Teck Coal Limited
Water Quality Management
P.O. Box 1777
421 Pine Avenue +1 250 425 808
Sparwood, B.C. Canada V0B 2G0 www.teck.com

+1 250 425 8086 Tel Technical Report Overview

Report: 2022 Line Creek Operations Local Aquatic Effects Monitoring Program (LAEMP) Report for Dry Creek

Overview: The Line Creek Operation (LCO) Dry Creek Local Aquatic Effects Monitoring Program (LAEMP) was designed to assess potential effects of Phase II Project of Line Creek Operations (LCOII) on Dry Creek, Grace Creek, and Unnamed Creek (ENV 2013) and was initiated in 2014. This report focuses on data from 2022.

This report was prepared for Teck by Minnow Environmental Inc.

For More Information

If you have questions regarding this report, please:

- Phone toll-free to 1.855.806.6854
- Email feedbackteckcoal@teck.com

Future studies will be made available at teck.com/elkvalley.

2022 Line Creek Operations Local Aquatic Effects Monitoring Program (LAEMP) Report for Dry Creek

Prepared for: **Teck Coal Limited**Sparwood, British Columbia

Prepared by:

Minnow Environmental Inc.

Victoria, British Columbia

April 2023

2022 Line Creek Operations Local Aquatic Effects Monitoring Program (LAEMP) Report

for Dry Creek

Robin Valleau, Ph.D., R.P. Bio.
Project Manager

Robin Valleau, Ph.D., R.P. Bio.

Katharina Batchelar, M.Sc., R.P. Bio.

Senior Reviewer

Lucie Kaucky, Ecofish Research Ltd., M.Sc.

Project Manager

Todd Hatfield, Ecofish Research Ltd., Ph.D., R.P. Bio.

Senior Reviewer

Maggie Branton, Branton Environmental Consulting, Ph.D., P. Bio.

Fish Consultant

EXECUTIVE SUMMARY

The Line Creek Operation (LCO) Dry Creek Local Aquatic Effects Monitoring Program (LAEMP) was designed to assess potential effects of Phase II Project of Line Creek Operations (LCOII) on Dry Creek, Grace Creek, and Unnamed Creek and was initiated in 2014, prior to spoiling in the watershed (2015; ENV 2013). To comply with discharge requirements outlined in permit 5353 for total suspended solids, Teck constructed the Line Creek Operation (LCO) Dry Creek Water Management System (DCWMS), which began operation in 2015. In 2019, a pathway was theorized that described enhanced primary production in the DCWMS sedimentation ponds that promoted the generation of organic selenium compounds (specifically DMSeO and MeSe[IV]), leading to increased benthic invertebrate tissue selenium concentrations downstream of the DCWMS (Minnow 2020). As a response to this result, a seasonal bypass of the DCWMS was initiated in 2020 to mitigate selenium bioaccumulation in biota, only using the sedimentation ponds during freshet (i.e., higher-flow periods). Further mitigation strategies initiated in 2021 included the use (i.e., filling) of only one of the two available DCWMS sedimentation ponds. The bypass of the DCMWS was operational throughout most of 2022, except from May to July.

This report evaluates Dry Creek monitoring data up to the end of the 2022 calendar year to evaluate five study questions.

Study Question #1: Are aqueous concentrations of mine-related constituents elevated in relation to British Columbia Water Quality Guidelines (BCWQG) and Elk Valley Water Quality Plan (EVWQP) benchmarks, and are concentrations changing over time? Concentrations of many aqueous mine-related constituents have increased in Dry Creek since mining began in 2015. Despite these increases, in 2022, the majority of constituents were below water quality quidelines, SPOs, benchmarks and/or updated effects concentrations. Exceptions to this were total selenium which exceeded the SPO, nitrate which was above the updated effects concentrations, and nickel which was above the proposed benchmarks in 2022. Elevated organoselenium concentrations that were observed in 2018 and 2019 have decreased since that time due to the implementation of the DCWMS bypass. Constituent concentrations were greatest at areas immediately downstream of LCOII spoiling and downstream DCWMS and decreased at downstream locations, likely due to inputs of of the groundwater and surface water from non-mine affected areas between LC DC2 and LC DC4 (Golder 2019b). Similar increasing trends in aqueous constituents were generally not detected at the reference areas, in the Fording River downstream of Dry Creek, or in Grace Creek, however, except occasionally nitrate and selenium at the reference area and downstream of Dry Creek in the Fording.

Study Question #2: Is acute or chronic toxicity occurring from water collected at the outlet of the DCWMS (LC_SPDC) or within Dry Creek (LC_DCDS), and is toxicity changing over time? Acute toxicity testing of water from the outlet of the DCWMS as well as within Dry Creek showed no test failures in 2022. Chronic toxicity is monitored in Dry Creek directly downstream of the DCWMS (LC_DCDS), under the regional chronic toxicity program. In 2022, nickel and/or nitrate were identified as potentially causing the observed effects on water fleas and amphipods. All chronic toxicity on rainbow trout and fathead minnow in 2022 were categorized as no effect. Overall, chronic toxicity results have shown a low proportion of adverse responses over time within Dry Creek (LC_DCDS), with a frequency and magnitude of responses that was similar between 2019 to 2022 for most endpoints, and responses have been mostly limited to invertebrate endpoints.

Study Question #3: Are benthic invertebrate community endpoints within normal ranges based on samples collected at regional and local reference areas within the Elk River as part of the Regional Aquatic Effects Monitoring Program (RAEMP), and are the endpoints changing over time? Total abundance and taxonomic richness were generally within regional and site-specific normal ranges at all areas in Dry Creek in 2022. Over the 2019 to 2022 monitoring period, there have been decreases in benthic community endpoints used to evaluate changes in watershed health, at all areas along Dry Creek. Proportions of Ephemeroptera measured at the mine-exposed areas were almost always significantly lower than those associated with the community in the Dry Creek reference area. It is therefore likely that mining activities are contributing to changes in some benthic invertebrate community endpoints in some areas of Dry Creek. Between 2021 and 2022 there was also a decrease in total abundance at all stations on Dry Creek, including the reference station. Currently, there are no water quality parameters that point to a cause of this decrease in 2022. The community in Dry Creek upstream of the DCWMS headpond most frequently had endpoints outside of normal ranges. In 2022, benthic invertebrate communities located upstream and downstream of the mouth of Dry Creek in the Fording River differed from each other; however, community endpoints were generally within regional normal ranges and show no temporal variation in the mainstem.

Study Question #4: How do selenium concentrations in benthic invertebrate tissue compare to normal ranges and BCWQG or EVWQP benchmarks, and are they changing over time? In most areas of Dry Creek downstream of the DCWMS, benthic invertebrate tissue selenium concentrations were the same in 2022 as 2021 and lower than 2020, although were occasionally higher than regional normal ranges and reference concentrations (most often in May). Downstream of the DCWMS the decreases in benthic invertebrate tissue selenium concentrations measured in 2022 and 2021 relative to earlier years (2020) were primarily attributable to changes in the water management of the DCWMS (i.e., bypass the sedimentation ponds throughout most

of the year and limiting use of the DCWMS to one rather than two sedimentation ponds). Within the Fording River, benthic invertebrate tissue selenium concentrations upstream and downstream of Dry Creek were generally similar to each other and have remained unchanged in 2022 relative to earlier years (2019 to 2021), indicating that Dry Creek water quality has had limited or no influence on benthic invertebrate tissue selenium concentrations in area of the Fording River mainstem. Additionally, a quarterly benthic invertebrate mean tissue selenium concentrations limit at the monitoring station downstream of the DCWMS (LC_DCDS) will come into effect on April 1, 2023 (ENV 2022).

Study Question #5: Are changes in fish and fish habitat (including instream flow and calcite index) occurring within Dry Creek as a result of mine operations? The fish-bearing portion of Dry Creek (i.e., downstream of the East Tributary) is a coldwater stream with water temperatures that may pose challenges to fish growth and recruitment. Overall, the available observations indicate that all locations in Dry Creek in 2022 had water temperatures that may have limited fish recruitment; that is, growing season degree days were less than the minimum threshold of 800. Streamflow trends were generally consistent with historical records in 2022, with the exception of average flows during rearing and early incubation periods being 22% higher than the previous record high in 2013. Fewer redds were observed in 2022 than in 2021 in the UFR, including in Dry Creek, which may be associated with the cold early season water temperatures in 2022. The number of redds counted is similar to the number counted in the years from 2015 to 2017 in Dry Creek. Body condition and densities of age-1 and age-2+ fish were similar to previous years. Based on a limited dataset, age-0 fish were shorter in 2022 compared to previous years (2015 and 2016). This may be related to a decrease in water temperatures after the seasonal sediment pond by-pass was put into operation in 2020. Similar to previous years, in 2022, calcite concretion was not observed in Dry Creek during the Regional Calcite Monitoring Program. Calcite levels in Dry Creek continue to be below those expected to result in measurable biological effect, although there is a trend toward increased calcite presence.

The results from the Dry Creek LAEMP provide information that supports Teck's Adaptive Management Plan (AMP). The monitoring and management of the DCWMS are adaptive management responses that have been and continue to be actively adjusted to develop our understanding of the watershed and how changes to water management (particularly with respect to the DCWMS) can improve conditions in Dry Creek. The results from this study also support the evaluation of biological triggers, which are intended to identify unexpected monitoring results that may lead to additional monitoring or mitigation responses under the AMP response framework.

TABLE OF CONTENTS

EXEC	CUTIVE SUMMARY	i
1 IN	TRODUCTION	
1.1	Background	1
1.2	Study Questions	4
1.3	Dry Creek Water Management System (DCWMS) Operations	
1.4	Linkage to the Adaptive Management Plan	8
2 ME	THODS	12
2.1	Overview	
2.2	Study Question 1: Water Quality	16
	2.1 Routine Water Quality	
	2.2 Laboratory and Data Analysis	
2.3	, , , , , , , , , , , , , , , , , ,	
2.4	y	
	4.1 Overview	
	4.2 Study Question 3: Benthic Invertebrate Community	
	4.3 Study Question 4: Benthic Invertebrate Tissue Selenium	
2.5		
	5.1 Physical Habitat, Temperature, Flow, Calcite, and Dissolved Oxygen	
	5.2 Fish Abundance, Density and Condition5.3 Redd Surveys	∠0
	5.4 Dip net surveys	
	5.5 Data Analysis	
	•	
	JDY QUESTION 1: WATER QUALITY	
3.1	Background	
3.2	Nitrate	
3.3	Total Cadmium	
3.4	Total Selenium	
3.5	OrganoseleniumNutrient Status	
3.6 3.7	Summary	
	•	
4 STL	JDY QUESTION 2: AQUEOUS TOXICITY	45
5 STL	JDY QUESTION 3: BENTHIC INVERTEBRATE COMMUNITY	49
5.1	Background	
5.2	Dry Creek	
5.	2.1 Fording River and Grace Creek	58
5.3	Spatiotemporal Changes and Biological Trigger Assessment	62
5.4	Correlation Analysis	
5.5	Summary	67
6 STL	JDY QUESTION 4: BENTHIC INVERTEBRATE TISSUE SELENIUM	69
6.1	Background	
6.2	Normal Ranges, Benchmarks and Biological Trigger Evaluation	69
6.3	Spatiotemporal Trends	
6.4	Summary	
7 STI	JDY QUESTION 5: FISH AND FISH HABITAT	Ω1
7.1	Background	
7.1	Daving out in	

7.2.1 Water Tem 7.2.2 Dissolved 7.2.3 Instream F 7.2.4 Calcite Co 7.3 Fish 7.3.1 Redd Surv 7.3.2 Density 7.3.3 Length free 7.3.4 Length-at-a 7.3.5 Condition 7.3.6 Summary	nperature Oxygen low verage eys quency age-0	
	IENTS	
	IEN15	
10 REFERENCES		115
APPENDIX A	METHODS AND DATA ANALYSIS	
APPENDIX B	DATA QUALITY REVIEW (DQR)	
APPENDIX C	WATER QUALITY	
APPENDIX D	TOXICITY	
APPENDIX E	BENTHIC INVERTEBRATE COMMUNITY	
APPENDIX F	BENTHIC INVERTEBRATE TISSUE CHEMISTRY	
APPENDIX G	FISH AND FISH HABITAT	
APPENDIX H	BIOLOGICAL TRIGGERS	
APPENDIX I	SUPPORTING INFORMATION	
APPENDIX J	LABORATORY REPORTS	

LIST OF FIGURES

Figure 1.1:	Teck's Coal Mine Operations within the Elk River Watershed, Southeast	
	British Columbia	2
Figure 1.2:	Overview of Line Creek Operation	3
Figure 1.3:	Overview of LAEMP and Supplemental Sampling Events in Relation to Operational Phases of the Dry Creek Water Management System Operation,	
	2020 to 2022	6

Figure 1.4: Figure 2.1:	LCO Dry Creek Water Management SystemLCO Dry Creek LAEMP Sampling Locations, 2022	
Figure 2.2:	LCO Dry Creek Fish Population Monitoring Study Area Sample Sites and Survey Areas	
Figure 3.1:	Series Plots for Nitrate from LCO Dry Creek LAEMP Areas, 2012 to 2022	35
Figure 3.2:	Time Series Plots for Total Cadmium from LCO Dry Creek LAEMP Areas, 2012 to 2022	
Figure 3.3:	Time Series Plots for Total Selenium from LCO Dry Creek LAEMP Areas, 2012 to 2022	
Figure 3.4:	Selenium Species Concentrations from LCO Dry Creek LAEMP Sampling Areas, 2017 to 2022	42
Figure 5.1:	Benthic Invertebrate Community Endpoints at Dry Creek, Fording River, Grace Creek, and Dry Creek East Tributary Sampling Areas, LCO Dry Creek LAEMP, September 2019 to 2022	50
Figure 5.2:	Benthic Invertebrate Community Abundance (# of Organisms / 3 m Kick) from Dry Creek LAEMP Sampling Areas, 2012 to 2022	54
Figure 5.3:	Benthic Invertebrate Community Richness (# of taxa) from Dry Creek LAEMP Sampling Areas, 2012 to 2022	55
Figure 5.4:	Benthic Invertebrate Community % EPT from Dry Creek LAEMP Sampling Areas, 2012 to 2022	56
Figure 5.5:	Benthic Invertebrate Community % Ephemeroptera from Dry Creek LAEMP Sampling Areas, 2012 to 2022	57
Figure 5.6:	Benthic Invertebrate Community % Plecoptera from Dry Creek LAEMP Sampling Areas, 2012 to 2022	
Figure 5.7:	Benthic Invertebrate Community % Chironomidae from Dry Creek LAEMP Sampling Areas, 2012 to 2022	
Figure 5.8:	Benthic Invertebrate Community % Non-Chironomidae Diptera from Dry Creek LAEMP Sampling Areas, 2012 to 2022	61
Figure 6.1:	Selenium Concentrations (mg/kg dw) in Composite-Taxa Benthic Invertebrate Samples from Dry Creek Sampling Areas, 2018 to 2022	
Figure 6.2:	Selenium Concentrations (mg/kg dw) in Composite-Taxa Benthic Invertebrate Samples from Dry Creek Sampling Areas, 2022	
Figure 6.3:	Selenium Species and Benthic Invertebrate Tissue Selenium Concentrations from LCO Dry Creek LAEMP Sampling Areas, September 2018 to December 2022	76
Figure 6.4:	Selenium Species and Benthic Invertebrate Tissue Selenium Concentrations from LCO Dry Creek LAEMP Sampling Areas, September 2018 to December	
Figure 7.1:	2022 Daily Mean Water Temperature from June 2016 to October 2022 at Stations in the Upper Portion of the Dry Creek Watershed	
Figure 7.2:	Daily Mean Water Temperature from June 2016 to October 2022 at Stations in the Lower Portion of the Dry Creek watershed and Dry Creek Tributary 5	
Figure 7.3:	Mean Weekly Maximum Temperatures (MWMxT) at Monitoring Stations in Dry Creek Watershed Upstream of Influence of the Sedimentation Ponds	
Figure 7.4:	Mean Weekly Maximum Temperatures (MWMxT) at Monitoring Stations in Lower Dry Creek and Fording River Overlayed on Westslope Cutthroat Trout Optimum Temperature Ranges	
Figure 7.5:	Annual Hydrograph at Dry Creek (LC_DC1) for Each Year from 2011 to 2022 on Normal (upper) and Log Scale (lower)	
Figure 7.6:	Annual Hydrograph for WSC 08NK018 from 1970 to 2022 on Normal (upper) and Log Scale (lower)	

Figure 7.7:	Densities of Fish Captured during Electrofishing in LCO Dry Creek on the First Pass by Year, Sampling Site, and Life Stage	105
Figure 7.8:	Number of Fish Captured by Electrofishing in LCO Dry Creek by Fork Length and Period	
Figure 7.9:	Estimated Fork Length of Age-0 Westslope Cutthroat Trout on 1 October in a Typical Year in LCO Dry Creek (with 95% CIs)	
Figure 7.10:	Body Condition in LCO Dry Creek Shown as the Percent Change in the Body Weight of a 100 mm Fish in a Typical Year Relative to a Typical Stream in	
Figure 7.11:	the UFR Watershed (with 95% CIs)	
LIST OF TAB	,	. 100
LIOT OF TAB		
Table 1.1:	Dry Creek Water Management System Operational Phases, 2020 to 2022	
Table 2.1:	Monitoring Areas Associated with LCO Dry Creek LAEMP, 2022	
Table 2.2:	Summary of Water Quality Monitoring for Permit 107517	
Table 2.3:	Benthic Invertebrate Community Sampling for Dry Creek LAEMP, 2022 Benthic Invertebrate Composite-Taxa Tissue Sampling for Dry Creek	
Table 2.4:	LAEMP, 2022	
Table 2.5:	Summary of Water Temperature Monitoring Stations in Dry Creek	
Table 2.6:	Summary of Water Temperature Metrics, Calculation Methods and Treatment	
Table 0.7.	of Data GapsSummary of Electrofishing Sites Sampled in 2022	
Table 2.7: Table 3.1:		∠1
Table 3.1.	Criteria for Detailed Evaluation of Water Quality Endpoints in 2022 LCO Dry Creek LAEMP	33
Table 3.2:	Summary of Water Quality Statistical Results and Comparison with	00
	Benchmarks and Guidelines, Dry Creek LAEMP, 2022	36
Table 4.1:	Summary of Acute Toxicity Test Results for LCO Dry Creek LAEMP	46
Table 4.2:	Monitoring Stations, 2022 (Teck 2023)	46
1 abie 4.2.	2015 to 2022a (Golder 2016, 2017a, 2018, 2019, 2020a, 2021, 2022, 2023)	47
Table 5.1:	Spearman's Correlation Relationships between Benthic Invertebrate	71
	Community Metrics and Physical and Chemical Parameters, Dry Creek, 2019	
	to 2022	66
Table 7.1:	Duration and Intensity of the Growing Season (defined in Table 2.6) for	
	Monitoring Sites in Dry Creek and Fording River from June or September	
	2016 through October 2021	88
Table 7.2:	Monthly Mean Dissolved Oxygen Concentrations (mg/L) in Dry Creek, 2022	91
Table 7.3:	Mean Daily Flow at LC_DC1 during Key Westslope Cutthroat Trout Activity	0.E
Table 7.4:	Periods as Defined in Teck (2021)	95
Table 7.4:	Summary Statistics of Mean Monthly Discharge as a Percent of Mean Annual Discharge (MAD), at LC_DC1 and WSC 08NK018 from 2011 to 2022	96
Table 7.5:	Summary Statistics of Mean Monthly Discharge as a Percent of Mean Annual	90
Table 7.0.	Discharge (MAD), at LC DC1 and WSC 08NK018 from 2011 to 2022	99
Table 7.6:	Date of Minimum and Maximum Daily Average Streamflow per Year from	00
	2001 to 2022 Recorded at LC DC1	99
Table 7.7:	Indication of Whether the Historical Flows at LC_DC1 Exceeded the Flushing	-
	Flow Threshold of 1.0 m ³ /s for a 2-Day Duration (threshold proposed in West	
	et al. 2021)	100

Table 7.8:	Calcite Index Values for Dry Creek, Grace Creek, and Fording River Areas, LCO Dry Creek LAEMP 2015 to 2022	102
Table 7.9:	Total Redds Counted (2015 to 2020) and Total Definitive Nests Counted (2021 to 2022) in LCO Dry Creek Between 2015 and 2022	
Table 7.10:	Summary of Fish Captured by Sampling Site, Kilometre (km), and Age-Class	104
	in 2022	104
Table 7.11:	Length Categories for Life Stages of WCT in LCO Dry Creek	105
Table 8.1:	Summary of Findings, Responses, and Adjustments Related to the Dry Creek	
	LAEMP, 2022	113

ACRONYMS AND ABBREVIATIONS

%E – relative proportion of Ephemeroptera

%EPT - relative proportion of Ephemeroptera, Plecoptera, and Trichoptera

AMP – Adaptive Management Plan

ANOVA – Analysis of Variance

BC – British Columbia

BCWQG – British Columbia Water Quality Guidelines

BRN – Burnt Ridge North

CABIN – Canadian Aquatic Biomonitoring Network

CI - Calcite Index

CMM - Coal Mountain Mine

COSEWIC – Committee on the Status of Endangered Wildlife in Canada

DCFFHMP – Dry Creek Fish and Fish Habitat Monitoring Program

DCWMS – Dry Creek Water Management System

DFO - Fisheries and Oceans Canada

DMSeO – Dimethyl Selenoxide

DO - Dissolved Oxygen

DQR – Data Quality Review

Ecofish – Ecofish Research Limited

EMC – Environmental Monitoring Committee

EMPR – British Columbia Ministry of Energy, Mines, and Petroleum Resources

ENV – British Columbia Ministry of Environment and Climate Change Strategy (formerly MOE)

EPT – Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies)

EVO – Elkview Operation

EVFFHC – Elk Valley Fish and Fish Habitat Committee

EVWQP – Elk Valley Water Quality Plan

DCWMP – Dry Creek Water Management Plan

dw - Dry Weight

FHAP – Fish Habitat Assessment Procedure

FLNRORD – Ministry of Forests, Lands, Natural Resource Operations, and Rural Development

FRO – Fording River Operation

GHO – Greenhills Operation

GSDD – Growing Season Degree Days

HSD - Honestly, Significant Difference

ICP-MS – Inductively Coupled Plasma Mass Spectrometry

IFRs - Instream Flow Requirements

K-M – Kaplan-Meier

KNC – Ktunaxa Nation Council

LAEMP – Local Aquatic Effects Monitoring Program

LCO – Line Creek Operations

LCOII – Line Creek Operations Phase II

LPL – Lowest Practicable Level, referring to taxonomic identification of benthic invertebrates

LRL – Laboratory Reporting Limit

MBCM – Million Bank Cubic Meters

MCT – Measure of Central Tendency

MeSe(IV) - Methylseleninic Acid

MOD – Magnitude of Difference

MOE – Mistry of the Environment

MWMP – Mine Water Management Plan

MWMxT – Mean weekly maximum water temperature

NCD – non-Chironomidae Diptera

Nupqu – Nupqu Resource Limited Partnership

PC – Principal Components

PCA – Principal Components Analysis

Qx – referring to calendar quarters

QA/QC – Quality Assurance / Quality Control

RAEMP – Regional Aquatic Effects Monitoring Program

SDM – Structured Decision Making

SPO – Site Performance Objective

Teck - Teck Coal Limited

TSS – Total Suspended Solids

UEC – Updated Effects Concentration

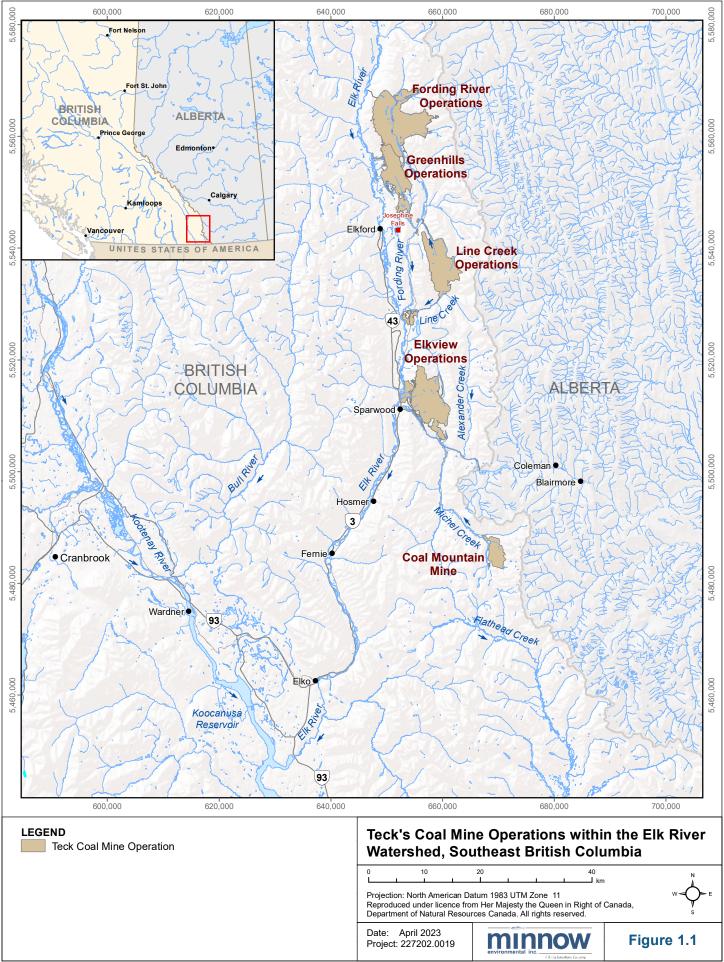
UFR – Upper Fording River

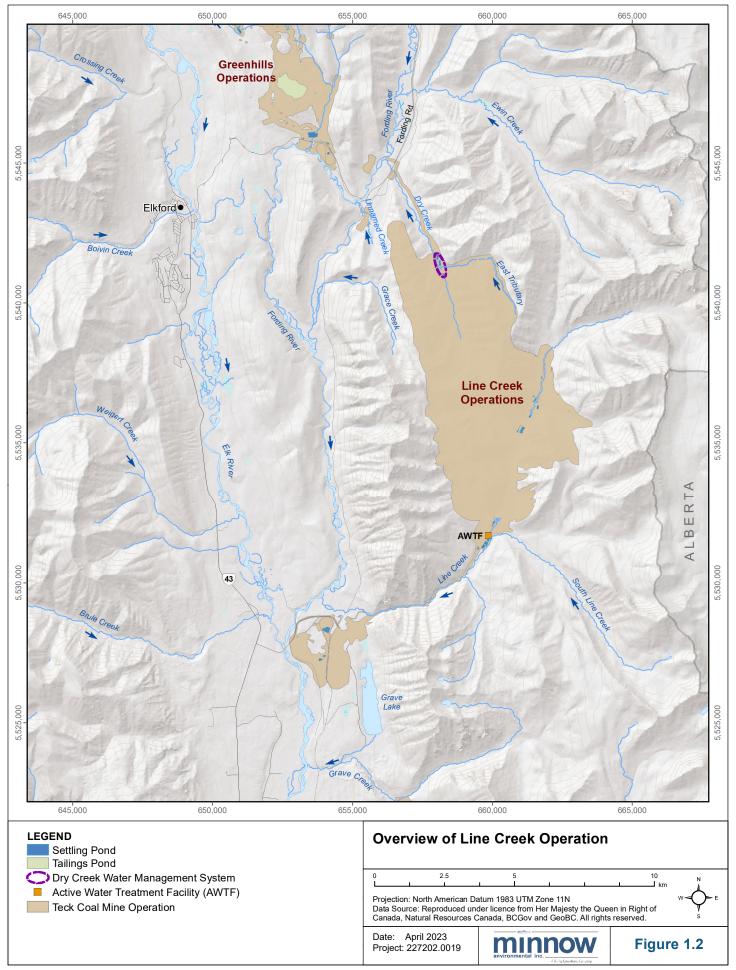
WCT – Westslope Cutthroat Trout

1 INTRODUCTION

1.1 Background

Teck Coal Limited (Teck) currently operates four steelmaking coal mines in the Elk River watershed in southeastern British Columbia (BC) which are the Line Creek Operation (LCO), Fording River Operation (FRO), Greenhills Operation (GHO), and Elkview Operation (EVO; Figure 1.1). A fifth mine, Coal Mountain Mine (CMm), is also owned by Teck and located in the Elk River watershed; however, it is no longer in operation and has been moved into the care and maintenance designation. Teck received a conditional Environmental Assessment Certificate in September 2013 for the LCO Phase II Project (LCOII) and development began in February 2014. The initial placement of waste rock in the Dry Creek watershed occurred in 2015, although minimal spoiling occurred in 2015 (<1 million bank cubic meters [MBCM]) by year increasing up to a current maximum of < 34 MBCB in 2022. The LCOII is expected to continue to 2035 and result in a disturbance of approximately 1,940 ha, with placement of waste rock over approximately 5 km of upper LCO1 Dry Creek, a second order mountainous tributary to the Fording River at the north end of LCO property (Figure 1.2). Since 2015, surface and shallow groundwater from mine-influenced areas of the upper Dry Creek watershed have been managed through the Dry Creek Water Management System (DCWMS; Figure 1.2), briefly, the DCWMS collects and re-directs mine-influenced surface flow from upper Dry Creek through the sedimentation ponds prior to returning to Dry Creek downstream of the ponds (see Section 1.3 for details).


Section 8.3.1.2 of Permit 107517 (version January 27, 2023; ENV 2023) outlines the requirements for the LCO Dry Creek Local Aquatic Effects Monitoring Program (LAEMP) as follows:


"The Permittee must develop and implement a Local Aquatic Effects Monitoring program to determine the effects of mining activities from Line Creek Phase II in the LCO Dry Creek, Grace Creek and Unnamed Creek receiving environments. An annual study design for the program must be prepared in consultation with the EMC² and submitted to the Director for approval by May 1 each year.".

² EMC refers to the Environmental Monitoring Committee, which Teck was required to form under Permit 107517. The EMC consists of representatives from Teck, BC Ministry of Environment and Climate Change, the Ministry of Energy and Mines, Environment Canada, the Ktunaxa Nation Council, Interior Health Authority, and an independent scientist. Environment Canada has agreed to provide input on a case-by-case basis when requested by the other members of the EMC but has not yet been called upon to participate. The EMC reviews submissions and provides technical advice to Teck and the ENV Director regarding monitoring programs.

¹ The creek is referred to as LCO Dry Creek to distinguish it from another Dry Creek associated with Teck's Elkview Operation (i.e., EVO Dry Creek).

Also, Section 9.5 of Permit 107517 states:

The LAEMP Annual Reports must be reported on in accordance with generally accepted standards of good scientific practice in a written report and submitted to the Director by April 30 of each year following the data collection calendar year.

Concurrent with the LAEMP, site performance objectives (SPOs), instream flow requirements (IFRs), and environmental flow needs (EFNs) for Dry Creek have been proposed through an updated LCO Dry Creek Mine Water Management Plan (DCWMP) which was submitted to ENV May 2021 (as per the permit requirements) that outlined the water management objectives, strategies, and mitigation options to achieve the SPOs and IFRs (Teck 2021c). The updated DCWMP includes proposed SPOs for selenium, nitrate, sulphate, and cadmium and proposed in-stream flow requirements, which include flushing flows and ramping flows (Teck 2021c). In addition, a limit applicable to quarterly benthic invertebrate tissue selenium concentrations at LC_DCDS will come into effect on April 1, 2023, and concurrent benthic invertebrate community sampling will be completed (ENV 2023). Although the tissue selenium limit does not come into effect until April 1, 2023 reporting requirements and sampling began in Q2 2022.

The 2022 LAEMP period of study includes all biological and water quality sampling conducted in LCO Dry Creek from January 2022 through December 2022. The sections below describe the setting in more detail and provide further context for the LCO Dry Creek LAEMP report.

1.2 Study Questions

In consideration of Permit 107517 requirements, the conceptual site model (see Minnow 2020b for details), previous LCO Dry Creek LAEMP reports (Minnow 2015, 2016, 2017, 2018b, 2019, 2020a, 2021a), and input from the Environmental Monitoring Committee (EMC), the following overarching study question has been developed:

 Has there been a change in condition since previous monitoring years with respect to mine-related constituents in water quality, benthic invertebrate community endpoints and tissue selenium concentrations, calcite, fish, fish habitat, and/or flow?

Five specific questions were further developed to help answer the above question and guide data evaluation:

- Are aqueous concentrations of mine-related constituents elevated in relation to British Columbia Water Quality Guidelines (BCWQG) and Elk Valley Water Quality Plan (EVWQP) benchmarks, and are concentrations changing over time?
- 2. Is acute or chronic toxicity occurring from water collected at the outlet of the DCWMS (LC_SPDC) or within Dry Creek (LC_DCDS), and is toxicity changing over time?

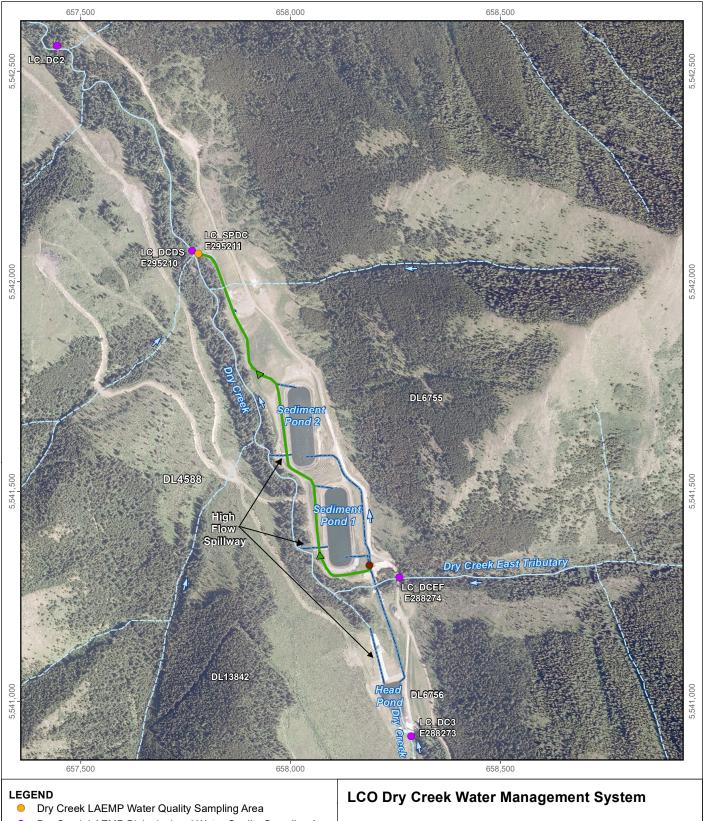
- 3. Are benthic invertebrate community endpoints within normal ranges derived based on samples collected at regional and local reference areas within the Elk River as part of the Regional Aquatic Effects Monitoring Program (RAEMP), and are the endpoints changing over time?
- 4. How do selenium concentrations in benthic invertebrate tissue compare to normal ranges and BCWQG or EVWQP benchmarks, and are they changing over time?
- 5. Are changes in fish and fish habitat (including instream flow and calcite index) occurring within Dry Creek as a result of mine operations?

1.3 Dry Creek Water Management System (DCWMS) Operations

As outlined in Section 1.1, surface and shallow groundwater from mine-influenced areas of the upper Dry Creek watershed (at and above area LC_DC3) have been managed through the DCWMS since 2015 (Figures 1.3 and 1.4). The DCWMS is currently designed to treat total suspended solids (TSS) to meet discharge limits, as outlined in Permit 5353 in Section 1.10. The DCWMS collects and re-directs mine-influenced surface flow from upper Dry Creek through the sedimentation ponds prior to returning to Dry Creek at area LC_SPDC, directly upstream of area LC_DCDS. The upstream end of the DCWMS collects flow from upper Dry Creek into the headpond where it is then piped over the East Tributary to a splitter box (Figure 1.4). At the splitter box (or in 2021 and 2022, upstream of the headpond) flocculant is added, as required, to enhance sediment removal and reduce the amount of TSS in the effluent (Teck 2018b, 2019). The splitter box manages flow to the two sedimentation ponds (i.e., parallel ponds) that are referred to as Sedimentation Pond 1 and Sedimentation Pond 2 (Figure 1.4).

Sampling for the LCO Dry Creek LAEMP began in September 2014, prior to initial commissioning of the DCWMS and supporting infrastructure in 2015 (Figure 1.3). Annual monitoring for the Dry Creek LAEMP in 2014 to 2017 focused on two areas downstream of the DCWMS in Dry Creek (LC_DCDS, LC_DC1) and upstream and downstream of Dry Creek in the Fording River (LC_FRUS, and LC_FRB; Minnow 2015, 2016, 2017, 2018b). In 2018, aqueous concentrations of mine-related constituents in Dry Creek (e.g., nitrate and total selenium), were greater than previously observed (Minnow 2019) and the rate of change was greater than predicted in the LCOII project application (Teck 2011) or in Regional Water Quality Model updates; given this observation, additional monitoring stations were added to help capture the spatial extent in Dry Creek.

Elevated selenium concentrations in benthic invertebrate tissue samples downstream of the DCWMS (i.e., LC_SPDC and LC_DCDS; Figure 1.4) were observed in 2018 and early 2019


Dry Creek Water Management System Operational Phase		2020									2021						2022																	
		F		/ A	М	J	J	Α	s	0	N	D .	JI	FI	M A	M	J	J	Α	s	o	N	D	J	F	М	Α	М	J	J	A S	s c	N	l D
Dry Creek Water Management System (DCWMS) Operational (Pond 1 and 2)					•	•																												
DCWMS Pond Dewatering								•																										
DCWMS Operational (Pond 1)																-	•	•										•	•					
DCWMS Bypass Operational									•	•	•	•			•	•				•			•								•			•

^{• =} Sampling associated with the Dry Creek LAEMP. Collection of Benthic Invertebrate Community and Tissue Samples as well as water quality samples.

Figure 1.3: Overview of LAEMP and Supplemental Sampling Events in Relation to Operational Phases of the Dry Creek Water Management System Operation, 2020 to 2022

Note: Shading represents changes in DCWMS operational phases

⁼ Supplemental Collection of Benthic Invertebrate Tissue and Periphyton Community.

- Dry Creek LAEMP Biological and Water Quality Sampling Area
- Splitter Box
- DCWMS Bypass
- Water Management Structure Piping
- Watercourse
- Intermittent Watercourse

Projection: North American Datum 1983 UTM Zone 11N Reproduced under licence from Her Majesty the Queen in Right of Canada, Department of Natural Resources Canada. All rights reserved.

Date: April 2023 Project: 227202.0019

Figure 1.4

(Minnow 2019, 2020a). In response to these results, a detailed investigation was undertaken in 2019 (particularly during growing season) to better understand the processes and location of organoselenium species generation in Dry Creek thought to be resulting in the enhanced selenium bioaccumulation in benthic invertebrates (Lorax 2020). The investigation concluded that the higher-than-expected concentrations of aqueous and tissue selenium downstream of the DCWMS were occurring due to algal bioaccumulation and reduction of selenium in the sedimentation ponds from selenate to more bioavailable selenite and organoselenium during the growing season (Lorax 2020, Minnow 2020a). As outlined in the LCO Mine Water Management Plan, the operation of the DCWMS was modified (starting in 2020) to bypass the sedimentation ponds seasonally, only filling them during higher-flow periods (e.g., freshet; Figures 1.3 and 1.4; Teck 2020c). The DCWMS bypass diverts water from the DCWMS headpond directly to LC SPDC3, therefore it is active only when the sedimentation ponds are not operational. The ponds are dewatered into Dry Creek at LC SPDC (Figure 1.4). In 2022, DCWMS operation was similar to 2021, the bypass was operational through most of the year (except May to July) and only pond 1 was used rather than both ponds 1 and 2 (which were both used in 2020; Table 1.1).

1.4 Linkage to the Adaptive Management Plan

As required in Permit 107517 Section 10, Teck developed an Adaptive Management Plan (AMP) to support implementation of the EVWQP to achieve water quality targets including calcite targets, ensure that human health and the environment are protected, and where necessary, restored, and to facilitate continuous improvement of water quality in the Elk Valley. The AMP was most recently updated in December 2021 (Teck 2021a). Adaptive management is a systematic, rigorous approach to environmental management that maximises learning about uncertainties while simultaneously striving to meet multiple management objectives and adapt management actions based on what is learned. The adaptive management cycle comprises six stages: assess, design, implement, monitor, evaluate and adjust. The AMP identifies six Management Questions that are re-evaluated at regular intervals. Evaluating these MQs collectively articulates whether Teck is on track to meet the environmental objectives of the EVWQP.

³ Prior to October 2020, effluent discharge (i.e., combined mine-impacted water from the two sedimentation ponds) was released into a man-made sedimentation pond discharge channel with artificial boulder substrate area prior to entering lower Dry Creek (i.e., LC_SPDC; Figure 1.4). This area was permanently modified in October of 2020 with removal of the pool immediately upstream LC_SPDC as well as the discharge channel itself, and replacement with a culvert pipe conveying water from the sedimentation ponds into Dry Creek upstream of LC_DCDS (Minnow 2021a). The spillway downstream of the DCWMS (LC_SPDC) was removed and replaced with a pipe to mitigate potential dietary uptake of benthic invertebrates by WCT (Teck 2021c).

Table 1.1: Dry Creek Water Management System Operational Phases, 2020 to 2022

Operational Phase	Start Date	End Date
DCWMS Pond 1 & 2 Operational	15-Jul-15	15-Jul-20
Bypass Operational	16-Jul-20	3-Aug-20
Dewatering Pond 1 & 2/Bypass Operational	4-Aug-20	4-Sep-20
Bypass Operational	5-Sep-20	4-May-21
Bypass Operational/Pond 1 Refilling	5-May-21	18-May-21
DCWMS Pond 1 Operational	18-May-21	12-Jul-21
Bypass Operational	13-Jul-21	26-Jul-21
Dewatering Pond 1/Bypass Operational	27-Jul-21	13-Aug-21
Bypass Operational	14-Aug-21	1-May-22
Bypass Operational/Pond 1 Refilling	2-May-22	12-May-22
DCWMS Pond 1 Operational	13-May-22	13-Jul-22
Bypass Operational	14-Jul-22	17-Jul-22
Dewatering Pond 1/Bypass Operational	18-Jul-22	26-Jul-22
Bypass Operational	27-Jul-22	31-Dec-22

The LCO Dry Creek LAEMP was designed to monitor aquatic conditions in Dry Creek, Grace Creek, and Unnamed Creek receiving environment and to answer specific questions on an annual basis (Section 1.2). Each annual LAEMP cycle (results are reported on April 30 of each year for the preceding calendar year) are also used for tracking issues for which a potential need for an adjustment, using the response framework, has been identified, including biological trigger assessments. Biological triggers are intended as a simple and consistent way to flag potential unexpected monitoring results that may require additional investigation and adjustment. In the current report, percent EPT (Ephemeroptera [mayflies], Plecoptera [stoneflies], and Trichoptera [caddisflies]) and composite-taxa benthic invertebrate tissue selenium concentrations in 2022 were assessed against their respective biological triggers (additional information and methods pertaining to this analysis can be found in Appendix H).

As an example of adaptive management in Dry Creek, benthic invertebrate tissue selenium elevated concentrations were and concentrations of mine-related constituents (primarily selenium, nitrate, and sulphate) were increasing more quickly than expected in 2018 downstream of sedimentation ponds. The benthic invertebrate tissue selenium concentrations were not consistent with what would be expected based on the water quality concentrations (Teck 2020a). These results led to additional monitoring, as a potential need for a response was identified via the AMP response framework. Actions associated with the AMP response to elevated benthic invertebrate tissue selenium concentrations in 2019 focused on investigations of temporal duration, spatial extent, and magnitude, all of which are outlined in detail in the 2019 Annual AMP report (Teck 2020d). The investigation of cause identified blasting residue on waste rock as the source of selenium, nitrate, and sulphate in Dry Creek and conditions in the DCWMS sedimentation ponds as a contributing factor to enhanced selenium bioaccumulation downstream of the DCWMS (Teck 2021a). Adjustments implemented as part of the AMP response framework (Stage 6: Adjust) included the addition of more monitoring areas and sampling events to increase the understanding of spatial resolution and seasonality of conditions, replacement of area LC SPDC and the pool upstream of LC SPDC with a discharge pipe (Minnow 2021a), and implementation of the DCWMS bypass in 2020. Additionally, the LCO nitrate compliance action plan is under development alongside an updated LCO DCWMP, and the DCWMP outlines a proposed Site Performance Objectives (SPO) for Nitrate (Teck 2021b).

In addition to addressing questions specific to the LCO Dry Creek LAEMP on an annual basis, aquatic monitoring data from the LAEMP will contribute to the broader data set assessed every three years within the RAEMP. The RAEMP is designed to evaluation MQ 5: "Does monitoring indicate that mine-related changes in aquatic ecosystem conditions are consistent with expectations?" Data from the LAEMP and RAEMP also contribute to answering MQ 2: "Will aquatic ecosystem health be protected by meeting the long-term SPOs?"

Results from this report will also be used to determine whether a biological trigger has been reached. Reaching a trigger may lead to an adjustment (Stage 6: Adjust) using the response framework. This is the main report for conveying biological trigger results for LCO Dry under the AMP (Section 8). Implementation of management actions is not constrained to the AMP or LAEMP annual reporting cycles but may be (and have been) triggered at any time during the monitoring and reporting cycle.

Identifying and reducing environmental management uncertainty is a foundational aspect of adaptive management. Therefore, the AMP identifies key uncertainties (KUs) that, as reduced, fill gaps in current understanding to support the achievement of the EVWQP objectives. Aquatic monitoring data assist in reducing KU 5.1: "How will monitoring data be used to identify potentially important mine-related effects on the aquatic ecosystem?" and KU 2.1 "How will the science-based benchmarks be validated and updated?" Progress on reducing these KUs, and associated learnings, are described in annual AMP reports.

Aquatic health monitoring results relevant to MQ 5 and KU 5.1 are discussed in Sections 3 to 7. Please refer to the 2021 AMP Update (Teck 2021a) for more information on the adaptive management framework, including Management Questions, key uncertainties, continuous improvement; linkages between the AMP and other EVWQP programs; and AMP reporting. Progress on gaining new knowledge and reducing KUs is described in annual AMP reports (submitted July 31) and evaluating the answers to MQs are reported in MQ evaluation reports (various submission dates).

2 METHODS

2.1 Overview

The general approach for the LCO Dry Creek LAEMP includes analysis and interpretation of data in relation to the each of the study questions. This report includes data collected up to the end of 2022 calendar year for all study parameters. Historical data are also presented where appropriate.

Water quality and/or biological samples were collected from established monitoring areas in Dry Creek, the Dry Creek East Tributary, Grace Creek, Unnamed Creek, and the Fording River⁴ (Table 2.1, Figure 2.1). Monitoring areas sampled in 2022 included mine-exposed areas upstream and downstream of the DCWMS in Dry Creek, upstream and downstream of Dry Creek in the upper Fording River, Grace Creek, and reference areas (Dry Creek East Tributary, Unnamed Creek). It should be noted that water from the east tributary to Dry Creek (LC_DCEF) enters Dry Creek channel either upstream of LC_DCDS as surface water input (approximately 20% of LC_DCEF flow) or enters Dry Creek further downstream as groundwater input (upstream of LC_DC4; approximately 80% of LC_DCEF flow; Golder 2019b). Results from the flow accretion study are used to help interpret water quality and aquatic health results in the Dry Creek LAEMP.

Collection of benthic invertebrate tissue and community samples continued at LC_GRCK in 2022, as the aqueous selenium concentration threshold required for biological monitoring at that area (50% of samples in a given year >2 μ g/L) was met in 2021 (62%; Minnow 2021a). The same threshold applies to LC_UC; however, it was not met in 2021 (Minnow 2021a) so biological sampling was not conducted at LC_UC in 2022.

Water quality monitoring and acute and chronic toxicity testing results presented in this report represent requirements specified under Permit 107517 (ENV 2013 and 2021, respectively; Table 2.2). Biological sampling in 2022 was completed in accordance with the 2022 LCO Dry Creek LAEMP study design (Minnow 2022b).

The methods associated with sample collection, laboratory analysis, and data analyses are described in the following sections and in Appendix A.

⁴ Areas DC1, DCDS, FRB and FRUS have been sampled since 2014. Areas LC_DC3, LC_DCEF, LC_DC2, and LC_DC4 were not sampled for the LCO Dry Creek LAEMP prior to December 2018. Biological sampling was not conducted at area LC_SPDC prior to December 2018.

Table 2.1: Monitoring Areas Associated with LCO Dry Creek LAEMP, 2022

		Sampling Location												
Area	Area Type	Teck Location	Biological Sampling Area	Environmental Monitoring Station Number	Location Description	_	TM Zone 11U)							
		Code	(Alternative Names)	(EMS #)		Easting	Northing							
	Mine-exposed	LC_DC3	-	E288273	Dry Creek upstream of Headpond	658294	5540918							
	Reference	LC_DCEF	-	E288274	East Tributary near confluence with Dry Creek	658260	5541295							
	Mine-exposed	LC_SPDC ^a	-	E295211	Dry Creek sediment ponds outlet; effluent to Dry Creek	657821	5542042							
Dry Creek	Mine-exposed	LC_DCDS	-	E295210	Dry Creek downstream of sediment ponds outlet	657766	5542073							
	Mine-exposed	LC_DC2	-	-	Dry Creek approximately 0.6 km downstream from sediment ponds outlet	657445	5542561							
	Mine-exposed	LC_DC4	-	-	Dry Creek 1.6 km downstream from the sediment ponds outlet	657172	5543327							
	Mine-exposed	LC_DC1	LC_DC1 (DRCK)	E288270	Dry Creek upstream of Fording Mine Road	656519	5544658							
	Mine-exposed	FR_FR5 ^b	-	-	Fording River upstream of Dry Creek and Ewin Creek, and downstream	657173	5548723							
Fording River	Mine-exposed	_b	LC_FRUS (FO28)	E295232	of Chauncey Creek	656307	5545255							
	Mine-exposed	LC_FRB	LC_FRB (FO29)	-	Fording River downstream of Dry Creek	655275	5543711							
Unnamed Creek	Reference	LC_UC°	-	E295213	Unnamed Creek	655351	5543087							
Grace Creek	Mine-exposed	LC_GRCK	-	E288275	Grace Creek upstream of the CP rail tracks	654303	5540755							

Historical Sampling Areas for LCO Dry Creek LAEMP (Minnow 2019).

Note: "-" indicates no data available.

^a LC_SPDC was discontinued as a biological sampling location when the DCWMS pipe was extended in 2020. 2021 samples were collected for antiscalant addition system monitoring.

^b The requirement to sample water at LC_FRUS was removed from Permit 106970 in late summer of 2015. FR_FR5 has been included as an alternative station. FR_FR5 is not a permitted water monitoring station, therefore, sampling location and frequency may change.

^c Unnamed Creek is currently not included as a biological sampling area as it did not trigger the mine effect level necessitating additional monitoring in 2022 (Minnow 2022).

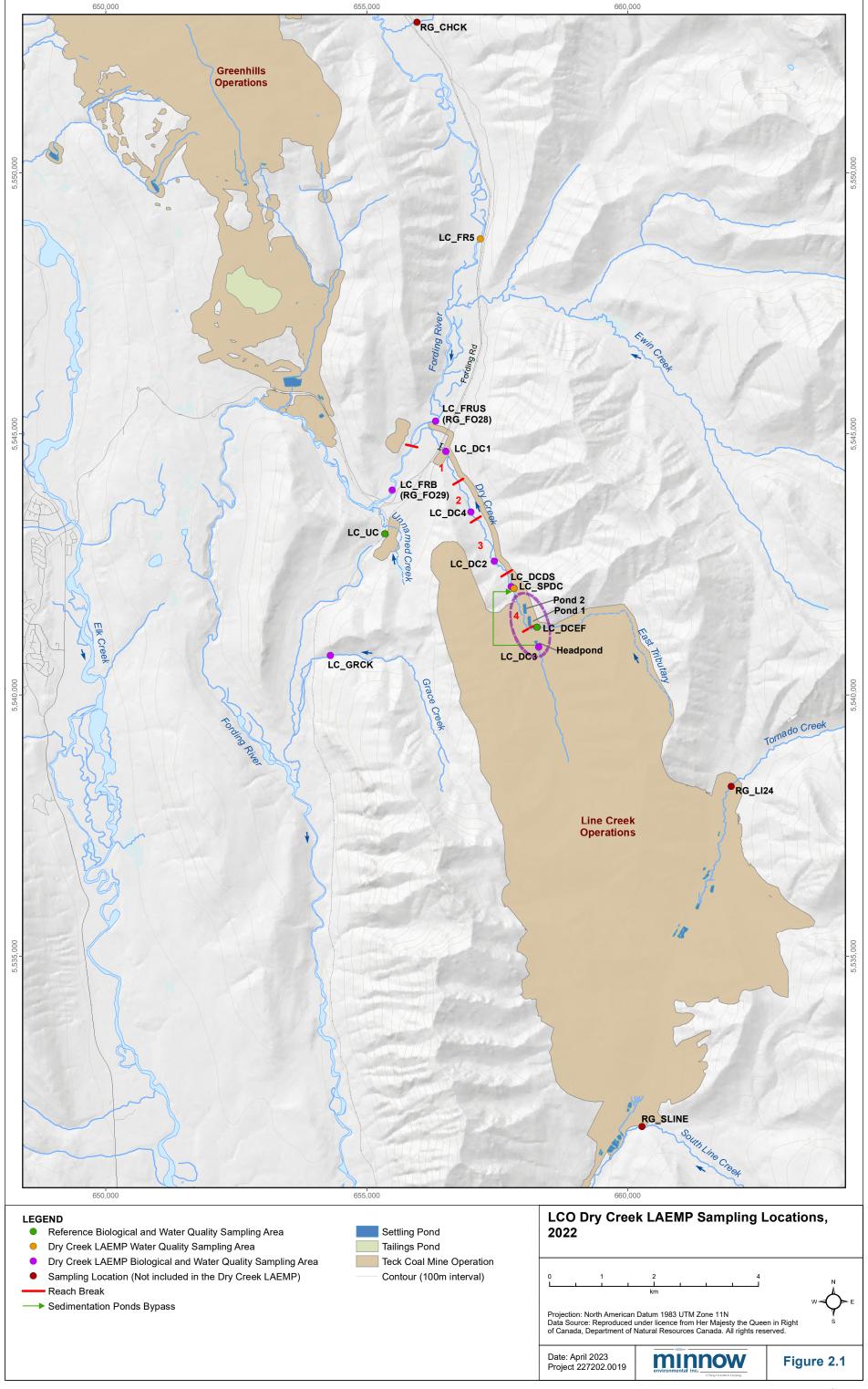


Table 2.2: Summary of Water Quality Monitoring for Permit 107517

					U	ТМ		Water Quality	Samples		
Area	Area Type	Teck Water Station Code	EMS	Location Description	(NAD83, 2	Zone 11U)	Field	All Other Parameters	Selenium	Tox	cicity ^d
700	700 1360	(Biological Station Code)	Number	2000.011 200011ption	Easting	Northing	Parameters ^a	Required Under Mine Permits ^b	Speciation Sampling ^c	Acute	Chronic
	Mine-exposed	LC_DC3	E288273	Dry Creek upstream of Headpond	658294	5540918	BP-W/M	BP-W/M	BP-W/M	-	-
	Reference	LC_DCEF		Dry Creek East Tributary near confluence with Dry Creek	658260	5541295	М	М	-	-	-
	Mine-exposed	LC_SPDC ^e	I - 705711	Dry Creek sediment ponds outlet; effluent to Dry Creek	657821	5542042	М	М	-	Q	-
Dry Creek	Mine-exposed	LC_DCDS		Dry Creek downstream of sediment ponds outlet	657766	5542073	BP-W/M	BP-W/M	BP-W/M	-	Q/SA ^f
	Mine-exposed	LC_DC2		Dry Creek approximately 0.6 km downstream from sediment ponds outlet	657445	5542561	-	-	Q	-	-
	Mine-exposed	LC_DC4	_	Dry Creek 1.6 km downstream from the sediment ponds outlet	657172	5543327	-	-	Q	-	-
	Mine-exposed	LC_DC1 (DRCK)		Dry Creek upstream of Fording Mine Road	656519	5544658	W/M	W/M	-	-	-
Fording River	Mine-exposed	LC_FRUS ⁹		Fording River upstream of Dry Creek and Ewin Creek, and downstream of Chauncey Creek	656307	5545255	М	М	-	-	-
Rivei	Mine-exposed	LC_FRB (FO29)	ı	Fording River downstream of Dry Creek	655275	5543711	М	М	ı	1	-
Unnamed Creek	Reference	LC_UC ^h	E295213	Unnamed Creek	655351	5543087	М	М	-	1	-
Grace Creek	Mine-exposed	LC_GRCK	1 - 7887/5	Grace Creek upstream of the CP rail tracks	654303	5540755	М	М	-	-	-

Notes: "-" indicates no data available; BP-W/M = Weekly frequency March 15 to at least August 31 during bypass of the LCO Dry Creek Water Management System, monthly during the rest of the year; W/M = weekly from March 15 to July 15, monthly for the remainder of the year; M = monthly; SA = semi-annually; Q = quarterly.

^a Dissolved oxygen, water temperature, specific conductance, conductivity, and pH (see Table A.1).

^b Parameters consistent with Permit 107517 (see Table A.1 for details).

^c Samples for selenium speciation analysis collected in April, June, September, and December within a week of biological sampling.

^d Acute toxicity testing as per permit 107517 requirement. Chronic toxicity testing as per permit 107517 requirement.

^e LC SPDC was discontinued as a biological sampling location when the DCWMS pipe was extended in 2020. Sampled as part of antiscalant addition system monitoring.

f Quarterly chronic toxicity tests: Ceriodaphnia dubia and algae. Semi-annual tests: fathead minnow (Q1 & Q3), rainbow trout (Q2 & Q4), and Hyalella azteca (Q2 & Q4).

⁹ The requirement to sample water at LC_FRUS was removed from Permit 106970 in late summer of 2015. FR_FR5 has been included as an alternative station. FR_FR5 is not a permitted water monitoring station, therefore, sampling location and frequency may change.

h Unnamed Creek is currently not included as a biological sampling area as it has not triggered the mine effect level necessitating additional monitoring (Minnow 2020b).

2.2 Study Question 1: Water Quality

2.2.1 Routine Water Quality

Water quality data assessed as part of the LCO Dry Creek LAEMP included data collected for routine monitoring managed by Teck, as well as data collected concurrently with benthic invertebrate sampling at unpermitted biological monitoring areas (Tables 2.1, 2.2).

2.2.2 Laboratory and Data Analysis

Preparation of the 2014 Elk Valley Water Quality Plan (EVWQP) required derivation of science-based benchmarks for nitrate, sulphate, cadmium, and selenium. Risks associated with these constituents depend on their concentrations, concentrations of other water chemistry parameters known as exposure and toxicity modifying factors (ETMFs), and the sensitivity of aquatic receptors that could be exposed. The EVWQP benchmarks were derived, using a large body of published and site-specific information available at that time, to represent scientific best estimates of concentrations associated with no effects and defined levels of potential effect on chronic, sublethal endpoints for sensitive aquatic species. Margins of safety were incorporated in benchmark derivation to account for uncertainty and Teck committed to undertaking further study and periodic updates to progressively reduce that uncertainty and improve confidence in the benchmarks.

Studies conducted to progressively reduce uncertainty in benchmarks have included additional chronic toxicity studies of nitrate, sulphate, cadmium, and selenium individually and in mixtures, annual evaluation of water quality under the regional chronic toxicity monitoring program, updates to selenium bioaccumulation models in 2017 and 2022, development of new tools to predict bioaccumulation in relation to selenium speciation, and most recently an extensive program of validation and updates to the science-based benchmarks under Teck's Adaptive Management Plan (AMP). This program was undertaken to answer Management Question (MQ) 2 under the AMP: Will the aquatic ecosystem be protected by meeting the long-term site performance objectives? and associated key uncertainty 2.1: How will the science based benchmarks be validated and updated? The MQ2 program was developed with input from the Elk Valley Environmental Monitoring Committee (EMC) and results have been shared with the EMC on an ongoing basis since the program began.

A key outcome of the MQ2 program was the development of an updated compilation of chronic toxicity information for nitrate, sulphate, and selenium, including information available at the time of the EVWQP and studies conducted after the EVWQP. For nitrate and sulphate, the updated compilation represented a substantial increase in available toxicity information for key test species. This updated compilation was used to validate the EVWQP benchmarks and,

where warranted, to derive updated effects concentrations that incorporate this new information (WSP Golder 2022). As in the EVWQP, the objective was to derive scientific best estimates of concentrations associated with no effects or defined levels of potential chronic, sublethal effect to sensitive species and life stages relevant to the Elk Valley. The analysis in WSP (2022) concluded that the updated effects concentrations for nitrate and sulphate are supported by a larger dataset covering a wider range of conditions than was available at the time of the EVWQP, and thereby provide an improved basis for evaluating potential effects of these constituents.

Water samples were analyzed by ALS Environmental, Calgary, Alberta, for constituents consistent with Permit 107517 (i.e., conventional parameters, major ions, nutrients, and total and dissolved metals) using standard methods (Appendix A1.3).

Water samples were analyzed by Brooks Applied Labs, Seattle, Washington for selenium speciation analysis (including concentrations of selenate, selenite, DMSeO, MeSe(IV), methaneselenonic acid, selenocyanate, selenomethionine, selenosulphate, and unknown selenium species).

Water quality data were downloaded from Teck's EQuIS database and included both routine monitoring results collected by Teck and samples collected concurrently with biological sampling. Analyses of water quality data were completed using the following approaches (see Appendix A.1 for detailed methodology):

- Tabular and graphical comparison to applicable benchmarks⁵, concentration effects limits,
 SPOs, and BCWQGs;
- Principal Component Analysis (PCA) to condense water quality results for use in benthic invertebrate community correlation analysis;
- Evaluation of temporal trends in monthly mean water quality concentrations using two tests:
 - o Non-parametric seasonal Kendall test;
 - Two-way censored regression Analysis of Variance (2-way ANOVA);

Following the completion of the statistical analyses (Appendix A1.4), the following four criteria were applied to the water quality results to focus data interpretation for the present report. Those water quality constituents that met each of criteria 1 to 3 listed below and those that met criteria 4 (either independently of or in addition to meeting criteria 1 to 3 below) were selected

⁵ In 2022, potential risks to aquatic life associated with selenium were assessed by evaluation of tissue selenium results in biota as compared to primarily using EVWQP benchmarks for aqueous selenium.

as the focus for data interpretation. The four criteria applied to the water quality results are as follows:

Criteria 1: Constituents had concentrations that were above applicable BCWQGs and/or exceeded site-specific effect benchmarks in the majority (> 50%) of samples in a year at the majority (\geq 50%) of the mine-exposed areas on Dry Creek in 2022 (i.e., \geq 3 areas);

Criteria 2: Seasonal Kendall trend analysis indicated significant increases in concentration with a trend slope (average percentage change in concentration per year) > 50% at the majority (≥ 50%) of the mine-exposed areas on Dry Creek in 2022 (i.e., ≥ 3 areas);

Criteria 3: 2-way ANOVA analysis indicated concentrations increased >100% between the first year of sampling and 2022 and were significantly higher in 2022 than 2021 at the majority (\geq 50%) of the mine-exposed areas on Dry Creek in 2022 (i.e., \geq 3 areas);

Criteria 4: Constituents that have existing SPOs for Dry Creek (total selenium and total cadmium) and/or have previously been identified by Structured Decision Making (SDM) and/or AMP response frameworks on Dry Creek (total selenium, nitrate, sulphate, and non-selenate selenium species).

2.3 Study Question 2: Acute and Chronic Toxicity

Permit 107517 requires that water samples be collected quarterly at LC_SPDC by LCO operations for acute toxicity testing⁶, however, following a multiple toad mortality event in October of 2022 (RAPP #22-039122) acute toxicity testing was also completed at LC_DC3 and LC_DCDS weekly through October. The acute toxicity tests were conducted at LC_SPDC, LC_DC3, and LC_DCDS using *Oncorhynchus mykiss* and *Daphnia* spp. (see Appendix A2 for detailed methods).

Chronic toxicity tests were also completed on water samples collected quarterly and semi-annually in 2022 at area LC_DCDS (Table 2.2; Figures 1.4 and 2.1) as per the Permit 107517 Chronic Toxicity Program integration amendment (March 4, 2019). The quarterly and semi-annual tests were conducted using *Pseudokirchneriella subcapitata, Ceriodaphnia dubia, Hyalella azteca, Oncorhynchus mykiss,* and *Pimephales promelas* (detailed methodology can be found in Appendix A3). Water quality samples were collected during toxicity testing to

⁶ Additional testing occurred in May and June 2022 when flocculant blocks are added to Dry Creek.

support evaluation of toxicity results (see Appendix A3 for detailed methods). See Teck 2023 and WSP 2023 for details on acute and chronic toxicity testing, respectively.

2.4 Study Questions 3 and 4: Benthic Invertebrates

2.4.1 Overview

In 2022, biological sampling (i.e., benthic invertebrate community and tissue chemistry) and calcite assessment for the LCO Dry Creek LAEMP met the requirements outlined in the 2022 LCO Dry Creek LAEMP study design (Tables 2.3 and 2.4; Minnow 2022b).

2.4.2 Study Question 3: Benthic Invertebrate Community

Triplicate benthic invertebrate community samples were collected in September except LC_DCDS (n= 5). Benthic invertebrate community was also collected from LC_DCDS in May (n=5) and November (n=2) to comply with the benthic tissue permit limit (ENV 2023; see Section 1.1); however, ice conditions precluded sampling at all three of the five riffles in November. Replicates were collected from three (or five) stations within each sampling area either in separate riffles or in riffle sections a minimum of 50 m apart, where habitat allowed, and sampling could be completed safely. Effort was made to target similar habitats for collection of both benthic invertebrate community and tissue samples within each sampling area. Benthic invertebrate community samples were collected according to the Canadian Aquatic Biomonitoring Network (CABIN) protocol (detailed methodology can be found in Appendix A5.2.1; Environment Canada 2012).

2.4.2.1 Laboratory and Data Analysis

Benthic invertebrate community samples were sent to Cordillera Consulting (lead taxonomist Scott Finlayson), in Summerland, BC, for sorting and taxonomic identification. Total organism abundance was reported for every distinct taxon identified in each sample (see Appendix A5.2.2 for detailed methodology, see Appendix K for raw data).

Benthic invertebrate community condition was evaluated based on total abundance, taxonomic richness (to the lowest practicable level of taxonomy), and the abundances and proportional abundances (%) of major taxonomic groups. Analyses of benthic invertebrate community data were completed using the following approaches (see Appendix A5.2.4 for detailed methodology):

Table 2.3: Benthic Invertebrate Community Sampling for Dry Creek LAEMP, 2022

Are	ea	Мау	June	September	November
Mine-exposed	LC_DC3	-	-	n=3 (√)	-
Reference	LC_DCEF	-	-	n=3 (√)	-
	LC_DCDS	n=5 (√)	-	n=5 (√)	n=2
	LC_DC2	-	-	n=3 (√)	-
	LC_DC4	-	-	n=3 (√)	-
Mine-exposed	LC_DC1	-	-	n=3 (√)	-
	LC_FRUS	-	-	n=3 (√)	-
	LC_FRB	-	-	n=3 (√)	-
	LC_GRCK	-	-	n=3 (√)	-

Notes: "-" Indicates area was not sampled. " $\sqrt{}$ " = target sample size was met. Target sample sizes were not met at LC_DCDS in November due to ice conditions.

