	110		
Anions and Nutrients (QCLot: 188791)										
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	97.8	90.0	110		
Anions and Nutrients (QCLot: 188792)										
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	96.1	90.0	110		
Anions and Nutrients (QCLot: 188806)									1	
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	81.9	75.0	125		
Anions and Nutrients (QCLot: 191242)										
Amono ana Natricitto (QOLOt. 151242)										

 Page
 : 12 of 18

 Work Order
 : CG2101123

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number M	lethod	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Anions and Nutrients (QCLot: 191242) - c	ontinued									
phosphorus, total	7723-14-0 E	372-U	0.002	mg/L	8.32 mg/L	100	80.0	120		
Anions and Nutrients (QCLot: 191313)										
ammonia, total (as N)	7664-41-7 E	298	0.005	mg/L	0.1 mg/L	102	85.0	115		
Organic / Inorganic Carbon (QCLot: 19099	96)									
carbon, dissolved organic [DOC]	E	358-L	0.5	mg/L	10 mg/L	102	80.0	120		
Organic / Inorganic Carbon (QCLot: 19099	97)									
carbon, dissolved organic [DOC]	E	358-L	0.5	mg/L	10 mg/L	105	80.0	120		
Organic / Inorganic Carbon (QCLot: 19099	98)									
carbon, total organic [TOC]	E	355-L	0.5	mg/L	10 mg/L	119	80.0	120		
Organic / Inorganic Carbon (QCLot: 19099	99)								1	
carbon, total organic [TOC]	E	355-L	0.5	mg/L	10 mg/L	110	80.0	120		
Total Metals (QCLot: 188893)										
chromium, total	7440-47-3 E	420.Cr-L	0.0001	mg/L	0.25 mg/L	99.7	80.0	120		
Total Metals (QCLot: 188894)										
aluminum, total	7429-90-5 E	420	0.003	mg/L	2 mg/L	98.4	80.0	120		
antimony, total	7440-36-0 E	420	0.0001	mg/L	1 mg/L	104	80.0	120		
arsenic, total	7440-38-2 E	420	0.0001	mg/L	1 mg/L	98.8	80.0	120		
barium, total	7440-39-3 E	420	0.0001	mg/L	0.25 mg/L	97.3	80.0	120		
beryllium, total	7440-41-7 E	420	0.00002	mg/L	0.1 mg/L	97.6	80.0	120		
bismuth, total	7440-69-9 E	420	0.00005	mg/L	1 mg/L	104	80.0	120		
boron, total	7440-42-8 E	420	0.01	mg/L	1 mg/L	94.2	80.0	120		
cadmium, total	7440-43-9 E	420	0.000005	mg/L	0.1 mg/L	101	80.0	120		
calcium, total	7440-70-2 E	420	0.05	mg/L	50 mg/L	99.0	80.0	120		
cobalt, total	7440-48-4 E	420	0.0001	mg/L	0.25 mg/L	101	80.0	120		
copper, total	7440-50-8 E	420	0.0005	mg/L	0.25 mg/L	96.6	80.0	120		
iron, total	7439-89-6 E	420	0.01	mg/L	1 mg/L	102	80.0	120		
lead, total	7439-92-1 E	420	0.00005	mg/L	0.5 mg/L	101	80.0	120		
lithium, total	7439-93-2 E	420	0.001	mg/L	0.25 mg/L	96.3	80.0	120		
magnesium, total	7439-95-4 E	420	0.005	mg/L	50 mg/L	96.2	80.0	120		
manganese, total	7439-96-5 E	420	0.0001	mg/L	0.25 mg/L	99.1	80.0	120		
molybdenum, total	7439-98-7 E	420	0.00005	mg/L	0.25 mg/L	102	80.0	120		
nickel, total	7440-02-0 E	420	0.0005	mg/L	0.5 mg/L	99.0	80.0	120		
potassium, total	7440-09-7 E	420	0.05	mg/L	50 mg/L	102	80.0	120		
selenium, total	7782-49-2 E	420	0.00005	mg/L	1 mg/L	102	80.0	120		
silicon, total	7440-21-3 E	420	0.1	mg/L	10 mg/L	104	80.0	120		

Page : 13 of 18
Work Order : CG2101123
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	/ Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier				
Total Metals (QCLot: 188894) - continue	ed												
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	100	80.0	120					
sodium, total	17341-25-2	E420	0.05	mg/L	50 mg/L	101	80.0	120					
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	100	80.0	120					
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	103	80.0	120					
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	101	80.0	120					
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	99.3	80.0	120					
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	93.6	80.0	120					
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	101	80.0	120					
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	99.2	80.0	120					
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	101	80.0	120					
Total Metals (QCLot: 192102)									1				
mercury, total	7439-97-6	E508-L	0.5	ng/L	5 ng/L	107	80.0	120					
Dissolved Metals (QCLot: 188921)													
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	94.8	80.0	120					
Dissolved Metals (QCLot: 188922)													
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	97.6	80.0	120					
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	99.8	80.0	120					
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	96.8	80.0	120					
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	98.2	80.0	120					
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	97.3	80.0	120					
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	97.3	80.0	120					
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	96.3	80.0	120					
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	98.3	80.0	120					
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	98.6	80.0	120					
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	97.9	80.0	120					
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	97.0	80.0	120					
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	99.8	80.0	120					
lead, dissolved	7439-92-1		0.00005	mg/L	0.5 mg/L	96.5	80.0	120					
lithium, dissolved	7439-93-2		0.001	mg/L	0.25 mg/L	97.0	80.0	120					
magnesium, dissolved	7439-95-4		0.005	mg/L	50 mg/L	95.1	80.0	120					
manganese, dissolved	7439-96-5		0.0001	mg/L	0.25 mg/L	97.2	80.0	120					
molybdenum, dissolved	7439-98-7		0.00005	mg/L	0.25 mg/L	98.8	80.0	120					
nickel, dissolved	7440-02-0		0.0005	mg/L	0.5 mg/L	96.8	80.0	120					
potassium, dissolved	7440-09-7		0.05	mg/L	50 mg/L	98.4	80.0	120					
selenium, dissolved	7782-49-2		0.00005	mg/L	1 mg/L	96.8	80.0	120					
silicon, dissolved	7440-21-3		0.000	mg/L	10 mg/L	97.0	80.0	120					
Silicon, dissolved	7440-21-3		0.03	mg/L	10 mg/L	97.0	00.0	120					

Page : 14 of 18
Work Order : CG2101123
Client : Teck Coal Limited
Project : Regional Effects Program

b-Matrix: Water					Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Dissolved Metals (QCLot: 188922) - c	continued											
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	100	80.0	120				
sodium, dissolved	17341-25-2	E421	0.05	mg/L	50 mg/L	99.6	80.0	120				
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	95.5	80.0	120				
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	92.8	80.0	120				
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	98.4	80.0	120				
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	93.7	80.0	120				
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	93.2	80.0	120				
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	101	80.0	120				
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	98.4	80.0	120				
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	106	80.0	120				
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	100	80.0	120				

Page : 15 of 18 Work Order : CG2101123 Client : Teck Coal Limited Project : Regional Effects Program

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND - Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water			Matrix Spike (MS) Report								
					Sp	ike	Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Anions and Nuti	rients (QCLot: 188491)										
CG2101120-003	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0475 mg/L	0.05 mg/L	95.0	70.0	130		
Anions and Nuti	rients (QCLot: 188787)										
CG2101124-006	Anonymous	fluoride	16984-48-8	E235.F	0.912 mg/L	1 mg/L	91.2	75.0	125		
Anions and Nuti	rients (QCLot: 188788)										
CG2101124-006	Anonymous	bromide	24959-67-9	E235.Br-L	0.563 mg/L	0.5 mg/L	113	75.0	125		
Anions and Nuti	rients (QCLot: 188789)										
CG2101124-006	Anonymous	chloride	16887-00-6	E235.CI-L	92.4 mg/L	100 mg/L	92.4	75.0	125		
Anions and Nuti	rients (QCLot: 188790)										
CG2101124-006	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.31 mg/L	2.5 mg/L	92.4	75.0	125		
Anions and Nuti	rients (QCLot: 188791)										
CG2101124-006	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.482 mg/L	0.5 mg/L	96.4	75.0	125		
Anions and Nuti	rients (QCLot: 188792)										
CG2101124-006	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	92.3 mg/L	100 mg/L	92.3	75.0	125		
Anions and Nuti	rients (QCLot: 188806)										
CG2101120-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.62 mg/L	2.5 mg/L	105	70.0	130		
Anions and Nuti	rients (QCLot: 191242)										
CG2101119-003	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0648 mg/L	0.0676 mg/L	95.9	70.0	130		
Anions and Nuti	rients (QCLot: 191313)										
CG2101124-006	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0986 mg/L	0.1 mg/L	98.6	75.0	125		
Organic / Inorga	nic Carbon (QCLot: 190	996)									
CG2101115-002	Anonymous	carbon, dissolved organic [DOC]		E358-L	22.6 mg/L	23.9 mg/L	94.5	70.0	130		
Organic / Inorga	nic Carbon (QCLot: 190	997)									
CG2101123-002	RG_FO23_WS_LAEMP_LC O_2021-04_NP	carbon, dissolved organic [DOC]		E358-L	26.3 mg/L	23.9 mg/L	110	70.0	130		
Organic / Inorga	nic Carbon (QCLot: 190	998)									
CG2101115-002	Anonymous	carbon, total organic [TOC]		E355-L	ND mg/L	23.9 mg/L	ND	70.0	130		
Organic / Inorga	nic Carbon (QCLot: 190	999)									
CG2101123-002	RG_FO23_WS_LAEMP_LC O 2021-04 NP	carbon, total organic [TOC]		E355-L	26.2 mg/L	23.9 mg/L	110	70.0	130		

Page : 16 of 18
Work Order : CG2101123
Client : Teck Coal Limited
Project : Regional Effects Program

ub-Matrix: Water						-		e (MS) Report		
					Spi		Recovery (%)		Limits (%)	
boratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
otal Metals (QC	Lot: 188893)									
G2101095-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0393 mg/L	0.04 mg/L	98.2	70.0	130	
otal Metals (QC	Lot: 188894)									
G2101095-001	Anonymous	aluminum, total	7429-90-5	E420	0.195 mg/L	0.2 mg/L	97.7	70.0	130	
		antimony, total	7440-36-0	E420	0.0194 mg/L	0.02 mg/L	97.0	70.0	130	
		arsenic, total	7440-38-2	E420	0.0196 mg/L	0.02 mg/L	98.1	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0376 mg/L	0.04 mg/L	94.1	70.0	130	
		bismuth, total	7440-69-9	E420	0.00957 mg/L	0.01 mg/L	95.7	70.0	130	
		boron, total	7440-42-8	E420	0.099 mg/L	0.1 mg/L	98.7	70.0	130	
		cadmium, total	7440-43-9	E420	0.00412 mg/L	0.004 mg/L	103	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0193 mg/L	0.02 mg/L	96.6	70.0	130	
		copper, total	7440-50-8	E420	0.0181 mg/L	0.02 mg/L	90.7	70.0	130	
		iron, total	7439-89-6	E420	1.92 mg/L	2 mg/L	96.2	70.0	130	
		lead, total	7439-92-1	E420	0.0191 mg/L	0.02 mg/L	95.3	70.0	130	
		lithium, total	7439-93-2	E420	0.0921 mg/L	0.1 mg/L	92.1	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0190 mg/L	0.02 mg/L	95.1	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0199 mg/L	0.02 mg/L	99.7	70.0	130	
		nickel, total	7440-02-0	E420	0.0384 mg/L	0.04 mg/L	95.9	70.0	130	
		potassium, total	7440-09-7	E420	3.98 mg/L	4 mg/L	99.4	70.0	130	
		selenium, total	7782-49-2	E420	0.0407 mg/L	0.04 mg/L	102	70.0	130	
		silicon, total	7440-21-3	E420	9.19 mg/L	10 mg/L	91.9	70.0	130	
		silver, total	7440-22-4	E420	0.00392 mg/L	0.004 mg/L	98.0	70.0	130	
		sodium, total	17341-25-2	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	20.5 mg/L	20 mg/L	103	70.0	130	
		thallium, total	7440-28-0	E420	0.00379 mg/L	0.004 mg/L	94.7	70.0	130	
		tin, total	7440-31-5	E420	0.0196 mg/L	0.02 mg/L	98.2	70.0	130	
		titanium, total	7440-32-6	E420	0.0376 mg/L	0.04 mg/L	94.0	70.0	130	
		uranium, total	7440-61-1	E420	0.00402 mg/L	0.004 mg/L	100	70.0	130	
		vanadium, total	7440-62-2	E420	0.0998 mg/L	0.1 mg/L	99.8	70.0	130	
		zinc, total	7440-66-6	E420	0.389 mg/L	0.4 mg/L	97.2	70.0	130	
tal Metals (QC	Lot: 192102)									
G2101119-002	Anonymous	mercury, total	7439-97-6	E508-L	4.82 ng/L	5 ng/L	96.4	70.0	130	

Page : 17 of 18
Work Order : CG2101123
Client : Teck Coal Limited
Project : Regional Effects Program

Laboratory sample Client sample ID
Dissolved Metals (QCLot: 188921) - continued CG2101097-003 Anonymous Chromium, dissolved 7440-47-3 E421.Cr-L 0.0372 mg/L 0.04 mg/L 93.0 70.0 130
CG2101097-003 Anonymous chromium, dissolved 7440-47-3 E421.Cr-L 0.0372 mg/L 0.04 mg/L 93.0 70.0 130 Dissolved Metals (QCLot: 188922) CG2101097-003 Anonymous aluminum, dissolved 7429-90-5 E421 0.187 mg/L 0.2 mg/L 93.6 70.0 130 antimony, dissolved 7440-36-0 E421 0.0192 mg/L 0.02 mg/L 96.0 70.0 130 arsenic, dissolved 7440-38-2 E421 0.0191 mg/L 0.02 mg/L 95.6 70.0 130 barium, dissolved 7440-39-3 E421 ND mg/L 0.02 mg/L ND 70.0 130 beryllium, dissolved 7440-41-7 E421 0.0388 mg/L 0.04 mg/L 92.0 70.0 130 bismuth, dissolved 7440-69-9 E421 0.00789 mg/L 0.01 mg/L 78.9 70.0 130 boron, dissolved 7440-42-8 E421 0.093 mg/L 0.1 mg/L 93.0 70.0 130 cadmium, dissolved 7440-43-9 E421 0.00378 mg/L 0.004 mg/L 94.5 70.0 130 cadmium, dissolved 7440-40-9 E421 ND mg/L 4 mg/L ND 70.0 130 calcium, dissolved 7440-70-2 E421 ND mg/L 4 mg/L ND 70.0 130 calcium, dissolved 7440-84-4 E421 ND mg/L 4 mg/L ND 70.0 130
Dissolved Metals (QCLot: 188922) CG2101097-003 Anonymous aluminum, dissolved 7429-90-5 E421 0.187 mg/L 0.2 mg/L 93.6 70.0 130 antimony, dissolved 7440-36-0 E421 0.0192 mg/L 0.02 mg/L 96.0 70.0 130 arsenic, dissolved 7440-38-2 E421 0.0191 mg/L 0.02 mg/L 95.6 70.0 130 barium, dissolved 7440-39-3 E421 ND mg/L 0.02 mg/L ND 70.0 130 beryllium, dissolved 7440-41-7 E421 0.0368 mg/L 0.04 mg/L 92.0 70.0 130 bismuth, dissolved 7440-69-9 E421 0.00789 mg/L 0.01 mg/L 78.9 70.0 130 boron, dissolved 7440-42-8 E421 0.093 mg/L 0.1 mg/L 93.0 70.0 130 cadmium, dissolved 7440-43-9 E421 0.00378 mg/L 0.004 mg/L 94.5 70.0 130 calcium, dissolved 7440-70-2 E421 ND mg/L 4 mg/L ND 70.0 130 cobalt, dissolved 7440-70-2 E421 ND mg/L 4 mg/L ND 70.0 130 cobalt, dissolved 7440-84-4 E421 0.0183 mg/L 0.02 mg/L 91.5 70.0 130
Anonymous aluminum, dissolved 7429-90-5 E421 0.187 mg/L 0.2 mg/L 93.6 70.0 130 antimony, dissolved 7440-36-0 E421 0.0192 mg/L 0.02 mg/L 96.0 70.0 130 arsenic, dissolved 7440-38-2 E421 0.0191 mg/L 0.02 mg/L 95.6 70.0 130 barium, dissolved 7440-39-3 E421 ND mg/L 0.02 mg/L ND 70.0 130 beryllium, dissolved 7440-41-7 E421 0.0368 mg/L 0.04 mg/L 92.0 70.0 130 bismuth, dissolved 7440-69-9 E421 0.00789 mg/L 0.01 mg/L 78.9 70.0 130 boron, dissolved 7440-42-8 E421 0.093 mg/L 0.1 mg/L 93.0 70.0 130 cadmium, dissolved 7440-43-9 E421 0.00378 mg/L 0.004 mg/L 94.5 70.0 130 calcium, dissolved 7440-70-2 E421 ND mg/L 4 mg/L ND 70.0 130 cobalt, dissolved 7440-48-4 E421 0.0183 mg/L 0.02 mg/L 91.5 70.0 130
antimony, dissolved 7440-36-0 E421 0.0192 mg/L 0.02 mg/L 96.0 70.0 130 arsenic, dissolved 7440-38-2 E421 0.0191 mg/L 0.02 mg/L 95.6 70.0 130 barium, dissolved 7440-39-3 E421 ND mg/L 0.02 mg/L ND 70.0 130 beryllium, dissolved 7440-41-7 E421 0.0368 mg/L 0.04 mg/L 92.0 70.0 130 bismuth, dissolved 7440-69-9 E421 0.00789 mg/L 0.01 mg/L 78.9 70.0 130 boron, dissolved 7440-42-8 E421 0.093 mg/L 0.1 mg/L 93.0 70.0 130 cadmium, dissolved 7440-43-9 E421 0.00378 mg/L 0.004 mg/L 94.5 70.0 130 calcium, dissolved 7440-70-2 E421 ND mg/L 4 mg/L ND 70.0 130 cobalt, dissolved 7440-8-4 E421 0.0183 mg/L 0.02 mg/L 91.5 70.0 130
arsenic, dissolved 7440-38-2 E421 0.0191 mg/L 0.02 mg/L 95.6 70.0 130 barium, dissolved 7440-39-3 E421 ND mg/L 0.02 mg/L ND 70.0 130 beryllium, dissolved 7440-41-7 E421 0.0368 mg/L 0.04 mg/L 92.0 70.0 130 bismuth, dissolved 7440-69-9 E421 0.00789 mg/L 0.01 mg/L 78.9 70.0 130 boron, dissolved 7440-42-8 E421 0.093 mg/L 0.1 mg/L 93.0 70.0 130 cadmium, dissolved 7440-43-9 E421 0.00378 mg/L 0.004 mg/L 94.5 70.0 130 calcium, dissolved 7440-70-2 E421 ND mg/L 4 mg/L ND 70.0 130 cobalt, dissolved 7440-48-4 E421 0.0183 mg/L 0.02 mg/L 91.5 70.0 130
barium, dissolved 7440-39-3 E421 ND mg/L 0.02 mg/L ND 70.0 130 beryllium, dissolved 7440-41-7 E421 0.0368 mg/L 0.04 mg/L 92.0 70.0 130 bismuth, dissolved 7440-69-9 E421 0.00789 mg/L 0.01 mg/L 78.9 70.0 130 boron, dissolved 7440-42-8 E421 0.093 mg/L 0.1 mg/L 93.0 70.0 130 cadmium, dissolved 7440-43-9 E421 0.00378 mg/L 0.004 mg/L 94.5 70.0 130 calcium, dissolved 7440-70-2 E421 ND mg/L 4 mg/L ND 70.0 130 cobalt, dissolved 7440-48-4 E421 0.0183 mg/L 0.02 mg/L 91.5 70.0 130
beryllium, dissolved 7440-41-7 E421 0.0368 mg/L 0.04 mg/L 92.0 70.0 130 bismuth, dissolved 7440-69-9 E421 0.00789 mg/L 0.01 mg/L 78.9 70.0 130 boron, dissolved 7440-42-8 E421 0.093 mg/L 0.1 mg/L 93.0 70.0 130 cadmium, dissolved 7440-43-9 E421 0.00378 mg/L 0.004 mg/L 94.5 70.0 130 calcium, dissolved 7440-70-2 E421 ND mg/L 4 mg/L ND 70.0 130 cobalt, dissolved 7440-48-4 E421 0.0183 mg/L 0.02 mg/L 91.5 70.0 130
bismuth, dissolved 7440-69-9 E421 0.00789 mg/L 0.01 mg/L 78.9 70.0 130 boron, dissolved 7440-42-8 E421 0.093 mg/L 0.1 mg/L 93.0 70.0 130 cadmium, dissolved 7440-43-9 E421 0.00378 mg/L 0.004 mg/L 94.5 70.0 130 calcium, dissolved 7440-70-2 E421 ND mg/L 4 mg/L ND 70.0 130 cobalt, dissolved 7440-48-4 E421 0.0183 mg/L 0.02 mg/L 91.5 70.0 130
boron, dissolved 7440-42-8 E421 0.093 mg/L 0.1 mg/L 93.0 70.0 130 cadmium, dissolved 7440-43-9 E421 0.00378 mg/L 0.004 mg/L 94.5 70.0 130 calcium, dissolved 7440-70-2 E421 ND mg/L 4 mg/L ND 70.0 130 cobalt, dissolved 7440-48-4 E421 0.0183 mg/L 0.02 mg/L 91.5 70.0 130
cadmium, dissolved 7440-43-9 E421 0.00378 mg/L 0.004 mg/L 94.5 70.0 130 calcium, dissolved 7440-70-2 E421 ND mg/L 4 mg/L ND 70.0 130 cobalt, dissolved 7440-48-4 E421 0.0183 mg/L 0.02 mg/L 91.5 70.0 130
calcium, dissolved 7440-70-2 E421 ND mg/L 4 mg/L ND 70.0 130 cobalt, dissolved 7440-48-4 E421 0.0183 mg/L 0.02 mg/L 91.5 70.0 130
cobalt, dissolved 7440-48-4 E421 0.0183 mg/L 0.02 mg/L 91.5 70.0 130
1.10 to 1.2 mg/2 0.02 mg/2 0.02 mg/2 0.00
copper, dissolved 7440-50-8 E421 0.0179 mg/L 0.02 mg/L 89.4 70.0 130
iron, dissolved 7439-89-6 E421 1.85 mg/L 2 mg/L 92.6 70.0 130
lead, dissolved 7439-92-1 E421 0.0176 mg/L 0.02 mg/L 87.8 70.0 130
lithium, dissolved 7439-93-2 E421 0.0914 mg/L 0.1 mg/L 91.4 70.0 130
magnesium, dissolved 7439-95-4 E421 ND mg/L 1 mg/L ND 70.0 130
manganese, dissolved 7439-96-5 E421 0.0180 mg/L 0.02 mg/L 89.8 70.0 130
molybdenum, dissolved 7439-98-7 E421 0.0189 mg/L 0.02 mg/L 94.5 70.0 130
nickel, dissolved 7440-02-0 E421 0.0360 mg/L 0.04 mg/L 90.0 70.0 130
potassium, dissolved 7440-09-7 E421 3.72 mg/L 4 mg/L 93.0 70.0 130
selenium, dissolved 7782-49-2 E421 ND mg/L 0.04 mg/L ND 70.0 130
silicon, dissolved 7440-21-3 E421 8.47 mg/L 10 mg/L 84.7 70.0 130
silver, dissolved 7440-22-4 E421 0.00374 mg/L 0.004 mg/L 93.6 70.0 130
sodium, dissolved 17341-25-2 E421 1.91 mg/L 2 mg/L 95.3 70.0 130
strontium, dissolved 7440-24-6 E421 ND mg/L 0.02 mg/L ND 70.0 130
sulfur, dissolved 7704-34-9 E421 ND mg/L 20 mg/L ND 70.0 130
thallium, dissolved 7440-28-0 E421 0.00359 mg/L 0.004 mg/L 89.8 70.0 130
tin, dissolved 7440-31-5 E421 0.0180 mg/L 0.02 mg/L 90.2 70.0 130
titanium, dissolved 7440-32-6 E421 0.0368 mg/L 0.04 mg/L 92.0 70.0 130
uranium, dissolved 7440-61-1 E421 0.00366 mg/L 0.004 mg/L 91.5 70.0 130
vanadium, dissolved 7440-62-2 E421 0.0961 mg/L 0.1 mg/L 96.1 70.0 130
zinc, dissolved 7440-66-6 E421 0.410 mg/L 0.4 mg/L 102 70.0 130
Dissolved Metals (QCLot: 191151)
CG2101119-001 Anonymous mercury, dissolved 7439-97-6 E509 0.0000978 mg/L 0.0001 mg/L 97.8 70.0 130

Page : 18 of 18
Work Order : CG2101123
Client : Teck Coal Limited
Project : Regional Effects Program

	J. 19					- -				<u>`</u>						***				
Teck	· ·		1			Page	• •	Lof	- 1 	10										
			nal I	Effects Pro	gram	TURN	AROUI				æ	Regu	ar			\ <u></u>				
	PROJECT/CLIENT INFO								ABORA			-	3		16.	OTHER	INFO		200	
	Regional Effects Program			The state of the s					Calgary							Distribution		Excel	PDF	EDD
Project Manager					<u> </u>				da Shvet		LSGlobal.c			ail 1:		d@teck.co		X	<u>x</u>	X
Email	cait.good@teck.com								9 29 Stre		LSGlobal.c	om	· · · · · · ·	ail 2: ail 3:		yer@teck.com		X	X	X -
	ne Avenue					1124	1001655	233	7 47 346	CEIVE				an 3.	· ·	@equisonline				
Environmental Divisio	Sparwoo			Province BC		1,5 4	City	Cal	zarv		Province	AB		ail 5:	1	ymanParker(X	Ψ.	12
Calgary	V0B 2G				nada 🧎	1 1.	al Code				Country	Canada		a141		mehler				4-77
Work Order Reference	0000			Country	\$				407-180	0	l			umber			VE074	3510		
CG210112	SAMPLE DET	FAILS				1	<u> </u>		ş*	ANAI	LYSIS RE	QUESTE	D			Fik	red - F: Fiel	d, L. Lab, FI	: Field & I	ab, N: None
								į į	N	Y	N	Y	Y	N	N S					
	III 💰	-						-			ļ	 	ļ .					ļ		
]]]_				•	y.	1	2												
			<u> </u>		 	┿┿	<u> </u>	PRESERV	NONE	H25O4	H2SO4	HCI	HNO3	HN03	NONE					
		1	Hazardous Material (Yes/No)		1		,		- 2		ļ	 i								1
		. 1	ž			l .		1 Sec. 1				-	4	<u> </u>	l. i			1		-
	, ,		Ta Ta			1			₹	×		1.	<u>-</u>	Ė	-					
Telephone : +1 403 407 1800		-	ate			- 1		SES	HG-T-U-CVAR-VA	ALS_Package-DOC		HG-D-ÇVAF-VA	ĮĘ	Ę	. 4					
	, · · · · ·		Σ		i	, i		WEY	¥	l ge	age.	 	7	₹	₩					
			Sno		,	G=Grab		3	F. [ack	¥ 0	ું કુ	8	8						
	Sample Location	Field	ard		İ	C=Com	#Of		7	<u></u>		Å	Ž.	용	UT			[·]		
Sample ID	(sys loc code)	Matrix	Haz	Date	Time (24hr)		Cont.		HG	¥	ALS_Package- TKN/TOC	HG	TECKCOAL-MET-D VA	TECKCOAL-MET-T-	TECKCOAL- ROUTINE-VA			•		l
8G-FRUL-WS-LAEMP, LCO-2011-04-NP	RG-FRUL	ws	NO	21/04/28	09:40	G	7		X	X	X	×	X	X	X					
		ws	NO	21/04/28		; [G	7	1		X	X	X	X	×	X		-			
RG_ F023 - WS_LAEM!_LCO_2021-04_NP	RG. FRUL			 	11:50			-	X				1		X					
18G. LIB. WS. LAEMP. LCO-2021-04-NP	RG-LI8	ws	NO	21/04 128	14:20	G	7		X	X	X	X.	<u> X</u>	X	X					
		WS	NO			, G							1							
	<u> </u>	ws	NO			, G		1												
		ws	NO	-		√G		1;				<u> </u>	<u> </u>		!					
· ;	···		ļ				<u></u>						·			-		l		
		ws	NO)G		'	<u> </u>		ļ		<u> </u>	ļ						
		ws	NO			¦ G					L			L		-				
		ws	NO			'G	I													
		WS	NO			G	-												-,	
ADDITIONAL COMMENTS/SPECI	AT INCOMPLICATIONS	wa	NO	DELINOTH	SHED BY/AFFIL	1 1	L		DATE/I	TME	ACC	EPTED	BY/AFE	TLIATI	ON	1	DAT	E/TIME		
VPO748510	ALIMITAUCHONS		2:	ch Smitt	HED DIVELLE				4128		1				h	//	1			*
710740210			- 131	CIN ⊃MIN				1			1			A	7	7	17	Ü –	1	
·			<u></u>	*				├-			<u> </u>			-6		V	10	t	74	1
			<u> </u>			'		-			 									
SERVICE REQUEST (rush - subj	toot to ovailability)		 	·····		1		<u> </u>												
DERVICE REQUEST (FUSH - 800)		(default) X	 		<u></u>	T \hat{J}				,		24	bile#	T	403) Z	001	. 1	
Priority (2	-3 business days) - 50% su	ircharge		Sampler's	Name	Rick	Sm.	†				[VIO	one #	Ţ <u></u>	700	>- 2	<u> </u>	-32 ^L	<u> </u>	
Emergency (Business Day) - 100% su	urcharge		Sampler's S	ignature		12					Date	/Time	211	64/28	16:	20.			
For Emergency <1 Day, A	ASAP or Weekend - Conu	act ALS	<u> </u>			116			<u> </u>		·····			1						

WATER CHEMISTRY

ALS Laboratory Report CG2102562 (Finalized July 30, 2021)

CERTIFICATE OF ANALYSIS

Work Order : CG2102562

Client : Teck Coal Limited

Contact : Cait Good

Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone : 250 425 8202 / 250 425 2555

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00748510

C-O-C number : Regional Effects Program

Sampler : Rick Smit

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 7

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

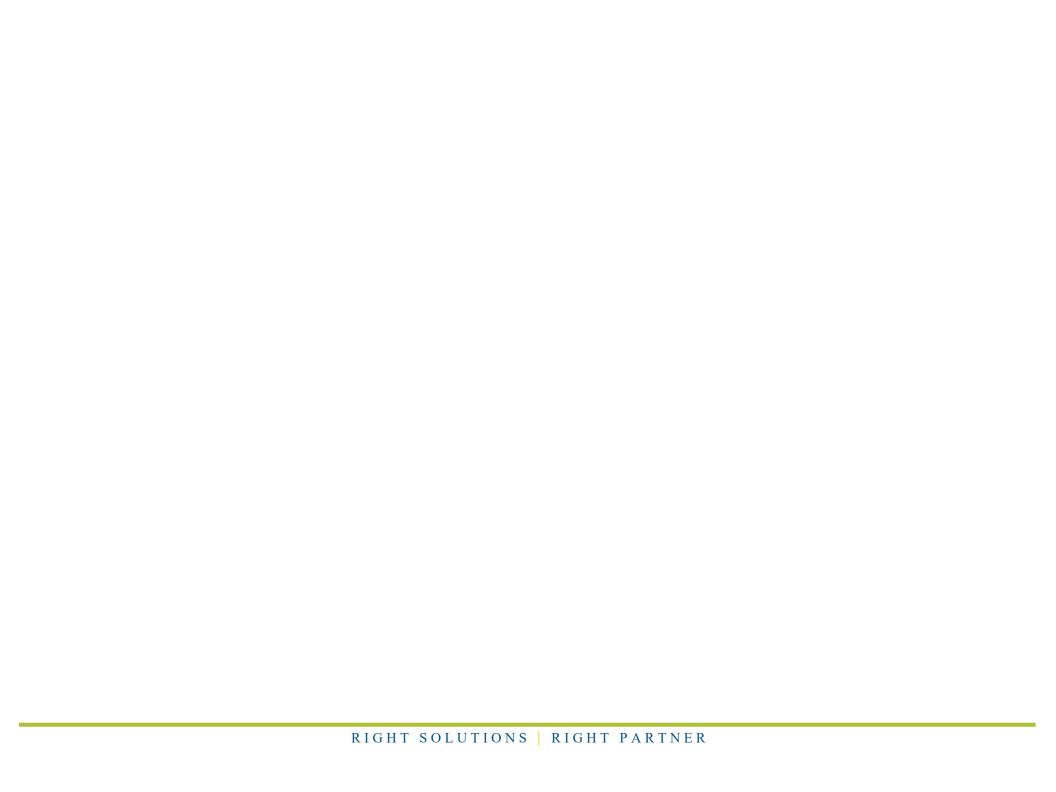
Date Samples Received : 14-Jul-2021 09:00

Date Analysis Commenced : 14-Jul-2021

Issue Date : 30-Jul-2021 15:49

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:


- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia	
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Elke Tabora		Inorganics, Calgary, Alberta	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia	
Jorden Fanson	Analyst	Inorganics, Calgary, Alberta	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Naeun Kim	Analyst	Inorganics, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Sara Niroomand		Inorganics, Calgary, Alberta	
Shaneel Dayal	Analyst	Metals, Burnaby, British Columbia	
Sristika Chand	Lab Analyst	Metals, Burnaby, British Columbia	

Page : 3 of 7

Work Order : CG2102562

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DTC	Dissolved concentration exceeds total. Results were confirmed by re-analysis.

>: greater than.

Page : 4 of 7
Work Order : CG2102562
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			C	lient sample ID	RG_SLINE_WS_ LAEMP_LCO_2	RG_LI24_WS_L AEMP_LCO_20	 	
,					021-07_NP	21-07_NP		
			Client samp	oling date / time	13-Jul-2021 08:35	13-Jul-2021 12:55	 	
Analyte	CAS Number	Method	LOR	Unit	CG2102562-001	CG2102562-002	 	
					Result	Result	 	
Physical Tests								
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	117	105	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	117	105	 	
conductivity		E100	2.0	μS/cm	272	265	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	149	144	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	457	452	 	
рН		E108	0.10	pH units	8.22	8.23	 	
solids, total dissolved [TDS]		E162	10	mg/L	158	186	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	3.7	<1.0	 	
turbidity		E121	0.10	NTU	0.27	0.21	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	143	128	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	0.0163	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.24	0.22	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.239	0.261	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.366	0.118	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.114	0.130	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0034	0.0019	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0276	<0.0020	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	31.7	39.0	 	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.64	<0.50	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	1.24	<0.50	 	
Ion Balance								1

Page : 5 of 7
Work Order : CG2102562
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	RG_SLINE_WS_ LAEMP_LCO_2	RG_LI24_WS_L AEMP_LCO_20	 	
					021-07_NP	21-07_NP		
			Client samp	ling date / time	13-Jul-2021 08:35	13-Jul-2021 12:55	 	
Analyte	CAS Number	Method	LOR	Unit	CG2102562-001	CG2102562-002	 	
					Result	Result	 	
Ion Balance								
anion sum		EC101	0.10	meq/L	3.02	2.94	 	
cation sum		EC101	0.10	meq/L	3.01	2.94	 	
ion balance (cations/anions ratio)		EC101	0.010	%	99.7	100	 	
ion balance (cation-anion difference)		EC101	0.010	%	0.166	<0.010	 	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0135	0.0039	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00012	0.00016	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0297	0.0377	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0242	0.0070	 	
calcium, total	7440-70-2	E420	0.050	mg/L	39.0	38.1	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00021	0.00031	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	0.015	<0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0019	0.0027	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	11.1	9.57	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00127	0.00012	 	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000975	0.000777	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	0.00073	 	
potassium, total	7440-09-7	E420	0.050	mg/L	0.316	0.245	 	
selenium, total	7782-49-2	E420	0.050	μg/L	1.14	2.34	 	
silicon, total	7440-21-3	E420	0.10	mg/L	1.74	1.51	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, total	17341-25-2	E420	0.050	mg/L	0.519	1.18	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.102	0.116	 	
January Court	7440-24-0	0	1 3.33323	9/ -	5.102	5.110	I	

Page : 6 of 7
Work Order : CG2102562
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water			Cli	ient sample ID	RG_SLINE_WS_	RG_LI24_WS_L	 	
(Matrix: Water)					LAEMP_LCO_2 021-07_NP	AEMP_LCO_20 21-07_NP		
			Client samp	ling date / time	13-Jul-2021 08:35	13-Jul-2021 12:55	 	
Analyte	CAS Number	Method	LOR	Unit	CG2102562-001	CG2102562-002	 	
					Result	Result	 	
Total Metals								
sulfur, total	7704-34-9	E420	0.50	mg/L	10.6	13.2	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00119	0.00113	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0036	<0.0030	 	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0014	0.0025	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00011	0.00013	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0325	0.0403	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0139	0.0052	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	40.5	41.5	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00016	0.00018	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0020	0.0030	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	11.6	9.82	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00107	0.000816	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	0.00064	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.332	0.246	 	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	0.977	2.46	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.75	1.51	 	

Page : 7 of 7
Work Order : CG2102562
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_SLINE_WS_	RG_LI24_WS_L	 	
(Matrix: Water)					LAEMP_LCO_2 021-07_NP	AEMP_LCO_20 21-07_NP		
			Client samp	ling date / time	13-Jul-2021 08:35	13-Jul-2021 12:55	 	
Analyte CA	S Number	Method	LOR	Unit	CG2102562-001	CG2102562-002	 	
					Result	Result	 	
Dissolved Metals								
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	7341-25-2	E421	0.050	mg/L	0.525	1.16	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.113	0.125	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	10.9	13.6	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00124	0.00119	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0029	0.0044 DTC	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

WATER CHEMISTRY

ALS Laboratory Report CG2102545 (Finalized July 25, 2021)

CERTIFICATE OF ANALYSIS

Work Order : CG2102545

Client : Teck Coal Limited

Contact : Cait Good

Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone : 250 425 8202 / 250 425 2555
Project : Regional Effects Program

PO : VPO00748510

C-O-C number : Regional Effects Program

Sampler : Rick Smit

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 7
No. of samples analysed : 7

Page : 1 of 11

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 13-Jul-2021 08:50

Date Analysis Commenced : 13-Jul-2021

Issue Date : 25-Jul-2021 15:22

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Elke Tabora		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
James Diacon	Laboratory Analyst	Metals, Calgary, Alberta
Jorden Fanson	Analyst	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Naeun Kim	Analyst	Inorganics, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Saron Kim	Analyst	Metals, Burnaby, British Columbia
Shaneel Dayal	Analyst	Metals, Burnaby, British Columbia

Page : 2 of 11
Work Order : CG2102545
Client : Teck Coal Limited
Project : Regional Effects Program

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

pH units	pH units
NTU	nephelometric turbidity units
mV	millivolts
mg/L	milligrams per litre
meq/L	milliequivalents per litre
μS/cm	Microsiemens per centimetre
μg/L	micrograms per litre
%	percent
-	No Unit
Unit	Description

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Sample Comments

Sample	Client Id	Comment
CG2102545-007	RG_TRIP_WS_LAEMP_LCO_2 021-07_NP	Sample 007: Water sample(s) for dissolved mercury analysis was received broken
CG2102545-007	RG_TRIP_WS_LAEMP_LCO_2 021-07_NP	Sample 7: Water sample for dissolved mercury analysis was not submitted in glass or PTFE container with HCl preservative. Results may be biased low.

Qualifiers

Qualifier	Description	
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical	
	Conductivity.	
RRV	Reported result verified by repeat analysis.	

>: greater than.

Page : 3 of 11
Work Order : CG2102545
Client : Teck Coal Limited
Project : Regional Effects Program

Page : 4 of 11
Work Order : CG2102545
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water	RG_LCUT_WS_	RG_RIVER_WS	RG_LILC3_WS_	RG_FBLANK_W	RG_LISP24_WS				
(Matrix: Water)					LAEMP_LCO_2 021-07_NP	_LAEMP_LCO_ 2021-07_NP	LAEMP_LCO_2 021-07_NP	S_LAEMP_LCO _2021-07_NP	_LAEMP_LCO_ 2021-07_NP
			Client samp	oling date / time	12-Jul-2021 09:15	12-Jul-2021 09:45	12-Jul-2021 11:15	12-Jul-2021 12:55	12-Jul-2021 13:30
Analyte	CAS Number	Method	LOR	Unit	CG2102545-001	CG2102545-002	CG2102545-003	CG2102545-004	CG2102545-005
					Result	Result	Result	Result	Result
Physical Tests									
acidity (as CaCO3)		E283	2.0	mg/L	4.2	3.6	<2.0	<2.0	<2.0
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	204	204	190	<1.0	162
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	6.6
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, total (as CaCO3)		E290	1.0	mg/L	204	204	190	<1.0	169
conductivity		E100	2.0	μS/cm	904	900	798	<2.0	650
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	492	486	422	<0.50	349
oxidation-reduction potential [ORP]		E125	0.10	mV	442	448	468	430	421
рН		E108	0.10	pH units	8.15	8.20	8.23	5.47	8.34
solids, total dissolved [TDS]		E162	10	mg/L	716	704	636	<10	496
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
turbidity		E121	0.10	NTU	0.10	0.22	0.23	<0.10	0.22
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	0.0139	0.0092	<0.0050	0.0224
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.250 DLDS	<0.250 DLDS	<0.050	<0.050	<0.050
chloride	16887-00-6	E235.CI-L	0.10	mg/L	7.78	8.07	8.96	<0.10	6.71
fluoride	16984-48-8	E235.F	0.020	mg/L	0.162	0.174	0.173	<0.020	0.188
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	15.4	16.0	9.83	<0.0050	7.33
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0050 DLDS	<0.0050 DLDS	0.0015	<0.0010	0.0024
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	259	264	216	<0.30	167
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.57	0.58	0.63	<0.50	0.71
carbon, total organic [TOC]		E355-L	0.50	mg/L	0.80	0.84	0.87	<0.50	0.92
Ion Balance									
anion sum		EC101	0.10	meq/L	10.8	11.0	9.26	<0.10	7.58
cation sum		EC101	0.10	meq/L	10.3	10.2	8.80	<0.10	7.26
ion balance (cations/anions ratio)		EC101	0.010	%	95.4	92.7	95.0	100	95.8

Page : 5 of 11
Work Order : CG2102545
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water			Cli	ient sample ID	RG_LCUT_WS_	RG_RIVER_WS	RG_LILC3_WS_	RG_FBLANK_W	RG_LISP24_WS
(Matrix: Water)					LAEMP_LCO_2 021-07_NP	_LAEMP_LCO_ 2021-07_NP	LAEMP_LCO_2 021-07_NP	S_LAEMP_LCO _2021-07_NP	_LAEMP_LCO_ 2021-07_NP
			Client samp	ling date / time	12-Jul-2021 09:15	12-Jul-2021 09:45	12-Jul-2021 11:15	12-Jul-2021 12:55	12-Jul-2021 13:30
Analyte	CAS Number	Method	LOR	Unit	CG2102545-001	CG2102545-002	CG2102545-003	CG2102545-004	CG2102545-005
					Result	Result	Result	Result	Result
Ion Balance									
ion balance (cation-anion difference)		EC101	0.010	%	2.37	3.77	2.55	<0.010	2.16
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	0.0034	0.0052	<0.0030	0.0043
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00043	0.00045	0.00033	<0.00010	0.00026
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00011	0.00012	<0.00010	<0.00010	0.00012
barium, total	7440-39-3	E420	0.00010	mg/L	0.0389	0.0399	0.0452	<0.00010	0.0422
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	<0.020
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, total	7440-42-8	E420	0.010	mg/L	0.020	0.020	0.017	<0.010	0.014
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.663	0.693	0.392	<0.0050	0.280
calcium, total	7440-70-2	E420	0.050	mg/L	111	111	94.1	<0.050	81.7
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00013	0.00014	0.00015	<0.00010	0.00020
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	<0.10
copper, total	7440-50-8	E420	0.00050	mg/L	0.00059	0.00051	<0.00050	<0.00050	<0.00050
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0.017	<0.010	0.011
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0678	0.0678	0.0464	<0.0010	0.0366
magnesium, total	7439-95-4	E420	0.0050	mg/L	50.7	51.0	43.8	<0.0050	35.0
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00019	0.00014	0.00444	<0.00010	0.00337
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00198	0.00204	0.00229	<0.000050	0.00195
nickel, total	7440-02-0	E420	0.00050	mg/L	0.0136	0.0142	0.00851	<0.00050	0.00636
potassium, total	7440-09-7	E420	0.050	mg/L	1.80	1.81	1.48	<0.050	1.20
selenium, total	7782-49-2	E420	0.050	μg/L	52.5	53.0	36.4	<0.050	26.4
silicon, total	7440-21-3	E420	0.10	mg/L	2.13	2.07	2.10	<0.10	2.10
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, total	17341-25-2	E420	0.050	mg/L	9.08	9.42	7.06	<0.050	5.48
strontium, total	7440-24-6	E420	0.00020	mg/L	0.243	0.249	0.205	<0.00020	0.180
sulfur, total	7704-34-9	E420	0.50	mg/L	92.4	90.8	77.7	<0.50	61.1
thallium, total	7440-28-0	E420	0.000010	mg/L	0.000018	0.000017	0.000010	<0.00010	<0.000010
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
T. Control of the Con			I .	, ,		I	I	I	ı

Page : 6 of 11
Work Order : CG2102545
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water			Cli	ient sample ID	RG_LCUT_WS_	RG_RIVER_WS	RG_LILC3_WS_	RG_FBLANK_W	RG_LISP24_WS
(Matrix: Water)					LAEMP_LCO_2 021-07_NP	_LAEMP_LCO_ 2021-07_NP	LAEMP_LCO_2 021-07_NP	S_LAEMP_LCO _2021-07_NP	_LAEMP_LCO_ 2021-07_NP
			Client samp	ling date / time	12-Jul-2021 09:15	12-Jul-2021 09:45	12-Jul-2021 11:15	12-Jul-2021 12:55	12-Jul-2021 13:30
Analyte	CAS Number	Method	LOR	Unit	CG2102545-001	CG2102545-002	CG2102545-003	CG2102545-004	CG2102545-005
					Result	Result	Result	Result	Result
Total Metals									
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00396	0.00396	0.00324	<0.000010	0.00261
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0249	0.0247	0.0143	<0.0030	0.0104
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	0.0024	0.0018	<0.0010	<0.0010
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00042	0.00042	0.00032	<0.00010	0.00024
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00014	0.00014	0.00014	<0.00010	0.00013
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0419	0.0411	0.0469	<0.00010	0.0447
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	<0.020
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.019	0.019	0.016	<0.010	0.013
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.693	0.678	0.400	<0.0050	0.292
calcium, dissolved	7440-70-2	E421	0.050	mg/L	108	107	93.1	<0.050	79.5
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00017	0.00014	0.00012	<0.00010	0.00012
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	<0.10
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00051	0.00057	0.00036	<0.00020	0.00029
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0720	0.0689	0.0480	<0.0010	0.0366
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	54.1	53.1	46.0	<0.0050	36.6
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00015	0.00025	0.00396	<0.00010	0.00257
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00194	0.00192	0.00211	<0.000050	0.00184
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.0146	0.0142	0.00886	<0.00050	0.00640
potassium, dissolved	7440-09-7	E421	0.050	mg/L	2.06	2.02	1.66	<0.050	1.34
selenium, dissolved	7782-49-2	E421	0.050	μg/L	63.8	59.5	47.3	<0.050	30.2
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.16	2.14	2.21	<0.050	2.04
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, dissolved	17341-25-2	E421	0.050	mg/L	9.70	9.78	7.46	<0.050	5.73
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.232	0.229	0.191	<0.00020	0.168
The state of the s			1	ا ا			I	I	ı l

Page : 7 of 11
Work Order : CG2102545
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_LCUT_WS_	RG_RIVER_WS	RG_LILC3_WS_	RG_FBLANK_W	RG_LISP24_WS
(Matrix: Water)					LAEMP_LCO_2	_LAEMP_LCO_	LAEMP_LCO_2	S_LAEMP_LCO	_LAEMP_LCO_
					021-07_NP	2021-07_NP	021-07_NP	_2021-07_NP	2021-07_NP
			Client samp	ling date / time	12-Jul-2021 09:15	12-Jul-2021 09:45	12-Jul-2021 11:15	12-Jul-2021 12:55	12-Jul-2021 13:30
Analyte	CAS Number	Method	LOR	Unit	CG2102545-001	CG2102545-002	CG2102545-003	CG2102545-004	CG2102545-005
					Result	Result	Result	Result	Result
Dissolved Metals									
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	99.4	95.9	85.0	<0.50	62.0
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000020	0.000023	0.000015	<0.000010	0.000010
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00404	0.00400	0.00324	<0.000010	0.00266
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0281	0.0287	0.0167	<0.0010	0.0114
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	Field
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Field

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 8 of 11
Work Order : CG2102545
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water			Ci	ient sample ID	RG_LIDCOM_W	RG_TRIP_WS_L	 	
(Matrix: Water)					S_LAEMP_LCO _2021-07_NP	AEMP_LCO_20 21-07_NP		
			Client samp	ling date / time	12-Jul-2021 15:00	12-Jul-2021 16:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2102545-006	CG2102545-007	 	
					Result	Result	 	
Physical Tests								
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	157	<1.0	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	11.0	<1.0	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	168	<1.0	 	
conductivity		E100	2.0	μS/cm	622	<2.0	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	333	<0.50	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	430	434	 	
pH		E108	0.10	pH units	8.43	5.39	 	
solids, total dissolved [TDS]		E162	10	mg/L	474	<10	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	 	
turbidity		E121	0.10	NTU	0.24	<0.10	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	0.0274 RRV	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	6.40	<0.10	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.184	<0.020	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.116	<0.050	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	6.49	<0.0050	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0032	<0.0010	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0018	<0.0010	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0022	<0.0020	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	156	<0.30	 	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.74		 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	1.03	<0.50	 	
Ion Balance								
anion sum		EC101	0.10	meq/L	7.26	<0.10	 	
cation sum		EC101	0.10	meq/L	6.93	<0.10	 	
ion balance (cations/anions ratio)		EC101	0.010	%	95.4	100 RRV	 	
ion balance (cation-anion difference)		EC101	0.010	%	2.32	<0.010	 	

Page : 9 of 11
Work Order : CG2102545
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water			Cli	ient sample ID	RG_LIDCOM_W	RG_TRIP_WS_L	 	
(Matrix: Water)					S_LAEMP_LCO _2021-07_NP	AEMP_LCO_20 21-07_NP		
			Client samp	ling date / time	12-Jul-2021 15:00	12-Jul-2021 16:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2102545-006	CG2102545-007	 	
					Result	Result	 	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0054	<0.0030	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00023	<0.00010	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00012	<0.00010	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0522	<0.00010	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	0.014	<0.010	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.188	<0.0050	 	
calcium, total	7440-70-2	E420	0.050	mg/L	79.5	<0.050	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00014	<0.00010	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0328	<0.0010	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	33.3	<0.0050	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00184	<0.00010	 	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00178	<0.000050	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00453	<0.00050	 	
potassium, total	7440-09-7	E420	0.050	mg/L	1.15	<0.050	 	
selenium, total	7782-49-2	E420	0.050	μg/L	25.5	<0.050	 	
silicon, total	7440-21-3	E420	0.10	mg/L	2.16	<0.10	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, total	17341-25-2	E420	0.050	mg/L	5.20	<0.050	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.181	<0.00020	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	55.3	<0.50	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00237	<0.000010	 	
The state of the s			1	, ,		ı	I	ı l

Page : 10 of 11
Work Order : CG2102545
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water			Cli	ient sample ID	RG_LIDCOM_W	RG_TRIP_WS_L	 	
(Matrix: Water)					S_LAEMP_LCO _2021-07_NP	AEMP_LCO_20 21-07_NP		
			Client samp	ling date / time	12-Jul-2021 15:00	12-Jul-2021 16:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2102545-006	CG2102545-007	 	
					Result	Result	 	
Total Metals								
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0070	<0.0030	 	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0011		 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00021		 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00014		 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0558		 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020		 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050		 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.013		 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.200		 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	75.8	<0.050	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00023		 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10		 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00025		 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010		 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050		 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0315		 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	35.0	<0.0050	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00123		 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050		 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00178		 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00456		 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.29	<0.050	 	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	29.2		 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.16		 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010		 	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	5.43	<0.050	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.170		 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	58.2		 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010		 	
1	I		1			1	ı	ı

Page : 11 of 11
Work Order : CG2102545
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_LIDCOM_W	RG_TRIP_WS_L	 	
(Matrix: Water)					S_LAEMP_LCO	AEMP_LCO_20		
					_2021-07_NP	21-07_NP		
			Client samp	ling date / time	12-Jul-2021 15:00	12-Jul-2021 16:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2102545-006	CG2102545-007	 	
					Result	Result	 	
Dissolved Metals								
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010		 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030		 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00246		 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050		 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0074		 	
dissolved mercury filtration location		EP509	-	-	Field		 	
dissolved metals filtration location		EP421	-	-	Field	Laboratory	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

WATER CHEMISTRY

ALS Laboratory Report CG2102605 (Finalized July 28, 2021)

CERTIFICATE OF ANALYSIS

Work Order : CG2102605

Client : Teck Coal Limited

Contact : Cait Good

Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone : 250 425 8202 / 250 425 2555
Project : Regional Effects Program

PO : VPO00748510

C-O-C number : Regional Effects Program

Sampler : RICK SMIT

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 15-Jul-2021 08:40

Date Analysis Commenced : 15-Jul-2021

Issue Date : 28-Jul-2021 10:53

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Elke Tabora		Inorganics, Calgary, Alberta
Jorden Fanson	Analyst	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia
Naeun Kim	Analyst	Inorganics, Calgary, Alberta
Owen Cheng		Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand	·	Inorganics, Calgary, Alberta
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

Page : 2 of 6
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

Page : 3 of 6
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water			C	ient sample ID	RG_LIDSL_WS_	RG_FRUL_WS_	RG_FO23_WS_	
(Matrix: Water)					LAEMP_LCO_2 021_07_NP	LAEMP_LCO_2 021_07_NP	LAEMP_LCO_2 021_07_NP	
			Client samp	ling date / time	14-Jul-2021 14:00	14-Jul-2021 09:00	14-Jul-2021 11:15	
Analyte	CAS Number	Method	LOR	Unit	CG2102605-001	CG2102605-002	CG2102605-003	
					Result	Result	Result	
Physical Tests								
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	168	166	162	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	2.8	7.0	7.8	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	171	173	170	
conductivity		E100	2.0	μS/cm	673	647	635	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	373	375	364	
oxidation-reduction potential [ORP]		E125	0.10	mV	442	431	447	
pH		E108	0.10	pH units	8.31	8.36	8.38	
solids, total dissolved [TDS]		E162	10	mg/L	503	474	470	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	1.3	<1.0	
turbidity		E121	0.10	NTU	1.06	0.88	0.34	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0.0053	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	6.95	1.40	2.76	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.231	0.187	0.205	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.055 TKNI	<0.050 TKNI	0.386 TKNI	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	7.37	9.69	8.49	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0018	0.0038	0.0048	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0020	<0.0010	0.0011	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	<0.0020	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	172	155	152	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	3.07	4.25	3.96	
carbon, total organic [TOC]		E355-L	0.50	mg/L	3.77	3.61	4.62	
Ion Balance								
anion sum		EC101	0.10	meq/L	7.73	7.42	7.26	
cation sum		EC101	0.10	meq/L	7.74	7.62	7.44	
ion balance (cations/anions ratio)		EC101	0.010	%	100	103	102	

Page : 4 of 6
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water			Cli	ient sample ID	RG_LIDSL_WS_	RG_FRUL_WS_	RG_FO23_WS_	
(Matrix: Water)					LAEMP_LCO_2 021_07_NP	LAEMP_LCO_2 021_07_NP	LAEMP_LCO_2 021_07_NP	
			Client samp	ling date / time	14-Jul-2021 14:00	14-Jul-2021 09:00	14-Jul-2021 11:15	
Analyte	CAS Number	Method	LOR	Unit	CG2102605-001	CG2102605-002	CG2102605-003	
					Result	Result	Result	
Ion Balance								
ion balance (cation-anion difference)		EC101	0.010	%	0.065	1.33	1.22	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0035	0.0099	0.0058	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00024	0.00014	0.00015	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00012	0.00012	0.00011	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0508	0.0883	0.0856	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.014	0.010	0.011	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.255	0.0144	0.0432	
calcium, total	7440-70-2	E420	0.050	mg/L	88.9	85.4	86.7	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00016	0.00014	0.00021	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	0.015	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0398	0.0259	0.0280	
magnesium, total	7439-95-4	E420	0.0050	mg/L	39.0	37.5	38.3	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00292	0.00173	0.00098	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	<0.00050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00194	0.00114	0.00133	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00583	0.00081	0.00155	
potassium, total	7440-09-7	E420	0.050	mg/L	1.31	1.34	1.33	
selenium, total	7782-49-2	E420	0.050	μg/L	30.7	42.8	37.4	
silicon, total	7440-21-3	E420	0.10	mg/L	2.27	1.88	1.96	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, total	17341-25-2	E420	0.050	mg/L	5.98	2.12	3.16	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.188	0.132	0.155	
sulfur, total	7704-34-9	E420	0.50	mg/L	63.4	55.6	54.5	
thallium, total	7440-28-0	E420	0.000010	mg/L	0.000010	<0.000010	<0.000010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
I control of the cont			1	,		I		

Page : 5 of 6
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water	er Client sample ID			ient sample ID	RG_LIDSL_WS_	RG_FRUL_WS_	RG_FO23_WS_	
(Matrix: Water)					LAEMP_LCO_2 021_07_NP	LAEMP_LCO_2 021_07_NP	LAEMP_LCO_2 021_07_NP	
			Client samp	ling date / time	14-Jul-2021 14:00	14-Jul-2021 09:00	14-Jul-2021 11:15	
Analyte	CAS Number	Method	LOR	Unit	CG2102605-001	CG2102605-002	CG2102605-003	
					Result	Result	Result	
Total Metals								
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00269	0.00205	0.00210	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0089	<0.0030	<0.0030	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0014	<0.0010	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00024	0.00012	0.00013	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00011	0.00011	0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0542	0.0922	0.0868	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.015	0.011	0.011	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.234	0.0165	0.0364	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	86.6	85.1	84.6	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00016	0.00014	0.00014	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00027	<0.00020	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0366	0.0238	0.0251	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	38.1	39.4	37.1	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00214	0.00053	0.00113	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00197	0.00122	0.00132	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00607	0.00084	0.00147	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.37	1.44	1.33	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	31.4	46.1	40.9	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.21	1.89	2.00	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	5.66	2.16	3.05	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.181	0.135	0.148	
T. Control of the Con	1		1			ı		'

Page : 6 of 6
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_LIDSL_WS_	RG_FRUL_WS_	RG_FO23_WS_	
(Matrix: Water)					LAEMP_LCO_2	LAEMP_LCO_2	LAEMP_LCO_2	
					021_07_NP	021_07_NP	021_07_NP	
			Client samp	ling date / time	14-Jul-2021 14:00	14-Jul-2021 09:00	14-Jul-2021 11:15	
Analyte CAS	Number	Method	LOR	Unit	CG2102605-001	CG2102605-002	CG2102605-003	
					Result	Result	Result	
Dissolved Metals								
sulfur, dissolved 77	'04-34-9	E421	0.50	mg/L	63.5	56.6	56.1	
thallium, dissolved 74	40-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
tin, dissolved 74	40-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, dissolved 74	40-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
uranium, dissolved 74	40-61-1	E421	0.000010	mg/L	0.00284	0.00207	0.00216	
vanadium, dissolved 74	40-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, dissolved 74	40-66-6	E421	0.0010	mg/L	0.0104	<0.0010	0.0012	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2102605** Page : 1 of 17

Client : Teck Coal Limited Laboratory : Calgary - Environmental
Contact : Cait Good Account Manager : Lyudmyla Shyets

Contact : Cait Good Account Manager : Lyudmyla Shvets
Address : 421 Pine Avenue Address : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5

 Telephone
 : 250 425 8202 / 250 425 2555
 Telephone
 : +1 403 407 1800

 Project
 : Regional Effects Program
 Date Samples Received
 : 15-Jul-2021 08:40

PO : VPO00748510 | Issue Date : 28-Jul-2021 10:53

C-O-C number : Regional Effects Program

Sampler : RICK SMIT

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 3
No. of samples analysed : 3

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

 Page
 : 2 of 17

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: water						/aluation. ^ –	Holding time exce	euance , •	_ vviuiiii	nolaling Till
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_FO23_WS_LAEMP_LCO_2021_07_NP	E298	14-Jul-2021	16-Jul-2021				16-Jul-2021	28 days	2 days	✓
Anions and Nutrients : Ammonia by Fluorescence							1			
Amber glass total (sulfuric acid)	E298	14-Jul-2021	40 1.1 2024				16-Jul-2021	00 4	0 4	1
RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E298	14-Jul-2021	16-Jul-2021				16-Jul-2021	28 days	2 days	•
Anions and Nutrients : Ammonia by Fluorescence					<u> </u>					
Amber glass total (sulfuric acid)							<u> </u>			
RG LIDSL WS LAEMP LCO 2021 07 NP	E298	14-Jul-2021	16-Jul-2021				16-Jul-2021	28 days	2 davs	√
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_FO23_WS_LAEMP_LCO_2021_07_NP	E235.Br-L	14-Jul-2021					15-Jul-2021	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)							ı			
HDPE RG FRUL WS LAEMP LCO 2021 07 NP	E235.Br-L	14-Jul-2021					15-Jul-2021	28 days	1 days	✓
NG_FNOL_W3_LAEMIF_LCO_2021_07_NF	L233.BI-L	14-Jul-2021					13-341-2021	20 days	1 days	•
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E235.Br-L	14-Jul-2021					15-Jul-2021	28 days	1 days	✓
,										
Anions and Nutrients : Chloride in Water by IC (Low Level)								1		
HDPE										
RG_FO23_WS_LAEMP_LCO_2021_07_NP	E235.CI-L	14-Jul-2021					15-Jul-2021	28 days	1 days	✓

 Page
 : 3 of 17

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix: Water

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

Matrix: water						raidation. • =	noiding time exce	cuarice , .	- vviti iii i	Tiolding Till
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E235.CI-L	14-Jul-2021					15-Jul-2021	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE								I		
RG LIDSL WS LAEMP LCO 2021 07 NP	E235.CI-L	14-Jul-2021					15-Jul-2021	28 days	1 daya	✓
RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	L233.CI-L	14-Jul-2021					13-Jul-2021	20 uays	i uays	•
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	evel)									
HDPE										
RG_FO23_WS_LAEMP_LCO_2021_07_NP	E378-U	14-Jul-2021					17-Jul-2021	3 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	evel)									
HDPE										
RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E378-U	14-Jul-2021					17-Jul-2021	3 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	avel)									
HDPE								T T		
RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E378-U	14-Jul-2021					17-Jul-2021	3 days	3 days	✓
1.0_E150E_440_E1.E1411 _E000_2021_01_111	20.00						17 GGI 2021	o dayo	o dayo	
Anions and Nutrients : Fluoride in Water by IC					l			1		
HDPE	E005 E	44 1.4 0004					45 1 0004	00 4	4 -1	✓
RG_FO23_WS_LAEMP_LCO_2021_07_NP	E235.F	14-Jul-2021					15-Jul-2021	28 days	1 days	•
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E235.F	14-Jul-2021					15-Jul-2021	28 days	1 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E235.F	14-Jul-2021					15-Jul-2021	28 days	1 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)							1			
HDPE										
RG_FO23_WS_LAEMP_LCO_2021_07_NP	E235.NO3-L	14-Jul-2021					15-Jul-2021	3 days	1 days	1
1.0_1 020_110_EAEIVII _E00_2021_01_141		17-041-2021					10-041-2021	Judys	. uuys	•

 Page
 : 4 of 17

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix: Water

Evaluation: × = Holding time exceedance;	✓	= Within Holding Time
--	---	-----------------------

Matrix: Water					E۱	/aluation: × =	Holding time exce	edance ; •	/ = Within	Holding I i
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E235.NO3-L	14-Jul-2021					15-Jul-2021	3 days	1 days	✓
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E235.NO3-L	14-Jul-2021					15-Jul-2021	3 days	1 days	✓
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_FO23_WS_LAEMP_LCO_2021_07_NP	E235.NO2-L	14-Jul-2021					15-Jul-2021	3 days	1 days	✓
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E235.NO2-L	14-Jul-2021					15-Jul-2021	3 days	1 days	✓
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E235.NO2-L	14-Jul-2021					15-Jul-2021	3 days	1 days	✓
nions and Nutrients : Sulfate in Water by IC										
HDPE RG_FO23_WS_LAEMP_LCO_2021_07_NP	E235.SO4	14-Jul-2021					15-Jul-2021	28 days	1 days	√
nions and Nutrients : Sulfate in Water by IC										
HDPE RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E235.SO4	14-Jul-2021					15-Jul-2021	28 days	1 days	√
nions and Nutrients : Sulfate in Water by IC										
HDPE RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E235.SO4	14-Jul-2021					15-Jul-2021	28 days	1 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low	Level)									
Amber glass total (sulfuric acid) RG_FO23_WS_LAEMP_LCO_2021_07_NP	E318	14-Jul-2021	19-Jul-2021				19-Jul-2021	28 days	5 days	1

 Page
 : 5 of 17

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix: Water

Evaluation: x = Holding time exceedance	; ✓	= Within Holding Time
---	-----	-----------------------

/latrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; 🔻	/ = Within	Holding I i
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Lev	el)									
Amber glass total (sulfuric acid) RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E318	14-Jul-2021	19-Jul-2021				19-Jul-2021	28 days	5 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Lev	el)									
Amber glass total (sulfuric acid) RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E318	14-Jul-2021	19-Jul-2021				19-Jul-2021	28 days	5 days	~
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) RG_FO23_WS_LAEMP_LCO_2021_07_NP	E372-U	14-Jul-2021	21-Jul-2021				21-Jul-2021	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E372-U	14-Jul-2021	21-Jul-2021				21-Jul-2021	28 days	7 days	✓
nions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E372-U	14-Jul-2021	21-Jul-2021				21-Jul-2021	28 days	7 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Lev	vel)									
HDPE dissolved (nitric acid) RG_FO23_WS_LAEMP_LCO_2021_07_NP	E421.Cr-L	14-Jul-2021	20-Jul-2021				20-Jul-2021	180 days	6 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Le	vel)									
HDPE dissolved (nitric acid) RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E421.Cr-L	14-Jul-2021	20-Jul-2021				20-Jul-2021	180 days	6 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Le	vel)									
HDPE dissolved (nitric acid) RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E421.Cr-L	14-Jul-2021	20-Jul-2021				20-Jul-2021	180 days	6 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_FO23_WS_LAEMP_LCO_2021_07_NP	E509	14-Jul-2021	21-Jul-2021				21-Jul-2021	28 days	7 days	✓

 Page
 : 6 of 17

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix: Water

Evaluation: × = Holding time exceedance : ✓ = Within Holding Time

fatrix: Water						raiuation. * -	Holding time exce	euanice , •	- vvitiiiii	riolaling i
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E509	14-Jul-2021	21-Jul-2021				21-Jul-2021	28 days	7 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E509	14-Jul-2021	21-Jul-2021				21-Jul-2021	28 days	7 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)		,, , , , , , ,								
RG_FO23_WS_LAEMP_LCO_2021_07_NP	E421	14-Jul-2021	20-Jul-2021				20-Jul-2021	180 days	6 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)	E421	14-Jul-2021	20 1.1 2024				20-Jul-2021		0 4	√
RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E421	14-Jul-2021	20-Jul-2021				20-Jul-2021	180 days	6 days	•
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E421	14-Jul-2021	20-Jul-2021				20-Jul-2021	180 days	6 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)							-		
Amber glass dissolved (sulfuric acid)										
RG_FO23_WS_LAEMP_LCO_2021_07_NP	E358-L	14-Jul-2021	21-Jul-2021				21-Jul-2021	28 days	7 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)	F050 I	44 1 1 0004								,
RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E358-L	14-Jul-2021	21-Jul-2021				21-Jul-2021	28 days	7 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)	F050 I	44 1-1 0004	04 1-1 0004				04 1/1 0004	00.1	7.1	,
RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E358-L	14-Jul-2021	21-Jul-2021				21-Jul-2021	28 days	7 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	on (Low Level)									
Amber glass total (sulfuric acid) RG_FO23_WS_LAEMP_LCO_2021_07_NP	F055.1	44 1-1 0004	04 1-1 0004				04 141 0004	00.1	7.1	,
DE LOUR ME LARMO LEGA 2021 AZ NO	E355-L	14-Jul-2021	21-Jul-2021				21-Jul-2021	28 days	/ days	✓

Page : 7 of 17
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water

Evaluation: × = Holding time exceedance : ✓ = Within Holding Time

Matrix: Water					E	valuation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding T
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual	-		Rec	Actual	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable)	by Combustion (Low Level)									
Amber glass total (sulfuric acid)										
RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E355-L	14-Jul-2021	21-Jul-2021				21-Jul-2021	28 days	7 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable)	by Combustion (Low Level)		l					I		
Amber glass total (sulfuric acid) RG LIDSL WS LAEMP LCO 2021 07 NP	E355-L	14-Jul-2021	21-Jul-2021				21-Jul-2021	28 days	7 days	1
RG_LIDSL_WS_LAEINP_LCO_2021_07_NP	L333-L	14-Jul-2021	2 1-Jul-202 1				21-Jul-2021	20 days	7 days	,
hysical Tests : Acidity by Titration										
HDPE										
RG_FO23_WS_LAEMP_LCO_2021_07_NP	E283	14-Jul-2021					15-Jul-2021	14 days	1 days	✓
Physical Tests : Acidity by Titration HDPE										
RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E283	14-Jul-2021					15-Jul-2021	14 days	1 days	✓
Physical Tests : Acidity by Titration										
HDPE	F000	44 1-1 0004					45 1 1 0004	44.1		
RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E283	14-Jul-2021					15-Jul-2021	14 days	1 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_FO23_WS_LAEMP_LCO_2021_07_NP	E290	14-Jul-2021					18-Jul-2021	14 days	4 days	✓
hysical Tests : Alkalinity Species by Titration										
HDPE RG FRUL WS LAEMP LCO 2021 07 NP	E290	14-Jul-2021					18-Jul-2021	14 days	4 dovo	√
NG_FROL_WG_LAEWIF_LCO_2021_07_NF	L230	14-541-2021					10-341-2021	14 days	4 days	,
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E290	14-Jul-2021					18-Jul-2021	14 days	4 days	✓
No. of Table 2 and the first transfer of the second of the										
hysical Tests : Conductivity in Water HDPE							I			
RG_FO23_WS_LAEMP_LCO_2021_07_NP	E100	14-Jul-2021					18-Jul-2021	28 days	4 days	✓
									•	

Page : 8 of 17
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; •	/ = Within	Holding Ti
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E100	14-Jul-2021					18-Jul-2021	28 days	4 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E100	14-Jul-2021					18-Jul-2021	28 days	4 days	✓
Physical Tests : ORP by Electrode										
HDPE										
RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E125	14-Jul-2021					22-Jul-2021	0.34	193 hrs	30
								hrs		EHTR-F
Physical Tests : ORP by Electrode										
HDPE	F.105	44 1 1 0004					00 1 1 0004		400.1	
RG_FO23_WS_LAEMP_LCO_2021_07_NP	E125	14-Jul-2021					22-Jul-2021	0.34	196 hrs	*
								hrs		EHTR-F
Physical Tests : ORP by Electrode										
HDPE	E405	44 1.1 2024					00 1-1 0004		400	
RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E125	14-Jul-2021					22-Jul-2021	0.34	198 hrs	# EHTR-F
								hrs		EHIK-FI
Physical Tests : pH by Meter					I	l	I	<u> </u>	I	
HDPE RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E108	14-Jul-2021					18-Jul-2021	0.25	101 hrs	×
NO_1 NOL_WO_EALWII _EGO_2021_07_W	2100	14-041-2021					10-041-2021	hrs	1011113	EHTR-F
Dhorical Tasta call by Mater								1113		
Physical Tests : pH by Meter HDPE							I	T		
RG LIDSL WS LAEMP LCO 2021 07 NP	E108	14-Jul-2021					18-Jul-2021	0.25	96 hrs	se
								hrs		EHTR-F
Physical Tests : pH by Meter									1	
HDPE										
RG_FO23_WS_LAEMP_LCO_2021_07_NP	E108	14-Jul-2021					18-Jul-2021	0.25	99 hrs	æ
								hrs		EHTR-FI
Physical Tests : TDS by Gravimetry										
HDPE										
RG_FO23_WS_LAEMP_LCO_2021_07_NP	E162	14-Jul-2021					21-Jul-2021	7 days	7 days	✓

 Page
 : 9 of 17

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix: Water

Evaluation: **x** = Holding time exceedance : ✓ = Within Holding Time

Matrix: Water					E۱	/aluation: 🗴 =	Holding time excee	edance ; 🕦	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
			Date	Kec	Actual			Kec	Actual	
Physical Tests : TDS by Gravimetry						ı	1			
HDPE RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E162	14-Jul-2021					21-Jul-2021	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E162	14-Jul-2021					21-Jul-2021	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB] RG_FO23_WS_LAEMP_LCO_2021_07_NP	E160-L	14-Jul-2021					21-Jul-2021	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB] RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E160-L	14-Jul-2021					21-Jul-2021	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB] RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E160-L	14-Jul-2021					21-Jul-2021	7 days	7 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E121	14-Jul-2021					16-Jul-2021	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE RG_FO23_WS_LAEMP_LCO_2021_07_NP	E121	14-Jul-2021					17-Jul-2021	3 days	3 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE RG_FRUL_WS_LAEMP_LCO_2021_07_NP	E121	14-Jul-2021					17-Jul-2021	3 days	3 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid) RG_FO23_WS_LAEMP_LCO_2021_07_NP	E420.Cr-L	14-Jul-2021					20-Jul-2021	180 days	6 days	✓
				_						

 Page
 : 10 of 17

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix: Water

Evaluation: x = Holding time exceedance : √ = Within Holding Time

Matrix: Water Evaluation: * = I							Holding time exce	edance ; 🔻	= Within	Holding
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E420.Cr-L	14-Jul-2021					20-Jul-2021	180	6 days	✓
								days		
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)								T		
HDPE total (nitric acid) RG FRUL WS LAEMP LCO 2021 07 NP	E420.Cr-L	14-Jul-2021					20-Jul-2021	180	7 days	1
RG_FRUL_WS_LAEMP_LCU_2021_07_NP	L420.GI-L	14-301-2021					20-Jui-202 i	days	ruays	•
otal Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)										
RG_FO23_WS_LAEMP_LCO_2021_07_NP	E508-L	14-Jul-2021					21-Jul-2021	28 days	7 days	✓
otal Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)										
RG FRUL WS LAEMP LCO 2021 07 NP	E508-L	14-Jul-2021					21-Jul-2021	28 days	7 days	✓
otal Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)										
RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E508-L	14-Jul-2021					21-Jul-2021	28 days	7 days	✓
CONTRACTOR AND AND AND AND AND AND AND AND AND AND										
otal Metals : Total Metals in Water by CRC ICPMS HDPE total (nitric acid)								<u> </u>		
RG FO23 WS LAEMP LCO 2021 07 NP	E420	14-Jul-2021					20-Jul-2021	180	6 days	✓
								days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_LIDSL_WS_LAEMP_LCO_2021_07_NP	E420	14-Jul-2021					20-Jul-2021	180	6 days	✓
								days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG FRUL WS LAEMP LCO 2021 07 NP	E420	14-Jul-2021					20-Jul-2021	180	7 days	1
NO_I NOL_WO_LAEWIF_LOO_2021_01_NP	E420	14-JUI-2021					20-Jul-2021		i uays	•
								days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended Rec. HT: ALS recommended hold time (see units).

 Page
 : 11 of 17

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type		·	Co	ount)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	244392	1	16	6.2	5.0	1
Alkalinity Species by Titration	E290	246363	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	244998	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	244519	1	17	5.8	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	244520	1	17	5.8	5.0	1
Conductivity in Water	E100	246362	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	247425	1	19	5.2	5.0	1
Dissolved Mercury in Water by CVAAS	E509	247973	1	16	6.2	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	247424	1	19	5.2	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	248406	1	19	5.2	5.0	1
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	245723	1	20	5.0	5.0	√
Fluoride in Water by IC	E235.F	244517	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	244521	1	17	5.8	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	244522	1	17	5.8	5.0	1
ORP by Electrode	E125	248640	1	19	5.2	5.0	✓
pH by Meter	E108	246361	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	244518	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	247986	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	247528	1	3	33.3	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	246122	1	14	7.1	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	248519	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	247527	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	248407	1	18	5.5	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	247198	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	245294	2	34	5.8	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	244392	1	16	6.2	5.0	✓
Alkalinity Species by Titration	E290	246363	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	244998	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	244519	1	17	5.8	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	244520	1	17	5.8	5.0	1
Conductivity in Water	E100	246362	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	247425	1	19	5.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	247973	1	16	6.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	247424	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	248406	1	19	5.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	245723	1	20	5.0	5.0	√

Page : 12 of 17
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water

Evaluation: **×** = QC frequency outside specification; ✓ = QC frequency within specification.

Matrix: water		Evaluati	on: × = QC rrequ	ency outside spe	ecincation, v –	QC frequency wit	nın specificatior
Quality Control Sample Type				ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	244517	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	244521	1	17	5.8	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	244522	1	17	5.8	5.0	✓
ORP by Electrode	E125	248640	1	19	5.2	5.0	✓
pH by Meter	E108	246361	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	244518	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	247986	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	247528	1	3	33.3	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	246122	1	14	7.1	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	248519	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	247527	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	248407	1	18	5.5	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	247198	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	247982	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	245294	2	34	5.8	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	244392	1	16	6.2	5.0	✓
Alkalinity Species by Titration	E290	246363	1	20	5.0	5.0	√
Ammonia by Fluorescence	E298	244998	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	244519	1	17	5.8	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	244520	1	17	5.8	5.0	✓
Conductivity in Water	E100	246362	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	247425	1	19	5.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	247973	1	16	6.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	247424	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	248406	1	19	5.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	245723	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	244517	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	244521	1	17	5.8	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	244522	1	17	5.8	5.0	✓
Sulfate in Water by IC	E235.SO4	244518	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	247986	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	247528	1	3	33.3	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	246122	1	14	7.1	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	248519	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	247527	1	20	5.0	5.0	√
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	248407	1	18	5.5	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	247198	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	247982	1	20	5.0	5.0	√
	2100 2						_

Page : 13 of 17
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water

Evaluation: \times = QC frequency outside specification: \checkmark = QC frequency within specification

Matrix: Water	Evaluation: x = QC frequency outside specification; √ = QC frequency within specification.								
Quality Control Sample Type			Co	ount		Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Matrix Spikes (MS)									
Ammonia by Fluorescence	E298	244998	1	20	5.0	5.0	✓		
Bromide in Water by IC (Low Level)	E235.Br-L	244519	1	17	5.8	5.0	✓		
Chloride in Water by IC (Low Level)	E235.CI-L	244520	1	17	5.8	5.0	✓		
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	247425	1	19	5.2	5.0	✓		
Dissolved Mercury in Water by CVAAS	E509	247973	1	16	6.2	5.0	✓		
Dissolved Metals in Water by CRC ICPMS	E421	247424	1	19	5.2	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	248406	1	19	5.2	5.0	✓		
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	245723	1	20	5.0	5.0	✓		
Fluoride in Water by IC	E235.F	244517	1	20	5.0	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	244521	1	17	5.8	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	244522	1	17	5.8	5.0	✓		
Sulfate in Water by IC	E235.SO4	244518	1	20	5.0	5.0	✓		
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	247528	1	3	33.3	5.0	✓		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	246122	1	14	7.1	5.0	✓		
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	248519	1	13	7.6	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	247527	1	20	5.0	5.0	✓		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	248407	1	18	5.5	5.0	✓		
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	247198	1	20	5.0	5.0	√		

 Page
 : 14 of 17

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TSS by Gravimetry (Low Level)	0 7	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field.
133 by Gravimetry (Low Lever)	E160-L	vvalei	APHA 2540 D (IIIOU)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
	Calgary - Environmental			filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	J			brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
				filter, with evaporation of the filtrate at $180 \pm 2^{\circ}\text{C}$ for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3
	Calgary - Environmental			

Page : 15 of 17
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

 Page
 : 16 of 17

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.

Page : 17 of 17
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order : CG2102605 Page : 1 of 18

Client : Teck Coal Limited Laboratory : Calgary - Environmental

Contact : Cait Good Account Manager : Lyudmyla Shvets
Address : 421 Pine Avenue Address : 2559 20th Street N

:421 Pine Avenue Address :2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5 : 250 425 8202 / 250 425 2555 Telephone :+1 403 407 1800

 Telephone
 : 250 425 8202 / 250 425 2555
 Telephone
 : +1 403 407 1800

 Project
 : Regional Effects Program
 Date Samples Received
 : 15-Jul-2021 08:40

C-O-C number : Regional Effects Program : sue Date : 28-Jul
Sampler : RICK SMIT

Sampler : RICK SMIT
Site :----

Quote number : Teck Coal Master Quote

No. of samples received : 3
No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Elke Tabora		Inorganics, Calgary, Alberta
Jorden Fanson	Analyst	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia
Naeun Kim	Analyst	Inorganics, Calgary, Alberta
Owen Cheng		Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

 Page
 : 2 of 18

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 3 of 18

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

ub-Matrix: Water						Laboratory Duplicate (DUP) Report							
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie		
Physical Tests (QC	Lot: 244392)												
CG2102599-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	11.9	12.5	0.6	Diff <2x LOR			
Physical Tests (QC	Lot: 245294)												
CG2102594-001	Anonymous	turbidity		E121	0.10	NTU	0.70	0.77	0.07	Diff <2x LOR			
Physical Tests (QC	Lot: 245296)												
CG2102589-036	Anonymous	turbidity		E121	0.10	NTU	11.2	11.6	3.50%	15%			
Physical Tests (QC	Lot: 246361)							1					
CG2102596-001	Anonymous	pH		E108	0.10	pH units	8.08	8.11	0.370%	4%			
Physical Tests (QC	Lot: 246362)												
CG2102596-001	Anonymous	conductivity		E100	2.0	μS/cm	448	437	2.48%	10%			
Physical Tests (QC	Lot: 246363)												
CG2102596-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	2.0	mg/L	163	163	0.245%	20%			
		alkalinity, carbonate (as CaCO3)		E290	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR			
		alkalinity, hydroxide (as CaCO3)		E290	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR			
		alkalinity, total (as CaCO3)		E290	2.0	mg/L	163	163	0.245%	20%			
Physical Tests (QC	Lot: 247986)					-							
CG2102589-036	Anonymous	solids, total dissolved [TDS]		E162	40	mg/L	2920	2950	1.12%	20%			
Physical Tests (QC	Lot: 248640)					-							
CG2102598-003	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	460	459	0.196%	15%			
	,	exaction reduction perential (e.g.)								1711			
CG2102605-001	ts (QC Lot: 244517) RG LIDSL WS LAEMP L	fluoride	16984-48-8	E235.F	0.020	mg/L	0.231	0.226	2.19%	20%			
302102000 001	CO_2021_07_NP	ndondo	10004 40 0	2200.1	0.020	mg/L	0.201	0.220	2.10%	2070			
Anions and Nutrien	ts (QC Lot: 244518)												
CG2102605-001	RG_LIDSL_WS_LAEMP_L CO_2021_07_NP	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	172	171	0.371%	20%			
Anions and Nutrien	ts (QC Lot: 244519)												
CG2102605-001	RG_LIDSL_WS_LAEMP_L CO_2021_07_NP	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR			
Anions and Nutrien	ts (QC Lot: 244520)												
CG2102605-001	RG_LIDSL_WS_LAEMP_L CO_2021_07_NP	chloride	16887-00-6	E235.CI-L	0.10	mg/L	6.95	6.93	0.243%	20%			
Anions and Nutrien	ts (QC Lot: 244521)												
CG2102605-001	RG_LIDSL_WS_LAEMP_L CO_2021_07_NP	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	7.37	7.27	1.36%	20%			

 Page
 : 4 of 18

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Anions and Nutrien	ts (QC Lot: 244522) - co	ontinued										
CG2102605-001	RG_LIDSL_WS_LAEMP_L CO_2021_07_NP	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0018	0.0021	0.0003	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 244998)											
CG2102605-001	RG_LIDSL_WS_LAEMP_L CO_2021_07_NP	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	0.0050	0	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 245723)											
CG2102596-004	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 246122)											
CG2102604-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.50	mg/L	97.5	91.8	5.97%	20%		
Anions and Nutrien	ts (QC Lot: 247198)											
CG2102596-006	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR		
Organic / Inorganic	Carbon (QC Lot: 24840	6)										
CG2102595-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.87	2.00	0.13	Diff <2x LOR		
Organic / Inorganic	Carbon (QC Lot: 24840)	7)										
CG2102595-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	2.20	2.21	0.01	Diff <2x LOR		
Total Metals (QC Lo	ot: 247527\	, 3 1 1										
CG2102605-001	RG LIDSL WS LAEMP L	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0035	0.0052	0.0017	Diff <2x LOR		
002102000 001	CO_2021_07_NP	alaminam, total				mg/L						
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00024	0.00024	0.000010	Diff <2x LOR		
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00012	0.00012	0.000002	Diff <2x LOR		
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0508	0.0498	1.88%	20%		
		beryllium, total	7440-41-7	E420	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR		
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		boron, total	7440-42-8	E420	0.010	mg/L	0.014	0.014	0.00003	Diff <2x LOR		
		cadmium, total	7440-43-9	E420	0.0050	mg/L	0.255 μg/L	0.000237	7.42%	20%		
		calcium, total	7440-70-2	E420	0.050	mg/L	88.9	88.2	0.787%	20%		
		cobalt, total	7440-48-4	E420	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR		
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR		
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0398	0.0386	3.13%	20%		
		magnesium, total	7439-95-4	E420	0.0050	mg/L	39.0	38.4	1.56%	20%		
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00292	0.00286	1.91%	20%		
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00194	0.00188	2.98%	20%		
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00583	0.00586	0.564%	20%		
		potassium, total	7440-02-0	E420	0.050	mg/L	1.31	1.30	0.990%	20%		
		i i	7782-49-2	E420	0.050	-		0.0298	2.68%	20%		
		selenium, total	1102-49-2	E42U	0.050	mg/L	30.7 μg/L	0.0298	∠.08%	∠0%		

Page : 5 of 18
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC L	ot: 247527) - continued										
CG2102605-001	RG_LIDSL_WS_LAEMP_L CO_2021_07_NP	silicon, total	7440-21-3	E420	0.10	mg/L	2.27	2.20	3.28%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	17341-25-2	E420	0.050	mg/L	5.98	5.94	0.586%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.188	0.185	1.43%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	63.4	60.9	4.14%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000010	<0.000010	0.00000004	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00269	0.00274	1.91%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0089	0.0090	0.0002	Diff <2x LOR	
Total Metals (QC L	ot: 247528)										
CG2102605-001	RG_LIDSL_WS_LAEMP_L CO 2021 07 NP	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00016	0.00014	0.00001	Diff <2x LOR	
Total Metals (QC L	ot: 248519)										
CG2102592-001	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 247424)										
CG2102589-033	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0020	mg/L	0.0030	0.0029	0.00007	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00020	mg/L	0.00061	0.00069	0.00007	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00020	mg/L	0.0103	0.00989	4.03%	20%	
		beryllium, dissolved	7440-41-7	E421	0.040	mg/L	<0.040 µg/L	<0.000040	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.020	mg/L	0.086	0.086	0.0005	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0100	mg/L	0.0573 μg/L	0.0000543	0.0000030	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.100	mg/L	472	471	0.256%	20%	
		cobalt, dissolved	7440-48-4	E421	0.20	mg/L	67.9 μg/L	0.0672	0.975%	20%	
		copper, dissolved	7440-50-8	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.020	mg/L	0.615	0.615	0.0553%	20%	
		lead, dissolved	7439-92-1	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0020	mg/L	0.121	0.118	2.23%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0100	mg/L	243	239	1.76%	20%	
		manganese, dissolved	7439-96-5	E421	0.00020	mg/L	0.820	0.820	0.0286%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000100	mg/L	0.00136	0.00138	1.04%	20%	
		nickel, dissolved	7440-02-0	E421	0.00100	mg/L	0.341	0.342	0.229%	20%	
		mone, dissolved	7440-02-0	L-72 1	0.00100	mg/L	0.041	0.072	0.22570	2070	

Page : 6 of 18
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water	b-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Dissolved Metals (QC Lot: 247424) - co	ntinued											
CG2102589-033	Anonymous	potassium, dissolved	7440-09-7	E421	0.100	mg/L	6.80	6.77	0.483%	20%			
		selenium, dissolved	7782-49-2	E421	0.100	mg/L	<0.100 µg/L	<0.000100	0	Diff <2x LOR			
		silicon, dissolved	7440-21-3	E421	0.100	mg/L	3.70	3.59	3.04%	20%			
		silver, dissolved	7440-22-4	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR			
		sodium, dissolved	17341-25-2	E421	0.100	mg/L	5.84	5.84	0.0188%	20%			
		strontium, dissolved	7440-24-6	E421	0.00040	mg/L	0.473	0.468	0.993%	20%			
		sulfur, dissolved	7704-34-9	E421	1.00	mg/L	564	558	1.00%	20%			
		thallium, dissolved	7440-28-0	E421	0.000020	mg/L	0.000154	0.000148	0.000005	Diff <2x LOR			
		tin, dissolved	7440-31-5	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR			
		titanium, dissolved	7440-32-6	E421	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR			
		uranium, dissolved	7440-61-1	E421	0.000020	mg/L	0.0337	0.0343	1.92%	20%			
		vanadium, dissolved	7440-62-2	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR			
		zinc, dissolved	7440-66-6	E421	0.0020	mg/L	0.0991	0.100	1.32%	20%			
Dissolved Metals (QC Lot: 247425)												
CG2102589-033	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR			
Dissolved Metals(QC Lot: 247973)												
CG2102589-034	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR			

 Page
 : 7 of 18

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 244392)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 245294)					
urbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 245296)					
urbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 246362)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 246363)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 247982)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 247986)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 244517)					
luoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 244518)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 244519)					
promide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 244520)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 244521)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 244522)				'	
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 244998)				·	
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 245723)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 246122)				'	

Page : 8 of 18
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Analyte	CAS Number M	lethod	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 24612						
Kjeldahl nitrogen, total [TKN]	E	318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 24719	3)					
phosphorus, total	7723-14-0 E	372-U	0.002	mg/L	<0.0020	
Organic / Inorganic Carbon (QCLot: 2	248406)					
carbon, dissolved organic [DOC]	E	358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 2	248407)					
carbon, total organic [TOC]	E	355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 247527)						
aluminum, total	7429-90-5 E	420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E	420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E		0.0001	mg/L	<0.00010	
parium, total	7440-39-3 E	420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7 E	420	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9 E	420	0.00005	mg/L	<0.000050	
poron, total	7440-42-8 E	420	0.01	mg/L	<0.010	
eadmium, total	7440-43-9 E	420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E	420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E	420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E	420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E-	420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E	420	0.00005	mg/L	<0.000050	
thium, total	7439-93-2 E	420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E	420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5 E	420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E	420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E	420	0.0005	mg/L	<0.00050	
ootassium, total	7440-09-7 E	420	0.05	mg/L	<0.050	
elenium, total	7782-49-2 E	420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E	420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E	420	0.00001	mg/L	<0.000010	
sodium, total	17341-25-2 E	420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E-	420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 E	420	0.5	mg/L	<0.50	
hallium, total	7440-28-0 E	420	0.00001	mg/L	<0.000010	
in, total	7440-31-5 E	420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6 E	420	0.0003	mg/L	<0.00030	

 Page
 : 9 of 18

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 247527) -	continued					
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 247528)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 248519)						
mercury, total	7439-97-6	E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 24742	24)					
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	

Page : 10 of 18
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 247424) - cor	ntinued					
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 247425)						
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 247973)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.0000050	

 Page
 : 11 of 18

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 244392)								
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	109	85.0	115	
Physical Tests (QCLot: 245294)								
turbidity	E121	0.1	NTU	200 NTU	96.8	85.0	115	
Physical Tests (QCLot: 245296)								
turbidity	E121	0.1	NTU	200 NTU	97.4	85.0	115	
Physical Tests (QCLot: 246361)								
pH	E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 246362)								
conductivity	E100	1	μS/cm	146.9 μS/cm	100	90.0	110	
Physical Tests (QCLot: 246363)								
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	95.9	85.0	115	
Physical Tests (QCLot: 247982)								
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	87.6	85.0	115	
Physical Tests (QCLot: 247986)								
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	102	85.0	115	
Physical Tests (QCLot: 248640)								
oxidation-reduction potential [ORP]	E125		mV	220 mV	102	95.4	104	
Anions and Nutrients (QCLot: 244517)							ı	1
fluoride	16984-48-8 E235.F	0.02	mg/L	1 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 244518)							ı	1
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	100 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 244519)								
bromide	24959-67-9 E235.Br-L	0.05	mg/L	0.5 mg/L	99.2	85.0	115	
Anions and Nutrients (QCLot: 244520)		_					ı	1
chloride	16887-00-6 E235.CI-L	0.1	mg/L	100 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 244521)								
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	2.5 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 244522)								
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	0.5 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 244998)								
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	95.4	85.0	115	
Anions and Nutrients (QCLot: 245723)								

Page : 12 of 18
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Anions and Nutrients (QCLot: 245723) - continue	d										
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.1 mg/L	104	80.0	120			
Anions and Nutrients (QCLot: 246122)											
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	94.6	75.0	125			
Anions and Nutrients (QCLot: 247198)											
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	8.32 mg/L	100	80.0	120			
Organic / Inorganic Carbon (QCLot: 248406)											
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	10 mg/L	106	80.0	120			
Organic / Inorganic Carbon (QCLot: 248407)											
carbon, total organic [TOC]		E355-L	0.5	mg/L	10 mg/L	108	80.0	120			
Total Metals (QCLot: 247527)											
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	109	80.0	120			
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	102	80.0	120			
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	105	80.0	120			
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	110	80.0	120			
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	99.1	80.0	120			
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	108	80.0	120			
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	97.8	80.0	120			
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	103	80.0	120			
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	99.5	80.0	120			
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	104	80.0	120			
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	104	80.0	120			
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	99.8	80.0	120			
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	104	80.0	120			
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	109	80.0	120			
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	102	80.0	120			
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	106	80.0	120			
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	97.7	80.0	120			
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	105	80.0	120			
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	108	80.0	120			
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	102	80.0	120			
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	101	80.0	120			
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	97.0	80.0	120			
sodium, total	17341-25-2	E420	0.05	mg/L	50 mg/L	110	80.0	120			
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	103	80.0	120			
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	93.9	80.0	120			

Page : 13 of 18
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 247527) - continued										
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	107	80.0	120		
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	93.8	80.0	120		
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	101	80.0	120		
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	100	80.0	120		
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	106	80.0	120		
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	103	80.0	120		
Total Metals (QCLot: 247528)										
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	104	80.0	120		
Total Metals (QCLot: 248519)						,				
mercury, total	7439-97-6	E508-L	0.5	ng/L	5 ng/L	98.8	80.0	120		
Dissolved Metals (QCLot: 247424)										
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	99.4	80.0	120		
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	97.5	80.0	120		
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	96.2	80.0	120		
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	101	80.0	120		
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	96.3	80.0	120		
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	99.4	80.0	120		
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	96.4	80.0	120		
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	91.3	80.0	120		
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	98.7	80.0	120		
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	97.0	80.0	120		
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	95.8	80.0	120		
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	99.1	80.0	120		
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	96.5	80.0	120		
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	97.4	80.0	120		
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	98.2	80.0	120		
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	96.4	80.0	120		
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	99.2	80.0	120		
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	96.1	80.0	120		
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	101	80.0	120		
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	95.0	80.0	120		
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	95.2	80.0	120		
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	98.0	80.0	120		
sodium, dissolved	17341-25-2	E421	0.05	mg/L	50 mg/L	97.1	80.0	120		
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	98.0	80.0	120		
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	93.6	80.0	120		

Page : 14 of 18
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Dissolved Metals (QCLot: 247424) - conti	inued										
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	98.6	80.0	120			
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	92.2	80.0	120			
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	89.3	80.0	120			
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	94.6	80.0	120			
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	98.4	80.0	120			
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	94.0	80.0	120			
Dissolved Metals (QCLot: 247425)											
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	96.5	80.0	120			
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	99.3	80.0	120			

 Page
 : 15 of 18

 Work Order
 : CG2102605

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report								
					Spi	ike	Recovery (%)	Recovery	Limits (%)				
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
	ents (QCLot: 244517)												
CG2102606-005	Anonymous	fluoride	16984-48-8	E235.F	1.06 mg/L	1 mg/L	106	75.0	125				
Anions and Nutri	ents (QCLot: 244518)												
CG2102606-005	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	109 mg/L	100 mg/L	109	75.0	125				
Anions and Nutri	ents (QCLot: 244519)												
CG2102606-005	Anonymous	bromide	24959-67-9	E235.Br-L	0.494 mg/L	0.5 mg/L	98.9	75.0	125				
Anions and Nutri	ents (QCLot: 244520)												
CG2102606-005	Anonymous	chloride	16887-00-6	E235.CI-L	107 mg/L	100 mg/L	107	75.0	125				
Anions and Nutri	ents (QCLot: 244521)												
CG2102606-005	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.66 mg/L	2.5 mg/L	106	75.0	125				
Anions and Nutri	ents (QCLot: 244522)												
CG2102606-005	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.549 mg/L	0.5 mg/L	110	75.0	125				
Anions and Nutri	ents (QCLot: 244998)												
CG2102606-005	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.114 mg/L	0.1 mg/L	114	75.0	125				
Anions and Nutri	ents (QCLot: 245723)												
CG2102596-005	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0519 mg/L	0.05 mg/L	104	70.0	130				
Anions and Nutri	ents (QCLot: 246122)												
CG2102605-001	RG_LIDSL_WS_LAEMP_LC	Kjeldahl nitrogen, total [TKN]		E318	2.75 mg/L	2.5 mg/L	110	70.0	130				
Anions and Nutri	O_2021_07_NP ents (QCLot: 247198)												
CG2102598-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0572 mg/L	0.0676 mg/L	84.7	70.0	130				
Organic / Inorgan	ic Carbon (QCLot: 2484	106)			0.00012.003/2	51131 5 11 3 12	2.11	. • . •	122				
CG2102595-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	23.7 mg/L	23.9 mg/L	99.2	70.0	130				
Organic / Inorgan	ic Carbon (QCLot: 2484	, , , , , , , , , , , , , , , , , , ,					51.2	. • . •	122				
CG2102595-001	Anonymous	carbon, total organic [TOC]		E355-L	25.6 mg/L	23.9 mg/L	107	70.0	130				
Total Metals (QC	Lot: 247527)												
CG2102605-002	RG_FRUL_WS_LAEMP_LC	aluminum, total	7429-90-5	E420	0.199 mg/L	0.2 mg/L	99.6	70.0	130				
	O_2021_07_NP	antimony, total	7440-36-0	E420	0.0193 mg/L	0.02 mg/L	96.5	70.0	130				
		arsenic, total	7440-38-2	E420	0.0196 mg/L	0.02 mg/L	97.9	70.0	130				

Page : 16 of 18
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water						Matrix Spike (MS) Report								
					Spi	ke	Recovery (%)	Recovery	Limits (%)					
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier				
	CLot: 247527) - continue	d												
CG2102605-002	RG_FRUL_WS_LAEMP_LC	barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130					
	O_2021_07_NP	beryllium, total	7440-41-7	E420	0.0359 mg/L	0.04 mg/L	89.8	70.0	130					
		bismuth, total	7440-69-9	E420	0.00950 mg/L	0.01 mg/L	95.0	70.0	130					
		boron, total	7440-42-8	E420	0.107 mg/L	0.1 mg/L	107	70.0	130					
		cadmium, total	7440-43-9	E420	0.00380 mg/L	0.004 mg/L	95.0	70.0	130					
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130					
		cobalt, total	7440-48-4	E420	0.0188 mg/L	0.02 mg/L	94.0	70.0	130					
		copper, total	7440-50-8	E420	0.0184 mg/L	0.02 mg/L	91.8	70.0	130					
		iron, total	7439-89-6	E420	1.92 mg/L	2 mg/L	96.2	70.0	130					
		lead, total	7439-92-1	E420	0.0184 mg/L	0.02 mg/L	92.0	70.0	130					
		lithium, total	7439-93-2	E420	0.0967 mg/L	0.1 mg/L	96.7	70.0	130					
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130					
		manganese, total	7439-96-5	E420	0.0195 mg/L	0.02 mg/L	97.6	70.0	130					
		molybdenum, total	7439-98-7	E420	0.0194 mg/L	0.02 mg/L	97.1	70.0	130					
		nickel, total	7440-02-0	E420	0.0374 mg/L	0.04 mg/L	93.5	70.0	130					
	potassium, total	7440-09-7	E420	3.96 mg/L	4 mg/L	99.1	70.0	130						
		selenium, total	7782-49-2	E420	ND mg/L	0.04 mg/L	ND	70.0	130					
		silicon, total	7440-21-3	E420	8.82 mg/L	10 mg/L	88.2	70.0	130					
		silver, total	7440-22-4	E420	0.00375 mg/L	0.004 mg/L	93.6	70.0	130					
		sodium, total	17341-25-2	E420	ND mg/L	2 mg/L	ND	70.0	130					
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130					
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130					
		thallium, total	7440-28-0	E420	0.00356 mg/L	0.004 mg/L	88.9	70.0	130					
		tin, total	7440-31-5	E420	0.0188 mg/L	0.02 mg/L	94.0	70.0	130					
		titanium, total	7440-32-6	E420	0.0384 mg/L	0.04 mg/L	96.1	70.0	130					
		uranium, total	7440-61-1	E420	0.00390 mg/L	0.004 mg/L	97.5	70.0	130					
		vanadium, total	7440-62-2	E420	0.102 mg/L	0.1 mg/L	102	70.0	130					
		zinc, total	7440-66-6	E420	0.353 mg/L	0.4 mg/L	88.3	70.0	130					
otal Metals (QC	CLot: 247528)													
G2102605-002	RG_FRUL_WS_LAEMP_LC O_2021_07_NP	chromium, total	7440-47-3	E420.Cr-L	0.0391 mg/L	0.04 mg/L	97.7	70.0	130					
otal Metals (QC	CLot: 248519)													
G2102592-002	Anonymous	mercury, total	7439-97-6	E508-L	4.93 ng/L	5 ng/L	98.6	70.0	130					
issolved Metals	(QCLot: 247424)													
G2102589-034	Anonymous	aluminum, dissolved	7429-90-5	E421	0.202 mg/L	0.2 mg/L	101	70.0	130					
		antimony, dissolved	7440-36-0	E421	0.0208 mg/L	0.02 mg/L	104	70.0	130					

Page : 17 of 18
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water	-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)				
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
	(QCLot: 247424) -	continued											
CG2102589-034	Anonymous	arsenic, dissolved	7440-38-2	E421	0.0219 mg/L	0.02 mg/L	109	70.0	130				
		barium, dissolved	7440-39-3	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130				
		beryllium, dissolved	7440-41-7	E421	0.0378 mg/L	0.04 mg/L	94.6	70.0	130				
		bismuth, dissolved	7440-69-9	E421	0.00904 mg/L	0.01 mg/L	90.4	70.0	130				
		boron, dissolved	7440-42-8	E421	0.095 mg/L	0.1 mg/L	95.2	70.0	130				
		cadmium, dissolved	7440-43-9	E421	0.00407 mg/L	0.004 mg/L	102	70.0	130				
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130				
		cobalt, dissolved	7440-48-4	E421	0.0189 mg/L	0.02 mg/L	94.6	70.0	130				
		copper, dissolved	7440-50-8	E421	0.0184 mg/L	0.02 mg/L	91.9	70.0	130				
		iron, dissolved	7439-89-6	E421	1.95 mg/L	2 mg/L	97.5	70.0	130				
		lead, dissolved	7439-92-1	E421	0.0190 mg/L	0.02 mg/L	95.3	70.0	130				
		lithium, dissolved	7439-93-2	E421	0.0983 mg/L	0.1 mg/L	98.3	70.0	130				
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130				
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130				
		molybdenum, dissolved	7439-98-7	E421	0.0217 mg/L	0.02 mg/L	108	70.0	130				
		nickel, dissolved	7440-02-0	E421	0.0364 mg/L	0.04 mg/L	91.0	70.0	130				
		potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130				
		selenium, dissolved	7782-49-2	E421	0.0473 mg/L	0.04 mg/L	118	70.0	130				
		silicon, dissolved	7440-21-3	E421	10.0 mg/L	10 mg/L	100	70.0	130				
		silver, dissolved	7440-22-4	E421	0.00404 mg/L	0.004 mg/L	101	70.0	130				
		sodium, dissolved	17341-25-2	E421	ND mg/L	2 mg/L	ND	70.0	130				
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130				
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130				
		thallium, dissolved	7440-28-0	E421	0.00370 mg/L	0.004 mg/L	92.4	70.0	130				
		tin, dissolved	7440-31-5	E421	0.0205 mg/L	0.02 mg/L	103	70.0	130				
		titanium, dissolved	7440-32-6	E421	0.0406 mg/L	0.04 mg/L	101	70.0	130				
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.004 mg/L	ND	70.0	130				
		vanadium, dissolved	7440-62-2	E421	0.105 mg/L	0.1 mg/L	105	70.0	130				
		zinc, dissolved	7440-66-6	E421	0.380 mg/L	0.4 mg/L	95.1	70.0	130				
Dissolved Metals	(QCLot: 247425)												
CG2102589-034	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0407 mg/L	0.04 mg/L	102	70.0	130				
Dissolved Metals	(QCLot: 247973)												
CG2102589-035	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000982 mg/L	0.0001 mg/L	98.2	70.0	130				
	-			-						_			

Page : 18 of 18
Work Order : CG2102605
Client : Teck Coal Limited
Project : Regional Effects Program

Teck						Page	t of		1						_					
icen	COC ID:	Regio	nal Ef	fects Prog	gram	TURNA	AROUND	TIMI	:		- Re	ular							1	
	PROJECT/CLIENT INFO			7. A. A						Y 🦿 💌					OTHER					
Facility Name	Regional Effects Program						b Name A								Distribution		Excel	PDF	EDD	
Project Manager	Cait Good					Lab	Contact L			A . T AA1 .			ail 1:		od@teck.co					
Email	cait.good@teck.com									@ALSG lob	al.com		ail 2:		erylo@teck.com					
Address	421 Pine Avenue					 	Address 2:	339 29 1	SLICEL IN E	·			ail 3:		@equisorline				-	
			In.	rovince BC		 	City C	algany		Province	e AB		ail 4: ail 5:	7	er@minnow.ca		-			
D. Commontal D. Colon	Sparwood			Country Can	ada	Post	al Code T			Countr			au 5:	Carla.Fr	oymanParker	@teck.com	1		!	
Environmental Division	V0B 2G0			Journey Comment			Number 40				1001	≱PO n	umber	T	·	1PO 748	2510			
Calgary Work Order Reference	0-425-8202 SAMPLE DET	AILS			7.	1 1 1 1	10.47 196	e - v		NALYSIS I	EQUEST		and Cr		Fi	tered - F: Fiel		.: Field & I	ah, N: None	
Work Order Reference	January De Base					11	V.	l N			Y	Y		N						
+CG2102605						1		N	Y	N	· . · r	,	N.		\					
1)		+					<u> </u>	1		-				-	***	b 47		المنجو	Į.
								NO	E H2S	O4 H2SC	4 HCI	HNO3	HNO3	NONE			Equip.	Siden and	\$ P	
	500		Hazardous Material (Yes/No					* *	200			RT-D-	LET-T,							- , , , , , , , , , , , , , , , , , , ,
Telephone:1 403 407 1800		-	ous Mai					ANALYSIS HG-T-II-C'VAF-VA	ALS Package-DOC	ALS_Package-	HG-D-CVAF-VA	FECKCOAL-MET-D	TECKCOAL-MET-T.	TECKCOAL- ROUTINE-VA		-				
many many many and approximately	Sample Location	Field	lazard	**	T (24)	G=Grab C=Com	# Of	11-6	LS Pa	LS Pa	200	TECKC	ECKC	ECKC						
Sample ID	(sys loc code)	Matrix	+	Date	Time (24hr)		Cont.		-	1 3 3					<u> </u>		 	<u> </u>		
RGLIDSLUS LAEMP LOUDON- 07	THE KELLIPST			<u> </u>		'S	7	:'	2 6	2 0	6	a ac	63 1.	المحمد المحمد		-				
RG FO23 is LARMY LCO 2021-07 N	D RG- FRYL	WS	102	2021-07-1	09:00	ے	7	×	0	X A		α	~	2						
RG FOOS LISTAFAP LO 2021-07	NP RG POD3	LUS.	No	02107-14	11:15	16	7		ر ۲	× 21	-	- C	200	Ø₹						
1107020204			7.50			-		-				<u> </u>		†						
		 	 		 	1							 							
		ļ. <u></u>			<u> </u>								ļ	ļ			ļ <u> </u>		1	
		ļ																		
	1			•																
		 	 		1		1	-						1	 	T		7		
		ļ	 		 		 	1					 	 	 	 	<u> </u>			
		<u> </u>		···		1:	F*										ļ			
]				1	1	1		1			1								
ADDITIONAL COMMENTS/SPEC	CIAL INSTRUCTIONS	1.,-		RELINQUIS	HED BY/AFFO	JATION			E/TIME		CCEPTE	BY/AF	ILIATI	ON		DA"	FE/TIME	<u> </u>		
VPO748510			Rich	Smit/Li	atic envir	mon	01 2	021	714/	1600						_1_	1_			
													(<u> </u>	مث	1112			<u> </u>	5
							**						1	h	/	// 1	7_		14	//
	•			:		,					y production of the second of		V						$-\nu$	
SERVICE REQUEST (rush - su	bject to availability)			die j		1 1 64					<u>.</u>									
	Regular (default) X	Ţ -	Sampler's	Name	Q:	de	Sm	: 1		М	obile#	40	~ -	5 86	301	• £		- 1	1
Priority (2-3 business days) - 50% su	rcharge	ļ			1 1/1			, <u>, , , , , , , , , , , , , , , , , , </u>				1				71		/	4/
For Emergency <1 Day	(1 Business Day) - 100% su ASAP or Weekend - Conta	rcharge	1	Sampler's Si	gnature		CB	Z	7		Dat	te/Time	20	2.	07 1	Lſ	16,0)i>		
To Energency 1 Day	ASAL OF WEEKEIN - COMA	IO ALS		~		i i						· -		:		•				,
			,			. 1														
						1														
						¥ .											•			
)														
	* * * * * * * * * * * * * * * * * * * *					Ý		>												
						t														

WATER CHEMISTRY

ALS Laboratory Report CG2102635 (Finalized July 27, 2021)

CERTIFICATE OF ANALYSIS

Work Order : CG2102635

Client : Teck Coal Limited

Contact : Cait Good

Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone : 250 425 8202 / 250 425 2555

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00748510

C-O-C number : REGIONAL EFFECTS PROGRAM

Sampler : RICK SMIT

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 16-Jul-2021 09:00

Date Analysis Commenced : 16-Jul-2021

Issue Date : 27-Jul-2021 16:06

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Dee Lee	Analyst	Metals, Burnaby, British Columbia	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia	
Jorden Fanson	Analyst	Inorganics, Calgary, Alberta	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Shaneel Dayal	Analyst	Metals, Burnaby, British Columbia	

Page : 2 of 6

Work Order : CG2102635

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 3 of 6
Work Order : CG2102635
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			C	lient sample ID	RG_LI8_WS_LA	 	
(Matrix: Water)					EMP_LCO_202 1-07_NP		
			Client samp	oling date / time	15-Jul-2021 08:15	 	
Analyte	CAS Number	Method	LOR	Unit	CG2102635-001	 	
					Result	 	
Physical Tests							
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	166	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	166	 	
conductivity		E100	2.0	μS/cm	619	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	348	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	456	 	
pH		E108	0.10	pH units	8.29	 	
solids, total dissolved [TDS]		E162	10	mg/L	431	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.6	 	
turbidity		E121	0.10	NTU	0.28	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	202	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	 	
Anions and Nutrients							
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0094	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	6.37	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.321	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.237 TKNI	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	6.34	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0010	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	147	 	
Organic / Inorganic Carbon							
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.32	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	1.60	 	
Ion Balance							

Page : 4 of 6
Work Order : CG2102635
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Cl	ient sample ID	RG_LI8_WS_LA	 	
(Matrix: Water)					EMP_LCO_202 1-07_NP		
			Client samp	ling date / time	15-Jul-2021 08:15	 	
Analyte	CAS Number	Method	LOR	Unit	CG2102635-001	 	
					Result	 	
Ion Balance							
anion sum		EC101	0.10	meq/L	7.03	 	
cation sum		EC101	0.10	meq/L	7.23	 	
ion balance (cations/anions ratio)		EC101	0.010	%	103	 	
ion balance (cation-anion difference)		EC101	0.010	%	1.40	 	
Total Metals							
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0052	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00019	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00012	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0578	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	0.014	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.163	 	
calcium, total	7440-70-2	E420	0.050	mg/L	86.4	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00023	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0330	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	36.3	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00125	 	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00175	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00434	 	
potassium, total	7440-09-7	E420	0.050	mg/L	1.18	 	
selenium, total	7782-49-2	E420	0.050	μg/L	25.2	 	
silicon, total	7440-21-3	E420	0.10	mg/L	2.20	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	 	
sodium, total	17341-25-2	E420	0.050	mg/L	5.61	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.174	 	

Page : 5 of 6
Work Order : CG2102635
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	RG_LI8_WS_LA	 		
(Matrix: Water)					EMP_LCO_202 1-07_NP			
			Client samp	ling date / time	15-Jul-2021 08:15	 		
Analyte	CAS Number	Method	LOR	Unit	CG2102635-001	 		
					Result	 		
Total Metals								
sulfur, total	7704-34-9	E420	0.50	mg/L	56.0	 		
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	 		
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	 		
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	 		
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00268	 		
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	 		
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0082	 		
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0018	 		
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00018	 		
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	 		
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0590	 		
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	 		
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	 		
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.014	 		
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.109	 		
calcium, dissolved	7440-70-2	E421	0.050	mg/L	81.6	 		
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00024	 		
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	 		
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00024	 		
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	 		
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	 		
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0322	 		
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	35.1	 		
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00084	 		
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	 		
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00173	 		
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00440	 		
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.24	 		
selenium, dissolved	7782-49-2	E421	0.050	μg/L	26.6	 		
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.10	 		
	7 440-21-0		1	9, =		l	I	I

Page : 6 of 6

Work Order : CG2102635

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_LI8_WS_LA	 	
(Matrix: Water)					EMP_LCO_202 1-07_NP		
			Client samp	ling date / time	15-Jul-2021 08:15	 	
Analyte	CAS Number	Method	LOR	Unit	CG2102635-001	 	
					Result	 	
Dissolved Metals							
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	5.60	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.174	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	52.5	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00252	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0067	 	
dissolved mercury filtration location		EP509	-	-	Field	 	
dissolved metals filtration location		EP421	-	-	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2102635** Page : 1 of 12

Client : Teck Coal Limited Laboratory : Calgary - Environmental
Contact : Cait Good Account Manager : Lyudmyla Shyets

Contact : Cait Good Account Manager : Lyudmyla Shvets
Address : 421 Pine Avenue Address : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5

 Telephone
 : 250 425 8202 / 250 425 2555
 Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 16-Jul-2021 09:00

PO : VPO00748510 Issue Date : 27-Jul-2021 16:06

C-O-C number : REGIONAL EFFECTS PROGRAM

Sampler : RICK SMIT
Site : ____

Quote number : Teck Coal Master Quote

No. of samples received : 1
No. of samples analysed : 1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

 Page
 : 2 of 12

 Work Order
 : CG2102635

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; •	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pre	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_LI8_WS_LAEMP_LCO_2021-07_NP	E298	15-Jul-2021	22-Jul-2021				22-Jul-2021	28 days	7 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_LI8_WS_LAEMP_LCO_2021-07_NP	E235.Br-L	15-Jul-2021					17-Jul-2021	28 days	2 days	√
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_LI8_WS_LAEMP_LCO_2021-07_NP	E235.CI-L	15-Jul-2021					17-Jul-2021	28 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel)									
HDPE RG_LI8_WS_LAEMP_LCO_2021-07_NP	E378-U	15-Jul-2021					17-Jul-2021	3 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_LI8_WS_LAEMP_LCO_2021-07_NP	E235.F	15-Jul-2021					17-Jul-2021	28 days	2 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_LI8_WS_LAEMP_LCO_2021-07_NP	E235.NO3-L	15-Jul-2021					17-Jul-2021	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_LI8_WS_LAEMP_LCO_2021-07_NP	E235.NO2-L	15-Jul-2021					17-Jul-2021	3 days	2 days	✓

 Page
 : 3 of 12

 Work Order
 : CG2102635

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						diddion.	Holding time excee	oddiioo ,	***********	rioiding riii
Analyte Group	Method	Sampling Date	Extraction / Preparation							
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_LI8_WS_LAEMP_LCO_2021-07_NP	E235.SO4	15-Jul-2021					17-Jul-2021	28 days	2 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_LI8_WS_LAEMP_LCO_2021-07_NP	E318	15-Jul-2021	20-Jul-2021				20-Jul-2021	28 days	5 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)	F270 II	45 1 2004	00 1.1 0004				00 11 0004	00 4	7	√
RG_LI8_WS_LAEMP_LCO_2021-07_NP	E372-U	15-Jul-2021	22-Jul-2021				22-Jul-2021	28 days	7 days	•
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)							I			
HDPE dissolved (nitric acid) RG LI8 WS LAEMP LCO 2021-07 NP	E421.Cr-L	15-Jul-2021	21-Jul-2021				21-Jul-2021	180	6 days	√
NG_LIO_W3_LALIVIF_LCO_2021-07_NF	L421.01-L	13-341-2021	2 1-3ul-202 1				21-3ui-2021	days	0 days	•
Dissolved Metals : Dissolved Mercury in Water by CVAAS								dayo		
Glass vial dissolved (hydrochloric acid)										
RG LI8 WS LAEMP LCO 2021-07 NP	E509	15-Jul-2021	22-Jul-2021				22-Jul-2021	28 days	7 days	✓
									,	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_LI8_WS_LAEMP_LCO_2021-07_NP	E421	15-Jul-2021	21-Jul-2021				21-Jul-2021	180	6 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	rel)									
Amber glass dissolved (sulfuric acid)										
RG_LI8_WS_LAEMP_LCO_2021-07_NP	E358-L	15-Jul-2021	22-Jul-2021				22-Jul-2021	28 days	8 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)									
Amber glass total (sulfuric acid)										
RG_LI8_WS_LAEMP_LCO_2021-07_NP	E355-L	15-Jul-2021	22-Jul-2021				22-Jul-2021	28 days	8 days	✓
Physical Tests : Acidity by Titration										
HDPE RG_LI8_WS_LAEMP_LCO_2021-07_NP	E283	15-Jul-2021					16-Jul-2021	14 days	1 da	√
		15-1111-2021					1 h1111-2021	114 days	i davs l	✓

 Page
 : 4 of 12

 Work Order
 : CG2102635

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

										Holding Tir
Analyte Group	Method Sampling Date Extraction / Preparation					Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	e Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_LI8_WS_LAEMP_LCO_2021-07_NP	E290	15-Jul-2021					18-Jul-2021	14 days	3 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG LI8 WS LAEMP LCO 2021-07 NP	E100	15-Jul-2021					18-Jul-2021	28 days	3 days	✓
									_	
Physical Tests : ORP by Electrode										
HDPE										
RG_LI8_WS_LAEMP_LCO_2021-07_NP	E125	15-Jul-2021					23-Jul-2021	0.34	196 hrs	æ
								hrs		EHTR-FM
Dhusiaal Tasta vall by Mater								10		
Physical Tests : pH by Meter HDPE							l e	I	I	
RG LI8 WS LAEMP LCO 2021-07 NP	E108	15-Jul-2021					18-Jul-2021	0.25	78 hrs	Je .
RG_LI6_WS_LAEMP_LCO_2021-07_NP	E100	15-Jui-202 I					10-Jui-2021		701115	EHTR-FN
								hrs		ENIK-FIV
Physical Tests : TDS by Gravimetry										
HDPE	F400	45 1 1 0004								
RG_LI8_WS_LAEMP_LCO_2021-07_NP	E162	15-Jul-2021					22-Jul-2021	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
RG_LI8_WS_LAEMP_LCO_2021-07_NP	E160-L	15-Jul-2021					22-Jul-2021	7 days	7 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_LI8_WS_LAEMP_LCO_2021-07_NP	E121	15-Jul-2021					17-Jul-2021	3 days	2 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_LI8_WS_LAEMP_LCO_2021-07_NP	E420.Cr-L	15-Jul-2021					21-Jul-2021	180	6 days	1
								days	,	
Total Matala : Total Maraum in Water by CVAES (Law Level LOP - 0.5 mpt)								,-		
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved)							l		I	
RG_LI8_WS_LAEMP_LCO_2021-07_NP	E508-L	15-Jul-2021					21-Jul-2021	28 days	6 days	✓
ING_LIO_WG_LAEMF_LCO_2021-01_INF	L300-L	10-341-2021					2 1-Jui-202 I	20 uays	0 uays	•

 Page
 : 5 of 12

 Work Order
 : CG2102635

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Width. Water						valuation. • =	riolaing time exoce	danoc , .	- vvicinii	riolaling riiii
Analyte Group	Method Sampling Date		Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_LI8_WS_LAEMP_LCO_2021-07_NP	E420	15-Jul-2021					21-Jul-2021	180 days	6 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

 Page
 : 6 of 12

 Work Order
 : CG2102635

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type	C	ount		Frequency (%))		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	245365	1	14	7.1	5.0	1
Alkalinity Species by Titration	E290	246339	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	249613	1	17	5.8	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	245757	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	245758	1	20	5.0	5.0	1
Conductivity in Water	E100	246337	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	248325	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	248894	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	248326	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	249711	1	17	5.8	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	245770	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	245761	1	20	5.0	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	245759	1	20	5.0	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	245760	1	20	5.0	5.0	1
ORP by Electrode	E125	249657	1	20	5.0	5.0	1
pH by Meter	E108	246338	1	20	5.0	5.0	1
Sulfate in Water by IC	E235.SO4	245756	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	248921	1	20	5.0	5.0	1
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	247647	1	18	5.5	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	246232	1	20	5.0	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	248537	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	247646	1	19	5.2	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	249714	1	17	5.8	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	248042	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	245748	1	9	11.1	5.0	1
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	245365	1	14	7.1	5.0	1
Alkalinity Species by Titration	E290	246339	1	20	5.0	5.0	_
Ammonia by Fluorescence	E298	249613	1	17	5.8	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	245757	1	20	5.0	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	245758	1	20	5.0	5.0	<u>√</u>
Conductivity in Water	E100	246337	1	20	5.0	5.0	<u>√</u>
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	248325	1	20	5.0	5.0	√
Dissolved Mercury in Water by CVAAS	E509	248894	1	20	5.0	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	248326	1	20	5.0	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	249711	1	17	5.8	5.0	<u> </u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	245770	1	20	5.0	5.0	1

Page : 7 of 12 Work Order : CG2102635

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)

Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)

Total Metals in Water by CRC ICPMS

TSS by Gravimetry (Low Level)

Turbidity by Nephelometry

Total Phosphorus by Colourimetry (Ultra Trace)

Quality Control Sample Type		ount)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	245761	1	20	5.0	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	245759	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	245760	1	20	5.0	5.0	✓
ORP by Electrode	E125	249657	1	20	5.0	5.0	√
pH by Meter	E108	246338	1	20	5.0	5.0	√
Sulfate in Water by IC	E235.SO4	245756	1	20	5.0	5.0	√
TDS by Gravimetry	E162	248921	1	20	5.0	5.0	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	247647	1	18	5.5	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	246232	1	20	5.0	5.0	√
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	248537	1	20	5.0	5.0	
Total Metals in Water by CRC ICPMS	E420	247646	1	19	5.2	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	249714	1	17	5.8	5.0	<u> </u>
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	248042	1	20	5.0	5.0	<u>√</u>
TSS by Gravimetry (Low Level)	E160-L	248906	1	20	5.0	5.0	<u> </u>
Turbidity by Nephelometry	E121	245748	1	9	11.1	5.0	<u> </u>
Method Blanks (MB)							
Acidity by Titration	E283	245365	1	14	7.1	5.0	1
Alkalinity Species by Titration	E290	246339	1	20	5.0	5.0	<u>√</u>
Ammonia by Fluorescence	E298	249613	1	17	5.8	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	245757	1	20	5.0	5.0	<u>√</u>
Chloride in Water by IC (Low Level)	E235.CI-L	245758	1	20	5.0	5.0	<u>√</u>
Conductivity in Water	E100	246337	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	248325	1	20	5.0	5.0	<u>√</u>
Dissolved Mercury in Water by CVAAS	E509	248894	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	248326	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	249711	1	17	5.8	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	245770	1	20	5.0	5.0	<u>√</u>
Fluoride in Water by IC	E235.F	245761	1	20	5.0	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	245759	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	245760	1	20	5.0	5.0	<u>√</u>
Sulfate in Water by IC	E235.SO4	245756	1	20	5.0	5.0	√
TDS by Gravimetry	E162	248921	1	20	5.0	5.0	<u> </u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	247647	1	18	5.5	5.0	<u>√</u>
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	246232	1	20	5.0	5.0	<u>√</u>
		2.12.22		+			

E508-L

E420

E355-L

E372-U

E160-L

E121

1

1

1

1

1

1

248537

247646

249714

248042

248906

245748

20

19

17

20

20

9

5.0

5.0

5.0

5.0

5.0

5.0

1

1

5.0

5.2

5.8

5.0

5.0

11.1

 Page
 : 8 of 12

 Work Order
 : CG2102635

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Wattix. Water		Lvaidati	on. • – Qo nequ	ericy outside spe	cirication, • -	QU ITEQUETICY WIL	inin specification
Quality Control Sample Type)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	249613	1	17	5.8	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	245757	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	245758	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	248325	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	248894	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	248326	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	249711	1	17	5.8	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	245770	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	245761	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	245759	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	245760	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	245756	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	247647	1	18	5.5	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	246232	1	20	5.0	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	248537	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	247646	1	19	5.2	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	249714	1	17	5.8	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	248042	1	20	5.0	5.0	√

 Page
 : 9 of 12

 Work Order
 : CG2102635

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TSS by Gravimetry (Low Level)	0 7	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field.
133 by Gravimetry (Low Lever)	E160-L	vvalei	APHA 2540 D (IIIOU)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
	Calgary - Environmental			filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	J			brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
				filter, with evaporation of the filtrate at $180 \pm 2^{\circ}\text{C}$ for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
-	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3
	Calgary - Environmental			

Page : 10 of 12 Work Order : CG2102635

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Vancouver - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 11 of 12 Work Order : CG2102635

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Vancouver - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.

 Page
 : 12 of 12

 Work Order
 : CG2102635

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order : **CG2102635** Page : 1 of 17

Client : Teck Coal Limited Laboratory : Calgary - Environmental

Contact : Cait Good Account Manager : Lyudmyla Shvets

Address : 421 Pine Avenue Address : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5

 Telephone
 : 250 425 8202 / 250 425 2555
 Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 16-Jul-2021 09:00

PO : VPO00748510 Date Analysis Commenced : 16-Jul-2021

C-O-C number : REGIONAL EFFECTS PROGRAM Issue Date : 27-Jul-2021 16:06

Sampler : RICK SMIT

Site :---

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

: 1

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

: Teck Coal Master Quote

Signatories

Quote number

No. of samples received

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Dee Lee	Analyst	Metals, Burnaby, British Columbia	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia	
Jorden Fanson	Analyst	Inorganics, Calgary, Alberta	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Shaneel Dayal	Analyst	Metals, Burnaby, British Columbia	

 Page
 : 2 of 17

 Work Order
 : CG2102635

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 3 of 17

 Work Order
 : CG2102635

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water							Labora	ntory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 245365)										
CG2102629-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 245748)										
CG2102635-001	RG_LI8_WS_LAEMP_LCO _2021-07_NP	turbidity		E121	0.10	NTU	0.28	0.34	0.06	Diff <2x LOR	
Physical Tests (QC	Lot: 246337)										
CG2102624-005	Anonymous	conductivity		E100	2.0	μS/cm	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 246338)										
CG2102624-005	Anonymous	pH		E108	0.10	pH units	5.71	5.49	3.93%	4%	
Physical Tests (QC	Lot: 246339)										
CG2102624-005	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 248921)										
CG2102623-005	Anonymous	solids, total dissolved [TDS]		E162	10	mg/L	<10	<10	0	Diff <2x LOR	
Physical Tests (QC	Lot: 249657)										
CG2102628-002	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	432	425	1.59%	15%	
Anions and Nutrien	its (QC Lot: 245756)										
CG2102623-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	768	764	0.583%	20%	
Anions and Nutrien	ts (QC Lot: 245757)										
CG2102623-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.250	mg/L	<0.250	<0.250	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 245758)										
CG2102623-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.50	mg/L	26.1	26.0	0.558%	20%	
Anions and Nutrien	ts (QC Lot: 245759)										
CG2102623-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0250	mg/L	19.7	19.7	0.0274%	20%	
Anions and Nutrien	ts (QC Lot: 245760)										
CG2102623-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0050	mg/L	0.347	0.334	3.82%	20%	
Anions and Nutrien	ts (QC Lot: 245761)										
CG2102623-001	Anonymous	fluoride	16984-48-8	E235.F	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 245770)										
CG2102619-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0020	0.0022	0.0002	Diff <2x LOR	

 Page
 : 4 of 17

 Work Order
 : CG2102635

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	s (QC Lot: 246232) - c	ontinued									
CG2102628-004	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 248042)										
CG2102626-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 249613)										
CG2102624-005	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0058	0.0062	0.0003	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 24971	11)									
CG2102623-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	3.67	3.87	0.20	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 24971	4)									
CG2102623-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	30.1	31.2	3.65%	20%	
Total Metals (QC Lo	ot: 247646)										
CG2102599-006	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00045	0.00046	0.00001	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0264	0.0278	5.24%	20%	
		beryllium, total	7440-41-7	E420	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.016	0.016	0.00008	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0050	mg/L	0.493 μg/L	0.000484	1.66%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	170	175	2.50%	20%	
		cobalt, total	7440-48-4	E420	0.10	mg/L	0.16 µg/L	0.00017	0.000005	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00078	0.00079	0.00001	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000054	0.000056	0.000002	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0521	0.0507	2.78%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	89.7	87.9	2.06%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00172	0.00170	0.885%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00207	0.00212	2.37%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.0104	0.0106	1.40%	20%	
		potassium, total	7440-09-7	E420	0.050	mg/L	3.12	3.16	1.13%	20%	
		selenium, total	7782-49-2	E420	0.050	mg/L	214 µg/L	0.219	2.13%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	1.84	1.84	0.193%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	17341-25-2	E420	0.050	mg/L	1.16	1.16	0.250%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.126	0.131	3.61%	20%	
		sulfur. total	7704-34-9	E420	0.50	mg/L	166	166	0.118%	20%	

 Page
 : 5 of 17

 Work Order
 : CG2102635

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 247646) - continue	d									
CG2102599-006	Anonymous	thallium, total	7440-28-0	E420	0.000010	mg/L	0.000021	0.000022	0.000001	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00411	0.00422	2.61%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.258	0.261	0.914%	20%	
Total Metals (QC Lo	ot: 247647)										
CG2102599-006	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 248537)										
CG2102606-001	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	0.00419 μg/L	3.72	0.47	Diff <2x LOR	
Dissolved Metals (QC Lot: 248325)										
CG2102619-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00013	0.00013	0.000003	Diff <2x LOR	
Dissolved Metals (QC Lot: 248326)										
CG2102619-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00012	0.00011	0.000005	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00013	0.00011	0.00002	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0557	0.0543	2.51%	20%	
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.025	0.024	0.001	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	0.0824 µg/L	0.0000728	12.4%	20%	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	147	143	2.54%	20%	
		cobalt, dissolved	7440-48-4	E421	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.0216	0.0212	1.81%	20%	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.000150	0.000146	0.000004	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0576	0.0554	4.01%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	64.4	63.6	1.33%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00029	0.00033	0.00004	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000705	0.000681	3.40%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00098	0.00101	0.00003	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	2.45	2.41	1.65%	20%	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	57.4 μg/L	0.0577	0.640%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	3.49	3.36	3.88%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	

 Page
 : 6 of 17

 Work Order
 : CG2102635

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 248326) - contin	ued									
CG2102619-001	Anonymous	sodium, dissolved	17341-25-2	E421	0.050	mg/L	13.5	13.4	0.867%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.336	0.334	0.402%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	116	113	2.63%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000018	0.000019	0.0000005	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00166	0.00160	3.75%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0228	0.0223	2.09%	20%	
Dissolved Metals (QC Lot: 248894)										
CG2102624-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

 Page
 : 7 of 17

 Work Order
 : CG2102635

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Page Page	Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Projectal Tests (OCLot: 245748)	Physical Tests (QCLot: 245365)					
	acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 248337) Filip Fil	Physical Tests (QCLot: 245748)					
	turbidity	E121	0.1	NTU	<0.10	
Page Page	Physical Tests (QCLot: 246337)					
Californity, bicaterbonate (as CaCO3)	conductivity	E100	1	μS/cm	<1.0	
Realingly, carbonate (as CaCO3)	Physical Tests (QCLot: 246339)					
Realinity, hydroxide (as CaCO3)	alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
Reginal Regi	alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
hysical Tests (QCLot: 24896) Indice to the property of the	alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
E160-L	alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
hysical Tests (QCLot: 248921) Idids, total dissolved [TDS]	Physical Tests (QCLot: 248906)					
Section Color Co	solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Nions and Nutrients (QCLot: 245756) Iffate (as SO4)	Physical Tests (QCLot: 248921)					
1488-79-8 E235.SO4	solids, total dissolved [TDS]	E162	10	mg/L	<10	
Note	Anions and Nutrients (QCLot: 245756)					
Committe Committe	sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Note	Anions and Nutrients (QCLot: 245757)					
16887-00-6 E235.CI-L 0.1 mg/L < 0.10	bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Note	Anions and Nutrients (QCLot: 245758)					
trate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L <0.0050 nions and Nutrients (QCLot: 245760) trite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 nions and Nutrients (QCLot: 245761) noride 16984-48-8 E235.F 0.02 mg/L <0.020 nions and Nutrients (QCLot: 245770) nosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010 nions and Nutrients (QCLot: 246232) eldahl nitrogen, total [TKN] E318 0.05 mg/L <0.050 nions and Nutrients (QCLot: 248042) nosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
nions and Nutrients (QCLot: 245760) trite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 nions and Nutrients (QCLot: 245761) trite (as N) 16984-48-8 E235.F 0.02 mg/L <0.020 nions and Nutrients (QCLot: 245770) trite (as N) 16984-48-8 E235.F 0.02 mg/L <0.020 nions and Nutrients (QCLot: 245770) trite (as N) 16984-48-8 E235.F 0.02 mg/L <0.020 nions and Nutrients (QCLot: 245770) trite (as N) 16984-48-8 E235.F 0.02 mg/L <0.020 nions and Nutrients (QCLot: 245770) trite (as N) 16984-48-8 E235.F 0.02 mg/L <0.020 nions and Nutrients (QCLot: 245770) trite (as N) 16984-48-8 E235.F 0.002 mg/L <0.0020 nions and Nutrients (QCLot: 246232) trite (as N) 16984-48-8 E235.F 0.002 mg/L <0.0020 nions and Nutrients (QCLot: 246232) trite (as N) 16984-48-8 E235.F 0.002 mg/L <0.0020 nions and Nutrients (QCLot: 246232) trite (as N) 16984-48-8 E235.F 0.002 mg/L <0.0020 nions and Nutrients (QCLot: 246232) trite (as N) 16984-48-8 E235.F 0.002 mg/L <0.0020 nions and Nutrients (QCLot: 246232) trite (as N) 16984-48-8 E235.F 0.002 mg/L <0.0020 nions and Nutrients (QCLot: 246232) trite (as N) 16984-48-8 E235.F 0.002 mg/L <0.0020 nions and Nutrients (QCLot: 246232) trite (as N) 16984-48-8 E235.F 0.002 mg/L <0.0020 nions and Nutrients (QCLot: 246232)	Anions and Nutrients (QCLot: 245759)					
trite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 nions and Nutrients (QCLot: 245761) noride 16984-48-8 E235.F 0.02 mg/L <0.020 nions and Nutrients (QCLot: 245770) nosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010 nions and Nutrients (QCLot: 246232) eldahl nitrogen, total [TKN] E318 0.05 mg/L <0.050 nions and Nutrients (QCLot: 248042) nosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
nions and Nutrients (QCLot: 245761) noride 16984-48-8 E235.F 0.02 mg/L <0.020	Anions and Nutrients (QCLot: 245760)					
16984-48-8 E235.F 0.02 mg/L <0.020	nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Note	Anions and Nutrients (QCLot: 245761)					
Note	fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
nions and Nutrients (QCLot: 246232) eldahl nitrogen, total [TKN] E318 0.05 mg/L <0.050	Anions and Nutrients (QCLot: 245770)					
eldahl nitrogen, total [TKN] E318 0.05 mg/L <0.050 nions and Nutrients (QCLot: 248042) nosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
nions and Nutrients (QCLot: 248042) nosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	Anions and Nutrients (QCLot: 246232)					
nosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
nosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	Anions and Nutrients (QCLot: 248042)					
nions and Nutrients (QCLot: 249613)	phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
	Anions and Nutrients (QCLot: 249613)					

 Page
 : 8 of 17

 Work Order
 : CG2102635

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 24	9613) - continued					
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCL	ot: 249711)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCL	ot: 249714)					
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 247646)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
ooron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6	E420	0.01	mg/L	<0.010	
ead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	MBRR
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	17341-25-2	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
hallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
iin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	

 Page
 : 9 of 17

 Work Order
 : CG2102635

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 247646) - cor						
zinc, total	7440-66-6 E	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 247647)						
chromium, total	7440-47-3 E	E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 248537)						
mercury, total	7439-97-6 E	E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 248325)						
chromium, dissolved	7440-47-3 E	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 248326)						
aluminum, dissolved	7429-90-5 E	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E		0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E		0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3 E	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7 E		0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9 E		0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8 E	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2 E	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4 E	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6 E	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1 E	E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2 E	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E	E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7 E	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2 E	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E	E421	0.5	mg/L	<0.50	
hallium, dissolved	7440-28-0 E	E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5 E	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E	E421	0.0003	mg/L	<0.00030	

 Page
 : 10 of 17

 Work Order
 : CG2102635

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number M	Method	LOR	Unit	Result	Qualifier			
Dissolved Metals (QCLot: 248326) - continued									
uranium, dissolved	7440-61-1 E	5421	0.00001	mg/L	<0.000010				
vanadium, dissolved	7440-62-2 E	E421	0.0005	mg/L	<0.00050				
zinc, dissolved	7440-66-6 E	E421	0.001	mg/L	<0.0010				
Dissolved Metals (QCLot: 248894)									
mercury, dissolved	7439-97-6 E	509	0.000005	mg/L	<0.000050				

Qualifiers

Qualifier	Description
MBRR	Initial MB for this submission had positive results for flagged analyte (data not shown). Low level
	samples were repeated with new QC (2nd MB results shown). High level results (>5x initial MB level)
	and non-detect results were reported and are defensible

 Page
 : 11 of 17

 Work Order
 : CG2102635

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Analyte CAS Number Method LOR Unit Concentration LCS Low High	
Physical Tests (QCLot: 245365)	
Easily 10 Easi	Qualifier
Physical Tests (QCLot: 245748)	
Physical Tests (QCLot: 246337)	
Physical Tests (QCLot: 246337)	
Conductivity	
Physical Tests (QCLot: 246338) PH	
Physical Tests (QCLot: 246339) Solids, Iotal (as CaCO3)	
Physical Tests (OCLot: 246339)	
Selatinity, total (as CaCO3) E290 1 mg/L 500 mg/L 97.3 85.0 115	
Physical Tests (QCLot: 248906)	
Solids, total suspended [TSS]	
Physical Tests (QCLot: 248921) solids, total dissolved [TDS] E162 10 mg/L 1000 mg/L 98.6 85.0 115 Physical Tests (QCLot: 249657) oxidation-reduction potential [ORP] E125 mV 220 mV 101 95.4 104 Anions and Nutrients (QCLot: 245756) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 245757) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 100 mg/L 102 90.0 115 Anions and Nutrients (QCLot: 245758) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 245759) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 245760) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 100 90.0 110	
Solids, total dissolved [TDS]	
Physical Tests (QCLot: 249657) oxidation-reduction potential [ORP]	
Anions and Nutrients (QCLot: 245756) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 245757) 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 100 mg/L 100 85.0 115 Anions and Nutrients (QCLot: 245758) 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 245759) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 245760) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 100 90.0 110	
Anions and Nutrients (QCLot: 245756) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 245757) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 100 85.0 115 Anions and Nutrients (QCLot: 245758) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 245759) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 245760) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 100 90.0 110	
sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 245757) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 100 85.0 115 Anions and Nutrients (QCLot: 245758) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 245759) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 245760) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 100 90.0 110	
sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 245757) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 100 85.0 115 Anions and Nutrients (QCLot: 245758) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 245759) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 245760) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 100 90.0 110	
Anions and Nutrients (QCLot: 245757) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 100 85.0 115 Anions and Nutrients (QCLot: 245758) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 245759) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 245760) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 100 90.0 110	
bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 100 85.0 115 Anions and Nutrients (QCLot: 245758) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 245759) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 245760) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 100 90.0 110	
Anions and Nutrients (QCLot: 245758) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 245759) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 245760) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 100 90.0 110	
Chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 245759) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 245760) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 100 90.0 110	
Anions and Nutrients (QCLot: 245759) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 245760) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 100 90.0 110	
Anions and Nutrients (QCLot: 245760) 14797-65-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 245760) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 100 90.0 110	
Anions and Nutrients (QCLot: 245760) nitrite (as N)	
nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 100 90.0 110	
Anions and Nutrients (QCLot: 245761)	
fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 108 90.0 110	
Anions and Nutrients (QCLot: 245770)	
phosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L 0.1 mg/L 110 80.0 120	
Anions and Nutrients (QCLot: 246232)	
Kjeldahl nitrogen, total [TKN] E318 0.05 mg/L 4 mg/L 79.3 75.0 125	
Anions and Nutrients (QCLot: 248042)	

 Page
 : 12 of 17

 Work Order
 : CG2102635

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number N	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 248042) - cont	tinued								
phosphorus, total	7723-14-0 E	372-U	0.002	mg/L	8.32 mg/L	90.6	80.0	120	
Anions and Nutrients (QCLot: 249613)									
ammonia, total (as N)	7664-41-7 E	298	0.005	mg/L	0.2 mg/L	101	85.0	115	
Organic / Inorganic Carbon (QCLot: 249711)									
carbon, dissolved organic [DOC]	E	358-L	0.5	mg/L	10 mg/L	106	80.0	120	
Organic / Inorganic Carbon (QCLot: 249714)									
carbon, total organic [TOC]	E	:355-L	0.5	mg/L	10 mg/L	109	80.0	120	
Total Metals (QCLot: 247646)									
aluminum, total	7429-90-5 E	420	0.003	mg/L	2 mg/L	104	80.0	120	
antimony, total	7440-36-0 E	420	0.0001	mg/L	1 mg/L	103	80.0	120	
arsenic, total	7440-38-2 E	420	0.0001	mg/L	1 mg/L	106	80.0	120	
barium, total	7440-39-3 E	420	0.0001	mg/L	0.25 mg/L	109	80.0	120	
beryllium, total	7440-41-7 E	420	0.00002	mg/L	0.1 mg/L	92.8	80.0	120	
bismuth, total	7440-69-9 E	420	0.00005	mg/L	1 mg/L	100	80.0	120	
boron, total	7440-42-8 E	420	0.01	mg/L	1 mg/L	99.0	80.0	120	
cadmium, total	7440-43-9 E	420	0.000005	mg/L	0.1 mg/L	102	80.0	120	
calcium, total	7440-70-2 E	420	0.05	mg/L	50 mg/L	104	80.0	120	
cobalt, total	7440-48-4 E	420	0.0001	mg/L	0.25 mg/L	104	80.0	120	
copper, total	7440-50-8 E	420	0.0005	mg/L	0.25 mg/L	99.4	80.0	120	
iron, total	7439-89-6 E	420	0.01	mg/L	1 mg/L	108	80.0	120	
lead, total	7439-92-1 E	420	0.00005	mg/L	0.5 mg/L	98.0	80.0	120	
lithium, total	7439-93-2 E	420	0.001	mg/L	0.25 mg/L	98.1	80.0	120	
magnesium, total	7439-95-4 E	420	0.005	mg/L	50 mg/L	100	80.0	120	
manganese, total	7439-96-5 E	420	0.0001	mg/L	0.25 mg/L	100	80.0	120	
molybdenum, total	7439-98-7 E	420	0.00005	mg/L	0.25 mg/L	106	80.0	120	
nickel, total	7440-02-0 E	420	0.0005	mg/L	0.5 mg/L	102	80.0	120	
potassium, total	7440-09-7 E	420	0.05	mg/L	50 mg/L	106	80.0	120	
selenium, total	7782-49-2 E	420	0.00005	mg/L	1 mg/L	107	80.0	120	
silicon, total	7440-21-3 E	420	0.1	mg/L	10 mg/L	106	80.0	120	
silver, total	7440-22-4 E	420	0.00001	mg/L	0.1 mg/L	105	80.0	120	
sodium, total	17341-25-2 E	420	0.05	mg/L	50 mg/L	110	80.0	120	
strontium, total	7440-24-6 E	420	0.0002	mg/L	0.25 mg/L	108	80.0	120	
sulfur, total	7704-34-9 E	420	0.5	mg/L	50 mg/L	110	80.0	120	
thallium, total	7440-28-0 E	420	0.00001	mg/L	1 mg/L	97.0	80.0	120	
tin, total	7440-31-5 E	420	0.0001	mg/L	0.5 mg/L	100	80.0	120	

 Page
 : 13 of 17

 Work Order
 : CG2102635

 Client
 : Teck Coal Limited

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
				Spike	Recovery (%)	Recovery	/ Limits (%)		
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 247646) - continu	ied								
titanium, total	7440-32-6 E420	0.0003	mg/L	0.25 mg/L	99.6	80.0	120		
uranium, total	7440-61-1 E420	0.00001	mg/L	0.005 mg/L	106	80.0	120		
vanadium, total	7440-62-2 E420	0.0005	mg/L	0.5 mg/L	105	80.0	120		
zinc, total	7440-66-6 E420	0.003	mg/L	0.5 mg/L	98.6	80.0	120		
Total Metals (QCLot: 247647)									
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	104	80.0	120		
Total Metals (QCLot: 248537)									
mercury, total	7439-97-6 E508-L	0.5	ng/L	5 ng/L	98.8	80.0	120		
Dissolved Metals (QCLot: 248325)									
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	0.25 mg/L	104	80.0	120		
Dissolved Metals (QCLot: 248326)									
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	2 mg/L	104	80.0	120		
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	1 mg/L	96.8	80.0	120		
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	1 mg/L	98.2	80.0	120		
barium, dissolved	7440-39-3 E421	0.0001	mg/L	0.25 mg/L	102	80.0	120		
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	0.1 mg/L	101	80.0	120		
bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	1 mg/L	101	80.0	120		
boron, dissolved	7440-42-8 E421	0.01	mg/L	1 mg/L	92.7	80.0	120		
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	0.1 mg/L	101	80.0	120		
calcium, dissolved	7440-70-2 E421	0.05	mg/L	50 mg/L	97.6	80.0	120		
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	0.25 mg/L	102	80.0	120		
copper, dissolved	7440-50-8 E421	0.0002	mg/L	0.25 mg/L	102	80.0	120		
iron, dissolved	7439-89-6 E421	0.01	mg/L	1 mg/L	98.2	80.0	120		
lead, dissolved	7439-92-1 E421	0.00005	mg/L	0.5 mg/L	101	80.0	120		
lithium, dissolved	7439-93-2 E421	0.001	mg/L	0.25 mg/L	96.4	80.0	120		
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	50 mg/L	99.7	80.0	120		
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	0.25 mg/L	99.3	80.0	120		
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	0.25 mg/L	100	80.0	120		
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	0.5 mg/L	102	80.0	120		
potassium, dissolved	7440-09-7 E421	0.05	mg/L	50 mg/L	109	80.0	120		
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	1 mg/L	98.1	80.0	120		
silicon, dissolved	7440-21-3 E421	0.05	mg/L	10 mg/L	97.7	80.0	120		
silver, dissolved	7440-22-4 E421	0.00001	mg/L	0.1 mg/L	101	80.0	120		
sodium, dissolved	17341-25-2 E421	0.05	mg/L	50 mg/L	109	80.0	120		
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	0.25 mg/L	99.8	80.0	120		
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	50 mg/L	87.7	80.0	120		

 Page
 : 14 of 17

 Work Order
 : CG2102635

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 248326) - contin	ued								
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	100	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	98.1	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	102	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	98.3	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	103	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	100	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	103	80.0	120	

Page : 15 of 17 Work Order : CG2102635 Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND - Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							-	e (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nuti	rients (QCLot: 245756)									
CG2102623-006	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	105 mg/L	100 mg/L	105	75.0	125	
Anions and Nuti	rients (QCLot: 245757)									
CG2102623-006	Anonymous	bromide	24959-67-9	E235.Br-L	0.555 mg/L	0.5 mg/L	111	75.0	125	
nions and Nuti	rients (QCLot: 245758)									
CG2102623-006	Anonymous	chloride	16887-00-6	E235.CI-L	111 mg/L	100 mg/L	111	75.0	125	
Anions and Nuti	rients (QCLot: 245759)									
CG2102623-006	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.61 mg/L	2.5 mg/L	104	75.0	125	
Anions and Nuti	rients (QCLot: 245760)									
CG2102623-006	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.528 mg/L	0.5 mg/L	106	75.0	125	
Anions and Nuti	rients (QCLot: 245761)									
CG2102623-006	Anonymous	fluoride	16984-48-8	E235.F	1.17 mg/L	1 mg/L	117	75.0	125	
Anions and Nuti	rients (QCLot: 245770)									
CG2102623-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0470 mg/L	0.05 mg/L	94.1	70.0	130	
Anions and Nuti	rients (QCLot: 246232)									
CG2102629-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.37 mg/L	2.5 mg/L	94.9	70.0	130	
Anions and Nuti	rients (QCLot: 248042)									
CG2102626-003	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0558 mg/L	0.0676 mg/L	82.5	70.0	130	
Anions and Nuti	rients (QCLot: 249613)									
CG2102626-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	4.32 mg/L	5 mg/L	86.4	75.0	125	
Organic / Inorga	nic Carbon (QCLot: 24	9711)								
CG2102623-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	27.0 mg/L	23.9 mg/L	113	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 24	9714)								
CG2102623-001	Anonymous	carbon, total organic [TOC]		E355-L	ND mg/L	23.9 mg/L	ND	70.0	130	
Total Metals (Q	CLot: 247646)									
CG2102624-001	Anonymous	aluminum, total	7429-90-5	E420	0.418 mg/L	0.4 mg/L	104	70.0	130	
		antimony, total	7440-36-0	E420	0.0419 mg/L	0.04 mg/L	105	70.0	130	
		arsenic, total	7440-38-2	E420	0.0453 mg/L	0.04 mg/L	113	70.0	130	
	•	barium, total	7440-39-3	E420	0.0409 mg/L	0.04 mg/L	102	70.0	130	

 Page
 : 16 of 17

 Work Order
 : CG2102635

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Matrix Spike	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	CLot: 247646) - conti	inued								
CG2102624-001	Anonymous	beryllium, total	7440-41-7	E420	0.0795 mg/L	0.08 mg/L	99.4	70.0	130	
		bismuth, total	7440-69-9	E420	0.0192 mg/L	0.02 mg/L	96.1	70.0	130	
		boron, total	7440-42-8	E420	0.205 mg/L	0.2 mg/L	102	70.0	130	
		cadmium, total	7440-43-9	E420	0.00827 mg/L	0.008 mg/L	103	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	8 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		copper, total	7440-50-8	E420	0.0371 mg/L	0.04 mg/L	92.8	70.0	130	
		iron, total	7439-89-6	E420	4.06 mg/L	4 mg/L	101	70.0	130	
		lead, total	7439-92-1	E420	0.0378 mg/L	0.04 mg/L	94.6	70.0	130	
		lithium, total	7439-93-2	E420	ND mg/L	0.2 mg/L	ND	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	2 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0438 mg/L	0.04 mg/L	110	70.0	130	
		nickel, total	7440-02-0	E420	ND mg/L	0.08 mg/L	ND	70.0	130	
		potassium, total	7440-09-7	E420	ND mg/L	8 mg/L	ND	70.0	130	
		selenium, total	7782-49-2	E420	0.0901 mg/L	0.08 mg/L	113	70.0	130	
		silicon, total	7440-21-3	E420	20.6 mg/L	20 mg/L	103	70.0	130	
		silver, total	7440-22-4	E420	0.00821 mg/L	0.008 mg/L	103	70.0	130	
		sodium, total	17341-25-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	40 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.00727 mg/L	0.008 mg/L	90.8	70.0	130	
		tin, total	7440-31-5	E420	0.0410 mg/L	0.04 mg/L	103	70.0	130	
		titanium, total	7440-32-6	E420	0.0870 mg/L	0.08 mg/L	109	70.0	130	
		uranium, total	7440-61-1	E420	ND mg/L	0.008 mg/L	ND	70.0	130	
		vanadium, total	7440-62-2	E420	0.217 mg/L	0.2 mg/L	108	70.0	130	
		zinc, total	7440-66-6	E420	0.767 mg/L	0.8 mg/L	95.9	70.0	130	
otal Metals (QC	CLot: 247647)									
G2102624-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0828 mg/L	0.08 mg/L	104	70.0	130	
otal Metals (QC	CLot: 248537)									
G2102606-002	Anonymous	mercury, total	7439-97-6	E508-L	4.53 ng/L	5 ng/L	90.7	70.0	130	
	s (QCLot: 248325)									
CG2102619-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0384 mg/L	0.04 mg/L	95.9	70.0	130	
issolved Metals	s (QCLot: 248326)									