- Graphical comparison of data relative to regional⁷ and site-specific normal ranges⁸;
- Evaluation of temporal changes in endpoints from mine-exposed areas relative to reference, and in the Fording River downstream relative to upstream of Dry Creek, using a two-way ANOVA;
- Assessment of relationship between benthic invertebrate community structure and physical and chemical parameters using non-parametric (Spearman Rank) correlations.

Benthic invertebrate community data collected in September were the focus of data analyses and interpretation. See Appendix A4.2.4 for additional rationale.

2.4.3 Study Question 4: Benthic Invertebrate Tissue Selenium

Benthic invertebrate tissue chemistry sampling was completed in accordance with the 2022 LCO Dry Creek LAEMP study design (Table 2.4; Minnow 2022b).

Samples were collected using the kick and sweep method described in Appendix A4.2.1, except collections were not timed, and kicking continued only until sufficient organisms were collected. All sampling events included collection of a composite sample of a variety of benthic invertebrate taxa (composite-taxa samples; see Appendix A5.3.1 for detailed methodology).

2.4.3.1 Laboratory and Data Analysis

Frozen samples were shipped by courier to TrichAnalytics Inc. in Saanichton, BC. Analyses of composite-taxa benthic invertebrate tissue selenium data were completed using the following approaches (see Appendix A5.3.3 for detailed methodology):

- Graphical comparison of tissue selenium concentrations relative to applicable benchmarks and the regional normal range;
- Comparison of observed tissue selenium concentrations to those predicted using a selenium bioaccumulation tool;
- Evaluation of changes in tissue selenium concentrations among sampling events in 2022 at mine-exposed areas relative to reference, and in the Fording River downstream relative to upstream of Dry Creek, using a two-way ANOVA;

⁸ Site-specific normal ranges represent the 2.5th and 97.5 percentile for a given area as determined by habitat predictors for a given site in relation to the complete set of Elk Valley monitoring areas. The site-specific normal ranges were estimated using regression modelling as presented in the RAEMP (Minnow 2020c).

⁷ The reference normal range as presented in the RAEMP represents the 2.5th and 75th percentiles of the distribution of reference area data (pooled 2012 to 2019 data) reported in the 2017 to 2019 RAEMP report (Minnow 2020c).

Table 2.4: Benthic Invertebrate Composite-Taxa Tissue Sampling for Dry Creek LAEMP, 2022

Are	ea	Мау	June	September	November
Mine-exposed	LC_DC3	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)
Reference	LC_DCEF	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)
	LC_DCDS	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)
	LC_DC2	n=5 (√)	n=5 (√)	n=5 (√)	-
	LC_DC4	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)
Mine-exposed	LC_DC1	n=5 (√)	n=5 (√)	n=5 (√)	-
	LC_FRUS	n=5 (√)	-	n=5 (√)	n=5 (√)
	LC_FRB	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)
	LC_GRCK	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)

Notes: "-" = area was not sampled. " $\sqrt{}$ " = target sample size was met. Samples were not collected from LC_FRUS in June due to high water. Samples were not collected from LC_DC2 and LC_DC1 in November due to ice conditions.

2.5 Study Question 5: Fish and Fish Habitat

Annual fish sampling and redd surveys have been conducted in LCO Dry Creek since 2013 and 2015, respectively, to support different monitoring programs. There was minimal fish sampling completed in 2020 and in 2021 to limit stress on WCT populations related to sampling activities. The decision to limit fish handling was based on feedback from the Elk Valley Fish and Fish Habitat Committee (EVFFHC) and it was implemented as a proactive response to an observed decline in the WCT population of the UFR in 2019 (Cope 2020). The sampling and data analysis methods and results for 2022 are summarized from the LCO Dry Creek 2022 Population Monitoring Report (WSP & Poisson 2023).

2.5.1 Physical Habitat, Temperature, Flow, Calcite, and Dissolved Oxygen

2.5.1.1 Water Temperature

The Dry Creek water temperature monitoring program began in 2016 at six locations in Dry Creek and one location in the East Tributary of Dry Creek (DRY-WQ01 to 07; Table 2.5). Two additional monitoring locations (LC_DRY_US_TRB5 and LC_DRY_DS_TRB5) were added in Tributary 5 of Dry Creek in 2022. The temperature sensors at DRY-WQ06 in the old Sedimentation Pond outlet were decommissioned October 5, 2020, and replaced by DRY-WQ07 in the new Sedimentation Pond outlet stream on June 21, 2021. The stations were last downloaded October 25, 2022 except for DRY-WQ04, which ended on August 4, 2022 as a result of data loss caused by data loggers reaching capacity early (Table 2.5). Metrics used to characterize water temperature regime and their processing methods are provided in Table 2.6. Three metrics were used to represent water temperature in Dry Creek: daily mean temperature, mean weekly maximum temperature (MWMxT), and growing season (season length in days and intensity in degree days [growing season degree days], GSDD).

During data collection and analysis steps are taken to ensure high quality data. Two temperature loggers were installed at each monitoring location for duplication and quality assurance (QA). The sensors were installed, to the extent feasible, to avoid freezing, burial under sediment, and dewatering. Loggers were downloaded several times per year to minimize data loss, and the two downloaded time series were reviewed and averaged to generate a single time series for each location. The averaged water temperature data series then underwent further processing and QA by trained staff and senior biologists to identify and remove periods where the water temperature data may not be representative of the stream (e.g., if a dewatered logger is measuring air temperature). Data gaps of less than one-hour duration were infilled using linear interpolation where possible. When the QA process was completed, the data were analyzed to generate the relevant summary metrics provided in (Table 2.6).

Table 2.5: Summary of Water Temperature Monitoring Stations in Dry Creek

Waterbody	Site Name	Site Description ¹		oordinates U, NAD83)	Elevation (masl) ¹	Start of Record	End of Record	Number of Days with	Gaps in Record
			Easting	Northing	- ` ′			Valid Data	(%)
Dry Creek East Tributary	DRY-WQ03	~20 m upstream of East tributary bridge	658,269	5,541,290	1,701	06-Jun-2016	25-Oct-2022	2,331	0
Dry Creek	DRY-WQ04	~50m upstream from the East tributary confluence	658,132	5,541,240	1,690	06-Jun-2016	04-Aug-2022	2,250	0
	DRY-WQ02	~80m downstream of East tributary	658,069	5,541,281	1,686	06-Jun-2016	25-Oct-2022	2,309	1
	DRY-WQ06 [†]	Settling pond outlet channel	657,808	5,542,061	1,642	07-Oct-2016	07-Oct-2020	1,489	0
	DRY-WQ07	Settling pond outlet channel	657,808	5,542,061	1,642	25-Jun-2021	25-Oct-2022	486	10
	DRY-WQ05 [†]	Downstream of settling pond	657,749	5,542,082	1,642	07-Sep-2016	25-Oct-2022	2,009	10
	DRY-WQ01	~100m upstream of Dry/Fording River confluence	655,972	5,544,842	1,515	06-Jun-2016	24-Oct-2022	2,330	0
Dry Creek Trib 5	LC_DRY_US_TRB5		657,423	5,542,555	1,617	18-May-2022	25-Oct-2022	130	18
	LC_DRY_DS_TRB5		657,433	5,542,595	1,616	18-May-2022	25-Oct-2022	159	0

Estimated using Google Earth; masl = metres above sea level

Table 2.6: Summary of Water Temperature Metrics, Calculation Methods and Treatment of Data Gaps

Parameter	Description	Method of Calculation	Treatment of Data Gaps
Daily average water temperature	Mean temperature on each day	Average of all data points (15 minute intervals) in a 24-hour period.	Days with <21 hours data excluded.
MWT	Mean Weekly Temperature (Maximum and Minimum)	A centered 7-day moving-average is applied to the series of daily-maximum water temperatures (see description of daily maximum); e.g., if MWMxT = 15°C on August 1, this is the average of the daily-maximum water temperatures for the 7 days from July 29 to August 4. The same procedure is used for daily-minimum water temperature (MWMinT). MWTs are compared to activity period optima (e.g., spawning, incubation, summer rearing) for species and life stages.	hourly measurement between 11:00 and 18:00 are excluded. Moving average is calculated over period with data. Activity periods with <50% data coverage are not reported.
Growing season degree days (GSDD)	The beginning of the growing season is defined as the date MWT exceeds and remains above 5°C; the end of the growing season is defined as the date MWT drops below 4°C (Coleman and Fausch 2007).	A degree day is the average temperature during a day; GSDD is calculated by taking the sum of daily average water temperatures over the growing season (i.e., from the first day of the first week when weekly average temperatures reach and remain above 5°C until the last day of the first week when weekly average temperature drop below 4°C).	

² FRD-WQ03 data contain a gap from September 3 to October 23, 2021 because the sensor was dewatered

Results are compared to BC Water Quality Guidelines (WQG) for the protection of aquatic life (Oliver and Fidler 2001) or other reference points for reporting (i.e., Coleman and Fausch 2007). To assess suitability compared to WCT life activity stages, MWMxT is compared to the optimum temperature ranges provided by the BC WQG (Oliver and Fidler 2001) for WCT spawning, incubation and rearing. WQG state that water temperature should not exceed 1°C beyond optima for species and life activity stage; exposure to prolonged periods of warm water is a useful indicator of potential thermal stress experienced by fish or other organisms. The number of growing degree days was also calculated for each water temperature monitoring location. For interior subspecies of Cutthroat Trout, recruitment failure may occur when there are less than 800 degree days in a growing season; recruitment may be uncertain in years when there are 800 to 900 growing degree days; and recruitment sufficient to sustain the population is expected when growing degree days exceed 900 (Coleman and Fausch 2007).

2.5.1.2 Flow

Streamflow is a "master variable" that influences myriad components of flowing water systems (Poff et al. 1997; Annear et al. 2004). In this report, we focus on timing and magnitude of low flows during the non-freshet period and high flows during freshet. Low flows during the non-freshet period may indicate habitat limitations during an activity period; evidence of anomalous high flows during freshet can be used to infer direct effects to fish (e.g., scour of redds or displacement of free-swimming individuals) or rapid changes to stream morphology. High magnitude flows during freshet also have positive ecological effects and are referred to as channel-maintenance or flushing flows. These high flows maintain gravel quality, sediment dynamics, connectivity with off-channel habitat and riparian communities, and healthy vegetation dynamics in riparian communities. Timing and duration of high and low flows were also examined.

Flow data for Dry Creek were collected in 2022 by Teck and Kerr Wood Leidal (KWL) at the hydrometric station LC_DC1. LC_DC1 is located in Dry Creek upstream of the confluence with the Fording River (Figure 2.1). Instantaneous flow at 5-minute and 15-minute intervals recorded at LC_DC1 were averaged into hourly flow data; days with less than 20 hours of data were excluded from the dataset. Additionally, months with less than 20 days of data were not used in the calculations of mean monthly discharge. Mean monthly flow for the period of record was tabulated and a hydrograph showing mean daily flows was created to present flows relative to timing and duration (periodicity) of life history activity periods for WCT in Dry Creek. The periodicity used here was developed collaboratively and previously reported in Teck (2021c). Monthly flow statistics were also tabulated for the Water Survey of Canada (WSC) gauge at Fording River at the Mouth (WSC 08NK018; Government of Canada 2023) for comparison.

The WSC 08NK018 gauge is in Fording River <0.5 km downstream of the confluence with Line Creek.

Summary statistics were reviewed and examined for anomalies within the main WCT activity periods. Pre-existing thresholds for effects are not available, so the evaluation of low flows was done qualitatively. A preliminary flushing flow threshold of 1.0 m³/s for a 2-day duration as measured at LC_DC1 was developed and presented in West *et al.* (2021). Recent historical flows as measured at LC_DC1 were calculated and tabulated relative to this flushing flow threshold to describe existing conditions in Dry Creek.

2.5.1.3 Dissolved Oxygen

Dissolved oxygen (DO) is an important parameter of water quality relevant to all aquatic life, and particularly salmonids, which are sensitive to low DO conditions (Committee on the Status of Endangered Wildlife in Canada [COSEWIC] 2016). The annual minimum and 30-day mean DO concentrations (from discrete *in situ* measures, a minimum of four samples a month, except LC_DCEF which is sampled once a month)) at five locations (LC_DCEF, LC_DC1, LC_DC2, LC_DC4, and LC_DCDS) in Dry Creek in 2022 were evaluated for key life history activity periods for WCT (e.g., spawning and incubation) to determine if DO minima may negatively impact WCT recruitment or survival. The annual minimum and 30-day mean DO concentrations were also compared to the water column long-term BCWQG of 11 mg/L for buried embryo/alevin life stages as well as the instantaneous minimum criterion for the protection of embryo/alevin life stages (9 mg/L), the 30-day mean for all other fish life stages (8 mg/L), and the Instantaneous Minimum for All Other Life Stages (5 mg/L).

2.5.2 Fish Abundance, Density and Condition

2.5.2.1 Electrofishing

Backpack electrofishing surveys to estimate juvenile densities were conducted in Dry Creek by Lotic in 2022. Two survey methods were used following the study design of the 2022 UFR WCT monitoring program (Thorley et al. 2022c). A total of four sites were sampled in 2022, one closed site and three open sites (Table 2.7, Figure 2.2). Sites are named for the distance in metres from the confluence with the UFR. Where these sites correspond to locations sampled in previous years, that name is noted.

A single closed site (DRY-600) sampled was in the same location as the site called DRY1
that was sampled in previous years and, as in previous years (e.g., Cope et al 2016,
Faulkner et al. 2020), three mesohabitats were sampled. Removal-depletion methods

Summary of Electrofishing Sites Sampled in 2022 Table 2.7:

Site Name	Location (km ^a)	Date Sampled	Site Type	Mesohabitat	Number of Passes	Site Length (m)	Average Site Width (m)
DRY-100o	0.12	24 August 2022	Open	NA	2	295	4.4
DRY-600 (DRY1)	0.56	24 August 2022	Closed	Pool	1	16	4.0
DRY-600 (DRY1)	0.56	24 August 2022	Closed	Riffle	1	12	5.0
DRY-600 (DRY1)	0.56	24 August 2022	Closed	Glide	1	25	4.0
DRY-2400o	2.37	25 August 2022	Open	NA	1	295	4.7
DRY-4400o (DRY4.3)	4.37	24 August 2022	Open	NA	1	300	4.2

a. km refers to the distance upstream from the confluence of LCO Dry Creek with the upper Fording River.
b. NA – not applicable
Source: WSP & Poisson 2023

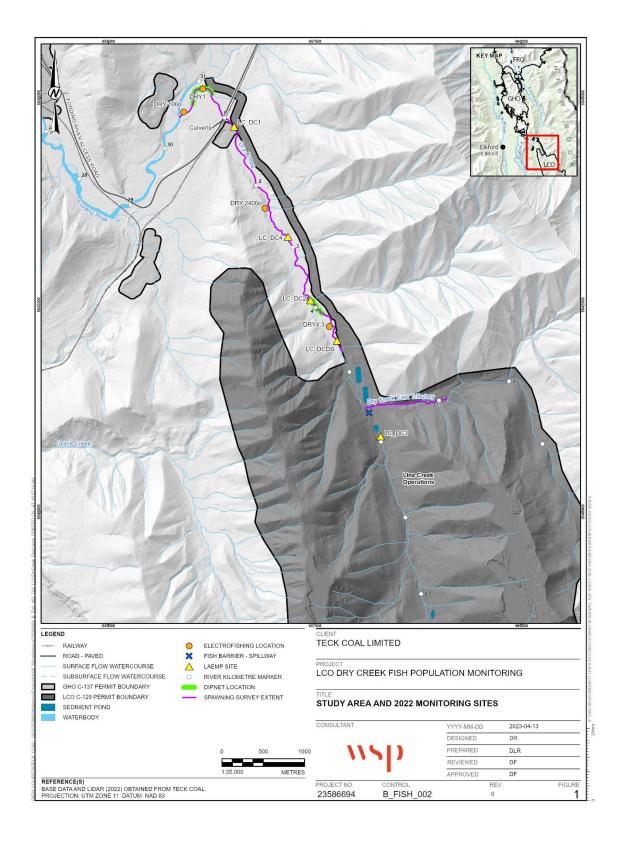


Figure 2.2: LCO Dry Creek Fish Population Monitoring Study Area Sample Sites and Survey Areas

- were used in three mesohabitats of approximately 10 to 35m² in length (total of ~100 m²).
 The mesohabitats were isolated at the upstream and downstream boundaries using stopnets. One electrofishing pass was conducted in each of the mesohabitats.
- Three open sites of approximately 300 m in length were randomly selected for sampling in 2022, one location downstream of the culverts at km 1 and two sites from upstream of the culverts which are partial barriers that allow upstream fish passage at some flows. Mark-recapture methods were used at large open (not isolated with stop-nets) sites approximately 300m in length, as they were in 2021 (Thorley et al. 2022a). A single electrofishing pass was conducted DRY 2400o and DRY-4400o (DRY4.3) and two passes were conducted at DRY 100o1.

A shift from the small, closed index sites to the large open sites that are randomly selected each year is underway across the UFR population monitoring program (Thorley et al 2022b). Bias associated with site selection of a relatively small area (closed sites) is reduced as a greater portion of the study area is sampled using large, open sites. The use of both electrofishing methods in 2021 and 2022 allows comparison to previous years of data that used only small, closed sites.

Fish processing followed the Teck backpack electrofishing protocol (Thorley et al. 2022c) and the 2022 study design for UFR WCT population monitoring (Thorley et al. 2022b). All captured fish were measured for fork length to the nearest 1 mm, weighed to the nearest 0.1 g, scanned for a Passive Integrated Transponder (PIT) tag (if larger than 99 mm), and photographed. The total number of fish observed but not captured was also recorded. A PIT tag was inserted into all uninjured fish ≥100 mm in fork length. Fish were inspected for any deformities, erosion, lesions, or tumours (DELT) and the information was recorded using the new DELT categories and scale (Ings and Weech 2020). Processed fish were allowed to recover before being released as close to their capture location as possible, preferably near cover and in slow moving water.

2.5.3 Redd Surveys

Surveys have been conducted in LCO Dry Creek each year from 2015 to 2022 to count the number of redds, which are where fish eggs are deposited and may contain multiple nests (e.g., Cope et al. 2016, Faulkner et al. 2019, Thorley et al. 2022a). The same general approach has always been used in these surveys, with two observers, one on each bank, walking in an upstream direction. Prior to 2021, the number of redds was recorded, but not the number of nests within the redd unless more than one spawning pair was observed (Cope 2020, Faulkner et al. 2020). Beginning in 2021, all visible nests were counted each week, which was

done to provide data suitable for the modelling approach that estimates the total count of unique nests using an area-under-the-curve model and estimates of the length of time that individual redds remain visible. Under a new standardized protocol which was implemented starting in 2021, each nest is classified as "definitive", that is nests with a distinct pit upstream of a loose mound of clean pebbles and gravels, or "potential", which includes test digs by females to evaluate the substrate, or older nests that are no longer distinct (Smit et al 2022). This is similar to methods used from 2016 to 2019 (Faulkner et al. 2020) where clearly visible redds were distinguished from possible redds, where gravel had been cleared and test digging had occurred but a redd was not clearly visible. The data from spawning surveys contribute to understanding spatial distribution and timing of spawning, but not should not be used to represent the number of fish that spawned.

In 2022, spawning surveys were conducted approximately weekly between early June and early August from the confluence of Dry Creek and the UFR to km 4.5 and 1 km of East Tributary was also surveyed (Figure 2.2). For each redd, the time, spatial coordinates, number of potential and definitive nests within the redd, and the number of adult fish associated with the redd were recorded. These data were used to estimate the total number of unique nests over the whole spawning season and provide information about timing and spatial distribution of spawning.

2.5.4 Dip Net Surveys

Backpack electrofishing rarely captures WCT in their first year (age-0s) because of their small size and patchy distribution. To supplement the electrofishing data, night-time dip-net surveys were conducted in LCO Dry Creek for the first time in 2022. Data from these surveys provides information about size-at-age, and some limited information on spatial distribution (occupancy, not relative density) of age-0 as well as age-1 fish. Dip-net surveys are conducted by a team of two observers walking the stream margins searching for fish less than 100 mm in length. Surveys were conducted on October 12, 13, and 14 at one site upstream of the culverts at km 3.8 (325 m of habitat) and one site downstream of the culverts (370 m of habitat).

The location and estimated body length were recorded for all observed WCT. Fish approximately 100 mm or less were captured using a hand net where possible and were measured, photographed, and a subset were weighed (to 0.01 g) before being released at their location of capture.

2.5.5 Data Analysis

The data from the backpack electrofishing data (2013 to 2022) were used to estimate fish density. The electrofishing data were analyzed using a hierarchical Bayesian removal model (Wyatt 2002). The model estimated capture efficiency using removal-depletion data from the subset of small,

closed sites that received more than one electrofishing pass. Capture efficiency was used in the model to estimate the absolute density of fish at each site. Density was estimated separately for the age-1 and age-2+ life stages. Other methods and key assumptions in the density model are discussed in the LCO Dry Creek 2022 Fish Population Monitoring Report (WSP & Poisson 2023).

Body condition was analyzed using weight-length regression. Length and weight data for individuals between 90 and 169 mm were analyzed using an allometric mass-length model to estimate body condition (He et al. 2008; Thorley et al. 2023a, 2023b). The simplified equation for body condition is:

Body condition = $W/(\alpha L\beta)$

Where W = is the weight (g) of the individual fish

 $\alpha = 6.6*10^{-6}$, the expected weight (g) of a 1 mm fish

L = is the length (mm) of the individual fish

 β = scaling term of 3.1

The α and β terms were calculated for fish from 90 to 169 mm using UFR monitoring data collected from 2013 to 2022 (Thorley et al. 2023a, Thorley et al 2023b). The model was used to estimate the percent difference in body condition of an LCO Dry Creek fish relative to a typical subpopulation in the UFR, in a typical year (Thorley et al 2023a). Additional details are available in the technical appendix to the UFR WCT population monitoring report (Thorley et al., 2023b).

Length data were also used to identify the sizes of different age classes in LCO Dry Creek using the electrofishing (2013 to 2022) and dip-net survey data (2022). Using field sampling methods that target the age-0 size range, age-0 were documented in LCO Dry Creek for the first time since 2016. These data were used in the length frequency histograms were used to assign length cutoffs by age class and to calculate the mean length-at-age of age-0s.

Data from all spawning surveys conducted from 2015 to 2022 are used for reporting total unique redds observed prior to 2020 and total definitive nests observed thereafter. In addition, for 2021 and 2022, an Area-Under-the-Curve (AUC) model (Hilborn et al. 1999; Su et al. 2001) was used to estimate the total number of unique definitive nests that would have been recorded over the whole sampling season by a typical observer (WSP & Poisson 2023). The AUC estimate of unique redds is roughly comparable to the previous total count of unique redds, and these data are used to assess trends over time.

3 STUDY QUESTION 1: WATER QUALITY

3.1 Background

The water quality monitoring data were evaluated to address Study Question #1: are aqueous concentrations of mine-related constituents elevated in relation to British Columbia Water Quality Guidelines (BCWQG) and Elk Valley Water Quality Plan (EVWQP) benchmarks, and are concentrations changing over time? To address this study question, monitoring of constituents listed under permit 107517 and selenium species were carried out in 2022 (see Sections 2.1 and Appendix A1 for details.

Water quality data collected concurrent with biological sampling for the present study were of acceptable quality as characterized by good detectability, appropriate LRLs, concentrations below LRLs in almost all method blank samples, minimal field blank contamination, excellent laboratory precision and accuracy, and good field sampling precision and reproducibility, with the exception of methylseleninic acid which had poor field precision (this is expected when results are close to the LRLs). Overall, the associated data are considered acceptable for this study (see Appendix B for details). QA/QC associated with water samples collected routinely by Teck for Permit 107517 were discussed in the 2022 annual water quality report for Permit 107517 (Teck 2023). Temporal changes in concentrations of aqueous constituents evaluated for the Dry Creek LAEMP were statistically evaluated as outlined in Appendix A. Although statistical analyses were completed for: 1) Order Constituents; 2) constituents with early warning triggers under the AMP; and 3) constituents that have previously identified and tracked through SDM and/or AMP response frameworks (listed in Section 2.1.1), detailed data interpretation was focused on those that satisfied the criteria listed in Section 2.1.2. In 2022, the constituents that satisfied the criteria for detailed data interpretation included nitrate, total cadmium, total selenium, and organoselenium species⁹ (Table 3.1). For graphical plots and the results of statistical analyses for remaining water quality constituents, see Appendix C.

3.2 Nitrate

Aqueous nitrate concentrations were higher than the BCWQG for long-term chronic exposure in >95% of samples at all Dry Creek and Fording River areas throughout 2022 (Table C.4). Reference and low impact stations (LC_DCEF, LC_UC, and LC_GRCK) were not above the BCWQG in 2022. The BCWQG for short-term acute exposure limit was also surpassed in

⁹ This interpretation focused on organoselenium species (particularly DMSeO and MeSe(IV) and specifically excluding selenite, selenate and other individual selenium species) as elevated concentrations of those constituents are captured in AMP response framework in 2020.

Table 3.1: Criteria for Detailed Evaluation of Water Quality Endpoints in 2022 LCO Dry Creek LAEMP

			Criteria	for Inclusion	
			Or Only		
Water Quality Endp	point	2-Way ANOVA ^a	Seasonal Kendall ^b	Guidelines/ Benchmarks/ Updated Effects Concentration ^c	SPO or AMP/SDM ^d
Nitrate (as N)		-	√	√	$\sqrt{}$
Total Kjeldahl Nitrog	en	\checkmark	-	-	-
Sulphate		\checkmark	-	-	-
Total Dissolved Solid	ds	\checkmark	-	-	-
Cadmium (Cd) -Tota	ıl	\checkmark	-	-	$\sqrt{}$
Lithium (Li) -Total		√	-	_e	-
Molybdenum (Mo) -	Total	√	-	-	-
Nickel (Ni) -Total		√	-	√	-
Selenium (Se) -Tota	I	√	√ _e		\checkmark
Uranium (U) -Total		√	-	-	-
Zinc (Zn) -Total		√	-	-	-
Cadmium (Cd) -Diss	olved	√	-	-	-
Se(IV) - Selenite		-	-	_e	-
Se(VI) - Selenate		-	-	_e	-
0f	DMSeO - Dimethylselenoxide	√	-	_e	$\sqrt{}$
Organoselenium ^f	MeSe(IV) - Methylseleninic Acid	√	-	_e	$\sqrt{}$

Criteria for detailed evaluation met.

Notes: "\" = criteria met, "-" = criteria not met, ANOVA = Analysis of variance, SPO = site performance objective, AMP = adaptive management plan, SDM = Structured Decision Making.

^a In 2-way ANOVA results, analyte concentrations increased >100% between first year of sampling and 2022 *and* were significantly higher in 2022 than 2021 at ≥ 50% (i.e., ≥ 3) of the mine exposed areas on Dry Creek (Appendix Table C.3).

^b In Seasonal Kendall results, analyte concentration trend slope (average percent increase per year) >50% at ≥50% (i.e., ≥ 3) of the mine exposed areas on Dry Creek in 2022 (Appendix Table C.2).

^c Analyte exceeded BCWQG and/or site-specific benchmark(s) and/or updated effects concentration(s) in 2022 (Appendix Table C.4).

^d Analyte has SPO for Dry Creek LAEMP area(s) under permit 107517 (ENV 2021) and/or elevated analyte concentrations have triggered AMP or SDM response frameworks (Appendix Table C.1).

^e No guidelines or benchmarks exist for lithium, total selenium, or organoselenium.

^f The 2020 AMP response framework for LCO Dry Creek (Teck 2021) identified dimethyl selenoxide (DMSeO) and methylseleninic acid (MeSe(IV)) as the two organoselenium species primarily generated by biological productivity within the Dry Creek Water Management System (DCWMS). Therefore, interpretation of organoselenium species herein was focused on these two organoselenium species (DMSeO and MeSe(IV)), and excluded consideration of selenite and other individual selenium species.

Dry Creek at LC_DC3, LC_SPDC, LC_DCDS, and LC_DC2 in 2022 (Figure 3.1; Table 2.2; Appendix Table C.4; Appendix Figure C.13).

Nitrate concentrations were above the level 1 UECs at all stations on Dry Creek, with the level 1 UEC less frequently surpassed at stations located furthest downstream (100% of samples at LC_DC3 and LC_DCDS to 79% of samples at LC_DC1; Figure 3.1; Appendix Table C.4). Approximately 70% of all samples at LC_DC3, LC_SPDC, and LC_DCDS, > 60% at LC_DC2, and > 20% of samples at the remaining stations located further downstream in Dry Creek (LC_DC4 and LC_DC1) had nitrate concentrations that were above the level 2 UECs, while none had concentrations above level 3 UECs in 2022. In the Fording River, at LC_DCEF, LC_UC, and LC_GRCK nitrate concentrations were below the UECs in 2022 (Appendix Table C.4; Appendix Figure C.13).

Nitrate concentrations have increased significantly over time at all Dry Creek areas since mining started in the watershed, as well as LC_DCEF, LC_FRB, and LC_GRCK (2012; Figure 3.1, Table 3.2; Appendix Tables C.2, C.3). Results of the 2-way ANOVA indicated that nitrate did not change in Dry Creek stations in 2022 relative to 2021; however, nitrate concentrations at LC_DCEF and LC_GRCK increased significantly in 2022 relative to 2021 (by ~45% at both stations; Appendix Table C.3). In the Fording River upstream of Dry Creek (LC_FRUS), nitrate concentrations decreased in 2022 relative to 2021 (Table 3.2; Appendix Table C.3). At reference area LC_UC, nitrate concentrations did not change significantly between 2022 and 2021 but did increase between 2020 and 2021 (Table 3.2; Appendix Table C.3). Despite the lack of statistically significant increases between 2022 and 2021 at other areas, annual mean and maximum aqueous nitrate concentrations were higher in 2022 than 2021 at all Dry Creek LAEMP stations and reference stations (LC_DCEF, LC_UC and LC_GRCK; Appendix Figure C.13, Appendix Table C.3; Minnow 2021a).

Annual mean and maximum nitrate concentrations in Dry Creek in 2022 were highest closest to spoiling at area LC_DC3 and decreased moving downstream (Figure 3.1; Appendix Table C.4). At areas LC_DC4 and LC_DC1, mean annual and maximum nitrate concentrations in 2022 were notably less than those observed at LC_DC2 which is adjacent (upstream) of LC_DC4 and LC_DC1 (Appendix Figure C.13; Appendix Table C.4). Annual mean and maximum nitrate concentrations in 2022 were higher at FR_FR5, than LC_FRUS and LC_FRB which are located farther downstream on the Fording River (upstream and downstream of Dry Creek, respectively; Figure 2.1; Appendix Table C.4). Elevated nitrate concentrations at areas FR_FR5, LC_FRUS and LC_FRB are primarily attributed to upstream mining sources from Fording River Operation.

At LC_DCDS in 2022, nitrate was identified as potentially causing observed effects in chronic toxicity tests with water fleas and amphipods (similar to the results seen from 2018 to 2021).

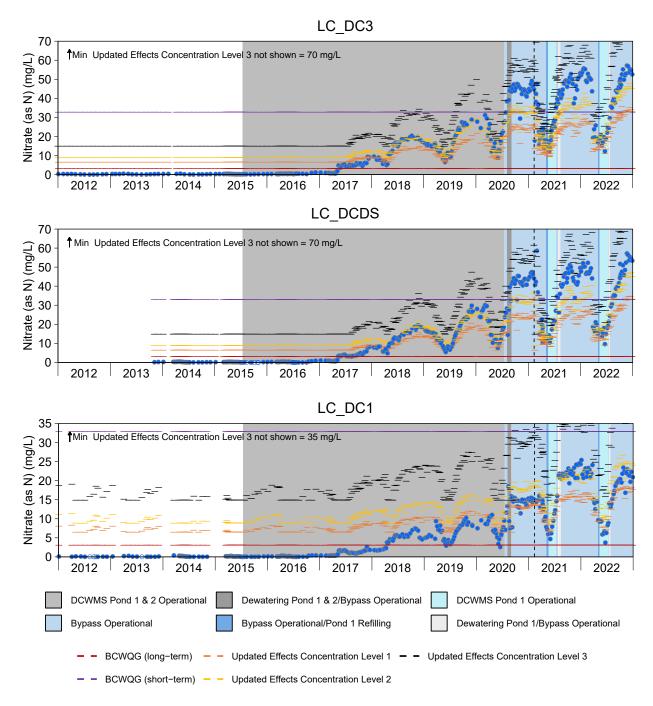


Figure 3.1: Time Series Plots for Nitrate from LCO Dry Creek LAEMP Areas, 2012 to 2022

Notes: Green data points are used for reference sites and blue data points are used for mine-exposed sites. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. When biological monitoring areas and routine water quality stations were in close proximity to each other and with no additional inputs between them, data collected at the biological monitoring area were combined with routine data and plotted together with the biological monitoring area depicted in parenthesis. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only apply to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, and LC_DC1).

Table 3.2: Summary of Water Quality Statistical Results and Comparison with Benchmarks and Guidelines, Dry Creek LAEMP, 2022

				Seasonal Kendall		2-way	Exceedances		
Enc	lpoint	Watercourse	# of Areas with Significant Change	with Change Since the Base Year Significant of Sampling ^b		Areas with Significant Change Between 2021 and 2022	Change Between 2021 and 2022	Range ^a of % Change Between First Year ^b of Sampling and 2022	BCWQG/ EVWQP Benchmarks/UECs
		Dry Creek	6	LC_DC3, LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, LC_DC1	29 to 96	LC_DC3, LC_SPDC, LC_DCDS, LC_DC4	√ (n=4)	187 to 5,293 (n=6)	+
Tota	al Selenium	Fording River	2	FR_FR5, LC_FRB	3.0 to 3.3	-	-	NS	+
		Other	2	LC_DCEF, LC_UC, LC_GRCK	0.8 to 5.9	-	-	NS	+
		Dry Creek	6	LC_DC3, LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, LC_DC1	22 to 90	-	ı	140 to 77,909 (n=6)	+
Nitra	ate	Fording River	2	FR_FR5, LC_FRB	1.2 to 1.8	LC_FRUS	√ (n=1)	NS	+
		Other	0	-	NS	LC_GRCK, LC_DCEF	GRCK, LC_DCEF		-
		Dry Creek	6	LC_DC3, LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, LC_DC1	25 to 68	LC_DC3, LC_SPDC, LC_DCDS, LC_DC4, LC_DC1	√ (n=5)		-
Sulp	ohate	Fording River	2	FR_FR5, LC_FRB	2.8 to 3.1	-	-	48.1 (n=1)	-
		Other	2	LC_UC, LC_GRCK	0.75 to 1.9	-	-	19.9 (n=1)	-
		Dry Creek	6	LC_DC3, LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, LC_DC1	8.5 to 28	LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, LC_DC1	√ (n=5)	101 to 408 (n=6)	-
Tota	al Cadmium	Fording River	0	-	NS	LC_FRUS	√ (n=1)	(n=6) NS NS 140 to 77,909 (n=6) NS 73.3 to 93.3 (n=2) 159 to 2,015 (n=6) 48.1 (n=1) 19.9 (n=1) 101 to 408 (n=6) -20.4 (n=1) NS -20.9 to -21.1 (n=2) NS -48.7 to 178 (n=2) NS	-
		Other	0	-	NS	-	-	NS	93
٩		Dry Creek	1	LC_SPDC	-11	LC_DCDS	√ (n=1)		-
jun	Methylseleninic Acid	Fording River	-	-	NS	-	-	NS	-
seleniun		Other	_c	-	-	-	-	-	-
ganos	Diagram and a	Dry Creek	3	LC_DC3, LC_DC2, LC_DC1	5 to 20	-	·		-
ŏ	Dimethylseleneoxide	Fording River	-	-	NS	-	-	NS	-
Janoselenium ^d Lands		Other	- c	-	-	-	-	-	-

Significant increase.
Significant decrease.

Notes: "Other" refers to Grace Creek (LC_GRCK), Dry Creek East Tributary (LC_DCEF), and Unnamed Creek (LC_UC); "NS" = no significant changes; " v " = significant change; "+" = at least one value exceeded guideline or benchmark.

^a Range of increase for areas with significant results only.

^b First year of sampling: LC DC3 - 2012, LC SPDC - 2014, LC DCDS - 2013, LC DC2 - 2012, LC DC4 - 2018, LC DC1 - 2012, FR FR5 - 2012, LC FRUS - 2013, LC FRB - 2012.

^c Selenium speciation samples not collected at area LC_UC .

^d The 2020 AMP response framework for LCO Dry Creek (Teck 2021) identified dimethyl selenoxide (DMSeO) and methylseleninic acid (MeSe(IV)) as the two organoselenium species primarily generated by biological productivity within the Dry Creek Water Management System (DCWMS). Therefore, interpretation of organoselenium species herein was focused on these two organoselenium species (DMSeO and MeSe(IV)), and excluded consideration of selenite and other individual selenium species.

Elevated concentrations of nitrate have been tracked, and future monitoring efforts evaluated, as the need for a response was identified under the AMP response framework in 2018 (Section 1.4 for details; Teck 2019b). Investigations and adjustments as part of that response are currently ongoing. With respect to nitrate, efforts are already underway and include integrated effects assessment modelling to better understand potential effects of nitrate on biota including resident WCT early life stages and thereby guide management planning (Teck 2020b) and implementation of the nitrate compliance action plan. Under the nitrate compliance action plan there has been an increase in explosives bagging (100% bagged at Dry Creek in 2022) to reduce nitrate releases from waste rock placed in the LCO Dry Creek watershed (Golder 2021b). Effects of elevated aqueous nitrate concentrations on biota are discussed in more detail in Sections 4 and 5.4.

3.3 Total Cadmium

Permit 107517 outlines an SPO for total cadmium at Dry Creek area LC_DCDS as well as Grace Creek (LC_GRCK) and Unnamed Creek (LC_UC) that came into effect January 1, 2020 (ENV 2013). There were no exceedances of the SPO for total cadmium at any area in 2022 (Figure 3.2; Appendix Figure C.5, Appendix Table C.1 and C.4).

Total cadmium has increased significantly since the start of spoiling in the watershed (2015) at all monitoring areas of Dry Creek (Figure 3.2; Table 3.2; Appendix Tables C.2 and C.3). Total cadmium concentrations were significantly higher at Dry Creek areas in 2022 compared with 2021, except for LC_DC3 which showed no change (Table 3.2; Appendix Table C.3). In the Fording River temporal trends in total cadmium were not consistent with Dry Creek stations, where concentrations at LC_FRUS were significantly lower in 2022 compared with 2021 (Table 3.2; Appendix Table C.3).

Annual mean and maximum total cadmium concentrations in 2022 were highest on Dry Creek at areas LC_DC3 and LC_SPDC and lowest at area LC_DC1 (Figure 3.2; Appendix Figure C.5; Appendix Table C.4). Annual mean total cadmium concentrations in Fording River areas were highest at FR_FR5 and lowest at LC_FRB, downstream of the mouth of Dry Creek, indicating Dry Creek did not have a detectable impact on Fording River total cadmium concentrations in 2022.

3.4 Total Selenium

Aqueous total selenium concentrations were higher than the BCWQG in all samples from the mine-exposed LAEMP areas in 2022, except at LC_GRCK where 57% of samples where higher

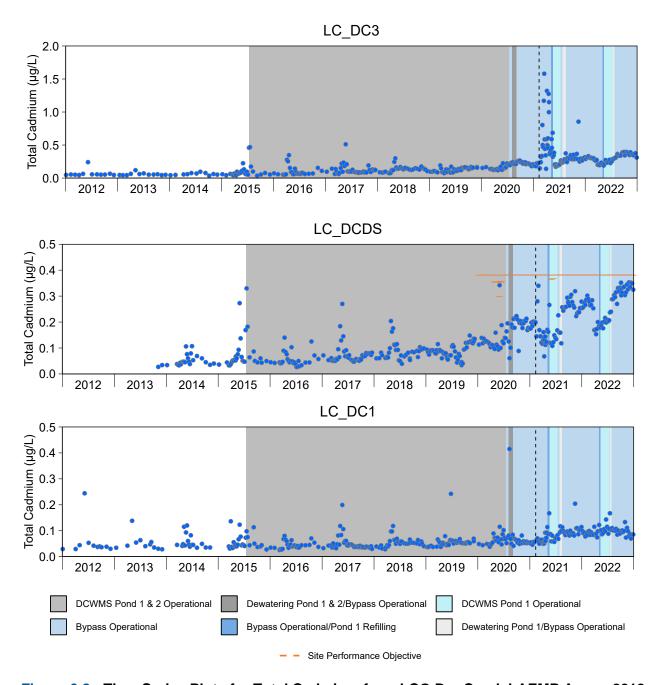


Figure 3.2: Time Series Plots for Total Cadmium from LCO Dry Creek LAEMP Areas, 2012 to 2022

Notes: Green data points are used for reference sites and blue data points are used for mine-exposed sites. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water chloride concentrations. Constituent was plotted because it was identified as a mine related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). When biological monitoring areas and routine water quality stations were in close proximity to each other and with no additional inputs between them, data collected at the biological monitoring area were combined with routine data and plotted together with the biological monitoring area depicted in parenthesis. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only apply to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, and LC_DC1).

than the guideline (Appendix Table C.4). The SPO for total selenium¹⁰ was exceeded in all 2022 samples at LC_DCDS; and was not exceeded at LC_GRCK or LC_UC (Teck 2023; Figure 3.3; Appendix Figure C.18). For this report, potential risks to aquatic life associated with selenium were assessed through the evaluation of tissue selenium results in biota as compared to primarily using EVWQP benchmarks for aqueous selenium.

When comparing annual means (2-way ANOVA), total selenium concentrations have increased significantly since the start of baseline and LAEMP monitoring at all Dry Creek LAEMP areas, except LC_GRCK and LC_FRUS (2012 to 2018 depending on site compared to 2022; Figure 3.3, Table 3.2; Appendix Figure C.18, Appendix Table C.3). However, when trends are assessed using a Seasonal Kendall Trend Analysis significant increases are seen at all Dry Creek LAEMP locations except LC_FRUS (Appendix Table C.2). Broadly speaking, the Seasonal Kendal Trend Analysis may be a more appropriate measure of change as there has been a gradual increase overtime with seasonal variation (monotonic) rather than an abrupt point shift (step trend), for which the ANOVA would be more appropriate (Figure 3.3; Appendix Figure C.18). The annual percent increase over time in total selenium concentrations was higher at areas in Dry Creek than at reference (LC_DCEF and LC_UC), Fording River (FR_FR5, LC_FRB), and Grace Creek (LC_GRCK; Table 3.2; Appendix Table C.2). Mean total selenium concentrations were significantly higher in 2022 than 2021 at LC_DC3, LC_SPDC, LC_DCDS, and LC DC4 (Table 3.2; Appendix Table C.3).

The proportion of water samples in Grace Creek having total selenium concentrations above the BCWQG was above the threshold required for further biological monitoring at that area (50% of samples >2 μ g/L; ranging from 1.1 to 2.9 μ g/L; total Se) in 2022 (57%, Appendix Table C.4). As a result, biological monitoring will continue at LC_GRCK in 2023. The same threshold applies to LC_UC; however, no samples at LC_UC were above the 2 μ g/L total selenium guideline in 2022 (ranged from 0.27 to 0.48 μ g/L; Appendix Table C.4). Total selenium concentration at LC_UC were within the range seen at all RAEMP MU1 reference stations in 2022 (0.39 to 1.34 μ g/L; Minnow 2023). Screening of 2023 LC_GRCK and LC_UC aqueous total selenium concentrations against this threshold will be included in the 2023 Dry Creek LAEMP report.

Annual maximum and mean total selenium concentrations on Dry Creek were highest at area LC DC3 (the area farthest upstream on Dry Creek and closest to the LCOII expansion) in 2022.

 $^{^{10}}$ The SPO for total selenium (10 μ g/L) came into effect January 1, 2020, at areas LC_DCDS, LC_GRCK, and LC_UC (ENV 2015).

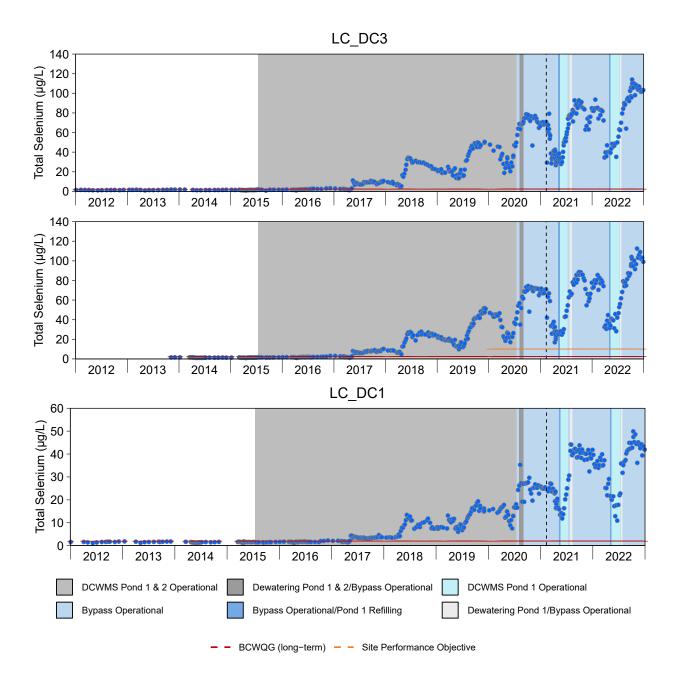


Figure 3.3: Time Series Plots for Total Selenium from LCO Dry Creek LAEMP Areas, 2012 to 2022

Notes: Green data points are used for reference sites and blue data points are used for mine-exposed sites. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. When biological monitoring areas and routine water quality stations were in close proximity to each other and with no additional inputs between them, data collected at the biological monitoring area were combined with routine data and plotted together with the biological monitoring area depicted in parenthesis. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only apply to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, and LC_DC1).

Selenium concentrations at the three areas closest to the DCWMS outlet (LC_SPDC, LC_DCDS, and LC_DC2) were similar to selenium concentrations at LC_DC3. Selenium concentrations on Dry Creek were lowest at areas LC_DC4 and LC_DC1 in 2022 (Appendix Figure C.18; Appendix Table C.4). Selenium concentrations were higher on Dry Creek than at both reference areas (LC_DCEF and LC_UC) and area LC_GRCK. Annual mean selenium concentrations at Fording River area FR_FR5 (farthest upstream of the mouth of Dry Creek) were higher in 2022 than at Fording River area LC_FRUS and LC_FRB.

3.5 Organoselenium

The most common selenium species detected in the Elk Valley are selenate, selenite, dimethylselenoxide (DMSeO), and methylseleninic acid (MeSe(IV)) and the most important selenium species effecting bioaccumulation are DMSeO and MeSe(IV) (i.e., organoselenium; ADEPT 2022). In 2022, DMSeO concentrations increased from base year (2019) at LC DC3 and LC SPDC; however, results of the 2-way ANOVA indicated that DMSeO was not significantly higher in 2022 than 2021 at these or any other stations on Dry Creek (Figure 3.4; Appendix Figure C.23, Appendix Table C.3). Since implementation of the seasonal bypass of the DCWMS (2020), MeSe(IV) concentrations have decreased in Dry Creek. However, results of the 2-way ANOVA indicated that in 2022 compared to 2021, MeSe(IV) concentrations increased at LC DCDS by approximately 30%. It is notable that annual mean concentrations of MeSe(IV) at LC DCDS in 2022 were similar to those recorded on 2020 and significantly lower than 2019 (prior to season bypass of DCWMS; Figure 3.4; Appendix Figure C.24, Appendix Tables C.3, C.5). Overall, the DCWMS bypass in 2022 continued to result in decreased organoselenium (DMSeO and MeSe[IV]) concentrations downstream compared to when the DCWMS bypass was not implemented. Downstream of the DCWMS, organoselenium concentrations in 2022 were similar to or lower than in 2020, in contrast upstream of the DCWMS (LC DC3) organoselenium in 2022 was significantly higher than in 2019 and 2020.

The Selenium Bioaccumulation Tool (B-Tool), which was developed to predict benthic invertebrate selenium tissue concentrations from aqueous selenium speciation concentration, has been used to calculate the concentrations of the combination of MeSe (IV) and DMSeO that would cause a detectable increase in benthic invertebrate tissue selenium concentrations (de Bruyn and Luoma 2021). This information was then used to develop screening levels for the sum of MeSeIV and DMSeO; Level 1 <0.025 μ g/L where organoselenium is unlikely to cause a discernible shift in benthic invertebrate selenium concentrations, Level 2 0.025 to 0.05 μ g/L is likely to cause a discernible increase in bioaccumulation, and Level 3 < 0.05 μ g/L is likely to cause a discernible increase in bioaccumulation and is likely to cause exceedance of 11 mg/kg in benthic invertebrate tissue Se concentrations. In 2022, Dry Creek organoselenium concentrations were

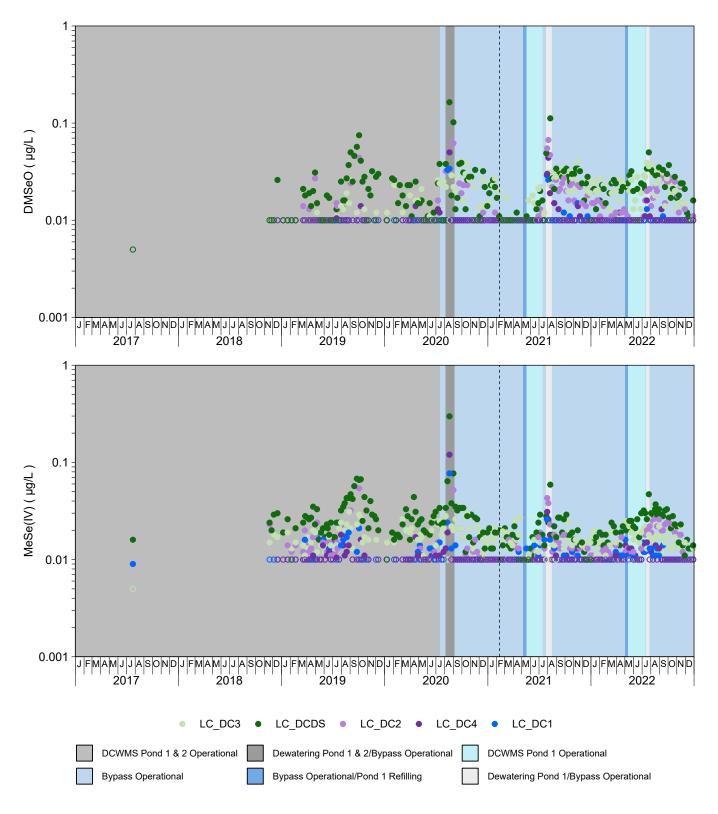


Figure 3.4: Selenium Species Concentrations from LCO Dry Creek LAEMP Sampling Areas, 2017 to 2022

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. When biological monitoring areas and routine water quality stations were in close proximity to each other and with no additional inputs between them, data collected at the biological monitoring area were combined with routine data and plotted together with the biological monitoring area depicted in parenthesis. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only apply to Dry Creek areas downstream of the DCWMS (LC_DCDS, LC_DC2, LC_DC4, and LC_DC1).

frequently above screening levels at LC_DC3, LC_SPDC, LC_DCDS, and LC_DC2 and rarely above screening levels at LC_DC4 and LC_DC1 (Appendix Table C.5). No samples were above screening values in the Fording River, Grace Creek, or at the reference station (LC_DCEF; Appendix Table C.5).

In the surface water of Dry Creek, organoselenium concentrations (DMSeO and MeSe(IV)) were generally highest immediately downstream of the DCWMS at LC DCDS and decreased downstream. Concentrations of DMSeO and MeSe(IV) were below detectable levels in most samples from LC DC4 and LC DC1 in 2019, 2020, 2021, and 2022 likely due to a combination of dilution from LC DCEF, the presence of a gaining reach downstream of station LC_DC2, uptake by periphyton, and degradation of organoselenium species (via hydrolysis and/or photolysis) into species such as dimethyl selenide and dimethyl diselenide (Appendix Figures C.23 and C.24, Appendix Table C.5; Golder 2021b). Organoselenium concentrations were below detectable levels in all samples collected in 2022 from LC DCEF, LC GRCK, and at Fording River areas LC FRB and LC FRUS (Appendix Figures C.23 and C.24; Appendix Table C.5).

3.6 Nutrient Status

Dry Creek was nitrogen and phosphorus co-limited (versus solely nitrogen or phosphorus limited) prior to LCOII development owing to high natural phosphorus and low natural nitrogen concentrations (Minnow 2020d). Since 2017, total nitrogen to total phosphorus (TN:TP) ratios have increased in Dry Creek concurrent with increasing nitrate concentrations (Figure 3.1). As a result, Dry Creek nutrient limitation has shifted to phosphorus limitation over the same period since total phosphorus concentrations did not increase (Appendix Figure C.16; Appendix Table C.3).

Trophic status of Dry Creek has also changed since the start of LCOII development, with shifts from oligotrophic to either mesotrophic or meso-eutrophic conditions observed at areas LC_DC3, LC_DCDS, and to a lesser extent, LC_DC1 (based on nutrient concentrations; Minnow 2020d). Changes in nutrient limitation and trophic status were not observed over the same period at reference areas LC_DCEF and LC_UC or Fording River areas LC_FRUS and LC_FRB. It is likely that mine-related nitrogen input has changed nutrient limitation and trophic status in Dry Creek (Minnow 2020d). Initial nutrient enrichment above background levels can increase productivity; however, concentrations can reach nuisance and even toxic levels that cause impairment to biological communities (CCME 2016). As Dry Creek is now phosphorus, it is unlikely that further increases in nitrogen concentrations will contribute to productivity stimulation of existing Dry Creek biological communities.

3.7 Summary

Concentrations of mine-related constituents including nitrate, total cadmium, and total selenium, have increased over time on Dry Creek since spoiling began in this watershed in 2015. Nitrate concentrations were above updated effects concentrations and dissolved nickel concentrations were above proposed benchmarks in Creek in 2022. Dry Constituent concentrations were more frequently elevated at areas LC DC3 (the Dry Creek area immediately downstream of LCOII spoiling and prior to DCWMS effects) and LC SPDC, LC DCDS, and LC DC2 (the areas immediately downstream of the DCWMS) than at areas LC DC4 and LC DC1, likely due to increasing distance from LCOII operations and input of groundwater from reference area LC DCEF between LC DC2 and LC DC4 (Golder 2019b). Similar trends in aqueous constituents were not detected at reference areas (LC DCEF and LC UC), in the Fording River downstream of Dry Creek, or in Grace Creek (LC GRCK), except for nitrate which showed increasing trends at LC DCEF, LC FRB and LC GRCK and total selenium which increased at LC DCEF, LC UC and LC FRB. Operational changes to the DCWMS including development and implementation of the seasonal bypass and modification of discharge channel area LC SPDC have successfully mitigated organoselenium concentrations in the surface water as well as selenium bioaccumulation and effects to biota.

4 STUDY QUESTION 2: AQUEOUS TOXICITY

Acute toxicity testing was conducted with water samples collected from LC_DC3 (n=5), LC_DCDS (n=4), and LC_SPDC (n=10) using the water flea *D. magna* and rainbow trout in 2022. Out of all samples collected, no samples failed the test criteria for acute toxicity for either organism (i.e., did not cause > 50% mortality to either organism; Table 4.1; Appendix Table D.1).

Chronic toxicity testing was performed quarterly on water flea (*C. dubia*) and green algae (*P. subcapitata*) using water samples collected from LC_DCDS to evaluate the potential effects to benthic invertebrates in Dry Creek. Semi-annual chronic toxicity tests were conducted to evaluate potential effects on amphipods (*H. azteca*), fathead minnow, and rainbow trout. Results of chronic toxicity testing were compared to reference stations on the Fording River, Elk River, Michel Creek, and South Line Creek. The local reference comparison of interest for LC_DCDS is FR_UFR1 on the Fording River. Chronic toxicity test results in 2022 that were categorized by WSP (2023) as 'possible' or 'likely' adverse responses, and the possible causal factors of these responses, are briefly outlined below; see WSP (2023) for a complete discussion of results.

In Q1 2022, a "likely adverse response" was identified for effects on *C. dubia* reproduction, which was similar to 2020 and 2021 (Table 4.2, WSP 2023). Nitrate and/or nickel were identified as potential contributors to the observed responses reported between 2018 and 2022 (including the Q1 2022 responses (Table 4.2, WSP 2023). Chronic toxicity results in 2022 indicated that effects to *C. dubia* reproduction were of similar frequency to 2020, and less frequent than responses in 2021.

In Q1 2022, a "likely adverse response" was identified for cell yield of *P. subcapitata* (Table 4.2, WSP 2023). This is the first year where results have indicated a "likely adverse response," with only a "possible adverse response" being observed in 2020 and 2021, and no adverse responses seen in years before 2020. Similar to previous years, no water quality constituent has been identified as potentially contributing to observed responses. Briefly, constituents are first screened against applicable guidelines/benchmarks and no relevant constituent was identified as contributing to the effect meaning that these results could not be attributed to a specific constituent.

A "possible adverse response" was identified for dry weight of *H. azteca* in Q4 2022 (Table 4.2, WSP 2023). The frequency of possible or likely adverse responses of *H. azteca* to dry weight has remained similar since sampling began in 2019. WSP (2023) have indicated that "nickel and/or nitrate have been identified as potentially contributing factors in all *H. azteca* tests with an observed adverse response, and the evidence from *C. dubia* and *H. azteca* toxicity testing

Table 4.1: Summary of Acute Toxicity Test Results for LCO Dry Creek LAEMP Monitoring Stations, 2022 (Teck 2023)

	Water Station		Water (Daphnia		Rainbow Trout (Oncorhynchus mykiss)		
Teck Code	Description	Year	# Tests > 50% mortality	Total # tests	# Tests > 50% mortality	Total # tests	
LC_DC3	Dry Creek upstream of Headpond	2022	0	5	0	5	
LC_DCDS	Dry Creek downstream of sediment ponds outlet	2022	0	4	0	4	
LC_SPDC	Dry Creek sediment ponds outlet; effluent to Dry Creek	2022	0	10	0	10	

Table 4.2: Results of Quarterly and Semi-Annual Chronic Toxicity Tests at LC_DCDS 2015 to 2022^a (Golder [2016, 2017a, 2018, 2019, 2020a, 2021, 2022], WSP 2023)

Area				Water Flea (Ceriodaphnia dubia)	b	Ampi (<i>Hyalella</i>	•	Green Alga (Pseudokirchneriella subcapitata) ^c	rchneriella (Oncorhynchus mykiss) ^d				Fathead Minnow (<i>Pimephales promelas</i>) ^d						
	Quarter		Survival (% control- normalized)	Reproduction (% control- normalized; Protocol-specified)	Reproduction (% control- normalized; 8-day)	Survival (% control- normalized)	Dry Weight (% control- normalized)	Cell Yield (x10 ⁴ cells/ml)	Survival (% control- normalized)	Viability (% control- normalized)	Length (% control- normalized)	Wet Weight (% control- normalized)	Hatch (% control- normalized)	Survival (% control- normalized)	Biomass (% control- normalized)	Length (% control- normalized)	Normal Development (% control- normalized)		
		Q1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	2015	Q2	111	87	-	-	-	132.5	-	-	-	-		-	-				
	2015	Q3	-	-	-	-	-	-	-	-	-	-		-	-				
		Q4	111	103	-	-	-	118.3	-	-	-	-	-	-	-	-	-		
		Q1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	2016	Q2	90	62 ^{UN}	-	-	-	118.5	-	-	-	-		-	-	-			
	2010	Q3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
		Q4	100	39 ^{UN}	-	-	-	183.5	-	-	-	-	-	-	-	-	-		
		Q1	-	-	-	-	-	-	-	-	-	-	-	-		-			
	2017	Q2	100	87	-	-	-	140.5	-	-	-	-		-	-				
	2017	Q3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
		Q4	100	87	-	-	-	123	-	-	-	-	-	-	-	-	-		
		Q1	-	-	-	-	-	-	-		-	-	-	-	-	-			
	2018	Q2	100	77	-	-	-	148.3	-	-	-	-	-		-	-			
SC	2016	Q3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
SGDG		Q4	100	85 ^{NO3}	-	-	-	100.8	-	-	-	-	-	-	-	-	-		
၂ ၂		Q1	100 ± 0	90 ± 19	90 ± 19	-	-	82.8 ± 5.0	-	-	-	-	100 ± 0	100 ± 4	85 ± 7	<u>88 ± 3</u>	96 ± 4		
	2019	Q2	90 ± 32	87 ± 30	87 ± 30	-	-	<u>112.0 ± 7.3</u>	95 ± 13	98 ± 16	105 ± 2	112 ± 6	-	-	-	-	-		
	2010	Q3	90 ± 32	111 ± 16	94 ± 14	94 ± 10	65 ± 25 ^{UN}	58.5 ± 6.5	-	-	-	-	98 ± 3	76 ± 20	74 ± 13	98 ± 2	100 ± 0		
		Q4	90 ± 32	100 ± 18	100 ± 11	35 ± 33 ^{NO3}	52 ± 30 ^{NO3}	102.0 ± 7.0	73 ± 9 NO3	66 ± 13 NO3	101 ± 4	105 ± 3	-	-	-	-	-		
		Q1	100 ± 35	68 ± 12 ^{NO3}	<u>68 ± 12</u>	-	-	93 ± 3.7	-	-	-	-	100 ± 0	64 ± 43 UN, HI-RV	58 ± 39 UN, HI-RV	94 ± 4	100 ± 0		
	2020	Q2	100 ± 0	92 ± 22	97 ± 12	87 ± 17	49 ± 13 ^{UN}	134 ± 5.6	104 ± 20 ^M	97 ± 31 ^M	99 ± 9 ^M	109 ± 22 ^M	-	-	-	-	-		
	2020	Q3	100 ± 0	89 ± 9	<u>93 ± 12</u>	-	-	<u>85 ± 5.7</u> UN	-	-	-	-	113 ± 4	99 ± 11	69 ± 9	86 ± 3	100 ± 0		
		Q4	100 ± 0	76 ± 17	<u>77 ± 17</u>	61 ± 23 ^{UN, HI-RV}	20 ± 6	112 ± 4.1	86 ± 9 ^M	86 ± 9 ^M	104 ± 2 ^M	106 ± 5 ^M	-	-	-	-	-		
		Q1	90 ± 32	<u>90 ± 36</u>	-	-	-	78.5 ± 5 UN	-	-	-	-	89 ± 16	100 ± 18	90 ± 7	100 ± 8	98 ± 5		
	2021	Q2	100 ± 0	96 ± 27	-	98 ± 9	_ e	69 ± 9.8	102 ± 4 ^M	109 ± 7 ^M	107 ± 2 ^M	132 ± 16 ^M	-	-	-	-	-		
	2021	Q3	80 ± 42	57 ± 42 Ni, NO3	-	104 ± 0	67 ± 7	68.5 ± 7.4 UN	-	-	-	-	105 ± 0	89 ± 28	94 ± 11	95 ± 4	100 ± 8		
		Q4	100 ± 0	<u>58 ± 16</u> Ni, NO3	-	83 ± 36	92 ± 19 Ni, NO3	<u>74.5 ± 4.9</u>	105 ± 4 ^M	103 ± 7 ^M	105 ± 5 ^M	107 ± 10 ^M	-	-	-	-	-		
		Q1	111 ± 0	70 ± 19 Ni, NO3	-	-	-	49 ± 6.7 UN	-	-	-	-	100 ± 4	91 ± 9	114 ± 13	98 ± 7	100 ± 0		
	2022	Q2	100 ± 0	96 ± 35	-	96 ± 9	<u>175 ± 28</u>	<u>87.0 ± 6.6</u>	104 ± 11 ^M	114 ± 16 ^M	103 ± 6 ^M	98 ± 11 ^M	-	-	-	-	-		
	2022	Q3	100 ± 0	96 ± 38	-	-	-	108.0 ± 7.0	-	-	-	-	93 ± 10 ^M	90 ± 7 ^M	89 ± 10 ^M	98 ± 5 ^M	100 ± 0 ^M		
		Q4	100 ± 0	102 ± 16	-	100 ± 0	57 ± 7 Ni, NO3	66.0 ± 4.2	85 ± 5	83 ± 8	96 ± 5	97 ± 11	-	-	-	-	-		

Notes: Q_x = Calendar year quarters, "-" = no data available. Possible and likely symbols are annotated with constituent identified as potentially contributing to observed response: HI_RV = high inter-replicate variability; NO3 = nitrate; Ni = Nickel; UN =unknown, no water quality constituent identified.

^a Results presented as percent survival or mean ± standard deviation.

b Ceriodaphnia dubia survival (% control normalized) and reproduction (% control normalized; protocol specified) toxicity tests were conducted for LC_DCDS between 2015 and 2018 but not under Permit 107517. Standard deviations are not available for these results. Two test lengths were used to evaluate potential effects or C. dubia reproduction in 2020. These included: 1) a protocol-specified test length (i.e., reproduction was measured when ≥60 % of controls produced three or more broods; as per Environment Canada [2007c]); and 2) an 8-day test duration (Golder 2021). These two test lengths were used in 2019 and 2020 to evaluate potential brood effect. Prior to 2019, the protocol-specified test length was used.

^c Pseudokirchneriella subcapitata cell yield toxicity tests were conducted for LC_DCDS between 2015 and 2018 but not under Permit 107517. Standard deviations are not available for these results.

^d Fathead minnow and rainbow trout chronic toxicity testing at LC_DCDS was initiated in 2019

e H. azteca Q2 test organisms were disposed prior to measured dry weight due to a lab technician error (see Section 2.6), and therefore the initial Q2 tests have only survival data. In response to this, tests were repeated in Q3 for all stations.

collectively indicates that nickel exposure likely explains at least a portion of the variance in chronic crustacean toxicity."

Fathead minnow (Q1 and Q3; via evaluation of hatch, survival, biomass, length, and normal development) and rainbow trout (Q2 and Q4; survival, viability, length, and wet weight) results in 2022 did not differ from reference (Table 4.2, WSP 2023). For rainbow trout, Q2 results are considered the most relevant for evaluating potential effects on early life stages of the congenic westslope cutthroat trout, and all Q2 tests were categorized as no adverse response (Golder 2023).

Overall, acute toxicity testing of Dry Creek DCWMS effluent showed no test failures in all samples collected at LC DC3, LC DCDS, and LC SPDC in 2022 (Teck 2023). Chronic toxicity testing in 2022 identified possible adverse responses to H. azteca dry weight and likely adverse responses to C. dubia reproduction and P. subcapitata cell yield at LC DCDS, but the frequency and magnitude of these responses was temporally stable (i.e., no apparent consistent pattern of responses over time) except for the P. subcapitata response that increased in magnitude in 2022. No "likely" or "possible response" were seen in any of the fish tests in all quarters in Dry Creek in 2022. The chronic toxicity testing identified nickel and/or nitrate as potentially contributors to the observed effects on C. dubia reproduction and on H. azteca dry weight at LC DCDS (Golder 2023). Nickel and/or nitrate have been identified as potential contributors to observed effects in all chronic toxicity tests in all C. dubia and H. azteca tests at LC DCDS with an observed adverse response between 2018 to 2022. For nitrate, this corresponds to the increasing trend in concentrations observed at LC DCDS since 2018 (see Sections 5.4 for further discussion of potential effects of nitrate to the receiving environment). Teck has initiated an increase to explosives bagging (100% bagged at Dry Creek in 2022) under the LCO Nitrate Compliance Action Plan to reduce nitrate releases from waste rock placed in the LCO Dry Creek watershed. Chronic toxicity testing is one line of evidence that is used to evaluate the potential effects in a watershed and is used in conjunction with other endpoints to help assess overall effects.

5 STUDY QUESTION 3: BENTHIC INVERTEBRATE COMMUNITY

5.1 Background

Benthic invertebrate communities were sampled in September (Dry Creek, Fording River, and Grace Creek) in 2022 to support Study Question #3: "Are benthic invertebrate community endpoints within normal ranges derived based on samples collected at regional and local reference areas within the Elk River as part of the RAEMP and are the endpoints changing over time?". Benthic invertebrate community samples were also collected in May and November at LC_DCDS to support the upcoming tissue permit limit for benthic invertebrate tissue selenium concentrations. Data collected in September are the focus of this section.

Benthic invertebrate community data collected for the present study were considered to be of good quality based on sorting efficiency, subsampling precision and accuracy, and taxonomic identification accuracy. Therefore, the associated data can be used with a high level of confidence for interpretation (Appendix B).

5.2 Dry Creek

Total benthic invertebrate abundance was within regional normal ranges at all Dry Creek sampling areas in September 2022, however, abundance was lower than site specific normal ranges in at least one replicate at all stations except LC DC3 (Figures 5.1 and 5.2). Taxonomic richness in September 2022 was within the regional normal range at all Dry Creek sampling areas, but at least one replicate from LC DC3 and LC DCDS fell outside the site-specific normal range (LC DC3 fell below and LC DCDS was higher that site-specific normal ranges; Figures 5.1 and 5.3). Except at station LC DC3, the proportion of EPT (%EPT) was within the regional normal range for all samples from Dry Creek; however, %EPT fell below the site-specific normal ranges in at least one replicate at LC DC3, LC DCDS, LC DC4 and LC DC1 (Figures 5.1 and 5.4). Abundance of EPT was similar to total abundance, where results from all Dry Creek areas were within the regional normal ranges; however, at least one replicate from all stations on Dry Creek (except LC DC3) were below the site-specific normal ranges (Appendix Figures E.1 and E.4). The proportion of Ephemeroptera (%E) was below the regional and/or site-specific normal ranges in at least one replicate from every Dry Creek area, and upstream areas (LC DC3, LC DCDS, and LC DC2) fell below the normal ranges more often than further downstream areas (Figures 5.1 and 5.5). Similarly, abundances of Ephemeroptera were below regional and/or site-specific normal ranges at all areas on Dry Creek (Appendix Figures E.1 and E.5). The proportion of Chironomidae (%C) was within the regional normal range at all Dry Creek

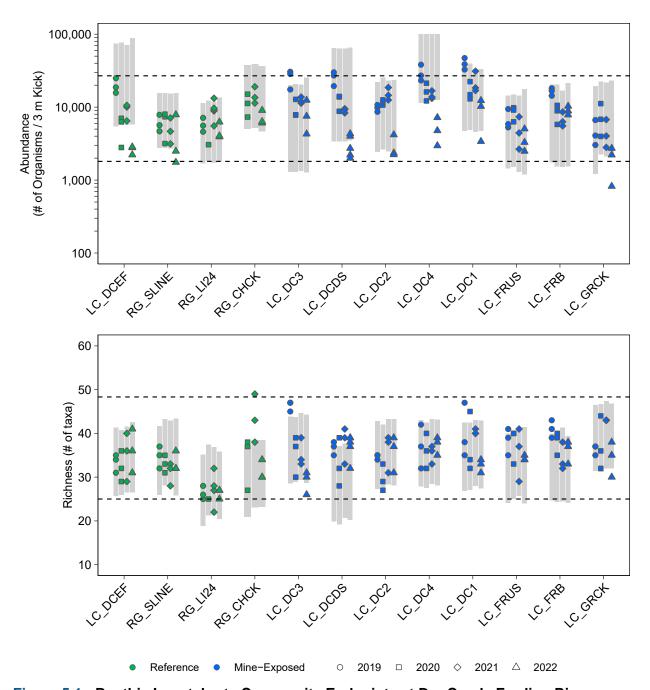


Figure 5.1: Benthic Invertebrate Community Endpoints at Dry Creek, Fording River, Grace Creek, and Dry Creek East Tributary Sampling Areas, LCO Dry Creek LAEMP, September 2019 to 2022

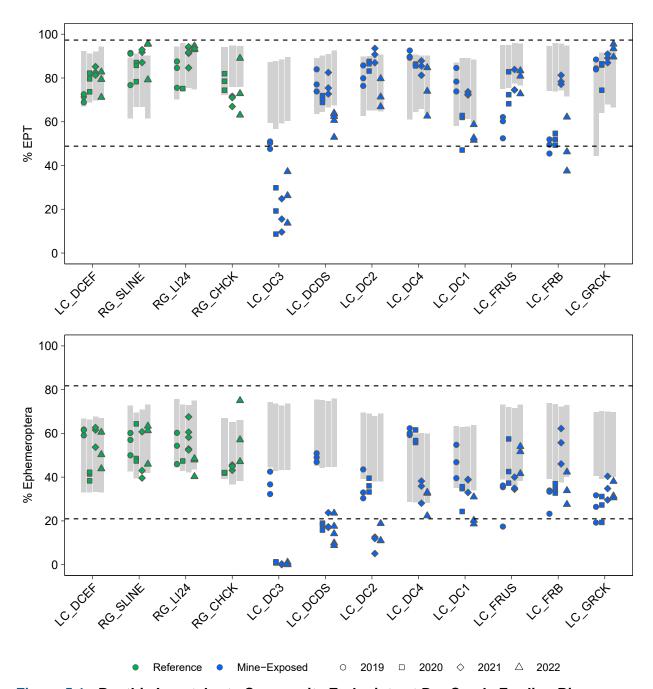


Figure 5.1: Benthic Invertebrate Community Endpoints at Dry Creek, Fording River, Grace Creek, and Dry Creek East Tributary Sampling Areas, LCO Dry Creek LAEMP, September 2019 to 2022

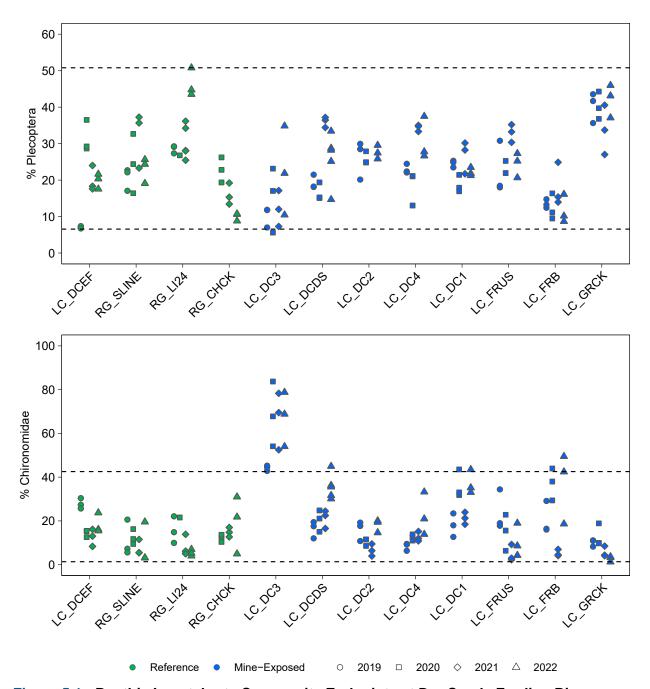


Figure 5.1: Benthic Invertebrate Community Endpoints at Dry Creek, Fording River, Grace Creek, and Dry Creek East Tributary Sampling Areas, LCO Dry Creek LAEMP, September 2019 to 2022

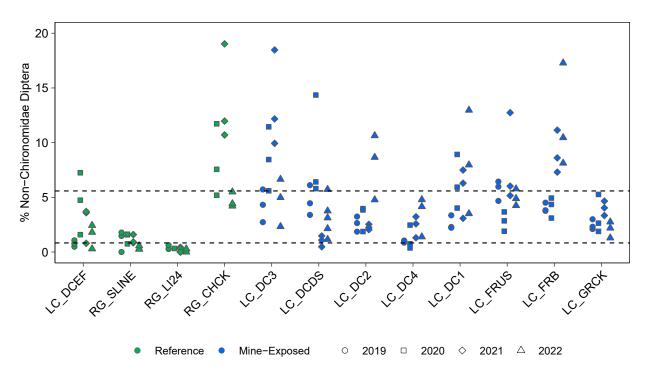


Figure 5.1: Benthic Invertebrate Community Endpoints at Dry Creek, Fording River, Grace Creek, and Dry Creek East Tributary Sampling Areas, LCO Dry Creek LAEMP, September 2019 to 2022

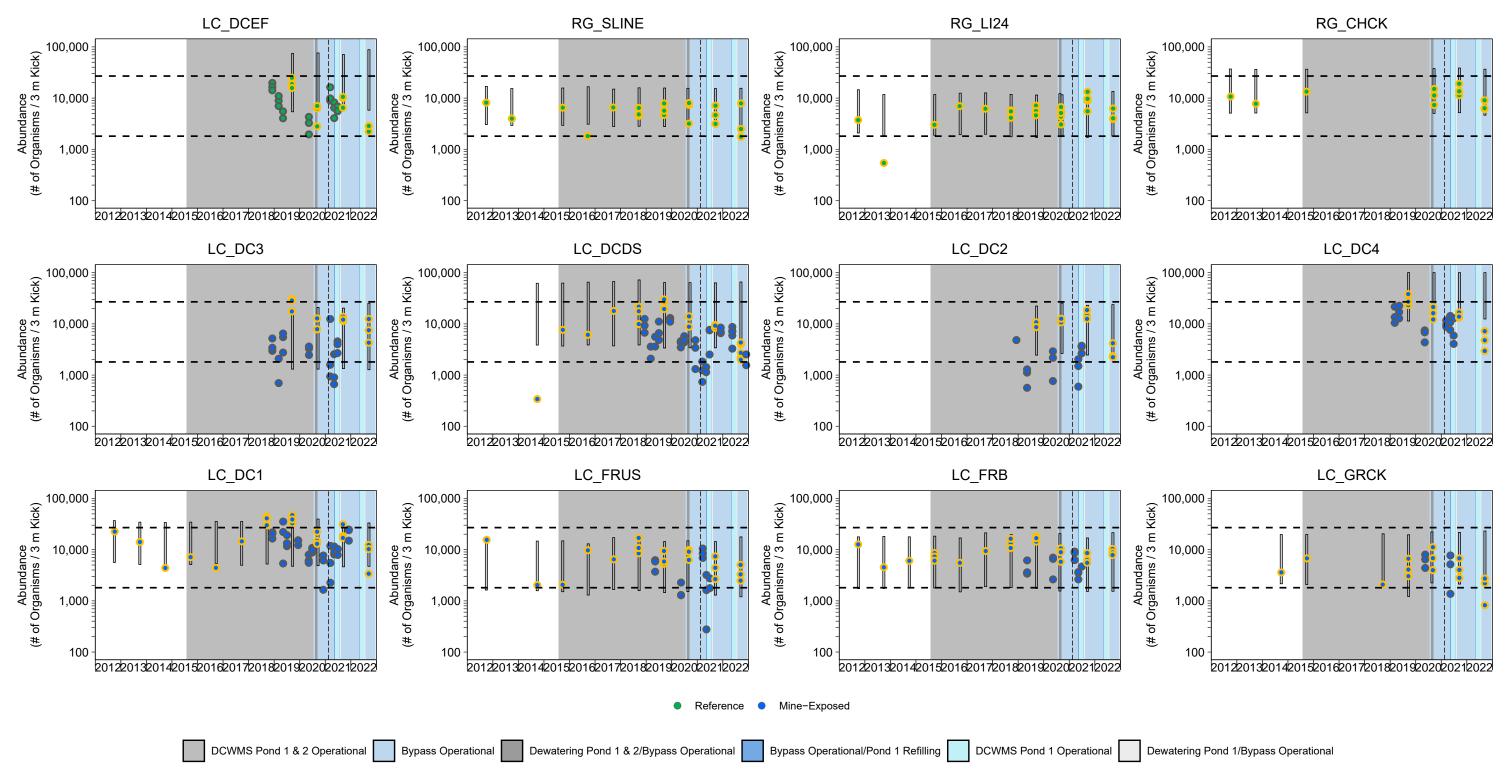


Figure 5.2: Benthic Invertebrate Community Abundance (# of Organisms / 3 m Kick) from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Site specific normal ranges using regression models shown with grey shading and black rectangle (when available). Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC1).

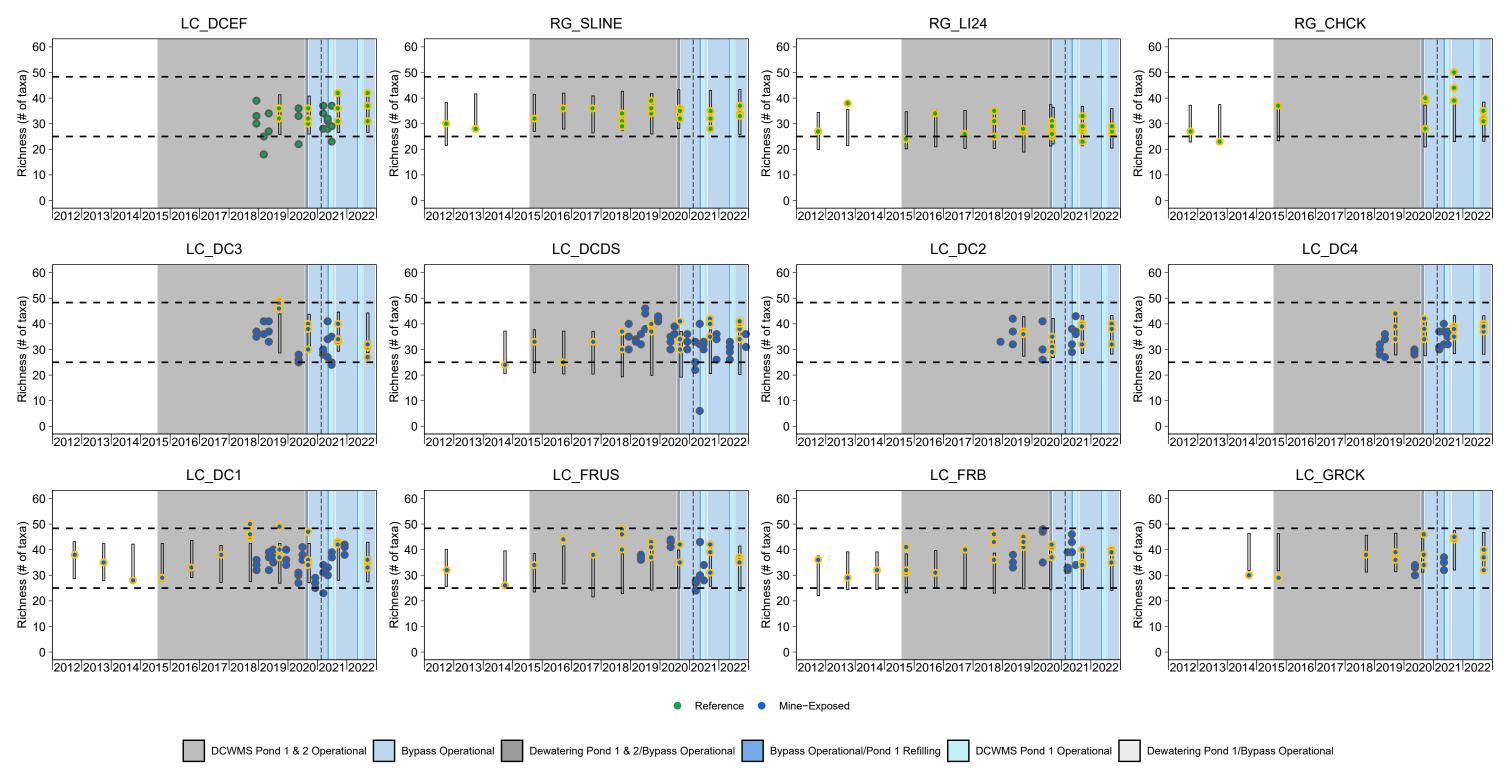


Figure 5.3: Benthic Invertebrate Community Richness (# of taxa) from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Site specific normal ranges using regression models shown with grey shading and black rectangle (when available). Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC1).

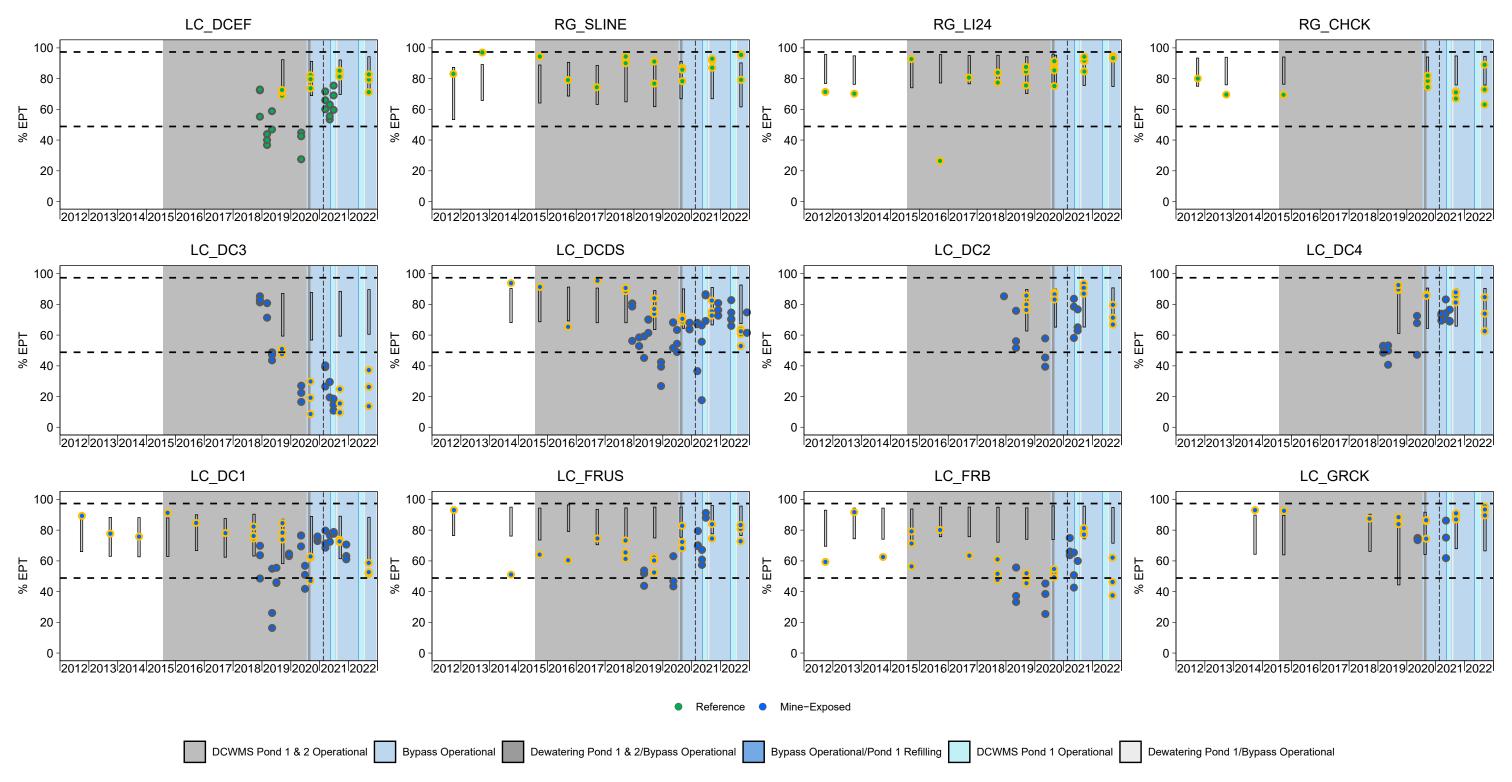


Figure 5.4: Benthic Invertebrate Community % EPT from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Site specific normal ranges using regression models shown with grey shading and black rectangle (when available). Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC1).

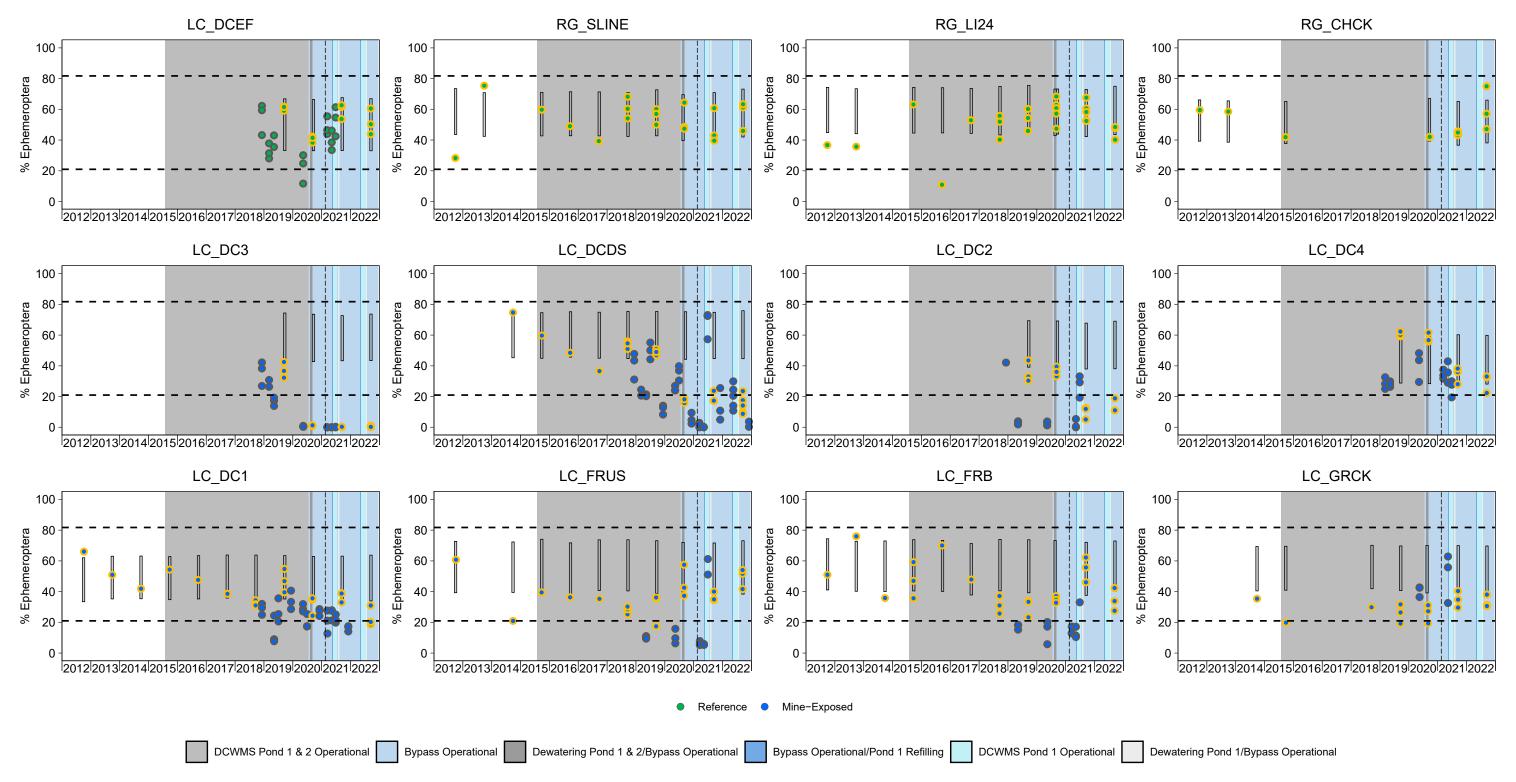


Figure 5.5: Benthic Invertebrate Community % Ephemeroptera from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Site specific normal ranges using regression models shown with grey shading and black rectangle (when available). Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC1).

stations except LC_DC3, LC_DCDS and LC_DC1 where at least one replicate was above the range (Figures 5.1, 5.6 and 5.7). In contrast, abundances of Chironomidae were within the regional normal range for all Dry Creek areas (Appendix Figures E.1 and E.7). Proportions of non-Chironomidae Diptera (%NCD; e.g. Simuliidae and Psychodidae) were above regional normal range in at least one replicate from all areas in Dry Creek samples except LC_DC4 (Figures 5.1 and 5.8). Similar to Chironomidae abundance, non-Chironomidae Diptera abundance were within the regional normal range for all Dry Creek areas.

In general, benthic invertebrate communities in Dry Creek upstream of the DCWMS and closest to the LCOII spoil (LC_DC3) were most likely to have endpoints outside of normal ranges. Areas located closest to the outlet of the ponds (LC_DCDS and LC_DC2) also tended to have lower %E than other areas and compared to regional and site-specific normal ranges.

5.2.1 Fording River and Grace Creek

The majority of benthic invertebrate community endpoints associated with samples collected from the Fording River in September 2022 were within the respective regional normal ranges (Figure 5.1; Appendix Figure E.1). Benthic invertebrate community endpoints fell below normal ranges in at least one replicate from both LC_FRUS and LC_FRB for %EPT and in at least one replicate at LC_FRB for %E. Benthic invertebrate community endpoints were above normal ranges for %Chironomidae at LC_FRB and %non-Chironomidae Diptera at LC_FRUS and LC_FRB.

In 2022, %EPT, %E, %P, and %T, were all lower downstream of the mouth of Dry Creek in the Fording River (LC_FRB) compared to upstream of Dry Creek (LC_FRUS), whereas the opposite was true for total abundance, %O, %C, and %NCD (Appendix Table E.3). With this considered, there was no consistent temporal variation in the %EPT, %E, %P, and %T endpoints that was indicative of an influence on the benthic community downstream of Dry Creek (i.e., most endpoints in 2022 were similar to 2018/2019 at LC_FRB; Appendix Table E.3). Secondly, water quality constituents were similar upstream and downstream of the mouth of Dry Creek in the Fording River and/or showed no temporal variation (except nitrite which was higher at LC_FRB, but below guidelines, in 2022 despite being similar to RG_FRUS in prior years; Appendix Table C.6). These together suggest that that there is a minimal influence of Dry Creek on benthic invertebrate community structure in the immediate downstream receiving environment.

The benthic invertebrate community within Grace Creek had endpoints in September 2022 that were generally within regional normal ranges, as expected, based on current lack of mine-related influence. The exception to this was total, EPT and E abundance, which was below both site-specific and regional normal ranges in 2022 in at least one replicate; and %EPT

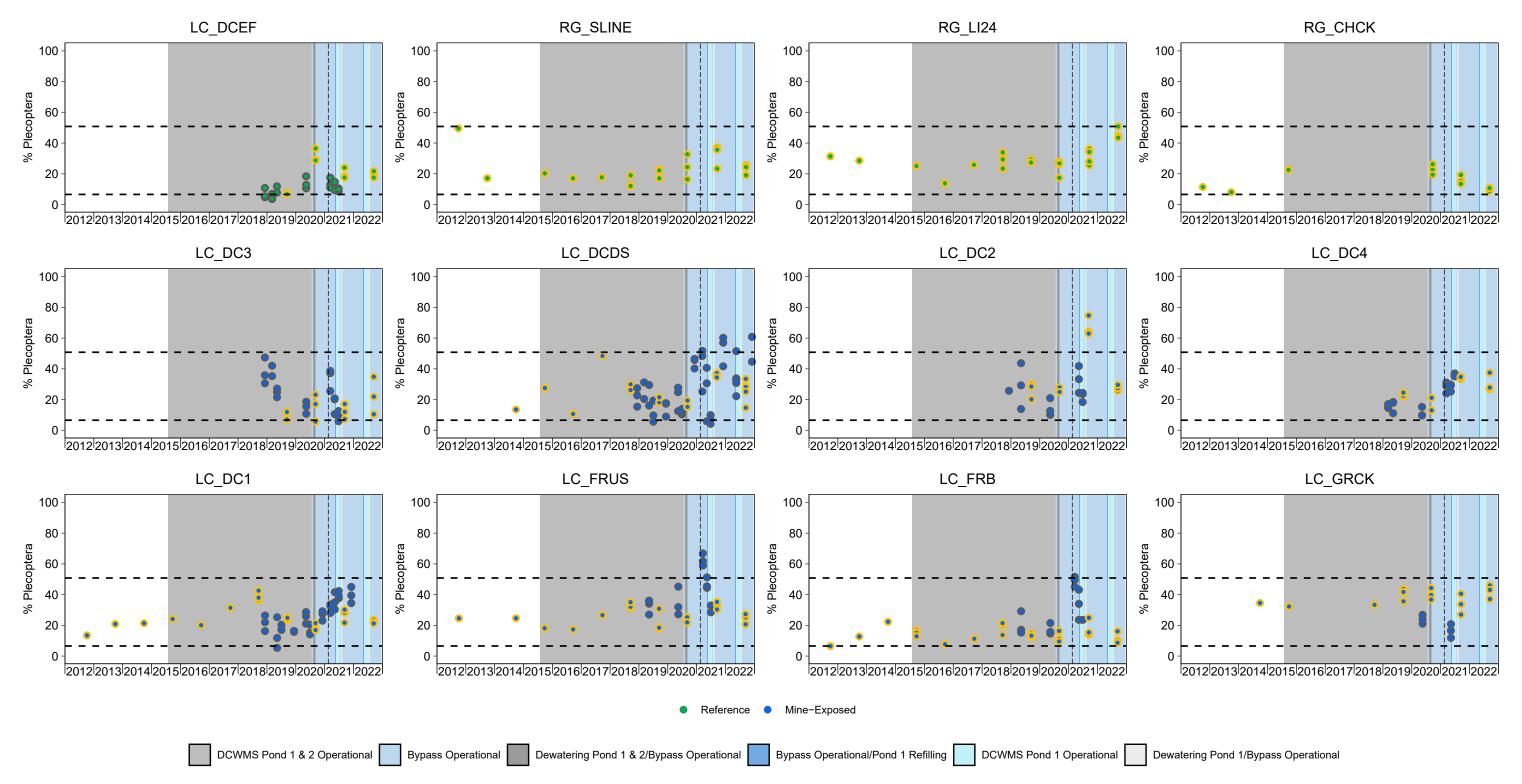


Figure 5.6: Benthic Invertebrate Community % Plecoptera from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DC2, LC_DC4, and LC_DC1).

59

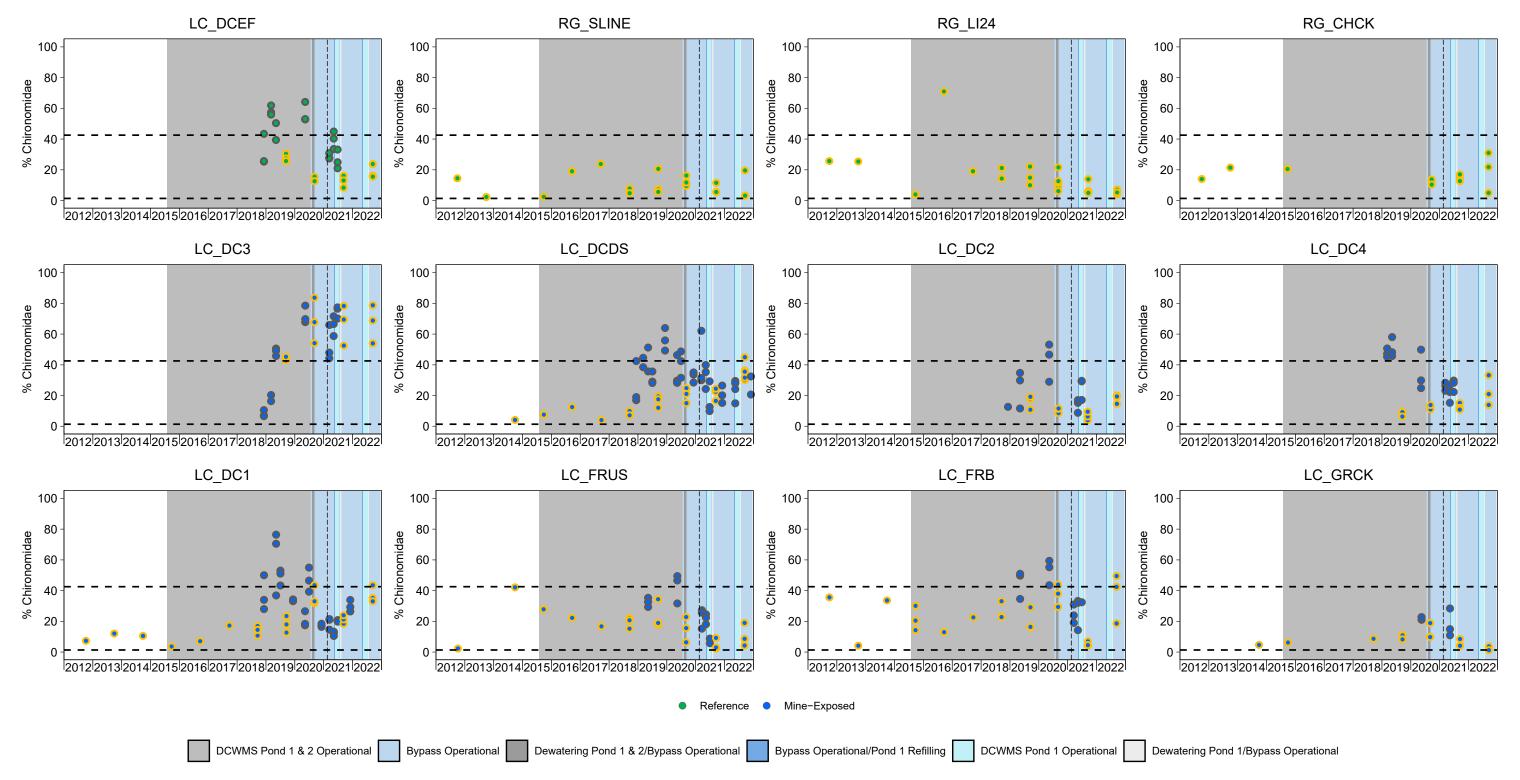


Figure 5.7: Benthic Invertebrate Community % Chironomidae from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DC2, LC_DC4, and LC_DC1).

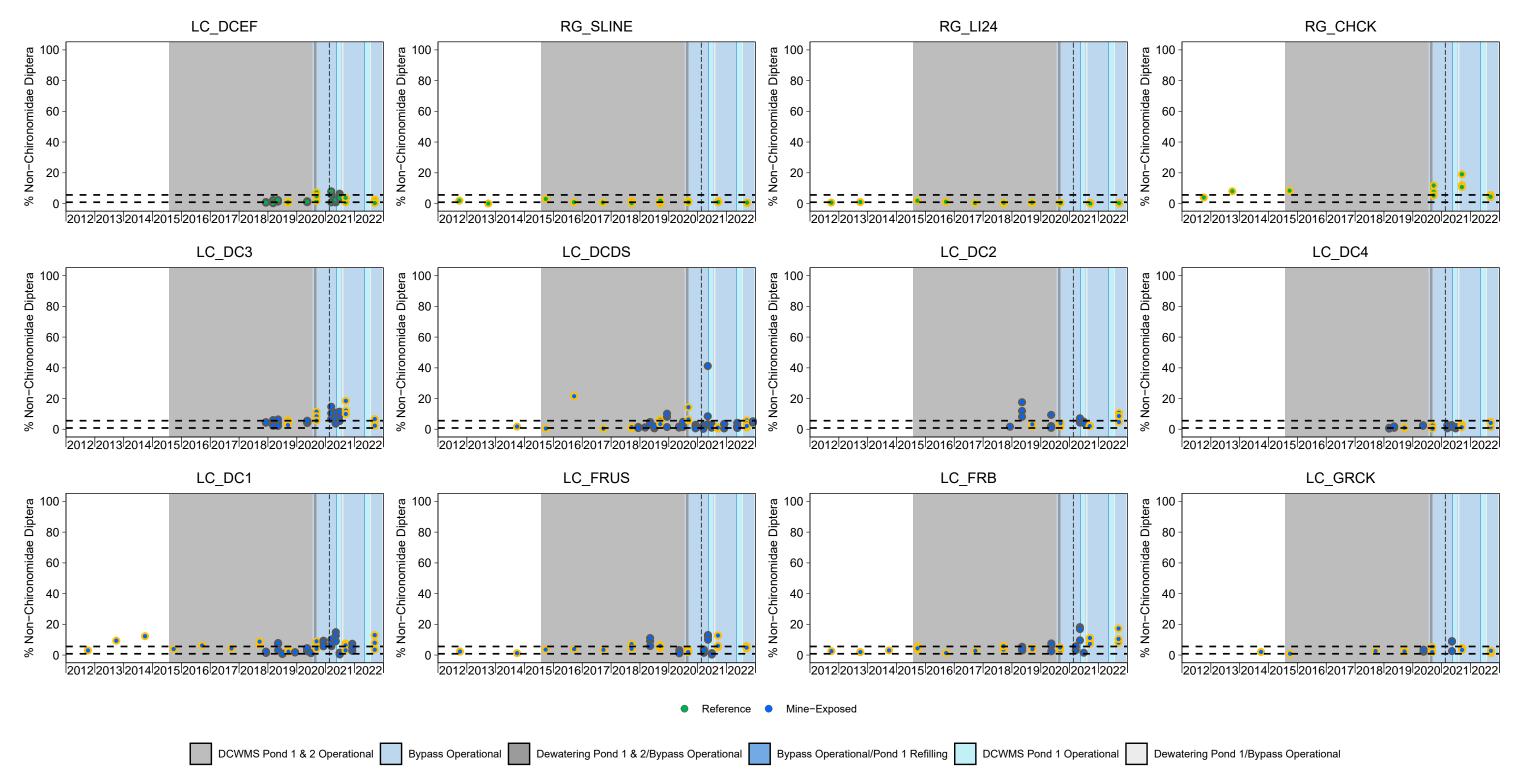


Figure 5.8: Benthic Invertebrate Community % Non-Chironomidae Diptera from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DC2, LC_DC4, and LC_DC1).

which was above the site-specific normal ranges and % E which was below the site-specific normal ranges in 2022 (Figure 5.1; Appendix figure E.1).

5.3 Spatiotemporal Changes and Biological Trigger Assessment

Analysis of potential changes in benthic invertebrate community endpoints over time and among mine-exposed areas in Dry Creek and the Fording River relative to changes at upstream reference areas (i.e., LC_DCEF for Dry Creek areas and LC_FRUS¹¹ for LC_FRB) were explored using data from Dry Creek areas over the 2019 to 2022 period and data from Fording River areas over the 2018 to 2022 period (Figures 5.1 to 5.8; Appendix Figures E.1 to E.10, Appendix Tables E.2 and E.3; see Appendix A for ANOVA methods).

Total abundance, EPT abundance and E abundance of benthic invertebrates significantly decreased between 2021 and 2022 at most areas in Dry Creek, except LC_DC3 (Figures 5.1 and 5.2; Appendix Table E.2). EPT abundance at mine-exposed sites in Dry Creek where similar to those at the reference stations; however, E abundance was lower at LC_DC3 and LC_DCDS in 2022. Total abundance in 2020 to 2022 was significantly lower than in 2019 in all study areas except LC_DC2 (2021 and 2020) and LC_DC4 (2020; where no temporal differences were observed; Appendix Table E.2). There was no change in total abundance at either Fording River area (LC_FRB and LC_FRUS) in 2022 compared to 2021, however total abundance was lower at LC_FRUS in 2022 compared 2018 as was the case in 2021 (Appendix Table E.3).

The decrease in total abundance (driven by a decrease in ETP and E abundance) in most Dry Creek stations in 2022 compared to 2021 was accompanied by a decrease at the reference station (LC_DCEF); all mine-exposed sites fell within the range of abundance seen at LC_DCEF, except LC_DC3 and LC_DC1 where abundance was significantly higher than reference (Figures 5.1 and 5.2; Appendix Table E.2, Appendix Figure E.4). Total abundance and EPT abundance also decreased at RG_CHCK (RAEMP reference station) in 2022 compared to 2021, decreases in abundance across the broader area could point to a regional environmental stressor (e.g., temperature or rainfall; Figure 5.1). RG_CHCK is a second potential reference station located approximately 8 km upstream of Dry Creek (Figure 2.1). It is a small tributary (similar in size to Dry Creek), that flows into the Fording River. RG_CHCK has a similar benthic invertebrate community as LC_DCEF and stations in Dry Creek (specifically, LC_DC2, LC_DC4, and LC_DC1) making is a good candidate as a second reference station for Dry Creek. Similar changes in BIC abundance were not seen at RG SLINE or

¹¹ LC_FRUS is not in reference condition; however, due to its position upstream of the mouth of Dry Creek, it is being used as an upstream reference area for LC_FRB (located downstream of the mouth of Dry Creek) to assess potential effects of Dry Creek inputs on Fording River benthic invertebrate communities.

RG_LI24 (LCO LAEMP reference stations; Figure 2.1 and 5.1) which are located slightly further away. It is important to note that at LC_DCEF, in 2022 compared to 2021, the proportions of E and EPT remained relatively stable and for all other benthic invertebrate community endpoints (e.g., %Plecoptera, %Trichoptera, %Oligochaeta, %Chironomidae, and %Non-Chironomidae Diptera), there were no significant differences, or patterns of change over time (Figures 5.1 and 5.4 to 5.8; Appendix Figure E.3).

There were no temporal or spatial (comparison to LC_DCEF) differences in taxonomic richness observed at all Dry Creek study areas in 2022 relative to any other study year, except LC_DC3 which exhibited lower richness than 2019 but has been stable since (2019 to 2021; Figure 5.3; Appendix Table E.2). At the Fording River study areas (LC_FRUS and LC_FRB), a similar pattern was observed for richness in 2022 as 2021 (i.e., lower relative to 2018 but stable from 2019 to 2022, and no difference in between the downstream and upstream area; Figures 5.1 and 5.3; Appendix Table E.3).

Within Dry Creek, percent EPT was significantly lower in 2022 relative to 2021 with the exception of LC_DC3 which decreased in 2020 compared to 2019 but has not changed since (Figures 5.1 and 5.4; Appendix Table E.2). The decrease in %EPT at all Dry Creek sites was largely driven by a decrease in abundance and proportion of Ephemeroptera; however, there is some variability between sites (i.e., a decrease in Plecoptera played a significant role at LC_DCDs in 2022; Appendix Figure E.6). Percent EPT was significantly lower at LC_DC3, LC_DCDs, and LC_DC1 compared to the reference station in 2022. Within the Fording River, a decrease in %EPT was observed at LC_FRB (driven by a decrease in %E, %P and %T) in 2022 relative to 2021; however, proportions are similar to earlier study years (2018 to 2020). This temporal decrease resulted in a significantly lower %EPT at LC_FRB compared to LC_FRUS in 2022 (Appendix Table E.3).

In addition to assessment of spatial and temporal changes, percent EPT was also compared against the biological trigger (i.e., lower limit) established for this endpoint for Dry Creek LAEMP monitoring areas with available water quality predictions (i.e., two mine-exposed areas [LC_DCDS and LC_DC1]; see Appendix H for details). The percentage of EPT in all samples from both study areas was below the trigger and within habitat-adjusted normal ranges. Percent EPT at these areas has previously been flagged for further investigation in the RAEMP based on benthic invertebrate community results (Minnow 2020b). Further information regarding the percent EPT biological trigger as it pertains to the LCO Dry Creek LAEMP can be found in Appendix H.

Significant decreases in %E were observed at all mine-exposed areas in Dry Creek over the 2019 to 2022 period (Figures 5.1 and 5.5; Appendix Table E.2). In some cases, the significant

decrease occurred in 2020 (i.e., LC_DC3, LC_DCDS, and LC_DC1), whereas in other cases, the significant decrease occurred in 2021 (i.e., LC_DC2 and LC_DC4) or 2022 (a second decrease for LC_DC1; Figure 5.5; Appendix Table E.2). At the reference area (LC_DCEF), %E initially decreased in 2020 relative to 2019, but returned in 2021 and 2022 to a similar percentage as observed in 2019 (Figures 5.1 and 5.5; Appendix Table E.2). The temporal decreases in %E observed at all mine-exposed areas resulted in all areas having significantly lower %E relative to the reference area in 2022 (and in many cases, 2021, 2020, and 2019; Figure 5.5; Appendix Table E.2).

A nearly opposite pattern to that of %E was observed for %Plecoptera (%P) at the Dry Creek study areas, with LC_DC3 and LC_DCDS exhibiting a significant increase in %P over time (2022 relative to 2019; Figure 5.6; Appendix Table E.2). Over the same time period, %P measured at the reference area (LC_DCEF) ranged from its lowest in 2019 and 2022 to highest in 2020 (Figure 5.6). As a result of the temporal patterns observed at Dry Creek study areas, almost all the mine-exposed areas differed from the reference area with respect to %P over time, due to the substantial increase in %P at the reference area in 2020, most mine-exposed areas exhibited significantly lower %P relative to the reference area that year (Appendix Table E.2). Then in 2021, when %P decreased at the reference area, but increased at almost all mine-exposed areas, significantly higher %P was noted at most mine-exposed areas relative to the reference area (Appendix Table E.2). % P has remained higher than reference at LC_DC2 and LC_DC4 in 2022. In the Fording River, %P was highest at both the downstream and upstream study areas in 2018 and 2021, and lowest in 2019, 2020 and 2022, with the downstream area consistently exhibiting lower %P than the upstream area in all years (Figure 5.6; Appendix Table E.3).

For most other benthic invertebrate community endpoints (e.g., %Trichoptera, %Oligochaeta, %Chironomidae, and %Non-Chironomidae Diptera), there were either no significant differences, or no obvious patterns of change over time or relative to reference within Dry Creek and the Fording River that would potentially be indicative of a mine-related influence (Figures 5.6 to 5.8; Appendix Figures E.7 to E.9, Appendix Tables E.2 and E.3).

Overall, %E appeared to be the endpoint most likely linked to a mine-related influence. Both the relative proportion and total abundance of Ephemeroptera decreased at all mine-exposed areas on Dry Creek over the 2019 to 2022 monitoring period, and percentages measured at the mine-exposed areas were almost always significantly lower than those measured in the reference area, particularly in 2021 and 2022. Unlike previous years where %EPT was unchanged compared to 2019, the decreased in proportion and abundance of Ephemeroptera in 2022 was reflected in a decrease in the proportion and abundance of EPT.

Generally, in previous years (2021 to 2019) proportions of EPT did not reflect the patterns observed in %E because %P often increased to offset the observed changes. In the Fording River in 2022, %EPT, %E, %P, and %T, were all lower downstream of the mouth of Dry Creek in the Fording River (LC_FRB) compared to upstream of Dry Creek (LC_FRUS); however, there has been very few temporal changes in benthic community endpoints (i.e., portions are no different than 2018 at either station) and there were no changes in water quality that would be indicative of an influence of Dry Creek on the downstream receiving environment.

5.4 Correlation Analysis

Spearman Rank Correlation analysis was used to assess relationships between benthic invertebrate community endpoints and physicochemical data (e.g., water quality constituents and habitat variables) collected from all Dry Creek LAEMP study areas in September 2019 to 2022 (Table 5.1; Appendix Figure E.11). Data were not screened against benchmarks or guidelines to refine the assessed physicochemical variables prior to correlation analysis; in addition, although correlation is a fundamental tool applied for exploring data and generating evidence of potential causation, it is not equal to causation (e.g., Suter 2015). Correlations results were discussed if their correlation coefficient (R_s) was less than or equal to -0.6 or greater than or equal to 0.6 and their p-value was less than 0.0001 (Appendix Figure E.11) and the discussion was focused on correlations with %E (for which most significant relationships were reported).

In 2022, total nickel and nitrate were significantly negatively correlated with %E (Table 5.1). Both nickel and nitrate were associated with chronic toxicity responses in *Ceriodaphnia dubia* (*C.dubia*) and *Hyalella azteca* (*H. azteca*) in 2022 (See section 4). Additionally, nitrate concentrations were above updated effects concentrations and dissolved nickel concentrations were above proposed benchmarks at Dry Creek stations in 2022. Thus, the evidence supports the potential for mine-related changes in nickel and nitrate to be influencing benthic invertebrate community structure in Dry Creek.

%E was also significant correlated with, total molybdenum, total thallium, total zinc and some selenium species (i.e., dimethylselenoxide, selenate, and selenite); however, neither molybdenum nor thallium were higher than BCWQGs; therefore, there is no direct causal link between these constituents and mayfly survival. In addition, no relationship between aqueous total molybdenum, total thallium, total zinc and %E was found in the RAEMP or in previous Dry Creek LAEMP reports despite increasing concentrations of these constituents, thus the correlation observed in the current study is likely coincidental (Minnow 2020c). Lastly, various selenium species (i.e., dimethylselenoxide, selenate, and selenite) were also correlated with the decrease in %E; however, benthic invertebrate tissue selenium concentrations are a better indicator of direct effects on community and there was no correlation between any

Table 5.1: Spearman's Correlation Relationships between Benthic Invertebrate Community Metrics and Physical and Chemical Parameters, Dry Creek, 2019 to 2022

Parameter	Abundance (# organisms/ 3 min kick)		Richnes	Richness (# taxa) % EPT		EPT	% Ephemeroptera		% Plecoptera		% Trichoptera		% Oligochaeta		% Non-Chironomidae Diptera		% Chironomidae	
	r _s	p-value	r _s	p-value	r _s	p-value	r _s	p-value	r_s	p-value	r _s	p-value	r _s	p-value	r _s	p-value	r _s	p-value
Calcite Index	0.3	0.000491	0.1	0.166	-0.4	0.000209	0.2	0.11	-0.4	0.000135	-0.4	<0.0001	0.1	0.149	0.2	0.0709	0.2	0.0214
Calcite (%)	0.3	0.000492	0.1	0.165	-0.3	0.000497	0.1	0.123	-0.3	0.000471	-0.4	<0.0001	0.2	0.112	0.2	0.0626	0.2	0.046
Concreted (mean)	0.0	0.908	-0.1	0.234	-0.4	0.00016	-0.1	0.378	-0.3	0.00142	-0.4	<0.0001	0.0	0.918	0.1	0.227	0.4	<0.0001
Embeddedness (%)	-0.5	<0.0001	-0.1	0.511	-0.2	0.0568	0.0	0.885	-0.1	0.367	0.0	0.617	0.0	0.715	0.1	0.161	0.1	0.126
D16	0.0	0.61	-0.1	0.167	-0.1	0.419	0.0	0.689	0.0	0.934	0.1	0.429	0.0	0.692	0.1	0.164	0.0	0.974
D84	0.3	0.000793	-0.1	0.415	-0.4	<0.0001	0.1	0.471	-0.5	<0.0001	-0.3	0.000197	0.0	0.722	0.2	0.0963	0.5	<0.0001
Water Velocity (m/s)	0.2	0.0648	0.2	0.0324	0.0	0.694	0.1	0.499	0.0	0.636	0.0	0.717	0.3	0.000421	0.1	0.129	-0.2	0.0585
Water Depth (cm)	-0.2	0.117	0.1	0.235	-0.2	0.0096	0.1	0.323	-0.3	0.00761	-0.2	0.0744	0.2	0.116	0.3	0.000485	0.0	0.999
Annual Temperature (oC)	0.3	0.000259	0.1	0.37	0.2	0.034	0.2	0.105	0.0	0.955	0.3	0.00115	0.1	0.386	0.0	0.676	-0.2	0.0215
Annual Total Alkalinity as CaCO3 (mg/L)	-0.2	0.033	0.2	0.0741	0.0	0.714	0.2	0.0685	0.1	0.552	-0.2	0.0768	0.3	0.00443	0.1	0.152	-0.2	0.0141
Annual Nitrate (mg/L as N)	0.0	0.672	-0.1	0.331	-0.4	<0.0001	-0.6	<0.0001	-0.1	0.419	0.1	0.371	-0.1	0.132	0.3	0.00127	0.4	<0.0001
Annual Nitrite (mg/L s N)	0.4	<0.0001	0.0	0.999	-0.2	0.117	-0.3	0.000699	-0.1	0.368	0.2	0.0502	-0.2	0.0406	0.1	0.191	0.2	0.0122
Annual Ammonia (mg/L as N)	0.6	<0.0001	0.2	0.0407	0.0	0.922	0.1	0.576	-0.2	0.0359	0.0	0.939	-0.1	0.561	-0.1	0.538	0.1	0.452
Annual Phosphorus (mg/L)	0.1		-0.1	0.461	-0.2	0.0337	-0.5	<0.0001	0.0	0.638	0.2	0.0281	-0.2	0.0568	0.2	0.0964	0.4	0.000149
Annual Sulphate (mg/L)	-0.2	0.0409	0.0	0.891	-0.5	<0.0001	-0.5	<0.0001	-0.1	0.186	-0.1	0.526	0.1	0.245	0.4	<0.0001	0.3	0.00165
Annual Total Dissolved Solids (mg/L)	-0.1	0.126	0.0	0.845	-0.5	<0.0001	-0.5	<0.0001	-0.1	0.296	0.0	0.685	0.0	0.651	0.4	<0.0001	0.4	0.000219
Annual Total Antimony (mg/L)	0.2	0.0138	-0.1	0.313	-0.3	0.000402	-0.5	<0.0001	-0.1	0.265	0.1	0.311	-0.3	0.00121	0.1	0.525	0.5	< 0.0001
Annual Total Arsenic (mg/L)	0.2	0.0174	-0.1	0.294	-0.3	0.00236	-0.5	<0.0001	-0.1	0.417	0.1	0.129	-0.3	0.00263	0.1	0.138	0.4	< 0.0001
Annual Total Barium (mg/L)	0.4	0.000125	-0.1	0.168	0.1	0.609	0.1	0.253	0.0	0.759	0.0	0.783	-0.3	0.000381	-0.2	0.0617	0.1	0.193
Annual Total Boron (mg/L)	-0.4	<0.0001	-0.1	0.415	0.1	0.371	-0.5	<0.0001	0.4	<0.0001	0.3	0.000576	0.0	0.97	-0.1	0.446	0.0	0.64
Annual Dissolved Cadmium (µg/L)	0.2	0.11	-0.2	0.112	-0.4	<0.0001	-0.5	<0.0001	-0.1	0.262	0.1	0.242	-0.3	0.00138	0.1	0.235	0.5	<0.0001
Annual Total Chromium (mg/L)	-0.2	0.0173	0.2	0.0928	0.0	0.703	-0.3	0.00191	0.2	0.0603	0.2	0.0782	0.4	<0.0001	0.3	0.000243	-0.2	0.0239
Annual Total Cobalt (mg/L)	0.2	0.0183	0.1	0.259	0.0	0.734	-0.4	<0.0001	0.0	0.673	0.2	0.0625	0.1	0.267	0.3	0.0051	0.0	0.934
Annual Total Copper (mg/L)	-0.2	0.0264	0.1	0.489	-0.3	0.000411	-0.4	0.000176	-0.1	0.374	0.0	0.789	0.1	0.212	0.5	<0.0001	0.2	0.012
Annual Total Iron (mg/L)	-0.2	0.0767	0.2	0.08	0.0	0.846	-0.3	0.00105	0.2	0.0658	0.1	0.227	0.4	0.000218	0.4	<0.0001	-0.2	0.0546
Annual Total Lead (mg/L)	-0.1	0.163	0.1	0.273	0.1	0.414	-0.3	0.000472	0.2	0.018	0.2	0.013	0.3	0.000451	0.4	0.000158	-0.2	0.0255
Annual Total Lithium (mg/L)	-0.3	0.000673	-0.2	0.0483	-0.5	<0.0001	-0.3	0.000462	-0.2	0.0562	-0.2	0.032	0.0	0.934	0.3	0.000853	0.4	0.000148
Annual Total Manganese (mg/L)	0.0	0.668	0.2	0.0689	0.1	0.323	-0.3	0.000499	0.3	0.00343	0.2	0.0709	0.3	0.00369	0.3	0.00269	-0.2	0.0321
Annual Total Molybdenum (mg/L)	0.1	0.338	0.0	0.68	-0.2	0.0148	-0.6	<0.0001	0.1	0.436	0.3	0.00122	-0.2	0.0349	0.1	0.402	0.4	<0.0001
Annual Total Nickel (mg/L)	0.1	0.243	-0.1	0.401	-0.4	<0.0001	-0.6	<0.0001	-0.1	0.33	0.2	0.0579	-0.2	0.0963	0.3	0.00274	0.5	< 0.0001
Annual Total Selenium (μg/L)	-0.1	0.206	0.0	0.668	-0.5	<0.0001	-0.5	<0.0001	-0.1	0.22	0.0	0.743	0.0	0.719	0.4	<0.0001	0.3	0.000234
Annual Total Thallium (mg/L)	0.0	0.666	0.0	0.798	-0.2	0.0129	-0.7	<0.0001	0.1	0.275	0.3	0.000484	0.1	0.563	0.2	0.0101	0.3	0.00566
Annual Total Uranium (mg/L)	-0.3	0.00454	0.0	0.859	-0.4	<0.0001	-0.5	<0.0001	-0.1	0.239	-0.1	0.473	0.2	0.038	0.5	<0.0001	0.2	0.0186
Annual Total Zinc (mg/L)	-0.2	0.0556	-0.2	0.028	-0.4	<0.0001	-0.6	<0.0001	0.0	0.988	0.1	0.128	0.0	0.666	0.3	0.000394	0.4	< 0.0001
Annual Dimethylseleneoxide (μg/L)	0.2	0.0292	-0.1	0.322	-0.3	0.000722	-0.6	<0.0001	-0.1	0.452	0.3	0.00294	-0.2	0.0514	0.2	0.127	0.4	< 0.0001
Annual Methylseleninic Acid (µg/L)	0.3	0.000441	0.0	0.871	-0.3	0.000769	-0.4	<0.0001	-0.2	0.0377	0.2	0.0193	-0.2	0.117	0.1	0.197	0.4	< 0.0001
Annual Selenate (µg/L)	-0.1	0.241	-0.1	0.292	-0.5	<0.0001	-0.6	<0.0001	-0.1	0.311	0.0	0.634	-0.1	0.6	0.4	0.000169	0.4	<0.0001
Annual Selenite (μg/L)	0.3	0.00557	-0.1	0.552	-0.4	<0.0001	-0.6	<0.0001	-0.2	0.0533	0.1	0.153	-0.1	0.14	0.2	0.0322	0.5	<0.0001
Dimethylseleneoxide (% of Total Selenium)	0.1	0.26	0.0	0.881	0.4	<0.0001	0.3	0.000678	0.1	0.288	0.1	0.17	-0.1	0.552	-0.5	<0.0001	-0.2	0.0327
Methylseleninic Acid (% of Total Selenium)	0.1	0.393	0.0	0.857	0.4	0.000244	0.4	0.000189	0.0	0.659	0.1	0.243	0.0	0.689	-0.4	<0.0001	-0.2	0.0905
Selenate (% of Total Selenium)	0.1	0.619	-0.1	0.284	-0.1	0.442	-0.1	0.271	0.0	0.714	0.1	0.231	-0.1	0.354	0.0	0.901	0.2	0.0579
Selenite (% of Total Selenium)	0.3	0.00447	0.0	0.724	0.2	0.1	0.1	0.398	0.0	0.881	0.1	0.355	0.0	0.763	-0.3	0.00501	0.0	0.841
Benthic Invertebrate Tissue Selenium (mg/kg dw)	0.2	0.115	0.0	0.755	-0.3	0.00613	-0.2	0.105	-0.2	0.0676	0.2	0.059	-0.1	0.301	0.2	0.0143	0.3	0.00738

P-value < 0.05/47 (0.05 Bonferroni Corrected for 47 independent comparisons).

Notes: D16 and D84 are sediment size parameters corresponding to the 16th and 84th percentile of the sediment size distributions (equivalent to +/- 1SD from a normal distribution). For example, D16 is the sediment size for which 16% of the sediment sample is finer. PC1, PC2, and PC3 are axes from Principal Component Analysis (PCA) of annual water chemistry analytes calculated using data from 2019 to 2022. Annual water chemistry variables were calculated using September data from 2019 to 2022 from: LC_DC5, LC_DC1, LC_DC3, LC_DC1, LC_DC3, LC_DC1, LC_DC3, LC_DC3,

BIC endpoints and benthic invertebrate tissue concentrations in 2022 (Table 5.1). Additionally, mean tissue concentrations were not higher than EVWQP tissue benchmarks in 2022 (See Section 6.2). It is, therefore, unlikely that aqueous selenium is driving changes in benthic community in 2022.

Decreasing total and relative abundance of Ephemeroptera was noted in all mine-exposed areas of Dry Creek commensurate with increasing aqueous concentrations of many mine-related constituents, including nitrate, and nickel, and other general indicators of mine influence such as total dissolved solid (TDS) and conductivity. Thus, observed changes in benthic invertebrate community may simply reflect a more general response to changing water chemistry (e.g., secondary stress response and energetic cost of ion regulation [Kefford 2019, Buchwalter et al. 2019]), rather than a direct effect on invertebrate survival by one or several specific constituents.

To explore the changes in total abundance in Dry Creek, LC_DCEF, and LC_GRCK a second Spearman Rank Correlation analysis was completed on this reduced data set (i.e., only the above sites; Appendix Figure E.12). Calcite, nitrite, and annual ammonia were positively correlated (p-value < 0.001) with total abundance, whereas embeddedness was negatively correlated (p-value < 0.001) with total abundance; however, they do not meet the above criteria for interpretation (i.e., R_s was greater than -0.6 but less than 0.6 for each variable). Neither ammonia or nitrite increased in 2022 compared to 2021, in Dry Creek, LC_DCEF, or LC_GRCK. Considering this, the decrease in total abundance in these sites can not currently be linked to any changes in water quality and mining related constituents (e.g., nitrate, nickel, and selenium) do not appear to be a driver of total abundance in Dry Creek in 2022.

Overall, there was some evidence that mining activities associated with Dry Creek are having an influence on benthic invertebrate community structure. The relationship between changing water quality and decreasing total and relative abundance of Ephemeroptera was previously documented in the RAEMP, the 2020 and 2021 Dry Creek LAEMP, and observed in the present study.

5.5 Summary

Benthic invertebrate community total abundance and taxonomic richness were generally within regional normal ranges at Dry Creek LAEMP sampling areas in 2022; however, they were occasionally outside site-specific normal ranges. Benthic invertebrate communities in Dry Creek upstream of the DCWMS (LC_DC3) had endpoints outside of normal ranges (particularly %EPT, %E, and %C) most often. Areas located closest to the DCWMS discharge (LC_DCDS and LC_DC2) also tended to have lower %E than other areas and compared to regional and site-specific normal ranges. In 2022, benthic invertebrate communities located

upstream and downstream of the mouth of Dry Creek in the Fording River differed from each other; however, community endpoints were generally within regional normal ranges and show no temporal variation. The benthic invertebrate community within Grace Creek also had endpoints within regional normal ranges, as expected, based on current lack of mine-related influence.

Over the 2019 to 2022 monitoring period there have been decreases in total abundance, EPT and E abundance, and the proportion of EPT and E at all areas along Dry Creek were almost always significantly lower than those associated with the community in the Dry Creek reference area (LC_DCEF). Overall, %E appeared to be the endpoint most likely linked to a mine-related influence. Both the relative proportion and total abundance of Ephemeroptera decreased at all mine-exposed areas on Dry Creek over the 2019 to 2022 monitoring period. Unlike previous years where %EPT was unchanged compared to 2019, the decreased in proportion and abundance of Ephemeroptera in 2022 was reflected in a decrease in the proportion and abundance of EPT. In the Fording River, there were no obvious temporal changes in benthic invertebrate community endpoints that would be indicative of an influence of Dry Creek on the downstream receiving environment.

Changes in Dry Creek benthic invertebrate community structure, namely decreases in relative and total abundance of E, may be associated with increasing aqueous concentrations of mine related constituents including nitrate, selenium, and nickel. It is therefore likely that mining activities are contributing to changes in the benthic invertebrate communities of Dry Creek. An AMP framework is already in place to address increasing concentrations of nitrate, sulphate, and selenium on Dry Creek and the updated DCWMP includes proposed in-stream flow requirements, flushing flows, ramping flows, as well as proposed site performance objectives for selenium, nitrate, sulphate, and cadmium (Teck 2021b).

6 STUDY QUESTION 4: BENTHIC INVERTEBRATE TISSUE SELENIUM

6.1 Background

To address Study Question #2: "How do selenium concentrations in benthic invertebrate tissue compare to normal ranges and BCWQG or EVWQP benchmarks, and are they changing over time?", selenium concentrations in composite-taxa benthic invertebrate tissue samples were evaluated over time and in relation to DCWMS status (see Section 1.3 for additional DCWMS details; Table 1.1; and Appendix Table F.1 for BCWQG and EVWQP benchmarks). In general, benthic invertebrate tissue selenium concentrations measured at each Dry Creek LAEMP study area in 2022 were within or lower than the range of values previously reported for each study area in 2018 to 2021.

Benthic invertebrate tissue chemistry data collected for the present study were of good quality as characterized by appropriate LRLs, measurable (i.e., >LRL) concentrations, and excellent laboratory precision and accuracy. Therefore, the associated data were considered acceptable for the purposes of this evaluation (see Appendix B for details).