 Page
 : 17 of 17

 Work Order
 : CG2102635

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Matrix Spike	e (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 248326) -	continued								
CG2102619-002	Anonymous	antimony, dissolved	7440-36-0	E421	0.0190 mg/L	0.02 mg/L	94.8	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0190 mg/L	0.02 mg/L	95.1	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0357 mg/L	0.04 mg/L	89.2	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00856 mg/L	0.01 mg/L	85.6	70.0	130	
		boron, dissolved	7440-42-8	E421	0.085 mg/L	0.1 mg/L	85.5	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00380 mg/L	0.004 mg/L	95.0	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0182 mg/L	0.02 mg/L	91.2	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0184 mg/L	0.02 mg/L	91.8	70.0	130	
		iron, dissolved	7439-89-6	E421	1.67 mg/L	2 mg/L	83.5	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0184 mg/L	0.02 mg/L	92.3	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0871 mg/L	0.1 mg/L	87.1	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0180 mg/L	0.02 mg/L	90.1	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0194 mg/L	0.02 mg/L	97.0	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0365 mg/L	0.04 mg/L	91.3	70.0	130	
		potassium, dissolved	7440-09-7	E421	3.97 mg/L	4 mg/L	99.2	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0365 mg/L	0.04 mg/L	91.3	70.0	130	
		silicon, dissolved	7440-21-3	E421	7.85 mg/L	10 mg/L	78.5	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00371 mg/L	0.004 mg/L	92.9	70.0	130	
		sodium, dissolved	17341-25-2	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00369 mg/L	0.004 mg/L	92.4	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0191 mg/L	0.02 mg/L	95.6	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0386 mg/L	0.04 mg/L	96.6	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00370 mg/L	0.004 mg/L	92.6	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.0977 mg/L	0.1 mg/L	97.7	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.366 mg/L	0.4 mg/L	91.6	70.0	130	
issolved Metals	(QCLot: 248894)									
G2102624-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.000101 mg/L	0.0001 mg/L	101	70.0	130	

leck	COCATO	Dagi	ID	ffects Pro		TIDEN	AROUND	TIME	T						T	1			
	COC ID:			mecia P.10		1	AKOUND		į.	·	Regu	iar	47.65	N. o sakis and	OTHER	1000			
	PROJECT/CLIENT INF Regional Effects Progra			1	A 100 3		b Name A						\$100 E	750-18 2-10 3-10	OMUTHER	INFO	Excel	PDF	- Dan
Project Manager		111					Contact L						Report I ail 1:		Distribution ad@teck.co		Excei	PDF	EDD
	cait.good@teck.com			<u> </u>		+				LSG lobal.c			ail 2;		erylo@teck.com		*	+	
	421 Pine Avenue						Address 2			DOC IOUAL.			ail 3:	Danika G	@eguisonline		+	+	
Acuress	TETT I III A VERILE					-							ail 4:		(@equisonline ler@mimow.ca		 	+	+
City	Sparw	ood		Province BC		 -	City C	algary		Province	AB		ail 5:		oymanParker		 		+
Postal Code					nada	Pos	tal Code T			Country	Canada			[Cana.F]	Dylflan Parker	(WIECK CO	12	ــــــــــــــــــــــــــــــــــــــ	
Phone Number							Number 4		100	, couring			umber	T		WP074	257.0		
	SAMPLE D	ETAILS						1 13 mg/m		YSIS REC	QUESTE		Marie		PIN			FL: Field &	Lab, N: Nor
						ή		1 - N	Y	N	Y	y	N	N N		i de	,		
		<u> </u>	ļ			10-		NONE	H2SO4	H25O4	HC	7							
			(oN			1.1.		NORE	H2504	112504	HC	HNOS	HN O3	NONE					
	- Typesman		Hazardous Material (Yes/No)				17-	اند				ا م	1						
			- E			,		∜ ×	ALS_Package-DOC			FECKCOAL-MET-D-	TECKCOAL-MET-T-VA	ŀ				-	+
			/fat			.	1 1	HG-T-U-CVAF-VA	<u>3</u>	٠ ا	HG-D-CVAF-VA	₹	₹	\ ₹	1	1			
			1 2						1 20	1 2 c	Į Ž	¥	₹	<u>Y</u>				ŀ	
			l &			G=Grab		N B	380	<u> </u>	Ç	8	18	SE	i	1			
	Sample Location	Field	Į į	ı		C=Com		i F	ارم	S 5	Á	8	8	8 5		1	1		Í
Sample ID	(sys loc code)	Matrix	Ha	Date	Time (24hr)	Þ	Cont.	<u> </u>	AL	ALS_Package- TKN/TOC	HC	Ĕ Š	YA E	TECKCOAL- ROUTINE-VA					
RG.LT & WS. LAEMP. LCO 2021-57_1	UP RG_LIS	US	Νb	2021/67/15	08:15	6	7	X	~	~	æ	×	ec.	4					-
-					1			-		 	-		ļ	ļ	ļ	 	-	+	
Environmental Division	}		1		<u> </u>	 			 		-	-	-	 		+	+	+	-
Calgary Work Order Reference			-		 	-				ļ	-	 		+		 	+	+	
Work Order Reference											ļ	1	İ	<u> </u>					
CG2102635		}			-	1	ļ.		Į.		i]		1				
	, .		ľ			1	2												
	1		1			+		-	 	· · · · · · · · · · · · · · · · · · ·	-			1		 	+		+
					•			-	 							 	┼		+
			1		<u> </u>			: L		•					<u> </u>	<u> </u>			
	. , •				-			1	ŧ						1	1			
	LINSTRUCTIONS		1 80	RELINQUIS	HED BY/AFFIL	JATION		DATE/	TIME	ACC	EPTED	BY/AFF	TLIATI	ON		DA'	TE/TIM	E	3
			Rich	Smit/Luti	L LAUTOAN	notal	2	21/071	15/15:	الألال	-				4		10		
Telephone: +1 403 407 1800								21	• 3	1-	7				14	14	10		
						**								4					
			:					/											
SERVICE REQUEST (rush - sub	ject to availability)			- 197 8	en Brita i se a			4 1 4		25.6	1.3	45			21 S. 191	37.34	\$ 45		ag di se
		(default) X		Sampler's	Name		Rick	Smi	1		Mol	bile#	1	150	-586-	401		, <u>.</u>	
	-3 business days) - 50%		 				1116				14,101			100.	- 200-	. 7 W.	-11		
Emergency () For Emergency <1 Day, A	Business Day) - 100%		-	Sampler's Si	gnature		AL.				Date	/Time	200	L1 ~	7 15	1	16.0	U,	
FOR Extretgency VT Day, A	noar of weekend - Col	IMULALO	Ji				THE STATE OF THE S						1 1/2	<u> </u>	7	1			
										. 7	0								

11

Page

WATER CHEMISTRY

ALS Laboratory Report CG2104190 (Finalized October 6, 2021)

: Cybele Heddle

CERTIFICATE OF ANALYSIS

Work Order : CG2104190

Client : Teck Coal Limited

Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone : ---

Contact

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00748510

C-O-C number : September LCO LAEMP 2021

Sampler : Jennifer Ings

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 17-Sep-2021 10:00

Date Analysis Commenced : 18-Sep-2021

Issue Date : 06-Oct-2021 16:23

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Dion Chan	Lab Assistant	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

Page : 2 of 6

Work Order : CG2104190

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Page : 3 of 6
Work Order : CG2104190
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Client sampling	mg/L mg/L mg/L mg/L mg/L mg/L pS/cm mg/L mV pH units mg/L mg/L	AEMP_LCO_2 021-09-15_NP 15-Sep-2021 08:15 CG2104190-001 Result <2.0 127 8.6 <1.0 136 357 200 448 8.45 216 <1.0	 	
Analyte CAS Number Method LOR Physical Tests acidity (as CaCO3) alkalinity, bicarbonate (as CaCO3) alkalinity, bicarbonate (as CaCO3) alkalinity, carbonate (as CaCO3) alkalinity, hydroxide (as CaCO3) alkalinity, total (as CaCO3) alkalinity, total (as CaCO3) alkalinity, total (as CaCO3) alkalinity, total (as CaCO3) alkalinity, total (as CaCO3) alkalinity, bicarbonate (as CaCO3) alkalinity, bicarbonate (as CaCO3) alkalinity, bicarbonate (as CO3) alkalinity, carbonate (as CO3) alkalinity, hydroxide (as CH) alkalinity, hydroxide (as CH) alkalinity, hydroxide (as CH) alkalinity, bicarbonate (as CO3) alkalinity, hydroxide (as CH) alkalinity, bicarbonate (as CO3) alkalinity, hydroxide (as CH) alkalinity, bicarbonate (as CO3) alkalinity, hydroxide (as CH) alkalinity, bicarbonate (as CO3) alkalinity, hydroxide (as CH) alkalinity, bicarbonate (as CO3) alkalinity, hydroxide (as CH) alkalinity, bicarbonate (as CO3) alkalinity, hydroxide (as CH) alkalinity, hydroxide (as CH) alkalinity, hydroxide (as CH) alkalinity, bicarbonate (as CO3) alkalinity, hydroxide (as CH) alkalinity, hydroxide (as CH) alkalinity, hydroxide (as CH) alkalinity, hydroxide (as CH) alkalinity, hydroxide (as CH) alkalinity, hydroxide (as CO3) alkalinity, hydroxide	mg/L mg/L mg/L mg/L mg/L mg/L pS/cm mg/L mV pH units mg/L mg/L	08:15 CG2104190-001 Result <2.0 127 8.6 <1.0 136 357 200 448 8.45 216	 	
Physical Tests acidity (as CaCO3)	mg/L mg/L mg/L mg/L mg/L µS/cm mg/L mV pH units mg/L mg/L mg/L	 <2.0 127 8.6 <1.0 136 357 200 448 8.45 216 	 	
acidity (as CaCO3) alkalinity, bicarbonate (as CaCO3) alkalinity, carbonate (as CaCO3) alkalinity, carbonate (as CaCO3) alkalinity, hydroxide (as CaCO3) alkalinity, total (as CaCO3) alkalinity, total (as CaCO3) alkalinity, total (as CaCO3) conductivity	mg/L mg/L mg/L mg/L μS/cm mg/L mV pH units mg/L mg/L mg/L	<2.0 127 8.6 <1.0 136 357 200 448 8.45 216	 	
acidity (as CaCO3) alkalinity, bicarbonate (as CaCO3) alkalinity, carbonate (as CaCO3) alkalinity, carbonate (as CaCO3) alkalinity, hydroxide (as CaCO3) alkalinity, total (as CaCO3) alkalinity, total (as CaCO3) alkalinity, total (as CaCO3) conductivity	mg/L mg/L mg/L mg/L μS/cm mg/L mV pH units mg/L mg/L mg/L	127 8.6 <1.0 136 357 200 448 8.45 216	 	
alkalinity, bicarbonate (as CaCO3)	mg/L mg/L mg/L mg/L μS/cm mg/L mV pH units mg/L mg/L mg/L	127 8.6 <1.0 136 357 200 448 8.45 216	 	
alkalinity, carbonate (as CaCO3)	mg/L mg/L mg/L μS/cm mg/L mV pH units mg/L mg/L	8.6 <1.0 136 357 200 448 8.45 216	 	
alkalinity, hydroxide (as CaCO3)	mg/L mg/L μS/cm mg/L mV pH units mg/L mg/L	<1.0 136 357 200 448 8.45 216	 	
alkalinity, total (as CaCO3) E290 1.0 conductivity E100 2.0 hardness (as CaCO3), dissolved EC100 0.50 oxidation-reduction potential [ORP] E125 0.10 pH E108 0.10 solids, total dissolved [TDS] E162 10 solids, total suspended [TSS] E160-L 1.0 turbidity E121 0.10 alkalinity, bicarbonate (as HCO3) 71-52-3 E290 1.0 alkalinity, carbonate (as CO3) 3812-32-6 E290 1.0 Anions and Nutrients 14280-30-9 E290 1.0 Anions and Nutrients 7664-41-7 E298 0.0050	mg/L μS/cm mg/L mV pH units mg/L mg/L	136 357 200 448 8.45 216	 	
conductivity	μS/cm mg/L mV pH units mg/L mg/L	357 200 448 8.45 216	 	
hardness (as CaCO3), dissolved	mg/L mV pH units mg/L mg/L	200 448 8.45 216	 	
oxidation-reduction potential [ORP]	mV pH units mg/L mg/L	448 8.45 216	 	
pH	pH units mg/L mg/L	8.45 216	 	
solids, total dissolved [TDS] E162 10 solids, total suspended [TSS] E160-L 1.0 turbidity E121 0.10 alkalinity, bicarbonate (as HCO3) 71-52-3 E290 1.0 alkalinity, carbonate (as CO3) 3812-32-6 E290 1.0 alkalinity, hydroxide (as OH) 14280-30-9 E290 1.0 Anions and Nutrients ammonia, total (as N) 7664-41-7 E298 0.0050	mg/L mg/L	216		
solids, total suspended [TSS] E160-L 1.0 turbidity E121 0.10 alkalinity, bicarbonate (as HCO3) 71-52-3 E290 1.0 alkalinity, carbonate (as CO3) 3812-32-6 E290 1.0 alkalinity, hydroxide (as OH) 14280-30-9 E290 1.0 Anions and Nutrients ammonia, total (as N) 7664-41-7 E298 0.0050	mg/L			
turbidity E121 0.10 alkalinity, bicarbonate (as HCO3) 71-52-3 E290 1.0 alkalinity, carbonate (as CO3) 3812-32-6 E290 1.0 alkalinity, hydroxide (as OH) 14280-30-9 E290 1.0 Anions and Nutrients 200 200 200 200 ammonia, total (as N) 7664-41-7 E298 0.0050		<1.0		
alkalinity, bicarbonate (as HCO3) 71-52-3 E290 1.0 alkalinity, carbonate (as CO3) 3812-32-6 E290 1.0 alkalinity, hydroxide (as OH) 14280-30-9 E290 1.0 Anions and Nutrients ammonia, total (as N) 7664-41-7 E298 0.0050				
alkalinity, carbonate (as CO3) 3812-32-6 E290 1.0 alkalinity, hydroxide (as OH) 14280-30-9 E290 1.0 Anions and Nutrients ammonia, total (as N) 7664-41-7 E298 0.0050	NTU	0.13	 	
alkalinity, hydroxide (as OH) 14280-30-9 E290 1.0 Anions and Nutrients ammonia, total (as N) 7664-41-7 E298 0.0050	mg/L	155	 	
Anions and Nutrients ammonia, total (as N) 7664-41-7 E298 0.0050	mg/L	5.2	 	
ammonia, total (as N) 7664-41-7 E298 0.0050	mg/L	<1.0	 	
ammonia, total (as N) 7664-41-7 E298 0.0050				
	mg/L	<0.0050	 	
bromide 24959-67-9 E235.Br-L 0.050	mg/L	<0.050	 	
chloride 16887-00-6 E235.CI-L 0.10	mg/L	0.34	 	
fluoride 16984-48-8 E235.F 0.020	mg/L	0.368	 	
Kjeldahl nitrogen, total [TKN] E318 0.050	mg/L	<0.050	 	
nitrate (as N) 14797-55-8 E235.NO3-L 0.0050	mg/L	0.136	 	
nitrite (as N) 14797-65-0 E235.NO2-L 0.0010	mg/L	<0.0010	 	
phosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.0010	mg/L	<0.0010	 	
phosphorus, total 7723-14-0 E372-U 0.0020	mg/L	<0.0020	 	
sulfate (as SO4) 14808-79-8 E235.SO4 0.30	mg/L	55.9	 	
Organic / Inorganic Carbon				
carbon, dissolved organic [DOC] E358-L 0.50	mg/L	1.41	 	
carbon, total organic [TOC] E355-L 0.50	mg/L	1.49	 	

Page : 4 of 6
Work Order : CG2104190
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

(Matrix: Water)			OII.	ient sample ID	RG_SLINE_WS_ LAEMP_LCO_2 021-09-15_NP	 	
			Client samp	ling date / time	15-Sep-2021 08:15	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104190-001	 	
Ion Balance					Result	 	
anion sum		EC101	0.10	meq/L	3.92	 	
cation sum		EC101	0.10	meq/L	4.03	 	
ion balance (cations/anions ratio)		EC101	0.010	%	103	 	
ion balance (cation-anion difference)		EC101	0.010	%	1.38	 	
Total Metals							
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0037	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00010	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0372	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0137	 	
calcium, total	7440-70-2	E420	0.050	mg/L	45.7	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00012	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0028	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	15.1	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00014	 	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00140	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	 	
potassium, total	7440-02-0	E420	0.050	mg/L	0.353	 	
selenium, total	7782-49-2	E420	0.050	μg/L	1.45	 	
silicon, total	7440-21-3	E420	0.10	mg/L	2.04	 	
silver, total	7440-21-3	E420	0.000010	mg/L	<0.000010	 	
sodium, total	17341-25-2	E420	0.050	mg/L	0.695	 	

Page : 5 of 6
Work Order : CG2104190
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	RG_SLINE_WS_	 	
(Matrix: Water)					LAEMP_LCO_2 021-09-15_NP		
			Client samp	ling date / time	15-Sep-2021 08:15	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104190-001	 	
Total Metals					Result	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.159	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	20.1	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00171	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	 	
Dissolved Metals							
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0012	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00011	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0416	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0143	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	53.2	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00016	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0030	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	16.2	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00014	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00142	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.404	 	

Page : 6 of 6
Work Order : CG2104190
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			CI	lient sample ID	RG_SLINE_WS_	 	
(Matrix: Water)					LAEMP_LCO_2 021-09-15_NP		
			Client samp	oling date / time	15-Sep-2021 08:15	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104190-001	 	
					Result	 	
Dissolved Metals							
selenium, dissolved	7782-49-2	E421	0.050	μg/L	1.70	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.93	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	0.790	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.159	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	18.8	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00186	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0030	 	
dissolved mercury filtration location		EP509	-	-	Field	 	
dissolved metals filtration location		EP421	-	-	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : CG2104190 Page : 1 of 12

Client : **Teck Coal Limited** : Calgary - Environmental Contact : Cybele Heddle : Cybele Heddle : Lyudmyla Shvets

: 421 Pine Avenue Address : 2559 29th Street NE

Sparwood BC Canada V0B 2G0

Calgary, Alberta Canada T1Y 7B5

Telephone

:+1 403 407 1800

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 17-Sep-2021 10:00

 PO
 : VPO00748510
 Issue Date
 : 06-Oct-2021 16:24

C-O-C number : September LCO LAEMP 2021

Sampler : Jennifer Ings

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 1
No. of samples analysed : 1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 2 of 12 Work Order : CG2104190

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E298	15-Sep-2021	28-Sep-2021				28-Sep-2021	28 days	13 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E235.Br-L	15-Sep-2021					18-Sep-2021	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E235.CI-L	15-Sep-2021					18-Sep-2021	28 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel)									
HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E378-U	15-Sep-2021					18-Sep-2021	3 days	3 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E235.F	15-Sep-2021					18-Sep-2021	28 days	3 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE	5005 NO. 1	45.0 0004								,
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E235.NO3-L	15-Sep-2021					18-Sep-2021	3 days	3 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE	E005 NO0 :	45.0 0004					40.0 0004	0.1	0.1	,
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E235.NO2-L	15-Sep-2021					18-Sep-2021	3 days	3 days	✓

Page : 3 of 12 Work Order : CG2104190

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

wattrx: water						diddion.	noiding time exce	oddiioo ,	- vvicinii	riolaling rill
Analyte Group	Method	Sampling Date	Ex	traction / P	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E235.SO4	15-Sep-2021					18-Sep-2021	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Lev	rel)							T		
Amber glass total (sulfuric acid)	F240	45 0 2004	07.0 0004				07.00004	00 1	40 1	√
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E318	15-Sep-2021	27-Sep-2021				27-Sep-2021	28 days	13 days	•
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E372-U	15-Sep-2021	22-Sep-2021				22-Sep-2021	28 days	7 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Le	vel)									
HDPE dissolved (nitric acid)										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E421.Cr-L	15-Sep-2021	23-Sep-2021				23-Sep-2021	180	8 days	✓
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)	FF00	45 0 2004	00.00004				00.0 0004	00.1	0.1	1
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E509	15-Sep-2021	23-Sep-2021				23-Sep-2021	28 days	o days	•
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS							<u> </u>			
HDPE dissolved (nitric acid)										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E421	15-Sep-2021	23-Sep-2021				23-Sep-2021	180	8 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid)										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E358-L	15-Sep-2021	27-Sep-2021				29-Sep-2021	28 days	14 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by C	ombustion (Low Level)									
Amber glass total (sulfuric acid)	E055.1	45.0 0004	07.0					00.1		,
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E355-L	15-Sep-2021	27-Sep-2021				29-Sep-2021	28 days	14 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E283	15-Sep-2021					28-Sep-2021	14 days	13 days	✓

Page : 4 of 12 Work Order : CG2104190

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

viatinx: water						diddion.	nolaing time exce			Tiolding Til
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys		
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E290	15-Sep-2021					28-Sep-2021	14 days	13 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E100	15-Sep-2021					28-Sep-2021	28 days	13 days	✓
Physical Tests : ORP by Electrode									•	
HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E125	15-Sep-2021					25-Sep-2021	0.34	246 hrs	æ
								hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E108	15-Sep-2021					28-Sep-2021	0.25	315 hrs	3c
								hrs		EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E162	15-Sep-2021					22-Sep-2021	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E160-L	15-Sep-2021					22-Sep-2021	7 days	7 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E121	15-Sep-2021					18-Sep-2021	3 days	3 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E420.Cr-L	15-Sep-2021					23-Sep-2021	180	9 days	✓
								days		
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)										
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E508-L	15-Sep-2021					24-Sep-2021	28 days	9 days	1
		,					·		,	

Page : 5 of 12 Work Order : CG2104190

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method Sampling Date Extraction / Preparation					Analysis				
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP	E420	15-Sep-2021					23-Sep-2021	180 days	9 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

Page : 6 of 12 Work Order : CG2104190

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	304859	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	304723	1	15	6.6	5.0	✓
Ammonia by Fluorescence	E298	305207	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	296270	1	16	6.2	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	296271	1	16	6.2	5.0	1
Conductivity in Water	E100	304722	1	15	6.6	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300110	1	20	5.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	300938	1	20	5.0	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	300109	1	20	5.0	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303820	1	19	5.2	5.0	1
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	296209	1	14	7.1	5.0	√
Fluoride in Water by IC	E235.F	296268	1	16	6.2	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	296272	1	16	6.2	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	296273	1	16	6.2	5.0	1
ORP by Electrode	E125	302475	1	20	5.0	5.0	1
pH by Meter	E108	304721	1	18	5.5	5.0	√
Sulfate in Water by IC	E235.SO4	296269	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	298977	1	20	5.0	5.0	1
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300563	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	304121	1	19	5.2	5.0	1
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	301411	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	300562	1	20	5.0	5.0	1
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303828	1	19	5.2	5.0	1
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	297810	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	296170	1	20	5.0	5.0	1
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	304859	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	304723	1	15	6.6	5.0	<u> </u>
Ammonia by Fluorescence	E298	305207	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	296270	1	16	6.2	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	296271	1	16	6.2	5.0	<u>√</u>
Conductivity in Water	E100	304722	1	15	6.6	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300110	1	20	5.0	5.0	√
Dissolved Mercury in Water by CVAAS	E509	300938	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	300109	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303820	1	19	5.2	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	296209	1	14	7.1	5.0	1

 Page
 : 7 of 12

 Work Order
 : CG2104190

Client : Teck Coal Limited

Matrix: Water	Evaluation	n: × = QC frequency outside spe	ecification; ✓ = QC frequency within specification.
0 5 0 1 10 1 7		0 (E (0/)

Quality Control Sample Type		Co	ount)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	296268	1	16	6.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	296272	1	16	6.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	296273	1	16	6.2	5.0	✓
ORP by Electrode	E125	302475	1	20	5.0	5.0	✓
pH by Meter	E108	304721	1	18	5.5	5.0	✓
Sulfate in Water by IC	E235.SO4	296269	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	298977	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300563	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	304121	1	19	5.2	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	301411	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	300562	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303828	1	19	5.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	297810	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	298276	1	13	7.6	5.0	✓
Turbidity by Nephelometry	E121	296170	1	20	5.0	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	304859	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	304723	1	15	6.6	5.0	✓
Ammonia by Fluorescence	E298	305207	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	296270	1	16	6.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	296271	1	16	6.2	5.0	✓
Conductivity in Water	E100	304722	1	15	6.6	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300110	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	300938	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	300109	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303820	1	19	5.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	296209	1	14	7.1	5.0	✓
Fluoride in Water by IC	E235.F	296268	1	16	6.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	296272	1	16	6.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	296273	1	16	6.2	5.0	✓
Sulfate in Water by IC	E235.SO4	296269	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	298977	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300563	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	304121	1	19	5.2	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	301411	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	300562	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303828	1	19	5.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	297810	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	298276	1	13	7.6	5.0	✓
Turbidity by Nephelometry	E121	296170	1	20	5.0	5.0	✓

Page : 8 of 12 Work Order : CG2104190

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Evaluation: W = Qo inequality value openination, V = Qo inequality value							
Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	305207	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	296270	1	16	6.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	296271	1	16	6.2	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300110	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	300938	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	300109	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303820	1	19	5.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	296209	1	14	7.1	5.0	✓
Fluoride in Water by IC	E235.F	296268	1	16	6.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	296272	1	16	6.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	296273	1	16	6.2	5.0	✓
Sulfate in Water by IC	E235.SO4	296269	1	16	6.2	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300563	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	304121	1	19	5.2	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	301411	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	300562	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303828	1	19	5.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	297810	1	20	5.0	5.0	✓

Page : 9 of 12 Work Order : CG2104190

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
mili bu Madan	Calgary - Environmental	\A/ - 4 - ··	ADIIA 4500 II (** . !)	sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
(Low Estati)	Calgary - Environmental	rvator	74 17/125 is 5 (inser)	filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Calgary - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
, , ,	Calgary - Environmental		,	detection.
Chloride in Water by IC (Low Level)	E235.CI-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC (Low Level)	Calgary - Environmental	Water	EPA 300.1 (mod)	language and an analysis of the control of the cont
Nume in water by to (Low Level)	E235.NO2-L Calgary - Environmental	water	LFA 300.1 (110d)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3
	Calgary - Environmental			

Page : 10 of 12 Work Order : CG2104190

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 11 of 12 Work Order : CG2104190

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver -	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
	Environmental			
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
	Vancouver - Environmental			
Dissolved Mercury in Water by CVAAS	E509 Vancouver -	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	Environmental EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Calgary - Environmental			
Digestion for TKN in water	EP318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Calgary - Environmental			
Dissolved Metals Water Filtration	EP421 Vancouver -	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Environmental		The second secon	

Page : 12 of 12 Work Order : CG2104190

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order Page CG2104190 : 1 of 18

Client : Teck Coal Limited Laboratory : Calgary - Environmental Contact : Cybele Heddle **Account Manager** : Lyudmyla Shvets

> Address :421 Pine Avenue : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5 Telephone :+1 403 407 1800

Project : REGIONAL EFFECTS PROGRAM **Date Samples Received** :17-Sep-2021 10:00

: VPO00748510 **Date Analysis Commenced** :18-Sep-2021

C-O-C number :06-Oct-2021 16:23 : September LCO LAEMP 2021 Issue Date

Sampler : Jennifer Ings

Site

Position

Quote number : Teck Coal Master Quote

: 1 No. of samples analysed : 1

:----

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Signatories

No. of samples received

Address

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	1 osition	Laboratory Department	
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia	
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia	
Dion Chan	Lab Assistant	Metals, Burnaby, British Columbia	
Erin Sanchez		Inorganics, Calgary, Alberta	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia	
Owen Cheng		Metals, Burnaby, British Columbia	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia	

Laboratory Department

 Page
 : 2 of 18

 Work Order
 : CG2104190

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 3 of 18

 Work Order
 : CG2104190

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

ub-Matrix: Water							Labora	atory Duplicate (D	ог) кероп		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
hysical Tests (Q	C Lot: 296170)										
CG2104162-002	Anonymous	turbidity		E121	0.10	NTU	0.28	0.26	0.01	Diff <2x LOR	
Physical Tests (Q	C Lot: 298977)										
CG2104186-002	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	248	252	1.80%	20%	
Physical Tests (Q	C Lot: 302475)										
CG2104181-010	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	464	462	0.518%	15%	
Physical Tests (Q	C Lot: 304721)										
CG2104186-002	Anonymous	рН		E108	0.10	pH units	8.48	8.53	0.588%	4%	
Physical Tests (Q	C Lot: 304722)										
CG2104186-005	Anonymous	conductivity		E100	2.0	μS/cm	454	457	0.659%	10%	
Physical Tests (Q	C Lot: 304723)										
CG2104186-005	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	136	136	0.0737%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	7.8	7.4	0.4	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	144	143	0.349%	20%	
Physical Tests (Q	C Lot: 304859)										
CG2104186-005	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 296209)										
CG2104188-018	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0019	0.0024	0.0005	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 296268)										
CG2104186-007	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
nions and Nutrie	nts (QC Lot: 296269)										
CG2104186-007	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	<0.30	<0.30	0	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 296270)										
CG2104186-007	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 296271)										
CG2104186-007	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	<0.10	<0.10	0	Diff <2x LOR	
nions and Nutrie	nts (QC Lot: 296272)										
CG2104186-007	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	0.0061	0.0011	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 296273)										
CG2104186-007	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	

 Page
 : 4 of 18

 Work Order
 : CG2104190

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Labora	tory Duplicate (D	UP) Report				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Anions and Nutrien	ts (QC Lot: 297810) -	continued									
CG2104189-003	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 304121)										
CG2104136-003	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 305207)										
CG2104171-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0087	<0.0050	0.0037	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 3038	320)									
CG2104186-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.23	1.35	0.12	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 3038	328)									
CG2104186-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	1.45	1.30	0.14	Diff <2x LOR	
Total Metals (QC L	ot: 300562)									'	
CG2104166-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	8.63	8.82	2.14%	20%	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00174	0.00176	1.23%	20%	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0115	0.0117	2.32%	20%	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.532	0.540	1.46%	20%	
		beryllium, total	7440-41-7	E420	0.020	mg/L	0.818 µg/L	0.000804	1.66%	20%	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	0.000225	0.000232	0.000008	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.030	0.030	0.0004	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0050	mg/L	2.04 μg/L	0.00206	0.785%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	235	234	0.574%	20%	
		cobalt, total	7440-48-4	E420	0.10	mg/L	9.70 μg/L	0.00985	1.52%	20%	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.0332	0.0330	0.376%	20%	
		iron, total	7439-89-6	E420	0.010	mg/L	27.6	28.5	3.39%	20%	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.0126	0.0127	0.888%	20%	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0328	0.0328	0.0523%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	68.3	67.8	0.792%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	1.64	1.62	1.06%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00284	0.00299	5.41%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.0310	0.0314	1.35%	20%	
		potassium, total	7440-09-7	E420	0.050	mg/L	5.08	5.04	0.813%	20%	
		selenium, total	7782-49-2	E420	0.050	mg/L	1.06 µg/L	0.00103	3.36%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	16.6	17.0	1.95%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	0.000748	0.000769	2.77%	20%	
		sodium, total	17341-25-2	E420	0.050	mg/L	13.8	13.5	2.02%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.671	0.683	1.76%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	22.0	21.6	2.04%	20%	

 Page
 : 5 of 18

 Work Order
 : CG2104190

 Client
 : Teck Coal Limited

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
otal Metals (QC Lo	ot: 300562) - continued										
CG2104166-001	Anonymous	thallium, total	7440-28-0	E420	0.000010	mg/L	0.000489	0.000507	3.52%	20%	
		tin, total	7440-31-5	E420	0.00010	mg/L	0.00239	0.00241	0.732%	20%	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.0293	0.0304	3.67%	20%	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00499	0.00492	1.44%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.0328	0.0335	1.89%	20%	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.144	0.143	0.604%	20%	
otal Metals (QC L	ot: 300563)										
CG2104166-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.0248	0.0254	2.28%	20%	
otal Metals (QC L	ot: 301411)										
CG2104186-001	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR	
issolved Metals (QC Lot: 300109)										
G2104166-004	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	<0.0050 µg/L	<0.0000050	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	<0.050 µg/L	<0.000050	0	Diff <2x LOR	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
			7440-24-6	E421	0.00020	,	<0.00020	<0.00020	0		

Page : 6 of 18
Work Order : CG2104190
Client : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (DI	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 300109) - contin	ued									
CG2104166-004	Anonymous	sulfur, dissolved	7704-34-9	E421	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 300110)										
CG2104166-004	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 300938)										
CG2104188-014	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.000050	0	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2104190

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 296170)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 298276)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 298977)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 304722)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 304723)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 304859)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Anions and Nutrients (QCLot: 296209)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 296268)					
luoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 296269)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 296270)					
promide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 296271)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 296272)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 296273)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 297810)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 304121)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	

 Page
 : 8 of 18

 Work Order
 : CG2104190

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 3052)						
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCLot:	303820)					
arbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot:	· · · · · · · · · · · · · · · · · · ·					
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
otal Metals (QCLot: 300562)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
rsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8	E420	0.01	mg/L	<0.010	
admium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
alcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
obalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
opper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6	E420	0.01	mg/L	<0.010	
ead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
thium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
ickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
ootassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
elenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
ilicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
ilver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
odium, total	17341-25-2	E420	0.05	mg/L	<0.050	
trontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
ulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
nallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
in, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	

 Page
 : 9 of 18

 Work Order
 : CG2104190

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 300562) - con					
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 300563)					
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 301411)					
mercury, total	7439-97-6 E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 300109)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	

 Page
 : 10 of 18

 Work Order
 : CG2104190

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

ALS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 300109) - continued						
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 300110)						
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 300938)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050	

Page : 11 of 18 Work Order : CG2104190 Client

: Teck Coal Limited

: REGIONAL EFFECTS PROGRAM Project

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Cor	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 296170)									
turbidity		E121	0.1	NTU	200 NTU	97.8	85.0	115	
Physical Tests (QCLot: 298276)									
solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	93.8	85.0	115	
Physical Tests (QCLot: 298977)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	99.4	85.0	115	
Physical Tests (QCLot: 302475)									
oxidation-reduction potential [ORP]		E125		mV	220 mV	101	95.4	104	
Physical Tests (QCLot: 304721)									
рН		E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 304722)									
conductivity		E100	1	μS/cm	146.9 μS/cm	101	90.0	110	
Physical Tests (QCLot: 304723)									
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	99.6	85.0	115	
Physical Tests (QCLot: 304859)									
acidity (as CaCO3)		E283	2	mg/L	50 mg/L	100	85.0	115	
Anions and Nutrients (QCLot: 296209)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	98.6	80.0	120	
Anions and Nutrients (QCLot: 296268)									
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	106	90.0	110	
Anions and Nutrients (QCLot: 296269)									
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 296270)									
bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	107	85.0	115	
Anions and Nutrients (QCLot: 296271)									
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 296272)									
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	105	90.0	110	
Anions and Nutrients (QCLot: 296273)									
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	106	90.0	110	
Anions and Nutrients (QCLot: 297810)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	8.32 mg/L	98.8	80.0	120	
Anions and Nutrients (QCLot: 304121)									

 Page
 : 12 of 18

 Work Order
 : CG2104190

 Client
 : Teck Coal Limited

Anions and Nutrients (OCLot: 303207)	Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	(LCS) Report						
Anions and Nutrients (OCLot: 30421) - continued Aprilement region that (INN) Anions and Nutrients (OCLot: 305207) ***********************************						Spike	Recovery (%)	Recovery	Limits (%)						
Skilodin Intogen, Nell (TNN)	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier					
Anions and Nutrients (OCLot: 303207)	Anions and Nutrients (QCLot: 304121) -	continued													
Organic / Inorganic Carbon (QCLot: 303820) Tester, Inorganic Ca	Kjeldahl nitrogen, total [TKN]	E	318	0.05	mg/L	4 mg/L	99.9	75.0	125						
Organic / Inorganic Carbon (QCLot: 303820) Tester, Inorganic Ca	Anions and Nutrients (QCLot: 305207)														
Companie Companie Carbon (Octot: 303828) Companie Companie Carbon (Octot: 303828) Carbon (Octot:	ammonia, total (as N)	7664-41-7 E	298	0.005	mg/L	0.2 mg/L	97.2	85.0	115						
Companie Companie Carbon (Octot: 303828) Companie Companie Carbon (Octot: 303828) Carbon (Octot:															
Companie Companie Carbon (Octot: 303828) Companie Companie Carbon (Octot: 303828) Carbon (Octot:	Organic / Inorganic Carbon (QCLot: 3038	20)													
September Sept	carbon, dissolved organic [DOC]		358-L	0.5	mg/L	10 mg/L	102	80.0	120						
September Sept	Organic / Inorganic Carbon (QCLot: 3038	28)								1					
aluminum, total 1440-38-0 420 0.003 mg/L 2 mg/L 1168 80.0 120	carbon, total organic [TOC]		355-L	0.5	mg/L	10 mg/L	106	80.0	120						
aluminum, total 1440-38-0 420 0.003 mg/L 2 mg/L 1168 80.0 120															
aluminum, total 1440-38-0 420 0.003 mg/L 2 mg/L 1168 80.0 120	Total Metals (QCLot: 300562)									1					
arsenic, total 7440-38-2 E420 0.0001 mg/L 1.mg/L 102 8:0.0 120	aluminum, total	7429-90-5 E	E420	0.003	mg/L	2 mg/L	108	80.0	120						
barium, total 7440-347 2	antimony, total	7440-36-0 E	E420	0.0001	mg/L	1 mg/L	110	80.0	120						
beryllium, total 7440-41-7 beryllium, total 420 0.00002 mg/L 0.1 mg/L mg/L 97.3 80.0 120	arsenic, total	7440-38-2 E	E420	0.0001	mg/L	1 mg/L	102	80.0	120						
bismuth, total port, total por	barium, total	7440-39-3 E	E420	0.0001	mg/L	0.25 mg/L	103	80.0	120						
boron, total 7440-42-8 E420 0.01 mg/L 1 mg/L 95.5 80.0 120 cadmium, total 7440-43-9 E420 0.000005 mg/L 0.1 mg/L 99.7 80.0 120 cadmium, total 7440-43-9 E420 0.00005 mg/L 0.25 mg/L 99.7 80.0 120 cadmium, total 7440-43-9 E420 0.000 mg/L 0.25 mg/L 99.6 80.0 120 cooper, total 7440-84-8 E420 0.0005 mg/L 0.25 mg/L 99.6 80.0 120 cooper, total 749-89-8 E420 0.0005 mg/L 0.25 mg/L 99.6 80.0 120 cooper, total 749-89-8 E420 0.0005 mg/L 0.5 mg/L 99.3 80.0 120 cooper, total 749-89-8 E420 0.0005 mg/L 0.5 mg/L 99.3 80.0 120 cooper, total 749-89-8 E420 0.0005 mg/L 0.5 mg/L 99.0 80.0 120 cooper, total 749-89-5 E420 0.0005 mg/L 0.25 mg/L 100.0 80.0 120 cooper, total 749-89-5 E420 0.0005 mg/L 0.25 mg/L 100.0 80.0 120 cooper, total 749-89-5 E420 0.0005 mg/L 0.25 mg/L 100.0 80.0 120 cooper, total 749-89-5 E420 0.0005 mg/L 0.25 mg/L 100.0 80.0 120 cooper, total 749-89-6 E420 0.0005 mg/L 0.5 mg/L 100.0 80.0 120 cooper, total 749-02-1 E420 0.0005 mg/L 0.5 mg/L 100.0 80.0 120 cooperation, total 749-02-2 E420 0.0005 mg/L 0.5 mg/L 100.0 80.0 120 cooperation, total 749-02-2 E420 0.0005 mg/L 1 mg/L 100 80.0 120 cooperation, total 749-02-2 E420 0.0005 mg/L 0.1 mg/L 100 80.0 120 cooperation, total 749-02-2 E420 0.0000 mg/L 0.1 mg/L 100 80.0 120 cooperation, total 749-02-2 E420 0.0000 mg/L 0.1 mg/L 100 80.0 120 cooperation, total 749-02-2 E420 0.0000 mg/L 0.1 mg/L 100 80.0 120 cooperation, total 749-02-2 E420 0.0000 mg/L 0.1 mg/L 0.1 mg/L 100 80.0 120 cooperation, total 749-02-2 E420 0.0000 mg/L 0.5 mg/L 0.5 mg/L 0.5 mg/L 0.5 mg/L 0.5 mg/L 0.5 mg/L	beryllium, total	7440-41-7 E	E420	0.00002	mg/L	0.1 mg/L	97.3	80.0	120						
cadmium, total 7440-43-9 E420 0.000005 mg/L 0.1 mg/L 99.7 80.0 120	bismuth, total	7440-69-9 E	E420	0.00005	mg/L	1 mg/L	100	80.0	120						
calcium, total 7440-70-2 E420 0.05 mg/L 50 mg/L 96.9 80.0 120 cobalt, total 7440-84 E420 0.0001 mg/L 0.25 mg/L 96.9 80.0 120 copper, total 7440-80-8 E420 0.0005 mg/L 0.25 mg/L 99.6 80.0 120 iron, total 7439-86-6 E420 0.0005 mg/L 0.55 mg/L 99.8 80.0 120 iron, total 7439-81-6 E420 0.0005 mg/L 0.55 mg/L 99.3 80.0 120 ilthium, total 7439-92-1 E420 0.0005 mg/L 0.55 mg/L 99.0 80.0 120 magnesium, total 7439-93-2 E420 0.0005 mg/L 0.25 mg/L 99.0 80.0 120 magnesium, total 7439-95-5 E420 0.0001 mg/L 0.25 mg/L 99.0 80.0 120 manganese, total 7439-96-5 E420 0.0001 mg/L 0.25 mg/L 100.0 80.0 120 molybdenum, total 7439-96-7 E420 0.0005 mg/L 0.55 mg/L 100.0 80.0 120 molybdenum, total 7430-97 E420 0.0005 mg/L 0.55 mg/L 105 80.0 120 potassium, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 105 80.0 120 selenium, total 7440-97 E420 0.005 mg/L 50 mg/L 105 80.0 120 selenium, total 7440-97 E420 0.005 mg/L 10 mg/	boron, total	7440-42-8 E	E420	0.01	mg/L	1 mg/L	95.5	80.0	120						
cobalt, total 7440-484 420 0.0001 mg/L 0.25 mg/L 100 80.0 120	cadmium, total	7440-43-9 E	E420	0.000005	mg/L	0.1 mg/L	99.7	80.0	120						
copper, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 99.6 80.0 120	calcium, total	7440-70-2 E	E420	0.05	mg/L	50 mg/L	96.9	80.0	120						
rion, total 7439-89-6 led 20 0.01 mg/L 1 mg/L 103 80.0 120	cobalt, total	7440-48-4 E	E420	0.0001	mg/L	0.25 mg/L	100	80.0	120						
lead, total 7439-92-1 5420 0.0005 mg/L 0.5 mg/L 99.0 80.0 120 magnesium, total 7439-95-2 5420 0.001 mg/L 0.25 mg/L 99.0 80.0 120 manganese, total 7439-96-5 5420 0.001 mg/L 0.25 mg/L 104 80.0 120 molybdenum, total 7439-98-7 5420 0.0001 mg/L 0.25 mg/L 105 80.0 120 molybdenum, total 7440-02-0 5420 0.0005 mg/L 0.5 mg/L 99.0 80.0 120 potassium, total 7440-02-0 5420 0.0005 mg/L 0.5 mg/L 99.0 80.0 120 potassium, total 7440-03-0 5420 0.0005 mg/L 0.5 mg/L 99.0 80.0 120 selenium, total 7440-03-1 5420 0.0005 mg/L 50 mg/L 103 80.0 120 selenium, total 7782-49-2 5420 0.0005 mg/L 10	copper, total	7440-50-8 E	E420	0.0005	mg/L	0.25 mg/L	99.6	80.0	120						
lithium, total 7439-93-2 E420 0.001 mg/L 0.25 mg/L 99.0 80.0 120	iron, total	7439-89-6 E	E420	0.01	mg/L	1 mg/L	103	80.0	120						
magnesium, total 7439-95-4 magnesium, total E420 0.005 mg/L 50 mg/L 50 mg/L 104 mg/L 80.0 mg/L 120 mg/L molybdenum, total 7439-96-5 mg/L 6420 0.0001 mg/L 0.25 mg/L 100.0 mg/L 80.0 mg/L 120 mg/L molybdenum, total 7439-98-7 mg/L 6420 0.0005 mg/L 0.25 mg/L 105 mg/L 80.0 mg/L 120 mg/L nickel, total 7440-02-0 mg/L 6420 0.0005 mg/L 0.5 mg/L 99.0 mg/L 80.0 mg/L 120 mg/L selenium, total 7782-49-2 mg/L 6420 0.05 mg/L 50 mg/L 103 mg/L 80.0 mg/L 120 mg/L silicon, total 7782-49-2 mg/L 6420 0.0005 mg/L mg/L 10 mg/L 106 mg/L 80.0 mg/L 120 mg/L silicon, total 7440-22-4 mg/m 6420 0.0001 mg/L 0.0 mg/L 0.1 mg/L 104 mg/L 80.0 mg/L 120 mg/L sodium, total 17341-25-2 mg/m 6420 0.05 mg/L <t< td=""><td>lead, total</td><td>7439-92-1 E</td><td>E420</td><td>0.00005</td><td>mg/L</td><td>0.5 mg/L</td><td>99.3</td><td>80.0</td><td>120</td><td></td></t<>	lead, total	7439-92-1 E	E420	0.00005	mg/L	0.5 mg/L	99.3	80.0	120						
magnesium, total 7439-95-4 manganesium, total E420 0.005 mg/L mg/L 50 mg/L 104 mg/L 80.0 120 mg/L	lithium, total	7439-93-2 E	E420	0.001	mg/L	0.25 mg/L	99.0	80.0	120						
manganese, total 7439-96-5 molybdenum, total E420 0.0001 mg/L mg/L 0.25 mg/L 100,0 80.0 120 molybdenum, 120 mol	magnesium, total	7439-95-4 E	E420	0.005	mg/L	_	104	80.0	120						
nickel, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.0 80.0 120 potassium, total 7440-09-7 E420 0.0005 mg/L 50 mg/L 103 80.0 120 selenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 102 80.0 120 silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 106 80.0 120 silver, total 7440-22-4 E420 0.0001 mg/L 0.1 mg/L 104 80.0 120 sodium, total 17341-25-2 E420 0.05 mg/L 50 mg/L 97.8 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 50 mg/L 97.8 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 105 80.0 120 strontium, total 7704-34-9 E420 0.5 mg/L 50 mg/L 109 80.0 120 thallium, total 7440-28-0 E420 0.0001 mg/L 1 mg/L 100 80.0 120 thallium, total 7440-28-0 E420 0.0001 mg/L 1 mg/L 100 80.0 120	manganese, total	7439-96-5 E	E420	0.0001	mg/L	0.25 mg/L	100.0	80.0	120						
potassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 103 80.0 120 selenium, total 7782-49-2 E420 0.0005 mg/L 1 mg/L 102 80.0 120 silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 106 80.0 120 silver, total 7440-22-4 E420 0.0001 mg/L 0.1 mg/L 104 80.0 120 sodium, total 17341-25-2 E420 0.05 mg/L 50 mg/L 50 mg/L 97.8 80.0 120 strontium, total 7440-24-6 E420 0.002 mg/L 0.25 mg/L 105 80.0 120 strontium, total 7440-24-6 E420 0.002 mg/L 0.25 mg/L 105 80.0 120 strontium, total 7440-24-0 E420 0.5 mg/L 50 mg/L 109 80.0 120 strontium, total 7440-24-0 E420 0.5 mg/L 109 80.0 120 strontium, total 7440-28-0 E420 0.0001 mg/L 1 mg/L 100 80.0 120 strontium, total 1040 80.0 120 strontium, total 105 80.0 120	molybdenum, total	7439-98-7 E	E420	0.00005	mg/L	0.25 mg/L	105	80.0	120						
potassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 103 80.0 120 selenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 102 80.0 120 silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 106 80.0 120 silver, total 7440-22-4 E420 0.0001 mg/L 0.1 mg/L 104 80.0 120 sodium, total 17341-25-2 E420 0.05 mg/L 50 mg/L 97.8 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 105 80.0 120 sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 109 80.0 120 thallium, total 7440-28-0 E420 0.0001 mg/L 1 mg/L 100 80.0 120	nickel, total	7440-02-0 E	E420	0.0005	mg/L	0.5 mg/L	99.0	80.0	120						
silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 106 80.0 120 silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 104 80.0 120 sodium, total 17341-25-2 E420 0.05 mg/L 50 mg/L 97.8 80.0 120 strontium, total 7440-24-6 E420 0.002 mg/L 0.25 mg/L 105 80.0 120 strontium, total 7704-34-9 E420 0.5 mg/L 50 mg/L 109 80.0 120 strontium, total 7440-28-0 E420 0.0001 mg/L 1 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120 strontium, total 100 mg/L 100 80.0 120	potassium, total	7440-09-7 E	E420	0.05	mg/L		103	80.0	120						
silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 106 80.0 120 silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 104 80.0 120 sodium, total 17341-25-2 E420 0.05 mg/L 50 mg/L 97.8 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 105 80.0 120 sulfur, total 7704-34-9 E420 0.0002 mg/L 50 mg/L 109 80.0 120 thallium, total 7440-28-0 E420 0.0001 mg/L 1 mg/L 100 80.0 120	selenium, total	7782-49-2 E	E420	0.00005	mg/L	1 mg/L	102	80.0	120						
silver, total 7440-22-4 E420 0.0001 mg/L 0.1 mg/L 104 80.0 120 sodium, total 17341-25-2 E420 0.05 mg/L 50 mg/L 97.8 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 105 80.0 120 sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 109 80.0 120 thallium, total 7440-28-0 E420 0.0001 mg/L 1 mg/L 100 80.0 120	silicon, total	7440-21-3 E	E420	0.1	mg/L	_	106	80.0	120						
sodium, total 17341-25-2 E420 0.05 mg/L 50 mg/L 97.8 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 105 80.0 120 sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 109 80.0 120 thallium, total 7440-28-0 E420 0.00001 mg/L 1 mg/L 100 80.0 120	silver, total	7440-22-4 E	E420	0.00001		_									
strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 105 80.0 120 sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 109 80.0 120 thallium, total 7440-28-0 E420 0.00001 mg/L 1 mg/L 100 80.0 120	sodium, total	17341-25-2 E	E420	0.05	-	_									
sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 109 80.0 120 thallium, total 7440-28-0 E420 0.00001 mg/L 1 mg/L 100 80.0 120	strontium, total	7440-24-6 E	E420	0.0002	mg/L	_	105	80.0	120						
thallium, total 7440-28-0 E420 0.00001 mg/L 1 mg/L 100 80.0 120	sulfur, total	7704-34-9 E	E420	0.5		,									
	thallium, total				-	_									
	tin, total			0.0001	mg/L	0.5 mg/L	97.6	80.0	120						

 Page
 : 13 of 18

 Work Order
 : CG2104190

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Co	entrol Sample (LCS)	Report	Qualifier						
				Spike	Recovery (%)	Recovery	Limits (%)							
Analyte CAS Num	per Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier						
Total Metals (QCLot: 300562) - continued														
titanium, total 7440-3	2-6 E420	0.0003	mg/L	0.25 mg/L	103	80.0	120							
uranium, total 7440-6	-1 E420	0.00001	mg/L	0.005 mg/L	101	80.0	120							
vanadium, total 7440-6	2-2 E420	0.0005	mg/L	0.5 mg/L	102	80.0	120							
zinc, total 7440-6	6-6 E420	0.003	mg/L	0.5 mg/L	101	80.0	120							
Total Metals (QCLot: 300563)														
	'-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	100	80.0	120							
Total Metals (QCLot: 301411)														
	'-6 E508-L	0.5	ng/L	5 ng/L	97.6	80.0	120							
Dissolved Metals (QCLot: 300109)														
aluminum, dissolved 7429-9)-5 E421	0.001	mg/L	2 mg/L	109	80.0	120							
antimony, dissolved 7440-3	6-0 E421	0.0001	mg/L	1 mg/L	102	80.0	120							
arsenic, dissolved 7440-3	3-2 E421	0.0001	mg/L	1 mg/L	112	80.0	120							
barium, dissolved 7440-3	0-3 E421	0.0001	mg/L	0.25 mg/L	110	80.0	120							
beryllium, dissolved 7440-4	-7 E421	0.00002	mg/L	0.1 mg/L	98.4	80.0	120							
bismuth, dissolved 7440-6	9-9 E421	0.00005	mg/L	1 mg/L	106	80.0	120							
boron, dissolved 7440-4	2-8 E421	0.01	mg/L	1 mg/L	92.5	80.0	120							
cadmium, dissolved 7440-4	3-9 E421	0.000005	mg/L	0.1 mg/L	108	80.0	120							
calcium, dissolved 7440-7)-2 E421	0.05	mg/L	50 mg/L	98.0	80.0	120							
cobalt, dissolved 7440-4	3-4 E421	0.0001	mg/L	0.25 mg/L	111	80.0	120							
copper, dissolved 7440-5)-8 E421	0.0002	mg/L	0.25 mg/L	110	80.0	120							
iron, dissolved 7439-8	9-6 E421	0.01	mg/L	1 mg/L	101	80.0	120							
lead, dissolved 7439-9.	2-1 E421	0.00005	mg/L	0.5 mg/L	102	80.0	120							
lithium, dissolved 7439-9	3-2 E421	0.001	mg/L	0.25 mg/L	95.8	80.0	120							
magnesium, dissolved 7439-9	5-4 E421	0.005	mg/L	50 mg/L	106	80.0	120							
manganese, dissolved 7439-9	S-5 E421	0.0001	mg/L	0.25 mg/L	109	80.0	120							
molybdenum, dissolved 7439-9	3-7 E421	0.00005	mg/L	0.25 mg/L	102	80.0	120							
nickel, dissolved 7440-0	2-0 E421	0.0005	mg/L	0.5 mg/L	110	80.0	120							
potassium, dissolved 7440-0	9-7 E421	0.05	mg/L	50 mg/L	108	80.0	120							
selenium, dissolved 7782-4	9-2 E421	0.00005	mg/L	1 mg/L	111	80.0	120							
silicon, dissolved 7440-2	-3 E421	0.05	mg/L	10 mg/L	95.8	80.0	120							
silver, dissolved 7440-2	2-4 E421	0.00001	mg/L	0.1 mg/L	101	80.0	120							
sodium, dissolved 17341-2	5-2 E421	0.05	mg/L	50 mg/L	111	80.0	120							
strontium, dissolved 7440-2	I-6 E421	0.0002	mg/L	0.25 mg/L	98.8	80.0	120							
sulfur, dissolved 7704-3	I-9 E421	0.5	mg/L	50 mg/L	103	80.0	120							
thallium, dissolved 7440-2	3-0 E421	0.00001	mg/L	1 mg/L	103	80.0	120							
tin, dissolved 7440-3	-5 E421	0.0001	mg/L	0.5 mg/L	100	80.0	120							

 Page
 : 14 of 18

 Work Order
 : CG2104190

 Client
 : Teck Coal Limited

Sub-Matrix: Water	-Matrix: Water						ntrol Sample (LCS)	Report			
					Spike Recovery (%) Recovery Limits (%)						
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Dissolved Metals (QCLot: 300109) - continued											
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	106	80.0	120			
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	104	80.0	120			
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	110	80.0	120			
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	112	80.0	120			
Dissolved Metals (QCLot: 300110)											
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	111	80.0	120			
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	93.1	80.0	120			

 Page
 : 15 of 18

 Work Order
 : CG2104190

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

ub-Matrix: Water							Matrix Spik	e (MS) Report		Qualifier					
					Spi	ke	Recovery (%)	Recovery	Limits (%)						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier					
	ents (QCLot: 296209)														
CG2104188-019	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0557 mg/L	0.05 mg/L	111	70.0	130						
Anions and Nutri	ents (QCLot: 296268)								1						
CG2104186-007	Anonymous	fluoride	16984-48-8	E235.F	1.07 mg/L	1 mg/L	107	75.0	125						
Anions and Nutri	ents (QCLot: 296269)														
CG2104186-007	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	104 mg/L	100 mg/L	104	75.0	125						
Anions and Nutri	ents (QCLot: 296270)														
CG2104186-007	Anonymous	bromide	24959-67-9	E235.Br-L	0.544 mg/L	0.5 mg/L	109	75.0	125						
Anions and Nutri	ents (QCLot: 296271)														
CG2104186-007	Anonymous	chloride	16887-00-6	E235.CI-L	105 mg/L	100 mg/L	105	75.0	125						
Anions and Nutri	ents (QCLot: 296272)														
CG2104186-007	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.63 mg/L	2.5 mg/L	105	75.0	125						
Anions and Nutri	ents (QCLot: 296273)														
CG2104186-007	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.538 mg/L	0.5 mg/L	108	75.0	125						
Anions and Nutri	ents (QCLot: 297810)														
CG2104189-004	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0520 mg/L	0.0676 mg/L	76.9	70.0	130						
Anions and Nutri	ents (QCLot: 304121)														
CG2104138-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.50 mg/L	2.5 mg/L	99.8	70.0	130						
Anions and Nutri	ents (QCLot: 305207)														
CG2104181-006	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0829 mg/L	0.1 mg/L	82.9	75.0	125						
Organic / Inorgar	nic Carbon (QCLot: 303	820)													
CG2104186-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	28.4 mg/L	23.9 mg/L	119	70.0	130						
Organic / Inorgar	nic Carbon (QCLot: 303	828)													
CG2104186-001	Anonymous	carbon, total organic [TOC]		E355-L	27.8 mg/L	23.9 mg/L	116	70.0	130						
otal Metals (QC	Lot: 300562)														
CG2104166-002	Anonymous	aluminum, total	7429-90-5	E420	ND mg/L	0.2 mg/L	ND	70.0	130						
		antimony, total	7440-36-0	E420	0.0425 mg/L	0.04 mg/L	106	70.0	130						
		arsenic, total	7440-38-2	E420	0.0388 mg/L	0.04 mg/L	96.9	70.0	130						
	•	barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130						

 Page
 : 16 of 18

 Work Order
 : CG2104190

 Client
 : Teck Coal Limited

ub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	Lot: 300562) - cont	inued								
CG2104166-002	Anonymous	beryllium, total	7440-41-7	E420	0.0729 mg/L	0.08 mg/L	91.1	70.0	130	
		bismuth, total	7440-69-9	E420	0.0189 mg/L	0.02 mg/L	94.5	70.0	130	
		boron, total	7440-42-8	E420	0.180 mg/L	0.2 mg/L	90.0	70.0	130	
		cadmium, total	7440-43-9	E420	0.00750 mg/L	0.008 mg/L	93.7	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0357 mg/L	0.04 mg/L	89.2	70.0	130	
		copper, total	7440-50-8	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		iron, total	7439-89-6	E420	ND mg/L	2 mg/L	ND	70.0	130	
		lead, total	7439-92-1	E420	0.0363 mg/L	0.04 mg/L	90.8	70.0	130	
		lithium, total	7439-93-2	E420	0.187 mg/L	0.2 mg/L	93.4	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0434 mg/L	0.04 mg/L	108	70.0	130	
		nickel, total	7440-02-0	E420	0.0694 mg/L	0.08 mg/L	86.8	70.0	130	
		potassium, total	7440-09-7	E420	ND mg/L	4 mg/L	ND	70.0	130	
		selenium, total	7782-49-2	E420	0.0778 mg/L	0.08 mg/L	97.2	70.0	130	
		silicon, total	7440-21-3	E420	ND mg/L	10 mg/L	ND	70.0	130	
		silver, total	7440-22-4	E420	0.00836 mg/L	0.008 mg/L	104	70.0	130	
		sodium, total	17341-25-2	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.00711 mg/L	0.008 mg/L	88.8	70.0	130	
		tin, total	7440-31-5	E420	0.0395 mg/L	0.04 mg/L	98.8	70.0	130	
		titanium, total	7440-32-6	E420	0.0794 mg/L	0.08 mg/L	99.3	70.0	130	
		uranium, total	7440-61-1	E420	0.00756 mg/L	0.008 mg/L	94.6	70.0	130	
		vanadium, total	7440-62-2	E420	0.197 mg/L	0.2 mg/L	98.5	70.0	130	
		zinc, total	7440-66-6	E420	0.729 mg/L	0.8 mg/L	91.2	70.0	130	
otal Metals (QC	Lot: 300563)									
G2104166-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0743 mg/L	0.08 mg/L	92.9	70.0	130	
otal Metals (QC	Lot: 301411)									
CG2104186-002	Anonymous	mercury, total	7439-97-6	E508-L	4.83 ng/L	5 ng/L	96.6	70.0	130	
issolved Metals	(QCLot: 300109)									
G2104171-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.209 mg/L	0.2 mg/L	105	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0204 mg/L	0.02 mg/L	102	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0229 mg/L	0.02 mg/L	114	70.0	130	
	T .	barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	

 Page
 : 17 of 18

 Work Order
 : CG2104190

 Client
 : Teck Coal Limited

ub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 300109) -	continued								
CG2104171-001	Anonymous	beryllium, dissolved	7440-41-7	E421	0.0379 mg/L	0.04 mg/L	94.8	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00906 mg/L	0.01 mg/L	90.6	70.0	130	
		boron, dissolved	7440-42-8	E421	0.092 mg/L	0.1 mg/L	92.6	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00436 mg/L	0.004 mg/L	109	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0216 mg/L	0.02 mg/L	108	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0214 mg/L	0.02 mg/L	107	70.0	130	
		iron, dissolved	7439-89-6	E421	2.04 mg/L	2 mg/L	102	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0198 mg/L	0.02 mg/L	98.8	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0921 mg/L	0.1 mg/L	92.1	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0214 mg/L	0.02 mg/L	107	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0430 mg/L	0.04 mg/L	108	70.0	130	
		potassium, dissolved	7440-09-7	E421	4.42 mg/L	4 mg/L	111	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0467 mg/L	0.04 mg/L	117	70.0	130	
		silicon, dissolved	7440-21-3	E421	9.19 mg/L	10 mg/L	91.9	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00409 mg/L	0.004 mg/L	102	70.0	130	
		sodium, dissolved	17341-25-2	E421	2.50 mg/L	2 mg/L	125	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	20.3 mg/L	20 mg/L	101	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00404 mg/L	0.004 mg/L	101	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0200 mg/L	0.02 mg/L	100	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0430 mg/L	0.04 mg/L	107	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00411 mg/L	0.004 mg/L	103	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.111 mg/L	0.1 mg/L	111	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.439 mg/L	0.4 mg/L	110	70.0	130	
ssolved Metals	(QCLot: 300110)									
G2104171-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0442 mg/L	0.04 mg/L	110	70.0	130	
ssolved Metals	(QCLot: 300938)									
G2104188-015	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000993 mg/L	0.0001 mg/L	99.3	70.0	130	

 Page
 : 18 of 18

 Work Order
 : CG2104190

 Client
 : Teck Coal Limited

Teck							Page	1 of t											
	COC ID:	Septer	nber LCO	LAEN	IP 2021		TURN	AROUN	D TIME:]]			
		LIENTINFO P		1.1	1186	_11													
Facility Name / Jol									ALS Calgary						1805-150	THE CHARLES	Excel	PDF	EDD
Project Manag							Lat		Lyudmyla S						ophen nerifects	0.00			
Emi							 _		lyudmyla.sl		Isglobal.com	<u></u>	ļ		jechod Pri	CHISOLANIA (SOL)	4		7
Addre	421 Pine Avenue						 -	Address	2559 29 Stre	et NE					Se				-
					Province BC	·	 	City	Calgary		ln	T ₄ p	-		*******	A 1884 C. A. 1845 C. 2002	2	<u>k</u>	x.
Ci		Sparwood V0B 2G0							TIY 7B5		Province	AB Canada	 				i	x	<i>x</i>
Postal Co		VUB 2G0			Country Car	nada			1 403 407 17	204	Country	Canada							
Phone Numb	per 250-425-8202	SAMPLE DETAILS		14300			Filone	Ivullioei	1 403 407 1		ALYSIS RE	A STORE WHEN							
		SAMPLE DEFAILS	1	1*		.	<u> </u>				ALIND RE	Gerstr.	0 1		,	Plant 1.5	138, 6, 1, 21	ri Padi e	144, N
							;		a N	F	, N	N	¥	N	1 .	120			
					ļ				 		1	1			 -		****		
									5	F12504	H2504		нст	HNO3	la de la constante de la const		h.,		
				 			ļ		4	112501	BLSCA	4	HCL	HNO3	IINO3				
			1	Material (Ycs/No								Y I	201		Y 24	1.11		1 1 1 1 1	
				2					Z		ĕ			١.	,				
		•		al (Ë	ပ	5	- A		1 🗄	15	1			-
				Ē				ĺ	a ē	8	, X	>	₹	E	Œ				
			ı	Σa		ļ		ļ	3 5	<u>ئ</u>	80	Į Ą.	[]	5	5				ļ
			- 1	3		1		ļ	8 8	3	, k	ļĢ	🟅	8	8				[
			. [l b					9	a.	Pa	7	<u> </u>	2	ΙŞ				
			Field	Hazardous	_	Time	G=Grab	#Of	TECKCOAL-ROUTINE	ALS_Package-DOC	ALS_Package_TKN/TOC	HG-T-U-CVAF-VA	HG-D-CVAF-VA	TECKCOAL-MET-T-	TECKCOAL-MET-D- VA				
Sample ID		Sample Location	Matrix		Date	(24hr)	C=Comp	Cont.	(F >		_ `	1			= >				
RG_SLINE_WS_LAEMP_LCO_2021-09-15_NP		RG_SLINE (c. 1000)	ws	No	9/15/2021	815	G	7	Х	X	X	X	X	X	X				
	Burn, Ball	Constitution of the contract o												1			i		
			**																
The second secon	41					-		•			1	 		1					
	1000			777	-														
	100					 						-		 			-		
												<u> </u>		 	-	'	٠,		
		+ cent	l - -			-						l			 		<u> </u>		
		And the second second	7			-						 				-	\- -		
		The second second														<u> </u>	-		
ADDITIONAL COMMEN	TOSPEZIEL NESTR	ECTIONS		1	RELINQUISH	FI BYAET	ELIATION		DATE/TIME			Tered	0.07/4.00				<u> </u>		
												SECTION SALES				A.	/)		
				-	Ionnifo	r Ings/Min			************					\wedge	e)	-/\frac{1}{\lambda}	$-\frac{1}{2}$	1_	> 1
748510					эсшинс.	- Earth			WHO IS IN THE TAXABLE					-H		1.4	11		1
														1/0	<u> </u>	1-1:	1 11	1 1	4
							ethors and a second							•	V	· ·	/ V	<u> </u>	\mathcal{L}
NEOF BOTTLES RE	TURNEDDESCRIP	A SCAL A SERVICE AND ADDRESS OF THE PROPERTY O			1			40.0	100		fage bloo		670.			1111	1	344	
			ılar (default) x	4	Sampler's Nan	ne			Jenniser Ing	25	14900	Mob	ile#			519-500-	3444	!	
		Priority (2-3 business days) - 50 ergency (1 Business Day) - 100		 	-		Lone	merianisasi J. LL	~~~					200000	ow silikuare			; (800,677,070	460/2 =
		ergency (1 Business Day) - 100		:	Sampler's Signat	ture	- Indiana	10 10	·			Date/	Time	Mili		September	16, 2021	157	

Environmental Division
Calgary
Work Order Reference
CG2104190

Tetephone: +1 403 407 1800

WATER CHEMISTRY

ALS Laboratory Report CG2104208 (Finalized October 12, 2021)

CERTIFICATE OF ANALYSIS

Page **Work Order** : CG2104208

Amendment : 1

Client : Teck Coal Limited Laboratory : Calgary - Environmental Contact : Cybele Heddle Account Manager : Lyudmyla Shvets Address Address : 421 Pine Avenue : 2559 29th Street NE

Sparwood BC Canada V0B 2G0

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00748510

C-O-C number : SEPTEMBER LCO LAEMP 2021

Sampler : JENNIFER INGS

Site

Quote number : Teck Coal Master Quote

No. of samples received : 1 No. of samples analysed : 1 : 1 of 7

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800 Date Samples Received : 18-Sep-2021 09:05

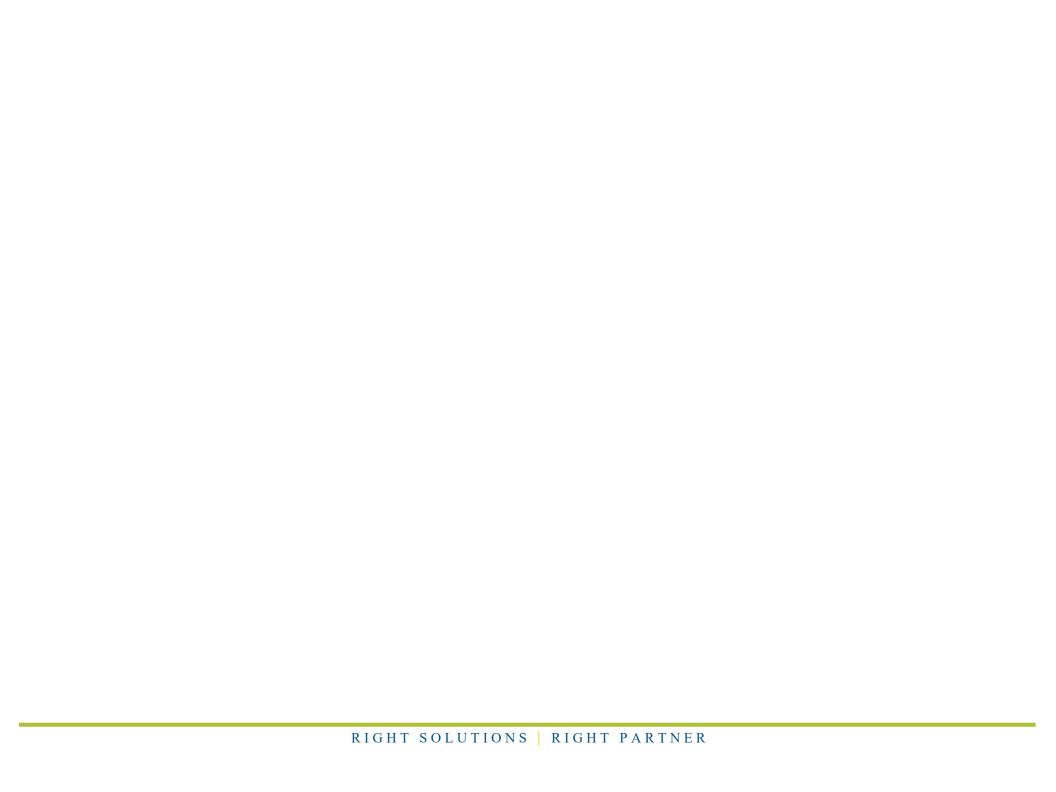
Date Analysis Commenced : 19-Sep-2021

Issue Date : 12-Oct-2021 10:24

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results


Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Dion Chan	Lab Assistant	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Oscar Ruiz	Lab Assistant	Inorganics, Calgary, Alberta
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta

Page : 3 of 7

Work Order : CG2104208 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DTMF	Dissolved concentration exceeds total for field-filtered metals sample. Metallic
	contaminants may have been introduced to dissolved sample during field filtration.
HTA	Analytical holding time was exceeded.

>: greater than.

Page : 4 of 7

Work Order : CG2104208 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			CI	lient sample ID	RG_LI24_WS_L AEMP_LCO_20 21-09-16_NP	 	
			Client samp	oling date / time	16-Sep-2021 09:31	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104208-001	 	
					Result	 	
Physical Tests							
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	113	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	4.2	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	118	 	
conductivity		E100	2.0	μS/cm	342	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	167	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	463	 	
рН		E108	0.10	pH units	8.32	 	
solids, total dissolved [TDS]		E162	10	mg/L	231	 	
solids, total suspended [TSS]	<u></u>	E160-L	1.0	mg/L	<1.0	 	
turbidity		E121	0.10	NTU	<0.10	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	138	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	2.5	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	 	
	14260-30-9	L230	1.0	mg/L	-1.0		
Anions and Nutrients	7004.44.7	E298	0.0050	mag/1	0.0064	 	
ammonia, total (as N)	7664-41-7	E235.Br-L		mg/L			
bromide	24959-67-9		0.050	mg/L	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.35	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.362	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.219	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010 HTA	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	63.5	 	
Organic / Inorganic Carbon							
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.86	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	0.97	 	

Page : 5 of 7

Work Order : CG2104208 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_LI24_WS_L AEMP_LCO_20 21-09-16_NP	 	
			Client samp	ling date / time	16-Sep-2021 09:31	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104208-001	 	
					Result	 	
Ion Balance							
anion sum		EC101	0.10	meq/L	3.72	 	
cation sum		EC101	0.10	meq/L	3.41	 	
ion balance (cations/anions ratio)		EC101	0.010	%	91.7	 	
ion balance (cation-anion difference)		EC101	0.010	%	4.35	 	
Total Metals							
aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00013	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0459	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0077	 	
calcium, total	7440-70-2	E420	0.050	mg/L	44.6	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00031	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0033	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	12.9	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	<0.00010	 	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000961	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00056	 	
potassium, total	7440-09-7	E420	0.050	mg/L	0.245	 	
selenium, total	7782-49-2	E420	0.050	μg/L	3.24	 	
silicon, total	7440-21-3	E420	0.10	mg/L	1.51	 	
silver, total	7440-21-3	E420	0.000010	mg/L	<0.000010	 	
sodium, total	17341-25-2	E420	0.050	mg/L	1.34	 	
Sociali, total	1/341-20-2	L+20	0.000	mg/L	1.34	 	 l

Page : 6 of 7

Work Order : CG2104208 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte Total Metals strontium, total sulfur, total thallium, total tin, total titanium, total uranium, total vanadium, total zinc, total Dissolved Metals aluminum, dissolved antimony, dissolved arsenic, dissolved	7440-24-6 7704-34-9	Method	Client sampl	ing date / time	16-Sep-2021	 	
Total Metals strontium, total sulfur, total thallium, total tin, total titanium, total uranium, total vanadium, total zinc, total Dissolved Metals aluminum, dissolved antimony, dissolved	7440-24-6 7704-34-9		LOR		09:31		
strontium, total sulfur, total thallium, total tin, total titanium, total uranium, total vanadium, total zinc, total Dissolved Metals aluminum, dissolved antimony, dissolved	7704-34-9			Unit	CG2104208-001	 	
strontium, total sulfur, total thallium, total tin, total titanium, total uranium, total vanadium, total zinc, total Dissolved Metals aluminum, dissolved antimony, dissolved	7704-34-9				Result	 	
sulfur, total thallium, total tin, total titanium, total uranium, total vanadium, total zinc, total Dissolved Metals aluminum, dissolved antimony, dissolved	7704-34-9						
thallium, total tin, total titanium, total uranium, total vanadium, total zinc, total Dissolved Metals aluminum, dissolved antimony, dissolved		E420	0.00020	mg/L	0.183	 	
tin, total titanium, total uranium, total vanadium, total zinc, total Dissolved Metals aluminum, dissolved antimony, dissolved	7440 00 0	E420	0.50	mg/L	20.2	 	
titanium, total uranium, total vanadium, total zinc, total Dissolved Metals aluminum, dissolved antimony, dissolved	7440-28-0	E420	0.000010	mg/L	<0.000010	 	
uranium, total vanadium, total zinc, total Dissolved Metals aluminum, dissolved antimony, dissolved	7440-31-5	E420	0.00010	mg/L	<0.00010	 	
vanadium, total zinc, total Dissolved Metals aluminum, dissolved antimony, dissolved	7440-32-6	E420	0.00030	mg/L	<0.00030	 	
zinc, total Dissolved Metals aluminum, dissolved antimony, dissolved	7440-61-1	E420	0.000010	mg/L	0.00146	 	
Dissolved Metals aluminum, dissolved antimony, dissolved	7440-62-2	E420	0.00050	mg/L	<0.00050	 	
aluminum, dissolved antimony, dissolved	7440-66-6	E420	0.0030	mg/L	0.0032	 	
antimony, dissolved							
	7429-90-5	E421	0.0010	mg/L	0.0028	 	
arsenic, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	 	
	7440-38-2	E421	0.00010	mg/L	0.00012	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0472	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0099	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	46.2	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00021	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0034	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	12.6	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00023 DTMF	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000900	 	
nickel, dissolved				Ü			
potassium, dissolved	7440-02-0	E421	0.00050	mg/L	0.00055	 	

Page : 7 of 7

Work Order : CG2104208 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water	Client sample					 	
(Matrix: Water)					AEMP_LCO_20		
					21-09-16_NP		
	Client sampling date / time				16-Sep-2021 09:31	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104208-001	 	
					Result	 	
Dissolved Metals							
selenium, dissolved	7782-49-2	E421	0.050	μg/L	3.20	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.60	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	1.36	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.156	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	20.1	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00145	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0035	 	
dissolved mercury filtration location		EP509	-	-	Field	 	
dissolved metals filtration location		EP421	-	-	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

WATER CHEMISTRY

ALS Laboratory Report CG2104006 (Finalized September 30, 2021)

: Cybele Heddle

CERTIFICATE OF ANALYSIS

Work Order : CG2104006

Client : Teck Coal Limited

Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone : ---Project : REP

Contact

PO : VPO00748510

C-O-C number : September LCO LAEMP 2021

Sampler : Jennifer Ings

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 7

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets
Address : 2559 29th Street N

: 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

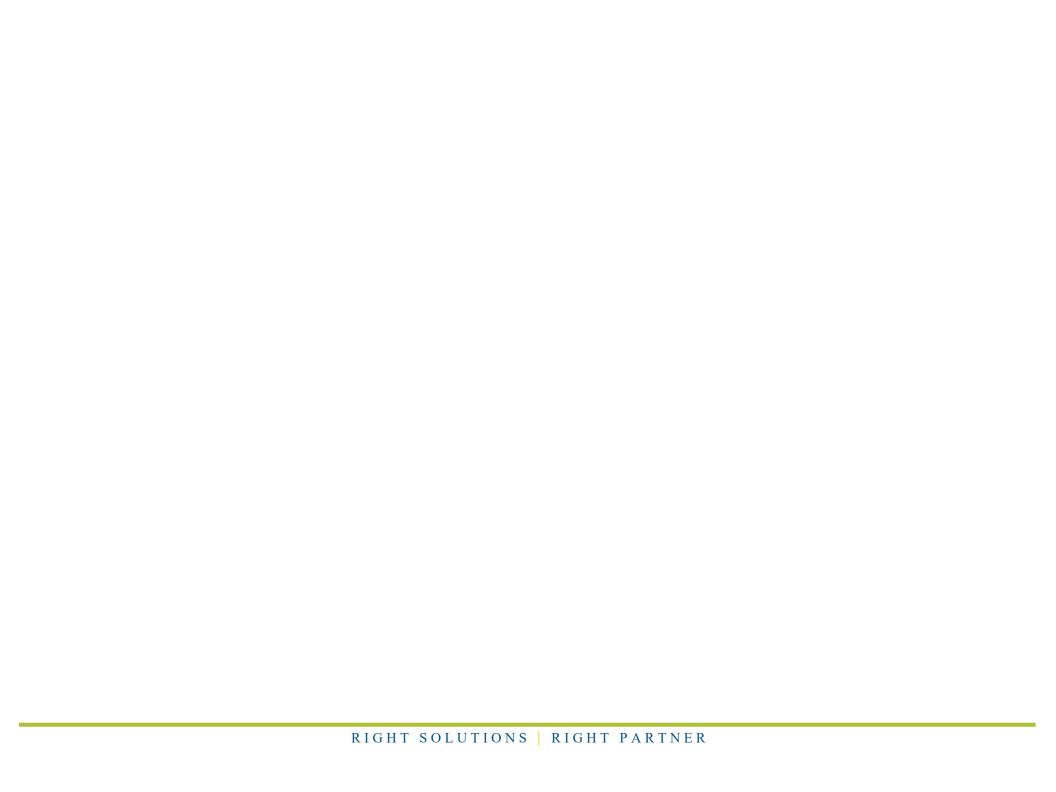
Date Samples Received : 11-Sep-2021 10:15

Date Analysis Commenced : 12-Sep-2021

Issue Date : 30-Sep-2021 12:41

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:


- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Dion Chan	Lab Assistant	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Shaneel Dayal	Analyst	Metals, Burnaby, British Columbia
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

Page : 3 of 7

Work Order : CG2104006 Client : Teck Coal Limited

Project : REP

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
RRV	Reported result verified by repeat analysis.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 4 of 7
Work Order : CG2104006
Client : Teck Coal Limited

Project : REP

Sub-Matrix: Water (Matrix: Water)	ient sample ID	RG_LILC3_WS_ LAEMP_LCO_2 021-09-09_NP	RG_RIVER_WS _2021-09-09_N P	RG_FBLANK_W S_2021-09-09_ NP	RG_LCUT_WS_ 2021-09-10_NP				
		Client sampling date / time			09-Sep-2021 10:36	09-Sep-2021 10:36	09-Sep-2021 10:36	10-Sep-2021 12:54	
Analyte	CAS Number	Method	LOR	Unit	CG2104006-001	CG2104006-002	CG2104006-003	CG2104006-004	
Physical Tests					Result	Result	Result	Result	
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	2.0	<2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	205	199	<1.0	204	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	12.6	14.6	<1.0	11.6	
alkalinity, hydroxide (as CaCO3)	<u></u>	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	217	214	<1.0	216	
conductivity		E100	2.0	μS/cm	945	946	<2.0	935	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	515	508	<0.50	520	
oxidation-reduction potential [ORP]		E125	0.10	mV	446	434	480	473	
pH		E108	0.10	pH units	8.37	8.38	5.06	8.36	
solids, total dissolved [TDS]		E162	10	mg/L	680	690	<10	642	
solids, total suspended [TSS]	<u></u>	E160-L	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
turbidity		E121	0.10	NTU	0.14	0.16	<0.10	0.19	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	250	243	<1.0	249	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	7.6	8.8	<1.0	7.0	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	<0.0050 RRV	0.0082	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	<0.250 DLDS	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	14.3	14.3	<0.10	8.65	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.166	0.169	<0.020	0.189	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.248 TKNI	<0.050 TKNI	<0.050	<0.050 TKNI	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	9.76	9.78	<0.0050	13.1	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0018	0.0014	<0.0010	<0.0050 DLDS	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0012	0.0012	<0.0010	0.0022	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0022	0.0025	<0.0020	0.0025	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	267	267	<0.30	283	
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.05	1.31	<0.50	1.02	
carbon, total organic [TOC]		E355-L	0.50	mg/L	0.99	1.36	<0.50	1.09	

Page : 5 of 7
Work Order : CG2104006
Client : Teck Coal Limited

Project : REP

Sub-Matrix: Water (Matrix: Water)	ient sample ID	RG_LILC3_WS_ LAEMP_LCO_2 021-09-09_NP	RG_RIVER_WS _2021-09-09_N P	RG_FBLANK_W S_2021-09-09_ NP	RG_LCUT_WS_ 2021-09-10_NP				
			Client sampling date / time			09-Sep-2021 10:36	09-Sep-2021 10:36	10-Sep-2021 12:54	
Analyte	CAS Number	Method	LOR	Unit	CG2104006-001	CG2104006-002	CG2104006-003	CG2104006-004	
Lou Belones					Result	Result	Result	Result	
Ion Balance anion sum		EC101	0.10	meg/L	11.0	10.9	<0.10	11.4	
cation sum		EC101	0.10	meq/L	10.8	10.6	<0.10	10.8	
ion balance (cations/anions ratio)		EC101	0.010	%	98.2	97.2	100	94.7	
ion balance (cation-anion difference)		EC101	0.010	%	0.917	1.40	<0.010	2.70	
Total Metals				,*			311.13		
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0045	<0.0030	<0.0030	<0.0030	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00032	0.00031	<0.00010	0.00035	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00010	<0.00010	<0.00010	0.00012	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0573	0.0571	<0.00010	0.0550	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.018	0.019	<0.010	0.020	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.296	0.322	<0.0050	0.506	
calcium, total	7440-70-2	E420	0.050	mg/L	116	116	<0.050	115	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00011	0.00011	<0.00010	<0.00010	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	0.020	0.020	<0.010	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	0.000112	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0539	0.0534	<0.0010	0.0611	
magnesium, total	7439-95-4	E420	0.0050	mg/L	52.0	51.0	<0.0050	50.3	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0102	0.0100	<0.00010	0.00014	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	<0.00050	<0.00050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00293	0.00299	<0.000050	0.00171	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00855	0.00831	<0.00050	0.0111	
potassium, total	7440-09-7	E420	0.050	mg/L	1.72	1.68	<0.050	1.78	
selenium, total	7782-49-2	E420	0.050	μg/L	39.4	39.4	<0.050	53.9	
silicon, total	7440-21-3	E420	0.10	mg/L	2.22	2.23	<0.10	2.20	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total	17341-25-2	E420	0.050	mg/L	8.72	8.50	<0.050	8.39	

Page : 6 of 7
Work Order : CG2104006
Client : Teck Coal Limited
Project : REP

ALS

Sub-Matrix: Water			CI	ient sample ID	RG_LILC3_WS_	RG_RIVER_WS	RG_FBLANK_W	RG_LCUT_WS_	
(Matrix: Water)					LAEMP_LCO_2 021-09-09_NP	_2021-09-09_N P	S_2021-09-09_ NP	2021-09-10_NP	
			Client sampling date / time		09-Sep-2021 10:36	09-Sep-2021 10:36	09-Sep-2021 10:36	10-Sep-2021 12:54	
Analyte	CAS Number	Method	LOR	Unit	CG2104006-001	CG2104006-002	CG2104006-003	CG2104006-004	
					Result	Result	Result	Result	
Total Metals									
strontium, total	7440-24-6	E420	0.00020	mg/L	0.214	0.217	<0.00020	0.222	
sulfur, total	7704-34-9	E420	0.50	mg/L	95.4	96.6	<0.50	91.0	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	0.000014	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00400	0.00405	<0.000010	0.00415	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0119	0.0120	<0.0030	0.0192	
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0010	<0.0010	<0.0010	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00030	0.00030	<0.00010	0.00037	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0590	0.0575	<0.00010	0.0562	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.018	0.018	<0.010	0.020	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.299	0.276	<0.0050	0.495	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	116	117	<0.050	120	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00044	0.00027	<0.00020	0.00038	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0556	0.0535	<0.0010	0.0637	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	54.7	52.4	<0.0050	53.6	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00936	0.00903	<0.00010	0.00012	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00295	0.00293	<0.000050	0.00180	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00834	0.00812	<0.00050	0.0109	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.90	1.81	<0.050	2.00	

Page : 7 of 7
Work Order : CG2104006
Client : Teck Coal Limited

Project : REP

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_LILC3_WS_	RG_RIVER_WS	RG_FBLANK_W	RG_LCUT_WS_	
(Matrix: Water)					LAEMP_LCO_2 021-09-09_NP	_2021-09-09_N P	S_2021-09-09_ NP	2021-09-10_NP	
			Client samp	ling date / time	09-Sep-2021 10:36	09-Sep-2021 10:36	09-Sep-2021 10:36	10-Sep-2021 12:54	
Analyte	CAS Number	Method	LOR	Unit	CG2104006-001	CG2104006-002	CG2104006-003	CG2104006-004	
				ľ	Result	Result	Result	Result	
Dissolved Metals									
selenium, dissolved	7782-49-2	E421	0.050	μg/L	41.9	41.4	<0.050	57.7	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.05	2.08	<0.050	2.14	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	9.66	9.41	<0.050	9.43	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.223	0.217	<0.00020	0.242	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	96.2	96.8	<0.50	92.8	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000012	0.000012	<0.000010	0.000020	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00362	0.00363	<0.000010	0.00386	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0117	0.0120	<0.0010	0.0196	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	

Please refer to the General Comments section for an explanation of any qualifiers detected.

WATER CHEMISTRY

ALS Laboratory Report CG2104078 (Finalized September 29, 2021)

CERTIFICATE OF ANALYSIS

Work Order : CG2104078

Client : Teck Coal Limited

: Cybele Heddle Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone

Contact

Project : REGIONAL EFFECTS PROGRAM

: VPO00748510

C-O-C number : September LCO LAEMP 2021

Sampler : Jennifer Ings

Site

Quote number : Teck Coal Master Quote

No. of samples received : 3 : 3 No. of samples analysed

Page : 1 of 7

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

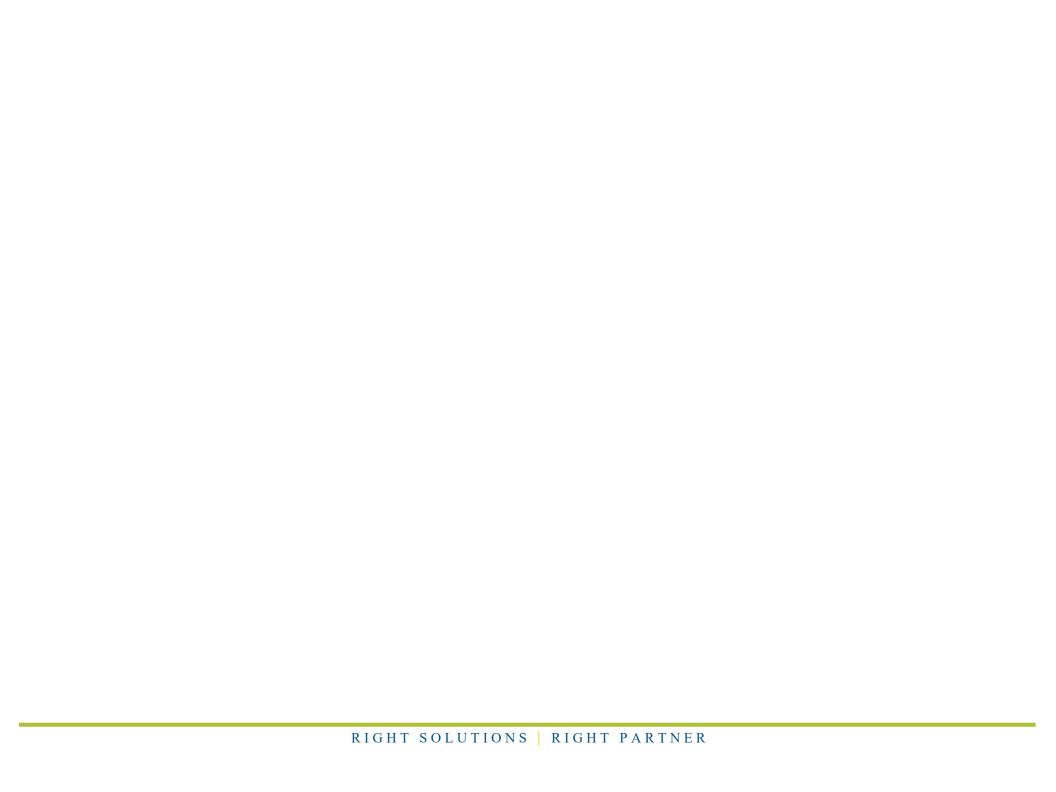
Telephone : +1 403 407 1800 **Date Samples Received** : 14-Sep-2021 10:30

Date Analysis Commenced : 15-Sep-2021

Issue Date : 29-Sep-2021 17:34

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:


- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia	
Dion Chan	Lab Assistant	Metals, Burnaby, British Columbia	
Erin Sanchez		Inorganics, Calgary, Alberta	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia	
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta	
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia	
Owen Cheng		Metals, Burnaby, British Columbia	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia	
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta	

Page : 3 of 7

Work Order : CG2104078

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
HTA	Analytical holding time was exceeded.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 4 of 7
Work Order : CG2104078
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	RG_LI8_WS_LA EMP_LCO_202 1-09-11_NP	RG_FRUL_WS_ LAEMP_LCO_2 021-09-12_NP	RG_FO23_WS_ LAEMP_LCO_2 021-09-12_NP	
			Client sampling date / time		11-Sep-2021 12:10	12-Sep-2021 08:23	12-Sep-2021 07:40	
Analyte	CAS Number	Method	LOR	Unit	CG2104078-001	CG2104078-002	CG2104078-003	
					Result	Result	Result	
Physical Tests		E283	2.0	ma/l	<2.0	<2.0	<2.0	
acidity (as CaCO3)			1.0	mg/L	169	175	173	
alkalinity, bicarbonate (as CaCO3)		E290 E290	1.0	mg/L	12.4	11.4		
alkalinity, carbonate (as CaCO3)				mg/L			10.8	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	181	187	184	
conductivity		E100	2.0	μS/cm	711	785	760	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	370	422	401	
oxidation-reduction potential [ORP]		E125	0.10	mV	501	452	473	
рН		E108	0.10	pH units	8.40	8.38	8.38	
solids, total dissolved [TDS]		E162	10	mg/L	496	553	544	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.1	<1.0	<1.0	
turbidity		E121	0.10	NTU	0.20 HTA	0.21	0.16	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	206	214	211	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	7.4	6.8	6.5	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	0.0053	0.0174	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	9.00	1.81	3.87	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.258	0.167	0.193	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.345 TKNI	0.282 TKNI	0.297 TKNI	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	6.13 HTA	12.8	10.8	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010 HTA	0.0040	0.0039	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010 HTA	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0030	<0.0020	0.0026	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	184	204	197	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.09	1.42	1.66	
carbon, total organic [TOC]		E355-L	0.50	mg/L	0.99	1.33	1.39	

Page : 5 of 7
Work Order : CG2104078
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_LI8_WS_LA EMP_LCO_202 1-09-11_NP	RG_FRUL_WS_ LAEMP_LCO_2 021-09-12_NP	RG_FO23_WS_ LAEMP_LCO_2 021-09-12_NP	
			Client samp	ling date / time	11-Sep-2021 12:10	12-Sep-2021 08:23	12-Sep-2021 07:40	
Analyte	CAS Number	Method	LOR	Unit	CG2104078-001	CG2104078-002	CG2104078-003	
Ion Balance					Result	Result	Result	
anion sum		EC101	0.10	meg/L	8.15	8.96	8.67	
cation sum		EC101	0.10	meg/L	7.69	8.56	8.20	
ion balance (cations/anions ratio)		EC101	0.010	%	94.4	95.5	94.6	
ion balance (cation-anion difference)		EC101	0.010	%	2.90	2.28	2.79	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0046	<0.0030	0.0048	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00017	0.00010	0.00014	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00014	0.00012	0.00011	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0632	0.111	0.0960	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.014	0.011	0.012	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.126	0.0073	0.0306	
calcium, total	7440-70-2	E420	0.050	mg/L	86.3	97.0	93.2	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00013	0.00012	0.00016	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0.00051	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0341	0.0266	0.0280	
magnesium, total	7439-95-4	E420	0.0050	mg/L	36.4	41.2	39.7	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00144	0.00055	0.00081	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	<0.00050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00197	0.00101	0.00129	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00355	0.00073	0.00134	
potassium, total	7440-09-7	E420	0.050	mg/L	1.20	1.46	1.47	
selenium, total	7782-49-2	E420	0.050	μg/L	24.6	49.4	39.8	
silicon, total	7440-21-3	E420	0.10	mg/L	2.17	2.27	2.22	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, total	17341-25-2	E420	0.050	mg/L	5.99	2.35	3.53	

Page : 6 of 7
Work Order : CG2104078
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	RG_LI8_WS_LA EMP_LCO_202 1-09-11_NP	RG_FRUL_WS_ LAEMP_LCO_2 021-09-12_NP	RG_FO23_WS_ LAEMP_LCO_2 021-09-12_NP	
			Client samp	ling date / time	11-Sep-2021 12:10	12-Sep-2021 08:23	12-Sep-2021 07:40	
Analyte	CAS Number	Method	LOR	Unit	CG2104078-001 Result	CG2104078-002 Result	CG2104078-003 Result	
Total Metals					resuit	Result	Result	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.188	0.155	0.166	
sulfur, total	7704-34-9	E420	0.50	mg/L	58.1	66.3	61.8	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00283	0.00243	0.00253	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0058	<0.0030	0.0051	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00017	0.00011	0.00012	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0612	0.110	0.0922	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.013	0.010	0.011	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0794	0.0080	0.0201	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	86.4	97.4	91.0	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00016	0.00014	0.00014	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0338	0.0267	0.0274	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	37.5	43.3	42.2	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00061	0.00029	0.00025	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00191	0.000992	0.00123	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00325	0.00060	0.00118	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.13	1.40	1.33	

Page : 7 of 7
Work Order : CG2104078
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			CI	lient sample ID	RG_LI8_WS_LA	RG_FRUL_WS_	RG_FO23_WS_	
(Matrix: Water)					EMP_LCO_202	LAEMP_LCO_2	LAEMP_LCO_2	
					1-09-11_NP	021-09-12_NP	021-09-12_NP	
			Client samp	ling date / time	11-Sep-2021 12:10	12-Sep-2021 08:23	12-Sep-2021 07:40	
Analyte	CAS Number	Method	LOR	Unit	CG2104078-001	CG2104078-002	CG2104078-003	
					Result	Result	Result	
Dissolved Metals								-
selenium, dissolved	7782-49-2	E421	0.050	μg/L	26.7	50.2	43.7	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.22	2.21	2.20	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	6.02	2.44	3.57	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.189	0.154	0.169	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	61.8	66.3	65.5	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00248	0.00215	0.00219	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0043	0.0021	0.0013	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	
dissolved metals filtration location		EP421	_	_	Field	Field	Field	
			1					

Please refer to the General Comments section for an explanation of any qualifiers detected.

WATER CHEMISTRY

ALS Laboratory Report CG2104115 (Finalized October 6, 2021)

CERTIFICATE OF ANALYSIS

Page **Work Order** : CG2104115

Amendment : 1

Client : Teck Coal Limited Laboratory : Calgary - Environmental Contact : Cybele Heddle Account Manager : Lyudmyla Shvets Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00748510

C-O-C number : September LCO LAEMP 2021

Sampler Site

: Teck Coal Master Quote Quote number

No. of samples received : 2 No. of samples analysed : 2 : 1 of 7

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

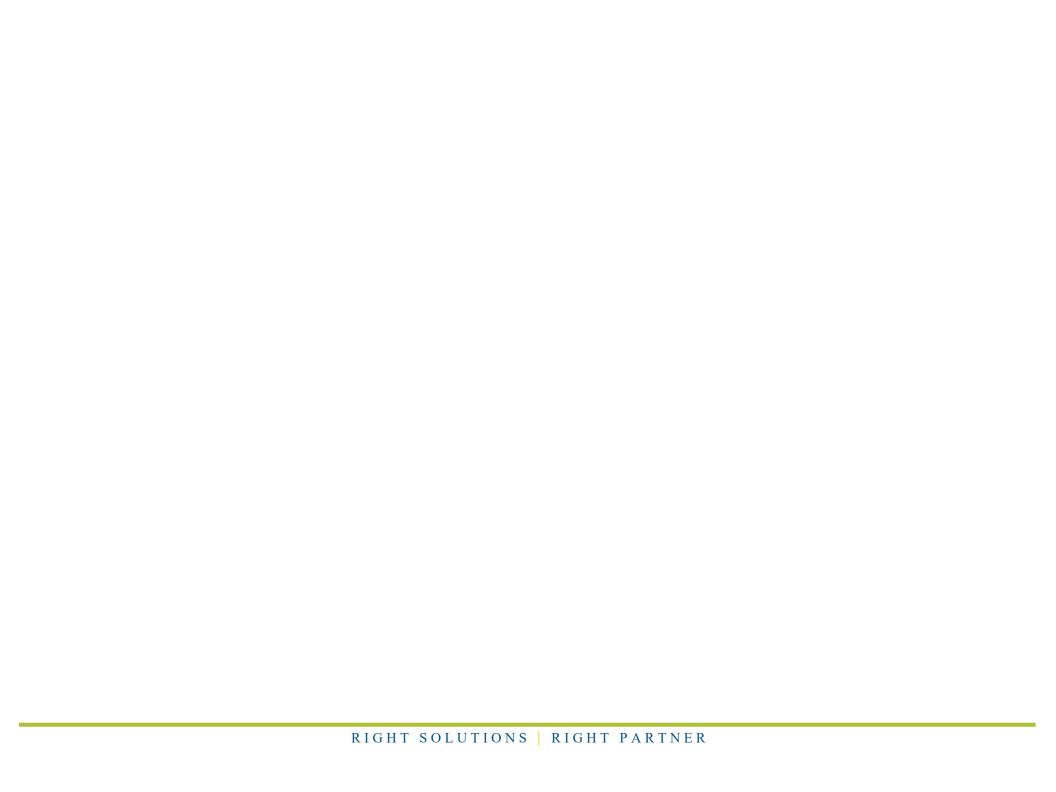
Telephone : +1 403 407 1800 Date Samples Received : 15-Sep-2021 08:30

Date Analysis Commenced : 16-Sep-2021

Issue Date : 06-Oct-2021 10:16

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:


- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Saron Kim	Analyst	Metals, Burnaby, British Columbia
Shaneel Dayal	Analyst	Metals, Burnaby, British Columbia

Page : 3 of 7

Work Order : CG2104115 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

pH units	pH units
NTU	nephelometric turbidity units
mV	millivolts
mg/L	milligrams per litre
meq/L	milliequivalents per litre
μS/cm	Microsiemens per centimetre
μg/L	micrograms per litre
%	percent
-	No Unit
Unit	Description

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within
	hold time.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 4 of 7

Work Order : CG2104115 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

(Matrix: Water)					RG_LISP24_WS _LAEMP_LCO_ 2021-09-13_NP	RG_LIDCOM_W S_LAEMP_LCO _2021-09-13_N P	 	
			Client samp	oling date / time	13-Sep-2021 14:50	13-Sep-2021 11:02	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104115-001	CG2104115-002	 	
					Result	Result	 	
Physical Tests		E202	2.0	m a /l	<2.0	<2.0		
acidity (as CaCO3)		E283		mg/L			 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	184	185	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	15.8	18.4	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	200	204	 	
conductivity		E100	2.0	μS/cm	835	776	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	449	409	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	445	466	 	
pH		E108	0.10	pH units	8.42	8.43	 	
solids, total dissolved [TDS]		E162	10	mg/L	547	523	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	1.0	 	
turbidity		E121	0.10	NTU	<0.10	<0.10	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	225	226	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	9.5	11.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	0.0063	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	12.2	10.3	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.262	0.246	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.316 TKNI	0.361 TKNI	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	7.82 HTD	6.80 HTD	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0036 HTD	0.0020 нт□	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	0.0025	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	229	204	 	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	 	

Page Work Order : 5 of 7

: CG2104115 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)	RG_LISP24_WS _LAEMP_LCO_ 2021-09-13_NP	RG_LIDCOM_W S_LAEMP_LCO _2021-09-13_N P	 					
			Client samp	ling date / time	13-Sep-2021 14:50	13-Sep-2021 11:02	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104115-001	CG2104115-002	 	
					Result	Result	 	
Organic / Inorganic Carbon		E355-L	0.50	mag/l	<0.50	<0.50		
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	 	
Ion Balance		FC404	0.40		0.00	0.44		
anion sum		EC101	0.10	meq/L	9.68	9.11	 	
cation sum		EC101	0.10	meq/L	9.32	8.48	 	
ion balance (cations/anions ratio)		EC101	0.010	%	96.3	93.1	 	
ion balance (cation-anion difference)		EC101	0.010	%	1.89	3.58	 	
Total Metals		5 400	2.222		0.0400	0.000		
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0102	<0.0030	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00023	0.00020	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00012	0.00012	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0539	0.0646	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	0.016	0.015	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.220	0.132	 	
calcium, total	7440-70-2	E420	0.050	mg/L	103	95.2	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00015	0.00014	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	0.014	<0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0461	0.0366	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	45.3	40.5	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00673	0.00217	 	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00246	0.00210	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00634	0.00394	 	
potassium, total	7440-09-7	E420	0.050	mg/L	1.45	1.28	 	
selenium, total	7782-49-2	E420	0.050	μg/L	30.3	28.5	 	

Page Work Order : 6 of 7

: CG2104115 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)	RG_LISP24_WS _LAEMP_LCO_ 2021-09-13_NP	RG_LIDCOM_W S_LAEMP_LCO _2021-09-13_N P	 					
			Client samp	ling date / time	13-Sep-2021 14:50	13-Sep-2021 11:02	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104115-001	CG2104115-002	 	
					Result	Result	 	
Total Metals silicon, total	7440-21-3	E420	0.10	mg/L	2.21	2.34	 	
silver, total	7440-21-3	E420	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, total	17341-25-2	E420	0.050	mg/L	7.40	6.41	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.199	0.195	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	78.9	69.8	 	
thallium, total	7440-28-0	E420	0.00010	mg/L	<0.000010	<0.000010	 	
tin, total	7440-28-0	E420	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, total	7440-31-5	E420	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00341	0.00298	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0087	0.0056	 	
Dissolved Metals	7440-00-0	2.20	0.0000	mg/L	0.000.	0.0000		
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00022	0.00019	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00010	0.00010	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0539	0.0657	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.015	0.014	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.203	0.130	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	104	94.5	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00011	0.00012	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00027	0.00034	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0454	0.0396	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	45.9	42.0	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00536	0.00130	 	
	1400-00-0		3.55010	g/ L	3.33000	3.55100		l

Page : 7 of 7

Work Order : CG2104115 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)	Client sample ID R					 	
			ling date / time	13-Sep-2021 14:50	13-Sep-2021 11:02	 	
Analyte CAS Number	r Method	LOR	Unit	CG2104115-001	CG2104115-002	 	
				Result	Result	 	
Dissolved Metals							
mercury, dissolved 7439-97-6		0.0000050	mg/L	<0.0000050	<0.000050	 	
molybdenum, dissolved 7439-98-7	E421	0.000050	mg/L	0.00242	0.00207	 	
nickel, dissolved 7440-02-0	E421	0.00050	mg/L	0.00606	0.00393	 	
potassium, dissolved 7440-09-7	E421	0.050	mg/L	1.44	1.30	 	
selenium, dissolved 7782-49-2	E421	0.050	μg/L	32.2	29.9	 	
silicon, dissolved 7440-21-3	E421	0.050	mg/L	2.08	2.27	 	
silver, dissolved 7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved 17341-25-2	E421	0.050	mg/L	7.38	6.46	 	
strontium, dissolved 7440-24-6	E421	0.00020	mg/L	0.199	0.193	 	
sulfur, dissolved 7704-34-9	E421	0.50	mg/L	72.2	64.9	 	
thallium, dissolved 7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	 	
tin, dissolved 7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved 7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved 7440-61-1	E421	0.000010	mg/L	0.00323	0.00280	 	
vanadium, dissolved 7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved 7440-66-6		0.0010	mg/L	0.0080	0.0056	 	
dissolved mercury filtration location	EDE00	-	_	Field	Field	 	
dissolved metals filtration location	ED404	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

WATER CHEMISTRY

ALS Laboratory Report CG2106222 (Finalized December 9, 2021)

: Cybele Heddle

CERTIFICATE OF ANALYSIS

Work Order : CG2106222

Client : Teck Coal Limited

Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone : ---

Contact

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00748510

C-O-C number : Regional Effects Program

Sampler : Rick Smit

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 6
No. of samples analysed : 6

Page : 1 of 11

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

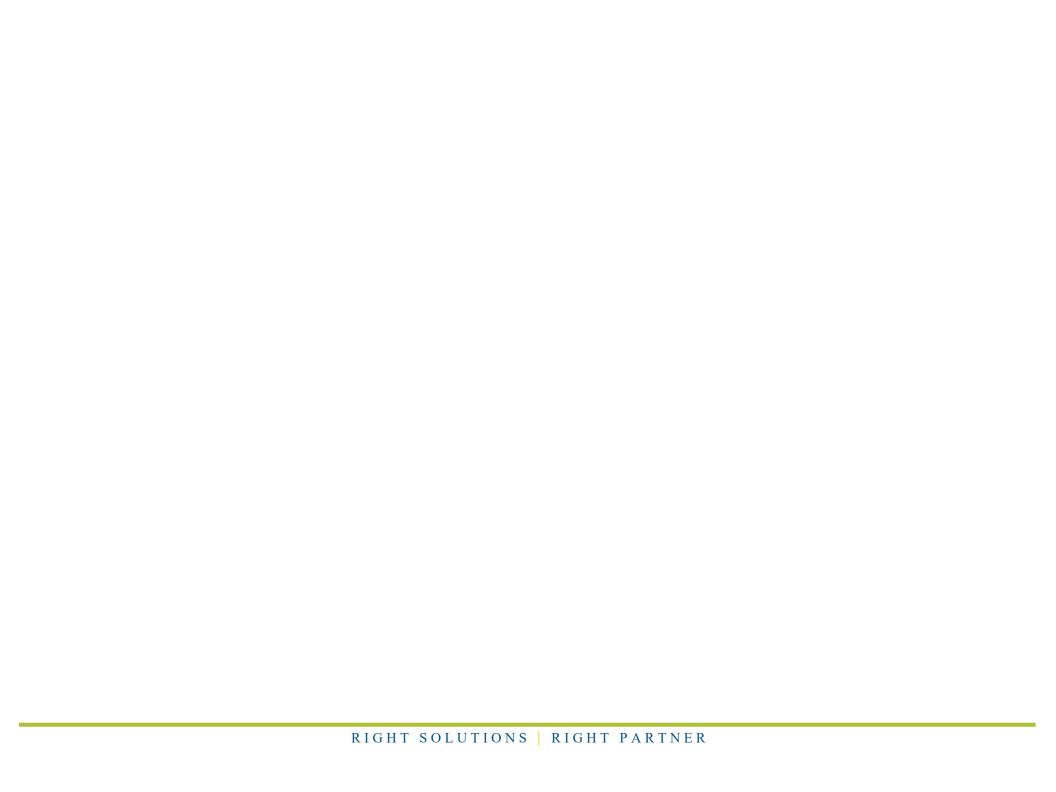
Date Samples Received : 01-Dec-2021 08:45

Date Analysis Commenced : 01-Dec-2021

Issue Date : 09-Dec-2021 17:31

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:


- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia
Parnian Sane	Analsyt	Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

 Page
 : 3 of 11

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
RRV	Reported result verified by repeat analysis.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 4 of 11
Work Order : CG2106222
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)	RG_SLINE_WS_ LAEMP_LCO_2 021-12_NP	RG_RIVER_WS _LAEMP_LCO_ 2021-12_NP	RG_LI24_WS_L AEMP_LCO_20 21-12_NP	RG_FBLANK_W S_LAEMP_LCO _2021-12_NP	RG_LISP24_WS _LAEMP_LCO_ 2021-12_NP				
			Client samp	oling date / time	30-Nov-2021 13:15	30-Nov-2021 14:00	30-Nov-2021 11:15	30-Nov-2021 13:00	30-Nov-2021 14:30
Analyte	CAS Number	Method	LOR	Unit	CG2106222-001	CG2106222-002	CG2106222-003	CG2106222-004	CG2106222-005
					Result	Result	Result	Result	Result
Physical Tests				_					
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0	<2.0	<2.0
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	115	172	107	<1.0	170
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, total (as CaCO3)		E290	1.0	mg/L	140	210	130	<1.0	207
conductivity		E100	2.0	μS/cm	312	845	343	<2.0	846
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	158	441	171	<0.50	438
oxidation-reduction potential [ORP]		E125	0.10	mV	443	483	462	536	420
рН		E108	0.10	pH units	8.05	8.14	7.99	5.53	8.13
solids, total dissolved [TDS]		E162	10	mg/L	188	576	212	<10	588
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
turbidity		E121	0.10	NTU	0.15	0.16	<0.10	<0.10	0.10
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	140	210	130	<1.0	207
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.18	12.8	0.22	<0.10	12.8
fluoride	16984-48-8	E235.F	0.020	mg/L	0.249	0.192	0.307	<0.020	0.190
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.062	0.171 TKNI	0.056	<0.050	0.315 TKNI
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0823	8.02	0.217	<0.0050	8.04
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	0.0010
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0026	0.0021	0.0023	<0.0010	0.0020
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0028	0.0024	<0.0020	<0.0020	0.0027
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	38.9	246	65.7	<0.30	246
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	2.03	0.83	0.97	<0.50	0.91
carbon, total organic [TOC]		E355-L	0.50	mg/L	1.87	0.81	0.73	<0.50	0.97

Page : 5 of 11
Work Order : CG2106222
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

					LAEMP_LCO_2 021-12_NP	_LAEMP_LCO_ 2021-12_NP	AEMP_LCO_20 21-12_NP	S_LAEMP_LCO _2021-12_NP	_LAEMP_LCO_ 2021-12_NP
				ling date / time	30-Nov-2021 13:15	30-Nov-2021 14:00	30-Nov-2021 11:15	30-Nov-2021 13:00	30-Nov-2021 14:30
Analyte	CAS Number	Method	LOR	Unit	CG2106222-001 Result	CG2106222-002 Result	CG2106222-003 Result	CG2106222-004 Result	CG2106222-005 Result
Ion Balance					Result	Result	Result	Result	Result
anion sum		EC101	0.10	meq/L	3.63	10.3	4.00	<0.10	10.2
cation sum		EC101	0.10	meq/L	3.21	9.20	3.49	<0.10	9.15
ion balance (cations/anions ratio)		EC101	0.010	%	88.4	89.3	87.2	100	89.7
ion balance (cation-anion difference)		EC101	0.010	%	6.14	5.64	6.81	<0.010	5.43
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0041	<0.0030	<0.0030	<0.0030	<0.0030
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	0.00022	<0.00010	<0.00010	0.00022
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00012	0.00012	0.00016	<0.00010	0.00011
barium, total	7440-39-3	E420	0.00010	mg/L	0.0347	0.0524	0.0434	<0.00010	0.0544
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	<0.020
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	0.016	<0.010	<0.010	0.016
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0111	0.181	0.0080	<0.0050	0.170
calcium, total	7440-70-2	E420	0.050	mg/L	44.1	102	48.1	<0.050	102
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00012	0.00010	0.00018	<0.00010	0.00012
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	<0.10
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	0.020	<0.010	<0.010	0.018
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0027	0.0462	0.0035	<0.0010	0.0467
magnesium, total	7439-95-4	E420	0.0050	mg/L	13.2	49.1	13.2	<0.0050	49.0
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00011	0.00819	<0.00010	0.00012 RRV	0.00832
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00107	0.00257	0.000920	<0.000050	0.00259
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	0.00548	<0.00050	<0.00050	0.00565
potassium, total	7440-09-7	E420	0.050	mg/L	0.353	1.44	0.291	<0.050	1.49
selenium, total	7782-49-2	E420	0.050	μg/L	1.08	35.0	2.62	<0.050	32.8
silicon, total	7440-21-3	E420	0.10	mg/L	1.84	2.10	1.64	<0.10	2.08
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, total	17341-25-2	E420	0.050	mg/L	0.756	8.21	1.58	<0.050	8.40

Page : 6 of 11
Work Order : CG2106222
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_SLINE_WS_ LAEMP_LCO_2 021-12 NP	RG_RIVER_WS _LAEMP_LCO_ 2021-12 NP	RG_LI24_WS_L AEMP_LCO_20 21-12 NP	RG_FBLANK_W S_LAEMP_LCO 2021-12 NP	RG_LISP24_WS _LAEMP_LCO_ 2021-12 NP
			Client samp	ling date / time	30-Nov-2021 13:15	30-Nov-2021 14:00	30-Nov-2021 11:15	30-Nov-2021 13:00	30-Nov-2021 14:30
Analyte	CAS Number	Method	LOR	Unit	CG2106222-001 Result	CG2106222-002 Result	CG2106222-003 Result	CG2106222-004 Result	CG2106222-005 Result
Total Metals					Result	Result	Result	Result	Result
strontium, total	7440-24-6	E420	0.00020	mg/L	0.137	0.201	0.178	<0.00020	0.202
sulfur, total	7704-34-9	E420	0.50	mg/L	12.8	87.8	21.8	<0.50	88.5
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00143	0.00343	0.00152	<0.000010	0.00342
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	0.0073	<0.0030	<0.0030	0.0069
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0020	<0.0010	0.0015	<0.0010	<0.0010
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	0.00021	<0.00010	<0.00010	0.00021
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00011	<0.00010	0.00014	<0.00010	0.00011
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0335	0.0514	0.0438	<0.00010	0.0515
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	<0.020
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	0.014	<0.010	<0.010	0.014
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0108	0.154	0.0056	<0.0050	0.167
calcium, dissolved	7440-70-2	E421	0.050	mg/L	41.8	100	46.8	<0.050	99.0
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00015	<0.00010	0.00017	<0.00010	<0.00010
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	<0.10
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	0.00021	<0.00020	<0.00020	0.00030
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0025	0.0434	0.0032	<0.0010	0.0436
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	13.1	46.4	13.1	<0.0050	46.4
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00011	0.00636	<0.00010	<0.00010	0.00646
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00102	0.00250	0.000919	<0.000050	0.00252
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	0.00528	<0.00050	<0.00050	0.00529
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.374	1.51	0.305	<0.050	1.53
potassium, uissoiveu	7440-09-7	E#21	0.000	mg/L	0.374	1.51	0.305	\U.U0U	1.53

Page : 7 of 11
Work Order : CG2106222
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_SLINE_WS_	RG_RIVER_WS	RG_LI24_WS_L	RG_FBLANK_W	RG_LISP24_WS
(Matrix: Water)					LAEMP_LCO_2 021-12_NP	_LAEMP_LCO_ 2021-12_NP	AEMP_LCO_20 21-12_NP	S_LAEMP_LCO _2021-12_NP	_LAEMP_LCO_ 2021-12_NP
				ling date / time	30-Nov-2021 13:15	30-Nov-2021 14:00	30-Nov-2021 11:15	30-Nov-2021 13:00	30-Nov-2021 14:30
Analyte	CAS Number	Method	LOR	Unit	CG2106222-001	CG2106222-002	CG2106222-003	CG2106222-004	CG2106222-005
					Result	Result	Result	Result	Result
Dissolved Metals									
selenium, dissolved	7782-49-2	E421	0.050	μg/L	1.11	36.4	2.94	<0.050	36.0
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.91	2.19	1.64	<0.050	2.06
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, dissolved	17341-25-2	E421	0.050	mg/L	0.766	8.16	1.61	<0.050	8.16
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.139	0.209	0.184	<0.00020	0.208
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	12.7	85.6	21.8	<0.50	85.1
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00141	0.00336	0.00148	<0.000010	0.00328
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0027	0.0063	0.0024	<0.0010	0.0060
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	Field
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Field

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 8 of 11
Work Order : CG2106222
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water			C	lient sample ID	RG_FRUL_WS_	 	
(Matrix: Water)					LAEMP_LCO_2 021-12_NP		
			Client samp	oling date / time	30-Nov-2021 09:15	 	
Analyte	CAS Number	Method	LOR	Unit	CG2106222-006 Result	 	
Physical Tests					Result	 	
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	179	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	219	 	
conductivity		E100	2.0	μS/cm	857	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	457	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	424	 	
рН		E108	0.10	pH units	8.23	 	
solids, total dissolved [TDS]		E162	10	mg/L	622	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.1	 	
turbidity		E121	0.10	NTU	0.22	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	219	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	 	
Anions and Nutrients							
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.250 DLDS	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	2.01	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.124	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.295 TKNI	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	15.2	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0050 DLDS	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0013	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	250	 	
Organic / Inorganic Carbon							
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.30	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	1.14	 	
Ion Balance							

Page : 9 of 11
Work Order : CG2106222
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_FRUL_WS_ LAEMP_LCO_2 021-12_NP	 	
			Client samp	ling date / time	30-Nov-2021 09:15	 	
Analyte	CAS Number	Method	LOR	Unit	CG2106222-006	 	
					Result	 	
Ion Balance							
anion sum		EC101	0.10	meq/L	10.7	 	
cation sum		EC101	0.10	meq/L	9.29	 	
ion balance (cations/anions ratio)		EC101	0.010	%	86.8	 	
ion balance (cation-anion difference)		EC101	0.010	%	7.05	 	
Total Metals							
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0034	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00011	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.111	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0111	 	
calcium, total	7440-70-2	E420	0.050	mg/L	105	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	<0.00010	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0259	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	49.5	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00058	 	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	 	
molybdenum, total	7439-97-0	E420	0.000050	mg/L	0.00117	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00083	 	
potassium, total	7440-02-0	E420	0.050	mg/L	1.36	 	
selenium, total	7782-49-2	E420	0.050	μg/L	54.4	 	
silicon, total		E420	0.030		2.00	 	
	7440-21-3	E420	0.00010	mg/L	<0.000010		
silver, total	7440-22-4			mg/L		 	
sodium, total	17341-25-2	E420	0.050	mg/L	2.78	 	

Page : 10 of 11
Work Order : CG2106222
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water			Cli	ient sample ID	RG_FRUL_WS_ LAEMP_LCO_2	 	
(Matrix: Water)					021-12_NP		
			Client samp	ling date / time	30-Nov-2021 09:15	 	
Analyte	CAS Number	Method	LOR	Unit	CG2106222-006 Result	 	
Total Metals					resuit		
strontium, total	7440-24-6	E420	0.00020	mg/L	0.168	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	81.9	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00248	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	 	
Dissolved Metals							
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0063	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.105	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0098	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	103	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00010	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0248	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	48.6	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00058	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00108	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00081	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.45	 	
•	ı			'	'		

Page : 11 of 11
Work Order : CG2106222
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_FRUL_WS_	 	
(Matrix: Water)					LAEMP_LCO_2		
					021-12_NP		
			Client samp	ling date / time	30-Nov-2021	 	
Analyte	CAS Number	Method	LOR	Unit	09:15 CG2106222-006	 	
					Result	 	
Dissolved Metals							
selenium, dissolved	7782-49-2	E421	0.050	μg/L	62.4	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.04	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	2.69	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.169	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	80.8	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00240	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	 	
dissolved mercury filtration location		EP509	-	-	Field	 	
dissolved metals filtration location		EP421	-	-	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2106222** Page : 1 of 26

Client : **Teck Coal Limited** : Calgary - Environmental Contact : Cybele Heddle : Cybele Heddle : Lyudmyla Shvets

: 421 Pine Avenue Address : 2559 29th Street NE

Sparwood BC Canada V0B 2G0

Calgary, Alberta Canada T1Y 7B5

Telephone

:+1 403 407 1800

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 01-Dec-2021 08:45

 PO
 : VPO00748510
 Issue Date
 : 09-Dec-2021 17:32

C-O-C number : Regional Effects Program

Sampler : Rick Smit

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 6
No. of samples analysed : 6

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 2 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analysis		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E298	30-Nov-2021	02-Dec-2021				02-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E298	30-Nov-2021	02-Dec-2021				02-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)	5000	2011 2004	00.5				00.5	00.1		,
RG_LI24_WS_LAEMP_LCO_2021-12_NP	E298	30-Nov-2021	02-Dec-2021				02-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)	E298	30-Nov-2021	02-Dec-2021				02-Dec-2021	28 days	O days	√
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E290	30-1100-2021	02-Dec-2021				02-Dec-2021	20 days	2 days	•
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)	F000	00 N 0004	00 D 0004				00 D 0004	00.1	0.1	✓
RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E298	30-Nov-2021	02-Dec-2021				02-Dec-2021	28 days	2 days	•
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)	E298	30-Nov-2021	00 D 0004				00 D 0004	00.1	0.1	✓
RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E298	30-NOV-2021	02-Dec-2021				02-Dec-2021	28 days	2 days	,
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE	F225 D- 1	20 New 2024					01-Dec-2021	20 day:-	1 days	√
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E235.Br-L	30-Nov-2021					01-Dec-2021	28 days	1 days	•

Page : 3 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Method Sampling Date Extraction / Preparation Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Actual Rec Actual Date Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE RG_FRUL_WS_LAEMP_LCO_2021-12_NP E235.Br-L 30-Nov-2021 01-Dec-2021 28 days 1 days ✓ Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE ✓ RG_LI24_WS_LAEMP_LCO_2021-12_NP E235.Br-L 30-Nov-2021 01-Dec-2021 28 days 1 days ----Anions and Nutrients : Bromide in Water by IC (Low Level) **HDPE** E235.Br-L 30-Nov-2021 01-Dec-2021 28 days 1 days ✓ RG LISP24 WS LAEMP LCO 2021-12 NP Anions and Nutrients : Bromide in Water by IC (Low Level) RG RIVER WS LAEMP LCO 2021-12 NP E235.Br-L 30-Nov-2021 01-Dec-2021 28 days 1 days Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE E235.Br-L 30-Nov-2021 01-Dec-2021 RG SLINE WS LAEMP LCO 2021-12 NP 28 days 1 days Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L ✓ RG_FBLANK_WS_LAEMP_LCO_2021-12_NP 30-Nov-2021 01-Dec-2021 28 days 1 davs Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE RG FRUL WS LAEMP LCO 2021-12 NP E235.CI-L 30-Nov-2021 01-Dec-2021 28 days 1 days ✓ Anions and Nutrients : Chloride in Water by IC (Low Level) **HDPE** ✓ RG_LI24_WS_LAEMP_LCO_2021-12_NP E235.CI-L 30-Nov-2021 01-Dec-2021 28 days 1 days Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L RG LISP24 WS LAEMP LCO 2021-12 NP 30-Nov-2021 01-Dec-2021 28 days 1 days ✓

Page : 4 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

trix: Water					E	/aluation: 🗴 =	Holding time exce	edance ; 🕦	= Within	Holding ⁻
nalyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
nions and Nutrients : Chloride in Water by IC (Low Level)										
IDPE										
RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E235.CI-L	30-Nov-2021					01-Dec-2021	28 days	1 days	✓
nions and Nutrients : Chloride in Water by IC (Low Level)										
IDPE										
RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E235.CI-L	30-Nov-2021					01-Dec-2021	28 days	1 days	✓
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)									
IDPE										
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E378-U	30-Nov-2021					01-Dec-2021	3 days	1 days	✓
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)									
IDPE										
RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E378-U	30-Nov-2021					01-Dec-2021	3 days	1 days	✓
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)									
IDPE										
RG_LI24_WS_LAEMP_LCO_2021-12_NP	E378-U	30-Nov-2021					01-Dec-2021	3 days	1 days	✓
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)									
IDPE										
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E378-U	30-Nov-2021					01-Dec-2021	3 days	1 days	✓
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)									
IDPE										
RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E378-U	30-Nov-2021					01-Dec-2021	3 days	1 days	✓
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)									
IDPE										_
RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E378-U	30-Nov-2021					01-Dec-2021	3 days	1 days	✓
nions and Nutrients : Fluoride in Water by IC										
IDPE										
	_									
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E235.F	30-Nov-2021					01-Dec-2021	28 days	1 days	✓

Page : 5 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance; 🔻	= Within	Holding Tir
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E235.F	30-Nov-2021					01-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE	E235.F	30-Nov-2021					01-Dec-2021	28 days	1 days	√
RG_LI24_WS_LAEMP_LCO_2021-12_NP	L233.1	30-1107-2021					01-Dec-2021	20 uays	1 uays	•
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E235.F	30-Nov-2021					01-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E235.F	30-Nov-2021					01-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Fluoride in Water by IC HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E235.F	30-Nov-2021					01-Dec-2021	28 days	1 days	✓
110_0E111E_1110_E71011111111111111111111		00 1101 202 1					01 200 2021	20 dayo	, dayo	
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE								T		
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E235.NO3-L	30-Nov-2021					01-Dec-2021	3 days	1 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE	5005 NOO 1									,
RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E235.NO3-L	30-Nov-2021					01-Dec-2021	3 days	1 days	✓
A 100 - 100 (100 (
Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE										
RG LI24 WS LAEMP LCO 2021-12 NP	E235.NO3-L	30-Nov-2021					01-Dec-2021	3 days	1 days	✓
· · · · · · · · · · · · · · · · · · ·								,,		
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E235.NO3-L	30-Nov-2021					01-Dec-2021	3 days	1 days	✓

 Page
 : 6 of 26

 Work Order
 : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Method Sampling Date Etractical Preparation Analysis Date Horizon Times Eval Eva	wainx: water							nolaing time exce	, ,	**********		
Anions and Nutrients : Nitrate in Water by IC (Low Level)	Analyte Group	Method	Sampling Date	te Extraction / Preparation				Analysis				
Rec Actual Rec	Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval	
HOPE RG_RIVER_WS_LAEMP_LCO_2021-12_NP				Date	Rec	Actual			Rec	Actual		
RG_RIVER_WS_LAEMP_LCO_2021-12_NP	Anions and Nutrients : Nitrate in Water by IC (Low Level)											
Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP E235.NO3-L 30-Nov-2021	HDPE											
HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP	RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E235.NO3-L	30-Nov-2021					01-Dec-2021	3 days	1 days	✓	
HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP												
RG_SLINE_WS_LAEMP_LCO_2021-12_NP	Anions and Nutrients : Nitrate in Water by IC (Low Level)											
Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_FBLANK_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021	HDPE											
HDPE RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E235.NO3-L	30-Nov-2021					01-Dec-2021	3 days	1 days	✓	
HDPE RG_FBLANK_WS_LAEMP_LCO_2021-12_NP												
HDPE RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	Anions and Nutrients : Nitrite in Water by IC (Low Level)											
Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE RG_FRUL_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021												
HDPE RG_FRUL_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level)	RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E235.NO2-L	30-Nov-2021					01-Dec-2021	3 days	1 days	✓	
HDPE RG_FRUL_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
HDPE RG_FRUL_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) <t< td=""><td>Anions and Nutrients : Nitrite in Water by IC (Low Level)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Anions and Nutrients : Nitrite in Water by IC (Low Level)											
RG_FRUL_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) 01-Dec-	, , ,											
Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_LI24_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021		E235.NO2-L	30-Nov-2021					01-Dec-2021	3 days	1 days	✓	
HDPE RG_LI24_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021												
HDPE RG_LI24_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021	Anions and Nutrients : Nitrite in Water by IC (Low Level)											
RG_LI24_WS_LAEMP_LCO_2021-12_NP												
Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE RG_LISP24_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE RG_RIVER_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 30-Nov-2021 01-Dec-2021 3 days 1 days Anions and Nutrients: Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP		E235.NO2-L	30-Nov-2021					01-Dec-2021	3 davs	1 davs	✓	
HDPE RG_LISP24_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓										,		
HDPE RG_LISP24_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓	Anions and Nutrients : Nitrite in Water by IC (Low Level)							L				
RG_LISP24_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓									<u> </u>			
Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE RG_RIVER_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓		E235.NO2-L	30-Nov-2021					01-Dec-2021	3 days	1 davs	✓	
HDPE RG_RIVER_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓									,-	,-		
HDPE RG_RIVER_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓	Aniana and Nutwigsta - Nitrita in Water by IC / and a sull											
RG_RIVER_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓ Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓								l				
Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓	·	F235 NO2-I	30-Nov-2021					01-Dec-2021	3 days	1 days	✓	
HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓	1.0_1.1VE11V0_B.1.E.WII _E00_2021-12_11	2200102.2	00 1101 202 1					01 200 2021	o dayo	, dayo		
HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP E235.NO2-L 30-Nov-2021 01-Dec-2021 3 days 1 days ✓	A terror INI (15 to NIC Volta M. Co. L. 10 (15 to 15 to 15											
RG_SLINE_WS_LAEMP_LCO_2021-12_NP	, ,							I	I			
		F235 NO2-I	30-Nov-2021					01-Dec-2021	3 dave	1 days	1	
Anions and Nutrients : Sulfate in Water by IC	NG_GLINL_WG_LAEMIF_LOO_2021-12_INF	LZJJ.NOZ-L	JU-110V-ZUZ I					01-060-2021	Juays	i uays	•	
Anions and Nutrients : Sulfate in Water by IC												
UDDE												
HDPE RG FBLANK WS LAEMP LCO 2021-12 NP E235.SO4 30-Nov-2021 01-Dec-2021 28 days 1 days ✓		E225 SO4	30 Nov 2024					01 Dec 2024	28 days	1 days	1	
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	KG_FDLANN_WS_LAEMIP_LCU_ZUZ1-1Z_NP	E233.3U4	3U-NUV-2U21					01-Dec-2021	20 days	i uays	•	

 Page
 : 7 of 26

 Work Order
 : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Wattrx: water							nolaing time exce			
Analyte Group	Method	Sampling Date	EX	traction / Pr				Analys		
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E235.SO4	30-Nov-2021					01-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_LI24_WS_LAEMP_LCO_2021-12_NP	E235.SO4	30-Nov-2021					01-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E235.SO4	30-Nov-2021					01-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E235.SO4	30-Nov-2021					01-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E235.SO4	30-Nov-2021					01-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E318	30-Nov-2021	02-Dec-2021				06-Dec-2021	28 days	6 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E318	30-Nov-2021	02-Dec-2021				06-Dec-2021	28 days	6 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_LI24_WS_LAEMP_LCO_2021-12_NP	E318	30-Nov-2021	02-Dec-2021				06-Dec-2021	28 days	6 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E318	30-Nov-2021	02-Dec-2021				06-Dec-2021	28 days	6 davs	1
···									,5	

 Page
 : 8 of 26

 Work Order
 : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water					L\	/aiuation. * =	Holding time exce	euance, •	_ vviti iii i	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E318	30-Nov-2021	02-Dec-2021				06-Dec-2021	28 days	6 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E318	30-Nov-2021	02-Dec-2021				06-Dec-2021	28 days	6 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E372-U	30-Nov-2021	08-Dec-2021				08-Dec-2021	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E372-U	30-Nov-2021	08-Dec-2021				08-Dec-2021	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)									1	
Amber glass total (sulfuric acid) RG_LI24_WS_LAEMP_LCO_2021-12_NP	E372-U	30-Nov-2021	08-Dec-2021				08-Dec-2021	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E372-U	30-Nov-2021	08-Dec-2021				08-Dec-2021	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E372-U	30-Nov-2021	08-Dec-2021				08-Dec-2021	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E372-U	30-Nov-2021	08-Dec-2021				08-Dec-2021	28 days	8 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E421.Cr-L	30-Nov-2021	03-Dec-2021				04-Dec-2021	180 days	4 days	✓

Page : 9 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

wattix: water						aldation. • -	Holding time excee	Judinoo ,	- VVICIIII	riolaling rill
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E421.Cr-L	30-Nov-2021	03-Dec-2021				04-Dec-2021	180	4 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_LI24_WS_LAEMP_LCO_2021-12_NP	E421.Cr-L	30-Nov-2021	03-Dec-2021				04-Dec-2021	180	4 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E421.Cr-L	30-Nov-2021	03-Dec-2021				04-Dec-2021	180	4 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E421.Cr-L	30-Nov-2021	03-Dec-2021				04-Dec-2021	180	4 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E421.Cr-L	30-Nov-2021	03-Dec-2021				04-Dec-2021	180	4 days	✓
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E509	30-Nov-2021	03-Dec-2021				03-Dec-2021	28 days	3 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_LI24_WS_LAEMP_LCO_2021-12_NP	E509	30-Nov-2021	03-Dec-2021				03-Dec-2021	28 days	3 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E509	30-Nov-2021	03-Dec-2021				03-Dec-2021	28 days	3 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E509	30-Nov-2021	03-Dec-2021				03-Dec-2021	28 days	3 days	✓

Page : 10 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: water					⊏v	aluation. * -	noiding time exce	euance, •	_ vviti iii i	Holding Till
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E509	30-Nov-2021	03-Dec-2021				03-Dec-2021	28 days	3 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E509	30-Nov-2021	04-Dec-2021				04-Dec-2021	28 days	4 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E421	30-Nov-2021	03-Dec-2021				04-Dec-2021	180 days	4 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E421	30-Nov-2021	03-Dec-2021				04-Dec-2021	180 days	4 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS									'	
HDPE dissolved (nitric acid)										
RG_LI24_WS_LAEMP_LCO_2021-12_NP	E421	30-Nov-2021	03-Dec-2021				04-Dec-2021	180 days	4 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E421	30-Nov-2021	03-Dec-2021				04-Dec-2021	180 days	4 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E421	30-Nov-2021	03-Dec-2021				04-Dec-2021	180 days	4 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS									'	
HDPE dissolved (nitric acid)										
RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E421	30-Nov-2021	03-Dec-2021				04-Dec-2021	180 days	4 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Lov	v Level)									
Amber glass dissolved (sulfuric acid)										
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E358-L	30-Nov-2021	01-Dec-2021				02-Dec-2021	28 days	2 days	✓

Page : 11 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: water						alaation.	noiding time exce	- uu	***************************************	
Analyte Group	Method Sampling Date Extraction / Preparation					Analys	sis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Lev	rel)									
Amber glass dissolved (sulfuric acid)										
RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E358-L	30-Nov-2021	01-Dec-2021				02-Dec-2021	28 days	2 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	rel)									
Amber glass dissolved (sulfuric acid)										
RG_LI24_WS_LAEMP_LCO_2021-12_NP	E358-L	30-Nov-2021	01-Dec-2021				02-Dec-2021	28 days	2 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	rel)								· · · · · · · · · · · · · · · · · · ·	
Amber glass dissolved (sulfuric acid)										
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E358-L	30-Nov-2021	01-Dec-2021				02-Dec-2021	28 days	2 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	rel)						<u> </u>			
Amber glass dissolved (sulfuric acid)										
RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E358-L	30-Nov-2021	01-Dec-2021				02-Dec-2021	28 days	2 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	rel)									
Amber glass dissolved (sulfuric acid)										
RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E358-L	30-Nov-2021	01-Dec-2021				02-Dec-2021	28 days	2 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)									
Amber glass total (sulfuric acid)										
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E355-L	30-Nov-2021	01-Dec-2021				02-Dec-2021	28 days	2 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)									
Amber glass total (sulfuric acid)										
RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E355-L	30-Nov-2021	01-Dec-2021				02-Dec-2021	28 days	2 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)									
Amber glass total (sulfuric acid)										
RG_LI24_WS_LAEMP_LCO_2021-12_NP	E355-L	30-Nov-2021	01-Dec-2021				02-Dec-2021	28 days	2 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)									
Amber glass total (sulfuric acid)		00.11	04.5							,
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E355-L	30-Nov-2021	01-Dec-2021				02-Dec-2021	28 days	2 days	✓

Page : 12 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

viatrix: water						araara.	nolding time exce	,		
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	ion (Low Level)									
Amber glass total (sulfuric acid)										
RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E355-L	30-Nov-2021	01-Dec-2021				02-Dec-2021	28 days	2 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	ion (Low Level)									
Amber glass total (sulfuric acid)										
RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E355-L	30-Nov-2021	01-Dec-2021				02-Dec-2021	28 days	2 days	1
· · · · · · · · · · · · · · · · · · ·										
Physical Tests : Acidity by Titration										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E283	30-Nov-2021					02-Dec-2021	14 days	2 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG FRUL WS LAEMP LCO 2021-12 NP	E283	30-Nov-2021					02-Dec-2021	14 days	2 davs	1
									,-	
Physical Tests : Acidity by Titration										
HDPE										
RG_LI24_WS_LAEMP_LCO_2021-12_NP	E283	30-Nov-2021					02-Dec-2021	14 days	2 days	1
NO_E12.1_NO_E1.E1MI _E00_E021 12_M							02 200 202 :			
Physical Tests : Acidity by Titration										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E283	30-Nov-2021					02-Dec-2021	14 days	2 davs	1
									,-	
Physical Tests : Acidity by Titration										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E283	30-Nov-2021					02-Dec-2021	14 days	2 days	1
110_111/E11_110_E1E111 _E00_E0E1 12_111							02 200 202 :			
Physical Tests : Acidity by Titration										
HDPE							I	<u> </u>		
RG SLINE WS LAEMP LCO 2021-12 NP	E283	30-Nov-2021					02-Dec-2021	14 days	2 days	1
1.0_0EII1E_110_EAEIVII _E00_2021-12_11		30-1404-2021					02-000-2021	14 days	_ uuys	Ţ
Physical Tests : Alkalinity Cossiss by Titustian										
Physical Tests : Alkalinity Species by Titration HDPE										
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E290	30-Nov-2021					02-Dec-2021	14 days	2 days	1

Page : 13 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: water						raiuation. • -	Holding time exce	suarice , ,	_ vvitiiiii	riolaling rill
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E290	30-Nov-2021					02-Dec-2021	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG LI24 WS LAEMP LCO 2021-12 NP	E290	30-Nov-2021					02-Dec-2021	14 days	2 davs	✓
Physical Tests : Alkalinity Species by Titration										
HDPE								<u> </u>		
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E290	30-Nov-2021					02-Dec-2021	14 days	2 days	✓
NG_LISF24_WS_LALIWIF_LOO_2021-12_WF	L230	30-1107-2021					02-Dec-2021	14 days	2 days	•
Physical Tests : Alkalinity Species by Titration				I			ı			
HDPE	F000	00 N 0004					00 D 0004	44 1	0.1	
RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E290	30-Nov-2021					02-Dec-2021	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E290	30-Nov-2021					02-Dec-2021	14 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E100	30-Nov-2021					02-Dec-2021	28 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E100	30-Nov-2021					02-Dec-2021	28 days	2 days	✓
								-		
Physical Tests : Conductivity in Water										
HDPE										
RG LI24 WS LAEMP LCO 2021-12 NP	E100	30-Nov-2021					02-Dec-2021	28 days	2 days	√
1.0_L127_110_LALIWII _L00_2021-12_141	2100	30-1404-2021					02 000 2021	20 days	_ uuys	•
Physical Tests : Conductivity in Water							I			
HDPE	F400	00 N 0004					00 D 0004	00.1	0.1	,
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E100	30-Nov-2021					02-Dec-2021	28 days	2 days	✓

 Page
 : 14 of 26

 Work Order
 : CG2106222

Physical Tests : pH by Meter

RG LISP24 WS LAEMP LCO 2021-12 NP

HDPE

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

EHTR-FM

×

EHTR-FM

hrs

0.25

hrs

50 hrs

02-Dec-2021

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Analyte Group Method Sampling Date Extraction / Preparation Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date **Holding Times** Eval Actual Rec Actual Date **Physical Tests: Conductivity in Water** HDPE RG_RIVER_WS_LAEMP_LCO_2021-12_NP E100 30-Nov-2021 02-Dec-2021 28 days 2 days ✓ Physical Tests : Conductivity in Water HDPE ✓ RG_SLINE_WS_LAEMP_LCO_2021-12_NP E100 30-Nov-2021 02-Dec-2021 28 days 2 days ----Physical Tests : ORP by Electrode **HDPE** E125 08-Dec-2021 189 hrs RG_LISP24_WS_LAEMP_LCO_2021-12_NP 30-Nov-2021 0.25 hrs EHTR-FM Physical Tests: ORP by Electrode HDPE RG_RIVER_WS_LAEMP_LCO_2021-12_NP E125 30-Nov-2021 08-Dec-2021 0.25 189 hrs EHTR-FM hrs Physical Tests: ORP by Electrode HDPE E125 30-Nov-2021 08-Dec-2021 190 hrs æ RG_FBLANK_WS_LAEMP_LCO_2021-12_NP 0.25 EHTR-FM hrs Physical Tests : ORP by Electrode HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP E125 30-Nov-2021 08-Dec-2021 0.25 190 hrs EHTR-FM hrs Physical Tests : ORP by Electrode **HDPE** RG_LI24_WS_LAEMP_LCO_2021-12_NP E125 30-Nov-2021 08-Dec-2021 192 hrs 0.25 hrs EHTR-FM Physical Tests: ORP by Electrode **HDPE** RG_FRUL_WS_LAEMP_LCO_2021-12_NP E125 30-Nov-2021 08-Dec-2021 0.25 194 hrs

30-Nov-2021

E108

Page : 15 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Analyte Group Method Sampling Date Extraction / Preparation Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date **Holding Times** Eval Actual Rec Actual Date Physical Tests : pH by Meter HDPE E108 30-Nov-2021 02-Dec-2021 50 hrs RG_RIVER_WS_LAEMP_LCO_2021-12_NP æ 0.25 EHTR-FM hrs Physical Tests : pH by Meter HDPE RG_FBLANK_WS_LAEMP_LCO_2021-12_NP E108 30-Nov-2021 02-Dec-2021 0.25 51 hrs × ---hrs EHTR-FM Physical Tests : pH by Meter **HDPE** E108 02-Dec-2021 51 hrs RG_SLINE_WS_LAEMP_LCO_2021-12_NP 30-Nov-2021 0.25 hrs EHTR-FM Physical Tests : pH by Meter HDPE RG_LI24_WS_LAEMP_LCO_2021-12_NP E108 30-Nov-2021 02-Dec-2021 0.25 53 hrs EHTR-FM hrs Physical Tests : pH by Meter HDPE E108 30-Nov-2021 02-Dec-2021 55 hrs æ RG_FRUL_WS_LAEMP_LCO_2021-12_NP 0.25 EHTR-FM hrs **Physical Tests: TDS by Gravimetry** HDPE ✓ RG_FBLANK_WS_LAEMP_LCO_2021-12_NP E162 30-Nov-2021 05-Dec-2021 7 days 5 days **Physical Tests: TDS by Gravimetry HDPE** RG_FRUL_WS_LAEMP_LCO_2021-12_NP E162 30-Nov-2021 05-Dec-2021 1 7 days 5 days **Physical Tests: TDS by Gravimetry** HDPE ✓ RG_LI24_WS_LAEMP_LCO_2021-12_NP E162 30-Nov-2021 05-Dec-2021 7 days 5 days **Physical Tests: TDS by Gravimetry** HDPE RG LISP24 WS LAEMP LCO 2021-12 NP E162 30-Nov-2021 05-Dec-2021 7 days 5 days ✓

 Page
 : 16 of 26

 Work Order
 : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E162	30-Nov-2021					05-Dec-2021	7 days	5 days	✓
Physical Tests : TDS by Gravimetry										
HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E162	30-Nov-2021					05-Dec-2021	7 days	5 days	*
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E160-L	30-Nov-2021					05-Dec-2021	7 days	5 days	*
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E160-L	30-Nov-2021					05-Dec-2021	7 days	5 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_LI24_WS_LAEMP_LCO_2021-12_NP	E160-L	30-Nov-2021					05-Dec-2021	7 days	5 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E160-L	30-Nov-2021					05-Dec-2021	7 days	5 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E160-L	30-Nov-2021					05-Dec-2021	7 days	5 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E160-L	30-Nov-2021					05-Dec-2021	7 days	5 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E121	30-Nov-2021					02-Dec-2021	3 days	2 days	✓

Page : 17 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

viatrix: water						diddion.	Holding time excee	Juanioo ,	***************************************	riolaling rill
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_LI24_WS_LAEMP_LCO_2021-12_NP	E121	30-Nov-2021					02-Dec-2021	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E121	30-Nov-2021					03-Dec-2021	3 days	3 days	✓
Physical Tests : Turbidity by Nephelometry								T		
HDPE	E121	30-Nov-2021					03-Dec-2021	3 days	3 days	√
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	EIZI	30-1100-2021					03-Dec-2021	3 days	3 uays	•
No. 1 of Table 11 (1) to No. 1 of the second										
Physical Tests : Turbidity by Nephelometry HDPE							l	1		
RG RIVER WS LAEMP LCO 2021-12 NP	E121	30-Nov-2021					03-Dec-2021	3 days	3 days	✓
								,-	,	
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E121	30-Nov-2021					03-Dec-2021	3 days	3 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)									1	
HDPE total (nitric acid)										
RG_FBLANK_WS_LAEMP_LCO_2021-12_NP	E420.Cr-L	30-Nov-2021					03-Dec-2021	180	3 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E420.Cr-L	30-Nov-2021					03-Dec-2021	180	3 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)	F400 00 1	20 Nov. 2004					02 D 0004		0 4	,
RG_LI24_WS_LAEMP_LCO_2021-12_NP	E420.Cr-L	30-Nov-2021					03-Dec-2021	180	3 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)							I	I		
HDPE total (nitric acid) RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E420.Cr-L	30-Nov-2021					03-Dec-2021	100	3 days	1
ING LIGEZ4 WO LAEWE LOO ZUZI-IZ INF	L+2U.UI-L	JU-11UV-ZUZ I					00-DCC-2021	180	o uays	▼

 Page
 : 18 of 26

 Work Order
 : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

days

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Method Sampling Date Extraction / Preparation Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Actual Rec Actual Date Total Metals : Total Chromium in Water by CRC ICPMS (Low Level) HDPE total (nitric acid) RG_RIVER_WS_LAEMP_LCO_2021-12_NP E420.Cr-L 30-Nov-2021 03-Dec-2021 ✓ 3 days 180 days Total Metals: Total Chromium in Water by CRC ICPMS (Low Level) **HDPE** total (nitric acid) ✓ RG_SLINE_WS_LAEMP_LCO_2021-12_NP E420.Cr-L 30-Nov-2021 03-Dec-2021 180 3 days ---days Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved) E508-L ✓ RG FBLANK WS LAEMP LCO 2021-12 NP 30-Nov-2021 05-Dec-2021 28 days 5 days Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved) RG FRUL WS LAEMP LCO 2021-12 NP E508-L 30-Nov-2021 05-Dec-2021 28 days 5 days Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved) E508-L 30-Nov-2021 ✓ RG LI24 WS LAEMP LCO 2021-12 NP 05-Dec-2021 28 days 5 days Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved) E508-L ✓ RG_LISP24_WS_LAEMP_LCO_2021-12_NP 30-Nov-2021 05-Dec-2021 28 days 5 davs Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved) RG RIVER WS LAEMP LCO 2021-12 NP E508-L 30-Nov-2021 05-Dec-2021 ✓ 28 days 5 days Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved) ✓ RG SLINE WS LAEMP LCO 2021-12 NP E508-L 30-Nov-2021 05-Dec-2021 28 days 5 days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) RG FBLANK WS LAEMP LCO 2021-12 NP E420 30-Nov-2021 03-Dec-2021 ✓ 3 days 180

Page : 19 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Madrial Fraction			Evaluation.				Troiding time exceedance; Tritimi Troidin			
Analyte Group	Method	Method Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_FRUL_WS_LAEMP_LCO_2021-12_NP	E420	30-Nov-2021					03-Dec-2021	180 days	3 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_LI24_WS_LAEMP_LCO_2021-12_NP	E420	30-Nov-2021					03-Dec-2021	180 days	3 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_LISP24_WS_LAEMP_LCO_2021-12_NP	E420	30-Nov-2021					03-Dec-2021	180 days	3 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_RIVER_WS_LAEMP_LCO_2021-12_NP	E420	30-Nov-2021					03-Dec-2021	180 days	3 days	✓
Total Metals : Total Metals in Water by CRC ICPMS								1		
HDPE total (nitric acid)										
RG_SLINE_WS_LAEMP_LCO_2021-12_NP	E420	30-Nov-2021					03-Dec-2021	180	3 days	✓
								days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

Page : 20 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			С	ount		Frequency (%)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	357733	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	358239	1	20	5.0	5.0	√
Ammonia by Fluorescence	E298	357719	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	357339	1	17	5.8	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	357340	1	17	5.8	5.0	√
Conductivity in Water	E100	358238	1	20	5.0	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	358310	1	10	10.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	358750	2	37	5.4	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	358311	1	18	5.5	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	357111	1	15	6.6	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	357211	1	20	5.0	5.0	1
Fluoride in Water by IC	E235.F	357343	1	17	5.8	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	357341	1	17	5.8	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	357342	1	17	5.8	5.0	1
ORP by Electrode	E125	361156	1	20	5.0	5.0	1
oH by Meter	E108	358237	1	20	5.0	5.0	1
Sulfate in Water by IC	E235.SO4	357338	1	17	5.8	5.0	√
TDS by Gravimetry	E162	358039	1	20	5.0	5.0	√
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	358274	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	358343	1	17	5.8	5.0	1
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	359884	1	19	5.2	5.0	1
Total Metals in Water by CRC ICPMS	E420	358275	2	19	10.5	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	357112	1	15	6.6	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	357344	1	20	5.0	5.0	1
Turbidity by Nephelometry	E121	357735	2	34	5.8	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	357733	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	358239	1	20	5.0	5.0	<u>√</u>
Ammonia by Fluorescence	E298	357719	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	357339	1	17	5.8	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	357340	1	17	5.8	5.0	√
Conductivity in Water	E100	358238	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	358310	1	10	10.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	358750	2	37	5.4	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	358311	1	18	5.5	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	357111	1	15	6.6	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	357211	1	20	5.0	5.0	1

Page : 21 of 26 Work Order : CG2106222

Matrix: Water

TDS by Gravimetry

Total Chromium in Water by CRC ICPMS (Low Level)

Total Kjeldahl Nitrogen by Fluorescence (Low Level)

Total Phosphorus by Colourimetry (Ultra Trace)

Total Metals in Water by CRC ICPMS

TSS by Gravimetry (Low Level)

Turbidity by Nephelometry

Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)

Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Evaluation: **x** = QC frequency outside specification; ✓ = QC frequency within specification.

wattik. Water		Lvaiuai	ion. 🕶 – QC irequ	ericy outside sp	ecincation, • -	QC ITEQUETICS WIL	inin specificati
Quality Control Sample Type			С	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	357343	1	17	5.8	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	357341	1	17	5.8	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	357342	1	17	5.8	5.0	✓
ORP by Electrode	E125	361156	1	20	5.0	5.0	✓
pH by Meter	E108	358237	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	357338	1	17	5.8	5.0	✓
TDS by Gravimetry	E162	358039	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	358274	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	358343	1	17	5.8	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	359884	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	358275	1	19	5.2	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	357112	1	15	6.6	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	357344	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	358035	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	357735	2	34	5.8	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	357733	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	358239	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	357719	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	357339	1	17	5.8	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	357340	1	17	5.8	5.0	✓
Conductivity in Water	E100	358238	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	358310	1	10	10.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	358750	2	37	5.4	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	358311	1	18	5.5	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	357111	1	15	6.6	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	357211	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	357343	1	17	5.8	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	357341	1	17	5.8	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	357342	1	17	5.8	5.0	✓
Sulfate in Water by IC	E235.SO4	357338	1	17	5.8	5.0	✓
				1		1	

E162

E420.Cr-L

E318

E508-L

E420

E355-L

E372-U

E160-L

E121

358039

358274

358343

359884

358275

357112

357344

358035

357735

1

1

1

1

1

1

1

1

2

20

19

17

19

19

15

20

20

34

5.0

5.2

5.8

5.2

5.2

6.6

5.0

5.0

5.8

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

1

1

✓

✓

1

 Page
 : 22 of 26

 Work Order
 : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

			40094	orres careras ope		a o moquement min	op oom out o
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	357719	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	357339	1	17	5.8	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	357340	1	17	5.8	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	358310	1	10	10.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	358750	2	37	5.4	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	358311	1	18	5.5	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	357111	1	15	6.6	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	357211	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	357343	1	17	5.8	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	357341	1	17	5.8	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	357342	1	17	5.8	5.0	✓
Sulfate in Water by IC	E235.SO4	357338	1	17	5.8	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	358274	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	358343	1	17	5.8	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	359884	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	358275	1	19	5.2	5.0	√
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	357112	1	15	6.6	5.0	√
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	357344	1	20	5.0	5.0	✓
				_		_	

Page : 23 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
ODD I v Elv to I	Calgary - Environmental	\A/ - 4	A OTA A D4 400 (
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
T201 0 : 1 // 1 1	Calgary - Environmental	147.1	4 DU 4 05 40 D (1)	results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L Calgary - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Calgary - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
,	Calgary - Environmental			detection.
Chloride in Water by IC (Low Level)	E235.CI-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Fluoride in Water by IC	E235.F Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Nitrata is Mataraka 10 (Lauraka 11)	Calgary - Environmental	147.4	EDA 000 4 (*** 1)	
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Sulfate in Water by IC	Calgary - Environmental	\\/-+	EDA 200 4 (
Sulfate in Water by IC	E235.SO4 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Acidity by Titration	0 7	Water	VDHV 3310 B (mod)	Acidity is determined by potentiametric titration to pU 9.2
Acidity by Titration	E283	vvater	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3
	Calgary - Environmental			

Page : 24 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a flow analyzer on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 25 of 26 Work Order : CG2106222

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.