6.2 Normal Ranges, Benchmarks and Biological Trigger Evaluation

Generally, mean benthic invertebrate tissue selenium concentrations were within the regional normal reference range in Dry Creek in 2022; however, benthic invertebrate tissue selenium concentrations were higher than the regional normal range in at least one sample from all mine-exposed areas on Dry Creek, the Fording River (LC FRUS and LC FRB), and Grace Creek (LC GRCK) study areas in 2022 (Figure 6.1; Appendix Table F.2). Upstream of the DCWMS (LC DC3), mean tissue selenium concentrations were higher than the regional normal range in September, however, they were not above normal ranges in any other sampling event (Appendix Table F.2). Downstream of the DCWMS (LC DCDS), mean tissue selenium concentrations were higher than the regional normal range in every sampling event in 2022, apart from samples taken in June where tissue selenium concentrations were lower than other months (Appendix Table F.2). Further downstream of the DCWMS at areas LC DC2, LC DC4 and LC DC1, mean benthic invertebrate tissue selenium concentrations were above the regional normal range in May 2022, but were not above the normal ranges in any other sampling event in 2022; Appendix Table F.2). In contrast to the mine-exposed sites, mean selenium concentrations were below the regional normal range during all sampling events at the Dry Creek reference area (LC DCEF, Appendix Table F.2). In the Fording River upstream and downstream

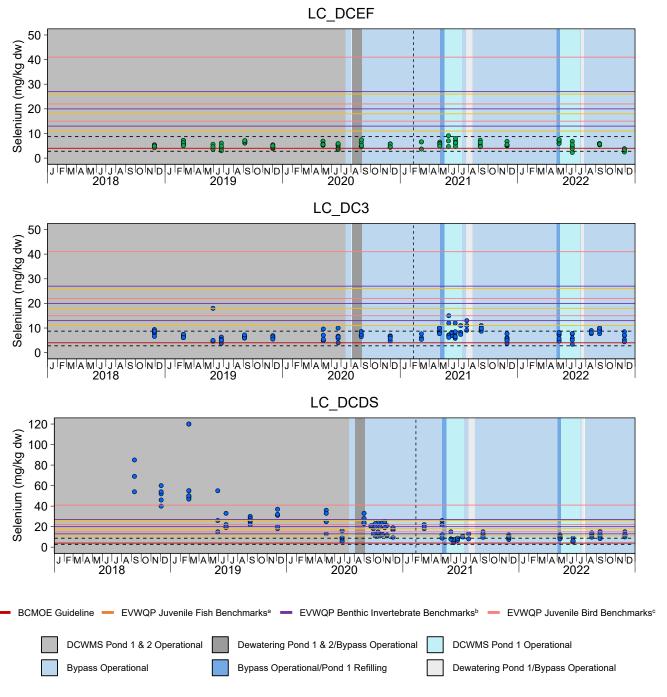


Figure 6.1: Selenium Concentrations (mg/kg dw) in Composite-Taxa Benthic Invertebrate Samples from Dry Creek Sampling Areas, 2018 to 2022

Notes: Dashed black vertical line indicates the Burnt Ridge North spoil failure. Dashed black horizontal lines represent the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) reported in the RAEMP. Reference areas are shown in green and mine-exposed areas are shown in blue. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only apply to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, and LC_DC1).

^a 11, 18, and 26 mg/kg dw represent the Level 1, 2, and 3 Benchmarks (Elk Valley Water Quality Plan [EVWQP]; Golder, 2014),respectively, for dietary effects to juvenile fish.

^b 13, 20, and 27 mg/kg dw represent the Level 1, 2, and 3 Benchmarks (Elk Valley Water Quality Plan [EVWQP]; Golder, 2014), respectively, for growth, reproduction, and survival of benthic invertebrates.

° 15, 22, and 41 mg/kg dw represent the Level 1, 2, and 3 Benchmarks (Elk Valley Water Quality Plan [EVWQP]; Golder, 2014), respectively, for dietary effects to juvenile birds.

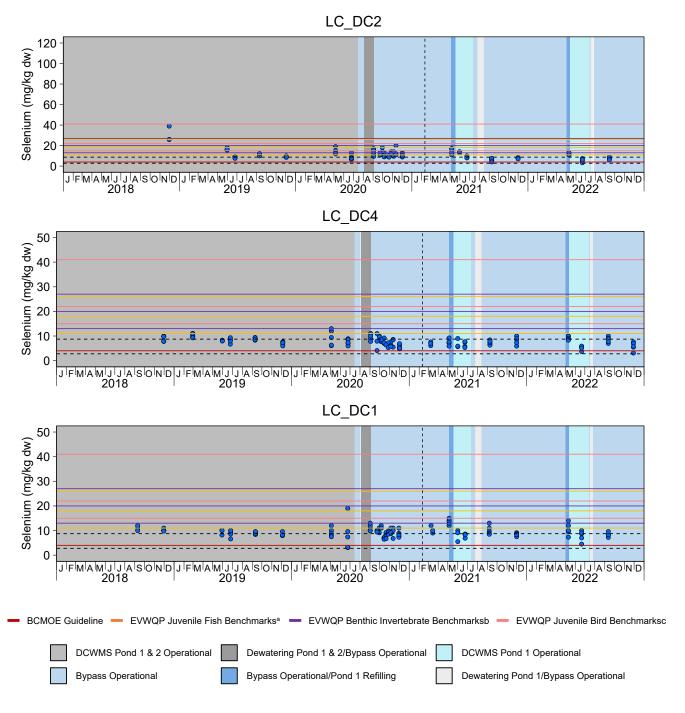


Figure 6.1: Selenium Concentrations (mg/kg dw) in Composite-Taxa Benthic Invertebrate Samples from Dry Creek Sampling Areas, 2018 to 2022

Notes: Dashed black vertical line indicates the Burnt Ridge North spoil failure. Dashed black horizontal lines represent the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) reported in the RAEMP. Reference areas are shown in green and mine-exposed areas are shown in blue. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only apply to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, and LC_DC1).

- ^a 11, 18, and 26 mg/kg dw represent the Level 1, 2, and 3 Benchmarks (Elk Valley Water Quality Plan [EVWQP]; Golder, 2014),respectively, for dietary effects to juvenile fish.
- ^b 13, 20, and 27 mg/kg dw represent the Level 1, 2, and 3 Benchmarks (Elk Valley Water Quality Plan [EVWQP]; Golder, 2014), respectively, for growth, reproduction, and survival of benthic invertebrates.
- c 15, 22, and 41 mg/kg dw represent the Level 1, 2, and 3 Benchmarks (Elk Valley Water Quality Plan [EVWQP]; Golder, 2014), respectively, for dietary effects to juvenile birds.

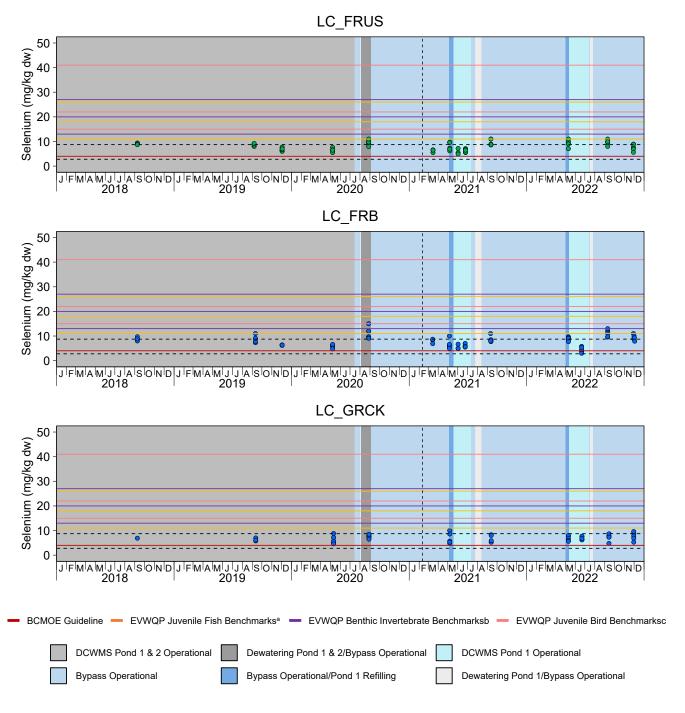


Figure 6.1: Selenium Concentrations (mg/kg dw) in Composite-Taxa Benthic Invertebrate Samples from Dry Creek Sampling Areas, 2018 to 2022

Notes: Dashed black vertical line indicates the Burnt Ridge North spoil failure. Dashed black horizontal lines represent the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) reported in the RAEMP. Reference areas are shown in green and mine-exposed areas are shown in blue. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only apply to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, and LC_DC1).

- ^a 11, 18, and 26 mg/kg dw represent the Level 1, 2, and 3 Benchmarks (Elk Valley Water Quality Plan [EVWQP]; Golder, 2014),respectively, for dietary effects to juvenile fish.
- ^b 13, 20, and 27 mg/kg dw represent the Level 1, 2, and 3 Benchmarks (Elk Valley Water Quality Plan [EVWQP]; Golder, 2014), respectively, for growth, reproduction, and survival of benthic invertebrates.
- c 15, 22, and 41 mg/kg dw represent the Level 1, 2, and 3 Benchmarks (Elk Valley Water Quality Plan [EVWQP]; Golder, 2014), respectively, for dietary effects to juvenile birds.

of Dry Creek (LC_FRUS and LC_FRB), mean benthic invertebrate tissue selenium concentrations in 2022 were above the normal range in most sampling events (Figure 6.1; Appendix Table F.2).

Benthic invertebrate tissue selenium concentrations were predicted for Dry Creek areas using the selenium speciation bioaccumulation tool¹² (b-tool; de Bruyn and Luoma 2021; Appendix Table F.3). Field-measured mean benthic invertebrate tissue selenium concentrations were generally below the b-tool predictions, except in the Fording River and Grace Creek where the b-tool under predicted measured tissue selenium concentrations (Appendix Table F.3).

The frequency of tissue selenium results above the EVWQP tissue benchmarks was lower in 2022 than 2021. In Dry Creek mean benthic invertebrate tissue selenium concentrations were not higher than the EVWQP benthic invertebrate benchmark (13 mg/kg dw); however, individual samples were occasionally above the EVWQP level 1 benchmarks for to juvenile fish, benthic invertebrates, and juvenile birds (11, 13, and 15 mg/kg dw, respectively) at stations closest to the DCWMS (LC DCDS and LC DC2; Figure 6.1; Appendix Table F.2). The elevated selenium concentrations in benthos from LC DCDS and LC DC2 were likely related to enhanced algal selenium bioaccumulation and generation of more bioavailable organoselenium in the DCWMS sedimentation ponds upstream of LC DCDS (see Section 1.3 for details of DCWMS operations; Lorax 2020, Minnow 2020c). In 2022 no samples from the Dry Creek LAEMP areas were above the EVWQP level 2 and 3 benchmarks for effects to juvenile birds (22 and 41 mg/kg dw, respectively), benthic invertebrates (20 and 27 mg/kg dw, respectively), and juvenile fish (18 and 26 mg/kg dw, respectively) Appendix Tables F.1 and F.2). In the Fording River upstream of Dry Creek mean benthic invertebrate tissue concentrations were not higher than EVWQP benchmarks, whereas downstream of Dry Creek (LC FRB) samples from September were higher then the EVWQP level 1 benchmark for juvenile fish (11 mg/kg); however, there was no statistical difference between LC FRUS and LC FRB in 2022 (Appendix Table F.5).

Selenium concentrations in benthic invertebrate tissue were also assessed against the biological trigger established for this endpoint (information pertaining to the determination of the biological trigger value can be found in Appendix H). Similar to the biological trigger evaluation for %EPT, this was completed for each replicate from each of the Dry Creek LAEMP monitoring areas with available water quality predictions (i.e., two mine-exposed areas [LC_DCDS and LC_DC1], see Appendix H for details). Approximately 15% of samples were higher than the biological trigger value at LC_DCDS and 13% of samples at LC_DC1 (3 of 20 and 2 of 15

¹² The b-tool is a predictive bioaccumulation model that can be used to integrate selenium speciation data and aqueous sulphate concentrations to predict tissue selenium concentrations in benthic invertebrate and periphyton tissue (de Bruyn and Luoma 2021).

samples, respectively). This is considerably lower than in 2021 where ~ 37% of samples were higher than trigger values and LC DCDS and 27% at LC DC1 (Minnow 2022a).

6.3 Spatiotemporal Trends

Benthic invertebrate tissue selenium concentrations in 2022 generally decreased relative to earlier years (2020) in areas directly downstream of the DCWMS (LC_DCDS and LC_DC2; while concentrations remained unchanged at the area located upstream of the DCWMS and further downstream (i.e., LC_DC3, LC_DC4 and LC_DC1; Figure 6.1; Appendix Table F.6). Stations located closest to the DCWMS (LC_DCDS and LC_DC2) recorded the greatest decreases from 2020 to 2022 (Appendix Table F.6). There were no changes in benthic invertebrate tissue selenium concentrations in the Fording River in 2022 compared to 2021 and 2020, and measured concentrations did not vary between areas directly upstream of Dry Creek and downstream (Appendix Tables F.5 and F.7).

Spatial variability in benthic invertebrate tissue selenium concentrations was observed among sampling events in Dry Creek in 2022 (Figure 6.2; Appendix Table F.4). In May, tissue selenium concentrations were higher at areas LC_DCDS, LC_DC2, and LC_DC1 than the reference area (LC_DCEF). In June, only LC_DC1 had higher tissue selenium concentrations than LC_DCEF. Concentrations at LC_DC1 were very slightly higher than LC_DCEF in June and based on the current water quality data, cannot be attributed to a specific cause. Additionally, concentrations at LC_DC1 did not differ significantly from the other exposed areas during the June sampling event. In September and November, tissue selenium concentrations were higher at LC_DC3 and LC_DCDS than the reference area (LC_DCEF).

Several temporal trends were observed in tissue selenium concentrations across sampling events in 2022 (Figure 6.2; Appendix Table F.4). In the upstream stations (LC_DC3 and LC_DCDS) benthic invertebrate tissue concentrations were highest in September; however, moving downstream (LC_DC4, LC_DC2 and LC_DC1) concentrations were highest in May. In contrast to the benthic tissue concentrations, the temporal pattern in organoselenium (sum of DMSeO and MeSe(IV)) was consistent at all stations in Dry Creek, with highest concentrations observed in July, August, and September and lower concentrations measured from January to May (Figure 6.3 and 6.4; Appendix Figures C.23, C.24). Across all Dry Creek areas, the lowest mean benthic tissue selenium concentrations were observed in June, possible due to dilution of organoselenium during freshet. At the reference area (LC_DCEF), tissue selenium concentrations were highest in May (aligned with the downstream stations on Dry Creek) and were lowest in November (Figure 6.2). In the Fording River, tissue selenium concentration did not vary significantly between areas and at both LC_FRUS and LC_FRB (Appendix Table F.5), and tissue selenium concentrations were highest in September and

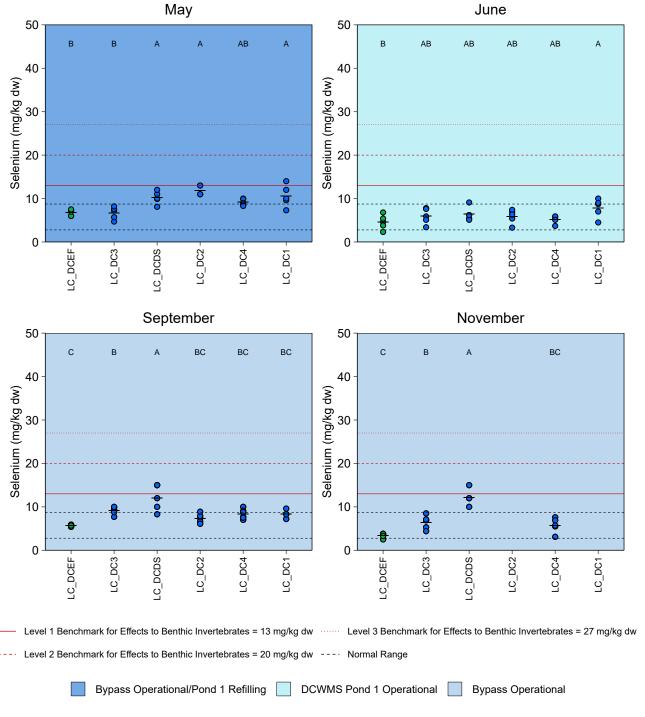


Figure 6.2: Selenium Concentrations (mg/kg dw) in Composite-Taxa Benthic Invertebrate Samples from Dry Creek Sampling Areas, 2022

Notes: Dashed black lines represent the normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP). Areas that do not share a letter (e.g. a,b,c) are significantly different (p-value = 0.05) in a Tukey's HSD test following a two-way ANOVA by area. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context.

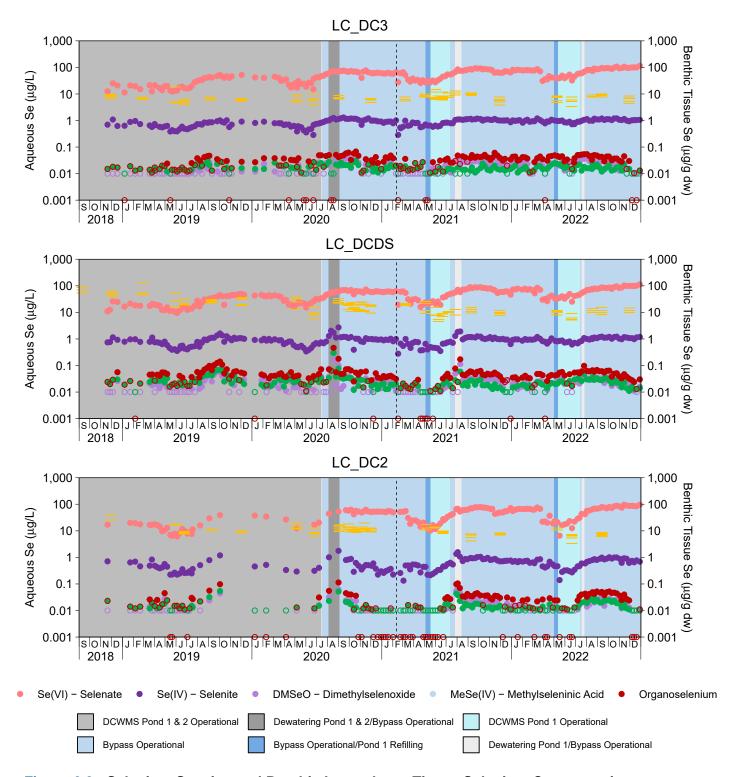


Figure 6.3: Selenium Species and Benthic Invertebrate Tissue Selenium Concentrations from LCO Dry Creek LAEMP Sampling Areas, September 2018 to December 2022

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted with an open symbol. Benthic composite tissue concentrations plotted with orange bars. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only appliy to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, and LC_DC1). Biological sampling (including benthic invertebrate tissue selenium monitoring) was discontinued at LC_SPDC following operational changes in October 2020 at this area (see Minnow 2021a).

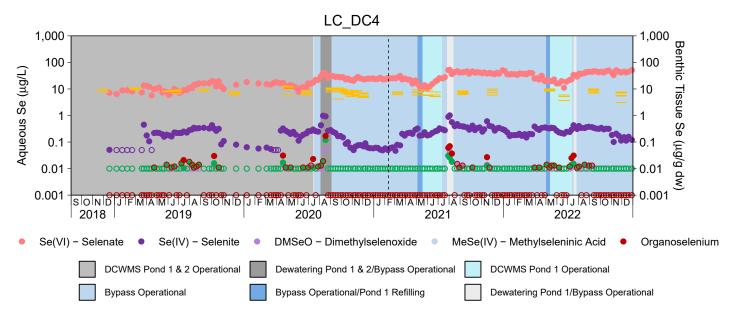


Figure 6.3: Selenium Species and Benthic Invertebrate Tissue Selenium Concentrations from LCO Dry Creek LAEMP Sampling Areas, September 2018 to December 2022

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted with an open symbol. Benthic composite tissue concentrations plotted with orange bars. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only appliy to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, and LC_DC1). Biological sampling (including benthic invertebrate tissue selenium monitoring) was discontinued at LC_SPDC following operational changes in October 2020 at this area (see Minnow 2021a).

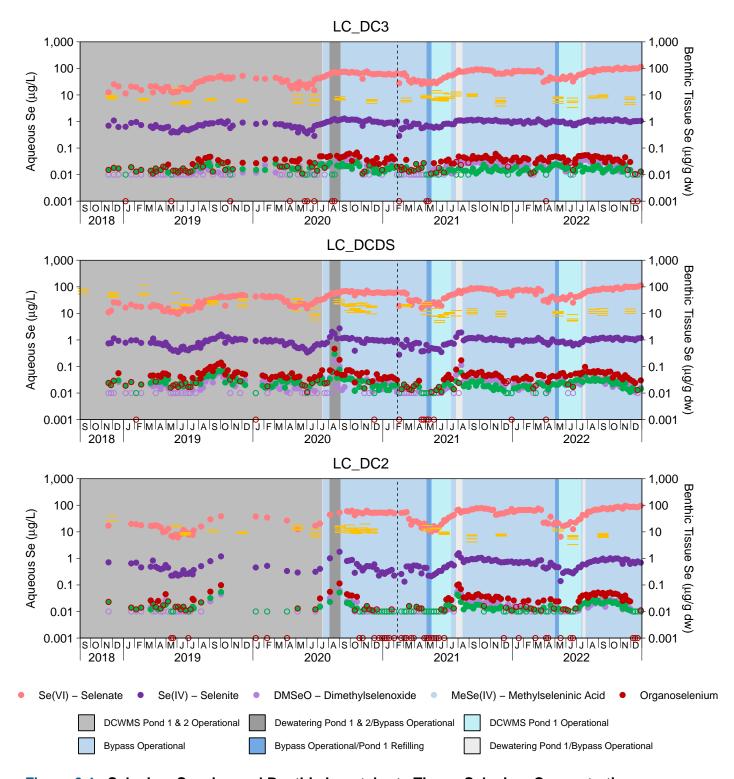
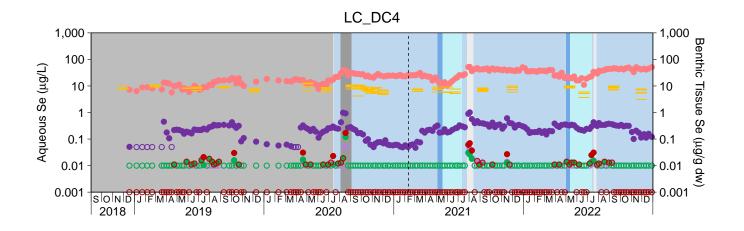



Figure 6.4: Selenium Species and Benthic Invertebrate Tissue Selenium Concentrations from LCO Dry Creek LAEMP Sampling Areas, September 2018 to December 2022

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted with an open symbol. Benthic composite tissue concentrations plotted with orange bars. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only appliy to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, and LC_DC1). Biological sampling (including benthic invertebrate tissue selenium monitoring) was discontinued at LC_SPDC following operational changes in October 2020 at this area (see Minnow 2021a

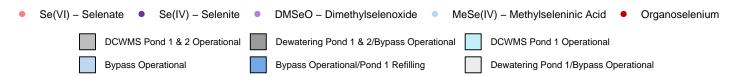


Figure 6.4: Selenium Species and Benthic Invertebrate Tissue Selenium Concentrations from LCO Dry Creek LAEMP Sampling Areas, September 2018 to December 2022

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted with an open symbol. Benthic composite tissue concentrations plotted with orange bars. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only appliy to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, and LC_DC1). Biological sampling (including benthic invertebrate tissue selenium monitoring) was discontinued at LC_SPDC following operational changes in October 2020 at this area (see Minnow 2021a).

lowest in June (LC_FRB) or November (LC_FRUS; samples were not collected in June due to high flows and unsafe access; Appendix Figure F.1; Appendix Table F.2).

As described in Sections 3.5 and 3.6, there were statistically significant increases in total selenium, selenite and selenate (and methylseleninic acid at LC_DCDS) in Dry Creek from 2021 to 2022. Despite such increases, no associated increased in tissue selenium concentrations in benthic invertebrates was observed. Benthic invertebrate tissue selenium concentrations were the same in 2022 as 2021 and lower than 2020 (Figure 6.3; Appendix Table F.6).

Overall, the management actions implemented at the DCWMS starting in mid-2020 has been effective in reducing selenium concentrations in benthic invertebrates downstream. Initial re-operation of the DCWMS in mid-May through mid-July 2022 did result in an increase in aqueous organoselenium species during the subsequent dewatering phase; however, this does not appear to be linked to an increase in benthic invertebrate tissue selenium downstream areas. This is evidenced by concentrations of selenium in benthic invertebrates in June were similar at LC DC3 and LC DCDS (during operation of the DCWMS), and at LC DCDS that were similar in May and September (prior to and post DCWMS dewatering; Appendix table F.4). Aqueous Selenium concentrations decreased again shortly after pond 1 operation in 2022 and were in line with those measured during the previous bypass phase in 2022 (Figures 3.4 and 6.3).

6.4 Summary

In areas directly downstream of the DCWMS (LC_DCDC and LC_DC2), benthic invertebrate tissue selenium concentrations decreased in 2022 relative to earlier years (2020 and 2021; although were still often higher than regional normal ranges and concentrations measured at the reference area), while concentrations remained unchanged at the area located upstream of the DCWMS and further downstream (i.e., LC_DC3, LC_DC4 and LC_DC1). Downstream of the DCWMS (particularly from LC_DCDS and LC_DC2), the decreases in benthic invertebrate tissue selenium concentrations measured in 2022 relative to earlier years (2020) can be primarily attributable improvements made in management of the DCWMS (e.g., use of a single DCWMS pond in 2022 compared to both DCWMS ponds in 2020). Within the Fording River, benthic invertebrate tissue selenium concentrations generally the same upstream and downstream of the mouth of Dry Creek, indicating that operations at LCO Dry Creek have had limited influence on benthic invertebrate tissue selenium concentrations in these areas.

7 STUDY QUESTION 5: FISH AND FISH HABITAT

7.1 Background

Relevant fish and fish habitat monitoring data collected in Dry Creek and the East Tributary in 2022 were integrated into this report to address Study Question 5: Are changes in fish and fish habitat (including instream flow and calcite index) occurring within Dry Creek as a result of mine operations? Monitoring included a limited survey of fish health, redd surveys, and fish habitat (water temperature, dissolved oxygen [in Reaches 1 to 4 of Dry Creek], instream flow, and calcite coverages). No fish tissue chemistry results were obtained in 2022 as fish were not retained in planned sampling to reduce fish handling, and no fish mortalities were observed in Dry Creek in 2022. Water temperature was assessed based on data collected at six Dry Creek locations, one location in the Dry Creek East Tributary, and at one location in the Fording River directly near Dry Creek. In 2022, flow in Dry Creek was characterized based on data collected at two hydrometric stations (LC_DC1 and LC_DCDS).

7.2 Fish Habitat

7.2.1 Water Temperature

The available water temperature data indicate that Dry Creek is a coldwater stream in which daily average water temperatures were less than 10°C in 2022 (Figures 7.1 and 7.2). The records for most stations indicated that summer 2022 was cool relative to most other years. For stations not strongly influenced by sedimentation pond operations (i.e., DRY-WQ02,03,04 and 01) 2022 was comparable to 2019 and colder than other years. Locations that are influenced by sedimentation pond operations (i.e., DRY-WQ05 and DRY-WQ06/07) were the coldest since 2016, but this conclusion needs to be understood within the context of changes to operations of the sedimentation pond that were implemented in 2020 and after.

Although the water temperature regime is cold, water temperature in the Dry Creek watershed is spatially heterogenous and seasonally variable. The upstream section of Dry Creek (as measured by DRY-WQ04) is warmer in the summer than other nearby stations downstream of East Tributary, though daily mean temperatures at DRY-WQ04 have been less than 10°C each summer. In the winter, the upstream portions of Dry Creek are cold and close to zero for roughly five months. The East Tributary has a more stable temperature throughout the year, with summer highs around 4°C and winter lows around 2°C. Downstream of its confluence with East Tributary, Dry Creek is relatively cold compared to the upstream section and has water temperatures intermediate between the East Tributary and upstream Dry Creek.

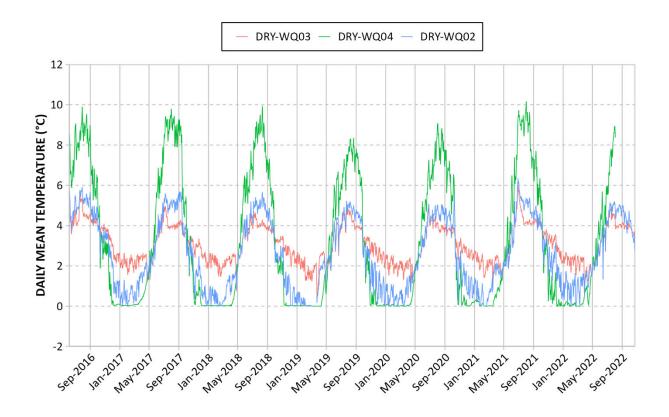


Figure 7.1: Daily Mean Water Temperature from June 2016 to October 2022 at Stations in the Upper Portion of the Dry Creek Watershed

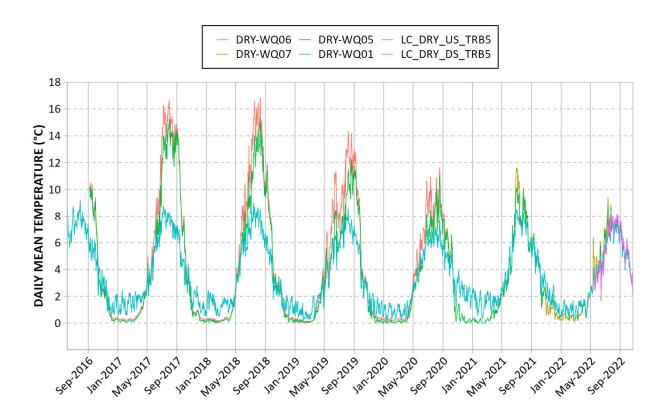


Figure 7.2: Daily Mean Water Temperature from June 2016 to October 2022 at Stations in the Lower Portion of the Dry Creek watershed and Dry Creek Tributary 5

Operation of the sedimentation ponds (Section 1.3) changed in 2020 and thereafter (use during freshet only). Prior to this date the ponds were operated with continuous flow through the ponds. The change in operation appears to have resulted in lower mean daily temperatures immediately downstream of the sedimentation ponds in summer (see DRY-WQ05 and DRY-WQ06 in Figure 7.2). As a result, water temperature in Dry Creek downstream of the sedimentation ponds outlet no longer reaches the higher temperatures that occurred in 2017 to 2019. Instead, DRY-WQ05 and DRY-WQ06/07 reached maximum daily average of <12°C in the years since and reached a relatively cool maximum of only ~9°C in 2022.

Dry Creek Tributary 5 is a new station and therefore had records for only one summer. Water temperature at this station had a 2022 summer temperature regime that was similar to Dry Creek mainstem stations nearby (Figure 7.2).

At stations closer to the confluence with the Fording River (DRY-WQ01), Dry Creek is cooler than at stations near the sedimentation ponds outlet. This is contrary to the typical pattern of warming as streams flow downstream, and may indicate inflows from cool sources such as groundwater or cool surface water inflows. Compared to monitoring locations upstream, the temperature of Dry Creek near the Fording River has remained more consistent year to year, including in 2022, despite the operational changes to the sedimentation ponds. In the winter, Dry Creek near the Fording varies between 0.5°C and 1.5°C.

Average daily temperatures did not exceed 18°C at any site within the period of record. Typically, the Dry Creek upstream (DRY-WQ04) and the sedimentation pond outlet (DRY-WQ05) have the most days with water temperature <1°C; however, all stations except Dry Creek near the confluence (DRY-WQ01) had data gaps that prevented the calculation of this metric in 2022. Mean weekly maximum temperature (MWMxT) was assessed in relation BC WQG for optimum temperature ranges for Cutthroat Trout spawning, incubation and rearing periods (Figures 7.3 and 7.4).

Spawning

Overall, spawning temperature observations in Dry Creek in 2022 were slightly cooler than in prior years. MWMxT exceeded the optimal temperature range for spawning in all years at DRY-WQ06/07, and for all years at DRY-WQ05 except for 2020. In 2017 and 2018 MWMxT at these stations surpassed the upper bound of optimum (10°C) near the beginning of the spawning period, and by midway through the spawning period the temperature had reached >16°C. Since 2019, MWMxT exceedances have been fewer and of smaller magnitude. At DRY-WQ04, MWMxT was mostly within the optimal range in 2016, 2017 and 2021, but in other years (including 2022) it did not reach optimum until late in the spawning period. Dry Creek near the confluence with the Fording (DRY-WQ01) had MWMxT within spawning

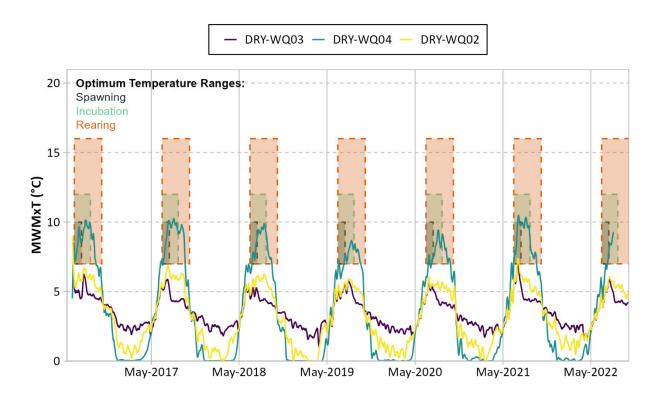


Figure 7.3: Mean Weekly Maximum Temperatures (MWMxT) at Monitoring Stations in Dry Creek Watershed Upstream of Influence of the Sedimentation Ponds

Note: Westslope Cutthroat Trout optimal temperature ranges are indicated for key activity periods.

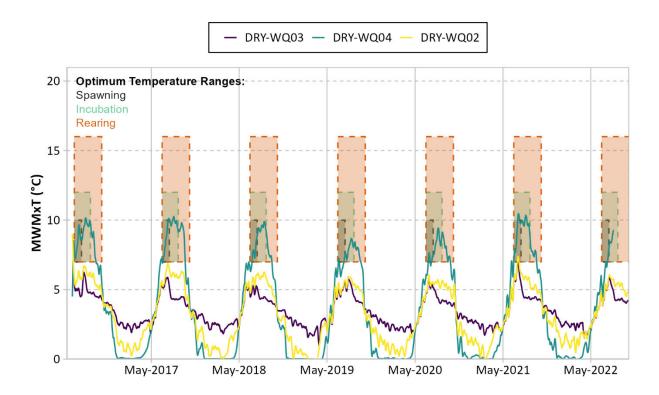


Figure 7.4: Mean Weekly Maximum Temperatures (MWMxT) at Monitoring Stations in Lower Dry Creek and Fording River Overlayed on Westslope Cutthroat Trout Optimum Temperature Ranges

optimum each year but in 2016, 2017 and 2021 this station exceeded optimum by 1 to 2°C in the latter half of the spawning period. In 2022, DRY-WQ01, 05, 07 and TRB5 stations had similar temperatures during spawning, and all were within optimum for the period. Observations in East Tributary have been similar in all years 2016 to 2022.

Incubation

MWMxT during the incubation period in Dry Creek in 2022 were cooler than in previous years. MWMxT at DRY-WQ06/07 and DRY-WQ05 exceeded the incubation optimum temperature range by 5-6°C for most of the incubation period in 2017 and 2018, but generally remained within optimum in 2019 – 2022, although there were exceedances of 1 to 3°C for parts of the period. MWMxT at DRY-WQ04 was within the optimal range for incubation in 2016, 2017, 2021, and 2022 (where data exist) but was below optimum until late in the incubation period in 2018 and 2019. DRY-WQ01 and FRD-WQ01 both had MWMxT within optimum for the entire incubation period. Observations in East Tributary were slightly cooler in 2022 than most previous years but were less than optima throughout the record.

Rearing

MWMxT during the rearing period in Dry Creek in 2022 were cooler than in previous years. In 2017 and 2018, the MWMxT at DRY-WQ06/07 and DRY-WQ05 exceeded the upper bound of optimum by 1 to 2°C for brief periods, but otherwise temperatures were within optimum. Since 2019 MWMxT did not exceeded optimum rearing temperature at these locations, but in 2020 and 2021 was less than optimum for roughly two weeks near the end of the rearing period. MWMxT at DRY-WQ04 reached optimum rearing temperature each year, but not for the full period; in 2022 the data gap after August prevented conclusions for the full period in 2022. MWMxT at DRY-WQ01 in 2022 was within rearing optimum for a shorter time and reached a lower maximum temperature than in previous years. Maximum rearing temperature at DRY-WQ05 and DRY-WQ06 were roughly 4°C cooler in 2022 compared to previous years. The two stations in Tributary 5 had MWMxT that was similar to DRY-WQ05. MWMxT observations in East Tributary in 2022 were similar to previous years. Growing season (i.e., the period when weekly average temperature is greater than 5°C) was summarized by year and monitoring site (Table 7.1). Overall, the available observations indicate that all locations in Dry Creek in 2022 had water temperatures that may have limited fish recruitment; that is, GSDD was less than the 800 degree day threshold proposed in Coleman and Fausch (2007).

Prior to changes in operation of the sedimentation ponds, the outlet of the sedimentation ponds and the section of Dry Creek immediately downstream often exceeded 1000 GSDD, and exceeded 800 GSDD near the confluence with the Fording River. In the years following the operational change (i.e., 2020 to 2022) the growing season has been shorter and cooler.

Table 7.1: Duration and Intensity of the Growing Season (defined in Table 2.6) for Monitoring Sites in Dry Creek and Fording River from June or September 2016 through October 2021

Site Description	Site	Year	Number of	Growing Season					
			days with valid data	Start Date	End Date	Length (days)	Gap (days)	GSDD	
East Tributary	DRY-WQ03	2016	208	19-Jul	04-Oct	79	0	346	
•		20171	365	-	=	0	-	0	
		2018 ¹	365	-	-	0	-	0	
		2019 ¹	365	-	-	0	-	0	
		2020 ¹	366	-	-	0	-	0	
		2021	365	24-Jun	01-Oct	100	0	434	
		2022	297	-	=	0	=	0	
Dry Creek upstream of the	DRY-WQ04	2016 ²	208	=	08-Oct	=	=	=	
confluence with East	-	2017	365	30-May	03-Oct	127	0	959	
Tributary		2018	365	22-May	29-Sep	130	0	922	
•		2019	365	31-May	28-Sep		0	796	
		2020	366	12-Jun	12-Oct	123	0	834	
		2021	365	10-Jun	07-Oct	120	0	910	
		2022	216	25-Jun	-	_	-	-	
Dry Creek downstream of	DRY-WQ02	2016	208	16-Jul	04-Oct	81	0	403	
the confluence with the East	•	2017	365	19-Aug	17-Sep	30	0	150	
Tributary		2018	365	29-Jul	17-Sep	51	0	241	
•		2019	343	03-Aug	25-Sep	53	0	246	
		2020 ¹	366	-	-	0	-	0	
		2021	365	23-Jun	04-Oct	103	0	506	
		2022	297	26-Jul	08-Oct	75	0	341	
Settling pond outlet channel	DRY-WQ06	2016 ²	115	=	12-Oct	_	-	_	
	•	2017	364	25-May	11-Oct	139	1	1,589	
		2018	365	18-May	04-Oct	140	0	1,523	
		2019	365	24-May	03-Oct	133	0	1,300	
		2020 ³	280	26-May	04-Oct	132	0	1,017	
	DRY-WQ07	2021 ²	189	-	05-Oct	-	-	-	
	•	2022	297	23-Jun	12-Oct	112	0	726	
Downstream of the settling	DRY-WQ05	2016 ²	115	-	12-Oct	_	-	_	
pond outlet channel	•	2017	365	29-May	09-Oct	134	0	1,419	
•		2018	365	22-May	02-Oct	134	0	1,309	
		2019	365	30-May	01-Oct		0	1,023	
		2020	366	12-Jun	12-Oct	123	0	850	
		2021	296	12-Jun	04-Oct		0	793	
		2022	137	24-Jun	12-Oct		0	707	
Dry Creek upstream of the	DRY-WQ01	2016 ²	208	-	09-Oct		-	-	
confluence with Fording	•	2017	365	29-May	01-Oct		0	841	
River		2018	365	22-May	28-Sep	129	0	854	
		2019	365	30-May	27-Sep	121	0	767	
		2020	366	11-Jun	11-Oct		0	694	
		2021	365	12-Jun	05-Oct		0	737	
		2022	296	27-Jun	11-Oct		0	652	
Trib 5 Upstream	LC_DRY_US_TRB5	2022 ⁴	130	27-Jun	12-Oct	108	29	-	
Trib 5 Downstream	LC_DRY_DS_TRB5	2022	159	28-Jun	12-Oct		0	693	
THE J DOWNSHEAM	r~_nu_no_nu	2022	137	20-j un	12-00	10/	U	093	

¹ Weekly average temperatures never exceeded 5°C, no growing season occurred.

Note: Stations with installation dates too late in the year to measure growing season were omitted for that year.

² Growing season could not be estimated because the period of record does not cover the entire growing season.

 $^{^{\}rm 3}$ Record of growing season was cut short when temperature logger was removed.

⁴ Growing degree days could not be estimated because data gaps during the growing season exceed 28 days.

In 2022, all stations, including those downstream of the sedimentation ponds, had less than 800 GSDD. Other locations in the watershed tend to be cooler (i.e., the East Tributary, Dry Creek downstream of the East Tributary, and Tributary 5) and either do not meet the minimum temperatures for a growing season or do so and have a low GSDD. DRY-WQ04 has had intermediate growing seasons (i.e., 796 to 959 GSDD) in the past but a data gap in 2022 prevented calculation of GSDD at this site.

Water temperature monitoring has been ongoing in Dry Creek since 2016, representing a seven-year period of record. Within the monitoring period, stations upstream of the Dry Creek Sedimentation Ponds have had fairly consistent annual trends in water temperature. The upstream-most station (DRY-WQ04) reaches daily mean temperatures of 8 to 10°C in summer and near zero in winter. Downstream, the input of the East Tributary cools Dry Creek in the summer and warms it in the winter. In 2022 results for stations in this upper part of the watershed area were similar to past years. Further downstream, changes to sedimentation pond management have changed the temperature regime in summer from temperatures regularly >16°C daily mean, to a high of ~8°C in 2022. Dry Creek downstream of the outlet is no longer warmed by the sedimentation ponds during spring and fall.

The changes in operations are reflected in two metrics that are specific to fish health: mean weekly temperature and growing season. Mean weekly temperature within the fish-bearing portions of Dry Creek (i.e., from the downstream of the East Tributary to the Fording confluence, represented by DRY-WQ02,WQ05 and WQ01) indicate that from 2017-2019 Dry Creek at times exceed optimum temperature for spawning, incubation and rearing, but in recent years has been more than 1°C colder than optimum for portions (i.e., 10 to 40% at DRY-WQ05 and WQ01) or nearly all (i.e., >95% at DRY-WQ02) of the activity periods. The 2022 growing season downstream of the East Tributary (DRY-WQ02) had low GSDD but was broadly consistent with past years (341 GSDD in 2022). At the station in Dry Creek downstream of the sedimentation pond outlet (DRY-WQ05), growing season reached a maximum of 1,419 GSDD in 2017 but fell to 793 in 2021 and 707 in 2022. The GSDD recorded near the Fording confluence (DRY-WQ01) has consistently been lower than near the sedimentation ponds, and also declined from a high of 854 GSDD in 2018, to 737 in 2021 and 652 in 2022.

Cumulatively these results suggest that as water management approaches naturalize during the growing season (bypassing sedimentation ponds), the fish-bearing portion of Dry Creek (i.e., downstream of the East Tributary) has water temperatures that may pose challenges to fish growth and recruitment. Portions of the spawning, incubation and rearing activity stages are outside of the BC WQG stated optimums for WCT by more than 1°C, while the growing season measured at three stations between the East Tributary and the confluence were all below the 800

GSDD threshold to meet minimum requirements for interior Cutthroat Trout population recruitment (Coleman and Fausch 2007).

7.2.1.1 **Summary**

Water temperature monitoring results in 2022 suggest that as water management approaches naturalization, the portion of Dry Creek inhabited by fish (i.e., downstream of the East Tributary), has water temperatures that may pose challenges to fish growth and recruitment. Portions of the spawning, incubation and rearing activity stages are more than 1°C less than the BC WQG optimum for Cutthroat Trout, and the growing season measured at three stations between the East Tributary and the confluence with the Fording River were all below the 800 GSDD threshold recommended to meet minimum requirements for interior Cutthroat Trout population recruitment (Coleman and Fausch 2007).

7.2.2 Dissolved Oxygen

DO is an important water quality parameter relevant to all aquatic life, and particularly salmonids such as WCT, which are sensitive to low DO concentrations (COSEWIC 2016).

In 2022, in situ DO measurements collected at water quality monitoring stations in Dry Creek (excluding LC DC3 and LC SPDC due to lack of fish presence, five stations in total) were evaluated to assess mean annual and mean monthly (30-day mean) and instantaneous DO concentrations relative to the BCWQGs (BCMOECCS 2019) and important WCT life history stages. None of the stations exhibited annual minimum or 30-day mean DO concentrations in 2022 that were below the 30-day mean guideline of 8 mg/L or the instantaneous guideline of 5 mg/L (BCWQG applicable all life stages other than buried embryo/alevin (Table 7.2, Appendix Table C.4). However, mean 30-day DO concentrations were below the BCWQG for the protection of buried embryos and alevins (11 mg/L) at all monitoring stations from July to September in 2022, and occasionally in January, May, June, and October (Table 7.2). These results from 2022 are similar to prior years when DO at all or most monitoring stations was below the BCWQG for the protection of buried embryos and alevins in the summer months (2012 to 2022; Appendix Table G.1). In 2022, monthly mean DO concentrations ranged between 9.9 mg/L and 11.2 mg/L from July to September (Table 7.2). These results are consistent with DO concentrations observed at the reference area (LC DCEF) in all years (Appendix Table G.1), indicating that the occurrence of DO below the guideline in 2022 was not due to a mine-related influence. Overall, DO concentrations in Dry Creek are not considered limiting for juvenile or adult WCT.

The WCT spawning period in Dry Creek has been observed from mid-June to early July and eggs incubate in gravel redds for 6 to 7 weeks prior to hatching (Northcote and Hartman 1988).

Table 7.2: Monthly Mean Dissolved Oxygen Concentrations (mg/L) in Dry Creek, 2022

Month	LC_DCEF	LC_DCDS	LC_DC2	LC_DC4	LC_DC1
January	10.5	11.8	11.7	12.0	11.6
February	11.1	11.9	12.1	11.7	12.0
March	11.0	12.0	12.0	11.7	12.0
April	11.8	12.1	12.0	12.2	12.1
May	10.5	10.7	11.1	11.0	11.2
June	11.2	10.9	11.0	10.9	11.0
July	10.9	9.90	10.2	10.2	10.2
August	10.4	10.1	10.3	10.3	10.4
September	10.6	10.6	10.6	10.7	10.8
October	10.6	11.1	11.1	10.9	11.2
November	11.4	12.2	12.3	12.0	12.4
December	11.1	12.2	12.5	12.0	12.1

Mean dissolved oxygen (DO) concentration lower than water column long-term BCWQG of 11 mg/L for buried embryo/alevin life stages (guideline was applied for all months except April, see notes for details).

Note: Spawning, incubation, and alevin stages for westslope cutthroat trout were included in the application of buried embryo/alevin guideline values, and were applicable to at least some portion of each month except April. The timing of life history stages for this species is approximated from COSEWIC (2016), McPhail and Baxter (1996), and McPhail (2007).

Fry typically spend a further 1 to 2 weeks in the interstitial spaces of gravel prior to emergence in early to mid-August depending on temperature and accumulated thermal units (ATUs). Mean monthly DO conditions in Dry Creek in 2022 suggest that WCT embryos and alevins may have experienced hypoxic; however, *in situ* measurements may not be sufficient for classifying conditions in Dry Creek. Secondly, as indicated above, similar conditions were observed at the reference area (LC_DCEF) suggesting that the decreased DO concentrations may not be mine-related (Table 7.2).

7.2.3 Instream Flow

The annual hydrograph at the LC_DC1 gauge in Dry Creek from 2011 to 2022 and WSC 08NK018 gauge in the Fording River from 1970 to 2022 is shown in Figure 7.5 and 7.6, respectively. The hydrographs demonstrate a strong seasonal trend at both the LC_DC1 and WSC 08NK018 gauge that is broadly typical of snowmelt-dominated streams, generally with peak flow occurring between April and June and low flow occurring between November and March. The timing of peak flow at LC_DC1 occurs approximately one month earlier than at the WSC gauge in the Fording River, where peak flows almost always occur in June (Table 7.3), a time at which flows begin to recede rapidly in Dry Creek (Table 7.4). A summary of data gaps at LC_DC1 is presented Table 7.5; there are no data gaps in the mean daily flow data at WSC gauge from 1970 to 2022. In 2011, 2012, and 2013, there are less than 6 months of data with significant data gaps from December to July. In 2014, although there was only one month with no data, all other months only had 32% or less data available per month. The dates of minimum and maximum daily average flow for each year relative to mean annual discharge (MAD) at LC_DC1 are shown in Table 7.6. Peak daily flows in 2017 and 2019 exceeded 1000% of MAD (0.240 m³/s) at LC_DC1, while lowest minimum daily flow was at 3% of MAD in 2013.

Monthly flow statistics at the LC_DC1 and WSC gauge from 2011 to 2022 are provided in Table 7.5. The timing of peak and low mean monthly flows in Dry Creek varies slightly from year to year, whereas the timing of peak and low mean monthly flow at Fording River has been consistent since 2011 (with the exception of 2015 and 2017; Table 7.6). The maximum mean monthly flow at LC_DC1 in 2014 and 2019 were low, with less than 200% of MAD (73% and 184% of MAD, respectively; Table 7.4). This is partly a result of significant data gaps in 2014 that included the period of peak flow (May and June; Figure 7.5). The low magnitude of the maximum mean monthly flow in 2019 was not observed at the WSC gauge.

Average daily flow during key WCT activity periods at LC_DC1 are presented in Table 7.5; data from 2011 and 2012 were omitted due to significant data gaps (Table 7.5).

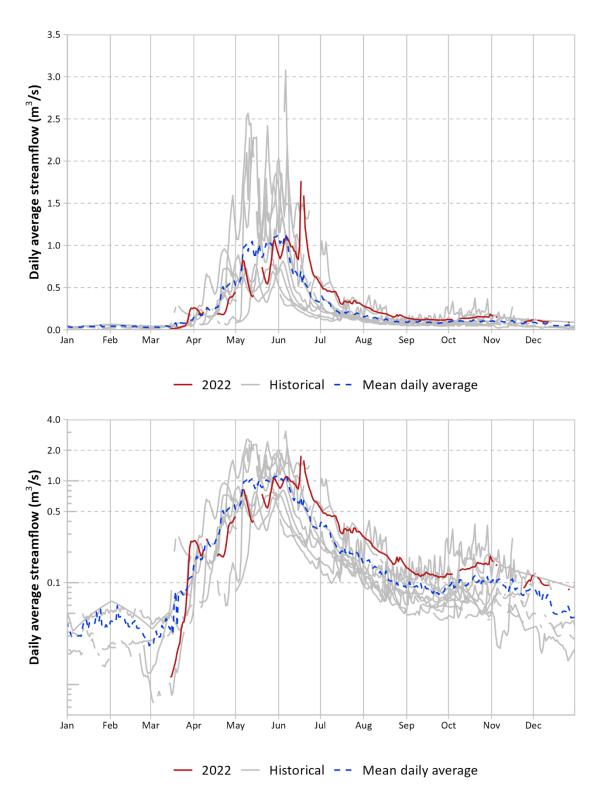


Figure 7.5: Annual Hydrograph at Dry Creek (LC_DC1) for Each Year from 2011 to 2022 on Normal (upper) and Log Scale (lower)

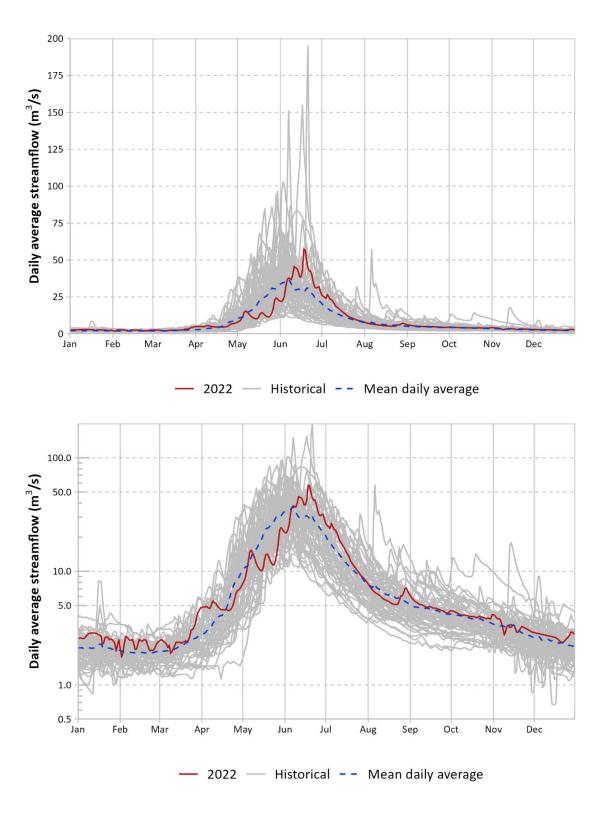


Figure 7.6: Annual Hydrograph for WSC 08NK018 from 1970 to 2022 on Normal (upper) and Log Scale (lower)

Table 7.3: Mean Daily Flow at LC_DC1 during Key Westslope Cutthroat Trout Activity Periods as Defined in Teck (2021)

	Mean Flow (m ³ /s)									
Year	Over - Wintering ¹	Rearing	Spawning	Early Incubation	Late Incubation July 11 to October 31					
	October 11 to May 27	May 28 to October 10	June 12 to July 11	June 12 to August 12						
2013	0.270	0.402	0.789	0.420	0.192					
2014	0.182	0.120	0.256	0.151	0.106					
2015	0.297	0.177	0.206	0.162	0.084					
2016	0.165	0.146	0.166	0.148	0.101					
2017	0.346	0.286	0.329	0.226	0.103					
2018	0.374	0.173	0.246	0.194	0.107					
2019	0.150	0.275	0.441	0.361	0.163					
2020	0.279	0.382	0.609	0.367	0.106					
2021	0.209	0.246	0.287	0.202	0.088					
2022	0.214	0.408	0.754	0.512	0.188					
Mean	0.238	0.241	0.356	0.249	0.119					
Std dev	0.077	0.108	0.230	0.130	0.041					

¹Overwintering period starts on October 11 of the previous year and goes to May 27 of the current year.

Bold values are highest and lowest on record.

Table 7.4: Summary Statistics of Mean Monthly Discharge as a Percent of Mean Annual Discharge (MAD), at LC_DC1 and WSC 08NK018 from 2011 to 2022

Year	Month	Discl	harge at LC_1	DC1 ^{1,2}	% of MAD ³	Discha	charge at WSC 08NK018		0/ 03/15
		Average	Minimum	Maximum		Average	Minimum	Maximum	% of MAD
2011	Jan	NA	NA	NA	NA	2.21	1.36	2.55	28%
	Feb	NA	NA	NA	NA	2.11	1.73	2.47	26%
	Mar	NA	NA	NA	NA	2.14	1.68	2.81	27%
	Apr	NA	NA	NA	NA	3.18	2.67	4.49	40%
	May	NA	NA	NA	NA	18.85	4.39	38.10	237%
	Jun	NA	NA	NA	NA	41.47	28.10	54.00	520%
	Jul	NA	NA	NA	NA	17.65	8.19	34.00	221%
	Aug	NA	NA	NA	NA	5.65	4.34	8.00	71%
	Sep	-	-	-	_	4.04	3.63	4.91	51%
	Oct	0.060	0.043	0.092	25%	4.13	3.66	5.06	52%
	Nov	-	-	-		3.23	2.52	3.89	41%
	Dec	NA	NA	NA	NA	2.77	2.43	3.30	35%
2012	Jan	NA	NA	NA	NA	2.39	1.36	2.68	30%
2012	Feb	NA	NA	NA	NA	2.29	1.97	2.46	29%
	Mar	NA	NA	NA	NA	2.46	2.22	3.01	31%
		NA	NA	NA	NA NA	9.78	2.72	29.90	123%
	Apr								
	May	NA	NA	NA	NA	29.27	16.40	53.00	367%
	Jun	- > T A	- > T A	- > 1 A	- >TA	43.77	26.20	65.10	549%
	Jul	NA	NA	NA	NA	24.37	12.40	42.30	306%
	Aug	-	-	-	-	8.00	5.57	11.80	100%
	Sep	-	-	-	-	4.39	3.52	5.43	55%
	Oct	0.069	0.061	0.094	29%	3.70	3.42	4.79	46%
	Nov	0.074	0.040	0.154	31%	4.02	3.20	4.68	50%
	Dec	NA	NA	NA	NA	2.95	2.01	4.04	37%
2013	Jan	-	-	-	-	2.39	1.79	2.90	30%
	Feb	0.025	0.022	0.027	10%	2.16	1.48	2.58	27%
	Mar	-	-	-	-	2.67	2.16	3.66	33%
	Apr	0.135	0.058	0.243	56%	5.91	4.17	7.86	74%
	May	1.224	0.103	2.275	511%	31.21	7.19	52.10	392%
	Jun	-	-	-	-	47.92	24.60	195.00	601%
	Jul	0.384	0.103	1.053	160%	17.56	9.20	33.90	220%
	Aug	0.205	0.083	0.408	86%	8.73	5.69	14.40	110%
	Sep	0.140	0.098	0.274	58%	5.58	5.16	6.74	70%
	Oct	0.218	0.141	0.376	91%	5.18	4.32	6.60	65%
	Nov	-	-	-	-	3.51	1.69	4.47	44%
	Dec	NA	NA	NA	NA	2.34	0.95	3.33	29%
2014	Jan	NA	NA	NA	NA	2.27	1.45	2.56	29%
	Feb	NA	NA	NA	NA	1.86	1.69	2.13	23%
	Mar	NA	NA	NA	NA	2.08	1.76	2.40	26%
	Apr	NA	NA	NA	NA	4.81	2.36	7.39	60%
	May	NA	NA	NA	NA	26.20	9.09	58.60	329%
	Jun	NA	NA	NA	NA	35.81	24.70	47.50	449%
	Jul	0.174	0.124	0.261	73%	13.60	7.22	23.30	171%
	Aug	0.084	0.058	0.201	35%	5.72	4.91	7.05	72%
		-	-	-	-	7.01	5.17	10.00	88%
	Sep	0.091	0.065	0.146	38%	4.38	3.81	5.23	55%
	Oct								
	Nov	- NA	- NA	- NA	- NA	3.04 2.51	2.20 1.58	4.15 2.94	38% 31%

¹ "NA" indicates months with no data.

Note: Blue shading indicates highest mean monthly discharge and orange shading indicates the lowest mean monthly discharge for each year.

² "-" Indicate months with less than 20 days of data.

 $^{^{3}}$ MAD at LC_DC1 = 0.238 m 3 /s

 $^{^{4}}$ MAD at WSC 08KN018 = 7.96 m 3 /s

Table 7.4: Summary Statistics of Mean Monthly Discharge as a Percent of Mean Annual Discharge (MAD), at LC_DC1 and WSC 08NK018 from 2011 to 2022

Year	Month	Disc	harge at LC_i	DC1 ^{1,2}	% of MAD ³	Discha	Discharge at WSC 08NK018		% of MAD ⁴
		Average		Maximum		Average	Minimum	Maximum	
2015	Jan	NA	NA	NA	NA	2.34	1.98	2.49	29%
	Feb	NA	NA	NA	NA	2.43	1.70	3.39	31%
	Mar	-	-	-	-	3.42	1.63	5.90	43%
	Apr	-	-	-	-	7.20	4.59	15.30	90%
	May	0.598	0.434	0.774	250%	16.53	11.90	25.70	207%
	Jun	0.397	0.168	0.815	166%	17.50	8.88	32.80	220%
	Jul	0.143	0.100	0.203	60%	6.65	5.14	8.75	83%
	Aug	0.076	0.056	0.103	32%	4.62	4.03	5.26	58%
	Sep	0.072	0.053	0.086	30%	4.37	3.92	4.95	55%
	Oct	0.066	0.048	0.103	27%	3.64	3.27	4.02	46%
	Nov	0.040	0.023	0.061	17%	2.77	1.76	3.71	35%
	Dec	0.026	0.017	0.037	11%	2.21	1.59	3.22	28%
2016	Jan	0.048	0.034	0.064	20%	2.33	1.62	2.61	29%
	Feb	0.052	0.037	0.066	22%	1.90	1.22	2.16	24%
	Mar	0.046	0.034	0.105	19%	2.22	1.95	2.70	28%
	Apr	0.569	0.129	0.959	237%	11.58	2.98	21.40	145%
	May	0.534	0.334	0.780	223%	16.55	12.10	21.30	208%
	Jun	0.266	0.137	0.519	111%	11.82	7.46	18.20	148%
	Jul	0.138	0.098	0.192	58%	8.01	6.16	13.80	101%
	Aug	0.077	0.050	0.117	32%	5.62	4.16	7.45	71%
	Sep	0.055	0.048	0.065	23%	3.78	3.60	4.10	47%
	Oct	0.142	0.073	0.209	59%	4.92	3.90	6.18	62%
	Nov	0.140	0.118	0.182	58%	4.63	3.33	5.38	58%
	Dec	0.103	0.090	0.117	43%	2.45	1.55	3.10	31%
2017	Jan	NA	NA	NA	NA	2.71	2.25	3.36	34%
2017	Feb	NA	NA	NA	NA	2.04	1.69	2.27	26%
	Mar	-	-	-	-	2.54	1.62	3.61	32%
	Apr	0.253	0.124	0.468	105%	5.81	3.75	9.03	73%
	May	1.548	0.340	2.420	646%	26.90	8.08	44.80	338%
	Jun	0.756	0.274	1.688	315%	26.95	13.50	46.40	338%
	Jul	0.176	0.124	0.263	74%	8.33	5.06	13.20	105%
	Aug	0.105	0.079	0.203	44%	4.06	3.07	4.94	51%
	Sep	0.081	0.074	0.091	34%	2.83	2.61	3.04	36%
	Oct	0.102	0.080	0.191	43%	2.85	2.49	3.53	36%
	Nov	0.102	0.070	0.133	38%	2.83	1.91	3.59	35%
	Dec	-	-	-	-	1.81	1.19	3.24	23%
2018	Jan	0.049	0.043	0.055	20%	1.96	1.31	2.41	25%
2010	Feb	0.049	0.045	0.055	20%	1.63	1.54	1.77	20%
	Mar	0.051	0.043	0.037	24%	1.95	1.65	2.20	24%
		0.440	0.064	1.593	183%	5.52	1.77	24.00	69%
	Apr May	1.519	0.642	2.567	634%	34.01	15.90	50.00	427%
	Jun	0.278	0.042	0.422	116%	16.50	12.10	25.90	207%
	-								119%
	Jul	0.187	0.131	0.317	78%	9.45	6.00	13.50	
	Aug	0.097	0.066	0.136	40%	4.24	3.60	5.70	53%
	Sep	0.105	0.079	0.147	44%	3.28	3.15	3.56	41%
	Oct	0.078	0.046	0.120	33%	3.23	3.15	3.35	41%
	Nov	- 0.040	0.025	- 0.050	- 170/	3.03	2.65	3.23	38%
	Dec	0.040	0.035	0.050	17%	2.28	1.79	3.00	29%

¹ "NA" indicates months with no data.

Note: Blue shading indicates highest mean monthly discharge and orange shading indicates the lowest mean monthly discharge for each year.

² "-" Indicate months with less than 20 days of data.

 $^{^{3}}$ MAD at LC_DC1 = 0.240 m 3 /s

 $^{^{4}}$ MAD at WSC 08KN018 = 7.97 m 3 /s

Table 7.4: Summary Statistics of Mean Monthly Discharge as a Percent of Mean Annual Discharge (MAD), at LC_DC1 and WSC 08NK018 from 2011 to 2022

Year	Month	Disc	harge at LC_	DC1 ^{1,2}	% of MAD ³	Discha	rge at WSC 0	8NK018	4
		Average	Minimum	Maximum		Average	Minimum	Maximum	% of MAD ⁴
2019	Jan	NA	NA	NA	-	1.92	1.58	2.24	24%
	Feb	NA	NA	NA	-	1.64	1.43	1.98	21%
	Mar	NA	NA	NA	-	2.20	1.17	4.20	28%
	Apr	NA	NA	NA	-	3.65	2.96	4.85	46%
	May	0.393	0.082	0.777	164%	10.48	4.34	22.70	131%
	Jun	0.441	0.224	0.726	184%	18.88	12.90	29.30	237%
	Jul	0.397	0.245	0.586	166%	14.04	9.80	19.80	176%
	Aug	0.163	0.107	0.274	68%	6.89	5.08	9.32	86%
	Sep	0.101	0.082	0.127	42%	4.53	4.17	4.96	57%
		0.102	0.092	0.135	43%	3.66	2.47	4.33	46%
	Oct Nov	-	-	-	-	2.86	2.00	3.41	36%
2020	Dec	-	-	-	-	2.60	2.08	3.45	33%
2020	Jan	-	-	-	-	2.00	1.42	2.68	25%
	Feb	-	-	-	-	1.98	1.72	2.29	25%
	Mar	0.022	0.007	0.060	9%	2.26	1.63	3.03	28%
	Apr	0.411	0.056	0.738	172%	5.24	2.78	9.67	66%
	May	1.009	0.567	1.985	421%	18.47	9.86	58.90	232%
	Jun	1.044	0.333	2.033	436%	31.14	18.90	66.10	391%
	Jul	0.229	0.144	0.354	96%	12.83	6.98	23.20	161%
	Aug	0.116	0.078	0.153	48%	5.15	3.92	7.16	65%
	Sep	0.065	0.057	0.085	27%	3.52	3.25	3.87	44%
	Oct	0.061	0.045	0.068	26%	3.00	2.09	3.22	38%
	Nov	0.084	0.064	0.106	35%	3.06	2.02	3.51	38%
	Dec	-	-	-	-	2.40	1.78	3.06	30%
2021	Jan	-	-	-	-	2.27	1.85	2.66	28%
	Feb	-	-	-	-	1.95	1.83	2.33	24%
	Mar	0.109	0.013	0.284	46%	3.04	1.87	4.45	38%
	Apr	0.265	0.153	0.453	111%	4.99	3.75	7.42	63%
	May	0.862	0.453	1.736	360%	16.60	8.42	28.40	208%
	Jun	0.583	0.245	1.329	243%	24.72	15.70	49.40	310%
	Jul	0.162	0.099	0.230	68%	8.76	5.30	14.70	110%
	Aug	0.105	0.073	0.160	44%	5.92	4.30	7.88	74%
	Sep	0.069	0.051	0.096	29%	4.41	3.59	5.59	55%
	Oct	0.055	0.045	0.096	23%	3.14	2.86	3.94	39%
	Nov	0.097	0.051	0.275	40%	3.67	2.76	6.05	46%
	Dec	-	-	-	-	3.19	2.23	4.62	40%
202	2 Jan	NA	NA	NA	NA	2.60	1.99	2.88	33%
	Feb	NA	NA	NA	NA	2.28	1.76	2.67	29%
	Mar	-	-	-	-	2.70	1.89	4.78	34%
	Apr	0.256	0.179	0.426	107%	5.21	4.50	7.41	65%
	May	0.685	0.393	1.071	286%	13.62	7.84	24.30	171%
	Jun	0.944	0.564	1.765	394%	37.70	21.80	57.30	473%
	Jul	0.384	0.292	0.540	160%	16.09	8.07	26.50	202%
	Aug	0.199	0.146	0.283	83%	6.09	5.10	7.76	76%
	Sep	0.121	0.113	0.140	51%	4.91	4.29	6.09	62%
	Oct	0.143	0.121	0.181	60%	4.07	3.80	4.49	51%
	Nov	-	-	-	-	3.29	2.75	4.16	41%
	Dec	_	-	_	-	2.68	2.36	2.92	34%

¹ "NA" indicates months with no data.

Note: Blue shading indicates highest mean monthly discharge and orange shading indicates the lowest mean monthly discharge for each year.

² "-" Indicate months with less than 20 days of data.

 $^{^{3}}$ MAD at LC_DC1 = 0.238 m 3 /s

 $^{^{4}}$ MAD at WSC 08KN $018 = 7.96 \text{ m}^{3}/\text{s}$

Table 7.5: Summary Statistics of Mean Monthly Discharge as a Percent of Mean Annual Discharge (MAD), at LC_DC1 and WSC 08NK018 from 2011 to 2022

Year						% Cor	nplete ¹						
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Average
2011	-	-	-	-	-	-	-	-	100%	76%	7%	-	15%
2012	-	-	-	-	-	63%	-	13%	54%	100%	69%	-	25%
2013	18%	23%	20%	28%	31%	19%	31%	31%	32%	31%	20%	-	24%
2014	-	-	-	-	-	-	74%	100%	29%	100%	49%	-	29%
2015	-	-	24%	26%	100%	100%	100%	100%	100%	100%	100%	100%	71%
2016	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
2017	-	-	34%	100%	85%	84%	85%	100%	100%	90%	70%	5%	63%
2018	63%	92%	94%	86%	100%	100%	100%	100%	100%	100%	44%	74%	88%
2019	-	-	-	2%	100%	100%	100%	100%	100%	92%	79%	75%	62%
2020	88%	86%	91%	94%	100%	100%	100%	100%	100%	93%	92%	84%	94%
2021	88%	79%	100%	100%	100%	100%	100%	100%	100%	100%	92%	74%	95%
2022	67%	67%	84%	91%	100%	100%	100%	100%	100%	100%	79%	88%	90%

¹ Based on the total number of days within each month (Jan-Dec) and in each year (Total) that data was available.

Note: Highlighted cells indicate months with less than 60% data completeness.

Table 7.6: Date of Minimum and Maximum Daily Average Streamflow per Year from 2001 to 2022 Recorded at LC_DC1

Year	Date of	Date of	Minimum Flow	Maximum Flow	Minimum Flow	Maximum Flow
	Minimum Flow	Maximum Flow	(m^3/s)	(m^3/s)	(% of MAD¹)	(% of MAD¹)
2011	-	-	-	-	-	-
2012	-	-	-	-	-	-
2013	11-Jan	11-May	0.02	2.28	8%	948%
2014	-	-	-	-	-	-
2015	26-Dec	4-Jun	0.02	0.81	7%	340%
2016	5-Jan	23-Apr	0.03	0.96	14%	400%
2017	11-Nov	24-May	0.07	2.42	29%	1008%
2018	16-Dec	10-May	0.04	2.57	15%	1070%
2019	7-Dec	15-May	0.04	0.78	15%	324%
2020	3-Mar	1-Jun	0.01	2.03	3%	847%
2021	28-Feb	28-May	0.01	1.74	5%	723%
2022	15-Mar	17-Jun	0.01	1.76	5%	735%

[&]quot;-" Indicates less than 6 months of data

[&]quot;-" Indicate months with no available data.

 $^{^{1}}$ MAD at LC_DC1 = 0.240 m 3 /s

Average flow during each WCT activity period from 2013 to 2022 have varied considerably from year to year across all activity periods, as indicated by the high standard deviation of mean flow. The average flow during the rearing and early incubation periods in 2022 was the highest on record; average flow during the early incubation period (0.512 m³/s) was 22% higher than the previous record high in 2013 (0.420 m³/s), and average flow during the rearing period (0.408 m³/s) was 1.5% higher than the previous record high in 2013 (0.402 m³/s; Table 7.3). If hydraulic habitat is limiting the Dry Creek WCT population, then the higher flows in summer and fall 2022 would likely be beneficial.

Table 7.7 indicates the years in which flows, as measured at LC_DC1 from 2011 to 2022, met the flushing flow threshold of 1.0 m³/s for a 2-day duration (West *et al.* 2021). The flushing flow threshold was reached in 7 of the 12 years of data, including 2022, with 2019 being the only year in the last five years that did not reach the threshold. The record indicates that flushing flows have been occurring regularly in Dry Creek, but current sediment conditions cannot be directly inferred from this record and would require empirical confirmation.

Table 7.7: Indication of Whether the Historical Flows at LC_DC1 Exceeded the Flushing Flow Threshold of 1.0 m³/s for a 2-Day Duration (threshold proposed in West *et al.* 2021)

Year	Flushed	Days with no data ¹
2011	Unknown	61
2012	Yes	42
2013	Yes	12
2014	Unknown	61
2015	No	0
2016	No	0
2017	Yes	11
2018	Yes	1
2019	No	0
2020	Yes	2
2021	Yes	0
2022	Yes	8

¹ Number of days in May and June with no recorded flow data.

Note: Years marked as "unknown" did not exceed the threshold during periods when data were available and the data gaps precluded a determination.

7.2.3.1 Summary

General trends of streamflow monitored in 2022 at the LC_DC1 gauge in Dry Creek were consistent with historical records: high flows occurred in May and June, and a low flow period occurred between November and March. Average flows in 2022 during key WCT activity periods were broadly similar to previous years, except during rearing and early incubation periods when average flows in 2022 were the highest on record. The flushing flow threshold, measured as 1.0 m³/s for a 2-day duration, was met in Dry Creek at LC_DC1 in 2022.

7.2.4 Calcite Coverage

Similar to previous years, in 2022, calcite concretion was not observed in Dry Creek during the Regional Calcite Monitoring Program. Calcite levels in Dry Creek continue to be below those expected to result in measurable biological effect, although there is a clear trend toward increased calcite presence.

In addition to the Regional Calcite Monitoring Program, Calcite Index (CI) was also measured concurrently with benthic invertebrate community sampling as part of the 2022 LCO Dry Creek LAEMP (Table 2.3). Benthic invertebrate sampling targeted riffle habitat, and calcite measurements were taken in the immediate proximity of benthic invertebrate sampling sites. Consistent with previous years, 2022 LCO Dry Creek LAEMP CI values at the reference location remained at 0, were highest at the most upstream mine-exposed station (LC_DC3, CI = 0.88 to 0.97), and all Dry Creek monitoring locations were generally lower than values from 2019¹³ and earlier (Table 7.8). Overall, in 2022 at Dry Creek, CI values increased from downstream to upstream at mine-exposed LAEMP monitoring locations, and there were changes in calcite coverage indicative of increased calcite deposition.

7.3 Fish

The 5.5 km of LCO Dry Creek from the confluence of the UFR (km 0) to the LCO Dry Creek Head Pond spillway barrier (at 5.5 km) are accessible to fish. Upstream of the spillway barrier is considered non-fish bearing. East Tributary of LCO Dry Creek is accessible to WCT, though likely has negligible densities of fish due to summer temperatures which result in little to no growing season for WCT (Minnow 2022a).

The fish in LCO Dry Creek are considered part of the interbreeding UFR WCT population as the culverts at km 1 are partial barriers are passable for upstream movement during some

¹³ Measuring calcite in the presence of encrusting algae is challenging and potentially prone to errors. Encrusting material identified as calcite at several areas on Dry Creek and LC_DCEF in 2019 was determined to be non-calcite following additional field consultation in 2020 and those values are considered erroneous.

Table 7.8: Calcite Index Values for Dry Creek, Grace Creek, and Fording River Areas, LCO Dry Creek LAEMP 2015 to 2022

А	Area				Calcite I	ndex (CI)				Calcite index (CI') ^a		
		Sep 2015	Sep 2016	Sep 2017	Sep 2018	Sep 2019	Sep 2020	Sep 2021	Sep 2022	Sep 2021	Sep 2022	
					-	0.99	0	0	0	-	0	
	LC_DCEF	-	-	-		0.96	0	0	0	-	0	
						1.19	0	0	0	-	0	
						1.12	0.1	0.1	0.97	0.02	0.66	
	LC_DC3	-	-	-	-	1.16	0.35	0.34	0.95	0.09	0.52	
						1.36	0.62	0.78	0.88	0.33	0.41	
					0.6	1	0	0	0.71	0	0.4	
	LC_DCDS	0	8.0	0	1	1	0.1	0	0.79	0	0.41	
Dry					1	1	0.02	0	0.58	0	0.26	
Creek	LC_DC2		-	-	-	1	0	0.04	0.28	0.01	0.06	
		-				1	0	0.01	0.44	0	0.12	
						1	0.03	0.09	0.75	0.02	0.27	
	LC_DC4					1	0	0.45	0.29	0.15	0.09	
		-	-	-	-	0	0	0.06	0.29	0.02	0.05	
						1	0	0.11	0.17	0	0.04	
		0	0.6	0	0.92	1	0.12	0.45	0.39	-	0.14	
	LC_DC1				1.1	1	0.19	0.59	0.2	-	0.07	
					1.1	1	0.41	0.43	0.26	-	0.07	
					1	1	0.94	0.96	0.91	0.63	0.59	
	LC_FRUS	1	1	1	1	1	0.96	0.99	0.64	0.56	0.28	
Fording					1	1	0.99	0.99	1.01	0.63	0.69	
River					0.89	1	0.11	0.92	0.68	0.46	0.32	
	LC_FRB	1	1.4	1.2	0.85	1	0.03	0.87	0.83	0.38	0.47	
					0.7	1	0.92	0.66	0.88	0.22	0.33	
Grace						0	0	0	0.01	0	0	
Creek	LC_GRCK	-	-	-	-	0.25	0	0	0	0	0	
O O O O O						0	0	0	0.19	0	0.05	

Notes: Italicized values indicate calcite index values considered erroneous due to encrusting algae presence. "-" indicates calcite data not recorded. Calcite monitoring in support of biological sampling was discontinued at LC_SPDC, following operational changes in October 2020 (see Minnow 2021a for details). Calcite monitoring results from LC_SPDC are therefore unavailable for 2021, and this area has been excluded from the table.

^a Calcite indices (Cl') were calculated using calcite proportion rather than calcite presence and therefore cannot be compared with previous years.

flow conditions (AJM Environmental Inc. & Higher Ground Consulting. 2023, WSP & Poisson 2023)., therefore trends in LCO Dry Creek are influenced by those in the larger UFR population and cannot be considered in isolation. For example, the number of spawners in the UFR population can influence how many fish are available to spawn in LCO Dry Creek, at the same time migratory access and possibly water temperature, which can change year to year, may also influence the amount of spawning. The number of redds can in turn influence juvenile densities. In contrast, other indicators, such as age-0 length at age and body condition of age-1s, reflect local conditions.

Between 2015 and 2022 there were a number of influences on fish habitat and/or the UFR fish population that make it challenging to assess trends in LCO Dry Creek fish metrics associated with any specific change or event. In Dry Creek, these operational influences include the Dry Creek Water Management System becoming operational (January 2015), seasonal water diversion to by-pass sedimentation pond (beginning September 2020) and the BRN spoil failure (October 2021). In addition, over the winter of 2018/2019 there was a decline in the adult population of the UFR (Evaluation of Cause Team 2021), which LCO Dry Creek is a part of. There were 25 WCT mortalities associated with a dewatering event October 2020 (Minnow 2021a). Moreover, after several years of consistent fish sampling throughout Dry Creek (2016 – 2019), minimal sampling was conducted in 2020 and 2021 due to concerns regarding fish handling, which limits the statistical comparisons that can be made with previous time periods. However, given the ten years of available data we can consider trends related to WCT in LCO Dry Creek over time with respect to number and distribution of redds, juvenile densities, body condition, and length. For age-0, length-at-age differences before and after implementation of the seasonal water diversion bypassing the sediment ponds are discussed.

7.3.1 Redd Surveys

Using the survey methods introduced in 2021 (Smit 2022), the AUC model was used to estimate the total number of unique definitive nests an average observer would have been expected to count. This approach facilitates comparisons between years. Using the AUC model the estimates were 20 definitive nests in 2021 and 9 definitive nests in 2022. The number of nests observed in other parts of the UFR was also lower in 2022 than other years and may be associated with a relatively cold spring (Thorley et al. 2023a).

The total number of definitive nests counted in LCO Dry Creek in 2022 (n=10) was similar to the number of visible redds (which can consist of multiple nests) counted in 2015 to 2017 but was lower than from 2018 to 2021 (Table 7.9). However, these numbers are not strictly comparable as discussed below. Prior to 2020, the number of nests in a redd were not consistently recorded, nests were not recorded as definitive or potential, and only new redds were recorded.

Table 7.9: Total Redds Counted (2015 to 2020) and Total Definitive Nests Counted (2021 to 2022) in LCO Dry Creek Between 2015 and 2022

Reach	2015 ¹	2016 ²	2017 ²	2018 ²	2019 ²	2020 ¹	2021 ¹	2022 ¹
1	9	9	6	26	15	10	18	5
2	0	1	1	5	5	0	0	0
3	0	1	2	8	2	5	0	5
4	0	0	0	0	0	0	0	0
East Tributary	-	-	-	-	-	-	-	0
Total	9	11	9	39	22	15	18	10

¹ WSP & Poisson 2023

Nonetheless the redd data provides information on the spatial extent of spawning. Redds were observed upstream and downstream of the culverts located at km 1.0 in all years except 2015 and 2021 when they were only observed downstream of the culverts. No definitive nests were observed in the 1.1 km of Dry Creek East Tributary that was surveyed in 2022 (Table 7.9).

7.3.2 Density

Age-1 and age-2+ WCT were captured at three of the four sites sampled in 2022 in LCO Dry Creek (Table 7.10). The number of fish captured during the first electrofishing pass by site and year was used to estimate the densities of age-1 and age-2+ fish over time (Figure 7.7). The site (DRY1; located at km 0.55) that was sampled the most consistently from 2013 to 2022 (i.e., in 8 of 10 years) indicates that juvenile densities have been comparable over these and do not suggest any long-term trend (Figure 7.7). For the five sites sampled yearly from 2016 – 2019, densities have been similar for age-1s and have fluctuated more for age-2+, but are also not suggestive of a long-term trend.

Table 7.10: Summary of Fish Captured by Sampling Site, Kilometre (km), and Age-Class in 2022

Site	km*	Reach	Age-1	Age-2+
DRY-100o	0.12	1	0	10
DRY1	0.56	1	1	5
DRY-2400o	2.37	2	0	1
DRY4.3	4.37	4	0	0

^{*}Distance from the confluence of LCO Dry Creek and the UFR.

² Faulkner et al., 2020. Total redds is assumed to be equivalent to total nests counted.

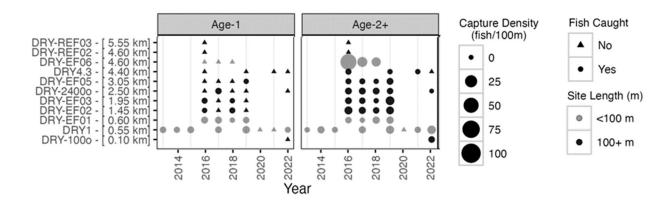


Figure 7.7: Densities of Fish Captured during Electrofishing in LCO Dry Creek on the First Pass by Year, Sampling Site, and Life Stage

7.3.3 Length frequency

Length categories for different age classes of WCT were developed based on data collected from 2013 to 2022 (Table 7.11). To do this, length frequency histograms were used to visualize the size structure of WCT captured by electrofishing under the assumption that size cutoffs between age-0, age-1, and age-2+ WCT can be identified from the length-frequency distributions (Figure 7.8; WSP & Poisson 2023). All fish greater than or equal to 200 mm in fork length were considered a single life stage grouping consisting of both subadult and adult fish. Age-0 and age-1 length categories vary across subpopulations in the UFR due to differences in growth among subpopulations (Thorley & Branton 2023). The age-2+ category includes multiple cohorts and includes fish with fork lengths greater than the maximum for age-1 fish and less than 200 mm.

Table 7.11: Length Categories for Life Stages of WCT in LCO Dry Creek

Life Stage	Fork Length
Age-0	<50 mm
Age-1	50–89 mm
Age-2+	90–199 mm
Subadult and adult	≥200 mm

For plotting purposes, data were grouped for the period before (2013 to 2017) and after (2019 to 2022) as a large decrease in the abundance of subadult and adult WCT occurred in the UFR in 2018 (WSP & Thorley 2023).

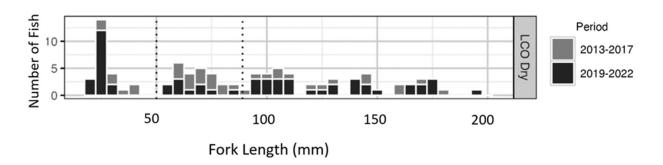


Figure 7.8: Number of Fish Captured by Electrofishing in LCO Dry Creek by Fork Length and Period

Note: Colour of bars represents the period before or after the decrease in counts of WCT during snorkel surveys that occurred between 2017 and 2019. The vertical dotted lines indicate the age-1 life stage cutoffs.

7.3.4 Length-at-age-0

The length of age-0 fish at the onset of winter is a determinant of overwintering survival (Coleman and Fausch 2007) and is sensitive to local conditions as indicated by the range of length at age-0s measured across the UFR (Thorley et al. 2023). Relatively few data are available for age-0s over the years in Dry Creek as sampling methodologies have not specifically targeted age-0s, though dip-net sampling that targets this age-class fish was implemented in 2022 (Figure 7.9). Water temperatures in the growing season influence the growth rates of fish, and GSDD have been lower in Dry Creek since the seasonal bypass of the sedimentation ponds was put into operation (Section 7.2.1). To explore the potential for changes in growth associated with these changes in temperature, a length-at-age analysis was conducted to estimate the length of age-0 fish separately for before and after the seasonal bypass was put into operation (WSP & Poisson 2023). Based on the limited available data, age-0 fish were shorter in 2022 compared to previous years (2015 and 2016). The length of age-0 fish was estimated to be 29% shorter (95% CI 53% shorter to 8% longer) after the seasonal bypass was put into operation (Thorley et al 2023a, WSP & Poisson 2023). These values were estimated as part of the larger UFR length-at-age model (Thorley et al. 2023) and are based on a very limited dataset including two years of data before the sediment pond bypass (2015 n=7 and 2016 n=2) and one year after (2022 n=17). These length estimates account for annual variation across the UFR as well as the expected extent of annual variation within Dry Creek. Given the small dataset there is considerable uncertainty as indicated by the range in 95% Cls. Additional years of age-0 data will reduce the uncertainty with respect to estimating the change in length.

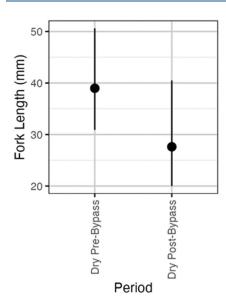


Figure 7.9: Estimated Fork Length of Age-0 Westslope Cutthroat Trout on 1 October in a Typical Year in LCO Dry Creek (with 95% Cls)

Note: The pre-bypass includes data from 2015 (n=7) and 2016 (n=2) and the post-bypass has data from 2022 (n=17).

7.3.5 Condition

Body condition compares an individual's mass relative to its length, and is a measure of health and growth potential (Bentley and Schindler 2013). All else being equal, fish with higher body condition would be expected to have more energy stores for growth, reproduction, and metabolic processes than fish of a similar length but lower body condition. Body condition was estimated based on juvenile fish as sampling in LCO Dry Creek does not target larger size classes. It is expressed as the predicted weight of a 100 mm WCT to estimate the percent difference in body condition relative to a typical stream in the UFR (Thorley et al 2023b) including LCO Dry Creek, in a typical year (Figure 7.10). Body condition in 2022 was estimated to be higher than in 2021. From 2013 to 2022, body condition was variable in LCO Dry Creek but was consistently estimated to be higher than the typical body condition of fish in other parts of the UFR, which is represented by 0% in Figure 7.11. Otherwise, there is no apparent trend over time given the uncertainty represented by the error bars (Figure 7.10).

7.3.6 Summary

Water temperature monitoring results in 2022 suggest that the portion of Dry Creek inhabited by fish (i.e., downstream of the East Tributary) now primarily feature water temperatures that may pose challenges to fish growth and recruitment. Portions of the spawning, incubation and rearing

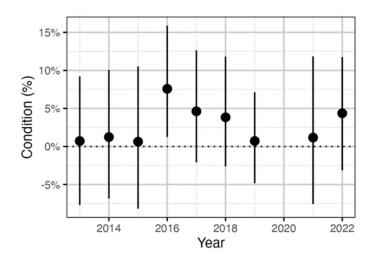


Figure 7.10: Body Condition in LCO Dry Creek Shown as the Percent Change in the Body Weight of a 100 mm Fish in a Typical Year Relative to a Typical Stream in the UFR Watershed (with 95% Cls)

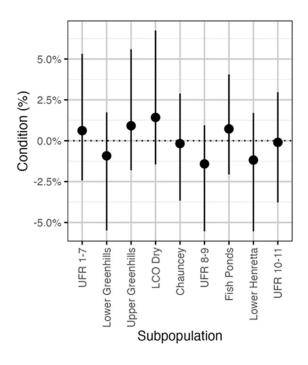


Figure 7.11: Body Condition Shown as the Percent Change in the Body weight of a 100 mm fish in a Typical Year Relative to a Typical Stream by Subpopulation (with 95% CIs)

Note: Subpopulations are different locations within the UFR watershed.

activity stages are outside of the BC WQG stated optimums for WCT by >1°C, while the growing season measured at three stations between the East Tributary and the confluence were all below the 800 GSDD threshold recommended to meet minimum requirements for interior Cutthroat Trout population recruitment (Coleman and Fausch 2007).

General trends of streamflow monitored in 2022 at the LC_DC1 gauge in Dry Creek were consistent with historical records: high flows occurred in May and June, and a low flow period occurred between November and March. Average flows in 2022 during key WCT activity periods were broadly similar to previous years, except during rearing and early incubation periods when average flows in 2022 were the highest on record; biological effects from these high flows are unknown due to a lack of concurrent fish abundance monitoring. The flushing flow threshold, measured as 1.0 m³/s for a 2-day duration, was met in Dry Creek at LC_DC1 in 2022.

Redds were observed above and below the culvert at km1 which is a barrier to upstream passage in some flow conditions. In 2022 and there were an estimated 9 definitive nests in compared to 20 in 2021. This decrease in nest counts was also observed throughout the UFR and may be associated with the cold early season water temperatures (Thorley et al 2023b). The total number of nests counted in 2022 was similar to the number of redds in 2015 to 2017, but lower than in 2018 to 2021. The densities of age-1 and age-2+ fish in 2022 were similar to previous years and show no apparent trend over time. Body condition was higher in 2022 than in 2021 but was variable over time indicating no long-term trends within LCO Dry Creek. However, the body condition of fish in LCO Dry Creek has been consistently higher than the typical body condition of fish in the UFR population. Based on a limited dataset, the age-0 fish were shorter in 2022 than in previous years with data (2015 and 2016). This may be related to a decrease in water temperatures after the seasonal sedimentation pond by-pass was put into operation in 2020.

8 SUMMARY

Changes to Dry Creek due to LCOII development have been evaluated by addressing five study questions, which focus on: 1) potential effects to water quality; 2) changes in toxicity; 3) potential effects to benthic invertebrate communities; 4) benthic invertebrate tissue selenium; and 5) fish and fish habitat.

Evaluation of Study Question #1 (potential effects to water quality) indicated that in general (2014 to 2022) concentrations of mine-related constituents including nitrate, total cadmium, and total selenium, have increased over time on Dry Creek since spoiling began in this watershed in 2015. Nitrate concentrations were above updated effects concentrations and dissolved nickel concentrations above proposed benchmarks Creek 2022. were in Dry in Constituent concentrations were more frequently elevated at areas LC DC3 (the Dry Creek area immediately downstream of LCOII spoiling and prior to DCWMS effects) and LC SPDC, LC DCDS, and LC DC2 (the areas immediately downstream of the DCWMS) than at areas LC DC4 and LC DC1, likely due to increasing distance from LCOII operations and input of groundwater from reference area LC DCEF between LC DC2 and LC DC4 (Golder 2019b). Similar trends constituents in aqueous were not detected at reference (LC DCEF and LC UC), in the Fording River downstream of Dry Creek, or in Grace Creek (LC GRCK), except for nitrate which showed increasing trends at LC DCEF, LC FRB and LC GRCK and total selenium which increased at LC DCEF, LC UC and LC FRB. Operational changes to the DCWMS including development and implementation of the seasonal bypass and modification of discharge channel area LC SPDC have successfully mitigated organoselenium concentrations in the surface water as well as selenium bioaccumulation and effects to biota.

Evaluation of Study Question #2 (changes in toxicity) indicated that chronic toxicity test occurring at LC_DCDS and acute toxicity occurring at LC_SPDC have not increased in 2022 relative to 2021 (Section 4). Acute toxicity testing of water from the outlet of the DCWMS as well as within Dry Creek showed no test failures in 2022. Chronic toxicity is monitored in Dry Creek directly downstream of the DCWMS (LC_DCDS), under the regional chronic toxicity program. In 2022, nickel and/or nitrate were identified as potentially causing the observed effects on water fleas and amphipods. All chronic toxicity on rainbow trout and fathead minnow in 2022 were categorized as no effect. Overall, chronic toxicity results have shown a low proportion of adverse responses over time within Dry Creek (LC_DCDS), with a frequency and magnitude of responses that was similar between 2019 to 2022 for most endpoints, and responses have been mostly limited to invertebrate endpoints.

Evaluation of Study Question #3 (potential effects to benthic invertebrate communities) indicated that in 2022 benthic invertebrate community total abundance and taxonomic richness were generally within regional normal ranges at Dry Creek LAEMP sampling areas. Benthic invertebrate communities in Dry Creek upstream of the DCWMS (LC_DC3) had endpoints outside of normal ranges (particularly %EPT, %E, and %C) most often. Areas located closest to the DCWMS discharge also tended to have lower %E than other areas and compared to regional and site-specific normal ranges. In 2022, benthic invertebrate communities located upstream and downstream of the mouth of Dry Creek in the Fording River differed from each other; however, community endpoints were generally within regional normal ranges and showed no temporal variation. The benthic invertebrate community within Grace Creek also had endpoints within regional normal ranges, as expected, based on current lack of mine-related influence. Over the 2019 to 2022 monitoring period there have been decreases in total abundance, EPT and E abundance, and the proportion of EPT and E at all areas along Dry Creek. The proportions of EPT and E measured at the mine-exposed areas were almost always significantly lower than those associated with the community in the Dry Creek reference area. Specifically, between 2021 and 2022 there was a decrease in total abundance (driven by a decrease in EPT) at all stations on Dry Creek as well as the reference station and the minimally impacted station. Currently, there are no water quality parameters that point to a cause of this decrease. Overall, %E appeared to be the endpoint most likely linked to a mine-related influence. Both the relative proportion and total abundance of Ephemeroptera decreased at all mine-exposed areas on Dry Creek over the 2019 to 2022 monitoring period. Temporal changes in Dry Creek benthic invertebrate community structure were associated with increasing aqueous concentrations of mine-related constituents including nickel, nitrate, and selenium. It is therefore likely that mining activities are contributing to changes in the benthic invertebrate communities of Dry Creek. Overall, most Dry Creek benthic invertebrate community endpoints were within normal ranges at most areas, but some changes are occurring over time that are likely related to effects of increasing concentrations of mine-related constituents.

Evaluation of Study Question #4 (benthic invertebrate tissue selenium) in most areas of Dry Creek downstream of the DCWMS, benthic invertebrate tissue selenium concentrations were the same in 2022 as 2021 and lower than 2020, although were occasionally higher than regional normal ranges and reference concentrations (most often in May). Downstream of the DCWMS the decreases in benthic invertebrate tissue selenium concentrations measured in 2022 and 2021 relative to earlier years (2020) were primarily attributable to changes in the water management of the DCWMS (i.e., bypass the sedimentation ponds throughout most of the year and limiting use of the DCWMS to one rather than two sedimentation ponds). Within the Fording River, benthic invertebrate tissue selenium concentrations upstream and downstream of Dry Creek were

generally similar to each other and have remained unchanged in 2022 relative to earlier years (2019 to 2021), indicating that Dry Creek water quality has had limited or no influence on benthic invertebrate tissue selenium concentrations in area of the Fording River mainstem.

Evaluation of Study Question #5 (fish health and fish habitat) indicated the total number of nests counted in 2022 was similar to the number of redds counted in 2015 to 2017, but lower than in 2018 to 2021. There were fewer redds observed in 2022 than in 2021 in the UFR including in Dry Creek which may be associated with the cold early season water temperatures. Body condition and densities of age-1 and age-2+ fish were similar to previous years. The body condition of fish in Dry Creek has been consistently higher than the typical body condition of fish in the UFR population. Age-0 fish were shorter in 2022 than in previous years (2015 and 2016). This may be related to a decrease in water temperatures after the seasonal sedimentation pond by-pass was put into operation in 2020. Similar to previous years, in 2022, calcite concretion was not observed in Dry Creek during the Regional Calcite Monitoring Program. Calcite levels in Dry Creek continue to be below those expected to result in measurable biological effect, although there is a trend toward increased calcite presence.

The results from the Dry Creek LAEMP provide information that supports Teck's AMP (Teck 2021a), and Table 8.1 summarizes material presented in this report that is relevant to the AMP. The results from this study also supported the evaluation of biological triggers, which are intended to identify unexpected monitoring results that may lead to responses under the AMP response framework. Biological triggers were assessed at two mine-exposed Dry Creek areas, LC DC1 and LC DCDS (Appendix H). Results indicated that all the replicates were below the biological trigger values at LC DC1 and LC DCDS for %EPT (i.e., were indicative of a biological trigger). EPT at these areas has previously been flagged for further investigation in the RAEMP based on benthic invertebrate community results (Minnow 2020c). Approximately 15% of samples were higher than the biological trigger values at both LC DCDS and LC DC1 (2 of 15 and 3 of 20 samples, respectively), this is considerably lower than in 2021 where ~ 37% of samples were higher than trigger values at LC DCDS and 27% at LC DC1. Additional responses include development of a biokinetic model for selenium bioaccumulation and modifications to the DCWMS operations in an effort to decrease enhanced primary production and / or heterotrophic microbial activity in the sedimentation ponds that promotes the generation of organoselenium compounds. Monitoring of the benthic invertebrate selenium biological trigger at these areas (and other Dry Creek LAEMP areas) will continue under both the 2023 Dry Creek LAEMP and the RAEMP.

Table 8.1: Summary of Findings, Responses, and Adjustments Related to the Dry Creek LAEMP, 2022

Key Question(s)	Data Evaluation Process	Outcome(s)	Responses & Adjustments in 2022	EMC Engagement
Are aqueous concentrations of mine-related constituents elevated in relation to British Columbia Water Quality Guidelines (BCWQG) and EVWQP benchmarks, and are concentrations changing over time?	Comparison of water quality data to reference areas (LC_DCEF for Dry Creek areas, LC_FRUS for area LC_FRB) regional and site-specific normal ranges, comparison to BCWQGs, EVWQP benchmarks, updated effects concentrations (UEC), and proposed benchmarks. Statistical analysis of temporal trends over time and among years.	Aqueous concentrations of nitrate, cadmium, selenium, and other constituents increased in 2022 in Dry Creek compared to baseline and 2021.	Ongoing responses through AMP process (triggered in 2018). Implementation of Nitrate Compliance Action Plan, Modification of DCWMS, Implementation of the integrated effects assessment modelling investigation for nitrate, as well as other ongoing investigations into the effects of aqueous mine-related constituents on biota and selenium bioaccumulation.	
		Aqueous organoselenium concentrations showed inconsistent changes in 2022.		
Is acute or chronic toxicity occurring from water collected at the outlet of the DCWMS (LC_SPDC) or within Dry Creek (LC_DCDS), and is toxicity changing over time?	Quarterly acute toxicity test at LC_SPDC. Comparison of chronic toxicity test results with results from reference area FR_UFR1 and pooled regional references, evaluation of frequency of test failures for acute toxicity tests, comparison to previous years' results.	No acute toxicity test failures at LC_SPDC in 2022. Generally, no change in frequency or severity of potential adverse responses in chronic toxicity testing at LC_DCDS except for algae.		
Are benthic invertebrate community endpoints within normal ranges derived based on samples collected at regional and local reference areas within the Elk River as part of the Regional Aquatic Effects Monitoring Program (RAEMP), and are the endpoints changing over time?	endpoints to regional and site-specific normal ranges, statistical evaluation of spatial and		Adjustments to DCWMS designed to mitigate water quality effects.	2022 data delivered to EMC February 8 2023, Presentation with 2022 data delivered to EMC on March 15, 2023. Written input from EMC on March draft data package received March 30, 2023. 2022 LAEMP report delivered to EMC by April 30, 2023
compare to normal ranges and BCWQG or EVWQP benchmarks, and are they changing over time?	Comparison of benthic invertebrate tissue selenium concentrations to regional normal range and EVWQP benchmarks, statistical evaluation of temporal and spatial trends relative to reference.	In Dry Creek mean benthic invertebrate tissue selenium concentrations were below the EVWQP benthic invertebrate benchmark (13 mg/kg dw) but concentrations in individual samples were occasionally above the EVWQP level 1 benchmarks for to juvenile fish, benthic invertebrates, and juvenile birds (11, 13, and 15 mg/kg dw, respectively) at stations closest to the DCWMS (LC_DCDS and LC_DC2). In the Fording River mean benthic invertebrate tissue selenium concentrations in 2022 were above the normal range in most sampling events.	Operational changes to DCWMS to minimize retention time in pond to reduce bioaccumulation potential.	2023 Study Design delivered by May 1, 2023
Are changes in fish and fish habitat (including instream flow and calcite index) occurring within Dry Creek as a result of mine	Flow, temperature, DO, redd survey, and calcite data with previous years' sampling, guidelines, and/or literature (specifically optimal temperature, DO, and flow ranges for different WCT life stages).	There was no fish tissue Se sampling completed in 2022. Mean weekly water temperatures were outside of guidelines in 2022. Calcite concretion was not observed in Dry Creek; however, calcite presence continues to increase annually throughout Dry Creek. Age-0 fish were shorter in 2022 than when last sampled in 2015 and 2016. This may be related to a decreased growth rate associated with lower water temperatures after the seasonal sediment pond by-pass was put into operation in 2020.	The relationship between water temperature and age- 0 WCT growth is being evaluated as part of the Population Monitoring program	

9 ACKNOWLEDGEMENTS

This report was written by Minnow Environmental Inc. (Robin Valleau and Katharina Batchelar), Ecofish Research (Lucie Kaucky and Todd Hatfield), and Branton Environmental Consulting (Maggie Branton). Minnow Environmental Inc. was the sole contributing author on sections: 1 Introduction, 2 Methods, 3 Study Question 1: Water Quality, 4 Study Question 2: Aqueous Toxicity, 5 Study Question 3: Benthic Invertebrate Community, and 6 Study Question 4 Benthic Invertebrate Tissue.

Section 7: Fish and Fish Habitat was co-authored by Minnow Environmental Inc, Ecofish Research, and Branton Environmental Consulting. Sections 7.1, and subsections 7.2.2 and 7.2.4 were authored by Minnow Environmental Inc. Sections 7.2, and subsections 7.2.1 and 7.2.3 were authored by Ecofish research. Section 7.3 and subsections 7.3.1 to 7.3.5 were authored by Branton Environmental Consulting (MB).

10 REFERENCES

- ADEPT Environmental Sciences Ltd. 2022. Elk Valley Selenium Speciation Monitoring Program: 2021 Annual Report. Submitted to Teck Coal Limited.
- Annear, T., Chisholm, I., Beecher, H., Locke, A., Aarrestad, P., Burkhart, N., Coomer, C, Estes, C., Hunt, J., Jacobson, R., Jobsis, G., Kauffman, J., Marshall, J., Mayes, K., Stalnaker, C., Wentworth, R. 2004. *Instream flows for riverine resource stewardship*. Cheyenne, WY: Instream Flow Council.
- BCMOE (British Columbia Ministry of Environment). 2017. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Protection & Sustainability Branch. Available from http://www2.gov.bc.ca/assets/gov/environment/air-landwater/water/waterquality/wqgs-wqos/bc_env_working_water_quality_guidelines.pdf [Accessed June 2017].
- BCMOE. 2018. Approved Water Quality Guidelines for British Columbia. Accessed at http://www2.gov.bc.ca/gov/content/environment/air-land-water/water-quality/water-quality-guidelines/approved-water-quality-guidelines, April 2018.
- BCMOECCS (British Columbia Ministry of Environment and Climate Change Strategy). 2019. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Summary Report. Updated August 2019.
- BCMOECCS. 2021. Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Quality Guideline Series, WGG-08. Prov. B.C. Victoria, B.C.
- Bear, E.A., T. E. McMahon, and A. V. Zale. 2007. Comparative Thermal Requirements of Westslope Cutthroat Trout and Rainbow Trout: Implications for Species Interactions and Development of Thermal Protection Standards, Transactions of the American Fisheries Society. Available online at: https://www.researchgate.net/publication/255593391_Comparative_Thermal_Requirements_of_Westslope_Cutthroat_Trout_and_Rainbow_Trout_Implications_for_Species_Interactions_and_Development_of_Thermal_Protection_Standards.
- Bech, P. 1994. Lower Mainland Region Stream Inventory/Assessment Methods. Unpublished Manuscript LM 229. Ministry of Environment, Lands and Parks. Surrey, BC.
- Buchanan, S., T. Hatfield, K. Akaoka, and S. Faulkner. 2017. Dry Creek Fish Habitat Assessment Report. Consultant's report prepared for Teck Coal Limited by Ecofish Research Ltd., January 30, 2017.
- CCME (Canadian Council of Ministers of the Environment). 2004. Phosphorus: Canadian guidance framework for the management of freshwater systems. Canadian Environmental Quality Guidelines for the Protection of Aquatic Life, 1-5.
- CCME. 2016. Guidance manual for developing nutrient guidelines for rivers and streams.
- Canadian Council of Ministers of the Environment, Winnipeg.
- Coleman, M. A., & Fausch, K. D. 2007. Cold summer temperature limits recruitment of age-0 cutthroat trout in high-elevation Colorado streams. Transactions of the American Fisheries Society, 136(5), 1231–1244. https://doi.org/10.1577/t05-244.1Cope, S. 2020. Proprietor, Westslope Fisheries Ltd. Email conversation with Cait Good (Teck). January 7, 2020.
- Committee on the Status of Endangered Wildlife in Canada (COSEWIC). 2016. COSEWIC assessment and status report on the Westslope Cutthroat Trout Oncorhynchus clarkii

- lewisi, Saskatchewan-Nelson River populations and Pacific populations in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xvi + 83 pp.
- Cope, S., C.J. Schwarz, A. Prince and J. Bisset. 2016. Upper Fording River Westslope Cutthroat Trout Population Assessment and Telemetry Project: Final Report. Report Prepared for Teck Coal Limited, Sparwood, BC. Report Prepared by Westslope Fisheries Ltd., Cranbrook, BC. 266 p.
- Cope, S. 2020. Upper Fording River Westslope Cutthroat Trout Population Monitoring Project: 2019. Report Prepared for Teck Coal Limited, Sparwood, BC. Report Prepared by Westslope Fisheries Ltd., Cranbrook, BC.
- de Bruyn, A. and S.N. Luoma. 2021. Selenium Species Bioaccumulation Tool Draft Version 2.0. Prepared for Mariah Arnold, Teck Coal Limited, Sparwood, BC. February. Project 19133414/MQ2 Task 4.
- EAO (British Columbia Environmental Assessment Office). 2013. Environmental Assessment Certificate # M13-02 Issued 25 September, 2013 to Teck Coal Limited for the Line Creek Operations Phase II. Available online at: https://projects.eao.gov.bc.ca/p/line-creek-operations-phase-ii/docs
- Ecofish (Ecofish Research Ltd.). 2017. Dry Creek Fish and Fish Habitat Monitoring Program Monitoring Program Year 1 Baseline Summary Report. Prepared by S. Faulkner, N. Swain, A. Yeomans-Routledge, and T. Hatfield. Prepared for Teck Coal Limited. March 10, 2017.
- Ecofish. 2018. Dry Creek Fish and Fish Habitat Monitoring Program Baseline Summary Report.

 Draft V1. Prepared by S. Faulkner, N. Swain, A. Yeomans-Routledge, and T. Hatfield.

 Prepared for Teck Coal Limited. February 22, 2018.
- Ecofish. 2019. Dry Creek Fish and fish Habitat Monitoring Program Year 1-3 Summary Report. Prepared by S. Faulkner, N. Swain, S. Buchanan, J. Krick, and T. Hatfield. Prepared for Teck Coal Limited. April 25, 2019.
- Ecofish. 2020a. Dry Creek Fish and Fish Habitat Monitoring Program Year 4 Summary Report. Prepared by S. Faulkner and T. Hatfield. Prepared for Teck Coal Limited. April 24, 2020.
- Ecofish. 2020b. Memorandum Re: Aquatic Data Integration Table (ADIT): Flow and Temperature Screening Values. Prepared for Teck Coal Ltd.
- ENV (British Columbia Ministry of Environment and Climate Change Strategy). 2013. Permit 106970 issued under the provisions of the *Environmental Management Act*. October 25, 2013.
- ENV. 2015. Approval of the Dry Creek Water Management Plan. February 20, 2015.
- ENV. 2017 Permit 5353 issued under the provisions of the Environmental Management. Act April 17, 2017
- ENV. 2021. Amended Permit 107517 issued under the provisions of the *Environmental Management Act*. March 11, 2021.
- ENV. 2023. Amended Permit 107517 issued under the provisions of the *Environmental Management Act*. January 27, 2023.
- Environment Canada. 1996. Biological Test Method: Acute Lethality Test Using *Daphnia* spp. Environmental Protections Series. Method Development and Applications Section. Environmental Technology Centre. May 1996.

- Environment Canada. 1998. Biological Test Method: Toxicity Tests Using Early Life Stages of Salmonid Fish (Rainbow Trout). Environmental Technology Centre, Ottawa, Ontario. Environmental Protection Series. Report 1/RM/28. July 1998.
- Environment Canada. 2007a. Biological Test Method: Acute Lethality Test Using Rainbow Trout. Environmental Protections Series. Method Development And Applications Section. Environmental Technology Centre. May 2007.
- Environment Canada. 2007b. Biological Test Method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*. Environmental Technology Centre, Ottawa, Ontario. Environmental Protection Series. Report EPS 1/RM/21. Second Edition. February 2007.
- Environment Canada. 2007c. Biological Test Method: Test for Measuring the Inhibition of Growth Using the Freshwater Macrophyte *Lemna minor*. Environmental Technology Centre, Ottawa, Ontario. Environmental Protection Series. Report 1/RM/37. Second Edition. January 2007.
- Environment Canada. 2012. Field Manual: Wadeable Streams. Canadian Aquatic Biomonitoring Network (CABIN). Government of Canada.
- Farnham, I.M., Singh, A.K., Stetzenbach, K.J., Johannesson, K.H. 2002. Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemometrics and Intelligent Laboratory Systems. 60:265-281.
- Faulkner, S., Ammerlann, J., Swain, N., Ganshorn, K., and Hatfield, T. 2020, April 24. Dry Creek Fish and Fish Habitat Monitoring Program Year 4 Summary Report. Ecofish Research Ltd.
- Giller, P. S., & Twomey, H. (1993, November). Benthic macroinvertebrate community organization in two contrasting rivers: between-site differences and seasonal patterns. In biology and environment: proceedings of the Royal Irish Academy (pp. 115-126). Royal Irish Academy.
- Gillis, C. A., & Chalifour, M. 2010. Changes in the macrobenthic community structure following the introduction of the invasive algae Didymosphenia geminata in the Matapedia River (Québec, Canada). Hydrobiologia, 647(1), 63-70.
- Golder (Golder Associates Ltd.). 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited. July.
- Golder. 2014a. Benchmark Derivation Report for Nitrate and Sulphate. Elk Valley Water Quality Plan. Report Number 13-1349-0006. July.
- Golder. 2014b. Benchmark Derivation Report for Selenium. Elk Valley Water Quality Plan. Report Number 13-1349-0006. July.
- Golder. 2016. LCO Dry Creek Flow Model Update. Consultant's Report prepared by Golder Associates Limited for Teck Coal Limited, October 5, 2016. Reference 1661889-2016-077-R-Rev1-1000.
- Golder. 2019a. LCO Dry Creek SDM Process: Flow Accretion Results. Presented to LCO Dry Creek Working Group, Sparwood BC. February 13, 2019.
- Golder. 2019b. LCO Dry Creek SDM Process: LCO Dry Creek Flow Accretion Study Update. Presented to LCO Dry Creek Working Group, Sparwood BC. October 29, 2019.
- Golder. 2020. 2019 Chronic Toxicity Program. Elk Valley Testing to Satisfy Permit Requirements. Prepared for Teck Coal Ltd., Sparwood, BC. April 2020.
- Golder. 2021a. 2020 Chronic Toxicity Program. Elk Valley Testing to Satisfy Permit Requirements. Prepared for Teck Coal Ltd., Sparwood, BC. April 2021.

- Golder. 2021b. Elk Valley Selenium Speciation Program. State of the Science Report. Prepared for Teck Coal Ltd., Sparwood, BC. March 26, 2021.
- Golder. 2021c. Preliminary Annelid Bioaccumulation Analysis. Prepared for Teck Coal Limited. June. Reference No. 20140948-2003-TM-Rev0.
- Golder. 2022. 2021 Chronic Toxicity Program. Elk Valley Testing to Satisfy Permit Requirements. Prepared for Teck Coal Ltd., Sparwood, BC. April 2022.
- Government of Canada. 2023. Historical Hydrometric Data: Station ID 08NK018. Available online at: https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html. Accessed April 18, 2023.
- Hatfield, T., A. Buren, S. Faulkner. 2019. Dry Creek Fish and Fish Habitat Monitoring Program. Consultants memorandum prepared by Ecofish Research. Ltd. For Teck Coal Ltd. May 6, 2019.
- Hatfield, T., J. Chapman., and A. Harwood. 2022. Fish and Fish Habitat Effects Assessment: Dry Creek Water Conveyance and Supplementation Project. Consultant's report prepared for Teck Coal Limited by Ecofish Research Ltd., March 11, 2022.
- He, J.X., Bence, J.R., Johnson, J.E., Clapp, D.F., and Ebener, M.P. 2008. Modeling Variation in Mass-Length Relations and Condition Indices of Lake Trout and Chinook Salmon in Lake Huron: A Hierarchical Bayesian Approach. Trans. Am. Fish. Soc. 137(3): 801–817. doi:10.1577/T07-012.1.
- Healey, K., K. Akaoka, A. Baki, S. Faulkner, and T. Hatfield. 2016. Dry Creek Instream Flow Study. Consultant's report prepared by Ecofish Research Ltd. for Teck Coal Limited.
- Hellawell, J. M. 1989. Biological indicators of freshwater pollution and environmental management. Elsevier. London and New York, 546.
- Helsel, D.R. and Hirsch, R.M. 2002. Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. 522 pages.
- Hirsch, R.M., Slack, J.R., and Smith, R.A. 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research 18: 107-121.
- Hilborn, R., Bue, B.G., and Sharr, S. 1999. Estimating spawning escapements from periodic counts: a comparison of methods. Can. J. Fish. Aquat. Sci. 56(5): 888–896. doi:10.1139/f99-013.
- Hocking, M., K. Akaoka, A. Buren, E. Vogt, J. MacAdams, and T. Hatfield. 2020. 2019 Calcite Effects to Spawning Habitat Suitability of Westslope Cutthroat Trout. Consultant's report prepared for Teck Coal Ltd. by Ecofish Research Ltd. May 8, 2020.
- Hubbard, M. D., & Peters, W. L. 1978. Environmental requirements and pollution tolerance of Ephemeroptera. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring and Support Laboratory.
- Hunter, J. 1973. A discussion of game fish in the state of Washington as related to water requirements. Washington State Department of Game, Fishery Management Division, Olympia. 66pp. Available online at: https://wdfw.wa.gov/sites/default/files/publications/01831/wdfw01831.pdf
- Ings, J., and Weech, S. 2020. Study Design for the Regional Aquatic Effects Monitoring Program, 2021 to 2023. A Minnow Environmental Inc. Report, Teck Coal Limited, Sparwood, BC.

- KWL (Kerr Wood Leidal) 2021. 2020 LCO Hydrometric Program. Prepared for Teck Coal Ltd. Line Creek Operations, Sparwood, BC. March 26, 2021.
- Knowles, J. E., Frederick, C., & Whitworth, A. 2019. merTools: Tools for analyzing mixed effect regression models. Version 0.5.0.
- Levine, S.N. and Schindler, D.E. 1999. Influence of nitrogen to phosphorus supply ratios and physicochemical conditions on cyanobacteria and phytoplankton species composition in the Experimental Lakes Area, Canada. Can. J. Fish. Aquat. Sci. 556, 451-466.
- Lotic (Lotic Environmental). 2019. Teck Coal Ltd. Elk Valley 2018 Calcite Monitoring Program Annual Report and Program Assessment. Prepared for Teck Coal Ltd., Sparwood, BC. April 2019.
- Lotic 2020. Teck Coal Ltd. Elk Valley 2019 Calcite Monitoring Program Annual Report and Program Assessment. Prepared for Teck Coal Ltd., Sparwood, BC. April 2020.
- Lorax (Lorax Environmental Services Ltd.). 2020. Line Creek Operations Assessment of Selenium Speciation and Bioavailability in Dry Creek. Prepared for Teck Coal Ltd., Sparwood, BC. Project #A528-1. February 6, 2020.
- Luoma, S.N. 2021. Selenium Bioaccumulation in Annelids Collected from the Fording and Elk Rivers. Prepared for Teck Coal Limited. January.
- Mayhood, D., W. 2012. Cutthroat Trout Length Conversion Regressions. Freshwater Research Limited, Calgary, Alberta. Prepared for Fisheries and Oceans Canada. FWR Technical Note 2012-06-1.
- McPhail, J.D. 2007. The Freshwater Fishes of British Columbia, University of Alberta Press, Edmonton, AB.
- Minnow (Minnow Environmental Inc.). 2015. Dry Creek Local Aquatic Effects Monitoring Program, 2014. Prepared for Teck Coal Ltd., Sparwood, BC. Project #2547
- Minnow. 2016. Line Creek Operation's Local Aquatic Effects Monitoring Program (LAEMP) Report for Dry Creek, 2017. Prepared for Teck Coal Ltd., Sparwood, BC. Project #157202.0081. May 2016.
- Minnow. 2017. Line Creek Operation's Local Aquatic Effects Monitoring Program (LAEMP) Report for Dry Creek, 2016. Prepared for Teck Coal Ltd., Sparwood, BC. Project #167202.0073
- Minnow. 2018a. Elk River Watershed Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2015-2016. Prepared for Teck Coal Limited, Sparwood, BC. Project #2561. January 2018.
- Minnow. 2018b. Line Creek Operation's Local Aquatic Effects Monitoring Program (LAEMP) Report for Dry Creek, 2017. Prepared for Teck Coal Ltd., Sparwood, BC. Project #177202.0049. May 2018.
- Minnow. 2018c. Study Design for Line Creek Operation's 2018 Local Aquatic Effects Monitoring Program (LAEMP) for Dry Creek. Prepared for Teck Coal Limited, Sparwood, British Columbia. May. Project #177202.0049.
- Minnow. 2019. Line Creek Operation's Local Aquatic Effects Monitoring Program (LAEMP) Report for Dry Creek, 2018. Prepared for Teck Coal Ltd., Sparwood, BC. Project #187202.0050. May 2019.

- Minnow. 2020a. Line Creek Operation's Local Aquatic Effects Monitoring Program (LAEMP) Report for Dry Creek, 2019. Prepared for Teck Coal Ltd., Sparwood, BC. Project #197202.0009. May 2020
- Minnow. 2020b. Study Design for Line Creek Operation's 2020 Local Aquatic Effects Monitoring Program (LAEMP) for Dry Creek. Prepared for Teck Coal Limited, Sparwood, British Columbia. May. Project #207202.0024.
- Minnow. 2020c. Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2017 to 2019. Prepared for Teck Coal Limited, Sparwood, BC. November. Project 187202.0011.
- Minnow. 2020d. Evaluation of Nutrient Concentrations in the Elk River Watershed Final Report. Prepared for Teck Coal Limited, Sparwood, BC. November. Project 207202.0011.
- Minnow. 2021a. Line Creek Operation's Local Aquatic Effects Monitoring Program (LAEMP) Report for Dry Creek, 2020. Prepared for Teck Coal Ltd., Sparwood, BC. Project #207202.0024. May 2021
- Minnow. 2021b. Study Design for Line Creek Operation's 2021 Local Aquatic Effects Monitoring Program (LAEMP) for Dry Creek. Prepared for Teck Coal Limited, Sparwood, British Columbia. May 2021. Project #207202.0024.
- Minnow. 2022a. Line Creek Operation's Local Aquatic Effects Monitoring Program (LAEMP) Report for Dry Creek, 2021. Prepared for Teck Coal Ltd., Sparwood, BC. April 2022. Project #217202.0035.
- Minnow. 2022b. Study Design for Line Creek Operation's 2022 Local Aquatic Effects Monitoring Program (LAEMP) for Dry Creek. Prepared for Teck Coal Limited, Sparwood, British Columbia. May 2022. Project #217202.0019.
- Minnow. 2023 in prep. Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2020 to 2022. Prepared for Teck Coal Limited, Sparwood, BC. November. Project 227202.0031.
- Nautilus and Interior Reforestation. 2011. Evaluation of the Effects of Selenium on Early Life Stage Development of Westslope Cutthroat Trout from the Elk Valley, BC. Prepared for the Elk Valley Selenium Task Force. November 2011.
- Northcote, T. and G. Hartman. 1988. The biology and significance of stream trout populations (Salmo spp.) living above and below waterfalls. Pol. Arch. Hydrobiol. 35:409–442.
- Nupqu and AJM (AJM Environmental Inc.). 2021. Dry Creek Fish and Fish Habitat Monitoring Program 2020. Prepared by Nupqu Limited Partnership. Prepared for Teck Coal Limited. February 2021.
- Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., ... & Wagner, H. (2019). vegan: Community Ecology Package. R package version 2.5–6. 2019.
- Oliver, G. G., and L. E. Fidler. 2001. Towards a Water Quality Guideline for Temperature in the Province of British Columbia. Prepared for Ministry of Environment, Lands and Parks, Water Management Branch, Water Quality Section, Victoria, B.C. Prepared by Aspen Applied Sciences Ltd., Cranbrook, B.C., 53 pp + appnds. Available online at: http://www.env.gov.bc.ca/wat/wq/BCguidelines/temptech/index.html. Accessed on January 17, 2017.
- Poff, N.L., D. Allan, M.B. Bain, J.R. Karr, K.L. Prestegaard, B.D. Richter, R.E. Sparks, and J.C. Stromberg. 1997. The Natural Flow Regime: A paradigm for river conservation and restoration. *BioScience*, 47, (11) 769–784. https://doi.org/10.2307/1313099

- Pohlert, T. 2016. Trend: non-parametric trend tests and change-point detection. R package version 0.2.0. https://CRAN.R-project.org/package=trend Province of British Columbia. 2013. British Columbia Field Sampling Manual (complete). Available from https://www2.gov.bc.ca/gov/content/environment/research-monitoring-reporting/monitoring/laboratory-standards-quality-assurance/bc-field-sampling-manual?keyword=field&keyword=sampling&keyword=manual. Accessed December 15, 2017.
- R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org
- Robinson, M.D. 2010. Effects of calcite deposition on benthic macroinvertebrate communities throughout the Elk River Watershed. Consultant's report prepared for Teck Coal Ltd. Prepared by Interior Reforestation Co. Ltd. 17 pg.
- Robinson, M.D., and R.J. MacDonald. 2014. Teck Coal Ltd 2013 Calcite Monitoring Program Elk Valley operations summary report. Prepared by Lotic Environmental Ltd. 12 pp + appendices. Teck (Teck Coal Limited). 2011. Line Creek Operations Phase II Project Environmental Assessment Certificate Application. December.
- Smit, R., Robinson, M.D., Brooks, J.L., and Thorley, J.L. 2022. Teck Salmonid Nest Survey Methods: Field Manual and Data Standards. Prepared by Lotic Environmental for Teck Coal.
- Su, Z., Adkison, M.D., and Van Alen, B.W. 2001. A hierarchical Bayesian model for estimating historical salmon escapement and escapement timing. Can. J. Fish. Aquat. Sci. 58(8): 1648–1662. doi:10.1139/f01-099.
- Suter, G.W.II. 2015. What is a Cause? In: S.B. Norton S.M. Cormier and G.W. Suter II (Eds.) Ecological Causal Assessment. CRC Press, Boca Raton pp. 17-251-270.
- Teck (Teck Coal Limited). 2011. Line Creek Operations Phase II Project Environmental Assessment Certificate Application. December.
- Teck. 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for Approval on July 22, 2014.
- Teck. 2016. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley. July.
- Teck. 2018a. Permit 106970 Line Creek Operations Annual Report. March 31, 2018.
- Teck. 2018b. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley. December
- Teck. 2019a. Permit 106970 Line Creek Operations Annual Report. March 31, 2019.
- Teck. 2019b Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2018 Annual Report. Prepared by Teck Coal Limited. July 31, 2019.
- Teck. 2020a. Permit 106970 Line Creek Operations Annual Report. March 31, 2020.
- Teck. 2020b. LCO Dry Creek SDM Process: Aquatic Effects of Monitored Water Quality. Presented to LCO Dry Creek Working Group, Sparwood BC. November 23, 2020.
- Teck. 2020c. Line Creek Operations Mine Water Management Plan. Teck Coal Ltd. June 30, 2020.
- Teck. 2020d. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley. 2019 Annual Report. July 31, 2020.

- Teck. 2020e. LCO Dry Creek DCWMS Seasonal Bypass Preliminary Results. Presented to LCO Dry Creek Working Group, Sparwood BC. November 25, 2020.
- Teck. 2021a. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2021 Update. Prepared by Teck Coal Limited. December 15, 2021.
- Teck. 2021b. Permit 106970 Line Creek Operations 2020 Annual Water Report. March 31, 2020.
- Teck. 2021c. Line Creek Operations. Proposed Instream Flow Requirements, Site Performance Objectives, and updated Water Management Plan for Dry Creek. Teck Coal Ltd. May 2021.
- Teck. 2022. Annual Water Quality Report 2021. Prepared by Teck Coal Limited. March 31, 2022.
- Teck. 2023. Surface Water Quality Monitoring 2022 Annual Report 2022. Prepared by Teck Coal Limited. March 31, 2023. Therneau, T.M. 2017. Survival analysis. Package "survival" for R. April 4, 2017. https://cran.r-project.org/web/packages/survival/survival.pdf
- Therneau, T.M. 2017. Survival analysis. Package "survival" for R. April 4, 2017.
- Thorley, J.L., and Branton, M. 2023. Subject Matter Expert Report: Energetic Status at the Onset of Winter Based on Fork Length and Wet Weight. Evaluation of Cause Reduced Recruitment in the Harmer Creek Westslope Cutthroat Trout Population. A Poisson Consulting Ltd. Report, Teck Coal Ltd., Sparwood, BC.
- Thorley, J.L., Kortello, A.K. & M. Robinson. 2021. Upper Fording River Westslope Cutthroat Trout Population Monitoring 2020. A Poisson Consulting, Grylloblatta Consulting and Lotic Environmental report prepared for Teck Coal Ltd., Sparwood, BC.
- Thorley, J.L., Kortello, A.K., Brooks, J. & M. Robinson. 2022a. Upper Fording River Westslope Cutthroat Trout Population Monitoring 2021. A Poisson Consulting, Grylloblatta and Lotic Environmental report prepared for Teck Coal Ltd., Sparwood, BC.
- Thorley, J.L., Robinson, M., Brooks, J., and Kortello, A.K. 2022b. Study Design for upper Fording River Westslope Cutthroat Trout Population Monitoring in 2022. Teck Coal Limited, Sparwood, BC.
- Thorley, J.L., Smit, R., Brooks, J.L., and Robinson, M.D. 2022c. Teck Backpack Electrofishing Fish Density Surveys Field Methods and Data Collection Standards. Prepared by Lotic Environmental and Poisson Consulting for Teck Coal.
- Thorley, J.L., Kortello, A.D., and Brooks, J.L. 2023a. Upper Fording River Westslope Cutthroat Trout Population Monitoring 2022. A Poisson Consulting and Lotic Environmental report prepared for Teck Coal Ltd., Sparwood, BC.
- Thorley, J.L., Kortello, A.D., and Brooks, J. 2023b. UFR WCT Population Monitoring 2022. A Poisson Consulting Analysis Appendix. https://www.poissonconsulting.ca/f/888366171.
- USEPA (United States Environmental Protection Agency). 1996. Ecological Effects Test Guidelines. OPPTS 850.1400 Fish Early-Life Stage Toxicity Test. EPA-712-C-96-121, Public Draft.
- USEPA. 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates. 2nd Edition. EPA/600/R-99/064. Office of Water, Washington, DC, USA.

- USEPA. 2016. Aquatic Life Ambient Water Quality Criterion for Selenium Freshwater 2016. U.S. Environmental Protection Agency Office of Water, Washington, D.C. EPA 822-R-16-006.
- West, D., K. Akaoka, and T. Hatfield. 2021. Geomorphology PM information sheet. Input to the LCO Dry Creek Structured Decision-Making Process. Prepared for Teck Coal Ltd., Sparwood, BC.
- Wright, N., T. Jensma, H. Wright, K. Akaoka, M. Hocking, and T. Hatfield. 2018. 2017 Calcite Effects to Fish Spawning and Incubation. Draft V1. Consultant's report prepared for Teck Coal by Ecofish Research Ltd. February 19, 2018.
- Wolman, M.G. 1954. A Method of Sampling Coarse River-Bed Material. Transactions of the American Geophysical Union 35(6): 951-956.
- WSP Canada Inc. (WSP). 2023. 2022 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. April 2023.
- WSP Canada Inc. and Poisson Consulting Ltd. (WSP & Poisson) 2023. Line Creek Operations (LCO) Dry Creek 2022 Fish Population Monitoring. Report prepared for Teck Coal Ltd., Sparwood, BC. 35 pages.
- Wyatt, R.J. 2002. Estimating riverine fish population size from single- and multiple-pass removal sampling using a hierarchical model. Canadian Journal of Fisheries and Aquatic Sciences 59(4): 695–706.
- Zathey, N. Mitchell, S., and M.D. Robinson. 2021. Teck Coal Ltd. 2020 Calcite Monitoring Program Annual Report. Prepared for Teck Coal Ltd. by Lotic Environmental Ltd. 54 pp + appendices.

APPENDIX A DATA ANALYSIS AND METHODS

APPENDIX A **METHODS**

A1	WATER QUALITY	1
A1.1	Overview	
	Sample Collection	
A1.3	Laboratory Analysis	2
	Data Analysis	
A2	ACUTE TOXICITY TESTING	8
А3	CHRONIC TOXICITY TESTING	9
A 4	PERIPHYTON	10
A4.1	Overview	
A4.2	Sample Collection	10
A 5	BENTHIC INVERTEBRATES	11
A5.1	Overview	11
A5.2	Community Structure	11
A5.	.2.1 Sample Collection	11
A5.	2.2 Laboratory Analysis	11
A5.	.2.3 Supporting Measures	12
	.2.4 Data Analysis	
A5.3	Benthic Invertebrate Tissue	15
	.3.1 Sample Collection	
	.3.2 Laboratory Analysis	
A5.	.3.3 Data Analysis	16
A6	CALCITE	19
A6.1	Sample Collection	
A6.2	Data Analysis	19
Α7	REFERENCES	20

A1 WATER QUALITY

A1.1 Overview

Permit 107517 requires that Teck prepare annual reports that summarize monitoring data collected during the preceding calendar year at all locations specified in the permit. Observed concentrations were compared to Compliance Limits and Site Performance Objectives (SPO) specified in Permit 107517, Elk Valley Water Quality Plan (EVWQP) benchmarks, and to BC water quality guidelines for protection of aquatic life (BCWQG). Data were also plotted to identify increasing or decreasing trends over time. Water samples were collected at all areas concurrently with biological sampling. Methods are described as follows.

A1.2 Sample Collection

One water sample per area was collected concurrently with biological monitoring and analysis included parameters stipulated in Permit 107517, as well as selenium speciation where applicable. Sample collection procedures were consistent with those outlined in the British Columbia Field Sampling Manual (Province of British Columbia 2013). *In situ* measurements of temperature, dissolved oxygen (DO), pH, and specific conductance were recorded concurrently with biological monitoring. The water quality meter used to collect *in situ* measurements was calibrated regularly and maintained according to manufacturer instructions.

Water samples were collected far enough upstream or downstream of confluences (tributaries, discharges) to avoid areas of incomplete mixing (lateral, vertical), and upstream from bridges or other structures to avoid the potential for associated contamination.

Water samples were collected by wading into a mid-channel area (unless it was not practical or safe to do so), moving from downstream to upstream, so as not to collect water downstream of disturbed substrates. Samples were collected from mid-depth by inverting sample bottles below the surface of the water. Samples were taken to shore prior to adding applicable preservatives. Water samples being analyzed for dissolved parameters were filtered in the field using a clean syringe affixed with a 0.45-µm membrane. Once filtered, the sample was preserved immediately in the manner specified by the analytical laboratory. Station location (i.e., GPS coordinates) and sample date, time, and identifier were recorded on field sheets. Samples were kept cold until analysis. Samples were shipped to the analytical laboratory daily or every other day to achieve compliance with recommended analytical hold times.

Quality assurance and quality control (QA/QC) samples were collected in the field concurrent with water samples. One water chemistry field split duplicate was collected at a minimum of

10 % of samples. Equipment and travel blanks represented approximately 10% of the water chemistry samples submitted to the analytical laboratory.

A1.3 Laboratory Analysis

Laboratory analytical methods were consistent with the British Columbia Environmental Laboratory Manual (Province of British Columbia 2016), where applicable.

Water samples were analyzed by ALS Environmental (ALS; Calgary, AB) for constituents consistent with Permit 107517 (i.e., conventional parameters, major ions, nutrients, and total and dissolved metals; Table A.1) using the following methods indicated in parentheses:

- total organic carbon (TOC) and dissolved organic carbon (DOC) (combustion method; American Public Health Association [APHA] 5310 for TOC);
- total suspended solids (TSS) and total dissolved solids (TDS; gravimetric method; APHA 2540 D and C for TSS and TDS, respectively);
- alkalinity (potentiometric titration; APHA 2320);
- turbidity (nephelometric method; APHA 2130 Turbidity);
- hardness, as CaCO₃ (by calculation; APHA 2340 B);
- total and dissolved metals, (collision cell inductively coupled plasma mass spectrometry and inductively coupled plasma - optical emission spectrophotometry; APHA 3030 B&E/ Environmental Protection Agency [EPA] SW-846 6020A, and EPA 3005A/6010B, respectively);
- bromide, chloride, fluoride, and sulphate (ion chromatography; APHA 4110 B);
- ammonia, as N (fluorescence; J. Env. Monit., 2005, 7:37-42);
- nitrate and nitrite, as N (ion chromatography; EPA 300.0);
- total Kjeldahl nitrogen (TKN) (fluorescence; APHA 4500-NORG D.);
- orthophosphate and total phosphorus (colourimetric method; APHA 4500-P Phosphorus).