 Page
 : 26 of 26

 Work Order
 : CG2106222

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order Page CG2106222 : 1 of 18

Client : Teck Coal Limited Laboratory : Calgary - Environmental Contact : Cybele Heddle **Account Manager** : Lyudmyla Shvets

> Address :421 Pine Avenue : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5 Telephone :+1 403 407 1800

Laboratory Department

: REGIONAL EFFECTS PROGRAM Project **Date Samples Received** :01-Dec-2021 08:45

: VPO00748510 **Date Analysis Commenced** :01-Dec-2021

C-O-C number :09-Dec-2021 17:31 : Regional Effects Program Issue Date

Sampler : Rick Smit

Quote number : Teck Coal Master Quote

:----

No. of samples received : 6

No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Position

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Signatories

Address

Telephone

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

o.g.natooo	T GOLLOTT	_assistery _spartment	
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia	
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia	
Dee Lee	Analyst	Metals, Burnaby, British Columbia	
Erin Sanchez		Inorganics, Calgary, Alberta	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia	
Parnian Sane	Analsyt	Metals, Burnaby, British Columbia	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia	
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta	

 Page
 : 2 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 3 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	C Lot: 357733)										
CG2106222-001	RG_SLINE_WS_LAEMP_L CO_2021-12_NP	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 357735)										
CG2106216-001	Anonymous	turbidity		E121	0.10	NTU	1.44	1.37	5.41%	15%	
Physical Tests (QC	Lot: 358039)										
CG2106218-005	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	1260	1270	0.911%	20%	
Physical Tests (QC	Lot: 358237)										
CG2106218-001	Anonymous	рН		E108	0.10	pH units	7.35	7.37	0.272%	4%	
Physical Tests (QC	Lot: 358238)										
CG2106218-001	Anonymous	conductivity		E100	2.0	μS/cm	2440	2430	0.411%	10%	
Physical Tests (QC	Lot: 358239)										
CG2106218-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	423	425	0.541%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	516	519	0.541%	20%	
Physical Tests (QC	Lot: 358666)										
CG2106208-002	Anonymous	turbidity		E121	0.10	NTU	0.52	0.54	0.02	Diff <2x LOR	
Physical Tests (QC	Lot: 361156)										
CG2106218-005	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	476	470	1.20%	15%	
Anions and Nutrien	its (QC Lot: 357211)										
CG2106220-005	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0025	0.0026	0.00005	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 357338)										
CG2106216-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	791	789	0.277%	20%	
Anions and Nutrien	its (QC Lot: 357339)										
CG2106216-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	0.128	0.133	0.005	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 357340)										
CG2106216-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	7.40	7.39	0.204%	20%	
Anions and Nutrion	its (QC Lot: 357341)										
CG2106216-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.427	0.426	0.258%	20%	
Anions and Nutrion	its (QC Lot: 357342)					-					
CG2106216-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0566	0.0562	0.709%	20%	
	its (QC Lot: 357343)					3					

 Page
 : 4 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	s (QC Lot: 357343) - co	ontinued									
CG2106216-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.167	0.166	0.0009	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 357344)										
CG2106222-001	RG_SLINE_WS_LAEMP_L CO_2021-12_NP	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0028	0.0027	0.0002	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 357719)										
CG2106216-007	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0250	mg/L	0.186	0.186	0.0003	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 358343)										
CG2106176-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.091	0.099	0.008	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 35711	1)									
CG2106210-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.81	0.70	0.10	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 35711	2)									
CG2106210-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	2.46	2.82	0.35	Diff <2x LOR	
Total Metals (QC Lo	ot: 358274)										
CG2106177-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00195	0.00224	14.0%	20%	
Total Metals (QC Lo	ot: 358275)										
CG2106177-001	Anonymous	iron, total	7439-89-6	E420	0.010	mg/L	1.41	1.45	2.72%	20%	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.0134	0.0134	0.109%	20%	
CG2106177-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	1.12	1.30	14.6%	20%	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00024	0.00028	0.00003	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00095	0.00108	13.4%	20%	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0445	0.0474	6.34%	20%	
		beryllium, total	7440-41-7	E420	0.020	mg/L	0.104 μg/L	0.000126	0.000022	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0050	mg/L	0.0645 µg/L	0.0000737	13.3%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	67.7	67.8	0.162%	20%	
		cobalt, total	7440-48-4	E420	0.10	mg/L	0.52 μg/L	0.00065	0.00013	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00423	0.00463	0.00040	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.00820	0.00842	2.72%	20%	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0045	0.0047	0.0002	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	32.4	33.8	4.04%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0258	0.0297	14.2%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00158	0.00164	3.60%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00393	0.00485	0.00092	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.31	1.41	7.23%	20%	
			7782-49-2	E420	"""	J. –	1		1.70%		

 Page
 : 5 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Laborat	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 358275) - continued										
CG2106177-001	Anonymous	silicon, total	7440-21-3	E420	0.10	mg/L	4.46	4.62	3.50%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	0.000036	0.000044	0.000008	Diff <2x LOR	
		sodium, total	17341-25-2	E420	0.050	mg/L	1.58	1.61	2.07%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.108	0.110	1.70%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	29.5	30.1	2.09%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000085	0.000103	0.000018	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	0.00023	0.00026	0.00003	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00165	0.00166	1.15%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00308	0.00351	0.00043	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0290	0.0343	16.9%	20%	
Total Metals (QC Lo	ot: 359884)										
CG2106222-001	RG_SLINE_WS_LAEMP_L CO_2021-12_NP	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 μg/L	<0.50	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 358310)										
CG2106174-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 358311)										
CG2106174-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0020	mg/L	0.0026	<0.0020	0.0006	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00020	mg/L	0.00023	0.00023	0.0000002	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00020	mg/L	0.0423	0.0432	1.92%	20%	
		beryllium, dissolved	7440-41-7	E421	0.040	mg/L	<0.040 µg/L	<0.000040	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.020	mg/L	0.022	0.022	0.0001	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0100	mg/L	0.0463 μg/L	0.0000447	0.0000016	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.100	mg/L	292	289	1.03%	20%	
		cobalt, dissolved	7440-48-4	E421	0.20	mg/L	<0.20 µg/L	<0.00020	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0020	mg/L	0.0388	0.0387	0.285%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0100	mg/L	190	186	2.16%	20%	
		manganese, dissolved	7439-96-5	E421	0.00020	mg/L	0.00051	0.00050	0.000002	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000100	mg/L	0.00158	0.00157	0.535%	20%	
		nickel, dissolved	7440-02-0	E421	0.00100	mg/L	0.00777	0.00761	0.00016	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.100	mg/L	2.62	2.60	0.674%	20%	
		,	1		1	J.	1			1	

 Page
 : 6 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 358311) - co	ntinued									
CG2106174-001	Anonymous	silicon, dissolved	7440-21-3	E421	0.100	mg/L	3.67	3.60	1.88%	20%	
		silver, dissolved	7440-22-4	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.100	mg/L	12.5	12.5	0.493%	20%	
		strontium, dissolved	7440-24-6	E421	0.00040	mg/L	0.669	0.671	0.279%	20%	
		sulfur, dissolved	7704-34-9	E421	1.00	mg/L	456	450	1.39%	20%	
		thallium, dissolved	7440-28-0	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000020	mg/L	0.00924	0.00925	0.0518%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 358750)										
CG2106207-005	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 359639)										
CG2106202-008	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Physical Tasts (QCLot: 35773) E283 2 mgL 2.0 mgL	Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 357735) unitely	Physical Tests (QCLot: 357733)					
Physical Tests (QCLot: 358035) Physical Tests (QCLot: 358035) Physical Tests (QCLot: 358038) Physical Tests (QCLot: 358068)	acidity (as CaCO3)	E283	2	mg/L	2.0	
Physical Tests (QCLot: 358035)	Physical Tests (QCLot: 357735)					
Physical Tests (OCLot: 358039)	turbidity	E121	0.1	NTU	<0.10	
Physical Tests (OCLot: 358039) solids, fortal dissolved [TDS] — E192 10 mg/L <10 — Physical Tests (OCLot: 358238) Physical Tests (OCLot: 358238) Physical Tests (OCLot: 358239) solids, fortal post (occording the physical tests) Physical Tests (OCLot: 358239) solidialingly, bicarbonate (as CaCO3) — E290 1 mg/L <1.0 — solidialingly, carbonate (as CaCO3) — E290 1 mg/L <1.0 — solidialingly, provide (as CaCO3) — E290 1 mg/L <1.0 — solidialingly, provide (as CaCO3) — E290 1 mg/L <1.0 — solidialingly, provide (as CaCO3) — E290 1 mg/L <1.0 — solidialingly, provide (as CaCO3) — E290 1 mg/L <1.0 — solidialingly, brain (as CaCO3) — E290 1 mg/L <1.0 — solidialingly, brain (as CaCO3) — E290 1 mg/L <1.0 — solidialingly, brain (as CaCO3) — E290 1 mg/L <0.10 — solidialingly, brain (as CaCO3) — E290 1 mg/L <0.010 — solidialingly, brain (as CaCO3) — E290 1 mg/L <0.010 — solidialingly, brain (as CaCO3) — E290 1 mg/L <0.010 — solidialingly, brain (as CaCO3) — E290 1 mg/L <0.010 — solidialingly, brain (as CaCO3) — E290 1 mg/L <0.010 — solidialingly, brain (as CaCO3) — E290 1 mg/L <0.010 — solidialingly, brain (as CaCO3) — E290 1 mg/L <0.001 — solidialingly, brain (as CaCO3) — E290 1 mg/L <0.001 — solidialingly, brain (as CaCO3) — solidialingly, brain (as CaCO3	Physical Tests (QCLot: 358035)					
Physical Tests (OCLot: 358238)	solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 358238)	Physical Tests (QCLot: 358039)					
Physical Tests (QCLot: 358239)	, ,	E162	10	mg/L	<10	
Physical Tosts (QCLot: 358239) alkalinity, bicarbonate (as CaCO3) — E290 1 mgL <1.0 — alkalinity, carbonate (as CaCO3) — E290 1 mgL <1.0 — alkalinity, carbonate (as CaCO3) — E290 1 mgL <1.0 — alkalinity, toyloxide (as CaCO3) — E290 1 mgL <1.0 — alkalinity, toyloxide (as CaCO3) — E290 1 mgL <1.0 — alkalinity, toyloxide (as CaCO3) — E290 1 mgL <1.0 — Physical Tosts (QCLot: 358666) Lurbidry — E121 0.1 NTU <0.10 — Anions and Nutrients (QCLot: 357211) phosphate, orbo, dissolved (as P) 14265-44-2 E378-U 0.001 mgL <0.001 — Anions and Nutrients (QCLot: 357338) Sulfale (as SO4) 14808-79-8 E335-80-4 0.3 mgL <0.30 — Anions and Nutrients (QCLot: 357339) brownide 24959-67-9 E335-81-L 0.05 mgL <0.05 — Anions and Nutrients (QCLot: 357340) chibride 16887-00-6 E235-Ci-L 0.1 mg/L <0.10 — Anions and Nutrients (QCLot: 357341) mitale (as N) 14797-55-8 E235 NO3-L 0.005 mg/L <0.005 — Anions and Nutrients (QCLot: 357342) mitale (as N) 14797-55-8 E235 NO3-L 0.001 mg/L <0.005 — Anions and Nutrients (QCLot: 357343) mitale (as N) 14797-55-8 E235 NO3-L 0.001 mg/L <0.001 — Anions and Nutrients (QCLot: 357343) mitale (as N) 14797-55-8 E235 NO3-L 0.001 mg/L <0.000 — Anions and Nutrients (QCLot: 357343) mitale (as N) 14797-55-8 E235 NO3-L 0.001 mg/L <0.000 — Anions and Nutrients (QCLot: 357343) mitale (as N) 14797-55-8 E235 NO3-L 0.001 mg/L <0.000 — Anions and Nutrients (QCLot: 357343) mitale (as N) 14797-55-8 E235 NO3-L 0.001 mg/L <0.000 — Anions and Nutrients (QCLot: 357343) mitale (as N) 14797-55-8 E235 NO3-L 0.001 mg/L <0.000 — Anions and Nutrients (QCLot: 357344) mitale (as N) 14797-55-8 E235 NO3-L 0.001 mg/L <0.000 — Anions and Nutrients (QCLot: 357344) mitale (as N) 14797-55-8 E35 F 0.002 mg/L <0.000 — Anions and Nutrients (QCLot: 357344) mitale (as N) 14797-55-8 E35 NO3-L 0.001 mg/L <0.000 — Anions and Nutrients (QCLot: 357344)	Physical Tests (QCLot: 358238)					
Actionary Community (Calcut: 357341)	,	E100	1	μS/cm	<1.0	
Alkalinify, carbonate (as CaCO3)	Physical Tests (QCLot: 358239)					
1 mg/L <1.0				_		
Physical Tests (QCLot: 358666) Unrividity				_		
Physical Tests (QCLot: 358666) Furbidity E121 0.1 NTU <0.10 Anions and Nutrients (QCLot: 357211) Phosphate, orthor, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 357338) Sulfate (as SQ4) 14808-79-8 E235.SQ4 0.3 mg/L <0.30 Anions and Nutrients (QCLot: 357339) Dromide 24959-67-9 E235.Br-L 0.05 mg/L <0.050 Anions and Nutrients (QCLot: 357340) Chloride 16887-00-6 E235.Cl-L 0.1 mg/L <0.10 Anions and Nutrients (QCLot: 357341) Intrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L <0.0050 Anions and Nutrients (QCLot: 357342) Intrate (as N) 14797-65-8 E235.NO2-L 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 357343) Rullide (as N) 14797-65-8 E235.NO2-L 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 357343) Rullide (as N) 14797-65-8 E235.NO2-L 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 357343) Rullide (as N) 14797-65-8 E235.NO2-L 0.001 mg/L <0.001 Anions and Nutrients (QCLot: 357344) Phosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020				_		
Anions and Nutrients (QCLot: 357311) phosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 357338) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Anions and Nutrients (QCLot: 357339) bromide 24959-67-9 E235.Br-L 0.05 mg/L <0.050 Anions and Nutrients (QCLot: 357340) chloride 16887-00-6 E35.Cl-L 0.1 mg/L <0.10 Anions and Nutrients (QCLot: 357341) initiate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L <0.0050 Anions and Nutrients (QCLot: 357342) childred 16984-48-8 E235.F 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.002 mg/L <0.0020 Anions and Nutrients (QCLot: 357344) phosphorus, lotal 7723-14-0 E372-U 0.002 mg/L <0.0020	,	E290	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 357311) Anions and Nutrients (QCLot: 357338) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.001 Anions and Nutrients (QCLot: 357339) bromide 24959-67-9 E235.Br-L 0.05 mg/L <0.050 Anions and Nutrients (QCLot: 357340) chloride 16887-00-6 E235.Cl-L 0.1 mg/L <0.050 Anions and Nutrients (QCLot: 357341) mitrate (as N) 14797-55-8 E235.NO2-L 0.001 mg/L <0.0050 Anions and Nutrients (QCLot: 357342) little (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) fluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) fluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) fluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) fluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) fluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) fluoride 16984-48-8 E235.F 0.02 mg/L <0.020		-101				
Anions and Nutrients (QCLot: 357338) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.001 Anions and Nutrients (QCLot: 357339) bromide 24959-67-9 E235.Br-L 0.05 mg/L <0.050 Anions and Nutrients (QCLot: 357340) chloride 16887-00-6 E235.Cl-L 0.1 mg/L <0.050 Anions and Nutrients (QCLot: 357341) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L <0.0050 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.001 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) phosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	·	E121	0.1	NIU	<0.10	
Anions and Nutrients (QCLot: 357338) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Anions and Nutrients (QCLot: 357339) bromide 24959-67-9 E235.Br-L 0.05 mg/L <0.050 Anions and Nutrients (QCLot: 357340) chloride 16887-00-6 E235.Cl-L 0.1 mg/L <0.10 Anions and Nutrients (QCLot: 357341) mitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L <0.0050 Anions and Nutrients (QCLot: 357342) mitrate (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) phosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020		44005 44 0 5070 H	0.004		*0.0040	
Sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30		14205-44-2 E378-0	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 357339) bromide 24959-67-9 E235.Br-L 0.05 mg/L <0.050 Anions and Nutrients (QCLot: 357340) chloride 16887-00-6 E235.Cl-L 0.1 mg/L <0.10 Anions and Nutrients (QCLot: 357341) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L <0.0050 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) phosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020		14000 70 0 5025 504	0.3	ma a ll	40.30	
Anions and Nutrients (QCLot: 357340) chloride 16887-00-6 E235.CI-L 0.1 mg/L <0.10 Anions and Nutrients (QCLot: 357341) chloride 14797-55-8 E235.NO3-L 0.005 mg/L <0.0050 Anions and Nutrients (QCLot: 357342) chitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) chosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	` ,	14000-79-0 E233.504	0.3	IIIg/L	<0.30	
Anions and Nutrients (QCLot: 357340) chloride 16887-00-6 E235.CI-L 0.1 mg/L <0.10 Anions and Nutrients (QCLot: 357341) mitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L <0.0050 Anions and Nutrients (QCLot: 357342) mitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) phosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	· · · · · · · · · · · · · · · · · · ·	24050 67 0 E235 Br I	0.05	ma/l	<0.050	
Anions and Nutrients (QCLot: 357341) Anions and Nutrients (QCLot: 357342) Anions and Nutrients (QCLot: 357342) Anions and Nutrients (QCLot: 357342) Itrite (as N)		24333-07-3 L233.DI-L	0.00	IIIg/L	40.030	
Anions and Nutrients (QCLot: 357341) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L <0.0050 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) phosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020		16887-00-6 F235 CI-I	0.1	ma/l	<0.10	
Anions and Nutrients (QCLot: 357342) Anions and Nutrients (QCLot: 357342) Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) phosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020		10007 00 0	3.1	mg/L	-0.10	
Anions and Nutrients (QCLot: 357342) Initrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 357343) Iffluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) Phosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020		14797-55-8 E235,NO3-L	0.005	ma/L	<0.0050	
Anions and Nutrients (QCLot: 357343) Fluoride 16984-48-8 E235.F 0.02 mg/L <0.0010 Anions and Nutrients (QCLot: 357344) Anions and Nutrients (QCLot: 357344) Phosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	, ,	,, , , , , , , , , , , , , , , , , , ,	1.500	9-	3.3333	
Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) phosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Fluoride 16984-48-8 E235.F 0.02 mg/L <0.020 Anions and Nutrients (QCLot: 357344) Phosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	` '					
phosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
phosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	Anions and Nutrients (QCLot: 357344)					
Anions and Nutrients (QCLot: 357719)	phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
	Anions and Nutrients (QCLot: 357719)					

 Page
 : 8 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

ALS

Sub-Matrix: Water

Analyto	CAS Number	Method	LOR	Unit	Result	Qualifier
Analyte Anions and Nutrients (QCLot: 3577)			LON		Result	Quanner
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 3583						
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	<0.050	
Organic / Inorganic Carbon (QCLot	· 357111)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot	: 357112)					
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 358274)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 358275)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	17341-25-2	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	

 Page
 : 9 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

 Page
 : 10 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 358311) - contin	ued				
tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 358750)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 359639)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.0000050	

 Page
 : 11 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Physical Tests (QCLot: 3873829)	Sub-Matrix: Water						Laboratory Cor	ntrol Sample (LCS)	Nample (LCS) Report		
Physical Tests (QCLot: 357735)						Spike	Recovery (%)	Recovery	Limits (%)		
Physical Tests (QCLot: 3873829)	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (OCLot: 357235)	Physical Tests (QCLot: 357733)										
Multiplicate (OCLot: 358035) File acidity (as CaCO3)		E283	2	mg/L	50 mg/L	109	85.0	115			
Physical Tests (OCLot: 358035)	Physical Tests (QCLot: 357735)										
Seade, 10tol asspended [TSS]	turbidity		E121	0.1	NTU	200 NTU	102	85.0	115		
Physical Tests (OCLot: 358039)	Physical Tests (QCLot: 358035)										
Physical Tests (QCLot: 358239) Fig. Fi	solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	93.1	85.0	115		
Physical Tests (OCLot: 358237)	Physical Tests (QCLot: 358039)										
Physical Tests (QCLot: 358239) Physical Tests (QCLot: 358239) Physical Tests (QCLot: 358239) Physical Tests (QCLot: 358239) Physical Tests (QCLot: 358239) Physical Tests (QCLot: 358668) Physical Tests (QCLot: 3587349) Physical Tes	solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	93.2	85.0	115		
Physical Tests (QCLot: 358238)	Physical Tests (QCLot: 358237)										
Physical Tests (QCLot: 358239) E290 1 mg/L S00 mg/L 102 85.0 115 mg/L S00 mg/L	рН		E108		pH units	7 pH units	100	98.6	101		
Physical Tests (QCLot: 358239) alkalinity, total (as CaCQ3)	Physical Tests (QCLot: 358238)										
Realimity, total (as CaCO3)	conductivity		E100	1	μS/cm	146.9 μS/cm	101	90.0	110		
Physical Tests (QCLot: 358666) turbidity — E121	Physical Tests (QCLot: 358239)										
Physical Tests (QCLot: 361156) Control of the c	alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	102	85.0	115		
Physical Tests (QCLot: 361156) Control of the c	Physical Tests (QCLot: 358666)										
Control Cont	turbidity		E121	0.1	NTU	200 NTU	104	85.0	115		
Anions and Nutrients (QCLot: 357321) phosphate, orthor, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L 0.02 mg/L 107 80.0 120 Anions and Nutrients (QCLot: 357338) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 357339) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 102 85.0 115 Anions and Nutrients (QCLot: 357340) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357341) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrate (as N) 14797-65-0 E235.NO3-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrate (as N) 14797-65-0 E235.NO3-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrate (as N) 14797-65-0 E235.NO3-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357343) fluoride 16884-48-8 E235.F 0.02 mg/L 1 mg/L 98.2 90.0 110	Physical Tests (QCLot: 361156)										
Phosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L 0.02 mg/L 107 80.0 120 Anions and Nutrients (QCLot: 357338) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 357339) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 102 85.0 115 Anions and Nutrients (QCLot: 357340) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357341) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 98.2 90.0 110	oxidation-reduction potential [ORP]		E125		mV	220 mV	102	95.4	104		
Phosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L 0.02 mg/L 107 80.0 120 Anions and Nutrients (QCLot: 357338) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 357339) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 102 85.0 115 Anions and Nutrients (QCLot: 357340) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357341) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 98.2 90.0 110											
Anions and Nutrients (QCLot: 357338) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 357339) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 102 85.0 115 Anions and Nutrients (QCLot: 357340) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357341) riltrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) riltrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) riltrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 98.2 90.0 110	Anions and Nutrients (QCLot: 357211)										
sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 357339) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 102 85.0 115 Anions and Nutrients (QCLot: 357340) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357341) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357343) [Indicated on the color of the c	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	107	80.0	120		
Anions and Nutrients (QCLot: 357339) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 102 85.0 115 Anions and Nutrients (QCLot: 357340) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357341) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 98.2 90.0 110	Anions and Nutrients (QCLot: 357338)										
bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 102 85.0 115 Anions and Nutrients (QCLot: 357340) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357341) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 98.2 90.0 110	sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	103	90.0	110		
Anions and Nutrients (QCLot: 357340) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357341) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 98.2 90.0 110	Anions and Nutrients (QCLot: 357339)										
Chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357341) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 98.2 90.0 110	bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	102	85.0	115		
Chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357341) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 98.2 90.0 110	Anions and Nutrients (QCLot: 357340)										
Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 2.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 98.2 90.0 110	chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	102	90.0	110		
Anions and Nutrients (QCLot: 357342) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 2.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 357343) fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 98.2 90.0 110	Anions and Nutrients (QCLot: 357341)										
Anions and Nutrients (QCLot: 357343) E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 98.2 90.0 110	nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	102	90.0	110		
Anions and Nutrients (QCLot: 357343) E235.NO2-L 0.001 mg/L 0.5 mg/L 102 90.0 110 fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 98.2 90.0 110	Anions and Nutrients (QCLot: 357342)										
fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 98.2 90.0 110	nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	102	90.0	110		
fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 98.2 90.0 110	Anions and Nutrients (QCLot: 357343)										
Anions and Nutrients (QCLot: 357344)	fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	98.2	90.0	110		
	Anions and Nutrients (QCLot: 357344)										

 Page
 : 12 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	/ Limits (%)			
Analyte CAS Nu	mber Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Anions and Nutrients (QCLot: 357344) - continued										
phosphorus, total 7723	14-0 E372-U	0.002	mg/L	8.02 mg/L	98.9	80.0	120			
Anions and Nutrients (QCLot: 357719)										
· · · · · · · · · · · · · · · · · · ·	41-7 E298	0.005	mg/L	0.2 mg/L	98.5	85.0	115			
Anions and Nutrients (QCLot: 358343)										
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	95.9	75.0	125			
Organic / Inorganic Carbon (QCLot: 357111)										
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	10 mg/L	92.2	80.0	120			
Organic / Inorganic Carbon (QCLot: 357112)										
carbon, total organic [TOC]	E355-L	0.5	mg/L	10 mg/L	98.7	80.0	120			
Total Metals (QCLot: 358274)										
	47-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	103	80.0	120			
Total Metals (QCLot: 358275)										
	90-5 E420	0.003	mg/L	2 mg/L	102	80.0	120			
antimony, total 7440	36-0 E420	0.0001	mg/L	1 mg/L	104	80.0	120			
arsenic, total 7440	38-2 E420	0.0001	mg/L	1 mg/L	105	80.0	120			
barium, total 7440	39-3 E420	0.0001	mg/L	0.25 mg/L	103	80.0	120			
beryllium, total 7440	41-7 E420	0.00002	mg/L	0.1 mg/L	99.2	80.0	120			
bismuth, total 7440	69-9 E420	0.00005	mg/L	1 mg/L	101	80.0	120			
boron, total 7440	42-8 E420	0.01	mg/L	1 mg/L	96.1	80.0	120			
cadmium, total 7440	43-9 E420	0.000005	mg/L	0.1 mg/L	105	80.0	120			
calcium, total 7440	70-2 E420	0.05	mg/L	50 mg/L	99.7	80.0	120			
cobalt, total 7440	48-4 E420	0.0001	mg/L	0.25 mg/L	102	80.0	120			
copper, total 7440	50-8 E420	0.0005	mg/L	0.25 mg/L	101	80.0	120			
iron, total 7439	89-6 E420	0.01	mg/L	1 mg/L	101	80.0	120			
lead, total 7439	92-1 E420	0.00005	mg/L	0.5 mg/L	98.9	80.0	120			
lithium, total 7439	93-2 E420	0.001	mg/L	0.25 mg/L	97.6	80.0	120			
magnesium, total 7439	95-4 E420	0.005	mg/L	50 mg/L	105	80.0	120			
manganese, total 7439	96-5 E420	0.0001	mg/L	0.25 mg/L	101	80.0	120			
molybdenum, total 7439	98-7 E420	0.00005	mg/L	0.25 mg/L	102	80.0	120			
nickel, total 7440	02-0 E420	0.0005	mg/L	0.5 mg/L	101	80.0	120			
potassium, total 7440	09-7 E420	0.05	mg/L	50 mg/L	108	80.0	120			
selenium, total 7782	49-2 E420	0.00005	mg/L	1 mg/L	103	80.0	120			
silicon, total 7440	21-3 E420	0.1	mg/L	10 mg/L	103	80.0	120			
silver, total 7440	22-4 E420	0.00001	mg/L	0.1 mg/L	93.6	80.0	120			
sodium, total 17341	25-2 E420	0.05	mg/L	50 mg/L	107	80.0	120			

 Page
 : 13 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

	Sub-Matrix: Water						Laboratory Co.	aboratory Control Sample (LCS) Report			
Process Proc						Spike	Recovery (%)	Recovery	Limits (%)		
Marchester, Island 7449-24 E420 0.0002 mgl. 0.25 mgl. 1002 80.0 120	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Second Metals 1774-146 E20	Total Metals (QCLot: 358275) - continued										
Indignate Part Pa	strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	103	80.0	120		
In total 7440-31-5 [EGD 0.0001 mg/L 0.5 mg/L 102 80.0 120 Interium, total 7440-32-6 [EGD 0.00001 mg/L 0.55 mg/L 102 80.0 120 Interium, total 7440-81-6 [EGD 0.00001 mg/L 0.55 mg/L 102 80.0 120 Interium, total 7440-82-1 [EGD 0.00001 mg/L 0.5 mg/L 102 80.0 120 Interium, total 7440-82-1 [EGD 0.00001 mg/L 0.5 mg/L 102 80.0 120 Interium, total 7440-82-1 [EGD 0.00001 mg/L 0.5 mg/L 102 80.0 120 Interium, total 7440-83-1 [EGD 0.00001 mg/L 0.5 mg/L 102 80.0 120 Interium, total 7440-83-1 [EGD 0.0001 mg/L 0.5 mg/L 83.8 80.0 120 Interium, total 7440-83-1 [EGD 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 Interium, total 7440-83-1 [EGD 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 Interium, diseased 87.40-83-1 [EGD 0.0001 mg/L 1 mg/L 98.2 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 1 mg/L 98.8 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 1 mg/L 98.8 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 1 mg/L 98.8 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 1 mg/L 98.8 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 1 mg/L 98.8 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 1 mg/L 98.8 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 1 mg/L 98.8 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 1 mg/L 98.8 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 1 mg/L 98.8 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 0.0001 mg/L 1 mg/L 98.8 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 0.0001 mg/L 98.5 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 0.0001 mg/L 98.4 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 0.0001 mg/L 98.4 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 0.0001 mg/L 98.4 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 0.0001 mg/L 98.4 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 98.4 80.0 120 Interium, diseased 7440-35-0 [EGD 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 m	sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	102	80.0	120		
Tantum, total 7440-32-6 E420 0.0033 mg/L 0.25 mg/L 102 80.0 120 Transmit, total 7440-11 E420 0.00001 mg/L 0.65 mg/L 106 80.0 120 Transmit, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 106 80.0 120 Transmit, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 102 80.0 120 Transmit, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 102 80.0 120 Transmit, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 102 80.0 120 Transmit, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 88.8 80.0 120 Transmit, total 7440-86-6 E420 0.0005 mg/L 0.55 mg/L 88.8 80.0 120 Transmit, total 7440-86-6 E421 0.0001 mg/L 0.25 mg/L 97.8 80.0 120 Transmit, total 8040-86-86-86-86-86-86-86-86-86-86-86-86-86-	thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	104	80.0	120		
######################################	tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	102	80.0	120		
Anadaum, total 740-62	titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	102	80.0	120		
Total Motals (QCLot: 35984) Percury, total 7439-97-8 E508-L 0.5 ng/L 5 ng/L 102 80.0 120 Percury, total 7439-97-8 E508-L 0.5 ng/L 5 ng/L 83.8 80.0 120 Plasolved Metals (QCLot: 358310) Percury of Motals (QCLot: 358311) Percury of Motals (QCLot: 358310)	uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	99.0	80.0	120		
Total Motals (QCLot: 35984) Totals vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	106	80.0	120			
Processor Proc	zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	102	80.0	120		
Dissolved Metals (OCLot: 358310)	Total Metals (QCLot: 359884)										
Dissolved Metals (QCLot: 388311)	mercury, total	7439-97-6	E508-L	0.5	ng/L	5 ng/L	83.8	80.0	120		
Dissolved Metals (QCLot: 388311)											
Albahaman, dissolved Albahaman, dissolved	Dissolved Metals (QCLot: 358310)									ı	
aluminum, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 94.2 80.0 120	chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	97.8	80.0	120		
antimony, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 99.6 80.0 120	Dissolved Metals (QCLot: 358311)									1	
arsenic, dissolved 7440-38-2 E421 0.0001 mg/L 1 mg/L 99.6 80.0 120	aluminum, dissolved				_	2 mg/L					
Parlium, dissolved 7440-39-3 E421 0.0001 mg/L 0.25 mg/L 97.5 80.0 120	antimony, dissolved				mg/L	1 mg/L	100	80.0	120		
peryllium, dissolved 7440-41-7 F421 0.00002 mg/L 0.1 mg/L 98.5 80.0 120	arsenic, dissolved				mg/L	1 mg/L	99.6	80.0	120		
pismuth, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 95.3 80.0 120	barium, dissolved				mg/L	0.25 mg/L	97.5	80.0	120		
Part	beryllium, dissolved				mg/L	0.1 mg/L	98.5	80.0	120		
radmium, dissolved 7440-43-9 E421 0.000005 mg/L 0.1 mg/L 96.4 80.0 120	bismuth, dissolved				mg/L	1 mg/L	95.3	80.0	120		
Addium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 99.2 80.0 120	boron, dissolved				mg/L	1 mg/L	94.4	80.0	120		
Sobalit, dissolved 7440-48-4 copper, dissolved E421 0.0001 mg/L 0.25 mg/L 96.2 80.0 120	cadmium, dissolved				mg/L	0.1 mg/L	96.4	80.0	120		
copper, dissolved 7440-50-8 ton, dissolved E421 0.0002 mg/L 0.25 mg/L 97.4 80.0 120	calcium, dissolved	7440-70-2	E421		mg/L	50 mg/L	99.2	80.0	120		
ron, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 103 80.0 120 ead, dissolved 7439-92-1 E421 0.0005 mg/L 0.5 mg/L 96.7 80.0 120 ead, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 95.3 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 99.7 80.0 120 magnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 100 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 97.4 80.0 120 molybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 98.2 80.0 120 molybdenum, dissolved 7440-02-0 E421 0.005 mg/L 50 mg/L 108 80.0 120 solvesium, dissolved 7440-09-7 E421 0.05 mg/L 10 mg	cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	96.2	80.0	120		
ead, dissolved 7439-92-1 E421 0.00005 mg/L 0.5 mg/L 96.7 80.0 120 ithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 95.3 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 0.25 mg/L 99.7 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 99.7 80.0 120 molybdenum, dissolved 7440-02-0 E421 0.00005 mg/L 0.25 mg/L 99.7 80.0 120 molybdenum, dissolved 99.7 80.0	copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	97.4	80.0	120		
sithium, dissolved 7439-93-2 magnesium, dissolved E421 0.001 mg/L mg/L 0.25 mg/L 95.3 80.0 120 magnesium, dissolved	iron, dissolved				mg/L	1 mg/L	103	80.0	120		
magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 99.7 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 97.4 80.0 120 molybdenum, dissolved 97.4 80.0 120 molybdenum, dissolved 98.2 80.0 120 molybdenum, d	lead, dissolved				mg/L	0.5 mg/L	96.7	80.0	120		
manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.55 mg/L 97.4 80.0 120 molybdenum, dissolved 97.40-02-0 E421 0.0005 mg/L 0.5 mg/L 98.2 80.0 120 molybdenum, dissolved 98.2 80.0 120 molybdenu	lithium, dissolved				mg/L	0.25 mg/L	95.3	80.0	120		
molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 97.4 80.0 120 nickel, dissolved 98.2 80.0 120 notassium, dissolved 98.2 80.0 120 no	magnesium, dissolved				mg/L	50 mg/L	99.7	80.0	120		
nickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 98.2 80.0 120 potassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 108 80.0 120 potassium, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 103 80.0 120 potassilven, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 97.8 80.0 120 potassilven, dissolved 7440-22-4 E421 0.0001 mg/L 0.1 mg/L 91.8 80.0 120 potassilven, dissolved 91.8 80.0 120	manganese, dissolved				mg/L	0.25 mg/L	100	80.0	120		
potassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 108 80.0 120 selenium, dissolved 7782-49-2 E421 0.00005 mg/L 1 mg/L 103 80.0 120 silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 97.8 80.0 120 silver, dissolved 7440-22-4 E421 0.00001 mg/L 0.1 mg/L 91.8 80.0 120	molybdenum, dissolved	7439-98-7	E421		mg/L	0.25 mg/L	97.4	80.0	120		
selenium, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 103 80.0 120 silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 97.8 80.0 120 silver, dissolved 7440-22-4 E421 0.0001 mg/L 0.1 mg/L 91.8 80.0 120	nickel, dissolved				mg/L	0.5 mg/L	98.2	80.0	120		
silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 97.8 80.0 120 silver, dissolved 7440-22-4 E421 0.00001 mg/L 0.1 mg/L 91.8 80.0 120	potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	108	80.0	120		
silver, dissolved 7440-22-4 E421 0.00001 mg/L 0.1 mg/L 91.8 80.0 120	selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	103	80.0	120		
	silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	97.8	80.0	120		
odium, dissolved 17341-25-2 E421 0.05 mg/L 50 mg/L 105 80.0 120	silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	91.8	80.0	120		
	sodium, dissolved	17341-25-2	E421	0.05	mg/L	50 mg/L	105	80.0	120		

 Page
 : 14 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 358311) - conti	nued								
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	104	80.0	120	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	97.9	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	101	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	95.0	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	96.8	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	95.4	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	98.6	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	98.6	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	98.6	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	104	80.0	120	

 Page
 : 15 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spike (MS) Report			
					Sp	ike	Recovery (%)	Recovery Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	ients (QCLot: 357211)									
CG2106220-009	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0498 mg/L	0.05 mg/L	99.6	70.0	130	
Anions and Nutri	ients (QCLot: 357338)									
CG2106222-004	RG_FBLANK_WS_LAEMP_ LCO_2021-12_NP	sulfate (as SO4)	14808-79-8	E235.SO4	101 mg/L	100 mg/L	101	75.0	125	
Anions and Nutri	ients (QCLot: 357339)									
CG2106222-004	RG_FBLANK_WS_LAEMP_ LCO_2021-12_NP	bromide	24959-67-9	E235.Br-L	0.491 mg/L	0.5 mg/L	98.2	75.0	125	
Anions and Nutri	ients (QCLot: 357340)									
CG2106222-004	RG_FBLANK_WS_LAEMP_ LCO_2021-12_NP	chloride	16887-00-6	E235.CI-L	98.8 mg/L	100 mg/L	98.8	75.0	125	
Anions and Nutri	ients (QCLot: 357341)									
CG2106222-004	RG_FBLANK_WS_LAEMP_ LCO_2021-12_NP	nitrate (as N)	14797-55-8	E235.NO3-L	2.47 mg/L	2.5 mg/L	98.8	75.0	125	
Anions and Nutri	ients (QCLot: 357342)									
CG2106222-004	RG_FBLANK_WS_LAEMP_ LCO_2021-12_NP	nitrite (as N)	14797-65-0	E235.NO2-L	0.496 mg/L	0.5 mg/L	99.3	75.0	125	
Anions and Nutri	ients (QCLot: 357343)									
CG2106222-004	RG_FBLANK_WS_LAEMP_ LCO_2021-12_NP	fluoride	16984-48-8	E235.F	0.939 mg/L	1 mg/L	93.9	75.0	125	
Anions and Nutri	ients (QCLot: 357344)									
CG2106222-002	RG_RIVER_WS_LAEMP_L CO_2021-12_NP	phosphorus, total	7723-14-0	E372-U	0.0550 mg/L	0.0676 mg/L	81.3	70.0	130	
Anions and Nutri	ients (QCLot: 357719)									
CG2106218-007	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.111 mg/L	0.1 mg/L	111	75.0	125	
Anions and Nutri	ients (QCLot: 358343)									
CG2106176-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.24 mg/L	2.5 mg/L	89.5	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 357	111)								
CG2106210-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	23.9 mg/L	23.9 mg/L	100	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 357	112)								
CG2106210-001	Anonymous	carbon, total organic [TOC]		E355-L	24.3 mg/L	23.9 mg/L	102	70.0	130	
Total Metals (QC	Lot: 358274)									
CG2106177-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0389 mg/L	0.04 mg/L	97.2	70.0	130	

 Page
 : 16 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Matrix Spike	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
otal Metals (QC	Lot: 358275)									
CG2106177-002	Anonymous	aluminum, total	7429-90-5	E420	0.196 mg/L	0.2 mg/L	98.1	70.0	130	
		antimony, total	7440-36-0	E420	0.0208 mg/L	0.02 mg/L	104	70.0	130	
		arsenic, total	7440-38-2	E420	0.0202 mg/L	0.02 mg/L	101	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0369 mg/L	0.04 mg/L	92.3	70.0	130	
		bismuth, total	7440-69-9	E420	0.0100 mg/L	0.01 mg/L	100	70.0	130	
		boron, total	7440-42-8	E420	0.096 mg/L	0.1 mg/L	96.2	70.0	130	
		cadmium, total	7440-43-9	E420	0.00400 mg/L	0.004 mg/L	99.9	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0188 mg/L	0.02 mg/L	94.0	70.0	130	
		copper, total	7440-50-8	E420	0.0200 mg/L	0.02 mg/L	99.8	70.0	130	
		iron, total	7439-89-6	E420	1.90 mg/L	2 mg/L	95.2	70.0	130	
		lead, total	7439-92-1	E420	0.0186 mg/L	0.02 mg/L	93.2	70.0	130	
		lithium, total	7439-93-2	E420	0.0909 mg/L	0.1 mg/L	90.9	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0190 mg/L	0.02 mg/L	94.9	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0198 mg/L	0.02 mg/L	99.2	70.0	130	
		nickel, total	7440-02-0	E420	0.0366 mg/L	0.04 mg/L	91.5	70.0	130	
		potassium, total	7440-09-7	E420	3.74 mg/L	4 mg/L	93.6	70.0	130	
		selenium, total	7782-49-2	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		silicon, total	7440-21-3	E420	9.03 mg/L	10 mg/L	90.3	70.0	130	
		silver, total	7440-22-4	E420	0.00378 mg/L	0.004 mg/L	94.4	70.0	130	
		sodium, total	17341-25-2	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.00371 mg/L	0.004 mg/L	92.8	70.0	130	
		tin, total	7440-31-5	E420	0.0195 mg/L	0.02 mg/L	97.5	70.0	130	
		titanium, total	7440-32-6	E420	0.0371 mg/L	0.04 mg/L	92.8	70.0	130	
		uranium, total	7440-61-1	E420	ND mg/L	0.004 mg/L	ND	70.0	130	
		vanadium, total	7440-62-2	E420	0.0993 mg/L	0.1 mg/L	99.3	70.0	130	
		zinc, total	7440-66-6	E420	0.372 mg/L	0.4 mg/L	93.1	70.0	130	
otal Metals (QC										
CG2106222-002	RG_RIVER_WS_LAEMP CO 2021-12 NP	_L mercury, total	7439-97-6	E508-L	4.13 ng/L	5 ng/L	82.5	70.0	130	
issolved Metals	(QCLot: 358310)									
CG2106180-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0382 mg/L	0.04 mg/L	95.5	70.0	130	

 Page
 : 17 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 358311)									
CG2106180-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.193 mg/L	0.2 mg/L	96.3	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0199 mg/L	0.02 mg/L	99.4	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0385 mg/L	0.04 mg/L	96.2	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00889 mg/L	0.01 mg/L	88.9	70.0	130	
		boron, dissolved	7440-42-8	E421	0.092 mg/L	0.1 mg/L	91.7	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00378 mg/L	0.004 mg/L	94.5	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0187 mg/L	0.02 mg/L	93.6	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0182 mg/L	0.02 mg/L	91.1	70.0	130	
		iron, dissolved	7439-89-6	E421	1.94 mg/L	2 mg/L	97.0	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0181 mg/L	0.02 mg/L	90.3	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0892 mg/L	0.1 mg/L	89.2	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0374 mg/L	0.04 mg/L	93.4	70.0	130	
		potassium, dissolved	7440-09-7	E421	4.17 mg/L	4 mg/L	104	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0406 mg/L	0.04 mg/L	102	70.0	130	
		silicon, dissolved	7440-21-3	E421	9.27 mg/L	10 mg/L	92.7	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00314 mg/L	0.004 mg/L	78.5	70.0	130	
		sodium, dissolved	17341-25-2	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	21.8 mg/L	20 mg/L	109	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00361 mg/L	0.004 mg/L	90.3	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0194 mg/L	0.02 mg/L	96.9	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0405 mg/L	0.04 mg/L	101	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00385 mg/L	0.004 mg/L	96.3	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.1000 mg/L	0.1 mg/L	100.0	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.381 mg/L	0.4 mg/L	95.2	70.0	130	
issolved Metals	(QCLot: 358750)									
CG2106207-006	Anonymous	mercury, dissolved	7439-97-6	E509	0.000100 mg/L	0.0001 mg/L	100	70.0	130	
issolved Metals	(QCLot: 359639)									
CG2106202-009	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000992 mg/L	0.0001 mg/L	99.2	70.0	130	

 Page
 : 18 of 18

 Work Order
 : CG2106222

 Client
 : Teck Coal Limited

Teck COC ID: Regional Effects Program TURNAROUND TIME: Regular OTHER INFO LABORATORY PROJECT/CLIENT INFO Excel PDF EDD Lab Name ALS Calgary Report Format / Distribution Facility Name Regional Effects Program Lab Contact Lyuda Shvets Email 1: Project Manager Cybele Heddle Cybele.Heddle@Teck.com Email Lyudmyla.Shvets@ALSGlobal.com Email 2: Jessica Ritz@teck.com Email cait.good@teck.com Address 421 Pine Avenue Address 2559 29 Street NE Email 3: eckcoal@equisonline.com Email 4: tyler.mehler@minnow.ca Province BC City Calgary Province AB Email 5: City Sparwood Postal Code T1Y 7B5 Country Canada V0B 2G0 Country Canada Postal Code VPO748530 Phone Number 250-425-8202 Phone Number 403-407-1800 PO number Filtered - F: Field, L. Lab. Fl.: Field & Lab. N. N. ANALYSIS REQUESTED SAMPLE DETAILS HCI HNO3 HNO3 NONE H2504 H2SO4 Hazardous Material (Yes/No) Environmental Division Calgary
Work Order Reference
CG2106222 FECKCOAL-MET-T-VA CECKCOAL-MET-D. HG-T-U-CVAF-VA HG-D-CVAF-VA ALS_Package-TKN/TOC G=Grab # Of Field C=Com Sample Location Sample ID (sys loc code) Matrix Date Time (24hr) Cont RG_SLINE_WS_LAEMP_LCO_2021-12_NP RG SLINE WS NO 30-Nov-21 13:15:00 G 7 X X X X х X X 7 х X \mathbf{x} 30-Nov-21 G X X X \mathbf{x} RG_RIVER_WS_LAEMP_LCO_2021-12_NP RG_RIVER WS NO 14:00:00 Telephone: +1 403 407 1800 WS NO 30-Nov-21 G 7 Х х Х Х х X Х RG_LI24 WS LAEMP LCO 2021-12 NP RG_L124 11:15:00 х 7 Х Х X RG FBLANK WS LAEMP LCO 2021-12 NP RG FBLANK WS NO 30-Nov-21 13:00:00 \mathbf{G} Х Х Х RG LISP24 ws 7 Х Х Х X X X \mathbf{x} NO 30-Nov-21 G RG_LISP24_WS_LAEMP_LCO_2021-12_NP 14:30:00 7 \mathbf{x} Х X \mathbf{x} х RG_FRUL_WS_LAEMP_LCO_2021-12_NP RG FRUL WS NO 30-Nov-21 9:15:00 G х X RELINQUISHED BY/AFFILIATION ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS TO THE STATE OF DATE/TIME ACCEPTED BY AFFILIATION Rick Smit/Lotic Environmental November 30, 2021 VPO748510 SERVICE REQUEST (rush - subject to availability) Sampler's Name Rick Smit Mobile # 403-586-3241 Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge November 30, 2021 Sampler's Signature Date/Time For Emergency <1 Day, ASAP or Weekend - Contact ALS

WATER CHEMISTRY

ALS Laboratory Report CG2106271 (Finalized December 13, 2021)

CERTIFICATE OF ANALYSIS

Work Order : CG2106271

Client : Teck Coal Limited

Contact : Cybele Heddle

Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone

Project : REGIONAL EFFECTS PROGRAM

: VPO00748510

C-O-C number : Regional Effects Program

Sampler Site

Quote number : Teck Coal Master Quote

No. of samples received : 4 No. of samples analysed : 4 Page : 1 of 7

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets Address

: 2559 29th Street NE

Calgary AB Canada T1Y 7B5

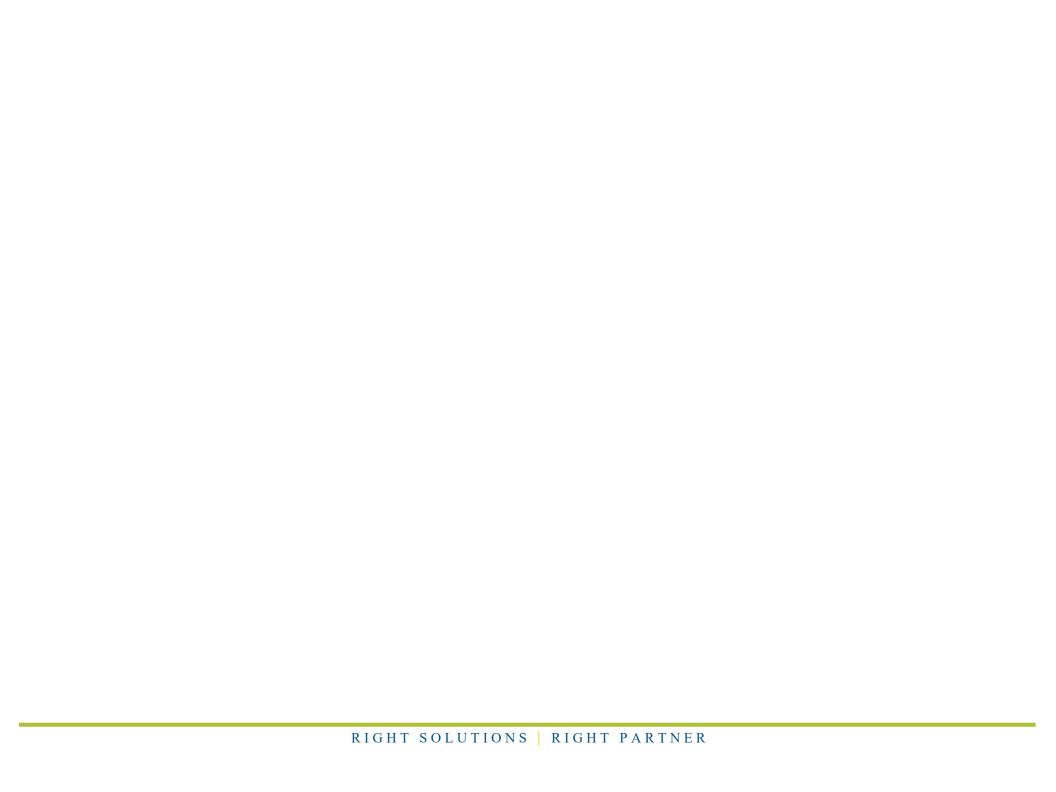
Telephone : +1 403 407 1800 Date Samples Received : 02-Dec-2021 09:00

Date Analysis Commenced : 02-Dec-2021

Issue Date : 13-Dec-2021 12:08

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:


- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia	
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia	
Dan Gebert	Laboratory Analyst	Metals, Burnaby, British Columbia	
Dee Lee	Analyst	Metals, Burnaby, British Columbia	
Elke Tabora		Inorganics, Calgary, Alberta	
Erin Sanchez		Inorganics, Calgary, Alberta	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia	
Millicent Brentnall	Laboratory Analyst	Metals, Calgary, Alberta	
Owen Cheng		Metals, Burnaby, British Columbia	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Shirley Li		Metals, Calgary, Alberta	

Page : 3 of 7
Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Sample Comments

Sample	Client Id	Comment
CG2106271-004	RG_TRIP_WS_LAEMP_LCO_2 021-12_NP	RG_TRIP - NO BOTTLES FOR DOC, DISSOLVED METALS, Hg

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 4 of 7
Work Order : CG2106271
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			C	lient sample ID	RG_F023_WS_ LAEMP_LCO_2 021-12_NP	RG_LCUT_WS_ LAEMP_LCO_2 021-12_NP	RG_LILC3_WS_ LAEMP_LCO_2 021-12_NP	RG_TRIP_WS_L AEMP_LCO_20 21-12_NP	
			Client sampling date / time		01-Dec-2021 08:45	01-Dec-2021 11:00	01-Dec-2021 12:45	01-Dec-2021 15:00	
Analyte	CAS Number	Method	LOR	Unit	CG2106271-001	CG2106271-002	CG2106271-003	CG2106271-004	
					Result	Result	Result	Result	
Physical Tests									
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0	<2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	219	250	246	<1.0	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	219	250	246	<1.0	
conductivity		E100	2.0	μS/cm	802	1020	1070	<2.0	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	427	539	584	<0.50	
oxidation-reduction potential [ORP]		E125	0.10	mV	422	428	434	493	
pH		E108	0.10	pH units	8.26	8.08	8.16	5.46	
solids, total dissolved [TDS]		E162	10	mg/L	524	732	720	<10	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
turbidity		E121	0.10	NTU	0.31	0.13	0.21	<0.10	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	267	305	300	<1.0	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.250 DLDS	<0.250 DLDS	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	5.11	10.1	19.2	<0.10	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.216	0.246	0.242	<0.020	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.424 TKNI	0.402 TKNI	0.353 TKNI	<0.050	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	11.1	14.4	12.0	<0.0050	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0014	<0.0050 DLDS	<0.0050 DLDS	<0.0010	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0013	0.0030	0.0020	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	0.0023	0.0030	<0.0020	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	213	309	338	<0.30	
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.04	0.91	0.77		
carbon, total organic [TOC]		E355-L	0.50	mg/L	0.92	0.60	0.79	<0.50	

Page : 5 of 7
Work Order : CG2106271
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	RG_FO23_WS_ LAEMP_LCO_2 021-12_NP	RG_LCUT_WS_ LAEMP_LCO_2 021-12_NP	RG_LILC3_WS_ LAEMP_LCO_2 021-12_NP	RG_TRIP_WS_L AEMP_LCO_20 21-12_NP	
			Client samp	ling date / time	01-Dec-2021 08:45	01-Dec-2021 11:00	01-Dec-2021 12:45	01-Dec-2021 15:00	
Analyte	CAS Number	Method	LOR	Unit	CG2106271-001	CG2106271-002	CG2106271-003	CG2106271-004	
					Result	Result	Result	Result	
Ion Balance									
anion sum		EC101	0.10	meq/L	9.76	12.8	13.4	<0.10	
cation sum		EC101	0.10	meq/L	8.71	11.3	12.2	<0.10	
ion balance (cations/anions ratio)		EC101	0.010	%	89.2	88.3	91.0	100	
ion balance (cation-anion difference)		EC101	0.010	%	5.68	6.22	4.69	<0.010	
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0071	<0.0030	0.0049	<0.0030	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00012	0.00036	0.00030	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00010	0.00011	0.00012	<0.00010	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0913	0.0574	0.0623	<0.00010	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.010	0.021	0.019	<0.010	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0290	0.376	0.273	<0.0050	
calcium, total	7440-70-2	E420	0.050	mg/L	98.7	124	128	<0.050	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00032	<0.00010	<0.00010	<0.00010	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	0.14	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	0.013	<0.010	0.049	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0270	0.0674	0.0616	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	45.5	56.5	67.2	<0.0050	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00076	0.00012	0.0209	<0.00010	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	<0.00050	<0.00050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00137	0.00187	0.00329	<0.000050	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00135	0.0106	0.00874	<0.00050	
potassium, total	7440-09-7	E420	0.050	mg/L	1.23	1.90	2.03	<0.050	
selenium, total	7782-49-2	E420	0.050	μg/L	45.6	57.0	48.1	<0.050	
silicon, total	7440-21-3	E420	0.10	mg/L	2.09	2.20	2.19	<0.10	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total	17341-25-2	E420	0.050	mg/L	3.99	10.4	12.0	<0.050	

Page : 6 of 7
Work Order : CG2106271
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	RG_FO23_WS_ LAEMP_LCO_2 021-12_NP	RG_LCUT_WS_ LAEMP_LCO_2 021-12_NP	RG_LILC3_WS_ LAEMP_LCO_2 021-12_NP	RG_TRIP_WS_L AEMP_LCO_20 21-12_NP	
			Client sampl	ing date / time	01-Dec-2021 08:45	01-Dec-2021 11:00	01-Dec-2021 12:45	01-Dec-2021 15:00	
Analyte	CAS Number	Method	LOR	Unit	CG2106271-001	CG2106271-002	CG2106271-003	CG2106271-004	
					Result	Result	Result	Result	
Total Metals									
strontium, total	7440-24-6	E420	0.00020	mg/L	0.174	0.237	0.234	<0.00020	
sulfur, total	7704-34-9	E420	0.50	mg/L	74.2	104	117	<0.50	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	0.000014	0.000010	<0.000010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00246	0.00387	0.00420	<0.000010	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	0.0136	0.0102	<0.0030	
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0014	<0.0010	<0.0010		
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00012	0.00038	0.00031		
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010		
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0880	0.0551	0.0579		
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020		
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050		
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	0.020	0.020		
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0178	0.367	0.221		
calcium, dissolved	7440-70-2	E421	0.050	mg/L	98.5	123	130	<0.050	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	<0.00010		
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10		
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	0.00030	0.00023		
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010		
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050		
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0273	0.0757	0.0690		
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	43.9	56.4	62.9	<0.0050	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00029	<0.00010	0.0144		
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050		
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00134	0.00189	0.00321		
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00129	0.00997	0.00789		
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.22	1.93	1.96	<0.050	

Page : 7 of 7 : CG2106271 Work Order Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			CI	lient sample ID	RG_FO23_WS_ LAEMP_LCO_2	RG_LCUT_WS_ LAEMP_LCO_2	RG_LILC3_WS_ LAEMP_LCO_2	RG_TRIP_WS_L AEMP_LCO_20	
			Client samp	oling date / time	021-12_NP 01-Dec-2021 08:45	021-12_NP 01-Dec-2021 11:00	021-12_NP 01-Dec-2021 12:45	21-12_NP 01-Dec-2021 15:00	
Analyte	CAS Number	Method	LOR	Unit	CG2106271-001	CG2106271-002	CG2106271-003	CG2106271-004	
					Result	Result	Result	Result	
Dissolved Metals									
selenium, dissolved	7782-49-2	E421	0.050	μg/L	44.1	57.2	47.7		
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.12	2.21	2.21		
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010		
sodium, dissolved	17341-25-2	E421	0.050	mg/L	3.63	10.2	11.3	<0.050	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.177	0.242	0.232		
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	75.1	108	119		
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	0.000015	<0.000010		
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010		
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030		
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00268	0.00441	0.00446		
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050		
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0021	0.0132	0.0098		
dissolved mercury filtration location		EP509	-	-	Field	Field	Field		
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Laboratory	
			1			I	I		

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : CG2106271 Page : 1 of 21

Client : **Teck Coal Limited** Laboratory : Calgary - Environmental Contact : Cybele Heddle Account Manager : Lyudmyla Shvets

: 421 Pine Avenue Address : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 02-Dec-2021 09:00

 PO
 : VPO00748510
 Issue Date
 : 13-Dec-2021 12:08

C-O-C number : Regional Effects Program

Sampler : ----

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 2 of 21 : CG2106271 Work Order

Client : Teck Coal Limited

: REGIONAL EFFECTS PROGRAM Project

Outliers: Quality Control Samples
Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Laboratory Control Sample (LCS) Recover	ies							
Dissolved Metals	QC-MRG3-3593150		sulfur, dissolved	7704-34-9	E421	74.3 % MES	80.0-120%	Recovery less than lower
	02							control limit

Result Qualifiers

Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Page : 3 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: × =	Holding time exce	edance ; 🗸	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_FO23_WS_LAEMP_LCO_2021-12_NP	E298	01-Dec-2021	02-Dec-2021				02-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E298	01-Dec-2021	02-Dec-2021				02-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E298	01-Dec-2021	02-Dec-2021				02-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E298	01-Dec-2021	02-Dec-2021				02-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_FO23_WS_LAEMP_LCO_2021-12_NP	E235.Br-L	01-Dec-2021					02-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										,
RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E235.Br-L	01-Dec-2021					02-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE	5005 B .							00.1		,
RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E235.Br-L	01-Dec-2021					02-Dec-2021	28 days	1 days	✓

Page : 4 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

watti. Water					L.V	aluation. • –	riolaling time excel	suarioe, .	- vviti iii i	I loluling i
Analyte Group	Method	Sampling Date	ate Extraction / Preparation							
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E235.Br-L	01-Dec-2021					02-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
RG_FO23_WS_LAEMP_LCO_2021-12_NP	E235.CI-L	01-Dec-2021					02-Dec-2021	28 days	1 days	✓
nions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										,
RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E235.CI-L	01-Dec-2021					02-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE	F225 CL I	01 Dec 2021					02 Dec 2021	20 days	1 days	1
RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E235.CI-L	01-Dec-2021					02-Dec-2021	28 days	Tuays	•
Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE										
RG TRIP WS LAEMP LCO 2021-12 NP	E235.CI-L	01-Dec-2021					02-Dec-2021	28 days	1 days	1
NO_1NII _WO_EALINI _E00_2021-12_NI	2200.012	01 200 2021					02-000-2021	20 days	1 days	,
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Tr	aco Lovol)									
HIDPE	ace Level)						1			
RG FO23 WS LAEMP LCO 2021-12 NP	E378-U	01-Dec-2021					02-Dec-2021	3 days	1 days	1
									,	
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Tr	ace Level)									
HDPE										
RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E378-U	01-Dec-2021					02-Dec-2021	3 days	1 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Tr	ace Level)									
HDPE										
RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E378-U	01-Dec-2021					02-Dec-2021	3 days	1 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Tr	ace Level)									
HDPE										
RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E378-U	01-Dec-2021					02-Dec-2021	3 days	1 days	✓

Page : 5 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water									cceedance ; ✓ = Within Holding T				
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation		Analysis						
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date	Holding		Eval			
			Date	Rec	Actual			Rec	Actual				
Anions and Nutrients : Fluoride in Water by IC				1									
HDPE RG_F023_WS_LAEMP_LCO_2021-12_NP	E235.F	01-Dec-2021					02-Dec-2021	28 days	1 days	✓			
Anions and Nutrients : Fluoride in Water by IC													
HDPE RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E235.F	01-Dec-2021					02-Dec-2021	28 days	1 days	✓			
Anions and Nutrients : Fluoride in Water by IC													
HDPE RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E235.F	01-Dec-2021					02-Dec-2021	28 days	1 days	✓			
Anions and Nutrients : Fluoride in Water by IC													
HDPE RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E235.F	01-Dec-2021					02-Dec-2021	28 days	1 days	✓			
Anions and Nutrients : Nitrate in Water by IC (Low Level)													
HDPE RG_F023_WS_LAEMP_LCO_2021-12_NP	E235.NO3-L	01-Dec-2021					02-Dec-2021	3 days	1 days	✓			
Anions and Nutrients : Nitrate in Water by IC (Low Level)													
HDPE RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E235.NO3-L	01-Dec-2021					02-Dec-2021	3 days	1 days	✓			
Anions and Nutrients : Nitrate in Water by IC (Low Level)													
HDPE RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E235.NO3-L	01-Dec-2021					02-Dec-2021	3 days	1 days	✓			
Anions and Nutrients : Nitrate in Water by IC (Low Level)													
HDPE RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E235.NO3-L	01-Dec-2021					02-Dec-2021	3 days	1 days	✓			
Anions and Nutrients : Nitrite in Water by IC (Low Level)													
HDPE RG_F023_WS_LAEMP_LCO_2021-12_NP	E235.NO2-L	01-Dec-2021					02-Dec-2021	3 days	1 days	✓			

Page : 6 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte Group	Method	Sampling Date	Ext	Analysis			Troiding Tim			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date Holding Times		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E235.NO2-L	01-Dec-2021					02-Dec-2021	3 days	1 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E235.NO2-L	01-Dec-2021					02-Dec-2021	3 days	1 days	4
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E235.NO2-L	01-Dec-2021					02-Dec-2021	3 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC					l					
HDPE RG_FO23_WS_LAEMP_LCO_2021-12_NP	E235.SO4	01-Dec-2021					02-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E235.SO4	01-Dec-2021					02-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E235.SO4	01-Dec-2021					02-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E235.SO4	01-Dec-2021					02-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E318	01-Dec-2021	03-Dec-2021				08-Dec-2021	28 days	7 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)									1	
Amber glass total (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E318	01-Dec-2021	03-Dec-2021				08-Dec-2021	28 days	7 days	✓

Page : 7 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: water						. * - Holding time exceedance , * - Within Hold					
Analyte Group	Method	Sampling Date	Ex	traction / P	reparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval	
			Date	Rec	Actual		-	Rec	Actual		
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)											
Amber glass total (sulfuric acid)											
RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E318	01-Dec-2021	03-Dec-2021				08-Dec-2021	28 days	7 days	✓	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)											
Amber glass total (sulfuric acid)											
RG_FO23_WS_LAEMP_LCO_2021-12_NP	E318	01-Dec-2021	03-Dec-2021				08-Dec-2021	28 days	8 days	✓	
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)											
Amber glass total (sulfuric acid)											
RG_FO23_WS_LAEMP_LCO_2021-12_NP	E372-U	01-Dec-2021	08-Dec-2021				08-Dec-2021	28 days	7 days	✓	
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)								1			
Amber glass total (sulfuric acid)	F070 II	04 D 0004	00 D 0004				00 D 0004	00.1	7.1		
RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E372-U	01-Dec-2021	08-Dec-2021				08-Dec-2021	28 days	7 days	✓	
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)							ı	T			
Amber glass total (sulfuric acid) RG LILC3 WS LAEMP LCO 2021-12 NP	E372-U	01-Dec-2021	08-Dec-2021				08-Dec-2021	28 days	7 days	✓	
NG_LILOS_WS_LAEIMF_LCO_2021-12_NF	L372-0	01-Dec-2021	00-Dec-2021				00-Dec-2021	20 days	1 days	•	
Aniana and Nutrianta - Tatal Dhaanhama by Calaurimatmy (Illiter Trace)											
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace) Amber glass total (sulfuric acid)							<u> </u>				
RG TRIP WS LAEMP LCO 2021-12 NP	E372-U	01-Dec-2021	08-Dec-2021				08-Dec-2021	28 days	7 davs	✓	
									, -		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)											
HDPE dissolved (nitric acid)											
RG_FO23_WS_LAEMP_LCO_2021-12_NP	E421.Cr-L	01-Dec-2021	07-Dec-2021				07-Dec-2021	180	6 days	✓	
								days			
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)											
HDPE dissolved (nitric acid)											
RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E421.Cr-L	01-Dec-2021	07-Dec-2021				07-Dec-2021	180	6 days	✓	
								days			
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)											
HDPE dissolved (nitric acid)											
RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E421.Cr-L	01-Dec-2021	07-Dec-2021				07-Dec-2021	180	6 days	✓	
								days			

Page : 8 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water					E۱	/aluation: 🗴 =	on: × = Holding time exceedance ; ✓ = Within Ho				
Analyte Group	Method	Sampling Date	Ex	traction / P	reparation			Analys	sis		
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date Holding Times		Eval		
			Date	Rec	Actual		,	Rec	Actual		
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid)											
RG_FO23_WS_LAEMP_LCO_2021-12_NP	E509	01-Dec-2021	09-Dec-2021				09-Dec-2021	28 days	8 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid)											
RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E509	01-Dec-2021	09-Dec-2021				09-Dec-2021	28 days	8 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid)											
RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E509	01-Dec-2021	09-Dec-2021				09-Dec-2021	28 days	8 days	✓	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS											
HDPE dissolved (nitric acid)											
RG_FO23_WS_LAEMP_LCO_2021-12_NP	E421	01-Dec-2021	07-Dec-2021				07-Dec-2021	180 days	6 days	✓	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS											
HDPE dissolved (nitric acid)	5404	0.4 5								,	
RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E421	01-Dec-2021	07-Dec-2021				07-Dec-2021	180 days	6 days	✓	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS											
HDPE dissolved (nitric acid)											
RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E421	01-Dec-2021	07-Dec-2021				07-Dec-2021	180 days	6 days	✓	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS											
HDPE dissolved (nitric acid)											
RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E421	01-Dec-2021	07-Dec-2021				07-Dec-2021	180 days	6 days	✓	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combust	ion (Low Level)										
Amber glass dissolved (sulfuric acid)	5 055 :	04.5					0.4.5	00.1			
RG_FO23_WS_LAEMP_LCO_2021-12_NP	E358-L	01-Dec-2021	02-Dec-2021				04-Dec-2021	28 days	3 days	✓	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combust	ion (Low Level)										
Amber glass dissolved (sulfuric acid)	5053 .	04.5					0.4.5	00.1		,	
RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E358-L	01-Dec-2021	02-Dec-2021				04-Dec-2021	28 days	3 days	✓	
				_							

Page : 9 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	l)									
Amber glass dissolved (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E358-L	01-Dec-2021	02-Dec-2021				04-Dec-2021	28 days	3 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low Level)									
Amber glass total (sulfuric acid) RG_FO23_WS_LAEMP_LCO_2021-12_NP	E355-L	01-Dec-2021	02-Dec-2021				04-Dec-2021	28 days	3 days	√
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low Level)									
Amber glass total (sulfuric acid) RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E355-L	01-Dec-2021	02-Dec-2021				04-Dec-2021	28 days	3 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low Level)									
Amber glass total (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E355-L	01-Dec-2021	02-Dec-2021				04-Dec-2021	28 days	3 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low Level)									
Amber glass total (sulfuric acid) RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E355-L	01-Dec-2021	02-Dec-2021				04-Dec-2021	28 days	3 days	✓
Physical Tests : Acidity by Titration										
HDPE RG_FO23_WS_LAEMP_LCO_2021-12_NP	E283	01-Dec-2021					03-Dec-2021	14 days	2 days	✓
Physical Tests : Acidity by Titration										
HDPE RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E283	01-Dec-2021					03-Dec-2021	14 days	2 days	✓
Physical Tests : Acidity by Titration										
HDPE RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E283	01-Dec-2021					03-Dec-2021	14 days	2 days	✓
Physical Tests : Acidity by Titration										
HDPE RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E283	01-Dec-2021					03-Dec-2021	14 days	2 days	✓

Page : 10 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Wattix. Water					_ v	aldation. • =	riolaling time excel	suarroc , .	- *************************************	. Holding Till
Analyte Group	Method	Sampling Date	Ex	Analysis						
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_FO23_WS_LAEMP_LCO_2021-12_NP	E290	01-Dec-2021					03-Dec-2021	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E290	01-Dec-2021					03-Dec-2021	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE	F200	04 D 0004					02 D 2024	44 -	0 4	*
RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E290	01-Dec-2021					03-Dec-2021	14 days	2 days	Y
Physical Tests : Alkalinity Species by Titration				l l	l l		1	I	I	I
HDPE RG TRIP WS LAEMP LCO 2021-12 NP	E290	01-Dec-2021					03-Dec-2021	14 days	2 days	1
RG_IRIF_WG_LAEIWIF_LCO_2021-12_NF	L290	01-Dec-2021					03-Dec-2021	14 days	2 days	•
Physical Tasta Complexitits in Mater										
Physical Tests : Conductivity in Water HDPE							1			
RG_FO23_WS_LAEMP_LCO_2021-12_NP	E100	01-Dec-2021					03-Dec-2021	28 days	2 davs	1
Physical Tests : Conductivity in Water										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E100	01-Dec-2021					03-Dec-2021	28 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E100	01-Dec-2021					03-Dec-2021	28 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E100	01-Dec-2021					03-Dec-2021	28 days	2 days	✓
Physical Tests : ORP by Electrode										
HDPE	F40F	01 Dec 2024					06 Doc 2024	0.05	120 5==	*
RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E125	01-Dec-2021					06-Dec-2021	0.25 hrs	120 hrs	EHTR-FN
								1115		LIII N-FIV

Page : 11 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte Group	Method	Sampling Date	Ex	traction / Pr			Analysis			
Container / Client Sample ID(s)		β γ σ	Preparation	Holding	g Times	Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Rec	Actual	
Physical Tests : ORP by Electrode										
HDPE RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E125	01-Dec-2021					06-Dec-2021	0.25 hrs	122 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E125	01-Dec-2021					06-Dec-2021	0.25 hrs	124 hrs	# EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_FO23_WS_LAEMP_LCO_2021-12_NP	E125	01-Dec-2021					06-Dec-2021	0.25 hrs	126 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E108	01-Dec-2021					03-Dec-2021	0.25 hrs	48 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E108	01-Dec-2021					03-Dec-2021	0.25 hrs	51 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E108	01-Dec-2021					03-Dec-2021	0.25 hrs	52 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_FO23_WS_LAEMP_LCO_2021-12_NP	E108	01-Dec-2021					03-Dec-2021	0.25 hrs	55 hrs	* EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE RG_FO23_WS_LAEMP_LCO_2021-12_NP	E162	01-Dec-2021					07-Dec-2021	7 days	6 days	✓
Physical Tests : TDS by Gravimetry										
HDPE RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E162	01-Dec-2021					07-Dec-2021	7 days	6 days	✓

Page : 12 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte Group	Method	Sampling Date	Fxt	raction / Pr			Analysis				
Container / Client Sample ID(s)	Wicthod	Cumpling Bute	Preparation		g Times	Eval	Analysis Date	Analysis Date Holding Time			
			Date	Rec	Actual	Lvai	Analysis Date	Rec	Actual	Eval	
Physical Tests : TDS by Gravimetry											
HDPE RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E162	01-Dec-2021					07-Dec-2021	7 days	6 days	✓	
Physical Tests : TDS by Gravimetry											
HDPE RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E162	01-Dec-2021					07-Dec-2021	7 days	6 days	✓	
Physical Tests : TSS by Gravimetry (Low Level)											
HDPE RG_FO23_WS_LAEMP_LCO_2021-12_NP	E160-L	01-Dec-2021					06-Dec-2021	7 days	5 days	✓	
Physical Tests : TSS by Gravimetry (Low Level)											
HDPE RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E160-L	01-Dec-2021					06-Dec-2021	7 days	5 days	✓	
Physical Tests : TSS by Gravimetry (Low Level)											
HDPE RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E160-L	01-Dec-2021					06-Dec-2021	7 days	5 days	✓	
Physical Tests : TSS by Gravimetry (Low Level)											
HDPE RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E160-L	01-Dec-2021					06-Dec-2021	7 days	5 days	✓	
Physical Tests : Turbidity by Nephelometry											
HDPE RG_FO23_WS_LAEMP_LCO_2021-12_NP	E121	01-Dec-2021					03-Dec-2021	3 days	2 days	✓	
Physical Tests : Turbidity by Nephelometry											
HDPE RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E121	01-Dec-2021					04-Dec-2021	3 days	3 days	✓	
Physical Tests : Turbidity by Nephelometry											
HDPE RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E121	01-Dec-2021					04-Dec-2021	3 days	3 days	✓	

Page : 13 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

WIGHTA. WALE						raidation. • -	Tiolding time exce	cuarice, .	_ vviti iii i	Tiolding Til
Analyte Group	Method	Sampling Date					n / Preparation Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	ysis Date Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E121	01-Dec-2021					04-Dec-2021	3 days	3 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)	E420.Cr-L	01-Dec-2021					04-Dec-2021	400	2 days	√
RG_F023_WS_LAEMP_LCO_2021-12_NP	E420.CI-L	01-Dec-2021					04-Dec-2021	180 days	3 days	•
Tatal Matala a Tatal Observations in Water by ODO IODMO (Love Love)								uays		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level) HDPE total (nitric acid)										
RG LCUT WS LAEMP LCO 2021-12 NP	E420.Cr-L	01-Dec-2021					04-Dec-2021	180	3 days	1
								days	,	
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E420.Cr-L	01-Dec-2021					04-Dec-2021	180	3 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E420.Cr-L	01-Dec-2021					06-Dec-2021	180	5 days	✓
								days		
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved) RG FO23 WS LAEMP LCO 2021-12 NP	E508-L	01-Dec-2021					05-Dec-2021	28 days	4 days	√
NG_FO25_WS_LAEIWIF_LGO_2021-12_NF	L300-L	01-Dec-2021					03-Dec-2021	20 days	4 uays	•
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)										
RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E508-L	01-Dec-2021					05-Dec-2021	28 days	4 days	✓
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)										
RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E508-L	01-Dec-2021					05-Dec-2021	28 days	4 days	✓
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)		04.5					05.5			
RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E508-L	01-Dec-2021					05-Dec-2021	28 days	4 days	✓

Page : 14 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

auix: water						/aluation. ^ –	noiding time excee	tuance,	– vviti iiii	Holding I
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_FO23_WS_LAEMP_LCO_2021-12_NP	E420	01-Dec-2021					04-Dec-2021	180 days	3 days	✓
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_LCUT_WS_LAEMP_LCO_2021-12_NP	E420	01-Dec-2021					04-Dec-2021	180 days	3 days	✓
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_LILC3_WS_LAEMP_LCO_2021-12_NP	E420	01-Dec-2021					04-Dec-2021	180 days	3 days	✓
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_TRIP_WS_LAEMP_LCO_2021-12_NP	E420	01-Dec-2021					06-Dec-2021	180 days	5 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

Page : 15 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	358733	2	29	6.9	5.0	1
Alkalinity Species by Titration	E290	359053	1	18	5.5	5.0	✓
Ammonia by Fluorescence	E298	357999	1	19	5.2	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	357859	1	4	25.0	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	357860	1	4	25.0	5.0	1
Conductivity in Water	E100	359054	1	14	7.1	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	359316	1	4	25.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	363135	1	19	5.2	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	359315	1	5	20.0	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	358107	1	12	8.3	5.0	1
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	357939	1	20	5.0	5.0	1
Fluoride in Water by IC	E235.F	357857	1	4	25.0	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	357855	1	5	20.0	5.0	<u> </u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	357856	1	5	20.0	5.0	1
ORP by Electrode	E125	360388	1	16	6.2	5.0	1
pH by Meter	E108	359055	1	16	6.2	5.0	1
Sulfate in Water by IC	E235.SO4	357858	1	4	25.0	5.0	1
TDS by Gravimetry	E162	360083	2	36	5.5	5.0	1
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	359291	2	19	10.5	5.0	1
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	359247	1	19	5.2	5.0	1
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	359884	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	359290	3	37	8.1	5.0	1
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	358108	1	13	7.6	5.0	1
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	357949	1	20	5.0	5.0	1
Turbidity by Nephelometry	E121	358781	3	51	5.8	5.0	1
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	358733	2	29	6.9	5.0	1
Alkalinity Species by Titration	E290	359053	1	18	5.5	5.0	<u> </u>
Ammonia by Fluorescence	E298	357999	1	19	5.2	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	357859	1	4	25.0	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	357860	1	4	25.0	5.0	√
Conductivity in Water	E100	359054	1	14	7.1	5.0	<u>√</u>
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	359316	1	4	25.0	5.0	<u>√</u>
Dissolved Mercury in Water by CVAAS	E509	363135	1	19	5.2	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	359315	1	5	20.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	358107	1	12	8.3	5.0	<u> </u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	357939	1	20	5.0	5.0	1

Page : 16 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Total Phosphorus by Colourimetry (Ultra Trace)

TSS by Gravimetry (Low Level)

Turbidity by Nephelometry

Project : REGIONAL EFFECTS PROGRAM

Quality Control Sample Type				ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	357857	1	4	25.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	357855	1	5	20.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	357856	1	5	20.0	5.0	✓
ORP by Electrode	E125	360388	1	16	6.2	5.0	✓
pH by Meter	E108	359055	1	16	6.2	5.0	✓
Sulfate in Water by IC	E235.SO4	357858	1	4	25.0	5.0	√
TDS by Gravimetry	E162	360083	2	36	5.5	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	359291	2	19	10.5	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	359247	1	19	5.2	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	359884	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	359290	2	37	5.4	5.0	√
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	358108	1	13	7.6	5.0	√
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	357949	1	20	5.0	5.0	√
TSS by Gravimetry (Low Level)	E160-L	360080	1	20	5.0	5.0	<u> </u>
Turbidity by Nephelometry	E121	358781	3	51	5.8	5.0	<u>√</u>
Method Blanks (MB)							
Acidity by Titration	E283	358733	2	29	6.9	5.0	1
Alkalinity Species by Titration	E290	359053	1	18	5.5	5.0	
Ammonia by Fluorescence	E298	357999	1	19	5.2	5.0	<u> </u>
Bromide in Water by IC (Low Level)	E235.Br-L	357859	1	4	25.0	5.0	
Chloride in Water by IC (Low Level)	E235.CI-L	357860	1	4	25.0	5.0	<u> </u>
Conductivity in Water	E100	359054	1	14	7.1	5.0	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	359316	1	4	25.0	5.0	<u> </u>
Dissolved Mercury in Water by CVAAS	E509	363135	1	19	5.2	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	359315	1	5	20.0	5.0	<u> </u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	358107	1	12	8.3	5.0	<u> </u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	357939	1	20	5.0	5.0	<u> </u>
Fluoride in Water by IC	E235.F	357857	1	4	25.0	5.0	<u> </u>
Nitrate in Water by IC (Low Level)	E235.NO3-L	357855	1	5	20.0	5.0	
Nitrite in Water by IC (Low Level)	E235.NO2-L	357856	1	5	20.0	5.0	<u> </u>
Sulfate in Water by IC	E235.SO4	357858	1	4	25.0	5.0	<u> </u>
TDS by Gravimetry	E162	360083	2	36	5.5	5.0	<u> </u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	359291	2	19	10.5	5.0	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	359247	1	19	5.2	5.0	<u> </u>
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	359884	1	19	5.2	5.0	<u>√</u>
Total Metals in Water by CRC ICPMS	E420	359290	2	37	5.4	5.0	<u> </u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	358108	1	13	7.6	5.0	<u> </u>
T-1-1 Dh h ((057040	4	- 00	F 0	5 0	

E372-U

E160-L

E121

357949

360080

358781

20

20

51

1

3

5.0

5.0

5.8

5.0

5.0

5.0

Page : 17 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Width. Water		Lvaladii	on Qo nega	stroy outside ope	cincultori, -	QO nequency wit	imi opoomodii
Quality Control Sample Type			Co	Count Frequence			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	357999	1	19	5.2	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	357859	1	4	25.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	357860	1	4	25.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	359316	1	4	25.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	363135	1	19	5.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	359315	1	5	20.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	358107	1	12	8.3	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	357939	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	357857	1	4	25.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	357855	1	5	20.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	357856	1	5	20.0	5.0	✓
Sulfate in Water by IC	E235.SO4	357858	1	4	25.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	359291	2	19	10.5	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	359247	1	19	5.2	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	359884	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	359290	2	37	5.4	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	358108	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	357949	1	20	5.0	5.0	✓

Page : 18 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is
	O James Francisco et al			measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental	\A/-4	ADUA 4500 H (sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
	Calgary - Environmental			at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light
	2121			scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the
				platinum metal-reference electrode employed, measured in mV. For high accuracy test
TOO by One in the flow by the	Calgary - Environmental	147.4	4 DUI 4 OF 40 D (*** 1)	results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
	Calgary - Environmental			filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	caigary 2e			brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
				filter, with evaporation of the filtrate at $180 \pm 2^{\circ}\text{C}$ for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	E230.31-E			detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
Nitarita in Matana ha IC (Laure Laure)	Calgary - Environmental	\\/-4	EDA 200 4 (
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
			, ,	detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3
Acidity by Hitation	E283	vvalci	AI 11A 2310 D (11100)	Addity is determined by potentionnellic titration to pri 0.5
	Calgary - Environmental			
	1			

Page : 19 of 21
Work Order : CG2106271

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a flow analyzer on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 20 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.

Page : 21 of 21 Work Order : CG2106271

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Laboratory Department

Work Order : CG2106271 Page : 1 of 26

Client : Teck Coal Limited Laboratory : Calgary - Environmental
Contact : Cybele Heddle Account Manager : Lyudmyla Shvets

:421 Pine Avenue Address :2559 29th Street NE

Sparwood BC Canada V0B 2G0

Calgary, Alberta Canada T1Y 7B5

:--Telephone :+1 403 407 1800

Project : REGIONAL EFFECTS PROGRAM Date Samples Received : 02-Dec-2021 09:00

PO : VPO00748510 Date Analysis Commenced : 02-Dec-2021

C-O-C number : Regional Effects Program | Issue Date : 13-Dec-2021 12:08 | Sampler : ----

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Position

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Signatories

Address

Telephone

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia	
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia	
Dan Gebert	Laboratory Analyst	Metals, Burnaby, British Columbia	
Dee Lee	Analyst	Metals, Burnaby, British Columbia	
Elke Tabora		Inorganics, Calgary, Alberta	
Erin Sanchez		Inorganics, Calgary, Alberta	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia	
Millicent Brentnall	Laboratory Analyst	Metals, Calgary, Alberta	
Owen Cheng		Metals, Burnaby, British Columbia	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	

Shirley Li Metals, Calgary, Alberta

 Page
 : 3 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 4 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water	p-Matrix: Water					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Physical Tests (QC	C Lot: 358733)												
CG2106184-004	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	8.9	8.1	0.8	Diff <2x LOR			
Physical Tests (Q0	C Lot: 358734)												
CG2106271-003	RG_LILC3_WS_LAEMP_L CO_2021-12_NP	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR			
Physical Tests (Q0	C Lot: 358781)												
CG2106184-007	Anonymous	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR			
Physical Tests (QC	C Lot: 359053)												
CG2106269-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	481	476	0.940%	20%			
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR			
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR			
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	481	476	0.940%	20%			
Physical Tests (QC	C Lot: 359054)												
CG2106270-001	Anonymous	conductivity		E100	2.0	μS/cm	2600	2620	0.766%	10%			
Physical Tests (QC	C Lot: 359055)												
CG2106270-001	Anonymous	pH		E108	0.10	pH units	7.92	7.93	0.126%	4%			
Physical Tests (QC	C Lot: 359451)												
CG2106265-001	Anonymous	turbidity		E121	0.10	NTU	0.74	0.73	0.008	Diff <2x LOR			
Physical Tests (Q0	C Lot: 359470)												
CG2106265-017	Anonymous	turbidity		E121	0.10	NTU	8.14	8.07	0.864%	15%			
Physical Tests (Q0	C Lot: 360083)												
CG2106265-019	Anonymous	solids, total dissolved [TDS]		E162	40	mg/L	1520	1480	2.60%	20%			
Dhysical Tasta (O	,												
Physical Tests (QC CG2106271-003	RG_LILC3_WS_LAEMP_L	solids, total dissolved [TDS]		E162	20	mg/L	720	735	1.99%	20%			
Physical Tests (Q0	CO_2021-12_NP												
CG2106265-021	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	460	455	1.16%	15%			
Anions and Nutrier	nts (QC Lot: 357855)												
CG2106270-003	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.100	mg/L	198	199	0.389%	20%			
Anions and Nutrier	nts (QC Lot: 357856)												
CG2106270-003	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0200	mg/L	<0.0200	<0.0200	0	Diff <2x LOR			
Anions and Nutrier	nts (QC Lot: 357857)												
CG2106271-001	RG_FO23_WS_LAEMP_L CO 2021-12 NP	fluoride	16984-48-8	E235.F	0.020	mg/L	0.216	0.213	1.59%	20%			

Page : 5 of 26
Work Order : CG2106271
Client : Teck Coal Limited

Sub-Matrix: Water	o-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Anions and Nutrien	its (QC Lot: 357858)											
CG2106271-001	RG_FO23_WS_LAEMP_L CO_2021-12_NP	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	213	213	0.0739%	20%		
Anions and Nutrien	ts (QC Lot: 357859)											
CG2106271-001	RG_FO23_WS_LAEMP_L CO_2021-12_NP	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 357860)											
CG2106271-001	RG_FO23_WS_LAEMP_L CO_2021-12_NP	chloride	16887-00-6	E235.CI-L	0.10	mg/L	5.11	5.10	0.263%	20%		
Anions and Nutrien	its (QC Lot: 357939)											
CG2106266-006	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR		
Anions and Nutrien	its (QC Lot: 357949)											
CG2106266-005	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR		
Anions and Nutrien	its (QC Lot: 357999)											
CG2106266-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0204	0.0206	0.0002	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 359247)											
CG2106218-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR		
Organic / Inorganic	Carbon (QC Lot: 35810	7)										
CG2106266-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR		
Organic / Inorganic	Carbon (QC Lot: 35810	8)										
CG2106266-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR		
Total Metals (QC Lo	ot: 359290)											
CG2106271-001	RG_FO23_WS_LAEMP_L CO_2021-12_NP	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0071	0.0074	0.0003	Diff <2x LOR		
CG2106271-001	RG_FO23_WS_LAEMP_L CO 2021-12 NP	antimony, total	7440-36-0	E420	0.00010	mg/L	0.00012	0.00012	0.000007	Diff <2x LOR		
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00010	0.00010	0.000003	Diff <2x LOR		
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0913	0.0930	1.82%	20%		
		beryllium, total	7440-41-7	E420	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR		
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		boron, total	7440-42-8	E420	0.010	mg/L	0.010	0.010	0.0005	Diff <2x LOR		
		cadmium, total	7440-43-9	E420	0.0050	mg/L	0.0290 μg/L	0.0000258	0.0000033	Diff <2x LOR		
		calcium, total	7440-70-2	E420	0.050	mg/L	98.7	101	2.20%	20%		
		cobalt, total	7440-48-4	E420	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR		
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		iron, total	7439-89-6	E420	0.010	mg/L	0.013	0.014	0.001	Diff <2x LOR		
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0270	0.0278	2.99%	20%		

 Page
 : 6 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

ub-Matrix: Water					Laboratory Duplicate (DUP) Report						
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 359290) - continued										
CG2106271-001	RG_F023_WS_LAEMP_L CO_2021-12_NP	manganese, total	7439-96-5	E420	0.00010	mg/L	0.00076	0.00094	0.00018	Diff <2x LOR	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00137	0.00140	2.20%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00135	0.00141	0.00006	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.23	1.27	2.75%	20%	
		selenium, total	7782-49-2	E420	0.050	mg/L	45.6 µg/L	0.0457	0.186%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.09	2.12	1.47%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	17341-25-2	E420	0.050	mg/L	3.99	4.01	0.635%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.174	0.178	2.24%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	74.2	76.2	2.60%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00246	0.00247	0.394%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
otal Metals (QC L	ot: 359291)										
G2106271-001	RG_FO23_WS_LAEMP_L CO_2021-12_NP	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00032	0.00042	0.00010	Diff <2x LOR	
otal Metals (QC L	ot: 359884)										
CG2106222-001	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR	
otal Metals (QC L	ot: 360264)										
L2101733-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0797	0.0817	2.45%	20%	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00033	0.00030	0.00002	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0697	0.0706	1.35%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	0.000026	0.000023	0.000002	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.375	0.380	1.28%	20%	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.000258	0.000273	5.71%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	159	160	0.914%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00586	0.00599	2.17%	20%	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00233	0.00234	0.000007	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	ma/l	0.260	0.262	0.958%	20%	
		iion, totai	1439-09-0	E420	0.010	mg/L	0.200	0.202	0.93070	2070	

 Page
 : 7 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
otal Metals (QC L	ot: 360264) - continued										
/L2101733-001	Anonymous	lithium, total	7439-93-2	E420	0.0010	mg/L	0.0328	0.0307	6.58%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	33.8	33.7	0.326%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.554	0.563	1.56%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00319	0.00320	0.388%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.0402	0.0411	2.16%	20%	
		potassium, total	7440-09-7	E420	0.050	mg/L	9.79	10.5	6.82%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.000054	0.000059	0.000005	Diff <2x LOR	
		silicon, total	7440-21-3	E420	0.10	mg/L	0.99	1.00	0.007	Diff <2x LOR	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	17341-25-2	E420	0.050	mg/L	140	141	0.256%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	2.82	2.85	0.977%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	50.8	49.9	1.83%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000066	0.000066	0.0000003	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00110	0.00097	0.00013	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00142	0.00146	2.09%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0312	0.0322	3.42%	20%	
otal Metals (QC L	ot: 360265)										
′L2101733-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00013	0.00012	0.000005	Diff <2x LOR	
issolved Metals (QC Lot: 359315)										
L2101733-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0659	0.0648	1.56%	20%	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00025	0.00023	0.00002	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0611	0.0643	5.18%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	0.000022	0.000002	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.335	0.342	2.17%	20%	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.000229	0.000231	0.751%	20%	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	148	153	2.99%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00530	0.00557	4.82%	20%	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00192	0.00196	0.00004	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	0.230	0.234	1.81%	20%	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	

 Page
 : 8 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 359315) - conti	nued									
YL2101733-001	Anonymous	magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	29.2	30.0	2.97%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.490	0.510	3.97%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00298	0.00307	3.07%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.0357	0.0370	3.59%	20%	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	9.18	9.52	3.66%	20%	
		selenium, dissolved	7782-49-2	E421	0.000100	mg/L	<0.000100	0.000173	0.000073	Diff <2x LOR	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	0.875	0.909	3.86%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.050	mg/L	118	121	2.11%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	2.77	2.78	0.596%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	47.0	47.9	1.94%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000061	0.000063	0.000002	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00126	0.00132	4.15%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0268	0.0276	3.10%	20%	
Dissolved Metals (QC Lot: 359316)										
YL2101733-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 361013)										
CG2106216-006	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	<0.0050 µg/L	<0.0000050	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	0.0079	0.0082	0.0003	Diff <2x LOR	

Page : 9 of 26
Work Order : CG2106271
Client : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 361013) - con	tinued									
CG2106216-006	Anonymous	manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	<0.050 µg/L	<0.000050	0	Diff <2x LOR	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0023	0.0025	0.0002	Diff <2x LOR	
Dissolved Metals (QC Lot: 363135)										
CG2106266-004	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.000050	0	Diff <2x LOR	

 Page
 : 10 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Project Test (QCLot: 358734) Project Test (QCLot: 358735) Project Test (QCLot: 358736) Project Test (QCLot: 359035) Project Test (QCLot: 359035) Project Test (QCLot: 359035) Project Test (QCLot: 359036) Project Test (QCLot: 360036)	Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 358734)	Physical Tests (QCLot: 358733)					
Physical Tests (QCLot: 358781)	acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 358781) Physical Tests (QCLot: 3587851)	Physical Tests (QCLot: 358734)					
Physical Tests (QCLot: 359053)	acidity (as CaCO3)	E283	2	mg/L	2.1	
Physical Tests (QCLot: 359053) E280	Physical Tests (QCLot: 358781)					
Misclariny, Journal of as CaCO3)	turbidity	E121	0.1	NTU	<0.10	
Alled linky, carbonate (as CaCO3)	Physical Tests (QCLot: 359053)					
Idealinity, hydroide (as CaCO3)	alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 35945)	alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 359054) Physical Tests (QCLot: 359451) Physical Tests (QCLot: 359470) Physical Tests (QCLot: 359470) Physical Tests (QCLot: 359470) Physical Tests (QCLot: 360080) Physical Tests (QCLot: 360080) Physical Tests (QCLot: 360080) Physical Tests (QCLot: 360080) Physical Tests (QCLot: 360083) Physical Tests (QCLot: 360083) Physical Tests (QCLot: 360083) Physical Tests (QCLot: 360084) Physical Tests (QCLot: 360085) Physical Tests (QCLot: 360086) alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0		
Physical Tests (QCLot: 359451)	alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 359451) urbidity — E121	Physical Tests (QCLot: 359054)					
Physical Tests (QCLot: 359470)	conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 359470) Urbidity E121 0.1 NTU <0.10 Physical Tests (QCLot: 360080) Colids, total suspended [TSS] E160-L 1 mg/L <1.0 Physical Tests (QCLot: 360083) Colids, total dissolved [TDS] E162 10 mg/L <10 Physical Tests (QCLot: 360084) Colids, total dissolved [TDS] E162 10 mg/L <10 Physical Tests (QCLot: 360084) Colids, total dissolved [TDS] E162 10 mg/L <10 Anions and Nutrients (QCLot: 357855) Colids (QCLot: 357856) Colids (QCLot: 357856) Colids (QCLot: 357857) Colids (QCLot: 357858) Colids (QCLot: 357859) C	Physical Tests (QCLot: 359451)					
Physical Tests (QCLot: 360080) Physical Tests (QCLot: 360080) Physical Tests (QCLot: 360083) Physical Tests (QCLot: 360083) Physical Tests (QCLot: 360083) Physical Tests (QCLot: 360084) Physical Tests (QCLot: 360086) Physical Tests (QCLot: 360086) Physical Tests (QCLot: 360086) Physical Tests (QCLot: 360081) turbidity	E121	0.1	NTU	<0.10		
Physical Tests (QCLot: 360080) Physical Tests (QCLot: 360080) Physical Tests (QCLot: 360083) Physical Tests (QCLot: 360083) Physical Tests (QCLot: 360083) Physical Tests (QCLot: 360084) Physical Tests (QCLot: 360086) Physical Tests (QCLot: 360086) Physical Tests (QCLot: 360086) Physical Tests (QCLot: 360081) Physical Tests (QCLot: 359470)						
Physical Tests (QCLot: 360083) Physical Tests (QCLot: 360083) Physical Tests (QCLot: 360084)	turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 360083) Physical Tests (QCLot: 360083) Physical Tests (QCLot: 360084)	Physical Tests (QCLot: 360080)				'	
Fig. Fig.	solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 360084) Folids, total dissolved [TDS] E162 10 mg/L <10 Anions and Nutrients (QCLot: 357855) Filtrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L <0.0050 Anions and Nutrients (QCLot: 357856) Filtrate (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 357857) Full transport of the filtrate of th	Physical Tests (QCLot: 360083)					
February February	solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 357855) Anions and Nutrients (QCLot: 357856) Anions and Nutrients (QCLot: 357856) Anions and Nutrients (QCLot: 357857) Anions and Nutrients (QCLot: 357857) Anions and Nutrients (QCLot: 357858) Anions and Nutrients (QCLot: 357859)	Physical Tests (QCLot: 360084)					
Anions and Nutrients (QCLot: 357856) Anions and Nutrients (QCLot: 357857) Anions and Nutrients (QCLot: 357858) Anions and Nutrients (QCLot: 357859)	solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 357856) Anions and Nutrients (QCLot: 357857) Anions and Nutrients (QCLot: 357857) Anions and Nutrients (QCLot: 357858) Anions and Nutrients (QCLot: 357858) Builfate (as SO4) Anions and Nutrients (QCLot: 357859)	Anions and Nutrients (QCLot: 357855)					
Anions and Nutrients (QCLot: 357857) Anions and Nutrients (QCLot: 357858) Anions and Nutrients (QCLot: 357858) Autions and Nutrients (QCLot: 357858) Autions and Nutrients (QCLot: 357858) Anions and Nutrients (QCLot: 357859)	nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 357857) Anions and Nutrients (QCLot: 357858) Anions and Nutrients (QCLot: 357858) Anions and Nutrients (QCLot: 357859)	Anions and Nutrients (QCLot: 357856)					
Anions and Nutrients (QCLot: 357858) Anions and Nutrients (QCLot: 357858) Anions and Nutrients (QCLot: 357859) Anions and Nutrients (QCLot: 357859) Oromide 24959-67-9 E235.Br-L 0.05 mg/L <0.050	nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 357858) 14808-79-8 E235.SO4	Anions and Nutrients (QCLot: 357857)					
Anions and Nutrients (QCLot: 357859) Oromide 24959-67-9 E235.Br-L 0.05 mg/L <0.30	fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 357859) promide 24959-67-9 E235.Br-L 0.05 mg/L <0.050	Anions and Nutrients (QCLot: 357858)					
oromide 24959-67-9 E235.Br-L 0.05 mg/L <0.050	sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
oromide 24959-67-9 E235.Br-L 0.05 mg/L <0.050	Anions and Nutrients (QCLot: 357859)					
nions and Nutrients (QCLot: 357860)	bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
	Anions and Nutrients (QCLot: 357860)				'	

Page : 11 of 26
Work Order : CG2106271
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 35786					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 35793	· · · · · · · · · · · · · · · · · · ·				
hosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 35794	•				
hosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 35799					
mmonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 35924					
jeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Organic / Inorganic Carbon (QCLot:					
arbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot:					
arbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
otal Metals (QCLot: 359290)					
luminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
ntimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
rsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
arium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
eryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
ismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8 E420	0.01	mg/L	<0.010	
admium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
alcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
obalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
opper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
on, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
thium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
ickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
otassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
elenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	

 Page
 : 12 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 359290)	- continued					
sodium, total	17341-25-2	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
hallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
in, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
ıranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
anadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
inc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
otal Metals (QCLot: 359291)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 359884)						
nercury, total	7439-97-6	E508-L	0.5	ng/L	<0.50	
otal Metals (QCLot: 360264)						
luminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
ntimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
rsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
arium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
eryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
ismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8	E420	0.01	mg/L	<0.010	
admium, total	7440-43-9	E420	0.000005	mg/L	<0.0000050	
alcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
obalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
opper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
on, total	7439-89-6	E420	0.01	mg/L	<0.010	
ead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
hium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
ickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
ootassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
elenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.00010	

 Page
 : 13 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 360264) - cont	inued					
sodium, total	17341-25-2	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
hallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
in, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 360265)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 359315)						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
ooron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
nolybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	

Page : 14 of 26 Work Order : CG2106271 Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 359315)	continued					
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
in, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
itanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
ıranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
ranadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 359316)						
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 361013)						
lluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
sismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
oron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.000050	
alcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
obalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
thium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
nolybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
elenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
ilver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	

 Page
 : 15 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

ALS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 361013) - continue	ed					
tin, dissolved	7440-31-5 E	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E	E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E	E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 363135)						
mercury, dissolved	7439-97-6 E	E509	0.000005	mg/L	<0.0000050	

 Page
 : 16 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Cor	trol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS Numb	er Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 358733)								
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	105	85.0	115	
Physical Tests (QCLot: 358734)								
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	102	85.0	115	
Physical Tests (QCLot: 358781)								
turbidity -	E121	0.1	NTU	200 NTU	103	85.0	115	
Physical Tests (QCLot: 359053)								
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	108	85.0	115	
Physical Tests (QCLot: 359054)								
conductivity -	E100	1	μS/cm	146.9 μS/cm	101	90.0	110	
Physical Tests (QCLot: 359055)								
pH -	E108		pH units	7 pH units	99.0	98.6	101	
Physical Tests (QCLot: 359451)								
turbidity -	E121	0.1	NTU	200 NTU	106	85.0	115	
Physical Tests (QCLot: 359470)								
turbidity -	E121	0.1	NTU	200 NTU	102	85.0	115	
Physical Tests (QCLot: 360080)								
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	91.4	85.0	115	
Physical Tests (QCLot: 360083)								
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	94.6	85.0	115	
Physical Tests (QCLot: 360084)								
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	90.8	85.0	115	
Physical Tests (QCLot: 360388)								
oxidation-reduction potential [ORP]	E125		mV	220 mV	101	95.4	104	
Anions and Nutrients (QCLot: 357855)								
nitrate (as N) 14797-55	8 E235.NO3-L	0.005	mg/L	2.5 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 357856)								
nitrite (as N) 14797-65	0 E235.NO2-L	0.001	mg/L	0.5 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 357857)								ı
fluoride 16984-48	8 E235.F	0.02	mg/L	1 mg/L	106	90.0	110	
Anions and Nutrients (QCLot: 357858)								ı
sulfate (as SO4) 14808-79	8 E235.SO4	0.3	mg/L	100 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 357859)								

 Page
 : 17 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Cor	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualific
Anions and Nutrients (QCLot: 357859) - con	tinued							
bromide	24959-67-9 E235.Br-L	0.05	mg/L	0.5 mg/L	94.5	85.0	115	
Anions and Nutrients (QCLot: 357860)								
chloride	16887-00-6 E235.CI-L	0.1	mg/L	100 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 357939)								'
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	0.02 mg/L	98.8	80.0	120	
Anions and Nutrients (QCLot: 357949)								'
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	8.02 mg/L	97.3	80.0	120	
Anions and Nutrients (QCLot: 357999)								
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	98.6	85.0	115	
Anions and Nutrients (QCLot: 359247)								
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	109	75.0	125	
Organic / Inorganic Carbon (QCLot: 358107)								'
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	10 mg/L	93.4	80.0	120	
Organic / Inorganic Carbon (QCLot: 358108)								
carbon, total organic [TOC]	E355-L	0.5	mg/L	10 mg/L	97.6	80.0	120	
Total Metals (QCLot: 359290)								
aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	103	80.0	120	
antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	107	80.0	120	
arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	106	80.0	120	
parium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	107	80.0	120	
beryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	101	80.0	120	
bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	99.5	80.0	120	
boron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	96.7	80.0	120	
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	108	80.0	120	
calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	102	80.0	120	
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	103	80.0	120	
copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	104	80.0	120	
ron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	102	80.0	120	
ead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	99.4	80.0	120	
ithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	99.6	80.0	120	
magnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	107	80.0	120	
manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	104	80.0	120	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	103	80.0	120	
nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	103	80.0	120	
potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	107	80.0	120	

 Page
 : 18 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

Sub-Matrix: Water	b-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Total Metals (QCLot: 359290) - contin	ued										
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	106	80.0	120			
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	100	80.0	120			
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	97.1	80.0	120			
sodium, total	17341-25-2	E420	0.05	mg/L	50 mg/L	108	80.0	120			
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	105	80.0	120			
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	98.6	80.0	120			
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	103	80.0	120			
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	101	80.0	120			
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	102	80.0	120			
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	97.3	80.0	120			
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	106	80.0	120			
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	104	80.0	120			
Total Metals (QCLot: 359291)											
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	104	80.0	120			
Total Metals (QCLot: 359884)											
mercury, total	7439-97-6	E508-L	0.5	ng/L	5 ng/L	83.8	80.0	120			
Total Metals (QCLot: 360264)											
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	106	80.0	120			
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	108	80.0	120			
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	105	80.0	120			
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	105	80.0	120			
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	98.3	80.0	120			
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	104	80.0	120			
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	98.6	80.0	120			
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	102	80.0	120			
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	104	80.0	120			
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	101	80.0	120			
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	101	80.0	120			
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	93.5	80.0	120			
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	107	80.0	120			
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	92.3	80.0	120			
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	103	80.0	120			
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	104	80.0	120			
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	103	80.0	120			
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	101	80.0	120			
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	102	80.0	120			
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	103	80.0	120			
Land the second of the second		I .		•	1	1	- · · -				

 Page
 : 19 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	y Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 360264) - continu	ıed									
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	97.1	80.0	120		
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	101	80.0	120		
sodium, total	17341-25-2	E420	0.05	mg/L	50 mg/L	106	80.0	120		
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	105	80.0	120		
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	114	80.0	120		
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	104	80.0	120		
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	98.5	80.0	120		
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	102	80.0	120		
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	110	80.0	120		
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	102	80.0	120		
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	104	80.0	120		
Total Metals (QCLot: 360265)										
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	100	80.0	120		
Dissolved Metals (QCLot: 359315)										
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	103	80.0	120		
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	104	80.0	120		
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	107	80.0	120		
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	103	80.0	120		
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	100	80.0	120		
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	96.3	80.0	120		
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	107	80.0	120		
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	101	80.0	120		
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	104	80.0	120		
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	102	80.0	120		
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	102	80.0	120		
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	104	80.0	120		
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	103	80.0	120		
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	101	80.0	120		
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	102	80.0	120		
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	103	80.0	120		
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	104	80.0	120		
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	102	80.0	120		
potassium, dissolved	7440-09-7		0.05	mg/L	50 mg/L	106	80.0	120		
selenium, dissolved	7782-49-2		0.00005	mg/L	1 mg/L	96.4	80.0	120		
silicon, dissolved	7440-21-3		0.05	mg/L	10 mg/L	105	80.0	120		
silver, dissolved	7440-22-4		0.00001	mg/L	0.1 mg/L	93.7	80.0	120		
silver, dissolved	7-440-22-4	L721	0.0001	IIIg/L	U.1 mg/L	93.7	80.0	120		

 Page
 : 20 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

	Spike				
	Эріке	Recovery (%)	Recovery I	Limits (%)	
Analyte CAS Number Method LOR Unit C	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 359315) - continued					
sodium, dissolved 17341-25-2 E421 0.05 mg/L	50 mg/L	104	80.0	120	
strontium, dissolved 7440-24-6 E421 0.0002 mg/L	0.25 mg/L	115	80.0	120	
sulfur, dissolved 7704-34-9 E421 0.5 mg/L	50 mg/L	# 74.3	80.0	120	MES
thallium, dissolved 7440-28-0 E421 0.00001 mg/L	1 mg/L	98.4	80.0	120	
tin, dissolved 7440-31-5 E421 0.0001 mg/L	0.5 mg/L	102	80.0	120	
titanium, dissolved 7440-32-6 E421 0.0003 mg/L	0.25 mg/L	101	80.0	120	
uranium, dissolved 7440-61-1 E421 0.00001 mg/L	0.005 mg/L	116	80.0	120	
vanadium, dissolved 7440-62-2 E421 0.0005 mg/L	0.5 mg/L	105	80.0	120	
zinc, dissolved 7440-66-6 E421 0.001 mg/L	0.5 mg/L	98.4	80.0	120	
Dissolved Metals (QCLot: 359316)		,			
chromium, dissolved 7440-47-3 E421.Cr-L 0.0001 mg/L	0.25 mg/L	104	80.0	120	
Dissolved Metals (QCLot: 361013)					
aluminum, dissolved 7429-90-5 E421 0.001 mg/L	2 mg/L	96.4	80.0	120	
antimony, dissolved 7440-36-0 E421 0.0001 mg/L	1 mg/L	100	80.0	120	
arsenic, dissolved 7440-38-2 E421 0.0001 mg/L	1 mg/L	94.0	80.0	120	
barium, dissolved 7440-39-3 E421 0.0001 mg/L	0.25 mg/L	96.8	80.0	120	
beryllium, dissolved 7440-41-7 E421 0.00002 mg/L	0.1 mg/L	93.2	80.0	120	
bismuth, dissolved 7440-69-9 E421 0.00005 mg/L	1 mg/L	95.4	80.0	120	
boron, dissolved 7440-42-8 E421 0.01 mg/L	1 mg/L	94.0	80.0	120	
cadmium, dissolved 7440-43-9 E421 0.000005 mg/L	0.1 mg/L	97.8	80.0	120	
calcium, dissolved 7440-70-2 E421 0.05 mg/L	50 mg/L	97.6	80.0	120	
cobalt, dissolved 7440-48-4 E421 0.0001 mg/L	0.25 mg/L	96.4	80.0	120	
copper, dissolved 7440-50-8 E421 0.0002 mg/L	0.25 mg/L	94.4	80.0	120	
iron, dissolved 7439-89-6 E421 0.01 mg/L	1 mg/L	102	80.0	120	
lead, dissolved 7439-92-1 E421 0.00005 mg/L	0.5 mg/L	94.5	80.0	120	
lithium, dissolved 7439-93-2 E421 0.001 mg/L	0.25 mg/L	95.3	80.0	120	
magnesium, dissolved 7439-95-4 E421 0.005 mg/L	50 mg/L	96.5	80.0	120	
manganese, dissolved 7439-96-5 E421 0.0001 mg/L	0.25 mg/L	95.6	80.0	120	
molybdenum, dissolved 7439-98-7 E421 0.00005 mg/L	0.25 mg/L	102	80.0	120	
nickel, dissolved 7440-02-0 E421 0.0005 mg/L	0.5 mg/L	94.8	80.0	120	
potassium, dissolved 7440-09-7 E421 0.05 mg/L	50 mg/L	97.8	80.0	120	
selenium, dissolved 7782-49-2 E421 0.00005 mg/L	1 mg/L	91.7	80.0	120	
silicon, dissolved 7440-21-3 E421 0.05 mg/L	10 mg/L	92.4	60.0	140	
silver, dissolved 7440-22-4 E421 0.00001 mg/L	0.1 mg/L	94.5	80.0	120	
sodium, dissolved 17341-25-2 E421 0.05 mg/L	50 mg/L	97.8	80.0	120	
	0.25 mg/L	101	80.0	120	
sulfur, dissolved 7704-34-9 E421 0.5 mg/L	50 mg/L	91.4	80.0	120	

 Page
 : 21 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report							
					Spike Recovery (%)		Recovery					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Dissolved Metals (QCLot: 361013) - continued												
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	93.3	80.0	120				
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	98.5	80.0	120				
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	98.2	80.0	120				
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	92.5	80.0	120				
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	96.4	80.0	120				
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	92.6	80.0	120				
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	105	80.0	120				

Qualifiers

Qualifier Description

MES Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a

Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

 Page
 : 22 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

lient : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

		. , , ,	•	, ,						
Sub-Matrix: Water								e (MS) Report		
		i e			Sp	ike	Recovery (%)	Recovery	Limits (%)	
.aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
nions and Nutri	ents (QCLot: 357855)									
CG2106271-004	RG_TRIP_WS_LAEMP_LC O_2021-12_NP	nitrate (as N)	14797-55-8	E235.NO3-L	2.57 mg/L	2.5 mg/L	103	75.0	125	
Anions and Nutri	ents (QCLot: 357856)									
CG2106271-004	RG_TRIP_WS_LAEMP_LC O_2021-12_NP	nitrite (as N)	14797-65-0	E235.NO2-L	0.518 mg/L	0.5 mg/L	104	75.0	125	
Anions and Nutri	ents (QCLot: 357857)									
CG2106271-004	RG_TRIP_WS_LAEMP_LC O_2021-12_NP	fluoride	16984-48-8	E235.F	1.07 mg/L	1 mg/L	107	75.0	125	
Anions and Nutri	ents (QCLot: 357858)									
CG2106271-004	RG_TRIP_WS_LAEMP_LC O_2021-12_NP	sulfate (as SO4)	14808-79-8	E235.SO4	102 mg/L	100 mg/L	102	75.0	125	
Anions and Nutri	ents (QCLot: 357859)									
CG2106271-004	RG_TRIP_WS_LAEMP_LC O_2021-12_NP	bromide	24959-67-9	E235.Br-L	0.513 mg/L	0.5 mg/L	102	75.0	125	
nions and Nutri	ents (QCLot: 357860)									
CG2106271-004	RG_TRIP_WS_LAEMP_LC O_2021-12_NP	chloride	16887-00-6	E235.CI-L	104 mg/L	100 mg/L	104	75.0	125	
Anions and Nutri	ents (QCLot: 357939)									
CG2106269-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0516 mg/L	0.05 mg/L	103	70.0	130	
nions and Nutri	ents (QCLot: 357949)									
CG2106266-006	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0530 mg/L	0.0676 mg/L	78.4	70.0	130	
nions and Nutri	ents (QCLot: 357999)									
CG2106269-004	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.113 mg/L	0.1 mg/L	113	75.0	125	
nions and Nutri	ents (QCLot: 359247)									
CG2106218-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.77 mg/L	2.5 mg/L	111	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 3581	107)								
CG2106266-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	21.8 mg/L	23.9 mg/L	91.2	70.0	130	
rganic / Inorga	nic Carbon (QCLot: 3581	108)								
CG2106266-001	Anonymous	carbon, total organic [TOC]		E355-L	23.2 mg/L	23.9 mg/L	97.0	70.0	130	
otal Metals (QC	Lot: 359290)									
CG2106271-002	RG_LCUT_WS_LAEMP_LC O_2021-12_NP	aluminum, total	7429-90-5	E420	0.190 mg/L	0.2 mg/L	95.0	70.0	130	

 Page
 : 23 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Lin

Total Metals (QCLot: 360264)

Client : Teck Coal Limited

Project REGIONAL EFFECTS PROGRAM Matrix Spike (MS) Report Sub-Matrix: Water Spike Recovery (%) Recovery Limits (%) Laboratory sample Client sample ID Analyte CAS Number Method Concentration Target MS Low High Qualifier Total Metals (QCLot: 359290) - continued CG2106271-002 RG_LCUT_WS_LAEMP_LC antimony, total 7440-36-0 E420 0.0188 mg/L 0.02 mg/L 94.2 70.0 130 O_2021-12_NP arsenic, total 7440-38-2 E420 0.0202 mg/L 0.02 mg/L 101 70.0 130 barium, total 7440-39-3 E420 ND mg/L 0.02 mg/L ND 70.0 130 beryllium, total 7440-41-7 E420 0.0373 mg/L 93.2 70.0 130 0.04 mg/L bismuth, total 7440-69-9 E420 0.00920 mg/L 0.01 mg/L 92.0 70.0 130 boron, total 7440-42-8 E420 0.092 mg/L 91.9 70.0 130 0.1 mg/L cadmium, total 7440-43-9 E420 0.00417 mg/L 70.0 130 0.004 mg/L 104 calcium, total 7440-70-2 E420 ND mg/L 4 mg/L ND 70.0 130 cobalt, total 7440-48-4 E420 0.0189 mg/L 70.0 130 0.02 mg/L 94.5 copper, total 7440-50-8 E420 92.3 0.0184 mg/L 0.02 mg/L 70.0 130 iron, total 7439-89-6 E420 1.91 mg/L 2 mg/L 95.7 70.0 130 lead, total 7439-92-1 E420 0.0180 mg/L 89.8 70.0 130 0.02 mg/L lithium, total 7439-93-2 E420 0.0874 mg/L 0.1 mg/L 87 4 70.0 130 magnesium, total 7439-95-4 E420 ND mg/L ND 70.0 130 1 mg/L manganese, total 7439-96-5 E420 0.0187 mg/L 93.7 70.0 130 0.02 mg/L molybdenum, total 7439-98-7 E420 0.0193 mg/L 0.02 mg/L 96.5 70.0 130 nickel, total 7440-02-0 E420 0.0372 mg/L 0.04 mg/L 92.9 70.0 130 potassium, total 7440-09-7 E420 3.91 mg/L 97.7 70.0 130 4 mg/L selenium, total 7782-49-2 E420 ND mg/L 0.04 mg/L ND 70.0 130 silicon, total 7440-21-3 E420 8.71 mg/L 10 mg/L 87.1 70.0 130 silver, total 7440-22-4 E420 0.00388 mg/L 0.004 mg/L 97.1 70.0 130 sodium, total ND mg/L 17341-25-2 E420 ND 70.0 130 2 mg/L strontium, total 7440-24-6 E420 ND mg/L 0.02 mg/L ND 70.0 130 sulfur, total 7704-34-9 E420 ND mg/L ND 70.0 130 20 mg/L ---thallium, total 7440-28-0 E420 0.00357 mg/L 0.004 mg/L 89.2 70.0 130 tin, total 7440-31-5 E420 0.0186 mg/L 0.02 mg/L 93.0 70.0 130 titanium, total 7440-32-6 E420 0.0382 mg/L 0.04 mg/L 95.5 70.0 130 uranium, total 7440-61-1 E420 0.00427 mg/L 0.004 mg/L 107 70.0 130 vanadium, total 7440-62-2 E420 0.101 mg/L 101 70.0 130 0.1 mg/L 0.377 mg/L zinc, total 7440-66-6 E420 0.4 mg/L 94.4 70.0 130 Total Metals (QCLot: 359291) RG_LCUT_WS_LAEMP_LC CG2106271-002 chromium, total 7440-47-3 E420.Cr-L 0.0391 mg/L 0.04 mg/L 97.8 70.0 130 O 2021-12 NP Total Metals (QCLot: 359884) CG2106222-002 Anonymous mercury, total 7439-97-6 E508-L 4.13 ng/L 5 ng/L 82.5 70.0 130

24 of 26 CG2106271 Page Work Order

: Teck Coal Limited Client

Laboratory sample Client sample D
Total Metals (QCLot: 360264) - continued YL2101733-001 Anonymous aluminum, total
YL2101733-001 Anonymous aluminum, total 7429-90-5 E420 0.208 mg/L 0.02 mg/L 104 70.0 130
antimony, total 7440-36-0 E420 0.0202 mg/L 0.02 mg/L 101 70.0 130 arsenic, total 7440-38-2 E420 0.0218 mg/L 0.02 mg/L 109 70.0 130 barium, total 7440-39-3 E420 ND mg/L 0.02 mg/L ND 70.0 130 beryllium, total 7440-41-7 E420 0.0400 mg/L 0.04 mg/L 100.0 70.0 130 bismuth, total 7440-69-9 E420 0.0998 mg/L 0.01 mg/L 99.8 70.0 130 boron, total 7440-42-8 E420 ND mg/L 0.11 mg/L ND 70.0 130 cadmium, total 7440-43-9 E420 0.00399 mg/L 0.004 mg/L 99.8 70.0 130 calcium, total 7440-43-9 E420 ND mg/L 0.004 mg/L 99.8 70.0 130 calcium, total 7440-70-2 E420 ND mg/L 4 mg/L ND 70.0 130 cobalt, total 7440-48-4 E420 0.0196 mg/L 0.02 mg/L 97.8 70.0 130 copper, total 7440-50-8 E420 0.0188 mg/L 0.02 mg/L 94.0 70.0 130 iron, total 7439-89-6 E420 1.96 mg/L 2 mg/L 98.1 70.0 130 lead, total 7439-92-1 E420 0.0199 mg/L 0.02 mg/L 99.7 70.0 130
arsenic, total 7440-38-2 E420 0.0218 mg/L 0.02 mg/L 109 70.0 130 barium, total 7440-39-3 E420 ND mg/L 0.02 mg/L ND 70.0 130 beryllium, total 7440-41-7 E420 0.0400 mg/L 0.04 mg/L 100.0 70.0 130 bismuth, total 7440-69-9 E420 0.0998 mg/L 0.01 mg/L 99.8 70.0 130 boron, total 7440-42-8 E420 ND mg/L 0.1 mg/L ND 70.0 130 cadmium, total 7440-43-9 E420 0.00399 mg/L 0.004 mg/L 99.8 70.0 130 calcium, total 7440-70-2 E420 ND mg/L 4 mg/L ND 70.0 130 cobalt, total 7440-48-4 E420 0.0196 mg/L 0.02 mg/L 97.8 70.0 130 cobalt, total 7440-48-4 E420 0.0196 mg/L 0.02 mg/L 97.8 70.0 130 copper, total 7440-50-8 E420 0.0188 mg/L 0.02 mg/L 94.0 70.0 130 iron, total 7439-89-6 E420 1.96 mg/L 2 mg/L 98.1 70.0 130 lead, total 7439-89-6 E420 0.0199 mg/L 0.02 mg/L 99.7 70.0 130
barium, total 7440-39-3 E420 ND mg/L 0.02 mg/L ND 70.0 130 beryllium, total 7440-41-7 E420 0.0400 mg/L 0.04 mg/L 100.0 70.0 130 bismuth, total 7440-69-9 E420 0.0998 mg/L 0.01 mg/L 99.8 70.0 130 boron, total 7440-42-8 E420 ND mg/L 0.1 mg/L ND 70.0 130 cadmium, total 7440-43-9 E420 0.00399 mg/L 0.004 mg/L 99.8 70.0 130 calcium, total 7440-70-2 E420 ND mg/L 4 mg/L ND 70.0 130 cobalt, total 7440-48-4 E420 0.0196 mg/L 0.02 mg/L 97.8 70.0 130 cobalt, total 7440-48-6 E420 0.0186 mg/L 0.02 mg/L 97.8 70.0 130 copper, total 7440-50-8 E420 0.0186 mg/L 0.02 mg/L 94.0 70.0 130 iron, total 7439-89-6 E420 1.96 mg/L 2 mg/L 98.1 70.0 130 lead, total 7439-89-1 E420 0.0199 mg/L 0.02 mg/L 99.7 70.0 130 lead, total 7439-92-1 E420 0.0199 mg/L 0.02 mg/L 99.7 70.0 130
beryllium, total 7440-41-7 E420 0.0400 mg/L 0.04 mg/L 100.0 70.0 130 bismuth, total 7440-69-9 E420 0.00998 mg/L 0.01 mg/L 99.8 70.0 130 boron, total 7440-42-8 E420 ND mg/L 0.1 mg/L ND 70.0 130 cadmium, total 7440-43-9 E420 0.00399 mg/L 0.004 mg/L 99.8 70.0 130 calcium, total 7440-70-2 E420 ND mg/L 4 mg/L ND 70.0 130 cobalt, total 7440-48-4 E420 0.0196 mg/L 0.02 mg/L 97.8 70.0 130 copper, total 7440-50-8 E420 0.0188 mg/L 0.02 mg/L 94.0 70.0 130 iron, total 7439-89-6 E420 1.96 mg/L 2 mg/L 98.1 70.0 130 lead, total 7439-92-1 E420 0.0199 mg/L 0.02 mg/L 99.7 70.0 130
bismuth, total 7440-69-9 E420 0.00998 mg/L 0.01 mg/L 99.8 70.0 130 boron, total 7440-42-8 E420 ND mg/L 0.1 mg/L ND 70.0 130 cadmium, total 7440-43-9 E420 0.00399 mg/L 0.004 mg/L 99.8 70.0 130 calcium, total 7440-70-2 E420 ND mg/L 4 mg/L ND 70.0 130 cobalt, total 7440-48-4 E420 0.0196 mg/L 0.02 mg/L 97.8 70.0 130 copper, total 7440-50-8 E420 0.0188 mg/L 0.02 mg/L 94.0 70.0 130 iron, total 7439-89-6 E420 1.96 mg/L 2 mg/L 98.1 70.0 130 lead, total 7439-92-1 E420 0.0199 mg/L 0.02 mg/L 99.7 70.0 130
boron, total 7440-42-8 E420 ND mg/L 0.1 mg/L ND 70.0 130 cadmium, total 7440-43-9 E420 0.00399 mg/L 0.004 mg/L 99.8 70.0 130 calcium, total 7440-70-2 E420 ND mg/L 4 mg/L ND 70.0 130 cobalt, total 7440-48-4 E420 0.0196 mg/L 0.02 mg/L 97.8 70.0 130 copper, total 7440-50-8 E420 0.0188 mg/L 0.02 mg/L 94.0 70.0 130 iron, total 7439-89-6 E420 1.96 mg/L 2 mg/L 98.1 70.0 130 lead, total 7439-92-1 E420 0.0199 mg/L 0.02 mg/L 99.7 70.0 130
cadmium, total 7440-43-9 E420 0.00399 mg/L 0.004 mg/L 99.8 70.0 130
calcium, total 7440-70-2 E420 ND mg/L 4 mg/L ND 70.0 130 cobalt, total 7440-48-4 E420 0.0196 mg/L 0.02 mg/L 97.8 70.0 130 copper, total 7440-50-8 E420 0.0188 mg/L 0.02 mg/L 94.0 70.0 130 iron, total 7439-89-6 E420 1.96 mg/L 2 mg/L 98.1 70.0 130 lead, total 7439-92-1 E420 0.0199 mg/L 0.02 mg/L 99.7 70.0 130
cobalt, total 7440-48-4 E420 0.0196 mg/L 0.02 mg/L 97.8 70.0 130 copper, total 7440-50-8 E420 0.0188 mg/L 0.02 mg/L 94.0 70.0 130 iron, total 7439-89-6 E420 1.96 mg/L 2 mg/L 98.1 70.0 130 lead, total 7439-92-1 E420 0.0199 mg/L 0.02 mg/L 99.7 70.0 130
copper, total 7440-50-8 E420 0.0188 mg/L 0.02 mg/L 94.0 70.0 130 iron, total 7439-89-6 E420 1.96 mg/L 2 mg/L 98.1 70.0 130 lead, total 7439-92-1 E420 0.0199 mg/L 0.02 mg/L 99.7 70.0 130
iron, total 7439-89-6 E420 1.96 mg/L 2 mg/L 98.1 70.0 130 lead, total 7439-92-1 E420 0.0199 mg/L 0.02 mg/L 99.7 70.0 130
lead, total 7439-92-1 E420 0.0199 mg/L 0.02 mg/L 99.7 70.0 130
lithium, total 7439-93-2 E420 0.0876 mg/L 0.1 mg/L 87.6 70.0 130
magnesium, total 7439-95-4 E420 ND mg/L 1 mg/L ND 70.0 130
manganese, total 7439-96-5 E420 ND mg/L 0.02 mg/L ND 70.0 130
molybdenum, total 7439-98-7 E420 0.0205 mg/L 0.02 mg/L 102 70.0 130
nickel, total 7440-02-0 E420 ND mg/L 0.04 mg/L ND 70.0 130
potassium, total 7440-09-7 E420 ND mg/L 4 mg/L ND 70.0 130
selenium, total 7782-49-2 E420 0.0436 mg/L 0.04 mg/L 109 70.0 130
silicon, total 7440-21-3 E420 9.02 mg/L 10 mg/L 90.2 70.0 130
silver, total 7440-22-4 E420 0.00412 mg/L 0.004 mg/L 103 70.0 130
sodium, total 17341-25-2 E420 ND mg/L 2 mg/L ND 70.0 130
strontium, total 7440-24-6 E420 ND mg/L 0.02 mg/L ND 70.0 130
sulfur, total 7704-34-9 E420 ND mg/L 20 mg/L ND 70.0 130
thallium, total 7440-28-0 E420 0.00387 mg/L 0.004 mg/L 96.7 70.0 130
tin, total 7440-31-5 E420 0.0190 mg/L 0.02 mg/L 94.9 70.0 130
titanium, total 7440-32-6 E420 0.0418 mg/L 0.04 mg/L 105 70.0 130
uranium, total 7440-61-1 E420 0.00428 mg/L 0.004 mg/L 107 70.0 130
vanadium, total 7440-62-2 E420 0.108 mg/L 0.1 mg/L 108 70.0 130
zinc, total 7440-66-6 E420 0.402 mg/L 0.4 mg/L 101 70.0 130
Total Metals (QCLot: 360265)
YL2101733-001 Anonymous chromium, total 7440-47-3 E420.Cr-L 0.0412 mg/L 0.04 mg/L 103 70.0 130
Dissolved Metals (QCLot: 359315)
YL2101733-001 Anonymous aluminum, dissolved 7429-90-5 E421 0.203 mg/L 0.2 mg/L 102 70.0 130
antimony, dissolved 7440-36-0 E421 0.0204 mg/L 0.02 mg/L 102 70.0 130

 Page
 : 25 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

ub-Matrix: Water							Matrix Spike (MS) Report			
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	s (QCLot: 359315) -	continued								
′L2101733-001	Anonymous	arsenic, dissolved	7440-38-2	E421	0.0211 mg/L	0.02 mg/L	105	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0404 mg/L	0.04 mg/L	101	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00795 mg/L	0.01 mg/L	79.5	70.0	130	
		boron, dissolved	7440-42-8	E421	ND mg/L	0.1 mg/L	ND	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00391 mg/L	0.004 mg/L	97.9	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0193 mg/L	0.02 mg/L	96.4	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0183 mg/L	0.02 mg/L	91.6	70.0	130	
		iron, dissolved	7439-89-6	E421	2.00 mg/L	2 mg/L	99.8	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0186 mg/L	0.02 mg/L	93.0	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0976 mg/L	0.1 mg/L	97.6	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0199 mg/L	0.02 mg/L	99.7	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0387 mg/L	0.04 mg/L	96.7	70.0	130	
		potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0838 mg/L	0.08 mg/L	105	70.0	130	
		silicon, dissolved	7440-21-3	E421	9.27 mg/L	10 mg/L	92.7	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00384 mg/L	0.004 mg/L	95.9	70.0	130	
		sodium, dissolved	17341-25-2	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00372 mg/L	0.004 mg/L	93.1	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0190 mg/L	0.02 mg/L	95.2	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0396 mg/L	0.04 mg/L	99.1	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00420 mg/L	0.004 mg/L	105	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.105 mg/L	0.1 mg/L	105	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.371 mg/L	0.4 mg/L	92.8	70.0	130	
ssolved Metal	s (QCLot: 359316)									
L2101733-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0404 mg/L	0.04 mg/L	101	70.0	130	
issolved Metal	s (QCLot: 361013)									
G2106216-006	Anonymous	aluminum, dissolved	7429-90-5	E421	1.78 mg/L	2 mg/L	89.0	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.191 mg/L	0.2 mg/L	95.7	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.179 mg/L	0.2 mg/L	89.3	70.0	130	
	I and the second	barium, dissolved	7440-39-3	E421	0.176 mg/L	0.2 mg/L	88.1	70.0	130	

 Page
 : 26 of 26

 Work Order
 : CG2106271

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Matrix Spike (MS) Report						
					Sp	ike	Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Dissolved Metals	(QCLot: 361013) -	continued									
CG2106216-006	Anonymous	beryllium, dissolved	7440-41-7	E421	0.370 mg/L	0.4 mg/L	92.6	70.0	130		
		bismuth, dissolved	7440-69-9	E421	0.0883 mg/L	0.1 mg/L	88.3	70.0	130		
		boron, dissolved	7440-42-8	E421	0.961 mg/L	1 mg/L	96.1	70.0	130		
		cadmium, dissolved	7440-43-9	E421	0.0362 mg/L	0.04 mg/L	90.5	70.0	130		
		calcium, dissolved	7440-70-2	E421	36.2 mg/L	40 mg/L	90.4	70.0	130		
		cobalt, dissolved	7440-48-4	E421	0.182 mg/L	0.2 mg/L	91.0	70.0	130		
		copper, dissolved	7440-50-8	E421	0.180 mg/L	0.2 mg/L	89.8	70.0	130		
		iron, dissolved	7439-89-6	E421	17.8 mg/L	20 mg/L	88.8	70.0	130		
		lead, dissolved	7439-92-1	E421	0.184 mg/L	0.2 mg/L	92.3	70.0	130		
		lithium, dissolved	7439-93-2	E421	0.922 mg/L	1 mg/L	92.2	70.0	130		
		magnesium, dissolved	7439-95-4	E421	8.71 mg/L	10 mg/L	87.1	70.0	130		
		manganese, dissolved	7439-96-5	E421	0.181 mg/L	0.2 mg/L	90.6	70.0	130		
		molybdenum, dissolved	7439-98-7	E421	0.191 mg/L	0.2 mg/L	95.7	70.0	130		
		nickel, dissolved	7440-02-0	E421	0.363 mg/L	0.4 mg/L	90.8	70.0	130		
		potassium, dissolved	7440-09-7	E421	36.6 mg/L	40 mg/L	91.6	70.0	130		
		selenium, dissolved	7782-49-2	E421	0.382 mg/L	0.4 mg/L	95.6	70.0	130		
		silicon, dissolved	7440-21-3	E421	87.2 mg/L	100 mg/L	87.2	70.0	130		
		silver, dissolved	7440-22-4	E421	0.0372 mg/L	0.04 mg/L	93.1	70.0	130		
		sodium, dissolved	17341-25-2	E421	18.0 mg/L	20 mg/L	89.9	70.0	130		
		strontium, dissolved	7440-24-6	E421	0.187 mg/L	0.2 mg/L	93.4	70.0	130		
		sulfur, dissolved	7704-34-9	E421	188 mg/L	200 mg/L	94.2	70.0	130		
		thallium, dissolved	7440-28-0	E421	0.0368 mg/L	0.04 mg/L	92.0	70.0	130		
		tin, dissolved	7440-31-5	E421	0.182 mg/L	0.2 mg/L	90.9	70.0	130		
		titanium, dissolved	7440-32-6	E421	0.312 mg/L	0.4 mg/L	77.9	70.0	130		
		uranium, dissolved	7440-61-1	E421	0.0372 mg/L	0.04 mg/L	93.0	70.0	130		
		vanadium, dissolved	7440-62-2	E421	0.911 mg/L	1 mg/L	91.1	70.0	130		
		zinc, dissolved	7440-66-6	E421	3.68 mg/L	4 mg/L	92.0	70.0	130		
issolved Metals	(QCLot: 363135)										
CG2106266-005	Anonymous	mercury, dissolved	7439-97-6	E509	0.000104 mg/L	0.0001 mg/L	104	70.0	130		

WATER CHEMISTRY

ALS Laboratory Report CG2106342 (Finalized December 15, 2021)

: Cybele Heddle

CERTIFICATE OF ANALYSIS

Work Order : CG2106342

Client : Teck Coal Limited

Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone

Contact

Project : REGIONAL EFFECTS PROGRAM

: VPO00748510

C-O-C number : Regional Effects Program

Sampler : Rick Smit

Site

Quote number : Teck Coal Master Quote

No. of samples received : 2 : 2 No. of samples analysed

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets Address

: 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800 Date Samples Received : 03-Dec-2021 10:30

Date Analysis Commenced : 03-Dec-2021

Issue Date : 15-Dec-2021 08:45

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia	
Dee Lee	Analyst	Metals, Burnaby, British Columbia	
Elke Tabora		Inorganics, Calgary, Alberta	
Erin Sanchez		Inorganics, Calgary, Alberta	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia	
Owen Cheng		Metals, Burnaby, British Columbia	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	

Page : 2 of 6 Work Order : CG2106342 Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

Page : 3 of 6
Work Order : CG2106342
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)							 	
			Client samp	oling date / time	02-Dec-2021 08:45	02-Dec-2021 10:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2106342-001	CG2106342-002	 	
					Result	Result	 	
Physical Tests								
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	221	211	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	221	211	 	
conductivity		E100	2.0	μS/cm	736	700	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	376	358	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	261	237	 	
рН		E108	0.10	pH units	8.09	8.16	 	
solids, total dissolved [TDS]		E162	10	mg/L	469	459	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	1.4	 	
turbidity		E121	0.10	NTU	0.22	0.44	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	269	258	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	10.5	9.51	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.251	0.279	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.300 TKNI	0.354 TKNI	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	6.22	5.69	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0044	0.0038	 	
phosphorus, total		E372-U	0.0010		0.0039	0.0038	 	
sulfate (as SO4)	7723-14-0 14808-79-8	E235.SO4	0.30	mg/L mg/L	190	177	 	
	14000-79-0	2200.004	0.00	mg/L	100	177		
Organic / Inorganic Carbon carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.31	1.20	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	1.26	1.14	 	
carbon, total organic [100]		L333-L	0.50	my/L	1.20	1.14	 	

Page : 4 of 6
Work Order : CG2106342
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	RG_LIDCOM_W S_LAEMP_LCO _2021-12_NP	RG_LI8_WS_LA EMP_LCO_202 1-12_NP	 	
				ling date / time	02-Dec-2021 08:45	02-Dec-2021 10:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2106342-001 Result	CG2106342-002 Result	 	
Ion Balance					Nesuit	Result	 	
anion sum		EC101	0.10	meq/L	9.12	8.59	 	
cation sum		EC101	0.10	meq/L	7.84	7.46	 	
ion balance (cations/anions ratio)		EC101	0.010	%	86.0	86.8	 	
ion balance (cation-anion difference)		EC101	0.010	%	7.55	7.04	 	
Total Metals								1
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0075	0.0114	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00018	0.00017	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00013	0.00011	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0590	0.0588	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	0.014	0.014	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.108	0.0971	 	
calcium, total	7440-70-2	E420	0.050	mg/L	89.3	86.8	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00014	0.00016	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	0.015	0.015	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0359	0.0345	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	39.8	37.9	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00331	0.00225	 	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00203	0.00201	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00348	0.00305	 	
potassium, total	7440-09-7	E420	0.050	mg/L	1.25	1.15	 	
selenium, total	7782-49-2	E420	0.050	μg/L	27.5	26.0	 	
silicon, total	7440-21-3	E420	0.10	mg/L	2.33	2.36	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, total	7440-23-5	E420	0.050	mg/L	7.08	6.61	 	

Page : 5 of 6
Work Order : CG2106342
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	RG_LIDCOM_W	RG_LI8_WS_LA		
(Matrix: Water)					S_LAEMP_LCO _2021-12_NP	EMP_LCO_202 1-12_NP		
			Client samp	ling date / time	02-Dec-2021 08:45	02-Dec-2021 10:00		
Analyte	CAS Number	Method	LOR	Unit	CG2106342-001 Result	CG2106342-002 Result		
Total Metals					Result	Result		
strontium, total	7440-24-6	E420	0.00020	mg/L	0.195	0.205		
sulfur, total	7704-34-9	E420	0.50	mg/L	66.7	63.7		
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010		
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010		
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030		
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00289	0.00279		
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050		
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0045	0.0045		
Dissolved Metals	1110 00 0			3				
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0025	0.0029		
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00016	0.00014		
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	0.00011		
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0626	0.0601		
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020		
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050		
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.014	0.013		
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0886	0.0551		
calcium, dissolved	7440-70-2	E421	0.050	mg/L	85.4	81.6		
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00012	0.00010		
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10		
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020		
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010		
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050		
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0343	0.0318		
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	39.6	37.6		
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00178	0.00089		
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050		
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00207	0.00198		
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00340	0.00304		
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.18	1.09		
I control of the cont	1		1				1	1

Page : 6 of 6
Work Order : CG2106342
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_LIDCOM_W	RG_LI8_WS_LA	 	
(Matrix: Water)					S_LAEMP_LCO 2021-12 NP	EMP_LCO_202 1-12 NP		
					_2021-12_NF	1-12_INF		
			Client samp	ling date / time	02-Dec-2021	02-Dec-2021	 	
					08:45	10:00		
Analyte	CAS Number	Method	LOR	Unit	CG2106342-001	CG2106342-002	 	
					Result	Result	 	
Dissolved Metals								
selenium, dissolved	7782-49-2	E421	0.050	μg/L	28.8	26.8	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.40	2.34	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	6.68	6.11	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.190	0.192	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	65.9	62.3	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00268	0.00253	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0035	0.0033	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : CG2106342 Page : 1 of 16

Client : Teck Coal Limited : Calgary - Environmental
Contact : Cybele Heddle : Lyudmyla Shvets
Address : 421 Pine Avenue : Address : 2559 29th Street NF

: 421 Pine Avenue Address : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 03-Dec-2021 10:30

 PO
 : VPO00748510
 Issue Date
 : 15-Dec-2021 08:45

C-O-C number : Regional Effects Program

Sampler : Rick Smit

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- Matrix Spike outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 2 of 16 : CG2106342 Work Order

Client : Teck Coal Limited

: REGIONAL EFFECTS PROGRAM Project

Outliers: Quality Control Samples
Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Matrix Spike (MS) Recoveries								
Anions and Nutrients	Anonymous	Anonymous	Kjeldahl nitrogen, total		E318	52.4 % MSTN	70.0-130%	Recovery less than lower
			[TKN]					data quality objective

Result Qualifiers

Qualifier	Description
MSTN	TKN Matrix Spike recovery was low due to interference from high nitrate, which causes negative bias on TKN.

Page : 3 of 16 Work Order : CG2106342

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: × =	Holding time exce	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation		Holding Times		Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_LI8_WS_LAEMP_LCO_2021-12_NP	E298	02-Dec-2021	05-Dec-2021				05-Dec-2021	28 days	3 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP	E298	02-Dec-2021	05-Dec-2021				05-Dec-2021	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_LI8_WS_LAEMP_LCO_2021-12_NP	E235.Br-L	02-Dec-2021					04-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE	5005 B .	00 0 0004								,
RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP	E235.Br-L	02-Dec-2021					04-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE	E235.CI-L	02-Dec-2021					04-Dec-2021	28 days	O dovo	1
RG_LI8_WS_LAEMP_LCO_2021-12_NP	E233.CI-L	02-Dec-2021					04-Dec-2021	20 days	2 days	•
Anions and Nutrients : Chloride in Water by IC (Low Level)									l I	
HDPE RG LIDCOM WS LAEMP LCO 2021-12 NP	E235.CI-L	02-Dec-2021					04-Dec-2021	28 days	2 days	1
NG_LIDCOM_WS_LAEMF_LCO_2021-12_NF	L233.01-L	02-060-2021					04-Dec-2021	20 days	2 uays	•
	1									
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trac HDPE	e Level)									
RG LI8 WS LAEMP LCO 2021-12 NP	E378-U	02-Dec-2021					04-Dec-2021	3 days	2 days	√
10_LIO_VVO_LALIVII _LOO_2021-12_IVI	2070-0	02-D00-2021					04-D00-2021	Julys	_ days	•

Page : 4 of 16 Work Order : CG2106342

HDPE

RG LIDCOM WS LAEMP LCO 2021-12 NP

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

04-Dec-2021

28 days 2 days

✓

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Method Sampling Date Extraction / Preparation Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Actual Rec Actual Date **Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)** HDPE RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP E378-U 02-Dec-2021 04-Dec-2021 3 days ✓ 2 days Anions and Nutrients: Fluoride in Water by IC HDPE E235.F ✓ RG_LI8_WS_LAEMP_LCO_2021-12_NP 02-Dec-2021 04-Dec-2021 28 days 2 days ----Anions and Nutrients : Fluoride in Water by IC **HDPE** E235.F 02-Dec-2021 04-Dec-2021 28 days 2 days ✓ RG LIDCOM WS LAEMP LCO 2021-12 NP Anions and Nutrients : Nitrate in Water by IC (Low Level) RG LI8 WS LAEMP LCO 2021-12 NP E235.NO3-L 02-Dec-2021 04-Dec-2021 3 days 2 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 02-Dec-2021 04-Dec-2021 3 days ✓ RG LIDCOM WS LAEMP LCO 2021-12 NP 2 days Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE E235.NO2-L 02-Dec-2021 ✓ RG_LI8_WS_LAEMP_LCO_2021-12_NP 04-Dec-2021 3 days 2 days Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG LIDCOM WS LAEMP LCO 2021-12 NP E235.NO2-L 02-Dec-2021 04-Dec-2021 ✓ 3 days 2 days Anions and Nutrients : Sulfate in Water by IC **HDPE** ✓ RG_LI8_WS_LAEMP_LCO_2021-12_NP E235.SO4 02-Dec-2021 04-Dec-2021 28 days 2 days Anions and Nutrients : Sulfate in Water by IC

02-Dec-2021

E235.SO4

Page : 5 of 16 Work Order : CG2106342

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: water						diddion.	Holding time exce	oddiioo ,	- vviciniii	riolaling rill	
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holding Times		Eval	Analysis Date	Holding Times		Eval	
			Date	Rec	Actual		-	Rec	Actual		
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)											
Amber glass total (sulfuric acid)											
RG_LI8_WS_LAEMP_LCO_2021-12_NP	E318	02-Dec-2021	09-Dec-2021				10-Dec-2021	28 days	8 days	✓	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)											
Amber glass total (sulfuric acid)	5040	00.5								,	
RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP	E318	02-Dec-2021	09-Dec-2021				10-Dec-2021	28 days	8 days	✓	
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)				I			I				
Amber glass total (sulfuric acid) RG_LI8_WS_LAEMP_LCO_2021-12_NP	E372-U	02-Dec-2021	09-Dec-2021				09-Dec-2021	28 days	7 days	✓	
NG_LIO_WS_LAEMIF_LCO_2021-12_INF	L372-0	02-Dec-2021	09-Dec-2021				09-Dec-2021	20 days	/ uays	•	
Anima and National Table Bloom have by Calaminator (Illina Taran)											
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace) Amber glass total (sulfuric acid)							<u> </u>				
RG LIDCOM WS LAEMP LCO 2021-12 NP	E372-U	02-Dec-2021	09-Dec-2021				09-Dec-2021	28 days	7 days	1	
· · · · · · · · · · · · · · · · · · ·								,	,		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)											
HDPE dissolved (nitric acid)											
RG_LI8_WS_LAEMP_LCO_2021-12_NP	E421.Cr-L	02-Dec-2021	08-Dec-2021				08-Dec-2021	180	7 days	✓	
								days			
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)											
HDPE dissolved (nitric acid)											
RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP	E421.Cr-L	02-Dec-2021	08-Dec-2021				08-Dec-2021	180	7 days	✓	
								days			
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid)										,	
RG_LI8_WS_LAEMP_LCO_2021-12_NP	E509	02-Dec-2021	10-Dec-2021				10-Dec-2021	28 days	8 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid)	E509	02-Dec-2021	10-Dec-2021				10-Dec-2021	28 days	8 days	1	
RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP	E509	02-066-2021	10-Dec-2021				10-066-2021	20 days	o uays	•	
Discolved Metals : Discolved Metals in Weter by CRC ICRMS											
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid)											
RG_LI8_WS_LAEMP_LCO_2021-12_NP	E421	02-Dec-2021	08-Dec-2021				08-Dec-2021	180	7 days	✓	
								days			

Page : 6 of 16 Work Order : CG2106342

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

water							nolding time exce			
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding Times		Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual		-	Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP	E421	02-Dec-2021	08-Dec-2021				08-Dec-2021	180	7 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	rel)									
Amber glass dissolved (sulfuric acid)										
RG LIDCOM WS LAEMP LCO 2021-12 NP	E358-L	02-Dec-2021	03-Dec-2021				06-Dec-2021	28 days	4 davs	✓
									, -	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	rel)									
Amber glass dissolved (sulfuric acid)										
RG_LI8_WS_LAEMP_LCO_2021-12_NP	E358-L	02-Dec-2021	03-Dec-2021				07-Dec-2021	28 days	5 davs	✓
		1							,-	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)						<u> </u>			
Amber glass total (sulfuric acid)	oli (Low Level)						1	<u> </u>		
RG LI8 WS LAEMP LCO 2021-12 NP	E355-L	02-Dec-2021	03-Dec-2021				06-Dec-2021	28 days	4 davs	✓
		1							, -	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)						l			
Amber glass total (sulfuric acid)	oli (Low Level)									
RG LIDCOM WS LAEMP LCO 2021-12 NP	E355-L	02-Dec-2021	03-Dec-2021				06-Dec-2021	28 days	4 davs	✓
									, -	
Physical Tests : Acidity by Titration							<u> </u>			
HDPE										
RG_LI8_WS_LAEMP_LCO_2021-12_NP	E283	02-Dec-2021					06-Dec-2021	14 days	4 davs	1
									,	
Physical Tests : Acidity by Titration										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP	E283	02-Dec-2021					06-Dec-2021	14 days	4 davs	✓
									,	
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG LI8 WS LAEMP LCO 2021-12 NP	E290	02-Dec-2021					07-Dec-2021	14 days	5 davs	✓
· · · · · · · · · · · · · · · · · · ·		,						,0	,0	
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP	E290	02-Dec-2021					07-Dec-2021	14 days	5 days	✓
· · · · · · · · · · · · · · · · · · ·		:= = = ·						, 0	, .	

 Page
 : 7 of 16

 Work Order
 : CG2106342

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Method Sampling Date Extraction / Preparation Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date **Holding Times** Eval Actual Rec Actual Date **Physical Tests: Conductivity in Water** HDPE RG_LI8_WS_LAEMP_LCO_2021-12_NP E100 02-Dec-2021 07-Dec-2021 28 days 5 days ✓ Physical Tests : Conductivity in Water HDPE 1 RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP E100 02-Dec-2021 07-Dec-2021 28 days 5 days ----Physical Tests : ORP by Electrode HDPE E125 02-Dec-2021 09-Dec-2021 174 hrs RG_LI8_WS_LAEMP_LCO_2021-12_NP 0.25 hrs EHTR-FM Physical Tests: ORP by Electrode HDPE RG LIDCOM WS LAEMP LCO 2021-12 NP E125 02-Dec-2021 09-Dec-2021 0.25 175 hrs EHTR-FM hrs Physical Tests : pH by Meter HDPE E108 02-Dec-2021 07-Dec-2021 121 hrs æ RG_LI8_WS_LAEMP_LCO_2021-12_NP 0.25 EHTR-FM hrs Physical Tests : pH by Meter HDPE 02-Dec-2021 122 hrs RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP E108 07-Dec-2021 0.25 EHTR-FM hrs **Physical Tests: TDS by Gravimetry HDPE** RG_LI8_WS_LAEMP_LCO_2021-12_NP E162 02-Dec-2021 08-Dec-2021 ✓ 7 days 6 days Physical Tests : TDS by Gravimetry HDPE ✓ RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP E162 02-Dec-2021 08-Dec-2021 7 days 6 days Physical Tests: TSS by Gravimetry (Low Level) HDPE [TSS-WB] E160-L ✓ RG LI8 WS LAEMP LCO 2021-12 NP 02-Dec-2021 07-Dec-2021 7 days 5 days

 Page
 : 8 of 16

 Work Order
 : CG2106342

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

✓

7 days

180 days

09-Dec-2021

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Analyte Group Sampling Date Extraction / Preparation Analysis Method Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Physical Tests: TSS by Gravimetry (Low Level) HDPE [TSS-WB] E160-L 02-Dec-2021 07-Dec-2021 7 days ✓ RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP 5 days **Physical Tests: Turbidity by Nephelometry** HDPE RG_LI8_WS_LAEMP_LCO_2021-12_NP E121 02-Dec-2021 04-Dec-2021 3 days 2 days ✓ ----**Physical Tests: Turbidity by Nephelometry** HDPE E121 ✓ RG LIDCOM WS LAEMP LCO 2021-12 NP 02-Dec-2021 04-Dec-2021 3 days 2 days Total Metals: Total Chromium in Water by CRC ICPMS (Low Level) HDPE total (nitric acid) RG LI8 WS LAEMP LCO 2021-12 NP E420.Cr-L 02-Dec-2021 09-Dec-2021 180 7 days ✓ days Total Metals : Total Chromium in Water by CRC ICPMS (Low Level) HDPE total (nitric acid) E420.Cr-L 02-Dec-2021 ✓ RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP 09-Dec-2021 7 days 180 days Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved) E508-L ✓ RG_LI8_WS_LAEMP_LCO_2021-12_NP 02-Dec-2021 09-Dec-2021 28 days 7 days Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved) RG LIDCOM WS LAEMP LCO 2021-12 NP E508-L 02-Dec-2021 ✓ 09-Dec-2021 28 days 7 days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) ✓ RG_LI8_WS_LAEMP_LCO_2021-12_NP E420 02-Dec-2021 09-Dec-2021 7 days 180 days

02-Dec-2021

E420

Legend & Qualifier Definitions

HDPE total (nitric acid)

Total Metals: Total Metals in Water by CRC ICPMS

RG LIDCOM WS LAEMP LCO 2021-12 NP

 Page
 : 9 of 16

 Work Order
 : CG2106342

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Rec. HT: ALS recommended hold time (see units).