Table A.1: Water Quality Parameters Required Under Permit 107517^a

Category	Parameters
Field Parameters	water temperature, specific conductance, dissolved oxygen (DO), pH
Conventional Parameters	specific conductance, total dissolved solids, total suspended solids, hardness, alkalinity, dissolved organic carbon, total organic carbon, and turbidity
Major lons	bromide, fluoride, calcium, chloride, magnesium, potassium, sodium, and sulphate
Nutrients	ammonia, nitrate, nitrite, total Kjeldahl nitrogen (TKN), orthophosphate, and total phosphorus
Total and Dissolved Metals	aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, thallium, tin, titanium, uranium, vanadium, zinc

^a Parameters are consistent with those outlined in Table 27, Appendix 3 of Permit 107517.

Water samples were analysed by Brooks Applied Labs (Bothell, Washington) for selenium speciation analysis using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS). Analytes included selenate, selenite, dimethylselenoxide, methylseleninic acid, methaneselenonic acid, selenocyanate, selenomethionine, selenosulphate, and unknown selenium species. Selenium species were first separated on an ion exchange column and then detected using ICP-CRC-MS. The applied method was optimized to provide interference free quantitation of individual selenium species at part-pertrillion (ppt) levels. Total and dissolved selenium analyses were also performed by Brooks Applied Labs using inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). Water samples were collected into borosilicate glass containers and preserved to a pH < 2 with nitric acid. An aliquot of each preserved sample was further digested with nitric and hydrochloric acids in a closed vessel (bomb) prior to analysis. The applied sample collection, preservation, digestion, and analytical procedures are designed to accurately quantify selenium in the presence of potential interferences (e.g., chloride and bromide) and regardless of the chemical form of selenium present in solution (e.g., ionic, particulate, or volatile molecular forms).

Laboratory QA/QC associated with routine water sampling was described by Teck in the annual water quality report submitted under Permit 107517 (Teck 2023).

A1.4 Data Analysis

Water quality data assessed included data for routine monitoring managed by Teck, and water samples collected at the biological monitoring stations concurrently with biological sampling. Water quality data were downloaded from Teck's EQuIS database, including:

- Nutrient concentrations (i.e., nitrate, nitrite, ammonia, total phosphorus, and orthophosphate); total and dissolved metals, selenium concentrations (i.e., total and dissolved selenium concentrations, and selenium speciation results including concentrations of selenate, selenite, dimethylselenoxide, methylseleninic acid, selenocyanate, selenomethionine, methaneselenonic acid, selenosulphate, and unknown selenium species);
- Concentrations of analytes with early warning triggers under the AMP (i.e., total dissolved solids, sulphate, total concentrations of antimony, barium, boron, lithium, manganese, molybdenum, nickel, selenium, uranium, and zinc, and dissolved concentrations of cadmium and cobalt);

- Concentrations of analytes with British Columbia Water Quality Guidelines (BCWQGs; BCMOECCS 2021a,b) and/or water quality benchmarks (Teck 2014, Golder 2017); and
- In situ water quality data (i.e., temperature, pH, specific conductivity, and DO).

Data extracted from Teck's EQuIS database were screened for text values and converted to a common unit (all metal concentrations were converted to mg/L, except for total and dissolved cadmium, dissolved cobalt, total nickel, total selenium which were stored as µg/L).

Aqueous concentrations of the Order Constituents (dissolved cadmium, nitrate, total selenium, sulphate, TDS, and nickel; Teck 2014) measured at each monitoring area for the calendar year (i.e., January to December 2022) were compared to applicable EVWQP level 1, level 2 and/or level 3 benchmarks, proposed benchmarks, or updated effects concentrations (Golder 2014a, 2014b; Teck 2014; Table C.1). Total selenium and total cadmium concentrations were also compared to SPOs outlined in Permit 107517; for designated locations (LC_UC, LC_DCDS, and LC GRCK). Concentrations of the remaining constituents listed above were compared to applicable BCWQGs (BCMOECCS 2021a,b), if available. Order Constituents, constituents with early warning triggers under the AMP, constituents with an SPO, and nutrients (TKN, phosphorus and orthophosphate) were plotted using available data from 2012 to 2022 for each monitoring area individually relative to BCWQGs, EVWQP benchmarks, and proposed benchmarks, and updated effects concentrations (where applicable). Monthly mean concentrations of aqueous selenium species selenate, selenite, DMSeO, MeSe([V], and combined DMSeO and MeSe(IV) were plotted with benthic invertebrate tissue selenium concentrations for each Dry Creek area.

If replicate sample results were available for a given day, the Kaplan-Meier (K-M) mean of the replicates was used. Monthly and annual means were also calculated using the K-M method. Annual means of water quality data were computed by first taking a mean of results within months and then averaging monthly means. The K-M method is non-parametric and can accommodate multiple Laboratory Reporting Limits (LRLs). This method involved transforming the left censored (i.e., < value) dataset to a right censored (i.e., > value) dataset, and then using the K-M estimator (used to estimate the mean survival time in survival analysis) to estimate the mean. The calculation was conducted using the survfit() function in the *survival* package (Therneau 2017) in R software (R Core Team 2022).

A Principal Component Analysis (PCA) was used to condense water quality results for use in benthic invertebrate community correlation analysis. A PCA is a multivariate approach which transforms a group of 'n' variables into a smaller new set of uncorrelated variables (the principal components; PCs). The principal components are defined to be linear combinations of the original 'n' variables. A PCA was conducted using K-M mean water chemistry parameters calculated from 2019 to 2022 for the biological monitoring stations reported in the LAEMP except LC FRUS. LC FRUS is located on the Fording River upstream of Dry Creek and was excluded due to the large distance relative to Dry Creek. For each year, four seasons were defined: winter (December to March), early spring (May), spring (June) and summer (July). Each season had to have at least one recorded result. The yearly mean was calculated as the mean of the seasonal means. If there were missing data for any season, the entire year was excluded. A PCA cannot incorporate values below the LRL, therefore any parameters with >25% of the mean values below the LRL were excluded from the PCA. Kaplan-Meier mean values at the LRL were replaced with the LRL (Farnham et al. 2002). When there was more than one LRL for a given parameter, or detected values were below the highest LRL, these values were replaced with the highest LRL. The contribution of individual parameters to the first two principal components were quantified by calculating their correlation using a Pearson's correlation coefficient. The PCA and correlation analyses were conducted in R (R Core Team 2022).

Quantitative tests for temporal trends in monthly mean concentrations of Order Constituents, constituents with early warning triggers under the AMP, and constituents that have previously been identified by SDM and/or AMP response frameworks were completed using available data from 2012 to 2022. The analyses were completed individually for each monitoring area using two different approaches: 1) a non-parametric seasonal Kendall test and 2) a censored regression Analysis of Variance (ANOVA) model with factors Year and Month.

The non-parametric seasonal Kendall test described by Hirsch et al. (1982) was conducted using scripts written in R software (R Core Team 2022). The seasonal Kendall test assesses temporal trends separately for each season (or month in this case) and combines the results for each season into an overall test for trend. The test is non-parametric and assesses whether there is a monotonic increasing or monotonic decreasing trend over time. The test was conducted by calculating the test statistic S_i which is equal to the sum of the number of increases and decreases from a time period t to all time periods after t for each observation in season t. The overall test statistic t0 is computed as the sum of t1 for all seasons. The significance of the observed t2 is determined by comparing it to a critical value of t3 (at the significance level t4 = 0.05) determined from the exact sampling distribution of t5 (calculated by determining all possible permutations and combinations of t5 based on the increases and decreases from the number of pairwise comparisons made; Hirsch et al. 1982). If more than

45 pairwise comparisons are made (equivalent to the number of pairwise comparisons for n = 10 in a single season), then the normal approximation is used to calculate a p-value and to assess significance (Hirsch et al. 1982). The standard normal deviate Z is calculated as:

$$Z = \begin{cases} \frac{S-1}{\sqrt{\sigma_S}} & \text{if } S > 0\\ 0 & \text{if } S = 0\\ \frac{S+1}{\sqrt{\sigma_S}} & \text{if } S < 0 \end{cases}$$

where $\sigma_S = \sum_{i=1}^k \frac{n_i(n_i-1)(2n_i+5) - \sum_{T_i} t_i(t_i-1)(2t_i+5)}{18}$ and n_i is the number of samples in month i,t_i is the number of tied values for each tied value T_i , and k is the number of seasons (Hirsch et al. 1982).

An estimate of the trend slope over time was estimated by computing the median of all slopes between data pairs within the same month (Helsel and Hirsch 2002). The slope was reported as a change in concentration per year and as a percentage change in concentration per year. The intercept of a line through the time series was estimated as the median intercept of all lines through each point with the estimated slope (Pohlert 2016). The trend analysis was only conducted with a minimum number of five pairwise comparisons, the minimum number required for all consecutive increases or decrease to be significant at $\alpha = 0.05$.

An ANOVA model with factors Year and Month was also used to assess temporal changes in monthly mean concentrations for parameters each water quality area (reference and mine-exposed) from 2012 to 2022. Only years with at least six months and only areas with at least three years of data were included in the analysis. Replication at area LC_FRUS was too low from 2015 onwards for analysis of temporal effects using this test methodology. Because of the presence of LRLs for most parameters, a censored regression ANOVA model was used and a log-normal distribution of the response variable was assumed and fit with maximum likelihood estimation for each area. The significance of each term in the model was assessed using likelihood-ratio tests to determine if there is a significant change in log-likelihood with the addition of the term in the model. This tested for an overall difference among years (including the Month term in the model controlled for seasonal effects within a year). If the Year term was significant ($\alpha = 0.05$) then post-hoc contrasts were conducted to test for pairwise differences among years with an $\alpha = 0.05$ in a Tukey's Honestly Significant Difference (HSD) test which corrects for the number of comparisons. For each year, a percent magnitude of difference from the base year (i.e., first year with minimum number of months) was calculated as:

Magnitude of Difference = $(\bar{x}_i - \bar{x}_{2012})/\bar{x}_{2012} \times 100\%$

where \bar{x}_i is the observed mean for a given year and \bar{x}_{2012} is the observed mean in 2012 (i.e., the base year; the first year with available data).

The analysis was completed twice, once evaluating the significance and direction of change in each endpoint at each area since the base year, and once comparing the 2022 annual mean against all historical means and the previous year (2021).

Complete results for statistical testing of Dry Creek LAEMP water quality data from 2012 to 2022 can be found in Tables C.2 and C.3 (i.e., all constituents evaluated). Time-series figures of water quality constituents plotted against BCWQGs, regional benchmarks and normal ranges (where applicable) were included in Appendix C for constituents that were not the focus on more detailed interpretation (i.e., did not meet the criteria listed above).

A2 ACUTE TOXICITY TESTING

Aqueous chronic toxicity was monitored, analyzed, and interpreted under the Annual Water Quality Monitoring Program (Teck 2023). Two acute toxicity tests were conducted on a quarterly basis as part of the Annual Water Quality Monitoring Program (as per Permit 107517):

- Single concentration acute toxicity test (96-hour LC50) using rainbow trout (Oncorhynchus mykiss); universal method: EPS 1/RM/9 (Environment Canada 2007a); and
- Single concentration acute toxicity test (48-hour LC50) using Daphnia spp.; universal method: EPS 1/RM/11 (Environment Canada 1996).

A3 CHRONIC TOXICITY TESTING

The following chronic toxicity tests were completed quarterly or semi-annually for water samples collected at mine-exposed and reference sites, as per the Permit 107517 Chronic Toxicity Program:

- 72-hour growth/inhibition test using a freshwater alga (*Pseudokirchneriella subcapitata*) conducted quarterly using method: EPS1/RM/25; Environment Canada 2007b;
- 7-day test of reproduction and survival using the cladoceran, Ceriodaphnia dubia conducted quarterly using method: EPS1/RM/21; Environment Canada 2007c;
- 28-day water-only test of growth and survival using the amphipod, *Hyalella azteca* conducted semi-annually (in Q2 and Q4) using methods adapted from USEPA (2000);
- 30-day early life stage toxicity tests using rainbow trout, *Oncorhynchus mykiss* conducted semi-annually (in Q2 and Q4) using method: EPS 1/RM/28- 1E; Environment Canada 1998; and
- 28-day early life stage toxicity test using fathead minnow, *Pimephales promelas* conducted semi-annually (in Q1 and Q3) using methods: EPA-712-C-96-121; USEPA 1998; and E1241-05; ASTM 2013.

Toxicity tests and associated QA/QC measures were completed by a qualified third-party biological testing laboratory. Water quality samples were collected at the same time to support evaluation of toxicity test results. Results were reported quarterly and summarized annually by Teck in accordance with Permit 107517 requirements.

A4 PERIPHYTON

A4.1 Overview

Periphyton consists of assemblages of algae, bacteria, moulds, and fungi that live on bottom substrates (e.g., rocks). Some are autotrophs and others are decomposers. Periphyton represents an important source of food for benthic invertebrates, both during the active growing season and the non-growing season when dead tissue and non-photosynthetic components of periphyton will continue to be a food source. Periphyton abundance is influenced by many environmental factors, such as photoperiod, light intensity, water temperature, aqueous nutrient concentrations, and water flow. Exposure of periphyton to mine-related constituents occurs primarily through the water column (Trapp et al. 1990).

A4.2 Sample Collection

The visual assessment of periphyton was completed once per monitoring area prior to initiation of other sampling activities to avoid disturbance of the periphyton cover within the sampling area, and was based on the categories stipulated by the CABIN protocol (Environment Canada 2012):

- Rocks not slippery, no obvious colour (<0.5 mm thick);
- Rocks slightly slippery, yellow-brown to light green colour (0.5 to 1 mm thick);
- Rocks have noticeable slippery feel, patches of thicker green to brown algae (1 to 5 mm thick);
- Rocks are very slippery, numerous clumps (5 to 20 mm thick); and
- Rocks mostly obscured by algae mat, may have long strands (>20 mm thick).

Photos were collected to document current conditions of periphyton conditions as well as presence of bryophytes.

A5 BENTHIC INVERTEBRATES

A5.1 Overview

Benthic invertebrates are an important component of the aquatic ecosystem of the Elk River watershed. In addition to having intrinsic value, benthic invertebrate communities in lotic habitats can be used as indicators of localized food availability (based on abundance) and habitat quality (based on richness, % Ephemeroptera, Plecoptera and Trichoptera [EPT], and % Ephemeroptera, as well as abundance of EPT and Ephemeroptera, Plecoptera, and Trichoptera individually) for receptors at higher trophic levels.

Benthic invertebrate monitoring consisted of community sampling and composite-taxa tissue chemistry sampling. Supporting measures, including habitat characterization, were also collected concurrent with benthic invertebrate samples, as described below.

Benthic invertebrate samples were collected to address study questions related to community structure, and invertebrate tissue accumulation of selenium. Consistent with other LAEMPs and the RAEMP (Minnow 2021a,b, Minnow and Lotic 2021), benthic invertebrate sampling was completed in September. Individual water samples for routine water quality analysis and selenium speciation analysis were collected from each monitoring area during the sampling event, concurrently with the collection of biological samples (Section A1.2).

A5.2 Community Structure

A5.2.1 Sample Collection

Benthic invertebrate community sampling followed the Canadian Aquatic Biomonitoring Network (CABIN) protocol, which involved a 3-minute travelling kick into a net with a triangular aperture measuring 36 cm per side and a mesh having 400-µm openings (Environment Canada 2012). During sampling, the field technician moved across the stream channel (from bank to bank, depending on stream depth and width) in an upstream direction. With the net being held immediately downstream of the technician's feet, the detritus and invertebrates disturbed from the substrate were passively collected in the kick-net by the stream current. After three minutes of sampling time, the sampler returned to the stream bank with the sample. The kick-net was rinsed with water to move debris and invertebrates into the collection cup at the bottom of the net. The collection cup was then removed, and the contents poured into a labelled plastic jar and preserved to a concentration of 10% buffered formalin solution in ambient water.

A5.2.2 Laboratory Analysis

Benthic invertebrate community samples were sent to Cordillera Consulting (lead taxonomist Scott Finlayson), in Summerland BC, for sorting and taxonomic identification. Taxonomists at Cordillera have achieved certification for Group 1 (general Arthropods West), 2 (EPT East and West), and 3 (Chironomids West) benthic organisms in the Taxonomic Certification Program of the Society for Freshwater Science. Organisms were identified to the lowest practical level (LPL) (typically genus or species). Following identification, representative specimens of each new taxon were placed in separate vials and added to the reference collection for the project (initiated in 2012).

At the beginning of the sorting process, each sample was examined and evaluated for estimation of total invertebrate numbers. If the total number was estimated to be greater than 300, then the laboratory's sub-sampling protocol was followed. Sorting efficiency and sub-sampling accuracy and precision was quantified using methods specified by Environment Canada (2014).

A5.2.3 Supporting Measures

Consistent with the requirements of the CABIN sampling protocol, supporting habitat information (i.e., water velocity and depth, *in situ* water quality [temperature, DO, conductivity, pH], and substrate characteristics [Wolman 100-pebble count and substrate embeddedness]) were collected concurrently with benthic invertebrate community sampling (Environment Canada 2012). Periphyton scores were also ascribed to each biological monitoring area during September sampling, and according to CABIN sampling protocol (see Section A4; Environment Canada 2012).

A5.2.4 Data Analysis

Community endpoints that were evaluated included total abundance, taxonomic richness (to the lowest practicable level of taxonomy), and the abundances and proportional abundances (%) of major taxonomic groups, including the combined orders of Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), collectively known as EPT, Ephemeroptera alone, Plecoptera alone, Chironomidae,

non-Chironomidae Diptera, and Oligochaeta. Community data were plotted to show changes over time relative to regional normal ranges¹ as well as site-specific normal ranges².

Only two Dry Creek areas (LC_DCDS and LC_DC1) were sampled prior to 2018, limiting statistical assessments of changes in benthic community endpoints over time to previous LAEMP cycles. Several statistical tests were employed in 2022 to address the temporal component of study question #3 (i.e., are benthic invertebrate endpoints changing over time?), to evaluate spatial differences in the benthic invertebrate community, and to also assess correlations between changes in benthic invertebrate community endpoints and potentially influencing variables (e.g., benthic invertebrate tissue selenium, water chemistry, substrate composition, calcite index, water quality variables, principal component axes from PCA analysis, *in situ* water quality measurements, and habitat variables). The regional and site-specific normal ranges used for evaluation of benthic invertebrate community are applicable only to data from September. As such, benthic invertebrate community data collected in September were the focus of data analyses and interpretation unless otherwise noted below. All statistics were conducted in R (R Core Team 2022).

Temporal changes in benthic invertebrate community endpoints from mine-exposed Dry Creek LAEMP areas relative to reference were assessed using a two-way ANOVA. This was completed for two data groupings: 1) mine-exposed areas of Dry Creek compared to the reference area LC_DCEF, and 2) the Fording River downstream (LC_FRB) and upstream (LC_FRUS; "reference" for the purposes of the analyses) of Dry Creek to evaluate the potential influence of Dry Creek on the benthic invertebrate community in the Fording River.

Benthic invertebrate community endpoints evaluated across years were those listed above. For each endpoint, an overall ANOVA model with factors Year, Area and Year \times Area was fit. The ANOVA models and contrasts were conducted in R (R Core Team 2022) using customized scripts. The best transformation for each end point was chosen as the transformation for which a Shapiro-Wilk's test on the residuals gave the highest p-value (i.e., most normally distributed). Significance of the spatial and temporal pairwise comparisons were assessed separately with an α of 0.1 in a Tukey's HSD which corrects for the number of comparisons.

¹ The reference normal range as presented in the RAEMP represents the 2.5th and 75th percentiles of the distribution of reference area data (pooled 2012 to 2019 data) reported in the 2017 to 2019 RAEMP report (Minnow 2020).

² Site-specific normal ranges represent the 2.5th and 97.5 percentile for a given area as determined by habitat predictors for a given site in relation to the complete set of Elk Valley monitoring areas. The site-specific normal ranges were estimated using regression modelling as presented in the RAEMP (Minnow 2020).

For each year, a magnitude of difference from the base year (i.e., first year with data) was calculated as:

$$\frac{Year_i - Base\ Year}{SDBase\ Year}$$

For each area, a magnitude of difference from the reference area was calculated as:

$$\frac{Exp - Ref}{SDRef}$$

Tables for visualizing the ANOVA results were prepared in Microsoft Excel, and plots were prepared in R (R Core Team 2022).

Benthic invertebrate community data were collected in multiple seasons (May, June September, and December) in 2021 and earlier. Data from all seasons were plotted over time to visualize temporal changes, and those collected in September were compared to relative to the regional normal (reference area) range and site-specific normal range. Plots were also prepared that display results from September of each year when replicated samples were collected (2019 to 2022) to show the spatial and temporal variability in benthic invertebrate endpoints for September only relative to the regional and site-specific normal ranges.

An assessment of whether changes in physical and chemical parameters may be related to variability in benthic invertebrate community structure was conducted for September from 2019 to 20223 data across all Dry Creek and Fording River areas (i.e., September data only from LC_DCEF, LC_DC3, LC_DCDS, LC_DC2, LC_DC4, LC_DC1, LC_FRUS, LC_FRB, and LC_GRCK). Spearman Rank Correlations were conducted with benthic invertebrate community endpoints including total abundance. taxonomic richness, %EPT. %Ephemeroptera, %Plecoptera, %Trichoptera, %Oligochaeta, %Chironomidae, and %Non-Chironomidae Diptera, against a variety of physical and chemical parameters (including water quality variables, substrate characteristics, habitat variables, and in situ water quality measurements). For water chemistry parameters, annual mean concentrations were calculated for different seasons and then averaged across the year prior to the benthic sampling date (2019 to 2022). Seasons were defined based on changes in water chemistry across a year and designed to capture high and low concentration periods throughout a year. For each year, four seasons were defined: winter (December to March), early spring (May), spring (June) and summer (July). Each season had to have at least one record. Spearman rank correlation analysis is a non-parametric method that tests for monotonic

³ September benthic invertebrate data were only collected at LC DC1 and LC DCDS prior to 2019, so integration of all Dry Creek sampling areas in correlation analysis is only possible from 2019 onwards.

increases, with significantly positive or negative correlation coefficients (rho) suggesting an increase or decrease, respectively, in the ranked data with increasing years. Significant correlations were assessed at alpha = 0.05, Bonferroni corrected for 47 independent comparisons (corrected alpha = 0.05/47 = 0.00106). Water chemistry parameters were also analyzed using PCA (see Section A1.4 for details) to combine multiple water quality variables into PC1 and PC2, which were also included in the correlation analysis. To ensure correlations were comparable among different parameters only complete records (i.e., a value for every water and benthic invertebrate community endpoint) were included in the analysis. Scatterplots of area-wise data indicating relationships and r-values for significantly correlated benthic invertebrate community endpoints were generated to visualize relationships.

A5.3 Benthic Invertebrate Tissue

A5.3.1 Sample Collection

Benthic invertebrate samples were collected for tissue chemistry using the kick and sweep sampling method described in Section A5.2.1, except that sample collection was not timed. Samples were a composite of representative benthic invertebrate taxa in each sampling area and were collected at a similar location to those for benthic invertebrate community sampling (Section A5.2). If more tissue samples than community samples were collected within a monitoring area, the benthic invertebrate tissue replicate samples were collected from locations spaced a minimum of 5 m apart within the area. For each sample, clean tweezers were used to pick invertebrates from the debris until about 1 to 2 g wet weight (ww) was obtained. A photo was taken of each sample, and the dominant taxa added to the sample was recorded. Once sufficient tissue was picked from the debris, the sample was placed in a labelled vial and stored in a cooler with ice packs until it could be transferred to a freezer at the end of the day. Tissue samples were stored in a freezer and shipped frozen.

All sampling events included collection of a composite sample of a variety of benthic invertebrate taxa (composite-taxa samples). These samples are useful for comparison to baseline data, and as an estimate of dietary selenium exposure for consumer organisms (e.g., fish, birds). Field crews paid particular attention to proportions of annelids in kick and sweep collections, as these organisms have been known to hyperaccumulate some metals resulting in potentially biased results (Golder 2021b). If annelids occurred at a proportion greater than 5% of the total sample biomass at a given replicate station, then these organisms were included in the composite sample (at that same proportion). Additionally in this scenario, a separate 'annelid only' sample was collected for analysis from the replicate station. If the proportion of annelids represented less than 5% of the sample biomass for a given station, these organisms were not included in the composite-taxa sample.

A5.3.2 Laboratory Analysis

Tissue samples were kept in a freezer until they were transported by courier in coolers with ice packs to TrichAnalytics Inc. in Saanichton, BC. Samples were dehydrated (<60°C) upon receipt by the laboratory and analyzed using Laser Ablation (ICP-MS). QA/QC measures associated with the tissue chemistry analyses included evaluation of laboratory duplicates and certified refence materials, discussed in greater detail in the Data Quality Review (DQR) in Appendix B. Results for selenium and other constituents were reported on a dry weight basis along with moisture content to allow conversion to wet weight values, as required (see Appendix J for laboratory reports).

A5.3.3 Data Analysis

Composite-taxa benthic invertebrate tissue selenium concentrations were plotted for all areas for 2018 to 2022 relative to:

- the normal (reference area) range (i.e., 1.41 mg/kg dw 7.79 mg/kg dw), defined as the 2.5th and 97.5th percentiles of tissue selenium concentrations measured in reference areas that have not been disturbed by mining in historical studies completed in the Elk River watershed from 1996 to 2019 reported in the RAEMP (Minnow 2020);
- corresponding EVWQP effect benchmarks (outlined in Table F.1);
- shading indicating the Dry Creek Water Management System (DCWMS) operational status (DCWMS Operational, DCWMS Operational – Sedimentation Pond 1 only, Bypass Operational/Sedimentation Pond 1 Refilling, Bypass Operational/Dewatering, and Bypass Operational).

Benthic invertebrate tissue selenium data are available for temporal comparisons for all areas from December 2018 onwards, and for areas LC_DC1, LC_DCDS, LC_FRUS, and LC_FRB data are available prior to December 2018 as well.

Teck has developed a selenium speciation bioaccumulation tool to help predict and interpret bioaccumulation in areas with detectable organoselenium species (deBruyn and Luoma 2021). For every 2022 biological sampling event, predicted benthic invertebrate tissue selenium concentrations were generated from water quality data (specifically, selenium speciation data and sulphate concentrations) using this bioaccumulation tool and presented alongside field-measured tissue concentrations.

Changes in composite-taxa benthic invertebrate tissue selenium concentrations were compared among months in 2022 for all Dry Creek monitoring areas (including reference; LC_DCEF) and for the Fording River sampling areas (LC_FRUS and LC_FRB). Area

differences were quantified using an ANOVA with factors Area and Month and their interaction. The factor Month included March, May, early June, late June, September, and December for each of the sampling areas. Response variables were log₁₀ transformed where necessary to meet the assumption of normality, which was tested using a Shapiro-Wilks test and Q-Q normal plots of the model residuals. When this assumption could not be met, response variables were rank transformed. The significance of the main effects and interaction terms of the ANOVA were assessed using an α of 0.05, and the results of these determined which post-hoc comparisons were then conducted.

When the interaction between Area and Month was significant, it indicated that the differences among the areas changed across months. Post-hoc comparisons were then conducted to 1) test for differences among months for each area, and 2) test for differences among the exposed and reference areas in each month. When the Month was significant rather than the Area and the interaction between Month and Area, it indicated that there were no differences between the areas and monthly differences remained unchanged across areas and post-hoc comparisons were conducted to 1) test for differences between the first month of 2022 sampling and each subsequent month for all areas, and 2) test for differences between the exposed and reference areas in all months.

For all significant post-hoc temporal comparisons, an MOD between years was calculated as:

$$MOD_{Month} = \frac{MCT_{month2} - MCT_{month1}}{MCT_{month1}} \times 100\%$$

For significant spatial comparisons, a MOD was calculated between the exposed and reference areas within each month as:

$$MOD = \frac{MCT_{Exposed} - MCT_{Reference}}{MCT_{Reference}} \times 100\%$$

The MCT was calculated as a back-transformed estimated marginal mean. When the analysis was done on the rank-transformed scale, the observed effect size was estimated using median values instead of marginal means.

Spatial differences in tissue selenium concentrations among areas during each sampling event in 2022 were tested using an ANOVA. Prior to analysis, data were log₁₀ transformed to better meet the assumptions of the analysis. When the overall ANOVA was significant ($\alpha = 0.05$), a Tukey's post hoc test was conducted for all pairwise comparisons. The ANOVA models and contrasts as well as graphical plots were conducted in R (R Core Team 2022) using customized scripts, with letters used to indicate which years differed significantly from one another.

A6 CALCITE

A6.1 Sample Collection

In addition to the CABIN requirements, measurements of calcite presence and concretion were conducted on 100 particles (pebbles) at each biological sampling location concurrent with (and using the same particles as) the 100-pebble count. Calcite presence (Cp) has historically been a binary assessment (i.e., presence [score = 1] or absence [score = 0]; Teck 2016, Lotic 2021). In 2021, an additional method for assessing calcite presence in lotic environments was included (Cp', Lotic 2021, Zathey 2021, Robinson et al. 2022) that scored the percent of the particle surface area covered by calcite as a decimal to the nearest 10th percentile (0.1, 0.2, 0.3, etc.; see Appendix I)⁴. The degree of concretion (Cc) was assessed by determining if the particle was removed with negligible resistance (not concreted; score = 0), noticeable resistance but removable (partially concreted; score = 1), or immovable (fully concreted; score = 2). If distinct particles were not visible due to heavy calcification, values of 1 (for presence) and 2 (for concretion) were recorded. If fines were encountered and calcite presence could not be visually confirmed, values of 0 (for presence) and 0 (for concretion) were recorded. If rocks were visible under fine material, the rock was selected for calcite measurements.

A6.2 Data Analysis

The results for the 100 particles was expressed as a Calcite Index (CI and CI') based on the following equations (Lotic 2021, Zathey et al. 2021a, Robinson et al. 2022):

$$CI = C_p + C_c$$
 or $CI = C_p' + C_c$

Where:

$$CI \ or \ CI' = Calcite \ Index^5$$

$$C_p = Calcite \ Presence \ Score = \frac{Number \ of \ particles \ with \ calcite}{100 \ (binary \ score)}$$

$$C_p' = Calcite \ Presence \ Score = \frac{Number \ of \ particles \ with \ calcite}{100 \ (proportional \ score)}$$

$$C_c = Calcite \ Concretion \ Score = \frac{Sum \ of \ particle \ concretion \ scores}{100}$$

⁴ The new calcite assessment method was developed under the Regional Calcite Monitoring Program as a means to better describe the degree, extent, and trends of calcite deposition (Zathey 2021)

⁵ CI refers to the binary assessment of Cp and CI refers to the proportional assessment of Cp .

A7 REFERENCES

- APHA (American Public Health Association), American Water Works Association and Water Environment Federation. 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. L.S. Clesceri, A.E. Greenberg and A.D. Eaton (Eds). APHA. Washington, D.C. Minnow. 2014. 2012 Biological Monitoring Program for Coal Mines in the Elk River Valley, B.C. Report Prepared for Teck Coal Limited, Sparwood, BC. March. Project #2456
- ASTM (American Society for Testing and Materials). 2013. Standard Guide for Conducting Early Life-Stage Toxicity Tests with Fishes. E1241-05, 29 p.
- BCMOECCS 2021a. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Guideline Summary. Water Quality Guideline Series, WQG-20. Prov. B.C., Victoria B.C.
- BCMOECCS. 2021b. Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Quality Guideline Series, WQG-08. Prov. B.C., Victoria B.C.
- de Bruyn, A. and S.N. Luoma. 2021. Selenium Species Bioaccumulation Tool Draft Version 2.0. Prepared for Mariah Arnold, Teck Coal Limited, Sparwood, BC. February. Project 19133414/MQ2 Task 4.
- Environment Canada. 1996. Biological Test Method: Acute Lethality Test Using *Daphnia* spp. Environmental Protections Series. Method Development and Applications Section. Environmental Technology Centre. May 1996.
- Environment Canada. 1998. Biological Test Method: Toxicity Tests Using Early Life Stages of Salmonid Fish (Rainbow Trout). Report EPS 1/RM/28, Second Edition. July.
- Environment Canada. 2007a. Biological Test Method: Acute Lethality Test Using Rainbow Trout. Environmental Protections Series. Method Development and Applications Section. Environmental Technology Centre. May 2007.
- Environment Canada. 2007b. Biological Test Method: Growth Inhibition Test Using a Freshwater Alga. Report EPS 1/RM/25. Second Edition. March.
- Environment Canada. 2007c. Biological Test Method: Test of Reproduction and Survival using the Cladoceran Ceriodaphnia dubia. Report EPS 1/RM/21 Second Edition. February.
- Environment Canada. 2012. Field Manual: Wadeable Streams. Canadian Aquatic Biomonitoring Network (CABIN).
- Environment Canada. 2014. Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. Canadian Aquatic Biomonitoring Network (CABIN). May.
- Farnham, I.M., Singh, A.K., Stetzenbach, K.J., Johannesson, K.H. 2002. Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemometrics and Intelligent Laboratory Systems. 60:265-281.

- Golder. 2014a. Benchmark Derivation Report for Nitrate and Sulphate. Elk Valley Water Quality Plan. Report Number 13-1349-0006. July.
- Golder. 2014b. Benchmark Derivation Report for Selenium. Elk Valley Water Quality Plan. Report Number 13-1349-0006. July.
- Golder. 2017. Coal Mountain Operations Aquatic Health Assessment Report. Submitted to Teck Coal Ltd. December.
- Helsel, D.R. and Hirsch, R.M. 2002. Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. 522 pages.
- Hirsch, R.M., Slack, J.R., and Smith, R.A. 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research 18: 107-121.
- Lotic (Lotic Environment Ltd.). 2021. Regional Calcite Monitoring Plan: Field Manual. Prepared for Teck Coal Limited by Lotic Environmental Ltd. May 2021.
- Minnow. 2020. Elk River Watershed Regional Aquatic Effects Monitoring Program (RAEMP) Final Report, 2017 to 2019. Prepared for Teck Coal Limited, Sparwood, British Columbia. November. Project #187202.0011.
- Minnow. 2021a. Study Design for the Regional Aquatic Effects Monitoring Program, 2021 to 2023. Prepared for Teck Coal Limited, Sparwood, BC. February. Project 207202.0006.
- Minnow. 2021b. Study Design for Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2021. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 207202.0015.
- Minnow and Lotic. 2021. Study Design for Fording River Local Aquatic Effects Monitoring Program (LAEMP), 2021 to 2023. Prepared for Teck Coal Limited, Sparwood, BC. April. Project 217202.0011.
- Pohlert, T. 2016. Trend: non-parametric trend tests and change-point detection. R package version 0.2.0. https://CRAN.R-project.org/package=trend Province of British Columbia. 2013. British Columbia Field Sampling Manual (complete). Available from https://www2.gov.bc.ca/gov/content/environment/research-monitoring-reporting/monitoring/laboratory-standards-quality-assurance/bc-field-sampling-manual?keyword=field&keyword=sampling&keyword=manual. Accessed December 15, 2017.
- Province of British Columbia. 2013. British Columbia Field Sampling Manual (complete). Available from https://www2.gov.bc.ca/gov/content/environment/research-monitoring-reporting/monitoring/laboratory-standards-quality-assurance/bc-field-sampling-manual?keyword=field&keyword=sampling&keyword=manual. Accessed December 15, 2017.
- Province of British Columbia. 2016. British Columbia Environmental Laboratory Manual. Available https://www2.gov.bc.ca/gov/content/environment/research-monitoring-reporting/monitoring/laboratory-standards-quality-assurance/bc-environmental-laboratory-manual. Accessed March 16, 2018.

- R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org
- Robinson, M.D., Gordon, S., Otto, M. 2022. Teck Coal Ltd. 2021 Calcite Monitoring Program Annual Report. Prepared for Teck Coal Ltd. by Lotic Environmental Ltd. April 2022.
- Trapp, S., M. Matthies, I. Scheunert, and E.M. Topp. 1990. Modeling the bioconcentration of organic chemicals in plants. *Environmental Science and Technology.* 24:1246-1252.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2023. Annual Water Quality Report 2022. Prepared by Teck Coal Limited. March 31, 2022.
- Teck. 2016. Water Quality Adaptive Management Plan (AMP) for Teck Coal Operations in the Elk Valley. July 2016.
- Therneau, T.M. 2017. Survival analysis. Package "survival" for R. April 4, 2017.
- USEPA. 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates. 2nd Edition. EPA/600/R-99/064. Office of Water, Washington, DC, USA.
- Zathey, N., Brooks, J., and Robinson, M.D. 2021. 2020 Line Creek Aquatic Monitoring Program. Prepared for Teck Coal Limited. December 2021.

APPENDIX B DATA QUALITY REVIEW

APPENDIX B DATA QUALITY REVIEW

E	31	INTRODUCTION	1
	B1.1	Introduction	
		Quality Control Samples	
E	32	WATER CHEMISTRY	4
	B2.1	Laboratory Reporting Limits	
		Laboratory and Field Blanks	
	B2.3	Data Precision	5
	B2.4	Data Accuracy	6
		Hold Times	
	B2.6	Other Concerns	6
	B2.7	Data Quality Statement	7
Е	33	BENTHIC INVERTEBRATE COMMUNITY	8
	-	Sub-Sampling Proportions, Precision, and Accuracy	
		Organism Sorting Efficiency	
		Taxonomic Identification Accuracy	
		Data Quality Statement	
Е	34	BENTHIC INVERTEBRATE TISSUE CHEMISTRY	9
	B4.1	Laboratory Reporting Limits	
		Data Accuracy and Precision	
		Data Quality Statement	
E	35	DATA QUALITY REVIEW SUMMARY	10
E	36	REFERENCES	11

B1 INTRODUCTION

B1.1 Introduction

A variety of factors can influence the physical, chemical, and biological measurements made in an environmental study and thus affect the accuracy and/or precision of the data. Depending on their magnitude, inaccuracy or imprecision have the potential to affect the reliability of conclusions made from data. Therefore, it is important to ensure that programs incorporate appropriate steps to control non-natural sources of data variability (i.e., minimize variability that does not reflect authentic spatial and temporal variability in the environment) and thus assure the quality of the data. Data quality as a concept is meaningful only when it relates to the intended use of the data. That is, one must know the context in which the data will be interpreted in order to establish a relevant basis for judging whether or not the data set is adequate. A Data Quality Review (DQR) involves the comparison of field and laboratory measurement performance to Data Quality Objectives (DQOs) established for a particular study, such as evaluation of Laboratory Reporting Limits (LRL), blank sample data, data precision (based on field and laboratory duplicate samples), and data accuracy (based on matrix spike recoveries and/or analysis of standards or certified reference materials). Trusted analytical laboratories certified by Canadian Association for Laboratory Accreditation (CALA) or the National Environmental Laboratory Accreditation Program (NELAP) with a rigorous internal quality assurance program were selected to ensure the highest possible data quality. DQOs were established a priori to reflect reasonable and achievable performance expectations (Table B.1). Programs involving many samples and analytes usually yield some results that exceed DQOs. This is particularly so for multi-element scans, as the analytical conditions are not necessarily optimal for every element included in the scan. Generally, scan results may be considered acceptable if no more than 20% of the parameters fail to meet DQOs. Overall, the intent of a DQR is not to reject any measurement that did not meet a DQO, but to ensure that any questionable data received more scrutiny to determine what effect, if any, this had on interpretation of results within the context of the project.

B1.2 Quality Control Samples

A DQR was conducted on all laboratory data collected as part of the 2022 Line Creek Local Aquatic Effects Monitoring Program (LAEMP). The objective of a DQR is to define the overall quality of the data presented in the report, and, by extension, the confidence with which the data can be used to derive conclusions.

A DQR involves the examination of analytical results associated with several types of Quality Control (QC) samples collected or prepared in the field and laboratory. General QC samples collected for this project include the following:

- **Blanks** are samples of de-ionized water and/or appropriate reagent(s) that are handled and analyzed in the same way as regular samples. These samples will reflect any contamination of samples occurring in the field (in the case of field or travel blanks) or in the laboratory (in the case of laboratory or method blanks). Analyte concentrations should be below detection.
- **Laboratory Duplicates** are replicate sub-samples created in the laboratory from randomly selected field samples which are sub-sampled and then analyzed independently using identical analytical methods. The laboratory duplicate sample results reflect any variability introduced during laboratory sample handling and analysis and thus provide a measure of laboratory precision.
- **Field Duplicates** are samples collected from a randomly selected field station that are homogenized to the extent possible, split and analyzed separately in the laboratory. The duplicate samples are handled and analyzed in an identical manner in the laboratory.
- Spike Recovery Samples are created in the laboratory by adding a known amount/concentration of a given analyte (or mixture of analytes) to a randomly selected test sample previously divided to create two sub-samples. The spiked and regular sub-samples are then analyzed in an identical manner. The spike recovery represents the difference between the measured spike amount (total amount in the spiked sample minus the amount in the original sample) relative to the known spike amount (as a percentage). Two types of spike recovery samples are commonly analyzed: spiked blanks (or blank spikes) are created using laboratory control materials whereas matrix spikes (MS) are created using field-collected samples and are sometimes further tested in duplicate (matrix spike duplicates, MSD). The analysis of spiked samples provides an indication of the accuracy of analytical results.
- Certified Reference Materials (CRM) or Reference Materials (RM) are commercially prepared (or commercially homogenized) samples containing known chemical concentrations that are processed and analyzed along with batches of environmental samples. The sample results are then compared to the known concentrations to provide a measure of analytical accuracy. The results are reported as the percent of the known concentration that was recovered in the analysis.

- Laboratory Control Samples are created in the laboratory to have a known analyte concentration in a matrix free of interferences, such as deionized water or reference sand. The sample results are compared to the target results to confirm that the analytical method is accurate in a purified reference sample. The results are reported as the percent of the known concentration that was recovered in the analysis.
- Laboratory Sorting Duplicates are randomly selected grabs of the initially sorted benthic invertebrate community material. These samples are recounted and the number of invertebrates that were not recovered during the initial sort was determined. In order to reduce bias, recounting is conducted by an analyst uninvolved in the initial sample processing. This check is performed on 10% of samples and determines the accuracy through assessment of recovery (sorting) efficiency and quantifies any under-estimation of organism enumeration.
- **Taxonomic Quality Control Samples** are a randomly selected portion of a benthic invertebrate community field sample to be assessed by the laboratory using an internal quality control audit. A blind re-enumeration and re-identification of random samples is performed by an analyst uninvolved in the original sample processing. This assessment quantifies taxonomic misidentification among laboratory analysts and ensures accurate organism identities are reported.
- Laboratory Subsamples are community samples prepared by the laboratory to ensure that the fraction of the total sample examined was an accurate representation of the total number of organisms. By comparing the amount recovered between at least two sub-samples, one can assess the analytical precision. In addition, comparisons of the sub-samples from the whole community sample allows for an evaluation of sub-sampling accuracy.

B2 WATER CHEMISTRY

B2.1 Laboratory Reporting Limits

The analytical reports for water chemistry from ALS Environmental (ALS; CG2205677, CG2208042, CG2212407, CG2212551, CG2212647, and CG2216696; Appendix J) and Brooks Applied Labs (BAL; see laboratory reports 2205247, 2206435, 22209181, 2209283, and 2212302; Appendix J) were examined to assess LRLs relative to analyte concentrations and applicable guidelines (Tables B.2 and B.3). Water quality data from 2022 were entered directly into Teck's EQuIS database and thus were assessed as part of Teck's annual water quality reporting for 2022. The LRLs for water quality analytes were assessed relative to British Columbia Water Quality Guidelines (BCWQG; BCMOECCS 2021a,b) for the protection of freshwater aquatic life, Elk Valley Water Quality Plan (EVWQP) benchmarks, screening values for water quality (Teck 2014), and relevant site-specific benchmarks. Several analytes were reported at concentrations below the LRL in 100% of samples (Tables B.2 and B.3). For those analytes with one or more result(s) below the LRL, achieved LRLs were consistently lower than the BCWQG, EVWQP benchmarks, and screening values for water quality, if relevant guidelines exist. Therefore, the achieved LRLs were appropriate for this study.

B2.2 Laboratory and Field Blanks

A total of 115 method blank samples were analyzed in the ALS laboratory reports (Appendix J). Of the 532 reported method blank results, only one result for total aluminum had a concentration above detection and therefore did not meet the laboratory DQO (see laboratory report CG2212647 in Appendix J). However, this result was only marginally above detection and so does not suggest significant laboratory contamination. A total of 10 method blank samples were analyzed in the BAL laboratory reports (see laboratory reports in Appendix J). Of the 201 reported method blank results, four total selenium results had detectable concentrations (see laboratory report 2206435 in Appendix J). However, as sample results were greater than 10-times the value of the elevated results in the method blanks, the potential impact of the elevated selenium in the above four MB samples is minimal. As the overall number of DQO exceedances was low (ALS: 0.19%; BAL: 1.99%), the impacted results were considered to have a negligible impact on data interpretability, and laboratory precision was overall considered excellent.

Three field blank and two trip blank samples were submitted to ALS for water chemistry analyses to assess the potential for field sampling contamination (see laboratory reports CG2208042, CG2212647, and CG2216696 in Appendix J). The same DQOs that were used for laboratory blanks were also used for field blanks (i.e., concentrations should be below the

LRL). Of the 273 individual analyte results measured in the field blank samples, 18 results (6.59%) were above the LRL and so did not meet the laboratory DQO (Table B.4). Of the above detectable results, 14 were from one field blank sample indicating significant contamination associated with this sample (see laboratory report CG2216696 in Appendix J). Of the 145 individual analyte results measured in the trip blank samples, only one (0.69% of results) were above the LRL and so did not meet the laboratory DQO (Table B.4; see laboratory report CG2208042 in Appendix J). As relatively few field and trip blank results did not meet the laboratory DQO (6.59% and 0.69%, respectively), potential field and laboratory contamination was considered low and laboratory precision was overall considered good.

Two field blank samples were submitted to BAL for aqueous selenium speciation analyses to assess potential field sampling contamination. Of the 22 analytes results measured in the field blank samples, only one result was above detection (dissolved selenium; Table B.5, see laboratory report 2209283 in Appendix J). While this result only represents 4.55% of all field blank results from BAL, this potential field contamination will be considered during data interpretation. Overall, potential field contamination was considered low and laboratory precision was considered good.

B2.3 Data Precision

A total of 11 laboratory duplicate samples were used to evaluate precision within the ALS laboratory reports (Appendix J), and all 534 individual analyte results met the laboratory DQO. A total of eight laboratory duplicate samples were used to evaluate precision within the BAL laboratory reports (Appendix J), and all 32 individual analyte results met the laboratory DQO. Therefore, ALS laboratory and BAL analytical precision were considered excellent. Overall, water chemistry data was considered to have good field precision and reproducibility.

Three sets of field duplicate samples were collected to assess field sampling precision for water chemistry analyzed by ALS (Table B.6). Several relative percent differences (RPDs) could not be calculated as both analyte concentrations were below the LRL. Of the 205 RPDs that could be calculated, 11 RPDs were greater than 30% (5.37% of RPDs), including one RPD each for alkalinity (as CaCO₃ and as CO₃), oxidation-reduction potential (ORP), turbidity, Total Kjeldahl Nitrogen (TKN), total organic carbon (TOC), total and dissolved aluminum, total titanium, dissolved cadmium, and dissolved copper (Table B.6). Of the 11 RPDs greater than 30%, two resulted from one analyte concentration in the pair being below the LRL, where greater variability is expected (TOC and dissolved aluminum). Since only 5.37% of calculable RPDs exceeded the DQO, water chemistry data was considered to have high field precision and reproducibility.

Three sets of field duplicate samples were collected to assess field sampling precision for water chemistry analyzed by BAL (Table B.7). Several RPDs could not be calculated as both analyte concentrations were below the LRL. Of the 14 RPDs that could be calculated, two were greater than 30% (two RPDs for methylseleninic acid; 14.3% of RPDs, Table B.7). One of the above RPDs greater than 30% resulted from one analyte concentration in the pair being near the LRL, where greater variability is expected. While only 14.3% of all calculable RPDs exceeded the DQO, 66.7% of RPDs for methylseleninic acid exceeded the DQO and this variability in field sampling will be taken into account during data interpretation.

B2.4 Data Accuracy

Data accuracy within the ALS laboratory reports was evaluated based on results of 129 LCS and 11 MS samples (Appendix J). All 542 LCS results and 470 MS results met the laboratory DQO. Recovery could not be calculated in numerous MS samples as background levels were greater than or equal to one-times spike levels. However, as several other QC tests were successful and do not imply uncertainties as to ALS data accuracy, we are not concerned by MS recovery not being calculable in several MS samples. Overall, ALS laboratory analytical precision and accuracy was considered excellent.

Data accuracy within the BAL laboratory reports was evaluated based on results of 21 LCS, eight MS samples, eight MSD samples, and 16 RM samples (Appendix J). All 41 LCS results, 17 MS results, 17 MSD results, and 16 RM results met the laboratory DQO. Therefore, BAL laboratory analytical precision and accuracy was considered excellent.

B2.5 Hold Times

The recommended hold times for pH and ORP analyses (0.25 hrs) were exceeded in all samples collected. As *in situ* pH and ORP were used for data interpretation, therefor, these pH and ORP exceedances had no impact on data interpretability. The preparation hold times for nitrate were exceed by two days in one sample and seven days in another sample (see laboratory reports CG2208042 and CG2212657 respectively; Appendix J). Nitrate hold time exceedances are not expected to impact conclusions that can be derived from the data but will still be taken into consideration during data interpretation. All hold times were met for selenium speciation samples submitted to BAL. Overall, few samples exceeded hold times and thus hold time exceedances are expected to have little effect on the interpretation of results.

B2.6 Other Concerns

One total selenium and one dissolved selenium sample arrived at BAL in broken containers (see laboratory report 2212302 in Appendix J). Most of the total selenium sample volume was

lost, but enough volume was remaining to undergo an acid digest and subsequent analysis for selenium. Since it is unknown if contamination occurred during shipment or storage, the total recoverable selenium result for 2212302-16 is qualified as an estimate. All of the dissolved selenium sample was lost from the broken container. However, volume from the corresponding field filtered selenium speciation fraction (laboratory ID 2212302-06) was poured off into a new container to support the dissolved selenium analysis. This new dissolved selenium fraction (2212302-17) was preserved (pH < 2) upon receipt at BAL.

B2.7 Data Quality Statement

Water chemistry data collected for the 2022 LCO Dry Creek LAEMP were of acceptable quality as characterized by good detectability, appropriate LRLs, negligible analyte concentrations in method blanks, minimal field contamination, excellent laboratory precision and accuracy, few hold time exceedances, and good field precision and reproducibility, with the exception for methylseleninic acid. Therefore, the associated data can be used with a high level of confidence in the derivation of conclusions.

B3 BENTHIC INVERTEBRATE COMMUNITY

B3.1 Sub-Sampling Proportions, Precision, and Accuracy

The analytical reports from Cordillera Consulting Inc. for benthic invertebrate community taxonomy (see Appendix J for laboratory reports) were examined to assess sub-sampling accuracy. For all samples, Canadian Aquatic Biomonitoring Network (CABIN) protocols were followed for sub-sampling (i.e., identification of a minimum 300 invertebrates), with a minimum of 5% of a sample being assessed. Of the 165 benthic invertebrate community samples analyzed, 36 were subsampled. The proportion of sub-sampled material ranged from 5 to 50% of the total sample material (Table B.8). Both the precision and accuracy of the sub-samples randomly chosen for sub-sample assessment (n = 2) met the DQO in all sub-samples (Table B.9). Thus, the precision and accuracy for sub-sampling of the benthic invertebrate community samples was considered excellent.

B3.2 Organism Sorting Efficiency

To measure the effectiveness of the sorters, at least 10% of samples were selected at random for resorting analysis by a different sorter. Sorting efficiency (i.e., percent recovery) of benthic invertebrate samples was excellent, achieving 98.8% for the five community structure samples evaluated (Table B.10). As recovery in quality control samples was above the laboratory's DQO (95%), organism sorting efficiency was considered excellent.

B3.3 Taxonomic Identification Accuracy

Cordillera Consulting Inc. performed an internal audit of taxonomic identification for at least 10% of all community structure samples (n = 4; Table B.11). The analysts reported total identification error rate (TIR) of 0%, percent difference in enumeration (PDE) of 0 to 0.397%, percent taxonomic disagreement (PTD) of 0.295 to 1.46%, and Bray Curtis Dissimilarity Index (BCDI, a measure of the differences in identifications between different analysts) of 0.003 to 0.013 (Table B.11). The laboratory DQO was based on TIR as per CABIN laboratory methods (< 5% TIR; Environment Canada 2014). As TIR was below 5% for all samples examined, the taxonomic accuracy of the analysis was considered excellent.

B3.4 Data Quality Statement

Benthic community data collected for the 2022 LCO Dry Creek LAEMP were of good quality as characterized by excellent sorting efficiency, subsampling precision and accuracy, and taxonomic identification accuracy. Therefore, the associated data can be used with a high level of confidence in the derivation of conclusions.

B4 BENTHIC INVERTEBRATE TISSUE CHEMISTRY

B4.1 Laboratory Reporting Limits

Analytical reports of benthic invertebrate tissue metal concentrations from TrichAnalytics (see laboratory reports in Appendix J) were examined to provide an inventory of analyte results below the LRL and to compare the LRLs for these analytes to available benchmarks (Table B.12). Most analyte concentrations were consistently above detection limits, except for antimony, arsenic, boron, mercury, and vanadium (2.08 to 31.3% of results). However, all results for selenium were above detection and selenium is the only analyte with an applicable guideline. Therefore, the achieved LRLs were appropriate for this study.

B4.2 Data Accuracy and Precision

Data accuracy and precision were evaluated based on the analysis of 12 CRM samples. Of the 260 analyte results, 12 titanium results could not be calculated as the certified concentrations were too close to the reportable detection limit (see laboratory reports in Appendix J). All 348 calculable CRM results met the laboratory DQO; therefore, laboratory accuracy and precision as determined by CRM analyses was considered excellent.

Laboratory precision was also evaluated by laboratory duplicate analysis of 14 benthic invertebrate tissue samples (see laboratory reports in Appendix J). Of the 420 analyte results, 59 results that were not calculated due to values below the detection limit. All 502 calculable duplicate results met the laboratory DQO; therefore, laboratory precision as determined by duplicate analyses was considered excellent.

B4.3 Data Quality Statement

Benthic invertebrate tissue data collected for the 2022 LCO Dry Creek LAEMP were of good quality as characterized by appropriate LRLs and excellent laboratory precision and accuracy. Therefore, the associated data can be used with a good level of confidence in the derivation of conclusions for this study.

B5 DATA QUALITY REVIEW SUMMARY

Overall, the quality of the data collected for this project was considered acceptable for the derivation of conclusions associated with the objectives of the 2022 LCO Dry Creek LAEMP.

B6 REFERENCES

- BCMOECCS (British Columbia Ministry of Environment and Climate Change Strategy). 2021a. Working Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Water Quality Guideline Series, WQG-08. Water Protection and Sustainability Branch, Province of British Columbia, Victoria, B.C.
- BCMOECCS. 2021b. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture Guideline Summary. Water Quality Guideline Series, WQG-20. Water Protection and Sustainability Branch, Province of British Columbia, Victoria, B.C.
- Environment Canada. 2014. CABIN (Canadian Aquatic Biomonitoring Network) Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. Environment Canada. May 2014.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.

Table B.1: Laboratory Data Quality Objectives for the LCO Dry Creek LAEMP, 2022

		Study Component							
Quality Control Measure	Quality Control Sample Type/Check	Water Chemistry	Selenium Speciation	Benthic Invertebrate Community	Benthic Invertebrate Tissue Chemistry				
		ALS Environmental	Brooks Applied Labs	Cordillera Consulting	TrichAnalytics				
Analytical Laboratory LRLs	Comparison of actual LRL versus target LRL	LRL for each parameter should be at least as low as applicable guidelines, benchmarks, and screening values	LRL for each parameter should be at least as low as applicable guidelines, benchmarks, and screening values	-	LRL for each parameter should be at least as low as applicable guidelines and benchmarks				
Blank Analysis	Field, Trip, or Laboratory Blank	Concentrations measured in blank samples should be < LRL	Concentrations measured in blank samples should be < LRL	-	-				
	Laboratory Duplicates	< 4% (pH) <10% (conductivity) ≤15% RPD or <2x LRL (ORP, turbidity) ≤20% RPD or <2x LRL (all remaining analytes)	≤25% RPD (selenium species) ≤20% RPD (total selenium)	-	≤60% RPD (calcium and strontium) ≤40% RPD (all remaining analytes)				
Laboratory Precision	Organism Sorting Efficiency	-	-	≥95%	-				
	Organism Sub-Sampling Precision and Accuracy	-	-	<20% between subsamples	-				
	Recovery of Blank Spike	-	75 to 125% (methylseleninic acid, selenate, selenite, selenocyanate, selenomethionine, total selenium)	-	-				
	Recovery of Matrix Spike	70 to 130% (TKN, orthophosphate, phosphorus, TOC, DOC, total and dissolved metals) 75 to 125% (ammonia, bromide, chloride, fluoride, nitrate, nitrite, sulphate)	75 to 125% (selenate, selenite, selenocyanate, selenomethionine, total selenium)	-	-				
	Matrix Spike Duplicate	-	75 to 125% (selenate, selenite, selenocyanate, selenomethionine, total selenium)	-	-				
Accuracy	Recovery of Certified Reference Material	-	75 to 125% (total selenium)	-	60 to 140% (antimony, barium, boron, silver, tin, titanium) 90 to 110% (selenium) 70 to 130% (all remaining analytes)				
	Laboratory Control Sample	75 to 125% (TKN) 80 to 120% (orthophosphate, phosphorus, DOC, TOC, total and dissolved metals) 85 to 115% (acidity, alkalinity, ammonia, bromide, TDS, TSS, turbidity) 90 to 110% (conductivity, chloride, fluoride, nitrate, nitrite, sulphate) 98.6-101% (pH), 95.4 to 104% (ORP)	-	-	-				
	Taxonomic Accuracy	-	-	<5% TIR	-				

Notes: LRL = Laboratory Reporting Limit; "-" = not applicable; < = less than; ≤ = less than or equal to; % = percent; RPD = Relative Percent Difference; ORP = oxidation-reduction potential; TKN = Total Kjeldahl Nitrogen; TOC = total organic carbon; DOC = dissolved organic carbon; TSS = total suspended solids; TDS = total dissolved solids; mg/kg dw = milligrams per kilogram dry weight; TIR = total identification error rate.

Table B.2: Evaluation of Water Chemistry Laboratory Reporting Limits, LCO Dry Creek LAEMP, 2022

Physical Tests	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No. Sample Results < LRL 4 (36.4%) 11 (100%) 2 (18.2%) 2 (18.2%) 11 (100%) 11 (100%) 5 (45.5%) 5 (45.5%) 5 (45.5%) 2 (18.2%) 4 (36.4%) 5 (45.5%) 1 (9.09%) 4 (36.4%) 11 (100%) 11 (100%) 11 (100%) 11 (100%) 9 (81.8%)	- CONTRIBUTION OF THE PROPERTY
Total Suspended Solids	2 1 1 1 0.1 0.005 0.001 0.5 0.001 0.002 0.5 0.003 0.0001 0.0001 0.02 0.00005 0.01	11 (100%) 2 (18.2%) 2 (18.2%) 11 (100%) 11 (100%) 11 (100%) 5 (45.5%) 5 (45.5%) 5 (45.5%) 4 (36.4%) 5 (45.5%) 4 (36.4%) 11 (100%) 11 (100%) 11 (100%) 5 (45.5%)	
Acidity (as CaCO ₃) mg/L	2 1 1 1 0.1 0.005 0.001 0.5 0.001 0.002 0.5 0.003 0.0001 0.0001 0.02 0.00005 0.01	11 (100%) 2 (18.2%) 2 (18.2%) 11 (100%) 11 (100%) 11 (100%) 5 (45.5%) 5 (45.5%) 5 (45.5%) 4 (36.4%) 5 (45.5%) 4 (36.4%) 11 (100%) 11 (100%) 11 (100%) 5 (45.5%)	
Alkalinity, Carbonate (as CO ₃) mg/L -	1 1 1 0.1 0.005 0.001 0.5 0.001 0.002 0.5 0.5 0.003 0.0001 0.0001 0.02 0.00005 0.01	2 (18.2%) 2 (18.2%) 11 (100%) 11 (100%) 11 (100%) 5 (45.5%) 5 (45.5%) 5 (45.5%) 4 (36.4%) 5 (45.5%) 4 (36.4%) 11 (100%) 11 (100%) 11 (100%) 5 (45.5%)	
Alkalinity, Carbonate (as CaCO ₃) mg/L -	1 1 0.1 0.005 0.001 0.5 0.001 0.002 0.5 0.003 0.0001 0.0001 0.02 0.00005 0.01	2 (18.2%) 11 (100%) 11 (100%) 11 (100%) 5 (45.5%) 5 (45.5%) 5 (45.5%) 2 (18.2%) 4 (36.4%) 5 (45.5%) 1 (9.09%) 6 (54.5%) 11 (100%) 11 (100%) 5 (45.5%)	
Alkalinity, Hydroxide (as CaCO₃) mg/L -	1 0.1 0.005 0.001 0.5 0.001 0.002 0.5 0.05 0.003 0.0001 0.0001 0.02 0.00005 0.01	11 (100%) 11 (100%) 11 (100%) 11 (100%) 5 (45.5%) 5 (45.5%) 5 (45.5%) 2 (18.2%) 4 (36.4%) 5 (45.5%) 1 (9.09%) 6 (54.5%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)	
Alkalinity, Hydroxide (as OH) mg/L - <	1 0.1 0.005 0.001 0.5 0.001 0.002 0.5 0.003 0.0001 0.0001 0.002 0.00005 0.01	11 (100%) 11 (100%) 11 (100%) 5 (45.5%) 5 (45.5%) 2 (18.2%) 4 (36.4%) 5 (45.5%) 1 (9.09%) 6 (54.5%) 4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)	- 0 0 0
Anions And Nutrients Bromide (Br)	0.1 0.005 0.001 0.5 0.001 0.002 0.5 0.5 0.003 0.0001 0.0001 0.02 0.00005 0.01	11 (100%) 11 (100%) 5 (45.5%) 5 (45.5%) 5 (45.5%) 2 (18.2%) 4 (36.4%) 5 (45.5%) 4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%)	- 0 0 0
Bromide (Br) mg/L	0.005 0.001 0.5 0.001 0.002 0.5 0.5 0.003 0.0001 0.0001 0.002 0.00005 0.01	11 (100%) 5 (45.5%) 5 (45.5%) 5 (45.5%) 2 (18.2%) 4 (36.4%) 5 (45.5%) 1 (9.09%) 6 (54.5%) 4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)	0 - - - - 0 0 0
Ammonia, Total (as N)° mg/L 0.777 4.04 Nitrite (as N) ^d mg/L 0.02 0.06 Total Kjeldahl Nitrogen mg/L · · Orthophosphate mg/L · · Phosphorus (P)-Total mg/L · · Dissolved Organic Carbon mg/L · · Total Organic Carbon mg/L · · Total Metals Aluminum mg/L · · Antimony mg/L 0.009 · · Arsenic mg/L 0.009 · · Arsenic mg/L 0.00013 · · Beryllium μg/L 0.00013 · · · Bismuth mg/L 1.2 · <	0.005 0.001 0.5 0.001 0.002 0.5 0.5 0.003 0.0001 0.0001 0.002 0.00005 0.01	11 (100%) 5 (45.5%) 5 (45.5%) 5 (45.5%) 2 (18.2%) 4 (36.4%) 5 (45.5%) 1 (9.09%) 6 (54.5%) 4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)	0 - - - - 0 0 0
Nitrite (as N) ^d mg/L 0.02 0.06 Total Kjeldahl Nitrogen mg/L Orthophosphate mg/L Phosphorus (P)-Total mg/L Dissolved Organic Carbon mg/L Total Organic Carbon mg/L Total Metals Aluminum mg/L 0.009 Antimony mg/L 0.009	0.001 0.5 0.001 0.002 0.5 0.5 0.003 0.0001 0.0001 0.02 0.00005 0.01	5 (45.5%) 5 (45.5%) 5 (45.5%) 2 (18.2%) 4 (36.4%) 5 (45.5%) 1 (9.09%) 6 (54.5%) 4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)	0 - - - - 0 0 0
Total Kjeldahl Nitrogen mg/L <td>0.5 0.001 0.002 0.5 0.5 0.003 0.0001 0.0001 0.002 0.00005 0.01</td> <td>5 (45.5%) 5 (45.5%) 2 (18.2%) 4 (36.4%) 5 (45.5%) 1 (9.09%) 6 (54.5%) 4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)</td> <td>- - - - 0 0 0</td>	0.5 0.001 0.002 0.5 0.5 0.003 0.0001 0.0001 0.002 0.00005 0.01	5 (45.5%) 5 (45.5%) 2 (18.2%) 4 (36.4%) 5 (45.5%) 1 (9.09%) 6 (54.5%) 4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)	- - - - 0 0 0
Orthophosphate mg/L -	0.001 0.002 0.5 0.5 0.003 0.0001 0.0001 0.002 0.00005 0.01 0.01	5 (45.5%) 2 (18.2%) 4 (36.4%) 5 (45.5%) 1 (9.09%) 6 (54.5%) 4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)	- - - 0 0 0
Phosphorus (P)-Total mg/L	0.002 0.5 0.5 0.003 0.0001 0.0001 0.02 0.00005 0.01 0.01	2 (18.2%) 4 (36.4%) 5 (45.5%) 1 (9.09%) 6 (54.5%) 4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)	- - 0 0 0
Dissolved Organic Carbon mg/L	0.5 0.003 0.0001 0.0001 0.02 0.00005 0.01 0.01	4 (36.4%) 5 (45.5%) 1 (9.09%) 6 (54.5%) 4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)	- 0 0 0
Total Organic Carbon mg/L - <td>0.003 0.0001 0.0001 0.02 0.00005 0.01 0.01</td> <td>5 (45.5%) 1 (9.09%) 6 (54.5%) 4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)</td> <td>- 0 0 0 -</td>	0.003 0.0001 0.0001 0.02 0.00005 0.01 0.01	5 (45.5%) 1 (9.09%) 6 (54.5%) 4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)	- 0 0 0 -
Aluminum mg/L - - Antimony mg/L 0.009 - - Arsenic mg/L 0.0005 - - Beryllium μg/L 0.00013 - - - Bismuth mg/L - <td>0.0001 0.0001 0.02 0.00005 0.01</td> <td>6 (54.5%) 4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)</td> <td>0 0 0 -</td>	0.0001 0.0001 0.02 0.00005 0.01	6 (54.5%) 4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)	0 0 0 -
Aluminum mg/L 0.009 - - Arsenic mg/L - 0.005 - Beryllium μg/L 0.00013 - - Bismuth mg/L - - - Boron mg/L 1.2 - - - Cadmium μg/L -	0.0001 0.0001 0.02 0.00005 0.01	6 (54.5%) 4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)	0 0 0 -
Antimony mg/L 0.009 Arsenic mg/L 0.00013 Beryllium μg/L 0.00013 Bismuth mg/L - Boron mg/L 1.2 Cadmium μg/L - Cobalt μg/L 0.004 0.11 Copper mg/L - - Iron mg/L - 1 - Lead mg/L 0.0082 0.003 - Manganese mg/L 0.7678 0.8155 - Nickel mg/L 0.0025 - - Silver mg/L 0.00005 0.0001 - - Tin mg/L - - - -	0.0001 0.02 0.00005 0.01 0.01	4 (36.4%) 11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)	0 0 -
Beryllium	0.02 0.00005 0.01 0.01	11 (100%) 11 (100%) 5 (45.5%) 1 (9.09%)	0 - 0
Beryllium μg/L 0.00013 Bismuth mg/L - - - 0 Boron mg/L 1.2 -	0.00005 0.01 0.01	11 (100%) 5 (45.5%) 1 (9.09%)	0
Bismuth mg/L 1.2 - - Cadmium μg/L - - - Cobalt μg/L 0.004 0.11 - Copper mg/L - - - Iron mg/L 0.0082 0.003 - Lead mg/L 0.0082 0.8155 - Manganese mg/L 0.7678 0.8155 - Nickel mg/L 0.0025 - - Silver mg/L 0.00005 0.0001 - - Thallium mg/L 0.0008 - - - - Tin mg/L - - - - - -	0.01 0.01	5 (45.5%) 1 (9.09%)	0
Boron mg/L 1.2 Cadmium μg/L - - - Cobalt μg/L 0.004 0.11 - Copper mg/L - - - Iron mg/L - 1 - Lead mg/L 0.0082 0.003 - Manganese mg/L 0.7678 0.8155 - Nickel mg/L 0.0025 - - Silver mg/L 0.00005 0.0001 - (Thallium mg/L 0.0008 - - - (Tin mg/L - - - - - -	0.01	1 (9.09%)	
Cobalt μg/L 0.004 0.11 - Copper mg/L - - - Iron mg/L - 1 - Lead mg/L 0.0082 0.003 - Manganese mg/L 0.7678 0.8155 - Nickel mg/L 0.025 - - Silver mg/L 0.00005 0.0001 - (Thallium mg/L 0.0008 - - (Tin mg/L - - - -		, ,	
Copper mg/L -			0
Iron mg/L 1 - Lead mg/L 0.0082 0.003 - Manganese mg/L 0.7678 0.8155 - Nickel mg/L 0.025 - - Silver mg/L 0.00005 0.0001 - - Thallium mg/L 0.0008 - - - - Tin mg/L - - - - - -	0.0005	9 (81.8%)	-
Lead mg/L 0.0082 0.003 - Manganese mg/L 0.7678 0.8155 - Nickel mg/L 0.025 - - Silver mg/L 0.00005 0.0001 - (Thallium mg/L 0.0008 - - (Tin mg/L - - - - -	0.01	3 (27.3%)	-
Manganese mg/L 0.7678 0.8155 Nickel mg/L 0.025 - Silver mg/L 0.00005 0.0001 - 0 Thallium mg/L 0.0008 - - 0 Tin mg/L - - - - -	0.0001	8 (72.7%)	0
Nickel mg/L 0.025 - - Silver mg/L 0.00005 0.0001 - () Thallium mg/L 0.0008 - - () Tin mg/L - - - - - -	0.0001	1 (9.09%)	0
Sliver rig/L 0.00005 0.0001 0.0001 Thallium mg/L 0.0008 - - - 0.0001 Tin mg/L - <	0.0005	7 (63.6%)	0
Tin mg/L 0.0008	0.00001	9 (81.8%)	0
TIII IIIg/L	0.00001	11 (100%)	0
Titanium	0.0001	11 (100%)	-
ntanium mg/L	0.0003	8 (72.7%)	-
	0.0005	6 (54.5%)	-
Zinc mg/L 0.0075 0.033 - Dissolved Metals	0.003	9 (81.8%)	0
Aluminum mg/L 0.05 0.1	0.001	9 (81.8%)	0
	0.0001	6 (54.5%)	-
, ,	0.0001	8 (72.7%)	-
Beryllium µg/L	0.02	11 (100%)	-
	0.0001	11 (100%)	-
Boron mg/L	0.01	6 (54.5%)	-
Chromium mg/L	0.0001	2 (18.2%)	-
Cobalt µg/L	0.1	11 (100%)	-
	0.0002	8 (72.7%)	-
Iron mg/L 0.35	0.01	10 (90.9%)	-
, and the second	0.0001	11 (100%)	-
Manganese mg/L	0.0001	1 (9.09%)	-
Mercury µg/L	0.00005	11 (100%)	
Y H	0.0005	7 (63.6%) 11 (100%)	0 -
Sliver Hig/L	0.00001	11 (100%)	-
mailium my/L	0.00001	11 (100%)	-
o l		11 (100%)	-
	()_()()().3	10 (90.9%)	-
Zinc mg/L	0.0003	7 (63.6%)	-

Notes: Only analytes with at least one result < Laboratory Reporting Limit (LRL) or LRL were above guidelines were displayed. The total number of samples in 2022 (n) was 11. EVWQP = Elk Valley Water Quality Plan; "-" = no applicable guideline exists.

^a British Columbia Water Quality Guidelines for the protection of Aquatic Life (BCMOECCS 2021a,b)

^b Where more than one EVWQP Level 1 Benchmark or screening value was applicable, the most conservative (lowest) value was used.

^c Guideline is the most conservative (lowest), based on estimates of a maximum temperature of 20°C and a minimum pH of 9.0.

^d Minimum water quality guidelines for Nitrite (as N) reported in BCMOECCS (2021a) for chloride concentrations < 2 mg/L.

Table B.3: Evaluation of Selenium Speciation Water Chemistry Laboratory Reporting Limits, LCO Dry Creek LAEMP, 2022

Parameter	Units	Range of LRLs	No. Sample Results < LRL
DMSeO - Dimethylselenoxide	mg/L	0.01	11 (100%)
MeSe(IV) - Methylseleninic Acid	mg/L	0.01	9 (81.8%)
MeSe(VI) - Methaneselenonic Acid	mg/L	0.01	11 (100%)
Se(IV) - Selenite	mg/L	0.01 to 0.02	2 (18.2%)
SeCN - Selenocyanate	mg/L	0.01	11 (100%)
SeMe - Selenomethionine	mg/L	0.01	11 (100%)
Selenosulfate	mg/L	0.01	11 (100%)
Selenium Unknown	mg/L	0.01	11 (100%)

Notes: Only analytes with at least one result < Laboratory Reporting Limit (LRL) or LRL were above guidelines were displayed. No applicable guidelines exist for any analyte for which at least one result was below the LRL. The total number of samples in 2022 (n) was 11.

Table B.4: Field Blank and Trip Blank Evaluation for Water Chemistry Analyses, LCO Dry Creek LAEMP, 2022

Parameter	Units	No. Field Blank Results < LRL	No. Trip Blank Results < LRL
Physical Tests			
Conductivity	μS/cm	2 (66.7%)	2 (100%)
Hardness (as CaCO ₃) Hardness - Dissolved (as CaCO ₃)	mg/L mg/L	3 (100%) 3 (100%)	2 (100%) 2 (100%)
Turbidity	NTU	3 (100%)	2 (100%)
Total Suspended Solids	mg/L	3 (100%)	2 (100%)
Total Dissolved Solids	mg/L	3 (100%)	2 (100%)
Acidity (as CaCO ₃) Alkalinity, Bicarbonate (as HCO ₃)	mg/L mg/L	3 (100%) 2 (66.7%)	2 (100%) 2 (100%)
Alkalinity, Bicarbonate (as CaCO ₃)	mg/L	2 (66.7%)	2 (100%)
Alkalinity, Carbonate (as CO ₃)	mg/L	3 (100%)	2 (100%)
Alkalinity, Carbonate (as CaCO ₃) Alkalinity, Hydroxide (as CaCO ₃)	mg/L	3 (100%)	2 (100%) 2 (100%)
Alkalinity, Hydroxide (as CaCO ₃) Alkalinity, Hydroxide (as OH)	mg/L mg/L	3 (100%) 3 (100%)	2 (100%)
Alkalinity, Total (as CaCO ₃)	mg/L	2 (66.7%)	2 (100%)
Anions And Nutrients			
Bromide Chloride	mg/L mg/L	3 (100%) 3 (100%)	2 (100%) 2 (100%)
Fluoride	mg/L	3 (100%)	2 (100%)
Ammonia, Total (as N)	mg/L	3 (100%)	1 (50.0%)
Nitrate (as N)	mg/L	3 (100%)	2 (100%)
Nitrite (as N) Total Kjeldahl Nitrogen	mg/L mg/L	3 (100%) 3 (100%)	2 (100%) 2 (100%)
Orthophosphate	mg/L	3 (100%)	2 (100%)
Total Phosphorus	mg/L	3 (100%)	2 (100%)
Sulphate	mg/L	3 (100%)	2 (100%)
Organic / Inorganic Carbon Dissolved Organic Carbon	mg/L	3 (100%)	1 (100%)
Total Organic Carbon	mg/L	3 (100%)	2 (100%)
Total Metals		,	` '
Aluminum Antimony	mg/L	3 (100%) 3 (100%)	2 (100%) 2 (100%)
Antimony Arsenic	mg/L mg/L	3 (100%)	2 (100%) 2 (100%)
Barium	mg/L	2 (66.7%)	2 (100%)
Beryllium	μg/L	3 (100%)	NA 2 (120%)
Bismuth Boron	mg/L mg/L	3 (100%) 3 (100%)	2 (100%) 2 (100%)
Cadmium	µg/L	3 (100%)	2 (100%)
Calcium	mg/L	2 (66.7%)	2 (100%)
Chromium Cobalt	mg/L	3 (100%)	2 (100%)
Copper	μg/L mg/L	3 (100%) 2 (66.7%)	NA 2 (100%)
Iron	mg/L	3 (100%)	2 (100%)
Lead	mg/L	3 (100%) 3 (100%)	2 (100%)
Lithium Magnesium	mg/L mg/L	2 (66.7%)	2 (100%) 2 (100%)
Manganese	mg/L	2 (66.7%)	2 (100%)
Mercury	μg/L	3 (100%)	NA (1999)
Molybdenum Nickel	mg/L mg/L	3 (100%) 3 (100%)	2 (100%) 2 (100%)
Potassium	mg/L	3 (100%)	2 (100%)
Selenium	μg/L	3 (100%)	NA
Silicon Silver	mg/L mg/L	2 (66.7%) 3 (100%)	2 (100%) 2 (100%)
Sodium	mg/L	2 (66.7%)	2 (100%)
Strontium	mg/L	2 (66.7%)	2 (100%)
Sulphur Thallium	mg/L mg/L	3 (100%) 3 (100%)	2 (100%) 2 (100%)
Tin	mg/L	3 (100%)	2 (100%)
Titanium	mg/L	3 (100%)	2 (100%)
Uranium	mg/L	3 (100%)	2 (100%)
Vanadium Zinc	mg/L mg/L	3 (100%) 3 (100%)	2 (100%) 2 (100%)
Dissolved Metals	<u>9</u> ,		= (133.13)
Aluminum	mg/L	3 (100%)	1 (100%)
Antimony Arsenic	mg/L mg/L	3 (100%) 3 (100%)	1 (100%) 1 (100%)
Barium	mg/L	2 (66.7%)	1 (100%)
Beryllium	μg/L	3 (100%)	1 (100%)
Bismuth Boron	mg/L mg/L	3 (100%) 3 (100%)	1 (100%) 1 (100%)
Cadmium	μg/L	3 (100%)	NA
Calcium	mg/L	3 (100%)	2 (100%)
Chromium Cobalt	mg/L	3 (100%)	1 (100%)
Copper Copper	μg/L mg/L	3 (100%) 2 (66.7%)	1 (100%) 1 (100%)
Iron	mg/L	3 (100%)	1 (100%)
Lead	mg/L	3 (100%)	1 (100%)
Lithium Magnesium	mg/L mg/L	3 (100%) 2 (66.7%)	1 (100%) 2 (100%)
Manganese	mg/L	2 (66.7%)	1 (100%)
Melyhdanum	μg/L	3 (100%)	1 (100%)
Molybdenum Nickel	mg/L mg/L	3 (100%) 3 (100%)	1 (100%) 1 (100%)
Potassium	mg/L	3 (100%)	2 (100%)
Selenium	μg/L	3 (100%)	1 (100%)
Silicon Silver	mg/L mg/L	3 (100%) 3 (100%)	1 (100%) 1 (100%)
Sodium	mg/L	2 (66.7%)	2 (100%)
Strontium	mg/L	3 (100%)	1 (100%)
Sulphur Thallium	mg/L mg/L	3 (100%) 3 (100%)	1 (100%) 1 (100%)
Tin	mg/L	2 (66.7%)	1 (100%)
Titanium	mg/L	3 (100%)	1 (100%)
Uranium Vanadium	mg/L	3 (100%)	1 (100%)
Vanadium Zinc	mg/L mg/L	3 (100%) 3 (100%)	1 (100%) 1 (100%)
	mg/L	J (10070)	1 (10070)

Table B.5: Field Blank Evaluation for Selenium Speciation Analyses, LCO Dry Creek LAEMP, 2022

Parameter Units		Range of LRLs	No. Field Blank Results > LRL		
Dissolved Selenium	μg/L	0.165 to 0.198	1 (50%)		

Notes: LRL = Laboratory Reporting Limit. Two field blank samples were collected in 2022. Only analytes with at least one blank results > LRL were displayed.

Table B.6: Comparisons of Water Chemistry Duplicate Samples, LCO Dry Creek LAEMP, 2022

Parameter	Unit	LC_FRUS_WS _LAEMP_DRY_ 2022-06_N	LC_CC1_WS_ LAEMP_DRY_ 2022-06_N	RPD (%)	LC_GRCK_WS _LAEMP_DRY_ 2022-09_N	LC_CC1_WS_ LAEMP_DRY_ 2022-09_N	RPD (%)	LC_FRB_WS_ LAEMP_DRY_ 2022-11_N	LC_CC1_WS_ LAEMP_DRY_ 2022-11_NP	RPD (%)
Physical Tests Acidity (as CaCO ₃)	mg/L	<2.0	<2.0	_	<2.0	<2.0	_	<2.0	<2.0	_
Alkalinity (as CaCO ₃)	mg/L	155	155	0	167	175	4.68	211	211	0
Alkalinity, Bicarbonate (as CaCO ₃) Alkalinity, Bicarbonate (as HCO ₃)	mg/L mg/L	153 187	151 184	1.32 1.62	161 196	170 207	5.44 5.46	195 238	199 243	2.03
Alkalinity, Carbonate (as CaCO ₃)	mg/L	2	4.4	75.0	6.6	5.6	16.4	16.4	12.2	29.4
Alkalinity, Carbonate (as CO ₃)	mg/L	1.2	2.6	73.7	4	3.4	16.2	9.8	7.3	29.2
Alkalinity, Hydroxide (as CaCO ₃) Alkalinity, Hydroxide (as OH)	mg/L mg/L	<1.0 <1.0	<1.0 <1.0	-	<1.0 <1.0	<1.0 <1.0	-	<1.0 <1.0	<1.0 <1.0	-
Conductivity	μS/cm	487	483	0.825	374	374	0.00	862	856	0.70
Hardness (as CaCO ₃), Dissolved Oxidation-Reduction Potential (ORP	mg/L	256 315	251	1.97 45.2	214 294	215 282	0.466	541 374	545 352	0.737
pH	mV pH units	8.18	499 8.23	0.609	8.33	8.31	4.17 0.240	8.4	8.38	6.06 0.238
Total Dissolved Solids (TDS)	mg/L	323	320	0.933	237	248	4.54	596	597	0.168
Total Suspended Solids (TSS) Turbidity	mg/L NTU	29 5.26	27.9 8.25	3.87 44.3	1.4 0.6	1.4 0.75	0 22.2	<1.0 0.34	<1.0 0.36	5.71
Anions And Nutrients	1410	0.20	0.20	44.0	0.0	0.70	EE.E	0.04	0.00	
Kjeldahl Nitrogen (TKN)	mg/L	0.638	0.394	47.3	<0.050	<0.050	-	0.745	0.987	27.9
Ammonia (as N) Bromide	mg/L mg/L	<0.0050 <0.050	<0.0050 <0.050	-	<0.0050 <0.050	<0.0050 <0.050	-	<0.0050 <0.050	0.0062 <0.050	21.43
Chloride	mg/L	1.27	1.13	11.7	0.17	0.18	5.71	5.4	5.22	3.39
Fluoride Nitrate (as N)	mg/L mg/L	0.136 6.21	0.136 6.2	0 0.161	0.144 0.0455	0.146 0.0434	1.38 4.72	0.168 14.3	0.162 14.4	3.64 0.697
Nitrite (as N)	mg/L	0.0035	0.0042	18.2	<0.0010	<0.0010	- 4.72	0.0035	0.0033	5.88
Orthophosphate, Dissolved (as P)	mg/L	<0.0010	0.0011	-	<0.0010	<0.0010	-	<0.0010	<0.0010	-
Phosphorus Sulfate (as SO ₄)	mg/L mg/L	0.0218 77	0.0219 76.8	0.5 0.260	0.0054 46.8	0.0048 47	11.76 0.426	<0.0020 232	<0.0020 234	0.858
Organic / Inorganic Carbon							0.720			
Carbon, Dissolved Organic (DOC)	mg/L	2.02	2.02	0	<0.50	<0.50	-	0.64	0.68	6.06
Carbon, Total Organic (TOC) Total Metals	mg/L	1.94	1.98	2.04	<0.50	<0.50	<u>-</u>	<0.50	0.71	34.7
Aluminum	mg/L	0.136	0.168	21.1	<0.0150	<0.0150	-	0.0054	0.0037	37.4
Antimony Arsenic	mg/L mg/L	0.00014 0.00021	0.00014 0.00021	0	<0.00010 0.00015	<0.00010 0.00017	- 12.50	<0.00010 <0.00010	<0.00010 <0.00010	-
Barium	mg/L mg/L	0.00021	0.00021	0.731	0.00015	0.00017	12.50	0.123	0.124	0.81
Beryllium	μg/L	<0.020	<0.020	-	<0.020	<0.020	-	<0.020	<0.020	-
Bismuth Boron	mg/L mg/L	<0.000050 <0.010	<0.000050 <0.010	-	<0.000050 0.016	<0.000050 0.017	6.06	<0.000050 <0.010	<0.000050 <0.010	-
Cadmium	μg/L	0.0535	0.0588	9.44	0.0061	0.0063	3.23	0.02	0.0255	24.2
Calcium	mg/L	61.2	60.6	0.985	49.2	49.3	0.203	113	112	0.889
Chromium Cobalt	mg/L μg/L	0.0004 0.12	0.00034 0.13	16.2 8.00	0.00022 <0.10	0.00023 <0.10	4.44	0.00014 <0.10	0.00016 <0.10	13.3
Copper	mg/L	0.0005	0.0005	0	<0.00050	<0.00050	-	<0.00050	<0.00050	-
Iron Lead	mg/L	0.185 0.000155	0.202 0.00016	8.79 3.17	0.017 <0.000050	0.017 <0.000050	0.00	<0.010 <0.000050	<0.010 <0.00050	-
Lead Lithium	mg/L mg/L	0.000155	0.00016	0.604	0.0003	0.0072	1.38	0.0289	0.029	0.345
Magnesium	mg/L	24.1	24.5	1.65	18.1	17.7	2.23	48	49.6	3.28
Manganese Mercury	mg/L mg/L	0.0106 <0.000050	0.011 <0.000050	3.70	0.00378 <0.000050	0.00357 <0.000050	5.71 -	0.00164 <0.0000050	0.00151 <0.0000050	8.25
Molybdenum	mg/L	0.00133	0.000988	29.5	0.00134	0.00139	3.66	0.000806	0.000844	4.61
Nickel	mg/L	0.00185	0.00191	3.19	<0.00050	<0.00050	-	<0.00050	0.00066	27.59
Potassium Selenium	mg/L μg/L	0.958 25.5	0.971 25.6	1.35 0.391	0.653 1.82	0.642 1.86	1.70 2.17	1.4 55.8	1.51 55.8	7.56 0
Silicon	mg/L	2.21	2.29	3.56	2.88	2.81	2.46	2.67	2.62	1.89
Silver	mg/L	<0.000010	<0.000010	- 0	<0.000010	<0.000010	- 1 10	<0.000010	<0.000010	- 2.04
Sodium Strontium	mg/L mg/L	1.6 0.088	1.6 0.0878	0.228	2.56 0.189	2.53 0.19	1.18 0.53	3.4 0.161	3.47 0.158	2.04 1.88
Sulfur	mg/L	27.5	27.6	0.363	15.5	15.4	0.65	86.2	85.9	0.35
Thallium Tin	mg/L mg/L	<0.000010 <0.00010	<0.000010 <0.00010	-	<0.00010 <0.00010	<0.000010 <0.00010	-	<0.000010 <0.00010	<0.000010 <0.00010	-
Titanium	mg/L	0.00202	0.00399	65.6	<0.00030	<0.00030	-	<0.00030	<0.00030	-
Uranium	mg/L	0.00148	0.00146	1.36	0.000918	0.000943	2.69	0.00255	0.0026	1.94
Vanadium Zinc	mg/L mg/L	0.00075 0.0039	0.00088 0.0032	16.0 19.7	0.00068 <0.0030	0.00069 <0.0030	1.46 -	<0.00050 <0.0030	<0.00050 <0.0030	-
Dissolved Metals				1						T
Aluminum Antimony	mg/L mg/L	0.0021 0.00012	0.0024 0.00012	13.3 0	<0.0010 <0.00010	0.0015 <0.00010	40.0	<0.0010 <0.00010	<0.0010 0.00011	0 9.52
Arsenic	mg/L	0.00012	0.00011	0	<0.00010	<0.00010	0	<0.00010	<0.00011	0
Barium	mg/L	0.0499	0.0503	0.798	0.0748	0.0761	1.72	0.124	0.128	3.17
Beryllium Bismuth	μg/L mg/L	<0.020 <0.00050	<0.020 <0.00050	0	<0.020 <0.00050	<0.020 <0.00050	0	<0.020 <0.000050	<0.020 <0.00050	0
Boron	mg/L	<0.010	<0.010	0	0.016	0.015	6.45	<0.010	<0.010	0
Cadmium Calcium	μg/L mg/L	0.0216 62.5	0.024 61	10.5 2.43	0.006 51	0.0058 51.6	3.39 1.17	0.0186 127	0.0291 131	44.0 3.10
Chromium	mg/L	0.00011	<0.00010	9.52	0.00025	0.0002	22.2	0.00017	0.00017	0
Cobalt	μg/L	<0.10	<0.10	0	<0.10	<0.10	0	<0.10	<0.10	0
Copper Iron	mg/L mg/L	<0.00020 <0.010	<0.00020 <0.010	0	<0.00020 <0.010	<0.00020 <0.010	0	0.00025 <0.010	0.00038 <0.010	41.3 0
Lead	mg/L	<0.000050	<0.000050	0	<0.000050	<0.000050	0	<0.000050	<0.000050	0
Lithium Magnesium	mg/L mg/L	0.0164 24.4	0.0168 24	2.41 1.65	0.0071 21	0.007 21	1.42 0	0.0307 54.4	0.0312 52.9	1.62 2.80
Manganese	mg/L	0.00169	0.00164	3.00	0.00084	0.00072	15.4	0.00129	0.00127	1.56
Mercury	mg/L	<0.0000050	<0.000050	0	<0.0000050	<0.000050	0	<0.0000050	<0.000050	0
Molybdenum Nickel	mg/L mg/L	0.0011 0.00135	0.00112 0.00137	1.80 1.47	0.00149 <0.00050	0.00143 <0.00050	4.11 0	0.00089 <0.00050	0.000887 <0.00050	0.338
Potassium	mg/L	0.954	0.96	0.627	0.649	0.654	0.767	1.48	1.45	2.05
Selenium Silicon	μg/L mg/l	24.2 1.96	24.3 2.1	0.412 6.90	2.43 2.92	2.35 2.97	3.35 1.70	60.9 2.42	59.6 2.4	2.16 0.830
Silver	mg/L mg/L	1.96 <0.000010	<0.00010	0.90	<0.000010	<0.000010	1.70	<0.00010	<0.000010	0.830
Sodium	mg/L	1.53	1.54	0.651	2.8	2.8	0	3.52	3.35	4.95
Strontium Sulfur	mg/L mg/L	0.0932 26.8	0.0937 28.3	0.535 5.44	0.186 16.8	0.189 16.3	1.60 3.02	0.176 87.4	0.172 85.4	2.30 2.31
Thallium	mg/L	<0.000010	<0.000010	-	<0.000010	<0.000010	-	<0.000010	<0.000010	-
Tin	mg/L	<0.00010	<0.00010	-	<0.00010	<0.00010	-	<0.00010	<0.00010	-
Titanium Uranium	mg/L mg/L	<0.00030 0.0015	<0.00030 0.00151	0.664	<0.00030 0.000902	<0.00030 0.000898	0.444	<0.00030 0.00256	<0.00030 0.00256	- 0
Vanadium	mg/L	<0.00050	<0.00050	-	<0.00050	<0.00050	-	<0.00050	<0.00050	-
Zinc	mg/L	0.0012	0.0013	8.00	<0.0010	<0.0010	-	0.0013	0.0013	0

Value did not meet the data quality objective of ≤ 30% Relative Percent Difference (RPD).

Notes: LRL = Laboratory Reporting Limit. If one result in a duplicate pair was below the LRL, RPD was calculated using the LRL in place of the value below detection results. RPD was not calculated if both results were < LRL. "-" indicates that the RPD was not calculated.

Table B.7: Comparisons of Selenium Speciation Duplicates, LCO Dry Creek LAEMP, 2022

Parameter	Unit	LC_FRB_WS_LAEMP _DRY_2022-11_N	LC_CC1_WS_LAEMP _DRY_2022-11_NP	RPD (%)	LC_GRCK_WS_LAEMP _DRY_2022-09_N	LC_CC1_WS_LAEMP _DRY_2022-09_N	RPD (%)	LC_FRUS_WS_LAEMP _LCO_DRY_2022- 06_NP	LC_CC1_WS_LAEMP _DRY_2022-06_NP	RPD (%)
Total Selenium	μg/L	46.1	45.8	0.65	1.69	1.87	10.1	23.7	23.4	1.27
Dissolved Selenium	μg/L	45.6	47.4	3.87	1.83	1.81	1.10	23.4	24.2	3.36
Dimethylselenoxide	μg/L	0	0	-	0	0		0	0	-
MeSe(IV) - Methylseleninic acid	μg/L	0.004	0	200	0	0	-	0.004	0.008	66.7
Methaneselenonic Acid	μg/L	0	0	-	0	0	-	0	0	-
Se(IV) - Selenite	μg/L	0.191	0.176	8.17	0.035	0.032	8.96	0.079	0.08	1.26
Se(VI) - Selenate	μg/L	50.6	48.2	4.86	1.85	1.53	18.9	21.3	21.2	0.47
SeCN - Selenocyanate	μg/L	0	0	-	0	0	-	0	0	-
SeMe - Selenomethionine	μg/L	0	0	-	0	0	-	0	0	-
Selenosulfate	μg/L	0	0	-	0	0	-	0	0	-
Unknown Selenium Species	μg/L	0	0	-	0	0	-	0	0	-

Value did not meet the data quality objective of ≤ 30% Relative Percent Difference (RPD).

Notes: " - " indicates no data available. LRL = Laboratory Reporting Limit. If one result in a duplicate pair was below the LRL, RPD was calculated using the LRL in place of the value below detection results. RPD was not calculated if both results were < LRL. "-" indicates that the RPD was not calculated.

Table B.8: Percent of Sample Sorted and the Total Number of Benthic Invertebrates Recovered from the Sampled Fraction, LCO Dry Creek LAEMP, 2022

Sample ID	Laboratory ID	% Sampled	# Invertebrates
LC_DCDS_BIC-01_2022-05_NP	CC230046	5	435
LC_DCDS_BIC-02_2022-05_NP	CC230047	6	356
LC_DCDS_BIC-03_2022-05_NP	CC230048	11	361
LC_DCDS_BIC-04_2022-05_NP	CC230049	5	364
LC_DCDS_BIC-05_2022-05_NP	CC230050	5	351
LC_DC1_BIC-1_2022-09-12_N	CC231037	5	617
LC_DC1_BIC-2_2022-09-12_N	CC231038	10	339
LC_DC1_BIC-3_2022-09-12_N	CC231039	5	513
LC_DC2_BIC-1_2022-09-14_N	CC231040	14	329
LC_DC2_BIC-2_2022-09-14_N	CC231041	15	335
LC_DC2_BIC-3_2022-09-14_N	CC231042	8	335
LC_DC3_BIC-1_2022-09-13_N	CC231043	5	622
LC_DC3_BIC-2_2022-09-13_N	CC231044	8	343
LC_DC3_BIC-3_2022-09-13_N	CC231045	5	376
LC_DC4_BIC-1_2022-09-12_N	CC231046	7	334
LC_DC4_BIC-2_2022-09-12_N	CC231047	5	360
LC_DC4_BIC-3_2022-09-12_N	CC231048	13	385
LC_DCDS_BIC-1_2022-09-13_N	CC231049	15	332
LC_DCDS_BIC-2_2022-09-13_N	CC231050	8	320
LC_DCDS_BIC-3_2022-09-13_N	CC231051	16	319
LC_DCDS_BIC-4_2022-09-13_N	CC231052	8	346
LC_DCDS_BIC-5_2022-09-13_N	CC231053	12	327
LC_DCEF_BIC-1_2022-09-13_N	CC231054	12	334
LC_DCEF_BIC-2_2022-09-13_N	CC231055	15	333
LC_DCEF_BIC-3_2022-09-13_N	CC231056	12	342
LC_FRB_BIC-1_2022-09-10_N	CC231057	5	515
LC_FRB_BIC-2_2022-09-10_N	CC231058	5	443
LC_FRB_BIC-3_2022-09-10_N	CC231059	5	392
LC_FRUS_BIC-1_2022-09-10_N	CC231060	7	353
LC_FRUS_BIC-2_2022-09-10_N	CC231061	10	329
LC_FRUS_BIC-3_2022-09-10_N	CC231062	14	348
LC_GRCK_BIC-1_2022-09-14_N	CC231063	14	310
LC_GRCK_BIC-2_2022-09-14_N	CC231064	50	411
LC_GRCK_BIC-3_2022-09-14_N	CC231065	12	327
LC_DCDS_BIC-1_2022-11_N	CC232235	21	327
LC_DCDS_BIC-2_2022-11_N	CC232236	13	329

Notes: Only samples that were sub-sampled are displayed. All other benthic invertebrate community samples were examined in their entirety.

Table B.9: Benthic Invertebrate Community Sub-sampling Precision and Accuracy, LCO Dry Creek LAEMP, 2022

Station ID		Organisms in Subsample								Precision Error		Accuracy Error														
Sample ID	Laboratory ID	1	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 10				16	17	18	19	20	Total	Min (%)	Max (%)	Min (%)	Max (%)										
LC_DCDS_BIC05_2022-05_NP	CC230050	349	300	314	300	301	317	302	300	308	290	290	308	301	302	314	298	333	328	327	330	6,212	0	17	1	12
			•	•	•	•				•	•	•	•	•	•						•		0.00	16.9	0.84	12.4

Table B.10: Benthic Invertebrate Community Sorting Efficiency, LCO Dry Creek LAEMP, 2022

Sample ID	Laboratory ID	Number of Organisms Recovered (Initial Sort)	Number of Organisms in Re-sort	Sorting Efficiency
LC_DCDS_BIC-01_2022-05_NP	CC230046	435	5	98.9%
LC_DC2_BIC-3_2022-09-14_N	CC231042	335	4	98.8%
LC_DC3_BIC-2_2022-09-13_N	CC231044	343	6	98.3%
LC_FRUS_BIC-3_2022-09-10_N	CC231062	348	3	99.1%
LC_DCDS_BIC-2_2022-11_N	CC232236	329	5	98.5%
			Average	98.8%

Table B.11: Percent Benthic Invertebrate Community Organism Recovery^a, LCO Dry Creek LAEMP, 2022

Sample ID	Laboratory ID	Percent Sampled (%)	Taxa Identified	TIR (%)	PDE (%)	PTD (%)	BCDI
LC_DCDS_BIC-03_2022-05_NP	CC230048	11	362	0	0.138	0.552	0.004
LC_DC1_BIC-2_2022-09-12_N	CC231038	10	339	0	0.000	0.295	0.003
LC_DC3_BIC-3_2022-09-13_N	CC231045	5	379	0	0.397	0.792	0.004
LC_DCEF_BIC-3_2022-09-13_N	CC231056	12	341	0	0.146	1.46	0.013

Notes: TIR = Total Identification Error Rate, PDE = Percent Difference in Enumeration, PTD = Percent Taxonomic Disagreement, BCDI = Bray Curtis Dissimilarity Index to quantify differences in identifications.

^a For error rationale and calculations, refer to Cordillera report (Appendix J).

Table B.12: Comparisons of Benthic Invertebrate Tissue Duplicates, LCO Dry Creek LAEMP, 2022

Parameter	Units	Range of LRLs	No. Sample Results < LRL
Antimony	mg/kg dw	0.003 to 0.004	1 (2.08%)
Arsenic	mg/kg dw	0.327 to 0.514	15 (31.3%)
Boron	mg/kg dw	0.067 to 0.107	2 (4.17%)
Mercury	mg/kg dw	0.022 to 0.029	5 (8.33%)
Vanadium	mg/kg dw	0.025 to 0.065	1 (2.08%)

Notes: mg/kg = milligrams per kilogram dry weight. Only analytes with at least one result < Laboratory Reporting Limit (LRL) or LRL were above guidelines were displayed. No applicable guidelines exist for any analyte that had at least one result below the LRL. The total number of samples in 2022 (n) was 48.

APPENDIX C WATER QUALITY

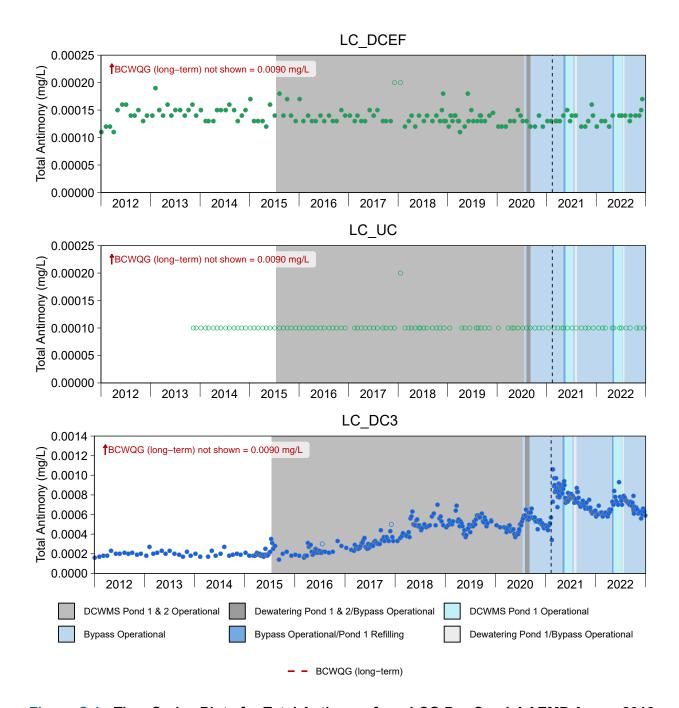


Figure C.1: Time Series Plots for Total Antimony from LCO Dry Creek LAEMP Areas, 2012 to 2022

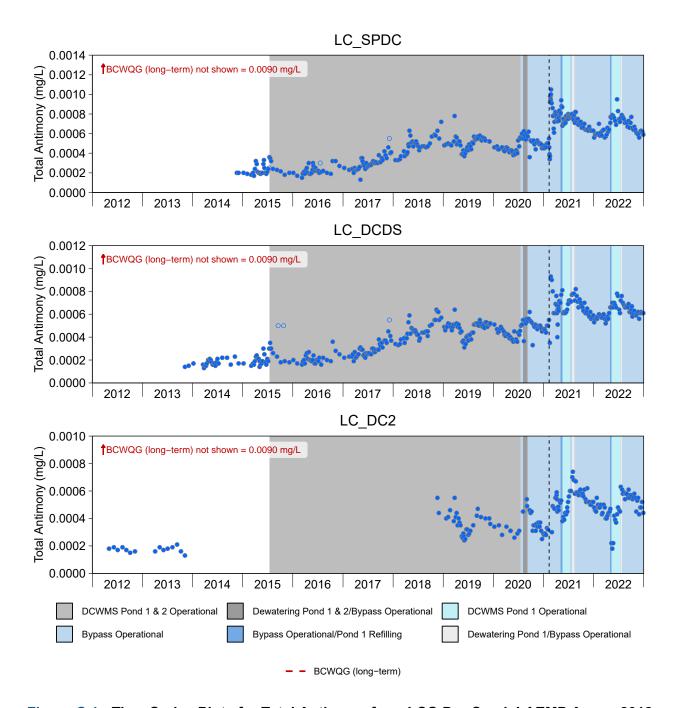


Figure C.1: Time Series Plots for Total Antimony from LCO Dry Creek LAEMP Areas, 2012 to 2022

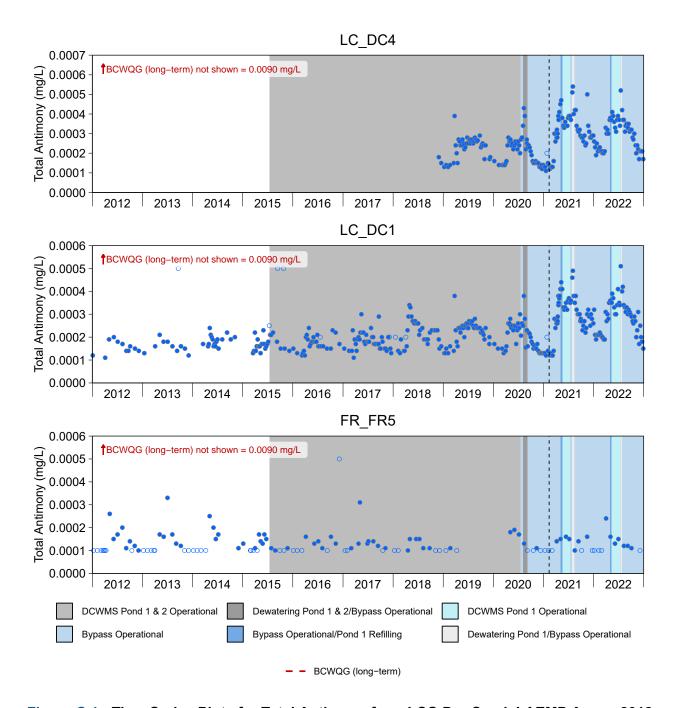


Figure C.1: Time Series Plots for Total Antimony from LCO Dry Creek LAEMP Areas, 2012 to 2022

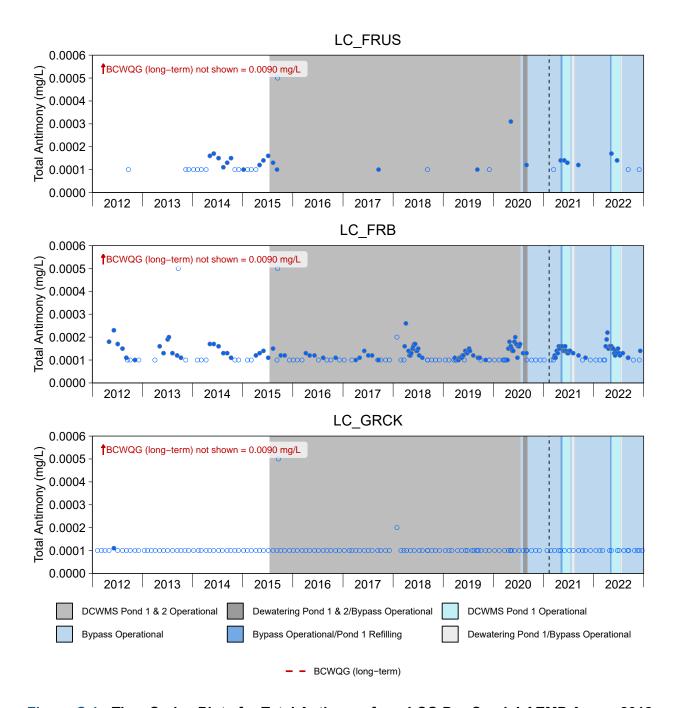


Figure C.1: Time Series Plots for Total Antimony from LCO Dry Creek LAEMP Areas, 2012 to 2022

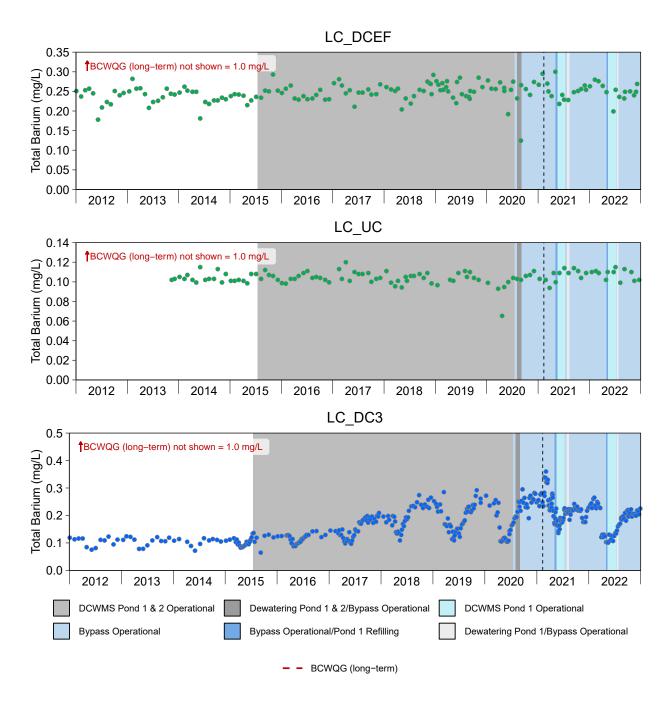


Figure C.2: Time Series Plots for Total Barium from LCO Dry Creek LAEMP Areas, 2012 to 2022

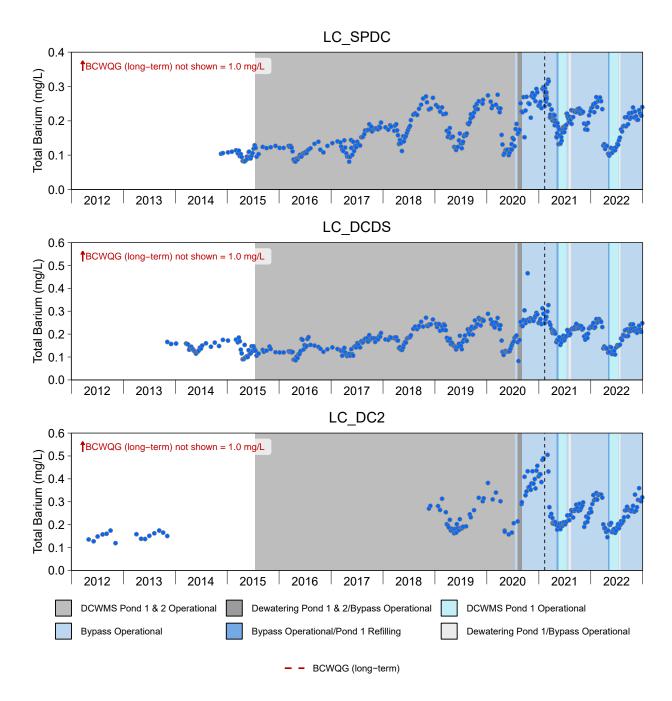


Figure C.2: Time Series Plots for Total Barium from LCO Dry Creek LAEMP Areas, 2012 to 2022

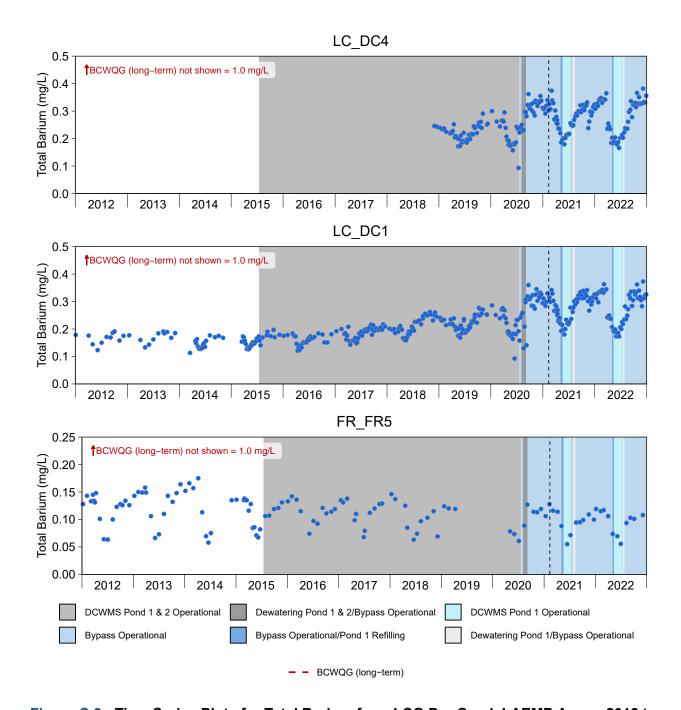


Figure C.2: Time Series Plots for Total Barium from LCO Dry Creek LAEMP Areas, 2012 to 2022

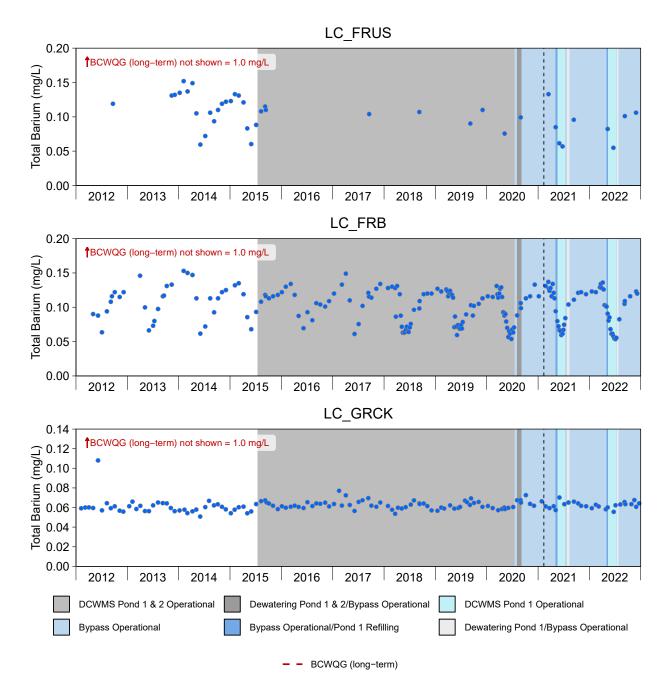


Figure C.2: Time Series Plots for Total Barium from LCO Dry Creek LAEMP Areas, 2012 to 2022

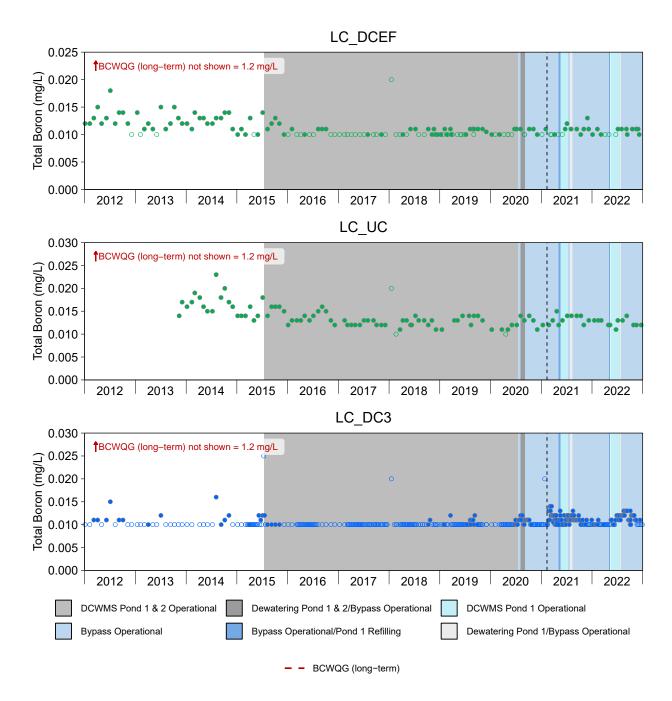


Figure C.3: Time Series Plots for Total Boron from LCO Dry Creek LAEMP Areas, 2012 to 2022

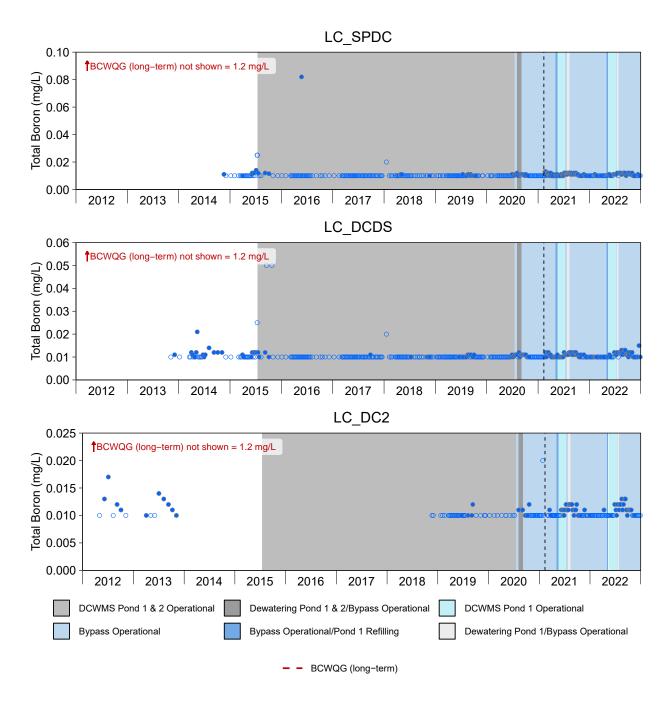


Figure C.3: Time Series Plots for Total Boron from LCO Dry Creek LAEMP Areas, 2012 to 2022

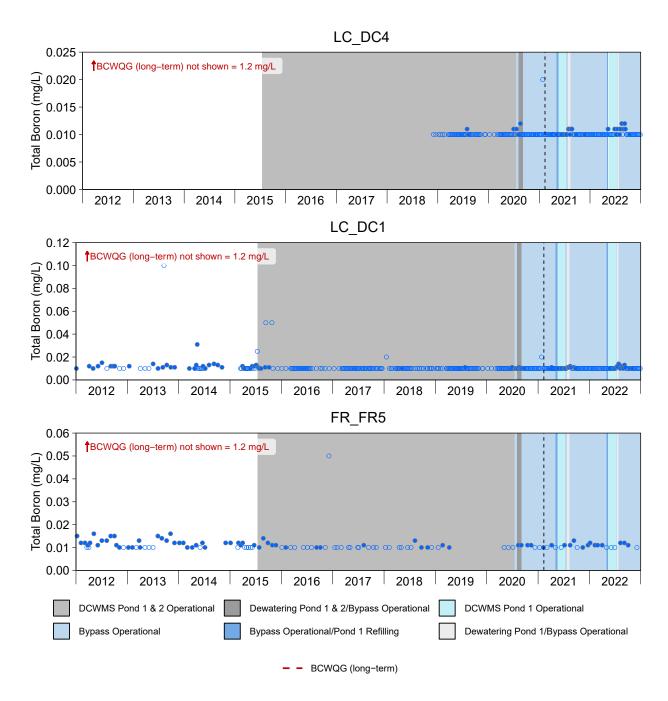


Figure C.3: Time Series Plots for Total Boron from LCO Dry Creek LAEMP Areas, 2012 to 2022

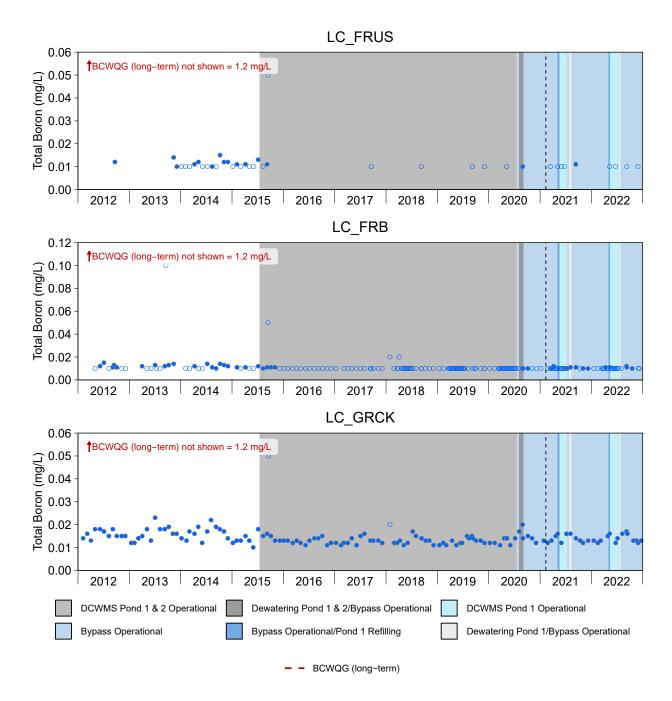


Figure C.3: Time Series Plots for Total Boron from LCO Dry Creek LAEMP Areas, 2012 to 2022

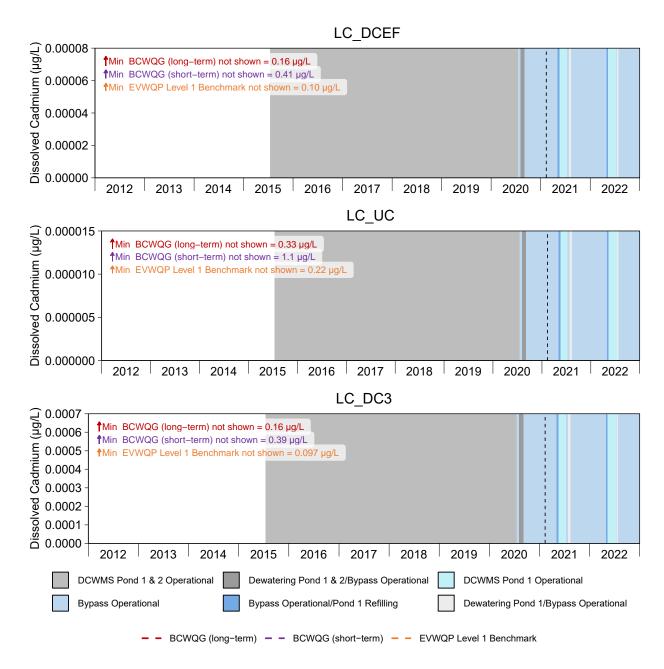


Figure C.4: Time Series Plots for Dissolved Cadmium from LCO Dry Creek LAEMP Areas, 2012 to 2022

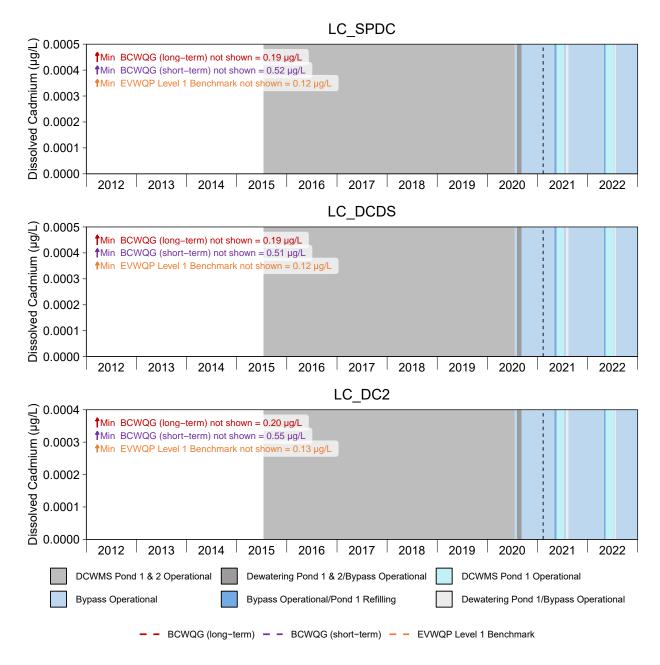


Figure C.4: Time Series Plots for Dissolved Cadmium from LCO Dry Creek LAEMP Areas, 2012 to 2022

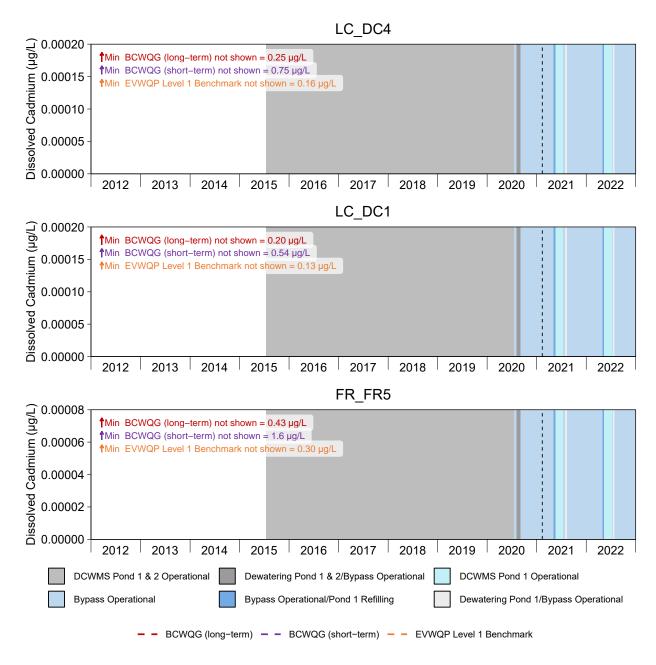


Figure C.4: Time Series Plots for Dissolved Cadmium from LCO Dry Creek LAEMP Areas, 2012 to 2022

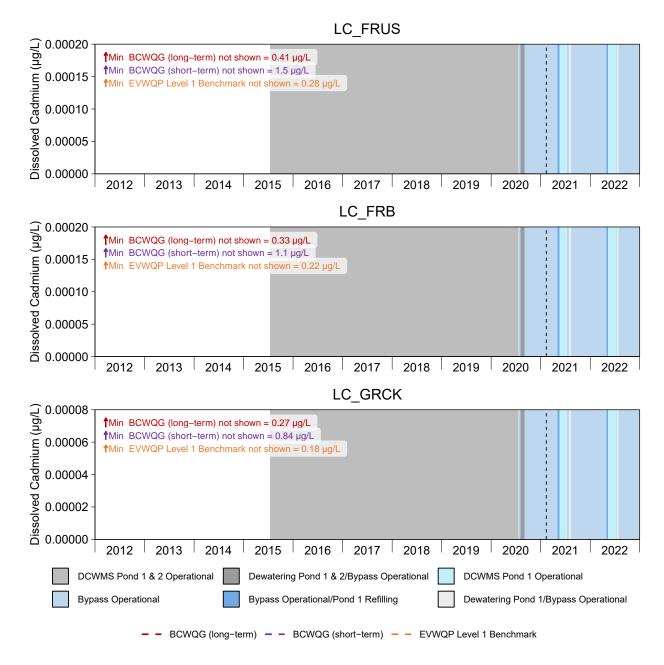


Figure C.4: Time Series Plots for Dissolved Cadmium from LCO Dry Creek LAEMP Areas, 2012 to 2022

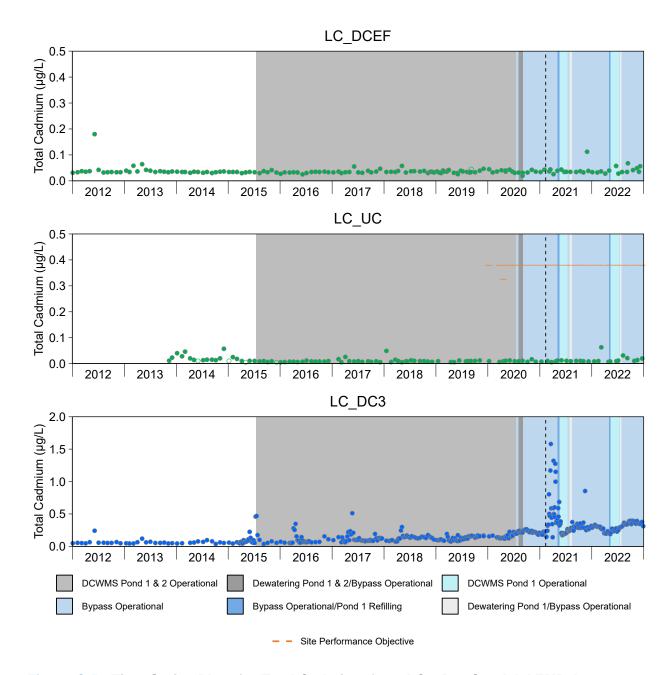


Figure C.5: Time Series Plots for Total Cadmium from LCO Dry Creek LAEMP Areas, 2012 to 2022

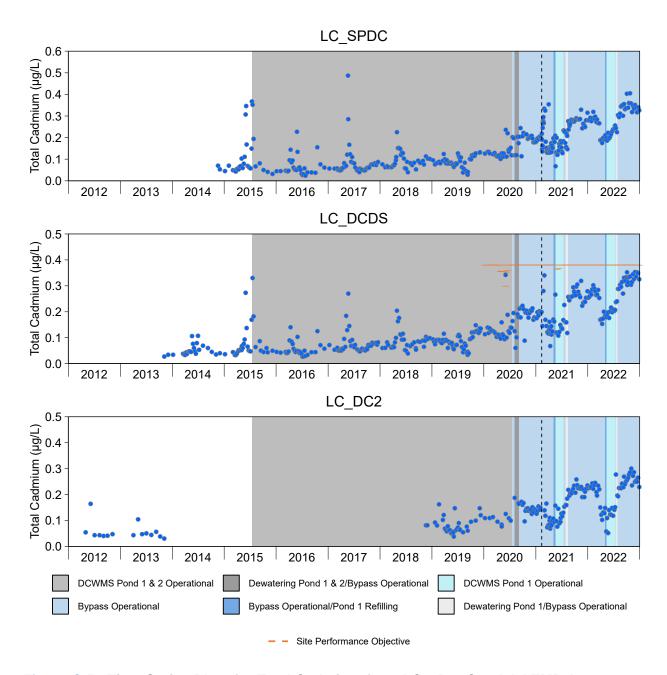


Figure C.5: Time Series Plots for Total Cadmium from LCO Dry Creek LAEMP Areas, 2012 to 2022

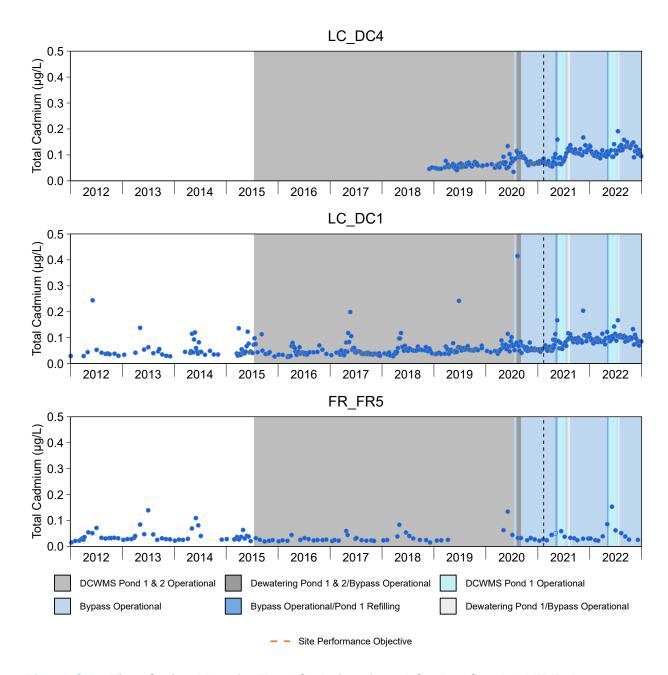


Figure C.5: Time Series Plots for Total Cadmium from LCO Dry Creek LAEMP Areas, 2012 to 2022

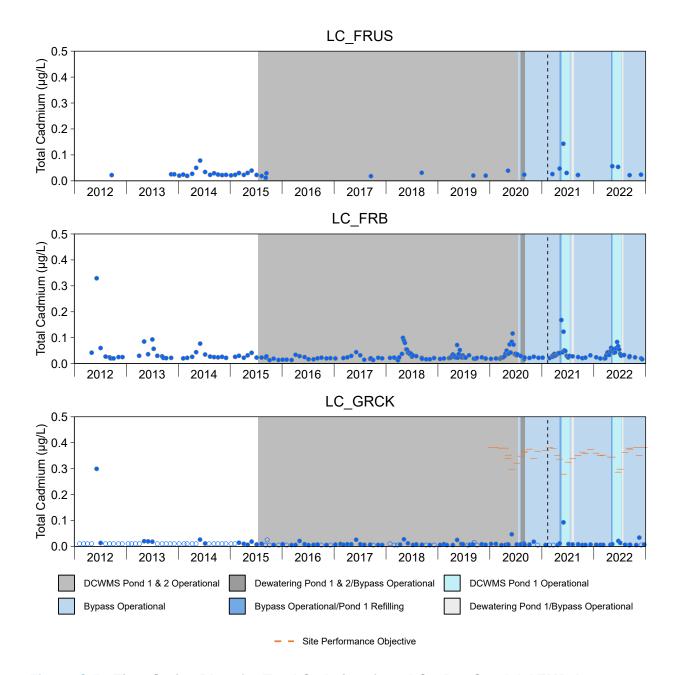


Figure C.5: Time Series Plots for Total Cadmium from LCO Dry Creek LAEMP Areas, 2012 to 2022

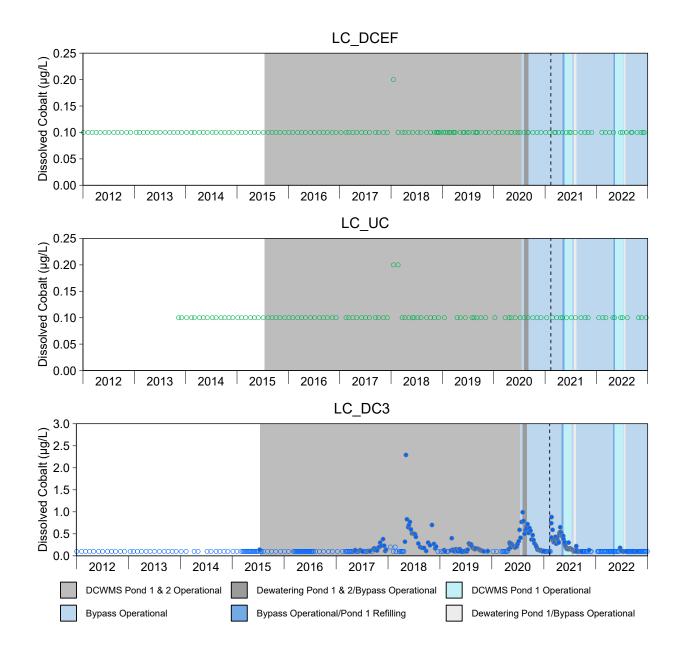


Figure C.6: Time Series Plots for Dissolved Cobalt from LCO Dry Creek LAEMP Areas, 2012 to 2022