Page : 10 of 16 Work Order : CG2106342

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	360392	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	361249	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	359841	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	359406	1	14	7.1	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	359407	1	14	7.1	5.0	✓
Conductivity in Water	E100	361247	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	362028	1	19	5.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	364151	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	362029	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	359140	1	15	6.6	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	359694	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	359404	1	14	7.1	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	359408	1	14	7.1	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	359409	1	14	7.1	5.0	✓
ORP by Electrode	E125	362554	1	10	10.0	5.0	✓
pH by Meter	E108	361248	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	359405	1	14	7.1	5.0	✓
TDS by Gravimetry	E162	360675	1	8	12.5	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	362064	1	11	9.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	363938	1	18	5.5	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	363393	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	362065	1	18	5.5	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	359141	1	15	6.6	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	359827	2	24	8.3	5.0	✓
Turbidity by Nephelometry	E121	359720	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	360392	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	361249	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	359841	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	359406	1	14	7.1	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	359407	1	14	7.1	5.0	√
Conductivity in Water	E100	361247	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	362028	1	19	5.2	5.0	<u>√</u>
Dissolved Mercury in Water by CVAAS	E509	364151	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	362029	1	19	5.2	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	359140	1	15	6.6	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	359694	1	20	5.0	5.0	1

Page : 11 of 16 Work Order : CG2106342

Turbidity by Nephelometry

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

E235.F E235.NO3-L E235.NO2-L E125 E108	359404 359408 359409	QC 1 1 1	Regular	Actual	Frequency (%) Expected	Evaluation
E235.F E235.NO3-L E235.NO2-L E125	359404 359408	1				
E235.NO3-L E235.NO2-L E125	359408		14			
E235.NO3-L E235.NO2-L E125	359408		17	7.1	5.0	
E235.NO2-L E125			14	7.1	5.0	√
E125	359409	1	14	7.1	5.0	√
	362554	1	10	10.0	5.0	√
E108						√
						√
						√
						√
						√
						✓
						✓
						<u> </u>
E355-L						✓
E372-U	359827	2				✓
E160-L	360672	1	17	5.8	5.0	✓
E121	359720	1	20	5.0	5.0	✓
E283	360392	1	20	5.0	5.0	✓
E290	361249	1	20	5.0	5.0	✓
E298	359841	1	20	5.0	5.0	√
E235.Br-L	359406	1	14	7.1	5.0	√
E235.CI-L	359407	1	14	7.1	5.0	√
E100	361247	1	20	5.0	5.0	
	362028	1	19	5.2	5.0	
	364151	1	20	5.0	5.0	
E421	362029	1	19	5.2	5.0	<u> </u>
	359140	1	15	6.6	5.0	<u> </u>
	359694	1	20	5.0	5.0	<u> </u>
		1	14			
		1	14			
		1	14			
						<u> </u>
						<u> </u>
						<u>√</u>
			-			✓
				-		
-						
						√
E160-L	360672	1	17	5.8	5.0	<u>√</u>
	E235.SO4 E162 E420.Cr-L E318 E508-L E420 E355-L E372-U E160-L E121 E283 E290 E298 E235.Br-L	E235.SO4 359405 E162 360675 E420.Cr-L 362064 E318 363938 E508-L 363393 E420 362065 E355-L 359141 E372-U 359827 E160-L 360672 E121 359720 E283 360392 E290 361249 E298 359841 E235.Br-L 359406 E235.Cl-L 359407 E100 361247 E421.Cr-L 362028 E509 364151 E421 362029 E358-L 359140 E378-U 359694 E235.NO3-L 359408 E235.NO2-L 359409 E235.SO4 359405 E162 360675 E420.Cr-L 362064 E318 363938 E508-L 359141 E372-U 359827 E160-L 360672	E235.SO4 359405 1 E162 360675 1 E420.Cr-L 362064 1 E318 363938 1 E508-L 363393 1 E420 362065 1 E355-L 359141 1 E372-U 359827 2 E160-L 360672 1 E121 359720 1 E283 360392 1 E290 361249 1 E235.Br-L 359406 1 E235.Cr-L 359407 1 E100 361247 1 E410 36228 1 E421 362029 1 E421 362029 1 E358-L 359140 1 E378-U 359694 1 E378-U 359694 1 E235.F 359406 1 E335.F 359406 1 E235.NO3-L 359407 1 E421.Cr-L 362028 1 E358-L 359140 1 E378-U 359694 1 E235.NO3-L 359406 1 E235.NO3-L 359407 1 E359694 1 E235.NO3-L 359408 1 E235.NO3-L 359408 1 E235.NO3-L 359408 1 E235.NO3-L 359408 1 E235.NO3-L 359408 1 E235.NO3-L 359409 1 E235.NO3-L 359408 1 E235.NO3-L 359408 1 E235.NO3-L 359409 1 E235.NO3-L 359408 1 E355-L 360675 1 E420.Cr-L 362064 1 E318 363938 1 E508-L 363939 1 E420 362065 1 E355-L 359141 1 E372-U 359827 2	E235.SO4 359405 1 14 E162 360675 1 8 E420.Cr-L 362064 1 111 E318 363938 1 18 E508-L 363393 1 19 E420 362065 1 18 E355-L 359141 1 15 E372-U 359827 2 24 E160-L 360672 1 17 E121 359720 1 20 E283 360392 1 20 E298 359841 1 20 E298 359841 1 20 E235.Br-L 359406 1 14 E100 361247 1 20 E421.Cr-L 362028 1 19 E509 364151 1 20 E421 362029 1 19 E358-L 35940 1 10 E378-U 359694 1 20 E235.NO3-L 359408 1 14 E235.NO3-L 359408 1 14 E235.NO2-L 359409 1 14 E235.SO4 359409 1 14 E235.NO2-L 359409 1 14 E235.SO4 359409 1 14 E235.NO2-L 359409 1 14 E235.NO3-L 359409 1 14 E235.NO2-L 359409 1 14 E235.NO3-L 359408 1 14 E235.NO2-L 359409 1 14 E235.NO2-L 359409 1 14 E318 363938 1 18 E508-L 363393 1 19 E420 362065 1 18 E372-U 359827 2 24 E160-L 360672 1 17	E235.SO4 359405 1 14 7.1 E162 360675 1 8 12.5 E420.Cr-L 362064 1 111 9.0 E318 363938 1 18 5.5 E508-L 363938 1 19 5.2 E420 362065 1 18 5.5 E355-L 359141 1 15 6.6 E372-U 359827 2 24 8.3 E160-L 360672 1 17 5.8 E121 359720 1 20 5.0 E283 360392 1 20 5.0 E298 359841 1 20 5.0 E298 359841 1 20 5.0 E235.Br-L 359406 1 14 7.1 E100 361247 1 20 5.0 E421.Cr-L 362028 1 19 5.2 E509 364151 1 20 5.0 E421 362029 1 19 5.2 E509 364151 1 20 5.0 E421 362029 1 19 5.2 E358-L 359406 1 14 7.1 E100 361247 1 20 5.0 E421 362029 1 19 5.2 E509 364151 1 20 5.0 E421 362029 1 19 5.2 E358-L 359140 1 15 6.6 E378-U 359694 1 20 5.0 E235.F 359406 1 14 7.1 E235.NO3-L 359408 1 14 7.1	E235 SO4 359405 1 14 7.1 5.0 E162 360675 1 8 12.5 5.0 E420.Cr-L 362064 1 11 9.0 5.0 E318 363938 1 18 5.5 5.0 E508-L 363393 1 19 5.2 5.0 E420 362065 1 18 5.5 5.0 E325-L 359141 1 15 6.6 5.0 E372-U 359827 2 2 24 8.3 5.0 E121 359720 1 20 5.0 5.0 E283 360392 1 20 5.0 5.0 E290 361249 1 20 5.0 5.0 E235.Cl-L 359407 1 14 7.1 5.0 E335.Cl-L 359407 1 14 7.1 5.0 E421.Cr-L 362028 1 19 5.2 5.0 E421 362028 1 19 5.2 5.0 E421 362029 1 19 5.2 5.0 E338-U 359694 1 20 5.0 5.0 E338-U 359694 1 20 5.0 5.0 E338-U 359406 1 14 7.1 5.0 E421 362029 1 19 5.2 5.0 E335-L 362029 1 19 5.2 5.0 E335-L 359404 1 15 6.6 5.0 E335-L 359404 1 15 6.6 5.0 E335-L 359404 1 17 5.0 E335-C 359409 1 19 5.2 5.0 E335-L 359404 1 1 14 7.1 5.0 E335-C 359404 1 1 15 6.6 5.0 E338-U 359405 1 14 7.1 5.0 E335-C 359409 1 19 5.2 5.0 E335-C 359404 1 19 5.2 5.0 E335-C 359404 1 19 5.2 5.0 E335-C 359404 1 19 5.2 5.0 E335-C 359404 1 19 5.2 5.0 E335-C 359404 1 19 5.2 5.0 E335-C 359409 1 14 7.1 5.0

E121

359720

20

5.0

5.0

 Page
 : 12 of 16

 Work Order
 : CG2106342

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

			40090.	orres caronae epo	· · · · · · · · · · · · · · · · · · ·	a o moquement mil	····· op o o ···· o atio
Quality Control Sample Type			Co	ount			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	359841	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	359406	1	14	7.1	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	359407	1	14	7.1	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	362028	1	19	5.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	364151	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	362029	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	359140	1	15	6.6	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	359694	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	359404	1	14	7.1	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	359408	1	14	7.1	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	359409	1	14	7.1	5.0	✓
Sulfate in Water by IC	E235.SO4	359405	1	14	7.1	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	362064	1	11	9.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	363938	1	18	5.5	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	363393	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	362065	1	18	5.5	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	359141	1	15	6.6	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	359827	2	24	8.3	5.0	✓
					-		

Page : 13 of 16 Work Order : CG2106342

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is
	5			measured by immersion of a conductivity cell with platinum electrodes into a water
all by Makes	Calgary - Environmental	14/-4	ADIIA 4500 II (sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
	Calgary - Environmental			at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light
	2121			scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the
				platinum metal-reference electrode employed, measured in mV. For high accuracy test
T00 by 0 with the (Level 1)	Calgary - Environmental	147.4	ADIIA 0540 D (*** 1)	results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
	Calgary - Environmental			filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Cargary Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
				filter, with evaporation of the filtrate at $180 \pm 2^{\circ}\text{C}$ for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Chloride in Water by IC (Low Level)	E235.Cl-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
omenae in water by to (Lew Level)	L233.GI-L	Water	Li 71 000.1 (mod)	detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
Nieta in Material Office I	Calgary - Environmental	147.4	EDA 000 4 (
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
, , ,			, ,	detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Acidity by Titration		Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3
Addity by Titration	E283	vvalei	AFTIA 2010 B (IIIOU)	Addity is determined by potentionneline unation to pri 0.5
	Calgary - Environmental			
	5 ,			

Page : 14 of 16 Work Order : CG2106342

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a flow analyzer on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 15 of 16 Work Order : CG2106342

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.

 Page
 : 16 of 16

 Work Order
 : CG2106342

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order : CG2106342 Page : 1 of 18

Client : Teck Coal Limited : Calgary - Environmental Contact : Cybele Heddle : Cybele Heddle : Lyudmyla Shvets

:421 Pine Avenue Address :2559 29th Street NE

Sparwood BC Canada V0B 2G0

:---
Calgary, Alberta Canada T1Y 7B5

Telephone :+1 403 407 1800

Project : REGIONAL EFFECTS PROGRAM Date Samples Received : 03-Dec-2021 10:30

O : VPO00748510 Date Analysis Commenced : 03-Dec-2021

C-O-C number : Regional Effects Program Issue Date :15-Dec-2021 08:45

Sampler : Rick Smit
Site ----

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Address

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Elke Tabora		Inorganics, Calgary, Alberta
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta

 Page
 : 2 of 18

 Work Order
 : CG2106342

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 3 of 18

 Work Order
 : CG2106342

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

ub-Matrix: Water							Labora	ntory Duplicate (D	иг) кероп		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	,										
CG2106255-001	Anonymous	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR	
Physical Tests (QC	Lot: 360392)										
CG2106330-006	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	2.3	2.2	0.1	Diff <2x LOR	
Physical Tests (QC	Lot: 360675)										
CG2106330-006	Anonymous	solids, total dissolved [TDS]		E162	10	mg/L	<10	<10	0	Diff <2x LOR	
Physical Tests (QC	Lot: 361247)										
CG2106335-006	Anonymous	conductivity		E100	2.0	μS/cm	1410	1400	0.568%	10%	
Physical Tests (QC	Lot: 361248)										
CG2106335-006	Anonymous	рН		E108	0.10	pH units	8.01	8.06	0.622%	4%	
Physical Tests (QC	Lot: 361249)										
CG2106335-006	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	281	285	1.13%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	281	285	1.13%	20%	
Physical Tests (QC	Lot: 362554)										
CG2106335-004	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	430	424	1.31%	15%	
Anions and Nutrion	its (QC Lot: 359404)										
CG2106330-001	Anonymous	fluoride	16984-48-8	E235.F	0.100	mg/L	0.217	0.210	0.007	Diff <2x LOR	
Aniona and Nutrian	its (QC Lot: 359405)										
CG2106330-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	762	761	0.138%	20%	
	,	Canada (as 55 v)				J.	-			-	
CG2106330-001	ts (QC Lot: 359406) Anonymous	bromide	24959-67-9	E235.Br-L	0.250	mg/L	<0.250	<0.250	0	Diff <2x LOR	
	,	Sionina	2.000 0. 0	2200:21 2	0.200	9/2	0.200	0.200		Diii Extern	
Anions and Nutrien CG2106330-001	ts (QC Lot: 359407) Anonymous	chloride	16887-00-6	E235.CI-L	0.50	mg/L	1.24	1.09	0.15	Diff <2x LOR	
	·	Cilionde	10007 00 0	2200.01 E	0.00	mg/L	1.27	1.00	0.10	DIII -EX COIX	
Anions and Nutrien CG2106330-001	ts (QC Lot: 359408) Anonymous	witness (a.s. NI)	14797-55-8	E235.NO3-L	0.0250	ma/l	6.48	6.49	0.0509%	20%	l
	,	nitrate (as N)	14/9/-00-8	L233.INU3-L	0.0250	mg/L	0.40	0.49	0.030976	2070	
	its (QC Lot: 359409)	70.70 A AD	44707.05.0	Eggs NGC !	0.0050		40.0050	*0.0050		D:# 40 1 0E	
CG2106330-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
	ts (QC Lot: 359694)										
CG2106337-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0039	0.0042	0.0003	Diff <2x LOR	

Page : 4 of 18
Work Order : CG2106342
Client : Teck Coal Limited

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Anions and Nutrient	s (QC Lot: 359827) - co	ontinued										
CG2106330-005	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0113	0.0123	0.0010	Diff <2x LOR		
Anions and Nutrient	s (QC Lot: 359828)											
CG2106342-002	RG_LI8_WS_LAEMP_LCO _2021-12_NP	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0038	0.0032	0.0006	Diff <2x LOR		
Anions and Nutrient	s (QC Lot: 359841)											
CG2106335-006	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0500	mg/L	0.911	0.912	0.121%	20%		
Anions and Nutrient	s (QC Lot: 363938)											
CG2106331-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR		
Organic / Inorganic	Carbon (QC Lot: 35914	0)										
CG2106322-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.91	0.90	0.009	Diff <2x LOR		
Organic / Inorganic	Carbon (QC Lot: 35914	1)										
CG2106322-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	0.89	0.82	0.07	Diff <2x LOR		
Total Metals (QC Lo	ot: 362064)											
CG2106333-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00011	0.00011	0.000004	Diff <2x LOR		
Total Metals (QC Lo	ot: 362065)											
CG2106333-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0081	0.0061	0.0020	Diff <2x LOR		
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00039	0.00040	0.00001	Diff <2x LOR		
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00012	0.00012	0.000007	Diff <2x LOR		
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0591	0.0602	1.90%	20%		
		beryllium, total	7440-41-7	E420	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR		
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		boron, total	7440-42-8	E420	0.010	mg/L	0.021	0.022	0.001	Diff <2x LOR		
		cadmium, total	7440-43-9	E420	0.0050	mg/L	0.332 μg/L	0.000320	3.70%	20%		
		calcium, total	7440-70-2	E420	0.050	mg/L	114	115	1.23%	20%		
		cobalt, total	7440-48-4	E420	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR		
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR		
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0701	0.0720	2.57%	20%		
		magnesium, total	7439-95-4	E420	0.0050	mg/L	54.5	55.2	1.25%	20%		
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00027	0.00026	0.000004	Diff <2x LOR		
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00196	0.00199	1.36%	20%		
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.0101	0.0102	1.41%	20%		
		potassium, total	7440-09-7	E420	0.050	mg/L	1.99	2.02	1.09%	20%		
		selenium, total	7782-49-2	E420	0.050	mg/L	48.7 μg/L	0.0495	1.74%	20%		
		,	7440-21-3	E420	"""	J. –	· r.s. –		1			

Page : 5 of 18
Work Order : CG2106342
Client : Teck Coal Limited

ub-Matrix: Water							Laborat	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 362065) - continued										
CG2106333-001	Anonymous	silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	10.7	10.9	2.09%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.241	0.245	1.75%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	92.9	93.6	0.723%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000016	0.000016	0.00000002	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00389	0.00405	3.97%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0133	0.0140	0.0006	Diff <2x LOR	
Total Metals (QC Lo	ot: 363393)										
CG2106342-001	RG_LIDCOM_WS_LAEMP _LCO_2021-12_NP	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 μg/L	0.51	0.01	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 362028)										
CG2106331-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
issolved Metals (C	QC Lot: 362029)										
CG2106331-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0020	mg/L	0.0040	0.0027	0.0012	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00020	mg/L	0.00078	0.00077	0.00001	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00020	mg/L	0.0314	0.0322	2.43%	20%	
		beryllium, dissolved	7440-41-7	E421	0.040	mg/L	<0.040 µg/L	<0.000040	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.020	mg/L	0.030	0.031	0.001	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0100	mg/L	0.661 µg/L	0.000668	0.994%	20%	
		calcium, dissolved	7440-70-2	E421	0.100	mg/L	298	291	2.24%	20%	
		cobalt, dissolved	7440-48-4	E421	0.20	mg/L	0.20 μg/L	<0.00020	0.000002	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0020	mg/L	0.401	0.409	1.86%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0100	mg/L	163	159	2.14%	20%	
		manganese, dissolved	7439-96-5	E421	0.00020	mg/L	0.00220	0.00215	2.30%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000100	mg/L	0.00354	0.00369	4.16%	20%	
		nickel, dissolved	7440-02-0	E421	0.00100	mg/L	0.0618	0.0613	0.911%	20%	
		potassium, dissolved	7440-09-7	E421	0.100	mg/L	7.16	7.11	0.613%	20%	
		,			1	J	1		1	1	

 Page
 : 6 of 18

 Work Order
 : CG2106342

 Client
 : Teck Coal Limited

Sub-Matrix: Water	-Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier			
Dissolved Metals (QC Lot: 362029) - con	inued												
CG2106331-001	Anonymous	silicon, dissolved	7440-21-3	E421	0.100	mg/L	1.83	1.83	0.0892%	20%				
		silver, dissolved	7440-22-4	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR				
		sodium, dissolved	7440-23-5	E421	0.100	mg/L	11.3	11.4	1.01%	20%				
		strontium, dissolved	7440-24-6	E421	0.00040	mg/L	0.504	0.508	0.748%	20%				
		sulfur, dissolved	7704-34-9	E421	1.00	mg/L	295	297	0.595%	20%				
		thallium, dissolved	7440-28-0	E421	0.000020	mg/L	0.000047	0.000045	0.000002	Diff <2x LOR				
		tin, dissolved	7440-31-5	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR				
		titanium, dissolved	7440-32-6	E421	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR				
		uranium, dissolved	7440-61-1	E421	0.000020	mg/L	0.0151	0.0152	0.765%	20%				
		vanadium, dissolved	7440-62-2	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR				
		zinc, dissolved	7440-66-6	E421	0.0020	mg/L	0.0338	0.0337	0.339%	20%				
Dissolved Metals (QC Lot: 364151)													
CG2106315-008	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR				

 Page
 : 7 of 18

 Work Order
 : CG2106342

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Metho	d	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 359720)						
urbidity	E121		0.1	NTU	<0.10	
Physical Tests (QCLot: 360392)						
acidity (as CaCO3)	E283		2	mg/L	2.2	
Physical Tests (QCLot: 360672)						
solids, total suspended [TSS]	E160-l	-	1	mg/L	<1.0	
Physical Tests (QCLot: 360675)						
solids, total dissolved [TDS]	E162		10	mg/L	<10	
Physical Tests (QCLot: 361247)						
conductivity	E100		1	μS/cm	<1.0	
Physical Tests (QCLot: 361249)						
alkalinity, bicarbonate (as CaCO3)	E290		1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290		1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290		1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290		1	mg/L	<1.0	
Anions and Nutrients (QCLot: 359404)						
luoride	16984-48-8 E235.F	=	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 359405)						
sulfate (as SO4)	14808-79-8 E235.5	504	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 359406)						
promide	24959-67-9 E235.E	3r-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 359407)						
chloride	16887-00-6 E235.0	CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 359408)						
nitrate (as N)	14797-55-8 E235.1	NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 359409)						
nitrite (as N)	14797-65-0 E235.1	NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 359694)						
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-	J	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 359827)						
phosphorus, total	7723-14-0 E372-I	J 	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 359828)						
phosphorus, total	7723-14-0 E372-I	i	0.002	mg/L	<0.0020	

Page : 8 of 18
Work Order : CG2106342
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 35984		201		Nesuit	400
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 36393					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Organic / Inorganic Carbon (QCLot:	359140)				
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot:	359141)				
carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 362064)					
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 362065)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.0000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6 E420	0.01	mg/L	<0.010	
lead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	

Page : 9 of 18
Work Order : CG2106342
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 362065) - con	itinued				
tin, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	
uranium, total	7440-61-1 E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2 E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 363393)					
mercury, total	7439-97-6 E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 362028)					
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 362029)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.00010	

 Page
 : 10 of 18

 Work Order
 : CG2106342

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 362029) - c	ontinued					
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 364151)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050	

Page : 11 of 18 Work Order : CG2106342

: Teck Coal Limited Client

: REGIONAL EFFECTS PROGRAM Project

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Con	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 359720)									
turbidity		E121	0.1	NTU	200 NTU	105	85.0	115	
Physical Tests (QCLot: 360392)									
acidity (as CaCO3)		E283	2	mg/L	50 mg/L	110	85.0	115	
Physical Tests (QCLot: 360672)									
solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	103	85.0	115	
Physical Tests (QCLot: 360675)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	100	85.0	115	
Physical Tests (QCLot: 361247)									
conductivity		E100	1	μS/cm	146.9 µS/cm	102	90.0	110	
Physical Tests (QCLot: 361248)									
рН		E108		pH units	7 pH units	99.6	98.6	101	
Physical Tests (QCLot: 361249)									
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	100	85.0	115	
Physical Tests (QCLot: 362554)									
oxidation-reduction potential [ORP]		E125		mV	220 mV	102	95.4	104	
Anions and Nutrients (QCLot: 359404)	16984-48-8	E235 E	0.02	mg/L	4	103	90.0	110	
	10904-40-0	E233.F	0.02	IIIg/L	1 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 359405) sulfate (as SO4)	14808-79-8	E235 SO4	0.3	mg/L	100 mg/L	100	90.0	110	
	14000-73-0	L200.004	0.5	mg/L	100 Hig/L	100	90.0	110	
Anions and Nutrients (QCLot: 359406) bromide	24959-67-9	E235 Br-I	0.05	mg/L	0.5 mg/L	97.4	85.0	115	
	2,000 0, 0	2200.51 2	0.00	g/_	0.5 mg/L	57.4	00.0	113	
Anions and Nutrients (QCLot: 359407)	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	100	90.0	110	
				3,	100 mg/E	100	00.0	110	
Anions and Nutrients (QCLot: 359408) nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	99.6	90.0	110	
				3,	2.0 mg/2	00.0	00.0		
Anions and Nutrients (QCLot: 359409) nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	99.1	90.0	110	
,				<u> </u>	g/2	23	2 2 . 0		
Anions and Nutrients (QCLot: 359694) phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	95.1	80.0	120	
Anions and Nutrients (QCLot: 359827)					J				
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	8.02 mg/L	98.5	80.0	120	
Anions and Nutrients (QCLot: 359828)					J				
Afficies and Nutrients (QCLOt: 359628)									

 Page
 : 12 of 18

 Work Order
 : CG2106342

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Matrix: Water						Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 359828) - c	continued							
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	8.02 mg/L	94.6	80.0	120	
Anions and Nutrients (QCLot: 359841)								
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	88.6	85.0	115	
Anions and Nutrients (QCLot: 363938)								
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	95.6	75.0	125	
Organic / Inorganic Carbon (QCLot: 35914	40)							
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	10 mg/L	105	80.0	120	
Organic / Inorganic Carbon (QCLot: 35914	41)							
carbon, total organic [TOC]	E355-L	0.5	mg/L	10 mg/L	110	80.0	120	
Total Metals (QCLot: 362064)								
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	101	80.0	120	
Total Metals (QCLot: 362065)								1
aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	99.4	80.0	120	
antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	104	80.0	120	
arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	102	80.0	120	
barium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	98.5	80.0	120	
beryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	101	80.0	120	
bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	98.1	80.0	120	
boron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	98.7	80.0	120	
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	101	80.0	120	
calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	102	80.0	120	
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	100	80.0	120	
copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	99.8	80.0	120	
iron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	97.7	80.0	120	
lead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	101	80.0	120	
lithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	102	80.0	120	
magnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	99.3	80.0	120	
manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	99.6	80.0	120	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	99.8	80.0	120	
nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	97.9	80.0	120	
potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	108	80.0	120	
selenium, total	7782-49-2 E420	0.00005	mg/L	1 mg/L	98.1	80.0	120	
silicon, total	7440-21-3 E420	0.1	mg/L	10 mg/L	100	80.0	120	
silver, total	7440-22-4 E420	0.00001	mg/L	0.1 mg/L	95.7	80.0	120	
sodium, total	7440-23-5 E420	0.05	mg/L	50 mg/L	106	80.0	120	

 Page
 : 13 of 18

 Work Order
 : CG2106342

 Client
 : Teck Coal Limited

Second No. Sec	Sub-Matrix: Water	Laboratory Control Sample (LCS) Report								
Total Metals (OCLot: 362085) - continued						Spike	Recovery (%)	Recovery	Limits (%)	
Marchander 7400-746 E420 0.0002 mgl. 0.28 mgl. 110 80.0 120	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Communication Type February	Total Metals (QCLot: 362065) - continued									
the litter in total	strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	110	80.0	120	
ten, total	sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	95.0	80.0	120	
terminn, total 7440-326 E420 0.0033 mgl. 0.25 mgl. 99.2 0.0 120 120 120 120 120 120 120 120 120 12	thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	101	80.0	120	
Parameter Para	tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	101	80.0	120	
wandium, total 440-68-2 6420 0.0085 mg/L 0.5 mg/L 0.6 mg	titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	99.2	80.0	120	
Internation (Internation of Standard Part of Standard Par	uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	102	80.0	120	
Total Metals (OCLot: 36393) Mercury, total 7439-976 E508-L 0.5 ng/L 5 ng/L 94.2 80.0 120	vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	104	80.0	120	
Part Part	zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	99.1	80.0	120	
Dissolved Metals (QCLot: 362028) T440-47-3 E421 Cr.L 0.0001 mg/L 0.25 mg/L 101 80.0 120 mg/L 100 120	Total Metals (QCLot: 363393)									
Dissorted Metals (QCLot: 362029) September Marchan	mercury, total	7439-97-6	E508-L	0.5	ng/L	5 ng/L	94.2	80.0	120	
Dissorted Metals (QCLot: 362029) September Marchan										
Dissolved Metals (QCLot: 362029) E421 0.001 mg/L 2 mg/L 102 80.0 120 2 mg/L 3 mg/L	Dissolved Metals (QCLot: 362028)									
alaminum, dissolved 749-96-5 E421 0.001 mg/L 2 mg/L 102 80.0 120	chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	101	80.0	120	
antimony, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 102 80.0 120	Dissolved Metals (QCLot: 362029)									
arsenic, dissolved 7440-38-2 E421 0.0001 mg/L 1 mg/L 104 80.0 120	aluminum, dissolved				mg/L	2 mg/L	102	80.0	120	
barlum, dissolved 7440-39-3	antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	102	80.0	120	
beryllium, dissolved 7440-41-7 E421	arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	104	80.0	120	
bismuth, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 95.7 80.0 120	barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	103	80.0	120	
boron, dissolved 7440-42-8 de21 0.01 mg/L 1 mg/L 92.1 80.0 120	beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	99.8	80.0	120	
cadnium, dissolved 7440-43-9 E421 0.000005 mg/L 0.1 mg/L 98.6 80.0 120 calcium, dissolved 7440-70-2 E421 0.005 mg/L 50 mg/L 99.1 80.0 120 cobalt, dissolved 7440-80-8 E421 0.0001 mg/L 0.25 mg/L 99.4 80.0 120 copper, dissolved 7440-80-8 E421 0.0002 mg/L 0.25 mg/L 99.4 80.0 120 copper, dissolved 7439-80-6 E421 0.0002 mg/L 0.25 mg/L 99.2 80.0 120 copper, dissolved 7439-80-6 E421 0.001 mg/L 0.5 mg/L 98.6 80.0 120 copper, dissolved 7439-90-7 E421 0.0005 mg/L 0.5 mg/L 98.6 80.0 120 copper, dissolved 7439-80-6 E421 0.0005 mg/L 0.5 mg/L 98.4 80.0 120 copper, dissolved 7439-90-7 E421 0.0005 mg/L 0.25 mg/L 98.4 80.0 120 copper, dissolved 7439-80-6 E421 0.001 mg/L 0.25 mg/L 98.4 80.0 120 copper, dissolved 7439-90-7 E421 0.0005 mg/L 0.25 mg/L 102 80.0 120 copper, dissolved 7439-90-7 E421 0.0005 mg/L 0.25 mg/L 100 80.0 120 copper, dissolved 7439-90-7 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 copper, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 101 80.0 120 copper, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 105 80.0 120 copper, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 10 mg/L 100 80.0 120 copper, dissolved 1440-02-1 E421 0.0005 mg/L 0.5 mg/L 10 mg/L 100 80.0 120 copper, dissolved 1440-02-1 E421 0.0005 mg/L 0.05 mg/L 10 mg/L 10 mg/L 100 80.0 120 copper, dissolved 1440-02-1 E421 0.0005 mg/L 10 mg/L 10 mg/L 10 mg/L 100 80.0 120 copper, dissolved 1440-02-1 E421 0.0005 mg/L 10 mg/L 10 mg/L 10 mg/L 10 mg/L 100 80.0 120 copper, dissolved 1440-02-1 E421 0.0005 mg/L 10 mg/L 10 mg/L 10 mg/L 10 mg/L 100 80.0 120 copper, dissolved 1440-02-1 E421 0.0005 mg/L 10 mg/L 10 mg/L 10 mg/L 10 mg/L 100 80.0 120 copper, dissolved 1440-02-1 E421 0.0005 mg/L 10 mg/L 10 mg/L 10 mg/L 100 80.0 120 copper, dissolved 1440-02-1 E421 0.0005 mg/L 10 mg/L 10 mg/L 10 mg/L 10 mg/L 100 80.0 120 copper, dissolved 1440-02-1 E421 0.0005 mg/L 10 mg/L 10 mg/L 10 mg/L 10 mg/L 100 80.0 120 copper, dissolved 1440-02-1 E421 0.0005 mg/L 10 mg	bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	95.7	80.0	120	
calcium, dissolved 7440-70-2 cobalt, dissolved 7440-84-8 copper, dissolved 7440-84-8 copper, dissolved 7440-80-8 copper, dissolved 7439-89-6 copper, dissolved 7440-0-9 copper, di	boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	92.1	80.0	120	
cobalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 99.4 80.0 120	cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	98.6	80.0	120	
copper, dissolved 7440-50-8 (iron, dissolved E421 0.0002 mg/L 0.25 mg/L 98.2 80.0 120	calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	99.1	80.0	120	
iron, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 101 80.0 120 lead, dissolved 7439-92-1 E421 0.0005 mg/L 0.25 mg/L 96.6 80.0 120 lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 98.4 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 102 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 molybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 potassium, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 101 80.0 120 selenium, dissolved 7440-03-7 E421 0.05 mg/L 100 80.0 120 selenium, dissolved 7440-03-7 E421 0.05 mg/L 100 80.0 120 selenium, dissolved 7440-03-7 E421 0.05 mg/L 100 80.0 120 selenium, dissolved 7440-21-3 E421 0.05 mg/L 10	cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	99.4	80.0	120	
lead, dissolved 7439-92-1 E421 0.00005 mg/L 0.25 mg/L 96.6 80.0 120 lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 98.4 80.0 120 magnesium, dissolved 7439-96-5 E421 0.005 mg/L 0.25 mg/L 102 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 101 80.0 120 mickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.55 mg/L 101 80.0 120 potassium, dissolved 7440-02-0 E421 0.0005 mg/L 0.55 mg/L 101 80.0 120 selenium, dissolved 7440-02-7 E421 0.005 mg/L 50 mg/L 105 80.0 120 selenium, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 100 80.0 120 selenium, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 100 80.0 120 silicon, dissolved 7440-21-3 E421 0.0005 mg/L 10 mg/L 1	copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	98.2	80.0	120	
lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 98.4 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 102 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 nickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.55 mg/L 101 80.0 120 potassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 105 80.0 120 selenium, dissolved 7782-49-2 E421 0.0005 mg/L 10 m	iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	101	80.0	120	
magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 102 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 molybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 mickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 101 80.0 120 potassium, dissolved 7440-09-7 Selenium, dissolved 7782-49-2 E421 0.005 mg/L 50 mg/L 105 80.0 120 selenium, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 100 80.0 120 silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 10 mg/L 10 mg/L 100 80.0 120 silver, dissolved 7440-22-4 E421 0.0001 mg/L 0.1 mg/L 10 mg/L 109 80.0 120 silver, dissolved 7440-22-4 E421 0.0001 mg/L 0.1 mg/L 92.9 80.0 120	lead, dissolved	7439-92-1	E421		mg/L	0.5 mg/L	96.6	80.0	120	
manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.5 mg/L 101 80.0 120 nickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 101 80.0 120 potassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 105 80.0 120 selenium, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 100 80.0 120 silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 10 mg/L 10 mg/L 109 80.0 120 silver, dissolved 7440-22-4 E421 0.0001 mg/L 0.1 mg/L 10 mg/L 109 80.0 120 silver, dissolved 7440-22-4 E421 0.0001 mg/L 0.1 mg/L 92.9 80.0 120	lithium, dissolved				mg/L	0.25 mg/L	98.4	80.0	120	
molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 nickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 101 80.0 120 potassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 105 80.0 120 selenium, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 100 80.0 120 silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 10 mg/L 10 mg/L 109 80.0 120 silver, dissolved 7440-22-4 E421 0.0001 mg/L 0.1 mg/L 92.9 80.0 120	magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	102	80.0	120	
nickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 101 80.0 120 potassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 105 80.0 120 selenium, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 100 80.0 120 silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 10 mg/L 109 80.0 120 silver, dissolved 7440-22-4 E421 0.0001 mg/L 0.1 mg/L 92.9 80.0 120	manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	100	80.0	120	
potassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 105 80.0 120 selenium, dissolved 7782-49-2 E421 0.00005 mg/L 1 mg/L 100 80.0 120 silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 10 mg/L 109 80.0 120 silver, dissolved 7440-22-4 E421 0.0001 mg/L 0.1 mg/L 92.9 80.0 120	molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	101	80.0	120	
selenium, dissolved 7782-49-2 E421 0.00005 mg/L 1 mg/L 100 80.0 120 silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 109 80.0 120 silver, dissolved 7440-22-4 E421 0.0001 mg/L 0.1 mg/L 92.9 80.0 120	nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	101	80.0	120	
silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 109 80.0 120 silver, dissolved 7440-22-4 E421 0.00001 mg/L 0.1 mg/L 92.9 80.0 120	potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	105	80.0	120	
silver, dissolved 7440-22-4 E421 0.00001 mg/L 0.1 mg/L 92.9 80.0 120	selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	100	80.0	120	
	silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	109	80.0	120	
sodium, dissolved 7440-23-5 E421 0.05 mg/L 50 mg/L 102 80.0 120	silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	92.9	80.0	120	
	sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	102	80.0	120	

 Page
 : 14 of 18

 Work Order
 : CG2106342

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Matrix: Water						Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier				
Dissolved Metals (QCLot: 362029) - con	ntinued												
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	99.8	80.0	120					
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	91.9	80.0	120					
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	98.5	80.0	120					
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	98.3	80.0	120					
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	100.0	80.0	120					
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	97.7	80.0	120					
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	102	80.0	120					
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	99.4	80.0	120					
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	96.8	80.0	120					

 Page
 : 15 of 18

 Work Order
 : CG2106342

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water	ub-Matrix: Water					Matrix Spike (MS) Report						
					Spi	ike	Recovery (%)	Recovery	Limits (%)			
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Anions and Nuti	rients (QCLot: 359404)											
CG2106330-006	Anonymous	fluoride	16984-48-8	E235.F	0.870 mg/L	1 mg/L	87.0	75.0	125			
Anions and Nuti	rients (QCLot: 359405)											
CG2106330-006	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	82.4 mg/L	100 mg/L	82.4	75.0	125			
Anions and Nuti	rients (QCLot: 359406)											
CG2106330-006	Anonymous	bromide	24959-67-9	E235.Br-L	0.402 mg/L	0.5 mg/L	80.4	75.0	125			
Anions and Nuti	rients (QCLot: 359407)											
CG2106330-006	Anonymous	chloride	16887-00-6	E235.CI-L	82.5 mg/L	100 mg/L	82.5	75.0	125			
Anions and Nuti	rients (QCLot: 359408)											
CG2106330-006	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.07 mg/L	2.5 mg/L	82.9	75.0	125			
Anions and Nuti	rients (QCLot: 359409)											
CG2106330-006	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.409 mg/L	0.5 mg/L	81.9	75.0	125			
Anions and Nuti	rients (QCLot: 359694)											
CG2106342-001	RG_LIDCOM_WS_LAEMP_ LCO_2021-12_NP	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0486 mg/L	0.05 mg/L	97.2	70.0	130			
Anions and Nuti	rients (QCLot: 359827)											
CG2106330-006	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0478 mg/L	0.0676 mg/L	70.7	70.0	130			
Anions and Nuti	rients (QCLot: 359828)											
CG2106357-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0496 mg/L	0.0676 mg/L	73.4	70.0	130			
Anions and Nuti	rients (QCLot: 359841)											
CG2106353-014	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.109 mg/L	0.1 mg/L	109	75.0	125			
Anions and Nuti	rients (QCLot: 363938)											
CG2106331-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	1.31 mg/L	2.5 mg/L	52.4	70.0	130	MSTN		
Organic / Inorga	nic Carbon (QCLot: 359	140)										
CG2106322-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	28.0 mg/L	23.9 mg/L	117	70.0	130			
Organic / Inorga	nic Carbon (QCLot: 359	141)										
CG2106322-001	Anonymous	carbon, total organic [TOC]		E355-L	29.8 mg/L	23.9 mg/L	125	70.0	130			
Total Metals (Q	CLot: 362064)											
CG2106335-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0394 mg/L	0.04 mg/L	98.6	70.0	130			

Page : 16 of 18
Work Order : CG2106342
Client : Teck Coal Limited

Sub-Matrix: Water			Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
otal Metals (QC	Lot: 362065)									
CG2106335-001	Anonymous	aluminum, total	7429-90-5	E420	0.203 mg/L	0.2 mg/L	102	70.0	130	
		antimony, total	7440-36-0	E420	0.0203 mg/L	0.02 mg/L	101	70.0	130	
		arsenic, total	7440-38-2	E420	0.0202 mg/L	0.02 mg/L	101	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0382 mg/L	0.04 mg/L	95.5	70.0	130	
		bismuth, total	7440-69-9	E420	0.00896 mg/L	0.01 mg/L	89.6	70.0	130	
		boron, total	7440-42-8	E420	0.097 mg/L	0.1 mg/L	97.4	70.0	130	
		cadmium, total	7440-43-9	E420	0.00393 mg/L	0.004 mg/L	98.2	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0190 mg/L	0.02 mg/L	95.1	70.0	130	
		copper, total	7440-50-8	E420	0.0182 mg/L	0.02 mg/L	91.2	70.0	130	
		iron, total	7439-89-6	E420	1.86 mg/L	2 mg/L	93.2	70.0	130	
		lead, total	7439-92-1	E420	0.0180 mg/L	0.02 mg/L	90.3	70.0	130	
		lithium, total	7439-93-2	E420	0.0954 mg/L	0.1 mg/L	95.4	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0189 mg/L	0.02 mg/L	94.4	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0203 mg/L	0.02 mg/L	102	70.0	130	
		nickel, total	7440-02-0	E420	0.0359 mg/L	0.04 mg/L	89.8	70.0	130	
		potassium, total	7440-09-7	E420	4.11 mg/L	4 mg/L	103	70.0	130	
		selenium, total	7782-49-2	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		silicon, total	7440-21-3	E420	9.26 mg/L	10 mg/L	92.6	70.0	130	
		silver, total	7440-22-4	E420	0.00393 mg/L	0.004 mg/L	98.2	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.00369 mg/L	0.004 mg/L	92.3	70.0	130	
		tin, total	7440-31-5	E420	0.0202 mg/L	0.02 mg/L	101	70.0	130	
		titanium, total	7440-32-6	E420	0.0396 mg/L	0.04 mg/L	99.0	70.0	130	
		uranium, total	7440-61-1	E420	ND mg/L	0.004 mg/L	ND	70.0	130	
		vanadium, total	7440-62-2	E420	0.102 mg/L	0.1 mg/L	102	70.0	130	
		zinc, total	7440-66-6	E420	0.366 mg/L	0.4 mg/L	91.6	70.0	130	
otal Metals (QC	Lot: 363393)									
CG2106342-002	RG_LI8_WS_LAEMP_LCC 2021-12 NP	_ mercury, total	7439-97-6	E508-L	4.27 ng/L	5 ng/L	85.4	70.0	130	
issolved Metals	(QCLot: 362028)									
CG2106331-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0806 mg/L	0.08 mg/L	101	70.0	130	

 Page
 : 17 of 18

 Work Order
 : CG2106342

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Matrix: Water						Matrix Spil	ke (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	(QCLot: 362029)									
CG2106331-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.400 mg/L	0.4 mg/L	100.0	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0411 mg/L	0.04 mg/L	103	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0409 mg/L	0.04 mg/L	102	70.0	130	
		barium, dissolved	7440-39-3	E421	0.0388 mg/L	0.04 mg/L	97.1	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0759 mg/L	0.08 mg/L	94.9	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.0167 mg/L	0.02 mg/L	83.5	70.0	130	
		boron, dissolved	7440-42-8	E421	0.172 mg/L	0.2 mg/L	86.2	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00805 mg/L	0.008 mg/L	101	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0378 mg/L	0.04 mg/L	94.5	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0370 mg/L	0.04 mg/L	92.4	70.0	130	
		iron, dissolved	7439-89-6	E421	3.92 mg/L	4 mg/L	98.0	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0370 mg/L	0.04 mg/L	92.6	70.0	130	
		lithium, dissolved	7439-93-2	E421	ND mg/L	0.1 mg/L	ND	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0399 mg/L	0.04 mg/L	99.8	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0424 mg/L	0.04 mg/L	106	70.0	130	
		nickel, dissolved	7440-02-0	E421	ND mg/L	0.04 mg/L	ND	70.0	130	
		potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130	
		selenium, dissolved	7782-49-2	E421	ND mg/L	0.04 mg/L	ND	70.0	130	
		silicon, dissolved	7440-21-3	E421	18.8 mg/L	20 mg/L	93.9	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00775 mg/L	0.008 mg/L	96.9	70.0	130	
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00714 mg/L	0.008 mg/L	89.2	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0416 mg/L	0.04 mg/L	104	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0830 mg/L	0.08 mg/L	104	70.0	130	
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.004 mg/L	ND	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.208 mg/L	0.2 mg/L	104	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.776 mg/L	0.8 mg/L	96.9	70.0	130	
Dissolved Metals	(QCLot: 364151)									
CG2106315-009	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000980 mg/L	0.0001 mg/L	98.0	70.0	130	

Page : 18 of 18
Work Order : CG2106342
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Qualifiers

Qualifier	Description
MSTN	TKN Matrix Spike recovery was low due to interference from high nitrate, which causes negative bias on TKN.

SELENIUM SPECIATION

BAL Final Report 2105072 (Finalized May 17, 2021) Confidential BAL Final Report 2105072

May 17, 2021

Teck Resources Limited - Vancouver Cait Good 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 Cait.Good@teck.com

Re: Regional Effects Program

Dear Cait Good,

On May 6, 2021, Brooks Applied Labs (BAL) received twenty (20) aqueous samples.

The samples were logged-in for total recoverable selenium [Se], dissolved Se [Se], and Se speciation analyses, according to the chain-of-custody (COC) form. The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL; sample fractions for total recoverable and dissolved Se had also been preserved by the client prior to receipt. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Se Speciation

Each aqueous sample was analyzed for Se speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, Se speciation was defined as dissolved selenite [Se(IV)], selenate [Se(IV)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate $[SeSO_3]$, and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [UnkSeSp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional

Confidential BAL Final Report 2105072

Se species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting Se species.

MeSe(VI) was observed at concentrations above the MDL in samples 2105072-21 and 2105072-30. 2105072-21 and 2105072-30 were subsequently analyzed with MeSe(VI) spikes on top of the samples and the presence of MeSe(VI) was confirmed in each case. With the confirmations that the MeSe(VI) peaks were appropriately assigned, the selenium speciation results are reported from the initial injections in batch B211230.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific method detection limits (MDLs), MRLs, and other details.

In instances when a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries, and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the RPD of the MS/MSD set was not calculated (N/C).

Aside from concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited met all NELAP requirements. For more information, please see the Report Information page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager

Brooks Applied Labs

Jeremy@brooksapplied.com

Confidential

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2105072 Client PM: Cait Good Client Project: Regional Effects Program

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	scv	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	Т	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- Z Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Confidential

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2105072 Client PM: Cait Good Client Project: Regional Effects Program

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)
Issued on: July 27, 2020; Valid to: June 30, 2021

Certificate Number: E87982-35

Method	Matrix	TNI Accredited Analyte(s)		
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn		
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn		
EPA 6020	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn		
	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn		
BAL-5000	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness		
	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn		
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn		
EPA 1640	Non-Potable Waters	Ag, As, Cd, Cu, Pb, Ni, Zn		
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury		
EPA 1630	Non-Potable Waters	Methyl Mercury		
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury		
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs		
BAL-4200	Non-Potable Waters	Se(IV), Se(VI)		
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)		
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)		
SM2340B	Non-Potable Waters	Hardness		

Confidential

Project ID: TRL-VC1701 **PM**: Jeremy Maute

BAL Final Report 2105072
Client PM: Cait Good
Client Project: Regional Effects Program

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: November 20, 2020; Valid to: March 20, 2022

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes	
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn	
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)	Not Accredited	
EPA 1640 Mod	Ag, As, Cd, Cu, Pb, Ni, Zn Cr, Co, Se, Tl, V (ISO Only)		Not Accredited	
EPA 1631E Mod BAL-3100 (waters)	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury	
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)	
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic, As(III) (ISO Only)	Not Accredited	
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)	Not Accredited	
AOAC 2015.01 Mod BAL-5000 by BAL-5040	Food	As, Cd, Hg, Pb	Not Accredited	
	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited	
BAL-4100	Biological by BAL-4115	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited	
BAL-4101	Food by BAL-4116	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited	
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited	
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)	
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)	Not Accredited	
SM2340B	Non-Potable Waters	Hardness	Hardness	
SM 2540G EPA 160.3 BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight	

⁽¹⁾ ISO/IEC 17025:2017 - Certificate Number ADE-1447.2

⁽²⁾ Non-Governmental NELAC Institute 2016 Standard - Certificate Number ADE-1447.1

⁽³⁾ Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.3 for DOE.

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2105072
Client PM: Cait Good
Client Project: Regional Effects Program

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_LI24_WS_LAEMP_LCO_2021-0 4_NP_NAL	2105072-01	WS	Sample	04/26/2021	05/06/2021
RG_LI24_WS_LAEMP_LCO_2021-0 4_NP_NAL	2105072-02	WS	Sample	04/26/2021	05/06/2021
 RG_LI24_WS_LAEMP_LCO_2021-0 4_NP	2105072-03	WS	Sample	04/26/2021	05/06/2021
_ RG_SLINE_WS_LAEMP_LCO_2021 -04_NP_NAL	2105072-04	WS	Sample	04/26/2021	05/06/2021
RG_SLINE_WS_LAEMP_LCO_2021 -04_NP_NAL	2105072-05	WS	Sample	04/26/2021	05/06/2021
RG_SLINE_WS_LAEMP_LCO_2021 -04_NP	2105072-06	WS	Sample	04/26/2021	05/06/2021
RG_LISP24_WS_LAEMP_LCO_202 1-04_NP_NAL	2105072-07	WS	Sample	04/27/2021	05/06/2021
RG_LISP24_WS_LAEMP_LCO_202 1-04_NP_NAL	2105072-08	WS	Sample	04/27/2021	05/06/2021
RG_LISP24_WS_LAEMP_LCO_202 1-04 NP	2105072-09	WS	Sample	04/27/2021	05/06/2021
RG_LILC3_WS_LAEMP_LCO_2021- 04_NP_NAL	2105072-10	WS	Sample	04/27/2021	05/06/2021
RG_LILC3_WS_LAEMP_LCO_2021- 04_NP_NAL	2105072-11	WS	Sample	04/27/2021	05/06/2021
RG_LILC3_WS_LAEMP_LCO_2021- 04_NP	2105072-12	WS	Sample	04/27/2021	05/06/2021
RG_LCUT_WS_LAEMP_LCO_2021- 04_NP_NAL	2105072-13	WS	Sample	04/27/2021	05/06/2021
RG_LCUT_WS_LAEMP_LCO_2021- 04_NP_NAL	2105072-14	WS	Sample	04/27/2021	05/06/2021
RG_LCUT_WS_LAEMP_LCO_2021- 04_NP	2105072-15	WS	Sample	04/27/2021	05/06/2021
RG_RIVER_WS_LAEMP_LCO_2021 -04_NP_NAL	2105072-16	WS	Sample	04/27/2021	05/06/2021
RG_RIVER_WS_LAEMP_LCO_2021 -04_NP_NAL	2105072-17	WS	Sample	04/27/2021	05/06/2021
RG_RIVER_WS_LAEMP_LCO_2021 -04_NP	2105072-18	WS	Sample	04/27/2021	05/06/2021
RG_LI8_WS_LAEMP_LCO_2021-04 _NP_NAL	2105072-19	ws	Sample	04/28/2021	05/06/2021
RG_LI8_WS_LAEMP_LCO_2021-04 _NP_NAL	2105072-20	ws	Sample	04/28/2021	05/06/2021
RG_LI8_WS_LAEMP_LCO_2021-04 _NP	2105072-21	WS	Sample	04/28/2021	05/06/2021

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2105072 Client PM: Cait Good Client Project: Regional Effects Program

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_FO23_WS_LAEMP_LCO_2021-	2105072-22	WS	Sample	04/28/2021	05/06/2021
04_NP_NAL	2105072-23	WS	Cample	04/28/2021	05/06/2021
RG_FO23_WS_LAEMP_LCO_2021- 04 NP NAL	2103072-23	VVS	Sample	04/26/2021	03/00/2021
RG_FO23_WS_LAEMP_LCO_2021-	2105072-24	WS	Sample	04/28/2021	05/06/2021
04_NP					
RG_FRUL_WS_LAEMP_LCO_2021-	2105072-25	WS	Sample	04/28/2021	05/06/2021
04_NP_NAL					
RG_FRUL_WS_LAEMP_LCO_2021-	2105072-26	WS	Sample	04/28/2021	05/06/2021
04_NP_NAL					
RG_FRUL_WS_LAEMP_LCO_2021-	2105072-27	WS	Sample	04/28/2021	05/06/2021
04_NP					
RG_LIDCOM_WS_LAEMP_LCO_20	2105072-28	WS	Sample	04/29/2021	05/06/2021
21-04_NP_NAL					
RG_LIDCOM_WS_LAEMP_LCO_20	2105072-29	WS	Sample	04/29/2021	05/06/2021
21-04_NP_NAL					
RG_LIDCOM_WS_LAEMP_LCO_20	2105072-30	WS	Sample	04/29/2021	05/06/2021
21-04_NP					

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	05/10/2021	05/11/2021	B211230	S210538
MeSe(IV)	Water	SOP BAL-4201	05/10/2021	05/11/2021	B211230	S210538
MeSe(VI)	Water	SOP BAL-4201	05/10/2021	05/11/2021	B211230	S210538
Se	Water	EPA 1638 Mod	05/10/2021	05/11/2021	B211251	S210547
Se(IV)	Water	SOP BAL-4201	05/10/2021	05/11/2021	B211230	S210538
Se(VI)	Water	SOP BAL-4201	05/10/2021	05/11/2021	B211230	S210538
SeCN	Water	SOP BAL-4201	05/10/2021	05/11/2021	B211230	S210538
SeMet	Water	SOP BAL-4201	05/10/2021	05/11/2021	B211230	S210538
SeSO3	Water	SOP BAL-4201	05/10/2021	05/11/2021	B211230	S210538
Unk Se Sp	Water	SOP BAL-4201	05/10/2021	05/11/2021	B211230	S210538

BAL Final Report 2105072 Client PM: Cait Good Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG LI24 WS	LAEMP LCO	2021-04 NP NAL								
2105072-01	Se	WS	TR	1.68		0.198	0.528	μg/L	B211251	S210547
RG LI24 WS	LAEMP LCO	2021-04_NP_NAL								
2105072-02	Se _	ws _	D	1.85		0.198	0.528	μg/L	B211251	S210547
RG_LI24_WS_I	LAEMP LCO	2021-04 NP								
2105072-03	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-03	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-03	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-03	Se(IV)	WS	D	0.029	J	0.010	0.075	μg/L	B211230	S210538
2105072-03	Se(VI)	WS	D	1.81		0.010	0.055	μg/L	B211230	S210538
2105072-03	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B211230	S210538
2105072-03	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-03	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B211230	S210538
2105072-03	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B211230	S210538
RG_SLINE_WS	S_LAEMP_LCC	D_2021-04_NP_NA	L							
2105072-04	Se	WS	TR	1.06		0.198	0.528	μg/L	B211251	S210547
RG SLINE WS	S LAEMP LCC	D_2021-04_NP_NA	L							
2105072-05	_ Se	ws	D	1.12		0.198	0.528	μg/L	B211251	S210547
RG_SLINE_WS	S LAEMP LCC) 2021-04 NP								
2105072-06	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-06	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-06	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-06	Se(IV)	WS	D	0.026	J	0.010	0.075	μg/L	B211230	S210538
2105072-06	Se(VI)	WS	D	1.19		0.010	0.055	μg/L	B211230	S210538
2105072-06	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B211230	S210538
2105072-06	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-06	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B211230	S210538
2105072-06	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B211230	S210538
RG_LISP24_W	S_LAEMP_LC	O_2021-04_NP_NA	AL.							
2105072-07	Se	ws	TR	34.9		0.198	0.528	μg/L	B211251	S210547
RG LISP24 W	S LAEMP LC	O_2021-04_NP_NA	A <i>L</i>							
2105072-08	Se	ws	D	34.8		0.198	0.528	μg/L	B211251	S210547

BAL Final Report 2105072 Client PM: Cait Good Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LISP24_W	/S_LAEMP_LC	O_2021-04_NP								
2105072-09	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-09	MeSe(IV)	WS	D	0.015	J	0.010	0.025	μg/L	B211230	S210538
2105072-09	MeSe(VI)	WS	D	0.028		0.010	0.025	μg/L	B211230	S210538
2105072-09	Se(IV)	WS	D	0.214		0.010	0.075	μg/L	B211230	S210538
2105072-09	Se(VI)	WS	D	33.1		0.010	0.055	μg/L	B211230	S210538
2105072-09	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B211230	S210538
2105072-09	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-09	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B211230	S210538
2105072-09	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B211230	S210538
RG_LILC3_WS	S_LAEMP_LCO	_2021-04_NP_NA	L							
2105072-10	Se	WS	TR	42.3		0.198	0.528	μg/L	B211251	S210547
RG_LILC3_WS	S_LAEMP_LCO	_2021-04_NP_NA	L							
2105072-11	Se	WS	D	41.5		0.198	0.528	μg/L	B211251	S210547
RG_LILC3_WS	S_LAEMP_LCO	_2021-04_NP								
2105072-12	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-12	MeSe(IV)	WS	D	0.014	J	0.010	0.025	μg/L	B211230	S210538
2105072-12	MeSe(VI)	WS	D	0.053		0.010	0.025	μg/L	B211230	S210538
2105072-12	Se(IV)	WS	D	0.254		0.010	0.075	μg/L	B211230	S210538
2105072-12	Se(VI)	WS	D	45.0		0.010	0.055	μg/L	B211230	S210538
2105072-12	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B211230	S210538
2105072-12	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-12	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B211230	S210538
2105072-12	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B211230	S210538
RG_LCUT_WS	S_LAEMP_LCO	_2021-04_NP_NA	L							
2105072-13	Se	WS	TR	46.9		0.198	0.528	μg/L	B211251	S210547
RG LCUT WS	LAEMP LCO	2021-04 NP NA	L							
2105072-14	Se		D	48.6		0.198	0.528	μg/L	B211251	S210547
			_	.0.0		555	5.525	r-3′ -		02.0017

BAL Final Report 2105072 Client PM: Cait Good Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LCUT_WS	LAEMP LCO	2021-04 NP								
2105072-15	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-15	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-15	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-15	Se(IV)	WS	D	0.067	J	0.010	0.075	μg/L	B211230	S210538
2105072-15	Se(VI)	WS	D	44.0		0.010	0.055	μg/L	B211230	S210538
2105072-15	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B211230	S210538
2105072-15	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-15	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B211230	S210538
2105072-15	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B211230	S210538
PC PIVED W	S LAEMD LCC) 2021-04 NP NA	\I							
2105072-16	S_ <i>LAEINF_LCC</i> Se	0_202 <i>1-</i> 04_NP_NA WS	TR	46.0		0.198	0.528	ua/l	B211251	S210547
2105072-10	Se	WS	IK	40.0		0.190	0.326	μg/L	BZ 11231	3210347
RG_RIVER_W	S_LAEMP_LCC	D_2021-04_NP_NA	\L							
2105072-17	Se	WS	D	45.6		0.198	0.528	μg/L	B211251	S210547
RG_RIVER_W			_							
2105072-18	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-18	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-18	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-18	Se(IV)	WS	D	0.072	J	0.010	0.075	μg/L	B211230	S210538
2105072-18	Se(VI)	WS	D	50.0		0.010	0.055	μg/L	B211230	S210538
2105072-18	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B211230	S210538
2105072-18	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-18	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B211230	S210538
2105072-18	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B211230	S210538
RG LI8 WS L	AEMP LCO 20	021-04 NP NAL								
2105072-19	Se	WS	TR	28.0		0.198	0.528	μg/L	B211251	S210547
		021-04_NP_NAL								
2105072-20	Se	WS	D	28.1		0.198	0.528	μg/L	B211251	S210547

BAL Final Report 2105072 Client PM: Cait Good Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LI8_WS_L	AEMP LCO 20	021-04 NP								
2105072-21	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-21	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-21	MeSe(VI)	WS	D	0.014	J	0.010	0.025	μg/L	B211230	S210538
2105072-21	Se(IV)	WS	D	0.173		0.010	0.075	μg/L	B211230	S210538
2105072-21	Se(VI)	WS	D	29.7		0.010	0.055	μg/L	B211230	S210538
2105072-21	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B211230	S210538
2105072-21	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-21	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B211230	S210538
2105072-21	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B211230	S210538
DC	LAEMB LCO	2024 04 ND NAI								
	_LAEMP_LCO_ Se	_ 2021-04_NP_NAL WS	- TR	44.1		0.198	0.528	ua/l	B211251	C210E47
2105072-22	Se	VVS	IK	44.1		0.196	0.326	μg/L	DZTIZOT	S210547
RG_FO23_WS	LAEMP_LCO	_2021-04_NP_NAL	_							
2105072-23	Se	WS	D	43.5		0.198	0.528	μg/L	B211251	S210547
RG_FO23_WS	_LAEMP_LCO_	_2021-04_NP								
2105072-24	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-24	MeSe(IV)	WS	D	0.016	J	0.010	0.025	μg/L	B211230	S210538
2105072-24	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-24	Se(IV)	WS	D	0.211		0.010	0.075	μg/L	B211230	S210538
2105072-24	Se(VI)	WS	D	48.0		0.010	0.055	μg/L	B211230	S210538
2105072-24	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B211230	S210538
2105072-24	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-24	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B211230	S210538
2105072-24	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B211230	S210538
RG FRUI WS	S LAFMP LCO	2021-04 NP NAI	Ī							
2105072-25	Se	_2021-04_N/ WS	- TR	49.4		0.198	0.528	μg/L	B211251	S210547
2.00072 20						200	0.020	r-3 ⁻	22231	32.00.7
RG_FRUL_WS	LAEMP_LCO	_2021-04_NP_NA								
2105072-26	Se	WS	D	50.5		0.198	0.528	μg/L	B211251	S210547

BAL Final Report 2105072 Client PM: Cait Good Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_FRUL_WS	_LAEMP_LCO	_2021-04_NP								
2105072-27	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-27	MeSe(IV)	WS	D	0.015	J	0.010	0.025	μg/L	B211230	S210538
2105072-27	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-27	Se(IV)	WS	D	0.226		0.010	0.075	μg/L	B211230	S210538
2105072-27	Se(VI)	WS	D	53.3		0.010	0.055	μg/L	B211230	S210538
2105072-27	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B211230	S210538
2105072-27	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-27	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B211230	S210538
2105072-27	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B211230	S210538
RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP_NAL										
				00.0		0.400	0.500		D044054	0040545
2105072-28	Se	WS	TR	28.9		0.198	0.528	μg/L	B211251	S210547
RG LIDCOM V	NS LAEMP LO	CO_2021-04_NP_I	VAL							
2105072-29	Se	ws	D	29.5		0.198	0.528	μg/L	B211251	S210547
DO 11000M 1	4/0 / AEMB /	00 0001 01 ND								
	<i>NS_LAEMP_L</i> DMSeO	CO_2021-04_NP WS	D	≤ 0.010	U	0.010	0.025	/1	B211230	0040500
2105072-30		_	D	≤ 0.010 ≤ 0.010	U	0.010	0.025 0.025	μg/L		S210538
2105072-30	MeSe(IV)	WS			-			μg/L	B211230	S210538
2105072-30	MeSe(VI)	WS	D	0.016	J	0.010	0.025	μg/L	B211230	S210538
2105072-30	Se(IV)	WS	D	0.176		0.010	0.075	μg/L	B211230	S210538
2105072-30	Se(VI)	WS	D	31.0		0.010	0.055	μg/L "	B211230	S210538
2105072-30	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B211230	S210538
2105072-30	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B211230	S210538
2105072-30	SeSO3	WS	D -	≤ 0.010	U	0.010	0.055	μg/L	B211230	S210538
2105072-30	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B211230	S210538

BAL Final Report 2105072 Client PM: Cait Good Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B211230 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B211230-BS1	Blank Spike, (1923027)						
	MeSe(IV)		5.095	5.877	μg/L	115% 75-125	
	Se(IV)		5.000	5.670	μg/L	113% 75-125	
	Se(VI)		5.000	5.373	μg/L	107% 75-125	
	SeCN		5.015	5.076	μg/L	101% 75-125	
	SeMet		4.932	5.386	μg/L	109% 75-125	
B211230-DUP2	Duplicate, (2105072-30)						
	DMSeO	ND		ND	μg/L		N/C 25
	MeSe(IV)	ND		0.011	μg/L		N/C 25
	MeSe(VI)	0.016		0.014	μg/L		10% 25
	Se(IV)	0.176		0.169	μg/L		4% 25
	Se(VI)	30.97		31.51	μg/L		2% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B211230-MS2	Matrix Spike, (2105072-3	0)					
	Se(IV)	0.176	4.900	5.151	μg/L	102% 75-125	
	Se(VI)	30.97	5.100	36.01	μg/L	NR 75-125	
	SeCN	ND	1.962	1.828	μg/L	93% 75-125	
	SeMet	ND	1.977	1.904	μg/L	96% 75-125	
B211230-MSD2	Matrix Spike Duplicate, (2105072-30)				
	Se(IV)	0.176	4.900	5.252	μg/L	104% 75-125	2% 25
	Se(VI)	30.97	5.100	36.46	μg/L	NR 75-125	N/C 25
	SeCN	ND	1.962	1.802	μg/L	92% 75-125	1% 25
	SeMet	ND	1.977	2.011	μg/L	102% 75-125	5% 25

BAL Final Report 2105072 **Client PM:** Cait Good

Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B211251 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC & L	imits	RPD & Lir	nits
B211251-BS1	Blank Spike, (2035013) Se		200.0	188.0	μg/L	94% 7	5-125		
B211251-BS2	Blank Spike , (2035013) Se		200.0	179.4	μg/L	90% 7	5-125		
B211251-BS3	Blank Spike, (2035013) Se		200.0	181.9	μg/L	91% 7	5-125		
B211251-BS4	Blank Spike, (2035013) Se		200.0	185.1	μg/L	93% 7	5-125		
B211251-BS5	Blank Spike , (2035013) Se		200.0	179.2	μg/L	90% 7	5-125		
B211251-SRM1	Reference Material (211000)4, TMDA (51.5 Referenc	e Standard	- Bottle 4 - S	SRM)			
	Se		14.30	12.99	μg/L	91% 7	5-125		
B211251-SRM2	Reference Material (211000)4, TMDA (-	5 405		
	Se		14.30	12.43	μg/L	87% 7	5-125		
B211251-SRM3	Reference Material (211000)4, TMDA (51.5 Referenc	e Standard	- Bottle 4 - S	SRM)			
	Se		14.30	12.56	μg/L	88% 7	5-125		
B211251-SRM4	Reference Material (211000)4. TMDA (51.5 Referenc	e Standard	- Bottle 4 - S	SRM)			
	Se	,	14.30	12.73	μg/L	89% 7	5-125		
B211251-SRM5	Reference Material (211000)4, TMDA (51.5 Referenc	e Standard	- Bottle 4 - S	SRM)			
	Se	•	14.30	12.72	μg/L	89% 7	5-125		
B211251-DUP4	Duplicate, (2105072-01)								
	Se	1.679		1.729	μg/L			3%	20

BAL Final Report 2105072 Client PM: Cait Good Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B211251 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B211251-MS4	Matrix Spike , (2105072-01) Se	1.679	220.0	204.1	μg/L	92% 75-125	
B211251-MSD4	Matrix Spike Duplicate, (21 Se	1.679	220.0	203.6	μg/L	92% 75-125	0.2% 20
B211251-DUP5	Duplicate, (2105072-10) Se	42.34		42.32	μg/L		0.04% 20
B211251-MS5	Matrix Spike, (2105072-10) Se	42.34	220.0	241.9	μg/L	91% 75-125	
B211251-MSD5	Matrix Spike Duplicate, (21	1 05072-10) 42.34	220.0	245.7	μg/L	92% 75-125	2% 20

BAL Final Report 2105072
Client PM: Cait Good
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Batch: B211230 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

Sample	Result	Units
B211230-BLK1	0.00	μg/L
B211230-BLK2	0.00	μg/L
B211230-BLK3	0.00	μg/L
B211230-BLK4	0.00	µg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

Sample	Result	Units
B211230-BLK1	0.00	μg/L
B211230-BLK2	0.00	μg/L
B211230-BLK3	0.00	μg/L
B211230-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

Sample	Result	Units
B211230-BLK1	0.00	μg/L
B211230-BLK2	0.00	μg/L
B211230-BLK3	0.00	μg/L
B211230-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

BAL Final Report 2105072
Client PM: Cait Good
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Analyte: Se(IV)

Sample	Result	Units
B211230-BLK1	0.00	μg/L
B211230-BLK2	0.00	μg/L
B211230-BLK3	0.00	μg/L
B211230-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.015 MRL: 0.015

Analyte: Se(VI)

Sample	Result	Units
B211230-BLK1	0.00	μg/L
B211230-BLK2	0.00	μg/L
B211230-BLK3	0.00	μg/L
B211230-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Sample	Result	Units
B211230-BLK1	0.00	μg/L
B211230-BLK2	0.00	μg/L
B211230-BLK3	0.00	μg/L
B211230-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B211230-BLK1	0.00	μg/L
B211230-BLK2	0.00	μg/L
B211230-BLK3	0.00	μg/L
B211230-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2105072 Client PM: Cait Good Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B211230-BLK1	0.00	μg/L
B211230-BLK2	0.00	μg/L
B211230-BLK3	0.00	μg/L
B211230-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B211230-BLK1	0.00	μg/L
B211230-BLK2	0.00	μg/L
B211230-BLK3	0.00	μg/L
B211230-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2105072 Client PM: Cait Good Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Batch: B211251 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B211251-BLK1	-0.073	μg/L
B211251-BLK2	-0.067	μg/L
B211251-BLK3	-0.068	μg/L
B211251-BLK4	-0.096	μg/L
B211251-BLK5	-0.136	μg/L

Average: -0.088 MDL: 0.180 Limit: 0.480 MRL: 0.480

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2105072 Client PM: Cait Good

2105072

Client Project: Regional Effects Program

Sample Containers

Lab ID: 2105072-01 Report Matrix: WS Collected: 04/26/2021 Sample: Received: 05/06/2021 Sample Type: Sample + Sum RG LI24 WS LAEMP LCO 2021-04 NP NAL **Des Container** Lot **Preservation** P-Lot рΗ Ship. Cont. **Size** Client-Provided - TM 60 mL 10% HNO3 (BAL) 2037019 <2 Styrofoam na Cooler #1 -2105072 Lab ID: 2105072-02 Report Matrix: WS Collected: 04/26/2021 Sample: Sample Type: Sample + Sum Received: 05/06/2021 RG LI24 WS LAEMP LCO 2021-04 NP NAL **Des Container** Size **Preservation** P-Lot рΗ Ship. Cont. Lot Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2037019 <2 Stvrofoam Cooler #1 -2105072 Lab ID: 2105072-03 Report Matrix: WS Collected: 04/26/2021 Sample: RG LI24 WS LAEMP LCO 2021-04 NP Sample Type: Sample + Sum Received: 05/06/2021 **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. Α Cent Tube 15mL Se-Sp 15 mL na none na na Stvrofoam Cooler #1 -2105072 В XTRA_VOL 15 mL na none na na Styrofoam Cooler #1 -2105072 XTRA_VOL 60 mL C na none na na Styrofoam Cooler #1 -2105072 Lab ID: 2105072-04 Report Matrix: WS Collected: 04/26/2021 Sample: Sample Type: Sample + Sum Received: 05/06/2021 RG_SLINE_WS_LAEMP_LCO_2021-04_NP_NAL **Des Container Preservation** P-Lot рΗ **Size** Lot Ship. Cont. Client-Provided - TM 60 ml 10% HNO3 (BAL) 2037019 <2 Styrofoam na Cooler #1 -

Project ID: TRL-VC1701 PM: Jeremy Maute

BAL Final Report 2105072 Client PM: Cait Good

2105072

Client Project: Regional Effects Program

Sample Containers

Lab ID: 2105072-05 Report Matrix: WS Collected: 04/26/2021 Sample: Received: 05/06/2021 Sample Type: Sample + Sum RG SLINE WS LAEMP LCO 2021-04 NP NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 60 mL na 2037019 <2 Styrofoam Cooler #1 -2105072 Lab ID: 2105072-06 Report Matrix: WS Collected: 04/26/2021 Sample: Sample Type: Sample + Sum Received: 05/06/2021 RG_SLINE_WS_LAEMP_LCO_2021-04_NP **Des Container** Size Lot **Preservation** P-Lot pН Ship. Cont. Cent Tube 15mL Se-Sp 15 mL none Stvrofoam na na na Cooler #1 -2105072 В XTRA_VOL 15 mL Stvrofoam na none na na Cooler #1 -2105072 XTRA_VOL 60 mL C na none na na Styrofoam Cooler #1 -2105072 Lab ID: 2105072-07 Report Matrix: WS Collected: 04/27/2021 Sample: Sample Type: Sample + Sum Received: 05/06/2021 RG LISP24 WS LAEMP LCO 2021-04 NP NAL **Des Container** Size Lot **Preservation** P-Lot рΗ Ship. Cont. Client-Provided - TM 60 mL 10% HNO3 (BAL) na 2037019 <2 Styrofoam Cooler #1 -2105072 Lab ID: 2105072-08 Report Matrix: WS Collected: 04/27/2021 Sample: Sample Type: Sample + Sum Received: 05/06/2021 RG_LISP24_WS_LAEMP_LCO_2021-04_NP_NAL **Des Container** Size Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2037019 <2 Styrofoam Cooler #1 -

BAL Final Report 2105072 Client PM: Cait Good

Client Project: Regional Effects Program

Sample Containers

Sam	ID: 2105072-09 ple: LISP24_WS_LAEMP_LCO_20	021-04 NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 04/27/2021 ived: 05/06/2021	
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2105072	
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2105072	
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2105072	
	ID : 2105072-10			Report Matrix: WS			cted: 04/27/2021	
Sam RG	ple: LILC3_WS_LAEMP_LCO_202	21-04 NP NAL		Sample Type: Sample + Sum		Rece	ived: 05/06/2021	
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2037019	<2	Styrofoam Cooler #1 - 2105072	
Lab	ID : 2105072-11			Report Matrix: WS		Colle	cted: 04/27/2021	
Sam	ple: LILC3_WS_LAEMP_LCO_202	DALOA NID NIAI		Sample Type: Sample + Sum		Rece	ived: 05/06/2021	
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2037019	<2	Styrofoam Cooler #1 - 2105072	
	ID : 2105072-12			Report Matrix: WS	Collected: 04/27/2021			
Sam				• • • • • •		_		
	ple:	21-04 NP		Sample Type: Sample + Sum		Rece	ived: 05/06/2021	
RG_	LILC3_WS_LAEMP_LCO_202	_	Lot		P-Lot			
RG_	•	21-04_NP Size 15 mL	Lot na	Sample Type: Sample + Sum Preservation none	P-Lot na	PH na	Ship. Cont. Styrofoam Cooler #1 -	
RG_ Des	LILC3_WS_LAEMP_LCO_202 Container	Size		Preservation		рН	Ship. Cont. Styrofoam	

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2105072 Client PM: Cait Good

2105072

Client Project: Regional Effects Program

Sample Containers

Lab ID: 2105072-13 Report Matrix: WS Collected: 04/27/2021 Sample: Received: 05/06/2021 Sample Type: Sample + Sum RG LCUT WS LAEMP LCO 2021-04 NP NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 60 mL na 2037019 <2 Styrofoam Cooler #1 -2105072 Lab ID: 2105072-14 Report Matrix: WS Collected: 04/27/2021 Sample: Sample Type: Sample + Sum Received: 05/06/2021 RG_LCUT_WS_LAEMP_LCO_2021-04_NP_NAL **Des Container Size** Lot **Preservation** P-Lot Hq Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2037019 <2 Stvrofoam Cooler #1 -2105072 **Lab ID:** 2105072-15 Report Matrix: WS Collected: 04/27/2021 Sample: Received: 05/06/2021 Sample Type: Sample + Sum RG_LCUT_WS_LAEMP_LCO_2021-04_NP **Preservation** P-Lot **Des Container Size** Lot pН Ship. Cont. Cent Tube 15mL Se-Sp 15 mL Stvrofoam Α na none na na Cooler #1 -2105072 XTRA_VOL В 15 mL na none na na Styrofoam Cooler #1 -2105072 С XTRA_VOL 60 mL na none Styrofoam na na Cooler #1 -2105072 Lab ID: 2105072-16 Report Matrix: WS Collected: 04/27/2021 Sample: Sample Type: Sample + Sum Received: 05/06/2021 RG_RIVER_WS_LAEMP_LCO_2021-04_NP_NAL **Des Container** Size Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2037019 <2 Styrofoam Cooler #1 -

Project ID: TRL-VC1701 PM: Jeremy Maute

BAL Final Report 2105072 Client PM: Cait Good

2105072

Client Project: Regional Effects Program

Sample Containers

Lab ID: 2105072-17 Report Matrix: WS Collected: 04/27/2021 Sample: Received: 05/06/2021 Sample Type: Sample + Sum RG RIVER WS LAEMP LCO 2021-04 NP NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 60 mL na 2037019 <2 Styrofoam Cooler #1 -2105072 Lab ID: 2105072-18 Report Matrix: WS Collected: 04/27/2021 Sample: Sample Type: Sample + Sum Received: 05/06/2021 RG_RIVER_WS_LAEMP_LCO_2021-04_NP **Des Container** Size Lot **Preservation** P-Lot pН Ship. Cont. Cent Tube 15mL Se-Sp 15 mL none Stvrofoam na na na Cooler #1 -2105072 В XTRA_VOL 15 mL Stvrofoam na none na na Cooler #1 -2105072 XTRA_VOL 60 mL C na none na na Styrofoam Cooler #1 -2105072 Lab ID: 2105072-19 Report Matrix: WS Collected: 04/28/2021 Sample: Sample Type: Sample + Sum Received: 05/06/2021 RG LI8 WS LAEMP LCO 2021-04 NP NAL **Des Container** Size Lot **Preservation** P-Lot рΗ Ship. Cont. Client-Provided - TM 60 mL 10% HNO3 (BAL) na 2037019 <2 Styrofoam Cooler #1 -2105072 Lab ID: 2105072-20 Report Matrix: WS Collected: 04/28/2021 Sample: Sample Type: Sample + Sum Received: 05/06/2021 RG_LI8_WS_LAEMP_LCO_2021-04_NP_NAL **Des Container Size** Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 60 mL 10% HNO3 (BAL) 2037019 <2 Styrofoam na Cooler #1 -

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2105072 Client PM: Cait Good

Client Project: Regional Effects Program

Sample Containers

Sam	I D: 2105072-21 ple: RG_LI8_WS_LAEMP_LC			Report Matrix: WS Sample Type: Sample + Sum		Rece	cted: 04/28/2021 ived: 05/06/2021			
A	Cent Tube 15mL Se-Sp	Size 15 mL	Lot na	Preservation none	P-Lot na	pH na	Ship. Cont. Styrofoam Cooler #1 - 2105072			
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2105072			
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2105072			
Lab	ID : 2105072-22			Report Matrix: WS		Collected: 04/28/2021				
Sam RG	ple: FO23_WS_LAEMP_LCO_202	1-04 NP NAL		Sample Type: Sample + Sum		Rece	ived: 05/06/2021			
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.			
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2037019	<2	Styrofoam Cooler #1 - 2105072			
Sam	•	1-04 NP NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 04/28/2021 ived: 05/06/2021			
Sam RG_	ple: FO23_WS_LAEMP_LCO_202		Lot	Sample Type: Sample + Sum	P-Lot	Rece	ived: 05/06/2021			
Sam RG_	ple:	1-04_NP_NAL Size 60 mL	Lot na	-	P-Lot 2037019					
Sam RG_ Des A	ple: FO23_WS_LAEMP_LCO_202 Container Client-Provided - TM ID: 2105072-24	Size		Preservation 10% HNO3 (BAL) Report Matrix: WS		PH <2	Ship. Cont. Styrofoam Cooler #1 - 2105072 cted: 04/28/2021			
Sam RG_ Des A	ple: FO23_WS_LAEMP_LCO_202 Container Client-Provided - TM ID: 2105072-24	Size 60 mL		Preservation 10% HNO3 (BAL)		PH <2	Ship. Cont. Styrofoam Cooler #1 - 2105072			
Sam RG_ Des A	ple: FO23_WS_LAEMP_LCO_202 Container Client-Provided - TM ID: 2105072-24 ple:	Size 60 mL		Preservation 10% HNO3 (BAL) Report Matrix: WS		PH <2	Ship. Cont. Styrofoam Cooler #1 - 2105072 cted: 04/28/2021			
Sam RG_ Des A	ple: FO23_WS_LAEMP_LCO_202 Container Client-Provided - TM ID: 2105072-24 ple: FO23_WS_LAEMP_LCO_202	Size 60 mL	na	Preservation 10% HNO3 (BAL) Report Matrix: WS Sample Type: Sample + Sum	2037019	PH <2 Collector	Ship. Cont. Styrofoam Cooler #1 - 2105072 cted: 04/28/2021 ived: 05/06/2021			
Sam RG_ Des A Lab Sam RG_ Des	ple: FO23_WS_LAEMP_LCO_202 Container Client-Provided - TM ID: 2105072-24 ple: FO23_WS_LAEMP_LCO_202 Container	Size 60 mL 1-04_NP Size	na	Preservation 10% HNO3 (BAL) Report Matrix: WS Sample Type: Sample + Sum Preservation	2037019 P-Lot	PH <2 College Rece pH	Ship. Cont. Styrofoam Cooler #1 - 2105072 cted: 04/28/2021 ived: 05/06/2021 Ship. Cont. Styrofoam Cooler #1 -			

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2105072 Client PM: Cait Good

2105072

Client Project: Regional Effects Program

Sample Containers

Lab ID: 2105072-25 Report Matrix: WS Collected: 04/28/2021 Sample: Received: 05/06/2021 Sample Type: Sample + Sum RG FRUL WS LAEMP LCO 2021-04 NP NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 60 mL na 2037019 <2 Styrofoam Cooler #1 -2105072 Lab ID: 2105072-26 Report Matrix: WS Collected: 04/28/2021 Sample: Sample Type: Sample + Sum Received: 05/06/2021 RG_FRUL_WS_LAEMP_LCO_2021-04_NP_NAL **Des Container** Size Lot **Preservation** P-Lot Hq Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2037019 <2 Stvrofoam Cooler #1 -2105072 Lab ID: 2105072-27 Report Matrix: WS Collected: 04/28/2021 Sample: Received: 05/06/2021 Sample Type: Sample + Sum RG_FRUL_WS_LAEMP_LCO_2021-04_NP **Preservation** P-Lot **Des Container Size** Lot pН Ship. Cont. Cent Tube 15mL Se-Sp 15 mL Stvrofoam Α na none na na Cooler #1 -2105072 XTRA_VOL В 15 mL na none na na Styrofoam Cooler #1 -2105072 С XTRA_VOL 60 mL na none Styrofoam na na Cooler #1 -2105072 Lab ID: 2105072-28 Report Matrix: WS Collected: 04/29/2021 Sample: Sample Type: Sample + Sum Received: 05/06/2021 RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP_NAL **Des Container** Size Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2037019 <2 Styrofoam Cooler #1 -

Project ID: TRL-VC1701 **PM**: Jeremy Maute

BAL Final Report 2105072
Client PM: Cait Good

Client Project: Regional Effects Program

Sample Containers

 Lab ID: 2105072-29
 Report Matrix: WS
 Collected: 04/29/2021

 Sample:
 Sample Type: Sample + Sum
 Received: 05/06/2021

RG LIDCOM WS LAEMP LCO 2021-04 NP NAL

Des ContainerSizeLotPreservationP-LotpHShip. Cont.A Client-Provided - TM60 mLna10% HNO3 (BAL)2037019<2</td>Styrofoam

Cooler #1 - 2105072

 Lab ID: 2105072-30
 Report Matrix: WS
 Collected: 04/29/2021

 Sample:
 Sample Type: Sample + Sum
 Received: 05/06/2021

RG_LIDCOM_WS_LAEMP_LCO_2021-04_NP **Des Container Size** Lot **Preservation** P-Lot рΗ Ship. Cont. Cent Tube 15mL Se-Sp 15 mL none Stvrofoam na na na Cooler #1 -2105072 В XTRA_VOL 15 mL Stvrofoam na none na na Cooler #1 -2105072 С XTRA_VOL 60 mL Styrofoam na none na na Cooler #1 -

2105072

Shipping Containers

Styrofoam Cooler #1 - 2105072

Received: May 6, 2021 7:00

Tracking No: PAPS#RWHV84877 via Courier

Coolant Type: Blue Ice Temperature: 0.6 °C Description: Styrofoam Cooler #1

Damaged in transit? No Returned to client? No Comments: IR# 30

Custody seals present? No Custody seals intact? No COC present? Yes

BAL Final Report 2105072

																	DAL FI	nai Re	port 2 i
	COC ID:	Regio	nal F	Effects Prog	zram -	TURNA	ROUN	T QV	IME:			Regul							
	PROJECT/CLIENT INF							L	ABORA	TORY		Regul	at .			OTHER INFO	-		- 3
Facility Name / Job#	Regional Effects Program	m				Lat	Name	ALS	Calgary				E	Report F	ormat / I	Distribution	Excel	PDF	EDD
Project Manager						Lab (Contact	Lyu	da Shvet	S			Em	ail 1:	cait.go	od@teck.com	X	0	X
	cait.good@teck.com						Email	Lyu	dmyla.Sh	hvets@A	LSGlobal.c	om	Ema	ail 2:	cartle.me	syer@teck.com	X	6.1.17	X
Address	421 Pine Avenue					I I	Address	255	9 29 Stre	et NE			Ema	ail 3:	teckcoel	@aquisonline.com			X
													Em	ail 4:	kbatchet	ar@minnow.ca			X
City				Province BC				Cala			Province	AB		ail 5:		oymanParker@teck.c		X	X
Postal Code		! G 0		Country Can	ada		al Code				Country	Canada			yler, m	chler@minnou			
Phone Number		50 M 1 W 10				Phone 1	Vumber	403	-407- 180					umber			ANDARA-		
	SAMPLE D	ETAILS								ANA	LYSIS RE	QUESTE	D			Filtrest - Fr	Field, L. Lub,	FL: Field &	Lah, Nr. None
								THE STREET	N	Y	N	Y	Y	N	N				
			No)					PRESERV.	NONE	H2SO4	H2SO4	HCI	HNO3	HNO3	NONE				
			(Yes/																
			Hazardous Material (Yes/No)			G=Grab		ANALYSIS	Lotal Selenium	Dissolved Selenium	Sclenium Speciation								
	Sample Location	Field	Zgr			C=Com	# Of		SE	No.	l nia								
Sample ID	(sys loc code)	Matrix	Ha	Date	Time (24hr)	p	Cont.		To To	Dis	Sel.								
RG-LI241-WS-LAEMI-LOU-2021-C	4LNP. NAL RGL	124 WS	NO	2021/04/26	11:05	G	2		x	x									
RG_L124_WS_LAEMP_LCO_2021-04_NP		ws	NO	2021/04/26		G	1				х								
RG_SLIPE_WS.LAEMP_LCO_2021-U1_NPA	IL RG SLINE	ws	NO	221/04/26		G	2		x	x									
6. SINELIS, LAEMEL CO. 2021-64_ NP		ws	NO	2020/04/26		G	1				x								
RG. LISPZY, WS LAEMPLY WRICH NP.		ws	NO	2021/41/27	14:40	G	2		x	x									
16. LISP24 WS LACHELCO. 2021-04 NO		WS	NO	2021/64/27		G	1				х								
KG_LICO_LOS LAEMPLICO_2021-JCNP_N		WS	NO	+21.011		G	2		x	x									
RP FIRSTNETHENS FROJOSI-ON NO		WS	NO	Part 10 Cold Cold		G	1				x								
GLUTUS LAEPPLO 2021-04_NP		ws	NO	Col WE		G	1				x								
G_LCGT_US_LAEHP_LIO_2GRI-OH_NP_NAL		WS	NO			G	2		x	x									
ADDITIONAL COMMENTS/SPEC Line Creek LAMEP - VI		10	0.		SHED BY/AFFIL		4- 1		DATE			CEPTED				D	ATE/TIM	Œ	
Samples for total selenium have been preserved			KIC	K Smit/L	dic envir	ON MAN	tal				130	JAIN	0790	mso	~	-			
been filtered and preserved. Speciation samp				Julia	Janson			0	5/54/	con		heller	Ulin	Sarl	la	5/6/2	1	7.00)
														0					
SERVICE REQUEST (rush - su									-					1 1		0.			
Deignity (Regula 2-3 business days) - 50%	ar (default) X	-	Sampler's	Name	Ri	ck	S	hit.			Mo	bile#	14	03-	586-320	41		
	2-3 business days) - 30% (1 Business Day) - 100%			~		 	15	18	- 1.1			+					-	0.2	()
	ASAP or Weekend - Co			Sampler's S	ignature		X	13	>			Date	/Time	202	1/0	4/29 /		9.3	
							17	11											

BAL Final Report 2105072

	COC ID:	Regio	nal E	effects Prog	gram	TURNAROUND TIME: Regular														
	PROJECT/CLIENT IN	The State of the S						-	ABORA	TORY		100			- 1	OTHE	RINFO			
7	Regional Effects Progr	am						-	S Calgary						ormat / !	Distribution	1	Excel	PDF	EDD
Project Manager						Lab		-	ida Shvets							od@teck.c	om	X	X	X
	cait.good@teck.com							-			LSGlobal.co	om		ail 2:	carlie.me	yer@teck.c	orn	X	X	X
Address	421 Pine Avenue	21 Pine Avenue					Address	255	9 29 Stree	et NE			Ema		teckcoal	@equisonlin	e.com			X
													Ema	ail 4:	khatahal	nolar@minnow.ca X			X	x-
City	+			Province BC			City				Province	AB	Em			oymanPanke			X	X
Postal Code		2G0		Country Can	ada		al Code				Country	Canada			er, mu	hlerom.	mul,	9 02	<	DK.
Phone Number	250-425-8202					Phone 1	Vumber	403	-407-180					umber			VPOSSO			
	SAMPLE	DETAILS	_							ANAI	YSIS REC	UESTE	D			y	ittered - F: Fi	eld, L. Lott, F	at Field & I	ab, N. None
								菱	N	Y	N	Y	Y	N	N					
								OTCO.	-											
								ERV.	NONE	H2SO4	H2SO4	HCI	HNO3	HNO3	NONE					
			S.					PRE	Monte	148504	ALLOCA	Hei	ичоо	IIIVOO	NONE					
			Hazardous Material (Yes/No)																	
			1 C								_									
			.51								į									
			ţ <u>a</u>					18	a l	- E	cia									
			S S				10	NALYSE	- a	3	ğ									
			nop			G=Grab		સ	ee	2	ä									
	Sample Location	Field) Je			C=Com			S	Ą	- E									
Sample ID	(sys loc code)	Matrix	Haz	Date	Time (24hr)	D D	Cont.		Fotal Selenium	Dissolved Selenium	Selenium Speciation						1			
RG-RIVERIS LAGIRLO DOLON 18			NO	2021/24/27		G	2		x	x	- 01									
RG RIVER LUS LACHP-LLO 2021-04 NP	RG-RIVER	WS	NO	021/04/27		G	1				x						1			
RG. LI & LSLAGAP, LIQ201.04 LP.		ws	NO	2021/04/28		G	2		x	x										
RGIJ8 18-LAIMI LIO-201-04 N		ws	NO	2021/69/28	1	G	1				x									
R6_ TO23_LIS_LAEMP_LCO_2021-04_NF		3 ws	NO	201/04/28		G	2		х	x										
RG FO23-US_LAEMP L(0,2021-04 N	- Principal - Prin	ws	NO	2021/04/28	11:50	G	1	u			x									
RG FRUL US LAEMP LO 2001-04 N		ul ws	NO	202/04/26		G	2		x	x										
RG-FRUL WS LACHE LIO JORIOGIA		ws	NO	2021/01/28	41	G	1				x	100								
RG-LIDCOM_WS.LAGMR.LCO. 2001-04-NP	RG_LIDION	ws	NO	2021/04/29		G	ı				x									
16- LEDROM LUS LAEMP LIO 2021-04 NE	AL RG-LIDEO		NO	2021/04/29	00:40	G	2		x	x									in a	
ADDITIONAL COMMENTS/SPEC	CIAL INSTRUCTIONS				HED BY/AFFIL	IATION	C HILL		DATE/I	IME	ACC	EPTED	BY/AFI	ILIATI	ON		DA	TE/TIM	37	
Line Creek LAMEP - V	PO logosto 0.7485	0	Rid	KSmit/Lul	ic environ	mena		20	21/64/2	0./60	30	J	11.0	John	2-					
Samples for total selenium have been preserved								1	1	1/	100	1 /	0 /	11						
been filtered and preserved. Speciation samp	been filtered and preserved. Speciation samples have been filtered and frozen.			tulia don	Var rassissas			A.F	5/04/	7/01	1 1/1	the 1	W 4	Nin/sh		1	6/21	7:0	26	
			- 5	MICK DOW	v22×t			μ	1101	1021	14	100	14 710	Defer.		- 71	0101			
SERVICE REQUEST (rush - su	blect to availability)					- 61		1						_						
STATE OF THE PARTY OF THE STATE		lar (default) X		S	MT	w.	1 0		1			1	L. 21. 14	1		- 0/	20	, .		
Priority ((2-3 business days) - 50			Sampler's	Name	KIC	Lys.	mi	+			Mo	bile#			586				
Emergency	(1 Business Day) - 100	6 surcharge		Sampler's Si	gnature	0	May	91				Date	/Time	200	1 ~ 1	129	10	9.31)	
For Emergency <1 Day	ASAP or Weekend - 0	ontact ALS			B	1	4					Dut		170	100	29		1, , -		

STRAIGHT BILL OF LADING NOT NEGOTIABLE

BAL Final Report 2105072

No. 84877

Sparwood, BC Terrace, BC Vancouver, BC Calgary, AB Montreal, QC Prince (ec rge, BC Edmont n, AB Spokane V A)

Elkford, BC Ft. McMurray, AB Shelby, MT Tumbler Ridge, BC Hinton, AB Gillette, WY

K	ed Deer, As	110		MARK STATE		DA	Man	51211
INVOICE TO	- N. A.I.			PUI CHASE ORDER	NOMBER			1 .
BILL OF LADING #						100		Les estates
SRIPPER (FROM)	001111			CC (SIGNEE (TO)	s. App	DIFF	Lans	
STREET	The Car	PK Trees	timent	STIEET	NIC	reek	HOCK	Jay .
CITY/PROVINCE	- 3×	PC	OSTAL CODE	CI Y/PROVINCE	LAA			POSTAL GODE
SPECIAL INSTRUCTION	ONS			THE STATE OF THE S			FREIGHT	CHARGES
PACKAGES		DESCRIPTION OF ARTICLES	S AND SPECIAL MARKS	TOTAL STREET		EIGHT	SHIPPER TO	THE RESERVE OF THE PARTY OF THE
20 7				Int.	(Subject	to Correction)	PREPAID If not indicated, shippin	COLLECT g will automatically mole collect
1	COLCUE	= Mater	XXXXIVI		00	-65	FEE	
				No.			144477010	
				THE RESERVE TO SERVE THE PARTY OF THE PARTY			- WAITING	
	Marine Sale						XPU	
DAM	n DI		UOT				CHARGES	
VALES	2 IIN						FSC	
UNIT#			DECLARED VAL	L (T) N: Maximum S: 00 er lb. (\$4.41 per ec in valuation states			US	
			kilogram) unless de otherwise.	valuation states	\$		SUB TOTAL	
DRIVER'S SIGNATURE	E - PICK UP BY	PICK UP TIME	DRIVER'S SIGNAT	U E DELIVERY BY	FINISH TIME		GST	
MOTICE OF CLAME; (a) No came respect of such loss, damage or d (b) The lines statement of such loss of the point of the po	to it hable for loss, clarange or delay of any clays is given in withing to the originating of the claim must be filled within a on the date epocified from the consistence or w, which the carrier appress to co- carrier of an or any of the goods own all original properties of the date of the lands, as power at the date of the con- traction of the contraction of the contraction of the con- traction of the contraction of the contraction of the con- traction of the contraction of the contraction of the con- traction of the contraction of the contraction of the con- traction of the contraction of the contraction of the con- traction of the con	y goods under the Bill of Lading united samer or the delivering carrier within sta mentioned herein, the property torum	notice, therefor setting out particulars of by (60) days after the delivery of the get of shipment together with a excribed, in apparent good order, excep-	destination and date of the class of fature to exists de c y like paid freight belt in the constant de c y like paid freight belt in the constant of the const	on of package unkno	s team the date of shipm wn) marked, consigned the date of shipm	TOTAL\$	
desimed as indicated below it is mutually agreed, as to each or all the conditions standard Bill of L the date of issuing, which	w, which the carrier agrees to common of all or agrees and a sure of the goods over all or lacking in power all the date of assump, who are hareby agreed by the cons	arry and to deliver to the CDB r any portion of the soute to destination, such are herein agreed by the consigno- signor and accepted for himself	signed at the send ossemation, and as to each party of any tree interes and accepted for himself and his essent f and his assigns.	in any of the goods that each arrangem, including conditions are pert to the conditions set	ons not usude by the stands but a such conditions	horeunder shall be subj rd Bill of Lading, in powe	FAT OWNER'S RISK,	WRITE ORD HERE
SHIPPER PRINT	the goods extend in the date or charried as down		CONSIGNEE	III to to	his ho.		DATE - //	
SHIPPER	art I we	and The	CONSIGNEE	The state of the s	17.		TIME	
SIGN			SIGN	ceri	# 864540398RT0	N61 /	NUMBER OF PIECE	S RECEIVED A
· WHITE:	Office YELLOW: Carr	ier PINK: Consignee	GOLDENROAD: Sh	it let	# 00434033010101			
COOIET ID:	· Styrofoam Cooler	#1	COC (Y/N)	emperatu	re: A.L		JF	:30 -
Coolant T	•	-	mbient	9	0.0			,
	ype. ice	Blue Ice Ar	indient	. 7				
Notes:		Вu	1 08		The state of			
Sampling	Locations:	GH	8Ê	LC		it.		
Sample Ty	ypes:	T/D SF		SP T/D	SP	T/D	SP T/I	SP ,
Container		120ml 120m	nt 120mc	120HL				
		1	1 1			1		1
Opened B	By: CVL		Date: 5/6/2	İ				\$ u

Effective 7/29/20

Revision 004

SELENIUM SPECIATION

BAL Final Report 2107238

(Finalized August 5, 2021)

Confidential BAL Final Report 2107238

August 5, 2021

Teck Resources Limited - Vancouver Cait Good 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 Cait.Good@teck.com

Re: Regional Effects Program

Dear Cait Good,

On July 22, 2021, Brooks Applied Labs (BAL) received twenty-two (22) aqueous samples.

The samples were logged-in for total recoverable selenium [Se], dissolved Se [Se], and Se speciation analyses, according to the chain-of-custody (COC) forms. The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL; sample fractions for total recoverable and dissolved Se had also been preserved by the client prior to receipt. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Se Speciation

Each aqueous sample was analyzed for Se speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, Se speciation was defined as dissolved selenite [Se(IV)], selenate [Se(IV)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate $[SeSO_3]$, and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [UnkSeSp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional

Confidential BAL Final Report 2107238

Se species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting Se species.

Chromatographic interference, as indicated by an elevated baseline, or co-eluting peak, was observed for selenosulfate in several client samples. Due to potential bias in the obtained results, the affected data have been qualified as estimates (J-1). Upon client request, Brooks Applied Labs can apply a higher dilution to these samples to potentially mitigate the chromatographic interferences, but a higher dilution would elevate the detection limit for SeMet above the client's requested limit of $0.010\mu g/L$.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific method detection limits (MDLs), MRLs, and other details.

In instances when a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries, and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the RPD of the MS/MSD set was not calculated (N/C).

Except for items note above and concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited met all NELAP requirements. For more information, please see the Report Information page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager

Brooks Applied Labs

Jeremy@brooksapplied.com

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)
Issued on: July 27, 2020; Valid to: June 30, 2021

Certificate Number: E87982-35

	Certifi	cate Number: E8/982-35				
Method	Matrix	TNI Accredited Analyte(s)				
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn				
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn				
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn				
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn				
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness				
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn				
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn				
EPA 1640	Non-Potable Waters	Ag, As, Cd, Cu, Pb, Ni, Zn				
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury				
EPA 1630	Non-Potable Waters	Methyl Mercury				
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury				
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs				
BAL-4200	Non-Potable Waters	Se(IV), Se(VI)				
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)				
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)				
SM2340B	Non-Potable Waters	Hardness				

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: November 20, 2020; Valid to: March 20, 2022

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes	
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn	
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)	Not Accredited	
EPA 1640 Mod	Non-Potable Waters	Ag, As, Cd, Cu, Pb, Ni, Zn Cr, Co, Se, Tl, V (ISO Only)	Not Accredited	
EPA 1631E Mod BAL-3100 (waters)	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury	
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)	
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic, As(III) (ISO Only)	Not Accredited	
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)	Not Accredited	
AOAC 2015.01 Mod BAL-5000 by BAL-5040	Food	As, Cd, Hg, Pb	Not Accredited	
	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited	
BAL-4100	Biological by BAL-4115	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited	
BAL-4101	Food by BAL-4116	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited	
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited	
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)	
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)	Not Accredited	
SM2340B	Non-Potable Waters	Hardness	Hardness	
SM 2540G EPA 160.3 BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight	

⁽¹⁾ ISO/IEC 17025:2017 - Certificate Number ADE-1447.2

⁽²⁾ Non-Governmental NELAC Institute 2016 Standard - Certificate Number ADE-1447.1

⁽³⁾ Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.3 for DOE.

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_LI24_WS_LAEMP_LCO_2021-0 7_NP_NAL	2107238-01	WS	Sample	07/13/2021	07/22/2021
RG_LI24_WS_LAEMP_LCO_2021-0 7_NP_NAL	2107238-02	WS	Sample	07/13/2021	07/22/2021
 RG_LI24_WS_LAEMP_LCO_2021-0 7_NP	2107238-03	WS	Sample	07/13/2021	07/22/2021
RG_SLINE_WS_LAEMP_LCO_2021 -07_NP_NAL	2107238-04	WS	Sample	07/13/2021	07/22/2021
RG_SLINE_WS_LAEMP_LCO_2021 -07_NP_NAL	2107238-05	WS	Sample	07/13/2021	07/22/2021
RG_SLINE_WS_LAEMP_LCO_2021 -07_NP	2107238-06	WS	Sample	07/13/2021	07/22/2021
RG_LISP24_WS_LAEMP_LCO_202 1-07_NP_NAL	2107238-07	WS	Sample	07/12/2021	07/22/2021
RG_LISP24_WS_LAEMP_LCO_202 1-07_NP_NAL	2107238-08	WS	Sample	07/12/2021	07/22/2021
RG_LISP24_WS_LAEMP_LCO_202 1-07_NP	2107238-09	WS	Sample	07/12/2021	07/22/2021
RG_LILC3_WS_LAEMP_LCO_2021- 07_NP_NAL	2107238-10	WS	Sample	07/12/2021	07/22/2021
RG_LILC3_WS_LAEMP_LCO_2021- 07_NP_NAL	2107238-11	WS	Sample	07/12/2021	07/22/2021
RG_LILC3_WS_LAEMP_LCO_2021- 07_NP	2107238-12	WS	Sample	07/12/2021	07/22/2021
RG_LCUT_WS_LAEMP_LCO_2021- 07_NP_NAL	2107238-13	WS	Sample	07/12/2021	07/22/2021
RG_LCUT_WS_LAEMP_LCO_2021- 07_NP_NAL	2107238-14	WS	Sample	07/12/2021	07/22/2021
RG_LCUT_WS_LAEMP_LCO_2021- 07_NP	2107238-15	WS	Sample	07/12/2021	07/22/2021
RG_RIVER_WS_LAEMP_LCO_2021 -07_NP_NAL	2107238-16	WS	Sample	07/12/2021	07/22/2021
RG_RIVER_WS_LAEMP_LCO_2021 -07_NP_NAL	2107238-17	WS	Sample	07/12/2021	07/22/2021
RG_RIVER_WS_LAEMP_LCO_2021 -07_NP	2107238-18	WS	Sample	07/12/2021	07/22/2021
RG_LI8_WS_LAEMP_LCO_2021-07 _NP_NAL	2107238-19	WS	Sample	07/15/2021	07/22/2021
RG_LI8_WS_LAEMP_LCO_2021-07 _NP_NAL	2107238-20	WS	Sample	07/15/2021	07/22/2021
RG_LI8_WS_LAEMP_LCO_2021-07 _NP	2107238-21	WS	Sample	07/15/2021	07/22/2021

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Sample Information

Lab ID	Report Matrix	Type	Sampled	Received
2107238-22	WS	Sample	07/14/2021	07/22/2021
2107238-23	WS	Sample	07/14/2021	07/22/2021
2107238-24	WS	Sample	07/14/2021	07/22/2021
2107238-25	WS	Sample	07/14/2021	07/22/2021
2107238-26	WS	Sample	07/14/2021	07/22/2021
2107238-27	WS	Sample	07/14/2021	07/22/2021
2107238-28	WS	Sample	07/12/2021	07/22/2021
2107238-29	WS	Sample	07/12/2021	07/22/2021
2107238-30	WS	Sample	07/12/2021	07/22/2021
2107238-31	WS	Sample	07/14/2021	07/22/2021
2107238-32	WS	Sample	07/14/2021	07/22/2021
2107238-33	WS	Sample	07/14/2021	07/22/2021
	2107238-22 2107238-23 2107238-24 2107238-25 2107238-26 2107238-27 2107238-28 2107238-29 2107238-30 2107238-31 2107238-32	2107238-22 WS 2107238-23 WS 2107238-24 WS 2107238-25 WS 2107238-26 WS 2107238-27 WS 2107238-28 WS 2107238-29 WS 2107238-30 WS 2107238-31 WS 2107238-32 WS	2107238-22 WS Sample 2107238-23 WS Sample 2107238-24 WS Sample 2107238-25 WS Sample 2107238-26 WS Sample 2107238-27 WS Sample 2107238-28 WS Sample 2107238-29 WS Sample 2107238-30 WS Sample 2107238-31 WS Sample 2107238-32 WS Sample	2107238-22 WS Sample 07/14/2021 2107238-23 WS Sample 07/14/2021 2107238-24 WS Sample 07/14/2021 2107238-25 WS Sample 07/14/2021 2107238-26 WS Sample 07/14/2021 2107238-27 WS Sample 07/14/2021 2107238-28 WS Sample 07/12/2021 2107238-29 WS Sample 07/12/2021 2107238-30 WS Sample 07/12/2021 2107238-31 WS Sample 07/14/2021 2107238-32 WS Sample 07/14/2021

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	07/21/2021	07/22/2021	B212015	S210835
MeSe(IV)	Water	SOP BAL-4201	07/21/2021	07/22/2021	B212015	S210835
MeSe(VI)	Water	SOP BAL-4201	07/21/2021	07/22/2021	B212015	S210835
Se	Water	EPA 1638 Mod	07/22/2021	07/24/2021	B212021	S210842
Se	Water	EPA 1638 Mod	07/27/2021	07/29/2021	B212074	S210853
Se(IV)	Water	SOP BAL-4201	07/21/2021	07/22/2021	B212015	S210835
Se(VI)	Water	SOP BAL-4201	07/21/2021	07/22/2021	B212015	S210835
SeCN	Water	SOP BAL-4201	07/21/2021	07/22/2021	B212015	S210835
SeMet	Water	SOP BAL-4201	07/21/2021	07/22/2021	B212015	S210835
SeSO3	Water	SOP BAL-4201	07/21/2021	07/22/2021	B212015	S210835
Unk Se Sp	Water	SOP BAL-4201	07/21/2021	07/22/2021	B212015	S210835

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LI24_WS_LAEMP_LCO_2021-07_NP_NAL										
2107238-01	Se	ws _	TR	2.22		0.165	0.528	μg/L	B212021	S210842
RG LI24 WS	LAEMP LCO	2021-07 NP NAL								
2107238-02	Se _	ws -	D	2.29		0.165	0.528	μg/L	B212021	S210842
RG_LI24_WS_	LAEMP LCO	2021-07 NP								
2107238-03	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-03	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-03	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-03	Se(IV)	WS	D	0.015	J	0.010	0.075	μg/L	B212015	S210835
2107238-03	Se(VI)	WS	D	2.04		0.010	0.055	μg/L	B212015	S210835
2107238-03	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212015	S210835
2107238-03	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-03	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212015	S210835
2107238-03	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212015	S210835
RG SLINE WS	S LAEMP LCC	D_2021-07_NP_NA	L							
2107238-04	Se	WS	TR	0.976		0.165	0.528	μg/L	B212021	S210842
								10		
RG SLINE WS	S LAFMP LCC	D_2021-07_NP_NA	,							
2107238-05	Se	WS	D	0.899		0.165	0.528	μg/L	B212021	S210842
2.07200 00			_	0.000		000	0.020	F-3/ -		3210012
RG_SLINE_WS	S LAEMD LCC	0 2021-07 NB								
2107238-06	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-06	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-06	MeSe(VI)	WS	D	≤ 0.010	Ü	0.010	0.025	μg/L	B212015	S210835
2107238-06	Se(IV)	WS	D	0.014	J	0.010	0.075	μg/L	B212015	S210835
2107238-06	Se(VI)	WS	D	0.887	· ·	0.010	0.055	μg/L	B212015	S210835
2107238-06	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212015	S210835
2107238-06	SeMet	WS	D	≤ 0.010	Ü	0.010	0.025	μg/L	B212015	S210835
2107238-06	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212015	S210835
2107238-06	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212015	S210835
	•							10		
RG I ISP24 W	SIAFMPIC	O_2021-07_NP_NA	\ <i>I</i>							
2107238-07	Se	WS	TR	24.6		0.165	0.528	μg/L	B212021	S210842
	30			21.0			0.020	r:3' =		02.0012
DO 110004 14	(C AEMB C	0 2024 07 115 111	.,							
		O_2021-07_NP_NA		26.0		0.465	0.500	uc/I	D242024	0040040
2107238-08	Se	WS	D	26.8		0.165	0.528	μg/L	B212021	S210842

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LISP24_WS_LAEMP_LCO_2021-07_NP										
2107238-09	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-09	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-09	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-09	Se(IV)	WS	D	0.080		0.010	0.075	μg/L	B212015	S210835
2107238-09	Se(VI)	WS	D	23.5		0.010	0.055	μg/L	B212015	S210835
2107238-09	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212015	S210835
2107238-09	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-09	SeSO3	WS	D	≤ 0.010	J-1 U	0.010	0.055	μg/L	B212015	S210835
2107238-09	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212015	S210835
RG_LILC3_WS	S_LAEMP_LCO	_2021-07_NP_NA	L							
2107238-10	Se	WS	TR	35.0		0.165	0.528	μg/L	B212021	S210842
RG_LILC3_WS	S_LAEMP_LCO	_2021-07_NP_NA	L							
2107238-11	Se	WS	D	33.8		0.165	0.528	μg/L	B212021	S210842
RG_LILC3_WS	S_LAEMP_LCO	_2021-07_NP								
2107238-12	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-12	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-12	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-12	Se(IV)	WS	D	0.094		0.010	0.075	μg/L	B212015	S210835
2107238-12	Se(VI)	WS	D	35.2		0.010	0.055	μg/L	B212015	S210835
2107238-12	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212015	S210835
2107238-12	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-12	SeSO3	WS	D	≤ 0.010	J-1 U	0.010	0.055	μg/L	B212015	S210835
2107238-12	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212015	S210835
RG_LCUT_WS	S_LAEMP_LCO	_2021-07_NP_NA								
2107238-13	Se	WS	TR	49.4		0.165	0.528	μg/L	B212021	S210842
RG LCUT WS	LAEMP LCO	2021-07 NP NA	L							
2107238-14	Se	WS	D	48.3		0.165	0.528	μg/L	B212021	S210842
								1 5		·-·-

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LCUT_WS	LAEMP LCO	2021-07 NP								
2107238-15	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-15	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-15	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-15	Se(IV)	WS	D	0.080		0.010	0.075	μg/L	B212015	S210835
2107238-15	Se(VI)	WS	D	46.7		0.010	0.055	μg/L	B212015	S210835
2107238-15	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212015	S210835
2107238-15	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-15	SeSO3	WS	D	≤ 0.010	J-1 U	0.010	0.055	μg/L	B212015	S210835
2107238-15	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212015	S210835
DO DIVED W	C / AEMD / OC	2024 07 ND NA								
)_2021-07_NP_NA		24.5		0.405	0.500	/1	D040004	0040040
2107238-16	Se	WS	TR	34.5		0.165	0.528	μg/L	B212021	S210842
RG RIVER WS	S LAEMP LCC) 2021-07 NP NA	L							
2107238-17	Se	WS	D	35.9		0.165	0.528	μg/L	B212021	S210842
RG_RIVER_WS	S LAEMP LCC	2021-07 NP								
2107238-18	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-18	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-18	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-18	Se(IV)	WS	D	0.099		0.010	0.075	μg/L	B212015	S210835
2107238-18	Se(VI)	WS	D	34.1		0.010	0.055	μg/L	B212015	S210835
2107238-18	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212015	S210835
2107238-18	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-18	SeSO3	WS	D	≤ 0.010	J-1 U	0.010	0.055	μg/L	B212015	S210835
2107238-18	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212015	S210835
DO 110 WO 1	AEMD 100 0	224 07 NB NA								
		021-07_NP_NAL	TD	20.0		0.405	0.500	/1	D040004	0040040
2107238-19	Se	WS	TR	22.8		0.165	0.528	μg/L	B212021	S210842
RG LI8 WS L	AEMP LCO 20	021-07 NP NAL								
2107238-20	Se	ws	D	21.8		0.165	0.528	μg/L	B212021	S210842

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LI8_WS_L	AEMP LCO 2	021-07 NP								
2107238-21	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-21	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-21	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-21	Se(IV)	WS	D	0.041	J	0.010	0.075	μg/L	B212015	S210835
2107238-21	Se(VI)	WS	D	21.1		0.010	0.055	μg/L	B212015	S210835
2107238-21	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212015	S210835
2107238-21	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-21	SeSO3	WS	D	≤ 0.010	J-1 U	0.010	0.055	μg/L	B212015	S210835
2107238-21	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212015	S210835
DO 5000 WO	LAEMD LOO	2024 07 ND NA								
		_2021-07_NP_NAL		30.6		0.165	0.528	/1	D010001	0040040
2107238-22	Se	WS	TR	30.6		0.100	0.526	µg/L	B212021	S210842
RG FO23 WS	LAEMP LCO	2021-07 NP NAL	_							
2107238-23	Se	ws	D	32.1		0.165	0.528	μg/L	B212021	S210842
RG_FO23_WS	_LAEMP_LCO_	_2021-07_NP								
2107238-24	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-24	MeSe(IV)	WS	D	0.016	J	0.010	0.025	μg/L	B212015	S210835
2107238-24	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-24	Se(IV)	WS	D	0.194		0.010	0.075	μg/L	B212015	S210835
2107238-24	Se(VI)	WS	D	30.8		0.010	0.055	μg/L	B212015	S210835
2107238-24	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212015	S210835
2107238-24	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-24	SeSO3	WS	D	≤ 0.010	J-1 U	0.010	0.055	μg/L	B212015	S210835
2107238-24	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212015	S210835
PC EDIII W.C	I AEMD ICO	2021-07 NP NAI	,							
2107238-25	_LAEMF_LCO _: Se	_2021-07_NP_NAI WS	TR	37.6		0.165	0.528	μg/L	B212021	S210842
Z 10 <i>1</i> Z30-Z3	O c	VVO	111	37.0		0.103	0.020	µg/L	DZ 1202 I	32 100 4 2
RG_FRUL_WS	_LAEMP_LCO	_2021-07_NP_NAI	L							
2107238-26	Se	WS	D	35.9		0.165	0.528	μg/L	B212021	S210842

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_FRUL_WS	LAEMP LCO	2021-07 NP								
2107238-27	DMSeO	ws	D	0.013	J	0.010	0.025	μg/L	B212015	S210835
2107238-27	MeSe(IV)	WS	D	0.018	J	0.010	0.025	μg/L	B212015	S210835
2107238-27	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-27	Se(IV)	WS	D	0.251		0.010	0.075	μg/L	B212015	S210835
2107238-27	Se(VI)	WS	D	35.8		0.010	0.055	μg/L	B212015	S210835
2107238-27	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212015	S210835
2107238-27	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-27	SeSO3	WS	D	≤ 0.010	J-1 U	0.010	0.055	μg/L	B212015	S210835
2107238-27	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212015	S210835
DO 11D0041		00 0004 07 ND								
		CO_2021-07_NP_I		00.0		0.405	0.500	/1	D040004	0040040
2107238-28	Se	WS	TR	22.8		0.165	0.528	μg/L	B212021	S210842
RG LIDCOM I	WS LAFMP LO	CO_2021-07_NP_I	ΙΔΙ							
2107238-29	Se	WS	D	23.3		0.165	0.528	μg/L	B212021	S210842
2107200-23			٥	20.0		0.100	0.020	M9/ =	B212021	0210012
RG_LIDCOM_I	WS_LAEMP_LO	CO_2021-07_NP								
2107238-30	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-30	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-30	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-30	Se(IV)	WS	D	0.082		0.010	0.075	μg/L	B212015	S210835
2107238-30	Se(VI)	WS	D	22.3		0.010	0.055	μg/L	B212015	S210835
2107238-30	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212015	S210835
2107238-30	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-30	SeSO3	WS	D	≤ 0.010	J-1 U	0.010	0.055	μg/L	B212015	S210835
2107238-30	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212015	S210835
DC LIDEL W	S LAEMB LOO) 2021-07 NP NA	ı							
	S_LAEINIP_LCC Se		<i>L</i> TR	24.3		0.165	0.528	ua/l	B212021	\$210942
2107238-31	se se	VVO	ır	24.3		0.100	0.320	μg/L	DZ IZUZ I	S210842
RG_LIDSL_WS	S_LAEMP_LCC)_2021-07_NP_NA	L							
2107238-32	Se	ws	D	25.8		0.165	0.528	μg/L	B212074	S210853

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LIDSL_WS	S_LAEMP_LCC	_2021-07_NP								
2107238-33	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-33	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-33	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-33	Se(IV)	WS	D	0.078		0.010	0.075	μg/L	B212015	S210835
2107238-33	Se(VI)	WS	D	24.8		0.010	0.055	μg/L	B212015	S210835
2107238-33	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212015	S210835
2107238-33	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212015	S210835
2107238-33	SeSO3	WS	D	≤ 0.010	J-1 U	0.010	0.055	μg/L	B212015	S210835
2107238-33	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212015	S210835

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B212015 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B212015-BS1	Blank Spike, (2124033)						
	MeSe(IV)		5.095	5.838	μg/L	115% 75-125	
	Se(IV)		5.000	5.072	μg/L	101% 75-125	
	Se(VI)		5.000	4.706	μg/L	94% 75-125	
	SeCN		5.015	4.917	μg/L	98% 75-125	
	SeMet		4.932	5.072	μg/L	103% 75-125	
B212015-DUP2	Duplicate, (2107238-09)						
	DMSeO	ND		ND	μg/L		N/C 25
	MeSe(IV)	ND		ND	μg/L		N/C 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	0.080		0.080	μg/L		0.3% 25
	Se(VI)	23.52		23.45	μg/L		0.3% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B212015-MS2	Matrix Spike, (2107238-0	9)					
	Se(IV)	0.080	4.900	4.953	μg/L	99% 75-125	
	Se(VI)	23.52	5.100	28.43	μg/L	NR 75-125	
	SeCN	ND	1.962	1.802	μg/L	92% 75-125	
	SeMet	ND	1.977	1.900	μg/L	96% 75-125	
B212015-MSD2	Matrix Spike Duplicate, (2107238-09)				
	Se(IV)	0.080	4.900	5.037	μg/L	101% 75-125	2% 25
	Se(VI)	23.52	5.100	28.74	μg/L	NR 75-125	N/C 25
	SeCN	ND	1.962	1.781	μg/L	91% 75-125	1% 25
	SeMet	ND	1.977	1.967	μg/L	100% 75-125	4% 25

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B212021 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B212021-BS1	Blank Spike, (2104075) Se		200.0	172.2	μg/L	86% 75-125	
B212021-BS2	Blank Spike, (2104075) Se		200.0	188.3	μg/L	94% 75-125	
B212021-SRM1	Reference Material (211000	05, TMDA 5	1.5 Reference	e Standard -	Bottle 5 - S	SRM)	
	Se		14.30	12.85	μg/L	90% 75-125	
B212021-SRM2	Reference Material (211000	05, TMDA 5	51.5 Reference	e Standard ·	· Bottle 5 - S	SRM)	
	Se		14.30	13.07	μg/L	91% 75-125	
B212021-DUP3	Duplicate, (2107238-10)						
	Se	35.00		36.73	μg/L		5% 20
B212021-MS3	Matrix Spike, (2107238-10)					
	Se	35.00	220.0	247.7	μg/L	97% 75-125	
B212021-MSD3	Matrix Spike Duplicate, (2	107238-10)					
	Se	35.00	220.0	234.3	μg/L	91% 75-125	6% 20
B212021-DUP4	Duplicate, (2107238-28)						
	Se	22.82		25.74	μg/L		12% 20
B212021-MS4	Matrix Spike, (2107238-28)					
-	Se	22.82	220.0	233.9	μg/L	96% 75-125	
B212021-MSD4	Matrix Spike Duplicate, (2	107238-28)					
	Se	22.82	220.0	231.0	μg/L	95% 75-125	1% 20

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B212074 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC 8	Limits	RPD & Limits
B212074-BS1	Blank Spike, (2104075) Se		200.0	187.2	μg/L	94%	75-125	
B212074-BS2	Blank Spike, (2104075) Se		200.0	184.4	μg/L	92%	75-125	
B212074-BS3	Blank Spike, (2104075) Se		200.0	193.5	μg/L	97%	75-125	
B212074-SRM1	Reference Material (211000	03, TMDA 5				-		
	Se		14.30	13.43	μg/L	94%	75-125	
B212074-SRM2	Reference Material (211000	03, TMDA 5				•	75 405	
	Se		14.30	13.37	μg/L	94%	75-125	
B212074-SRM3	Reference Material (211000	03, TMDA 5				•	75 405	
	Se		14.30	15.28	μg/L	107%	75-125	
B212074-DUP1	Duplicate, (2107239-01) Se	1.127		1 211	ua/l			7% 20
	Se	1.121		1.214	μg/L			7% 20
B212074-MS1	Matrix Spike, (2107239-01 Se) 1.127	220.0	221.8	ua/l	100%	75-125	
	SE .	1.121	220.0	221.0	μg/L	100%	10-120	
B212074-MSD1	Matrix Spike Duplicate, (2 Se	107239-01) 1.127	220.0	213.5	μg/L	97%	75-125	4% 20
	00	1.141	220.0	210.0	µ9/∟	31 /0	10-120	7/0 20

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Batch: B212015 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

Sample	Result	Units
B212015-BLK1	0.00	μg/L
B212015-BLK2	0.00	μg/L
B212015-BLK3	0.00	μg/L
B212015-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

Sample	Result	Units
B212015-BLK1	0.00	μg/L
B212015-BLK2	0.00	μg/L
B212015-BLK3	0.00	μg/L
B212015-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

Sample	Result	Units
B212015-BLK1	0.00	μg/L
B212015-BLK2	0.00	μg/L
B212015-BLK3	0.00	μg/L
B212015-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Analyte:	Se	(IV)
----------	----	------

Sample	Result	Units
B212015-BLK1	0.00	μg/L
B212015-BLK2	0.00	μg/L
B212015-BLK3	0.00	μg/L
B212015-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.015 MRL: 0.015

Analyte: Se(VI)

Sample		Result	Units
B212015-BLK1		0.00	μg/L
B212015-BLK2		0.00	μg/L
B212015-BLK3		0.00	μg/L
B212015-BLK4		0.00	μg/L
	_		

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Sample	Result	Units
B212015-BLK1	0.00	μg/L
B212015-BLK2	0.00	μg/L
B212015-BLK3	0.00	μg/L
B212015-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B212015-BLK1	0.00	μg/L
B212015-BLK2	0.00	μg/L
B212015-BLK3	0.00	μg/L
B212015-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.005 **MRL:** 0.005

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2107238

Client PM: Cait Good

Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B212015-BLK1	0.00	μg/L
B212015-BLK2	0.00	μg/L
B212015-BLK3	0.00	μg/L
B212015-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.011 **MRL:** 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B212015-BLK1	0.00	μg/L
B212015-BLK2	0.00	μg/L
B212015-BLK3	0.00	μg/L
B212015-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Batch: B212021 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B212021-BLK1	0.038	μg/L
B212021-BLK2	0.042	μg/L
B212021-BLK3	0.058	μg/L
B212021-BLK4	0.040	μg/L

Average: 0.045 **MDL:** 0.150 **Limit:** 0.480 **MRL:** 0.480

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Batch: B212074 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B212074-BLK1	0.145	μg/L
B212074-BLK2	0.131	μg/L
B212074-BLK3	0.124	μg/L
B212074-BLK4	0.104	μg/L

 Average: 0.126
 MDL: 0.150

 Limit: 0.480
 MRL: 0.480

Project ID: TRL-VC1701 PM: Jeremy Maute

BAL Final Report 2107238
Client PM: Cait Good

2107238

Client Project: Regional Effects Program

Sample Containers

Lab ID: 2107238-01 Collected: 07/13/2021 Report Matrix: WS Sample: Received: 07/22/2021 Sample Type: Sample + Sum RG LI24 WS LAEMP LCO 2021-07 NP NAL **Des Container** Lot **Preservation** P-Lot рΗ Ship. Cont. **Size** Client-Provided - TM 60 mL 10% HNO3 (BAL) 2117016 <2 Styrofoam na Cooler #3 -2107238 Lab ID: 2107238-02 Report Matrix: WS Collected: 07/13/2021 Sample: Sample Type: Sample + Sum Received: 07/22/2021 RG LI24 WS LAEMP LCO 2021-07 NP NAL **Des Container** Size **Preservation** P-Lot рΗ Ship. Cont. Lot Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2117016 <2 Stvrofoam Cooler #3 -2107238 Lab ID: 2107238-03 Report Matrix: WS Collected: 07/13/2021 Sample: RG_LI24_WS_LAEMP_LCO_2021-07_NP Sample Type: Sample + Sum Received: 07/22/2021 **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. Α Cent Tube 15mL Se-Sp 15 mL na none na Stvrofoam na Cooler #3 -2107238 В XTRA_VOL 15 mL na none Styrofoam na na Cooler #3 -2107238 XTRA_VOL 60 mL С na none na na Styrofoam Cooler #3 -2107238 Lab ID: 2107238-04 Report Matrix: WS Collected: 07/13/2021 Sample: Sample Type: Sample + Sum Received: 07/22/2021 RG_SLINE_WS_LAEMP_LCO_2021-07_NP_NAL **Des Container Preservation** P-Lot рΗ **Size** Lot Ship. Cont. Client-Provided - TM 60 ml 10% HNO3 (BAL) 2117016 <2 Styrofoam na Cooler #3 -

Project ID: TRL-VC1701 PM: Jeremy Maute

BAL Final Report 2107238
Client PM: Cait Good

2107238

Client Project: Regional Effects Program

Sample Containers

Lab ID: 2107238-05 Report Matrix: WS Collected: 07/13/2021 Sample: Received: 07/22/2021 Sample Type: Sample + Sum RG SLINE WS LAEMP LCO 2021-07 NP NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 60 mL na 2117016 <2 Styrofoam Cooler #3 -2107238 Lab ID: 2107238-06 Report Matrix: WS Collected: 07/13/2021 Sample: Sample Type: Sample + Sum Received: 07/22/2021 RG_SLINE_WS_LAEMP_LCO_2021-07_NP **Des Container** Size Lot **Preservation** P-Lot pН Ship. Cont. Cent Tube 15mL Se-Sp 15 mL Stvrofoam na none na na Cooler #3 -2107238 В XTRA_VOL 15 mL Stvrofoam na none na na Cooler #3 -2107238 XTRA_VOL 60 mL С na none na na Styrofoam Cooler #3 -2107238 Lab ID: 2107238-07 Report Matrix: WS Collected: 07/12/2021 Sample: Sample Type: Sample + Sum Received: 07/22/2021 RG LISP24 WS LAEMP LCO 2021-07 NP NAL **Des Container** Size Lot **Preservation** P-Lot рΗ Ship. Cont. Client-Provided - TM 60 mL 10% HNO3 (BAL) na 2117016 <2 Styrofoam Cooler #3 -2107238 Lab ID: 2107238-08 Report Matrix: WS Collected: 07/12/2021 Sample: Sample Type: Sample + Sum Received: 07/22/2021 RG_LISP24_WS_LAEMP_LCO_2021-07_NP NAL **Des Container** Size Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2117016 <2 Styrofoam Cooler #3 -

BAL Final Report 2107238

Client PM: Cait Good

Client Project: Regional Effects Program

Sample Containers

Sam	ID: 2107238-09 ple: LISP24 WS LAEMP LCO 2	021-07 NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 07/12/2021 vived: 07/22/2021
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #3 - 2107238
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #3 - 2107238
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #3 - 2107238
	ID : 2107238-10			Report Matrix: WS			cted: 07/12/2021
Sam RG	ple: LILC3_WS_LAEMP_LCO_20	21-07 NP NAL		Sample Type: Sample + Sum		Rece	eived: 07/22/2021
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2117016	<2	Styrofoam Cooler #3 - 2107238
	ID : 2107238-11			Report Matrix: WS			cted: 07/12/2021
Sam	ple:	21-07 NP NAL		Report Matrix: WS Sample Type: Sample + Sum			cted: 07/12/2021 vived: 07/22/2021
Sam RG_		21-07_NP_NAL Size	Lot	•	P-Lot		
Sam RG_	ple: LILC3_WS_LAEMP_LCO_20		Lot na	Sample Type: Sample + Sum	P-Lot 2117016	Rece	eived: 07/22/2021
Sam RG_ Des A	ple: LILC3_WS_LAEMP_LCO_20 Container Client-Provided - TM ID: 2107238-12	Size		Preservation 10% HNO3 (BAL) Report Matrix: WS		PH <2	Ship. Cont. Styrofoam Cooler #3 - 2107238 cted: 07/12/2021
Sam RG_ Des A	ple: LILC3_WS_LAEMP_LCO_20 Container Client-Provided - TM ID: 2107238-12 ple:	Size 60 mL		Preservation 10% HNO3 (BAL)		PH <2	Ship. Cont. Styrofoam Cooler #3 - 2107238
Sam RG_ Des A Lab Sam RG_	ple: LILC3_WS_LAEMP_LCO_20 Container Client-Provided - TM ID: 2107238-12	Size 60 mL		Preservation 10% HNO3 (BAL) Report Matrix: WS		PH <2 Collection	Ship. Cont. Styrofoam Cooler #3 - 2107238 cted: 07/12/2021 sived: 07/22/2021
Sam RG_ Des A Lab Sam RG_	ple: LILC3_WS_LAEMP_LCO_20 Container Client-Provided - TM ID: 2107238-12 ple: LILC3_WS_LAEMP_LCO_20	Size 60 mL 21-07_NP	na	Preservation 10% HNO3 (BAL) Report Matrix: WS Sample Type: Sample + Sum	2117016	PH <2	Ship. Cont. Styrofoam Cooler #3 - 2107238 cted: 07/12/2021 sived: 07/22/2021 Ship. Cont. Styrofoam Cooler #3 -
Sam RG_ Des A Lab Sam RG_ Des	ple: LILC3_WS_LAEMP_LCO_20 Container Client-Provided - TM ID: 2107238-12 ple: LILC3_WS_LAEMP_LCO_20 Container	Size 60 mL 21-07_NP Size	na	Preservation 10% HNO3 (BAL) Report Matrix: WS Sample Type: Sample + Sum Preservation	2117016 P-Lot	PH <2 Coller Rece pH	Ship. Cont. Styrofoam Cooler #3 - 2107238 cted: 07/12/2021 ship. Cont. Styrofoam

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2107238
Client PM: Cait Good

2107238

Client Project: Regional Effects Program

Sample Containers

Lab ID: 2107238-13 Report Matrix: WS Collected: 07/12/2021 Sample: Received: 07/22/2021 Sample Type: Sample + Sum RG LCUT WS LAEMP LCO 2021-07 NP NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 60 mL na 2117016 <2 Styrofoam Cooler #3 -2107238 Lab ID: 2107238-14 Report Matrix: WS Collected: 07/12/2021 Sample: Sample Type: Sample + Sum Received: 07/22/2021 RG_LCUT_WS_LAEMP_LCO_2021-07_NP_NAL **Des Container** Size Lot **Preservation** P-Lot Hq Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2117016 <2 Stvrofoam Cooler #3 -2107238 Lab ID: 2107238-15 Report Matrix: WS Collected: 07/12/2021 Sample: Received: 07/22/2021 Sample Type: Sample + Sum RG_LCUT_WS_LAEMP_LCO_2021-07_NP Size **Preservation** P-Lot Container Lot pН Ship. Cont. Cent Tube 15mL Se-Sp 15 mL Stvrofoam Α na none na na Cooler #3 -2107238 XTRA_VOL В 15 mL na none na Styrofoam na Cooler #3 -2107238 С XTRA_VOL 60 mL none Styrofoam na na na Cooler #3 -2107238 Lab ID: 2107238-16 Report Matrix: WS Collected: 07/12/2021 Sample: Sample Type: Sample + Sum Received: 07/22/2021 RG_RIVER_WS_LAEMP_LCO_2021-07_NP NAL **Preservation Des Container** Size Lot P-Lot pН Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2117016 <2 Styrofoam Cooler #3 -

Des Container

Client-Provided - TM

Size

60 mL

Lot

na

Project ID: TRL-VC1701 PM: Jeremy Maute

BAL Final Report 2107238

Client PM: Cait Good

Client Project: Regional Effects Program

Sample Containers

Lab ID: 2107238-17 Report Matrix: WS Collected: 07/12/2021 Sample: Received: 07/22/2021 Sample Type: Sample + Sum RG RIVER WS LAEMP LCO 2021-07 NP NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 60 mL na 2117016 <2 Styrofoam Cooler #3 -2107238 Lab ID: 2107238-18 Report Matrix: WS Collected: 07/12/2021 Sample: Sample Type: Sample + Sum Received: 07/22/2021 RG_RIVER_WS_LAEMP_LCO_2021-07_NP **Des Container** Size Lot **Preservation** P-Lot pН Ship. Cont. Cent Tube 15mL Se-Sp 15 mL Stvrofoam na none na na Cooler #3 -2107238 В XTRA_VOL 15 mL Stvrofoam na none na na Cooler #3 -2107238 С XTRA_VOL 60 mL na none na na Styrofoam Cooler #3 -2107238 Lab ID: 2107238-19 Report Matrix: WS Collected: 07/15/2021 Sample: Sample Type: Sample + Sum Received: 07/22/2021 RG LI8 WS LAEMP LCO 2021-07 NP NAL **Des Container** Size Lot **Preservation** P-Lot рΗ Ship. Cont. Client-Provided - TM 60 mL 10% HNO3 (BAL) na 2117016 <2 Styrofoam Cooler #3 -2107238 Lab ID: 2107238-20 Report Matrix: WS Collected: 07/15/2021 Sample: Sample Type: Sample + Sum Received: 07/22/2021 RG LI8 WS_LAEMP_LCO_2021-07_NP_NAL

Preservation

10% HNO3 (BAL)

P-Lot

2117016

pН

<2

Ship. Cont.

Styrofoam

Cooler #3 -2107238

BAL Final Report 2107238

Client PM: Cait Good

Client Project: Regional Effects Program

Sample Containers

	ID: 2107238-21 ple: RG_LI8_WS_LAEMP_L0	CO_2021-07_NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 07/15/2021 ived: 07/22/2021
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #3 - 2107238
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #3 - 2107238
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #3 - 2107238
Lab	ID : 2107238-22			Report Matrix: WS		Colle	cted: 07/14/2021
Sam RG	ple: FO23_WS_LAEMP_LCO_20	21-07 NP NAL		Sample Type: Sample + Sum		Rece	ived: 07/22/2021
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2117016	<2	Styrofoam Cooler #3 - 2107238
Sam	•	21-07 NP NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 07/14/2021 ived: 07/22/2021
Sam RG_	ple: FO23_WS_LAEMP_LCO_20		Lot	Sample Type: Sample + Sum	P-Lot	Rece	ived: 07/22/2021
Sam RG_	ple:	21-07_NP_NAL Size 60 mL	Lot na	-	P-Lot 2117016		
Sam RG_ Des A	ple: FO23_WS_LAEMP_LCO_20. Container Client-Provided - TM ID: 2107238-24	Size		Preservation 10% HNO3 (BAL) Report Matrix: WS		PH <2	Ship. Cont. Styrofoam Cooler #3 - 2107238 cted: 07/14/2021
Sam RG_ Des A	ple: FO23_WS_LAEMP_LCO_20. Container Client-Provided - TM ID: 2107238-24	Size 60 mL		Preservation 10% HNO3 (BAL)		PH <2	Ship. Cont. Styrofoam Cooler #3 - 2107238
Sam RG_ Des A Lab Sam RG_	ple: FO23_WS_LAEMP_LCO_20. Container Client-Provided - TM ID: 2107238-24 ple:	Size 60 mL		Preservation 10% HNO3 (BAL) Report Matrix: WS		PH <2	Ship. Cont. Styrofoam Cooler #3 - 2107238 cted: 07/14/2021
Sam RG_ Des A Lab Sam RG_	ple: FO23_WS_LAEMP_LCO_20. Container Client-Provided - TM ID: 2107238-24 ple: FO23_WS_LAEMP_LCO_20.	Size 60 mL 21-07_NP	na	Preservation 10% HNO3 (BAL) Report Matrix: WS Sample Type: Sample + Sum	2117016	PH <2	Ship. Cont. Styrofoam Cooler #3 - 2107238 cted: 07/14/2021 ived: 07/22/2021
Sam RG_ Des A Lab Sam RG_ Des	ple: FO23_WS_LAEMP_LCO_20. Container Client-Provided - TM ID: 2107238-24 ple: FO23_WS_LAEMP_LCO_20. Container	Size 60 mL 21-07_NP Size	na	Preservation 10% HNO3 (BAL) Report Matrix: WS Sample Type: Sample + Sum Preservation	2117016 P-Lot	PH <2 College Rece pH	Ship. Cont. Styrofoam Cooler #3 - 2107238 cted: 07/14/2021 sived: 07/22/2021 Ship. Cont. Styrofoam Cooler #3 -

Project ID: TRL-VC1701 PM: Jeremy Maute

BAL Final Report 2107238
Client PM: Cait Good

2107238

Client Project: Regional Effects Program

Sample Containers

Lab ID: 2107238-25 Report Matrix: WS Collected: 07/14/2021 Sample: Received: 07/22/2021 Sample Type: Sample + Sum RG FRUL WS LAEMP LCO 2021-07 NP NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 60 mL na 2117016 <2 Styrofoam Cooler #3 -2107238 Lab ID: 2107238-26 Report Matrix: WS Collected: 07/14/2021 Sample: Sample Type: Sample + Sum Received: 07/22/2021 RG_FRUL_WS_LAEMP_LCO_2021-07_NP_NAL **Des Container** Size Lot **Preservation** P-Lot Hq Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2117016 <2 Stvrofoam Cooler #3 -2107238 Lab ID: 2107238-27 Report Matrix: WS Collected: 07/14/2021 Sample: Received: 07/22/2021 Sample Type: Sample + Sum RG_FRUL_WS_LAEMP_LCO_2021-07_NP Size **Preservation** P-Lot **Des Container** Lot pН Ship. Cont. Cent Tube 15mL Se-Sp 15 mL Stvrofoam Α na none na na Cooler #3 -2107238 XTRA_VOL В 15 mL na none na Styrofoam na Cooler #3 -2107238 С XTRA_VOL 60 mL none Styrofoam na na na Cooler #3 -2107238 Lab ID: 2107238-28 Report Matrix: WS Collected: 07/12/2021 Sample: Sample Type: Sample + Sum Received: 07/22/2021 RG LIDCOM WS LAEMP LCO 2021-07 NP NAL **Preservation** Container Size Lot P-Lot pН Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2117016 <2 Styrofoam Cooler #3 -

Project ID: TRL-VC1701 PM: Jeremy Maute

Container

Client-Provided - TM

Size

60 mL

Lot

na

BAL Final Report 2107238

Client PM: Cait Good

Client Project: Regional Effects Program

Sample Containers

Lab ID: 2107238-29 Report Matrix: WS Collected: 07/12/2021 Sample: Received: 07/22/2021 Sample Type: Sample + Sum RG LIDCOM WS LAEMP LCO 2021-07 NP NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. Client-Provided - TM 10% HNO3 (BAL) 60 mL na 2117016 <2 Styrofoam Cooler #3 -2107238 Lab ID: 2107238-30 Report Matrix: WS Collected: 07/12/2021 Sample: Sample Type: Sample + Sum Received: 07/22/2021 RG_LIDCOM_WS_LAEMP_LCO_2021-07_NP Container **Size** Lot **Preservation** P-Lot pН Ship. Cont. Cent Tube 15mL Se-Sp 15 mL Stvrofoam Α na none na na Cooler #3 -2107238 В XTRA_VOL 15 mL Stvrofoam na none na na Cooler #3 -2107238 XTRA_VOL 60 mL С na none na na Styrofoam Cooler #3 -2107238 Lab ID: 2107238-31 Report Matrix: WS Collected: 07/14/2021 Sample: Sample Type: Sample + Sum Received: 07/22/2021 RG LIDSL WS LAEMP LCO 2021-07 NP NAL **Des Container** Size Lot **Preservation** P-Lot рΗ Ship. Cont. Client-Provided - TM 60 mL 10% HNO3 (BAL) na 2117016 <2 Styrofoam Cooler #3 -2107238 Lab ID: 2107238-32 Report Matrix: WS Collected: 07/14/2021 Sample: Sample Type: Sample + Sum Received: 07/22/2021 RG_LIDSL_WS_LAEMP_LCO_2021-07_NP_NAL

Preservation

10% HNO3 (BAL)

P-Lot

2117016

pН

<2

Ship. Cont.

Styrofoam Cooler #3 -2107238

Project ID: TRL-VC1701 **PM**: Jeremy Maute

BAL Final Report 2107238
Client PM: Cait Good
Client Project: Regional Effects Program

Sample Containers

Lab ID: 2107238-33 Report Matrix: WS Collected: 07/14/2021 Sample: Received: 07/22/2021 Sample Type: Sample + Sum RG_LIDSL_WS_LAEMP_LCO_2021-07_NP **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 15 mL Styrofoam Cent Tube 15mL Se-Sp na none na na Cooler #3 -2107238 В XTRA VOL 15 mL na none na na Styrofoam Cooler #3 -2107238 С XTRA VOL 60 mL na none na Styrofoam na Cooler #3 -2107238

Shipping Containers

Styrofoam Cooler #3 - 2107238

Received: July 22, 2021 7:00

Tracking No: PAPS#RWHV86596 via Courier

Coolant Type: Ice Temperature: 2.1 °C Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: IR#31 Custody seals present? No Custody seals intact? No COC present? Yes

BAL Final Report 2107238 COC ID: Regional Effects Program TURNAROUND TIME: Regular OTHER INFO PROJECT/CLIENT INFO LABORATOR Facility Name / Job# Regional Effects Program Lab Name ALS Calgary Excel PDF EDD Report Format / Distribution Lab Contact Lyuda Shvets Project Manager Cait Good Email 1: calt.good@teck.com Email calt.good@teck.com Email Lyudmyla.Shvets@ALSGlobal.com Email 2: Address 2559 29 Street NE Address 421 Pine Avenue Email 3: Email 4: City Sparwood Province BC City Calgary Province AB Email 5: Carla. Froyman Parker@teck.com X V0B 2G0 Country Canada Postal Code T1Y 7B5 Country Canada Postal Code Danika Gerulo @ teck. com x Phone Number 403-407-1800 Phone Number 250-425-8202 PO number SAMPLE DETAILS ANALYSIS REQUESTED Filtered F: Field, La Lab, PL: Field & Lab, N: Non HNO3 HNO3 H2SO4 HC HNO3 HNO3 Hazardous Material (Yes/No) Dissolved Selenium Fotal Selenium G#Grab Sample Location Field C=Com # Of Time (24hr) (sys loc code) Matrix Date Cont Sample ID RG_STINE LIS LAEMPLE 2021-07 IP. MAL RG_SLINE WS 08:35 G 2 X NO 2021/67/13 K RG. SLINE US LAEMPLLO 2021-07-MP RG-SLINE 1 × NO 2021/07/13 08:35 G RGJI24 US LAEMP LIO 2021-07 MP MAL RG LIQUI WS 12:55 G Q NO 2021/07/13 X X RC LIDE WS. LACT ? LCO. 2021-07-NP. RG LIBY WS NO 2621/7/13 12:55 G 1 D/ RG-LCUT WS-LAKEMP LEO 2021-07-N-NAI RG-LCUT WS 2 NO 201/07/12 09.15 G ol RG_LCUT US LAEMP LCG_2021-07-NP WS RG LCUT NO DORIGHTION 09:15 G N RG LILCS US LAEMP LIO 2021-07 NP NAI RG LILC3 2 WS NO 2021/07/12 11:15 G X ot RGLILCZUS_MEMP_LCO_2URI-O7_NP RG_LILC3 WS NO 2021/07/12 11:15 G X RG_LISPOY_US_LACMP.LCO 2021-07-NP_NAT RG_LISPOY WS NO 2021/07/12 13:30 G X of NO 2021/07/12 13:36 G
RELINQUISHED BY/AFFILIATION X WS RG_LISPOULUS_LAEMPLLOO DORI-O7- NP RG. LISPOL BIEFFUS ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS DATE/TIME ACCEPTED BY/AFFILIATION 2021/07/15/10:00 Line Creek LAMEP - VPO Rich Smit / Lutic environmente July 15/21 Samples for total selenium have been preserved in the field. Dissolved selenium have 5. ± (BAL)7/22/21 7.50 been filtered and preserved. Speciation samples have been filtered and frozen. SERVICE REQUEST (rush - subject to availability) Regular (default) X Rick Smi) Mobile # 403-586-3241 Sampler's Name Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge Sampler's Signature Date/Time 2021 07 15 10:00 For Emergency <1 Day, ASAP or Weekend - Contact ALS

CTOCKAI BAL Final Report 2107238 TURNAROUND TIME: COC ID: Regional Effects Program OTHER INFO PROJECT/CLIENT INFO LABORATOR Lab Name ALS Calgary Excel PDF EDD Facility Name / Job# Regional Effects Program Report Format / Distribution Lab Contact Lyuda Shvets Email 1: Project Manager Cait Good cait.good@teck.com Email Lyudmyla.Shvets@ALSGlobal.com Email 2: Email cait.good@teck.com Address 2559 29 Street NE Email 3: Address 421 Pine Avenue Email 4: Province BC City Calgary Province AB Email 5: City Sparwood Carla.FroymanParker@teck.com X Canada Postal Code T1 Y 7B5 Country Canada Gerylom tack com of V0B 2G0 Country Danika Postal Code 12000 74 8510 Phone Number 250-425-8202 Phone Number 403-407-1800 PO number Filtered - F: Fleid, L. Lao, FL: Fleid & Lab, N: Non-SAMPLE DETAILS ANALYSIS REQUESTED N Y Y HNO3 HNO3 H2SO4 HCI HNO3 HNO3 NONE Hazardous Material (Yes/No) Selenium Speciation Dissolved Selenium Total Selenium G=Grab Field C=Com # Of Sample Location (sys loc code) Time (24hr) Sample ID Matrix Date Cont RG. LIBLUS LAENP LCO. 2021-07 NP NAL 2021/07/15 08:15 2 RG_LI8 G X NO WS N 2021/07/15 08:15 RG_LT8-WS_LAEMP_LCO_2029-07_NP RG_LI8 WS NO G WS NO WS NO G G WS NO WS G NO WS NO G G WS NO WS NO G WS NO RELINQUISHED BY/AFFILIATION DATE/FIME ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS Rich Smit / Lotic environmental 2021/07/15/10:00 Brett Mas Line Creek LAMEP - VPO Samples for total selenium have been preserved in the field. Dissolved selenium have S7 (BAL) been filtered and preserved. Speciation samples have been filtered and frozen. SERVICE REQUEST (rush - subject to availability) Rick Smit Regular (default) X 403-586-3841 Mobile # Sampler's Name Priority (2-3 business days) - 50% surcharge

Sampler's Signature

2021/07/15

10:00

Date/Time

Emergency (1 Business Day) - 100% surcharge

For Emergency <1 Day, ASAP or Weekend - Contact ALS

BAL Final Report 2107238 COC ID: Regional Effects Program TURNAROUND TIME: Regular OTHER INFO PROJECT/CLIENT INFO LABORATOR Facility Name / Job# Regional Effects Program Lab Name ALS Calgary Report Format / Distribution Excel PDF EDD Lab Contact Lyuda Shvets Project Manager Cait Good Email 1: calt.good@teck.com Email cait.good@teck.com Email Lyudmyla.Shvets@ALSGlobal.com Email 2: Address 2559 29 Street NE Address 421 Pine Avenue Email 3: Email 4: BC City Calgary City Sparwood Province Province AB Email 5: Carla, Froyman Parker@teck.com X V0B 2G0 Country Canada Postal Code T1Y 7B5 Country Canada Danika Gerylo@ teckcom & Postal Code Phone Number 250-425-8202 Phone Number 403-407-1800 PO number SAMPLE DETAILS ANALYSIS REQUESTED Filtered - F: Field, L. Lab, FL: Field & Lab, S: No. N Y Y Y Y N HNO3 HNO3 H2SO4 HCI HNO3 HNO3 NONE Hazardous Material (Yes/No) Selenium Speciation Dissolved Selenium **Fotal Selenium** G=Grab Sample Location Field C=Com # Of Time (24hr) Sample ID (sys loc code) Matrix Date Cont. RG. LIDSL WS. LAEMPLIO-2021-07-NP. NAL RG. LIDGE 2 G WS 2021/07/14 14:00 X OL RGLIDSL -WS-LAEMP-LCO. 2021-57 NP RG_LIDSL WS NO 2021/07/14 14:00 G X RGLIDGEN WS LAEMP LO 2021-ONP. MAK RG LIDCOM WS 15:00 G 2 × 2021/07/12 X RGLIDCOM_LIS_LAEMP_LCO_2021-UT NP RG_LIDCOM WS 2021/07/12 15:00 1 X RG_RINER_US_LAEMP_LCO_2021-07_NP.WAL RG_RIVER 2 X X WS 2021/07/12 10:00 RG RIVER LIS LAGAPLED 2021-07- NP RG-RIVER WS G X 21/07/12 10:00 1 RIS FRUL US LAEMP LO 2021-07-NP NAL RG FRUL G X WS NO 2021/07/14 09:00 X X RG FRULUS LAEMP LO 2021-67-NP RG FRUL WS NO 2021/07/14 09:00 G RG. FOR3 WS. LAEMPLLO DORI-OFLYP, MAL RG. FOR3 WS 2021/07/14 11:15 G 2 K a RG. FO23 LIS LAEMP LCO 2021-07-NP RG_FO23 WS NO 2021/07/14 11:15 RELINQUISHED BY/AFFILIATION DATE/TIME ACCEPTED BY/AFFILIATION ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS Rick Smit/Lotic environmental Bretman 20210715/10-Line Creek LAMEP - VPO 748510 Samples for total selenium have been preserved in the field. Dissolved selenium have (BAL) been filtered and preserved. Speciation samples have been filtered and frozen. SERVICE REQUEST (rush - subject to availability)

Regular (default) X

Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge

For Emergency <1 Day, ASAP or Weekend - Contact ALS

Sampler's Name

Sampler's Signature

Rick Smit

403-536-3241

10:00

202107 18

Mobile #

STRAIGHT BILL OF LADING NOT NEGOTIABLE

250-425-7447 24 Hour Hot Shot Service

BAL Final Report 2107238

No. 86597

Sparwood, BC Terrace, BC Red Deer, AB

Vancouver, BC Calgary, AB Montreal, QC

Prince George, BC Edmonton, AB Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT

Tumbler Ridge, BC Hinton, AB Gillette, WY

INVOICE TO				DATE :	74
BILL OF LADING #		PURCHASE ORDER NU	JMBER		
SHIPPER (FROM)	W.	CONSIGNEE (TO)	i •		2
STREET		STREET		en and	
CITY/PROVINCE	POSTAL CODE	CITY/PROVINCE		5	POSTAL CODE
SPECIAL INSTRUCTIONS					HT CHARGES
PACKAGES . DESCRIPTION OF ARTICL	ES AND SPECIAL MARKS		WEIGHT (Subject to Correction)	SHIPPER T	\$4.
N a.	:	i.		If not indicated, ship	poing will automatically move colle
		<u></u>		FEE	izi.
		31		WAITING	
Life Ser				XPU	
DADC# RIJUIC	21591			CHARGES	*
I A I O T I WI I V	700 10	J		FSC	
UNIT#	1			us	
	liability of carrier is \$	UATION: Maximum 2.00 per lb. (\$4.41 per clared valuation states	\$	SUB TOTAL_	
DRIVER'S SIGNATURE - PICK UP BY PICK UP TIME	Company of the second		FINISH TIME	GST	
NOTICE OF CLAIM: (a) No camer is liable for loss, damage or delay of any goods under the Sin of Lading unless respect of such loss, damage or delay is given in winting to the originating carrier or the deliverang camer within sit by 17he final statement of the claim must. Joe filled within mine (3) months from the dot RECEIVED at the point of origin on the date specified from the consignor mentioned herein, the property herein destined as indicated below, which the carrier agrees to carry and to deliver to the con- is is mutually agreed, as to each earther of all or any of the goods over all or any portion of the move to destinate of all or any of the goods over all or any portion of the rove to destination the date of its state. The date of the state of the carrier agrees of the consignor and accepted for hinties. The Contract for the carriage of the goods listed in the Bill of Lading is governed by regulation in force in the pursuit.	s notice, therefor ustung our particulars of stay (GI) days after the delivery of the goods et al. Stroment together with a clescribed, in apparent good order, except a signed at the said destination, su, and as to each party of any long interester and accepted for harmfall and his assigns. If "and if the said destination suggests of the said strome the said of the said strome and page the said strome and page of shoment as the diction again time and place of shoment as	the origin, destination and date of shipmens, on the case of failure to make delivery only of the bail of regist bill, as noted (contents and condition of contents) blight to the raties and classification and or any of the goods, that every separated or whaten, including conditions as once subject to the conditions set out in a subject to the conditions set out in a	it of the goods and the estimated amount of within nine (9) months from the date of shi nis of package unknown) marked, consigni- tion in effect on the date of ship wide to be performed hereunder shall be sit- t saide by the staindard Bill of Lading, in po- such concluints.	istimed primerly. TOTAL \$	K, WAITE ORD HERRE
SHIPPER. PRINT	CONSIGNEE PRINT			DATE	7-21
SHIPPER SIGN	CONSIGNEE SIGN			TIME	1
WHITE: Office YELLOW: Carrier PINK: Consignee		GST#86	4540398RT0001	NUMBER OF PIEC	ES RECEIVED
Cooler ID: Styro Foam Cooler # 3 Coolant Type: (ice) Blue Ice Al	coc(v)N)	Temperature:	3.1 Great	·d)	IR: 31
	direction in the second				4
Notes: (1) Sampling Locations: RG, WL, LC	EE LG	wL			14
Sample Types:	P T/D	F) (16)	SP) T/D	SP T/	D SP
Container Types: 125mL HDP		10 1	smL IDFE		
Opened By: 5.7 7/22/2 (Date: 7/21/	21	•		_

ision 004

SELENIUM SPECIATION

BAL Final Report 2109310 (Finalized October 22, 2021) Confidential BAL Final Report 2109310

18804 North Creek Parkway, Ste 100, Bothell, WA 98011 • USA • T: 206 632 6206 F: 206 632 6017 • info@brooksapplied.com

October 22, 2021

Teck Resources Limited – Vancouver Cybele Heddle 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 cybele.heddle@teck.com

Re: REP

Dear Cybele Heddle,

On September 23, 2021, Brooks Applied Labs (BAL) received four (4) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se, and Se speciation analyses, according to the chain-of-custody (COC) form.

The **Sampling Time** value listed on the chain-of-custody (COC) form did not exactly match the corresponding **Sampling Time** values listed on container labels for samples 2109310-02 and 2109310-03. The discrepancies are described in the table below.

Laboratory ID	Sample ID (From COC form)	Sample Time (From COC)	Sample Time (From Container Labels)	Analytical Parameter
2109310-02	RG_SLINE_WS_2021- 09-15_N_NAL	8:15	8:17	Total Recoverable Se
2109310-03	RG_SLINE_WS_2021- 09-15_N_NAL	8:15	8:17	Dissolved Se

The samples described the table above were logged in and reported according to the **Sampling Time** value listed on the COC form.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Confidential BAL Final Report 2109310

Se Speciation

Each aqueous sample was analyzed for Se speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate [SeSO3], and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk Se Sp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional Se species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting Se species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances when a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the RPD of the MS/MSD set was not calculated (N/C).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited met all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager

Brooks Applied Labs

Jeremy@brooksapplied.com

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109310
Client PM: Cybele Heddle
Client Project: REP

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109310
Client PM: Cybele Heddle
Client Project: REP

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)

Issued on: July 1, 2021; Valid to: June 30, 2022 Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
Non-Potable Waters		Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury
EPA 1630	Non-Potable Waters	Methyl Mercury
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)
SM2340B	Non-Potable Waters	Hardness

Project ID: TRL-VC1701 PM: Jeremy Maute

BAL Final Report 2109310 Client PM: Cybele Heddle Client Project: REP

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)	Not Accredited
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)	Not Accredited
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)	Not Accredited
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)	Not Accredited
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb	Not Accredited
DAI 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)	Not Accredited
SM2340B	Non-Potable Waters	Hardness	Hardness
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight

⁽¹⁾ ISO/IEC 17025:2017 - Certificate Number ADE-1447.02

⁽²⁾ Non-Governmental NELAC Institute 2016 Standard - Certificate Number ADE-1447.01

⁽³⁾ Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.03 for DOE.

BAL Final Report 2109310
Client PM: Cybele Heddle
Client Project: REP

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
RG_SLINE_WS_2021-09-15_N	2109310-01	WS	Sample	09/15/2021	09/23/2021
RG_SLINE_WS_2021-09-15_N_NAL	2109310-02	WS	Sample	09/15/2021	09/23/2021
RG_SLINE_WS_2021-09-15_N_NAL	2109310-03	WS	Sample	09/15/2021	09/23/2021
RG_LI24_WS_LAEMP_LCO_2021-0	2109310-04	WS	Sample	09/16/2021	09/23/2021
9-16_N					
RG_LI24_WS_LAEMP_LCO_2021-0	2109310-05	WS	Sample	09/16/2021	09/23/2021
9-16_N_NAL					
RG_LI24_WS_LAEMP_LCO_2021-0	2109310-06	WS	Sample	09/16/2021	09/23/2021
9-16_N_NAL					

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
MeSe(IV)	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
MeSe(VI)	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
Se	Water	EPA 1638 Mod	09/28/2021	09/30/2021	B212656	S211116
Se(IV)	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
Se(VI)	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
SeCN	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
SeMet	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
SeSO3	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
Unk Se Sp	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081

BAL Final Report 2109310
Client PM: Cybele Heddle
Client Project: REP

Sample Results

RG_SLINE_WS_2021-09-15_N	Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
2109310-01 MeSe(IV) WS D ≤ 0.010 U 0.010 0.025 μg/L B212622 S211081	RG SLINE W	S 2021-09-15 I	V								
2109310-01 MeSe(VI) WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-01 Se(VI) WS D 0.019 J 0.010 0.075 μg/L B212622 S211081 2109310-01 Se(VI) WS D 1.41 0.010 0.055 μg/L B212622 S211081 2109310-01 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-01 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-01 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-01 Se(VI) WS D 5.0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-01 Ly Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-01 Se(VI) WS D 5.0.010 U 0.010 0.075 μg/L B212622 S211081 2109310-02 Se WS TR 1.44 0.165 0.528 μg/L B212656 S21116 RG_SLINE_WS_2021-09-15_N_NAL 2109310-03 Se WS D 1.58 D 1.58 0.165 0.528 μg/L B212626 S211081 2109310-04 MeSe(VI) WS D 5.0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(VI) WS D 5.0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(VI) WS D 5.0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055		_		D	≤ 0.010	U	0.010	0.025	μg/L	B212622	S211081
2109310-01 Se(IV) WS D 0.019 J 0.010 0.075 μg/L B212622 S211081 2109310-01 Se(VI) WS D 1.41 0.010 0.055 μg/L B212622 S211081 2109310-01 SeCN WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-01 SeMet WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-01 SeSO3 WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-01 SeSO3 WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-01 Unk Se Sp WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-01 SeSO3 WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-02 Se WS TR 1.44 0.165 0.528 μg/L B212656 S211116 SEC WS 2021-09-15_N_NAL 2109310-03 Se WS D 1.58 0.165 0.528 μg/L B212656 S211116 SEC WS 2021-09-16_N 2109310-04 MeSe(IV) WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(IV) WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(IV) WS D 0.020 J 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(IV) WS D 3.06 0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(IV) WS D 3.06 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.075 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.075 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) U 0.0	2109310-01	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212622	S211081
2109310-01 Se(VI) WS D 1.41 0.010 0.055 μg/L B212622 S211081 2109310-01 SeCN WS D ≤ 0.010 U 0.010 0.050 μg/L B212622 S211081 2109310-01 SeCN WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-01 SeSO3 WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-01 Unk Se Sp WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-01 Unk Se Sp WS D ≤ 0.010 U 0.010 0.075 μg/L B212622 S211081 2109310-02 Se WS TR 1.44 0.165 0.528 μg/L B212656 S211116 2109310-03 Se WS D 1.58 0.165 0.528 μg/L B212656 S211116 2109310-03 Se WS D 1.58 0.165 0.528 μg/L B212656 S211116 2109310-04 MeSe(VI) WS D ≤ 0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(VI) WS D ≤ 0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(VI) WS D 5.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(VI) WS D 0.020 J 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(VI) WS D 0.020 J 0.010 0.075 μg/L B212622 S211081 2109310-04 Se(VI) WS D 0.020 J 0.010 0.075 μg/L B212622 S211081 2109310-04 Se(VI) WS D 0.020 J 0.010 0.075 μg/L B212622 S211081 2109310-04 Se(VI) WS D 0.020 J 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 0.020 J 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(VI) WS D 5.0.010 U 0.01	2109310-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212622	S211081
2109310-01 SeCN WS D ≤0.010 U 0.010 0.050 μg/L B212622 S211081 2109310-01 SeMet WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-01 SeSO3 WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-01 Unk Se Sp WS D ≤0.010 U 0.010 0.075 μg/L B212622 S211081 2109310-01 Unk Se Sp WS D ≤0.010 U 0.010 0.075 μg/L B212622 S211081 2109310-02 Se WS TR 1.44 0.165 0.528 μg/L B212656 S211116 2109310-03 Se WS D 1.58 0.165 0.528 μg/L B212656 S211116 2109310-03 Se WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(IV) WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(IV) WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(IV) WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.010 U 0.010 0.055 μg/L B212622 S2110	2109310-01	Se(IV)	WS	D	0.019	J	0.010	0.075	μg/L	B212622	S211081
2109310-01 SeMet WS D ≤ 0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-01 SeSO3 WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-01 Unk Se Sp WS D ≤ 0.010 U 0.010 0.075 μg/L B212622 S211081 2109310-02 Se WS TR 1.44 0.165 0.528 μg/L B212656 S211116 RG_SLINE_WS_2021-09-15_N_NAL 2109310-03 Se WS D 1.58 0.165 0.528 μg/L B212656 S211116 RG_LI24_WS_LAEMP_LCO_2021-09-16_N	2109310-01	Se(VI)	WS	D	1.41		0.010	0.055	μg/L	B212622	S211081
2109310-01 SeSO3 WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-01 Unk Se Sp WS D ≤0.010 U 0.010 0.075 μg/L B212622 S211081 RG_SLINE_WS_2021-09-15_N_NAL 2109310-02 Se WS TR 1.44 0.165 0.528 μg/L B212656 S211116 RG_SLINE_WS_2021-09-15_N_NAL 2109310-03 Se WS D 1.58 0.165 0.528 μg/L B212656 S211116 RG_LI24_WS_LAEMP_LCO_2021-09-16_N 2109310-04 MeSe(IV) WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(IV) WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(IV) WS D 3.06 0.010 0.075 μg/L B212622 S211081 2109310-04 Se(IV) WS D 3.06 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 3.06 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 3.06 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 5.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D 5.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(IV) WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-05 Se WS TR 3.16	2109310-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212622	S211081
2109310-01 Unk Se Sp WS D ≤0.010 U 0.010 0.075 μg/L B212622 S211081 RG_SLINE_WS_2021-09-15_N_NAL 2109310-02 Se WS TR 1.44 0.165 0.528 μg/L B212656 S211116 RG_SLINE_WS_2021-09-15_N_NAL 2109310-03 Se WS D 1.58 0.165 0.528 μg/L B212656 S211116 RG_LI24_WS_LAEMP_LCO_2021-09-16_N 2109310-04 DMSeO WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(IV) WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(V) WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(V) WS D ≤0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.075 μg/L B212622 S211081 2109310-04 Se(IV) WS D 3.06 0.010 0.075 μg/L B212622 S211081 2109310-04 Se(V) WS D 3.06 0.010 0.055 μg/L B212622 S211081 2109310-04 SeCN WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeMet WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeMet WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-05 Se WS TR 3.16 0.165 0.528 μg/L B212656 S211116	2109310-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212622	S211081
RG_SLINE_WS_2021-09-15_N_NAL 2109310-02 Se WS TR 1.44 0.165 0.528 µg/L B212656 S211116 RG_SLINE_WS_2021-09-15_N_NAL 2109310-03 Se WS D 1.58 0.165 0.528 µg/L B212656 S211116 RG_LI24_WS_LAEMP_LCO_2021-09-16_N 2109310-04 DMSeO WS D ≤0.010 U 0.010 0.025 µg/L B212622 S211081 2109310-04 MeSe(IV) WS D ≤0.010 U 0.010 0.025 µg/L B212622 S211081 2109310-04 MeSe(VI) WS D ≤0.010 U 0.010 0.025 µg/L B212622 S211081 2109310-04 MeSe(VI) WS D 0.020 J 0.010 0.025 µg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.075 µg/L B212622 S211081 2109310-04 Se(VI) WS D 3.06 0.010 0.075 µg/L B212622 S211081 2109310-04 Se(VI) WS D 3.06 0.010 0.055 µg/L B212622 S211081 2109310-04 SeCN WS D ≤0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeMet WS D ≤0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeMet WS D ≤0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeSO3 WS D ≤0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeSO3 WS D ≤0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 Unk Se Sp WS D ≤0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 Unk Se Sp WS D ≤0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeNot WS D ≤0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeNot WS D ≤0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeNot WS D ≤0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeNot WS D ≤0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeNot WS D ≤0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeNot WS D ≤0.010 U 0.010 0.075 µg/L B212622 S211081 2109310-04 SeNot WS D ≤0.010 U 0.010 0.075 µg/L B212622 S211081	2109310-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212622	S211081
2109310-02 Se WS TR 1.44 0.165 0.528 µg/L B212656 S211116 RG_SLINE_WS_2021-09-15_N_NAL 2109310-03 Se WS D 1.58 0.165 0.528 µg/L B212656 S211116 RG_LI24_WS_LAEMP_LCO_2021-09-16_N 2109310-04 DMSeO WS D ≤ 0.010 U 0.010 0.025 µg/L B212622 S211081 2109310-04 MeSe(IV) WS D ≤ 0.010 U 0.010 0.025 µg/L B212622 S211081 2109310-04 MeSe(VI) WS D ≤ 0.010 U 0.010 0.025 µg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.025 µg/L B212622 S211081 2109310-04 Se(VI) WS D 0.020 J 0.010 0.075 µg/L B212622 S211081 2109310-04 Se(VI) WS D 3.06 0.010 0.055 µg/L B212622 S211081 2109310-04 SeCN WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeMet WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeMet WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 Unk Se Sp WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-05 Se WS TR 3.16 0.165 0.528 µg/L B212622 S211081	2109310-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212622	S211081
2109310-02 Se WS TR 1.44 0.165 0.528 μg/L B212656 S211116 RG_SLINE_WS_2021-09-15_N_NAL 2109310-03 Se WS D 1.58 0.165 0.528 μg/L B212656 S211116 RG_LI24_WS_LAEMP_LCO_2021-09-16_N 2109310-04 DMSeO WS D ≤ 0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(IV) WS D ≤ 0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(VI) WS D 0.020 J 0.010 0.075 μg/L B212622 S211081 2109310-04 Se(VI) WS D 3.06 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(N) WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(N) WS D 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Se(N) WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeMet WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Unk Se Sp WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Unk Se Sp WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Unk Se Sp WS D ≤ 0.010 U 0.010 0.075 μg/L B212622 S211081 2109310-05 Se WS TR 3.16 0.165 0.528 μg/L B212656 S211116	DC SLINE W	C 2024 00 45 I	AL ALAT								
RG_LI24_WS_LAEMP_LCO_2021-09-16_N_NAL 2109310-03 Se WS D 1.58 0.165 0.528 µg/L B212656 S211116 RG_LI24_WS_LAEMP_LCO_2021-09-16_N 2109310-04 DMSeO WS D ≤ 0.010 U 0.010 0.025 µg/L B212622 S211081 2109310-04 MeSe(IV) WS D ≤ 0.010 U 0.010 0.025 µg/L B212622 S211081 2109310-04 MeSe(VI) WS D ≤ 0.010 U 0.010 0.025 µg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.075 µg/L B212622 S211081 2109310-04 Se(VI) WS D 3.06 0.010 0.055 µg/L B212622 S211081 2109310-04 Se(N WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeCN WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeMet WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeMet WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-05 Se WS TR 3.16 0.165 0.528 µg/L B212656 S211116 RG_LI24_WS_LAEMP_LCO_2021-09-16_N_NAL			_	TD	1 11		0.165	0.520	ua/l	D212656	0011116
2109310-03 Se WS D 1.58 0.165 0.528 μg/L B212656 S211116 RG_LI24_WS_LAEMP_LCO_2021-09-16_N 2109310-04 DMSeO WS D ≤ 0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(IV) WS D ≤ 0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 MeSe(VI) WS D ≤ 0.010 U 0.010 0.025 μg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.075 μg/L B212622 S211081 2109310-04 Se(VI) WS D 3.06 0.010 0.075 μg/L B212622 S211081 2109310-04 Se(VI) WS D 3.06 0.010 0.055 μg/L B212622 S211081 2109310-04 SeCN WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeMet WS D ≤ 0.010 U 0.010 0.050 μg/L B212622 S211081 2109310-04 SeMet WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Unk Se Sp WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 SeSO3 WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081 2109310-04 Unk Se Sp WS D ≤ 0.010 U 0.010 0.055 μg/L B212622 S211081	2109310-02	36	VVS	IK	1.44		0.100	0.326	µg/L	DZ 12000	5211110
RG_LI24_WS_LAEMP_LCO_2021-09-16_N 2109310-04 DMSeO WS D ≤ 0.010 U 0.010 0.025 μ g/L B212622 S211081 2109310-04 MeSe(IV) WS D ≤ 0.010 U 0.010 0.025 μ g/L B212622 S211081 2109310-04 MeSe(VI) WS D ≤ 0.010 U 0.010 0.025 μ g/L B212622 S211081 2109310-04 Se(VI) WS D 0.020 J 0.010 0.075 μ g/L B212622 S211081 2109310-04 Se(VI) WS D 0.020 J 0.010 0.075 μ g/L B212622 S211081 2109310-04 Se(VI) WS D 3.06 0.010 0.055 μ g/L B212622 S211081 2109310-04 Se(N WS D ≤ 0.010 U 0.010 0.055 μ g/L B212622 S211081 2109310-04 Se(N WS D ≤ 0.010 U 0.010 0.055 μ g/L B212622 S211081 2109310-04 Se(Net WS D ≤ 0.010 U 0.010 0.025 μ g/L B212622 S211081 2109310-04 Se(N WS D ≤ 0.010 U 0.010 0.025 μ g/L B212622 S211081 2109310-04 Se(N WS D ≤ 0.010 U 0.010 0.055 μ g/L B212622 S211081 2109310-04 Se(N WS D ≤ 0.010 U 0.010 0.055 μ g/L B212622 S211081 2109310-04 Unk Se(N WS D ≤ 0.010 U 0.010 0.055 μ g/L B212622 S211081 μ g/L B212622 S211081 S2109310-04 Se(N WS D Se(N	RG_SLINE_W	RG SLINE WS 2021-09-15 N NAL									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2109310-03	Se	WS	D	1.58		0.165	0.528	μg/L	B212656	S211116
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_	_							
2109310-04 MeSe(VI) WS D \leq 0.010 U 0.010 0.025 µg/L B212622 S211081 2109310-04 Se(IV) WS D 0.020 J 0.010 0.075 µg/L B212622 S211081 2109310-04 Se(VI) WS D 3.06 0.010 0.055 µg/L B212622 S211081 2109310-04 SeCN WS D \leq 0.010 U 0.010 0.050 µg/L B212622 S211081 2109310-04 SeMet WS D \leq 0.010 U 0.010 0.025 µg/L B212622 S211081 2109310-04 SeSO3 WS D \leq 0.010 U 0.010 0.025 µg/L B212622 S211081 2109310-04 SeSO3 WS D \leq 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 Unk Se Sp WS D \leq 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 Unk Se Sp WS D \leq 0.010 U 0.010 0.075 µg/L B212622 S211081 $RG_{\perp} L_{\perp}											
2109310-04 Se(IV) WS D 0.020 J 0.010 0.075 μ g/L B212622 S211081 2109310-04 Se(VI) WS D 3.06 0.010 0.055 μ g/L B212622 S211081 2109310-04 SeCN WS D \leq 0.010 U 0.010 0.050 μ g/L B212622 S211081 2109310-04 SeMet WS D \leq 0.010 U 0.010 0.025 μ g/L B212622 S211081 2109310-04 SeSO3 WS D \leq 0.010 U 0.010 0.025 μ g/L B212622 S211081 2109310-04 Unk Se Sp WS D \leq 0.010 U 0.010 0.055 μ g/L B212622 S211081 2109310-04 Unk Se Sp WS D \leq 0.010 U 0.010 0.075 μ g/L B212622 S211081 RG_{\perp} L124_WS_LAEMP_LCO_2021-09-16_N_NAL 2109310-05 Se WS TR 3.16 0.165 0.528 μ g/L B212656 S211116		, ,				-			. •		
2109310-04 Se(VI) WS D 3.06 0.010 0.055 μ g/L B212622 S211081 2109310-04 SeCN WS D \leq 0.010 U 0.010 0.050 μ g/L B212622 S211081 2109310-04 SeMet WS D \leq 0.010 U 0.010 0.025 μ g/L B212622 S211081 2109310-04 SeSO3 WS D \leq 0.010 U 0.010 0.025 μ g/L B212622 S211081 2109310-04 Unk Se Sp WS D \leq 0.010 U 0.010 0.055 μ g/L B212622 S211081 2109310-04 Unk Se Sp WS D \leq 0.010 U 0.010 0.075 μ g/L B212622 S211081 $RG_L124_WS_LAEMP_LCO_2021-09-16_N_NAL$ 2109310-05 Se WS TR 3.16 0.165 0.528 μ g/L B212656 S211116		` ,									
2109310-04 SeCN WS D \leq 0.010 U 0.010 0.050 µg/L B212622 S211081 2109310-04 SeMet WS D \leq 0.010 U 0.010 0.025 µg/L B212622 S211081 2109310-04 SeSO3 WS D \leq 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 Unk Se Sp WS D \leq 0.010 U 0.010 0.055 µg/L B212622 S211081 2109310-04 Unk Se Sp WS D \leq 0.010 U 0.010 0.075 µg/L B212622 S211081 $RG_L124_WS_LAEMP_LCO_2021-09-16_N_NAL$ 2109310-05 Se WS TR 3.16 0.165 0.528 µg/L B212656 S211116		` '				J					
2109310-04 SeMet WS D \leq 0.010 U 0.010 0.025 μ g/L B212622 S211081 2109310-04 SeSO3 WS D \leq 0.010 U 0.010 0.055 μ g/L B212622 S211081 2109310-04 Unk Se Sp WS D \leq 0.010 U 0.010 0.075 μ g/L B212622 S211081 $RG_L124_WS_LAEMP_LCO_2021-09-16_N_NAL$ 2109310-05 Se WS TR 3.16 0.165 0.528 μ g/L B212656 S211116 $RG_L124_WS_LAEMP_LCO_2021-09-16_N_NAL$											
2109310-04 SeSO3 WS D \leq 0.010 U 0.010 0.055 μ g/L B212622 S211081 2109310-04 Unk Se Sp WS D \leq 0.010 U 0.010 0.075 μ g/L B212622 S211081 RG_LI24_WS_LAEMP_LCO_2021-09-16_N_NAL 2109310-05 Se WS TR 3.16 0.165 0.528 μ g/L B212656 S211116											
2109310-04 Unk Se Sp WS D ≤ 0.010 U 0.010 0.075 μg/L B212622 S211081 RG_LI24_WS_LAEMP_LCO_2021-09-16_N_NAL 2109310-05 Se WS TR 3.16 0.165 0.528 μg/L B212656 S211116 RG_LI24_WS_LAEMP_LCO_2021-09-16_N_NAL											
RG_LI24_WS_LAEMP_LCO_2021-09-16_N_NAL 2109310-05 Se WS TR 3.16 0.165 0.528 μg/L B212656 S211116 RG_LI24_WS_LAEMP_LCO_2021-09-16_N_NAL											
2109310-05 Se WS TR 3.16 0.165 0.528 μg/L B212656 S211116 RG_LI24_WS_LAEMP_LCO_2021-09-16_N_NAL	2109310-04	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212622	S211081
2109310-05 Se WS TR 3.16 0.165 0.528 μg/L B212656 S211116 RG_LI24_WS_LAEMP_LCO_2021-09-16_N_NAL	RG LI24 WS	LAEMP LCO	2021-09-16 N NA	L							
					3.16		0.165	0.528	μg/L	B212656	S211116
	DC 1124 14/6	LAEMD LCO	2024 00 46 N NA	,							
ZIUMATUHUN DE 1860 D D 3.00 U 100 U 100 U 100 DZIZNON SZITIM	2109310-06	.LAEMP_LCO_A Se	WS WS	L D	3.08		0.165	0.528	μg/L	B212656	S211116

BAL Final Report 2109310
Client PM: Cybele Heddle
Client Project: REP

Accuracy & Precision Summary

Batch: B212622 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B212622-BS1	Blank Spike, (2124033)						
	MeSe(IV)		5.095	5.615	μg/L	110% 75-125	
	Se(IV)		5.000	4.997	μg/L	100% 75-125	
	Se(VI)		5.000	5.149	μg/L	103% 75-125	
	SeCN		5.015	5.067	μg/L	101% 75-125	
	SeMet		4.932	5.109	μg/L	104% 75-125	
B212622-DUP6	Duplicate, (2109306-42)						
	DMSeO	ND		ND	μg/L		N/C 25
	MeSe(IV)	ND		ND	μg/L		N/C 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	0.375		0.375	μg/L		0.1% 25
	Se(VI)	40.70		40.58	μg/L		0.3% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B212622-MS6	Matrix Spike, (2109306-4	2)					
	Se(IV)	0.375	4.900	5.126	μg/L	97% 75-125	
	Se(VI)	40.70	5.100	47.06	μg/L	NR 75-125	
	SeCN	ND	1.962	1.902	μg/L	97% 75-125	
	SeMet	ND	1.977	1.909	μg/L	97% 75-125	
B212622-MSD6	Matrix Spike Duplicate, (2109306-42)				
	Se(IV)	0.375	4.900	5.143	μg/L	97% 75-125	0.3% 25
	Se(VI)	40.70	5.100	46.88	μg/L	NR 75-125	N/C 25
	SeCN	ND	1.962	1.870	μg/L	95% 75-125	2% 25
	SeMet	ND	1.977	1.920	μg/L	97% 75-125	0.6% 25

BAL Final Report 2109310
Client PM: Cybele Heddle
Client Project: REP

Accuracy & Precision Summary

Batch: B212656 Lab Matrix: Water Method: EPA 1638 Mod

Sample B212656-BS1	Analyte Blank Spike, (2104075)	Native	Spike	Result	Units	REC 8	k Limits	RPD & Lir	nits
B212030-B31	Se		200.0	200.6	μg/L	100%	75-125		
B212656-BS2	Blank Spike, (2104075) Se		200.0	196.2	μg/L	98%	75-125		
B212656-BS3	Blank Spike, (2104075) Se		200.0	201.0	μg/L	100%	75-125		
B212656-BS4	Blank Spike, (2104075) Se		200.0	197.1	μg/L	99%	75-125		
B212656-SRM2	Reference Material (211000 Se	08, TMDA 5 ⁻	1.5 Reference 14.30	Standard - 13.20	Bottle 8 - SI μg/L		75-125		
B212656-SRM3	Reference Material (211000 Se	08, TMDA 5 [,]	1.5 Reference 14.30	Standard - 13.91	Bottle 8 - S l μg/L	•	75-125		
B212656-SRM4	Reference Material (211000 Se	08, TMDA 5 ²	1.5 Reference 14.30	Standard - 13.70	Bottle 8 - S l μg/L		75-125		
B212656-DUP4	Duplicate, (2109307-02) Se	5.947		6.345	μg/L			6%	20
B212656-MS4	Matrix Spike, (2109307-02) Se	5.947	220.0	229.8	μg/L	102%	75-125		
B212656-MSD4	Matrix Spike Duplicate, (2	109307-02) 5.947	220.0	226.8	μg/L	100%	75-125	1%	20

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109310 Client PM: Cybele Heddle Client Project: REP

Method Blanks & Reporting Limits

Batch: B212622 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

Sample	Result	Units
B212622-BLK1	0.00	μg/L
B212622-BLK2	0.00	μg/L
B212622-BLK3	0.00	μg/L
B212622-BLK4	0.00	ua/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

Sample	Result	Units
B212622-BLK1	0.00	μg/L
B212622-BLK2	0.00	μg/L
B212622-BLK3	0.00	μg/L
B212622-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

Sample	Result	Units
B212622-BLK1	0.00	μg/L
B212622-BLK2	0.00	μg/L
B212622-BLK3	0.00	μg/L
B212622-BLK4	0.00	μg/L

Average: 0.000 **MDL**: 0.002 **Limit**: 0.005 **MRL**: 0.005

BAL Final Report 2109310
Client PM: Cybele Heddle
Client Project: REP

Method Blanks & Reporting Limits

Analyte: Se(IV)

Sample	Result	Units
B212622-BLK1	0.00	μg/L
B212622-BLK2	0.00	μg/L
B212622-BLK3	0.00	μg/L
B212622-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.015 MRL: 0.015

Analyte: Se(VI)

Sample		Result	Units
B212622-BLK1		0.00	μg/L
B212622-BLK2		0.00	μg/L
B212622-BLK3		0.00	μg/L
B212622-BLK4		0.00	μg/L
	_		

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Result	Units
0.00	μg/L
0.00	μg/L
0.00	μg/L
0.00	μg/L
	0.00 0.00 0.00

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B212622-BLK1	0.00	μg/L
B212622-BLK2	0.00	μg/L
B212622-BLK3	0.00	μg/L
B212622-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109310
Client PM: Cybele Heddle
Client Project: REP

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B212622-BLK1	0.00	μg/L
B212622-BLK2	0.00	μg/L
B212622-BLK3	0.00	μg/L
B212622-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: Unk Se Sp

Sample	Result	Units	
B212622-BLK1	0.00	μg/L	
B212622-BLK2	0.00	μg/L	
B212622-BLK3	0.00	μg/L	
B212622-BLK4	0.00	μg/L	

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109310
Client PM: Cybele Heddle
Client Project: REP

Method Blanks & Reporting Limits

Batch: B212656 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B212656-BLK1	0.077	μg/L
B212656-BLK2	0.095	μg/L
B212656-BLK3	0.154	μg/L
B212656-BLK4	0.153	μg/L

 Average: 0.120
 MDL: 0.150

 Limit: 0.480
 MRL: 0.480

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109310
Client PM: Cybele Heddle
Client Project: REP

Sample Containers

Lab ID: 2109310-01 Sample: RG_SLINE_WS_2021-09-15_N			Report Matrix: WS Sample Type: Sample + Sum	Collected: 09/15/2021 Received: 09/23/2021				
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2109310	
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2109310	
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #4 - 2109310	
	D : 2109310-02			Report Matrix: WS		Collec	ted: 09/15/2021	
Samp	ole: RG_SLINE_WS_2021-09-	15_N_NAL		Sample Type: Sample + Sum		Recei	ved: 09/23/2021	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #3 - 2109310	
Lab ID: 2109310-03 Sample: RG_SLINE_WS_2021-09-15_N_NAL			Report Matrix: WS Sample Type: Sample + Sum	Collected: 09/15/2021 Received: 09/23/2021				
	Container	Size	Lot	Preservation	P-Lot	pН	Ship. Cont.	
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #3 - 2109310	
	D : 2109310-04			Report Matrix: WS	Collected: 09/16/2021			
Samp RG_L	ole: _l24_WS_LAEMP_LCO_2021-	09-16_N		Sample Type: Sample + Sum		Recei	ved: 09/23/2021	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2109310	
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2109310	
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #4 - 2109310	

Project ID: TRL-VC1701 PM: Jeremy Maute

BAL Final Report 2109310 Client PM: Cybele Heddle Client Project: REP

Sample Containers

Lab ID: 2109310-05

Sample:

RG LI24 WS LAEMP LCO 2021-09-16 N NAL

Des Container

Client-Provided - TM 60 mL Report Matrix: WS

na

Sample Type: Sample + Sum

Lot **Preservation**

10% HNO3 (BAL)

2127026

P-Lot рH <2

Styrofoam Cooler #3 -2109310

Collected: 09/16/2021

Received: 09/23/2021

Ship. Cont.

Collected: 09/16/2021

Received: 09/23/2021

Lab ID: 2109310-06

Sample:

RG_LI24_WS_LAEMP_LCO_2021-09-16_N_NAL

Des Container Client-Provided - TM

Size 60 mL Report Matrix: WS

Sample Type: Sample + Sum

Lot **Preservation** na 10% HNO3 (BAL)

P-Lot 2127026

Hq Ship. Cont. <2 Stvrofoam Cooler #3 -

2109310

Shipping Containers

Styrofoam Cooler #3 - 2109310

Received: September 23, 2021 7:15 Tracking No: PAPS#RWHV87409 via Courier

Coolant Type: Blue Ice Temperature: 6.6 °C

Styrofoam Cooler #4 - 2109310

Received: September 23, 2021 7:15 Tracking No: PAPS#RWHV87409 via Courier

Coolant Type: Blue Ice Temperature: 0.5 °C

Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: IR#30

Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: IR#31

Custody seals present? No Custody seals intact? No COC present? Yes

Custody seals present? No Custody seals intact? No **COC present?** Yes

TO CIT	COC ID:	Septe	mber	· LCO LA	ЕМР	TURNA	ROUN	D TI	ME:			Regul	nr.							
	ECT/CLIENTINEO	A 100 3 (90)	d'un	The Bearing						ATORY	Thursday.		RIGHT	1000		OTHE	RINFO	0.03330	COLUMN	22
Facility Name / Job#	REP					La	b Name	Brool	ks Appl	lied Labs			Rer	ort For	rmat / Dis	stributio	n	Excel	PDF	EDD
Project Manager	Cybele Heddle					Lab	Contact	Ben V	Woznia	k			Ema		THE RESERVE OF THE PARTY OF THE	eddleggte	2	X	X	X
Email	cybele.heddle@teck.com						Email	ben@	brooksa	applied.com	า		Ema	il 2:	1000	Dequison				X.
Address	421 Pine Avenue						Address	18804	4 North	Creek Par	rkway		Ema	il 3:	Charles Containing	pytz@tec		7	X	À.
													Ema	il 4:		@minnow.	10000	7	X	X
City	Sparwoo			Province BC			_	Both			Province	WA	Ema	il 5:	tyler mel	hler@minr	now.ca	X	X.	V
Postal Code	V0B 20	60		Country Ca	nada		al Code	_			Country	USA	Ema	il 5:				-1/2	2	
Phone Number						Phone	Number	206-6	632-620	06			PO m	ımber		300	VPO00	748540		
	SAMPLE DETAIL	LS	-	De la Constitución de la Constit	3 St. 15 11	1			THE PERSON	ANAL	YSIS RE	QUESTE	D		THEATE	Filter	mil -1 Pla	LL Lead	- Mara	Lab No No
								-		F					1000	II SHE				
											-									
								Sul I	22							ALC: N				
			<u>©</u>					2				to Paris			ALERS.	ALC: NO		1765		
			\s\s					3		1.17210		83				EXIDIS				
			K																i	
			E							_	=						1			
			teri				1			<u>.</u>		1					1			
			Ψa					1	Ē	E E	iż.									
			ns]					3	enia	Š	S		1							
			පි			G=Grab			ig S	Ze .	E									
	Sample Location	Field	Hazardous Material (Yes/No)			C=Com	# Of		Fotal Selenium	Dissolved Selenium	Selenium Speciation									
Sample ID	(sys loc code)	Matrix	ıΞ	Date	Time (24hr)	р	Cont.		T0	iš	Sel									
RG_SLINE_WS_2021-09-15_N	RG_SLINE	ws	No	September 13 2021	0815	G	1				1									
RG_SLINE_WS_2021-09-15_N_NAL	RG_SLINE	WS	No	September 15 2021	0815	G	2		1	1										
RG_LI24_WS_LAEMP_LCO_2021-09-16_N	RG_LI24	ws	No	September 16	0931	G	1				1									
RG_LI24_WS_LAEMP_LCO_2021-09-16_N_NAL	RG_LI24	ws	No	September 16 2021	0931	G	2		1	1		1								
ADDITIONAL COMMENTS/SPECIAL	INSTRUCTIONS			RELINQU				CARD	greeny Hann	TIME	AC	CEPTEL	BAL	LLIAT	ON	1 march		ATEMIN		
				Jen	nifer Ings/Minno	w		Sep	tember	r 21, 2021	1 5, 1	t - (BAI	1		9/2	3/21	94	-15	
Total and dissolved selenium samples have NOT been p		ium have																		
been filtered. Speciation samples have been	i intered and frozen.																			-
																				-
SERVICE REQUEST (rush - subject	THE RESERVE OF THE PARTY OF THE		100	THE STATE OF THE S			NOT THE	711			Carlo II			3		15510			HELVES	
		(default) X		Sampler'	s Name			Jen	nifer I	ngs		M	bile#			51	19-500-3	444		
	-3 business days) - 50% s		-	pio								1414	JUNE IT	_			J 300-3			
	Business Day) - 100% s		-	Sampler's	Signature	polynom j	1375					Dat	e/Time			Septe	ember 21	1, 2021		
For Emergency <1 Day, A	ASAR OF WEEKENG - CON	iact ALS	1			190														

BAL Final Report 2109310

Property C Sporane WA Sheller	TO THE PERSON NAMED IN COLUMN 1
PURCHASE ORDER NUMBER	
CONSIGNEE (TO)	weakar
POSITA CODE GRY/PROVINCE	NOTE ACCESSES
STRUCTIONS .	
Mensies-Nater Samples (97)	LBS COMPANY CONTRACTOR
	Men.
CONSIDER A LANGE CONTROL OF THE LANGE CONTROL OF TH	

Color 10: Styro toam	Cooler# 3	COC (VIII) Temperature: 6.6	A:30
Coulant Type: Ice		bient	
Notes:			
Sampling Locations:	RG =	EV GH	p T/D SP
Sample Types:	T/D SP	T/D SP T/D SP T/D S	p T/D SP
Centainer Types:	40ml Glass	Class Glass	
Opened by: 5, 7	9/23/21	Date: 9/23/21	

Effective 7/29/20

BAL Final Report 2109310

Prince George, BC Edmonton, AB

es (see 46. Montreal, QC	Spokane, ##A	Det	
Daniel /	PURCHASE ORDE	R NUMBER	
100 C 111 4 1 51	CONSIGNEE (TO)	KS DODIED	Laboration
R (X 1910 -	+ 100 A STREET	I M. Creek	Parkidai
ST LINE I FO	STAL CODE GICYPROVINCE	-MWA	Gleron in
STRUCTIONS	ar a		PREIGHT CHARGES
DESCRIPTION OF ARTICLES	AND SPECIAL BARNOS	WEIGHT (Subject to Correction)	DPREPAR DOCLECT.
Profess - Wate	c Samples"	97LB5	
	The second secon		
THE FALL OF			1 2 2
The second second			CHANGE OF THE CONTRACT OF THE
NEW MANAGEMENT			
	DECLARED VALUATION: Maximum misbiby of carrier is \$2.00 per D. (\$4.41.0 bilingrary) unless declared voluntion state.		BUE TOTAL
PICK UP TIME	otherwise, DRIVER'S SIGNATURE - DELIVERY 8	FINISH TIME	Car
		Control of the contro	TOTAL ATTEMPT OF THE STATE OF T
		est pull in such constition	
	SEAN 216	AN	09/23/71
	DOMBIONEE SON		Joseph HAST ROLL TO THE RESERVE TO T
Will the Pellosters Places	GOLDEROAD STORY	STA USASAUSSQUATEDOS	
	" "。		#:31

Coder 10: Styrotoam	Cooler# =	COC (YM) Te	mperature: U.b		群: 5/
Contant Type: Ice	Blue ice Amb	ient 💮 🦯			
Notes:	O.L.	1 /11			
Sampling Locations:	- no	- 6H	EV	-/2 50	T/D SP
Sample Types:	T/D - SP 60nl	THO SP 60ml	T/D SP.	T/D SP	1/19
4	001.0	0010	001.0	•	

we 7/29/20

Revision 004

SELENIUM SPECIATION

BAL Final Report 2109236 (Finalized October 14, 2021) Confidential BAL Final Report 2109236

October 14, 2021

Teck Resources Limited – Vancouver Cybele Heddle 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 cybele.heddle@teck.com

Re: REP

Dear Cybele Heddle,

On September 16, 2021, Brooks Applied Labs (BAL) received eighteen (18) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se, and Se speciation analyses, according to the chain-of-custody (COC) forms.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Se Speciation

Each aqueous sample was analyzed for Se speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate [SeSO3], and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk Se Sp].

Confidential BAL Final Report 2109236

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional Se species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting Se species.

MeSe(VI) was observed at concentrations above the MDL in samples 2109236-04 and 2109236-22. A small peak for MeSe(VI) was observed in the chromatogram of 2109236-01, but the result was less than the MDL (i.e., not detected). 2109236-01, 2109236-04, and 2109236-22 were subsequently analyzed with MeSe(VI) spikes and the small MeSe(VI) peaks were confirmed in each case. With the confirmations that the MeSe(VI) peak were appropriately assigned, the selenium speciation results are reported from initial injections in batch B212603.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances when a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the RPD of the MS/MSD set was not calculated (N/C).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited met all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager

Brooks Applied Labs

Jeremy@brooksapplied.com

Project ID: TRL-VC1701 **PM**: Jeremy Maute

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC1701 **PM**: Jeremy Maute

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard) Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn
BAL-5000	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness
	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury
EPA 1630	Non-Potable Waters	Methyl Mercury
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)
SM2340B	Non-Potable Waters	Hardness

Project ID: TRL-VC1701 PM: Jeremy Maute

BAL Final Report 2109236 Client PM: Cybele Heddle Client Project: REP

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)	Not Accredited
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)	Not Accredited
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)	Not Accredited
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)	Not Accredited
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb	Not Accredited
DAI 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)	Not Accredited
SM2340B	Non-Potable Waters	Hardness	Hardness
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight

⁽¹⁾ ISO/IEC 17025:2017 - Certificate Number ADE-1447.02

⁽²⁾ Non-Governmental NELAC Institute 2016 Standard - Certificate Number ADE-1447.01

⁽³⁾ Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.03 for DOE.

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_RIVER_WS_2021-09-09_N	2109236-01	WS	Sample	09/09/2021	09/16/2021
RG_RIVER_WS_2021-09-09_N_NAL	2109236-02	WS	Sample	09/09/2021	09/16/2021
RG_RIVER_WS_2021-09-09_N_NAL	2109236-03	WS	Sample	09/09/2021	09/16/2021
RG_LILC3_WS_LAEMP_LCO_2021- 09-09_N	2109236-04	WS	Sample	09/09/2021	09/16/2021
RG_LILC3_WS_LAEMP_LCO_2021- 09-09_N_NAL	2109236-05	WS	Sample	09/09/2021	09/16/2021
RG_LILC3_WS_LAEMP_LCO_2021- 09-09_N_NAL	2109236-06	WS	Sample	09/09/2021	09/16/2021
RG_FBLANK_WS_2021-09-09_N	2109236-07	WS	Sample	09/09/2021	09/16/2021
RG_FBLANK_WS_2021-09-09_N_N AL	2109236-08	WS	Sample	09/09/2021	09/16/2021
RG_FBLANK_WS_2021-09-09_N_N AL	2109236-09	WS	Sample	09/09/2021	09/16/2021
RG_LI8_WS_LAEMP_LCO_2021-09- 11_N	2109236-10	WS	Sample	09/10/2021	09/16/2021
RG_LI8_WS_LAEMP_LCO_2021-09- 11_N_NAL	2109236-11	WS	Sample	09/10/2021	09/16/2021
RG_LI8_WS_LAEMP_LCO_2021-09- 11_N_NAL	2109236-12	WS	Sample	09/10/2021	09/16/2021
RG_FRUL_WS_LAEMP_LCO_2021- 09-12_N	2109236-13	WS	Sample	09/12/2021	09/16/2021
RG_FRUL_WS_LAEMP_LCO_2021- 09-12_N_NAL	2109236-14	WS	Sample	09/12/2021	09/16/2021
RG_FRUL_WS_LAEMP_LCO_2021- 09-12_N_NAL	2109236-15	WS	Sample	09/12/2021	09/16/2021
RG_FO23_WS_LAEMP_LCO_2021- 09-12_N	2109236-16	WS	Sample	09/12/2021	09/16/2021
RG_FO23_WS_LAEMP_LCO_2021- 09-12_N_NAL	2109236-17	WS	Sample	09/12/2021	09/16/2021
RG_FO23_WS_LAEMP_LCO_2021- 09-12_N_NAL	2109236-18	WS	Sample	09/12/2021	09/16/2021
RG_LIDCOM_WS_LAEMP_LCO_20 21-09-13_N	2109236-19	WS	Sample	09/13/2021	09/16/2021
RG_LIDCOM_WS_LAEMP_LCO_20 21-09-13_N_NAL	2109236-20	WS	Sample	09/13/2021	09/16/2021
RG_LIDCOM_WS_LAEMP_LCO_20 21-09-13_N_NAL	2109236-21	WS	Sample	09/13/2021	09/16/2021
RG_LISP24_WS_LAEMP_LCO_202 1-09-13_N	2109236-22	WS	Sample	09/13/2021	09/16/2021
RG_LISP24_WS_LAEMP_LCO_202 1-09-13_N_NAL	2109236-23	WS	Sample	09/13/2021	09/16/2021

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
RG_LISP24_WS_LAEMP_LCO_202	2109236-24	WS	Sample	09/13/2021	09/16/2021
1-09-13_N_NAL					
RG_LCUT_WS_LAEMP_LCO_2021-	2109236-25	WS	Sample	09/10/2021	09/16/2021
09-12_N					
RG_LCUT_WS_LAEMP_LCO_2021-	2109236-26	WS	Sample	09/10/2021	09/16/2021
09-12_N_NAL					
RG_LCUT_WS_LAEMP_LCO_2021-	2109236-27	WS	Sample	09/10/2021	09/16/2021
09-12_N_NAL					

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
MeSe(IV)	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
MeSe(VI)	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
Se	Water	EPA 1638 Mod	09/21/2021	09/22/2021	B212615	S211084
Se(IV)	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
Se(VI)	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
SeCN	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
SeMet	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
SeSO3	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
Unk Se Sp	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG RIVER WS	2021-09-09	N								
2109236-01	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-01	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-01	Se(IV)	WS	D	0.156		0.010	0.075	μg/L	B212603	S211070
2109236-01	Se(VI)	WS	D	30.4		0.010	0.055	μg/L	B212603	S211070
2109236-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212603	S211070
2109236-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212603	S211070
2109236-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212603	S211070
RG_RIVER_WS	2021-00-00	Ν ΝΔΙ								
2109236-02	Se	WS	TR	34.7		0.165	0.528	μg/L	B212615	S211084
2109230-02	00	WO	111	34.7		0.100	0.020	µg/L	DZ 12010	3211004
RG_RIVER_WS	3_2021-09-09_I	N_NAL								
2109236-03	Se	WS	D	34.0		0.165	0.528	μg/L	B212615	S211084
RG_LILC3_WS_			_			0.040	0.005	,,	D010000	
2109236-04	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-04	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-04	MeSe(VI)	WS	D	0.017	J	0.010	0.025	μg/L	B212603	S211070
2109236-04	Se(IV)	WS	D	0.179		0.010	0.075	μg/L	B212603	S211070
2109236-04	Se(VI)	WS	D	37.1		0.010	0.055	μg/L	B212603	S211070
2109236-04	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212603	S211070
2109236-04	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-04	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212603	S211070
2109236-04	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212603	S211070
RG_LILC3_WS	_LAEMP_LCO	_2021-09-09_N_N	AL							
2109236-05	Se	ws	TR	35.0		0.165	0.528	μg/L	B212615	S211084
RG LII C3 WS	LAFMP LCO	2021-09-09 N N	ΔΙ							
2109236-06	_LALIIII _LOO; Se	_2027-03-03_N_N WS	D D	34.8		0.165	0.528	μg/L	B212615	S211084

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_FBLANK_V	WS 2021-09-09	9 N								
2109236-07	_ DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-07	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-07	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-07	Se(IV)	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212603	S211070
2109236-07	Se(VI)	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212603	S211070
2109236-07	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212603	S211070
2109236-07	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-07	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212603	S211070
2109236-07	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212603	S211070
RG FBLANK V	WS 2021-09-0	α Ν ΝΔΙ								
2109236-08	Se	WS	TR	0.177	J	0.165	0.528	μg/L	B212615	S211084
2100200-00	00	***	111	0.177	Ü	0.100	0.020	P9/L	DZ 12010	0211004
RG_FBLANK_W	WS_2021-09-09	9_N_NAL								
2109236-09	Se	WS	D	0.209	J	0.165	0.528	μg/L	B212615	S211084
50 40 40 4	4545 400 O									
RG_LI8_WS_L		_	Б.	< 0.010		0.040	0.005	/1	D040000	0044070
2109236-10	DMSeO	WS	D	≤ 0.010	U U	0.010	0.025	μg/L	B212603	S211070
2109236-10	MeSe(IV)	WS	D D	≤ 0.010	-	0.010	0.025 0.025	μg/L	B212603	S211070
2109236-10	MeSe(VI)	WS	D	≤ 0.010	U J	0.010	0.025	μg/L	B212603	S211070
2109236-10	Se(IV)	WS WS	D	0.055 24.6	J	0.010 0.010	0.075	μg/L	B212603 B212603	S211070
2109236-10 2109236-10	Se(VI) SeCN	WS	D	∠4.6 ≤ 0.010	U	0.010	0.055	μg/L	B212603 B212603	S211070
	SeMet	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.030	μg/L μg/L	B212603 B212603	S211070
2109236-10	SeSO3	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.025	μg/L μg/L	B212603	S211070
2109236-10	Unk Se Sp	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.035		B212603 B212603	S211070 S211070
2109236-10	onk se sp	VVS	D	≥ 0.010	U	0.010	0.075	μg/L	DZ 12003	5211070
RG_LI8_WS_L	AEMP_LCO_2	021-09-11_N_NAL								
2109236-11	Se	WS	TR	23.0		0.165	0.528	μg/L	B212615	S211084
RG LI8 WS L	AFMP I CO 20	021-09-11 N NAL								
2109236-12	Se	WS	D	22.9		0.165	0.528	μg/L	B212615	S211084

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_FRUL_WS	LAEMP LCO	2021-09-12 N								
2109236-13	DMSeO	ws _	D	0.013	J	0.010	0.025	μg/L	B212603	S211070
2109236-13	MeSe(IV)	WS	D	0.021	J	0.010	0.025	μg/L	B212603	S211070
2109236-13	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-13	Se(IV)	WS	D	0.399		0.010	0.075	μg/L	B212603	S211070
2109236-13	Se(VI)	WS	D	48.1		0.010	0.055	μg/L	B212603	S211070
2109236-13	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212603	S211070
2109236-13	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-13	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212603	S211070
2109236-13	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212603	S211070
PC EDIII WS	I AEMP I CO	_2021-09-12_N_N	ΛΙ							
2109236-14	_LALWF_LCO. Se	_2021-09-12_1 \ _1 \ 2 WS	TR	45.2		0.165	0.528	μg/L	B212615	S211084
2109230-14	Oe .	WS	111	45.2		0.103	0.320	μg/L	D2 12013	3211004
RG_FRUL_WS	_LAEMP_LCO	_2021-09-12_N_N	A <i>L</i>							
2109236-15	Se	WS	D	45.1		0.165	0.528	μg/L	B212615	S211084
	=									
RG_FO23_WS_			_			0.040	0.005	,,	D010000	
2109236-16	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-16	MeSe(IV)	WS	D	0.015	J	0.010	0.025	μg/L	B212603	S211070
2109236-16	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-16	Se(IV)	WS	D	0.322		0.010	0.075	μg/L	B212603	S211070
2109236-16	Se(VI)	WS	D	40.8		0.010	0.055	μg/L	B212603	S211070
2109236-16	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212603	S211070
2109236-16	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-16	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212603	S211070
2109236-16	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212603	S211070
RG_FO23_WS	_LAEMP_LCO	_2021-09-12_N_NA	A <i>L</i>							
2109236-17	Se	ws	TR	37.1		0.165	0.528	μg/L	B212615	S211084
RG FO23 WS	I AFMP I CO	2021-09-12 N NA	Δ/							
2109236-18	_LALMI _LCO_ Se	_2021-09-12_N_NA WS	 D	38.1		0.165	0.528	μg/L	B212615	S211084

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		llyte Report N		is Result	Qualifie	r MDL	MRL	Unit	Batch	Sequence
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RG LIDCOM WS LA	EMP LCO 2021-0	9-13 N							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.109236-19 DI	//SeO WS	_ D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-19 Se(IV) WS D 0.120 0.010 0.075 μg/L B212603 S211070 2109236-19 Se(VI) WS D 27.8 0.010 0.055 μg/L B212603 S211070	.109236-19 Me	Se(IV) WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-19 Se(VI) WS D 27.8 0.010 0.055 μg/L B212603 S211070	.109236-19 Me	Se(VI) WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
. ,	.109236-19 S	e(IV) WS	D	0.120		0.010	0.075	μg/L	B212603	S211070
2400226 40 SeCN WS D < 0.040 H 0.040 0.050 uz// P242603 9244070	109236-19 S	e(VI) WS	D	27.8		0.010	0.055	μg/L	B212603	S211070
2109230-19 36014 443 D 30.010 0 0.010 0.030 Hg/L B212003 5211070	109236-19 S	eCN WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212603	S211070
2109236-19 SeMet WS D ≤ 0.010 U 0.010 0.025 $\mu g/L$ B212603 S211070	109236-19 S	eMet WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-19 SeSO3 WS D ≤ 0.010 U 0.010 0.055 μ g/L B212603 S211070	109236-19 Se	SO3 WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212603	S211070
2109236-19 Unk Se Sp WS D ≤ 0.010 U 0.010 0.075 μg/L B212603 S211070	109236-19 Unk	Se Sp WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212603	S211070
RG LIDCOM WS LAEMP LCO 2021-09-13 N NAL	oc upcom we u	EMB 100 2024 0	10 42 N NAI							
				24.4		0.165	0.529	ua/l	P212615	S211084
2109230-20 3e W3 1N 24.4 0.103 0.320 μg/L B212013 3211004	109230-20	Se WS	i in	24.4		0.103	0.526	μg/L	D2 120 13	3211004
RG_LIDCOM_WS_LAEMP_LCO_2021-09-13_N_NAL	RG_LIDCOM_WS_LA	EMP_LCO_2021-0	9-13_N_NAL							
2109236-21 Se WS D 23.7 0.165 0.528 μg/L B212615 S211084	109236-21	Se WS	D	23.7		0.165	0.528	µg/L	B212615	S211084
RG_LISP24_WS_LAEMP_LCO_2021-09-13_N			_	. 0 0 4 0		0.040		,,	D040000	
• •										S211070
• •		` '						. •		S211070
· •		` '			J					S211070
· ·		` '								S211070
		` '								S211070
										S211070
• •										S211070
• •										S211070
2109236-22 Unk Se Sp WS D ≤ 0.010 U 0.010 0.075 μg/L B212603 S211070	109236-22 Unk	Se Sp WS	D D	≤ 0.010	U	0.010	0.075	µg/L	B212603	S211070
RG_LISP24_WS_LAEMP_LCO_2021-09-13_N_NAL	RG_LISP24_WS_LAI	EMP_LCO_2021-09	-13_N_NAL							
2109236-23 Se WS TR 24.9 0.165 0.528 μg/L B212615 S211084	109236-23	Se WS	TR	24.9		0.165	0.528	μg/L	B212615	S211084
RG LISP24 WS LAEMP LCO 2021-09-13 N NAL	OC LISDAA WS LAL	MP I CO 2024 00	∟12 N NΛ!							
				24.9		0.165	0.528	ua/l	B212615	S211084

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LCUT_WS	LAEMP_LCO	_2021-09-12_N								
2109236-25	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-25	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-25	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-25	Se(IV)	WS	D	0.087		0.010	0.075	μg/L	B212603	S211070
2109236-25	Se(VI)	WS	D	51.3		0.010	0.055	μg/L	B212603	S211070
2109236-25	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212603	S211070
2109236-25	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212603	S211070
2109236-25	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212603	S211070
2109236-25	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212603	S211070
RG_LCUT_WS	S_LAEMP_LCO	_2021-09-12_N_N	AL							
2109236-26	Se	WS	TR	42.7		0.165	0.528	μg/L	B212615	S211084
RG_LCUT_WS	C_LAEMP_LCO	_2021-09-12_N_N	AL							
2109236-27	Se	WS	D	43.3		0.165	0.528	μg/L	B212615	S211084

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Accuracy & Precision Summary

Batch: B212603 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B212603-BS1	Blank Spike, (2124033)						
	MeSe(IV)		5.095	5.395	μg/L	106% 75-125	
	Se(IV)		5.000	4.902	μg/L	98% 75-125	
	Se(VI)		5.000	4.701	μg/L	94% 75-125	
	SeCN		5.015	4.811	μg/L	96% 75-125	
	SeMet		4.932	4.724	μg/L	96% 75-125	
B212603-DUP5	Duplicate, (2109237-04)						
	DMSeO	ND		0.011	μg/L		N/C 25
	MeSe(IV)	0.017		0.021	μg/L		21% 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	1.103		1.093	μg/L		0.9% 25
	Se(VI)	188.6		193.0	μg/L		2% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B212603-MS5	Matrix Spike, (2109237-0	4)					
	Se(IV)	1.103	4.900	5.744	μg/L	95% 75-125	
	Se(VI)	188.6	5.100	198.4	μg/L	NR 75-125	
	SeCN	ND	1.962	1.960	μg/L	100% 75-125	
	SeMet	ND	1.977	2.046	μg/L	103% 75-125	
B212603-MSD5	Matrix Spike Duplicate, (2109237-04)				
	Se(IV)	1.103	4.900	5.688	μg/L	94% 75-125	1% 25
	Se(VI)	188.6	5.100	198.8	μg/L	NR 75-125	N/C 25
	SeCN	ND	1.962	2.015	μg/L	103% 75-125	3% 25
	SeMet	ND	1.977	2.140	μg/L	108% 75-125	4% 25

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Accuracy & Precision Summary

Batch: B212615 Lab Matrix: Water Method: EPA 1638 Mod

Sample B212615-BS1	Analyte Blank Spike, (2104075)	Native	Spike	Result	Units	REC 8	Limits	RPD & Limits
B212019-B31	Se		200.0	190.9	μg/L	95%	75-125	
B212615-BS2	Blank Spike, (2104075) Se		200.0	193.3	μg/L	97%	75-125	
B212615-BS3	Blank Spike , (2104075) Se		200.0	188.6	μg/L	94%	75-125	
B212615-BS4	Blank Spike, (2104075) Se		200.0	191.9	μg/L	96%	75-125	
B212615-BS5	Blank Spike, (2104075) Se		200.0	188.0	μg/L	94%	75-125	
B212615-BS6	Blank Spike, (2104075) Se		200.0	186.7	μg/L	93%	75-125	
B212615-BS7	Blank Spike, (2104075) Se		200.0	188.4	μg/L	94%	75-125	
B212615-SRM1	Reference Material (21100 Se	006, TMDA 5	1.5 Referenc 14.30	e Standard - 15.15	- Bottle 6 - μg/L		75-125	
B212615-SRM2	Reference Material (21100 Se	006, TMDA 5	1.5 Referenc 14.30	e Standard - 14.39	- Bottle 6 - μg/L		75-125	
B212615-SRM3	Reference Material (21100 Se	006, TMDA 5	1.5 Referenc 14.30	e Standard - 14.63	- Bottle 6 - μg/L		75-125	
B212615-SRM4	Reference Material (21100 Se	006, TMDA 5	1.5 Referenc 14.30	e Standard - 13.99	• Bottle 6 • µg/L		75-125	

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Accuracy & Precision Summary

Batch: B212615 Lab Matrix: Water Method: EPA 1638 Mod

Sample B212615-SRM5	Analyte Reference Material (211000 Se	Native 6, TMDA 51	Spike .5 Reference 14.30	Result Standard - 14.00	Units Bottle 6 - SR µg/L	M)	75-125	RPD & Lin	mits
B212615-SRM6	Reference Material (211000 Se	6, TMDA 51	.5 Reference 14.30	Standard - 14.15	Bottle 6 - SR µg/L	•	75-125		
B212615-SRM7	Reference Material (211000 Se	6, TMDA 51	.5 Reference 14.30	Standard - 13.77	Bottle 6 - SR µg/L	•	75-125		
B212615-DUP6	Duplicate, (2109236-02) Se	34.71		35.10	μg/L			1%	20
B212615-MS6	Matrix Spike, (2109236-02) Se	34.71	220.0	244.2	μg/L	95%	75-125		
B212615-MSD6	Matrix Spike Duplicate, (21 Se	09236-02) 34.71	220.0	239.1	μg/L	93%	75-125	2%	20
B212615-DUP7	Duplicate, (2109236-20) Se	24.44		22.49	μg/L			8%	20
B212615-MS7	Matrix Spike, (2109236-20) Se	24.44	220.0	221.2	μg/L	89%	75-125		
B212615-MSD7	Matrix Spike Duplicate, (21 Se	09236-20) 24.44	220.0	211.3	μg/L	85%	75-125	5%	20

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Method Blanks & Reporting Limits

Batch: B212603 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

Sample	Result	Units
B212603-BLK1	0.00	μg/L
B212603-BLK2	0.00	μg/L
B212603-BLK3	0.00	μg/L
B212603-BLK4	0.00	ua/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

Sample	Result	Units
B212603-BLK1	0.00	μg/L
B212603-BLK2	0.00	μg/L
B212603-BLK3	0.00	μg/L
B212603-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

Sample	Result	Units
B212603-BLK1	0.00	μg/L
B212603-BLK2	0.00	μg/L
B212603-BLK3	0.00	μg/L
B212603-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.005 **MRL:** 0.005

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Method Blanks & Reporting Limits

Analyte: Se(IV)

Sample	Result	Units
B212603-BLK1	0.00	μg/L
B212603-BLK2	0.00	μg/L
B212603-BLK3	0.00	μg/L
B212603-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.015 MRL: 0.015

Analyte: Se(VI)

Sample	Result	Units
B212603-BLK1	0.00	μg/L
B212603-BLK2	0.00	μg/L
B212603-BLK3	0.00	μg/L
B212603-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Sample	Result	Units
B212603-BLK1	0.00	μg/L
B212603-BLK2	0.00	μg/L
B212603-BLK3	0.00	μg/L
B212603-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B212603-BLK1	0.00	μg/L
B212603-BLK2	0.00	μg/L
B212603-BLK3	0.00	μg/L
B212603-BI K4	0.00	ua/l

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B212603-BLK1	0.00	μg/L
B212603-BLK2	0.00	μg/L
B212603-BLK3	0.00	μg/L
B212603-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.011 **MRL:** 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B212603-BLK1	0.00	μg/L
B212603-BLK2	0.00	μg/L
B212603-BLK3	0.00	μg/L
B212603-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Method Blanks & Reporting Limits

Batch: B212615 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B212615-BLK1	0.130	μg/L
B212615-BLK2	0.191	μg/L
B212615-BLK3	0.098	μg/L
B212615-BLK4	0.107	μg/L
B212615-BLK5	0.157	μg/L
B212615-BLK6	0.136	μg/L
B212615-BLK7	0.192	μg/L

Average: 0.144 MDL: 0.150 Limit: 0.480 MRL: 0.480

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Sample Containers

	D: 2109236-01 ble: RG_RIVER_WS_2021-09-	09_N		Report Matrix: WS Sample Type: Sample + Sum			ted: 09/09/2021 ved: 09/16/2021
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109236
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109236
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2109236
Lab I	D : 2109236-02			Report Matrix: WS		Collec	ted: 09/09/2021
Sam	ole: RG_RIVER_WS_2021-09-	09_N_NAL		Sample Type: Sample + Sum		Recei	ved: 09/16/2021
Des	Container	Size	Lot	Preservation	P-Lot	pН	Ship. Cont.
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109236
Samı	D : 2109236-03 ble: RG_RIVER_WS_2021-09-			Report Matrix: WS Sample Type: Sample + Sum		Recei	ted: 09/09/2021 ved: 09/16/2021
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109236
Lab I Samı	D : 2109236-04 Dle :			Report Matrix: WS Sample Type: Sample + Sum			ted: 09/09/2021 ved: 09/16/2021
RG_I	LILC3_WS_LAEMP_LCO_202	1-09-09_N					
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109236
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109236
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2109236

Project ID: TRL-VC1701 **PM**: Jeremy Maute

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

2109236

Sample Containers

Lab ID: 2109236-05 Report Matrix: WS Collected: 09/09/2021 Sample: Received: 09/16/2021 Sample Type: Sample + Sum RG LILC3 WS LAEMP LCO 2021-09-09 N NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 60 mL na 2127026 <2 Styrofoam Cooler #1 -2109236 Lab ID: 2109236-06 Report Matrix: WS Collected: 09/09/2021 Sample: Sample Type: Sample + Sum Received: 09/16/2021 RG_LILC3_WS_LAEMP_LCO_2021-09-09_N NAL Container **Size** Lot **Preservation** P-Lot Hq Ship. Cont. Client-Provided - TM 60 mL 10% HNO3 (BAL) 2127026 <2 Stvrofoam na Cooler #1 -2109236 Lab ID: 2109236-07 Report Matrix: WS Collected: 09/09/2021 Sample: RG_FBLANK_WS_2021-09-09_N Received: 09/16/2021 Sample Type: Sample + Sum **Des Container Size** Lot **Preservation** P-Lot рΗ Ship. Cont. Cent Tube 15mL Se-Sp 15 mL na none na Styrofoam Cooler #1 -2109236 В XTRA_VOL 15 mL none Styrofoam na na na Cooler #1 -2109236 С XTRA_VOL 60 mL none Styrofoam na na na Cooler #1 -2109236 Lab ID: 2109236-08 Report Matrix: WS Collected: 09/09/2021 Sample: RG_FBLANK_WS_2021-09-09_N_NAL Sample Type: Sample + Sum Received: 09/16/2021 Container **Size** Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 60 mL 10% HNO3 (BAL) <2 Styrofoam na 2127026 Cooler #1 -2109236 Lab ID: 2109236-09 Collected: 09/09/2021 Report Matrix: WS Sample: RG FBLANK WS 2021-09-09 N NAL Sample Type: Sample + Sum Received: 09/16/2021 Container Des **Size** Lot **Preservation** P-Lot pH Ship. Cont. Client-Provided - TM 60 mL 10% HNO3 (BAL) 2127026 <2 Styrofoam na Cooler #1 -

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Sample Containers

	I D : 2109236-10 ple: RG_LI8_WS_LAEMP_LC	O_2021-09-11_N		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/10/2021 ived: 09/16/2021
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109236
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109236
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2109236
Sam	=	00 44 N NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/10/2021 ived: 09/16/2021
_	LI8_WS_LAEMP_LCO_2021-(1 -4	Duccomuction	D.I. of		Ohin Cant
Des	Container	Size	Lot	Preservation	P-Lot	pН	Ship. Cont.
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109236
Sam		09-11 N NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/10/2021 ived: 09/16/2021
Sam RG_	ple: LI8_WS_LAEMP_LCO_2021-0		Lot	Sample Type: Sample + Sum	P-Lot	Rece	ived: 09/16/2021
Sam RG_	ple:	09-11_N_NAL Size 60 mL	Lot na	-	P-Lot 2127026		
Sam RG_ Des A	ple: LI8_WS_LAEMP_LCO_2021-0 Container Client-Provided - TM	Size		Preservation 10% HNO3 (BAL) Report Matrix: WS		PH <2	Ship. Cont. Styrofoam Cooler #1 - 2109236 cted: 09/12/2021
Sam RG_ Des A	ple: LI8_WS_LAEMP_LCO_2021-0 Container Client-Provided - TM ID: 2109236-13 ple:	Size 60 mL		Preservation 10% HNO3 (BAL)		PH <2	Ship. Cont. Styrofoam Cooler #1 - 2109236
Sam RG_ Des A Lab	ple: LI8_WS_LAEMP_LCO_2021-0 Container Client-Provided - TM	Size 60 mL		Preservation 10% HNO3 (BAL) Report Matrix: WS		PH <2	Ship. Cont. Styrofoam Cooler #1 - 2109236 cted: 09/12/2021
Sam RG_ Des A Lab	ple: LI8_WS_LAEMP_LCO_2021-0 Container Client-Provided - TM ID: 2109236-13 ple: FRUL_WS_LAEMP_LCO_202	Size 60 mL 1-09-12_N	na	Preservation 10% HNO3 (BAL) Report Matrix: WS Sample Type: Sample + Sum	2127026	PH <2	Ship. Cont. Styrofoam Cooler #1 - 2109236 cted: 09/12/2021 ived: 09/16/2021
Sam RG_ Des A Lab Sam RG_ Des	ple: LI8_WS_LAEMP_LCO_2021-0 Container Client-Provided - TM ID: 2109236-13 ple: FRUL_WS_LAEMP_LCO_202 Container	Size 60 mL 1-09-12_N Size	na	Preservation 10% HNO3 (BAL) Report Matrix: WS Sample Type: Sample + Sum Preservation	2127026 P-Lot	PH <2 College Rece pH	Ship. Cont. Styrofoam Cooler #1 - 2109236 cted: 09/12/2021 ived: 09/16/2021 Ship. Cont. Styrofoam Cooler #1 -

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

2109236

Sample Containers

Lab ID: 2109236-14 Report Matrix: WS Collected: 09/12/2021 Sample: Received: 09/16/2021 Sample Type: Sample + Sum RG FRUL WS LAEMP LCO 2021-09-12 N NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 60 mL na 2127026 <2 Styrofoam Cooler #1 -2109236 Lab ID: 2109236-15 Report Matrix: WS Collected: 09/12/2021 Sample: Sample Type: Sample + Sum Received: 09/16/2021 RG_FRUL_WS_LAEMP_LCO_2021-09-12_N_NAL **Des Container Size** Lot **Preservation** P-Lot Hq Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2127026 <2 Stvrofoam Cooler #1 -2109236 Lab ID: 2109236-16 Report Matrix: WS Collected: 09/12/2021 Sample: Received: 09/16/2021 Sample Type: Sample + Sum RG_FO23_WS_LAEMP_LCO_2021-09-12_N **Preservation** P-Lot Container **Size** Lot pН Ship. Cont. Cent Tube 15mL Se-Sp 15 mL Stvrofoam Α na none na na Cooler #1 -2109236 XTRA_VOL В 15 mL na none na Styrofoam na Cooler #1 -2109236 С XTRA_VOL 60 mL none Styrofoam na na na Cooler #1 -2109236 Lab ID: 2109236-17 Report Matrix: WS Collected: 09/12/2021 Sample: Sample Type: Sample + Sum Received: 09/16/2021 RG_FO23_WS_LAEMP_LCO_2021-09-12_N_NAL **Des Container Preservation Size** Lot P-Lot pН Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2127026 <2 Styrofoam Cooler #1 -

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

Cooler #1 -2109236

Sample Containers

Lab ID: 2109236-18 Report Matrix: WS Collected: 09/12/2021 Sample: Received: 09/16/2021 Sample Type: Sample + Sum RG FO23 WS LAEMP LCO 2021-09-12 N NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 60 mL na 2127026 <2 Styrofoam Cooler #1 -2109236 Lab ID: 2109236-19 Report Matrix: WS Collected: 09/13/2021 Sample: Sample Type: Sample + Sum Received: 09/16/2021 RG_LIDCOM_WS_LAEMP_LCO_2021-09-13_N **Des Container Size** Lot **Preservation** P-Lot pН Ship. Cont. Cent Tube 15mL Se-Sp 15 mL Stvrofoam Α na none na na Cooler #1 -2109236 В XTRA_VOL 15 mL Stvrofoam na none na na Cooler #1 -2109236 XTRA_VOL 60 mL С na none na na Styrofoam Cooler #1 -2109236 Lab ID: 2109236-20 Report Matrix: WS Collected: 09/13/2021 Sample: Sample Type: Sample + Sum Received: 09/16/2021 RG LIDCOM WS LAEMP LCO 2021-09-13 N N ΑL Container **Size Preservation** P-Lot Ship. Cont. Des Lot pН Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2127026 <2 Styrofoam Cooler #1 -2109236 Lab ID: 2109236-21 Report Matrix: WS Collected: 09/13/2021 Sample: Sample Type: Sample + Sum Received: 09/16/2021 RG_LIDCOM_WS_LAEMP_LCO_2021-09-13_N_N Container **Preservation** P-Lot Des **Size** Lot Hq Ship. Cont. Client-Provided - TM 60 mL 10% HNO3 (BAL) 2127026 <2 Stvrofoam Α na

BAL Final Report 2109236
Client PM: Cybele Heddle
Client Project: REP

2109236

Sample Containers

Sam	ID: 2109236-22 ple: LISP24_WS_LAEMP_LCO_2	021-09-13 N		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/13/2021 ived: 09/16/2021
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109236
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109236
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2109236
Sam	ID: 2109236-23 ple: LISP24_WS_LAEMP_LCO_2	021 00 13 N NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/13/2021 ived: 09/16/2021
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109236
Sam	ID: 2109236-24 ple: LISP24_WS_LAEMP_LCO_2	021-09-13 N NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/13/2021 ived: 09/16/2021
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109236
Sam	•	04 00 40 N		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/10/2021 ived: 09/16/2021
	LCUT_WS_LAEMP_LCO_20: Container	21-09-12_N Size	1.66	Dresowietien	D.I. of	mI.I	Chin Cont
		15 mL	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 IIIL	na	none	na	na	Styrofoam Cooler #1 - 2109236
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109236
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 -

Project ID: TRL-VC1701 PM: Jeremy Maute

BAL Final Report 2109236 Client PM: Cybele Heddle Client Project: REP

Sample Containers

Report Matrix: WS

Lab ID: 2109236-26

Sample:

RG_LCUT_WS_LAEMP_LCO_2021-09-12_N_NAL

Des Container

Client-Provided - TM

Size 60 mL

Size

Lot na

Sample Type: Sample + Sum

Preservation 10% HNO3 (BAL)

P-Lot 2127026

<2 Styrofoam Cooler #1 -2109236

Collected: 09/10/2021

Received: 09/16/2021

рH

Collected: 09/10/2021

Received: 09/16/2021

Ship. Cont.

Lab ID: 2109236-27

Sample:

RG_LCUT_WS_LAEMP_LCO_2021-09-12_N_NAL

Des Container Client-Provided - TM

60 mL

Report Matrix: WS

Sample Type: Sample + Sum

Lot **Preservation** na 10% HNO3 (BAL)

P-Lot 2127026

Hq Ship. Cont. <2 Stvrofoam

> Cooler #1 -2109236

Shipping Containers

Styrofoam Cooler #1 - 2109236

Received: September 16, 2021 6:41

Tracking No: PAPS#RWHV87364 via Courier

Coolant Type: Ice Temperature: 0.8 °C **Description:** Styrofoam Cooler Damaged in transit? No

Returned to client? No Comments: IR#30

Custody seals present? No Custody seals intact? No COC present? No

ICCK	COC ID:	Sente	mbei	· LCO LAE	EMP	TURNA	ROUN	ID 1	IME:									_		
PRO	JECT/CLIENT INFO	Septe	A	ECO DITE		LABORATORY					Regula	OTHER INFO								
Facility Name / Job#			448			Lat	Name	-	ooks Appl	and the same of th	**		Re	port For	mat / Dis		-	Excel	PDF	EDD
Project Manager									n Woznia					ail 1:		eddle@te		v	2	v
	cybele.heddle@teck.com						Email	ber	@brooksa	applied.com			Ema				nline.com			X
	421 Pine Avenue					I A	Address 18804 North Creek Parkway						Ema			pytz@tec	WHITE SAME	Y	Z.	×
													_	ail 4:	Test im	@minnow		Y	Y	¥
City	Sparwo	od		Province BC			City	Во	thell		Province	WA		ail 5:		nler@min		x	x	x
Postal Code	V0B 20	3 0		Country Can	ada	Posta	al Code	98	011		Country	USA	Ema	ail 5:				au it	Tenn L. L.	
Phone Number	250-910-8755			-		Phone 1	Number	20	6-632-620	06			PO n	umber			VP000	748540		17 2
TATERON DE LA COMPANIA	SAMPLE DETAIL	LS			A VIDEO	HILLS				ANAL	YSIS REQ	UESTE	D		THE REAL PROPERTY.	File	ared - V Flets	L. Lab. F	Li Phili A	Lab, N. No.
								THE		F	y									
								N.						THE SECOND	1000					
			9					NESS.					123	N Hal		1				
		Į.	N/S					20												- 27
			Hazardous Material (Yes/No)								_				6					
			eria					35		E	Selenium Speciation									
			Mat					TAN		Dissolved Selenium	ecia						1 /			
			us]					ANA	Total Selenium	s .	S _c						1 /			
			rdo			G=Grab			Sel	lved	, E		1				do l			
	Sample Location	Field	aza		L 98	C=Com			韓	SSO	en		1				1 /			
Sample ID	(sys loc code)	Matrix		Date	Time (24hr)		Cont.		Ĕ	Ä	മ്	-	-	-			-		-	-
RG_RIVER_WS_2021-09-09_N	RG_RIVER	WS	No	09/09/2021	1036	G	1				1		_							
RG_RIVER_WS_2021-09-09_N_NAL	RG_RIVER	WS	No	09/09/2021	1036	G	2		1	1									1	
RG_LILC3_WS_LAEMP_LCO_2021-09-09_N	RG_LILC3	ws	No	09/09/2021	1036	G	1				1									
RG_LILC3_WS_LAEMP_LCO_2021-09-09_N_NAL	RG_LILC3	WS	No	09/09/2021	1036	G	2	1	1	1										
RG_FBLANK_WS_2021-09-09_N	RG_FBLANK	ws	No	09/09/2021	1036	G	1				1									
RG_FBLANK_WS_2021-09-09_N_NAL	RG_FBLANK	ws	No	09/09/2021	1036	G	2		1	1										
RG_LI8_WS_LAEMP_LCO_2021-09-11_N	RG_LI8	ws	No	09/10/2021	1210	G	1	8			1									
RG_LI8_WS_LAEMP_LCO_2021-09-11_N_NAL	RG_LI8	ws	No	09/10/2021	1210	G	2		1	1										
ADDITIONAL COMMENTS/SPECIAL	INSTRUCTIONS				SHED BY/AFFI	Same a second	5 2 11			/TIME	ACC	CEPTER	BY/AF	FILIAT	ION	0		ATE/TI		13.2
Total and dissolved selenium samples have NOT been	preserved. Dissolved sele	nium have		Jenn	iifer Ings/Minn	DW		S	eptembe	er 14, 2021	Shirl	Wi	sath			41	16/21	(614	
been filtered. Speciation samples have be								+								-				
								+								+				
SERVICE REQUEST (rush - subjec	The same and the s	NZVI								ev de la	A NOTE OF	PHOTOMOTA P	***************************************			100			Tayan	
		(default) X		Sampler's	Name			J	ennifer l	Ings		Mo	bile#			5	19-500-3	1444		
	(2-3 business days) - 50%:	-				January Mart				1		22 200 2777								
	(1 Business Day) - 100% ASAP or Weekend - Cor		1	Sampler's S	Signature	- Jane	Sarke,					Dat	e/Time			Sept	ember 1	4, 2021		
Tot Emergency vi Day	- LUI II OI 11 COROLIG - COI		_											_						

1 of

"leck	COC ID:	Santa	mbar	LCO LAE	MD	TURNA	POLIN	D TI	ME.								D, (E 1 1	Tidi Ti	эроги	21002
and the second s	JECT/CLIENT INFO	Septe	muel	LCULAR	JAR T	TURITA			A Server	LTOOL		Regula	·	110	F/2 IN 8	OTHE	RINFO	A STREET	111000	No. of the last
Facility Name / Job#						Lah	Name			ied Labs			P.o	nort For	rmat / Di	-	-	Excel	PDF	EDD
Project Manager								_	Woznial				-	ail 1:		eddic@te		y.	y	v v
, ,	cybele.heddle@teck.com									pplied.com			_	ail 2:				A		Y
	421 Pine Avenue					1	Address	ss 18804 North Creek Parkway					Email 2: teckcoal@equisonlini Email 3: clayton spytz@teck.c				A STATE OF THE STATE OF	x	x	X
												ail 4:	(bowron@minnow.ca			X	X	X X		
City	Sparwoo	od		Province BC			City	Both	nell		Province	WA	Em	ail 5:	-	hler@mini		X	X	X
Postal Code	V0B 2C	06		Country Can	ada	Posta	al Code	9801	11		Country	USA	Em	ail 5:						
Phone Number	250-910-8755					Phone 1	Number	206-	632-620					umber			VPO00	COLUMN TO THE PARTY OF THE PART		
18.84 N	SAMPLE DETAIL	LS		22 -	44				No.	ANAL	YSIS REC	UESTE	O	THE R		Yau	end F. Flei	A, Y.; Lab, 1	The Flesh &	Lah, N. No
								至		F	F	11,71					1377.11			
									-+		-	+	+	+	+	-				-
								ERCY.									-1,51	. 11	JIS U	
			6					NE S									1			
			\section \se													100			-	
			Hazardous Material (Yes/No)		r .															
			ia.							e	E .									
			ater					SEE.	_	Ę.	iati									
			Ž		1			SEV	Ë	elei) bec									
			sno			G=Grab		3	elen	Pa	E S									
	Sample Location	Field	zard		Į.	C=Com			Fotal Selenium	Alos	-									
Sample ID	(sys loc code)	Matrix	Haz	Date	Time (24hr)	- 1	Cont.		Tots	Dissolved Selenium	Selenium Speciation									
RG_FRUL_WS_LAEMP_LCO_2021-09-12_N	RG_FRUL	ws	No	09/12/2021	0823	G	1				1									
RC_FRUL_WS_LAEMP_LCO_2021-09-12_N_NAL	RG_FRUL	ws	No	09/12/2021	0823	G	2		1	1		1								
RG_FO23_W\$_LAEMP_LCO_2021-09-12_N	RG_FO23	ws	No	09/12/2021	0740	G	1				1									
RG_FO23_WS_LAEMP_LCO_2021-09-12_N_NAL	RG_FO23	ws	No	09/12/2021	0740	G	2		1	1			12							
RG_LIDCOM_WS_LAEMP_LCO_2021-09-13_N	RG_LIDCOM	ws	No	09/13/2021	0919	G	1				1									
RG_LIDCOM_WS_LAEMP_LCO_2021-09-13_N_NAL	RG_LIDCOM	ws	No	09/13/2021	0919	G	2	1	1	1										
RG_LISP24_WS_LAEMP_LCO_2021-09-13_N	RG_LISP24	WS	No	09/13/2021	1300	G	1				1				4	1		<u> </u>		
RG_LISP24_WS_LAEMP_LCO_2021-09-13_N_NAL	RG_LISP24	ws	No	09/13/2021	1300	G	2		1	1										
ADDITIONAL COMMENTS/SPECIAL	INSTRUCTIONS	and out			SHED BY/AFFII	and the second second second			DALL		AC	CEPTEL	BY/AF	FILIAT	ION	21		ATE/T		
Total and dissolved selenium samples have NOT been p	warawad Disastrad sala	nium hava		Jenn	ifer Ings/Minno)W		Sej	ptembe	r 14, 202	Mi	e e	JSALL	•		91	16/2		6:4	1
been filtered. Speciation samples have bee		шиш пачс						1												
								1												
SERVICE REQUEST (rush - subject	to availabilies	1			minesteriories vieterii, steri		FIL W			95.00						1			- C	
mental testing and a subject		(default) X										T		T						
Priority (2-3 business days) - 50%			Sampler's	Name				nnifer I	ings		M	obile #		519-500-3444					
	(1 Business Day) - 100%			Sampler's S	Signature	- Committee	240					Dat	e/Time			Sent	ember 1	4, 2021		
For Emergency <1 Day,	ASAP or Weekend - Cor	ntact ALS	1	p.c. 5 C		(i) "					_							, 5021		

IECK	COC ID: September LCO LAEMP						TURNAROUND TIME:													
PROJECT/CLIENT INFO									LASORA DA							OTHE	RINFO	AL ES A	A COLUMN	
Facility Name / Job	Lab Name Brooks Applied Labs							Re	port For	mat / Distribution		Excel	PDF	EDD						
Project Manager Cybele Heddle									Lab Contact Ben Wozniak						11-	The same of the same of		v	v	x
Email cybele.heddle@teck.com								Email ben@brooksapplied.com							cybele.heddle@teck.com teckcoal@equisonline.com		^	A	v	
Address 421 Pine Avenue								Address 18804 North Creek Parkway							# CONTRACTOR OF THE PERSON OF	and the same of	, , , , , , , , , , , , , , , , , , ,			1
Autiless 72.1 inc Avenue							Address 10004 North Creek I alkway						+	ail 3: ail 4:		pytz@tec	100 T 100 T	X	X	X
C'				Province BC	City Bothell				Province WA				The state of the s	D minnow	-	X	X	X		
City	Sparwood V0B 2G0										_		ail 5:	tyler.me	hler@min	nnow.ca	X	X	X	
Postal Code						Postal Code 98011 Country USA Phone Number 206-632-6206						USA	-	ail 5:					L	
	r 250-910-8755	** **			7	Phone I	Number	206-6	32-620		NAME OF THE OWNER,	L S TRANSPORTE		umber			VPO00			
	SAMPLE DETA	ILS	- 10	THE REAL PROPERTY.	The second second					ANAL	YSIS REC	SUESTE	0	1	1 =	3/81	tored - F: Fie	M, Ex East, 4	LI FINE &	Lati, N; No
								N.		F	F	1000				L P	12016			
												+	-	100	-		-		-	100000
								RV.				100	1				1			10.0
								蓋				100					A - 64			
			2º					至												
			Hazardous Material (Yes/No)									1	10							
			2						- 1											
			l ig						1	E	00									
			ate					1938		Dissolved Selenium	Selenium Speciation		1							
			Σ					3	Total Selenium	<u> </u>) Se									
			sno					3/	len	200	S									
	0 1 7	F: 11	ğ			G=Grab			Š.	2								1	1	
0.00000	Sample Location	Field	azz	D .	m: (0.41)	C=Com			ota E	isse	ler									
Sample ID	(sys_loc_code)	Matrix	1	Date	Time (24hr)		Cont.		F		- Ž	+	+	1	-		-		+	+
RG_LCUT_WS_LAEMP_LCO_2021-09-12_N	RG_LCUT	ws	No	09/10/2021	1254	G	1				1		-	-					-	_
RG_LCUT_WS_LAEMP_LCO_2021-09-12_N_NAL	RG_LCUT	ws	No	09/10/2021	1254	G	2		1	1								-	-	-
							-					-							-	-
				-										-	-	-		-		-
						-					-			-		-	1	-	-	+
		-				-		1										1		+-
															1				1	
ADDITIONAL COMMENTS/SPECIA	LINSTRUCTIONS				SHED BY/AFFI	THE RESERVE AND ADDRESS OF THE PARTY OF THE	305 1	1	DATE		AC	CEPTE	BY/AF	FILIAT	ION		1	ATE/T		
T. I. I. I. I. I. I. I. I. I. I. I. I. I.				Jenr	ow	W			September 14, 2021			Chal Prisalle			9	(16/	21	6:4		
Total and dissolved selenium samples have NOT been		lenium have									1									
been filtered. Speciation samples have be	en ultered and frozen.																			
SERVICE REQUEST (rush - subject		(10.1)					W. C.	all all			4							one-spring.		and any
Regular (default) X Priority (2-3 business days) - 50% surcharge				Sampler's		Jennifer Ings					М	obile#			519-500-3444					
Emergency	1	7.75										+								
For Emergency <1 Day		Sampler's Signature Date/Time Septemb									tember :	4, 2021								

STRAIGHT BILL OF ADING NOT NEGOTIABLE

No. 87364

Terrace, BC Red Deer, AB

Vancouver, BC Calgary, AB Montreal, QC

Prince George, BC Edmonton, AB Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT

Tumbler Ridge, BC Hinton, AB Gillette, WY

	Red Deer, AB	Montreal, QC	Spokane, WA	DAT	sent 15 dl
ICE TO	to bear		PURCHASE ORDER	NUMBER	
OF LADING	G#	7	CONSIGNEE (TO)	A died	lohs
		1	BICOA	S. Applica	Tacke Mark
ER (FRO	B Callis		土物型のよ	N. CLEEK	POSTAL CODE
Foct	- line Cre	-Ch II CUI	AL CODE CNY/PROVINCE	II WA	480111
PROVINC	E 1000 120	1.1		1	FREIGHT CHARGES
HAL INST	RUCTIONS		18 A	WEIGHT	SHIPPER TO CHECK
7	7 / / · · · · · · · · · · · · · · · · ·	DESCRIPTION OF ARTICLES AN	ND SPECIAL MARKS	(Subject to Correction)	If not indicated, shipping will automatically move of
CKAGES			Car - Start	100 L35	
5	MINNES	- MOICL	303/403		FEE
1.7	1				WAITING-
	+ 3 /				
		, A			XPU
0.1			22111		CHARGES
NA	INCH D	I ITING	21464	**************************************	
71	HATT	MIIIV (FSC
- 1				4	
	110.1	111		1	บร
	(10:11		DECLARED VALUATION: Maximu	im ser	
Π#	(10:1		DECLARED VALUATION: Maximu liability of carrier is \$2.00 per lb. (\$4.41 p kilogram) unless declared valuation stat	im per lee S	USSUB TOTAL
π#	1 0 . j.		DECLARED VALUATION: Maximu liability of carrier is \$2.00 per lb. (\$4.41 pkilogram) unless declared valuation stat otherwise.		
	SIGNATURE - PICK UP BY	PICK UP TIME	DRIVER'S SIGNATURE - DELIVERY B	FINISH TIME	SUB TOTAL
	SIGNATURE - PICK UP BY	PICK UP TIME	DRIVER'S SIGNATURE - DELIVERY B	FINISH TIME	SUB TOTAL
	SIGNATURE - PICK UP BY Aut. (a) No centre to labels for loss, damage or define	PICK UP TIME	DRIVER'S SIGNATURE - DELIVERY B	FINISH TIME	SUB TOTAL
	SIGNATURE - PICK UP BY Allet (a) No carrier to liable for loss, demage or defences, carriege or dearly a green in writing to find with a point of origin carrier in the property of the property of the point of the property of the point of the property of the point of the property of the point of the poi	PICK UP TIME	DRIVER'S SIGNATURE - DELIVERY B	FINISH TIME	SUB TOTAL
	SIGNATURE - PICK UP BY Allet: (a) No carrier to listing for loss, damage or design to be originated to the originates, damage or design of the originates or originates or originates or originates or originates or originates or originates or originates or originates or originates or originates or originates or originates or originates or originates or originates originates or originates originates originates originates originates originates or originates ori	PICK UP TIME	DRIVER'S SIGNATURE - DELIVERY B	FINISH TIME	SUB TOTAL
PRIVER'S STATE OF CLASS STATE OF CLASS SECTION OF CLASS S	SIGNATURE - PICK UP BY Make: (a) No carrier is liable for loss, dernege or delay- satisface. General or delay- satisface. General or delay- satisface. General or delay- satisface. General or delay- satisface. General or delay- satisface. General or delay- satisface. General or delay- indicate or delay- indicate or delay- satisface. General or delay- satisface. General or delay- satisface. General or delay- satisface. General or delay- satisface. General or delay- satisface. General or delay- satisface. General or delay- satisface. General or delay- satisface. General	PICK UP TIME	DRIVER'S SIGNATURE - DELIVERY B rodice, therefore setting out percluders of the origin, destingtion and det to (60) deale after the delivery of the good on the case of fauture to m of shipment logisting and control of the paid flexy of shipment logisting and control of the paid flexy signated are greatly desting to the original original signated as all paids party of two fines dealed on all or or or or or or or or or or or or or	FINISH TIME	SUB TOTAL
OTICE OF CLASS OF CLASS OF THE CONTROL OF CLASS OF THE CONTROL OF	SIGNATURE - PICK UP BY Allet (a) No carrier is liable for lose, derrage or defendent common or other to give must be fined when the carrier of the carrier	PICK UP TIME	notice, therefor setting out periodes of the origin, destination and deal of the origin destination and deal of the origin destination and deal of the origin destination and deal of the origin destination and deal of the origin destination and deal of the origin destination and deal or the origin destination and deal original at the self-of destination of the original at the self-of destination, such as all or self-of destination and deal or the original at the self-of destination, such as all or self-of destinations are destinated or the origination of the origination origination origination or	is of shipment of the goods and the estimated sentent good adapts y tribin time (9) months from the date of a classification to be particularly uniform the date of a classification to be performed the tribing of content of the date of a classification to be performed the tribing of the date of a classification to be performed the tribing of the date of	SUB TOTAL GST TOTAL \$ power of represent to the control of the c
NIT# NIVER'S S NIVER'S S NIVER'S S NIVER'S S NIVER'S S NIVER'S S NIVER'S S NIVER'S S NIVER'S S NIVER'S S NIVER'S S NIVER'S S NIVER'S S NIVER'S S NIVER'S S NIVER'S S NIVER'S NIVER'S S NIVER'S NIVER'S NIVER'S NIVER'S NIVER'S NIVER'S NIVER'S NIVER'S NIVER'S NIVER'S NIVER'S NIVER'S NIVER'S	SIGNATURE - PICK UP BY Allet: (a) No carrier is liable for loss, damage or defines, damage or defines, damage or defines, damage or defines, damage or defines, damage or defines, damage or defines, damage or defines, and defines or defined with a control of opposition or defines or defined or defined or defines and defines of defines and defines and defines defines are defined or defines and defines defined or defines and defines defined or defines and defines defined or defines defined or defines defined or de	PICK UP TIME	notice, therefore setting out perticulars of the origin, destingtion and deal of the origin, destingtion and deal of the origin, destingtion and deal of the origin, destingtion and deal of the origin of the origin of the origin of the origin of the origin of the origin of the origin of the original at an experiment and original at an experiment or original original at the original origin	FINISH TIME	SUB TOTAL GST TOTAL \$ porter of control of the co

cooler ID: Styrofoam	Cooler.	#1 .cc	C (Y/N)
Coolant Type: (Ice)	Blue Ice	Ambien	t s
Notes:	10.0	1, 1	•,
Sampling Locations:	B6	0	EV

Temperature:

T/D SP 60nl

EV T/D

T/D

Sample Types: **Container Types:**

Opened By:

Sampling Locations:

Date:

9/16/21

SP

SP

STRAIGHT BILL OF ADING

No. 87364

Tertace, BC

Vancouver, BC Calgary, AB Montreal, QC

Prince George, BC Edmonton, AB Spokane, WA

Ell:ford, BC Ft. McMurray, AB Shelby, MT Tumbler Ridge, BC Hinton, AB Gillette, WY

	Tertace, BC Red Deer, AB	Montreal, QC	Spokane, WA	DA	Sen+ 15-21
OICE TO	1. 1	(E) 9	PURCHASE ORI	DER NUMBER	
OF LADING #	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	All the second s	CONSIGNEE (TO	De Assiled	ans
PPER (FROM)	17-2114	1	STREET	STATE OF	Dachway
ECP		oak Trans	and at lotter	4 N.CEA	GI SIOI II
VPROVINCE	Tine !	POSTA	L CODE CHYPROVING	ell WH	FREIGHT CHARGES
CIAL INSTRU	ICTIONS .	- 1			SHIPPER TO CHECK
OAL MSTA	7 12	DESCRIPTION OF ARTICLES AND	SPECIAL MARKS	WEIGHT (Subject to Correction)	If not indicated, shoping will automatically move no
ACKAGES		N 1	e solers	100 L85	FEE
5	M poles	- Mater	101/2		
	1		The state of the s		WAITING.
- Jan 241	1 2 1	7			XPU
		ş-	3		
~ ~	No. D	1 11116	77211		CHARGES
DA	N# K	VITIAL			FSC
	101	MAIL			us
	147		DECLARED VALUATION: Max liability of carrier is \$2.00 per lb. (\$4	dimum 41 per	
NIT#			Kilodistu) milega dogici -	states \$	SUB TOTAL
	•		otherwise. DRIVER'S SIGNATURE - DELIVE	RY BY FINISH TIME	GST
RIVER'S SIG	NATURE - PICK UP BY	PICK UP TIME		**	n barriera
	** *** · ·	code under the Bill of Lading unless no	tice, therefor setting out particulars of the origin, destination and destination of the particular of the particular of the particular of the particular of the particular of the particular of the particular of the particular of the particular of the particular of the particular or the particular of the particular or	and date of shipment of the goods and the estimated amounts from the date of the to make deligary within nine (9) mornins from the date of the control of th	shipment. TOTAL \$
COTICE OF CLASSIC respect of such loss.	(e) No carrier is liable for loss, damage or de damage or delay is given in writing to the ort amant, of the claim must be filled amant, of the coating the specified from the co-	ay of any governor or the delivering carrier within say, pleating carrier or the delivering tron, the date of within nine (2) months from the date of within nine (2) months from the consignation mentioned herein, the property herein despited to the consignation of t	tion therefor setting out particulars of the origin, destingtion. (Fig. days after the delivery of the goods, only of the pold of the pol	d condition of classification in effect on the use of said is and classification in effect on the use of said is said the said by said the said of the said is said the said of the said o	power at IF AT OWNER'S RISK, WRITE ORD HERE
RECEIVED at the po- destined as Indic it is mutually agreed.	atted below, which the carrier agrees as to each carrier of all or any of the goods of as to each carrier of all or any of the goods of a material Bill of Lading, in power at the date of is natural Bill of Lading, in power at the date of is natural Bill of Lading.	pres ell or any portion of the routh to desain and a consignor of suing, which are hereto agreed by the consignor of suing, which are hereto agreed for, himself to consignor and accepted for, himself to go a coverned by regulation k, coop as the jurisdiction of the coop as the jurisdiction of the coop as the jurisdiction of the coop as the jurisdiction of the coop as the jurisdiction of the coop as the jurisdiction of the coop as the jurisdiction of the coop as the jurisdiction of the coop as	nd accepted for homeer and insurement and is subject to the original the time and place of shipment and is subject to the original the time and place of shipment and is subject to the original time.	conditions set out in such conceions.	DATE
SHIPPER	carriage of the goods rosed in the Unit	The state of the s	PRINT	- LONIN	GNEWED!
PRINT.	acan /h	W. I.K	CONSIGNEE	15/15 1	NUMBER OF PROCES RECEIVED
SHIPPER SIGN	nork_		GOLDENROAD: Shipper	GST # 864540398RT0001	7 9 001/2
11	WHITE: Office YELLO	V; Carrier PINK: Consigned	SULDENKOPE, SUPP	·	
AMISOS PRINTINO	WEIGHT			The second secon	- Carlos de Carl

Cooler ID: Styrofoam	Coolers	#2	COC (Y/N)	Te	mperatur	e: T/D	: 5.6	'C	IR:	30
Coolant Type: Ice	Blue Ice	Ambi	ent	ų) b	Sp:	1-1°C	,		
Notes:			#			*	1		1	4.
Sampling Locations:	LC	7	R	G						
Sample Types:	T/D 40mL	SP	T/D 40ml	SP _	T/D	SP	T/D	SP	T/D	SP
Container Types:	40ML		40mL	60mL	;					P. C.
Opened By: SP		ī	Date: 9	116/21	*				D. /	8

STRAIGHT BILL OF ADING

No. 87364

Terrace, BC

Vancouver, BC Calgary, AB Montreal, QC

Prince George, BC Edmonton, AB Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT

Tumbler Ridge, BC Hinton, AB Gillette, WY

Red Deer, AB Montreal, QC		DATE	CDT 15-01
CETO /	PURCHASE ORDER NU	IMBER	
F LADING#	CONSIGNEE (TO)	Applied	abs
ER (FROM)	+ 10004	N. Creek 4	ar hung
Test line Creek I Eggs	CODE CHY/PROVINCE	WA	FREIGHT CHARGES
DAL INSTRUCTIONS		WEIGHT	SHIPPER TO CHECK
OF ARTICLES AND	SPECIAL MARKS	(Subject to Correction)	GREPAID GOLLEG! If not indicated, shipping will automatically move edit
CKAGES DESCRIPTION OF AKTION	and se	100 L85	FEE
5 & Cooleis - Water	111/1/2	1	
		V	WAITING
19 × 1 2 /			XPU
	9211		CHARGES_
DADCABITHE	X1464		FSC
HOMILIAC	1001	1 1	
	Maximum	and the second	US
IIT#	DECLARED VALUATION: Maximum liability of carrier is \$2.00 per ib. (\$4.41 per kilogram) unless declared valuation states	\$	SUB TOTAL
	otherwise.	FINISH TIME	
RIVER'S SIGNATURE - PICK UP BY PICK UP TIME	DRIVER'S SIGNATURE - DELIVERY BY	2.00	GST
RIVER O GOOD	therefor setting out particulars of the bright, destination and date of	shipment of the goods and the estimated amount dis- delinery within nine (9) months from the date of shipment of the constant of the constant constant	med ment.
OTICE OF CL Asit: (a) No carrier is liable for loss, dermage or delay of any ponds under the SS of Leoning Leoning Leoning Common of the Commo	ix) days after the derivery or with a curry of the paid freight a shipment together with a curry of the paid freight and condition that in spanish send arder, except as need (contents and condition that is paid of destination, subject to the rates and cla- ed at the said destination, subject to the rates and cla- teractic party of any time interested in all or any of the goods, that	of contents of package unknown intentions in a saffication in affect on the date of grapm userly service to be performed hereunder what be subservery service to be performed hereunder what be subservery service to be performed hereunder what be subservery to be	JE AT CHINER'S RISK, WRITE ORD HERE
OTICE OF CAMBIE (a) No cardier is listed for loss, damage or datay of any goods under the Bif of Lieding unless not goods on the control of t	securities for himself and his easing in the conditions and his sessions, on at the time and place of shipment and is subject to the conditions a	et out in such apparations.	DATE
	CONSIGNEE	(2004)	
the Contract for the carriage of the goods	200 10 CV	RAID	
That Jacon Thath	CONSIGNEE	ISAL)	7/MP21
SHIPPER SIGN YELLOW: Carrier PINK: Consignee	CONSIGNEE	ST # 864540398RT0001	7/16/21

Cooler ID: Styreform	~ looler:	#3	coc ØN)	Te	ı mperatuı	re: T/D : (6.0°C		IR:	30
Coolant Type: Ice	Blue Ice	Ambie	,	• •	No. of	26.	j. (O			
Notes:	1	٠,	# 4		44.	×.				
Sampling Locations:	R	G	EV		L	e -				
Sample Types:	T/D 40mL	SP 60mL	T/D 40mL	SP _	T/D	SP 60mL	T/D	SP	T/D	SP
Container Types:	40	,	W. C.		. :		:			- E
Opened By: SP		D	ate: 9	116/21	L			^{C}OF	Υ	

SELENIUM SPECIATION

BAL Final Report 2112095

(Finalized January 4, 2022)

Confidential BAL Final Report 2112095

January 4, 2022

Teck Resources Limited – Vancouver Cybele Heddle 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 cybele.heddle@teck.com

Re: REP

Dear Cybele Heddle,

On December 9, 2021, Brooks Applied Labs (BAL) received twenty-two (22) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se, and Se speciation analyses, according to the chain-of-custody (COC) form.

Sample ID values listed on the chain-of-custody (COC) form did not exactly match the corresponding **Sample ID** values listed on container labels for samples 2112095-04 and 2112095-05. The discrepancies are described in the table below.

Laboratory	Sample ID	Sample ID	Analytical
ID	(From COC form)	(From Container Label)	Parameter
2112095- 04	RG_SLINE_WS_LAEMP_LCO_2021- 12_NP_NAL	RG_SLINE_WS_LAEMP_LCO_2021- 11_NP_NAL	Total Recoverable Se
2112095-	RG_SLINE_WS_LAEMP_LCO_2021-	RG_SLINE_WS_LAEMP_LCO_2021-	Dissolved
05	12_NP_NAL	11_NP_NAL	Se

Per client request, 2112095-04 and 2112095-05 were logged in and reported according to the **Sample ID** values listed on the COC form.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Confidential BAL Final Report 2112095

Se Speciation

Each aqueous sample was analyzed for Se speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate [SeSO3], and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk Se Sp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional Se species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting Se species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances when a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the RPD of the MS/MSD set was not calculated (N/C).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited met all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager

Brooks Applied Labs

Jeremy@brooksapplied.com

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2112095 Client PM: Cybele Heddle Client Project: REP

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard) Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury
EPA 1630	Non-Potable Waters	Methyl Mercury
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)
SM2340B	Non-Potable Waters	Hardness

Project ID: TRL-VC1701 PM: Jeremy Maute

BAL Final Report 2112095 Client PM: Cybele Heddle Client Project: REP

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes	
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn	
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)	Not Accredited	
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)	Not Accredited	
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury	
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)	
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)	Not Accredited	
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)	Not Accredited	
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb	Not Accredited	
DAI 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited	
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited	
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited	
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited	
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)	
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)	Not Accredited	
SM2340B	Non-Potable Waters	Hardness	Hardness	
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight	

⁽¹⁾ ISO/IEC 17025:2017 - Certificate Number ADE-1447.02

⁽²⁾ Non-Governmental NELAC Institute 2016 Standard - Certificate Number ADE-1447.01

⁽³⁾ Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.03 for DOE.

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_LI24_WS_LAEMP_LCO_2021-1 2_NP_NAL	2112095-01	WS	Sample	11/30/2021	12/09/2021
 RG_Li24_WS_LAEMP_LCO_2021-1 2_NP_NAL	2112095-02	WS	Sample	11/30/2021	12/09/2021
 RG_LI24_WS_LAEMP_LCO_2021-1 2_NP	2112095-03	WS	Sample	11/30/2021	12/09/2021
RG_SLINE_WS_LAEMP_LCO_2021 -12_NP_NAL	2112095-04	WS	Sample	11/29/2021	12/09/2021
RG_SLINE_WS_LAEMP_LCO_2021 -12_NP_NAL	2112095-05	WS	Sample	11/29/2021	12/09/2021
RG_SLINE_WS_LAEMP_LCO_2021 -12_NP	2112095-06	WS	Sample	11/29/2021	12/09/2021
RG_LISP24_WS_LAEMP_LCO_202 1-12_NP_NAL	2112095-07	WS	Sample	11/30/2021	12/09/2021
RG_LISP24_WS_LAEMP_LCO_202 1-12_NP_NAL	2112095-08	WS	Sample	11/30/2021	12/09/2021
RG_LISP24_WS_LAEMP_LCO_202 1-12_NP	2112095-09	WS	Sample	11/21/2021	12/09/2021
RG_LILC3_WS_LAEMP_LCO_2021- 12_NP_NAL	2112095-10	WS	Sample	12/01/2021	12/09/2021
RG_LILC3_WS_LAEMP_LCO_2021- 12_NP_NAL	2112095-11	WS	Sample	12/01/2021	12/09/2021
RG_LILC3_WS_LAEMP_LCO_2021- 12_NP	2112095-12	WS	Sample	12/01/2021	12/09/2021
RG_LCUT_WS_LAEMP_LCO_2021- 12_NP_NAL	2112095-13	WS	Sample	12/01/2021	12/09/2021
RG_LCUT_WS_LAEMP_LCO_2021- 12_NP_NAL	2112095-14	WS	Sample	12/01/2021	12/09/2021
RG_LCUT_WS_LAEMP_LCO_2021- 12_NP	2112095-15	WS	Sample	12/01/2021	12/09/2021
RG_RIVER_WS_LAEMP_LCO_2021 -12_NP_NAL	2112095-16	WS	Sample	11/30/2021	12/09/2021
RG_RIVER_WS_LAEMP_LCO_2021 -12_NP_NAL	2112095-17	WS	Sample	11/30/2021	12/09/2021
RG_RIVER_WS_LAEMP_LCO_2021 -12_NP	2112095-18	WS	Sample	11/30/2021	12/09/2021
RG_LI8_WS_LAEMP_LCO_2021-12 _NP_NAL	2112095-19	ws	Sample	12/02/2021	12/09/2021
_NP_NAL RG_LI8_WS_LAEMP_LCO_2021-12 _NP_NAL	2112095-20	ws	Sample	12/02/2021	12/09/2021
_NP_NAL RG_LI8_WS_LAEMP_LCO_2021-12 _NP	2112095-21	WS	Sample	12/02/2021	12/09/2021

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
RG_FO23_WS_LAEMP_LCO_2021- 12_NP_NAL	2112095-22	WS	Sample	12/01/2021	12/09/2021
RG_FO23_WS_LAEMP_LCO_2021- 12_NP_NAL	2112095-23	WS	Sample	12/01/2021	12/09/2021
RG_FO23_WS_LAEMP_LCO_2021- 12_NP	2112095-24	WS	Sample	12/01/2021	12/09/2021
RG_FRUL_WS_LAEMP_LCO_2021- 12_NP_NAL	2112095-25	WS	Sample	11/29/2021	12/09/2021
RG_FRUL_WS_LAEMP_LCO_2021- 12_NP_NAL	2112095-26	WS	Sample	11/29/2021	12/09/2021
RG_FRUL_WS_LAEMP_LCO_2021- 12_NP	2112095-27	WS	Sample	11/29/2021	12/09/2021
RG_LIDCOM_WS_LAEMP_LCO_20 21-12_NP_NAL	2112095-28	WS	Sample	12/02/2021	12/09/2021
RG_LIDCOM_WS_LAEMP_LCO_20 21-12_NP_NAL	2112095-29	WS	Sample	12/02/2021	12/09/2021
RG_LIDCOM_WS_LAEMP_LCO_20 21-12_NP	2112095-30	WS	Sample	12/02/2021	12/09/2021
RG_FBLANK_WS_LAEMP_LCO_20 21-12_NP_NAL	2112095-31	WS	Sample	11/30/2021	12/09/2021
RG_FBLANK_WS_LAEMP_LCO_20 21-12_NP_NAL	2112095-32	WS	Sample	11/30/2021	12/09/2021
RG_FBLANK_WS_LAEMP_LCO_20 21-12_NP	2112095-33	WS	Sample	11/30/2021	12/09/2021

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	12/09/2021	12/11/2021	B213406	S211390
DMSeO	Water	SOP BAL-4201	12/09/2021	12/22/2021	B213406	S211443
MeSe(IV)	Water	SOP BAL-4201	12/09/2021	12/11/2021	B213406	S211390
MeSe(IV)	Water	SOP BAL-4201	12/09/2021	12/22/2021	B213406	S211443
MeSe(VI)	Water	SOP BAL-4201	12/09/2021	12/11/2021	B213406	S211390
MeSe(VI)	Water	SOP BAL-4201	12/09/2021	12/22/2021	B213406	S211443
Se	Water	EPA 1638 Mod	12/10/2021	12/15/2021	B213468	S211433
Se(IV)	Water	SOP BAL-4201	12/09/2021	12/11/2021	B213406	S211390
Se(IV)	Water	SOP BAL-4201	12/09/2021	12/22/2021	B213406	S211443
Se(VI)	Water	SOP BAL-4201	12/09/2021	12/11/2021	B213406	S211390
Se(VI)	Water	SOP BAL-4201	12/09/2021	12/22/2021	B213406	S211443
SeCN	Water	SOP BAL-4201	12/09/2021	12/11/2021	B213406	S211390
SeCN	Water	SOP BAL-4201	12/09/2021	12/22/2021	B213406	S211443
SeMet	Water	SOP BAL-4201	12/09/2021	12/11/2021	B213406	S211390
SeMet	Water	SOP BAL-4201	12/09/2021	12/22/2021	B213406	S211443
SeSO3	Water	SOP BAL-4201	12/09/2021	12/11/2021	B213406	S211390
SeSO3	Water	SOP BAL-4201	12/09/2021	12/22/2021	B213406	S211443
Unk Se Sp	Water	SOP BAL-4201	12/09/2021	12/11/2021	B213406	S211390
Unk Se Sp	Water	SOP BAL-4201	12/09/2021	12/22/2021	B213406	S211443

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LI24_WS_	LAEMP_LCO_	2021-12_NP_NAL								
2112095-01	Se	ws _	TR	2.41		0.165	0.528	μg/L	B213468	S211433
RG LI24 WS	LAEMP LCO	2021-12_NP_NAL								
2112095-02	Se _	ws -	D	2.71		0.165	0.528	μg/L	B213468	S211433
RG_LI24_WS_	LAEMP LCO	2021-12 NP								
2112095-03	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-03	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-03	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-03	Se(IV)	WS	D	0.022	J	0.010	0.075	μg/L	B213406	S211390
2112095-03	Se(VI)	WS	D	2.58		0.010	0.055	μg/L	B213406	S211390
2112095-03	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213406	S211390
2112095-03	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-03	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213406	S211390
2112095-03	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213406	S211390
RG SLINE WS	S LAEMP LCC	D_2021-12_NP_NA	L							
2112095-04	Se	WS	TR	1.15		0.165	0.528	μg/L	B213468	S211433
RG SLINE WS	S LAEMP LCC	D_2021-12_NP_NA	L							
2112095-05	Se	ws	D	1.04		0.165	0.528	μg/L	B213468	S211433
RG_SLINE_WS	S LAEMP LCC) 2021-12 NP								
2112095-06	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-06	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-06	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-06	Se(IV)	WS	D	0.018	J	0.010	0.075	μg/L	B213406	S211390
2112095-06	Se(VI)	WS	D	1.16		0.010	0.055	μg/L	B213406	S211390
2112095-06	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213406	S211390
2112095-06	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-06	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213406	S211390
2112095-06	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213406	S211390
RG_LISP24_W	S_LAEMP_LC	O_2021-12_NP_NA	L							
2112095-07	Se	ws	TR	30.9		0.165	0.528	μg/L	B213468	S211433
RG LISP24 W	S LAEMP LC	O_2021-12_NP_NA	\L							
2112095-08	Se	WS	D	31.3		0.165	0.528	μg/L	B213468	S211433
			_	0				r-3, -		52.1.00

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LISP24_W	/S_LAEMP_LC	O_2021-12_NP								
2112095-09	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-09	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-09	MeSe(VI)	WS	D	0.014	J	0.010	0.025	μg/L	B213406	S211390
2112095-09	Se(IV)	WS	D	0.178		0.010	0.075	μg/L	B213406	S211390
2112095-09	Se(VI)	WS	D	31.7		0.010	0.055	μg/L	B213406	S211390
2112095-09	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213406	S211390
2112095-09	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-09	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213406	S211390
2112095-09	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213406	S211390
RG_LILC3_WS	S_LAEMP_LCO	_2021-12_NP_NA	L							
2112095-10	Se	WS	TR	46.1		0.165	0.528	μg/L	B213468	S211433
RG_LILC3_WS	S_LAEMP_LCO	_2021-12_NP_NA	L							
2112095-11	Se	WS	D	45.3		0.165	0.528	μg/L	B213468	S211433
RG LILC3 WS	S_LAEMP_LCO	2021-12 NP								
2112095-12	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-12	MeSe(IV)	WS	D	≤ 0.010	Ū	0.010	0.025	μg/L	B213406	S211390
2112095-12	MeSe(VI)	WS	D	0.018	J	0.010	0.025	μg/L	B213406	S211390
2112095-12	Se(IV)	WS	D	0.219		0.010	0.075	μg/L	B213406	S211390
2112095-12	Se(VI)	WS	D	43.8		0.010	0.055	μg/L	B213406	S211390
2112095-12	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213406	S211390
2112095-12	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-12	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213406	S211390
2112095-12	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213406	S211390
RG_LCUT_WS	S_LAEMP_LCO	_2021-12_NP_NA	L							
2112095-13	Se	ws -	TR	55.3		0.165	0.528	μg/L	B213468	S211433
RG I CUT WS	S LAFMP LCO	_2021-12_NP_NA	,							
2112095-14	Se	_2021-12_NF_NAI WS	D	56.3		0.165	0.528	μg/L	B213468	S211433
Z11ZU3U-14	96	****	J	50.5		0.100	0.520	µg/∟	DZ 13400	JZ 114JJ

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG LCUT WS	LAEMP_LCO	2021-12 NP								
2112095-15	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211443
2112095-15	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211443
2112095-15	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211443
2112095-15	Se(IV)	WS	D	0.097		0.010	0.075	μg/L	B213406	S211443
2112095-15	Se(VI)	WS	D	49.4		0.010	0.055	μg/L	B213406	S211443
2112095-15	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213406	S211443
2112095-15	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211443
2112095-15	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213406	S211443
2112095-15	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213406	S211443
PG PIVER W	S LAEMP LCC) 2021-12 NP NA	\I							
2112095-16	S_LALWF_LCC Se	WS	TR	31.7		0.165	0.528	μg/L	B213468	S211433
2112095-10	36	WS	IIX	31.7		0.103	0.320	μg/L	D2 13400	3211433
RG_RIVER_W	S_LAEMP_LCC	D_2021-12_NP_NA	L							
2112095-17	Se	WS	D	31.2		0.165	0.528	μg/L	B213468	S211433
DO DU(ED 14(0 / 4545 / 00									
	S_LAEMP_LCC		_	4 O O4O		0.040	0.005		D040400	0044440
2112095-18	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211443
2112095-18	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211443
2112095-18	MeSe(VI)	WS	D	0.011	J	0.010	0.025	μg/L	B213406	S211443
2112095-18	Se(IV)	WS	D	0.161		0.010	0.075	μg/L	B213406	S211443
2112095-18	Se(VI)	WS	D	31.2		0.010	0.055	μg/L	B213406	S211443
2112095-18	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213406	S211443
2112095-18	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211443
2112095-18	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213406	S211443
2112095-18	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213406	S211443
RG_LI8_WS_L	AEMP_LCO_20	021-12_NP_NAL								
2112095-19	Se	ws	TR	23.4		0.165	0.528	μg/L	B213468	S211433
DC 118 We 1	AEMP ICO 2	021-12 NP NAL								
2112095-20	Se	WS WS	D	23.7		0.165	0.528	μg/L	B213468	S211433
2112000-20		***		20.7		5.100	0.020	۳9, -	52 10 100	02 I I 7 0 0

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LI8_WS_L	AEMP LCO 20	021-12 NP								
2112095-21	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-21	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-21	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-21	Se(IV)	WS	D	0.074	J	0.010	0.075	μg/L	B213406	S211390
2112095-21	Se(VI)	WS	D	19.3		0.010	0.055	μg/L	B213406	S211390
2112095-21	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213406	S211390
2112095-21	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-21	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213406	S211390
2112095-21	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213406	S211390
DC	LAEMB LCO	2024 42 ND NAI								
	_LAEMP_LCO_ Se	_ 2021-12_NP_NAL WS	TR	42.8		0.165	0.528	ua/l	B213468	0011400
2112095-22	Se	VVS	IK	42.0		0.100	0.326	μg/L	DZ 13400	S211433
RG FO23 WS	LAEMP LCO	2021-12 NP NAL								
2112095-23	Se	ws	D	42.2		0.165	0.528	μg/L	B213468	S211433
RG_FO23_WS	LAEMP LCO	2021-12 NP								
2112095-24	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-24	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-24	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-24	Se(IV)	WS	D	0.238		0.010	0.075	μg/L	B213406	S211390
2112095-24	Se(VI)	WS	D	44.1		0.010	0.055	μg/L	B213406	S211390
2112095-24	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213406	S211390
2112095-24	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-24	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213406	S211390
2112095-24	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213406	S211390
DO ED!!! !!!		2024 42 112 114	,							
		_2021-12_NP_NAI		50.0		0.405	0.500		D040400	0044400
2112095-25	Se	WS	TR	53.3		0.165	0.528	μg/L	B213468	S211433
RG_FRUL_WS	_LAEMP_LCO	_2021-12_NP_NAI	<u>'</u>							
2112095-26	Se	ws	D	54.3		0.165	0.528	μg/L	B213468	S211433

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG FRUL WS	LAEMP_LCO	2021-12 NP								
2112095-27	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-27	MeSe(IV)	WS	D	0.013	J	0.010	0.025	μg/L	B213406	S211390
2112095-27	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-27	Se(IV)	WS	D	0.345		0.010	0.075	μg/L	B213406	S211390
2112095-27	Se(VI)	WS	D	59.5		0.010	0.055	μg/L	B213406	S211390
2112095-27	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213406	S211390
2112095-27	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-27	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213406	S211390
2112095-27	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213406	S211390
PC LIDCOM	MO LAEMD LA	CO 2021-12 NP I	.IAI							
	VV3_LAEIVIP_LC Se	WS WS	TR	26.7		0.165	0.528	ua/l	B213468	C211122
2112095-28	36	VVS	IK	20.7		0.100	0.526	μg/L	DZ 13 4 00	S211433
RG LIDCOM	WS LAEMP LO	CO_2021-12_NP_I	<i>NAL</i>							
2112095-29	Se	ws	D	25.4		0.165	0.528	μg/L	B213468	S211433
RG_LIDCOM_	WS_LAEMP_LO	CO_2021-12_NP								
2112095-30	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-30	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-30	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-30	Se(IV)	WS	D	0.138		0.010	0.075	μg/L	B213406	S211390
2112095-30	Se(VI)	WS	D	27.3		0.010	0.055	μg/L	B213406	S211390
2112095-30	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213406	S211390
2112095-30	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-30	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213406	S211390
2112095-30	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213406	S211390
RG FRI ANK	WS LAFMP L	CO 2021-12 NP	NAI							
2112095-31	Se	WS	TR	≤ 0.165	U	0.165	0.528	μg/L	B213468	S211433
2.12000 01				_ 330	J	200	0.0_0	r-3 ⁻	22.0.00	3211100
RG_FBLANK_	WS_LAEMP_L	CO_2021-12_NP_I	NAL							
2112095-32	Se	WS	D	≤ 0.165	U	0.165	0.528	μg/L	B213468	S211433

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_FBLANK_	WS_LAEMP_L	CO_2021-12_NP								
2112095-33	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-33	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-33	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-33	Se(IV)	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213406	S211390
2112095-33	Se(VI)	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213406	S211390
2112095-33	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213406	S211390
2112095-33	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213406	S211390
2112095-33	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213406	S211390
2112095-33	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213406	S211390

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Accuracy & Precision Summary

Batch: B213406 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B213406-BS1	Blank Spike, (2124033)						
	MeSe(IV)		5.095	5.569	μg/L	109% 75-125	
	Se(IV)		5.000	4.785	μg/L	96% 75-125	
	Se(VI)		5.000	4.538	μg/L	91% 75-125	
	SeCN		5.015	4.686	μg/L	93% 75-125	
	SeMet		4.932	5.054	μg/L	102% 75-125	
B213406-DUP5	Duplicate, (2112093-19)						
	DMSeO	ND		ND	μg/L		N/C 25
	MeSe(IV)	ND		ND	μg/L		N/C 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	0.446		0.455	μg/L		2% 25
	Se(VI)	4.820		4.844	μg/L		0.5% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B213406-MS5	Matrix Spike, (2112093-1	9)					
	Se(IV)	0.446	4.900	6.348	μg/L	120% 75-125	
	Se(VI)	4.820	5.100	10.77	μg/L	117% 75-125	
	SeCN	ND	1.962	1.914	μg/L	98% 75-125	
	SeMet	ND	1.977	1.971	μg/L	100% 75-125	
B213406-MSD5	Matrix Spike Duplicate, (2112093-19)				
	Se(IV)	0.446	4.900	6.453	μg/L	123% 75-125	2% 25
	Se(VI)	4.820	5.100	11.03	μg/L	122% 75-125	2% 25
	SeCN	ND	1.962	1.969	μg/L	100% 75-125	3% 25
	SeMet	ND	1.977	1.964	μg/L	99% 75-125	0.4% 25

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Accuracy & Precision Summary

Batch: B213406 Lab Matrix: Water Method: SOP BAL-4201

Commis	Amaluta	Mathra	Omilea	Decult	Unite	DEC 9	Limite	DDD 0 1 :	
Sample	Analyte	Native	Spike	Result	Units	REC &	Limits	RPD & Li	mits
B213406-DUP6	Duplicate, (2112095-06)	ND		ND				NIO	0.5
	DMSeO	ND		ND	μg/L			N/C	
	MeSe(IV)	ND		ND	μg/L			N/C	25
	MeSe(VI)	ND		ND	μg/L			N/C	25
	Se(IV)	0.018		0.019	μg/L			7%	25
	Se(VI)	1.159		1.140	μg/L			2%	25
	SeCN	ND		ND	μg/L			N/C	25
	SeMet	ND		ND	μg/L			N/C	25
	SeSO3	ND		ND	μg/L			N/C	25
	Unk Se Sp	ND		ND	μg/L			N/C	25
B213406-MS6	Matrix Spike, (2112095-0	6)							
	Se(IV)	0.018	4.900	5.449	μg/L	111%	75-125		
	Se(VI)	1.159	5.100	6.647	μg/L	108%	75-125		
	SeCN	ND	1.962	1.857	μg/L	95%	75-125		
	SeMet	ND	1.977	2.053	μg/L	104%	75-125		
B213406-MSD6	Matrix Spike Duplicate,	(2112095-06))						
	Se(IV)	0.018	4.900	5.024	μg/L	102%	75-125	8%	25
	Se(VI)	1.159	5.100	6.293	μg/L	101%	75-125	5%	25
	SeCN	ND	1.962	1.797	μg/L	92%	75-125	3%	25
	SeMet	ND	1.977	1.988	μg/L	101%	75-125	3%	25

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Accuracy & Precision Summary

Batch: B213468 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC 8	k Limits	RPD & Lin	nits
B213468-BS1	Blank Spike , (2128021) Se		200.0	203.8	μg/L	102%	75-125		
B213468-BS2	Blank Spike, (2128021) Se		200.0	202.4	μg/L	101%	75-125		
B213468-BS3	Blank Spike, (2128021) Se		200.0	200.6	μg/L	100%	75-125		
B213468-BS4	Blank Spike, (2128021) Se		200.0	201.7	μg/L	101%	75-125		
B213468-SRM1	Reference Material (21450)	02, TMDA 5	1.5 Reference	Standard	- Bottle 1 -	SRM)			
	Se		14.30	14.14	μg/L	99%	75-125		
B213468-SRM2	Reference Material (21450)	02 TMDA 5	4 E Deference	. Ctondovd	Dottle 4	CDM)			
B213400-3RW2	Se	UZ, TIVIDA S	14.30	14.48	μg/L		75-125		
B213468-SRM3	Reference Material (21450)	02. TMDA 5	1.5 Reference	e Standard	- Bottle 1 -	SRM)			
	Se	,	14.30	14.16	μg/L	-	75-125		
B213468-SRM4	Reference Material (21450)	02 TMDA 5	1 5 Reference	Standard	- Bottle 1 -	SRM)			
D210400-01(III4	Se	02, TNIDA 0	14.30	14.50	μg/L		75-125		
B213468-DUP2	Duplicate , (2112094-02) Se	1.182		1.218	μg/L			3%	20
				-	1.3				
B213468-MS2	Matrix Spike, (2112094-02) Se) 1.182	220.0	218.8	μg/L	99%	75-125		
					r-3· –	2270			
B213468-MSD2	Matrix Spike Duplicate, (2 Se	112094-02) 1.182	220.0	220.7	μg/L	100%	75-125	0.9%	20

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Accuracy & Precision Summary

Batch: B213468 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B213468-DUP3	Duplicate , (2112095-10) Se	46.07		44.45	μg/L		4% 20
B213468-MS3	Matrix Spike, (2112095-10 Se) 46.07	220.0	261.0	μg/L	98% 75-125	
B213468-MSD3	Matrix Spike Duplicate, (2 Se	112095-10) 46.07	220.0	260.1	μg/L	97% 75-125	0.3% 20
B213468-DUP4	Duplicate, (2112096-01) Se	74.94		75.33	μg/L		0.5% 20
B213468-MS4	Matrix Spike, (2112096-01 Se) 74.94	220.0	295.9	μg/L	100% 75-125	
B213468-MSD4	Matrix Spike Duplicate, (2 Se	112096-01) 74.94	220.0	296.2	μg/L	101% 75-125	0.08% 20

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Method Blanks & Reporting Limits

Batch: B213406 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

Sample	Result	Units
B213406-BLK1	0.00	μg/L
B213406-BLK2	0.00	μg/L
B213406-BLK3	0.00	μg/L
B213406-BLK4	0.00	ua/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

Sample	Result	Units
B213406-BLK1	0.00	μg/L
B213406-BLK2	0.00	μg/L
B213406-BLK3	0.00	μg/L
B213406-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

Sample	Result	Units
B213406-BLK1	0.00	μg/L
B213406-BLK2	0.00	μg/L
B213406-BLK3	0.00	μg/L
B213406-BLK4	0.00	μg/L

Average: 0.000 **MDL**: 0.002 **Limit**: 0.005 **MRL**: 0.005

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Method Blanks & Reporting Limits

Analyte: Se(IV)

Sample	Result	Units
B213406-BLK1	0.00	μg/L
B213406-BLK2	0.00	μg/L
B213406-BLK3	0.00	μg/L
B213406-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.015 MRL: 0.015

Analyte: Se(VI)

Sample	Result	Units
B213406-BLK1	0.00	μg/L
B213406-BLK2	0.00	μg/L
B213406-BLK3	0.00	μg/L
B213406-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Sample	Result	Units
B213406-BLK1	0.00	μg/L
B213406-BLK2	0.00	μg/L
B213406-BLK3	0.00	μg/L
B213406-BLK4	0.00	μg/L
	A.zaraea. 0.000	

Average: 0.000 **MDL**: 0.002 **Limit**: 0.010 **MRL**: 0.010

Analyte: SeMet

Sample	Result	Units
B213406-BLK1	0.00	μg/L
B213406-BLK2	0.00	μg/L
B213406-BLK3	0.00	μg/L
B213406-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B213406-BLK1	0.00	μg/L
B213406-BLK2	0.00	μg/L
B213406-BLK3	0.00	μg/L
B213406-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B213406-BLK1	0.00	μg/L
B213406-BLK2	0.00	μg/L
B213406-BLK3	0.00	μg/L
B213406-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Method Blanks & Reporting Limits

Batch: B213468 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B213468-BLK1	-0.0009	μg/L
B213468-BLK2	-0.016	μg/L
B213468-BLK3	-0.012	μg/L
B213468-BLK4	-0.007	μg/L

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

2112095

Sample Containers

Lab ID: 2112095-01 Report Matrix: WS Collected: 11/30/2021 Sample: Received: 12/09/2021 Sample Type: Sample + Sum RG LI24 WS LAEMP LCO 2021-12 NP NAL **Des Container Preservation** P-Lot рΗ Ship. Cont. **Size** Lot Client-Provided - TM 40 mL 10% HNO3 (BAL) 2127026 <2 Cooler #2 na 2112095 Lab ID: 2112095-02 Report Matrix: WS Collected: 11/30/2021 Sample: Sample Type: Sample + Sum Received: 12/09/2021 RG_LI24_WS_LAEMP_LCO_2021-12_NP_NAL **Des Container** Size **Preservation** P-Lot Hq Ship. Cont. Lot Client-Provided - TM 40 mL 10% HNO3 (BAL) <2 Cooler #2 na 2127026 2112095 Lab ID: 2112095-03 Report Matrix: WS Collected: 11/30/2021 Sample: RG_LI24_WS_LAEMP_LCO_2021-12_NP Sample Type: Sample + Sum Received: 12/09/2021 **Des Container Size** Lot **Preservation** P-Lot рΗ Ship. Cont. Cent Tube 15mL Se-Sp 15 mL Cooler #2 na none na na 2112095 В XTRA VOL 15 mL Cooler #2 na none na na 2112095 С XTRA_VOL 125ml Cooler #2 na none na na 2112095 Lab ID: 2112095-04 Report Matrix: WS Collected: 11/29/2021 Sample: Sample Type: Sample + Sum Received: 12/09/2021 RG_SLINE_WS_LAEMP_LCO_2021-12_NP_NAL **Preservation** P-Lot **Des Container Size** Lot pН Ship. Cont. Client-Provided - TM 40 mL 10% HNO3 (BAL) <2 Cooler #2 na 2127026 2112095 Collected: 11/29/2021 Lab ID: 2112095-05 Report Matrix: WS Sample: Sample Type: Sample + Sum Received: 12/09/2021 RG SLINE WS LAEMP LCO 2021-12 NP NAL рΗ **Des Container** Size Lot Preservation P-Lot Ship. Cont. Client-Provided - TM 40 mL 10% HNO3 (BAL) na 2127026 <2 Cooler #2 -

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Sample Containers

Sam	ID: 2112095-06 ple: SLINE_WS_LAEMP_LCO_20	21-12 NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 11/29/2021 ived: 12/09/2021
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler #2 - 2112095
В	XTRA_VOL	15 mL	na	none	na	na	Cooler #2 - 2112095
С	XTRA_VOL	125ml	na	none	na	na	Cooler #2 - 2112095
Sam	ID: 2112095-07 ple: LISP24_WS_LAEMP_LCO_20	021-12 NP NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 11/30/2021 ived: 12/09/2021
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2127026	<2	Cooler #2 - 2112095
			Report Matrix: WS Sample Type: Sample + Sum			cted: 11/30/2021 ived: 12/09/2021	
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2127026	<2	Cooler #2 - 2112095
Sam	ID: 2112095-09 ple: LISP24_WS_LAEMP_LCO_20	021-12 NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 11/21/2021 ived: 12/09/2021
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler #2 - 2112095
В	XTRA_VOL	15 mL	na	none	na	na	Cooler #2 - 2112095
С	XTRA_VOL	125ml	na	none	na	na	Cooler #2 - 2112095

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2112095 Client PM: Cybele Heddle Client Project: REP

2112095

Sample Containers

Lab ID: 2112095-10 Report Matrix: WS Collected: 12/01/2021 Sample: Received: 12/09/2021 Sample Type: Sample + Sum RG LILC3 WS LAEMP LCO 2021-12 NP NAL **Des Container** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Cooler #2 -Client-Provided - TM 40 mL na 2127026 <2 2112095 Lab ID: 2112095-11 Report Matrix: WS Collected: 12/01/2021 Sample: Received: 12/09/2021 Sample Type: Sample + Sum RG_LILC3_WS_LAEMP_LCO_2021-12_NP_NAL рΗ **Des Container Preservation** P-Lot Size Lot Ship. Cont. Client-Provided - TM 40 ml 10% HNO3 (BAL) 2127026 <2 Cooler #2 na 2112095 Lab ID: 2112095-12 Report Matrix: WS Collected: 12/01/2021 Sample: Sample Type: Sample + Sum Received: 12/09/2021 RG_LILC3_WS_LAEMP_LCO_2021-12_NP **Des Container Preservation** P-Lot Size Lot pH Ship. Cont. Cooler #2 -Cent Tube 15mL Se-Sp 15 mL na none na na 2112095 В XTRA_VOL 15 mL na none na na Cooler #2 -2112095 С XTRA_VOL 125ml Cooler #2 na none na na 2112095 Lab ID: 2112095-13 Report Matrix: WS Collected: 12/01/2021 Sample: Sample Type: Sample + Sum Received: 12/09/2021 RG_LCUT_WS_LAEMP_LCO_2021-12_NP_NAL Container Size Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 40 mL 10% HNO3 (BAL) <2 na 2127026 Cooler #2 -2112095 Lab ID: 2112095-14 Collected: 12/01/2021 Report Matrix: WS Sample: Sample Type: Sample + Sum Received: 12/09/2021 RG LCUT WS LAEMP LCO 2021-12 NP NAL рΗ **Des Container Preservation** P-Lot Ship. Cont. Size Lot Α Client-Provided - TM 40 mL 10% HNO3 (BAL) 2127026 <2 Cooler #2 na

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

2112095

Sample Containers

Sam	ID: 2112095-15 ple: LCUT WS LAEMP LCO 20	21-12 NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 12/01/2021 ived: 12/09/2021
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler #2 - 2112095
В	XTRA_VOL	15 mL	na	none	na	na	Cooler #2 - 2112095
С	XTRA_VOL	125ml	na	none	na	na	Cooler #2 - 2112095
Sam	ID: 2112095-16 ple: RIVER_WS_LAEMP_LCO_2(021-12 NP NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 11/30/2021 ived: 12/09/2021
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2127026	<2	Cooler #2 - 2112095
Sam	ID: 2112095-17 ple: RIVER_WS_LAEMP_LCO_20	121 12 ND NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 11/30/2021 ived: 12/09/2021
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2127026	<2	Cooler #2 - 2112095
Sam	ID: 2112095-18 IPIE: RIVER WS LAEMP LCO 20	021-12 NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 11/30/2021 ived: 12/09/2021
_	Container	Size	Lot	Preservation	P-Lot	На	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler #2 - 2112095
В	XTRA_VOL	15 mL	na	none	na	na	Cooler #2 - 2112095
С	XTRA_VOL	125ml	na	none	na	na	Cooler #2 -

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

2112095

Sample Containers

Lab ID: 2112095-19 Report Matrix: WS Collected: 12/02/2021 Sample: Received: 12/09/2021 Sample Type: Sample + Sum RG LI8 WS LAEMP LCO 2021-12 NP NAL **Des Container** Lot **Preservation** P-Lot рH Ship. Cont. na 10% HNO3 (BAL) Cooler #2 -Client-Provided - TM 40 mL 2127026 <2 2112095 Lab ID: 2112095-20 Report Matrix: WS Collected: 12/02/2021 Sample: Received: 12/09/2021 Sample Type: Sample + Sum RG_LI8_WS_LAEMP_LCO_2021-12_NP_NAL рΗ **Des Container Preservation** P-Lot Size Lot Ship. Cont. Client-Provided - TM 40 ml 10% HNO3 (BAL) 2127026 <2 Cooler #2 na 2112095 Lab ID: 2112095-21 Report Matrix: WS Collected: 12/02/2021 Sample: RG LI8 WS LAEMP LCO 2021-12 NP Sample Type: Sample + Sum Received: 12/09/2021 Size **Des Container Preservation** P-Lot pН Lot Ship. Cont. Cooler #2 -Cent Tube 15mL Se-Sp 15 mL na none na na 2112095 В XTRA VOL 15 mL na none na na Cooler #2 -2112095 С XTRA_VOL Cooler #2 -125ml na none na na 2112095 Lab ID: 2112095-22 Collected: 12/01/2021 Report Matrix: WS Sample: Sample Type: Sample + Sum Received: 12/09/2021 RG_FO23_WS_LAEMP_LCO_2021-12_NP_NAL **Des Container** Size Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 40 mL 10% HNO3 (BAL) 2127026 <2 Cooler #2 na 2112095 Lab ID: 2112095-23 Report Matrix: WS Collected: 12/01/2021 Sample: Received: 12/09/2021 Sample Type: Sample + Sum RG FO23 WS LAEMP LCO 2021-12 NP NAL Container Size **Preservation** P-Lot Ship. Cont. Lot Ha Client-Provided - TM 40 mL na 10% HNO3 (BAL) 2127026 <2 Cooler #2 -

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

2112095

Sample Containers

Sam	ID: 2112095-24 ple: FO23 WS LAEMP LCO 202	1-12 NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 12/01/2021 ived: 12/09/2021
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler #2 - 2112095
В	XTRA_VOL	15 mL	na	none	na	na	Cooler #2 - 2112095
С	XTRA_VOL	125ml	na	none	na	na	Cooler #2 - 2112095
Lab ID: 2112095-25 Report Matrix: WS Collected: 11/29/202 Sample: Sample Type: Sample + Sum Received: 12/09/202							
	FRUL_WS_LAEMP_LCO_202 Container	1-12_NP_NAL Size	Lot	Preservation	P-Lot	ьU	Shin Cont
A	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2127026	pH <2	Ship. Cont. Cooler #2 - 2112095
Lab ID: 2112095-26 Report Matrix: WS Collected: 11/29/2 Sample: Sample + Sum Received: 12/09/2							
_	FRUL_WS_LAEMP_LCO_202 Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2127026	<2	Cooler #2 - 2112095
Sam	ID: 2112095-27 ple: FRUL_WS_LAEMP_LCO_202	1-12 NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 11/29/2021 ived: 12/09/2021
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler #2 - 2112095
В	XTRA_VOL	15 mL	na	none	na	na	Cooler #2 - 2112095
С	XTRA_VOL	125ml	na	none	na	na	Cooler #2 -

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

2112095

Sample Containers

Lab ID: 2112095-28 Report Matrix: WS Collected: 12/02/2021 Sample: Received: 12/09/2021 Sample Type: Sample + Sum RG LIDCOM WS LAEMP LCO 2021-12 NP NAL **Des Container** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Cooler #2 -Client-Provided - TM 40 mL na 2127026 <2 2112095 Lab ID: 2112095-29 Report Matrix: WS Collected: 12/02/2021 Sample: Received: 12/09/2021 Sample Type: Sample + Sum RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP_NAL рΗ **Des Container Preservation** P-Lot Size Lot Ship. Cont. Client-Provided - TM 40 ml 10% HNO3 (BAL) 2127026 <2 Cooler #2 na 2112095 Lab ID: 2112095-30 Report Matrix: WS Collected: 12/02/2021 Sample: Sample Type: Sample + Sum Received: 12/09/2021 RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP **Des Container Preservation** P-Lot Size Lot pH Ship. Cont. Cooler #2 -Cent Tube 15mL Se-Sp 15 mL na none na na 2112095 В XTRA_VOL 15 mL na none na na Cooler #2 -2112095 С XTRA_VOL 125ml Cooler #2 na none na na 2112095 Lab ID: 2112095-31 Report Matrix: WS Collected: 11/30/2021 Sample: Sample Type: Sample + Sum Received: 12/09/2021 RG_FBLANK_WS_LAEMP_LCO_2021-12_NP_NAL Container Size Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 40 mL 10% HNO3 (BAL) <2 na 2127026 Cooler #2 -2112095 Lab ID: 2112095-32 Collected: 11/30/2021 Report Matrix: WS Sample: Sample Type: Sample + Sum Received: 12/09/2021 RG FBLANK WS LAEMP LCO 2021-12 NP NAL рΗ **Des Container Preservation** P-Lot Ship. Cont. Size Lot Client-Provided - TM 40 mL 10% HNO3 (BAL) 2127026 <2 Cooler #2 na

Project ID: TRL-VC1701 **PM**: Jeremy Maute

BAL Final Report 2112095
Client PM: Cybele Heddle
Client Project: REP

Sample Containers

Lab ID: 2112095-33 Report Matrix: WS Collected: 11/30/2021 Sample: Received: 12/09/2021 Sample Type: Sample + Sum RG_FBLANK_WS_LAEMP_LCO_2021-12_NP **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 15 mL Cooler #2 -Cent Tube 15mL Se-Sp na none na na 2112095 В XTRA_VOL 15 mL Cooler #2 na none na na 2112095 С XTRA_VOL 125ml Cooler #2 none na na na 2112095

Shipping Containers

Cooler #2 - 2112095

Received: December 9, 2021 8:38

Tracking No: PAPS#RWHV88666 via Courier

Coolant Type: Ice Temperature: 0.6 °C Description: Large Cooler Damaged in transit? No Returned to client? No Comments: IR# 31

Custody seals present? No Custody seals intact? No COC present? Yes co**Teck**

Conf Conf	COC ID: LCO LAEMP Dec 2021						TURNA	ROUNI	D TI	ME:						BAL Fin	al Rep	ort 211	2095
PROJECT/CLIENT INFO								LABORATORY										-	
Facility Name				Lab Name Brooks Applied Labs							e del	h all-ord	Excel	PDF	EDD				
Project Manager GuinGood Cybele, Heddle							Lab (-	Wozniak				Email 1:	CAGE!	Headlest ech	x	x	x
Email caltered teck.com Cybele. Heddle @ feck.					5					ben@brooksapplied.com			_	Email 2:	teckcoal@equisonli	ne.com			x
Address 421 Pine Avenue								Address 18804 North Creek I			ireek Par	Parkway		Email 3:	Jessica.Ritz@teck	Except the second	X	A.	Α.
					Province BC			City	Botl	hell		Province W		Email 4: Email 5:	tyler.mehler@mi	nnow.ca	X	AC.	x:
City Postal Code		Sparwood V0B 2G0			Country Cana	ada	Post	al Code	-			Country US		Dillati J.					1
Phone Number	250-425-8202	702200		journey		Phone Number						VPO 0748540							
		SAMPLE DETAILS		7 19			ANALYSIS REQUESTE						ESTED	D Plitered - F: Fleld, L: Lab, FL: Fleld & Lab, N: Note					
						10.1			# HNO3 HNO3									E 55	
									2	HNUS	HNOS				H JEY II				
							1		RV.							100			
									RESE	P	F/P	P.							1000
				(S)		1 6 1			Par I										
				Yes/						1	1								
				Hazardous Material (Yes/No)							9	8							
				ateri					YSTS	a	Dissolved Selenium	Selenium Speciation							
				S.M.					ANAL	i i	Sele	Spec							
				nop						Total Selenium	ved	a							
			Field	azar		Time	G=Grab	# Of		tal	ssol	leni						1	
Sample ID G_U24_W5_LAEMP_LCO_2021-12_NP_NAL	Sa	ample Location	Matrix		Date	(24hr)	C=Comp	Cont.				»	-	-			+	-	-
G_LI24_WS_LAEMP_LCO_2021-12_NP		RG_LI24	WS		2021/11/30	11.12	G	2		X	Х		-	_				1	
G_SLINE_WS_LAEMP_LCO_2021-12_NP_NAL		RG_LI24	WS		2021/11/30		G	1				X	-					+	
3_SLINE_WS_LAEMP_LCO_2021-12_NP		RG_SLINE	WS	No	2021/11/29	11100	G	2		X	X						-	+	
G_LISP24_WS_LAEMP_LCO_2021-12_NP_NAL		RG_SLINE	WS	No	2021/10/29	11:00						X	-	-		-	-	-	4-
		RG_LISP24	WS	No	2021/11/30	14:30	G	2		X	X		-	_		_	-	+	-
G_USP24_WS_IAEMP_UCO_2021-12_NP		RG_LISP24	WS	No	2021/11/30		G	1				X					-		_
G_ULC3_W5_LAEMP_LCO_2021-12_NP_NAL	ACTUAL S	RG_LILC3	WS	No	2021/12/01	12:45	G	2		X	X								
G_LILC3_WS_LAEMP_LCO_2023-12_NP '		RG_LILC3	WS	No	2021/12/01	12:45	G	1				X							
G_LCUT_WS_LAEMP_LCD_2021-12_NP_NAL		RG_LCUT	WS	No	2021/12/01	11:00	G	2		x	X								
IG_LCUT_WS_LAEMP_LCO_2021-32_NP		RG_LCUT	WS	No	2021/12/01	11:00	G	1				x							
G_RIVER_WS_LAEMP_LCO_2021-12_NP_NAL	uel, oil	RG_RIVER	ws	No	2021/11/30	14:00	G	2		х	X								
RG_RIVER_WS_LAEMP_LCO_2021-12_NP	KAY ET DE N	RG_RIVER	WS	No	2021/11/30	14:00	G	1				x							
RG_LI8_WS_LAEMP_LCO_2021-12_NP_NAL		RG_LI8	ws	No	2021/12/02	2 10:00	G	2		х	х								
RG_LI8_WS_LAEMP_LCO_2021-12_NP		RG_LI8	ws	No	2021/12/0			1				x							
RG_FOZ3_WS_LAEMP_LCO_2021-12_NP_NAL		RG_FO23	WS	No	2021/12/01			2	-111	х	х								
RG_F023_W5_LAEMP_LCO_2021-07_NP		RG_FO23	ws	No	2021/12/0		G	1				X							
RG_FRUL_WS_LAEMP_LCO_2021-12_NP_NAL		RG_FRUL	ws	No	2021/11/29		G	2		x	х								
RG_FRUL_WS_LAEMP_LCO_2021-12_NP		RG_FRUL	ws	No	and Indian		+	1				X							
RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP_NAL	THE PARTY	RG_LIDCOM	WS		2001/12/0	1 0 1	- was	2	100	x	X								
RG_LIDCOM_WS_LAEMP_LCO_2021-12_NP	Ti b wal a di	RG_LIDCOM	ws		2021/12/0			1				x							
RG_MAL_WS_LAEMP_LCO_2021-12_NP_NAL		RG_MDSLPSLANK	ws	No	n 1 10			2		X	X								
RG_MM_WS_LAEMP_LCO_2021-12_NP		RG_LIDSL? RLADL	ws	No	1.6			1	H			X							
ADDITIONAL C	OMMENTS/SPECIA	AL INSTRUCTIONS		NO	RELINQUISE				D	ATE/TIM	E	LAC	CEPTE	BY/AFFIL	IATION		250		
Line C	reek LAMEP - VP	O748540.			Rick Smit/Lotic Enviro			onmental			2021/12/02/12:00				M	12/	9/21	8	38
Samples for total selenium have been preserved in the field. Dissolved selenium have been filtered and preserved. Speciation samples have been filtered and frozen.											4		your very				1/1		
preserveu. Speciat	ion samples have be	on mercu anu Huzen.																	
NB OF BO	<u>ក្រាន់វិទ្ធិមានវាគារ</u>																		
Regular (default) x Priority (2-3 business days) - 50% surcharge					Sampler's Name			R			Rick Smit			ile#		403-586-3	241		
<u> </u>	P	nomy (2-5 business days) - 50%	o surcnarge	1			1					1							

STRAIGHT BILL OF LADING NOT NEGOTIABLE

No. 88606

Sparwood, BC Terrace, BC Red Deer, AB

Vancouver, BC Calgary, AB Montreal, QC

Prince George, BC Edmonton, AB Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT

Tumbler Ridge, BC Hinton, AB Gillette, WY

INVOICE TO		· ·	9.9	rt`	We.	DATE DOC SIGN
BILL OF LADING)		,,	PURCHASE ORDER N	IUMBER	
SHIPPER (FROM	Teck Carl	West Line	CIENT	CONSIGNEE (TO)	Brooks 1	Spried Lats.
STREET	lo Water	Treatment	Tocility	STREET	504 N.C	lieck Partury
CITY/PROVINCE	Sxiiux	POST	AL CODE	CITY/PROVINGS	diell u	A POSTAL CODE
SPECIAL INSTRU	CTIONS	WHI.		•		FREIGHT CHARGES SHIPPER TO CHECK
PACKAGES	p# 11	DESCRIPTION OF ARTICLES A	D SPECIAL MARKS		WEIGHT (Subject to Correct)	1 - 4
3	Conteis W	Vator Tr	Mores	34	155 lbs	If not Indicated, shipping will automatically move to
53					1	FEE
				***		WAITING
			11	B		XPU
		Aby		s * 1		
		UFF	A. eng		1 Signary	CHARGES
'9	**				*	FSC
UNIT#	1,76		DECLARED VALU	ATION: Maximum		ùs
**		$\eta = -5$	liability of carrier is \$2 kilogram) unless dec otherwise.	2.00 per lb. (\$4,41 per lared valuation states	\$ -	SUB TOTAL
DRIVER'S SIGNAT	TURE PICK UP BY	PICK UP TIME	DRIVER'S SIGNATUL	RE- DELIVERY BY	FINISH TIME	
		No.	munt de	acks.	w	GST
NOTICE OF CLAME: (a) No respect of such lose, dames (b) The final statement	carrier is liable for loss, damage or delay of an e or delay is given in writing to the originating of the claim must be iffied within ign on the date specified from the consignor aginy, which the carrier agrees to con- citionarier of at or any of the goods over all or in landing, in proper at the claim of issuing, which in the carrier is seen to the consideration of the date of the carrier of the consideration of or the goods listed in the Bit of Leding is gover of the goods listed in the Bit of Leding is gover.	y goods under the Bill of Lading Inless notice arrier or the delivering carrier with party (60) nine (9) months from the date of	these or setting out particulars of the days after the delivery of the goods ampment together with a co	origin, destination and date of shipme on the case of failure to make deliver py of the paid freight bill	ent of the goods and the estimated am y within note (9) months from the date	ount claimed in of shipment. TOTAL \$
destined as indicated it is mutually agreed, as to e all the conditions standard the date of issuing, w	painw, which the carrier agrees to conscious, which the carrier agrees to conscious and a second section of the goods over all or it of the date of Issuing, which are hereby agreed by the constitution of th	erry and to deliver to the consigned erry portion of the house to destination, and a ich are hersto agreed by the consignor and a ignor and accepted for himself and	at the said destination, sub- s to each party of any time interested coapled for himself and his assigns. I his assigns.	ject to the rates and classific in all or any of the goods, that every s writted or written, including conditions i	ation in effect on the date of service to be performed hereunder state set aside by the standard Bill of Lading	shipment. I be subject to in power at IF AT OWNER'S RISK, WRITE ORD HERE.
SHIPPER PRINT	of the goods listed in the Bill of Ceding is gove	effect by regulation in force in the formadiction of	CONSIGNEE PRINT		assert conditions.	DATE 12-9-21
SHIPPER	4		CONSIGNEE SIGN	15 C		TIME 31/
WHIT	TE: Office YELLOW: Carri	er PINK; Consignee	GOLDENROAD: Shipp	oer GST #8	64540398RT0001	NUMBER OF PIECES RECEIVED
AMISOS PRINTING					3 4	The second secon

Cooler ID: Cooler ID:	7	er. (OC (Y/N)	Te	mperatu	re: 0.6		-	IR: 3	1
Coolant Type: Ice	Blue Ice	Ambie	nt u		90 °		ng cong district	-	material in the	100 to 10
Notes:	44		, r	- " AL NO		-	. "		:	
Sampling Locations:	SeSMP		"B6		LC	•			*	
Sample Types:	40nl	SP=	T/D 40mL	SP . 120nl	J/D bont	SP 60ml	T/D	SP	T/D	SP
Container Types:	10	60mc	120ml	,	, , , ,		_	t.		
Opened By:		D	ate: 12/	9/21						

Effective 7/29/20

LVL

vision 004

BENTHIC COMMUNITY

Cordillera Methods and QC Report 21-36

Methods and QC Report 2021

Project ID: LCO LAEMP (21-36)

Client: Minnow Environmental

P: 250.494.7553

F: 250.494.7562

Prepared by:

Cordillera Consulting Inc. Summerland, BC © 2021

Table of Contents

Sample Reception	3
Sample Sorting	4
Sorting Quality Control - Sorting Efficiency	5
Sorting Quality Control - Sub-Sampling QC	6
Taxonomic Effort	9
Taxonomists	9
Taxonomic QC	10
Error Summary	11
Error Rationale	11
References	15
Taxonomic Kevs	15

Sample Reception

On September 29, 2021, Cordillera Consulting received 34 benthic samples from Minnow Environmental. When samples arrived to Cordillera Consulting, exterior packaging was initially inspected for damage or wet spots that would have indicated damage to the interior containers.

Samples were logged into a proprietary software database (INSTAR1) where the clients assigned sample name was recorded along with a Cordillera Consulting (CC) number for cross-reference. Each sample was checked to ensure that all sites and replicates recorded on field sheets or packing lists were delivered intact and with adequate preservative. Any missing, mislabelled or extra samples were reported to the client immediately to confirm the total numbers and correct names on the sample jars. The client representative was notified of the arrival of the shipment and provided a sample inventory once intake was completed.

See table below for sample inventory:

Table 1: Summary of sample information including Cordillera Consulting (CC) number

Sample	CC#	Date	Size	# of Jars
RG_LILC3_BIC_1_2021-09-09	CC221341	9/9/2021	400μΜ	1
RG_LILC3_BIC_2_2021-09-09	CC221342	9/9/2021	400μΜ	1
RG_LILC3_BIC_3_2021-09-09	CC221343	9/9/2021	400μΜ	2
RG_FRUL_BIC_1_2021-09-12	CC221344	9/12/2021	400μΜ	1
RG_FRUL_BIC_2_2021-09-12	CC221345	9/12/2021	400μΜ	1
RG_FRUL_BIC_3_2021-09-12	CC221346	9/12/2021	400μΜ	1
RG_LIDSL_BIC_1_2021-09-14	CC221347	9/14/2021	400μΜ	1
RG_LIDSL_BIC_2_2021-09-14	CC221348	9/14/2021	400μΜ	1
RG_LIDSL_BIC_3_2021-09-14	CC221349	9/14/2021	400μΜ	1
RG_LIDSL_BIC_4_2021-09-14	CC221350	9/14/2021	400μΜ	1
RG_LIDSL_BIC_5_2021-09-14	CC221351	9/14/2021	400μΜ	1
RG_LCUT_BIC_1_2021-09-10	CC221352	9/10/2021	400μΜ	1
RG_LCUT_BIC_2_2021-09-10	CC221353	9/10/2021	400μΜ	1
RG_LCUT_BIC_3_2021-09-10	CC221354	9/10/2021	400μΜ	1
RG_SLINE_BIC_1_2021-09-15	CC221355	9/15/2021	400μΜ	1
RG_SLINE_BIC_2_2021-09-15	CC221356	9/15/2021	400μM	1
RG_SLINE_BIC_3_2021-09-15	CC221357	9/15/2021	400μΜ	1
RG_LIDCOM_BIC_1_2021-09-13	CC221358	9/13/2021	400μM	2
RG_LISP24_BIC_1_2021-09-13	CC221359	9/13/2021	400μΜ	1
RG_FO23_BIC_1_2021-09-12	CC221360	9/12/2021	400μΜ	1
RG_FO23_BIC_2_2021-09-12	CC221361	9/12/2021	400μΜ	1
RG_FO23_BIC_3_2021-09-12	CC221362	9/12/2021	400μΜ	1
RG_FO23_BIC_4_2021-09-12	CC221363	9/12/2021	400μΜ	1
RG_FO23_BIC_5_2021-09-12	CC221364	9/12/2021	400μΜ	1
RG_LI8_BIC_1_2021-09-11	CC221365	9/11/2021	400μΜ	1
RG_LI8_BIC_2_2021-09-11	CC221366	9/11/2021	400μΜ	1
RG_LI8_BIC_3_2021-09-11	CC221367	9/11/2021	400μΜ	1

RG_LILC3_BIC_4_2021-09-10	CC221368	9/10/2021	400μΜ	2
RG_LILC3_BIC_5_2021-09-10	CC221369	9/10/2021	400μΜ	2
RG_LI24_BIC_1_2021-09-16	CC221370	9/16/2021	400μΜ	1
RG_LI24_BIC_2_2021-09-16	CC221371	9/16/2021	400μΜ	1
RG_LI24_BIC_3_2021-09-16	CC221372	9/16/2021	400μΜ	2
RG_LI24_BIC_4_2021-09-16	CC221373	9/16/2021	400μΜ	1
RG_LI24_BIC_5_2021-09-16	CC221374	9/16/2021	400μΜ	1

Sample Sorting

- Using a gridded Petri dish, fine forceps and a low power stereo-microscope (Olympus, Nikon, Leica) the sorting technicians removed the invertebrates and sorted them into family/orders.
- The sorting technician kept a running tally of total numbers excluding organisms from Porifera, Nemata, Platyhelminthes, Ostracoda, Copepoda, Cladocera and terrestrial drop-ins such as aphids. These organisms were marked for their presence (given a value of 1) only and left in the sample. They were not included towards the 300-organism subsample count.
- Where specimens are broken or damaged, only heads were counted.
- Subsampling was conducted with the use of a Marchant Box.
- When using the Marchant box, cells were extracted at the same time in the order indicated by a random number table. If the 300th organism was found part way into sorting a cell then the balance of that cell was sorted. If the organism count had not reached 300 by the 50th cell then the entire sample was sorted.
- The total number of cells sorted and the number of organisms removed were recorded manually on a bench sheet and then recorded into INSTAR1
- Organisms were stored in vials containing 80% ethanol and an interior label indicating the site names, date of sampling, site code numbers and portion subsampled. This information was also recorded on the laboratory bench sheet and on INSTAR1.
- The sorted portion of the debris was preserved and labeled separately from the unsorted portion and was tested for sorting efficiency (Sorting Quality Control – Sorting Efficiency). The unsorted portion was also labeled and preserved in separate jars.

Percent sub-sampled and total countable invertebrates pulled from the samples were summarized in the table below.

Table 2: Percent sub-sample and invertebrate count for each sample

Sample	Date	CC#	400 micron fraction	
			% Sampled	# Invertebrates
RG_LILC3_BIC_1_2021-09-09	09-Sep-21	CC221341	5%	625

RG_LILC3_BIC_2_2021-09-09	09-Sep-21	CC221342	5%	411
RG_LILC3_BIC_3_2021-09-09	09-Sep-21	CC221343	5%	936
RG_FRUL_BIC_1_2021-09-12	12-Sep-21	CC221344	5%	411
RG_FRUL_BIC_2_2021-09-12	12-Sep-21	CC221345	5%	307
RG_FRUL_BIC_3_2021-09-12	12-Sep-21	CC221346	10%	492
RG_LIDSL_BIC_1_2021-09-14	14-Sep-21	CC221347	5%	588
RG_LIDSL_BIC_2_2021-09-14	14-Sep-21	CC221348	5%	728
RG_LIDSL_BIC_3_2021-09-14	14-Sep-21	CC221349	5%	515
RG_LIDSL_BIC_4_2021-09-14	14-Sep-21	CC221350	5%	374
RG_LIDSL_BIC_5_2021-09-14	14-Sep-21	CC221351	5%	564
RG_LCUT_BIC_1_2021-09-10	10-Sep-21	CC221352	5%	495
RG_LCUT_BIC_2_2021-09-10	10-Sep-21	CC221353	5%	466
RG_LCUT_BIC_3_2021-09-10	10-Sep-21	CC221354	5%	521
RG_SLINE_BIC_1_2021-09-15	15-Sep-21	CC221355	10%	314
RG_SLINE_BIC_2_2021-09-15	15-Sep-21	CC221356	5%	356
RG_SLINE_BIC_3_2021-09-15	15-Sep-21	CC221357	7%	326
RG_LIDCOM_BIC_1_2021-09-13	13-Sep-21	CC221358	5%	1165
RG_LISP24_BIC_1_2021-09-13	13-Sep-21	CC221359	5%	497
RG_FO23_BIC_1_2021-09-12	12-Sep-21	CC221360	12%	350
RG_FO23_BIC_2_2021-09-12	12-Sep-21	CC221361	5%	409
RG_FO23_BIC_3_2021-09-12	12-Sep-21	CC221362	5%	472
RG_FO23_BIC_4_2021-09-12	12-Sep-21	CC221363	5%	333
RG_FO23_BIC_5_2021-09-12	12-Sep-21	CC221364	5%	402
RG_LI8_BIC_1_2021-09-11	11-Sep-21	CC221365	5%	730
RG_LI8_BIC_2_2021-09-11	11-Sep-21	CC221366	50%	546
RG_LI8_BIC_3_2021-09-11	11-Sep-21	CC221367	5%	489
RG_LILC3_BIC_4_2021-09-10	10-Sep-21	CC221368	5%	1219
RG_LILC3_BIC_5_2021-09-10	10-Sep-21	CC221369	5%	923
RG_LI24_BIC_1_2021-09-16	16-Sep-21	CC221370	5%	444
RG_LI24_BIC_2_2021-09-16	16-Sep-21	CC221371	5%	459
RG_LI24_BIC_3_2021-09-16	16-Sep-21	CC221372	5%	484
RG_LI24_BIC_4_2021-09-16	16-Sep-21	CC221373	6%	332
RG_LI24_BIC_5_2021-09-16	16-Sep-21	CC221374	5%	663

Sorting Quality Control - Sorting Efficiency

As a part of Cordillera's laboratory policy, all projects undergo sorting efficiency checks.