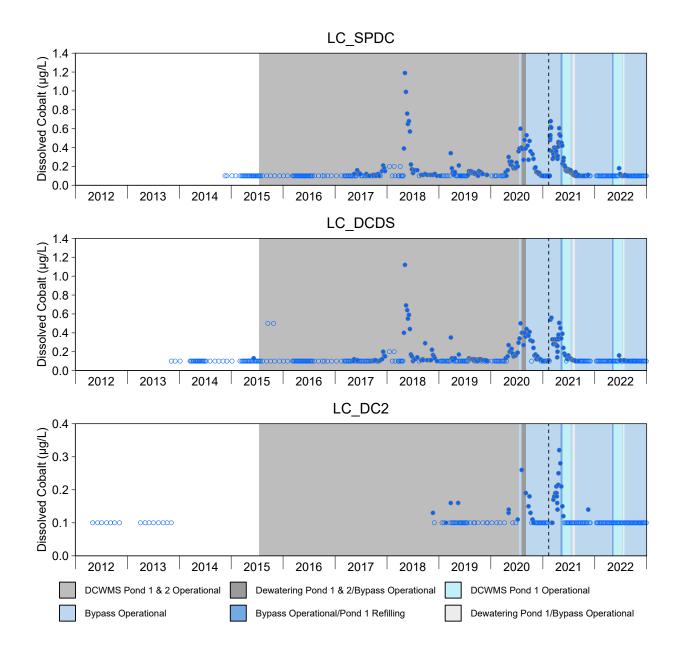


Figure C.6: Time Series Plots for Dissolved Cobalt from LCO Dry Creek LAEMP Areas, 2012 to 2022

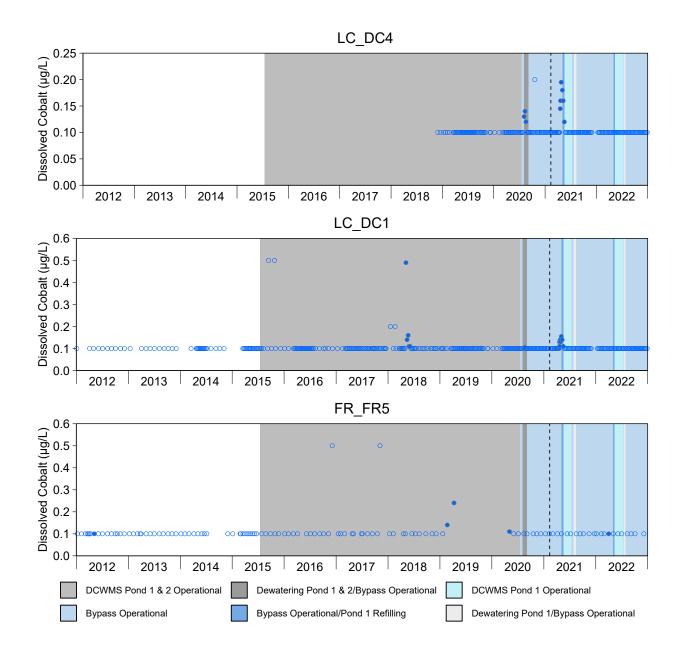


Figure C.6: Time Series Plots for Dissolved Cobalt from LCO Dry Creek LAEMP Areas, 2012 to 2022

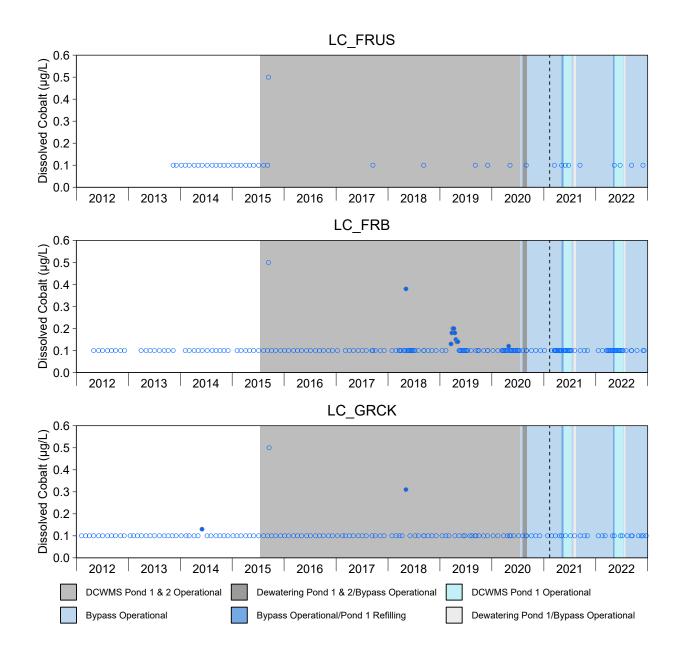


Figure C.6: Time Series Plots for Dissolved Cobalt from LCO Dry Creek LAEMP Areas, 2012 to 2022

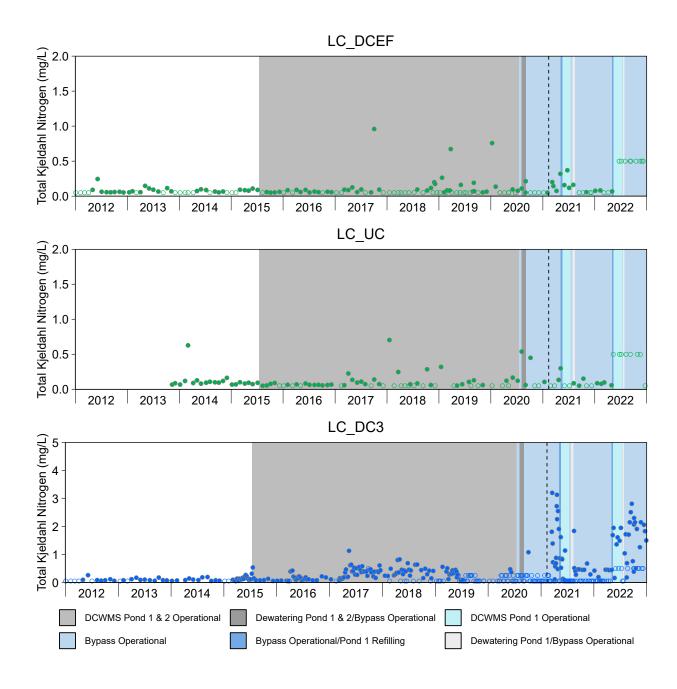


Figure C.7: Time Series Plots for Total Kjeldahl Nitrogen from LCO Dry Creek LAEMP Areas, 2012 to 2022

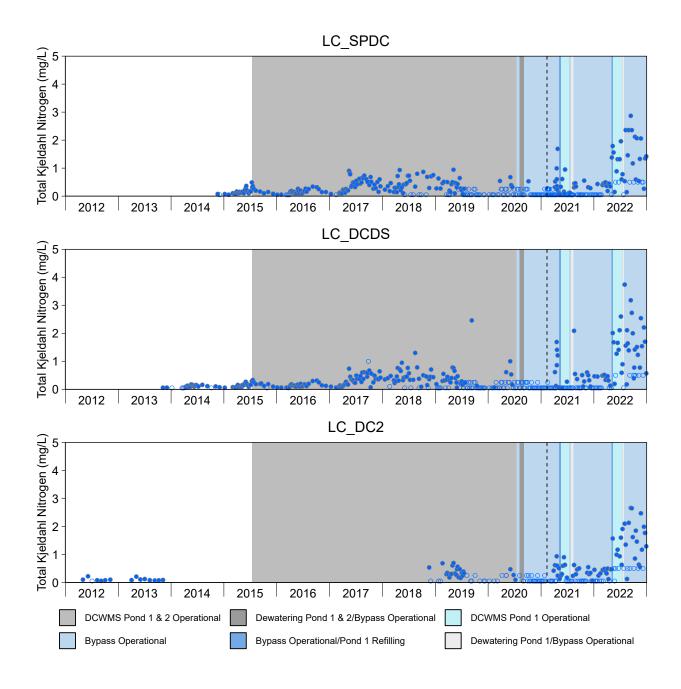


Figure C.7: Time Series Plots for Total Kjeldahl Nitrogen from LCO Dry Creek LAEMP Areas, 2012 to 2022

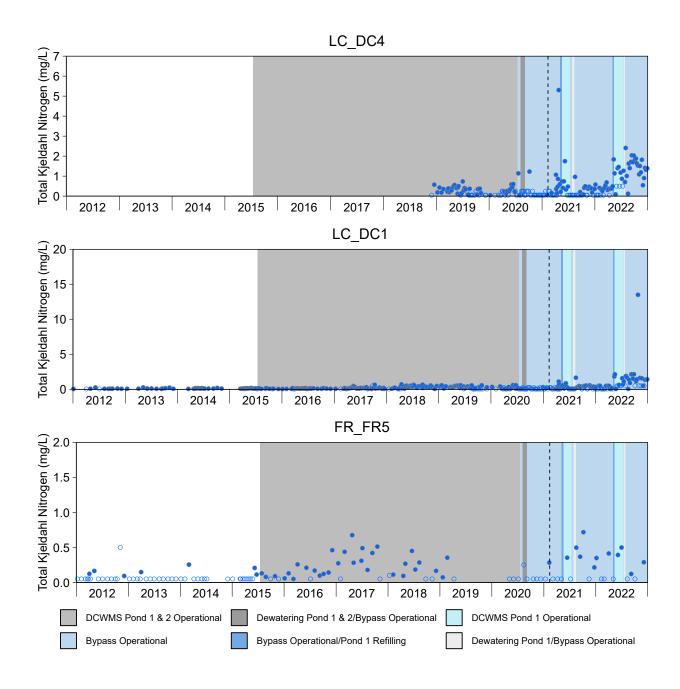


Figure C.7: Time Series Plots for Total Kjeldahl Nitrogen from LCO Dry Creek LAEMP Areas, 2012 to 2022

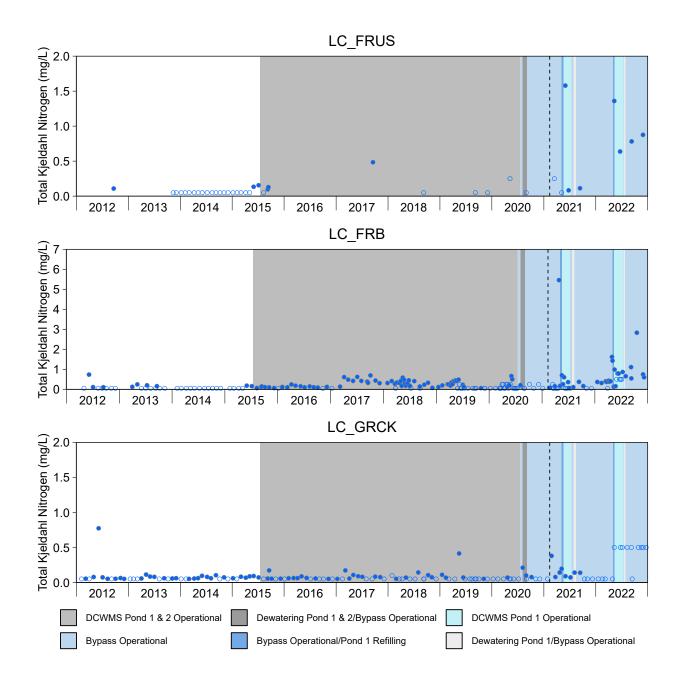


Figure C.7: Time Series Plots for Total Kjeldahl Nitrogen from LCO Dry Creek LAEMP Areas, 2012 to 2022

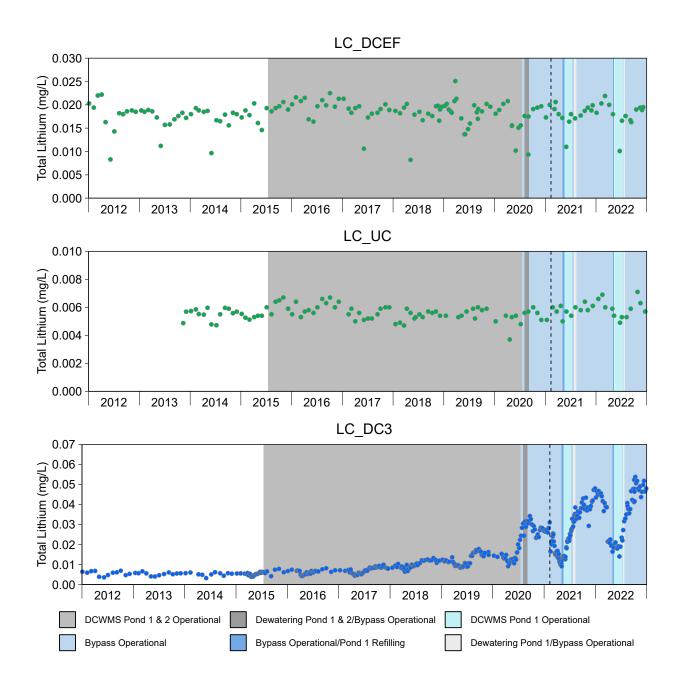


Figure C.8: Time Series Plots for Total Lithium from LCO Dry Creek LAEMP Areas, 2012 to 2022

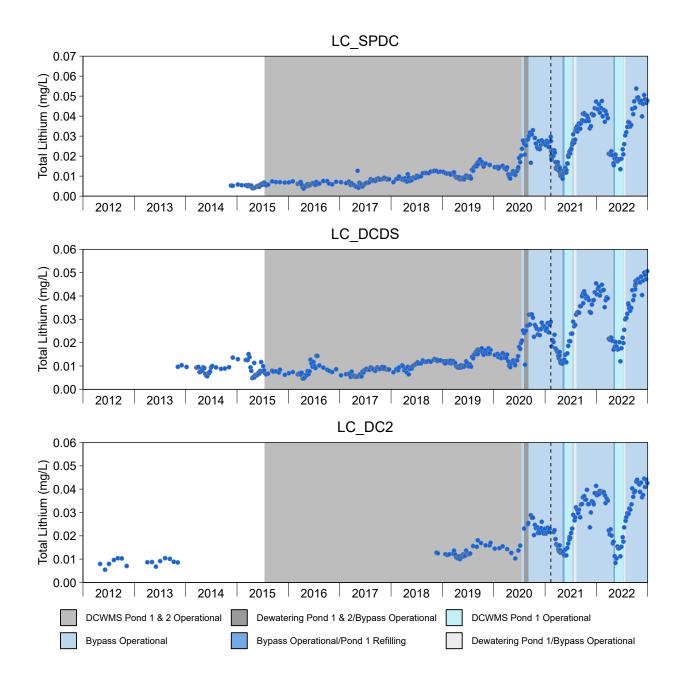


Figure C.8: Time Series Plots for Total Lithium from LCO Dry Creek LAEMP Areas, 2012 to 2022

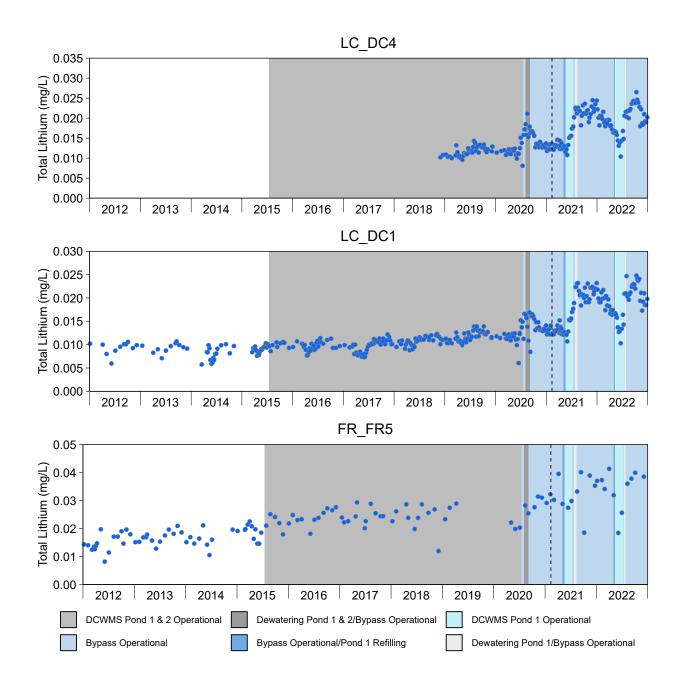


Figure C.8: Time Series Plots for Total Lithium from LCO Dry Creek LAEMP Areas, 2012 to 2022

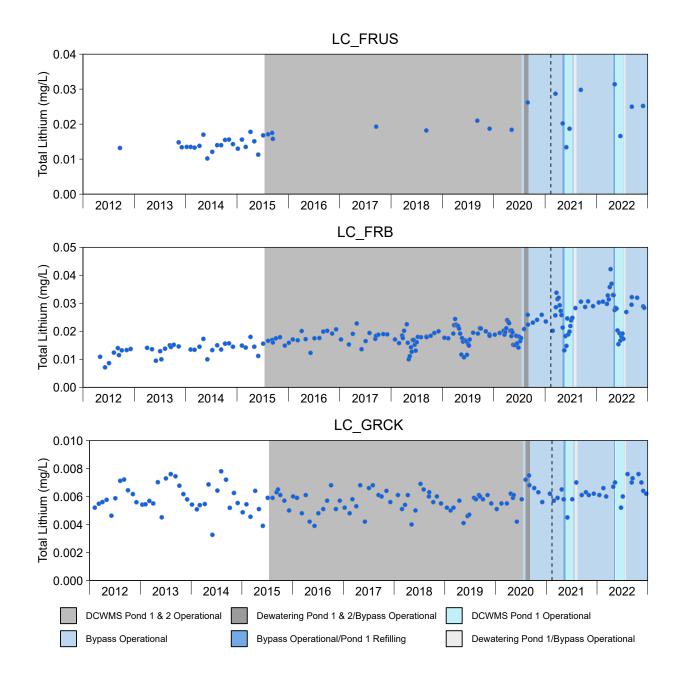


Figure C.8: Time Series Plots for Total Lithium from LCO Dry Creek LAEMP Areas, 2012 to 2022

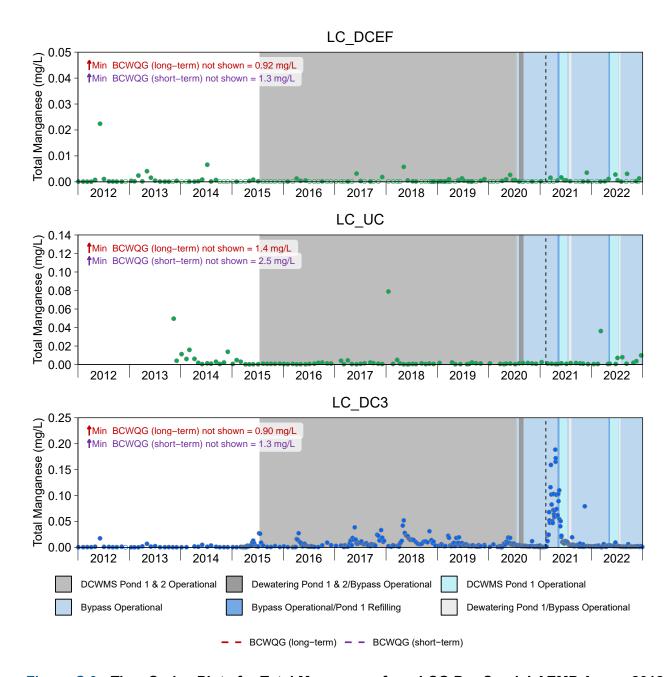


Figure C.9: Time Series Plots for Total Manganese from LCO Dry Creek LAEMP Areas, 2012 to 2022

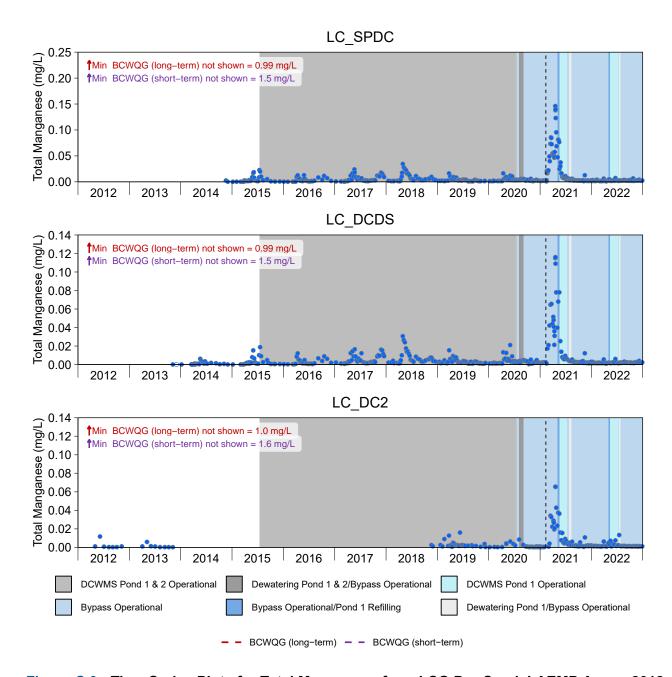


Figure C.9: Time Series Plots for Total Manganese from LCO Dry Creek LAEMP Areas, 2012 to 2022



Figure C.9: Time Series Plots for Total Manganese from LCO Dry Creek LAEMP Areas, 2012 to 2022

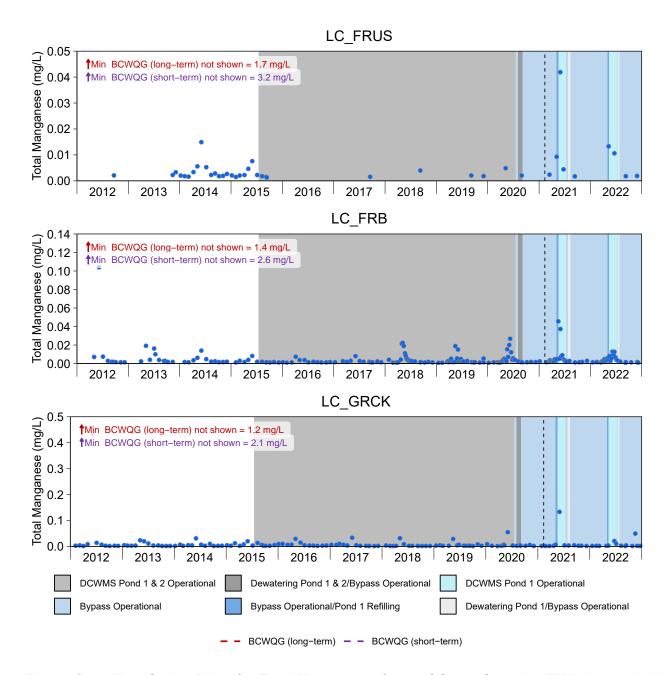


Figure C.9: Time Series Plots for Total Manganese from LCO Dry Creek LAEMP Areas, 2012 to 2022

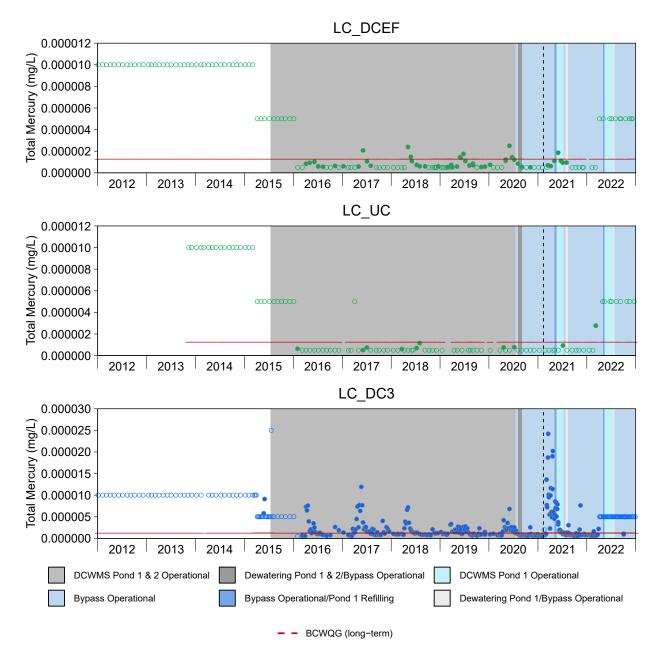


Figure C.10: Time Series Plots for Total Mercury from LCO Dry Creek LAEMP Areas, 2012 to 2022

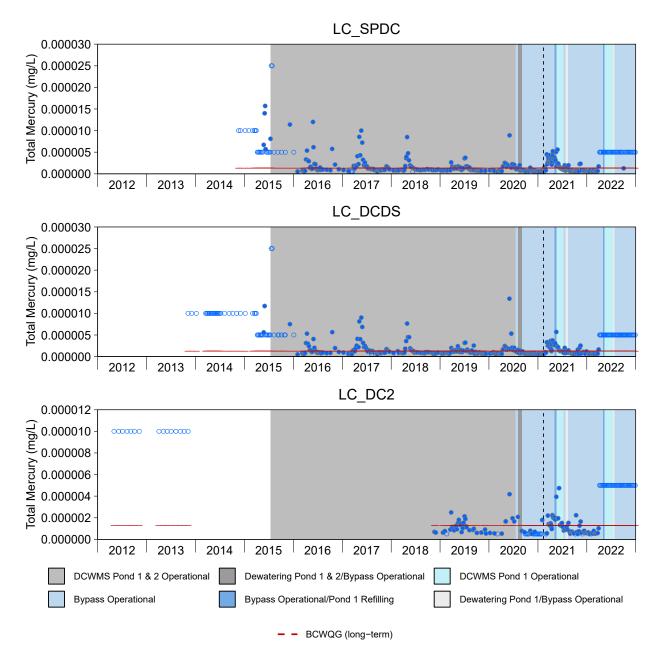


Figure C.10: Time Series Plots for Total Mercury from LCO Dry Creek LAEMP Areas, 2012 to 2022

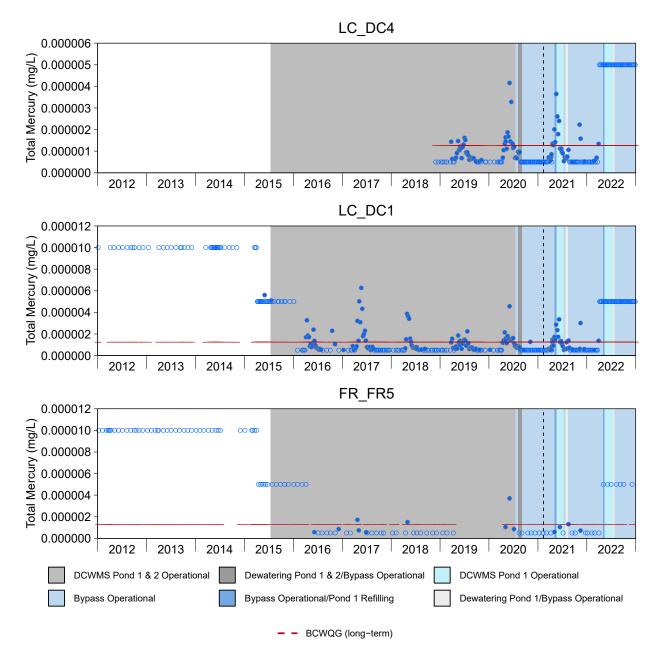


Figure C.10: Time Series Plots for Total Mercury from LCO Dry Creek LAEMP Areas, 2012 to 2022

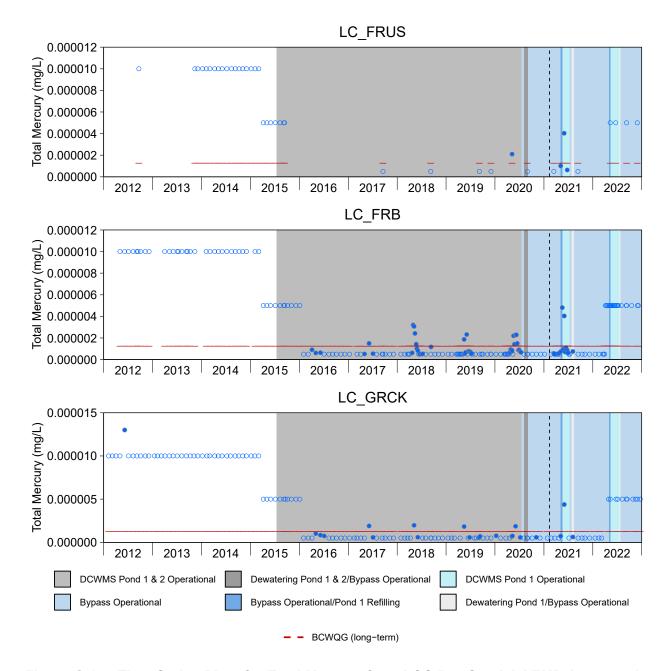


Figure C.10: Time Series Plots for Total Mercury from LCO Dry Creek LAEMP Areas, 2012 to 2022

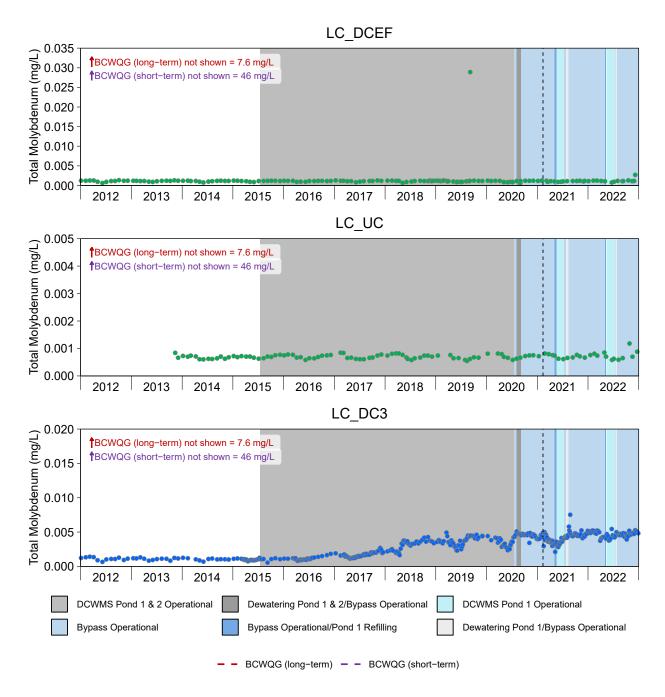


Figure C.11: Time Series Plots for Total Molybdenum from LCO Dry Creek LAEMP Areas, 2012 to 2022

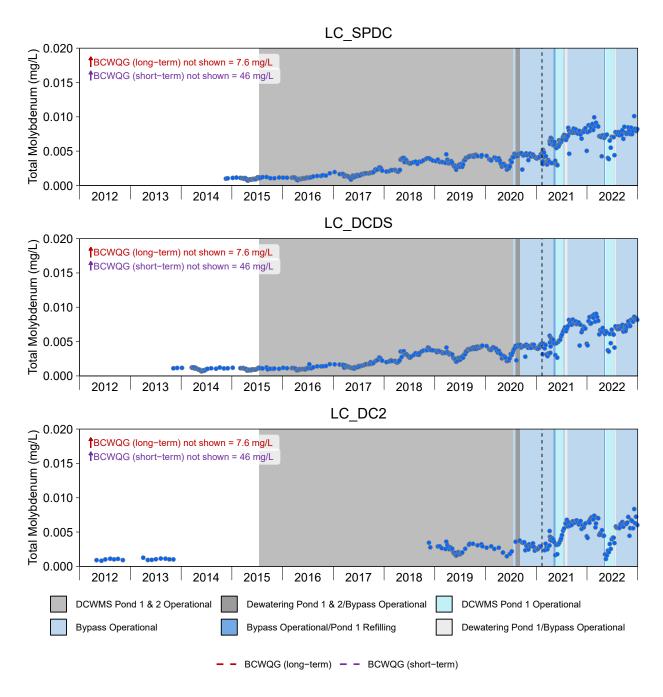


Figure C.11: Time Series Plots for Total Molybdenum from LCO Dry Creek LAEMP Areas, 2012 to 2022

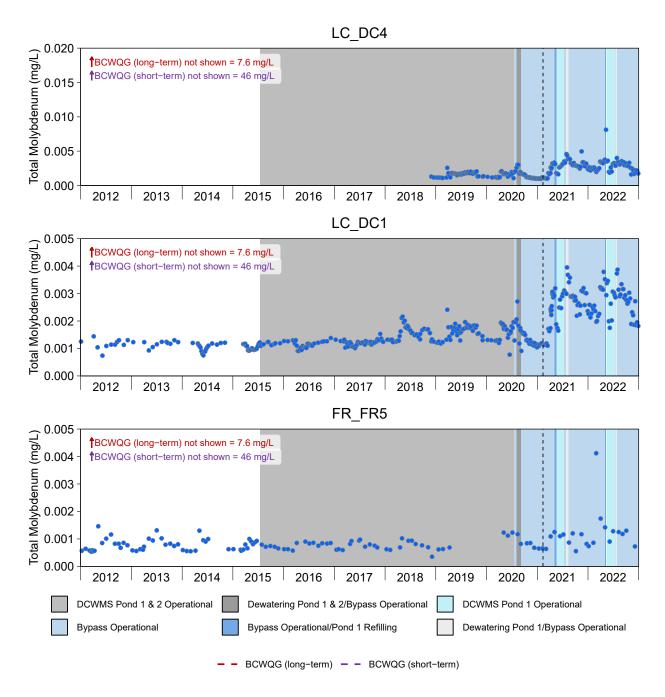


Figure C.11: Time Series Plots for Total Molybdenum from LCO Dry Creek LAEMP Areas, 2012 to 2022

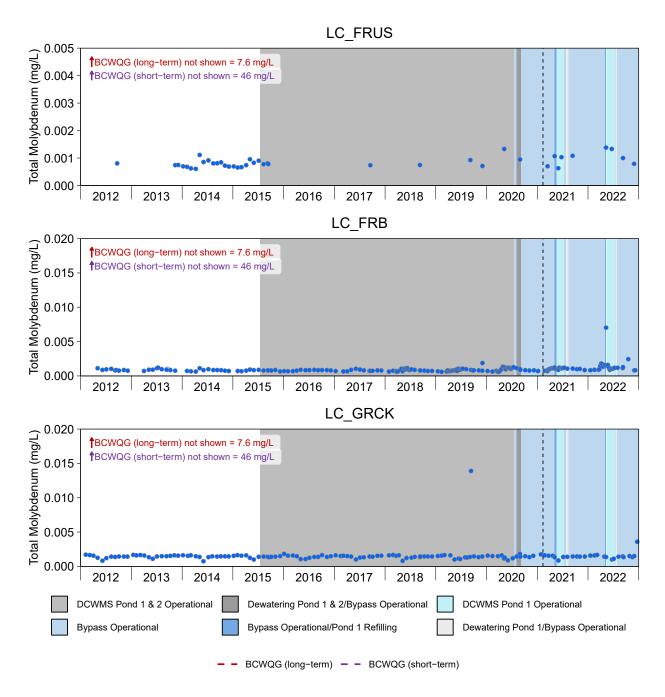


Figure C.11: Time Series Plots for Total Molybdenum from LCO Dry Creek LAEMP Areas, 2012 to 2022

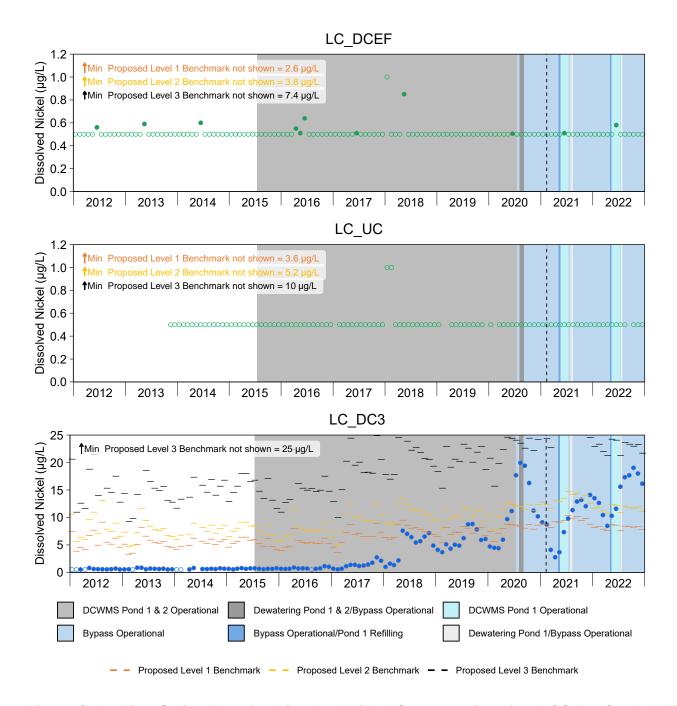


Figure C.12: Time Series Plots for Dissolved Nickel Concentrations from LCO Dry Creek LAEMP Areas, 2012 to 2022

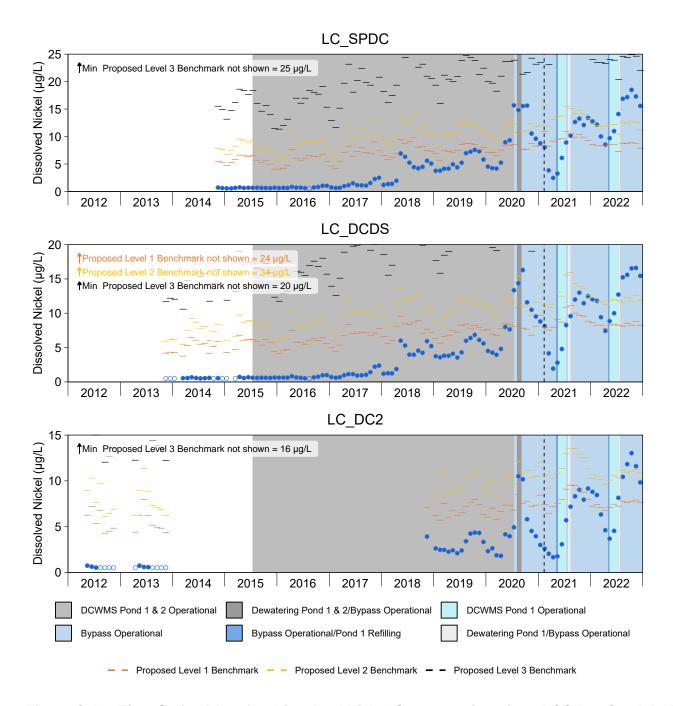


Figure C.12: Time Series Plots for Dissolved Nickel Concentrations from LCO Dry Creek LAEMP Areas, 2012 to 2022

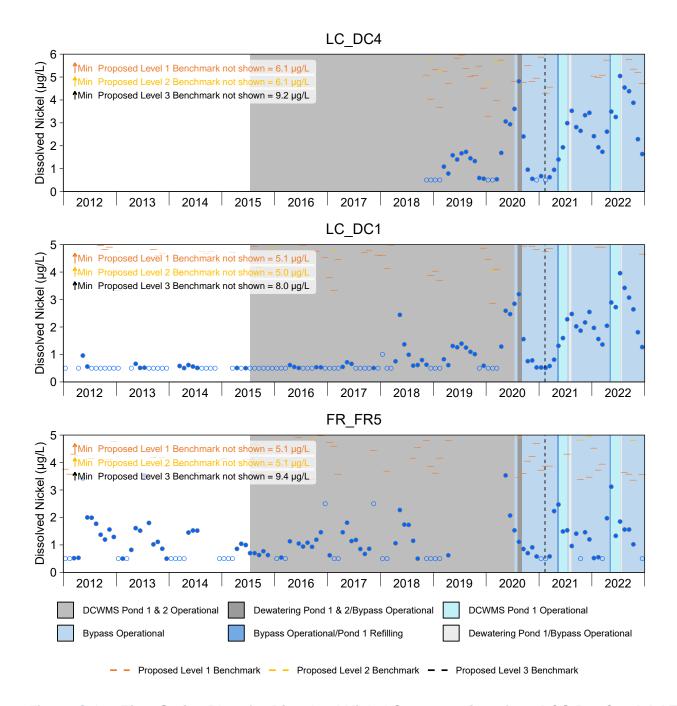


Figure C.12: Time Series Plots for Dissolved Nickel Concentrations from LCO Dry Creek LAEMP Areas, 2012 to 2022

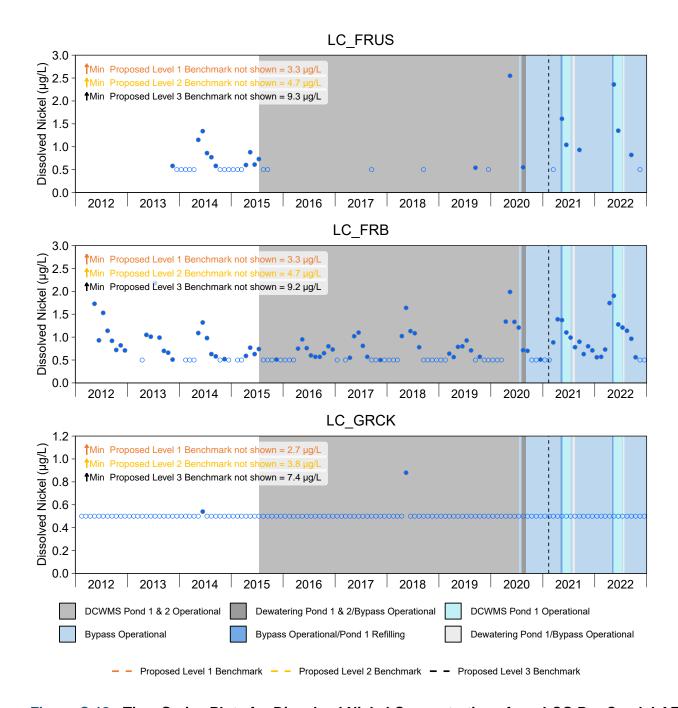


Figure C.12: Time Series Plots for Dissolved Nickel Concentrations from LCO Dry Creek LAEMP Areas, 2012 to 2022

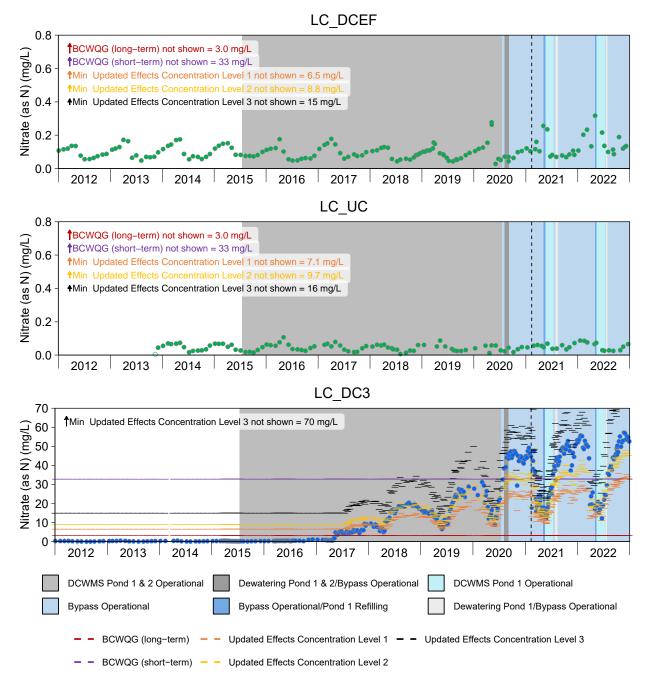


Figure C.13: Time Series Plots for Nitrate from LCO Dry Creek LAEMP Areas, 2012 to 2022

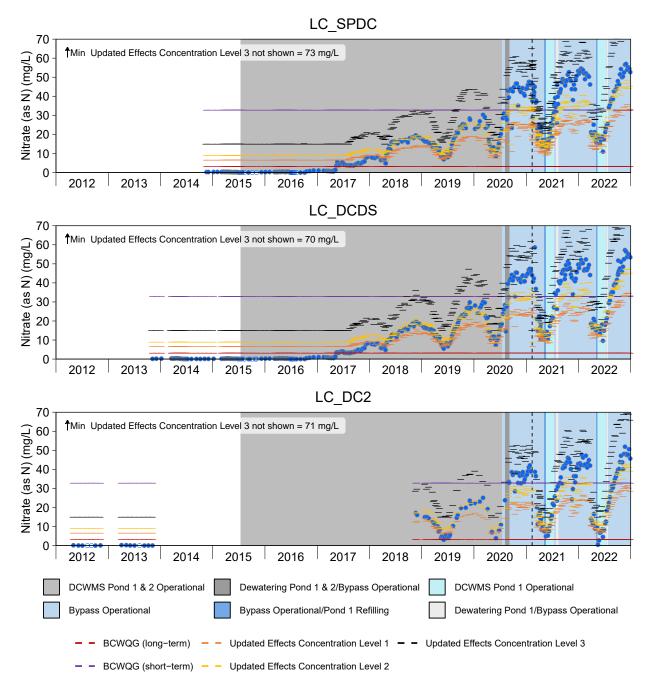


Figure C.13: Time Series Plots for Nitrate from LCO Dry Creek LAEMP Areas, 2012 to 2022

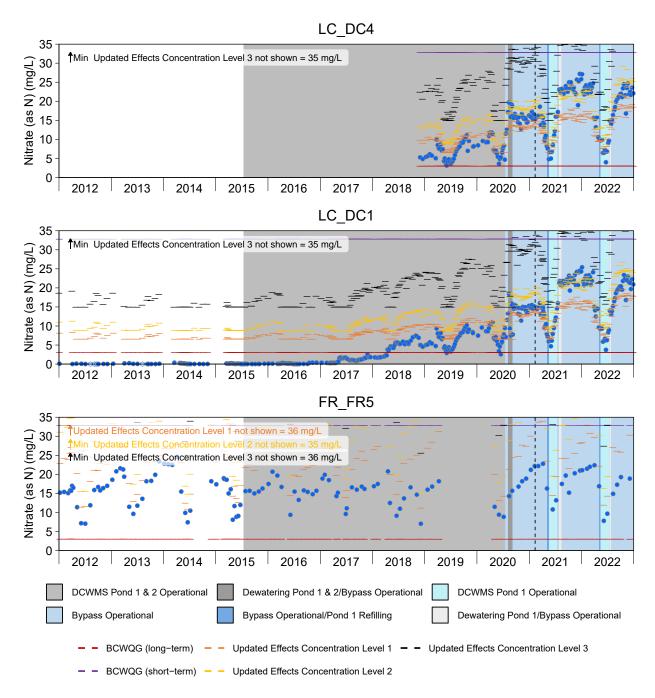


Figure C.13: Time Series Plots for Nitrate from LCO Dry Creek LAEMP Areas, 2012 to 2022

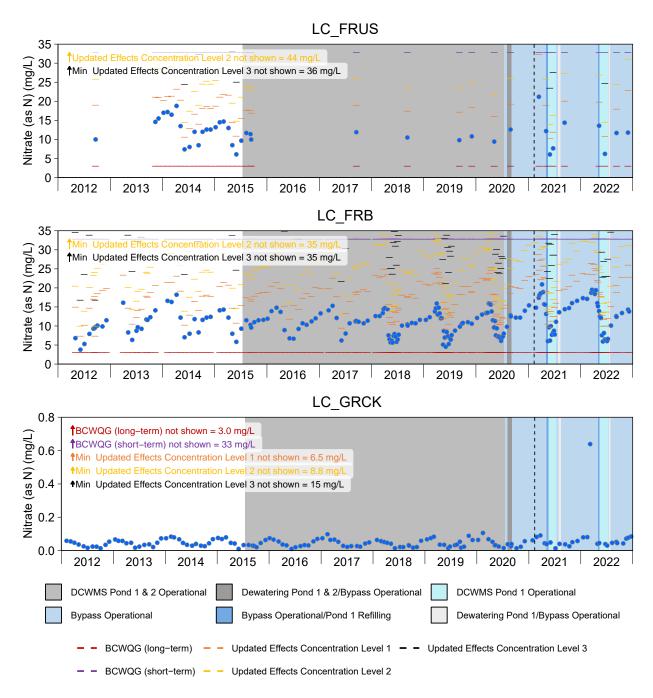


Figure C.13: Time Series Plots for Nitrate from LCO Dry Creek LAEMP Areas, 2012 to 2022

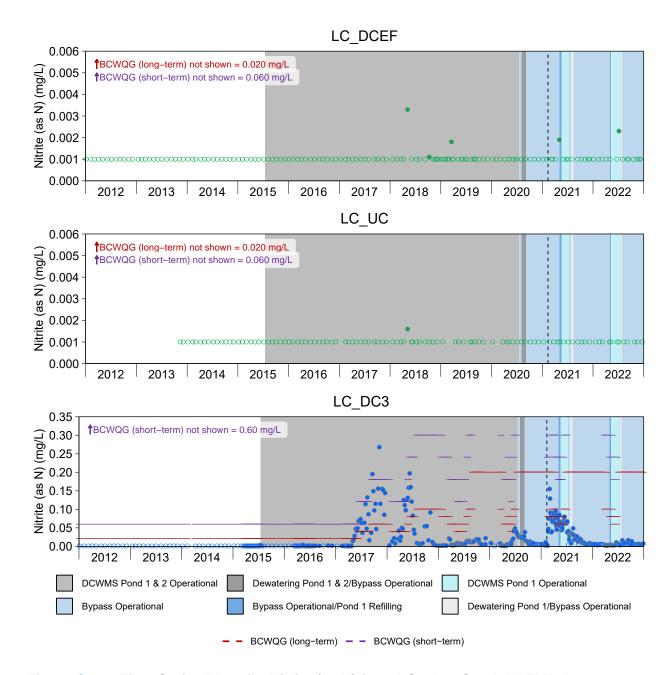


Figure C.14: Time Series Plots for Nitrite (as N) from LCO Dry Creek LAEMP Areas, 2012 to 2022

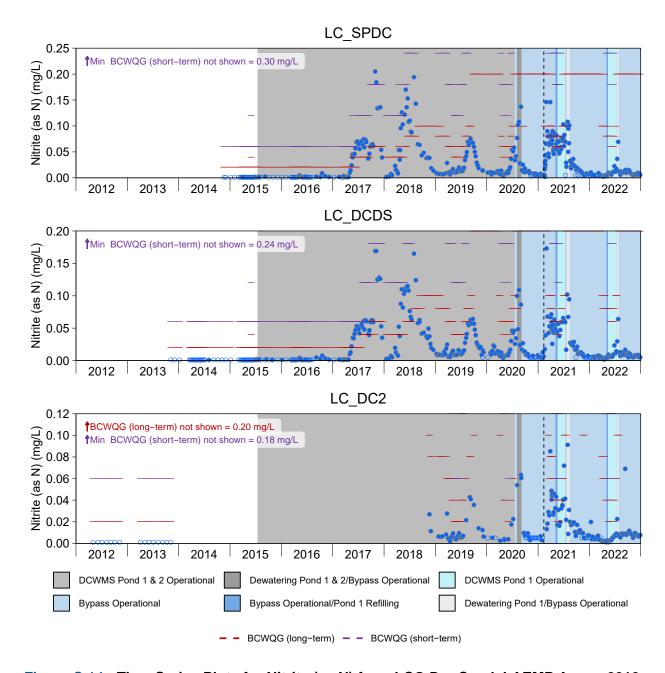


Figure C.14: Time Series Plots for Nitrite (as N) from LCO Dry Creek LAEMP Areas, 2012 to 2022

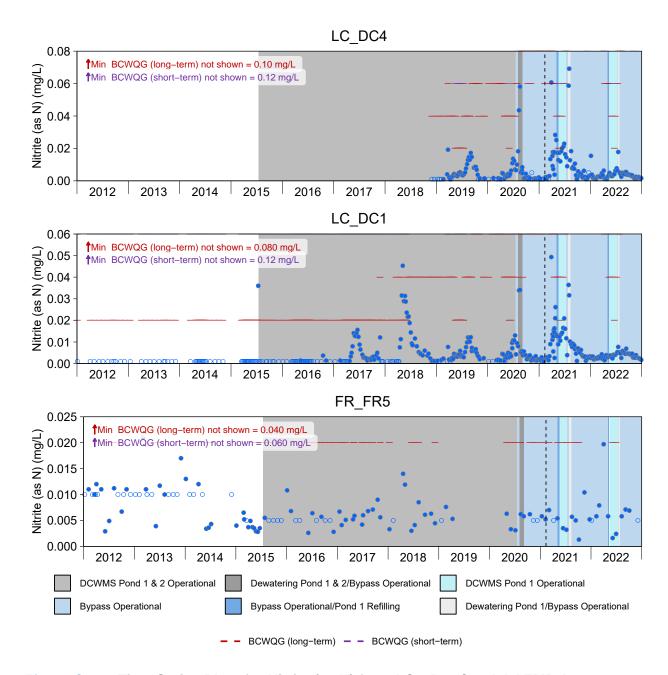


Figure C.14: Time Series Plots for Nitrite (as N) from LCO Dry Creek LAEMP Areas, 2012 to 2022

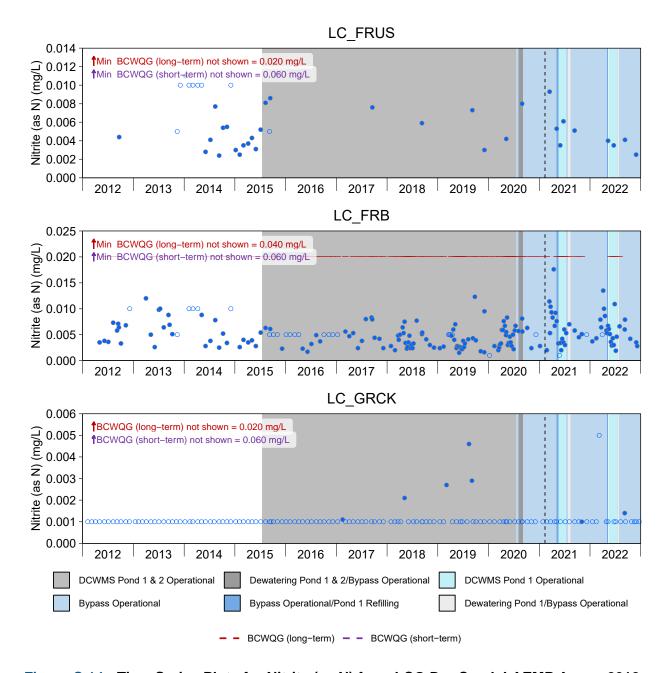


Figure C.14: Time Series Plots for Nitrite (as N) from LCO Dry Creek LAEMP Areas, 2012 to 2022

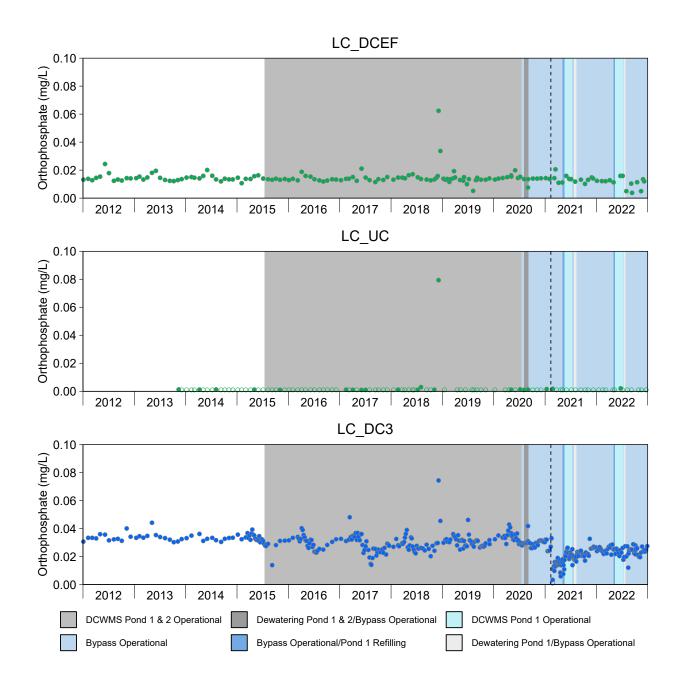


Figure C.15: Time Series Plots for Orthophosphate from LCO Dry Creek LAEMP Areas, 2012 to 2022

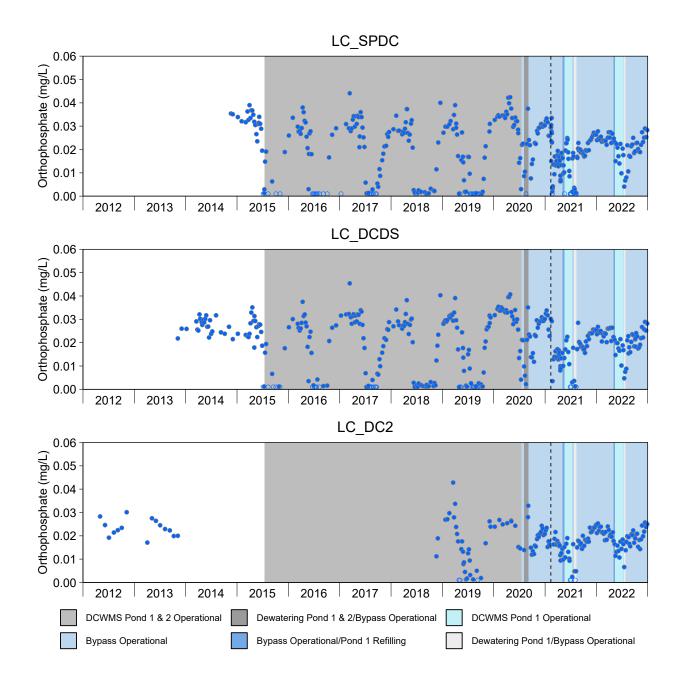


Figure C.15: Time Series Plots for Orthophosphate from LCO Dry Creek LAEMP Areas, 2012 to 2022

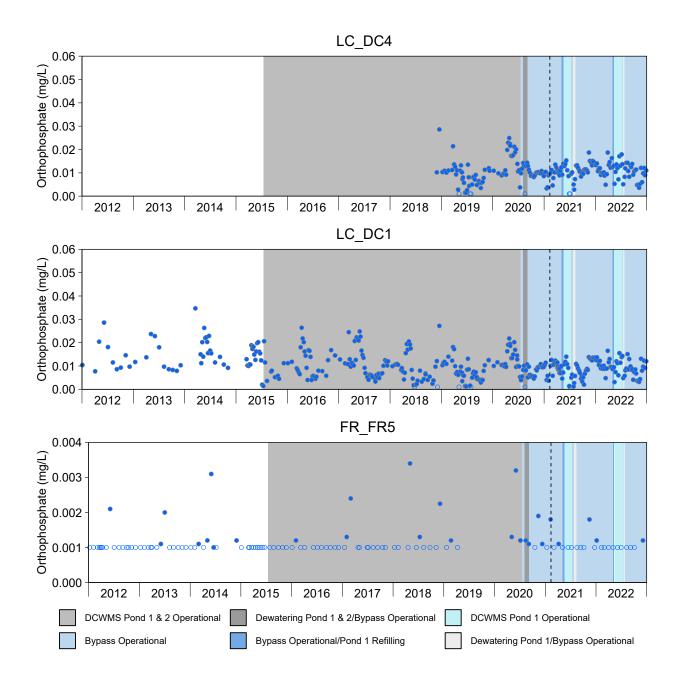


Figure C.15: Time Series Plots for Orthophosphate from LCO Dry Creek LAEMP Areas, 2012 to 2022

Figure C.15: Time Series Plots for Orthophosphate from LCO Dry Creek LAEMP Areas, 2012 to 2022

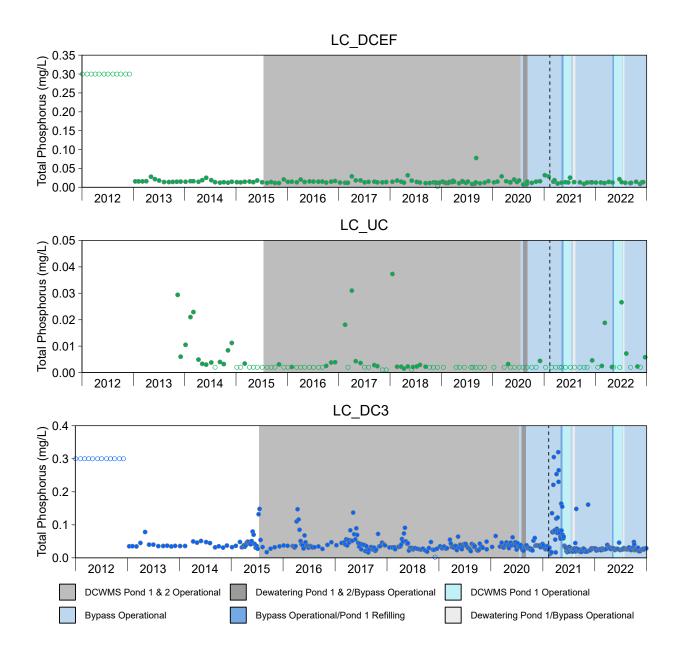


Figure C.16: Time Series Plots for Phosphorus from LCO Dry Creek LAEMP Areas, 2012 to 2022

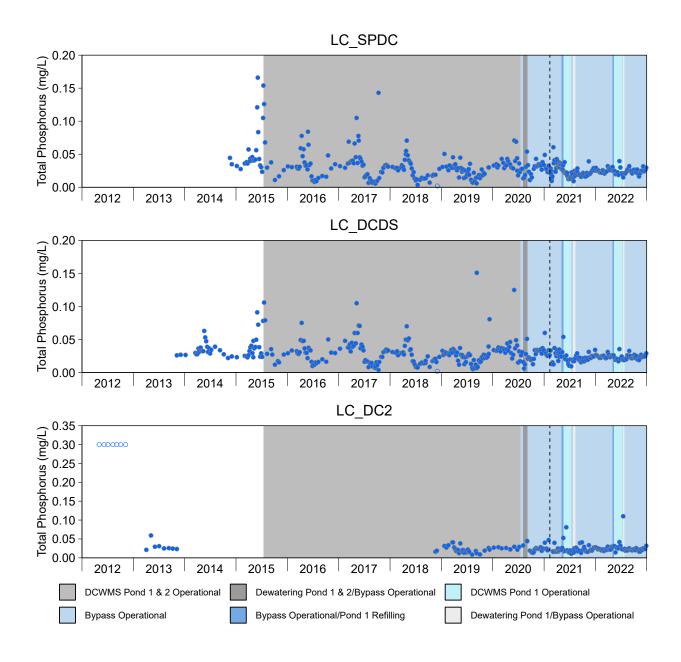


Figure C.16: Time Series Plots for Phosphorus from LCO Dry Creek LAEMP Areas, 2012 to 2022

Figure C.16: Time Series Plots for Phosphorus from LCO Dry Creek LAEMP Areas, 2012 to 2022

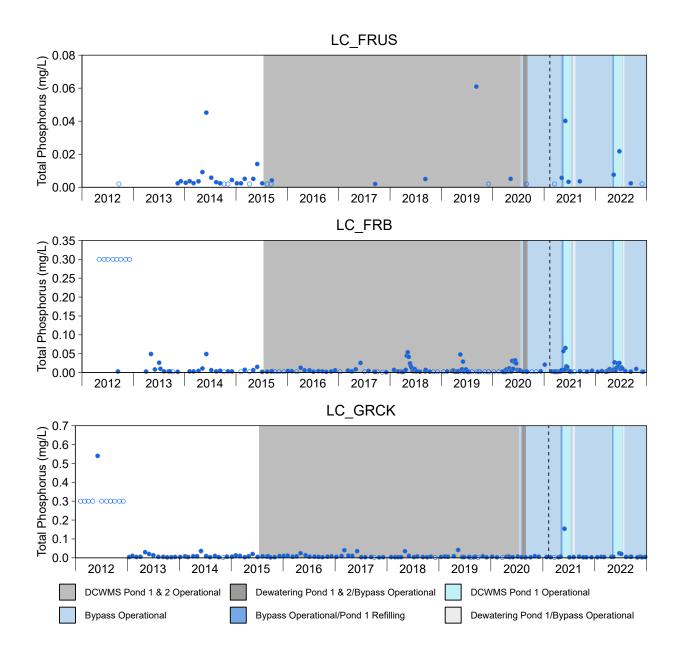


Figure C.16: Time Series Plots for Phosphorus from LCO Dry Creek LAEMP Areas, 2012 to 2022

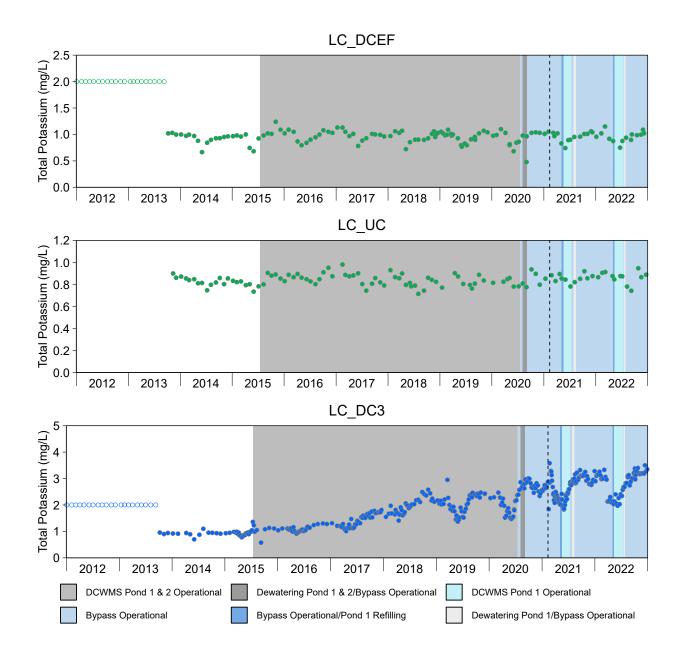


Figure C.17: Time Series Plots for Total Potassium from LCO Dry Creek LAEMP Areas, 2012 to 2022

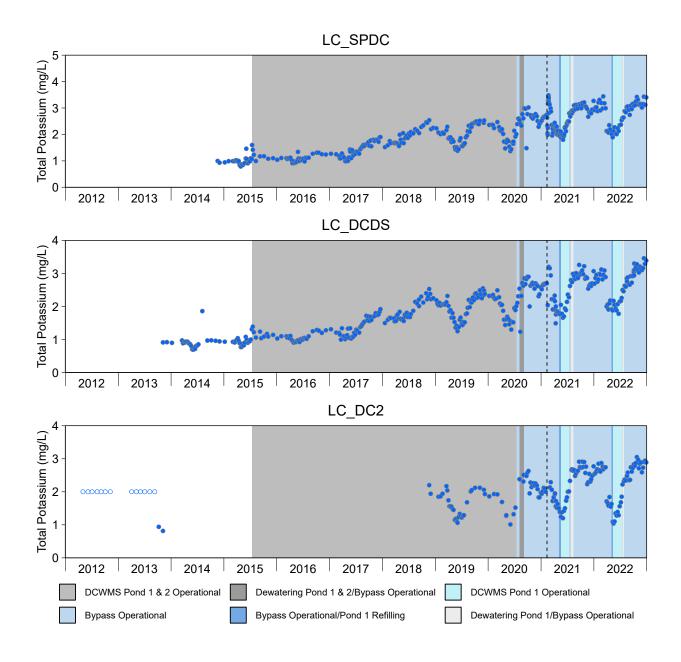


Figure C.17: Time Series Plots for Total Potassium from LCO Dry Creek LAEMP Areas, 2012 to 2022