- As sorting progresses, 10% of samples were randomly chosen by senior members of the sorting team for resorting.
- All sorters working on a project had at least 1 sample resorted by another sorter.
- An efficiency of 90 % was expected (95% for CABIN samples).
- If 90/95% efficiency was not met, samples from that sorter were resorted.
- To calculated sorting efficiency the following formula was used:

$\frac{\#OrganismsMissed}{TotalOrganismsFound}*100 = \%OM$

Table 3 Summary of sorting efficiency

			Total from Sample	Percent Efficiency
Site - QC, Sample - QC 1, CC# - CC221343, P	ercent			
sampled = 5%, Sieve size = 400				
Baetidae		9		
Plecoptera		7		
Trichoptera		7		
Oligochaeta		1		
	Total:	24	936	97%
Site - QC, Sample - QC 2, CC# - CC221360, P sampled = 12%, Sieve size = 400	ercent			
Plecoptera		5		
	Total:	5	350	99%
Site - QC, Sample - QC 3, CC# - CC221367, P	orcont			
sampled = 5%, Sieve size = 400	ercent			
sampled = 5%, Sieve size = 400 Plecoptera	ercent	3		

Sorting Quality Control - Sub-Sampling QC

Certain Provincial and Mining projects require additional sorting checks in the form of sub-sampling QC, (Environmental Effects Monitoring (EEM) protocol). This ensured that any fraction of the total sample that was examined was actually an accurate representation of the number of total organisms. Organisms from the additional subsamples were not identified; rather total organism count only was compared.

Sub-Sampling efficiency was measured on 10% of the number of sub-sampled samples in the project. Ex. In a project where 50 of 100 total samples were processed through subsampling using a Marchant box, then 10% of 50; or 5 samples were used for sub sampling efficiency.

Sub-Sampling efficiency was performed by fractioning the entire sample into subsample percentages. On each sub-sampled portion, a total organism count was recorded and compared to the rest of the sub-samples. In order to pass, all fractions were required to be within 20% of total organism count.

Example: If 300 organisms are found in 10% of the sample, the sorter will continue to sample in 10% fractions until the entire sample is separated. They will then count the total number of organisms in each of the 10 fractions of 10% and compare the organism count.

When divergence is >20% the sorting manager examines for the source of the problem and takes steps to correct it. With the Marchant box, the problem typically rested with how the box is flipped back to the upright position. For this reason, subsampling was performed by experienced employees only. Another common source of error would be the type of debris in the sample. Samples with algae or heavy with periphyton have a higher incident of failure due to clumping than clear samples.

Table 4 Summary of Sub Sample efficiency

s	Station ID		Organisms in Subsample									Sorter			Precision		Acci	uracy							
66#	Campula Nama										Organisms in subsample						Actual Total	Percent Range		N.A.					
CC#	Sample Name	1 2 3 4 5 6 7 8 9 10								Ву	Time		Percent Kange		Min	Max									
221355	RG_SLINE_BIC-1	270	267	280	282	313	253	279	304	252	269								HY	265	2769	0.36	19.49	0.76	13.04
221344	RG_FRUL_BIC-1	352	347	337	351	346													MP	230	1733	0.28	4.26	0.12	2.77
221346	RG_FRUL_BIC-3	488	472	444	495	478													MP	270	2377	1.26	10.30	0.55	6.60

Taxonomic Effort

The next procedure was the identification to genus-species level where possible of all the organisms in the sample.

- Identifications were made at the genus/species level for all insect organisms found including Chironomidae (Based on CABIN protocol).
- Non-insect organisms (except those not included in CABIN count) were identified to genus/species where possible and to a minimum of family level with intact and mature specimens.
- The Standard Taxonomic Effort lists compiled by the CABIN manual¹, SAFIT², and PNAMP³ were used as a guide line for what level of identification to achieve where the condition and maturity of the organism enabled.
- Organisms from the same families/order were kept in separate vials with 80% ethanol and an interior label of printed laser paper.
- Chironomidae was identified to genus/species level where possible and was aided by slide mounts. CMC-10 was used to clear and mount the slide.
- Oligochaetes was identified to family/genus level with the aid of slide mounts. CMC-10 was used to clear and mount the slide.
- Other Annelida (leeches, polychaetes) were identified to the family/genus/species level with undamaged, mature specimens.
- Mollusca was identified to family and genus/species where possible
- Decapoda, Amphipoda and Isopoda were identified at family/genus/species level where possible.
- Bryozoans and Nemata remained at the phylum level
- Hydrachnidae and Cnidaria were identified at the family/genus level where possible.
- When requested, reference collections were made containing at least one individual from each taxa listed. Organisms represented will have been identified to the lowest practical level.
- Reference collection specimens were stored in 55 mm glass vials with screw-cap lids with polyseal inserts (museum quality). They were labeled with taxa name, site code, date identified and taxonomist name. The same information was applied to labels on the slide mounts.

Taxonomists

The taxonomists for this project were certified by the Society of Freshwater Science (SFS) Taxonomic Certification Program at level 2 which is the required certification for CABIN projects:

Scott Finlayson: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae (East/West); Group 4 Oligochaeta

Adam Bliss: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae

Rita Avery: Group 1 General Arthropods (East/West); Group 2 EPT (East/West)

Taxonomic QC

Taxonomic QC was performed in house by someone other than the original taxonomist.

- Quality control protocol involved complete, blind re-identification and reenumeration of at least 10% of samples by a second SFS-certified taxonomist.
- Samples for taxonomic quality control were randomly selected and quality control procedures were conducted as the project progresses through the laboratories.
- The second (QC) taxonomist will calculate and record four types of errors:
 - 1. Misidentification error
 - 2. Enumeration error
 - 3. Questionable taxonomic resolution error
 - 4. Insufficient taxonomic resolution error

The QC coordinator then calculates the following estimates of taxonomic precision.

1. The percent total identification error rate is calculated as:

$$\frac{Sum\ of\ incorrect\ identifications}{total\ organisms\ counted\ in\ audit}*(100)$$

The average total identification error rate of audited samples did not exceed 5%. All samples that exceed a 5% error rate were re-evaluated to determine whether repeated errors or patterns in error contributed.

2. The percent difference in enumeration (PDE) to quantify the consistency of specimen counts.

$$PDE = \frac{|n_1 - n_2|}{n_1 + n_2} x100$$

3. The percent taxonomic disagreement (PTD) to quantify the shared precision between two sets of identifications.

$$PTD = \left(1 - \left[\frac{a}{N}\right]\right) x100$$

4. Bray Curtis dissimilarity Index to quantify the differences in identifications.

$$BC_{ij} = 1 - \frac{2C_{ij}}{S_i + S_i}$$

Error Summary

All samples report errors within the acceptable limits for CABIN Laboratory methods (less than 5% error).

Table 5 Summary of taxonomic error following QC

Site	Taxa Identified	% Error	PDE	PTD	Bray - Curtis Dissimilarity index
Site - 2021, Sample - RG_LILC3_BIC_2_2021-09-09, CC# - CC221342, Percent sampled = 5%, Sieve size = 400	410	0.00	0.12180268	0.72992701	0.00609013
Site - 2021, Sample - RG_LIDSL_BIC_3_2021-09-14, CC# - CC221349, Percent sampled = 5%, Sieve size = 400	517	0.00	0.19379845	0.96711799	0.00775194
Site - 2021, Sample - RG_SLINE_BIC_3_2021-09-15, CC# - CC221357, Percent sampled = 7%, Sieve size = 400	327	0.31	0.15313936	0.6116208	0.00459418

There will always be disagreements between taxonomists regarding the degree of taxonomic resolution in immature specimens and when laboratories make use of different keys for certain groups (Mollusks is an especially disputed group). It is always possible that some taxa found by the original taxonomist were overlooked in QC.

All of the Taxonomic QC samples that were observed passed testing according to the CABIN misidentification protocols. See the tables below for results from taxonomic QC audit.

Error Rationale

Site - 2021, Sample - RG_LILC3_BIC_2_2021-09- 09, CC# - CC221342, Percent sampled = 5%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Aturus	1	1						
Baetidae	3	4	No			Χ		
Baetis	3	2	No			Χ		
Baetis rhodani group	14	14						
Chironomidae	52	52						

Diamesa	7	7						
Diplocladius cultriger	1	1						
Empididae	1	1						
Ephemerellidae	1	1						
Eukiefferiella	29	29						
Feltria	7	7						
Glossosomatidae	1	1						
Heptageniidae	20	19	No			Χ		
Hydrobaenus	8	8						
Hydropsychidae	6	6						
Kogotus	4	4						
Lebertia	11	11						
Micropsectra	8	8						
Orthocladius complex	138	138						
Pagastia	22	22						
Pericoma/Telmatoscopus	1	1						
Rheocricotopus	27	27						
Rhyacophila	1	1						
Simulium	1	1						
Sperchon	22	21	No			Χ		
Sweltsa	1	1						
Taeniopterygidae	1	1						
Trichoptera	1	1						
Tvetenia	13	14	No			Χ		
Zapada	1	1						
Zapada cinctipes	1	1						
Zapada columbiana	2	2						
Zapada oregonensis group	2	2						
Total:	411	410						
					0	5	0	
% Total Misidentification Rate	misidentifications	x100	0.00	Pass				
=	total number	=						
Site - 2021, Sample - RG_LIDSL_BIC_3_2021-09- 14, CC# - CC221349, Percent sampled = 5%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Ameletus	4	4						

Baetis	21	24	No	Х	
Baetis rhodani group	28	25	No	Х	
Brachycentridae	1	1			
Chironomidae	18	18			
Chloroperlidae	4	4			
Dicranota	1	1			
Drunella doddsii	4	4			
Epeorus	3	3			
Ephemerella excrucians					
complex	1	1			
Ephemerellidae	5	5			
Eukiefferiella	4	4			
Glossosomatidae	1	1			
Heptageniidae	218	219	No	Х	
Hydropsychidae	21	21			
Kogotus	2	2			
Lebertia	1	1			
Megarcys	6	6			
Orthocladius complex	26	26			
Pagastia	12	12			
Parapsyche	3	3			
Pericoma/Telmatoscopus	7	7			
Rheocricotopus	4	4			
Rhyacophila	2	2			
Rhyacophila betteni group	3	3			
Rhyacophila					
brunnea/vemna group	2	2			
Rhyacophila hyalinata	_	_			
group	5	5			
Rhyacophila vofixa group	1	1			
Simuliidae	4	4			
Simulium	1	1			
Suwallia	1	1		_	
Sweltsa	7	7			
Taeniopterygidae	54	55	No	X	
Trichoptera	2	2			
Zapada	18	18			
Zapada columbiana	9	9			
Zapada oregonensis group	11	11			
Total:	515	517			

					0	4	0	
% Total Misidentification Rate	misidentifications	x100	0.00	Pass				
=	total number	=						
Site - 2021, Sample - RG_SLINE_BIC_3_2021-09- 15, CC# - CC221357, Percent sampled = 7%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Ameletus	3	3						
Atractides	1	1						
Baetis bicaudatus	1	1						
Baetis rhodani group	2	2						
Chironomidae	1	1						
Chloroperlidae	5	5						
Diamesa	1	1						
Drunella doddsii	7	7						
Empididae	1	1						
Epeorus	9	9						
Ephemerellidae	41	40	No			Х		
Ephemeroptera	1	1						
Eukiefferiella	1	1						
Glossosomatidae	1	1						
Heptageniidae	123	124	No	1		Х		
Hydropsychidae	9	9						
Lumbriculidae	1	1						
Megarcys	2	2						
Nemouridae	2	2						
Neothremma	1	1						
Oreogeton	1	1						
Orthocladius complex	3	3						
Parorthocladius	1	1						
Pericoma/Telmatoscopus	1	1						
Perlodidae	5	5						
Plumiperla	1	1						
Rheocricotopus	6	6						
Rhithrogena	11	11						
Rhyacophila	6	6						
Rhyacophila								
brunnea/vemna group	5	5						

Rhyacophila hyalinata								
group	3	3						
Rhyacophila vofixa group	3	3						
Suwallia	1	1						
Sweltsa	8	8						
Taeniopterygidae	17	18	No			Χ		
Trichoptera	1	1						
Tvetenia	5	5						
Yoraperla	1	1						
Zapada columbiana	32	32						
Zapada oregonensis group	2	2						
Total:	326	327						
		_			0	3	0	
% Total Misidentification Rate	misidentifications	x100	0.31	Pass				
=	total number	П						

References

Taxonomic Keys

Below is a reference list of taxonomic keys utilized by taxonomists at Cordillera Consulting. Cordillera taxonomists routinely seek out new literature to ensure the most accurate identification keys are being utilized. This is not reflective of the exhaustive list of resources that we use for identification. A more complete list of taxonomic resources can be found at Southwest Association of Freshwater Invertebrate Taxonomists. (2015).

http://www.safit.org/Docs/SAFIT_Taxonomic_Literature_Database_1_March_2011.enl

Brook, Arthur R. and Leonard A. Kelton. 1967. Aquatic and semiaquatic Heteroptera of Alberta, Saskatchewan and Manitoba (Hemiptera) Memoirs of the Entomological Society of Canada. No. 51.

Brown HP & White DS (1978) Notes on Seperation and Identification of North American Riffle Beetles (Coleoptera: Dryopidea: Elmidae). Entomological News 89 (1&2): 1-13

Clifford, Hugh F. 1991. Aquatic Invertebrates of Alberta. University of Alberta Press Edmonton, Alberta.

Epler, John. 2001 The Larval Chironomids of North and South Carolina. http://home.earthlink.net/~johnepler/

¹ McDermott, H., Paull, T., Strachan, S. (May 2014). Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples, Environment Canada. ISBN: 978-1-100-25417-3

² Southwest Association of Freshwater Invertebrate Taxonomists. (2015). www.safit.org

³ Pacific Northwest Aquatic Monitoring Partnership (Accessed 2015). www.pnamp.org

Epler, John. Identification Manual for the Water Beetles of Florida. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Aquatic and Semi-aquatic Heteroptera of Florida. http://home.earthlink.net/~johnepler/

Trond Andersen, Peter S. Cranston & John H. Epler (Eds) (2013) Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1. Larvae. *Insect Systematics and Evolution Supplements* 66: 1-571.

Jacobus, Luke and Pat Randolph. 2005. Northwest Ephemeroptera Nymphs. Manual from Northwest Biological Assessment Working Group. Moscow Idaho 2005. Not Published.

Jacobus LM, McCafferty WP (2004) Revisionary Contributions to the Genus Drunella (Ephemeroptera : Ephemerellidae). Journal of the New York Entomological Society 112: 127-147

Jacobus LM, McCafferty WP (2003) Revisionary Contributions to North American Ephemerella and Serratella (Ephemeroptera: Ephemerellidae). Journal of the New York Entomological Society 111 (4): 174-193.

Kathman, R.D., R.O. Brinkhurst. 1999. Guide to the Freshwater Oligochaetes of North America. Aquatic Resources Center, College Grove, Tennessee.

Larson, D.J., Y. Alarie, R.E. Roughly. 2005. Predaceous Diving Beetles (Coleoptera: Dytiscidae) of the Neararctic Region. NRC-CNRC Research Press. Ottawa.

Merritt, R.W., K.W. Cummins, M. B. Berg. (eds.). 2007. An introduction to the aquatic insects of North America, 4th. Kendall/Hunt, Dubuque, IA

Morihara DK, McCafferty WP (1979) The Baetis Larvae of North American (Ephemeroptera: Baetidae). Transactions of the American Entomological Society 105: 139-221.

Needham, James, M. May, M. Westfall Jr. 2000. Dragonflies of North America. Scientific Publishers. Gainsville FL.

Prescott David, R.C.and Medea M. Curteanu. 2004. Survey of Aquatic Gastropods of Alberta. Species at Risk Report No. 104. ISSN: 1496-7146 (Online Edition)

Needham, K. 1996. An Identification Guide to the Nymphal Mayflies of British Columbia. Publication #046 Resource Inventory Committee, Government of British Columbia.

Oliver, Donald R. and Mary E. Roussel. 1983. The Insects and Arachnids of Canada Part 11. The Genera of larval midges of Canada. Biosystematics Research Institute. Ottawa, Ontario. Research Branch, Agriculture Canada. Publication 1746.

Proctor, H. The 'Top 18' Water Mite Families in Alberta. Zoology 351. University of Alberta, Edmonton, Alberta.

Rogers, D.C. and M. Hill, 2008. Key to the Freshwater Malacostraca (Crustacea) of the mid-Atlantic Region. EPA-230-R-08-017. US Environmental Protection Agency, Office of Environmental Information, Washington, DC.

Stewart, Kenneth W. and Bill Stark. 2002. The Nymphs of North American Stonefly Genera (Plecoptera). The Caddis Press. Columbus Ohio.

Stewart, Kenneth W. and Mark W. Oswood. 2006 The Stoneflies (Plecoptera) of Alaska and Western Canada. The Caddis Press.

Stonedahl, Gary and John D. Lattin. 1986. The Corixidae of Oregon and Washington (Hemiptera: Heteroptera). Technical Bulletin 150. Oregon State University, Corvalis Oregon.

Thorpe, J. H. and A. P. Covich [Eds.] 1991. Ecology and classification of North American freshwater invertebrates. Academic Press, San Diego.

Tinerella, Paul P. and Ralph W. Gunderson.2005. The Waterboatmen (Insecta: Heteroptera: Corixidae) of Minisota. Publication No.23 Dept. Of Entomology, North Dakota State University, Fargo, North Dakota, USA.

Weiderholm, Torgny (Ed.) 1983. The larvae of Chironomidae (Diptera) of the Holartic region. Entomologica Scaninavica. Supplement No. 19.

Westfall, Minter J. Jr. and May, Michael L. 1996. Damselflies of North America. Scientific Publishers, Gainesville, FL.

Wiggins, Glenn B. 1998. Larvae of the North American Caddisfly Genera (Tricoptera) 2nd ed. University of Toronto Press. Toronto Ontario.

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
Site.									
0	RG_LILC3_BIC	RG_LILC3_BIC	RG_LILC3_BIC		RG_FRUL_BIC_		RG_LIDSL_BIC	RG_LIDSL_BIC	RG_LIDSL_BIC
Sample:	_1_2021-09-09	_2_2021-09-09		1_2021-09-12	2_2021-09-12	3_2021-09-12	_1_2021-09-14	_2_2021-09-14	_3_2021-09-14
Sample Collection Date:	09-Sep-21	09-Sep-21	09-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	14-Sep-21	14-Sep-21	14-Sep-21
CC#:	CC221341	CC221342	CC221343	CC221344	CC221345	CC221346	CC221347	CC221348	CC221349
Phylum: Arthropoda	0	0	0	0	0	0	0	0	0
Order: Collembola	0	0	0	0	0	0	0	0	0
Subphylum: Hexapoda	0	0	0	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0	0	0	0
Order: Ephemeroptera	0	0	0	0	0	0	0	0	0
Family: Ameletidae	0	0	0	0	0	0	0	0	0
<u>Ameletus</u>	0	0	0	0	20	0	140	80	80
Family: Baetidae	0	60	100	40	0	10	60	100	0
<u>Acentrella</u>	0	0	0	0	0	0	0	0	0
<u>Baetis</u>	220	60	420	320	560	500	200	620	420
Baetis rhodani group	460	280	1,440	420	620	470	580	600	560
Baetis bicaudatus	0	0	0	0	0	0	0	0	0
<u>Diphetor hageni</u>	0	0	0	0	0	0	0	0	0
Family: Ephemerellidae	20	20	60	0	20	10	300	360	100
<u>Drunella</u>	0	0	0	0	0	0	20	0	0
<u>Drunella doddsii</u>	60	0	0	140	20	60	100	80	80
Ephemerella excrucians complex	0	0	0	0	0	0	0	20	20
Family: Heptageniidae	380	400	360	1,460	1,500	630	3,240	4,900	4,360
<u>Cinygmula</u>	0	0	0	0	0	0	0	0	0
<u>Epeorus</u>	0	0	0	0	120	0	60	100	60
<u>Rhithrogena</u>	0	0	0	180	80	120	0	0	0
Order: Plecoptera	0	0	40	60	0	10	0	20	0
Family: Capniidae	0	0	0	80	20	30	60	0	0
<u>Mesocapnia</u>	0	0	0	0	0	0	0	0	0
Family: Chloroperlidae	0	0	0	380	120	40	20	60	80
<u>Haploperla</u>	0	0	0	0	0	0	0	0	0
<u>Plumiperla</u>	0	0	0	0	0	0	0	0	0
<u>Suwallia</u>	0	0	0	0	0	0	0	0	20
<u>Sweltsa</u>	0	20	100	1,800	80	90	80	80	140
Family: Leuctridae	0	0	0	100	0	0	0	0	0
<u>Paraleuctra</u>	0	0	0	20	0	0	0	0	0
Family: Nemouridae	0	0	0	0	0	10	0	0	0
<u>Malenka</u>	0	0	20	0	0	0	0	0	0
<u>Visoka cataractae</u>	0	0	0	0	0	0	0	0	0

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
Site:									
	RG_LILC3_BIC	RG_LILC3_BIC	RG_LILC3_BIC	RG_FRUL_BIC_			RG_LIDSL_BIC	RG_LIDSL_BIC	RG_LIDSL_BIC
Sample:	_1_2021-09-09	_2_2021-09-09	_3_2021-09-09	1_2021-09-12	2_2021-09-12	3_2021-09-12	_1_2021-09-14	_2_2021-09-14	_3_2021-09-14
Sample Collection Date:	09-Sep-21	09-Sep-21	09-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	14-Sep-21	14-Sep-21	14-Sep-21
CC#:	CC221341	CC221342	CC221343	CC221344	CC221345	CC221346	CC221347	CC221348	CC221349
<u>Zapada</u>	140	20	300	340	20	30	440	520	360
Zapada oregonensis group	160	40	580	0	0	0	240	220	220
Zapada cinctipes	0	20	40	560	600	620	100	120	0
Zapada columbiana	100	40	60	0	20	0	140	180	180
Family: Peltoperlidae	0	0	0	0	0	0	0	0	0
<u>Yoraperla</u>	0	0	0	0	0	0	0	0	0
Family: Perlidae	0	0	0	0	0	10	0	0	0
<u>Hesperoperla</u>	0	0	0	200	180	30	0	0	0
Family: Perlodidae	60	0	160	20	20	40	80	0	0
<u>Isoperla</u>	0	0	0	0	0	0	0	0	0
<u>Kogotus</u>	140	80	200	0	20	0	0	40	40
<u>Megarcys</u>	40	0	40	20	0	0	160	40	120
<u>Setvena</u>	0	0	0	0	0	0	0	0	0
Family: Taeniopterygidae	40	20	60	1,180	660	570	1,380	2,920	1,080
Order: Trichoptera	0	20	100	0	0	10	440	40	40
Family: Apataniidae	0	0	0	0	0	0	0	0	0
<u>Apatania</u>	0	0	0	0	0	0	0	0	0
Family: Brachycentridae	0	0	0	40	100	20	0	20	20
<u>Brachycentrus</u>	0	0	0	0	0	0	0	0	0
Brachycentrus americanus	0	0	0	0	0	0	0	0	0
<u>Micrasema</u>	0	0	0	0	20	0	0	0	0
Family: Glossosomatidae	0	20	0	0	0	10	20	0	20
<u>Glossosoma</u>	0	0	0	0	0	0	0	0	0
Family: Hydropsychidae	360	120	560	0	0	10	760	580	420
<u>Parapsyche</u>	0	0	0	0	0	0	0	0	60
Parapsyche elsis	80	0	520	0	0	0	0	60	0
Family: Lepidostomatidae	0	0	0	0	0	0	0	0	0
<u>Lepidostoma</u>	0	0	0	0	0	0	0	0	0
Family: Limnephilidae	20	0	0	0	0	0	0	0	0
<u>Ecclisomyia</u>	0	0	0	0	0	0	0	0	0
<u>Homophylax</u>	0	0	0	0	0	0	0	0	0

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

014	0004	0004	0004	0004	0004	0004	0004	0004	0004
Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
	RG_LILC3_BIC	RG_LILC3_BIC	RG_LILC3_BIC	RG_FRUL_BIC_			RG_LIDSL_BIC	RG_LIDSL_BIC	RG_LIDSL_BIC
Sample:	_1_2021-09-09	_2_2021-09-09		1_2021-09-12	2_2021-09-12	3_2021-09-12	_1_2021-09-14		_3_2021-09-14
Sample Collection Date:	09-Sep-21	09-Sep-21	09-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	14-Sep-21	14-Sep-21	14-Sep-21
CC#:	CC221341	CC221342	CC221343	CC221344	CC221345	CC221346	CC221347	CC221348	CC221349
Family: Rhyacophilidae	0	0	0	0	0	0	0	0	0
Rhyacophila	80	20	0	20	20	20	140	80	40
Rhyacophila angelita group	0	0	0	0	0	0	0	0	0
Rhyacophila betteni group	0	0	0	0	0	20	0	0	60
Rhyacophila brunnea/vemna group	0	0	0	0	0	10	0	0	40
Rhyacophila hyalinata group	0	0	40	0	0	0	20	40	100
Rhyacophila vofixa group	0	0	0	0	0	0	0	0	20
Rhyacophila narvae	0	0	0	0	0	0	0	20	0
Rhyacophila verrula group	0	0	20	0	0	0	0	0	0
Family: Thremmatidae	0	0	0	0	0	0	0	0	0
<u>Oligophlebodes</u>	0	0	0	0	0	0	0	0	0
Family: Uenoidae	0	0	0	0	0	0	0	0	0
<u>Neothremma</u>	0	0	0	0	0	0	0	20	0
Order: Diptera	0	0	40	0	0	0	0	0	0
Family: Athericidae	0	0	0	0	0	0	0	0	0
<u>Atherix</u>	0	0	0	0	80	70	0	0	0
Family: Blephariceridae	0	0	0	0	0	0	0	0	0
<u>Philorus</u>	0	0	0	40	0	0	0	0	0
Family: Ceratopogonidae	0	0	0	0	0	0	0	0	0
<u>Mallochohelea</u>	0	0	0	40	0	10	0	0	0
Family: Chironomidae	2,360	1,040	2,160	40	0	60	1,160	340	360
Subfamily: Chironominae	0	0	0	0	0	0	0	0	0
Tribe: Tanytarsini	0	0	0	0	0	0	0	0	0
Constempellina sp. C	0	0	0	0	20	0	0	0	0
<u>Micropsectra</u>	200	160	80	0	0	40	40	0	0
<u>Stempellinella</u>	0	0	0	0	0	0	20	0	0
<u>Tanytarsus</u>	0	0	0	0	0	0	0	0	0
Subfamily: Diamesinae	0	0	0	0	0	0	0	0	0
Tribe: Diamesini	0	0	0	0	0	0	0	0	0
<u>Diamesa</u>	200	140	280	20	0	0	0	0	0
Pagastia Pagastia	640	440	980	0	0	0	180	200	240
Pseudodiamesa	20	0	0	0	0	10	0	0	0
Subfamily: Orthocladiinae	0	0	0	0	0	0	0	0	0
Brillia Congressive	0	0	20 20	0	0	0	0	0 20	0
<u>Corynoneura</u>	0	0	20	0	0	0	0	20	U

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
Site.		2021						2021	
	RG_LILC3_BIC	RG_LILC3_BIC		RG_FRUL_BIC_			RG_LIDSL_BIC	RG_LIDSL_BIC	RG_LIDSL_BIC
Sample:	_1_2021-09-09	_2_2021-09-09		_	_	3_2021-09-12	_1_2021-09-14	_2_2021-09-14	_3_2021-09-14
Sample Collection Date:	09-Sep-21	09-Sep-21	09-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	14-Sep-21	14-Sep-21	14-Sep-21
CC#:	CC221341	CC221342	CC221343	CC221344	CC221345	CC221346	CC221347	CC221348	CC221349
Cricotopus (Nostococladius)	0	0	0	0	0	0	0	0	0
Diplocladius cultriger	0	20	40	0	0	0	0	0	0
<u>Eukiefferiella</u>	960	580	1,040	160	60	50	60	160	80
<u>Hydrobaenus</u>	20	160	180	0	0	0	40	60	0
Orthocladius complex	3,980	2,760	5,440	20	0	0	700	900	520
Orthocladius lignicola	0	0	0	0	0	0	0	0	0
<u>Parametriocnemus</u>	0	0	0	0	0	0	0	0	0
<u>Parorthocladius</u>	0	0	20	0	0	0	0	0	0
<u>Rheocricotopus</u>	600	540	1,520	140	100	20	240	400	80
<u>Thienemanniella</u>	0	0	0	0	0	0	0	0	0
<u>Tvetenia</u>	320	260	760	140	60	60	40	60	0
Subfamily: Tanypodinae	0	0	0	0	0	0	0	0	0
Tribe: Pentaneurini	0	0	0	0	0	0	0	0	0
<u>Thienemannimyia group</u>	0	0	0	20	0	0	0	0	0
Family: Empididae	20	20	0	0	80	0	20	20	0
<u>Neoplasta</u>	0	0	0	0	0	0	0	0	0
<u>Oreogeton</u>	0	0	0	0	0	0	0	0	0
<u>Roederiodes</u>	0	0	0	0	0	40	0	0	0
<u>Trichoclinocera</u>	0	0	0	0	0	0	0	0	0
Family: Muscidae	0	0	0	0	0	0	0	0	0
<u>Limnophora</u>	0	0	20	0	0	0	0	0	0
Family: Pelecorhynchidae	0	0	0	0	0	0	0	0	0
<u>Glutops</u>	0	0	0	0	0	0	0	0	0
Family: Psychodidae	0	0	0	0	0	0	0	0	0
Pericoma/Telmatoscopus	80	20	60	20	400	520	120	120	140
Family: Simuliidae	20	0	0	0	80	170	40	60	80
<u>Prosimulium</u>	0	0	80	0	0	0	0	0	0
<u>Prosimulium/Helodon</u>	40	0	0	0	0	0	40	40	0
<u>Simulium</u>	60	20	0	180	220	400	20	0	20
Family: Tipulidae	0	0	0	0	100	0	0	0	0
<u>Antocha</u>	0	0	0	0	0	0	0	0	0
<u>Cryptolabis</u>	0	0	0	0	0	0	0	0	0
<u>Dicranota</u>	0	0	0	0	0	10	80	120	20

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
	RG LILC3 BIC	RG LILC3 BIC	RG LILC3 BIC	RG FRUL BIC	RG FRUL BIC	RG FRUL BIC	RG_LIDSL_BIC	RG LIDSL BIC	RG LIDSL BIC
Sample:	1 2021-09-09	2 2021-09-09	3 2021-09-09			3 2021-09-12	1 2021-09-14	2 2021-09-14	3 2021-09-14
Sample Collection Date:	09-Sep-21	09-Sep-21	09-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	14-Sep-21	14-Sep-21	14-Sep-21
CC#:	CC221341	CC221342	CC221343	CC221344	CC221345	CC221346	CC221347	CC221348	CC221349
Hexatoma	0	0	0	20	80	10	0	0	0
Subphylum: Chelicerata	0	0	0	0	0	0	0	0	0
Class: Arachnida	0	0	0	0	0	0	0	0	0
Order: Trombidiformes	0	0	0	0	0	0	0	0	0
Family: Aturidae	0	0	0	0	0	0	0	0	0
<u>Aturus</u>	0	20	0	0	0	0	0	0	0
Family: Feltriidae	0	0	0	0	0	0	0	0	0
<u>Feltria</u>	80	140	40	0	0	0	0	0	0
Family: Hygrobatidae	0	0	0	0	0	0	0	0	0
<u>Atractides</u>	0	0	0	0	0	0	0	0	0
Family: Lebertiidae	0	0	0	0	0	0	0	0	0
<u>Lebertia</u>	280	220	200	0	0	40	60	20	20
Family: Sperchontidae	0	0	0	0	0	0	0	0	0
<u>Sperchon</u>	240	440	500	0	0	0	100	120	0
Family: Torrenticolidae	0	0	0	0	0	0	0	0	0
<u>Testudacarus</u>	20	0	0	0	20	20	0	0	0
Suborder: Prostigmata	0	0	0	0	0	0	0	0	0
Family: Stygothrombidiidae	0	0	0	0	0	0	0	0	0
<u>Stygothrombium</u>	0	0	0	0	0	0	0	0	0
Order: Sarcoptiformes	0	0	0	0	0	0	0	0	0
Family: Hydrozetidae	0	0	0	0	0	10	0	0	0
Phylum: Annelida	0	0	0	0	0	0	0	0	0
Subphylum: Clitellata	0	0	0	0	0	0	0	0	0
Class: Oligochaeta	0	0	0	0	0	0	0	0	0
Order: Lumbriculida	0	0	0	0	0	0	0	0	0
Family: Lumbriculidae	0	0	0	0	0	0	0	0	0
<u>Rhynchelmis</u>	0	0	20	0	0	0	0	0	0
Order: Tubificida	0	0	0	0	0	0	0	0	0
Family: Enchytraeidae	0	0	0	0	20	0	0	0	0
<u>Enchytraeus</u>	0	0	0	0	0	0	0	0	0
Family: Naididae	0	0	0	0	0	0	0	0	0
<u>Nais</u>	0	0	0	0	0	0	0	0	0
Totals:	12,500	8,220	18,720	8,220	6,140	4,920	11,740	14,560	10,300

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
5.101	RG LILC3 BIC						-	RG LIDSL BIC	
Sample:	_1_2021-09-09	_2_2021-09-09	_3_2021-09-09	1_2021-09-12	2_2021-09-12	3_2021-09-12	_1_2021-09-14	_2_2021-09-14	_3_2021-09-14
Sample Collection Date:	09-Sep-21	09-Sep-21	09-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	14-Sep-21	14-Sep-21	14-Sep-21
CC#:	CC221341	CC221342	CC221343	CC221344	CC221345	CC221346	CC221347	CC221348	CC221349
Taxa present but not included:									
Phylum: Arthropoda	0	0	0	0	0	0	0	0	0
Subphylum: Crustacea	0	0	0	0	0	0	0	0	0
Class: Ostracoda	20	20	0	0	20	10	20	20	20
Class: Branchiopoda	0	0	0	0	0	0	0	0	0
Order: Cladocera	0	0	0	0	0	0	20	0	0
Phylum: Nemata	20	20	0	20	20	10	0	20	0
	20	0	0		0	10	0	20	0
Phylum: Platyhelminthes	U	0	U	U	0	U	U	U	U
Class: Turbellaria	20	20	0	0	20	10	20	0	20
Totals:	60	60	0	20	60	30	60	40	40

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
	RG LIDSL BIC	RG LIDSI BIC	RG LCUT BIC	RG LCUT BIC	RG_LCUT_BIC	RG SLINE BIC	RG_SLINE_BIC	RG SLINE BIC	RG_LIDCOM_BIC
Sample:			1_2021-09-10	2_2021-09-10	3_2021-09-10	_1_2021-09-15	_2_2021-09-15	3_2021-09-15	
Sample Collection Date:	14-Sep-21	14-Sep-21	10-Sep-21	10-Sep-21	10-Sep-21	15-Sep-21	15-Sep-21	15-Sep-21	13-Sep-21
CC#:	CC221350	CC221351	CC221352	CC221353	CC221354	CC221355	CC221356	CC221357	CC221358
Phylum: Arthropoda	0	0	0	0	0	0	0	0	0
Order: Collembola	0	0	0	0	0	0	0	0	0
Subphylum: Hexapoda	0	0	0	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0	0	0	0
Order: Ephemeroptera	0	0	0	0	0	0	0	14	0
Family: Ameletidae	0	0	0	0	0	0	0	0	0
<u>Ameletus</u>	80	20	0	0	0	50	180	43	80
Family: Baetidae	0	0	0	0	0	0	20	0	40
<u>Acentrella</u>	0	0	60	0	0	0	0	0	0
<u>Baetis</u>	320	360	180	240	400	60	0	0	560
Baetis rhodani group	640	460	360	520	520	70	60	29	2,940
Baetis bicaudatus	0	0	0	0	0	0	20	14	0
<u>Diphetor hageni</u>	0	0	20	0	0	0	0	0	0
Family: Ephemerellidae	120	80	60	60	320	210	860	586	640
<u>Drunella</u>	0	0	0	0	0	0	0	0	0
<u>Drunella doddsii</u>	80	20	0	20	0	130	120	100	660
Ephemerella excrucians complex	0	0	0	0	20	0	0	0	0
Family: Heptageniidae	2,160	3,000	380	200	200	630	1,440	1,757	3,760
<u>Cinygmula</u>	0	0	0	0	0	0	0	0	0
<u>Epeorus</u>	20	80	0	0	0	190	100	129	100
<u>Rhithrogena</u>	0	0	0	0	0	10	20	157	0
Order: Plecoptera	0	0	0	0	0	0	0	0	80
Family: Capniidae	20	0	0	40	20	0	0	0	0
<u>Mesocapnia</u>	0	0	0	0	20	0	0	0	0
Family: Chloroperlidae	20	20	60	0	0	140	60	71	40
<u>Haploperla</u>	0	0	0	0	0	0	0	0	0
<u>Plumiperla</u>	0	0	0	0	0	80	0	14	0
<u>Suwallia</u>	0	0	0	0	0	60	0	14	0
<u>Sweltsa</u>	20	0	40	60	40	40	80	114	40
Family: Leuctridae	0	0	0	0	0	0	0	0	0
<u>Paraleuctra</u>	0	0	0	0	0	20	0	0	20
Family: Nemouridae	0	0	0	0	0	0	20	29	0
<u>Malenka</u>	0	0	0	0	0	0	0	0	0
Visoka cataractae	0	0	0	0	0	10	0	0	0

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
	RG LIDSL BIC	RG LIDSL BIC	RG LCUT BIC	RG LCUT BIC	RG LCUT BIC	RG SLINE BIC	RG SLINE BIC	RG SLINE BIC	RG LIDCOM BIC
Sample:	_4_2021-09-14		1_2021-09-10	2_2021-09-10	3_2021-09-10		_2_2021-09-15		
Sample Collection Date:	14-Sep-21	14-Sep-21	10-Sep-21	10-Sep-21	10-Sep-21	15-Sep-21	15-Sep-21	15-Sep-21	13-Sep-21
CC#:	CC221350	CC221351	CC221352	CC221353	CC221354	CC221355	CC221356	CC221357	CC221358
<u>Zapada</u>	540	100	20	20	20	20	0	0	1,500
Zapada oregonensis group	140	300	100	40	40	20	20	29	580
Zapada cinctipes	100	100	60	80	120	0	0	0	620
Zapada columbiana	80	300	20	0	40	220	1,540	457	400
Family: Peltoperlidae	0	0	0	0	0	0	0	0	0
Yoraperla	0	0	0	0	0	0	0	14	0
Family: Perlidae	0	0	0	0	0	0	0	0	0
<u>Hesperoperla</u>	0	0	0	0	0	0	0	0	0
Family: Perlodidae	0	0	80	0	60	40	340	71	0
<u>Isoperla</u>	0	0	0	0	0	0	20	0	0
<u>Kogotus</u>	80	40	180	100	120	0	0	0	100
<u>Megarcys</u>	0	20	140	100	140	120	220	29	180
<u>Setvena</u>	0	0	0	0	20	0	20	0	0
Family: Taeniopterygidae	900	1,300	120	0	0	400	220	243	2,520
Order: Trichoptera	40	60	20	20	160	40	0	14	1,080
Family: Apataniidae	0	0	0	0	0	0	0	0	0
<u>Apatania</u>	0	0	0	0	0	0	0	0	80
Family: Brachycentridae	0	20	0	0	0	0	0	0	20
<u>Brachycentrus</u>	0	0	0	0	0	0	0	0	0
Brachycentrus americanus	0	0	0	0	0	0	0	0	0
<u>Micrasema</u>	0	0	0	0	0	0	0	0	0
Family: Glossosomatidae	0	20	0	0	0	30	0	14	20
<u>Glossosoma</u>	0	0	0	0	0	0	40	0	0
Family: Hydropsychidae	80	360	300	60	120	120	60	129	540
<u>Parapsyche</u>	40	0	0	0	0	0	0	0	200
Parapsyche elsis	0	80	40	0	80	0	0	0	220
Family: Lepidostomatidae	0	0	0	0	0	0	0	0	0
<u>Lepidostoma</u>	0	0	0	0	0	0	0	0	0
Family: Limnephilidae	20	0	0	40	60	0	0	0	0
Ecclisomyia	0	0	20	180	180	0	0	0	20
<u>Homophylax</u>	0	0	0	0	20	0	0	0	0

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2024
Site:	-	-	-	_		-			2021
		RG_LIDSL_BIC			RG_LCUT_BIC_				RG_LIDCOM_BIC
Sample:	' ' ' '	_5_2021-09-14	_	2_2021-09-10	3_2021-09-10	_1_2021-09-15			
Sample Collection Date:	14-Sep-21	14-Sep-21	10-Sep-21	10-Sep-21	10-Sep-21	15-Sep-21	15-Sep-21	15-Sep-21	13-Sep-21
CC#:	CC221350	CC221351	CC221352	CC221353	CC221354	CC221355	CC221356	CC221357	CC221358
Family: Rhyacophilidae	0	0	0	0	0	0	0	0	0
Rhyacophila	120	1,500	100	20	80	70	200	86	220
Rhyacophila angelita group	0	0	0	0	0	0	0	0	0
Rhyacophila betteni group	60	20	40	20	0	0	0	0	140
Rhyacophila brunnea/vemna group	20	20	0	0	0	40	320	71	40
Rhyacophila hyalinata group	20	140	60	40	60	50	160	43	100
Rhyacophila vofixa group	0	0	0	0	0	0	40	43	20
Rhyacophila narvae	20	0	0	0	0	0	0	0	20
Rhyacophila verrula group	0	0	0	0	0	0	0	0	0
Family: Thremmatidae	0	0	0	0	0	0	0	0	0
<u>Oligophlebodes</u>	0	0	0	0	0	0	0	0	20
Family: Uenoidae	0	0	0	0	0	0	0	0	0
<u>Neothremma</u>	0	0	0	0	0	10	20	14	0
Order: Diptera	0	0	0	0	0	0	0	0	0
Family: Athericidae	0	0	0	0	0	0	0	0	0
<u>Atherix</u>	0	0	0	0	0	0	0	0	0
Family: Blephariceridae	0	0	0	0	0	0	0	0	0
<u>Philorus</u>	0	0	0	0	0	0	0	0	0
Family: Ceratopogonidae	0	0	0	0	0	0	0	0	0
<u>Mallochohelea</u>	0	0	0	0	0	0	0	0	0
Family: Chironomidae	280	400	1,400	1,160	1,260	40	180	14	920
Subfamily: Chironominae	0	0	0	0	0	0	0	0	0
Tribe: Tanytarsini	0	0	0	0	0	0	0	0	0
Constempellina sp. C	0	0	0	0	0	0	0	0	0
<u>Micropsectra</u>	0	0	40	0	40	0	0	0	0
<u>Stempellinella</u>	0	0	0	0	0	0	0	0	0
<u>Tanytarsus</u>	0	0	0	120	0	0	0	0	0
Subfamily: Diamesinae	0	0	0	0	0	0	0	0	0
Tribe: Diamesini	0	0	0	0	0	0	0	0	0
<u>Diamesa</u>	20	100	260	180	340	0	0	14	160
<u>Pagastia</u>	220	60	640	620	720	0	0	0	340
<u>Pseudodiamesa</u>	0	0	0	0	0	0	0	0	0
Subfamily: Orthocladiinae	0	0	0	0	0	0	0	0	0
<u>Brillia</u>	0	0	0	0	0	0	0	0	0
<u>Corynoneura</u>	0	0	0	0	0	0	0	0	0

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
	RG LIDSL BIC	RG LIDSL BIC	RG LCUT BIC	RG LCUT BIC	RG LCUT BIC	RG SLINE BIC	RG SLINE BIC	RG SLINE BIC	RG_LIDCOM_BIC
Sample:	_4_2021-09-14	_5_2021-09-14	1_2021-09-10	2_2021-09-10	3_2021-09-10	_1_2021-09-15	_2_2021-09-15		
Sample Collection Date:	14-Sep-21	14-Sep-21	10-Sep-21	10-Sep-21	10-Sep-21	15-Sep-21	15-Sep-21	15-Sep-21	13-Sep-21
CC#:	CC221350	CC221351	CC221352	CC221353	CC221354	CC221355	CC221356	CC221357	CC221358
Cricotopus (Nostococladius)	0	0	0	0	0	0	0	0	40
Diplocladius cultriger	0	0	0	0	0	0	0	0	0
Eukiefferiella	20	280	520	540	520	10	340	14	560
<u>Hydrobaenus</u>	20	0	20	180	60	0	0	0	140
Orthocladius complex	720	1,540	3,020	3,200	3,560	10	120	43	2,200
Orthocladius lignicola	0	0	0	0	0	0	0	0	0
Parametriocnemus	0	0	0	0	0	0	0	0	0
Parorthocladius	0	0	0	0	0	0	0	14	0
<u>Rheocricotopus</u>	160	140	660	420	100	90	160	86	260
<u>Thienemanniella</u>	0	0	0	20	0	0	0	0	0
<u>Tvetenia</u>	20	0	260	100	80	20	20	71	40
Subfamily: Tanypodinae	0	0	0	0	0	0	0	0	0
Tribe: Pentaneurini	0	0	0	0	0	0	0	0	0
Thienemannimyia group	0	0	0	0	0	0	0	0	0
Family: Empididae	0	0	0	40	0	0	0	14	40
<u>Neoplasta</u>	0	0	0	0	0	0	0	0	20
<u>Oreogeton</u>	0	0	0	0	0	20	20	14	0
<u>Roederiodes</u>	0	0	0	0	0	0	0	0	0
<u>Trichoclinocera</u>	0	0	80	40	0	0	0	0	0
Family: Muscidae	0	0	0	0	0	0	0	0	0
<u>Limnophora</u>	0	0	20	0	40	0	0	0	0
Family: Pelecorhynchidae	0	0	0	0	0	0	0	0	0
<u>Glutops</u>	0	0	0	0	0	10	0	0	0
Family: Psychodidae	0	0	0	0	0	0	0	0	0
Pericoma/Telmatoscopus	60	60	0	0	20	10	0	14	280
Family: Simuliidae	0	20	0	0	20	0	0	0	0
<u>Prosimulium</u>	0	0	0	0	0	0	0	0	0
Prosimulium/Helodon	0	0	0	0	0	0	0	0	0
<u>Simulium</u>	20	120	20	0	60	0	0	0	0
Family: Tipulidae	0	0	0	0	0	0	20	0	20
<u>Antocha</u>	0	0	0	0	0	0	0	0	0
<u>Cryptolabis</u>	0	0	0	0	0	10	0	0	0
<u>Dicranota</u>	0	40	20	0	0	0	20	0	0

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
	RG LIDSI BIC	RG_LIDSL_BIC	RG LCUT BIC	RG LCUT BIC	RG_LCUT_BIC_	RG SLINE BIC	RG_SLINE_BIC	RG SLINE BIC	RG_LIDCOM_BIC
Sample:			1 2021-09-10	2 2021-09-10	3 2021-09-10		_2_2021-09-15		
Sample Collection Date:	14-Sep-21	14-Sep-21	 10-Sep-21	10-Sep-21	10-Sep-21	15-Sep-21	15-Sep-21	15-Sep-21	13-Sep-21
CC#:	CC221350	CC221351	CC221352	CC221353	CC221354	CC221355	CC221356	CC221357	CC221358
Hexatoma	0	0	0	0	0	0	0	0	0
Subphylum: Chelicerata	0	0	0	0	0	0	0	0	0
Class: Arachnida	0	0	0	0	0	0	0	0	0
Order: Trombidiformes	0	0	0	0	0	0	0	0	0
Family: Aturidae	0	0	0	0	0	0	0	0	0
<u>Aturus</u>	0	0	0	0	0	0	0	0	0
Family: Feltriidae	0	0	0	0	0	0	0	0	0
<u>Feltria</u>	0	0	0	0	60	0	0	0	0
Family: Hygrobatidae	0	0	0	0	0	0	0	0	0
<u>Atractides</u>	0	0	0	0	0	0	0	14	0
Family: Lebertiidae	0	0	0	0	0	0	0	0	0
<u>Lebertia</u>	0	20	140	300	260	0	0	0	100
Family: Sperchontidae	0	0	0	0	0	0	0	0	0
<u>Sperchon</u>	200	80	320	500	420	10	40	0	520
Family: Torrenticolidae	0	0	0	0	0	0	0	0	0
<u>Testudacarus</u>	0	0	0	0	0	0	0	0	0
Suborder: Prostigmata	0	0	0	0	0	0	0	0	0
Family: Stygothrombidiidae	0	0	0	0	0	0	0	0	0
<u>Stygothrombium</u>	0	0	0	0	0	0	0	0	0
Order: Sarcoptiformes	0	0	0	0	0	0	0	0	0
Family: Hydrozetidae	0	0	0	0	0	0	0	0	0
Phylum: Annelida	0	0	0	0	0	0	0	0	0
Subphylum: Clitellata	0	0	0	0	0	0	0	0	0
Class: Oligochaeta	0	0	0	0	0	0	0	0	0
Order: Lumbriculida	0	0	0	0	0	0	0	0	0
Family: Lumbriculidae	0	0	0	0	0	20	0	14	0
<u>Rhynchelmis</u>	0	0	20	40	0	10	0	0	60
Order: Tubificida	0	0	0	0	0	0	0	0	0
Family: Enchytraeidae	0	0	0	0	0	0	0	0	0
<u>Enchytraeus</u>	0	0	0	0	0	0	0	0	0
Family: Naididae	0	0	0	0	0	0	0	0	0
<u>Nais</u>	0	0	0	0	0	0	0	0	0
Totals:	7,480	11,280	9,900	9,320	10,420	3,140	7,120	4,654	23,300

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
	RG_LIDSL_BIC	RG_LIDSL_BIC	RG_LCUT_BIC_	RG_LCUT_BIC_	RG_LCUT_BIC_	RG_SLINE_BIC	RG_SLINE_BIC	RG_SLINE_BIC	RG_LIDCOM_BIC
Sample:	_4_2021-09-14	_5_2021-09-14	1_2021-09-10	2_2021-09-10	3_2021-09-10	_1_2021-09-15	_2_2021-09-15	_3_2021-09-15	_1_2021-09-13
Sample Collection Date:	14-Sep-21	14-Sep-21	10-Sep-21	10-Sep-21	10-Sep-21	15-Sep-21	15-Sep-21	15-Sep-21	13-Sep-21
CC#:	CC221350	CC221351	CC221352	CC221353	CC221354	CC221355	CC221356	CC221357	CC221358
Taxa present but not included:				•	•	•	•	•	
Phylum: Arthropoda	0	0	0	0	0	0	0	0	0
Subphylum: Crustacea	0	0	0	0	0	0	0	0	0
Class: Ostracoda	20	0	20	20	20	10	20	14	20
Class: Branchiopoda	0	0	0	0	0	0	0	0	0
Order: Cladocera	0	0	0	0	0	0	0	0	0
Phylum: Nemata	20	0	20	0	20	0	0	0	0
Phylum: Platyhelminthes	0	0	0	0	0	0	0	0	0
Class: Turbellaria	20	0	20	20	20	0	0	14	20
Totals:	60	0	60	40	60	10	20	28	40

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
5.65	RG LISP24 BIC			RG FO23 BIC	RG FO23 BIC		RG LI8 BIC 1	RG LI8 BIC 2	
Sample:		1 2021-09-12	2 2021-09-12	3 2021-09-12	4 2021-09-12	5 2021-09-12	2021-09-11	2021-09-11	2021-09-11
	_	-	_		_	_			
Sample Collection Date:	13-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21
CC#:	CC221359	CC221360	CC221361	CC221362	CC221363	CC221364	CC221365	CC221366	CC221367
Phylum: Arthropoda	0	0	0	0	0	0	0	0	0
Order: Collembola	20	0	0	0	0	0	0	0	0
Subphylum: Hexapoda	0	0	0	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0	0	0	0
Order: Ephemeroptera	0	0	0	0	0	0	0	0	0
Family: Ameletidae	0	0	0	0	0	0	0	0	0
<u>Ameletus</u>	140	33	20	40	20	20	80	200	120
Family: Baetidae	20	0	20	40	20	0	40	0	0
<u>Acentrella</u>	0	17	100	0	20	40	0	0	0
<u>Baetis</u>	720	108	1,500	60	80	100	120	240	180
Baetis rhodani group	440	108	780	920	1,020	680	1,580	1,720	1,180
Baetis bicaudatus	0	0	0	0	0	0	0	0	0
<u>Diphetor hageni</u>	0	0	0	0	0	0	0	0	0
Family: Ephemerellidae	200	25	0	100	20	280	20	60	180
<u>Drunella</u>	0	8	0	20	0	0	0	0	20
<u>Drunella doddsii</u>	40	17	100	100	100	140	180	260	180
Ephemerella excrucians complex	0	0	0	0	0	0	0	0	0
Family: Heptageniidae	1,660	308	800	880	1,160	1,580	3,840	2,400	2,580
<u>Cinygmula</u>	0	0	0	0	0	0	0	0	0
<u>Epeorus</u>	20	0	0	0	20	0	160	80	20
<u>Rhithrogena</u>	0	8	0	100	200	100	20	0	0
Order: Plecoptera	0	0	0	0	0	20	20	0	0
Family: Capniidae	0	50	160	120	0	60	40	80	20
<u>Mesocapnia</u>	0	0	0	0	0	0	0	0	0
Family: Chloroperlidae	20	8	0	0	20	0	0	0	0
<u>Haploperla</u>	0	0	0	0	0	0	0	0	0
<u>Plumiperla</u>	0	0	0	0	0	0	0	0	0
<u>Suwallia</u>	0	0	0	0	0	0	0	0	0
<u>Sweltsa</u>	0	67	80	140	200	180	20	20	0
Family: Leuctridae	0	8	0	40	40	60	40	0	20
<u>Paraleuctra</u>	0	0	0	0	0	0	0	0	0
Family: Nemouridae	0	0	40	200	40	0	100	0	0
<u>Malenka</u>	0	0	0	0	0	0	0	0	0
<u>Visoka cataractae</u>	0	0	0	0	0	0	0	0	0

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

	2221	2221	2221	2221	2221	2221	2224	2221	2024
Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
	RG_LISP24_BIC_	RG_FO23_BIC_	RG_FO23_BIC_	RG_FO23_BIC_		RG_FO23_BIC_	RG_LI8_BIC_1_	RG_LI8_BIC_2_	
Sample:	1_2021-09-13	1_2021-09-12	2_2021-09-12	3_2021-09-12	4_2021-09-12	5_2021-09-12	2021-09-11	2021-09-11	2021-09-11
Sample Collection Date:	13-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21
CC#:	CC221359	CC221360	CC221361	CC221362	CC221363	CC221364	CC221365	CC221366	CC221367
<u>Zapada</u>	220	8	0	0	80	200	500	80	240
Zapada oregonensis group	360	0	0	0	0	0	220	20	160
Zapada cinctipes	20	108	800	1,260	400	460	160	140	160
Zapada columbiana	220	8	0	20	0	20	300	60	140
Family: Peltoperlidae	0	0	0	0	0	0	0	0	0
<u>Yoraperla</u>	0	0	0	0	0	0	0	0	0
Family: Perlidae	0	17	80	100	0	40	0	0	0
<u>Hesperoperla</u>	0	8	60	220	100	60	0	0	0
Family: Perlodidae	60	67	60	0	0	0	0	0	20
<u>Isoperla</u>	0	0	0	0	0	0	0	0	0
<u>Kogotus</u>	0	0	40	40	0	40	40	60	0
<u>Megarcys</u>	20	0	0	0	20	0	260	60	20
<u>Setvena</u>	0	0	0	0	0	0	0	0	0
Family: Taeniopterygidae	420	67	1,180	1,280	1,260	920	4,240	2,960	2,320
Order: Trichoptera	940	50	0	40	0	160	80	480	440
Family: Apataniidae	0	0	0	0	0	0	0	0	0
<u>Apatania</u>	0	0	0	0	0	0	0	20	0
Family: Brachycentridae	40	75	20	0	20	100	0	20	0
<u>Brachycentrus</u>	0	0	120	320	100	0	0	0	0
Brachycentrus americanus	0	0	20	0	0	0	0	0	0
<u>Micrasema</u>	0	17	0	0	0	0	0	0	0
Family: Glossosomatidae	0	8	40	60	0	0	0	0	20
<u>Glossosoma</u>	0	0	0	0	0	0	0	0	0
Family: Hydropsychidae	160	0	0	20	0	0	260	160	180
<u>Parapsyche</u>	20	0	0	0	0	0	0	20	60
Parapsyche elsis	40	0	0	0	0	0	0	0	20
Family: Lepidostomatidae	0	0	0	0	0	0	0	0	0
<u>Lepidostoma</u>	0	0	0	20	0	0	0	0	0
Family: Limnephilidae	0	0	0	0	0	0	0	0	0
<u>Ecclisomyia</u>	0	0	0	0	0	0	0	0	60
<u>Homophylax</u>	0	0	0	0	0	0	0	0	0

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
	RG LISP24 BIC	RG FO23 BIC	RG FO23 BIC	RG FO23 BIC	RG FO23 BIC	RG FO23 BIC	RG LI8 BIC 1	RG LI8 BIC 2	RG LI8 BIC 3
Sample:		1 2021-09-12	2 2021-09-12	3 2021-09-12	4 2021-09-12	5 2021-09-12	2021-09-11	2021-09-11	2021-09-11
Sample Collection Date:	13-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21
CC#:	CC221359	CC221360	CC221361	CC221362	CC221363	CC221364	CC221365	CC221366	CC221367
Family: Rhyacophilidae	0	0	0	0	0	0	0	0	0
Rhyacophila	0	25	20	40	20	60	100	120	0
Rhyacophila angelita group	0	0	0	0	0	40	0	0	0
Rhyacophila betteni group	20	0	0	0	0	0	20	40	0
Rhyacophila brunnea/vemna group	0	0	0	0	0	0	20	40	60
Rhyacophila hyalinata group	40	8	0	0	0	0	80	60	40
Rhyacophila vofixa group	20	0	0	0	0	0	0	0	0
Rhyacophila narvae	0	0	0	0	0	0	0	0	0
Rhyacophila verrula group	0	0	0	0	0	0	0	0	0
Family: Thremmatidae	0	0	0	0	0	0	0	0	0
<u>Oligophlebodes</u>	0	0	0	0	0	0	0	0	0
Family: Uenoidae	0	0	0	0	0	0	0	0	0
<u>Neothremma</u>	0	0	0	0	0	0	0	0	0
Order: Diptera	0	0	0	0	0	0	0	0	0
Family: Athericidae	0	0	0	0	0	0	0	0	0
<u>Atherix</u>	0	8	60	60	0	20	0	0	0
Family: Blephariceridae	0	0	0	0	0	0	0	0	0
<u>Philorus</u>	0	0	0	0	0	0	0	0	0
Family: Ceratopogonidae	0	0	0	0	0	20	0	0	0
Mallochohelea	0 680	0 67	120	240	160	200	720	0 580	440
Family: Chironomidae	080	0	0	240	0	200	720	080	0
Subfamily: Chironominae Tribe: Tanytarsini	0	0	0	0	0	0	0	0	0
Constempellina sp. C	0	17	0	0	0	20	0	0	0
Micropsectra	20	8	80	100	40	40	40	0	0
Stempellinella	0	0	0	0	0	0	0	20	0
Tanytarsus	0	0	0	0	0	0	0	0	0
Subfamily: Diamesinae	0	0	0	0	0	0	0	0	0
Tribe: Diamesini	0	0	0	0	0	0	0	0	0
Diamesa	80	0	0	0	0	0	0	0	0
Pagastia	160	17	20	0	0	0	20	0	0
Pseudodiamesa	0	0	0	0	0	0	0	0	0
Subfamily: Orthocladiinae	0	0	0	0	0	0	0	0	0
<u>Brillia</u>	0	0	0	0	0	0	0	0	0
<u>Corynoneura</u>	0	25	0	0	0	0	0	0	0

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
Site.			===:						
0	RG_LISP24_BIC_			RG_FO23_BIC_			RG_LI8_BIC_1_	RG_LI8_BIC_2_	
Sample:	1_2021-09-13	1_2021-09-12	2_2021-09-12	3_2021-09-12	4_2021-09-12	5_2021-09-12	2021-09-11	2021-09-11	2021-09-11
Sample Collection Date:	13-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21
CC#:	CC221359	CC221360	CC221361	CC221362	CC221363	CC221364	CC221365	CC221366	CC221367
Cricotopus (Nostococladius)	0	0	0	0	0	0	0	20	0
<u>Diplocladius cultriger</u>	40	0	0	0	0	0	0	0	0
<u>Eukiefferiella</u>	20	17	220	240	40	60	80	20	0
<u>Hydrobaenus</u>	180	0	20	0	0	20	100	60	40
Orthocladius complex	1,980	383	160	160	60	80	40	20	20
Orthocladius lignicola	0	0	20	0	0	0	0	0	0
<u>Parametriocnemus</u>	0	0	0	20	0	0	0	0	0
<u>Parorthocladius</u>	0	0	0	0	0	0	0	0	0
<u>Rheocricotopus</u>	380	17	200	40	60	100	280	240	180
<u>Thienemanniella</u>	0	0	0	0	0	0	0	0	0
<u>Tvetenia</u>	120	17	200	140	80	80	100	0	0
Subfamily: Tanypodinae	0	0	0	0	0	0	0	0	0
Tribe: Pentaneurini	0	0	0	0	0	0	0	0	0
<u>Thienemannimyia group</u>	0	0	0	0	0	0	0	0	0
Family: Empididae	0	33	80	20	20	40	0	20	0
<u>Neoplasta</u>	0	33	0	60	20	20	20	20	0
<u>Oreogeton</u>	0	0	0	0	0	0	0	0	0
<u>Roederiodes</u>	0	0	0	60	0	60	0	0	0
<u>Trichoclinocera</u>	0	0	0	0	0	0	0	0	0
Family: Muscidae	0	0	0	0	0	0	0	0	0
<u>Limnophora</u>	0	0	0	0	0	0	0	0	0
Family: Pelecorhynchidae	0	0	0	0	0	0	0	0	0
<u>Glutops</u>	0	0	0	0	0	0	0	0	0
Family: Psychodidae	0	0	0	0	0	0	0	0	0
Pericoma/Telmatoscopus	0	450	760	1,480	760	1,340	340	240	420
Family: Simuliidae	0	8	40	20	180	40	0	60	0
<u>Prosimulium</u>	0	0	0	0	0	0	20	0	0
<u>Prosimulium/Helodon</u>	0	0	0	0	0	0	0	20	0
<u>Simulium</u>	20	0	20	20	20	20	0	40	0
Family: Tipulidae	0	0	0	0	0	0	0	20	0
<u>Antocha</u>	0	0	0	0	0	20	0	0	0
<u>Cryptolabis</u>	0	0	0	0	0	0	0	0	0
<u>Dicranota</u>	0	0	0	0	0	40	0	0	0

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
	RG LISP24 BIC	RG FO23 BIC	RG FO23 BIC	RG_FO23_BIC_	RG FO23 BIC	RG FO23 BIC	RG LI8 BIC 1	RG LI8 BIC 2	RG LI8 BIC 3
Sample:		1_2021-09-12	2_2021-09-12	3_2021-09-12	4_2021-09-12	5_2021-09-12	2021-09-11	2021-09-11	2021-09-11
Sample Collection Date:	13-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21
CC#:	CC221359	CC221360	CC221361	CC221362	CC221363	CC221364	CC221365	CC221366	CC221367
Hexatoma	0	8	0	100	40	100	0	0	0
Subphylum: Chelicerata	0	0	0	0	0	0	0	0	0
Class: Arachnida	0	0	0	0	0	0	0	0	0
Order: Trombidiformes	0	0	0	0	0	0	0	0	0
Family: Aturidae	0	0	0	0	0	0	0	0	0
Aturus	0	0	0	0	0	20	0	0	0
Family: Feltriidae	0	0	0	0	0	0	0	0	0
<u>Feltria</u>	0	8	0	0	0	0	0	0	0
Family: Hygrobatidae	0	0	0	0	0	0	0	0	0
Atractides	0	0	0	0	0	0	0	0	0
Family: Lebertiidae	0	0	0	0	0	0	0	0	0
<u>Lebertia</u>	100	333	100	100	40	80	40	0	20
Family: Sperchontidae	0	0	0	0	0	0	0	0	0
<u>Sperchon</u>	280	42	0	0	0	0	120	60	20
Family: Torrenticolidae	0	0	0	0	0	0	0	0	0
<u>Testudacarus</u>	0	8	0	0	0	40	0	0	0
Suborder: Prostigmata	0	0	0	0	0	0	0	0	0
Family: Stygothrombidiidae	0	0	0	0	0	0	0	0	0
<u>Stygothrombium</u>	0	17	0	20	0	20	0	0	0
Order: Sarcoptiformes	0	0	0	0	0	0	0	0	0
Family: Hydrozetidae	0	0	0	0	0	0	0	0	0
Phylum: Annelida	0	0	0	0	0	0	0	0	0
Subphylum: Clitellata	0	0	0	0	0	0	0	0	0
Class: Oligochaeta	0	0	0	0	0	0	0	0	0
Order: Lumbriculida	0	0	0	0	0	0	0	0	0
Family: Lumbriculidae	0	33	20	0	0	0	60	0	80
<u>Rhynchelmis</u>	0	50	0	60	60	60	80	40	120
Order: Tubificida	0	0	0	0	0	0	0	0	0
Family: Enchytraeidae	0	0	0	0	0	0	0	0	0
<u>Enchytraeus</u>	0	0	0	100	0	0	0	0	0
Family: Naididae	0	0	0	0	0	0	0	0	0
<u>Nais</u>	0	83	20	220	120	140	0	40	0
Totals:	9,940	2,913	8,180	9,440	6,660	8,040	14,600	10,920	9,780

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021	2021	2021
	RG_LISP24_BIC_	RG_FO23_BIC_	RG_FO23_BIC_	RG_FO23_BIC_	RG_FO23_BIC_	RG_FO23_BIC_	RG_LI8_BIC_1_	RG_LI8_BIC_2_	RG_LI8_BIC_3_
Sample:	1_2021-09-13	1_2021-09-12	2_2021-09-12	3_2021-09-12	4_2021-09-12	5_2021-09-12	2021-09-11	2021-09-11	2021-09-11
Sample Collection Date:	13-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	12-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21
CC#:	CC221359	CC221360	CC221361	CC221362	CC221363	CC221364	CC221365	CC221366	CC221367
Taxa present but not included:									
Phylum: Arthropoda	0	0	0	0	0	0	0	0	0
Subphylum: Crustacea	0	0	0	0	0	0	0	0	0
Class: Ostracoda	20	8	0	20	20	20	20	20	20
Class: Branchiopoda	0	0	0	0	0	0	0	0	0
Order: Cladocera	0	0	0	0	0	0	0	0	0
Phylum: Nemata	20	8	0	20	0	0	0	20	0
Phylum: Platyhelminthes	0	0	0	0	0	0	0	0	0
Class: Turbellaria	20	8	0	20	0	20	20	20	20
Totals:	60	24	0	60	20	40	40	60	40

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
- Citor	RG LILC3 BIC	RG LILC3 BIC	RG LI24 BIC 1		RG LI24 BIC 3		
Sample:	4 2021-09-10	5 2021-09-10	2021-09-16	2021-09-16	2021-09-16	2021-09-16	2021-09-16
7 1 1 1			_	_	_ : : : : : :		_
Sample Collection Date:	10-Sep-21	10-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21
CC#:	CC221368	CC221369	CC221370	CC221371	CC221372	CC221373	CC221374
Phylum: Arthropoda	0	0	0	0	0	0	0
Order: Collembola	0	0	0	0	0	0	0
Subphylum: Hexapoda	0	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0	0
Order: Ephemeroptera	0	0	0	0	0	0	0
Family: Ameletidae	0	0	0	0	0	0	0
<u>Ameletus</u>	0	0	120	0	60	67	160
Family: Baetidae	180	0	0	0	0	0	0
<u>Acentrella</u>	0	0	0	0	0	0	0
<u>Baetis</u>	580	380	0	0	20	0	0
Baetis rhodani group	1,760	1,340	20	20	0	17	0
Baetis bicaudatus	0	0	0	0	0	0	0
<u>Diphetor hageni</u>	0	0	0	0	0	0	0
Family: Ephemerellidae	0	0	60	180	280	50	180
<u>Drunella</u>	0	0	0	0	0	0	0
<u>Drunella doddsii</u>	20	20	60	20	160	100	240
Ephemerella excrucians complex	0	0	0	0	0	0	0
Family: Heptageniidae	560	240	5,520	5,020	4,360	2,433	6,820
<u>Cinygmula</u>	0	0	40	20	0	17	60
<u>Epeorus</u>	0	0	0	60	100	100	40
<u>Rhithrogena</u>	0	0	180	240	140	117	220
Order: Plecoptera	0	0	40	40	0	33	20
Family: Capniidae	0	0	20	80	160	33	200
<u>Mesocapnia</u>	0	0	0	0	0	0	0
Family: Chloroperlidae	20	0	20	120	80	83	20
<u>Haploperla</u>	0	0	0	0	0	17	0
<u>Plumiperla</u>	0	0	0	80	0	0	20
<u>Suwallia</u>	0	0	0	0	0	0	0
<u>Sweltsa</u>	20	0	400	220	20	50	180
Family: Leuctridae	0	0	40	40	0	0	20
Paraleuctra Paraleuctra	0	0	40	80	20	83	40
Family: Nemouridae	0	40	0	60	60	17	0
<u>Malenka</u>	20	0	0	0	0	0	0
Visoka cataractae	0	0	60	60	0	17	20

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

014	0004	0004	0004	0004	0004	0004	0004
Site:	2021	2021	2021	2021	2021	2021	2021
	RG_LILC3_BIC	RG_LILC3_BIC	RG_LI24_BIC_1			RG_LI24_BIC_4	
Sample:	_4_2021-09-10	_5_2021-09-10	_2021-09-16	_2021-09-16	_2021-09-16	_2021-09-16	_2021-09-16
Sample Collection Date:	10-Sep-21	10-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21
CC#:	CC221368	CC221369	CC221370	CC221371	CC221372	CC221373	CC221374
<u>Zapada</u>	440	40	80	0	80	17	20
Zapada oregonensis group	280	100	0	0	0	0	0
Zapada cinctipes	40	20	0	0	0	0	0
Zapada columbiana	100	0	920	900	2,420	750	2,180
Family: Peltoperlidae	0	0	0	0	0	0	0
<u>Yoraperla</u>	0	0	0	0	0	0	0
Family: Perlidae	0	0	0	0	0	0	0
<u>Hesperoperla</u>	0	0	0	0	0	0	0
Family: Perlodidae	100	20	40	0	60	50	40
<u>Isoperla</u>	0	0	0	0	0	0	0
<u>Kogotus</u>	280	160	0	0	0	0	0
<u>Megarcys</u>	40	0	0	20	80	133	40
<u>Setvena</u>	0	0	0	20	0	50	20
Family: Taeniopterygidae	60	20	600	860	520	217	1,720
Order: Trichoptera	80	0	0	20	40	17	40
Family: Apataniidae	0	0	0	0	0	0	0
<u>Apatania</u>	0	20	0	0	0	0	0
Family: Brachycentridae	0	0	0	0	0	0	0
<u>Brachycentrus</u>	0	0	0	0	0	0	0
Brachycentrus americanus	0	0	0	0	0	0	0
<u>Micrasema</u>	0	20	0	0	0	0	0
Family: Glossosomatidae	0	0	0	0	0	0	0
<u>Glossosoma</u>	0	0	0	0	0	0	0
Family: Hydropsychidae	260	520	0	140	80	67	60
<u>Parapsyche</u>	20	60	0	0	0	0	0
Parapsyche elsis	320	80	0	0	0	0	0
Family: Lepidostomatidae	0	0	0	0	0	0	0
<u>Lepidostoma</u>	0	0	0	0	0	0	0
Family: Limnephilidae	0	20	0	0	0	0	0
<u>Ecclisomyia</u>	0	40	0	0	100	17	0
<u>Homophylax</u>	0	0	0	0	0	0	0

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG_LILC3_BIC	RG_LILC3_BIC	RG_LI24_BIC_1				RG_LI24_BIC_5
Sample:	_4_2021-09-10	_5_2021-09-10	_2021-09-16	_2021-09-16	_2021-09-16	_2021-09-16	_2021-09-16
Sample Collection Date:	10-Sep-21	10-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21
CC#:	CC221368	CC221369	CC221370	CC221371	CC221372	CC221373	CC221374
Family: Rhyacophilidae	0	0	0	0	0	0	0
Rhyacophila	40	20	0	0	20	17	20
Rhyacophila angelita group	0	0	0	0	0	0	0
Rhyacophila betteni group	20	0	0	0	0	0	0
Rhyacophila brunnea/vemna group	0	20	40	0	20	67	80
Rhyacophila hyalinata group	60	0	0	0	0	17	0
Rhyacophila vofixa group	0	0	0	0	0	0	0
Rhyacophila narvae	20	0	0	0	0	0	0
Rhyacophila verrula group	0	20	0	0	0	0	0
Family: Thremmatidae	0	0	0	0	0	0	0
<u>Oligophlebodes</u>	0	0	0	0	0	0	0
Family: Uenoidae	0	0	0	0	0	0	0
<u>Neothremma</u>	0	0	40	80	0	33	40
Order: Diptera	0	0	0	0	0	0	0
Family: Athericidae	0	0	0	0	0	0	0
<u>Atherix</u>	0	0	0	0	0	0	0
Family: Blephariceridae	0	0	0	0	0	0	0
<u>Philorus</u>	0	0	0	0	0	0	0
Family: Ceratopogonidae	0	0	0	0	0	0	0
<u>Mallochohelea</u>	0	0	0	0	0	0	0
Family: Chironomidae	3,540	2,800	140	220	160	83	180
Subfamily: Chironominae	0	0	0	0	0	0	0
Tribe: Tanytarsini	0	0	0	0	0	0	0
Constempellina sp. C	0	0	0	0	0	0	0
<u>Micropsectra</u>	240	420	0	0	0	0	0
<u>Stempellinella</u>	0	0	0	0	0	0	0
<u>Tanytarsus</u>	0	0	0	0	0	0	0
Subfamily: Diamesinae	0	0	0	0	0	0	0
Tribe: Diamesini	0	0	0	0	0	0	0
<u>Diamesa</u>	320	160	0	0	80	450	120
<u>Pagastia</u>	1,460	880	0	0	0	0	0
<u>Pseudodiamesa</u>	20	0	0	0	0	0	0
Subfamily: Orthocladiinae	0	0	0	0	0	0	0
<u>Brillia</u>	0	0	0	0	0	0	0
<u>Corynoneura</u>	20	60	0	0	0	0	0

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
Site.	2021	2021			202.	202.	
	RG_LILC3_BIC			RG_LI24_BIC_2			
Sample:		_5_2021-09-10	_2021-09-16	_2021-09-16	_2021-09-16		_2021-09-16
Sample Collection Date:	10-Sep-21	10-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21
CC#:	CC221368	CC221369	CC221370	CC221371	CC221372	CC221373	CC221374
Cricotopus (Nostococladius)	0	0	0	0	0	0	0
Diplocladius cultriger	140	120	0	0	0	0	0
<u>Eukiefferiella</u>	1,300	1,240	0	20	0	67	40
<u>Hydrobaenus</u>	320	560	0	0	0	0	0
Orthocladius complex	7,800	6,600	0	20	60	67	20
Orthocladius lignicola	0	0	0	0	0	0	0
<u>Parametriocnemus</u>	0	0	0	0	0	0	0
<u>Parorthocladius</u>	0	0	20	0	40	67	0
<u>Rheocricotopus</u>	1,320	520	200	200	180	17	160
<u>Thienemanniella</u>	0	0	0	0	0	0	0
<u>Tvetenia</u>	800	260	100	100	80	17	140
Subfamily: Tanypodinae	0	0	0	0	0	0	0
Tribe: Pentaneurini	0	0	0	0	0	0	0
<u>Thienemannimyia group</u>	0	0	0	0	0	0	0
Family: Empididae	80	60	0	0	0	0	0
<u>Neoplasta</u>	20	0	0	0	0	0	0
<u>Oreogeton</u>	0	0	0	0	0	17	0
<u>Roederiodes</u>	0	0	0	0	0	0	0
<u>Trichoclinocera</u>	20	20	0	0	0	0	0
Family: Muscidae	0	0	0	0	0	0	0
<u>Limnophora</u>	0	20	0	0	0	0	0
Family: Pelecorhynchidae	0	0	0	0	0	0	0
<u>Glutops</u>	0	0	0	0	0	0	0
Family: Psychodidae	0	0	0	0	0	0	0
Pericoma/Telmatoscopus	140	20	0	0	0	0	0
Family: Simuliidae	0	0	0	0	0	0	0
<u>Prosimulium</u>	0	20	0	0	0	0	0
<u>Prosimulium/Helodon</u>	0	0	0	0	0	0	0
<u>Simulium</u>	20	60	0	0	0	0	0
Family: Tipulidae	0	0	0	0	0	0	0
<u>Antocha</u>	0	0	0	0	0	0	0
<u>Cryptolabis</u>	0	0	0	0	0	0	0
<u>Dicranota</u>	0	0	0	40	0	0	0

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG LILC3 BIC	RG_LILC3_BIC	RG LI24 BIC 1	RG_LI24_BIC_2	RG LI24 BIC 3	RG LI24 BIC 4	RG LI24 BIC 5
Sample:		5 2021-09-10	2021-09-16	2021-09-16	2021-09-16	2021-09-16	2021-09-16
Sample Collection Date:	10-Sep-21	10-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21
CC#:	CC221368	CC221369	CC221370	CC221371	CC221372	CC221373	CC221374
Hexatoma	0	0	0	0	0	0	0
Subphylum: Chelicerata	0	0	0	0	0	0	0
Class: Arachnida	0	0	0	0	0	0	0
Order: Trombidiformes	20	0	0	0	0	0	0
Family: Aturidae	0	0	0	0	0	0	0
<u>Aturus</u>	0	0	0	0	0	0	0
Family: Feltriidae	0	0	0	0	0	0	0
<u>Feltria</u>	140	80	0	0	0	0	0
Family: Hygrobatidae	0	0	0	0	0	0	0
<u>Atractides</u>	0	0	0	20	40	0	0
Family: Lebertiidae	0	0	0	0	0	0	0
<u>Lebertia</u>	340	360	60	80	20	17	20
Family: Sperchontidae	0	0	0	0	0	0	0
<u>Sperchon</u>	960	960	20	100	100	50	80
Family: Torrenticolidae	0	0	0	0	0	0	0
<u>Testudacarus</u>	20	0	0	0	0	0	0
Suborder: Prostigmata	0	0	0	0	0	0	0
Family: Stygothrombidiidae	0	0	0	0	0	0	0
<u>Stygothrombium</u>	0	0	0	0	0	0	0
Order: Sarcoptiformes	0	0	0	0	0	0	0
Family: Hydrozetidae	0	0	0	0	0	0	0
Phylum: Annelida	0	0	0	0	0	0	0
Subphylum: Clitellata	0	0	0	0	0	0	0
Class: Oligochaeta	0	0	0	0	0	0	0
Order: Lumbriculida	0	0	0	0	0	0	0
Family: Lumbriculidae	20	0	0	0	0	0	0
<u>Rhynchelmis</u>	0	0	0	0	20	0	0
Order: Tubificida	0	0	0	0	0	0	0
Family: Enchytraeidae	0	0	0	0	0	0	0
<u>Enchytraeus</u>	0	40	0	0	20	0	0
Family: Naididae	0	0	0	0	0	0	0
<u>Nais</u>	0	0	0	0	0	0	0
Totals:	24,380	18,460	8,880	9,180	9,680	5,538	13,260

Project: LCO LAEMP (21-36)
Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG_LILC3_BIC	RG_LILC3_BIC	RG_LI24_BIC_1	RG_LI24_BIC_2	RG_LI24_BIC_3	RG_LI24_BIC_4	RG_LI24_BIC_5
Sample:	_4_2021-09-10	_5_2021-09-10	_2021-09-16	_2021-09-16	_2021-09-16	_2021-09-16	_2021-09-16
Sample Collection Date:	10-Sep-21	10-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21
CC#:	CC221368	CC221369	CC221370	CC221371	CC221372	CC221373	CC221374
Taxa present but not included:			•	•	•	•	
Phylum: Arthropoda	0	0	0	0	0	0	0
Subphylum: Crustacea	0	0	0	0	0	0	0
Class: Ostracoda	20	20	20	20	20	17	20
Class: Branchiopoda	0	0	0	0	0	0	0
Order: Cladocera	0	0	0	0	0	0	0
Phylum: Nemata	20	20	0	0	0	0	20
Phylum: Platyhelminthes	0	0	0	0	0	0	0
Class: Turbellaria	20	20	0	0	0	0	0
Totals:	60	60	20	20	20	17	40

BENTHIC COMMUNITY DENSITY

ZEAS 21-36 Raw Data (September 16, 2021)

Table 6: Raw Benthic Invertebrate Family-Level Counts and Biomass for Samples Collected by Hess at Line Creek, September 2021

RG LI24 091602011 RG LI24 HSSS-1 2021-09-16 Outracods 3 0.0008	Area	Date	Sample ID	Taxa	Count	Total Biomass
RG_LI24	RG_LI24	09/16/2021	RG_LI24_HESS-1_2021-09-16	Ostracoda		0.0026
MG_LIJ24						
RG_LI24				•		
RO_LI24						
RG LI24				•		
RG_1124 09/19/2021 RG_124 HESS-1 2021-09-16 Periodicise 3 0.3628 RG_124 HESS-1 2021-09-16 Riyacophidae 2 0.0456 RG_124 HESS-1 2021-09-16 Riyacophidae 3 0.0456 RG_124 HESS-1 2021-09-16 Riyacophidae 3 0.0456 RG_124 HESS-1 2021-09-16 Riyacophidae 3 0.0456 RG_124 HESS-1 2021-09-16 Riyacophidae 3 0.0456 RG_124 HESS-1 2021-09-16 Riyacophidae 3 0.0456 RG_124 HESS-1 2021-09-16 Periodicise 1 0.0000 RG_121 RG_124 HESS-1 2021-09-16 Periodicise 1 0.0000 RG_124 HESS-1 2021-09-16 Periodicise 1 0.0000 RG_124 HESS-1 2021-09-16 Periodicise 1 0.0000 RG_124 HESS-2 RG_124 HESS-2 2021-09-16 Periodicise 1 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 1 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 1 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 1 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 1 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 1 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 1 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 1 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 2 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 2 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 2 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 2 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 3 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 3 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 3 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 3 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 3 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 4 0.0420 RG_124 HESS-2 2021-09-16 Periodicise 4 0.0420 RG_124 HESS-2 2021-09-16 Periodicise 4 0.0420 RG_124 HESS-2 2021-09-16 Periodicise 4 0.0420 RG_124 HESS-2 2021-09-16 Periodicise 4 0.0420 RG_124 HESS-2 2021-09-16 Periodicise 4 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 4 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 4 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 4 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 4 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 4 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 5 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 5 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 6 0.0000 RG_124 HESS-2 2021-09-16 Periodicise 7 0.0000 RG_124 HESS-2 2021-09-						
RG 124						
RG LI24 09/16/2021 RG LI24 HESS-1 2021-09-16 Chromomidus 23 0.0488 RG LI24 09/16/2021 RG LI24 HESS-1 2021-09-16 Empidosus 1 0.0008 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 Empidosus 1 0.0008 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 Empidosus 1 0.0008 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 Lumbriotulidas 1 0.0008 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 Data HESS-2 2021-09-16 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 Data HESS-2 2021-09-16 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 Data HESS-2 2021-09-16 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 Removement and the second li24 rd Li24 09/16/2021 RG LI24 HESS-2 2021-09-16 Removement and the second li24 09/16/2021 RG LI24 HESS-2 2021-09-16 Removement and the second li24 09/16/2021 RG LI24 HESS-2 2021-09-16 Removement and the second li24 09/16/2021 RG LI24 HESS-2 2021-09-16 Removement and the second li24 09/16/2021 RG LI24 HESS-2 2021-09-16 Removement and the second li24 09/16/2021 RG LI24 HESS-2 2021-09-16 Removement and the second li24 09/16/2021 RG LI24 HESS-2 2021-09-16 Removement and the second li24 09/16/2021 RG LI24 HESS-2 2021-09-16 Removement and the second li24 09/16/2021 RG LI24 HESS-2 2021-09-16 Removement and the second li24 09/16/2021 RG LI24 HESS-2 2021-09-16 Removement and the second li24 09/16/2021 RG LI24 HESS-2 2021-09-16 Removement and the second li24 RG LI24 HESS-2 2021-09-16 Removement and the second li24 RG LI24 HESS-2 2021-09-16 Removement and the second li24 RG LI24 HESS-2 2021-09-16 Removement and the second li24 RG LI24 HESS-2 2						
RG_U24	RG_LI24	09/16/2021	RG_LI24_HESS-1_2021-09-16		3	0.0486
RS_LI24						
RG_LIJ4						
RG [J24				•		
RG LIZ4						
RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Detended 3 0.0005 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Detended 3 0.0005 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Detended 3 0.0005 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Detended 3 0.0005 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Detended 3 0.0005 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Detended 3 0.0005 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Detended 3 0.0005 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 LEAR (9916)2021 RG LI24 HESS-2 2001-09-16 Detended 4 0.0007 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Detended 4 0.0007 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Petidode 4 0.0007 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Petidode 4 0.0007 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Petidode 4 0.0007 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Petidode 4 0.0007 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Petidode 4 0.0007 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 (9916)2021 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 HESS-2 2001-09-16 Representation 4 0.0007 RG LI24 HESS-2 2001-09-16 Representatio						
RG [LI24 0916/2021 RG [LI24_HESS_2 2021-09-16 Baueldae 2 0.0164 RG [LI24 0916/2021 RG [LI24_HESS_2 2021-09-16 Baueldae 2 0.0164 RG [LI24_HESS_2 2021-09-16 Fphemerellidae 9 0.0583 RG [LI24_HESS_2 2021-09-16 Helptopenidae 9 0.0583 RG [LI24_HESS_2 2021-09-16 Helptopenidae 305 0.0529 RG [LI24_HESS_2 2021-09-16 Helptopenidae 305 0.0529 RG [LI24_HESS_2 2021-09-16 Helptopenidae 305 0.0529 RG [LI24_HESS_2 2021-09-16 Helptopenidae 305 0.0529 RG [LI24_HESS_2 2021-09-16 Helptopenidae 305 0.0529 RG [LI24_HESS_2 2021-09-16 Leurotridae 4 0.2492 RG [LI24_HESS_2 2021-09-16 Leurotridae 4 0.2492 RG [LI24_HESS_2 2021-09-16 Teneloptopidae 4 0.2492 RG [LI24_HESS_2 2021-09-16 Teneloptopidae 1 0.0002 RG [LI24_HESS_2 2021-09-16 Teneloptopidae 1 0.0002 RG [LI24_HESS_2 2021-09-16 Republicae 2 0.074 RG [LI24_HESS_2 2021-09-16 Republicae 3 0.074 RG [LI24_HESS_2 2021-09-16 Republicae 4 0.2492 RG [LI24_HESS_2 2021-09-16 Republicae 4 0.0491 RG [LI24_HESS_2 2021-09-16 Republicae 4 0.0491 RG [LI24_HESS_2 2021-09-16 Republicae 4 0.0491 RG [LI24_HESS_2 2021-09-16 Republicae 4 0.0491 RG [LI24_HESS_2 2021-09-16 Republicae 4 0.0491 RG [LI24_HESS_2 2021-09-16 Republicae 4 0.0491 RG [LI24_HESS_2 2021-09-16 Republicae 4 0.0491 RG [LI24_HESS_2 2021-09-16 Republicae 4 0.0491 RG [LI24_HESS_2 2021-09-16 Republicae 3 0.0598 RG [LI24_HESS_2 2021-09-16 Republicae 3 0.0598 RG [LI24_HESS_2 2021-09-16 Republicae 3 0.0598 RG [LI24_HESS_2 2021-09-16 Republicae 3 0.0598 RG [LI24_HESS_2 2021-09-16 Republicae 3 0.0598 RG [LI24_HESS_2 2021-09-16 Republicae 3 0.0598 RG [LI24_HESS_2 2021-09-16 Republicae 3 0.0598 RG [LI24_HESS_2 2021-09-16 Republicae						
RG LI24 0916/2021 RG LI24 HESS-2 2010-016 Ephemerellidae 9 0.0583 RG LI24 0916/2021 RG LI24 HESS-2 2010-016 Heptageniciae 305 0.0393 D.0393 RG LI24 0916/2021 RG LI24 HESS-2 2010-016 Leuctridae 35 0.0929 RG LI24 HESS-2 2021-09-16 Leuctridae 35 0.0929 RG LI24 HESS-2 2021-09-16 Leuctridae 15 0.0021 RG LI24 HESS-2 2021-09-16 Leuctridae 15 0.0021 RG LI24 HESS-2 2021-09-16 Nemounidae 27 0.0486 RG LI24 HESS-2 2021-09-16 Perfodidae 4 0.2492 RG LI24 HESS-2 2021-09-16 Perfodidae 4 0.2492 RG LI24 HESS-2 2021-09-16 Perfodidae 4 0.2492 RG LI24 HESS-2 2021-09-16 Perfodidae 4 0.0492 RG LI24 HESS-2 2021-09-16 Perfodidae 4 0.0492 RG LI24 HESS-2 2021-09-16 Perfodidae 4 0.0002 RG LI24 HESS-2 2021-09-16 Perfodidae 4 0.0002 RG LI24 HESS-2 2021-09-16 Perfodidae 5 0.0002 RG LI24 HESS-2 2021-09-16 Perfodidae 6 0.0002 RG LI24 HESS-2 2021-09-16 Perfodidae 6 0.0002 RG LI24 HESS-2 2021-09-16 Perfodidae 6 0.0002 RG LI24 HESS-2 2021-09-16 Perfodidae 6 0.0002 RG LI24 HESS-2 2021-09-16 Perfodidae 6 0.0002 RG LI24 HESS-2 2021-09-16 Perfodidae 7 0.018 RG LI24 PESS-2 2021-09-16 Perfodidae 2 0.0046 RG LI24 HESS-2 2021-09-16 Perfodidae 2 0.0046 RG LI24 PESS-2 2021-09-16 Perfodidae 2 0.0046 RG LI24 HESS-2 2021-09-16 Perfodidae 7 0.018 RG LI24 PESS-2 2021-09-16 Perfodidae 7 0.018 RG LI24 HESS-3 2021-09-16 Perfodidae 7 0.018 RG LI24 HESS-3 2021-09-16 Perfodidae 7 0.018 RG LI24 PESS-3 2021-09-16 Perfodidae 1 0.0006 RG LI24 PESS-3 2021-09-16 Perfodidae 1 0.0006 RG LI24 PESS-3 2021-09-16 Perfodidae 1 0.0007 RG LI24 PESS-3 2021-09-16 Perfodidae 1 0.0007 RG LI24 PESS-3 2021-09-16 Perfodidae 1 0.0007 RG LI24 PESS-3 2021-09-16 Perfodidae 1 0.0007 RG LI24 PESS-3 2021-09-16 Perfodidae 1 0.0008 RG LI24 PESS-3 2021-09-16 Perfodidae 1 0.0008 RG LI24		09/16/2021				
RG LI24						
RG_LI24				•		
RG LIZ4	_			, ,		
RG LI24 0916/2021 RG LI24 HESS-2 2021-09-16 Nemouridae Z 0.0486 RG LI24 0916/2021 RG LI24 HESS-2 2021-09-16 Periodidae						
RG Li24 09/18/2021 RG Li24 HESS-2 2021-09-16 Tenripterygidae 16 0.0064 RG Li24 09/18/2021 RG Li24 HESS-2 2021-09-16 Hydropsychidae 1 0.0002 RG Li24 09/18/2021 RG Li24 HESS-2 2021-09-16 Hydropsychidae 1 0.0002 RG Li24 09/18/2021 RG Li24 HESS-2 2021-09-16 Hydropsychidae 3 0.074 RG Li24 09/18/2021 RG Li24 HESS-2 2021-09-16 Uenoidae 6 0.0029 RG Li24 HESS-2 2021-09-16 Uenoidae 6 0.0029 RG Li24 HESS-2 2021-09-16 Uenoidae 2 0.0046 RG Li24 09/18/2021 RG Li24 HESS-2 2021-09-16 Empididae 2 0.0046 RG Li24 09/18/2021 RG Li24 HESS-2 2021-09-16 Empididae 2 0.0046 RG Li24 09/18/2021 RG Li24 HESS-3 2021-09-16 Empididae 7 0.018 RG Li24 09/18/2021 RG Li24 HESS-3 2021-09-16 Empididae 7 0.018 RG Li24 09/18/2021 RG Li24 HESS-3 2021-09-16 Hoptagenidae 160 0.2304 RG Li24 HESS-3 2021-09-16 Hoptagenidae 160 0.2304 RG Li24 HESS-3 2021-09-16 Hoptagenidae 160 0.2304 RG Li24 HESS-3 2021-09-16 Chirosperidae 19 0.074 RG Li24 09/18/2021 RG Li24 HESS-3 2021-09-16 Chirosperidae 19 0.074 RG Li24 09/18/2021 RG Li24 HESS-3 2021-09-16 Nemoundae 22 0.064 RG Li24 09/18/2021 RG Li24 HESS-3 2021-09-16 Nemoundae 22 0.064 RG Li24 MESS-3 2021-09-16 Nemoundae 10 0.006 RG Li24 MESS-3 2021-09-16 Trichoptera 10 0.000 RG Li24 MESS-3 2021-09-16 Trichoptera 10 0.000 RG Li24 HESS-3 2021-09-16 Trichoptera 10 0.000 RG Li24 MESS-3 2021-09-16 Trichoptera 10 0.000 RG Li24 09/18/2021 RG Li24 HESS-3 2021-09-16 Trichoptera 10 0.000 RG Li24 09/18/2021 RG Li24 HESS-3 2021-09-16 Trichoptera 10 0.000 RG Li24 09/18/2021 RG Li24 HESS-3 2021-09-16 Trichoptera 10 0.000 RG Li24 09/18/2021 RG Li24 HESS-3 2021-09-16						
RG [LI24 09/16/2021 RG [LI24 HESS-2 (201-09-16 Hydropsychidae 1 0.00064 NG [LI24 09/16/2021 RG [LI24 HESS-2 (201-09-16 Hydropsychidae 1 0.00064 NG [LI24 09/16/2021 RG [LI24 HESS-2 (201-09-16 Rhyacophilidae 3 0.074 NG [LI24 09/16/2021 RG [LI24 HESS-2 (201-09-16 Rhyacophilidae 48 0.0178 NG [LI24 09/16/2021 RG [LI24 HESS-2 (201-09-16 Empididae 2 0.0046 NG [LI24 09/16/2021 RG [LI24 HESS-2 (201-09-16 Empididae 2 0.0046 NG [LI24 09/16/2021 RG [LI24 HESS-2 (201-09-16 Empididae 2 0.0046 NG [LI24 09/16/2021 RG [LI24 HESS-2 (201-09-16 Empididae 7 0.018 NG [LI24 09/16/2021 RG [LI24 HESS-3 (201-09-16 Empididae 7 0.018 NG [LI24 09/16/2021 RG [LI24 HESS-3 (201-09-16 Empidemiliae 160 0.2304 NG [LI24 09/16/2021 RG [LI24 HESS-3 (201-09-16 Empidemiliae 160 0.2304 NG [LI24 09/16/2021 RG [LI24 HESS-3 (201-09-16 Empidemiliae 19 0.007 NG [LI24 HESS-3 (201-09-16 Empidemiliae 19 0.007 NG [LI24 HESS-3 (201-09-16 Empidemiliae 19 0.007 NG [LI24 HESS-3 (201-09-16 Empidemiliae 19 0.007 NG [LI24 HESS-3 (201-09-16 Empidemiliae 19 0.007 NG [LI24 HESS-3 (201-09-16 Empidemiliae 19 0.007 NG [LI24 HESS-3 (201-09-16 Empidemiliae 19 0.007 NG [LI24 HESS-3 (201-09-16 Empidemiliae 10 0.007 NG [LI24 09/16/2021 RG [LI24 HESS-3 (201-09-16 Empidemiliae 10 0.000 NG [LI24 09/16/2021 RG [LI24 HESS-3 (201-09-16 Empidemiliae 10 0.000 NG [LI24 09/16/2021 RG [LI24 HESS-3 (201-09-16 Empidemiliae 10 0.000 NG [LI24 09/16/2021 RG [LI24 HESS-3 (201-09-16 Empidemiliae 10 0.000 NG [LI24 HESS-3 (201-09-16 Empidemiliae 10 0.000 NG [LI24 09/16/2021 RG [LI24 HESS-3 (201-09-16 Empidemiliae 10 0.000 NG [LI24 09/16/2021 RG [LI24 HESS-3 (201-09-16 Empidemiliae 10 0.000 NG [LI24 09/1						
RG LI24 09/16/2021 RG LI24 HESS-2 2021-09-16 Ry- RG_LI24 09/16/2021 RG_LI24 HESS-2 2021-09-16 Uenotate 6 0.0029 RG_LI24 09/16/2021 RG_LI24 HESS-2 2021-09-16 Uenotate 6 0.0029 RG_LI24 09/16/2021 RG_LI24 HESS-2 2021-09-16 Uenotate 6 0.0029 RG_LI24 09/16/2021 RG_LI24 HESS-2 2021-09-16 Empididae 2 0.0046 RG_LI24 09/16/2021 RG_LI24 HESS-2 2021-09-16 Empididae 2 0.0046 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Empididae 7 0.018 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Ameleitate 7 0.018 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Ameleitate 7 0.018 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Heptererellidae 100 0.2504 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Heptererellidae 100 0.2504 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Heptererellidae 100 0.2504 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Chloropariidae 19 0.074 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Chloropariidae 19 0.074 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Nemoundae 22 0.064 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Nemoundae 22 0.064 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Nemoundae 22 0.064 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Throbeptera 1 0.0000 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Rhypacophilidae 1 0.0000 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Rhypacophilidae 2 0.0072 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Rhypacophilidae 2 0.0072 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Rhypacophilidae 2 0.0072 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Rhypacophilidae 2 0.0072 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Rhypacophilidae 2 0.0072 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Rhypacophilidae 2 0.0072 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Rhypacophilidae 2 0.0072 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Rhypacophilidae 1 0.0006 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Rhypacophilidae 2 0.0072 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Rhypacophilidae 1 0.0006 RG_LI24 09/16/2021 RG_LI24 HESS-3 2021-09-16 Rhypacophilidae 2 0.0016 RG_LI24 09/16/2021 RG_LI24 HESS-3 202						
RG Li24 09/16/2021 RG Li24 HESS-2 2021-09-16 Uenoidae 6 0.0029	RG_LI24	09/16/2021	RG_LI24_HESS-2_2021-09-16	Hydropsychidae	1	0.0002
RG L24 09/16/2021 RG L24 HESS-2 2021-09-16 Empididae 2 0.0046						
RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Empididee 2 0.0046 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Ameleidae 7 0.0014 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Ameleidae 7 0.0018 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Heptagenidae 3 0.0366 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Capnidae 3 0.0366 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Capnidae 3 0.00366 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Chloroperidae 19 0.074 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Chloroperidae 6 0.0138 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Nemouridae 22 0.064 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Nemouridae 22 0.064 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Imenioptory/dae 4 0.0018 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Imenioptory/dae 4 0.0018 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Imenioptory/dae 4 0.0018 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Imenioptory/dae 4 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Imenioptory/dae 2 0.0072 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Rhysoophildae 2 0.0072 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Impididae 2 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Chloroperidae 6 0.0064 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Chloroperidae 6 0.0064 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Chloroperidae 6 0.0064 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Chloroperidae 10 0.006 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Chloroperidae 2 0.0016 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Chloroperidae 2 0.0016 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Chloroperidae 1 0.0006 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Chloroperidae 2 0.0016 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Chloroperidae 1 0.0006 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Chloroperidae 2 0.0016 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Chloroperidae 2 0.0016 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Chloroperidae 2 0.0016 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Chloroperidae 2 0.0016 RG_LI24 09/16/2021 RG_LI24_H						
RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Ameletidae 7 0.018 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Ephemerellidae 3 0.0366 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Ephemerellidae 160 0.2304 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Caphildae 160 0.2304 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Caphildae 19 0.074 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Caphildae 19 0.074 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Caphildae 19 0.074 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Caphildae 19 0.074 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Loutridae 6 0.0138 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Loutridae 6 0.0138 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Loutridae 6 0.00138 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Trichopteria 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Trichopteria 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Limaphilidae 2 0.0072 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Limaphilidae 2 0.0072 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Limaphilidae 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Limaphilidae 6 0.0064 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Limaphilidae 6 0.0064 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Limaphilidae 6 0.0064 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Limaphilidae 6 0.0064 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Ephemorialidae 6 0.0064 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Ephemorialidae 6 0.0074 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Ephemorialidae 6 0.0074 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Ephemorialidae 6 0.0064 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Ephemorialidae 6 0.0074 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Ameletidae 1 0.0006 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Ephemorialidae 6 0.0074 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Ephemorialidae 6 0.0074 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Ephemorialidae 6 0.0074 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Ephemorialidae 7 0.0006 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021						
RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Ephemerellidae 3 0.0366 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Ephemerellidae 3 0.0366 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Capnidae 3 0.0366 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Capnidae 3 0.007 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Capnidae 3 0.007 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Choroperlidae 19 0.074 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Choroperlidae 6 0.0138 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Remoundae 22 0.084 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Remoundae 22 0.084 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Remoundae 22 0.084 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Transipterpsyldae 4 0.0018 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Transipterpsyldae 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Transipterpsyldae 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Transipterpsyldae 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Transipterpsyldae 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Unnoidae 1 0.0002 RG_LI24_09/16/2021 RG_LI24_HESS-3_2021-09-16 Unnoidae 6 0.0064 RG_LI24_09/16/2021 RG_LI24_HESS-3_2021-09-16 Empididae 2 0.0016 RG_LI24_09/16/2021 RG_LI24_HESS-3_2021-09-16 Empididae 2 0.0016 RG_LI24_HESS-3_2021-09-16 Empididae 6 0.0742 RG_LI24_HESS-3_2021-09-16 Empididae 1 0.0006 RG_LI24_HESS-3_2021-09-16 Empididae 1 0.0006 RG_LI24_HESS-3_2021-09-16 Empididae 1 0.0006 RG_LI24_HESS-3_2021-09-16 Empididae 1 0.0006 RG_LI24_HESS-3_2021-09-16 Empididae 1 0.0006 RG_LI24_HESS-3_2021-09-16 Empididae 1 0.0006 RG_LI24_HESS-3_2021-09-16 Empididae 1 0.0006 RG_LI24_HESS-3_2021-09-16 Empididae 1 0.0006 RG_LI24_HESS-3_2021-09-16 Empididae 1 0.0006 RG_LI24_HESS-3_2021-09-16 Empididae 1 0.0006 RG_LI24_HESS-4_2021-09-16 Empididae 1 0.0006 RG_LI24_HESS-4_2021-09-16 Empididae 1 0.0006 RG_LI24_HESS-4_2021-09-16 Empididae 1 0.0006 RG_LI24_HESS-4_2021-09-16 Reptaterial RG_LI24_HESS-4_2021-09-16 Reptaterial RG_LI24_HESS-4_2021-09-16 Reptaterial RG_LI24_HESS-4_2021-09-16 Reptateri						
RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Ephemerellidae 3 0.0366 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Capnidae 160 0.2304 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Capnidae 19 0.074 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Capnidae 19 0.074 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Leuctridae 19 0.074 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Leuctridae 6 0.0138 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Leuctridae 6 0.0138 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Nemountabe 22 0.0064 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Trichoptera 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Trichoptera 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Trichoptera 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Limaphilidae 2 0.0072 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Limaphilidae 2 0.0072 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Limaphilidae 2 0.0072 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Limaphilidae 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Unotabe 6 0.0064 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Unotabe 10 0.006 RG_LI24 09/16/2021 RG_LI24_HESS-3_2021-09-16 Empididae 2 0.0016 RG_LI24_09/16/2021 RG_LI24_HESS-3_2021-09-16 Empididae 2 0.0016 RG_LI24_09/16/2021 RG_LI24_HESS-3_2021-09-16 Empididae 2 0.0016 RG_LI24_09/16/2021 RG_LI24_HESS-4_2021-09-16 Empididae 2 0.0016 RG_LI24_09/16/2021 RG_LI24_HESS-4_2021-09-16 Empididae 1 0.0006 RG_LI24_09/16/2021 RG_LI24_HESS-4_2021-09-16 Sperchonidae 1 0.0006 RG_LI24_09/16/2021 RG_LI24_HESS-4_2021-09-16 Phemorellidae 5 0.0016 RG_LI24_09/16/2021 RG_LI24_HESS-4_2021-09-16 Phemorellidae 2 4 0.0016/2021 RG_LI24_HESS-4_2021-09-16 Representation 5 0.0016 RG_LI24_HESS-4_2021-09-16 Representation 5 0.0016 RG_LI24_HESS-4_2021-09-16 Representation 5 0.0016 RG_LI24_09/16/2021 RG_LI24_HESS-4_2021-09-16 Representation 5 0.0064 RG_LI24_09/16/2021 RG_LI24_HESS-4_2021-09-16 Representation 5 0.0064 RG_LI24_09/16/2021 RG_LI24_HESS-4_2021-09-16 Representation 5 0.0064 RG_LI24_09/16/2021 RG_LI24_HESS-4_2021-09-16 Rep						
RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Capnidae 3 0.007 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Chronperlidae 19 0.074 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Chronperlidae 19 0.074 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Nemouridae 2 2 0.064 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Nemouridae 2 2 0.064 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Nemouridae 2 2 0.064 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Nemouridae 2 2 0.0674 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Trainopterprojidae 4 0.0018 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Trainopterprojidae 1 0.0002 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Trainopterprojidae 2 0.0072 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Rg Li24 09/16/2021 RG LI24 HESS-3 2021-09-16 Rg Li24 09/16/2021 RG LI24 HESS-3 2021-09-16 Rg Li24 09/16/2021 RG LI24 HESS-3 2021-09-16 Rg Li24 09/16/2021 RG LI24 HESS-3 2021-09-16 Chronomidae 1 0 0.0062 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Urnoridae 6 0.000-4 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Empididae 2 0.0016 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Empididae 2 0.0016 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Empididae 1 0.0006 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Sperchonidae 1 0.0006 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Ostracoda 19 0.0104 RG LI24 O9/16/2021 RG LI24 HESS-4 2021-09-16 Ostracoda 19 0.0104 RG LI24 HESS-4 2021-09-16 Representation of the property of the proper						
RG L124		09/16/2021				
RG Li24 09/16/20/21 RG Li24 HESS-3 2021-09-16 Nemouridae 22 0.064				Capniidae		
RG LI24						
RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Taeniopteryglidae 4 0.0018 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Tirchoptera 1 0.0002 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Limmephilidae 2 0.0072 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Limmephilidae 1 0.0002 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Unonidae 1 0.0064 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Unonidae 1 0.0066 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Chironomidae 1 0.0066 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Empididae 2 0.0016 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Empididae 6 0.0742 RG LI24 UNITED RG LI24 HESS-3 2021-09-16 Empididae 6 0.0742 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Sperchonidae 1 0.0006 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Sperchonidae 1 0.0006 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Ameletidae 1 0.0006 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Ameletidae 1 0.0006 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Ephemerellidae 5 0.0162 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Ephemerellidae 5 0.0162 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Ephemerellidae 5 0.0162 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Cappilidae 245 0.4088 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Cappilidae 245 0.4088 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Cappilidae 47 0.2386 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Chioroperlidae 47 0.2386 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Nemouridae 22 0.0584 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Nemouridae 22 0.0584 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Nemouridae 22 0.0584 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Periodidae 1 0.0006 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Periodidae 1 0.0006 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Periodidae 1 0.0006 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Nemouridae 2 0.0584 Nemouridae 2 0.0584 RG LI24 09/16/2021 RG LI24 HESS-5 2021-09-16 Periodidae 1 0.0006 RG LI24 09/16/2021 RG LI24 HESS-5 2021-09-16 Nemouridae 2 0.0008 RG LI24 09/16/2021 RG LI24 HESS-5 2021-09-						
RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Irrichoptera 1 0.0002 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Limphilidae 2 0.0072 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Uernoidae 6 0.0064 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Chronomidae 10 0.006 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Empididae 2 0.0016 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Empiridae 6 0.0742 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Sperchonidae 1 0.006 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Ameletidae 10 0.0462						
RG L124				. ,		
RG L124				•		
RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Chironomidae 10 0.006 RG LI24 09/16/2021 RG LI24 HESS-3 2021-09-16 Empididae 2 0.0016 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Lumbriculidae 6 0.0742 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Sperchonidae 1 0.0006 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Ostracoda 19 0.0104 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Ameletidae 10 0.0462 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Ephemerellidae 5 0.0162 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Capnidae 7 0.0222 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Capnidae 47 0.2386 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Leuctridae 14 0.0334 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Nemouridae 22 0.0584 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
RG Li24 09/16/2021 RG Li24 HESS-3 2021-09-16 Lumbriculidae E 0.0016 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Lumbriculidae E 0.00742 RG Li24 HESS-4 2021-09-16 Sperchonidae 1 0.0006 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Sperchonidae 1 0.0006 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Ostracoda 19 0.0104 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Ameletidae 10 0.0462 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Ephemerellidae 5 0.0162 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Ephemerellidae 7 0.0222 RG Li24 HESS-4 2021-09-16 Capinidae 7 0.0222 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Capinidae 7 0.0222 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Chloroperlidae 47 0.2386 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Chloroperlidae 47 0.0334 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Nemouridae 22 0.0584 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Nemouridae 22 0.0584 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Taeniopterygidae 7 0.0048 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Limnephilidae 2 0.002 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Limnephilidae 2 0.002 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Limnephilidae 1 0.0046 RG Li24 09/16/2021 RG Li24 HESS-4 2021-09-16 Limnephilidae 1 0.0046 RG Li24 09/16/2021 RG Li24 HESS-5 2021-09-16 Limnephilidae 1 0.0046 RG Li24 09/16/2021 RG Li24 HESS-5 2021-09-16 Lebertidae 1 0.0034 RG Li24 09/16/2021 RG Li24 HESS-5 2021-09-16 Empididae 1 0.0046 RG Li24 09/16/2021 RG Li24 HESS-5 2021-09-16 Empididae 1 0.0046 RG Li24 09/16/2021 RG Li24 HESS-5 2021-09-16 Ameletidae 1 0.0036 RG Li	RG_LI24	09/16/2021		Uenoidae		0.0064
RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Lumbriculidae 6 0.0742 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Sperchonidae 1 0.0006 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Ameletidae 10 0.0462 RG LI24 09/16/2021 RG LI24 LESS-4 2021-09-16 Ameletidae 10 0.0462 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Heptageniidae 245 0.4088 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Capniidae 7 0.0222 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Chloroperiidae 47 0.2386 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Leucridae 14 0.0334 RG LI24 09/16/2021 RG LI24 HESS-4						
RG LI24 09/16/2021 RG LI24_HESS-4 2021-09-16 Ostracoda 1 0.0006 RG LI24 09/16/2021 RG LI24_HESS-4 2021-09-16 Ostracoda 19 0.0104 RG LI24 09/16/2021 RG LI24_HESS-4 2021-09-16 Ephemerellidae 5 0.0162 RG LI24 09/16/2021 RG LI24_HESS-4 2021-09-16 Ephemerellidae 245 0.4088 RG LI24 09/16/2021 RG LI24_HESS-4 2021-09-16 Capniidae 7 0.0222 RG LI24 09/16/2021 RG LI24_HESS-4 2021-09-16 Chloroperlidae 47 0.2386 RG LI24 09/16/2021 RG LI24_HESS-4 2021-09-16 Chloroperlidae 47 0.2386 RG LI24 09/16/2021 RG LI24_HESS-4 2021-09-16 Perlodidae 4 0.1716 RG LI24 09/16/2021 RG LI24_HESS-4				•		
RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Ostracoda 19 0.0104 RG LI24 09/16/2021 RG LI24_HESS-4 2021-09-16 Ephemerellidae 5 0.0162 RG LI24 09/16/2021 RG LI24_HESS-4 2021-09-16 Ephemerellidae 245 0.4088 RG LI24 09/16/2021 RG LI24_HESS-4 2021-09-16 Capnidae 7 0.0222 RG LI24 09/16/2021 RG LI24_HESS-4 2021-09-16 Chloroperlidae 47 0.2386 RG LI24 09/16/2021 RG LI24_HESS-4 2021-09-16 Leuctridae 14 0.0334 RG LI24 09/16/2021 RG LI24_HESS-4 2021-09-16 Nemouridae 22 0.0584 RG LI24 09/16/2021 RG LI24_HESS-4 2021-09-16 Periodidae 4 0.1716 RG LI24 09/16/2021 RG LI24_						
RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Ameletidae 10 0.0462 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Ephemerellidae 5 0.0162 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Heptageniidae 245 0.4088 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Capniidae 7 0.0222 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Chloropertidae 47 0.2386 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Leuctridae 14 0.0334 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Nemouridae 22 0.0584 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Perfoldae 4 0.1716 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Lanephilidae 7 0.0048 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Limnephilidae 2 0.002 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Uenoidae 1 0.0					·	
RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Ephemerellidae 5 0.0162 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Heptageniidae 245 0.4088 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Capniidae 7 0.0222 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Chloroperlidae 47 0.2386 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Nemouridae 22 0.0584 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Nemouridae 22 0.0584 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Perlodidae 4 0.1716 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Limmephilidae 2 0.002 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Limmephilidae 1 0.0006 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Uenoidae 1 0.0006 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Chironomidae 44 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
RG LI24 09/16/2021 RG LI24 HESS-4_2021-09-16 Capnildae 7 0.0222 RG LI24 09/16/2021 RG LI24 HESS-4_2021-09-16 Chloroperildae 47 0.2386 RG LI24 09/16/2021 RG LI24 HESS-4_2021-09-16 Leuctridae 14 0.0334 RG LI24 09/16/2021 RG LI24_HESS-4_2021-09-16 Nemouridae 22 0.0584 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Perlodidae 4 0.1716 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Taeniopterygidae 7 0.0048 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Limnephilidae 2 0.002 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Uenoidae 1 0.0018 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Uenoidae 1 0.0018 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chironomidae 44 0.0242 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Lebertiidae 1 0.0004						
RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Chloroperlidae 47 0.2386 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Leuctridae 14 0.0334 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Nemouridae 22 0.0584 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Pertodidae 4 0.1716 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Taeniopterygidae 7 0.0048 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Limnephilidae 2 0.002 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Limnephilidae 1 0.0006 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Uenoidae 1 0.0018 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Chironomidae 44 0.0242 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Emplidae 1 0.0046 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chironomidae 1 0	_			,		
RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Leuctridae 14 0.0334 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Nemouridae 22 0.0584 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Perfodidae 4 0.71716 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Taeniopterygidae 7 0.0048 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Limnephilidae 2 0.002 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Rhyacophilidae 1 0.0006 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Uenoidae 1 0.0018 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Chironomidae 44 0.0242 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chironomidae 44 0.0044 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Lebertiidae 1 0.0043 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ameletidae 10 <td< td=""><td></td><td></td><td></td><td>•</td><td></td><td></td></td<>				•		
RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Nemouridae 22 0.0584 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Periodidae 4 0.1716 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Taeniopterygidae 7 0.0048 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Limnephilidae 2 0.002 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Rhyacophilidae 1 0.0006 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Uenoidae 1 0.0018 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Uenoidae 1 0.0018 RG LI24 09/16/2021 RG LI24 HESS-4 2021-09-16 Uenoidae 1 0.0018 RG LI24 09/16/2021 RG LI24 HESS-5 2021-09-16 Empididae 1 0.0046 RG LI24 09/16/2021 RG LI24 HESS-5 2021-09-16 Lebertliidae 1 0.0003 RG LI24 09/16/2021 RG LI24 HESS-5 2021-09-16 Ameletidae 10 0.0043						
RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Perlodidae 4 0.1716 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Taeniopterygidae 7 0.0048 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Limnephilidae 2 0.002 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Limnephilidae 1 0.0006 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Uenoidae 1 0.0018 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Chironomidae 44 0.0242 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chironomidae 44 0.0242 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Empididae 1 0.0043 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ostracoda 16 0.0043 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ameletidae 10 0.0051 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Capriidae 8 0.014<	_					
RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Taeniopterygidae 7 0.0048 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Limnephilidae 2 0.002 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Rhyacophilidae 1 0.0006 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Uenoidae 1 0.0018 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Chironomidae 44 0.0242 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Empididae 1 0.0046 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Empididae 1 0.0043 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ostracoda 16 0.0043 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ameletidae 10 0.0051 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ephemerellidae 6 0.0284 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Capnidae 311 0.32						
RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Limnephilidae 2 0.002 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Rhyacophilidae 1 0.0006 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Uenoidae 1 0.0018 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Chironomidae 44 0.0242 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Empididae 1 0.0046 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Lebertiidae 1 0.0046 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Lebertiidae 1 0.0003 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ostracoda 16 0.0043 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ameletidae 10 0.0051 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ephemerellidae 6 0.0284 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Capniidae 311 0.3259						
RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Uenoidae 1 0.0018 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Chironomidae 44 0.0242 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Empididae 1 0.0046 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Lebertiidae 1 0.0003 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Destracoda 16 0.0043 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ameletidae 10 0.0051 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ephemerellidae 6 0.0284 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Heptageniidae 311 0.3259 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Capniidae 8 0.014 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chloroperlidae 38 0.1329 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Nemouridae 26 0.02						
RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Chironomidae 44 0.0242 RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Empididae 1 0.0046 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Lebertiidae 1 0.0003 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ostracoda 16 0.0043 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ameletidae 10 0.0051 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ephemerellidae 6 0.0284 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Heptageniidae 311 0.3259 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Capniidae 8 0.014 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chloroperlidae 38 0.1329 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Leuctridae 20 0.0363 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Nemouridae 26 0.				, .		
RG_LI24 09/16/2021 RG_LI24_HESS-4_2021-09-16 Empididae 1 0.0046 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Lebertiidae 1 0.0003 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ostracoda 16 0.0043 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ameletidae 10 0.0051 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ephemerellidae 6 0.0284 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Heptageniidae 311 0.3259 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Capniidae 8 0.014 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chloroperlidae 38 0.1329 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Leuctridae 20 0.0363 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Nemouridae 26 0.0237 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Uenoidae 3 0.0042<					· · · · · · · · · · · · · · · · · · ·	
RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Lebertiidae 1 0.0003 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ostracoda 16 0.0043 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ameletidae 10 0.0051 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ephemerellidae 6 0.0284 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Heptageniidae 311 0.3259 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Capniidae 8 0.014 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chloroperlidae 38 0.1329 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Leuctridae 20 0.0363 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Nemouridae 26 0.0237 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Taeniopterygidae 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Uenoidae 3						
RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ostracoda 16 0.0043 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ameletidae 10 0.0051 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ephemerellidae 6 0.0284 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Heptageniidae 311 0.3259 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Capniidae 8 0.014 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chloroperlidae 38 0.1329 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Leuctridae 20 0.0363 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Nemouridae 26 0.0237 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Taeniopterygidae 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Uenoidae 3 0.0042 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chironomidae 12 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ameletidae 10 0.0051 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ephemerellidae 6 0.0284 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Heptageniidae 311 0.3259 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Capniidae 8 0.014 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chloroperlidae 38 0.1329 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Leuctridae 20 0.0363 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Nemouridae 26 0.0237 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Taeniopterygidae 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Uenoidae 3 0.0042 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chironomidae 12 0.0036 RG_LIDS 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Nemata 3 0						
RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Ephemerellidae 6 0.0284 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Heptageniidae 311 0.3259 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Capniidae 8 0.014 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chloroperlidae 38 0.1329 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Leuctridae 20 0.0363 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Nemouridae 26 0.0237 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Taeniopterygidae 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Uenoidae 3 0.0042 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chironomidae 12 0.0036 RG_LIDS 09/16/2021 RG_LIDSL_HESS-1_2021-09-14 Nemata 3 0.0075 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Nemata 3 0.00						
RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Capniidae 8 0.014 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chloroperlidae 38 0.1329 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Leuctridae 20 0.0363 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Nemouridae 26 0.0237 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Taeniopterygidae 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Uenoidae 3 0.0042 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chironomidae 12 0.0036 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Empididae 3 0.0075 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Nemata 3 0.0018 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Planariidae 3 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lebertiidae 6 0.001	RG_LI24	09/16/2021	RG_LI24_HESS-5_2021-09-16	Ephemerellidae	6	0.0284
RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chloroperlidae 38 0.1329 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Leuctridae 20 0.0363 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Nemouridae 26 0.0237 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Taeniopterygidae 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Uenoidae 3 0.0042 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chironomidae 12 0.0036 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Empididae 3 0.0075 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Nemata 3 0.0018 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Planariidae 3 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lumbriculidae 1 0.0146 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Sperchonidae 4 <						
RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Leuctridae 20 0.0363 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Nemouridae 26 0.0237 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Taeniopterygidae 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Uenoidae 3 0.0042 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chironomidae 12 0.0036 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Empididae 3 0.0075 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Nemata 3 0.0018 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Planariidae 3 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lumbriculidae 1 0.0146 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lebertiidae 6 0.0012 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Sperchonidae 4 <td< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td></td<>	_					
RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Nemouridae 26 0.0237 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Taeniopterygidae 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Uenoidae 3 0.0042 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chironomidae 12 0.0036 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Empididae 3 0.0075 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Nemata 3 0.0018 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Planariidae 3 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lumbriculidae 1 0.0146 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lebertiidae 6 0.0012 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Sperchonidae 4 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Ostracoda 9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Taeniopterygidae 1 0.0002 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Uenoidae 3 0.0042 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chironomidae 12 0.0036 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Empididae 3 0.0075 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Nemata 3 0.0018 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Planariidae 3 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lumbriculidae 1 0.0146 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lebertiidae 6 0.0012 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Sperchonidae 4 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Ostracoda 9 0.0028						
RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Uenoidae 3 0.0042 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chironomidae 12 0.0036 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Empididae 3 0.0075 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Nemata 3 0.0018 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Planariidae 3 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lumbriculidae 1 0.0146 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lebertiidae 6 0.0012 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Sperchonidae 4 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Ostracoda 9 0.0028						
RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Chironomidae 12 0.0036 RG_LI24 09/16/2021 RG_LI24_HESS-5_2021-09-16 Empididae 3 0.0075 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Nemata 3 0.0018 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Planariidae 3 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lumbriculidae 1 0.0146 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lebertiidae 6 0.0012 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Sperchonidae 4 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Ostracoda 9 0.0028				. ,		
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Nemata 3 0.0018 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Planariidae 3 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lumbriculidae 1 0.0146 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lebertiidae 6 0.0012 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Sperchonidae 4 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Ostracoda 9 0.0028			RG_LI24_HESS-5_2021-09-16			
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Planariidae 3 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lumbriculidae 1 0.0146 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lebertiidae 6 0.0012 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Sperchonidae 4 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Ostracoda 9 0.0028						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lumbriculidae 1 0.0146 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lebertiidae 6 0.0012 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Sperchonidae 4 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Ostracoda 9 0.0028						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Lebertiidae 6 0.0012 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Sperchonidae 4 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Ostracoda 9 0.0028						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Sperchonidae 4 0.0036 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Ostracoda 9 0.0028						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-1_2021-09-14 Ostracoda 9 0.0028						
				•		
	RG_LIDSL	09/14/2021	RG_LIDSL_HESS-1_2021-09-14	Ameletidae	3	0.001

RQ_LIDSL_ 0914/2021 RQ_LIDSL_HESS-1_2021-0914 Benditure 7	Area	Date	Sample ID	Taxa	Count	Total Biomass
RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Proteoperistics 130 0.2448 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Concorposition 3 0.0016 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Leuchridate 3 0.0006 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Proteoperistics 3 0.0006 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Trentoperage 18 0.0002 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Trentoperage 18 0.0002 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Trentoperage 18 0.0002 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Agetamicate 1 0.00029 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Agetamicate 1 0.00029 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Learneysomate 2 0.0014 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Learneysomate 2 0.0014 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Learneysomate 2 0.0014 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Learneysomate 2 0.0014 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Learneysomate 2 0.0014 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Learneysomate 2 0.0014 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Learneysomate 2 0.0014 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Learneysomate 3 0.0072 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Learneysomate 3 0.0072 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Proteopromistor 6 0.00002 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Deprecipation 6 0.00002 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Proteopromistor 2 0.0014 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Proteopromistor 6 0.00002 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Proteopromistor 6 0.00002 RG_LIDSIL 0914/2021 RG_LIDSI_HESS-1_2021-09-14 Proteopromistor 6 0.00002 RG_LIDSI_HESS-1_2021-09-14 Proteopromistor 6 0.00002 RG_LIDSI_HESS-1_2021-09-14 Proteopromistor 6 0.00002 RG_LIDSI_HESS-1_2021-09-14 Proteopromistor 6 0.000002 RG_LIDSI_HESS-1_2021-09-14 Proteopromistor 6 0.000002 RG_LIDSI_HESS-1_2021-09-14 Proteopromistor 6 0.0000000000000000000000000000000000	RG_LIDSL	09/14/2021	RG_LIDSL_HESS-1_2021-09-14	Baetidae	7	0.0708
RG_LIDSL 0914/2021 RG_LIDSL_HESS-1_2021-09-14	_					
RG LIDSL 0914/2021 RG LIDSL HESS-1 2021-09-14 Leccridae 2 0.002 RG LIDSL 0914/2021 RG LIDSL HESS-1 2021-09-14 Perhodolog 3 0.0006 RG LIDSL 0914/2021 RG LIDSL HESS-1 2021-09-14 Perhodolog 3 0.0006 RG LIDSL HESS-1 2021-09-14 Perhodolog 3 0.0006 RG LIDSL HESS-1 2021-09-14 Perhodolog 3 0.0006 RG LIDSL HESS-1 2021-09-14 Perhodolog 3 0.0006 RG LIDSL MS 1 0.0006 RG LIDSL HESS-1 2021-09-14 Perhodolog 3 0.0006 RG LIDSL HESS-1 2021-09-14 Perhodolog 3 0.0006 RG LIDSL HESS-1 2021-09-14 Perhodolog 3 0.0006 RG LIDSL HESS-1 2021-09-14 Perhodolog 3 0.0006 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Control 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Control 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Control 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Control 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Control 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Control 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09-14 Perhodolog 2 0.0016 RG LIDSL HESS-1 2021-09						
RG_LIDSL 0914/2021 RG_LIDSL_RESS-1, 2021-09-14 Nemourchae 16 0.1-048 RG_LIDSL 0914/2021 RG_LIDSL_RESS-1, 2021-0914 Trenspensylptine 18 0.0072 RG_LIDSL_RESS-1, 2021-0914 Trenspensylptine 18 0.0072 RG_LIDSL_RESS-1, 2021-0914 Trenspensylptine 18 0.0072 RG_LIDSL_RESS-1, 2021-0914 Trenspensylptine 18 0.0072 RG_LIDSL_RESS-1, 2021-0914 Trenspensylptine 18 0.0072 RG_LIDSL_RESS-1, 2021-0914 Trenspensylptine 18 0.0072 RG_LIDSL_RESS-1, 2021-0914 RG_LIDSL_RESS-	_					
RO, LIDSL. 9814/2012 RG, LIDSL. HESS-1. 2021-09-14 Periodeae 3 0.0000 RO, LIDSL. 9814-2012 RG, LIDSL. HESS-1. 2021-09-14 Technopara 18 0.0001 RG, LIDSL. 9814-2012 RG, LIDSL. HESS-1. 2021-09-14 Technopara 18 0.0001 RG, LIDSL. 9814-2012 RG, LIDSL. HESS-1. 2021-09-14 Technopara 18 0.0001 RG, LIDSL. 9814-2012 RG, LIDSL. HESS-1. 2021-09-14 RG, LIDSL. 9814-2012 RG, LIDSL. HESS-1. 2021-09-14 RG, LIDSL. 9814-2012 RG, LIDSL. HESS-1. 2021-09-14 RG, LIDSL. 9814-2012 RG, LIDSL.	_					
RG_LIDSL						
RC_LIDSL	_			Taeniopterygidae		
ROLLIDSL 0914/2021 ROLLIDSL HESS-1 2021-09-14 Biochysometridae 3 0.0012 ROLLIDSL 0914/2021 ROLLIDSL ROLLIDSL Glossossomatidae 2 0.0012 ROLLIDSL 0914/2021 ROLLIDSL ROLLIDSL MESS-1 2021-09-14 Unmerbillate 2 0.0014 ROLLIDSL Control						
RC_LIDSL 0914/2021 RC_LIDSL_HESS1_2021-09-14 Hydropsychidae 2 0.0912 RC_LIDSL 0914/2021 RC_LIDSL_HESS1_2021-09-14 Hydropsychidae 2 0.0914 RC_LIDSL_HESS1_2021-09-14 Hydropsychidae 2 0.0914 RC_LIDSL_HESS1_2021-09-14 RC_LIDSL_HESS1_2021-09-14 RC_LIDSL_HESS1_2021-09-14 RC_LIDSL_HESS1_2021-09-14 RC_LIDSL_HESS1_2021-09-14 Christophidae 3 0.0972 RC_LIDSL_HESS1_2021-09-14 Christophidae 1 0.0002 RC_LIDSL_HESS1_2021-09-14 Christophidae 1 0.0002 RC_LIDSL_HESS1_2021-09-14 Christophidae 7 0.0096 RC_LIDSL_HESS1_2021-09-14 Christophidae 7 0.0096 RC_LIDSL_HESS1_2021-09-14				•		
RG_LIDSL 69/14/2021 RG_LIDSL_HESS-1_2021-09-14 Limephilidae 2	_					
RG LIDSL 09/14/2021 RG LIDSL HESS-1 2021-09-14 Physiophidae 2 0.0072 RG LIDSL 09/14/2021 RG LIDSL 19/14/2021 RG LIDSL HESS-1 2021-09-14 Physiophidae 3 0.0672 RG LIDSL 09/14/2021 RG LIDSL HESS-1 2021-09-14 Certopophidae 6 0.0002 RG LIDSL 09/14/2021 RG LIDSL 19/14/2021						
RG_LIDSL 0914/2021 RG_LIDSL_HESS-1_2021-09-14 Certarogenidae 6 0.0002				, , ,		
RG_LIDSL 09114/2021 RG_LIDSL_HESS-1/2021-0914 Chromomdae 1 0.0002	RG_LIDSL	09/14/2021		<u> </u>	3	0.0672
RG LIDSL 0914/2021 RG LIDSL HISS-1 2021-09-14 Chromomidae 88 0.3438 RG LIDSL 0914/2021 RG LIDSL HISS-1 2021-09-14 Empididae 7 0.0256 RG LIDSL 0914/2021 RG LIDSL HISS-1 2021-09-14 Perbodidae 2 0.0314 RG LIDSL 0914/2021 RG LIDSL HISS-1 2021-09-14 Perbodidae 2 0.0372 RG LIDSL 0914/2021 RG LIDSL HISS-1 2021-09-14 Tipuldae 1 0.4114 RG LIDSL 0914/2021 RG LIDSL HISS-1 2021-09-14 Tipuldae 1 0.4104 RG LIDSL 0914/2021 RG LIDSL HISS-1 2021-09-14 Tipuldae 1 0.4104 RG LIDSL 0914/2021 RG LIDSL HISS-1 2021-09-14 Tipuldae 9 0.1234 RG LIDSL 0914/2021 RG LIDSL HISS-1 0221-09-14 Lebertidae 3 0.1189 RG LIDSL 0914/2021 RG LIDSL HISS-1 0221-09-14 Debrace of the periodical of the periodical of the periodical of the periodical of the periodical of the periodical of the periodical of the periodical of the periodical of the periodical of the periodical of the periodical of the periodical of the p	_					
RG_LIDSL 0914/2021 RG_LIDSL_HESS-1_2021-09-14 Pelestorhynoclase 2 0.0314 RG_LIDSL 0914/2021 RG_LIDSL_HESS-1_2021-09-14 Pelestorhynoclase 2 0.0314 RG_LIDSL 0914/2021 RG_LIDSL_HESS-1_2021-09-14 Pelestorhynoclase 2 0.0314 RG_LIDSL_HESS-1_2021-09-14 Pelestorhynoclase 2 0.0314 RG_LIDSL_HESS-1_2021-09-14 Pelestorhynoclase 2 0.0314 RG_LIDSL_HESS-1_2021-09-14 Pelestorhynoclase 2 0.0314 RG_LIDSL_HESS-1_2021-09-14 Pelestorhynoclase 2 0.0314 RG_LIDSL_HESS-1_2021-09-14 Pelestorhynoclase 3 0.1234 RG_LIDSL_HESS-1_2021-09-14 Pelestorhynoclase 3 0.1234 RG_LIDSL_HESS-1_2021-09-14 Pelestorhynoclase 3 0.1234 RG_LIDSL_HESS-1_2021-09-14 Pelestorhynoclase 3 0.1534 RG_LIDSL_DISS_1_2021-09-14 Pelestorhynoclase 3 0.1534 RG_LIDSL_HESS-1_2021-09-14 Pelestorhynoclase 3 0.1532 RG_LIDSL_HESS-1_2021-09-14 RG_LIDSL_H						
RG_LIDSL	_					
RG_LIDSL 0914/2021 RG_LIDSL_HESS-1_2021-09-14 Psychodidee 1 0.4014 RG_LIDSL 0914/2021 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 9 0.1234 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 9 0.1234 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 9 0.1234 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 6 0.1596 RG_LIDSL_HESS-1_2021-09-14 Tipulidae 5 0.156 RG_LIDSL_HESS-1_2021-09-14 RG_LIDSL_HESS-1_2021-09-14 RG_LIDSL_HESS-1_2021-09-14 RG_LIDSL_HESS-1_2021-09-14 RG_LIDSL_HESS-1_2021-09-14 RG_LIDSL_HESS-1_2021-09-14	_			· · · · · · · · · · · · · · · · · · ·		
RG LIDSL 09f4/4021 RG LIDSL HESS-1 2021-09-14 Tipulidae 1 0.4014 RG LIDSL 09f4/4021 RG LIDSL HESS-10 2021-09-14 Namaia 2 0.0001 RG LIDSL MESS-10 2021-09-14 Lumbriculidae 6 0.1586 RG LIDSL 09f4/4021 RG LIDSL HESS-10 2021-09-14 Lumbriculidae 6 0.1586 RG LIDSL 09f4/4021 RG LIDSL HESS-10 2021-09-14 Sperchonidae 11 0.1536 RG LIDSL MESS-10 2021-09-14 Sperchonidae 12 0.1526 RG LIDSL MESS-10 2021-09-14 Ameleticae 14 0.1659 RG LIDSL MESS-10 2021-09-14 Ameleticae 14 0.1659 RG LIDSL MESS-10 2021-09-14 Ameleticae 15 0.1516 RG LIDSL MESS-10 2021-09-14 Heptagenidae 30 0.4209 Heptagenidae 30 0.4209 Heptagenidae 30 0.4209 Heptagenidae 30 0.4209 Heptagenidae 30 0.1512 RG LIDSL MESS-10 2021-09-14 Chloroperidae 33 0.1586 RG LIDSL MESS-10 2021-09-14 Nemoundae 57 0.3672 RG LIDSL MESS-10 2021-09-14 Nemoundae 57 0.3672 RG LIDSL MESS-10 2021-09-14 Nemoundae 57 0.3672 RG LIDSL MESS-10 2021-09-14 Nemoundae 57 0.3672 RG LIDSL MESS-10 2021-09-14 Nemoundae 57 0.3672 RG LIDSL MESS-10 2021-09-14 Nemoundae 57 0.3672 RG LIDSL MESS-10 2021-09-14 Nemoundae 57 0.3672 RG LIDSL MESS-10 2021-09-14 Nemoundae 57 0.3672 RG LIDSL MESS-10 2021-09-14 Nemoundae 57 0.3672 RG LIDSL MESS-10 2021-09-14 Nemoundae 57 0.3672 RG LIDSL MESS-10 2021-09-14 Nemoundae 57 0.3672 RG LIDSL MESS-10 2021-09-14 Nemoundae 67 0.1616 RG LIDSL MESS-10 2021-09				<u> </u>		
RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Nemata 2 0.0001 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Lumbriculidae 6 0.1686 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Lumbriculidae 6 0.1686 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Sperchonidae 11 0.1538 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Sperchonidae 11 0.1538 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Sperchonidae 11 0.1538 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Amoletidae 6 0.1609 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Amoletidae 6 0.1609 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Ephemoreilidae 52 0.1662 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Ephemoreilidae 52 0.1662 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Capnidae 5 0.151 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Capnidae 5 0.151 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Leuctridae 3 0.1512 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Leuctridae 3 0.1512 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Periodidae 57 0.3672 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Periodidae 4 0.1661 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Tichoptera 148 0.1636 RG_LIDSL 09814/2021 RG_LIDSL_HESS-10_2021-09-14 Periodidae 4 0.1661 RG_LIDSL 09814/2021 RG_LIDSL_HESS-20_201-09-14 Perio		09/14/2021	RG_LIDSL_HESS-1_2021-09-14	•	1	0.4014
RG_LIDSL 0914/2021 RG_LIDSL_HESS-10_2021-09-14 Plananidae 6 0.1689 RG_LIDSL 0914/2021 RG_LIDSL_HESS-10_2021-09-14 Lebertiidae 3 0.1518 RG_LIDSL 0914/2021 RG_LIDSL_HESS-10_2021-09-14 Lebertiidae 3 0.1518 RG_LIDSL 0914/2021 RG_LIDSL_HESS-10_2021-09-14 Dostrooda 9 0.1526 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Ostrooda 9 0.1526 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Dostrooda 9 0.1526 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Dostrooda 9 0.1526 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Baetidae 14 0.1593 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Baetidae 14 0.1593 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenerellidae 52 0.1662 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenerellidae 52 0.1562 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenerellidae 52 0.1562 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenerellidae 52 0.1562 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenerellidae 52 0.1562 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenerellidae 52 0.1562 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenerellidae 53 0.1682 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenerellidae 52 0.1562 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenorellidae 33 0.1684 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenorellidae 6 0.1612 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenorellidae 6 0.1612 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenorellidae 6 0.1612 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenorellidae 6 0.1612 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenorellidae 6 0.1612 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenorellidae 6 0.1612 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenorellidae 6 0.1612 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenorellidae 6 0.0663 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenorellidae 6 0.0663 RG_LIDSL_0914/2021 RG_LIDSL_HESS-10_2021-09-14 Phenorellidae 7 0.0056 RG_LIDSL_0914/2021 RG_LIDSL_HESS-2021-09-14 Phenorellidae 7 0.0056 RG_LIDSL_0914/2021 RG_LIDSL_HESS-2021-09-1	_			•		
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Lebernicides 3 0.1518 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Sperchonidae 11 0.1538 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Sperchonidae 11 0.1538 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Amelenticae 6 0.1609 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Amelenticae 6 0.1609 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Beatidae 14 0.1939 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Beatidae 14 0.1939 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Deptermental 6 0.04662 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Deptermental 6 0.04662 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Capplidae 30 0.4208 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Capplidae 3 0.1588 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Leburidae 3 0.1588 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Leburidae 3 0.1588 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Remountae 5 7 0.3672 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Remountae 5 7 0.3672 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Remountae 5 7 0.3672 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Remountae 5 7 0.3672 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Remountae 6 0.0161 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Foreidae 6 0.0161 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Foreidae 6 0.0161 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Foreidae 6 0.0163 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Protophytydae 4 0.1664 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Protophytydae 6 0.0163 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Protophytydae 6 0.0163 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Protophythidae 6 0.0164 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Protophythidae 6 0.0164 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Protophythidae 6 0.0164 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Protophythidae 6 0.0164 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Protophythidae 6 0.0034 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Sperchonidae 11 0.1538 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Ostracoda 9 0.1526 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Ostracoda 9 0.1526 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Amheloidae 6 0.1609 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Betidae 14 0.1539 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Betidade 14 0.1539 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Betidade 52 0.1662 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Heptageniidae 50 0.1626 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Capnidae 5 0.1561 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Chloroperidae 3 0.1512 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Chloroperidae 3 0.1512 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Nemouridae 57 0.3872 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Perlocidiae 6 0.161 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Tenenoptropidae 44 0.1563 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Tenenoptropidae 44 0.1563 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Tenenoptropidae 44 0.1563 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Glossosomatidae 14 0.1693 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Rhydropsychidae 8 0.649 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Rhydropsychidae 8 0.649 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Rhydropsychidae 8 0.649 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Rhydropsychidae 8 0.649 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Cereatopogonidae 2 0.1604 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Rhydropsychidae 8 0.649 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Rhydropsychidae 8 0.649 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Rhydropsychidae 9 0.6004 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Rhydropsychidae 9 0.6004 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Rhydropsychidae 12 0.1604 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Rhydropsychidae 12 0.1604 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Rhydropsychi						
RG LIDSL 0.0914/2021 RG LIDSL 0.9144/2021 RG LIDSL LESS-10 2021-09-14 Sperchonide 11 0.1538 RG LIDSL 0.0914/2021 RG LIDSL HESS-10 2021-09-14 Ameleridae 6 0.1609 RG LIDSL 0.0914/2021 RG LIDSL HESS-10 2021-09-14 Beaetidae 14 0.1338 RG LIDSL 0.0914/2021 RG LIDSL HESS-10 2021-09-14 Ephemerellidae 50 0.1662 RG LIDSL 0.0914/2021 RG LIDSL HESS-10 2021-09-14 Ephemerellidae 30 0.1682 RG LIDSL 0.0914/2021 RG LIDSL HESS-10 2021-09-14 Choroperlidae 3 0.1618 RG LIDSL 0.0914/2021 RG LIDSL HESS-10 2021-09-14 Choroperlidae 3 0.1518 RG LIDSL 0.0914/2021 RG LIDSL HESS-10 2021-09-14 Nemouridae 3 0.1512 RG LIDSL 0.0914/2021 RG LIDSL HESS-10 2021-09-14 Periodidae 4 0.1564 RG LIDSL 0.0914/2021 RG LIDSL HESS-10 2021-09-14 Profodidae 4 0.1564 RG LIDSL 0.0914/2021 RG LIDSL HESS-10 2021-09-14 Profodidae 4 0.1662 RG LIDSL 0.0914/2021						
RG_LIDSL 0.9/14/2021 RG_LIDSL_HESS-10_2021-09-14 Ostracode 9 0.1526 RG_LIDSL 0.9/14/2021 RG_LIDSL_HESS-10_2021-09-14 Baetidae 6 0.1609 RG_LIDSL 0.9/14/2021 RG_LIDSL_HESS-10_2021-09-14 Ephremerelidae 5 0.1632 RG_LIDSL 0.9/14/2021 RG_LIDSL_HESS-10_2021-09-14 Heptageniidae 5 0.161 RG_LIDSL 0.9/14/2021 RG_LIDSL_HESS-10_2021-09-14 Heptageniidae 30 0.422 RG_LIDSL 0.9/14/2021 RG_LIDSL_HESS-10_2021-09-14 Chloroperidae 33 0.1612 RG_LIDSL 0.9/14/2021 RG_LIDSL_HESS-10_2021-09-14 Nemouridae 57 0.3872 RG_LIDSL 0.9/14/2021 RG_LIDSL_HESS-10_2021-09-14 Nemouridae 57 0.3872 RG_LIDSL 0.9/14/2021 RG_LIDSL_HESS-10_2021-09-14 Trachoptera 148 0.1564 RG_LIDSL 0.9/14/2021 RG_LIDSL_HESS-10_2021-09-14 Derectoring properties 44 0.1563 RG_LIDSL 0.9/14/2021 RG_LIDSL_HESS-10_2021-09-14						
RG_LIDSL 09914/2021 RG_LIDSL 4 0.1993 RG_LIDSL 09914/2021 RG_LIDSL 1981/2021 RG_LIDSL 14 0.1939 RG_LIDSL 09914/2021 RG_LIDSL 1981/2021 RG_LIDSL 1981/2021 RG_LIDSL 09914/2021 RG_LIDSL 1981/2021 RG_LIDSL 09914/2021 RG_LIDSL 1981/2021 RG_LIDSL 09914/2021 RG_LIDSL 1981/2021 RG_LIDSL RG_LIDSL 1981/2021 1981/2021 RG_LIDSL 1981/2021 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
RG_LIDSL 09914/2021 RG_LIDSL_HESS-10_2021-09-14 Baetidae 14 0.1939 RG_LIDSL 09914/2021 RG_LIDSL_HESS-10_2021-09-14 Ephemerillidae 52 0.1662 RG_LIDSL 09914/2021 RG_LIDSL_HESS-10_2021-09-14 Heptageniidae 300 0.4208 RG_LIDSL 09914/2021 RG_LIDSL_HESS-10_2021-09-14 Caprolidae 5 0.151 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Caprolidae 33 0.1688 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Chloroperiidae 33 0.1688 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Leuctridae 3 0.1512 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Nemouridae 67 0.3872 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Pertodidae 6 0.161 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Trichoptery and 44 0.1564 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Trichoptera 148 0.1563 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Glossosomatidae 14 0.1606 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Hydropsychidae 8 0.649 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Uenotidae 4 0.1566 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Uenotidae 4 0.1566 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Uenotidae 4 0.1566 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Uenotidae 4 0.1566 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Uenotidae 4 0.1566 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Uenotidae 4 0.1566 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Uenotidae 4 0.1566 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Uenotidae 4 0.1566 RG_LIDSL_09914/2021 RG_LIDSL_HESS-10_2021-09-14 Pertodidae 12 0.1643 RG_LIDSL_09914/2021 RG_LIDSL_HESS-2021-09-14 Pertodidae 12 0.1643 RG_LIDSL_HESS-2021-09-14 Pertodidae 12 0.1643 RG_LIDSL_HESS-2021-09-14 Pertodidae 12 0.1643 RG_LIDSL_09914/2021 RG_LIDSL_HESS-2021-09-14 Pertodidae 12 0.1643 RG_LIDSL_09914/2021 RG_LIDSL_HESS					6	
RG_LIDSL 0914/2021 RG_LIDSL LIDSL 14858-10_2021-09-14 Heptagenidae 300 0.4208 RG_LIDSL 0914/2021 RG_LIDSL 16818-1858-10_2021-09-14 Capmidae 5 0.151 RG_LIDSL 0914/2021 RG_LIDSL 16818-1858-10_2021-09-14 Chloroperlidae 33 0.1512 RG_LIDSL 0914/2021 RG_LIDSL 16818-1858-10_2021-09-14 Namoundae 67 0.3872 RG_LIDSL 0914/2021 RG_LIDSL 16818-1858-10_2021-09-14 Namoundae 6 0.161 RG_LIDSL 0914/2021 RG_LIDSL 16818-1858-10_2021-09-14 Trachopterygldae 44 0.1563 RG_LIDSL 0914/2021 RG_LIDSL 16818-185-10_2021-09-14 Trachopterygldae 44 0.1563 RG_LIDSL 0914/2021 RG_LIDSL 1681-185-10_2021-09-14 Glossoomatidae 14 0.1668 RG_LIDSL 0914/2021 RG_LIDSL HESS-10_2021-09-14 Rhycophildae 38 0.5037 RG_LIDSL 0914/2021 RG_LIDSL HESS-10_20	RG_LIDSL		RG_LIDSL_HESS-10_2021-09-14			
RG_LIDSL 0914/2021 RG_LIDSL HESS-10_2021-09-14 Caphildae 5 0.151	_			•		
RG_LIDSL 0914/2021 RG_LIDSL HESS-10_2021-09-14 Chloropentidae 33 0.1688 RG_LIDSL 0914/2021 RG_LIDSL 1985-10_2021-09-14 Leuctridae 3 0.1512 RG_LIDSL 0914/2021 RG_LIDSL 1985-10_2021-09-14 Pertoidae 57 0.3872 RG_LIDSL 0914/2021 RG_LIDSL 1985-10_2021-09-14 Pertoidae 6 0.161 RG_LIDSL 0914/2021 RG_LIDSL 1985-10_2021-09-14 Trichoptera 148 0.1684 RG_LIDSL 1985-10_2021-09-14 Trichoptera 148 0.1693 RG_LIDSL 0914/2021 RG_LIDSL 1985-10_2021-09-14 Glossosomatidae 14 0.1606 RG_LIDSL 0914/2021 RG_LIDSL 1985-10_2021-09-14 Glossosomatidae 14 0.1606 RG_LIDSL 0914/2021 RG_LIDSL 1985-10_2021-09-14 Hydropsychidae 8 0.649 RG_LIDSL 1985-10_2021-09-14 Hydropsychidae 38 0.5037 RG_LIDSL 0914/2021 RG_LIDSL 1985-10_2021-09-14 Hydropsychidae 38 0.5037 RG_LIDSL 0914/2021 RG_LIDSL 1985-10_2021-09-14 Crarotopognidae 23 0.1604 RG_LIDSL 0914/2021 RG_LIDSL 1985-10_2021-09-14 Crarotopognidae 23 0.1604 RG_LIDSL 0914/2021 RG_LIDSL 1985-10_2021-09-14 Empididae 12 0.1643 RG_LIDSL 0914/2021 RG_LIDSL 1985-10_2021-09-14 Empididae 12 0.1643 RG_LIDSL 0914/2021 RG_LIDSL 1985-10_2021-09-14 Peychodidae 7 0.1799 RG_LIDSL 1985-10_2021-09-14 Peychodidae 7 0.1798 RG_LIDSL 0914/2021 RG_LIDSL 1985-10_2021-09-14 Peychodidae 7 0.1798 RG_LIDSL 0914/2021 RG_LIDSL 1985-10_2021-09-14 Peychodidae 7 0.1798 RG_LIDSL 0914/2021 RG_LIDSL 1985-2021-09-14 Peychodidae 7 0.1798 RG_LIDSL 1985-2021-09-14 Peychodidae 7 0.1798 RG_LIDSL 0914/2021 RG_LIDSL 1985-2021-09-14 Peychodidae 7 0.1798 RG_LIDSL 0914/2021 RG_LIDSL 1985-2021-09-14 Peychodidae 7 0.005 RG_LIDSL 0914/2021 RG_LIDSL 1985-2021-09-14 Peychodidae 7 0.005 RG_LIDSL 0914/2021 RG_LIDSL 1985-2021-09-14 Peychodidae 7 0.005 RG_LIDSL 0914/2021 RG_LIDSL 1985-2021-09-14 Peychodidae 7 0.005	_			· ·		
RG_LIDSL 09/14/2021 RG_LIDSL HESS-10_2021-09-14 Leucinidae 3 0.1512 RG_LIDSL 09/14/2021 RG_LIDSL HESS-10_2021-09-14 Nemounidae 57 0.3872 RG_LIDSL 09/14/2021 RG_LIDSL HESS-10_2021-09-14 Periodidae 6 0.161 RG_LIDSL 09/14/2021 RG_LIDSL HESS-10_2021-09-14 Trichoptera 148 0.1584 RG_LIDSL 09/14/2021 RG_LIDSL HESS-10_2021-09-14 Trichoptera 148 0.1698 RG_LIDSL 09/14/2021 RG_LIDSL HESS-10_2021-09-14 Glossosomaidae 14 0.1698 RG_LIDSL 09/14/2021 RG_LIDSL HESS-10_2021-09-14 Hydropsychidae 38 0.669 RG_LIDSL 09/14/2021 RG_LIDSL HESS-10_2021-09-14 Uncidae 4 0.1505 RG_LIDSL 09/14/2021 RG_LIDSL HESS-10_2021-09-14 Chriconomidae 23 0.1604 RG_LIDSL 09/14/2021 RG_LIDSL HESS-10_2021-09-14 Chriconomidae 52 0.2116 RG_LIDSL 09/14/2021 RG_LIDSL HESS-10_2021-09-14 Chriconomidae<	_			•		
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Nemounidae 57 0.3872 RG_LIDSL 09/14/2021 RG_LIDSL ESS-10_2021-09-14 Perfoldae 6 0.161 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Tienhotera 148 0.1564 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Tienhotera 148 0.1693 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Tienhotera 148 0.1693 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Tienhotera 148 0.1606 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Hydropsychidae 8 0.649 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Hydropsychidae 38 0.65037 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Chronomidae 23 0.1604 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Chronomidae 23 0.1604 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Chronomidae 52 0.2116 RG_LIDSL_DISL_HESS-10_2021-09-14 Empididae 12 0.1643 RG_LIDSL_DISL_HESS-10_2021-09-14 Empididae 12 0.1643 RG_LIDSL_DISL_DISL_DISL_DISL_DISL_DISL_DIS	_			•		
RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Taeniopterygidae						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Glossopratidae 14 0.1606 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Glossopratidae 14 0.1606 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Hydropsychidae 8 0.649 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Hydropsychidae 38 0.5037 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Honoidae 4 0.1606 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Honoidae 4 0.1606 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Chironomidae 52 0.2116 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Chironomidae 52 0.2116 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Pelecohryncidae 12 0.1643 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Pelecohryncidae 7 0.1798 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Pelecohryncidae 7 0.1778 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Psychodidae 71 0.1778 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Psychodidae 71 0.1778 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2021-09-14 Nematia 1 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2021-09-14 Nematia 1 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2021-09-14 Lebertiidae 2 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2021-09-14 Lebertiidae 2 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2021-09-14 Lebertiidae 2 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2021-09-14 Sperchonidae 3 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2021-09-14 Sperchonidae 3 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2021-09-14 Sperchonidae 3 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2021-09-14 Reptageniidae 3 0.0002 RG_LIDSL 09/14/2021 R		09/14/2021				
RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Glossosomatidae 1 4 0.649 RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 RHydropsychidae 8 0.649 RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Rhydropsychidae 38 0.5037 RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Uenoidae 23 0.1604 RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Uenoidae 23 0.1604 RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Ceratopogonidae 23 0.1604 RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Chironomidae 52 0.2116 RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Pelecorhyncidae 7 0.1798 RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Pelecorhyncidae 7 0.1778 RG LIDSL 09/14/2021 RG LIDSL HESS-2 2021-09-14 Themat 1 0.0001 RG LIDSL 09/14/2021 RG LIDSL HESS-2 2021-09-14 Lumbric	_					
RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Rypacophilidae 38 0.649						
RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Rhyacophilidae 48 0.5037 RG LIDSL 09/14/2021 RG LIDSL LIDSL HESS-10 2021-09-14 Lenoidae 4 0.1505 RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Ceratopogonidae 23 0.1604 RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Chironomidae 52 0.2116 RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Pelecorhyncidae 7 0.1799 RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Pelecorhyncidae 7 0.1798 RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Pelecorhyncidae 7 0.1798 RG LIDSL 09/14/2021 RG LIDSL HESS-2 2021-09-14 Pelecorhyncidae 7 0.005 RG LIDSL 09/14/2021 RG LIDSL HESS-2 2021-09-14 Nemata 1 0.0001 RG LIDSL 09/14/2021 RG LIDSL HESS-2 2021-09-14 Lombriculdae 6 0.034 RG LIDSL 09/14/2021 RG LIDSL HESS-2 2021-09-14 Sper						
RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Uenoidae 4 0.1505				, , ,		
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Ceratopogonidae 23 0.1604 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Chronopidae 52 0.2116 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Chronopidae 12 0.1643 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Pelecorhyncidae 7 0.1799 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Pelecorhyncidae 7 0.1778 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Psychodidae 71 0.1778 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Tipulidae 2 0.1506 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Planaridae 7 0.0001 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Planaridae 7 0.005 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Lumbriculidae 6 0.034 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Lumbriculidae 2 0.0002 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Lebertiidae 2 0.0002 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Sperchonidae 8 0.0021 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Baetidae 11 0.054 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Baetidae 11 0.054 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ephemerellidae 20 0.0452 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ephemerellidae 365 0.2797 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ephemerellidae 365 0.2797 RG_LIDSL_09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Reptagenidae 365 0.2797 RG_LIDSL_09/14/2021 RG_LIDSL_HESS	_					
RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Pelecorhyncidae 7	_					
RG LIDSL 09/14/2021 RG LIDSL HESS-10 2021-09-14 Pelecorhyncidae 7						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Psychodidae 71 0.1778 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Tipulidae 2 0.1506 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Nemata 1 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Planariidae 7 0.005 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Lumbriculidae 6 0.034 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Lebertiidae 2 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Sperchonidae 8 0.0021 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ostracoda 1 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ephemerellidae 20 0.0452 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Heptagenidae 365 0.2797 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chloroperlidae 1	_			•		
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-10_2021-09-14 Nemata 1 0.0001						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Nemata	_			·		
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Planariidae 7 0.005 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Lumbriculidae 6 0.034 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Lebertiidae 2 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Sperchonidae 8 0.0021 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Destracoda 1 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Baetidae 11 0.054 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Heptageniidae 20 0.0452 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Heptageniidae 365 0.2797 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chloroperiidae 16 0.0226 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Nemouridae 49 0.1935 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Nemouridae <td< td=""><td>_</td><td></td><td></td><td>•</td><td></td><td></td></td<>	_			•		
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Lebertiidae 2 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Sperchonidae 8 0.0021 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Sperchonidae 1 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Baetidae 11 0.054 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ephemerellidae 20 0.0452 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Heptageniidae 365 0.2797 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Heptageniidae 16 0.0226 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Leuctridae 2 0.0017 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Nemouridae 49 0.1935 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Pertodidae 6 0.0755 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Trichoptera <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Sperchonidae 8 0.0021 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ostracoda 1 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Baetidae 11 0.054 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ephemerellidae 20 0.0452 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Heptagenidae 365 0.2797 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chloroperlidae 16 0.0226 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chloroperlidae 2 0.0017 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Nemouridae 49 0.1935 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Nemouridae 49 0.1935 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Taenlopterygidae 60 0.0755 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Apataniidae	RG_LIDSL	09/14/2021	RG_LIDSL_HESS-2_2021-09-14	Lumbriculidae		0.034
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ostracoda 1 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Baetidae 11 0.054 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ephemerellidae 20 0.0452 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Heptageniidae 365 0.2797 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Heptageniidae 16 0.0226 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chloroperlidae 16 0.0226 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Leuctridae 2 0.0017 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Perlodidae 6 0.0755 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Taenoptera 8 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Trichoptera 8 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Apataniidae <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Baetidae 11 0.054 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ephemerellidae 20 0.0452 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Heptagenidae 365 0.2797 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chloroperlidae 16 0.0226 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Leuctridae 2 0.0017 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Nemouridae 49 0.1935 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Nemouridae 6 0.0755 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Tenhoptera 8 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Trichoptera 8 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Glossosomatidae 1 0.0103 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Hydropsychidae				•		
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ephemerellidae 20 0.0452 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Heptageniidae 365 0.2797 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chloroperlidae 16 0.0226 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chloroperlidae 2 0.0017 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Leuctridae 2 0.0017 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Nemouridae 49 0.1935 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Perlodidae 6 0.0755 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Trichoptera 8 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Apataniidae 1 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Glossosmatidae 1 0.0103 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Limrephilidae						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Heptageniidae 365 0.2797 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chloroperiidae 16 0.0226 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Leuctridae 2 0.0017 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Nemouridae 49 0.1935 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Perlodidae 6 0.0755 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Taeniopterygidae 60 0.0091 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Trichoptera 8 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Apataniidae 1 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Glossosomatidae 1 0.0103 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Hydropsychidae 25 1.115 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Limephilidae <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chloroperlidae 16 0.0226 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Leuctridae 2 0.0017 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Nemouridae 49 0.1935 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Periodidae 6 0.0755 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Treinopterygidae 60 0.0091 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Trichoptera 8 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Apatanidae 1 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Glossosomatidae 1 0.0103 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Hydropsychidae 25 1.115 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Limnephilidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Uenoidae						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Nemouridae 49 0.1935 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Perlodidae 6 0.0755 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Taeniopterygidae 60 0.0091 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Trichoptera 8 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Apataniidae 1 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Glossosomatidae 1 0.0103 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Hydropsychidae 25 1.115 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Hydropsychidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Limnephilidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Rhyacophilidae 16 0.1954 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ceratopogonida	RG_LIDSL	09/14/2021	RG_LIDSL_HESS-2_2021-09-14	Chloroperlidae	16	0.0226
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Perlodidae 6 0.0755 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Taeniopterygidae 60 0.0091 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Trichoptera 8 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Apataniidae 1 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Apataniidae 1 0.0103 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Hydropsychidae 25 1.115 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Limnephilidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Uenoidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ceratopogonidae 1 0.0004 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chironomidae 134 0.1889 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Empididae	_					
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Taeniopterygidae 60 0.0091 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Trichoptera 8 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Apataniidae 1 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Glossosomatidae 1 0.0103 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Hydropsychidae 25 1.115 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Limnephilidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Rhyacophilidae 16 0.1954 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Uenoidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ceratopogonidae 1 0.0004 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chironomidae 134 0.1889 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Psychodidae<						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Trichoptera 8 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Apataniidae 1 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Glossosomatidae 1 0.0103 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Hydropsychidae 25 1.115 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Limnephilidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Rhyacophilidae 16 0.1954 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Uenoidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ceratopogonidae 1 0.0004 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chironomidae 134 0.1889 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Empididae 8 0.0148 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Psychodidae						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Apataniidae 1 0.0008 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Glossosomatidae 1 0.0103 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Hydropsychidae 25 1.115 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Limnephilidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Rhyacophilidae 16 0.1954 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Uenoidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ceratopogonidae 1 0.0004 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chironomidae 134 0.1889 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Empididae 8 0.0188 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Psychodidae 79 0.0343 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Tipulidae						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Glossosomatidae 1 0.0103 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Hydropsychidae 25 1.115 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Limnephilidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Rhyacophilidae 16 0.1954 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Uenoidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ceratopogonidae 1 0.0004 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chironomidae 134 0.1889 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Empididae 8 0.0188 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Psychodidae 79 0.0343 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Tipulidae 1 0.0055 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Tipulidae						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Limnephilidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Rhyacophilidae 16 0.1954 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Uenoidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ceratopogonidae 1 0.0004 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chironomidae 134 0.1889 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Empididae 8 0.0188 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Psychodidae 79 0.0343 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Simuliidae 1 0.0055 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Tipulidae 5 0.0116 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lumbriculidae 4 0.0386 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lebertiidae <t< td=""><td>RG_LIDSL</td><td>09/14/2021</td><td>RG_LIDSL_HESS-2_2021-09-14</td><td></td><td>1</td><td>0.0103</td></t<>	RG_LIDSL	09/14/2021	RG_LIDSL_HESS-2_2021-09-14		1	0.0103
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Rhyacophilidae 16 0.1954 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Uenoidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ceratopogonidae 1 0.0004 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chironomidae 134 0.1889 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Empididae 8 0.0188 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Psychodidae 79 0.0343 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Simuliidae 1 0.0055 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Tipulidae 5 0.0116 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Planariidae 7 0.0202 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lumbriculidae 4 0.0386 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Sperchonidae <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Uenoidae 2 0.0001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ceratopogonidae 1 0.0004 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chironomidae 134 0.1889 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Empididae 8 0.0188 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Psychodidae 79 0.0343 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Simuliidae 1 0.0055 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Tipulidae 5 0.0116 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Planariidae 7 0.0202 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lumbriculidae 4 0.0386 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Sperchonidae 1 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Sperchonidae 1<				·		
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Ceratopogonidae 1 0.0004 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chironomidae 134 0.1889 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Empididae 8 0.0188 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Psychodidae 79 0.0343 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Simuliidae 1 0.0055 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Tipulidae 5 0.0116 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Planariidae 7 0.0202 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lumbriculidae 4 0.0386 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lebertiidae 3 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Sperchonidae 1 0.0022 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Ostracoda 16						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Chironomidae 134 0.1889 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Empididae 8 0.0188 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Psychodidae 79 0.0343 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Simuliidae 1 0.0055 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Tipulidae 5 0.0116 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Planariidae 7 0.0202 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lumbriculidae 4 0.0386 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lebertiidae 3 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Sperchonidae 1 0.0022 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Ostracoda 16 0.0068 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Elmidae 1						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Empididae 8 0.0188 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Psychodidae 79 0.0343 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Simuliidae 1 0.0055 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Tipulidae 5 0.0116 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Planariidae 7 0.0202 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lumbriculidae 4 0.0386 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lebertiidae 3 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Sperchonidae 1 0.0022 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Ostracoda 16 0.0068 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Elmidae 1 0.0032					•	
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Simuliidae 1 0.0055 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Tipulidae 5 0.0116 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Planariidae 7 0.0202 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lumbriculidae 4 0.0386 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lebertiidae 3 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Sperchonidae 1 0.0022 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Ostracoda 16 0.0068 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Elmidae 1 0.0032	RG_LIDSL		RG_LIDSL_HESS-2_2021-09-14	Empididae		
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-2_2021-09-14 Tipulidae 5 0.0116 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Planariidae 7 0.0202 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lumbriculidae 4 0.0386 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lebertiidae 3 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Sperchonidae 1 0.0022 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Ostracoda 16 0.0068 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Elmidae 1 0.0032						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Planariidae 7 0.0202 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lumbriculidae 4 0.0386 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lebertiidae 3 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Sperchonidae 1 0.0022 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Ostracoda 16 0.0068 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Elmidae 1 0.0032						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lumbriculidae 4 0.0386 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lebertiidae 3 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Sperchonidae 1 0.0022 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Ostracoda 16 0.0068 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Elmidae 1 0.0032				•		
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Lebertiidae 3 0.0002 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Sperchonidae 1 0.0022 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Ostracoda 16 0.0068 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Elmidae 1 0.0032						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Sperchonidae 1 0.0022 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Ostracoda 16 0.0068 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Elmidae 1 0.0032						
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Elmidae 1 0.0032	RG_LIDSL				1	
KG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Ameletidae 4 0.0028						
	_					
RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Baetidae 1 0.001 RG_LIDSL 09/14/2021 RG_LIDSL_HESS-3_2021-09-14 Ephemerellidae 18 0.082						

RG_LIDSL		Sample ID	Taxa	Count	Total Biomass
INO_LIDOL	09/14/2021	RG_LIDSL_HESS-3_2021-09-14	Heptageniidae	256	0.2706
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-3_2021-09-14	Capniidae	3	0.0008
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-3_2021-09-14	Chloroperlidae	22	0.0948
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-3_2021-09-14 RG_LIDSL_HESS-3_2021-09-14	Leuctridae Nemouridae	21 17	0.034 0.0716
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-3_2021-09-14	Perlodidae	3	0.0904
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-3_2021-09-14	Taeniopterygidae	58	0.0154
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-3_2021-09-14	Trichoptera	2	0.0002
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-3_2021-09-14	Glossosomatidae	1	0.0002
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-3_2021-09-14	Hydropsychidae	12	0.9768
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-3_2021-09-14 RG_LIDSL_HESS-3_2021-09-14	Rhyacophilidae Uenoidae	10	0.166 0.0002
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-3_2021-09-14	Ceratopogonidae	5	0.0002
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-3_2021-09-14	Chironomidae	63	0.1606
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-3_2021-09-14	Empididae	10	0.036
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-3_2021-09-14	Pelecorhyncidae	3	0.0174
RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-3_2021-09-14	Psychodidae	131	0.101
RG_LIDSL RG_LIDSL	09/14/2021	RG_LIDSL_HESS-3_2021-09-14 RG_LIDSL_HESS-4_2021-09-14	Tipulidae Nemata	18 1	0.775 0.0002
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Planariidae	6	0.0109
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Lumbriculidae	8	0.025
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Lebertiidae	2	0.0012
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Sperchonidae	1	0.0006
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Ostracoda	16	0.0042
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-4_2021-09-14 RG_LIDSL_HESS-4_2021-09-14	Ameletidae Baetidae	16 16	0.0276 0.0788
RG_LIDSL RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14 RG_LIDSL_HESS-4_2021-09-14	Ephemerellidae	24	0.0788
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Heptageniidae	257	0.0123
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Chloroperlidae	68	0.0766
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Leuctridae	19	0.0105
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Nemouridae	26	0.098
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Perlodidae	2	0.0182
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-4_2021-09-14 RG_LIDSL_HESS-4_2021-09-14	Taeniopterygidae Apataniidae	52 1	0.0102 0.0026
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Glossosomatidae	10	0.0020
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Hydropsychidae	4	0.3647
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Limnephilidae	3	0.0089
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Rhyacophilidae	25	0.1069
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Uenoidae	9 48	0.0007
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-4_2021-09-14 RG_LIDSL_HESS-4_2021-09-14	Chironomidae Empididae	24	0.0509 0.1708
RG_LIDSL	09/14/2021	RG LIDSL HESS-4 2021-09-14	Psychodidae	84	0.0261
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-4_2021-09-14	Tipulidae	3	0.0099
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Nemata	1	0.0001
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Planariidae	4	0.0063
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Lumbriculidae	7	0.0275
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-5_2021-09-14 RG_LIDSL_HESS-5_2021-09-14	Lebertiidae Sperchonidae	3 15	0.0002 0.0035
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Ostracoda	4	0.0009
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Baetidae	7	0.0023
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Ephemerellidae	14	0.0147
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Heptageniidae	117	0.0839
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Chloroperlidae	13	0.0397
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-5_2021-09-14 RG_LIDSL_HESS-5_2021-09-14	Leuctridae Nemouridae	14 31	0.0108 0.1138
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Perlodidae	2	0.0246
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Taeniopterygidae	13	0.0008
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Trichoptera	26	0.0006
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Brachycentridae	5	0.0009
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-5_2021-09-14 RG_LIDSL_HESS-5_2021-09-14	Hydropsychidae	28 1	0.4127 0.0002
RG_LIDSL RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14 RG_LIDSL_HESS-5_2021-09-14	Hydroptilidae Rhyacophilidae	34	0.0002
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Uenoidae	9	0.0004
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Chironomidae	55	0.0359
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Empididae	6	0.0094
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14	Pelecorhyncidae	7	0.0675
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-5_2021-09-14 RG_LIDSL_HESS-5_2021-09-14	Psychodidae Simuliidae	51 2	0.021 0.0058
RG_LIDSL RG_LIDSL	09/14/2021	RG_LIDSL_HESS-5_2021-09-14 RG_LIDSL_HESS-6_2021-09-14	Nemata	3	0.0058
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Planariidae	15	0.0612
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Lumbriculidae	12	0.1138
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Lebertiidae	1	0.0008
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Sperchonidae	6	0.0044
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-6_2021-09-14 RG_LIDSL_HESS-6_2021-09-14	Ostracoda Elmidae	10	0.007 0.002
RG_LIDSL RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14 RG_LIDSL_HESS-6_2021-09-14	Ameletidae	4	0.002
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Baetidae	18	0.1826
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Ephemerellidae	24	0.13
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Heptageniidae	257	0.2356
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Capniidae	1	0.0004
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Chloroperlidae Leuctridae	18 18	0.076 0.0154
RG_LIDSL RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14 RG_LIDSL_HESS-6_2021-09-14	Nemouridae	26	0.0154
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Perlodidae	6	0.083
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Taeniopterygidae	39	0.0154
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Trichoptera	8	0.0008

Area	Date	Sample ID	Taxa	Count	Total Biomass
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Apataniidae	1	0.0002
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Brachycentridae	2	0.0002
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Glossosomatidae	3	0.0304
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-6_2021-09-14 RG_LIDSL_HESS-6_2021-09-14	Hydropsychidae Rhyacophilidae	11 16	1.0602 0.1844
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Uenoidae	1	0.0002
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Ceratopogonidae	1	0.0004
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Chironomidae	132	0.634
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-6_2021-09-14 RG_LIDSL_HESS-6_2021-09-14	Empididae Psychodidae	11 26	0.0482 0.013
RG LIDSL	09/14/2021	RG_LIDSL_HESS-6_2021-09-14	Tipulidae	11	0.5404
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Nemata	1	0.0007
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Planariidae	14	0.0168
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-7_2021-09-14 RG_LIDSL_HESS-7_2021-09-14	Lumbriculidae Lebertiidae	11 4	0.0606 0.0008
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Sperchonidae	2	0.0008
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Ostracoda	6	0.0013
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Ameletidae	2	0.0018
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-7_2021-09-14 RG_LIDSL_HESS-7_2021-09-14	Baetidae Ephemerellidae	11 35	0.0579 0.064
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Heptageniidae	405	0.2047
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Capniidae	5	0.0034
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Chloroperlidae	43	0.0555
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Leuctridae	6	0.0034
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-7_2021-09-14 RG_LIDSL_HESS-7_2021-09-14	Nemouridae Perlodidae	45 21	0.1563 0.0944
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Taeniopterygidae	61	0.015
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Trichoptera	11	0.0032
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Apataniidae	6	0.0025
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-7_2021-09-14 RG_LIDSL_HESS-7_2021-09-14	Glossosomatidae Hydropsychidae	3 5	0.0063 0.5667
RG_LIDSL RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14 RG_LIDSL_HESS-7_2021-09-14	Rhyacophilidae	45	0.5667
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Uenoidae	3	0.0003
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Ceratopogonidae	4	0.0017
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Chironomidae	45	0.0648
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-7_2021-09-14 RG_LIDSL_HESS-7_2021-09-14	Empididae Pelecorhyncidae	3	0.0048 0.0219
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Psychodidae	74	0.0213
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Simuliidae	1	0.0038
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-7_2021-09-14	Tipulidae	8	0.2526
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-8_2021-09-14 RG_LIDSL_HESS-8_2021-09-14	Nemata Planariidae	1 22	0.0001 0.0306
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-8_2021-09-14	Lumbriculidae	20	0.0587
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-8_2021-09-14	Lebertiidae	2	0.0002
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-8_2021-09-14	Sperchonidae	5	0.0016
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-8_2021-09-14 RG_LIDSL_HESS-8_2021-09-14	Ostracoda Elmidae	33 2	0.0068 0.001
RG LIDSL	09/14/2021	RG_LIDSL_HESS-8_2021-09-14	Ameletidae	5	0.001
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-8_2021-09-14	Baetidae	14	0.0528
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-8_2021-09-14	Ephemerellidae	10	0.0053
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-8_2021-09-14 RG_LIDSL_HESS-8_2021-09-14	Heptageniidae Chloroperlidae	137 9	0.083 0.0154
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-8_2021-09-14	Leuctridae	8	0.0154
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-8_2021-09-14	Nemouridae	24	0.0581
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-8_2021-09-14	Perlodidae	4	0.0249
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-8_2021-09-14	Taeniopterygidae	12	0.0016
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-8_2021-09-14 RG_LIDSL_HESS-8_2021-09-14	Trichoptera Glossosomatidae	6	0.0001 0.0003
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-8_2021-09-14	Hydropsychidae	12	0.3421
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-8_2021-09-14	Rhyacophilidae	55	0.1331
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-8_2021-09-14	Chironomidae	43	0.0954
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-8_2021-09-14 RG_LIDSL_HESS-8_2021-09-14	Empididae Pelecorhyncidae	3	0.0047 0.004
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-8_2021-09-14	Psychodidae	17	0.004
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-8_2021-09-14	Tipulidae	2	0.0034
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-9_2021-09-14	Nemata	1	0.0001
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-9_2021-09-14 RG_LIDSL_HESS-9_2021-09-14	Planariidae Lumbriculidae	7 29	0.0089 0.1137
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-9_2021-09-14	Lebertiidae	3	0.0008
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-9_2021-09-14	Sperchonidae	3	0.0024
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-9_2021-09-14	Ostracoda	9	0.0025
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-9_2021-09-14 RG_LIDSL_HESS-9_2021-09-14	Baetidae Ephemerellidae	10 28	0.0413 0.0708
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-9_2021-09-14	Heptageniidae	218	0.1854
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-9_2021-09-14	Capniidae	3	0.0014
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-9_2021-09-14	Chloroperlidae	31	0.0626
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-9_2021-09-14 RG_LIDSL_HESS-9_2021-09-14	Leuctridae Nemouridae	14 37	0.0142 0.1636
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-9_2021-09-14	Perlodidae	4	0.1636
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-9_2021-09-14	Taeniopterygidae	34	0.0076
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-9_2021-09-14	Trichoptera	8	0.0005
RG_LIDSL RG_LIDSL	09/14/2021 09/14/2021	RG_LIDSL_HESS-9_2021-09-14 RG_LIDSL_HESS-9_2021-09-14	Glossosomatidae Hydropsychidae	9 23	0.0512 0.9071
RG_LIDSL RG_LIDSL	09/14/2021	RG_LIDSL_HESS-9_2021-09-14 RG_LIDSL_HESS-9_2021-09-14	Rhyacophilidae	47	0.9071
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-9_2021-09-14	Ceratopogonidae	3	0.0016
RG_LIDSL	09/14/2021	RG_LIDSL_HESS-9_2021-09-14	Chironomidae	60	0.0762

NO USS 084142021 NO USS NESS-9 2014-09-14 Empidide 12 0.0221	Area	Date	Sample ID	Taxa	Count	Total Biomass
SG LIDSS Best 200201 RG LIDSS HESSE 2001-091-14 Psychocistics 43 0.0144 RG LIDSS HESSE 2001-091-14 Tsylonible 7 0.0104 RG LIDSS HESSE 2001-091-10 Septento-crosse 22 0.172 RG LIDSS HESSE 2001-091-10 Septento-crosse 22 0.172 RG LIDSS HESSE 2001-091-10 Septento-crosse 22 0.172 RG LIDSS HESSE 2001-091-10 Septento-crosse 22 0.172 RG LIDSS HESSE 2001-091-10 Septento-crosse 22 0.172 RG LIDSS HESSE 2001-091-10 Septento-crosse 22 0.172 RG LIDSS HESSE 2001-091-10 Septento-crosse 23 0.1048 RG LIDSS HESSE 2001-091-10 Septento-crosse 23 0.0106 RG LIDSS HESSE 2001-091-10 Septento-crosse 23 0.0106 RG LIDSS HESSE 2001-091-10 Septento-crosse 23 0.006 RG LIDSS HESSE 2001-091-10 Memoricale 13 0.006 RG LIDSS HESSE 2001-091-10 Memoricale 14 0.006 RG LIDSS HESSE 2001-091-10 Memoricale 14 0.006 RG LIDSS HESSE 2001-091-10 Memoricale 14 0.006 RG LIDSS HESSE 2001-091-10 Memoricale 14 0.006 RG LIDSS HESSE 2001-091-10 Memoricale 14 0.006 RG LIDSS HESSE 2001-091-10 Memoricale 14 0.006 RG LIDSS HESSE 2001-091-10 Memoricale 14 0.006 RG LIDSS HESSE 2001-091-10 Memoricale 14 0.006 RG LIDSS HESSE 2001-091-10 Memoricale 14 0.006 RG LIDSS HESSE 2001-091-10 Memoricale 14 0.006 RG LIDSS HESSE 2001-091-10 Memoricale 14 0.006 RG LIDSS HESSE 2001-091-10 Memoricale 14 0.006 RG LIDSS HESSE 2001-091-10 Memoricale 14 0.006 RG LIDSS HESSE 2001-091-10 Memoricale 14 0.006 RG LIDSS HESSE 2001-091-10 RG LIDSS HESSE 2001-091-10 RG LIDSS HESSE 2001-091-10 RG LIDSS HESSE 2001-091-10			-			
GLUDIS 094-02021 NG LUDIS NESS-9 2021-09-14 Simulation 2	_			.		
RG LICS 8941-02021 RG LICS HESS-1201-09-14 Populate 7	_					
RG LLC3 09r1002021 RG LLC3 R8S-1 2021-09-10 Nemate 18 0.024 RG LLC3 09r1002021 RG LLC3 R8S-1 2021-09-10 Spectronithe 21 0.1148 RG LLC3 R8S-1 2021-09-10 Spectronithe 22 0.1148 RG LLC3 R8S-1 2021-09-10 Spectronithe 23 0.1148 RG LLC3 R8S-1 2021-09-10 Spectronithe 23 0.1148 RG LLC3 RSS-1 2021-09-10 RG LLC3 RG LLC3 RSS-1 2021-09-10 RG LLC3 RSS-1 2021-09-1						
RG_LLC3				· · · · · · · · · · · · · · · · · · ·		
RG_LLC3 09/10/2021 RG_LLC3_HESS-1_202(1-0)-10 Detection	_					
RG_LILC3				<u> </u>		
RG LILC3						
RG LLC3						
RG_LLC3 09/10/2012 RG_LLC3_HESS-1_202(1-0)-10 Periodicise 4 0.2624 RG_LLC3 09/10/2012 RG_LLC3_HESS-1_202(1-0)-10 Hydropsychidus 0 1.00032 RG_LLC3 09/10/2012 RG_LLC3_HESS-1_202(1-0)-10 Hydropsychidus 1 0.00032 RG_LLC3 09/10/2012 RG_LLC3_HESS-1_202(1-0)-10 Hydropsychidus 2 0.4146 RG_LLC3 09/10/2012 RG_LLC3_HESS-1_202(1-0)-10 Erroridicise 3 0.00034 RG_LLC3 09/10/2012 RG_LLC3_HESS-1_202(1-0)-10 Erroridicise 3 0.00034 RG_LLC3 09/10/2012 RG_LLC3_HESS-1_202(1-0)-10 Erroridicise 3 0.00034 RG_LLC3 09/10/2012 RG_LLC3_HESS-1_202(1-0)-10 Production 3 0.00034 RG_LLC3 09/10/2012 RG_LLC3_HESS-1_202(1-0)-10 Production 4 0.00036 RG_LLC3 09/10/2012 RG_LLC3_HESS-1_202(1-0)-10 Production 4 0.00036 RG_LLC3 09/10/2012 RG_LLC3_HESS-1_202(1-0)-10 Production 4 0.00036 RG_LLC3 09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Production 4 0.00036 RG_LLC3 09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Production 4 0.00036 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Production 4 0.00036 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Production 4 0.00036 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Resetting 4 0.0004 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Resetting 4 0.0004 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Resetting 4 0.0004 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Resetting 4 0.0004 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Resetting 4 0.0004 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Resetting 4 0.0004 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Resetting 4 0.0004 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Resetting 4 0.0004 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Resetting 4 0.0004 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Resetting 4 0.0004 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Resetting 4 0.0004 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Resetting 4 0.0004 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Resetting 4 0.0004 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Resetting 4 0.0004 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Resetting 4 0.0004 RG_LLC3_09/15/2012 RG_LLC3_HESS-1_202(1-0)-10 Res	RG_LILC3		RG_LILC3_HESS-1_2021-09-10	Chloroperlidae	-	
RG_LIC3						
RG_LLC3						
RG_LILC3						
RG LLC3 09/19/2021 RG LLC3 HESS-1 2021-90-10	RG_LILC3		RG_LILC3_HESS-1_2021-09-10	Rhyacophilidae		
RG_LILC3						
RG_LILC3				•		
RC_LILC3	_					
RG_LILC3	RG_LILC3		RG_LILC3_HESS-10_2021-09-10			
RG_LILC3	_					
RG_LILC3 99/15/2021 RG_LILC3 RESS-10_2021-09-10 Detaroctida 167 0.3472 RG_LILC3 99/15/2021 RG_LILC3 RESS-10_2021-09-10 Ephemerelidae 1 0.0144 RG_LILC3 99/15/2021 RG_LILC3 RESS-10_2021-09-10 Ephemerelidae 1 0.0144 RG_LILC3 99/15/2021 RG_LILC3 RESS-10_2021-09-10 Chloroportidae 1 0.0228 RG_LILC3 99/15/2021 RG_LILC3 RESS-10_2021-09-10 Chloroportidae 1 0.0228 RG_LILC3 99/15/2021 RG_LILC3 RESS-10_2021-09-10 Namouridae 6 0.2228 RG_LILC3 99/15/2021 RG_LILC3 RESS-10_2021-09-10 Perfodidae 4 0.1048 RG_LILC3 99/15/2021 RG_LILC3 RESS-10_2021-09-10 Perfodidae 2 0.0032 RG_LILC3 RESS-10_2021-09-10 Perfodidae 2 0.0032 RG_LILC3 RESS-10_2021-09-10 Perfodidae 2 0.0032 RG_LILC3 RESS-10_2021-09-10 Perfodidae 2 0.0032 RG_LILC3 RESS-10_2021-09-10 Perfodidae 2 0.0032 RG_LILC3 RESS-10_2021-09-10 Perfodidae 2 0.0032 RG_LILC3 RESS-10_2021-09-10 Perfodidae 2 0.0032 RG_LILC3 RESS-10_2021-09-10 Perfodidae 2 0.0032 RG_LILC3 PESS-10_2021-09-10 Perfodidae 2 0.0032 RG_LILC3 RG_LILC3 RESS-10_2021-09-10 Perfodidae 2 0.0032 RG_LILC3 RESS-10_2021-09-10 Perfodidae 2 0.0033 RG_LILC3 RESS-10_2021-09-10 Perfodidae 2 0.0033 RG_LILC3 RESS-10_2021-09-10 Perfodidae 2 0.0033 RG_LILC3 RESS-10_2021-09-10 Perfodidae 2 0.0034 RG_LILC3 RESS-10_2021-09-10 Perfodidae 2 0.0034 RG_LILC3 RESS-10_2021-09-10 Perfodidae 2 0.0034 RG_LILC3 RG_LILC3 RESS-2021-09-10 Reprodudae 1 0.006 RG_LILC3 RG_LILC3 RESS-2021-09-10 Reprodudae 2 0.0034 RG_LILC3 RG_LILC3 RESS-2021-09-10 Reprodudae 2 0.0064 RG_LILC3 RG_LILC3 RESS-2021-09-10 Reprodudae 3 0.1066 RG_LILC3 RG_LILC3 RESS-20						
RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Baeidae 19 0.0064 RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Hoptogenidae 1 0.0144 RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Hoptogenidae 2 0.0064 RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Hoptogenidae 11 0.2928 RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Nemouridae 6 0.2288 RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Hydropsychidae 2 0.2775 RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Hydropsychidae 2 0.2775 RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Hydropsychidae 2 0.2775 RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Hydropsychidae 2 0.2775 RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Rhyacophilidae 3 0.3199 RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Hydropsychidae 3 0.3199 RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Phytra 1 0.0001 RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Dyptara 1 0.0001 RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Dyptara 1 0.0001 RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Psychodidae 4 4.0004 RG LILC3 99/15/2021 RG LILC3 HESS-10 2021-09-10 Psychodidae 1 0.0006 RG LILC3 99/15/2021 RG LILC3 HESS-2 0221-09-10 Psychodidae 1 0.0006 RG LILC3 99/15/2021 RG LILC3 HESS-2 2021-09-10 Psychodidae 1 0.0006 RG LILC3 99/15/2021 RG LILC3 HESS-2 2021-09-10 Psychodidae 1 0.0006 RG LILC3 99/15/2021 RG LILC3 HESS-2 2021-09-10 Psychodidae 1 0.0006 RG LILC3 99/15/2021 RG LILC3 HESS-2 2021-09-10 Psychodidae 2 0.0006 RG LILC3 99/15/2021 RG LILC3 HESS-2 2021-09-10 Psychodidae 3 0.1888 RG LILC3 99/15/2021 RG LILC3 HESS-2 2021-09-10 Baeidae 3 0.1888 RG LILC3 99/15/2021 RG LILC3 HESS-2 2021-09-10 Psychodidae 2 0.0006 RG LILC3 99/15/2021 RG LILC3 HESS-2 2021-09-10 Psychodidae 4 0.0006 RG LILC3 99/15/2021 RG LILC3 HESS-2 2021-09-10 Hydropsychidae 4 0.0006 RG LILC3 99/15/2021 RG LILC3 HESS-2 2021-09-10 Hydropsychidae 1 0.0006 RG LILC3 99/15/2021 RG LILC3 HESS-2 2021-09-10 Hydropsychidae 1 0.0006 RG LILC3 99/15/2021 RG LILC3 HESS-2 2021-09-10 Hydropsychidae 1 0.0006 RG LILC3 99/15/2021 RG LILC3 HESS-2 2021-09-1						
RG LILC3 9915/2021 RG LILC3 RESS-10 2021-09-10 Hoptogeniidae 2 0.0064 RG LILC3 9915/2021 RG LILC3 RESS-10 2021-09-10 Nemouridae 6 0.2288 RG LILC3 9915/2021 RG LILC3 RESS-10 2021-09-10 Nemouridae 4 0.1048 RG LILC3 9915/2021 RG LILC3 RESS-10 2021-09-10 Hydropsychidae 2 0.2775 RG LILC3 MESS-10 2021-09-10 Hydropsychidae 2 0.2775 RG LILC3 MESS-10 2021-09-10 Hydropsychidae 2 0.0032 RG LILC3 MESS-10 2021-09-10 Rhyacophilidae 3 0.3199 RG LILC3 9915/2021 RG LILC3 RESS-10 2021-09-10 Rhyacophilidae 3 0.3199 RG LILC3 9915/2021 RG LILC3 RESS-10 2021-09-10 Rhyacophilidae 4 2 2.0033 RG LILC3 MESS-10 2021-09-10 Roy LILC3 MESS-2021 RG LILC3 MESS-10 2021-09-10 Roy LILC3 MESS-2021 RG LILC3 MESS-10 2021-09-10 Empiridae 2 0.0336 RG LILC3 MESS-2021 RG LILC3 MESS-2021-09-10 Empiridae 2 0.0336 RG LILC3 MESS-2021-09-10 RG LILC3 MES	RG_LILC3	09/15/2021	RG_LILC3_HESS-10_2021-09-10	Baetidae	19	0.3064
RG_LILC3 09/15/2021 RG_LILC3 RESS-10 / 2021-09-10 Cnicropertidae 11 0.2928 RG_LILC3 09/15/2021 RG_LILC3 HESS-10 / 2021-09-10 Perfodidae 4 0.1048 RG_LILC3 09/15/2021 RG_LILC3 HESS-10 / 2021-09-10 Perfodidae 4 0.1048 RG_LILC3 09/15/2021 RG_LILC3 HESS-10 / 2021-09-10 Limnophilidae 2 0.0032 RG_LILC3 HESS-10 / 2021-09-10 Limnophilidae 2 0.0032 RG_LILC3 HESS-10 / 2021-09-10 Limnophilidae 3 0.3199 RG_LILC3 09/15/2021 RG_LILC3 HESS-10 / 2021-09-10 Rhyacophilidae 4 2.7128 RG_LILC3 09/15/2021 RG_LILC3 HESS-10 / 2021-09-10 Rhyacophilidae 4 2.7128 RG_LILC3 09/15/2021 RG_LILC3 HESS-10 / 2021-09-10 Diptera 1 0.004 RG_LILC3 09/15/2021 RG_LILC3 HESS-10 / 2021-09-10 Empididae 2 0.0336 RG_LILC3 09/15/2021 RG_LILC3 HESS-10 / 2021-09-10 Psychodidae 1 0.0032 RG_LILC3 HESS-10 / 2021-09-10 Psychodidae 1 0.0032 RG_LILC3 HESS-2 / 2021-09-10 Psychodidae 1 0.0032 RG_LILC3 09/10/2021 RG_LILC3 HESS-2 / 2021-09-10 Plenaridae 1 0.006 RG_LILC3 09/10/2021 RG_LILC3 HESS-2 / 2021-09-10 Plenaridae 1 0.006 RG_LILC3 09/10/2021 RG_LILC3 HESS-2 / 2021-09-10 Plenaridae 1 0.006 RG_LILC3 09/10/2021 RG_LILC3 HESS-2 / 2021-09-10 Plenaridae 1 0.006 RG_LILC3 09/10/2021 RG_LILC3 HESS-2 / 2021-09-10 Plenaridae 1 0.006 RG_LILC3 09/10/2021 RG_LILC3 HESS-2 / 2021-09-10 Plenaridae 2 0.0096 RG_LILC3 09/10/2021 RG_LILC3 HESS-2 / 2021-09-10 Plenaridae 2 0.0096 RG_LILC3 RG_LILC3 HESS-2 / 2021-09-10 Preprodidae 2 0.0096 RG_LILC3 09/10/2021 RG_LILC3 HESS-2 / 2021-09-10 Preprodidae 2 0.0096 RG_LILC3 09/10/2021 RG_LILC3 HESS-2 / 2021-09-10 Preprodidae 2 0.0096 RG_LILC3 09/10/2021 RG_LILC3 HESS-2 / 2021-09-10 Reprodidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3 HESS-2 / 2021-09-10 Reprincipale 2 0.0096 RG_LILC3 RG_LILC3 HESS-2 / 2021-09-10 Re						
RG_LILC3 09415/2021 RG_LIC3_HESS-10_2021-09-10 Nemouridae 6 0.2288 RG_LILC3 09415/2021 RG_LIC3_HESS-10_2021-09-10 Hydropsychiidae 2 0.2775 RG_LILC3 09415/2021 RG_LIC3_HESS-10_2021-09-10 Hydropsychiidae 2 0.0032 RG_LILC3 09415/2021 RG_LIC3_HESS-10_2021-09-10 Rhyacophilidae 2 0.0032 RG_LILC3 09415/2021 RG_LIC3_HESS-10_2021-09-10 Rhyacophilidae 4 2.7128 RG_LILC3 09415/2021 RG_LIC3_HESS-10_2021-09-10 Diptera 1 0.004 RG_LILC3 09415/2021 RG_LIC3_HESS-10_2021-09-10 Diptera 1 0.004 RG_LILC3 09415/2021 RG_LIC3_HESS-10_2021-09-10 Diptera 1 0.004 RG_LILC3 09416/2021 RG_LIC3_HESS-10_2021-09-10 Dempitidae 2 0.0336 RG_LILC3 09410/2021 RG_LIC3_HESS-10_2021-09-10 Nemata 3 0.0024 RG_LIC3 09410/2021 RG_LIC3_HESS-10_2021-09-10 Nemata 3 0	_					
RG_LILC3	_					
RG_LILC3 09415/2021 RG_LIC3_HESS-10_2021-09-10 Limnephilidee 2 0.0032 RG_LILC3 09415/2021 RG_LILC3_HESS-10_2021-09-10 Rivyacophilidee 4 2.7128 RG_LILC3 09415/2021 RG_LILC3_HESS-10_2021-09-10 Diptera 1 0.004 RG_LILC3 09415/2021 RG_LILC3_HESS-10_2021-09-10 Chironomidae 488 4.7376 RG_LILC3 09415/2021 RG_LIC3_HESS-10_2021-09-10 Chironomidae 488 4.7376 RG_LILC3 09415/2021 RG_LIC3_HESS-10_2021-09-10 Psychodidae 1 0.0032 RG_LILC3 09415/2021 RG_LIC3_HESS-10_2021-09-10 Psychodidae 1 0.0032 RG_LILC3 09410/2021 RG_LIC3_HESS-2_2021-09-10 Psychodidae 1 0.0032 RG_LILC3 09410/2021 RG_LIC3_HESS-2_2021-09-10 Psper honidae 24 0.0584 RG_LILC3 09410/2021 RG_LIC3_HESS-2_2021-09-10 Sper chonidae 24 0.0584 RG_LILC3 09410/2021 RG_LIC3_HESS-2_2021-09-10 Psper phemerillidee <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
RG_LILC3 09/15/2021 RG_LIC3_HESS-10_2021-09-10 Rhyacophilidae 4 2.7128 RG_LILC3 09/15/2021 RG_LIC3_HESS-10_2021-09-10 Diptera 1 0.004 RG_LILC3 09/15/2021 RG_LIC3_HESS-10_2021-09-10 Diptera 1 0.004 RG_LILC3 09/15/2021 RG_LIC3_HESS-10_2021-09-10 Chironomidae 458 4.7376 RG_LILC3 09/15/2021 RG_LIC3_HESS-10_2021-09-10 Chironomidae 458 4.7376 RG_LIC3 09/15/2021 RG_LIC3_HESS-2021-09-10 Empididae 2 0.0336 RG_LIC3 09/10/2021 RG_LIC3_HESS-2021-09-10 Nemata 3 0.0024 RG_LIC3 09/10/2021 RG_LIC3_HESS-2021-09-10 Lebertidae 1 0.006 RG_LIC3 09/10/2021 RG_LIC3_HESS-2021-09-10 Ostracoda 94 0.1008 RG_LIC3 09/10/2021 RG_LIC3_HESS-2021-09-10 Ostracoda 94 0.1008 RG_LIC3 09/10/2021 RG_LIC3_HESS-2021-09-10 Depterationidae 2 0.006 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
RG LILC3 09/15/2021 RG LILC3 HESS-10 2021-09-10 Rhyacophilidae 4 2.7128 RG LILC3 09/15/2021 RG LILC3 HESS-10 2021-09-10 Diptera 1 0.004 RG LILC3 09/15/2021 RG LILC3 HESS-10 2021-09-10 Chironomidae 458 4.7376 RG LILC3 09/15/2021 RG LIC3 HESS-10 2021-09-10 Empdidae 2 0.0336 RG LIC3 09/15/2021 RG LIC3 HESS-2 2021-09-10 Psychodidae 1 0.0032 RG LIC3 09/10/2021 RG LIC3 HESS-2 2021-09-10 Planaridae 1 0.006 RG LIC3 09/10/2021 RG LIC3 HESS-2 2021-09-10 Planaridae 1 0.006 RG LIC3 09/10/2021 RG LIC3 HESS-2 2021-09-10 Ostracoda 94 0.0384 RG LIC3 09/10/2021 RG LIC3 HESS-2 2021-09-10 Bertilidae 2 0.008 RG LIC3 09/10/2021 RG LIC3 HESS-2 2021-09-10 Bertilidae 3 0.1888 RG LIC3 09/10/2021 RG LIC3 HESS-2 2021-09-10 Derendidae 2 0.006 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
RS_LILC3 09/15/2021 RS_LILC3_HESS-10_2021-09-10 Diplera 1 0.004 RS_LILC3 09/15/2021 RS_LIC3_HESS-10_2021-09-10 Chironomidae 458 4.7376 RG_LILC3 09/15/2021 RG_LIC3_HESS-10_2021-09-10 Empididae 2 0.0332 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Psychodidae 1 0.0032 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Nematia 3 0.0024 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Nematiae 1 0.008 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Lebertidae 6 0.0096 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Desentidae 24 0.0584 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Baselidae 3 0.1888 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Baselidae 3 0.1888 RG_LIC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Heptagenidae 6 0.0032 <td>_</td> <td></td> <td></td> <td>, ,</td> <td></td> <td></td>	_			, ,		
RG_LILC3 09/15/20/21 RG_LILC3 HESS-10_2021-09-10 Empididae 2 0.0336 RG_LILC3 09/16/20/21 RG_LILC3 HESS-2_0021-09-10 Psychodidae 1 0.0032 RG_LILC3 09/10/20/21 RG_LILC3 HESS-2_20/21-09-10 Psychodidae 1 0.0004 RG_LILC3 09/10/20/21 RG_LILC3 HESS-2_20/21-09-10 Debartidae 5 0.0096 RG_LILC3 09/10/20/21 RG_LILC3_HESS-2_20/21-09-10 Sperchonidae 24 0.0584 RG_LILC3 09/10/20/21 RG_LILC3_HESS-2_20/21-09-10 Ostracoda 94 0.1008 RG_LILC3 09/10/20/21 RG_LILC3_HESS-2_20/21-09-10 Ostracoda 94 0.1008 RG_LILC3 09/10/20/21 RG_LILC3_HESS-2_20/21-09-10 Ephemerellidae 3 0.1888 RG_LILC3 09/10/20/21 RG_LILC3_HESS-2_20/21-09-10 Chroroperidae 2 0.2012 RG_LILC3 09/10/20/21 RG_LILC3_HESS-2_20/21-09-10 Nemouridae 2 0.2012 RG_LILC3 09/10/20/21 RG_LILC3_HESS-2_20/21-09-10 Nemouridae <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
RG LILC3 09/15/2021 RG LIC3 HESS-2 2021-09-10 Psychodidae 1 0.0032 RG LILC3 09/10/2021 RG LIC3 HESS-2 2021-09-10 Nemata 3 0.0024 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Planariidae 1 0.006 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Spertonidae 2 0.0084 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Spertonidae 24 0.0584 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Spertonidae 24 0.0584 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Destender 3 0.1888 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Ephemerellidae 2 0.006 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Chloroparlidae 2 0.006 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Perfodidae 1 0.016 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Perfodidae 1						
RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Nematia 3 0.0024 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Planariidae 1 0.006 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Sperchonidae 24 0.0584 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Sperchonidae 24 0.0584 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Sperchonidae 94 0.1008 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Beatidae 3 0.1888 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Ephemerellidae 2 0.008 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Chroroperidae 6 0.0032 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Periodidae 1 0.0624 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Hydropsychidae 4 0.6266 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Rhyacophilidae <th< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td></th<>	_					
RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Planariidae 1 0.006 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Lebertilidae 5 0.0096 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Sperchonidae 24 0.0584 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Sperchonidae 24 0.0584 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Ostracoda 94 0.1008 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Beatedae 3 0.1888 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2_2021-09-10 Hepterpenidae 2 0.006 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2_2021-09-10 Nemouridae 9 0.3624 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2_2021-09-10 Nemouridae 9 0.3624 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2_2021-09-10 Hydropsychidae 4 0.6286 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2_2021-09-10 Hydropsychidae	_					
RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Sperchonidae 24 0.0584 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Ostracods 94 0.1008 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Baetidae 3 0.1888 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Ephemerellidae 2 0.006 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Heptagenidae 6 0.0032 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Hencellidae 2 0.2012 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Nemouridae 9 0.3624 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Hydropsychidae 4 0.6286 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Hydropsychidae 1 0.002 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Pinacphilidae 1 0.002 RG_LILC3 09/10/2021 RG_LIC3_HESS-2_2021-09-10 Rhyacophilidae 1					1	
RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Ostracoda 94 0.1008 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Epatemerellidae 2 0.006 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Ephemerellidae 2 0.006 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Heptagenidae 6 0.0032 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Heptagenidae 2 0.2012 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Nemouridae 9 0.3624 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Nemouridae 9 0.3624 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Hydropsychidae 4 0.6266 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Rhyacophilidae 1 0.1113 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Rhyacophilidae 6 0.7468 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Chironomidae	_					
RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Baetidae 3 0.1888 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Ephemerellidae 2 0.006 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Heptageniidae 6 0.0032 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Chloroperiidae 22 0.2012 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Nemouridae 9 0.6624 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Perlodidae 10 0.1988 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Perlodidae 4 0.6266 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Limrephilidae 1 0.002 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Rhyacophilidae 6 0.7468 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Chironomidae 421 3.3416 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Chironomidae						
RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Ephemerellidae 2 0.006 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Heptageniidae 6 0.0032 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Chloroperidae 2 0.2012 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Nemouridae 9 0.3624 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Nemouridae 9 0.3624 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Perlodidae 1 0.022 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Hydropsychidae 4 0.6266 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Rhyacophilidae 1 0.1113 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Rhyacophilidae 4 0.626 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Rhyacophilidae 4 0.1113 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Rhyacophilidae						
RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Chloroperiidae 22 0.2012 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Nemounidae 9 0.3624 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Perfodidae 10 0.1968 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Hydropsychidae 4 0.6266 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Hydropsychidae 1 0.002 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Rhyacophilidae 1 0.1113 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Rhyacophilidae 6 0.7468 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Chironomidae 421 3.9416 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Empididae 2 0.0228 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Stratiomyidae 1 0.0004 RG LILC3 09/10/2021 RG LILC3 HESS-3 2021-09-10 Stratiomyidae						
RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Nemouridae 9 0.3624 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Perlodidae 10 0.1968 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Limperphilidae 1 0.002 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Limperphilidae 1 0.0113 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Rhyacophilidae 6 0.7488 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Chironomidae 421 3.9416 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Strationyidae 1 0.0022 RG LILC3 09/10/2021 RG LILC3 HESS-3 2021-09-10 Nemata 10 0.						
RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Pertodidae 10 0.1968 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Hydropsychidae 4 0.6266 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Rhyacophilidae 1 0.1113 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Rhyacophilidae 6 0.7488 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Chironomidae 421 3.9416 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Empididae 2 0.0228 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Stratiomyidae 1 0.0004 RG LILC3 09/10/2021 RG LILC3 HESS-3 2021-09-10 Nemata 10 0.				·		
RG LLC3 09/10/2021 RG LLC3 HESS-2 2021-09-10 Hydropsychidae 4 0.6266 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Limnephilidae 1 0.002 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Rhyacophilidae 6 0.7468 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Chironomidae 421 3.9416 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Empididae 2 0.0228 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Strationyidae 1 0.002 RG LILC3 09/10/2021 RG LILC3 HESS-3 2021-09-10 Nemata 10 0.0048 RG LILC3 09/10/2021 RG LILC3 HESS-3 2021-09-10 Nemata 10 0.0048	_					
RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Rhyacophilidae 1 0.1113 RG LILC3 09/10/2021 RG_LILC3_HESS-2 2021-09-10 Rhyacophilidae 6 0.7468 RG_LILC3 09/10/2021 RG_LILC3_HESS-2 2021-09-10 Chironomidae 421 3.9416 RG_LILC3 09/10/2021 RG_LILC3_HESS-2 2021-09-10 Empididae 2 0.0228 RG_LILC3 09/10/2021 RG_LILC3_HESS-2 2021-09-10 Simuliidae 1 0.0002 RG_LILC3 09/10/2021 RG_LILC3_HESS-3 2021-09-10 Strationyidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3 2021-09-10 Nemata 10 0.0048 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Planariidae 59 0.3544 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Lumbriculidae 3 0.1068 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Lebertiidae 27 0.0456 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ostracoda	RG_LILC3	09/10/2021	RG_LILC3_HESS-2_2021-09-10	Hydropsychidae	4	0.6266
RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Rhyacophilidae 6 0.7468 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Chironomidae 421 3.9416 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Empididae 2 0.0228 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Simulidae 1 0.002 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Strationyridae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemata 10 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemata 10 0.0048 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Lebertiidae 59 0.3544 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Lebertiidae 27 0.0456 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ostracoda 189 0.1768 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Detertiidae 24	_			•		
RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Chironomidae 421 3,9416 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Empididae 2 0,0228 RG LILC3 09/10/2021 RG LILC3 HESS-2 2021-09-10 Simulidae 1 0,0002 RG LILC3 09/10/2021 RG LILC3 HESS-3 2021-09-10 Stratiomyidae 1 0,0004 RG LILC3 09/10/2021 RG LILC3 HESS-3 2021-09-10 Nemata 10 0,0048 RG LILC3 09/10/2021 RG LILC3 HESS-3 2021-09-10 Planaridae 59 0,3544 RG LILC3 09/10/2021 RG LILC3 HESS-3 2021-09-10 Lumbriculidae 3 0,1068 RG LILC3 09/10/2021 RG LILC3 HESS-3 2021-09-10 Sperthonidae 13 0,0372 RG LILC3 09/10/2021 RG LILC3 HESS-3 2021-09-10 Sperthonidae 13 0,0372 RG LILC3 09/10/2021 RG LILC3 HESS-3 2021-09-10 Destracoda 189 0,1768 RG LILC3 09/10/2021 RG LILC3 HESS-3 2021-09-10 Baetidae 24 <td>_</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td>	_			<u> </u>		
RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Empididae 2 0.0228 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Simulidae 1 0.002 RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Stratiomyidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemata 10 0.0048 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemata 10 0.0048 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Lumbriculidae 59 0.3544 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Lebertlidae 27 0.0456 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Sperchonidae 13 0.0372 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ostracoda 189 0.1768 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Baetidae 24 0.1804 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Heptagenidae 20						
RG_LILC3 09/10/2021 RG_LILC3_HESS-2_2021-09-10 Stratiomyidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemata 10 0.0048 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Planariidae 59 0.3544 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Lumbriculidae 3 0.1068 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Lebertiidae 27 0.0456 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Sperchonidae 13 0.0372 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ostracoda 189 0.1768 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Baetidae 24 0.1804 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ephemerellidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ephemerellidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Pertodicae <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemata 10 0.0048 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Planaridae 59 0.3544 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Lumbriculidae 3 0.1068 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Lebertiidae 27 0.0456 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Sperchonidae 13 0.0372 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ostracoda 189 0.1768 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Baetidae 24 0.1804 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ephemerellidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Heptageniidae 20 0.0296 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Chloroperlidae 9 0.1056 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Perlodidae <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Planaridae 59 0.3544 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Lumbriculidae 3 0.1068 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Lebertiidae 27 0.0456 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Sperchonidae 13 0.0372 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ostracoda 189 0.1768 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Baetidae 24 0.1804 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ephemerellidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Heptageniidae 20 0.0296 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Heptageniidae 20 0.0296 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemouridae 11 0.1708 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Perlodidae				•		
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Lumbriculidae 3 0.1068 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Lebertiidae 27 0.0456 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Sperchonidae 13 0.0372 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ostracoda 189 0.1768 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Baetidae 24 0.1804 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ephemerellidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Heptageniidae 20 0.0296 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Heptageniidae 20 0.0296 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Heptageniidae 20 0.0296 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemouridae 11 0.1708 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Perlodidae	_					
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Sperchonidae 13 0.0372 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ostracoda 189 0.1768 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Baetidae 24 0.1804 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ephemerellidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Heptageniidae 20 0.0296 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemouridae 9 0.1056 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemouridae 11 0.1708 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Perlodidae 6 0.0604 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Perlodidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Apataniidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae	RG_LILC3	09/10/2021	RG_LILC3_HESS-3_2021-09-10	Lumbriculidae	3	0.1068
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ostracoda 189 0.1768 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Baetidae 24 0.1804 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ephemerellidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Heptageniidae 20 0.0296 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Chloroperlidae 9 0.1056 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemouridae 11 0.1708 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Perlodidae 6 0.0604 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Taeniopterygidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 8 1.2476 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Baetidae 24 0.1804 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ephemerellidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Heptageniidae 20 0.0296 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Chloroperlidae 9 0.1056 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemouridae 11 0.1708 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemouridae 6 0.0604 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Perlodidae 6 0.0604 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Taeniopterygidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Apataniidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 8 1.2476 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Limnephilidae						
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Ephemerellidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Heptageniidae 20 0.0296 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Chloroperlidae 9 0.1056 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemouridae 11 0.1708 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Perlodidae 6 0.0604 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Taeniopterygidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Apataniidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 8 1.2476 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 3 0.004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 3 0.004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Rhyacophilidae<	_					
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Chloroperlidae 9 0.1056 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemouridae 11 0.1708 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Perlodidae 6 0.0604 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Taeniopterygidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Apataniidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 8 1.2476 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 3 0.004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 3 0.004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Limnephilidae 2 0.0028 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Rhyacophilidae 1 0.0128 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Chironomidae <td>RG_LILC3</td> <td>09/10/2021</td> <td>RG_LILC3_HESS-3_2021-09-10</td> <td>•</td> <td></td> <td>0.0004</td>	RG_LILC3	09/10/2021	RG_LILC3_HESS-3_2021-09-10	•		0.0004
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemouridae 11 0.1708 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Perlodidae 6 0.0604 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Taeniopterygidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Apataniidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 8 1.2476 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 3 0.004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 2 0.0028 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Rhyacophilidae 1 0.0517 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Rhyacophilidae 2 0.0128 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Chironomidae 571 2.2812 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Empididae						
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Perlodidae 6 0.0604 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Taeniopterygidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Apataniidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 8 1.2476 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 3 0.004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 2 0.0028 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Limnephilidae 2 0.0028 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Rhyacophilidae 1 0.0517 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Rhyacophilidae 2 0.0128 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Chironomidae 571 2.2812 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Psychodidae<				•		
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Apataniidae 1 0.0004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 8 1.2476 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 3 0.004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Limnephilidae 2 0.0028 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Rhyacophilidae 1 0.0517 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Rhyacophilidae 2 0.0128 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Chironomidae 571 2.2812 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Empididae 12 0.0844 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Psychodidae 8 0.01 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemata 60 0.028 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Nemata 60<						
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 8 1.2476 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 3 0.004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Limnephilidae 2 0.0028 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Rhyacophilidae 1 0.0517 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Rhyacophilidae 2 0.0128 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Chironomidae 571 2.2812 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Empididae 12 0.0844 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Psychodidae 8 0.01 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Nemata 1 0.0032 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Nemata 60 0.028 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Trombidiformes						
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Hydropsychidae 3 0.004 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Limnephilidae 2 0.0028 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Rhyacophilidae 1 0.0517 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Rhyacophilidae 2 0.0128 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Chironomidae 571 2.2812 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Empididae 12 0.0844 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Psychodidae 8 0.01 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Simuliidae 1 0.0032 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Nemata 60 0.028 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Planariidae 1 0.0002 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Trombidiformes <td< td=""><td></td><td></td><td></td><td>•</td><td></td><td></td></td<>				•		
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Limnephilidae 2 0.0028 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Rhyacophilidae 1 0.0517 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Rhyacophilidae 2 0.0128 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Chironomidae 571 2.2812 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Empididae 12 0.0844 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Psychodidae 8 0.01 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Simuliidae 1 0.0032 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Nemata 60 0.028 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Planariidae 1 0.0002 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Trombidiformes 1 0.0004						
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Rhyacophilidae 2 0.0128 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Chironomidae 571 2.2812 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Empididae 12 0.0844 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Psychodidae 8 0.01 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Simuliidae 1 0.0032 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Nemata 60 0.028 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Planariidae 1 0.002 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Trombidiformes 1 0.0004	RG_LILC3	09/10/2021	RG_LILC3_HESS-3_2021-09-10	Limnephilidae	2	0.0028
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Chironomidae 571 2.2812 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Empididae 12 0.0844 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Psychodidae 8 0.01 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Simuliidae 1 0.0032 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Nemata 60 0.028 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Planariidae 1 0.002 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Trombidiformes 1 0.0004						
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Empididae 12 0.0844 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Psychodidae 8 0.01 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Simuliidae 1 0.0032 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Nemata 60 0.028 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Planariidae 1 0.002 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Trombidiformes 1 0.0004				<u> </u>		
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Psychodidae 8 0.01 RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Simuliidae 1 0.0032 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Nemata 60 0.028 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Planariidae 1 0.002 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Trombidiformes 1 0.0004						
RG_LILC3 09/10/2021 RG_LILC3_HESS-3_2021-09-10 Simuliidae 1 0.0032 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Nemata 60 0.028 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Planariidae 1 0.002 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Trombidiformes 1 0.0004	RG_LILC3		RG_LILC3_HESS-3_2021-09-10	•	8	0.01
RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Planariidae 1 0.002 RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Trombidiformes 1 0.0004	_					
RG_LILC3 09/10/2021 RG_LILC3_HESS-4_2021-09-10 Trombidiformes 1 0.0004						
ко_lilos 09/10/2021 ко_lilos_небб-4_2021-09-10 Leberildae 24 0.0364	RG_LILC3	09/10/2021	RG_LILC3_HESS-4_2021-09-10	Lebertiidae	24	0.0364

Area	Date	Sample ID	Таха	Count	Total Biomass
RG LILC3	09/10/2021	RG LILC3 HESS-4 2021-09-10	Sperchonidae	27	0.0744
RG_LILC3	09/10/2021	RG_LILC3_HESS-4_2021-09-10	Ostracoda	180	0.1932
RG_LILC3	09/10/2021	RG_LILC3_HESS-4_2021-09-10	Baetidae	16	0.188
RG_LILC3	09/10/2021	RG_LILC3_HESS-4_2021-09-10	Ephemerellidae	1	0.0004
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-4_2021-09-10 RG_LILC3_HESS-4_2021-09-10	Heptageniidae Chloroperlidae	5 1	0.0048 0.0084
RG LILC3	09/10/2021	RG LILC3_HESS-4_2021-09-10	Nemouridae	15	0.0084
RG_LILC3	09/10/2021	RG_LILC3_HESS-4_2021-09-10	Perlodidae	7	0.0852
RG_LILC3	09/10/2021	RG_LILC3_HESS-4_2021-09-10	Apataniidae	1	0.0012
RG_LILC3	09/10/2021	RG_LILC3_HESS-4_2021-09-10	Brachycentridae	1	0.0004
RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-4_2021-09-10	Hydropsychidae	7	0.754 0.0008
RG_LILC3 RG_LILC3	09/10/2021	RG_LILC3_HESS-4_2021-09-10 RG_LILC3_HESS-4_2021-09-10	Limnephilidae Rhyacophilidae	6	0.4852
RG_LILC3	09/10/2021	RG_LILC3_HESS-4_2021-09-10	Rhyacophilidae	3	0.4208
RG_LILC3	09/10/2021	RG_LILC3_HESS-4_2021-09-10	Chironomidae	474	2.3876
RG_LILC3	09/10/2021	RG_LILC3_HESS-4_2021-09-10	Empididae	3	0.018
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-4_2021-09-10 RG_LILC3_HESS-4_2021-09-10	Pelecorhyncidae Psychodidae	2 15	0.0194 0.0068
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10	Nemata	14	1.2072
RG LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10	Planariidae	41	2.1
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10	Lumbriculidae	8	1.4736
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10	Trombidiformes	1	0.0008
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10	Lebertiidae	18	1.2384
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-5_2021-09-10 RG_LILC3_HESS-5_2021-09-10	Sperchonidae Ostracoda	25 133	1.3168 1.48
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10 RG_LILC3_HESS-5_2021-09-10	Baetidae	17	1.7648
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10	Ephemerellidae	1	1.2
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10	Heptageniidae	18	1.232
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10	Chloroperlidae	6	1.3224
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-5_2021-09-10 RG_LILC3_HESS-5_2021-09-10	Nemouridae Nemouridae	23	0.1685 1.9224
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10 RG_LILC3_HESS-5_2021-09-10	Perlodidae	23	0.1863
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10	Perlodidae	4	1.316
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10	Brachycentridae	1	1.2064
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10	Hydropsychidae	18	2.5761
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10 RG_LILC3_HESS-5_2021-09-10	Hydropsychidae	3	1.2056
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-5_2021-09-10 RG_LILC3_HESS-5_2021-09-10	Rhyacophilidae Rhyacophilidae	3	0.3239 1.46
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10	Chironomidae	387	5.1384
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10	Empididae	7	1.3096
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10	Pelecorhyncidae	1	0.1895
RG_LILC3	09/10/2021	RG_LILC3_HESS-5_2021-09-10	Psychodidae	2	1.2016
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-6_2021-09-10 RG_LILC3_HESS-6_2021-09-10	Nemata Planariidae	113 5	0.04 0.0368
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Enchytraeidae	4	0.0036
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Lumbriculidae	1	0.0104
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Lebertiidae	12	0.0192
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Sperchonidae	34	0.0552
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-6_2021-09-10 RG_LILC3_HESS-6_2021-09-10	Ostracoda Baetidae	77 26	0.088 0.2216
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Heptageniidae	10	0.0104
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Chloroperlidae	5	0.0168
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Nemouridae	1	0.0105
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Nemouridae	20	0.546
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-6_2021-09-10 RG_LILC3_HESS-6_2021-09-10	Peltoperlidae Perlodidae	1	0.0568 0.3056
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Perlodidae	11	0.0151
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Taeniopterygidae	2	0.0008
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Brachycentridae	1	0.0008
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Hydropsychidae	14	1.891
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-6_2021-09-10 RG_LILC3_HESS-6_2021-09-10	Hydropsychidae Rhyacophilidae	20 7	0.4096 0.501
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Rhyacophilidae	5	0.9564
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Chironomidae	496	1.3472
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Empididae	13	0.0976
RG_LILC3	09/10/2021	RG_LILC3_HESS-6_2021-09-10	Pelecorhyncidae	2	0.0541
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-6_2021-09-10 RG_LILC3_HESS-6_2021-09-10	Psychodidae Simuliidae	9	0.0092 0.0076
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10	Nemata	17	0.0076
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10	Planariidae	55	0.8704
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10	Enchytraeidae	1	0.0004
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-7_2021-09-10 RG_LILC3_HESS-7_2021-09-10	Lumbriculidae Naididae	1	0.0388 0.0004
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10 RG_LILC3_HESS-7_2021-09-10	Trombidiformes	5	0.0004
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10	Lebertiidae	21	0.0408
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10	Sperchonidae	33	0.07
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10	Ostracoda	215	0.2484
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-7_2021-09-10 RG_LILC3_HESS-7_2021-09-10	Baetidae Ephemerellidae	26 2	0.282 0.0012
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10 RG_LILC3_HESS-7_2021-09-10	Heptageniidae	14	0.0012
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10	Chloroperlidae	5	0.0676
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10	Nemouridae	25	0.424
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10	Perlodidae	10	0.4208
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-7_2021-09-10 RG_LILC3_HESS-7_2021-09-10	Taeniopterygidae Hydropsychidae	1 5	0.0004 1.678
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10 RG_LILC3_HESS-7_2021-09-10	Limnephilidae	3	0.0184
	00/ 10/2021		Entroprinidad	U	, J.U.T

Area	Date	Sample ID	Taxa	Count	Total Biomass
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10	Rhyacophilidae	1	0.2704
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10	Chironomidae	599	3.4624
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10	Empididae	7	0.0572
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-7_2021-09-10 RG_LILC3_HESS-7_2021-09-10	Pelecorhyncidae Psychodidae	3	0.0016 0.0028
RG_LILC3	09/10/2021	RG_LILC3_HESS-7_2021-09-10	Tipulidae	1	0.0028
RG_LILC3	09/10/2021	RG_LILC3_HESS-8_2021-09-10	Nemata	21	0.0136
RG_LILC3	09/10/2021	RG_LILC3_HESS-8_2021-09-10	Planariidae	9	0.1092
RG_LILC3	09/10/2021	RG_LILC3_HESS-8_2021-09-10	Lumbriculidae	1	0.0072
RG_LILC3	09/10/2021	RG_LILC3_HESS-8_2021-09-10	Lebertiidae	5 7	0.0096
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-8_2021-09-10 RG_LILC3_HESS-8_2021-09-10	Sperchonidae Ostracoda	163	0.0084 0.16
RG_LILC3	09/10/2021	RG_LILC3_HESS-8_2021-09-10	Ameletidae	1	0.0004
RG_LILC3	09/10/2021	RG_LILC3_HESS-8_2021-09-10	Baetidae	8	0.0444
RG_LILC3	09/10/2021	RG_LILC3_HESS-8_2021-09-10	Heptageniidae	8	0.0128
RG_LILC3	09/10/2021	RG_LILC3_HESS-8_2021-09-10	Chloroperlidae	12	0.1644
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-8_2021-09-10 RG_LILC3_HESS-8_2021-09-10	Nemouridae Perlodidae	4	0.0652 0.0068
RG_LILC3	09/10/2021	RG_LILC3_HESS-8_2021-09-10	Hydropsychidae	5	0.7623
RG_LILC3	09/10/2021	RG_LILC3_HESS-8_2021-09-10	Hydroptilidae	2	0.6928
RG_LILC3	09/10/2021	RG_LILC3_HESS-8_2021-09-10	Limnephilidae	1	0.0012
RG_LILC3	09/10/2021	RG_LILC3_HESS-8_2021-09-10	Rhyacophilidae	2	0.163
RG_LILC3	09/10/2021	RG_LILC3_HESS-8_2021-09-10	Rhyacophilidae	1	0.1612
RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-8_2021-09-10 RG_LILC3_HESS-8_2021-09-10	Chironomidae	373 2	1.6904 0.0152
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-8_2021-09-10 RG_LILC3_HESS-8_2021-09-10	Empididae Psychodidae	4	0.0152 0.0044
RG_LILC3	09/10/2021	RG_LILC3_HESS-9_2021-09-10	Nemata	16	0.0052
RG_LILC3	09/10/2021	RG_LILC3_HESS-9_2021-09-10	Planariidae	25	0.3584
RG_LILC3	09/10/2021	RG_LILC3_HESS-9_2021-09-10	Lebertiidae	4	0.0108
RG_LILC3	09/10/2021	RG_LILC3_HESS-9_2021-09-10	Sperchonidae	20	0.0424
RG_LILC3	09/10/2021	RG_LILC3_HESS-9_2021-09-10	Ostracoda	204	0.2212
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-9_2021-09-10 RG_LILC3_HESS-9_2021-09-10	Ameletidae Baetidae	1 11	0.0016 0.1232
RG_LILC3	09/10/2021	RG_LILC3_HESS-9_2021-09-10	Heptageniidae	11	0.1232
RG_LILC3	09/10/2021	RG_LILC3_HESS-9_2021-09-10	Chloroperlidae	18	0.2684
RG_LILC3	09/10/2021	RG_LILC3_HESS-9_2021-09-10	Nemouridae	10	0.2572
RG_LILC3	09/10/2021	RG_LILC3_HESS-9_2021-09-10	Perlodidae	4	0.3248
RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-9_2021-09-10 RG_LILC3_HESS-9_2021-09-10	Hydropsychidae	1	0.5727 0.2592
RG_LILC3 RG_LILC3	09/10/2021	RG_LILC3_HESS-9_2021-09-10 RG_LILC3_HESS-9_2021-09-10	Hydropsychidae Limnephilidae	3	0.2592
RG_LILC3	09/10/2021	RG_LILC3_HESS-9_2021-09-10	Rhyacophilidae	1	0.0563
RG_LILC3	09/10/2021	RG_LILC3_HESS-9_2021-09-10	Rhyacophilidae	3	0.6604
RG_LILC3	09/10/2021	RG_LILC3_HESS-9_2021-09-10	Chironomidae	459	2.6308
RG_LILC3	09/10/2021	RG_LILC3_HESS-9_2021-09-10	Empididae	1	0.0088
RG_LILC3 RG_LILC3	09/10/2021 09/10/2021	RG_LILC3_HESS-9_2021-09-10 RG_LILC3_HESS-9_2021-09-10	Muscidae Psychodidae	2	0.032 0.0024
RG_LILC3	09/10/2021	RG_LILC3_HESS-9_2021-09-10	Tipulidae	1	0.2842
RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15	Lumbriculidae	39	0.1532
RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15	Lebertiidae	1	0.0005
RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15	Ostracoda	8	0.0071
RG_SLINE RG_SLINE	09/15/2021 09/15/2021	RG_SLINE_HESS-1_2021-09-15 RG_SLINE_HESS-1_2021-09-15	Ameletidae Baetidae	3	0.0156 0.0096
RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15	Ephemerellidae	10	0.0558
RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15	Heptageniidae	113	0.138
RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15	Capniidae	1	0.0004
RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15	Chloroperlidae	74	0.1382
RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15	Leuctridae	9 16	0.0045
RG_SLINE RG_SLINE	09/15/2021 09/15/2021	RG_SLINE_HESS-1_2021-09-15 RG_SLINE_HESS-1_2021-09-15	Nemouridae Perlodidae	14	0.0219 0.2883
RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15	Taeniopterygidae	5	0.2003
RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15	Glossosomatidae	16	0.1002
RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15	Hydropsychidae	2	0.0008
RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15	Rhyacophilidae	18	0.0487
RG_SLINE RG SLINE	09/15/2021 09/15/2021	RG_SLINE_HESS-1_2021-09-15 RG_SLINE_HESS-1_2021-09-15	Uenoidae Chironomidae	1 12	0.0001 0.007
RG_SLINE RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15 RG_SLINE_HESS-1_2021-09-15	Empididae	6	0.007
RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15	Pelecorhyncidae	2	0.0097
RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15	Psychodidae	1	0.0009
RG_SLINE	09/15/2021	RG_SLINE_HESS-1_2021-09-15	Tipulidae	1	0.0005
RG_SLINE RG SLINE	09/15/2021 09/15/2021	RG_SLINE_HESS-2_2021-09-15	Nemata Lebertiidae	3	0.001 0.0024
RG_SLINE RG_SLINE	09/15/2021	RG_SLINE_HESS-2_2021-09-15 RG_SLINE_HESS-2_2021-09-15	Lebertiidae Ostracoda	6	0.0024
RG_SLINE	09/15/2021	RG_SLINE_HESS-2_2021-09-15	Ameletidae	14	0.0658
RG_SLINE	09/15/2021	RG_SLINE_HESS-2_2021-09-15	Ephemerellidae	23	0.0138
RG_SLINE	09/15/2021	RG_SLINE_HESS-2_2021-09-15	Heptageniidae	60	0.048
RG_SLINE	09/15/2021	RG_SLINE_HESS-2_2021-09-15	Chloroperlidae	6	0.0256
RG_SLINE RG_SLINE	09/15/2021 09/15/2021	RG_SLINE_HESS-2_2021-09-15 RG_SLINE_HESS-2_2021-09-15	Nemouridae Peltoperlidae	35 3	0.112 0.0272
RG_SLINE RG_SLINE	09/15/2021	RG_SLINE_HESS-2_2021-09-15 RG_SLINE_HESS-2_2021-09-15	Perlodidae	32	0.1082
RG_SLINE	09/15/2021	RG_SLINE_HESS-2_2021-09-15	Taeniopterygidae	1	0.0004
RG_SLINE	09/15/2021	RG_SLINE_HESS-2_2021-09-15	Rhyacophilidae	6	0.0824
RG_SLINE	09/15/2021	RG_SLINE_HESS-2_2021-09-15	Chironomidae	32	0.028
RG_SLINE	09/15/2021	RG_SLINE_HESS-2_2021-09-15	Empididae	6	0.0226
RG_SLINE RG_SLINE	09/15/2021 09/15/2021	RG_SLINE_HESS-2_2021-09-15 RG_SLINE_HESS-2_2021-09-15	Pelecorhyncidae Psychodidae	1	0.0012 0.001
RG_SLINE	09/15/2021	RG_SLINE_HESS-2_2021-09-15	Tipulidae	2	0.001
	00, 10, 2021		panaao	_	. 0.002

Area	Date	Sample ID	Taxa	Count	Total Biomass
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Enchytraeidae	1	0.0001
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Lumbriculidae	9	0.0262
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Lebertiidae	1	0.0003
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Sperchonidae	3	0.0009
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Ostracoda	43	0.0103
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Ameletidae	2	0.0046
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Ephemerellidae	4	0.001
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Heptageniidae	41	0.0299
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Capniidae	1	0.0011
RG_SLINE	09/15/2021	RG SLINE HESS-3 2021-09-15	Chloroperlidae	36	0.0407
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Leuctridae	16	0.009
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Nemouridae	28	0.0185
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Perlodidae	7	0.0081
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Hydropsychidae	1	0.0003
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Rhyacophilidae	10	0.012
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Uenoidae	2	0.0006
RG_SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Chironomidae	7	0.0017
RG_SLINE	09/15/2021	RG SLINE HESS-3 2021-09-15	Empididae	23	0.0274
RG SLINE	09/15/2021	RG_SLINE_HESS-3_2021-09-15	Psychodidae	2	0.0008
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Lumbriculidae	21	0.1215
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Lebertiidae	1	0.0005
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Ostracoda	8	0.012
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Ameletidae	2	0.0011
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Baetidae	2	0.0133
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Ephemerellidae	24	0.0841
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Heptageniidae	247	0.3092
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Capniidae	6	0.0035
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Chloroperlidae	57	0.1056
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Leuctridae	7	0.0046
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Nemouridae	32	0.0418
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Peltoperlidae	4	0.0224
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Perlodidae	21	0.2263
RG_SLINE RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Taeniopterygidae	5	0.0096
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Glossosomatidae	7	0.0563
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Hydropsychidae	1	0.1056
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Rhyacophilidae	31	0.0525
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Uenoidae	1	0.0018
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Chironomidae	10	0.0018
RG_SLINE		RG SLINE_HESS-4_2021-09-15		23	0.0637
RG_SLINE RG_SLINE	09/15/2021 09/15/2021	RG_SLINE_HESS-4_2021-09-15	Empididae Simuliidae	1	0.0037
RG_SLINE	09/15/2021	RG_SLINE_HESS-4_2021-09-15	Tipulidae	4	0.0288
			•		
RG_SLINE RG_SLINE	09/15/2021 09/15/2021	RG_SLINE_HESS-5_2021-09-15 RG_SLINE_HESS-5_2021-09-15	Planariidae Lumbriculidae	3 1	0.0114 0.0134
	09/15/2021		Ostracoda	10	
RG_SLINE		RG_SLINE_HESS-5_2021-09-15 RG_SLINE_HESS-5_2021-09-15			0.0023
RG_SLINE	09/15/2021		Ameletidae	6	0.0453
RG_SLINE	09/15/2021	RG_SLINE_HESS-5_2021-09-15	Baetidae	1	0.0056
RG_SLINE	09/15/2021	RG_SLINE_HESS-5_2021-09-15	Ephemerellidae	27	0.1147
RG_SLINE	09/15/2021	RG_SLINE_HESS-5_2021-09-15	Heptageniidae	241	0.1871
RG_SLINE	09/15/2021	RG_SLINE_HESS-5_2021-09-15	Capniidae	1	0.0027
RG_SLINE	09/15/2021	RG_SLINE_HESS-5_2021-09-15	Chloroperlidae	40	0.1075
RG_SLINE	09/15/2021	RG_SLINE_HESS-5_2021-09-15	Nemouridae	19	0.0251
RG_SLINE	09/15/2021	RG_SLINE_HESS-5_2021-09-15	Peltoperlidae	2	0.001
RG_SLINE	09/15/2021	RG_SLINE_HESS-5_2021-09-15	Perlodidae	15	0.2669
RG_SLINE	09/15/2021	RG_SLINE_HESS-5_2021-09-15	Glossosomatidae	5	0.0567
RG_SLINE	09/15/2021	RG_SLINE_HESS-5_2021-09-15	Limnephilidae	1	0.0903
RG_SLINE	09/15/2021	RG_SLINE_HESS-5_2021-09-15	Rhyacophilidae	19	0.1346
RG_SLINE	09/15/2021	RG_SLINE_HESS-5_2021-09-15	Chironomidae	15	0.0069
RG_SLINE	09/15/2021	RG_SLINE_HESS-5_2021-09-15	Empididae	14	0.0342
RG_SLINE	09/15/2021	RG_SLINE_HESS-5_2021-09-15	Pelecorhyncidae	3	0.0013
RG_SLINE	09/15/2021	RG_SLINE_HESS-5_2021-09-15	Psychodidae	4	0.001

BENTHIC TISSUE CHEMISTRY

TrichAnalytics Laboratory Report 2021-216 (Finalized May 28, 2021)

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Client: Tyler Mehler Date Received: 11 May 2021

Aquatic Scientist

Date of Analysis: 27 May 2021

Minnow Environmental

Final Report Date: 28 May 2021

Phone: (250) 595-1627 Project No.: 2021-216

Email: tmehler@minnow.ca Method No.: MET-002.05

Client Project: Teck Coal/Minnow Environmental 21-36 (Line Creek)

Analytical Request: Benthic Invertebrate Tissue Microchemistry (total metals and moisture) – 50 samples.

See chain of custody form provided for sample identification numbers.

Notes:

Analytical results are expressed in part per million (ppm) dry weight (equivalent to mg/kg).

Samples quantified using DORM-4, NIST-1566b, and NIST-2976 certified reference standards.

Aluminum concentrations above 1,000 ppm are outside linear range of the calibration curve.

Client specific DQO for Selenium accuracy is 90 - 110% of the certified value; (average achieved 104%, range 97 - 110%).

RPD values calculated according to the British Columbia Environmental Laboratory Manual (2020) criteria.

This report provides the analytical results only for tissue samples noted above as received from the Client.

Reviewed and Ar proved by Jennie Christensen, PhD, RPBio

28 May 2021

[The analytical report shall not be reproduced except in full under the expressed written consent of TrichAnalytics Inc.]

TrichAnalytics Inc. 207-1753 Sean Heights Saanichton, BC V8M 0B3

www.trichanalytics.com

Project No: 2021-216

		Client ID	RG_FO23_INV- 1_2021-04-28	RG_FO23_INV- 2_2021-04-28	RG_FO23_INV- 3_2021-04-28	RG_FO23_INV- 4_2021-04-28	RG_FO23_INV- 5_2021-04-28
		Lab ID	500	501	502	503	504
	We	et Weight (g)	1.6845	1.5223	1.6321	1.3804	1.4368
	Di	ry Weight (g)	0.2979	0.2899	0.3130	0.2564	0.3271
		Moisture (%)	82.3	81.0	80.8	81.4	77.2
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	1.1	0.634	0.698	0.921	0.513
11B	0.078	0.260	4.2	1.7	1.1	1.8	1.4
23Na	1.3	4.3	3,646	3,072	3,712	4,371	2,344
24Mg	0.024	0.080	2,081	1,595	1,241	1,508	1,342
27Al	0.053	0.177	1,564	893	410	752	533
31P	52	173	12,188	10,525	9,223	9,115	9,010
39K	2.9	9.7	11,177	10,696	9,106	8,149	7,823
44Ca	5.8	19	4,154	2,357	1,637	2,570	1,992
49Ti	0.001	0.003	153	63	23	59	42
51V	0.042	0.140	2.7	1.1	0.800	1.2	1.0
52Cr	0.131	0.437	13	6.4	4.7	9.1	5.9
55Mn	0.007	0.023	44	38	28	38	34
57Fe	1.1	3.7	867	545	303	581	387
59Co	0.003	0.010	1.9	2.5	0.923	0.937	1.6
60Ni	0.001	0.003	27	17	10	19	13
63Cu	0.025	0.083	19	18	16	13	14
66Zn	0.537	1.8	468	713	294	303	450
75As	0.444	1.5	0.616	0.534	<0.444	< 0.444	0.452
77Se	0.306	1.0	9.0	6.5	6.1	4.5	5.3
88Sr	0.001	0.003	11	4.5	3.6	4.7	2.9
95Mo	0.001	0.003	0.427	0.285	0.207	0.388	0.233
107Ag	0.001	0.003	0.137	0.069	0.099	0.099	0.092
111Cd	0.084	0.280	2.4	4.7	1.3	3.0	2.5
118Sn	0.030	0.100	1.1	0.607	0.383	0.517	0.198
121Sb	0.004	0.013	0.046	0.030	0.020	0.038	0.026
137Ba	0.001	0.003	62	29	25	30	18
202Hg	0.040	0.133	< 0.040	0.057	<0.040	0.046	<0.040
205TI	0.001	0.003	0.045	0.060	0.017	0.031	0.028
208Pb	0.004	0.013	0.307	0.171	0.139	0.160	0.121
238U	0.001	0.003	0.109	0.072	0.034	0.037	0.033

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_FRUL_INV- 1_2021-04-28	RG_FRUL_INV- 2_2021-04-28	RG_FRUL_INV- 3_2021-04-28	RG_FRUL_INV- 4_2021-04-28	RG_FRUL_INV- 5_2021-04-28
		Lab ID	505	506	507	508	509
	We	et Weight (g)	1.3986	1.1297	1.4131	1.2290	1.4669
		ry Weight (g)	0.2528	0.1650	0.2621	0.2303	0.2622
		Moisture (%)	81.9	85.4	81.5	81.3	82.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	0.780	1.9	1.3	0.599	1.2
11B	0.078	0.260	1.0	1.2	2.8	0.680	1.8
23Na	1.3	4.3	3,128	5,160	2,815	2,109	5,803
24Mg	0.024	0.080	1,476	1,573	1,722	1,805	1,798
27Al	0.053	0.177	554	636	1,757	431	685
31P	52	173	9,341	11,179	8,507	10,227	10,797
39K	2.9	9.7	7,756	9,234	8,542	7,506	9,632
44Ca	5.8	19	2,028	2,766	2,907	2,627	3,029
49Ti	0.001	0.003	41	44	194	27	53
51V	0.042	0.140	0.990	1.1	3.5	0.953	1.5
52Cr	0.131	0.437	4.7	4.6	5.9	5.5	8.4
55Mn	0.007	0.023	33	53	42	33	40
57Fe	1.1	3.7	303	403	1,004	348	587
59Co	0.003	0.010	0.522	0.777	0.815	0.944	0.949
60Ni	0.001	0.003	7.5	9.1	11	9.6	18
63Cu	0.025	0.083	18	17	16	15	15
66Zn	0.537	1.8	330	266	310	375	271
75As	0.444	1.5	< 0.444	< 0.444	0.555	< 0.444	< 0.444
77Se	0.306	1.0	6.4	7.5	7.1	5.5	7.5
88Sr	0.001	0.003	3.5	4.5	5.7	5.0	5.0
95Mo	0.001	0.003	0.233	0.285	0.492	0.233	0.273
107Ag	0.001	0.003	0.221	0.283	0.183	0.176	0.255
111Cd	0.084	0.280	1.0	2.7	1.1	1.6	1.6
118Sn	0.030	0.100	0.466	0.771	0.644	0.462	0.427
121Sb	0.004	0.013	0.027	0.029	0.089	0.017	0.039
137Ba	0.001	0.003	23	31	66	23	35
202Hg	0.040	0.133	0.046	0.057	<0.040	0.046	0.052
205Tl	0.001	0.003	0.020	0.027	0.066	0.023	0.023
208Pb	0.004	0.013	0.143	0.182	0.416	0.108	0.231
238U	0.001	0.003	0.039	0.103	0.103	0.037	0.068

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LCUT_INV- 1_2021-04-27	RG_LCUT_INV- 2_2021-04-27	RG_LCUT_INV- 3_2021-04-27	RG_LCUT_INV- 4_2021-04-27	RG_LCUT_INV- 5_2021-04-27
		Lab ID	510	511	512	513	514
	We	et Weight (g)	1.3250	1.5497	1.3391	1.8215	1.3491
		ry Weight (g)	0.2432	0.2672	0.2770	0.3363	0.2637
		Moisture (%)	81.6	82.8	79.3	81.5	80.5
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	0.961	0.885	1.1	1.1	0.880
11B	0.078	0.260	2.7	2.9	2.5	3.6	5.4
23Na	1.3	4.3	3,155	2,874	2,948	3,337	2,540
24Mg	0.024	0.080	1,395	1,514	1,514	1,560	1,706
27Al	0.053	0.177	1,039	790	1,197	981	1,233
31P	52	173	11,137	12,761	9,591	10,918	11,349
39K	2.9	9.7	11,066	13,085	9,740	11,826	10,304
44Ca	5.8	19	1,982	2,141	2,436	3,425	3,006
49Ti	0.001	0.003	75	69	109	87	136
51V	0.042	0.140	2.2	1.7	3.0	1.9	2.7
52Cr	0.131	0.437	7.7	5.3	11	4.0	6.1
55Mn	0.007	0.023	31	35	21	28	30
57Fe	1.1	3.7	516	364	778	400	449
59Co	0.003	0.010	1.1	1.3	1.6	2.0	2.1
60Ni	0.001	0.003	22	20	32	20	20
63Cu	0.025	0.083	21	23	19	30	36
66Zn	0.537	1.8	243	335	194	394	318
75As	0.444	1.5	1.6	1.8	1.4	2.0	2.7
77Se	0.306	1.0	15	6.7	4.9	6.8	5.5
88Sr	0.001	0.003	4.6	4.5	4.9	6.6	6.9
95Mo	0.001	0.003	0.572	0.423	0.497	0.447	0.472
107Ag	0.001	0.003	0.038	0.038	0.028	0.057	0.066
111Cd	0.084	0.280	3.0	3.2	2.3	5.1	4.0
118Sn	0.030	0.100	0.412	0.366	0.394	0.483	0.295
121Sb	0.004	0.013	0.076	0.068	0.084	0.111	0.099
137Ba	0.001	0.003	40	48	42	56	65
202Hg	0.040	0.133	<0.040	0.117	0.059	0.091	0.085
205TI	0.001	0.003	0.042	0.042	0.041	0.077	0.050
208Pb	0.004	0.013	0.474	0.424	0.397	0.424	0.489
238U	0.001	0.003	0.099	0.132	0.105	0.156	0.118

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LI8_INV- 1_2021-04-28	RG_LI8_INV- 2_2021-04-28	RG_LI8_INV- 3_2021-04-28	RG_LI8_INV- 4_2021-04-28	RG_LI8_INV- 5_2021-04-28
		Lab ID	515	516	517	518	519
		et Weight (g)	1.3822	1.4739	1.4712	1.7977	1.2191
	Di	ry Weight (g)	0.2746	0.3071	0.2975	0.3797	0.2349
		Moisture (%)	80.1	79.2	79.8	78.9	80.7
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	0.397	0.523	0.593	0.480	0.817
11B	0.078	0.260	0.892	0.962	0.962	0.918	1.5
23Na	1.3	4.3	2,865	2,974	3,384	3,010	3,409
24Mg	0.024	0.080	1,145	1,421	1,361	1,378	1,506
27Al	0.053	0.177	270	321	408	356	662
31P	52	173	8,542	10,252	10,334	10,520	10,731
39K	2.9	9.7	8,766	8,866	9,573	9,772	10,018
44Ca	5.8	19	1,379	2,501	1,916	1,649	2,384
49Ti	0.001	0.003	20	29	37	27	58
51V	0.042	0.140	0.625	0.665	0.805	0.754	1.6
52Cr	0.131	0.437	2.6	2.9	3.1	2.9	5.1
55Mn	0.007	0.023	44	56	61	65	70
57Fe	1.1	3.7	178	241	273	200	487
59Co	0.003	0.010	0.850	1.0	1.0	0.664	1.1
60Ni	0.001	0.003	9.3	15	16	11	18
63Cu	0.025	0.083	14	18	16	16	17
66Zn	0.537	1.8	489	547	408	319	406
75As	0.444	1.5	< 0.444	< 0.444	0.551	< 0.444	0.654
77Se	0.306	1.0	6.2	7.1	7.0	6.8	7.5
88Sr	0.001	0.003	3.1	4.4	3.1	4.0	5.8
95Mo	0.001	0.003	0.273	0.249	0.298	0.319	0.435
107Ag	0.001	0.003	0.019	0.038	0.038	0.027	0.036
111Cd	0.084	0.280	5.4	6.8	6.5	4.2	6.7
118Sn	0.030	0.100	0.286	0.303	0.232	0.302	0.498
121Sb	0.004	0.013	0.033	0.039	0.046	0.044	0.054
137Ba	0.001	0.003	17	20	21	17	42
202Hg	0.040	0.133	0.065	0.078	0.065	0.062	0.062
205Tl	0.001	0.003	0.040	0.038	0.038	0.027	0.061
208Pb	0.004	0.013	0.114	0.140	0.162	0.149	0.305
238U	0.001	0.003	0.061	0.087	0.063	0.062	0.129

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LI24_INV- 1_2021-04-26	RG_LI24_INV- 2_2021-04-26	RG_LI24_INV- 3_2021-04-26	RG_LI24_INV- 4_2021-04-26	RG_LI24_INV- 5_2021-04-26
		Lab ID	520	521	522	523	524
	\\/	et Weight (g)	1.1185	1.0017	1.2681	1.2147	0.8467
		ry Weight (g)	0.1579	0.1754	0.1931	0.1690	0.1498
		Moisture (%)	85.9	82.5	84.8	86.1	82.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	0.379	0.245	0.424	0.335	0.496
11B	0.078	0.260	0.753	0.565	1.1	0.953	1.2
23Na	1.3	4.3	2,946	3,495	3,626	2,987	2,851
24Mg	0.024	0.080	1,429	1,090	1,607	1,651	1,451
27AI	0.053	0.177	249	115	256	237	346
31P	52	173	12,318	9,264	12,675	12,523	10,949
39K	2.9	9.7	11,016	8,684	10,727	11,062	8,509
44Ca	5.8	19	2,791	2,176	3,007	3,290	3,187
49Ti	0.001	0.003	15	7.7	17	17	27
51V	0.042	0.140	1.4	1.1	2.4	2.4	2.5
52Cr	0.131	0.437	6.9	3.1	4.4	4.2	10
55Mn	0.007	0.023	15	10	15	15	17
57Fe	1.1	3.7	294	149	248	211	376
59Co	0.003	0.010	0.823	0.563	0.489	0.610	0.725
60Ni	0.001	0.003	14	6.3	12	11	22
63Cu	0.025	0.083	13	13	16	15	18
66Zn	0.537	1.8	547	586	488	499	371
75As	0.444	1.5	1.8	1.3	1.8	2.3	1.6
77Se	0.306	1.0	6.7	6.2	7.3	6.6	5.2
88Sr	0.001	0.003	12	7.4	12	13	12
95Mo	0.001	0.003	0.348	0.232	0.348	0.377	0.348
107Ag	0.001	0.003	0.072	0.054	0.081	0.063	0.090
111Cd	0.084	0.280	2.2	2.1	1.9	1.6	2.0
118Sn	0.030	0.100	1.2	0.553	1.0	1.0	0.528
121Sb	0.004	0.013	0.029	0.022	0.028	0.024	0.030
137Ba	0.001	0.003	25	14	25	24	28
202Hg	0.040	0.133	0.062	0.055	0.062	0.055	0.049
205TI	0.001	0.003	0.074	0.043	0.063	0.055	0.052
208Pb	0.004	0.013	0.140	0.095	0.153	0.117	0.172
238U	0.001	0.003	0.075	0.082	0.136	0.085	0.198

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_LIDCOM_INV-	RG_LIDCOM_INV-	RG_LIDCOM_INV-	RG_LIDCOM_INV-	RG_LIDCOM_INV-
		Client ID	1_2021-04-29	2_2021-04-29	3_2021-04-29	4_2021-04-29	5_2021-04-29
		Lab ID	525	526	527	528	529
	We	et Weight (g)	1.6895	1.4375	1.6366	2.3325	1.7485
	Di	ry Weight (g)	0.3514	0.3132	0.3348	0.4386	0.3090
		Moisture (%)	79.2	78.2	79.5	81.2	82.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	0.457	1.7	0.600	0.441	0.730
11B	0.078	0.260	1.1	6.2	2.0	1.5	2.8
23Na	1.3	4.3	2,927	3,364	3,188	3,152	2,914
24Mg	0.024	0.080	1,439	1,882	1,685	1,986	1,630
27Al	0.053	0.177	206	3,665	415	362	663
31P	52	173	12,365	9,446	12,222	10,940	9,517
39K	2.9	9.7	11,689	12,170	11,288	10,104	9,100
44Ca	5.8	19	1,914	2,071	2,621	2,994	2,796
49Ti	0.001	0.003	12	313	32	22	37
51V	0.042	0.140	0.443	7.4	1.1	0.855	1.5
52Cr	0.131	0.437	2.3	29	4.9	5.1	4.4
55Mn	0.007	0.023	126	110	128	86	102
57Fe	1.1	3.7	241	1,816	461	387	621
59Co	0.003	0.010	2.1	2.5	2.7	2.2	2.6
60Ni	0.001	0.003	16	53	23	22	23
63Cu	0.025	0.083	19	19	21	20	20
66Zn	0.537	1.8	423	332	487	546	529
75As	0.444	1.5	0.544	0.998	0.777	0.706	0.706
77Se	0.306	1.0	6.6	6.2	6.4	7.1	6.0
88Sr	0.001	0.003	3.9	6.4	4.8	6.6	6.1
95Mo	0.001	0.003	0.377	0.653	0.402	0.368	0.368
107Ag	0.001	0.003	0.045	0.036	0.028	0.038	0.038
111Cd	0.084	0.280	4.9	3.7	5.6	5.3	8.2
118Sn	0.030	0.100	0.360	0.610	0.430	0.537	0.711
121Sb	0.004	0.013	0.048	0.111	0.047	0.039	0.053
137Ba	0.001	0.003	22	56	26	27	32
202Hg	0.040	0.133	0.055	0.042	0.072	0.058	0.043
205Tl	0.001	0.003	0.048	0.086	0.045	0.055	0.054
208Pb	0.004	0.013	0.095	0.804	0.144	0.116	0.212
238U	0.001	0.003	0.070	0.144	0.117	0.086	0.117

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LIDSL_INV- 1_2021-04-27	RG_LIDSL_INV- 2_2021-04-27	RG_LIDSL_INV- 3_2021-04-27	RG_LIDSL_INV- 4_2021-04-27	RG_LIDSL_INV- 5_2021-04-27
		Lab ID	530	531	532	533	534
	We	et Weight (g)	1.6397	1.6644	1.7947	2.0443	1.7387
		ry Weight (g)	0.2741	0.3379	0.4060	0.3885	0.3162
		Moisture (%)	83.3	79.7	77.4	81.0	81.8
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	0.473	0.391	0.328	0.549	0.464
11B	0.078	0.260	1.2	1.1	1.1	2.0	1.9
23Na	1.3	4.3	2,453	2,875	2,359	3,318	2,187
24Mg	0.024	0.080	1,082	1,320	1,177	1,351	1,162
27Al	0.053	0.177	267	163	156	331	265
31P	52	173	9,789	9,540	9,314	11,355	8,936
39K	2.9	9.7	9,304	9,587	8,513	11,067	7,311
44Ca	5.8	19	1,597	1,477	1,923	2,434	2,022
49Ti	0.001	0.003	17	9.0	7.8	28	19
51V	0.042	0.140	0.767	0.816	0.420	1.1	0.789
52Cr	0.131	0.437	5.4	3.5	2.6	6.1	3.6
55Mn	0.007	0.023	152	150	102	206	143
57Fe	1.1	3.7	555	465	307	734	563
59Co	0.003	0.010	1.8	1.6	2.7	3.9	2.2
60Ni	0.001	0.003	18	16	13	27	15
63Cu	0.025	0.083	15	18	20	21	15
66Zn	0.537	1.8	243	480	345	505	289
75As	0.444	1.5	< 0.444	0.447	< 0.444	0.659	0.471
77Se	0.306	1.0	5.0	5.2	5.4	5.6	4.6
88Sr	0.001	0.003	3.4	4.6	3.3	5.2	4.7
95Mo	0.001	0.003	0.368	0.301	0.335	0.569	0.368
107Ag	0.001	0.003	0.019	0.019	0.028	0.038	0.028
111Cd	0.084	0.280	1.9	2.4	3.9	7.3	2.8
118Sn	0.030	0.100	0.471	0.391	0.439	0.697	0.456
121Sb	0.004	0.013	0.058	0.061	0.046	0.091	0.053
137Ba	0.001	0.003	22	18	13	32	27
202Hg	0.040	0.133	0.043	< 0.040	< 0.040	0.058	0.043
205TI	0.001	0.003	0.021	0.025	0.024	0.047	0.022
208Pb	0.004	0.013	0.101	0.096	0.060	0.132	0.116
238U	0.001	0.003	0.053	0.050	0.039	0.091	0.070

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LILC3_INV- 1_2021-04-27	RG_LILC3_INV- 2_2021-04-27	RG_LILC3_INV- 3_2021-04-27	RG_LILC3_INV- 4_2021-04-27	RG_LILC3_INV- 5_2021-04-27
		Lab ID	535	536	537	538	539
	We	et Weight (g)	1.6178	1.4208	2.0763	1.5594	1.8515
		ry Weight (g)	0.3224	0.2846	0.4050	0.3014	0.3334
		Moisture (%)	80.1	80.0	80.5	80.7	82.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	0.538	0.877	0.730	0.754	0.709
11B	0.078	0.260	1.2	2.8	1.4	1.7	1.8
23Na	1.3	4.3	2,226	2,742	3,491	2,695	3,061
24Mg	0.024	0.080	1,252	1,691	1,554	1,581	1,470
27Al	0.053	0.177	256	699	358	444	273
31P	52	173	9,834	11,504	11,881	10,345	11,429
39K	2.9	9.7	8,510	13,012	13,288	12,797	12,042
44Ca	5.8	19	2,601	3,271	3,329	2,442	2,492
49Ti	0.001	0.003	16	50	27	31	16
51V	0.042	0.140	0.835	2.3	1.4	1.5	1.1
52Cr	0.131	0.437	3.0	5.4	5.6	4.8	3.5
55Mn	0.007	0.023	313	602	549	429	384
57Fe	1.1	3.7	729	2,557	1,405	1,684	1,194
59Co	0.003	0.010	4.8	4.2	4.2	4.5	2.9
60Ni	0.001	0.003	21	31	27	32	19
63Cu	0.025	0.083	16	21	22	18	18
66Zn	0.537	1.8	274	397	371	401	325
75As	0.444	1.5	0.847	1.2	1.1	1.4	0.931
77Se	0.306	1.0	6.2	10	11	12	9.4
88Sr	0.001	0.003	4.9	8.4	6.6	5.6	5.1
95Mo	0.001	0.003	0.669	1.3	0.986	1.4	0.957
107Ag	0.001	0.003	0.009	0.036	0.036	0.036	0.036
111Cd	0.084	0.280	6.0	7.4	6.1	7.3	5.4
118Sn	0.030	0.100	0.485	1.3	0.687	0.907	0.708
121Sb	0.004	0.013	0.111	0.193	0.168	0.164	0.134
137Ba	0.001	0.003	27	69	46	43	36
202Hg	0.040	0.133	< 0.040	0.068	0.061	0.068	0.055
205Tl	0.001	0.003	0.041	0.069	0.056	0.053	0.043
208Pb	0.004	0.013	0.096	0.270	0.139	0.171	0.135
238U	0.001	0.003	0.086	0.236	0.169	0.199	0.154

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-
		Client ID	1_2021-04-27	2_2021-04-27	3_2021-04-27	4_2021-04-27	5_2021-04-27
		Lab ID	540	541	542	543	544
	We	et Weight (g)	1.9473	1.0769	2.1307	1.5804	1.5803
		ry Weight (g)	0.4031	0.1899	0.3525	0.2944	0.2838
		Moisture (%)	79.3	82.4	83.5	81.4	82.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	0.430	0.574	0.568	0.451	0.770
11B	0.078	0.260	1.3	1.3	1.3	0.833	1.8
23Na	1.3	4.3	2,846	2,867	3,475	3,128	3,597
24Mg	0.024	0.080	1,246	1,376	1,342	1,163	1,608
27Al	0.053	0.177	201	359	231	196	254
31P	52	173	9,941	10,621	10,045	8,623	9,676
39K	2.9	9.7	10,155	10,202	9,912	8,498	8,990
44Ca	5.8	19	1,622	2,520	2,685	1,944	2,967
49Ti	0.001	0.003	12	24	14	13	21
51V	0.042	0.140	0.705	1.2	0.775	0.672	1.3
52Cr	0.131	0.437	2.6	7.9	3.3	3.1	8.9
55Mn	0.007	0.023	252	234	222	160	316
57Fe	1.1	3.7	642	1,042	682	596	1,607
59Co	0.003	0.010	5.7	3.7	3.4	3.7	5.6
60Ni	0.001	0.003	25	29	20	16	38
63Cu	0.025	0.083	18	23	17	19	23
66Zn	0.537	1.8	457	429	417	532	573
75As	0.444	1.5	0.718	0.628	0.561	0.572	0.826
77Se	0.306	1.0	7.2	7.3	7.6	7.5	7.8
88Sr	0.001	0.003	3.2	5.6	5.6	3.7	7.8
95Mo	0.001	0.003	0.406	0.580	0.493	0.348	0.619
107Ag	0.001	0.003	0.027	0.036	0.027	0.018	0.054
111Cd	0.084	0.280	7.6	7.9	5.6	8.9	9.8
118Sn	0.030	0.100	0.534	0.819	0.570	0.466	0.869
121Sb	0.004	0.013	0.109	0.097	0.088	0.063	0.118
137Ba	0.001	0.003	22	30	27	20	47
202Hg	0.040	0.133	0.095	0.082	0.095	0.082	0.071
205TI	0.001	0.003	0.043	0.044	0.034	0.065	0.056
208Pb	0.004	0.013	0.081	0.121	0.094	0.076	0.239
238U	0.001	0.003	0.064	0.097	0.092	0.075	0.137

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

Page 10 of 28

			RG_SLINE_INV-	RG_SLINE_INV-	RG_SLINE_INV-	RG_SLINE_INV-	RG_SLINE_INV-
		Client ID	1_2021-04-26	2_2021-04-26	3_2021-04-26	4_2021-04-26	5_2021-04-26
		Lab ID	545	546	547	548	549
	We	et Weight (g)	0.9602	0.7340	0.9799	0.9157	1.1034
	Di	ry Weight (g)	0.1763	0.0749	0.1462	0.1605	0.1536
		Moisture (%)	81.6	89.8	85.1	82.5	86.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	0.234	0.345	0.297	0.340	0.499
11B	0.078	0.260	0.494	0.680	0.717	1.3	1.8
23Na	1.3	4.3	2,815	2,287	3,222	2,319	3,500
24Mg	0.024	0.080	1,519	1,372	1,616	1,456	1,560
27Al	0.053	0.177	212	335	276	405	604
31P	52	173	10,132	9,113	10,601	9,555	10,924
39K	2.9	9.7	8,443	6,855	8,655	7,058	9,896
44Ca	5.8	19	2,004	3,033	3,283	2,601	3,034
49Ti	0.001	0.003	11	25	20	35	41
51V	0.042	0.140	0.878	1.0	1.0	1.3	1.7
52Cr	0.131	0.437	4.7	8.1	5.5	6.1	8.9
55Mn	0.007	0.023	15	20	15	19	29
57Fe	1.1	3.7	216	372	259	354	491
59Co	0.003	0.010	0.351	0.485	0.499	0.696	1.1
60Ni	0.001	0.003	9.3	16	14	14	20
63Cu	0.025	0.083	13	15	15	14	16
66Zn	0.537	1.8	491	750	646	622	879
75As	0.444	1.5	0.895	1.1	0.986	1.6	1.4
77Se	0.306	1.0	6.8	5.9	5.9	6.3	7.4
88Sr	0.001	0.003	5.8	10	11	11	13
95Mo	0.001	0.003	0.354	0.413	0.369	0.324	0.442
107Ag	0.001	0.003	0.076	0.108	0.119	0.086	0.108
111Cd	0.084	0.280	2.9	3.6	3.1	4.0	4.8
118Sn	0.030	0.100	0.412	1.5	0.375	0.285	0.815
121Sb	0.004	0.013	0.025	0.021	0.023	0.025	0.042
137Ba	0.001	0.003	29	26	23	23	40
202Hg	0.040	0.133	0.086	0.086	0.057	0.071	0.114
205Tl	0.001	0.003	0.080	0.050	0.064	0.063	0.069
208Pb	0.004	0.013	0.089	0.129	0.112	0.150	0.225
238U	0.001	0.003	0.148	0.095	0.160	0.095	0.441

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

(Client ID				RG_LIDCC	M_INV-4_2	021-04-29	RG_LILC3_INV-3_2021-04-27				
	Lab ID	511				528			537			
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)		
7Li	0.004	0.885	0.890	0.6	0.441	0.521	17	0.730	0.672	8.3		
11B	0.078	2.9	2.8	3.5	1.5	1.5	0.0	1.4	1.5	6.9		
23Na	1.3	2,874	2,750	4.4	3,152	3,308	4.8	3,491	3,587	2.7		
24Mg	0.024	1,514	1,499	1.0	1,986	1,848	7.2	1,554	1,466	5.8		
27Al	0.053	790	825	4.3	362	362	0.0	358	266	30		
31P	52	12,761	11,571	9.8	10,940	11,506	5.0	11,881	11,143	6.4		
39K	2.9	13,085	10,660	20	10,104	10,087	0.2	13,288	13,591	2.3		
44Ca	5.8	2,141	1,996	7.0	2,994	2,563	16	3,329	2,855	15		
49Ti	0.001	69	61	12	22	21	4.7	27	20	30		
51V	0.042	1.7	1.7	0.0	0.855	0.850	0.6	1.4	1.1	24		
52Cr	0.131	5.3	4.1	26	5.1	4.9	4.0	5.6	4.1	31		
55Mn	0.007	35	31	12	86	78	9.8	549	429	25		
57Fe	1.1	364	316	14	387	422	8.7	1,405	1,277	9.5		
59Co	0.003	1.3	1.1	17	2.2	2.4	8.7	4.2	4.9	15		
60Ni	0.001	20	18	11	22	23	4.4	27	29	7.1		
63Cu	0.025	23	18	24	20	23	14	22	23	4.4		
66Zn	0.537	335	280	18	546	580	6.0	371	317	16		
75As	0.444	1.8	1.3	-	0.706	0.894	-	1.1	1.0	-		
77Se	0.306	6.7	5.7	16	7.1	6.7	5.8	11	11	0.0		
88Sr	0.001	4.5	4.1	9.3	6.6	6.0	9.5	6.6	5.8	13		
95Mo	0.001	0.423	0.385	9.4	0.368	0.435	17	0.986	0.943	4.5		
107Ag	0.001	0.038	0.028	30	0.038	0.038	0.0	0.036	0.036	0.0		
111Cd	0.084	3.2	2.7	17	5.3	5.3	0.0	6.1	5.6	8.5		
118Sn	0.030	0.366	0.452	21	0.537	0.369	37	0.687	0.765	11		
121Sb	0.004	0.068	0.072	5.7	0.039	0.037	-	0.168	0.193	14		
137Ba	0.001	48	42	13	27	22	20	46	34	30		
202Hg	0.040	0.117	0.078	-	0.058	0.043	-	0.061	0.068	-		
205TI	0.001	0.042	0.043	2.4	0.055	0.056	1.8	0.056	0.060	6.9		
208Pb	0.004	0.424	0.341	22	0.116	0.106	9.0	0.139	0.117	17		
238U	0.001	0.132	0.090	38	0.086	0.075	14	0.169	0.168	0.6		

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Project No: 2021-216

Teck Coal Limited
Tissue QA/QC Relative Percent Difference Results

Client ID		RG_LISP2	4_INV-3_20	21-04-27	RG_SLINE_INV-4_2021-04-26			
Lab ID			542			548		
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	
7Li	0.004	0.568	0.531	6.7	0.340	0.361	6.0	
11B	0.078	1.3	1.3	0.0	1.3	1.4	7.4	
23Na	1.3	3,475	3,305	5.0	2,319	2,678	14	
24Mg	0.024	1,342	1,288	4.1	1,456	1,584	8.4	
27Al	0.053	231	218	5.8	405	406	0.2	
31P	52	10,045	9,569	4.9	9,555	9,708	1.6	
39K	2.9	9,912	9,598	3.2	7,058	8,294	16	
44Ca	5.8	2,685	2,313	15	2,601	2,759	5.9	
49Ti	0.001	14	13	7.4	35	35	0.0	
51V	0.042	0.775	0.770	0.6	1.3	1.3	0.0	
52Cr	0.131	3.3	2.9	13	6.1	7.5	21	
55Mn	0.007	222	240	7.8	19	20	5.1	
57Fe	1.1	682	683	0.1	354	383	7.9	
59Co	0.003	3.4	3.7	8.5	0.696	0.798	14	
60Ni	0.001	20	21	4.9	14	16	13	
63Cu	0.025	17	17	0.0	14	14	0.0	
66Zn	0.537	417	374	11	622	739	17	
75As	0.444	0.561	0.583	-	1.6	1.5	-	
77Se	0.306	7.6	7.2	5.4	6.3	6.5	3.1	
88Sr	0.001	5.6	4.8	15	11	11	0.0	
95Mo	0.001	0.493	0.435	13	0.324	0.295	9.4	
107Ag	0.001	0.027	0.027	0.0	0.086	0.097	12	
111Cd	0.084	5.6	4.4	24	4.0	4.8	18	
118Sn	0.030	0.570	0.602	5.5	0.285	0.240	-	
121Sb	0.004	0.088	0.106	19	0.025	0.024	-	
137Ba	0.001	27	26	3.8	23	22	4.4	
202Hg	0.040	0.095	0.055	-	0.071	0.086	-	
205TI	0.001	0.034	0.031	9.2	0.063	0.073	15	
208Pb	0.004	0.094	0.090	4.3	0.150	0.136	9.8	
238U	0.001	0.092	0.075	20	0.095	0.102	7.1	

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	Sa	ample Group ID		01		02			
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	
7Li	0.004	1.21	1.4	118	8.9	1.2	101	5.4	
11B	0.078	4.5	5.1	114	1.8	4.8	107	3.1	
23Na	1.3	14,000	16,206	116	6.1	14,500	104	3.1	
24Mg	0.024	910	1,024	113	2.7	950	104	3.5	
27Al	0.053	197.2	218	110	2.4	185	94	6.1	
31P	52	8,000	8,856	111	2.2	8,355	104	5.1	
39K	2.9	15,500	17,391	112	1.0	16,613	107	3.3	
44Ca	5.8	2,360	2,642	112	2.6	2,515	107	3.7	
49Ti	0.001	12.24	15	119	14	11	93	7.2	
51V	0.042	1.57	1.6	103	8.8	1.8	115	8.4	
52Cr	0.131	1.87	2.1	112	3.6	2.0	108	4.5	
55Mn	0.007	3.17	3.5	112	4.7	3.5	109	5.1	
57Fe	1.1	343	404	118	4.3	369	108	3.7	
59Co	0.003	0.25	0.285	114	3.9	0.279	112	5.3	
60Ni	0.001	1.34	1.5	114	6.3	1.5	114	3.7	
63Cu	0.025	15.7	19	118	5.7	17	108	3.2	
66Zn	0.537	51.6	60	116	4.9	55	107	2.5	
75As	0.444	6.87	7.8	113	4.0	7.2	106	3.3	
77Se	0.306	3.45	3.8	110	5.3	3.7	108	4.2	
88Sr	0.001	10.1	11	112	7.8	11	105	1.6	
95Mo	0.001	0.29	0.347	120	6.7	0.278	96	4.0	
107Ag	0.001	0.0252	0.032	127	20	0.030	120	14	
111Cd	0.084	0.299	0.335	112	13	0.329	110	14	
118Sn	0.030	0.061	0.073	120	15	0.052	86	17	
121Sb	0.004	0.011	0.014	124	11	0.013	116	13	
137Ba	0.001	8.6	9.8	114	1.8	9.0	104	1.5	
202Hg	0.040	0.412	0.438	106	4.5	0.471	114	5.9	
205TI	0.001	0.0013	-	-	-	-	-	-	
208Pb	0.004	0.404	0.464	115	20	0.494	122	13	
238U	0.001	0.05	0.054	107	10	0.059	117	4.1	

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

Sample Group ID				03		04			
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	
7Li	0.004	1.21	1.4	117	11	1.2	101	11	
11B	0.078	4.5	4.7	105	1.5	5.1	114	2.8	
23Na	1.3	14,000	15,741	112	3.0	14,599	104	4.0	
24Mg	0.024	910	1,025	113	4.5	967	106	4.2	
27Al	0.053	197.2	187	95	4.9	200	102	1.7	
31P	52	8,000	8,897	111	2.2	8,002	100	3.0	
39K	2.9	15,500	17,083	110	3.7	16,236	105	1.0	
44Ca	5.8	2,360	2,653	112	5.3	2,493	106	5.6	
49Ti	0.001	12.24	11	89	9.2	12	96	13	
51V	0.042	1.57	1.8	116	13	1.7	108	11	
52Cr	0.131	1.87	2.1	114	4.7	1.9	103	3.4	
55Mn	0.007	3.17	3.7	117	4.2	3.5	109	4.6	
57Fe	1.1	343	402	117	5.7	380	111	4.2	
59Co	0.003	0.25	0.288	115	7.2	0.280	112	9.8	
60Ni	0.001	1.34	1.6	120	4.9	1.4	107	7.4	
63Cu	0.025	15.7	19	120	7.5	18	112	7.8	
66Zn	0.537	51.6	62	120	8.3	56	108	5.5	
75As	0.444	6.87	7.7	113	4.7	6.9	101	3.0	
77Se	0.306	3.45	3.8	109	12	3.4	97	5.4	
88Sr	0.001	10.1	11	110	2.4	11	112	4.2	
95Mo	0.001	0.29	0.319	110	6.4	0.325	112	8.6	
107Ag	0.001	0.0252	0.031	121	16	0.031	121	16	
111Cd	0.084	0.299	0.347	116	6.2	0.318	106	18	
118Sn	0.030	0.061	0.072	118	17	0.067	110	12	
121Sb	0.004	0.011	0.012	109	20	0.014	127	20	
137Ba	0.001	8.6	8.4	98	1.3	9.3	108	4.3	
202Hg	0.040	0.412	0.508	123	7.4	0.441	107	10	
205TI	0.001	0.0013	-	-	-	-	-	-	
208Pb	0.004	0.404	0.463	114	14	0.367	91	8.7	
238U	0.001	0.05	0.058	116	3.3	0.053	105	8.4	

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	Sa	ample Group ID		05		06			
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	
7Li	0.004	1.21	1.1	92	3.4	1.2	100	10	
11B	0.078	4.5	5.1	113	2.4	4.5	101	1.8	
23Na	1.3	14,000	13,628	97	2.8	14,021	100	2.2	
24Mg	0.024	910	906	100	2.4	923	101	3.6	
27Al	0.053	197.2	195	99	6.9	195	99	7.4	
31P	52	8,000	7,779	97	1.5	7,625	95	2.0	
39K	2.9	15,500	15,235	98	4.1	15,207	98	4.3	
44Ca	5.8	2,360	2,365	100	4.0	2,295	97	2.4	
49Ti	0.001	12.24	11	92	8.7	13	107	9.8	
51V	0.042	1.57	1.6	100	9.3	1.5	94	9.5	
52Cr	0.131	1.87	1.9	99	3.2	1.9	100	2.8	
55Mn	0.007	3.17	3.3	103	2.4	3.3	105	3.2	
57Fe	1.1	343	354	103	3.2	357	104	2.3	
59Co	0.003	0.25	0.256	102	3.5	0.253	101	4.3	
60Ni	0.001	1.34	1.4	107	4.1	1.4	102	4.5	
63Cu	0.025	15.7	17	106	4.3	17	106	4.2	
66Zn	0.537	51.6	53	102	2.7	52	101	3.4	
75As	0.444	6.87	6.6	96	1.2	7.0	102	1.3	
77Se	0.306	3.45	3.4	100	5.4	3.5	100	4.1	
88Sr	0.001	10.1	10	100	2.1	10	101	2.5	
95Mo	0.001	0.29	0.284	98	8.5	0.295	102	7.1	
107Ag	0.001	0.0252	0.030	119	17	0.030	120	16	
111Cd	0.084	0.299	0.335	112	15	0.306	102	14	
118Sn	0.030	0.061	0.051	83	16	0.070	114	21	
121Sb	0.004	0.011	0.013	116	3.9	0.011	96	6.8	
137Ba	0.001	8.6	9.1	106	1.9	8.9	103	3.3	
202Hg	0.040	0.412	0.433	105	9.1	0.433	105	5.8	
205TI	0.001	0.0013	-	-	-	-	-	-	
208Pb	0.004	0.404	0.418	103	3.6	0.409	101	6.5	
238U	0.001	0.05	0.050	100	6.2	0.050	100	4.2	

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Bold indicates DQO exceedance but result is accepted as it does not impact the reportable results

QA-QC Accuracy and Precision COM-013.04

TrichAnalytics Inc.

Project No: 2021-216

Teck Coal Limited Sample Group Information

Sample Group ID	Client ID	Lab ID	Date of Analysis
01	RG_FO23_INV-1_2021-04-28	500	27 May 2021
	RG_FO23_INV-2_2021-04-28	501	
	RG_FO23_INV-3_2021-04-28	502	
	RG_FO23_INV-4_2021-04-28	503	
	RG_FO23_INV-5_2021-04-28	504	
	RG_FRUL_INV-1_2021-04-28	505	
	RG_FRUL_INV-2_2021-04-28	506	
	RG_FRUL_INV-3_2021-04-28	507	
	RG_FRUL_INV-4_2021-04-28	508	
02	RG_FRUL_INV-5_2021-04-28	509	27 May 2021
	RG_LCUT_INV-1_2021-04-27	510	
	RG_LCUT_INV-2_2021-04-27	511	
	RG_LCUT_INV-3_2021-04-27	512	
	RG_LCUT_INV-4_2021-04-27	513	
	RG_LCUT_INV-5_2021-04-27	514	
	RG_LI8_INV-1_2021-04-28	515	
	RG_LI8_INV-2_2021-04-28	516	
	RG_LI8_INV-3_2021-04-28	517	
03	RG_LI8_INV-4_2021-04-28	518	27 May 2021
	RG_LI8_INV-5_2021-04-28	519	
	RG_LI24_INV-1_2021-04-26	520	
	RG_LI24_INV-2_2021-04-26	521	
	RG_LI24_INV-3_2021-04-26	522	
	RG_LI24_INV-4_2021-04-26	523	
	RG_LI24_INV-5_2021-04-26	524	
	RG_LIDCOM_INV-1_2021-04-29	525	
	RG_LIDCOM_INV-2_2021-04-29	526	
04	RG_LIDCOM_INV-3_2021-04-29	527	27 May 2021
	RG_LIDCOM_INV-4_2021-04-29	528	
	RG_LIDCOM_INV-5_2021-04-29	529	
	RG_LIDSL_INV-1_2021-04-27	530	
	RG_LIDSL_INV-2_2021-04-27	531	
	RG_LIDSL_INV-3_2021-04-27	532	
	RG_LIDSL_INV-4_2021-04-27	533	
	RG_LIDSL_INV-5_2021-04-27	534	
	RG_LILC3_INV-1_2021-04-27	535	
05	RG_LILC3_INV-2_2021-04-27	536	27 May 2021
	RG_LILC3_INV-3_2021-04-27	537	
	RG_LILC3_INV-4_2021-04-27	538	
	RG_LILC3_INV-5_2021-04-27	539	

Teck Coal Limited Sample Group Information

Sample			Date of
Group ID	Client ID	Lab ID	Analysis
05	RG_LISP24_INV-1_2021-04-27	540	27 May 2021
	RG_LISP24_INV-2_2021-04-27	541	
	RG_LISP24_INV-3_2021-04-27 RG_LISP24_INV-4_2021-04-27	542 543	
06	RG_LISP24_INV-5_2021-04-27	544	27 May 2021
	RG_SLINE_INV-1_2021-04-26	545	
	RG_SLINE_INV-2_2021-04-26	546	
	RG_SLINE_INV-3_2021-04-26	547	
	RG_SLINE_INV-4_2021-04-26 RG_SLINE_INV-5_2021-04-26	548 549	
	NO_321142_1144	3 13	

MINNOW ENVIRONMENTAL INCORPORATED

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

Laboratory	: Trich Analytics				_		Page	2 of 10
						Minnow Contact:	Tyler Mehler	
					-	Contact Email:	tyler.mehler@r	ninnow.ca
Contact:	Tyler Mehler				-	Minnow Project #:	217202.00	036
Phone:	587-597-1612	Fax:				Date Results Require	d By:	
Report ma	iling list: tyler.mehler@minnow.ca; Cait	.Good@teck	c.com; Carlie.Meyer(@teck.com				
					-	s Required		
Sample Number	Minnow Sample ID	Date Sampled	Matrix	(Freeze Drying)	Full Metals including Hg		Number of Containers	Comments
1	RG_FRUL_INV-1_2021-04-28 🗸	28-Apr-21	Invertebrate tissue	x	x		1	
2	RG_FRUL_INV-2_2021-04-28		Invertebrate tissue		х		1	
3	RG_FRUL_INV-3_2021-04-28 V	28-Apr-21	Invertebrate tissue	x	x		1	
4	RG_FRUL_INV-4_2021-04-28 🗸	28-Apr-21	Invertebrate tissue	x	x		1	
5	RG_FRUL_INV-5_2021-04-28 🗸	28-Apr-21	Invertebrate tissue	x	x		1	
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
Samples F	Relinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Shipment Meth	od: Pacific Coastal cargo in iced
Samples F	Received in Lab By: (Lab Employee Signature)	Stu	inen		Date:	1 Time: 7:00pm		on upon Receipt:

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

MINNOW ENVIRONMENTAL INCORPORATED

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

aboratory:	Trich Analytics						Page	3 01 10		
						Minnow Contact:	Tyler Mehler			
						Contact Email:	tyler.mehler@minnow.ca			
Contact:	Tyler Mehler					Minnow Project #:	217202.003	66		
Phone:	587-597-1612	Fax:				Date Results Required By	r:			
Report mail	ling list: tyler.mehler@minnow.ca; Cait	t.Good@tecl	k.com; Carlie.Meyer	@teck.com	; Kbatchelar@mir	sis Required				
						sis required	Number of			
Sample Number	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of Containers	Comments		
1	RG_LCUT_INV-1_2021-04-27 V	27-Apr-21	Invertebrate tissue	х	х		1			
2	RG_LCUT_INV-2_2021-04-27 V	27-Apr-21	Invertebrate tissue	x	x		1			
3	RG_LCUT_INV-3_2021-04-27 V		Invertebrate tissue	x	x		1			
4	RG LCUT INV-4 2021-04-27 V	27-Apr-21	Invertebrate tissue	x	x		1			
5	RG LCUT INV-5 2021-04-27 ✓		Invertebrate tissue	x	x		1			
6										
7										
8										
9										
10										
11										
12										
13										
14										
15								I D. 15. Occatel seems in ion		
Samples F	Relinquished to Lab By:				Date:	Time:		od: Pacific Coastal cargo in iceo		
Samples F	(Minnow Employee Signature) Received in Lab By: (Lab Employee Signature)	ALT	ageir		Date:	Time: 7:00pm	Sample Condition	on upon Receipt:		

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

Laboratory:	Trich Analytics						Page	4 of 10	
					_	Minnow Contact:	Tyler Mehler		
					_	Contact Email:	tyler.mehler@mi		
Contact:	Tyler Mehler				-	Minnow Project #:	217202.003	66	
Phone:	587-597-1612 ling list: tyler.mehler@minnow.ca; (Fax:	ook oom: Carlio Mou	or@took o	om: Khatabalar@r	Date Results Required By	/:		
report man	ing list. tyler.memer@minow.ca, c	Jail.Good@i	eck.com, Came.wey	el@leck.c		sis Required			
Sample	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg	3.0 ((044.100	Number of	Comments	
1	RG_LI8_INV-1_2021-04-28	28-Apr-21	Invertebrate tissue	х	x		1		
2	RG_LI8_INV-2_2021-04-28 V	28-Apr-21	Invertebrate tissue	х	x		1		
3	RG_LI8_INV-3_2021-04-28 V	28-Apr-21	Invertebrate tissue	×	x		1		
4	RG_LI8_INV-4_2021-04-28 V	28-Apr-21	Invertebrate tissue	х	x		1		
5	RG_LI8_INV-5_2021-04-28 V	28-Apr-21	Invertebrate tissue	x	x		1		
6									
7									
8									
9									
10									
11									
12									
13									
14									
15)						
	elinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Shipment Method	d: Pacific Coastal cargo in iced	
Samples R	eceived in Lab By: (Lab Employee Signature)	set	Bui		Date:	Time: 7:00 pm	Sample Condition	n upon Receipt:	

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

Contact:	Tyler Mehler			U.	-ail aid	Minnow Contact: Contact Email: Minnow Project # Date Results Re	tyler.n	nehler@minnow.ca
Phone:	587-597-1612	Fax:		e	ece non	Minnow Project # Date Results Re	F. Z	17202.0036
	iling list: tyler.mehler@minnow.ca; Ca		ck.com: Carlie.Mever	@teck.com	: Kbatchelar@minn	ow.ca	quirea by.	
						Required		
Sample Number	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Numb	Comments
1	RG_FO23_INV-1_2021-04-28 ~	28-Apr-21	Invertebrate tissue	х	x		1	
2	RG_F023_INV-2_2021-04-28 🗸	28-Apr-21	Invertebrate tissue	х	x		1	
3	RG_F023_INV-3_2021-04-28 ~	28-Apr-21	Invertebrate tissue	x	x		1	
4	RG_FO23_INV-4_2021-04-28 ~	28-Apr-21	Invertebrate tissue	X	x		1	
5	RG_F023_INV-5_2021-04-28 V	28-Apr-21	Invertebrate tissue	х	x		1	· · · · · · · · · · · · · · · · · · ·
6								Project # 2021-21k
7								12021
8								act It
9								broke
10						7		
11								
12								
13								
14								
15								
Samples R	delinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Shipm	ent Method: Pacific Coastal cargo in ice
Samples R	deceived in Lab By:				Date:	Time:	Sampl	e Condition upon Receipt:

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

Laboratory	: Trich Analytics				-	Minnow Contact:	Page Tyler Mehler	5 of10
					-	Contact Email:	tyler.mehler@m	innow.ca
Contact:	Tyler Mehler		1			Minnow Project #:	217202.00	
Phone:		Fax:			_	Date Results Required I	Зу:	Ç
Report mai	ling list: tyler.mehler@minnow.ca; Ca	ait.Good@te	ck.com; Carlie.Meye	er@teck.co				
					Analysi	s Required		
Sample	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of Containers	Comments
1	RG_LI24_INV-1_2021-04-26 V	26-Apr-21	Invertebrate tissue	х	х		1	
2	RG_LI24_INV-2_2021-04-26 V	26-Apr-21	Invertebrate tissue	x	x		1	
3	RG_LI24_INV-3_2021-04-26 🗸	26-Apr-21	Invertebrate tissue	x	х		1	
4	RG_LI24_INV-4_2021-04-26 🗸	26-Apr-21	Invertebrate tissue	х	x		1	
5	RG_LI24_INV-5_2021-04-26 V	26-Apr-21	Invertebrate tissue	x	x		. 1	
6	-							
7								
8								
9								
10								
11					1		Gen	
12								
13							8	
14								
15								
Samples R	elinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Shipment Metho	d: Pacific Coastal cargo in ice
Samples R	eceived in Lab By: (Lab Employee Signature)	al III	Alls		Date: (May 202	1 Time: 7:000m		n upon Receipt:

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

*	Trich Analytics				-	Minnow Contact:	Page Tyler Mehler	6 of 10		
					-	Contact Email:	tyler.mehler@m	innow.ca		
Contact:	Tyler Mehler					Minnow Project #:		217202.0036		
Phone:	587-597-1612	Fax:				Date Results Required	Ву:			
Report mai	ling list: tyler.mehler@minnow.ca; Cait.G	Good@teck.d	com; Carlie.Meyer@	teck.com;						
					Analys	is Required				
Sample Number	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of Containers	Comments		
1	RG_LIDCOM_INV-1_2021-04-29 V	29-Apr-21	Invertebrate tissue	х	x		1			
2	RG_LIDCOM_INV-2_2021-04-29 🗸	29-Apr-21	Invertebrate tissue	x	x		1			
3	RG_LIDCOM_INV-3_2021-04-29 V	29-Apr-21	Invertebrate tissue	x	x		1			
4	RG_LIDCOM_INV-4_2021-04-29	29-Apr-21	Invertebrate tissue	x	x		1			
5	RG_LIDCOM_INV-5_2021-04-29 V	29-Apr-21	Invertebrate tissue	х	x		1			
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
Samples R	elinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Shipment Metho	d: Pacific Coastal cargo in ice		
Samples R	eceived in Lab By: (Lab Employee Signature)	ture	lee		Date: 11 May 20	Time: 7:00 pm	Sample Condition	n upon Receipt:		

204-1006 Fort Street Victoria, British Columbia V8V 3K4

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

Telephone:(250) 595-1627 Facsmile:(250) 595-1625

Laboratory:	Trich Analytics				_		Page	7 of 1
					_	Minnow Contact:	Tyler Mehler	
					-	Contact Email:	tyler.mehler@m	innow.ca
Contact:	Tyler Mehler					Minnow Project #:	217202.003	36
Phone:		Fax:				Date Results Require	d By:	
Report mail	ing list: tyler.mehler@minnow.ca; Ca	it.Good@te	ck.com; Carlie.Meye	r@teck.co				
					Analys	is Required		
Sample Number	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of Containers	Comments
1	RG_LIDSL_INV-1_2021-04-27 🗸	27-Apr-21	Invertebrate tissue	х	×		1	
2	RG_LIDSL_INV-2_2021-04-27 V	27-Apr-21	Invertebrate tissue	х	x		1	
3	RG_LIDSL_INV-3_2021-04-27 🗸	27-Apr-21	Invertebrate tissue	х	x		1	
4	RG_LIDSL_INV-4_2021-04-27 🗸	27-Apr-21	Invertebrate tissue	х	x		1	
5	RG_LIDSL_INV-5_2021-04-27 V	27-Apr-21	Invertebrate tissue	х	x		1	
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
Samples Re	elinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Shipment Metho	d: Pacific Coastal cargo in id
Samples Re	eceived in Lab By:	0			Date:	Time:	Sample Conditio	n upon Receipt:

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

Laboratory	Trich Analytics					ħ	Minnow Contact:	Page Tyler Mehler	8 of <u>10</u>
							Contact Email:	tyler.mehler@m	innow.ca
Contact:	Tyler Mehler				-		Minnow Project #:	217202.00	
Phone:		Fax:			-		Date Results Required		
Report mai	ling list: tyler.mehler@minnow.ca; Ca	it.Good@te	ck.com; Carlie.Meye	r@teck.co	m; Kbatchelar@mir	nnow.ca	a		
					Analysi	is Requ	uired		
Sample	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg			Number of Containers	Comments
1	RG_LILC3_INV-1_2021-04-27 V	27-Apr-21	Invertebrate tissue	х	х			1	
2	RG_LILC3_INV-2_2021-04-27 V	27-Apr-21	Invertebrate tissue	x	x			1	
3	RG_LILC3_INV-3_2021-04-27 V	27-Apr-21	Invertebrate tissue	х	x			1	
4	RG_LILC3_INV-4_2021-04-27 <	27-Apr-21	Invertebrate tissue	X	x			1	
5	RG_LILC3_INV-5_2021-04-27 V	27-Apr-21	Invertebrate tissue	х	x			1	
6		,							
7									
8									
9									
10									
11									
12									
13									
14									
15									
Samples R	elinquished to Lab By: (Minnow Employee Signature)				Date:	-	Time:	Shipment Metho	od: Pacific Coastal cargo in iced
Samples R	deceived in Lab By: (Lab Employee Signature)	ATTU	Lew		Date: 1(May 26		Time: 7:00 pm		on upon Receipt:

204-1006 Fort Street Victoria, British Columbia V8V 3K4

540 541 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

Laboratory	r: Trich Analytics						Minnow Contact:	Page Tyler Mehler	9 of 10	
							Contact Email:	tyler.mehler@n	innow ca	
Contact:	Tyler Mehler				-		Minnow Project #:	217202.0036		
Phone:	587-597-1612	Fax:					Date Results Required	By:		
Report ma	iling list: tyler.mehler@minnow.ca; Cait.0	Good@teck.d	com; Carlie.Meyer@	teck.com;						
					Ar	nalysis Re	equired			
Sample	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg			Number of Containers	Comments	
1	RG_LISP24_INV-1_2021-04-27 🗸	27-Apr-21	Invertebrate tissue	х	x			1		
2	RG_LISP24_INV-2_2021-04-27 🗸	27-Apr-21	Invertebrate tissue	х	x			1		
3	RG_LISP24_INV-3_2021-04-27	27-Apr-21	Invertebrate tissue	х	x			1		
4	RG_LISP24_INV-4_2021-04-27 \	27-Apr-21	Invertebrate tissue	х	x			1		
5	RG_LISP24_INV-5_2021-04-27 V	27-Apr-21	Invertebrate tissue	х	x			1		
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
Samples F	Relinquished to Lab By: (Minnow Employee Signature)				Date:		Time:	Shipment Metho	od: Pacific Coastal cargo in ic	
Samples F	Received in Lab By: (Lab Employee Signature)	MALL	Ren		Date:	7071	Time: 7200000		on upon Receipt:	

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

					-		Minnow Contact: Contact Email:	Tyler Mehler	-1
Contact:	Tyler Mehler				-		Minnow Project #:	tyler.mehler@r 217202.00	
Phone:	587-597-1612	Fax:			-		Date Results Requ		J30
Report ma	ailing list: tyler.mehler@minnow.ca; Cait.0		com; Carlie.Meyer@	teck.com;	Kbatchelar@n	ninnow.ca	Date Nesults Nequ	iled by.	
						nalysis Re			
Sample	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg			Number of Containers	Comments
1	RG_SLINE_INV-1_2021-04-26 V	26-Apr-21	Invertebrate tissue	х	x			1	
2	RG_SLINE_INV-2_2021-04-26 V	26-Apr-21	Invertebrate tissue	х	x			1	
3	RG_SLINE_INV-3_2021-04-26 V	26-Apr-21	Invertebrate tissue	х	×			1	
4	RG_SLINE_INV-4_2021-04-26 V	26-Apr-21	Invertebrate tissue	x	x			1	
5	RG_SLINE_INV-5_2021-04-26 V	26-Apr-21	Invertebrate tissue	x	×			1	
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
•	Relinquished to Lab By: (Minnow Employee Signature)				Date:		Time:	Shipment Meth	od: Pacific Coastal cargo in
Samples F	Received in Lab By: (Lab Employee Signature)	Alun	0.0		Date:	204	Time:		on upon Receipt:

BENTHIC TISSUE CHEMISTRY

TrichAnalytics Laboratory Report 2021-240 (Finalized August 05, 2021)

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Client: Tyler Mehler Date Received: 27 Jul 2021

Aquatic Scientist Date of Analysis: 30 Jul 2021

03 Aug 2021

 Phone:
 (250) 595-4652
 Final Report Date:
 05 Aug 2021

 Email:
 tmehler@minnow.ca
 Project No.:
 2021-240

Method No.: MET-002.05

Client Project: Teck Coal Limited/Minnow Environmental Line Creek Operations (LAEMP)

Analytical Request: Benthic Invertebrate Tissue Microchemistry (total metals and moisture) – 50 samples.

See chain of custody form provided for sample identification numbers.

Notes:

Analytical results are expressed in part per million (ppm) dry weight (equivalent to mg/kg).

Samples quantified using DORM-4, NIST-1566b, and NIST-2976 certified reference standards.

Aluminum concentrations above 1,000 ppm are outside linear range of the calibration curve.

Client specific DQO for Selenium accuracy is 90 - 110% of the certified value; (average achieved 105%, range 102 - 108%).

RPD values calculated according to the British Columbia Environmental Laboratory Manual (2020) criteria.

This report provides the analytical results only for tissue samples noted above as received from the Client.

Reviewed and Ar proved by Jennie Christensen, PhD, RPBio

Minnow Environmental

Date

05 Aug 2021

[The analytical report shall not be reproduced except in full under the expressed written consent of TrichAnalytics Inc.]

TrichAnalytics Inc. 207-1753 Sean Heights Saanichton, BC V8M 0B3 www.trichanalytics.com

Project No: 2021-240

			RG_FO23_INV-	RG_FO23_INV-	RG_FO23_INV-	RG_FO23_INV-	RG_FO23_INV-
		Client ID	1_2021-07-14	2_2021-07-14	3_2021-07-14	4_2021-07-14	5_2021-07-14
		Lab ID	171	172	173	174	175
	We	et Weight (g)	1.1482	2.0387	1.3230	1.6841	1.3683
	Di	y Weight (g)	0.1924	0.3445	0.2434	0.2555	0.2523
		Moisture (%)	83.2	83.1	81.6	84.8	81.6
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.006	0.020	0.776	0.982	0.616	0.781	1.5
11B	0.090	0.300	1.2	1.1	1.3	1.9	1.7
23Na	1.0	3.3	3,475	3,976	3,397	3,518	5,741
24Mg	0.022	0.073	2,091	1,349	1,737	1,862	1,793
27Al	0.053	0.177	777	389	589	652	749
31P	30	100	13,224	9,379	11,927	12,699	12,762
39K	16	53	10,183	8,013	11,378	11,016	11,686
44Ca	60	200	3,694	2,752	3,387	3,382	3,208
49Ti	0.420	1.4	43	22	29	34	56
51V	0.042	0.140	1.1	0.608	1.0	1.0	1.2
52Cr	0.951	3.2	8.5	4.9	4.9	6.3	8.4
55Mn	0.011	0.037	45	31	43	47	44
57Fe	4.2	14	388	258	419	449	483
59Co	0.005	0.017	2.3	1.7	2.7	2.9	2.2
60Ni	0.040	0.133	17	8.6	13	15	15
63Cu	0.011	0.037	21	15	19	22	18
66Zn	0.684	2.3	469	335	375	477	320
75As	0.496	1.7	0.805	0.507	0.826	0.805	0.696
77Se	0.333	1.1	9.4	6.9	8.3	8.8	8.5
88Sr	0.001	0.003	5.2	3.8	5.0	4.8	4.8
95Mo	0.001	0.003	0.273	0.237	0.416	0.388	0.273
107Ag	0.001	0.003	0.142	0.104	0.126	0.151	0.132
111Cd	0.094	0.313	3.5	3.1	4.4	4.7	4.3
118Sn	0.048	0.160	0.731	0.463	0.827	1.6	0.553
121Sb	0.006	0.020	0.032	0.020	0.032	0.021	0.028
137Ba	0.001	0.003	27	17	24	31	27
202Hg	0.030	0.100	0.123	0.086	0.102	0.105	0.099
205Tl	0.001	0.003	0.035	0.026	0.036	0.035	0.042
208Pb	0.002	0.007	0.195	0.132	0.195	0.210	0.256
238U	0.001	0.003	0.045	0.044	0.062	0.084	0.064

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_FRUL_INV- 1_2021-07-14	RG_FRUL_INV- 2_2021-07-14	RG_FRUL_INV- 3_2021-07-14	RG_FRUL_INV- 4_2021-07-14	RG_FRUL_INV- 5_2021-07-14
		Lab ID	176	177	178	179	180
	\ <i>\</i> /4	et Weight (g)	1.2046	1.0862	1.4747	0.9187	1.0307
		ry Weight (g)	0.1952	0.1587	0.2365	0.1804	0.1956
		Moisture (%)	83.8	85.4	84.0	80.4	81.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.006	0.020	1,1	1.4	0.888	1.3	2.1
11B	0.090	0.300	0.994	0.426	0.728	2.2	1.3
23Na	1.0	3.3	5,126	8,582	4,474	3,210	7,029
24Mg	0.022	0.073	1,714	1,553	, 1,940	1,567	1,226
27AI	0.053	0.177	504	191	367	2,828	838
31P	30	100	12,743	11,267	12,349	9,799	11,798
39K	16	53	12,379	10,938	11,769	8,466	11,719
44Ca	60	200	3,452	2,335	2,948	4,506	2,840
49Ti	0.420	1.4	30	9.4	19	207	57
51V	0.042	0.140	0.780	0.368	0.615	5.0	1.7
52Cr	0.951	3.2	6.8	4.6	7.1	40	26
55Mn	0.011	0.037	60	28	38	73	67
57Fe	4.2	14	356	165	281	2,041	865
59Co	0.005	0.017	1.5	0.634	1.2	2.5	2.7
60Ni	0.040	0.133	13	6.9	12	56	46
63Cu	0.011	0.037	23	20	28	18	18
66Zn	0.684	2.3	196	233	297	185	189
75As	0.496	1.7	0.638	< 0.496	0.558	1.0	0.910
77Se	0.333	1.1	11	9.0	9.4	7.6	9.8
88Sr	0.001	0.003	4.7	2.7	4.1	6.0	3.3
95Mo	0.001	0.003	0.459	0.215	0.215	0.445	0.356
107Ag	0.001	0.003	0.243	0.214	0.230	0.208	0.193
111Cd	0.094	0.313	3.3	2.9	1.8	1.9	2.7
118Sn	0.048	0.160	0.739	0.579	0.373	0.638	0.745
121Sb	0.006	0.020	0.032	0.007	0.014	0.067	0.033
137Ba	0.001	0.003	21	14	18	61	25
202Hg	0.030	0.100	0.099	0.099	0.080	0.083	0.085
205Tl	0.001	0.003	0.032	0.018	0.021	0.063	0.030
208Pb	0.002	0.007	0.496	0.060	0.105	0.770	0.222
238U	0.001	0.003	0.067	0.023	0.047	0.083	0.050

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LCUT_INV- 1_2021-07-12	RG_LCUT_INV- 2_2021-07-12	RG_LCUT_INV- 3_2021-07-12	RG_LCUT_INV- 4_2021-07-12	RG_LCUT_INV- 5_2021-07-12
		Lab ID	181	182	183	184	185
	We	et Weight (g)	2.0510	1.1630	1.7247	1.4230	1.9126
		ry Weight (g)	0.3695	0.2247	0.3725	0.2560	0.3872
		Moisture (%)	82.0	80.7	78.4	82.0	79.8
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.006	0.020	0.641	0.270	0.627	0.664	0.989
11B	0.090	0.300	1.1	0.766	0.891	1.5	2.7
23Na	1.0	3.3	3,220	1,338	3,535	3,422	3,064
24Mg	0.022	0.073	1,743	747	1,711	1,673	1,838
27Al	0.053	0.177	471	158	435	559	1,797
31P	30	100	13,716	6,556	13,589	12,874	12,210
39K	16	53	11,732	6,690	13,292	14,022	13,275
44Ca	60	200	3,648	1,651	2,613	4,587	3,704
49Ti	0.420	1.4	28	6.4	23	29	109
51V	0.042	0.140	0.623	0.333	0.765	1.1	2.6
52Cr	0.951	3.2	3.2	2.8	5.7	7.4	7.7
55Mn	0.011	0.037	31	15	38	43	64
57Fe	4.2	14	183	86	272	279	484
59Co	0.005	0.017	0.830	0.942	1.5	1.9	1.9
60Ni	0.040	0.133	11	7.9	15	20	25
63Cu	0.011	0.037	33	23	34	51	54
66Zn	0.684	2.3	180	196	184	259	293
75As	0.496	1.7	2.2	1.5	2.0	3.4	3.5
77Se	0.333	1.1	3.6	2.4	4.8	4.2	5.9
88Sr	0.001	0.003	5.3	1.9	4.5	5.9	6.6
95Mo	0.001	0.003	0.373	0.259	0.437	0.486	0.551
107Ag	0.001	0.003	0.021	0.014	0.028	0.037	0.051
111Cd	0.094	0.313	3.4	2.0	4.6	6.4	8.8
118Sn	0.048	0.160	0.500	0.225	0.430	0.971	0.799
121Sb	0.006	0.020	0.026	0.020	0.033	0.045	0.069
137Ba	0.001	0.003	26	11	28	32	52
202Hg	0.030	0.100	0.079	0.092	0.112	0.112	0.128
205Tl	0.001	0.003	0.036	0.017	0.043	0.041	0.091
208Pb	0.002	0.007	0.190	0.075	0.239	0.273	0.666
238U	0.001	0.003	0.058	0.031	0.064	0.107	0.174

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LI8_INV- 1_2021-07-15	RG_LI8_INV- 2_2021-07-15	RG_LI8_INV- 3_2021-07-15	RG_LI8_INV- 4_2021-07-15	RG_LI8_INV- 5_2021-07-15
		Lab ID	186	187	188	189	190
	We	et Weight (g)	1.5096	1.4474	1.1932	1.2805	1.3465
		ry Weight (g)	0.2486	0.2606	0.2189	0.2401	0.2314
		Moisture (%)	83.5	82.0	81.7	81.2	82.8
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.006	0.020	0.522	0.405	0.742	0.423	0.526
11B	0.090	0.300	0.746	0.684	1.1	0.919	0.696
23Na	1.0	3.3	4,120	4,316	4,430	3,693	3,673
24Mg	0.022	0.073	1,986	1,677	1,698	2,193	1,682
27Al	0.053	0.177	246	193	807	287	332
31P	30	100	15,402	12,522	13,299	12,640	13,124
39K	16	53	13,534	12,358	12,622	11,428	11,435
44Ca	60	200	2,669	1,986	3,226	2,782	2,059
49Ti	0.420	1.4	16	10	72	17	20
51V	0.042	0.140	0.483	0.419	2.0	0.468	0.425
52Cr	0.951	3.2	4.4	3.7	16	3.8	4.7
55Mn	0.011	0.037	50	41	71	41	43
57Fe	4.2	14	257	234	528	260	221
59Co	0.005	0.017	3.2	4.1	4.5	3.3	1.7
60Ni	0.040	0.133	22	22	44	22	14
63Cu	0.011	0.037	18	16	16	18	13
66Zn	0.684	2.3	588	565	463	770	412
75As	0.496	1.7	2.0	2.2	2.3	2.9	1.3
77Se	0.333	1.1	7.3	7.3	6.9	8.0	5.5
88Sr	0.001	0.003	4.8	3.3	5.6	5.5	4.2
95Mo	0.001	0.003	0.421	0.324	0.486	0.324	0.290
107Ag	0.001	0.003	0.028	0.021	0.028	0.027	0.018
111Cd	0.094	0.313	11	11	12	12	5.6
118Sn	0.048	0.160	1.1	0.611	1.3	0.657	0.402
121Sb	0.006	0.020	0.020	0.016	0.033	0.018	0.018
137Ba	0.001	0.003	20	16	31	23	21
202Hg	0.030	0.100	0.118	0.092	0.085	0.109	0.089
205Tl	0.001	0.003	0.059	0.060	0.043	0.063	0.036
208Pb	0.002	0.007	0.110	0.100	0.241	0.119	0.104
238U	0.001	0.003	0.066	0.050	0.093	0.053	0.044

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LI24_INV- 1_2021-07-13	RG_LI24_INV- 2_2021-07-13	RG_LI24_INV- 3_2021-07-13	RG_LI24_INV- 4_2021-07-13	RG_LI24_INV- 5_2021-07-13
		Lab ID	191	192	193	194	195
	We	et Weight (g)	1.4087	1.0999	1.2589	1.6234	1.2337
		y Weight (g)	0.2509	0.1830	0.2039	0.2808	0.2081
		Moisture (%)	82.2	83.4	83.8	82.7	83.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.006	0.020	1.1	0.615	0.669	0.359	0.649
11B	0.090	0.300	1.4	0.547	0.671	0.323	0.621
23Na	1.0	3.3	5,017	4,087	4,055	4,215	3,190
24Mg	0.022	0.073	2,370	1,746	2,074	2,483	1,594
27Al	0.053	0.177	921	400	401	216	458
31P	30	100	14,828	11,797	13,903	14,156	9,670
39K	16	53	14,719	11,636	12,200	11,717	9,270
44Ca	60	200	3,316	3,063	3,703	3,331	2,726
49Ti	0.420	1.4	54	21	23	11	22
51V	0.042	0.140	2.6	1.1	1.0	0.706	0.919
52Cr	0.951	3.2	18	7.6	6.2	2.6	6.9
55Mn	0.011	0.037	43	31	29	17	27
57Fe	4.2	14	573	355	276	203	295
59Co	0.005	0.017	2.5	1.7	1.2	1.4	1.1
60Ni	0.040	0.133	34	18	13	8.0	13
63Cu	0.011	0.037	19	14	17	19	17
66Zn	0.684	2.3	924	469	449	844	483
75As	0.496	1.7	3.0	2.1	1.8	1.8	1.7
77Se	0.333	1.1	9.6	6.1	6.6	9.4	6.0
88Sr	0.001	0.003	8.3	7.6	8.2	7.5	6.9
95Mo	0.001	0.003	0.529	0.426	0.358	0.409	0.392
107Ag	0.001	0.003	0.076	0.052	0.079	0.072	0.061
111Cd	0.094	0.313	4.0	2.2	1.3	3.5	2.1
118Sn	0.048	0.160	1.7	0.952	1.3	0.815	0.570
121Sb	0.006	0.020	0.035	0.022	0.018	0.018	0.022
137Ba	0.001	0.003	40	32	33	20	24
202Hg	0.030	0.100	0.109	0.075	0.085	0.126	0.099
205Tl	0.001	0.003	0.174	0.100	0.076	0.130	0.079
208Pb	0.002	0.007	0.422	0.165	0.180	0.086	0.153
238U	0.001	0.003	0.185	0.123	0.116	0.122	0.094

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG LIDCOM INV-	RG_LIDCOM_INV-	RG LIDCOM INV-	RG LIDCOM INV-	RG LIDCOM INV-
		Client ID	1_2021-07-12	2_2021-07-12	3_2021-07-12	4_2021-07-12	5_2021-07-12
			_	_	_	_	_
		Lab ID	196	197	198	199	200
	We	et Weight (g)	2.1453	2.3152	2.0416	2.5716	2.5309
		ry Weight (g)	0.3914	0.3763	0.4799	0.4437	0.4557
		Moisture (%)	81.8	83.7	76.5	82.7	82.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.006	0.020	0.445	0.590	0.340	0.548	0.522
11B	0.090	0.300	0.795	1.2	0.466	1.1	0.932
23Na	1.0	3.3	3,055	3,093	3,701	3,355	4,028
24Mg	0.022	0.073	2,001	1,735	2,277	1,728	1,991
27Al	0.053	0.177	534	682	379	749	754
31P	30	100	12,415	10,703	13,184	13,188	12,113
39K	16	53	10,757	9,245	10,151	9,837	10,938
44Ca	60	200	2,588	2,600	3,380	2,572	2,755
49Ti	0.420	1.4	38	52	22	38	53
51V	0.042	0.140	0.962	0.966	0.524	1.1	1.0
52Cr	0.951	3.2	9.6	4.7	4.0	10	7.2
55Mn	0.011	0.037	43	59	47	63	59
57Fe	4.2	14	496	392	354	462	519
59Co	0.005	0.017	5.4	2.6	6.5	3.8	4.9
60Ni	0.040	0.133	25	21	20	24	25
63Cu	0.011	0.037	13	19	22	13	19
66Zn	0.684	2.3	426	448	838	538	586
75As	0.496	1.7	2.3	2.2	2.3	2.0	2.7
77Se	0.333	1.1	5.1	5.8	5.6	5.8	6.0
88Sr	0.001	0.003	4.4	5.0	5.0	4.2	4.7
95Mo	0.001	0.003	0.273	0.341	0.357	0.348	0.440
107Ag	0.001	0.003	0.029	0.029	0.044	0.020	0.032
111Cd	0.094	0.313	9.4	6.5	18	7.8	11
118Sn	0.048	0.160	0.761	0.825	0.279	0.283	0.479
121Sb	0.006	0.020	0.018	0.026	0.028	0.028	0.033
137Ba	0.001	0.003	14	27	20	25	24
202Hg	0.030	0.100	0.062	0.092	0.107	0.085	0.075
205Tl	0.001	0.003	0.095	0.079	0.131	0.101	0.115
208Pb	0.002	0.007	0.153	0.232	0.097	0.169	0.201
238U	0.001	0.003	0.051	0.095	0.040	0.076	0.073

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LIDSL_INV- 1_2021-07-14	RG_LIDSL_INV- 2_2021-07-14	RG_LIDSL_INV- 3_2021-07-14	RG_LIDSL_INV- 4_2021-07-14	RG_LIDSL_INV- 5_2021-07-14
		Lab ID	201	202	203	204	205
	We	et Weight (g)	4.5532	1.9373	2.3419	4.1704	1.7380
		ry Weight (g)	0.7089	0.3661	0.4996	0.7064	0.3063
		Moisture (%)	84.4	81.1	78.7	83.1	82.4
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.006	0.020	0.441	0.421	0.355	0.383	0.451
11B	0.090	0.300	0.622	0.699	0.893	0.466	0.505
23Na	1.0	3.3	4,245	2,584	3,544	3,846	4,028
24Mg	0.022	0.073	1,914	1,419	1,748	1,440	1,373
27AI	0.053	0.177	180	355	408	156	159
31P	30	100	14,836	12,299	11,811	10,799	11,120
39K	16	53	11,667	8,082	9,764	10,413	11,010
44Ca	60	200	3,492	3,017	2,630	2,777	2,263
49Ti	0.420	1.4	8.2	19	27	6.7	6.0
51V	0.042	0.140	0.321	0.704	0.737	0.314	0.376
52Cr	0.951	3.2	2.4	5.7	7.1	1.8	5.1
55Mn	0.011	0.037	76	77	84	78	60
57Fe	4.2	14	272	366	445	254	232
59Co	0.005	0.017	8.6	2.4	9.7	6.3	3.2
60Ni	0.040	0.133	19	14	25	15	16
63Cu	0.011	0.037	23	15	22	23	15
66Zn	0.684	2.3	782	233	814	515	253
75As	0.496	1.7	2.0	1.1	2.0	1.8	1.2
77Se	0.333	1.1	7.9	5.8	7.0	6.2	6.5
88Sr	0.001	0.003	6.1	5.5	4.3	4.4	3.8
95Mo	0.001	0.003	0.348	0.293	0.311	0.302	0.366
107Ag	0.001	0.003	0.024	0.020	0.028	0.024	0.016
111Cd	0.094	0.313	13	4.2	18	14	6.4
118Sn	0.048	0.160	0.479	0.566	0.587	0.624	0.627
121Sb	0.006	0.020	0.022	0.022	0.028	0.022	0.017
137Ba	0.001	0.003	13	25	19	15	13
202Hg	0.030	0.100	0.114	0.057	0.114	0.078	0.078
205TI	0.001	0.003	0.138	0.054	0.169	0.114	0.056
208Pb	0.002	0.007	0.075	0.123	0.193	0.094	0.094
238U	0.001	0.003	0.061	0.053	0.093	0.087	0.038

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LILC3_INV- 1_2021-07-12	RG_LILC3_INV- 2_2021-07-12	RG_LILC3_INV- 3_2021-07-12	RG_LILC3_INV- 4_2021-07-12	RG_LILC3_INV- 5_2021-07-12
		Lab ID	206	207	208	209	210
	We	et Weight (g)	1.2804	1.5844	1.7051	2.0537	1.5459
		ry Weight (g)	0.1880	0.3245	0.2678	0.3477	0.2925
		Moisture (%)	85.3	79.5	84.3	83.1	81.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.006	0.020	0.544	0.577	0.952	0.637	0.927
11B	0.090	0.300	0.669	1.8	2.0	1.2	0.983
23Na	1.0	3.3	2,468	2,719	3,763	2,782	4,568
24Mg	0.022	0.073	1,648	1,887	1,981	1,622	2,011
27Al	0.053	0.177	231	544	548	338	642
31P	30	100	10,130	12,780	12,605	11,164	14,559
39K	16	53	9,533	12,089	12,410	11,230	15,816
44Ca	60	200	4,129	4,784	6,266	3,509	3,536
49Ti	0.420	1.4	9.0	31	24	17	48
51V	0.042	0.140	0.486	1.1	1.0	0.764	1.3
52Cr	0.951	3.2	3.5	5.0	4.9	5.0	4.0
55Mn	0.011	0.037	61	287	195	189	185
57Fe	4.2	14	327	637	532	470	728
59Co	0.005	0.017	1.7	4.2	2.8	3.0	8.8
60Ni	0.040	0.133	8.5	34	19	20	25
63Cu	0.011	0.037	21	24	25	22	29
66Zn	0.684	2.3	191	343	281	212	353
75As	0.496	1.7	0.896	1.2	1.4	1.3	1.6
77Se	0.333	1.1	6.1	6.2	8.8	6.8	7.5
88Sr	0.001	0.003	7.2	9.1	8.9	5.2	5.2
95Mo	0.001	0.003	0.426	0.851	0.560	0.457	0.567
107Ag	0.001	0.003	0.024	0.017	0.021	0.017	0.030
111Cd	0.094	0.313	3.3	7.6	4.4	3.4	7.7
118Sn	0.048	0.160	0.961	0.540	1.1	0.571	0.786
121Sb	0.006	0.020	0.029	0.049	0.057	0.045	0.049
137Ba	0.001	0.003	19	33	30	20	21
202Hg	0.030	0.100	0.126	0.092	0.109	0.092	0.121
205Tl	0.001	0.003	0.014	0.042	0.030	0.024	0.046
208Pb	0.002	0.007	0.105	0.197	0.176	0.163	0.253
238U	0.001	0.003	0.076	0.154	0.126	0.073	0.080

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LISP24_INV- 1_2021-07-12	RG_LISP24_INV- 2_2021-07-12	RG_LISP24_INV- 3_2021-07-12	RG_LISP24_INV- 4_2021-07-12	RG_LISP24_INV- 5_2021-07-12
		Lab ID	211	212	213	214	215
	We	et Weight (g)	2.2913	3.7294	2.4059	2.1963	2.7867
	Di	ry Weight (g)	0.3955	0.6347	0.4943	0.3785	0.4880
		Moisture (%)	82.7	83.0	79.5	82.8	82.5
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.006	0.020	0.575	0.470	0.468	0.412	0.874
11B	0.090	0.300	0.711	0.586	0.502	0.648	1.1
23Na	1.0	3.3	4,597	3,308	4,044	3,138	5,593
24Mg	0.022	0.073	1,800	1,418	1,852	1,588	2,225
27Al	0.053	0.177	213	225	182	366	390
31P	30	100	14,044	10,515	10,917	11,086	14,850
39K	16	53	15,577	10,674	12,060	10,256	14,663
44Ca	60	200	2,262	1,978	2,394	2,396	2,847
49Ti	0.420	1.4	11	13	13	15	28
51V	0.042	0.140	0.499	0.470	0.405	0.511	0.757
52Cr	0.951	3.2	3.3	2.2	2.4	4.3	5.5
55Mn	0.011	0.037	79	60	84	62	110
57Fe	4.2	14	351	355	320	332	500
59Co	0.005	0.017	9.8	11	5.8	5.5	8.4
60Ni	0.040	0.133	23	19	18	22	36
63Cu	0.011	0.037	26	25	20	22	26
66Zn	0.684	2.3	695	720	494	439	688
75As	0.496	1.7	1.7	1.6	1.5	1.3	2.8
77Se	0.333	1.1	7.2	5.1	5.5	5.9	7.7
88Sr	0.001	0.003	3.7	3.0	3.3	3.6	5.3
95Mo	0.001	0.003	0.481	0.315	0.426	0.394	0.538
107Ag	0.001	0.003	0.039	0.032	0.032	0.024	0.030
111Cd	0.094	0.313	15	15	12	11	14
118Sn	0.048	0.160	0.568	0.434	0.607	0.421	0.640
121Sb	0.006	0.020	0.024	0.020	0.022	0.012	0.038
137Ba	0.001	0.003	13	11	12	9.2	25
202Hg	0.030	0.100	0.126	0.115	0.098	0.121	0.105
205Tl	0.001	0.003	0.077	0.072	0.092	0.082	0.095
208Pb	0.002	0.007	0.094	0.086	0.086	0.077	0.142
238U	0.001	0.003	0.083	0.065	0.081	0.059	0.085

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_SLINE_INV- 1_2021-07-13	RG_SLINE_INV- 2_2021-07-13	RG_SLINE_INV- 3_2021-07-13	RG_SLINE_INV- 4_2021-07-13	RG_SLINE_INV- 5_2021-07-13
		Lab ID	216	217	218	219	220
	\ <i>\</i> /4	et Weight (g)	1.6994	1.3514	1.3205	1.5003	1.0851
		ry Weight (g)	0.2846	0.2769	0.2190	0.3065	0.1875
		Moisture (%)	83.3	79.5	83.4	79.6	82.7
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.006	0.020	0.286	0.211	0.177	0.239	0.177
11B	0.090	0.300	0.652	0.796	0.575	0.575	0.619
23Na	1.0	3.3	3,600	3,410	2,915	3,595	2,733
24Mg	0.022	0.073	1,679	1,754	1,688	1,732	1,480
27AI	0.053	0.177	320	241	179	227	199
31P	30	100	11,597	11,071	10,437	11,378	10,929
39K	16	53	12,570	11,322	10,486	12,017	9,792
44Ca	60	200	2,576	3,825	2,475	2,828	2,134
49Ti	0.420	1.4	17	14	8.5	11	11
51V	0.042	0.140	0.837	1.3	0.569	0.761	0.629
52Cr	0.951	3.2	3.7	4.2	5.0	4.8	4.5
55Mn	0.011	0.037	34	27	42	27	24
57Fe	4.2	14	309	274	236	296	238
59Co	0.005	0.017	1.3	1.2	0.913	1.1	1.1
60Ni	0.040	0.133	9.4	11	9.1	9.7	9.0
63Cu	0.011	0.037	19	23	17	23	20
66Zn	0.684	2.3	587	862	561	693	528
75As	0.496	1.7	2.0	1.9	1.5	1.3	1.6
77Se	0.333	1.1	7.3	8.1	6.1	6.6	6.9
88Sr	0.001	0.003	5.8	7.3	6.2	5.9	4.7
95Mo	0.001	0.003	0.427	0.617	0.633	0.554	0.601
107Ag	0.001	0.003	0.113	0.079	0.087	0.102	0.076
111Cd	0.094	0.313	5.1	6.2	3.8	4.5	4.2
118Sn	0.048	0.160	1.0	0.865	0.929	0.634	1.1
121Sb	0.006	0.020	0.024	0.024	0.017	0.014	0.019
137Ba	0.001	0.003	22	21	41	25	21
202Hg	0.030	0.100	0.080	0.102	0.099	0.096	0.080
205TI	0.001	0.003	0.076	0.105	0.060	0.067	0.058
208Pb	0.002	0.007	0.104	0.068	0.083	0.084	0.084
238U	0.001	0.003	0.111	0.174	0.090	0.082	0.078

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

(Client ID	RG_FO2	3_INV-1_202	21-07-14	RG_LCU	T_INV-1_202	21-07-12	RG_LIDS	L_INV-2_20	21-07-14
	Lab ID		171			181			202	
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.006	0.776	0.696	11	0.641	0.678	5.6	0.421	0.497	17
11B	0.090	1.2	1.0	18	1.1	1.0	9.5	0.699	0.855	-
23Na	1.0	3,475	3,177	9.0	3,220	3,750	15	2,584	3,312	25
24Mg	0.022	2,091	1,655	23	1,743	1,771	1.6	1,419	1,407	0.8
27AI	0.053	777	654	17	471	409	14	355	510	36
31P	30	13,224	11,391	15	13,716	12,565	8.8	12,299	11,895	3.3
39K	16	10,183	9,168	11	11,732	12,973	10	8,082	10,271	24
44Ca	60	3,694	3,218	14	3,648	3,510	3.9	3,017	2,764	8.8
49Ti	0.420	43	35	21	28	20	33	19	27	35
51V	0.042	1.1	0.872	23	0.623	0.633	1.6	0.704	0.824	16
52Cr	0.951	8.5	8.0	-	3.2	3.3	-	5.7	7.5	-
55Mn	0.011	45	37	20	31	28	10	77	60	25
57Fe	4.2	388	367	5.6	183	185	1.1	366	434	17
59Co	0.005	2.3	1.8	24	0.830	0.735	12	2.4	2.8	15
60Ni	0.040	17	15	13	11	11	0.0	14	17	19
63Cu	0.011	21	17	21	33	35	5.9	15	15	0.0
66Zn	0.684	469	363	26	180	188	4.3	233	260	11
75As	0.496	0.805	0.710	-	2.2	2.1	-	1.1	1.1	-
77Se	0.333	9.4	8.0	16	3.6	3.5	2.8	5.8	5.7	1.7
88Sr	0.001	5.2	4.7	10	5.3	5.5	3.7	5.5	5.5	0.0
95Mo	0.001	0.273	0.258	5.6	0.373	0.332	12	0.293	0.330	12
107Ag	0.001	0.142	0.132	7.3	0.021	0.024	13	0.020	0.016	22
111Cd	0.094	3.5	2.5	33	3.4	4.2	21	4.2	4.8	13
118Sn	0.048	0.731	0.661	10	0.500	0.440	-	0.566	0.595	5.0
121Sb	0.006	0.032	0.025	-	0.026	0.026	-	0.022	0.022	-
137Ba	0.001	27	23	16	26	22	17	25	21	17
202Hg	0.030	0.123	0.093	-	0.079	0.085	-	0.057	0.060	-
205TI	0.001	0.035	0.029	19	0.036	0.032	12	0.054	0.055	1.8
208Pb	0.002	0.195	0.149	27	0.190	0.184	3.2	0.123	0.162	27
238U	0.001	0.045	0.039	14	0.058	0.063	8.3	0.053	0.058	9.0

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited
Tissue QA/QC Relative Percent Difference Results

(Client ID	RG_LISP2	4_INV-5_20)21-07-12	RG_SLIN	E_INV-5_20	21-07-13
	Lab ID		215			220	
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.006	0.874	0.770	13	0.177	0.166	6.4
11B	0.090	1.1	1.4	24	0.619	0.530	-
23Na	1.0	5,593	4,429	23	2,733	2,603	4.9
24Mg	0.022	2,225	2,150	3.4	1,480	1,514	2.3
27AI	0.053	390	399	2.3	199	206	3.5
31P	30	14,850	13,314	11	10,929	10,200	6.9
39K	16	14,663	13,621	7.4	9,792	8,837	10
44Ca	60	2,847	3,088	8.1	2,134	2,038	4.6
49Ti	0.420	28	20	33	11	10	9.5
51V	0.042	0.757	0.784	3.5	0.629	0.591	6.2
52Cr	0.951	5.5	5.9	-	4.5	4.5	-
55Mn	0.011	110	105	4.7	24	22	8.7
57Fe	4.2	500	512	2.4	238	211	12
59Co	0.005	8.4	10	17	1.1	0.858	25
60Ni	0.040	36	37	2.7	9.0	7.9	13
63Cu	0.011	26	29	11	20	18	11
66Zn	0.684	688	887	25	528	522	1.1
75As	0.496	2.8	2.5	-	1.6	1.5	-
77Se	0.333	7.7	6.6	15	6.9	6.5	6.0
88Sr	0.001	5.3	5.3	0.0	4.7	4.9	4.2
95Mo	0.001	0.538	0.427	23	0.601	0.506	17
107Ag	0.001	0.030	0.030	0.0	0.076	0.072	5.4
111Cd	0.094	14	16	13	4.2	3.6	15
118Sn	0.048	0.640	0.829	26	1.1	0.762	36
121Sb	0.006	0.038	0.033	-	0.019	0.014	-
137Ba	0.001	25	21	17	21	22	4.7
202Hg	0.030	0.105	0.124	-	0.080	0.080	-
205TI	0.001	0.095	0.088	7.7	0.058	0.059	1.7
208Pb	0.002	0.142	0.131	8.1	0.084	0.078	7.4
238U	0.001	0.085	0.100	16	0.078	0.070	11

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	Sa	ample Group ID		01			02	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.006	1.21	1.3	110	12	1.2	103	9.9
11B	0.090	4.5	5.0	111	1.7	5.2	117	1.7
23Na	1.0	14,000	15,315	109	6.1	14,873	106	2.4
24Mg	0.022	910	1,001	110	7.7	1,004	110	3.6
27Al	0.053	197.2	225	114	6.6	230	116	5.3
31P	30	8,000	8,357	104	4.3	8,672	108	3.7
39K	16	15,500	17,415	112	4.8	16,741	108	4.2
44Ca	60	2,360	2,594	110	7.8	2,590	110	1.4
49Ti	0.420	12.24	12	99	8.8	14	118	7.0
51V	0.042	1.57	1.7	106	7.7	1.7	108	6.7
52Cr	0.951	1.87	2.2	118	6.4	1.9	100	1.8
55Mn	0.011	3.17	3.3	105	5.9	3.4	108	2.4
57Fe	4.2	343	378	110	8.3	369	108	2.9
59Co	0.005	0.25	0.290	116	6.1	0.283	113	4.2
60Ni	0.040	1.34	1.5	110	5.6	1.5	110	4.5
63Cu	0.011	15.7	19	119	8.2	17	110	4.0
66Zn	0.684	51.6	58	112	5.1	57	111	1.0
75As	0.496	6.87	7.3	107	4.9	7.2	104	1.7
77Se	0.333	3.45	3.7	107	10	3.5	102	5.0
88Sr	0.001	10.1	11	107	6.5	11	108	1.3
95Mo	0.001	0.29	0.317	109	8.2	0.327	113	6.5
107Ag	0.001	0.0252	0.027	108	6.4	0.028	111	12
111Cd	0.094	0.299	0.331	111	3.4	0.343	115	6.2
118Sn	0.048	0.061	0.057	94	7.5	0.063	103	11
121Sb	0.006	0.011	0.013	114	14	0.013	115	18
137Ba	0.001	8.6	9.5	110	4.5	9.8	114	3.2
202Hg	0.030	0.412	0.442	107	7.6	0.438	106	4.3
205TI	0.001	0.0013	-	-	-	-	-	-
208Pb	0.002	0.404	0.395	98	13	0.403	100	14
238U	0.001	0.05	0.047	95	6.1	0.053	106	8.7

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified value for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	Sa	ample Group ID		03		04			
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	
7Li	0.006	1.21	1.3	107	5.6	1.2	103	7.8	
11B	0.090	4.5	5.4	120	3.1	4.7	105	2.9	
23Na	1.0	14,000	15,972	114	2.8	14,773	106	3.0	
24Mg	0.022	910	970	107	1.5	1,010	111	8.8	
27Al	0.053	197.2	210	107	5.9	209	106	10	
31P	30	8,000	8,528	107	2.3	8,633	108	6.5	
39K	16	15,500	16,596	107	0.9	16,622	107	3.1	
44Ca	60	2,360	2,510	106	4.4	2,534	107	3.2	
49Ti	0.420	12.24	14	114	9.5	13	105	10	
51V	0.042	1.57	1.6	104	4.3	1.8	112	3.9	
52Cr	0.951	1.87	2.2	116	6.4	2.0	108	5.2	
55Mn	0.011	3.17	3.4	109	3.4	3.4	109	5.0	
57Fe	4.2	343	374	109	2.1	380	111	5.9	
59Co	0.005	0.25	0.283	113	3.0	0.276	110	1.6	
60Ni	0.040	1.34	1.5	110	4.6	1.4	108	2.8	
63Cu	0.011	15.7	17	111	4.2	17	110	4.1	
66Zn	0.684	51.6	58	112	2.6	54	105	1.0	
75As	0.496	6.87	7.4	108	2.4	7.3	106	0.9	
77Se	0.333	3.45	3.7	108	1.1	3.6	104	2.4	
88Sr	0.001	10.1	11	112	4.9	11	107	3.3	
95Mo	0.001	0.29	0.305	105	5.0	0.311	107	8.3	
107Ag	0.001	0.0252	0.026	103	10	0.028	110	0.0	
111Cd	0.094	0.299	0.329	110	9.7	0.305	102	8.8	
118Sn	0.048	0.061	0.069	113	17	0.061	101	20	
121Sb	0.006	0.011	0.012	108	17	0.012	110	20	
137Ba	0.001	8.6	10	116	1.7	9.3	108	2.9	
202Hg	0.030	0.412	0.429	104	7.1	0.430	104	6.8	
205TI	0.001	0.0013	-	-	-	-	-	-	
208Pb	0.002	0.404	0.465	115	4.0	0.448	111	4.8	
238U	0.001	0.05	0.054	107	9.7	0.051	103	5.1	

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified value for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	Sa	ample Group ID		05			06	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.006	1.21	1.3	108	5.1	1.4	117	4.0
11B	0.090	4.5	5.3	117	2.7	4.8	106	2.9
23Na	1.0	14,000	15,723	112	7.4	14,670	105	5.3
24Mg	0.022	910	987	108	6.8	1,007	111	4.4
27Al	0.053	197.2	227	115	3.0	202	102	4.7
31P	30	8,000	8,638	108	5.6	8,392	105	3.5
39K	16	15,500	17,730	114	6.9	16,665	108	5.5
44Ca	60	2,360	2,554	108	5.3	2,499	106	3.2
49Ti	0.420	12.24	14	111	4.2	13	108	9.9
51V	0.042	1.57	1.7	107	11	1.6	104	7.8
52Cr	0.951	1.87	2.1	113	8.0	2.0	108	4.6
55Mn	0.011	3.17	3.5	110	6.7	3.5	111	4.9
57Fe	4.2	343	381	111	7.5	382	111	2.7
59Co	0.005	0.25	0.310	124	7.7	0.279	112	3.8
60Ni	0.040	1.34	1.5	115	7.7	1.5	111	3.2
63Cu	0.011	15.7	18	117	5.0	17	108	5.3
66Zn	0.684	51.6	58	112	3.3	56	108	4.0
75As	0.496	6.87	7.4	107	6.4	7.2	106	3.1
77Se	0.333	3.45	3.7	107	6.1	3.6	103	4.3
88Sr	0.001	10.1	11	112	7.5	11	108	4.3
95Mo	0.001	0.29	0.323	111	4.2	0.291	100	6.2
107Ag	0.001	0.0252	0.029	117	6.5	0.027	108	12
111Cd	0.094	0.299	0.335	112	7.8	0.357	119	10
118Sn	0.048	0.061	0.085	139	13	0.064	104	27
121Sb	0.006	0.011	0.012	107	7.7	0.013	116	36
137Ba	0.001	8.6	9.8	114	3.5	9.4	110	3.7
202Hg	0.030	0.412	0.437	106	8.4	0.447	109	4.4
205TI	0.001	0.0013	-	-	-	_	-	-
208Pb	0.002	0.404	0.465	115	16	0.450	112	8.9
238U	0.001	0.05	0.052	105	8.9	0.056	111	6.5

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified value for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Bold indicates DQO exceedance but result is accepted as it does not impact the reportable results

QA-QC Accuracy and Precision COM-013.04

TrichAnalytics Inc.

Project No: 2021-240

Teck Coal Limited Sample Group Information

Sample	Client ID	Lab ID	Date of
Group ID	Client ID	Labib	Analysis
01	RG_FO23_INV-1_2021-07-14	171	30 Jul 2021
	RG_FO23_INV-2_2021-07-14	172	
	RG_FO23_INV-3_2021-07-14	173	
	RG_FO23_INV-4_2021-07-14	174	
	RG_FO23_INV-5_2021-07-14	175	
	RG_FRUL_INV-1_2021-07-14	176	
	RG_FRUL_INV-2_2021-07-14	177	
	RG_FRUL_INV-3_2021-07-14	178	
	RG_FRUL_INV-4_2021-07-14	179	
02	RG_FRUL_INV-5_2021-07-14	180	30 Jul 2021
	RG_LCUT_INV-1_2021-07-12	181	
	RG_LCUT_INV-2_2021-07-12	182	
	RG_LCUT_INV-3_2021-07-12	183	
	RG_LCUT_INV-4_2021-07-12	184	
	RG_LCUT_INV-5_2021-07-12	185	
	RG_LI8_INV-1_2021-07-15	186	
	RG_LI8_INV-2_2021-07-15	187	
	RG_LI8_INV-3_2021-07-15	188	
03	RG_LI8_INV-4_2021-07-15	189	30 Jul 2021
	RG_LI8_INV-5_2021-07-15	190	
	RG_LI24_INV-1_2021-07-13	191	
	RG_LI24_INV-2_2021-07-13	192	
	RG_LI24_INV-3_2021-07-13	193	
	RG_LI24_INV-4_2021-07-13	194	
	RG_LI24_INV-5_2021-07-13	195	
	RG_LIDCOM_INV-1_2021-07-12	196	
	RG_LIDCOM_INV-2_2021-07-12	197	
04	RG_LIDCOM_INV-3_2021-07-12	198	30 Jul 2021
	RG_LIDCOM_INV-4_2021-07-12	199	
	RG_LIDCOM_INV-5_2021-07-12	200	
	RG_LIDSL_INV-1_2021-07-14	201	
	RG_LIDSL_INV-2_2021-07-14	202	
	RG_LIDSL_INV-3_2021-07-14	203	
	RG_LIDSL_INV-4_2021-07-14	204	
	RG_LIDSL_INV-5_2021-07-14	205	
05	RG_LILC3_INV-1_2021-07-12	206	03 Aug 2021
	RG_LILC3_INV-2_2021-07-12	207	
	RG_LILC3_INV-3_2021-07-12	208	
	RG_LILC3_INV-4_2021-07-12	209	
	RG_LILC3_INV-5_2021-07-12	210	

Teck Coal Limited Sample Group Information

Sample			Date of
Group ID	Client ID	Lab ID	Analysis
05	RG_LISP24_INV-1_2021-07-12 RG_LISP24_INV-2_2021-07-12 RG_LISP24_INV-3_2021-07-12 RG_LISP24_INV-4_2021-07-12 RG_LISP24_INV-5_2021-07-12 RG_SLINE_INV-1_2021-07-13	211 212 213 214 215 216	03 Aug 2021 03 Aug 2021
	RG_SLINE_INV-1_2021-07-13 RG_SLINE_INV-2_2021-07-13 RG_SLINE_INV-3_2021-07-13 RG_SLINE_INV-4_2021-07-13 RG_SLINE_INV-5_2021-07-13	216 217 218 219 220	

Page 18 of 28

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

	Laboratory:	Trich Analytics						Page	1 of 10
							Minnow Contact:	Tyler Mehler	
							Contact Email:	tyler.mehler@m	
	Contact:	Tyler Mehler					Minnow Project #:	217202.003	36
	Phone:	587-597-1612	Fax:				Date Results Requir	ed By:	
	Report mai	ling list: tyler.mehler@minnow.ca; Ca	ait.Good@tec	k.com; Kbatchelar@	minnow.ca				
Г	0 1	T	D-1-	σ		Analys	is Required	Number of	
, ID	Sample	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including		Containers	Comments
1	1	RG_FO23_INV-1_2021-07-14~	14-Jul-21	Invertebrate tissue	x	x		1	
2	2	RG_FO23_INV-2_2021-07-14	14-Jul-21	Invertebrate tissue	x	x		1	
-3	3	RG_FO23_INV-3_2021-07-14_/	14-Jul-21	Invertebrate tissue	x	x		1	
74	4	RG_FO23_INV-4_2021-07-14_	14-Jul-21	Invertebrate tissue	X	x		1	
15	5	RG_FO23_INV-5_2021-07-14~	14-Jul-21	Invertebrate tissue	x	x		1	
	6								
	7								
	8								
	9								
	10								
	11								
	12								
	13								
	14	file.							
	15								
	Samples R	elinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	•	d: Pacific Coastal cargo in iced
	Samples R	eceived in Lab By: (Lab Employee Signature)	wade	(bus # sos	1-240	Date:	Time: 15:30		on upon Receipt:

204-1006 Fort Street Victoria, British Columbia V8V 3K4

Telephone: (250) 595-1627 Facsmile: (250) 595-1625

Laboratory	: Trich Analytics							Page	2 of 10
							Minnow Contact:	Tyler Mehler	
							Contact Email:	tyler.mehler@n	
ontact:	Tyler Mehler						Minnow Project #:	217202.00	036
hone:	587-597-1612	Fax:				01.1	Date Results Required	i By:	
eport ma	iling list: tyler.mehler@minnow.ca; Ca	iit.Good@teck	.com; Kbatchelar@r	minnow.ca,			equired		
						iysis K	equired		
Sample Number	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg			Number of Containers	Comments
1	RG_FRUL_INV-1_2021-07-14_	14-Jul-21	Invertebrate tissue	x	x			1	
2	RG_FRUL_INV-2_2021-07-14 🗸	14-Jul-21	Invertebrate tissue	x	x			1	
3	RG_FRUL_INV-3_2021-07-14 /	14-Jul-21	Invertebrate tissue	x	x			1	
4	RG_FRUL_INV-4_2021-07-14 /	14-Jul-21	Invertebrate tissue	x	x			1	
5	RG_FRUL_INV-5_2021-07-14 /	14-Jul-21	Invertebrate tissue	x	x			1	201
6									
7							1		
8									
9									
10									
11									
12									
13									
14									
15									
Samples R	Relinquished to Lab By: (Minnow Employee Signature)				Date:		Time:	Shipment Meth	od: Pacific Coastal cargo in iced c
Samples R	Received in Lab By: (Lab Employee Signature)	rade 2	(Proj # 2021 - 7	240)	Date: 27JULZ	021	Time: 15:30		ion upon Receipt:

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

	Laboratory	: Trich Analytics						Page	3 of 10	
							Minnow Contact:	Tyler Mehler		
							Contact Email:	tyler.mehler@minnow.ca		
	Contact:	Tyler Mehler					Minnow Project #:	217202.0036		
	Phone:	587-597-1612	Fax:				Date Results Required B	y:		
	Report ma	iling list: tyler.mehler@minnow.ca; Ca	ait.Good@ted	ck.com; Kbatchelar@	minnow.ca					
			T			Analys	sis Required			
ICH ID	Sample	Minnow Sample ID	Date	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of Containers	Comments	
181	1	RG_LCUT_INV-1_2021-07-12 V	12-Jul-21	Invertebrate tissue	x	x		1		
185	2	RG_LCUT_INV-2_2021-07-12 V	12-Jul-21	Invertebrate tissue	x	x		1		
183	3	RG_LCUT_INV-3_2021-07-12 🗸	12-Jul-21	Invertebrate tissue	x	x		1		
184	4	RG_LCUT_INV-4_2021-07-12 V	12-Jul-21	Invertebrate tissue	x	x		1		
185	5	RG_LCUT_INV-5_2021-07-12/	12-Jul-21	Invertebrate tissue	X	x		1		
	6									
	. 7									
	8									
	9									
	10									
	11									
	12									
	13									
	14									
	15									
	Samples R	elinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Shipment Meth	od: Pacific Coastal cargo in iced coo	
	Samples R	(Lab Employee Signature)	2	(Proj# 2021 - 2	(oi	Date:	Time: 15:30		on upon Receipt:	

204-1006 Fort Street Victoria, British Columbia V8V 3K4

186 189

Telephone:(250) 595-1627 Facsmile:(250) 595-1625

Laboratory	: Trich Analytics							Page	4 of 10
							Minnow Contact:	Tyler Mehler	
							Contact Email:	tyler.mehler@m	innow.ca
Contact:	Tyler Mehler						Minnow Project #:	217202.003	36
hone:	587-597-1612	Fax:					Date Results Required	By:	
Report mai	iling list: tyler.mehler@minnow.ca;	Cait.Good@	teck.com; Kbatchela	r@minnow		, ,			
					A	nalysis Re	quirea		
Sample Number	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg			Number of Containers	Comments
1	RG_LI8_INV-1_2021-07-15 /	15-Jul-21	Invertebrate tissue	x	x			1	
2	RG_LI8_INV-2_2021-07-15 /	15-Jul-21	Invertebrate tissue	x	x			1	
3	RG_LI8_INV-3_2021-07-15~	15-Jul-21	Invertebrate tissue	X	x			1	
4	RG_LI8_INV-4_2021-07-15 <	15-Jul-21	Invertebrate tissue	x	x			1	
5	RG_LI8_INV-5_2021-07-15 /	15-Jul-21	Invertebrate tissue	x	x			1	
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
	elinquished to Lab By: (Minnow Employee Signature)				Date:		Time:	Shipment Metho	d: Pacific Coastal cargo in iced
Samples R	(Lab Employee Signature)	2de	(Roj# 2021-	SHP)	Date:	2021	Time: 15:30	Sample Condition	n upon Receipt:

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

	Laboratory.	THEIT ANALYTICS				. 0	Minnow Contact:	Tyler Mehler	5 01 10		
						-	Contact Email:	tyler.mehler@m	innow.ca		
	Contact:	Tyler Mehler					Minnow Project #:		217202.0036		
	Phone:	587-597-1612	Fax:				Date Results Required	d By:			
	Report mail	ling list: tyler.mehler@minnow.ca; C	Cait.Good@te	ck.com; Kbatchelar(@minnow.d						
							sis Required				
ID	Sample	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of Containers	Comments		
١	1	RG_LI24_INV-1_2021-07-13 -	13-Jul-21	Invertebrate tissue	x	x		1			
2	2	RG_LI24_INV-2_2021-07-13 **	13-Jul-21	Invertebrate tissue	x	x		1			
3	3	RG_LI24_INV-3_2021-07-13~	13-Jul-21	Invertebrate tissue	x	x		1			
14	4	RG_LI24_INV-4_2021-07-13 🗸	13-Jul-21	Invertebrate tissue	х	x		1			
95	5	RG_LI24_INV-5_2021-07-13_/	13-Jul-21	Invertebrate tissue	x	x		1			
	6										
	7										
	8										
	9										
	10										
	11										
	12		-								
	13		-								
	14										
	15							011 111	1.5 15 0 11 11		
		elinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Shipment Metho	d: Pacific Coastal cargo in iced		
	Samples Re	eceived in Lab By: (Lab Employee Signature)	Dase	(Proj # 2021	-240)	Date:	Time: 15:30	Sample Condition			

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

* Sample container lid label: RG_LIZY_INV2 2021-07-12 (side label matches COC though)

-> COC Correct

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

_aboratory:	Trich Analytics						Page	6 of		
						Minnow Contact:	Tyler Mehler			
						Contact Email:		@minnow.ca		
	Tyler Mehler					Minnow Project #:	-	217202.0036		
	587-597-1612	Fax:	1/1 / 1 / 0			Date Results Requi	red By:			
Report mail	ing list: tyler.mehler@minnow.ca; Cail	.Good@teck.	com; Kbatchelar@mi	nnow.ca, l						
		1			Analysis	Required				
Sample Number	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of Containers	Comments		
1 V	RG_LIDCOM_INV-1_2021-07-12	12-Jul-21	Invertebrate tissue	х	x		1			
2 /	RG_LIDCOM_INV-2_2021-07-12	12-Jul-21	Invertebrate tissue	X	x		1			
3 /	RG_LIDCOM_INV-3_2021-07-12	12-Jul-21	Invertebrate tissue	x	x		1			
4 V	RG_LIDCOM_INV-4_2021-07-12	12-Jul-21	Invertebrate tissue	×	x		1			
5./	RG_LIDCOM_INV-5_2021-07-12	12-Jul-21	Invertebrate tissue	x	×		1	Proj #		
6								Proj # 2021-240		
7								2021-240		
8										
9										
10										
11										
12			4							
13										
14										
15										
Samples Re	elinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Shipment M	ethod: Pacific Coastal cargo in		
Samples Re	eceived in Lab By:				Date: 27 Sert 20,	Z/ Time: 15:30		dition upon Receipt:		

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

	Laboratory:	Trich Analytics						Page	7 of 10
							Minnow Contact:	Tyler Mehler	
							Contact Email:	tyler.mehler@	minnow.ca
	Contact:	Tyler Mehler					Minnow Project #:	217202.0	036
	Phone:	587-597-1612	Fax:				Date Results Required By	:	
	Report mail	ling list: tyler.mehler@minnow.ca; C	ait.Good@te	ck.com; Kbatchelar@	minnow.ca				
			1			Analys	sis Required		
TrichID	Sample	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of Containers	Comments
201	1 :/	RG_LIDSL_INV-1_2021-07-14	14-Jul-21	Invertebrate tissue	x	x		1	
202	2 /	RG_LIDSL_INV-2_2021-07-14	14-Jul-21	Invertebrate tissue	x	×		1	
203	3 /	RG_LIDSL_INV-3_2021-07-14	14-Jul-21	Invertebrate tissue	x	x		1	
204	4 /	RG_LIDSL_INV-4_2021-07-14	14-Jul-21	Invertebrate tissue	X	x		1	
205	5 🗸	RG_LIDSL_INV-5_2021-07-14	14-Jul-21	Invertebrate tissue	x	x		1	Proj # 2021-240
	6		100						
	7								2021-240
	8								~~~
	9								
	10								
	11								
	12								
	13								
	14								
	15								
	1	elinquished to Lab By:				Date:	Time:	Shipment Meth	nod: Pacific Coastal cargo in iced coo
		(Minnow Employee Signature)	_	11	1			0 10	
	Samples Re	eceived in Lab By: (Lab Employee Signature)				Date: 27 Seela	Time: 15:30	Sample Condit	tion upon Receipt:

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

Laboratory.	Trich Analytics						Minnous Co	ntest.	Page Tyler Mehler	8 of 10		
					-		Minnow Co					
Contact:	Tyler Mehler				- 3		Contact Email: Minnow Project #: Date Results Required By		tyler.mehler@minnow.ca 217202.0036			
Phone:	587-597-1612	Fax:								.0000		
	ing list: tyler.mehler@minnow.ca; C		k.com; Kbatchelar@	minnow.ca	, Danika.Gerylo@	teck.c		no moquilou E	· · · · · · · · · · · · · · · · · · ·			
				Analys	sis Red	quired						
Sample Number	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg				Number of Containers	Comments		
1 /	RG_LILC3_INV-1_2021-07-12	12-Jul-21	Invertebrate tissue	x	x			11	1			
2 /	RG_LILC3_INV-2_2021-07-12	12-Jul-21	Invertebrate tissue	x	x				1			
3 🗸	RG_LILC3_INV-3_2021-07-12	12-Jul-21	Invertebrate tissue	x	x				1	Proj # 2021-240		
4 V	RG_LILC3_INV-4_2021-07-12	12-Jul-21	Invertebrate tissue	x	x				1			
5 V	RG_LILC3_INV-5_2021-07-12	12-Jul-21	Invertebrate tissue	x	x				1			
6												
7										2021-240		
8										2019 1010		
9												
10												
11												
12												
13												
14												
15												
Samples Re	elinquished to Lab By: (Minnow Employee Signature)				Date:		Time:			ethod: Pacific Coastal cargo in ice		
Samples Re	eceived in Lab By: (Lab Employee Signature)		Mel		Date: 27 Sul	202/	Time: /3	5:30	Sample Cond	dition upon Receipt:		

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

Laborat	ory: Trich Analytics				-	Minnow Contact:	Page Tyler Mehler	9 of 10
						Contact Email:	tyler.mehler@	Aminnow ca
Contact	: Tyler Mehler					Minnow Project #:	217202.	
Phone:	587-597-1612	Fax:			-	Date Results Required		0030
	mailing list: tyler.mehler@minnow.ca; Ca		com: Khatchelar@m	innow ca. [Danika Gerylo@te			
	g,	in occupion.	The state of the s			sis Required		
Samp	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of Containers	Comments
. 1	RG_LISP24_INV-1_2021-07-12	12-Jul-21	Invertebrate tissue	x	x		1	
2	RG_LISP24_INV-2_2021-07-12	12-Jul-21	Invertebrate tissue	x	x		1	
3	RG_LISP24_INV-3_2021-07-12	12-Jul-21	Invertebrate tissue	x	x		1	
4	RG_LISP24_INV-4_2021-07-12	12-Jul-21	Invertebrate tissue	x	x		1	
5	RG_LISP24_INV-5_2021-07-12	12-Jul-21	Invertebrate tissue	x	x		1	0 -7 12
6								2021-240
7								-021-740
8								2021-210
9								
10								
11								
12								
13								
14								
15								
Sample	s Relinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Shipment Me	thod: Pacific Coastal cargo in ic
Sample	s Received in Lab By: (Lab Employee Signature)		-11/		Date: 27 Sul 2	Time: 15:30	Sample Cond	ition upon Receipt:

MINNOW ENVIRONMENTAL INCORPORATED

204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

Laboratory:	Trich Analytics						Page	10 of 10
						Minnow Contact:	Tyler Mehler	
						Contact Email:	tyler.mehler(@minnow.ca
Contact:	Tyler Mehler					Minnow Project #:	217202	.0036
Phone:	587-597-1612	Fax:				Date Results Required B	y:	
Report mail	ing list: tyler.mehler@minnow.ca; Cai	t.Good@teck	.com; Kbatchelar@r	minnow.ca,				
					Analys	is Required	-	
Sample	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of Containers	Comments
1 ./	RG_SLINE_INV-1_2021-07-13		Invertebrate tissue	x	x		1	
2 /	RG_SLINE_INV-2_2021-07-13	13-Jul-21	Invertebrate tissue	x	x		1	
3 /	RG_SLINE_INV-3_2021-07-13	13-Jul-21	Invertebrate tissue	x	x		1	
4 V	RG_SLINE_INV-4_2021-07-13	13-Jul-21	Invertebrate tissue	х	x		1	0 - 2
5 V	RG_SLINE_INV-5_2021-07-13	13-Jul-21	Invertebrate tissue	x	x		1	-Projtt 2021-240
6								0
7								2021-240
8								
9								
10								
11								
12								
13								
14								
15	1							
Samples Re	elinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Shipment Me	ethod: Pacific Coastal cargo in iced
Samples Re	eceived in Lab By: (Lab Employee Signature)		- 41/		Date:	Time: 15: D		dition upon Receipt:

BENTHIC TISSUE CHEMISTRY

TrichAnalytics Laboratory Report 2021-264 (Finalized October 19, 2021)

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Client: Tyler Mehler Date Received: 28 Sep 2021

Aquatic Scientist

Date of Analysis: 15 Oct 2021

Minnow Environmental

Final Report Date: 19 Oct 2021

 Phone:
 (205) 595-1627
 Project No.:
 2021-264

 Email:
 tyler.mehler@minnow.ca
 Method No.:
 MET-002.05

Client Project: LINE CREEK LAEMP (21-36) (PO 748530)

Analytical Request: Composite-Taxa Benthic Invertebrate Tissue (total metals and moisture) - 54 samples.

See chain of custody form provided for sample identification numbers.

Notes:

Analytical results are expressed in parts per million (ppm) dry weight (equivalent to mg/kg). Samples quantified using DORM-4, NIST-1566b, and NIST-2976 certified reference standards. Aluminum concentrations above 1,000 ppm are outside linear range of the calibration curve.

RPD values calculated according to the British Columbia Environmental Laboratory Manual (2020) criteria.

Client specific DQO for Selenium accuracy is 90% to 110% of the certified value (result achieved 108%; range 105-109%).

This report provides the analytical results only for tissue samples noted above as received from the Client.

Reviewed and Approved by Jennie Christensen, PhD, RPBio

Date

19 Oct 2021

[The analytical report shall not be reproduced except in full under the expressed written consent of TrichAnalytics Inc.]

TrichAnalytics Inc. 207-1753 Sean Heights Saanichton, BC V8M 0B3 www.trichanalytics.com

Project No: 2021-264

		Client ID	RG_LI24_INV- 1_2021-09-16	RG_LI24_INV- 2_2021-09-16	RG_LI24_INV- 3_2021-09-16	RG_LI24_INV- 4_2021-09-16	RG_LI24_INV- 5_2021-09-16
		Lab ID	511	512	513	514	515
	We	et Weight (g)	0.3479	0.3986	0.6504	0.4277	0.4662
	Dry Weight (g)		0.0738	0.1086	0.1370	0.0985	0.1183
		Moisture (%)	78.8	72.8	78.9	77.0	74.6
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.008	0.027	0.462	0.362	0.168	0.220	0.245
11B	0.096	0.320	0.681	0.775	0.493	0.376	0.423
23Na	1.5	5.0	4,893	4,020	3,920	5,024	4,167
24Mg	0.018	0.060	1,650	1,927	1,628	1,965	1,531
27Al	0.036	0.120	273	327	76	106	101
31P	37	123	14,592	13,454	12,457	15,146	12,838
39K	3.2	11	14,519	13,470	12,720	13,115	14,130
44Ca	9.7	32	3,413	5,428	2,976	3,786	2,290
49Ti	0.262	0.873	17	17	4.5	5.4	5.7
51V	0.062	0.207	1.2	1.1	0.839	0.584	0.486
52Cr	0.186	0.620	9.6	10	3.4	6.6	4.0
55Mn	0.010	0.033	14	17	11	16	12
57Fe	1.1	3.7	304	366	116	209	152
59Co	0.008	0.027	0.639	0.436	0.286	0.544	0.313
60Ni	0.048	0.160	18	22	9.0	15	7.1
63Cu	0.018	0.060	17	16	13	14	17
66Zn	0.340	1.1	353	353	320	380	368
75As	0.454	1.5	1.3	1.5	1.4	1.6	1.1
77Se	0.386	1.3	7.2	6.1	3.8	4.3	8.5
88Sr	0.001	0.003	7.4	10	6.5	8.7	5.3
95Mo	0.001	0.003	0.395	0.452	0.320	0.320	0.301
107Ag	0.001	0.003	0.091	0.087	0.063	0.061	0.081
111Cd	0.065	0.217	1.2	0.987	0.680	0.893	0.773
118Sn	0.011	0.037	0.499	0.266	0.226	0.367	0.227
121Sb	0.004	0.013	0.032	0.047	0.018	0.015	0.016
137Ba	0.001	0.003	17	20	11	13	11
202Hg	0.024	0.080	0.068	0.068	0.061	0.061	0.053
205TI	0.001	0.003	0.055	0.068	0.036	0.046	0.037
208Pb	0.001	0.003	0.122	0.261	0.069	0.054	0.054
238U	0.001	0.003	0.124	0.158	0.084	0.059	0.063

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LIDSL_INV- 1_2021-09-14	RG_LIDSL_INV- 2_2021-09-14	RG_LIDSL_INV- 3_2021-09-14	RG_LIDSL_INV- 4_2021-09-14	RG_LIDSL_INV- 5_2021-09-14
		Lab ID	516	517	518	519	520
	Wet Weight (g)		0.4843	0.5554	0.6162	0.9215	0.8941
		y Weight (g)	0.1202	0.1269	0.1561	0.2369	0.1956
		Moisture (%)	75.2	77.2	74.7	74.3	78.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.008	0.027	0.838	0.507	0.519	0.582	0.529
11B	0.096	0.320	1.2	0.822	0.846	0.799	0.939
23Na	1.5	5.0	4,924	4,307	3,717	4,061	4,316
24Mg	0.018	0.060	1,497	1,301	1,468	1,321	1,502
27Al	0.036	0.120	489	234	201	199	235
31P	37	123	15,140	12,459	11,350	12,992	12,577
39K	3.2	11	16,365	13,016	11,604	13,060	13,098
44Ca	9.7	32	2,325	2,258	2,525	1,567	1,738
49Ti	0.262	0.873	27	15	12	9.5	10
51V	0.062	0.207	1.0	0.509	0.457	0.433	0.473
52Cr	0.186	0.620	5.8	5.4	4.8	4.2	3.6
55Mn	0.010	0.033	137	127	147	176	159
57Fe	1.1	3.7	507	323	301	308	396
59Co	0.008	0.027	2.8	2.4	2.3	2.0	2.5
60Ni	0.048	0.160	24	22	20	16	24
63Cu	0.018	0.060	15	16	17	14	21
66Zn	0.340	1.1	305	342	280	252	333
75As	0.454	1.5	0.634	0.611	0.705	0.658	0.705
77Se	0.386	1.3	7.1	6.2	7.7	6.7	7.5
88Sr	0.001	0.003	4.1	4.4	4.7	2.6	3.3
95Mo	0.001	0.003	0.414	0.339	0.414	0.433	0.504
107Ag	0.001	0.003	0.032	0.024	0.035	0.020	0.020
111Cd	0.065	0.217	4.7	4.6	5.2	3.0	5.4
118Sn	0.011	0.037	0.319	0.179	0.174	0.290	0.220
121Sb	0.004	0.013	0.050	0.042	0.036	0.029	0.036
137Ba	0.001	0.003	26	18	23	17	17
202Hg	0.024	0.080	0.084	0.084	0.084	0.068	0.081
205TI	0.001	0.003	0.047	0.037	0.029	0.034	0.033
208Pb	0.001	0.003	0.216	0.125	0.152	0.109	0.097
238U	0.001	0.003	0.079	0.073	0.086	0.063	0.083

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_SLINE_INV-	RG_SLINE_INV-	RG_SLINE_INV-	RG_SLINE_INV-	RG_SLINE_INV-
		Client ID	1_2021-09-15	2_2021-09-15	3_2021-09-15	4_2021-09-15	5_2021-09-15
			_	_	_	_	_
		Lab ID	521	522	523	524	525
	We	et Weight (g)	0.4578	0.2773	0.6174	0.4629	0.7902
	Di	ry Weight (g)	0.0903	0.0620	0.1245	0.1196	0.1747
		Moisture (%)	80.3	77.6	79.8	74.2	77.9
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.008	0.027	0.461	0.234	0.325	0.217	0.252
11B	0.096	0.320	1.4	0.635	1.1	1.2	2.3
23Na	1.5	5.0	3,469	3,519	3,317	3,519	3,396
24Mg	0.018	0.060	1,986	1,660	1,829	1,549	2,044
27Al	0.036	0.120	576	198	552	132	327
31P	37	123	14,097	12,969	12,797	13,136	13,056
39K	3.2	11	13,238	12,853	12,772	14,201	14,919
44Ca	9.7	32	4,116	2,743	2,797	2,816	3,040
49Ti	0.262	0.873	29	9.2	30	5.1	15
51V	0.062	0.207	1.1	0.847	1.1	0.599	0.878
52Cr	0.186	0.620	11	11	7.1	3.0	6.2
55Mn	0.010	0.033	44	23	44	40	84
57Fe	1.1	3.7	442	321	418	210	288
59Co	0.008	0.027	0.827	0.626	0.617	0.411	0.773
60Ni	0.048	0.160	21	19	13	8.6	12
63Cu	0.018	0.060	15	14	16	15	14
66Zn	0.340	1.1	434	353	523	408	629
75As	0.454	1.5	1.1	1.1	1.3	1.3	1.0
77Se	0.386	1.3	7.3	7.2	9.0	5.4	7.3
88Sr	0.001	0.003	11	6.1	7.2	6.0	8.3
95Mo	0.001	0.003	0.441	0.504	0.546	0.504	0.546
107Ag	0.001	0.003	0.076	0.066	0.066	0.040	0.060
111Cd	0.065	0.217	2.3	2.5	3.1	3.2	2.9
118Sn	0.011	0.037	0.707	0.696	0.337	0.435	0.206
121Sb	0.004	0.013	0.039	0.025	0.030	0.029	0.042
137Ba	0.001	0.003	45	21	56	61	109
202Hg	0.024	0.080	0.073	0.065	0.073	0.077	0.130
205TI	0.001	0.003	0.066	0.082	0.090	0.074	0.097
208Pb	0.001	0.003	0.180	0.076	0.189	0.113	0.231
238U	0.001	0.003	0.201	0.134	0.162	0.313	0.471

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LI8_INV- 1_2021-09-11	RG_LI8_INV- 2_2021-09-11	RG_LI8_INV- 3_2021-09-11	RG_LI8_INV- 4_2021-09-11	RG_LI8_INV- 5_2021-09-11
		Lab ID	526	527	528	529	530
	Wet Weight (g)		1.7965	0.8584	1.3887	1.4729	1.4373
		y Weight (g)	0.3795	0.1793	0.3402	0.3317	0.3456
		Moisture (%)	78.9	79.1	75.5	77.5	76.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.008	0.027	0.620	0.446	0.443	0.541	0.448
11B	0.096	0.320	2.0	0.829	0.525	0.565	0.792
23Na	1.5	5.0	4,601	3,526	3,048	4,194	3,541
24Mg	0.018	0.060	1,994	1,502	957	1,432	1,207
27Al	0.036	0.120	337	225	215	386	241
31P	37	123	12,532	10,734	10,934	14,524	10,519
39K	3.2	11	14,064	12,668	10,030	12,719	10,789
44Ca	9.7	32	3,452	2,868	1,365	1,415	2,412
49Ti	0.262	0.873	22	11	9.6	18	15
51V	0.062	0.207	1.3	0.500	0.378	0.537	0.395
52Cr	0.186	0.620	3.4	7.2	4.7	2.8	3.1
55Mn	0.010	0.033	65	38	42	40	50
57Fe	1.1	3.7	263	290	177	173	178
59Co	0.008	0.027	1.3	1.0	0.494	0.739	0.893
60Ni	0.048	0.160	23	20	14	12	17
63Cu	0.018	0.060	21	18	10	12	11
66Zn	0.340	1.1	510	419	298	305	331
75As	0.454	1.5	0.666	0.474	< 0.454	0.651	0.542
77Se	0.386	1.3	9.3	7.4	7.2	8.8	7.2
88Sr	0.001	0.003	6.5	5.2	2.8	3.4	3.9
95Mo	0.001	0.003	0.525	0.326	0.315	0.245	0.245
107Ag	0.001	0.003	0.030	0.023	0.015	0.016	0.016
111Cd	0.065	0.217	3.8	3.1	2.7	4.1	4.7
118Sn	0.011	0.037	0.570	0.473	0.175	0.111	0.178
121Sb	0.004	0.013	0.070	0.044	0.028	0.027	0.035
137Ba	0.001	0.003	30	21	15	18	13
202Hg	0.024	0.080	0.102	0.057	0.065	0.091	0.073
205Tl	0.001	0.003	0.040	0.024	0.014	0.025	0.029
208Pb	0.001	0.003	0.238	0.119	0.094	0.090	0.107
238U	0.001	0.003	0.173	0.083	0.044	0.068	0.050

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_LI8_INVLUM-	RG_LI8_INVLUM-	RG_LI8_INVLUM-	RG_FRUL_INV-	RG_FRUL_INV-
		Client ID	1_2021-09-11	2_2021-09-11	3_2021-09-11	1_2021-09-12	2_2021-09-12
		Lab ID	531	532	533	534	535
		et Weight (g)	0.0314	0.0183	0.0454	1.1371	1.3464
	Di	ry Weight (g)	0.0098	0.0102	0.0128	0.4663	0.2636
		Moisture (%)	68.8	44.3	71.8	59.0	80.4
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.008	0.027	6.2	3.3	2.6	0.737	2.4
11B	0.096	0.320	9.0	11	6.7	0.678	0.749
23Na	1.5	5.0	2,715	1,671	2,755	3,712	7,205
24Mg	0.018	0.060	3,149	2,159	2,380	1,903	1,454
27Al	0.036	0.120	7,240	7,745	5,321	129	152
31P	37	123	12,079	8,921	11,025	11,814	10,787
39K	3.2	11	13,435	8,846	13,824	12,044	11,154
44Ca	9.7	32	70,745	27,861	27,408	3,136	2,845
49Ti	0.262	0.873	644	948	585	8.4	9.5
51V	0.062	0.207	13	11	12	0.373	0.330
52Cr	0.186	0.620	301	72	134	10	5.3
55Mn	0.010	0.033	140	87	94	20	26
57Fe	1.1	3.7	7,066	3,218	3,251	271	187
59Co	0.008	0.027	13	4.3	3.9	0.728	0.649
60Ni	0.048	0.160	459	121	217	15	9.1
63Cu	0.018	0.060	14	9.9	15	22	22
66Zn	0.340	1.1	607	577	634	327	235
75As	0.454	1.5	5.0	3.4	5.0	< 0.454	< 0.454
77Se	0.386	1.3	7.9	5.5	7.7	10	10
88Sr	0.001	0.003	119	59	43	3.7	3.2
95Mo	0.001	0.003	0.817	0.735	1.6	0.204	0.245
107Ag	0.001	0.003	0.053	0.026	0.042	0.234	0.278
111Cd	0.065	0.217	12	9.3	13	0.798	2.1
118Sn	0.011	0.037	1.0	0.935	1.9	0.170	0.208
121Sb	0.004	0.013	0.311	0.208	0.302	0.019	0.013
137Ba	0.001	0.003	676	519	421	17	18
202Hg	0.024	0.080	0.163	0.163	0.173	0.073	0.091
205TI	0.001	0.003	0.286	0.220	0.241	0.015	0.018
208Pb	0.001	0.003	2.1	1.2	1.1	0.050	0.065
238U	0.001	0.003	1.3	0.492	0.411	0.029	0.025

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_FRUL_INV- 3_2021-09-12	RG_FRUL_INV- 4_2021-09-12	RG_FRUL_INV- 5_2021-09-12	RG_FO23_INV- 1_2021-09-12	RG_FO23_INV- 2_2021-09-12
		Lab ID	536	537	538	539	540
	We	et Weight (g)	0.6835	0.8354	1.6901	0.5807	0.3671
		y Weight (g)	0.1938	0.1357	0.3423	0.1422	0.0913
		Moisture (%)	71.6	83.8	79.7	75.5	75.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.008	0.027	0.510	1.5	1.1	1.1	0.634
11B	0.096	0.320	0.311	0.961	0.835	0.880	1.2
23Na	1.5	5.0	2,464	10,971	4,471	5,428	4,092
24Mg	0.018	0.060	851	1,675	1,829	2,148	1,762
27Al	0.036	0.120	67	266	134	266	171
31P	37	123	7,358	12,315	11,159	12,505	11,427
39K	3.2	11	8,550	11,567	8,815	10,133	9,721
44Ca	9.7	32	1,366	3,843	4,119	4,554	3,254
49Ti	0.262	0.873	3.2	13	10	19	12
51V	0.062	0.207	0.175	0.548	0.325	0.490	0.404
52Cr	0.186	0.620	3.5	7.2	3.1	7.4	9.8
55Mn	0.010	0.033	12	39	28	25	23
57Fe	1.1	3.7	84	240	167	240	273
59Co	0.008	0.027	0.343	0.971	0.598	1.1	1.1
60Ni	0.048	0.160	4.8	12	5.7	12	19
63Cu	0.018	0.060	18	18	21	19	22
66Zn	0.340	1.1	174	206	327	475	421
75As	0.454	1.5	< 0.454	< 0.454	< 0.454	0.534	< 0.454
77Se	0.386	1.3	7.2	9.9	11	8.1	7.2
88Sr	0.001	0.003	1.2	3.7	5.4	5.9	4.7
95Mo	0.001	0.003	0.163	0.306	0.275	0.217	0.183
107Ag	0.001	0.003	0.242	0.213	0.253	0.151	0.122
111Cd	0.065	0.217	0.438	3.0	1.7	1.3	0.861
118Sn	0.011	0.037	0.135	0.298	0.184	0.139	0.113
121Sb	0.004	0.013	0.011	0.027	0.030	0.027	0.029
137Ba	0.001	0.003	5.4	22	25	19	15
202Hg	0.024	0.080	0.054	0.073	0.083	0.074	0.065
205Tl	0.001	0.003	0.012	0.030	0.019	0.019	0.016
208Pb	0.001	0.003	0.024	0.131	0.078	0.061	0.073
238U	0.001	0.003	0.015	0.037	0.044	0.028	0.022

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_FO23_INV- 3_2021-09-12	RG_FO23_INV- 4_2021-09-12	RG_FO23_INV- 5_2021-09-12	RG_LISP24_INV- 1_2021-09-13	RG_LISP24_INV- 2_2021-09-13
		Lab ID	541	542	543	544	545
	We	et Weight (g)	0.4210	0.1214	0.6760	0.6779	0.6524
		y Weight (g)	0.0809	0.0279	0.1502	0.1474	0.1369
		Moisture (%)	80.8	77.0	77.8	78.3	79.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.008	0.027	0.542	0.879	0.377	0.331	0.411
11B	0.096	0.320	0.731	3.5	0.537	0.581	0.567
23Na	1.5	5.0	2,668	2,790	3,606	3,098	2,987
24Mg	0.018	0.060	1,236	1,390	1,937	1,315	1,343
27Al	0.036	0.120	214	1,707	133	160	139
31P	37	123	8,616	9,394	9,597	10,940	10,291
39K	3.2	11	7,421	9,490	8,378	8,429	8,042
44Ca	9.7	32	2,750	5,070	2,391	1,999	1,727
49Ti	0.262	0.873	12	118	7.5	10	7.2
51V	0.062	0.207	0.394	3.5	0.202	0.387	0.341
52Cr	0.186	0.620	6.5	72	2.8	2.4	3.8
55Mn	0.010	0.033	21	38	15	127	105
57Fe	1.1	3.7	234	2,060	121	342	375
59Co	0.008	0.027	0.815	5.9	0.646	1.6	2.3
60Ni	0.048	0.160	13	107	6.2	13	11
63Cu	0.018	0.060	12	15	19	18	13
66Zn	0.340	1.1	280	448	292	211	190
75As	0.454	1.5	< 0.454	0.815	< 0.454	< 0.454	0.478
77Se	0.386	1.3	5.8	7.0	7.1	6.0	6.5
88Sr	0.001	0.003	4.4	6.4	4.1	3.4	2.7
95Mo	0.001	0.003	0.286	0.618	0.206	0.309	0.343
107Ag	0.001	0.003	0.105	0.058	0.087	0.017	0.017
111Cd	0.065	0.217	1.2	3.4	0.734	3.4	2.6
118Sn	0.011	0.037	0.251	0.847	0.121	0.198	0.138
121Sb	0.004	0.013	0.035	0.051	0.026	0.024	0.029
137Ba	0.001	0.003	15	48	11	14	11
202Hg	0.024	0.080	0.046	0.046	0.065	0.065	0.056
205TI	0.001	0.003	0.019	0.049	0.016	0.021	0.049
208Pb	0.001	0.003	0.071	0.357	0.041	0.073	0.071
238U	0.001	0.003	0.035	0.084	0.015	0.050	0.040

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_LISP24_INV-	RG_LISP24_INV-	DC LISD24 INIV-	PG LIDCOM INIV	RG_LIDCOM_INV-
		Client ID	3_2021-09-13	4_2021-09-13	5_2021-09-13	1_2021-09-13	2_2021-09-13
		Client ID	3_2021-09-13	4_2021-09-13	3_2021-09-13	1_2021-09-13	2_2021-09-13
		Lab ID	546	547	548	549	550
	Wet Weight (g)		0.6631	0.5590	0.8217	0.6396	0.5370
		ry Weight (g)	0.1614	0.1092	0.1867	0.1352	0.1057
	Moisture (%		75.7	80.5	77.3	78.9	80.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.008	0.027	0.528	0.873	0.720	0.460	0.663
11B	0.096	0.320	0.760	1.6	1.3	0.667	0.881
23Na	1.5	5.0	3,870	5,155	5,050	3,985	4,560
24Mg	0.018	0.060	1,228	1,801	1,662	1,285	1,697
27Al	0.036	0.120	230	629	372	264	382
31P	37	123	12,817	15,010	14,947	10,993	13,391
39K	3.2	11	9,933	16,328	13,332	12,098	13,999
44Ca	9.7	32	1,806	3,168	2,201	2,324	3,076
49Ti	0.262	0.873	17	44	24	14	23
51V	0.062	0.207	0.541	1.4	0.977	0.599	0.686
52Cr	0.186	0.620	3.2	9.9	6.1	6.4	7.5
55Mn	0.010	0.033	169	204	118	63	82
57Fe	1.1	3.7	436	867	525	246	339
59Co	0.008	0.027	3.7	4.7	2.3	0.940	1.7
60Ni	0.048	0.160	19	36	16	20	27
63Cu	0.018	0.060	19	27	21	14	18
66Zn	0.340	1.1	325	377	217	207	320
75As	0.454	1.5	0.619	0.874	0.674	0.587	0.674
77Se	0.386	1.3	8.5	8.3	8.2	6.7	7.4
88Sr	0.001	0.003	3.4	5.3	3.8	4.4	6.4
95Mo	0.001	0.003	0.435	0.618	0.533	0.320	0.469
107Ag	0.001	0.003	0.017	0.033	0.027	0.027	0.036
111Cd	0.065	0.217	4.6	7.3	3.0	2.4	4.3
118Sn	0.011	0.037	0.137	0.592	0.274	0.166	0.274
121Sb	0.004	0.013	0.034	0.059	0.044	0.024	0.032
137Ba	0.001	0.003	14	27	15	19	22
202Hg	0.024	0.080	0.065	0.070	0.094	0.055	0.070
205TI	0.001	0.003	0.032	0.045	0.048	0.025	0.031
208Pb	0.001	0.003	0.102	0.231	0.140	0.072	0.102
238U	0.001	0.003	0.063	0.104	0.068	0.060	0.069

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG LIDCOM INV-	RG_LIDCOM_INV-	RG LIDCOM INV-	RG_LILC3_INV-	RG_LILC3_INV-
		Client ID	3_2021-09-13	4_2021-09-13	5_2021-09-13	1_2021-09-09	2_2021-09-09
			_	_	_	_	_
	Lab ID			552	553	554	555
	We	et Weight (g)	0.6393	0.6011	0.4718	1.8004	1.8931
	Dry Weight (g		0.1485	0.1356	0.1050	0.3697	0.4247
	Moisture (%		76.8	77.4	77.7	79.5	77.6
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.008	0.027	0.552	0.363	0.615	0.789	1.2
11B	0.096	0.320	0.587	0.734	1.2	1.3	1.4
23Na	1.5	5.0	3,886	2,700	3,644	3,963	6,011
24Mg	0.018	0.060	1,442	1,308	1,557	1,538	1,632
27Al	0.036	0.120	225	248	650	561	858
31P	37	123	12,679	10,907	11,575	11,860	16,643
39K	3.2	11	12,510	9,658	11,853	11,803	19,375
44Ca	9.7	32	1,600	2,087	3,390	3,058	1,540
49Ti	0.262	0.873	14	12	36	39	61
51V	0.062	0.207	0.467	0.553	1.0	1.2	1.1
52Cr	0.186	0.620	3.8	3.9	11	4.3	4.4
55Mn	0.010	0.033	78	55	66	151	133
57Fe	1.1	3.7	212	218	472	833	736
59Co	0.008	0.027	0.996	0.950	1.3	2.8	1.8
60Ni	0.048	0.160	17	13	29	20	16
63Cu	0.018	0.060	19	15	18	25	13
66Zn	0.340	1.1	310	217	241	220	174
75As	0.454	1.5	0.749	0.549	0.524	0.686	0.796
77Se	0.386	1.3	8.5	5.4	6.3	9.9	8.6
88Sr	0.001	0.003	3.0	4.0	5.8	5.6	3.5
95Mo	0.001	0.003	0.405	0.320	0.501	0.618	0.423
107Ag	0.001	0.003	0.038	0.033	0.038	0.027	0.016
111Cd	0.065	0.217	2.8	2.6	4.5	4.5	1.5
118Sn	0.011	0.037	0.213	0.196	0.385	0.471	0.234
121Sb	0.004	0.013	0.023	0.040	0.565	0.058	0.057
137Ba	0.001	0.003	19	18	25	21	22
202Hg	0.024	0.080	0.105	0.070	0.070	0.094	0.111
205TI	0.001	0.003	0.027	0.028	0.032	0.031	0.063
208Pb	0.001	0.003	0.077	0.094	0.172	0.201	0.198
238U	0.001	0.003	0.062	0.074	0.070	0.086	0.048

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LILC3_INV- 3_2021-09-09	RG_LCUT_INV- 1_2021-09-10	RG_LCUT_INV- 2_2021-09-10	RG_LCUT_INV- 3_2021-09-10	RG_LCUT_INV- 4_2021-09-10
		Lab ID	556	557	558	559	560
	We	et Weight (g)	1.7814	1.6766	0.9264	1.4155	0.7652
	Dry Weight (g)		0.4404	0.4256	0.2078	0.3047	0.1843
		Moisture (%)	75.3	74.6	77.6	78.5	75.9
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.008	0.027	0.804	0.680	0.860	0.618	0.748
11B	0.096	0.320	0.939	1.5	1.8	1.5	2.0
23Na	1.5	5.0	5,950	3,541	5,242	3,783	4,356
24Mg	0.018	0.060	1,550	1,289	1,767	1,321	1,581
27Al	0.036	0.120	342	706	733	537	670
31P	37	123	15,761	12,349	15,678	10,618	13,668
39K	3.2	11	16,894	12,371	16,337	10,456	13,746
44Ca	9.7	32	1,792	1,578	3,920	2,954	3,468
49Ti	0.262	0.873	22	44	61	25	47
51V	0.062	0.207	0.800	1.1	1.2	0.802	1.2
52Cr	0.186	0.620	2.8	4.6	3.9	3.6	6.7
55Mn	0.010	0.033	201	30	21	27	29
57Fe	1.1	3.7	872	271	271	206	344
59Co	0.008	0.027	2.8	0.864	1.1	0.766	0.864
60Ni	0.048	0.160	27	14	12	9.6	16
63Cu	0.018	0.060	20	21	32	30	35
66Zn	0.340	1.1	196	178	202	173	199
75As	0.454	1.5	0.955	0.875	0.862	0.955	1.2
77Se	0.386	1.3	11	5.7	6.2	5.8	7.4
88Sr	0.001	0.003	3.5	3.1	6.4	4.0	5.7
95Mo	0.001	0.003	0.470	0.294	0.423	0.306	0.353
107Ag	0.001	0.003	0.027	0.022	0.032	0.016	0.038
111Cd	0.065	0.217	2.3	1.7	4.5	3.8	4.9
118Sn	0.011	0.037	0.194	0.109	0.350	0.087	0.140
121Sb	0.004	0.013	0.069	0.044	0.043	0.031	0.038
137Ba	0.001	0.003	33	26	26	22	30
202Hg	0.024	0.080	0.115	0.115	0.133	0.106	0.142
205Tl	0.001	0.003	0.062	0.057	0.063	0.049	0.059
208Pb	0.001	0.003	0.203	0.298	0.298	0.230	0.348
238U	0.001	0.003	0.089	0.109	0.156	0.088	0.127

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		,				
			RG_LCUT_INV-	RG_LILC3_INV-	RG_LILC3_INV-	RG_LILC3_INVLU
		Client ID	5_2021-09-10	4_2021-09-10	5_2021-09-10	M-3_2021-09-10
Lab ID		561	562	563	564	
		et Weight (g)	1.3735	1.4728	1.3954	0.0059
	Di	ry Weight (g)	0.3603	0.3435	0.3126	0.0031
		Moisture (%)	73.8	76.7	77.6	47.5
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.008	0.027	1.3	0.343	0.520	1.2
11B	0.096	0.320	4.8	0.587	0.631	2.7
23Na	1.5	5.0	2,902	2,808	3,617	3,291
24Mg	0.018	0.060	1,513	1,024	1,245	2,096
27Al	0.036	0.120	3,850	109	208	1,266
31P	37	123	10,260	9,729	11,967	12,262
39K	3.2	11	11,504	9,925	10,088	16,487
44Ca	9.7	32	2,502	978	1,872	6,897
49Ti	0.262	0.873	350	5.0	18	80
51V	0.062	0.207	9.8	0.276	0.553	3.0
52Cr	0.186	0.620	27	1.9	3.0	2.2
55Mn	0.010	0.033	31	59	163	481
57Fe	1.1	3.7	947	268	552	1,406
59Co	0.008	0.027	0.982	1.8	3.5	9.5
60Ni	0.048	0.160	52	7.5	24	73
63Cu	0.018	0.060	29	14	23	24
66Zn	0.340	1.1	191	184	246	462
75As	0.454	1.5	1.1	< 0.454	0.689	7.5
77Se	0.386	1.3	6.4	7.2	9.9	15
88Sr	0.001	0.003	9.0	2.0	3.4	25
95Mo	0.001	0.003	0.894	0.259	0.517	0.752
107Ag	0.001	0.003	0.049	0.005	0.016	0.289
111Cd	0.065	0.217	3.1	2.4	7.0	12
118Sn	0.011	0.037	0.399	0.146	0.233	3.2
121Sb	0.004	0.013	0.183	0.025	0.040	0.125
137Ba	0.001	0.003	98	8.5	18	124
202Hg	0.024	0.080	0.160	0.062	0.115	0.213
205Tl	0.001	0.003	0.153	0.030	0.041	0.161
208Pb	0.001	0.003	1.1	0.055	0.120	0.391
238U	0.001	0.003	0.276	0.021	0.070	0.186

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

Page 12 of 22

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

	Client ID	RG_LI24	1_INV-1_202	1-09-16	RG_LI8	_INV-4_202	1-09-11	RG_FRU	L_INV-5_202	21-09-12
	Lab ID		511			529			538	
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.008	0.462	0.471	1.9	0.541	0.588	8.3	1.1	1.1	0.0
11B	0.096	0.681	0.764	-	0.565	0.989	-	0.835	0.745	-
23Na	1.5	4,893	5,117	4.5	4,194	4,181	0.3	4,471	4,703	5.1
24Mg	0.018	1,650	2,020	20	1,432	1,325	7.8	1,829	1,569	15
27Al	0.036	273	347	24	386	345	11	134	111	19
31P	37	14,592	15,725	7.5	14,524	11,912	20	11,159	11,338	1.6
39K	3.2	14,519	15,141	4.2	12,719	14,377	12	8,815	9,017	2.3
44Ca	9.7	3,413	3,685	7.7	1,415	2,248	46	4,119	3,003	31
49Ti	0.262	17	20	16	18	18	0.0	10	6.8	38
51V	0.062	1.2	1.5	22	0.537	0.631	-	0.325	0.226	-
52Cr	0.186	9.6	11	14	2.8	3.4	19	3.1	2.9	6.7
55Mn	0.010	14	18	25	40	58	37	28	21	29
57Fe	1.1	304	373	20	173	241	33	167	128	26
59Co	0.008	0.639	0.758	17	0.739	1.1	39	0.598	0.449	29
60Ni	0.048	18	21	15	12	17	35	5.7	4.0	35
63Cu	0.018	17	18	5.7	12	14	15	21	20	4.9
66Zn	0.340	353	374	5.8	305	366	18	327	269	20
75As	0.454	1.3	1.4	-	0.651	0.678	-	< 0.454	< 0.454	-
77Se	0.386	7.2	8.1	12	8.8	8.2	7.1	11	12	8.7
88Sr	0.001	7.4	8.6	15	3.4	5.5	47	5.4	3.8	35
95Mo	0.001	0.395	0.471	18	0.245	0.327	29	0.275	0.206	29
107Ag	0.001	0.091	0.091	0.0	0.016	0.016	0.0	0.253	0.244	3.6
111Cd	0.065	1.2	1.1	8.7	4.1	4.5	9.3	1.7	1.3	27
118Sn	0.011	0.499	0.563	12	0.111	0.125	12	0.184	0.145	24
121Sb	0.004	0.032	0.038	-	0.027	0.034	-	0.030	0.019	-
137Ba	0.001	17	19	11	18	26	36	25	20	22
202Hg	0.024	0.068	0.068	-	0.091	0.100	-	0.083	0.102	-
205TI	0.001	0.055	0.066	18	0.025	0.032	25	0.019	0.015	24
208Pb	0.001	0.122	0.156	25	0.090	0.124	32	0.078	0.054	36
238U	0.001	0.124	0.146	16	0.068	0.070	2.9	0.044	0.031	35

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

	Client ID	RG_LISP2	4_INV-4_20	21-09-13	RG_LCU	T_INV-2_20	21-09-10	RG_LILC	3_INV-5_20	21-09-10	
	Lab ID		547			558			563		
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	
7Li	0.008	0.873	0.984	12	0.860	0.832	3.3	0.520	0.568	8.8	
11B	0.096	1.6	1.8	12	1.8	1.8	1.0	0.631	0.792	-	
23Na	1.5	5,155	5,502	6.5	5,242	4,309	20	3,617	3,774	4.2	
24Mg	0.018	1,801	1,980	9.5	1,767	1,467	19	1,245	1,249	0.3	
27Al	0.036	629	854	30	733	1,089	39	208	308	39	
31P	37	15,010	15,305	1.9	15,678	13,236	17	11,967	10,858	9.7	
39K	3.2	16,328	17,757	8.4	16,337	13,139	22	10,088	10,187	1.0	
44Ca	9.7	3,168	3,273	3.3	3,920	3,242	19	1,872	2,119	12	
49Ti	0.262	44	51	15	61	69	12	18	20	11	
51V	0.062	1.4	1.7	19	1.193	1.4	16	0.553	0.870	-	
52Cr	0.186	9.9	9.1	8.4	3.9	4.9	23	3.0	3.5	15	
55Mn	0.010	204	223	8.9	21	25	20	163	176	7.7	
57Fe	1.1	867	1,082	22	271	341	23	552	643	15	
59Co	0.008	4.7	5.4	14	1.088	1.2	9.7	3.5	5.0	35	
60Ni	0.048	36	40	11	11.9	14	17	24	31	26	
63Cu	0.018	27	29	7.1	32	29	11	23	27	16	
66Zn	0.340	377	365	3.2	202	177	13	246	306	22	
75As	0.454	0.874	0.936	-	0.862	0.875	1.5	0.689	0.742	-	
77Se	0.386	8.3	9.0	8.1	6.2	6.2	0.0	9.9	9.5	4.1	
88Sr	0.001	5.3	6.1	14	6.4	5.3	18	3.4	4.4	26	
95Mo	0.001	0.618	0.704	13	0.423	0.470	10	0.517	0.635	21	
107Ag	0.001	0.033	0.044	29	0.032	0.027	18	0.016	0.022	32	
111Cd	0.065	7.3	7.5	2.7	4.5	4.2	6.3	7.0	9.6	31	
118Sn	0.011	0.592	0.679	14	0.350	0.332	5.3	0.233	0.309	28	
121Sb	0.004	0.059	0.084	35	0.043	0.050	14	0.040	0.044	-	
137Ba	0.001	27	33	20	26	30	14	18	19	5.4	
202Hg	0.024	0.070	0.101	-	0.133	0.129	3.1	0.115	0.111	-	
205TI	0.001	0.045	0.047	4.3	0.063	0.061	3.5	0.041	0.052	24	
208Pb	0.001	0.231	0.300	26	0.298	0.425	35	0.120	0.156	26	
238U	0.001	0.104	0.150	36	0.156	0.177	12	0.070	0.083	17	

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Project No: 2021-264

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	Sa	ample Group ID		01			02	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.008	1.21	1.3	106	4.0	1.3	111	5.8
11B	0.096	4.5	5.1	114	3.0	5.3	118	4.3
23Na	1.5	14,000	15,099	108	3.6	15,178	108	4.7
24Mg	0.018	910	1,010	111	4.8	1,005	110	3.5
27Al	0.036	197.2	223	113	10	213	108	4.3
31P	37	8,000	8,659	108	3.4	8,720	109	2.0
39K	3.2	15,500	16,722	108	4.7	17,508	113	3.6
44Ca	9.7	2,360	2,517	107	2.5	2,578	109	3.7
49Ti	0.262	12.24	15	119	16	12	100	11
51V	0.062	1.57	1.5	99	8.9	1.9	119	5.0
52Cr	0.186	1.87	2.0	108	3.8	2.1	114	3.6
55Mn	0.010	3.17	3.6	113	4.4	3.5	110	2.4
57Fe	1.1	343	380	111	4.4	387	113	2.1
59Co	0.008	0.25	0.275	110	6.3	0.298	119	3.5
60Ni	0.048	1.34	1.6	119	4.2	1.5	114	3.1
63Cu	0.018	15.7	19	120	5.2	18	113	2.7
66Zn	0.340	51.6	56	109	3.6	58	113	4.0
75As	0.454	6.87	7.2	105	2.4	7.3	106	3.0
77Se	0.386	3.45	3.6	105	6.3	3.7	107	1.4
88Sr	0.001	10.1	11	105	3.0	12	114	3.2
95Mo	0.001	0.29	0.328	113	7.7	0.324	112	5.8
107Ag	0.001	0.0252	0.029	116	7.4	0.032	128	8.6
111Cd	0.065	0.299	0.332	111	5.9	0.347	116	12
118Sn	0.011	0.061	0.062	101	19	0.085	140	12
121Sb	0.004	0.011	0.013	114	19	0.015	134	8.5
137Ba	0.001	8.6	9.4	109	5.2	9.7	113	4.3
202Hg	0.024	0.412	0.440	107	5.3	0.440	107	2.9
205Tl	0.001	0.0013	-	-	-	-	-	-
208Pb	0.001	0.404	0.382	94	16	0.470	116	11
238U	0.001	0.05	0.047	95	8.0	0.059	117	4.9

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	Sa	ample Group ID		03			04	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.008	1.21	1.2	102	6.3	1.3	111	5.6
11B	0.096	4.5	4.6	102	5.6	4.7	106	2.1
23Na	1.5	14,000	14,859	106	7.9	15,640	112	1.3
24Mg	0.018	910	936	103	5.2	1,037	114	4.1
27Al	0.036	197.2	204	103	6.7	195	99	4.6
31P	37	8,000	8,257	103	5.4	8,764	110	2.4
39K	3.2	15,500	16,210	105	6.1	16,316	105	4.1
44Ca	9.7	2,360	2,442	104	5.0	2,583	110	1.0
49Ti	0.262	12.24	14	113	7.6	12	100	12
51V	0.062	1.57	1.6	99	4.5	1.7	107	4.2
52Cr	0.186	1.87	2.0	106	4.5	2.0	106	2.2
55Mn	0.010	3.17	3.2	101	4.1	3.6	112	4.4
57Fe	1.1	343	347	101	3.1	380	111	2.4
59Co	0.008	0.25	0.262	105	4.0	0.270	108	2.0
60Ni	0.048	1.34	1.4	106	3.5	1.5	112	2.2
63Cu	0.018	15.7	17	110	5.0	17	109	3.4
66Zn	0.340	51.6	54	105	4.7	58	112	2.7
75As	0.454	6.87	7.5	109	4.8	7.2	105	1.8
77Se	0.386	3.45	3.8	109	7.7	3.7	107	4.6
88Sr	0.001	10.1	10	101	7.7	12	114	2.3
95Mo	0.001	0.29	0.282	97	9.4	0.325	112	3.1
107Ag	0.001	0.0252	0.024	93	12	0.028	111	9.3
111Cd	0.065	0.299	0.316	106	4.8	0.343	115	9.5
118Sn	0.011	0.061	0.057	93	11	0.067	110	10
121Sb	0.004	0.011	0.011	103	19	0.011	98	19
137Ba	0.001	8.6	8.7	101	1.5	8.7	101	1.7
202Hg	0.024	0.412	0.461	112	1.6	0.420	102	8.8
205TI	0.001	0.0013	-	-	-	-	-	-
208Pb	0.001	0.404	0.446	110	14	0.449	111	6.9
238U	0.001	0.05	0.048	95	7.9	0.055	110	1.6

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	S	ample Group ID		05			06	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.008	1.21	1.3	105	2.3	1.3	107	4.0
11B	0.096	4.5	4.8	106	2.6	4.9	110	4.1
23Na	1.5	14,000	14,728	105	1.5	14,035	100	1.0
24Mg	0.018	910	995	109	3.1	926	102	3.2
27Al	0.036	197.2	199	101	4.6	216	110	5.1
31P	37	8,000	8,360	104	2.5	8,029	100	4.2
39K	3.2	15,500	16,523	107	3.9	15,957	103	3.2
44Ca	9.7	2,360	2,468	105	3.0	2,426	103	4.3
49Ti	0.262	12.24	13	108	13	14	116	18
51V	0.062	1.57	1.9	119	9.0	1.5	97	8.7
52Cr	0.186	1.87	2.0	107	2.5	1.9	103	4.8
55Mn	0.010	3.17	3.5	111	4.3	3.4	106	3.0
57Fe	1.1	343	367	107	3.5	368	107	2.6
59Co	0.008	0.25	0.280	112	4.4	0.273	109	2.6
60Ni	0.048	1.34	1.5	113	5.6	1.4	107	4.5
63Cu	0.018	15.7	18	113	5.5	17	108	3.6
66Zn	0.340	51.6	53	103	2.6	56	109	0.9
75As	0.454	6.87	7.2	105	5.8	7.3	106	2.0
77Se	0.386	3.45	3.7	109	4.8	3.7	108	2.6
88Sr	0.001	10.1	11	106	4.3	11	107	2.0
95Mo	0.001	0.29	0.292	101	8.8	0.320	110	8.4
107Ag	0.001	0.0252	0.028	113	8.6	0.025	99	12
111Cd	0.065	0.299	0.346	116	5.6	0.328	110	10
118Sn	0.011	0.061	0.070	114	17	0.065	107	19
121Sb	0.004	0.011	0.011	99	15	0.010	100	16
137Ba	0.001	8.6	8.8	102	1.7	9.3	109	5.7
202Hg	0.024	0.412	0.432	105	8.0	0.471	114	3.2
205Tl	0.001	0.0013	-	-	-	-	-	-
208Pb	0.001	0.404	0.460	114	9.9	0.432	107	10
238U	0.001	0.05	0.059	118	13	0.053	106	12

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Sample Group Information

Sample Group ID	Client ID	Lab ID	Date of Analysis
01	RG_LI24_INV-1_2021-09-16	511	15 Oct 2021
	RG_LI24_INV-2_2021-09-16	512	
	RG_LI24_INV-3_2021-09-16	513	
	RG_LI24_INV-4_2021-09-16	514	
	RG_LI24_INV-5_2021-09-16	515	
	RG_LIDSL_INV-1_2021-09-14	516	
	RG_LIDSL_INV-2_2021-09-14	517	
	RG_LIDSL_INV-3_2021-09-14	518	
	RG_LIDSL_INV-4_2021-09-14	519	
02	RG_LIDSL_INV-5_2021-09-14	520	15 Oct 2021
	RG_SLINE_INV-1_2021-09-15	521	
	RG_SLINE_INV-2_2021-09-15	522	
	RG_SLINE_INV-3_2021-09-15	523	
	RG_SLINE_INV-4_2021-09-15	524	
	RG_SLINE_INV-5_2021-09-15	525	
	RG_LI8_INV-1_2021-09-11	526	
	RG_LI8_INV-2_2021-09-11	527	
	RG_LI8_INV-3_2021-09-11	528	
03	RG_LI8_INV-4_2021-09-11	529	15 Oct 2021
	RG_LI8_INV-5_2021-09-11	530	
	RG_LI8_INVLUM-1_2021-09-11	531	
	RG_LI8_INVLUM-2_2021-09-11	532	
	RG_LI8_INVLUM-3_2021-09-11	533	
	RG_FRUL_INV-1_2021-09-12	534	
	RG_FRUL_INV-2_2021-09-12	535	
	RG_FRUL_INV-3_2021-09-12	536	
	RG_FRUL_INV-4_2021-09-12	537	
04	RG_FRUL_INV-5_2021-09-12	538	15 Oct 2021
	RG_FO23_INV-1_2021-09-12	539	
	RG_FO23_INV-2_2021-09-12	540	
	RG_FO23_INV-3_2021-09-12	541	
	RG_FO23_INV-4_2021-09-12	542	
	RG_FO23_INV-5_2021-09-12	543	
	RG_LISP24_INV-1_2021-09-13	544	
	RG_LISP24_INV-2_2021-09-13	545	
	RG_LISP24_INV-3_2021-09-13	546	
05	RG_LISP24_INV-4_2021-09-13	547	15 Oct 2021
	RG_LISP24_INV-5_2021-09-13	548	
	RG_LIDCOM_INV-1_2021-09-13	549	
	RG_LIDCOM_INV-2_2021-09-13	550	

Teck Coal Limited Sample Group Information

		Γ	<u> </u>
Sample			Date of
Group ID	Client ID	Lab ID	Analysis
05	RG_LIDCOM_INV-3_2021-09-13	551	15 Oct 2021
	RG_LIDCOM_INV-4_2021-09-13	552	
	RG_LIDCOM_INV-5_2021-09-13	553	
	RG_LILC3_INV-1_2021-09-09	554	
06	RG_LILC3_INV-2_2021-09-09	555	15 Oct 2021
	RG_LILC3_INV-3_2021-09-09	556	
	RG_LCUT_INV-1_2021-09-10	557	
	RG_LCUT_INV-2_2021-09-10	558 559	
	RG_LCUT_INV-3_2021-09-10 RG_LCUT_INV-4_2021-09-10	560	
	RG_LCUT_INV-5_2021-09-10	561	
	RG_LILC3_INV-4_2021-09-10	562	
	RG_LILC3_INV-5_2021-09-10	563	
	RG_LILC3_INVLUM-3_2021-09-10	564	
	No_E/E63_NVE6W 3_E6E1 63 16	301	

Trich Analytics Inc. Chain of Custody (COC) 207-1753 Sean Heights, Saanichton, BC, V8M 0B3 for LA-ICP-MS Analysis Ph: (250) 532-1084 Invoicing Reporting (if different from Invoicing) Project Number: LINE CREEK LAEMP (21-36) (PO 748530) Company Name: Teck Coal Limited Company Name: Minnow Environmental Contact Name: Cait Good Contact Name: Tyler Mehler Address: 421 Pine Avenue Address: 2 Lamb Street City, Province: Sparwood, BC City, Province: Georgetown, ON Postal Code: Postal Code: V0B 2G0 L7G 2G7 Phone: 250-425-8202 Phone: Email: cait.good@teck.com Email: Sample Analysis Requested Sample Type: Sample Identification: Species Sample type TRICH ID RG_LI24_INV-1_2021-09-16 / Composite Composite-taxa benthic invertebrate tissue samples 511 RG_LI24_INV-2_2021-09-16 / Composite Composite-taxa benthic invertebrate tissue samples 512 3 RG_LI24_INV-3_2021-09-16 / Composite Composite-taxa benthic invertebrate tissue samples 513 4 RG_LI24_INV-4_2021-09-16 / Composite Composite-taxa benthic invertebrate tissue samples 514 5 RG_LI24_INV-5_2021-09-16 / Composite Composite-taxa benthic invertebrate tissue samples 515 6 RG_LIDSL_INV-1_2021-09-14 / Composite-taxa benthic invertebrate tissue samples 516 Composite 7 RG_LIDSL_INV-2_2021-09-14 / Composite Composite-taxa benthic invertebrate tissue samples 517 8 RG_LIDSL_INV-3_2021-09-14 / Composite Composite-taxa benthic invertebrate tissue samples 518 9 RG_LIDSL_INV-4_2021-09-14 Composite Composite-taxa benthic invertebrate tissue samples 519 10 RG_LIDSL_INV-5_2021-09-14 / Composite-taxa benthic invertebrate tissue samples Composite 520 11 RG_SLINE_INV-1_2021-09-15 Composite Composite-taxa benthic invertebrate tissue samples 521 12 RG_SLINE_INV-2_2021-09-15 / Composite Composite-taxa benthic invertebrate tissue samples 522 13 RG_SLINE_INV-3_2021-09-15 -Composite Composite-taxa benthic invertebrate tissue samples 523 14 RG_SLINE_INV-4_2021-09-15 524 Composite Composite-taxa benthic invertebrate tissue samples 15 RG_SLINE_INV-5_2021-09-15 -Composite Composite-taxa benthic invertebrate tissue samples 575 16 RG_LCUT_INV-6_2021-09-11 * Composite Composite-taxa benthic invertebrate tissue samples 17 RG_LI8_INV-1_2021-09-11 / 526 Composite Composite-taxa benthic invertebrate tissue samples 18 RG_LI8_INV-2_2021-09-11 -Composite Composite-taxa benthic invertebrate tissue samples 527 19 RG_LI8_INV-3_2021-09-11 / Composite Composite-taxa benthic invertebrate tissue samples 528 20 RG_LI8_INV-4_2021-09-11 / Composite Composite-taxa benthic invertebrate tissue samples 529 Sample(s) Released By: Sample(s) Received By: Alex Wade Signature: Signature: aw 0500+ 2021 (Proj # 2021-264) Date Sent: Date Received: 28 Sep 2021 Sample(s) Returned to Client By: Shipping Conditions: Shipping Container: Signature: Date Sent:

* missing sample -> client confirmed mistake (no sample) aw oscotzozi

Trich Analytics Inc.

Chain of Custody (COC)

207-1753 Sean Heights, Saanichton, BC, V8M 0B3 for LA-ICP-MS Analysis Ph: (250) 532-1084 Invoicina Reporting (if different from Invoicing) Project Number: LINE CREEK LAEMP (21-36) (PO 748530) Company Name: Teck Coal Limited Company Name: Minnow Environmental Contact Name: Cait Good Contact Name: Tyler Mehler Address: 421 Pine Avenue Address: 2 Lamb Street City, Province: Sparwood, BC City, Province: Georgetown, ON Postal Code: **VOB 2G0** Postal Code: L7G 2G7 Phone: 250-425-8202 Phone: 250-595-1627 Email: cait.good@teck.com Email: oschnurr@minnow.ca Sample Analysis Requested Sample Type: Sample Identification: TRICH ID Species Sample type 21 RG_LI8_INV-5_2021-09-11 / 530 Composite Composite-taxa benthic invertebrate tissue samples 22 RG_LI8_INVLUM-1_2021-09-11 531 Composite Composite-taxa benthic invertebrate tissue samples 23 RG_LI8_INVLUM-2_2021-09-11 532 Composite Composite-taxa benthic invertebrate tissue samples 24 RG_LI8_INVLUM-3_2021-09-11 533 Composite Composite-taxa benthic invertebrate tissue samples 25 RG_FRUL_INV-1_2021-09-12 / 534 Composite Composite-taxa benthic invertebrate tissue samples 535 26 RG_FRUL_INV-2_2021-09-12 Composite Composite-taxa benthic invertebrate tissue samples 27 RG_FRUL_INV-3_2021-09-12 / 536 Composite Composite-taxa benthic invertebrate tissue samples 28 RG_FRUL_INV-4_2021-09-12 / 537 Composite Composite-taxa benthic invertebrate tissue samples 29 RG_FRUL_INV-5_2021-09-12 -538 Composite Composite-taxa benthic invertebrate tissue samples 30 RG_FO23_INV-1_2021-09-12 539 Composite Composite-taxa benthic invertebrate tissue samples 540 31 RG_FO23_INV-2_2021-09-12 Composite Composite-taxa benthic invertebrate tissue samples 32 RG_FO23_INV-3_2021-09-12_ 541 Composite Composite-taxa benthic invertebrate tissue samples 33 RG_FO23_INV-4_2021-09-12 / Composite 542 Composite-taxa benthic invertebrate tissue samples 34 RG_FO23_INV-5_2021-09-12 543 Composite Composite-taxa benthic invertebrate tissue samples 35 RG_LISP24_INV-1_2021-09-13 544 Composite Composite-taxa benthic invertebrate tissue samples 545 36 RG_LISP24_INV-2_2021-09-13 / Composite Composite-taxa benthic invertebrate tissue samples 37 RG_LISP24_INV-3_2021-09-13 _ 546 Composite Composite-taxa benthic invertebrate tissue samples 38 RG_LISP24_INV-4_2021-09-13 547 Composite Composite-taxa benthic invertebrate tissue samples 548 39 RG_LISP24_INV-5_2021-09-13 / Composite Composite-taxa benthic invertebrate tissue samples 549 40 RG_LIDCOM_INV-1_2021-09-13 / Composite Composite-taxa benthic invertebrate tissue samples Sample(s) Released By: Sample(s) Received By: Alex wade Signature: Signature: an osodron Date Sent: Date Received: (Proj # 2021-264) 28 Sep 2021 Sample(s) Returned to Client By: Shipping Conditions: Shipping Container: Signature: Date Sent:

Trich Analytics Inc. Chain of Custody (COC) 207-1753 Sean Heights, Saanichton, BC, V8M 0B3 for LA-ICP-MS Analysis Ph: (250) 532-1084 Invoicing Reporting (if different from Invoicing) Project Number: LINE CREEK LAEMP (21-36) (PO 748530) Company Name: Teck Coal Limited Company Name: Minnow Environmental Contact Name: Cait Good Contact Name: Tyler Mehler Address: 421 Pine Avenue Address: 2 Lamb Street City, Province: Sparwood, BC City, Province: Georgetown, ON Postal Code: V0B 2G0 Postal Code: L7G 2G7 Phone: 250-425-8202 Phone: Email: cait.good@teck.com Email: Sample Analysis Requested Sample Type: Sample Identification: TRICH ID Species Sample type 41 RG_LIDCOM_INV-2_2021-09-13 556 Composite Composite-taxa benthic invertebrate tissue samples 42 RG_LIDCOM_INV-3_2021-09-13 551 Composite Composite-taxa benthic invertebrate tissue samples 43 RG_LIDCOM_INV-4_2021-09-13 552 Composite Composite-taxa benthic invertebrate tissue samples 553 44 RG_LIDCOM_INV-5_2021-09-13 Composite Composite-taxa benthic invertebrate tissue samples 554 45 RG_LILC3_INV-1_2021-09-09 Composite Composite-taxa benthic invertebrate tissue samples 555 46 RG_LILC3_INV-2_2021-09-09 _ Composite Composite-taxa benthic invertebrate tissue samples 47 RG_LILC3_INV-3_2021-09-09 556 Composite Composite-taxa benthic invertebrate tissue samples 48 RG_LCUT_INV-1_2021-09-10 / 557 Composite Composite taxa benthic invertebrate tissue samples 558 49 RG_LCUT_INV-2_2021-09-10 / Composite Composite-taxa benthic invertebrate tissue samples 559 50 RG_LCUT_INV-3_2021-09-10 / Composite Composite-taxa benthic invertebrate tissue samples 51 RG_LCUT_INV-4_2021-09-10 / 560 Composite Composite-taxa benthic invertebrate tissue samples 52 RG_LCUT_INV-5_2021-09-10 / 561 Composite Composite-taxa benthic invertebrate tissue samples 53 RG_LILC3_INV-4_2021-09-10 562 Composite Composite-taxa benthic invertebrate tissue samples 54 RG_LILC3_INV-5_2021-09-10 563 Composite Composite-taxa benthic invertebrate tissue samples 55 RG_LILC3_INVLUM-3_2021-09-10 564 Composite umbriculidae tissue sample 56 RG_L18_INVLUM-1_2021-09-11 * Composite Composite-taxa benthic invertebrate tissue samples 57 RG_L18_INVLUM 2_2021-09-11 ** Composite Lumbriculidae tissue sample 58 RG_L18_INVLUM-3_2021-09-11 Composite Composite-taxa benthic invertebrate tissue samples 59 Composite Composite-taxa benthic invertebrate tissue samples Composite Composite-taxa benthic invertebrate tissue samples Sample(s) Released By: Sample(s) Received By: wade Alex Signature: Signature: 05 oct 2021 Date Sent: Date Received: (Proj # 2021-264) 285ep 2021 Sample(s) Returned to Client By: Shipping Conditions: Shipping Container: Signature: Date Sent:

organist missing samples -> client confirmed mistake (no samples) aw 85 octrou

BENTHIC TISSUE CHEMISTRY

TrichAnalytics Laboratory Report 2021-282 (Finalized December 17, 2021)

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Tyler Mehler Date Received: 10 Dec 2021 Client:

Aquatic Scientist Date of Analysis: 14 Dec 2021

Final Report Date: 17 Dec 2021 Minnow Environmental 2021-282 Project No.: Phone: (587) 597-1612

Method No.: MET-002.05 Email: tyler.mehler@minnow.ca; cybele.heddle@teck.com;

kbatchelar@minnow.ca; jessica.ritz@teck.com

Client Project: LCO LAEMP (PO 748530)

Analytical Request: Benthic Invertebrate Tissue Microchemistry (total metals and moisture) - 50 samples.

See chain of custody form provided for sample identification numbers.

Notes:

Analytical results are expressed in parts per million (ppm) dry weight (equivalent to mg/kg).

Samples quantified using DORM-4, NIST-1566b, and NIST-2976 certified reference standards.

Aluminum concentrations above 1,000 ppm are outside linear range of the calibration curve.

RPD values calculated according to the British Columbia Environmental Laboratory Manual (2020) criteria.

Client specific DQO for Selenium accuracy is 90-110% of the certified value; result achieved 100% (ranging from 94-108%).

This report provides the analytical results only for tissue samples noted above as received from the Client.

Reviewed and Approved by Jennie Christensen, PhD, RPBio

17 Dec 2021

[The analytical report shall not be reproduced except in full under the expressed written consent of TrichAnalytics Inc.]

TrichAnalytics Inc. 207-1753 Sean Heights

Saanichton, BC V8M 0B3 www.trichanalytics.com

Accreditation No. A4196

Project No: 2021-282

		Client ID	RG_FO23_INV- 1_2021-12-01	RG_FO23_INV- 2_2021-12-01	RG_FO23_INV- 3_2021-12-01	RG_FO23_INV- 4_2021-12-01	RG_FO23_INV- 5_2021-12-01
		Lab ID	078	079	080	081	082
	We	et Weight (g)	1.0326	0.8180	1.5476	1.3539	1.4215
		y Weight (g)	0.1879	0.1594	0.2512	0.2648	0.2737
		Moisture (%)	81.8	80.5	83.8	80.4	80.7
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.013	0.043	1.3	1.1	0.652	1.2	0.675
11B	0.101	0.337	3.1	3.4	1.1	3.5	2.3
23Na	1.5	5.0	3,667	3,019	2,892	3,857	2,388
24Mg	0.031	0.103	2,025	1,648	1,611	1,860	1,325
27Al	0.046	0.153	1,646	1,917	533	2,242	819
31P	41	137	13,230	11,390	10,906	12,502	10,577
39K	8.4	28	12,951	12,911	8,469	14,251	8,965
44Ca	27	90	7,191	6,527	2,741	5,609	4,150
49Ti	0.001	0.003	79	144	32	179	42
51V	0.055	0.183	2.3	2.8	1.0	3.6	1.6
52Cr	0.396	1.3	13	18	7.9	12	5.9
55Mn	0.013	0.043	41	39	20	37	21
57Fe	2.5	8.3	955	1,056	325	997	406
59Co	0.011	0.037	2.2	3.3	0.791	3.2	0.800
60Ni	0.044	0.147	23	30	12	22	11
63Cu	0.007	0.023	20	21	18	22	15
66Zn	0.489	1.6	495	576	302	628	300
75As	0.436	1.5	0.751	0.829	< 0.436	1.1	0.544
77Se	0.335	1.1	7.7	7.7	6.2	8.6	5.5
88Sr	0.001	0.003	8.6	8.8	3.7	8.0	4.9
95Mo	0.001	0.003	0.475	0.475	0.211	0.580	0.237
107Ag	0.001	0.003	0.135	0.089	0.126	0.086	0.086
111Cd	0.058	0.193	2.1	3.1	0.848	4.7	1.1
118Sn	0.027	0.090	0.578	0.644	0.688	1.3	0.408
121Sb	0.006	0.020	0.063	0.051	0.028	0.060	0.033
137Ba	0.001	0.003	21	57	15	60	21
202Hg	0.029	0.097	0.106	0.089	0.065	0.106	0.073
205Tl	0.001	0.003	0.047	0.041	0.021	0.048	0.022
208Pb	0.002	0.007	0.321	0.336	0.103	0.369	0.167
238U	0.001	0.003	0.138	0.117	0.036	0.103	0.058

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_FRUL_INV- 1_2021-11-29	RG_FRUL_INV- 2_2021-11-29	RG_FRUL_INV- 3_2021-11-29	RG_FRUL_INV- 4_2021-11-29	RG_FRUL_INV- 5_2021-11-29
		Lab ID	083	084	085	086	087
	We	et Weight (g)	0.6049	2.4925	1.0288	1.1565	1.2925
		y Weight (g)	0.1201	0.4443	0.1815	0.1835	0.2232
		Moisture (%)	80.1	82.2	82.4	84.1	82.7
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.013	0.043	0.699	0.554	0.944	0.826	0.512
11B	0.101	0.337	1.8	0.770	0.781	0.712	0.661
23Na	1.5	5.0	2,975	3,954	4,075	5,559	2,680
24Mg	0.031	0.103	1,308	1,183	985	1,149	1,676
27Al	0.046	0.153	612	325	285	244	306
31P	41	137	9,228	10,488	8,060	9,781	7,713
39K	8.4	28	10,456	8,906	8,514	10,372	5,615
44Ca	27	90	5,597	2,770	2,196	2,333	3,133
49Ti	0.001	0.003	27	19	21	14	18
51V	0.055	0.183	1.8	0.670	0.731	0.515	0.618
52Cr	0.396	1.3	11	3.0	4.5	4.4	4.0
55Mn	0.013	0.043	34	16	15	20	20
57Fe	2.5	8.3	664	198	246	203	168
59Co	0.011	0.037	0.959	0.301	0.458	0.314	0.337
60Ni	0.044	0.147	17	3.9	6.0	6.5	6.9
63Cu	0.007	0.023	15	18	12	28	14
66Zn	0.489	1.6	288	269	156	240	199
75As	0.436	1.5	0.466	< 0.436	< 0.436	< 0.436	< 0.436
77Se	0.335	1.1	7.8	8.2	7.4	9.8	6.2
88Sr	0.001	0.003	5.9	3.7	2.3	2.8	3.5
95Mo	0.001	0.003	0.224	0.158	0.185	0.237	0.154
107Ag	0.001	0.003	0.186	0.241	0.160	0.275	0.241
111Cd	0.058	0.193	1.3	0.804	0.982	0.714	0.592
118Sn	0.027	0.090	0.498	0.170	0.351	0.393	0.237
121Sb	0.006	0.020	0.043	0.022	0.019	0.023	0.018
137Ba	0.001	0.003	43	17	11	16	18
202Hg	0.029	0.097	0.073	0.081	0.065	0.081	0.074
205TI	0.001	0.003	0.023	0.010	0.013	0.012	0.013
208Pb	0.002	0.007	0.216	0.098	0.088	0.073	0.068
238U	0.001	0.003	0.079	0.039	0.028	0.033	0.024

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

Page 3 of 28

		Client ID	RG_LCUT_INV- 1_2021-12-01	RG_LCUT_INV- 2_2021-12-01	RG_LCUT_INV- 3_2021-12-01	RG_LCUT_INV- 4_2021-12-01	RG_LCUT_INV- 5_2021-12-01
		Lab ID	088	089	090	091	092
	We	et Weight (g)	1.7130	1.5190	1.8169	1.9727	1.6076
		y Weight (g)	0.3590	0.3237	0.4321	0.3461	0.3284
		Moisture (%)	79.0	78.7	76.2	82.5	79.6
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.013	0.043	1.0	0.891	0.641	0.771	0.678
11B	0.101	0.337	1.6	2.1	1.5	1.7	1.4
23Na	1.5	5.0	3,492	2,553	2,265	2,339	2,250
24Mg	0.031	0.103	1,134	1,217	999	1,228	768
27Al	0.046	0.153	426	1,025	777	620	705
31P	41	137	11,109	9,228	8,556	7,971	6,041
39K	8.4	28	11,237	9,558	7,706	8,620	6,812
44Ca	27	90	2,145	3,122	2,332	3,771	2,274
49Ti	0.001	0.003	30	78	55	53	40
51V	0.055	0.183	0.785	2.1	1.3	1.3	1.4
52Cr	0.396	1.3	3.8	11	2.8	7.4	7.6
55Mn	0.013	0.043	22	19	12	10	9.8
57Fe	2.5	8.3	223	334	266	274	309
59Co	0.011	0.037	0.862	1.2	0.900	0.914	0.926
60Ni	0.044	0.147	11	24	12	15	18
63Cu	0.007	0.023	19	33	28	25	34
66Zn	0.489	1.6	148	174	123	124	161
75As	0.436	1.5	1.3	1.2	0.755	0.901	1.1
77Se	0.335	1.1	4.5	3.7	3.7	3.9	2.7
88Sr	0.001	0.003	3.8	4.9	3.4	6.2	3.3
95Mo	0.001	0.003	0.307	0.358	0.333	0.256	0.307
107Ag	0.001	0.003	0.021	0.041	0.021	0.027	0.041
111Cd	0.058	0.193	2.3	2.6	1.5	1.9	2.7
118Sn	0.027	0.090	0.277	0.407	0.143	0.451	0.333
121Sb	0.006	0.020	0.054	0.064	0.057	0.047	0.045
137Ba	0.001	0.003	49	32	23	23	15
202Hg	0.029	0.097	0.127	0.098	0.094	0.123	0.090
205TI	0.001	0.003	0.037	0.046	0.042	0.031	0.035
208Pb	0.002	0.007	0.319	0.287	0.204	0.220	0.204
238U	0.001	0.003	0.103	0.098	0.077	0.077	0.059

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LI8_INV- 1_2021-12-02	RG_LI8_INV- 2_2021-12-02	RG_LI8_INV- 3_2021-12-02	RG_LI8_INV- 4_2021-12-02	RG_LI8_INV- 5_2021-12-02
		Lab ID	093	094	095	096	097
	We	et Weight (g)	2.0363	1.9079	1.0015	1.5234	1.8380
		y Weight (g)	0.4155	0.4555	0.2518	0.3362	0.4112
		Moisture (%)	79.6	76.1	74.9	77.9	77.6
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.013	0.043	0.333	0.580	0.311	0.580	0.742
11B	0.101	0.337	0.698	1.0	0.474	1.3	2.1
23Na	1.5	5.0	1,925	3,349	1,653	3,142	3,209
24Mg	0.031	0.103	893	1,382	918	1,648	1,596
27Al	0.046	0.153	347	552	237	718	996
31P	41	137	5,757	10,812	6,868	10,552	10,535
39K	8.4	28	5,395	9,884	4,824	8,897	9,977
44Ca	27	90	1,406	1,876	1,163	2,305	2,935
49Ti	0.001	0.003	19	39	12	49	74
51V	0.055	0.183	0.657	0.970	0.561	1.2	1.6
52Cr	0.396	1.3	3.5	3.5	2.2	4.4	6.1
55Mn	0.013	0.043	26	53	30	49	54
57Fe	2.5	8.3	162	272	153	317	424
59Co	0.011	0.037	0.548	0.532	0.447	1.1	1.1
60Ni	0.044	0.147	9.2	14	6.8	14	22
63Cu	0.007	0.023	12	14	10	14	19
66Zn	0.489	1.6	267	170	183	450	334
75As	0.436	1.5	< 0.436	0.490	< 0.436	0.718	0.603
77Se	0.335	1.1	4.2	6.3	4.5	8.0	7.2
88Sr	0.001	0.003	2.4	3.7	2.8	5.0	5.7
95Mo	0.001	0.003	0.230	0.281	0.230	0.377	0.290
107Ag	0.001	0.003	0.021	0.014	0.007	0.028	0.028
111Cd	0.058	0.193	2.1	1.7	2.0	5.7	6.1
118Sn	0.027	0.090	0.220	0.230	0.153	0.406	0.601
121Sb	0.006	0.020	0.021	0.038	0.018	0.038	0.061
137Ba	0.001	0.003	11	17	9.0	21	24
202Hg	0.029	0.097	0.066	0.066	0.066	0.100	0.109
205Tl	0.001	0.003	0.015	0.022	0.014	0.053	0.058
208Pb	0.002	0.007	0.073	0.111	0.049	0.185	0.263
238U	0.001	0.003	0.034	0.080	0.030	0.101	0.103

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

Page 5 of 28

		Client ID	RG_LI24_INV- 1_2021-11-30	RG_LI24_INV- 2_2021-11-30	RG_LI24_INV- 3_2021-11-30	RG_LI24_INV- 4_2021-11-30	RG_LI24_INV- 5_2021-11-30
		Lab ID	098	099	100	101	102
	We	et Weight (g)	0.9765	0.8753	1.1588	0.9740	1.1191
		y Weight (g)	0.2135	0.1549	0.2291	0.1883	0.2226
		Moisture (%)	78.1	82.3	80.2	80.7	80.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.013	0.043	0.262	0.318	0.511	0.377	0.498
11B	0.101	0.337	0.650	0.739	1.1	0.946	0.709
23Na	1.5	5.0	4,060	2,962	5,116	3,458	3,647
24Mg	0.031	0.103	1,509	1,202	1,564	1,495	1,515
27Al	0.046	0.153	229	244	366	331	323
31P	41	137	13,007	9,668	14,381	12,295	12,110
39K	8.4	28	12,050	8,549	12,958	12,046	10,996
44Ca	27	90	3,050	2,858	3,313	3,397	3,273
49Ti	0.001	0.003	12	11	15	16	12
51V	0.055	0.183	1.8	1.2	1.9	1.6	1.2
52Cr	0.396	1.3	3.4	4.3	4.1	3.5	5.0
55Mn	0.013	0.043	13	15	16	19	19
57Fe	2.5	8.3	159	168	214	191	234
59Co	0.011	0.037	0.527	0.587	0.721	0.977	0.906
60Ni	0.044	0.147	8.7	8.1	9.1	7.4	10
63Cu	0.007	0.023	12	14	13	14	12
66Zn	0.489	1.6	401	344	466	402	367
75As	0.436	1.5	1.5	1.3	1.9	2.0	1.4
77Se	0.335	1.1	6.8	6.0	8.3	9.0	6.7
88Sr	0.001	0.003	8.0	7.1	8.3	8.6	8.4
95Mo	0.001	0.003	0.348	0.348	0.377	0.377	0.319
107Ag	0.001	0.003	0.042	0.070	0.077	0.070	0.063
111Cd	0.058	0.193	1.6	1.7	1.8	2.6	2.0
118Sn	0.027	0.090	0.880	1.2	1.1	1.2	1.1
121Sb	0.006	0.020	0.023	0.019	0.029	0.028	0.031
137Ba	0.001	0.003	15	15	17	19	19
202Hg	0.029	0.097	0.064	0.064	0.091	0.100	0.064
205Tl	0.001	0.003	0.099	0.075	0.089	0.098	0.093
208Pb	0.002	0.007	0.125	0.100	0.128	0.128	0.132
238U	0.001	0.003	0.082	0.069	0.093	0.096	0.094

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

Page 6 of 28

			RG LIDCOM INV-	RG LIDCOM INV-	RG LIDCOM INV-	RG LIDCOM INV-	RG_LIDCOM_INV-
Client ID			1_2021-12-02	2_2021-12-02	3_2021-12-02	4_2021-12-02	5_2021-12-02
Lab ID			103	104	105	106	107
	We	et Weight (g)	1.6818	1.7639	2.0175	2.7554	1.6759
	Di	ry Weight (g)	0.3427	0.4245	0.3738	0.5722	0.3705
		Moisture (%)	79.6	75.9	81.5	79.2	77.9
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.013	0.043	0.545	0.560	0.678	0.491	0.567
11B	0.101	0.337	0.857	1.6	0.958	0.988	0.869
23Na	1.5	5.0	3,559	2,664	4,304	2,483	3,021
24Mg	0.031	0.103	1,165	1,040	1,462	1,048	1,314
27Al	0.046	0.153	414	671	651	576	556
31P	41	137	9,667	7,956	12,469	7,751	9,068
39K	8.4	28	8,847	6,951	12,143	7,040	8,104
44Ca	27	90	1,629	2,008	2,613	1,918	1,887
49Ti	0.001	0.003	16	46	37	36	32
51V	0.055	0.183	0.680	1.1	0.883	0.871	0.970
52Cr	0.396	1.3	4.0	3.9	3.5	3.1	5.5
55Mn	0.013	0.043	77	106	102	72	58
57Fe	2.5	8.3	287	497	390	352	355
59Co	0.011	0.037	0.888	1.0	1.4	0.689	0.969
60Ni	0.044	0.147	15	19	19	13	14
63Cu	0.007	0.023	13	15	20	14	17
66Zn	0.489	1.6	167	153	295	174	226
75As	0.436	1.5	0.474	0.532	0.532	0.473	< 0.436
77Se	0.335	1.1	5.0	4.8	6.0	4.7	5.4
88Sr	0.001	0.003	3.4	3.5	4.4	3.8	4.1
95Mo	0.001	0.003	0.290	0.451	0.528	0.404	0.311
107Ag	0.001	0.003	0.021	0.015	0.030	0.038	0.030
111Cd	0.058	0.193	1.3	1.3	4.4	1.4	1.9
118Sn	0.027	0.090	0.466	0.491	0.745	0.262	0.464
121Sb	0.006	0.020	0.029	0.041	0.033	0.037	0.033
137Ba	0.001	0.003	14	20	23	23	18
202Hg	0.029	0.097	0.073	0.090	0.100	0.090	0.070
205Tl	0.001	0.003	0.035	0.028	0.049	0.028	0.027
208Pb	0.002	0.007	0.093	0.212	0.147	0.147	0.123
238U	0.001	0.003	0.038	0.089	0.083	0.066	0.058

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LIDSL_INV- 1_2021-11-29	RG_LIDSL_INV- 2_2021-11-29	RG_LIDSL_INV- 3_2021-11-29	RG_LIDSL_INV- 4_2021-11-29	RG_LIDSL_INV- 5_2021-11-29
Lab ID			108	109	110	111	112
	We	et Weight (g)	3.3397	1.2291	1.0253	0.7426	2.2817
		y Weight (g)	0.7826	0.2470	0.2588	0.1663	0.4661
		Moisture (%)	76.6	79.9	74.8	77.6	79.6
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.013	0.043	0.339	0.446	0.408	0.775	0.429
11B	0.101	0.337	1.0	0.764	0.809	1.4	0.764
23Na	1.5	5.0	2,308	2,461	2,363	2,555	2,681
24Mg	0.031	0.103	1,008	1,013	1,024	1,178	1,188
27Al	0.046	0.153	279	270	207	429	148
31P	41	137	8,670	7,969	8,627	9,125	9,654
39K	8.4	28	7,475	7,879	8,460	8,628	8,256
44Ca	27	90	1,414	1,938	1,776	2,811	1,654
49Ti	0.001	0.003	20	16	12	46	7.7
51V	0.055	0.183	0.602	0.660	0.497	1.5	0.354
52Cr	0.396	1.3	2.5	3.4	2.8	11	2.2
55Mn	0.013	0.043	182	198	109	213	162
57Fe	2.5	8.3	411	502	364	1,155	266
59Co	0.011	0.037	1.7	2.3	2.0	3.1	2.1
60Ni	0.044	0.147	19	20	14	33	17
63Cu	0.007	0.023	17	19	17	20	13
66Zn	0.489	1.6	166	219	227	279	171
75As	0.436	1.5	0.709	0.532	0.591	0.828	0.828
77Se	0.335	1.1	5.0	6.4	5.4	4.9	6.3
88Sr	0.001	0.003	2.8	3.3	3.0	4.6	3.0
95Mo	0.001	0.003	0.342	0.342	0.373	0.435	0.373
107Ag	0.001	0.003	0.023	0.038	0.023	0.030	0.023
111Cd	0.058	0.193	1.7	3.7	3.7	4.8	3.1
118Sn	0.027	0.090	0.311	0.584	0.378	0.926	0.388
121Sb	0.006	0.020	0.049	0.036	0.033	0.050	0.038
137Ba	0.001	0.003	19	19	13	27	15
202Hg	0.029	0.097	0.060	0.100	0.090	0.070	0.080
205TI	0.001	0.003	0.018	0.024	0.029	0.051	0.026
208Pb	0.002	0.007	0.118	0.090	0.096	0.273	0.068
238U	0.001	0.003	0.047	0.066	0.077	0.107	0.074

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LILC3_INV- 1_2021-12-01	RG_LILC3_INV- 2_2021-12-01	RG_LILC3_INV- 3_2021-12-01	RG_LILC3_INV- 4_2021-12-01	RG_LILC3_INV- 5_2021-12-01
Lab ID			113	114	115	116	117
	We	et Weight (g)	1.9442	1.4002	1.9321	2.1718	1.6900
		y Weight (g)	0.3839	0.2401	0.3858	0.3772	0.3418
	Moisture (%)			82.9	80.0	82.6	79.8
Parameter	DL (ppm)	LOQ (ppm)	80.3 (ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.013	0.043	1.1	0.553	0.546	0.815	0.785
11B	0.101	0.337	2.6	0.748	1.0	0.803	1.8
23Na	1.5	5.0	4,230	2,649	2,950	4,385	3,034
24Mg	0.031	0.103	1,653	976	1,099	1,882	1,440
27Al	0.046	0.153	905	178	293	290	805
31P	41	137	12,502	8,176	8,753	12,349	10,031
39K	8.4	28	11,018	7,598	8,254	12,198	9,187
44Ca	27	90	5,370	2,411	2,527	2,635	3,632
49Ti	0.001	0.003	63	7.7	13	15	60
51V	0.055	0.183	2.8	0.538	0.908	0.678	2.5
52Cr	0.396	1.3	6.9	1.9	3.1	2.6	9.9
55Mn	0.013	0.043	534	133	256	238	376
57Fe	2.5	8.3	2,651	548	1,100	897	1,754
59Co	0.011	0.037	6.1	1.9	3.6	2.8	6.3
60Ni	0.044	0.147	44	13	21	17	40
63Cu	0.007	0.023	25	13	19	23	23
66Zn	0.489	1.6	219	133	161	215	223
75As	0.436	1.5	1.4	0.565	0.788	0.840	1.3
77Se	0.335	1.1	9.5	4.0	6.8	8.2	8.0
88Sr	0.001	0.003	9.4	3.1	4.0	3.9	6.5
95Mo	0.001	0.003	0.743	0.283	0.566	0.654	1.1
107Ag	0.001	0.003	0.034	0.017	0.021	0.034	0.025
111Cd	0.058	0.193	3.3	1.5	2.3	1.8	3.1
118Sn	0.027	0.090	1.1	0.328	0.527	0.708	1.0
121Sb	0.006	0.020	0.276	0.132	0.125	0.160	0.290
137Ba	0.001	0.003	64	15	25	22	38
202Hg	0.029	0.097	0.118	0.075	0.064	0.107	0.107
205TI	0.001	0.003	0.082	0.032	0.039	0.049	0.102
208Pb	0.002	0.007	0.369	0.065	0.119	0.129	0.308
238U	0.001	0.003	0.178	0.068	0.101	0.083	0.152

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-
Client ID			1_2021-11-30	2_2021-11-30	3_2021-11-30	4_2021-11-30	5_2021-11-30
Lab ID			118	119	120	121	122
	We	et Weight (g)	2.2012	1.7079	1.4358	1.0488	1.7355
	Di	y Weight (g)	0.5596	0.3918	0.2999	0.2402	0.3582
		Moisture (%)	74.6	77.1	79.1	77.1	79.4
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.013	0.043	0.411	0.673	0.456	0.639	0.570
11B	0.101	0.337	0.876	1.4	0.895	1.4	1.1
23Na	1.5	5.0	2,484	3,573	2,684	3,982	2,941
24Mg	0.031	0.103	1,086	1,294	1,242	1,698	1,300
27Al	0.046	0.153	280	389	149	440	400
31P	41	137	10,965	10,928	9,034	13,838	9,599
39K	8.4	28	7,717	10,214	8,085	12,768	8,550
44Ca	27	90	2,075	2,543	3,394	3,511	2,638
49Ti	0.001	0.003	22	20	8.8	27	27
51V	0.055	0.183	0.566	0.603	0.507	1.1	0.859
52Cr	0.396	1.3	3.4	4.5	2.4	4.7	4.9
55Mn	0.013	0.043	270	410	162	345	166
57Fe	2.5	8.3	449	393	382	916	664
59Co	0.011	0.037	3.0	3.2	3.3	5.1	2.4
60Ni	0.044	0.147	27	27	16	28	21
63Cu	0.007	0.023	14	25	24	25	23
66Zn	0.489	1.6	181	232	379	397	254
75As	0.436	1.5	0.651	0.720	0.788	0.773	0.691
77Se	0.335	1.1	5.0	6.3	4.6	7.2	5.6
88Sr	0.001	0.003	3.3	5.5	5.6	6.4	4.4
95Mo	0.001	0.003	0.389	0.424	0.495	0.502	0.569
107Ag	0.001	0.003	0.017	0.042	0.025	0.030	0.030
111Cd	0.058	0.193	1.8	3.3	7.8	13	4.4
118Sn	0.027	0.090	0.329	0.476	0.777	0.877	0.792
121Sb	0.006	0.020	0.098	0.125	0.052	0.055	0.049
137Ba	0.001	0.003	26	37	13	38	20
202Hg	0.029	0.097	0.075	0.091	0.064	0.100	0.078
205Tl	0.001	0.003	0.026	0.046	0.041	0.077	0.040
208Pb	0.002	0.007	0.100	0.200	0.056	0.156	0.128
238U	0.001	0.003	0.047	0.104	0.069	0.111	0.086

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_SLINE_INV- 1_2021-11-29	RG_SLINE_INV- 2_2021-11-29	RG_SLINE_INV- 3_2021-11-29	RG_SLINE_INV- 4_2021-11-29	RG_SLINE_INV- 5_2021-11-29
Lab ID			123	124	125	126	127
	We	et Weight (g)	1.3886	1.0100	1.1667	0.6980	1.2796
		y Weight (g)	0.3342	0.1859	0.2325	0.1426	0.2134
		Moisture (%)	75.9	81.6	80.1	79.6	83.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.013	0.043	0.660	0.339	0.424	0.381	0.339
11B	0.101	0.337	1.8	0.780	1.0	1.2	0.780
23Na	1.5	5.0	2,584	3,416	2,965	4,277	3,140
24Mg	0.031	0.103	1,384	1,600	1,193	1,794	1,423
27Al	0.046	0.153	565	265	441	386	366
31P	41	137	10,800	11,592	9,020	13,155	10,562
39K	8.4	28	9,287	11,636	8,493	13,425	8,994
44Ca	27	90	2,616	2,931	2,528	3,852	2,571
49Ti	0.001	0.003	43	14	34	21	19
51V	0.055	0.183	1.1	0.950	0.983	1.6	0.940
52Cr	0.396	1.3	5.0	2.2	3.3	3.9	3.3
55Mn	0.013	0.043	24	13	16	21	18
57Fe	2.5	8.3	329	157	242	234	197
59Co	0.011	0.037	0.420	0.345	0.379	0.679	0.442
60Ni	0.044	0.147	8.5	8.6	6.9	9.3	6.0
63Cu	0.007	0.023	14	19	11	18	19
66Zn	0.489	1.6	306	457	308	684	481
75As	0.436	1.5	1.1	1.2	1.1	1.5	0.921
77Se	0.335	1.1	7.1	8.0	5.6	11	7.5
88Sr	0.001	0.003	5.2	5.7	5.8	8.9	6.1
95Mo	0.001	0.003	0.602	0.301	0.234	0.468	0.368
107Ag	0.001	0.003	0.076	0.083	0.045	0.113	0.121
111Cd	0.058	0.193	2.4	3.5	2.3	6.3	3.3
118Sn	0.027	0.090	0.338	0.620	0.479	1.3	1.1
121Sb	0.006	0.020	0.037	0.016	0.019	0.019	0.017
137Ba	0.001	0.003	36	15	16	25	20
202Hg	0.029	0.097	0.100	0.128	0.100	0.145	0.139
205TI	0.001	0.003	0.095	0.095	0.067	0.113	0.070
208Pb	0.002	0.007	0.110	0.119	0.119	0.111	0.082
238U	0.001	0.003	0.114	0.131	0.091	0.200	0.113

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Minnow Environmental Tissue QA/QC Relative Percent Difference Results

(Client ID	RG_LI8	_INV-4_202 [^]	1-12-02	RG_LI24	1_INV-3_202	21-11-30	RG_LILC	:3_INV-1_20	21-12-01
	Lab ID		096			100			113	
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.013	0.580	0.636	9.2	0.511	0.371	32	1.1	0.957	14
11B	0.101	1.3	1.7	27	1.1	1.0	-	2.6	2.2	17
23Na	1.5	3,142	3,149	0.2	5,116	4,455	14	4,230	4,301	1.7
24Mg	0.031	1,648	1,747	5.8	1,564	1,680	7.2	1,653	1,609	2.7
27Al	0.046	718	722	0.6	366	250	38	905	818	10
31P	41	10,552	10,565	0.1	14,381	13,085	9.4	12,502	12,837	2.6
39K	8.4	8,897	10,074	12	12,958	12,217	5.9	11,018	12,685	14
44Ca	27	2,305	2,944	24	3,313	3,402	2.7	5,370	4,254	23
49Ti	0.001	49	41	18	15	13	14	63	66	4.7
51V	0.055	1.2	1.1	8.7	1.9	1.7	11	2.8	2.4	15
52Cr	0.396	4.4	5.3	19	4.1	3.6	-	6.9	6.7	2.9
55Mn	0.013	49	53	7.8	16	17	6.1	534	499	6.8
57Fe	2.5	317	309	2.6	214	167	25	2,651	2,312	14
59Co	0.011	1.1	0.918	18	0.721	0.727	0.8	6.1	5.5	10
60Ni	0.044	14	14	0.0	9.1	8.3	9.2	44	37	17
63Cu	0.007	14	19	30	13	12	8.0	25	25	0.0
66Zn	0.489	450	434	3.6	466	380	20	219	226	3.1
75As	0.436	0.718	0.574	-	1.9	1.9	-	1.4	1.1	-
77Se	0.335	8.0	7.1	12	8.3	8.4	1.2	9.5	9.5	0.0
88Sr	0.001	5.0	5.8	15	8.3	7.8	6.2	9.4	7.9	17
95Mo	0.001	0.377	0.334	12	0.377	0.348	8.0	0.743	0.778	4.6
107Ag	0.001	0.028	0.028	0.0	0.077	0.070	9.5	0.034	0.025	31
111Cd	0.058	5.7	5.6	1.8	1.8	1.7	5.7	3.3	2.9	13
118Sn	0.027	0.406	0.499	21	1.1	1.0	9.5	1.1	1.0	9.5
121Sb	0.006	0.038	0.046	-	0.029	0.023	-	0.276	0.234	17
137Ba	0.001	21	20	4.9	17	16	6.1	64	56	13
202Hg	0.029	0.100	0.109	-	0.091	0.100	-	0.118	0.107	-
205TI	0.001	0.053	0.062	16	0.089	0.089	0.0	0.082	0.075	8.9
208Pb	0.002	0.185	0.161	14	0.128	0.116	9.8	0.369	0.339	8.5
238U	0.001	0.101	0.073	32	0.093	0.089	4.4	0.178	0.181	1.7

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Project No: 2021-282

Minnow Environmental Tissue QA/QC Relative Percent Difference Results

Client ID RG_LILC3_INV-5_2021-12-01 RG_SLINE_INV-4_2021-11-29 117 126 Lab ID Sample Sample DL Sample **RPD** Sample **RPD** Duplicate Duplicate Parameter (ppm) (ppm) (%) (ppm) (%) (ppm) (ppm) 7Li 0.013 0.785 0.905 14 0.381 24 0.300 11B 0.101 1.8 1.9 5.4 1.2 0.958 23Na 1.5 3,034 3,622 18 4,277 3,585 18 0.031 1,440 1,557 7.8 1,794 7.2 24Mg 1,669 27AI 0.046 805 877 8.6 386 342 12 31P 41 10,031 11,107 10 13,155 12,492 5.2 39K 8.4 9,187 10,809 16 13,425 10,191 27 44Ca 27 3,632 3,711 2.2 3,852 2,882 29 49Ti 0.001 60 81 30 21 17 21 0.055 2.5 6.5 51V 2.4 4.1 1.6 1.5 52Cr 0.396 9.9 11 11 3.9 3.4 55Mn 0.013 376 434 14 21 18 15 57Fe 2.5 1,754 2,066 16 234 219 6.6 6.3 5.9 0.679 0.630 7.5 59Co 0.011 6.6 60Ni 0.044 40 53 28 9.3 7.3 24 63Cu 0.007 23 27 16 18 15 18 223 227 684 670 66Zn 0.489 1.8 2.1 1.3 1.2 1.5 75As 0.436 1.3 77Se 0.335 6.5 9.5 8.0 21 11 10 88Sr 0.001 6.5 6.8 4.5 8.9 6.6 30 7.3 95Mo 0.001 1.1 0.884 22 0.468 0.435 107Ag 0.001 0.025 0.034 31 0.113 0.098 14 111Cd 0.058 3.1 4.1 28 5.8 8.3 6.3 118Sn 0.027 1.0 1.2 18 1.3 1.1 17 121Sb 0.006 0.290 0.220 28 0.019 0.023 137Ba 0.001 38 49 25 25 18 33 202Hg 0.029 0.107 0.102 0.145 0.111 205TI 0.001 0.102 0.085 18 0.113 0.105 7.3 208Pb 0.002 0.308 0.331 7.2 0.111 0.111 0.0

Notes:

238U

ppm = parts per million

RPD = relative percent difference

0.001

0.152

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

0.145

4.7

0.200

0.184

8.3

Project No: 2021-282

Minnow Environmental Tissue QA/QC Accuracy and Precision Results

	Sa	ample Group ID		01			02	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.013	1.21	1.3	112	11	1.3	107	7.2
11B	0.101	4.5	5.0	111	3.8	4.9	108	3.2
23Na	1.5	14,000	16,084	115	7.6	14,655	105	4.8
24Mg	0.031	910	1,074	118	9.8	946	104	5.7
27Al	0.046	197.2	203	103	4.6	201	102	5.4
31P	41	8,000	8,781	110	6.6	7,847	98	6.8
39K	8.4	15,500	18,466	119	7.7	15,073	97	8.1
44Ca	27	2,360	2,699	114	7.9	2,494	106	8.6
49Ti	0.001	12.24	14	117	13	13	109	2.5
51V	0.055	1.57	2.0	125	9.4	1.5	95	15
52Cr	0.396	1.87	2.1	114	6.1	2.0	107	4.8
55Mn	0.013	3.17	3.8	121	8.5	3.2	101	7.8
57Fe	2.5	343	406	118	7.0	354	103	5.1
59Co	0.011	0.25	0.306	122	8.3	0.259	104	3.3
60Ni	0.044	1.34	1.6	121	5.2	1.4	105	7.6
63Cu	0.007	15.7	18	116	6.9	17	107	4.9
66Zn	0.489	51.6	58	113	3.2	54	104	3.6
75As	0.436	6.87	7.5	110	7.5	7.0	101	3.8
77Se	0.335	3.45	3.4	100	14	3.4	99	3.3
88Sr	0.001	10.1	11	109	6.2	11	110	9.5
95Mo	0.001	0.29	0.348	120	6.3	0.281	97	6.4
107Ag	0.001	0.0252	0.033	132	7.7	0.030	120	12
111Cd	0.058	0.299	0.347	116	8.2	0.324	108	12
118Sn	0.027	0.061	0.078	127	16	0.073	120	7.2
121Sb	0.006	0.011	0.013	127	19	0.012	106	9.1
137Ba	0.001	8.6	9.0	105	1.6	9.2	107	0.8
202Hg	0.029	0.412	0.418	101	7.2	0.417	101	3.3
205TI	0.001	0.0013	-	-	-	-	-	-
208Pb	0.002	0.404	0.519	128	4.3	0.393	97	12
238U	0.001	0.05	0.057	115	7.1	0.049	97	12

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Minnow Environmental Tissue QA/QC Accuracy and Precision Results

	S	ample Group ID		03			04	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.013	1.21	1.2	99	8.3	1.3	111	9.8
11B	0.101	4.5	4.7	104	2.3	4.6	101	4.6
23Na	1.5	14,000	14,157	101	2.9	15,382	110	7.2
24Mg	0.031	910	898	99	4.7	1,013	111	4.5
27Al	0.046	197.2	198	100	7.6	205	104	6.9
31P	41	8,000	7,747	97	2.0	8,268	103	4.9
39K	8.4	15,500	15,632	101	7.8	17,136	111	8.8
44Ca	27	2,360	2,365	100	3.9	2,620	111	5.7
49Ti	0.001	12.24	12	97	9.5	14	115	9.1
51V	0.055	1.57	1.7	110	3.9	1.5	98	14
52Cr	0.396	1.87	2.0	105	2.8	2.0	109	9.8
55Mn	0.013	3.17	3.4	108	7.1	3.5	110	4.9
57Fe	2.5	343	375	109	5.9	374	109	8.0
59Co	0.011	0.25	0.268	107	10	0.275	110	5.6
60Ni	0.044	1.34	1.5	113	4.2	1.5	112	7.3
63Cu	0.007	15.7	17	105	8.6	18	113	4.7
66Zn	0.489	51.6	53	102	5.9	56	108	5.4
75As	0.436	6.87	6.9	101	4.8	7.3	107	6.0
77Se	0.335	3.45	3.3	94	8.2	3.5	101	4.0
88Sr	0.001	10.1	11	107	8.4	11	109	6.2
95Mo	0.001	0.29	0.313	108	12	0.311	107	16
107Ag	0.001	0.0252	0.027	108	5.7	0.027	108	15
111Cd	0.058	0.299	0.320	107	9.1	0.309	103	10
118Sn	0.027	0.061	0.070	115	11	0.046	75	14
121Sb	0.006	0.011	0.011	101	8.3	0.010	93	20
137Ba	0.001	8.6	8.3	97	2.4	9.1	105	2.3
202Hg	0.029	0.412	0.451	110	8.4	0.458	111	5.3
205Tl	0.001	0.0013	-	-	-	-	-	-
208Pb	0.002	0.404	0.445	110	2.6	0.483	120	19
238U	0.001	0.05	0.052	104	3.7	0.054	108	14

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Minnow Environmental Tissue QA/QC Accuracy and Precision Results

	Sa	ample Group ID		05		06			
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	
7Li	0.013	1.21	1.3	109	6.4	1.2	103	6.1	
11B	0.101	4.5	5.0	112	4.6	4.4	97	2.8	
23Na	1.5	14,000	15,731	112	7.9	13,818	99	3.7	
24Mg	0.031	910	1,024	112	5.8	900	99	2.8	
27Al	0.046	197.2	209	106	7.6	185	94	5.2	
31P	41	8,000	8,695	109	4.3	7,613	95	2.9	
39K	8.4	15,500	16,740	108	6.0	15,353	99	3.4	
44Ca	27	2,360	2,703	114	4.5	2,286	97	4.5	
49Ti	0.001	12.24	13	109	8.6	11	94	4.9	
51V	0.055	1.57	1.8	115	5.4	1.5	96	6.3	
52Cr	0.396	1.87	2.1	115	7.3	1.8	98	1.6	
55Mn	0.013	3.17	3.6	114	6.3	3.1	99	4.9	
57Fe	2.5	343	407	119	8.0	341	99	4.6	
59Co	0.011	0.25	0.314	126	8.6	0.244	98	7.6	
60Ni	0.044	1.34	1.5	110	7.2	1.3	99	4.4	
63Cu	0.007	15.7	17	110	9.2	16	103	4.6	
66Zn	0.489	51.6	59	114	6.7	51	99	3.5	
75As	0.436	6.87	7.5	109	6.4	6.7	97	1.9	
77Se	0.335	3.45	3.7	108	8.2	3.4	99	5.2	
88Sr	0.001	10.1	12	118	5.5	10	99	2.7	
95Mo	0.001	0.29	0.329	113	7.2	0.274	95	5.5	
107Ag	0.001	0.0252	0.030	120	15	0.023	90	0.0	
111Cd	0.058	0.299	0.355	119	8.1	0.339	114	10	
118Sn	0.027	0.061	0.061	100	15	0.052	85	7.9	
121Sb	0.006	0.011	0.013	118	20	0.007	62	20	
137Ba	0.001	8.6	9.4	109	6.1	8.4	98	3.5	
202Hg	0.029	0.412	0.475	115	5.3	0.429	104	2.9	
205TI	0.001	0.0013	-	-	-	-	-	-	
208Pb	0.002	0.404	0.458	113	13	0.408	101	12	
238U	0.001	0.05	0.059	117	4.8	0.051	102	9.0	

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Minnow Environmental Sample Group Information

Sample Group ID	Client ID	Lab ID	Date of Analysis
01	RG_FO23_INV-1_2021-12-01	078	14 Dec 2021
	RG_FO23_INV-2_2021-12-01	079	
	RG_FO23_INV-3_2021-12-01	080	
	RG_FO23_INV-4_2021-12-01	081	
	RG_FO23_INV-5_2021-12-01	082	
	RG_FRUL_INV-1_2021-11-29	083	
	RG_FRUL_INV-2_2021-11-29	084	
	RG_FRUL_INV-3_2021-11-29	085	
	RG_FRUL_INV-4_2021-11-29	086	
02	RG_FRUL_INV-5_2021-11-29	087	14 Dec 2021
	RG_LCUT_INV-1_2021-12-01	088	
	RG_LCUT_INV-2_2021-12-01	089	
	RG_LCUT_INV-3_2021-12-01	090	
	RG_LCUT_INV-4_2021-12-01	091	
	RG_LCUT_INV-5_2021-12-01	092	
	RG_LI8_INV-1_2021-12-02	093	
	RG_LI8_INV-2_2021-12-02	094	
	RG_LI8_INV-3_2021-12-02	095	
03	RG_LI8_INV-4_2021-12-02	096	14 Dec 2021
	RG_LI8_INV-5_2021-12-02	097	
	RG_LI24_INV-1_2021-11-30	098	
	RG_LI24_INV-2_2021-11-30	099	
	RG_LI24_INV-3_2021-11-30	100	
	RG_LI24_INV-4_2021-11-30	101	
	RG_LI24_INV-5_2021-11-30	102	
	RG_LIDCOM_INV-1_2021-12-02	103	
04	RG_LIDCOM_INV-2_2021-12-02	104	14 Dec 2021
	RG_LIDCOM_INV-3_2021-12-02	105	
	RG_LIDCOM_INV-4_2021-12-02	106	
	RG_LIDCOM_INV-5_2021-12-02	107	
	RG_LIDSL_INV-1_2021-11-29	108	
	RG_LIDSL_INV-2_2021-11-29	109	
	RG_LIDSL_INV-3_2021-11-29	110	
	RG_LIDSL_INV-4_2021-11-29	111	
	RG_LIDSL_INV-5_2021-11-29	112	
05	RG_LILC3_INV-1_2021-12-01	113	14 Dec 2021
	RG_LILC3_INV-2_2021-12-01	114	
	RG_LILC3_INV-3_2021-12-01	115	
	RG_LILC3_INV-4_2021-12-01	116	
	RG_LILC3_INV-5_2021-12-01	117	

Minnow Environmental Sample Group Information

Sample			Date of
Sample Group ID	Client ID	Lab ID	Analysis
05	RG_LISP24_INV-1_2021-11-30	118	14 Dec 2021
	RG_LISP24_INV-2_2021-11-30	119	IT DCC ZOZI
	RG_LISP24_INV-3_2021-11-30	120	
06	RG_LISP24_INV-4_2021-11-30	121	14 Dec 2021
	RG_LISP24_INV-5_2021-11-30	122	
	RG_SLINE_INV-1_2021-11-29	123	
	RG_SLINE_INV-2_2021-11-29	124	
	RG_SLINE_INV-3_2021-11-29	125	
	RG_SLINE_INV-4_2021-11-29	126	
	RG_SLINE_INV-5_2021-11-29	127	

204-1006 Fort Street Victoria, British Columbia V8V 3K4

Telephone:(250) 595-1627 Facsmile:(250) 595-1625

							Minnow Contact:	Page Tyler Mehler	1 of		
Cont	o ot:	T.das Mala					Contact Email:		innow co		
Phon		Tyler Mehler					Minnow Project #:	217202.003	tyler.mehler@minnow.ca		
		587-597-1612	Fax:					217202.000	00		
Порс	ort mai	ling list: tyler.mehler@minnow.ca; C	ybele.Heddle	@teck.com; Kbatche	lar@minno	w.ca, Jessica.Ritz	@teck.com	,.			
Sai	mple		Date			Analys	is Required				
	mber	Minnow Sample ID	Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of	Comments		
		RG_FO23_INV-1_2021-12-01 *	01-Dec-21	Invertebrate tissue	X	x		Containers			
	2	RG_FO23_INV-2_2021-12-01 >		Invertebrate tissue	X	x		1			
	3	RG_FO23_INV-3_2021-12-01_		Invertebrate tissue	X	x		1			
	4	RG_FO23_INV-4_2021-12-01 <		Invertebrate tissue	x	×		1			
	5	RG_FO23_INV-5_2021-12-01 -		Invertebrate tissue	×			1			
(6			or toprate tissue	^	X		1			
7	7										
8	8										
9	9										
1	0										
1	1										
1:	2										
1:	3	_									
14	4										
15	5										
		linquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Shipment Method	: Pacific Coastal cargo in ic		
Sampl		ceived in Lab By: (Lab Employee Signature)	20	- (Proj # 2021 .	202	Date:	Time:	Sample Condition	upon Receipt:		

204-1006 Fort Street Victoria, British Columbia V8V 3K4

Telephone:(250) 595-1627 Facsmile:(250) 595-1625

Frozen in cooler

Laboratory	: Trich Analytics						Page	2 of 10			
						Minnow Contact:	Tyler Mehler				
Contact:	Tides Mahla				_ 100	Contact Email:	tyler.mehler@m	innow.ca			
Phone:	Tyler Mehler	_			_	Minnow Project #:	217202.003	217202.0036			
	587-597-1612	_Fax:				Date Results Required E	By:				
report ma	iling list: tyler.mehler@minnow.ca; Cy	bele.Heddle@	teck.com; Kbatchel	ar@minno							
					Ana	lysis Required					
Sample	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of Containers	Comments			
1	RG_FRUL_INV-1_2021-11-29 🜙	29-Nov-21	Invertebrate tissue	x	x		1				
2	RG_FRUL_INV-2_2021-11-29		Invertebrate tissue		x		1				
3	RG_FRUL_INV-3_2021-11-29		Invertebrate tissue		x		1				
4	RG_FRUL_INV-4_2021-11-29 🗸		Invertebrate tissue		x		1				
5	RG_FRUL_INV-5_2021-11-29 _/		Invertebrate tissue		×		1				
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
	elinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Shipment Method	: Pacific Coastal cargo in iced c			
amples Re	eceived in Lab By: (Lab Employee Signature)	2 (Proj. # 2021 - 2	282)	Date:	Time: 07: 25	Sample Condition	- Andrews Control of the Control of			

204-1006 Fort Street Victoria, British Columbia V8V 3K4

Telephone:(250) 595-1627 Facsmile:(250) 595-1625

					- 118	Min	now Contact:	Page Tyler Mehler	3 of 10				
Contact:	Tyler Mehler						ntact Email:	tyler.mehler@	minnow.ca				
Phone:	587-597-1612	_				Min	now Project #:		217202.0036				
	iling list: tyler.mehler@minnow.ca; C	Fax:	Stock seem I/h - t - l			Dat	e Results Required	By:					
	g and specimenci eminow.ca, c	ybele.nedule	ewieck.com; Kbatche	elar@minn									
Sample Number	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including	ysis Require	d	Number of Containers	Comments				
1	RG_LCUT_INV-1_2021-12-01 /	01-Dec-21	Invertebrate tissue	x	x								
2	RG_LCUT_INV-2_2021-12-01		Invertebrate tissue	x	x			1					
3	RG_LCUT_INV-3_2021-12-01 -		Invertebrate tissue	x	x			1					
4	RG_LCUT_INV-4_2021-12-01 🗸		Invertebrate tissue	x	x			1					
5	RG_LCUT_INV-5_2021-12-01 🗸	01-Dec-21	Invertebrate tissue	x	x			1	× * * * * * * * * * * * * * * * * * * *				
6													
7													
8					- 0								
9													
10					file								
11					10.88								
12													
14													
15													
	elinquished to Lab By:				Dete								
**	(Minnow Employee Signature)				Date:	Time	: :	Shipment Metho	od: Pacific Coastal cargo in iced				
	eceived in Lab By: (Lab Employee Signature)	- (Proj. # 2021-	282)	Date:	Time	07:30	Sample Condition	on upon Receipt:				

204-1006 Fort Street Victoria, British Columbia V8V 3K4

Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

	Laboratory	: Trich Analytics								Page	4 of 10		
								Minnow (Contact:	Tyler Mehler			
								Contact E	Email:	tyler.mehler@i	minnow.ca		
	Contact:	Tyler Mehler				_		Minnow F	Project #:	217202.0	036		
	Phone:	587-597-1612	Fax:			_		Date Res	ults Required By	:			
	Report mai	ling list: tyler.mehler@minnow.ca;	Cybele.Hedd	dle@teck.com; Kbato	chelar@mi								
						Aı	nalysis R	equired					
ICH ID	Sample Number	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg			30 37	Number of Containers	Comments		
093	1	RG_LI8_INV-1_2021-12-02 🗸	02-Dec-21	Invertebrate tissue	x	х				1			
094	2	RG_LI8_INV-2_2021-12-02 🗸	02-Dec-21	Invertebrate tissue	×	x				1			
095	3	RG_LI8_INV-3_2021-12-02 🗸	02-Dec-21	Invertebrate tissue	x	x				1			
096	4	RG_LI8_INV-4_2021-12-02 *	02-Dec-21	Invertebrate tissue	х	x				1			
097	5	RG_LI8_INV-5_2021-12-02 V	02-Dec-21	Invertebrate tissue	x	x				1			
	6									· ·			
	7					136							
	8					183							
	9												
	10										*		
	11					764							
	12												
	13	7											
	14												
	15												
	(elinquished to Lab By: Minnow Employee Signature)				Date:		Time:		Shipment Metho	od: Pacific Coastal cargo in iced co		
	Samples Re	eceived in Lab By: (Lab Employee Signature)	2	(Proj. # 2021 -	282)	Date:	2021	Time:	₹ : 35	Sample Condition	on upon Receipt:		

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

* Lid label reads "Dec 2/21", side label reads "2021 12 01"

204-1006 Fort Street Victoria, British Columbia V8V 3K4

Telephone:(250) 595-1627 Facsmile:(250) 595-1625

	Laboratory	: Irich Analytics				- 1		Page	5 of 10
						- 28	Minnow Contact:	Tyler Mehler	
	Contact:	Tyler Mehler				-	Contact Email:	tyler.mehler@m	
	Phone:	587-597-1612	Fax:			- 176	Minnow Project #:	217202.003	36
	Report ma	iling list: tyler.mehler@minnow.ca; (Cybele.Heddl	e@teck.com: Khatch	nelar@min	now ca lessica	Date Results Required	Ву:	
					Total Commit		alysis Required		
H ID	Sample Number	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including	anyono recommend	Number of Containers	Comments
18	1	RG_LI24_INV-1_2021-11-30 🗸	30-Nov-21	Invertebrate tissue	x	X			
19	2	RG_LI24_INV-2_2021-11-30 >		Invertebrate tissue		x		1	
00	3	RG_LI24_INV-3_2021-11-30 🗸		Invertebrate tissue		x		1	
1	4	RG_LI24_INV-4_2021-11-30 🗸		Invertebrate tissue	X	x		1	
2.	5	RG_LI24_INV-5_2021-11-30 🗸		Invertebrate tissue	х	x		1	
	6							1	
	7					100			
	8					1 34			
	9								
	10					1973			
	11								*
	12								
	13								
	14 15								
		F							
		elinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Shipment Method	: Pacific Coastal cargo in iced c
	Samples Re	eceived in Lab By: (Lab Employee Signature)	2	(Project # 2	2021-282)	Date:	Time: 07:40	Sample Condition	upon Receipt:

204-1006 Fort Street Victoria, British Columbia V8V 3K4

Telephone:(250) 595-1627 Facsmile:(250) 595-1625

						- 13	Minney	Page	6 of 1		
						- 200	Minnow Contact:	Tyler Mehler			
Conta	ict:	Tyler Mehler				- 78	Contact Email:	tyler.mehler@minnow.ca			
Phone		587-597-1612	Fax:			- 178	Minnow Project #:				
Repor	rt maili	ng list: tyler.mehler@minnow.ca; Cybe	ele.Heddle@t	eck.com; Kbatchelar	r@minnow	ca Jessica Ritz@	Date Results Required By:				
							sis Required	7			
Sam		Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of	Comments		
1	1 1	RG_LIDCOM_INV-1_2021-12-02 🗸	02-Dec-21	Invertebrate tissue	х	x		4			
2	2	RG_LIDCOM_INV-2_2021-12-02 🗸		Invertebrate tissue	x	x		1			
3	3	RG_LIDCOM_INV-3_2021-12-02 -	02-Dec-21	Invertebrate tissue	x	x		1			
4	l l	RG_LIDCOM_INV-4_2021-12-02 🗸		Invertebrate tissue	x	x		1			
5	5 F	RG_LIDCOM_INV-5_2021-12-02 🗸		Invertebrate tissue	x	x		1			
6	3										
7											
8	3					10					
9)										
10	0										
11	1										
12	2										
13	3										
14	1					0.00					
15	5										
		inquished to Lab By: (Minnow Employee Signature)			-	Date:	Time:	Shipment Metho	od: Pacific Coastal cargo in ice		
Sample	es Rec	ceived in Lab By: (Lab Employee Signature)	2	(Proj # 2021-	282	Date:	Time: 07:45	Sample Condition	on upon Receipt:		

204-1006 Fort Street Victoria, British Columbia V8V 3K4

Telephone:(250) 595-1627 Facsmile:(250) 595-1625

					-	Minnow Contact:	Tyler Mehler		
Contact:	Tyler Mehler		Contact Email:		tyler.mehler@minnow.ca				
Phone:	587-597-1612	Fax:			-	Minnow Project #:	217202.003	36	
Report m	ailing list: tyler.mehler@minnow.ca; C	ybele.Heddle	e@teck.com; Kbatche	elar@minno	ow.ca, Jessica.Ritz	Date Results Required	Ву:		
						sis Required			
Sample	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of Containers	Comments	
1	RG_LIDSL_INV-1_2021-11-29 9/	29-Nov-21	Invertebrate tissue	х	x		Containers		
2	RG_LIDSL_INV-2_2021-11-29 🗸		Invertebrate tissue	x	x		1		
3	RG_LIDSL_INV-3_2021-11-29 🗸		Invertebrate tissue	x	x		1		
4	RG_LIDSL_INV-4_2021-11-29 🗸	29-Nov-21	Invertebrate tissue	x	x		1		
5	RG_LIDSL_INV-5_2021-11-29 🗸		Invertebrate tissue	x	x		1		
6							1		
7									
8	H								
9									
10					539				
11					N/A				
12									
13				1	-88				
14									
15									
	mples Relinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Shipment Method: Pacific Coastal cargo in ice		
Samples F	Ceived in Lab By: (Lab Employee Signature) (Proj. # 2021-282)			282)	Date:	Time: 07:50	Sample Condition upon Receipt:		

204-1006 Fort Street Victoria, British Columbia V8V 3K4

Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

							Tyler Mehler		
Contact	Tyles Making				Contact Email:	tyler.mehler@m	tyler.mehler@minnow.ca		
Contact: Phone:	Tyler Mehler 587-597-1612			_	Minnow Project #:	217202.003	217202.0036		
	iling list: tyler.mehler@minnow.ca; Cy	Stock com. I/h -t-l			Date Results Requir	red By:			
. report ma	g iot. tyler.mener@miniow.ca, o	@teck.com; Kbatche	elar@minno						
Sample Number	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including	sis Required	Number of Containers	Comments	
1	RG_LILC3_INV-1_2021-12-01 🗸	01-Dec-21	Invertebrate tissue	x	x		1		
2	RG_LILC3_INV-2_2021-12-01 🗸	01-Dec-21	Invertebrate tissue	x	x		1		
3	RG_LILC3_INV-3_2021-12-01 🗸	01-Dec-21	Invertebrate tissue	x	x		1		
4	RG_LILC3_INV-4_2021-12-01 🗸	01-Dec-21	Invertebrate tissue	x	x		1		
5	RG_LILC3_INV-5_2021-12-01 🗸	01-Dec-21	Invertebrate tissue	x	x		1		
6					No.				
7									
8					100				
9									
10									
11									
12					100				
13									
14									
15 Camples D	alian inhadia la B								
	amples Relinquished to Lab By: (Minnow Employee Signature)				Date:	Time:	Time: Shipment Method: Pacific Coas		
Samples R	eceived in Lab By: (Lab Employee Signature)	2	(Pros. # 2021	-202	Date:	Time:	Sample Condition	upon Receipt:	

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

204-1006 Fort Street Victoria, British Columbia V8V 3K4

Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

L	aboratory	: Trich Analytics			_		Page 9 of 10			
						- 100	Minnow Contact:	Tyler Mehler		
_	044	Tides Mahles				_	Contact Email:	tyler.mehler@m	tyler.mehler@minnow.ca	
	Contact:	Tyler Mehler 587-597-1612 Fax:					Minnow Project #:	217202.0036		
	hone:	587-597-1612				Date Results Required B	y:			
15	report man	ling list: tyler.mehler@minnow.ca; Cyb	ele.Heddle@	teck.com; Kbatchela	r@minnow					
						Analys	sis Required			
D	Sample Number	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of Containers	Comments	
	1	RG_LISP24_INV-1_2021-11-30 🗸	30-Nov-21	Invertebrate tissue	x	x		1		
	2	RG_LISP24_INV-2_2021-11-30 🗸	30-Nov-21	Invertebrate tissue	x	x		1		
	3	RG_LISP24_INV-3_2021-11-30 🗸	30-Nov-21	Invertebrate tissue	х	x		1		
	4	RG_LISP24_INV-4_2021-11-30 🗸	30-Nov-21	Invertebrate tissue	x	x		1		
	5	RG_LISP24_INV-5_2021-11-30 🗸	30-Nov-21	Invertebrate tissue	x	x		1		
	6									
	7					-21				
	8					100				
	9					130				
	10									
	11									
	12					Took .				
	13					1.00				
	14	*				1 0				
	15									
Sa	Samples Relinquished to Lab By: (Minnow Employee Signature)					Date:	Time:	Shipment Method	Shipment Method: Pacific Coastal cargo in ice	
Sa	amples Re	eceived in Lab By: (Lab Employee Signature)	(Proj # 2021	- 282	Date:	Time:	Sample Condition	n upon Receipt:		

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

204-1006 Fort Street Victoria, British Columbia V8V 3K4

Telephone:(250) 595-1627 Facsmile:(250) 595-1625

		: Trich Analytics					Page	10 of 10	
							Minnow Contact:	Tyler Mehler	
		Tyler Mehler				_ 136	Contact Email:	tyler.mehler@	tyler.mehler@minnow.ca
	Phone:	587-597-1612			_	Minnow Project #:	217202.0036		
		ling list: tyler.mehler@minnow.ca; Cyb	ck com: Khatchelar	Ominnow	ca lossica Bit-Ot	Date Results Required B	y:		
		, G	oron roudrown	ok.com, Reatericial	giiiiiiow.		eck.com sis Required		
ID	Sample	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg	no recounted	Number of Containers	Comments
	1	RG_SLINE_INV-1_2021-11-29 🗸	29-Nov-21	Invertebrate tissue	х	x		d	
	2	RG_SLINE_INV-2_2021-11-29 🗸		Invertebrate tissue	x	x		1	
	3	RG_SLINE_INV-3_2021-11-29 🗸		Invertebrate tissue	x	x		1	
6	4	RG_SLINE_INV-4_2021-11-29 🗸		Invertebrate tissue	x	x		1	
7	5	RG_SLINE_INV-5_2021-11-29 🗸		Invertebrate tissue	х	x		1	
	6							•	
	7								
	8					90.0			
	9								
	10					199			
	11					(A)*			
	12								
	13								
	14								
	15					14.01			
	Samples Relinquished to Lab By: (Minnow Employee Signature)					Date:	Time:	Shipment Metho	od: Pacific Coastal cargo in iced
	Samples Re	mples Received in Lab By: (Lab Employee Signature) (Proj # 207				Date:	Time:		on upon Receipt: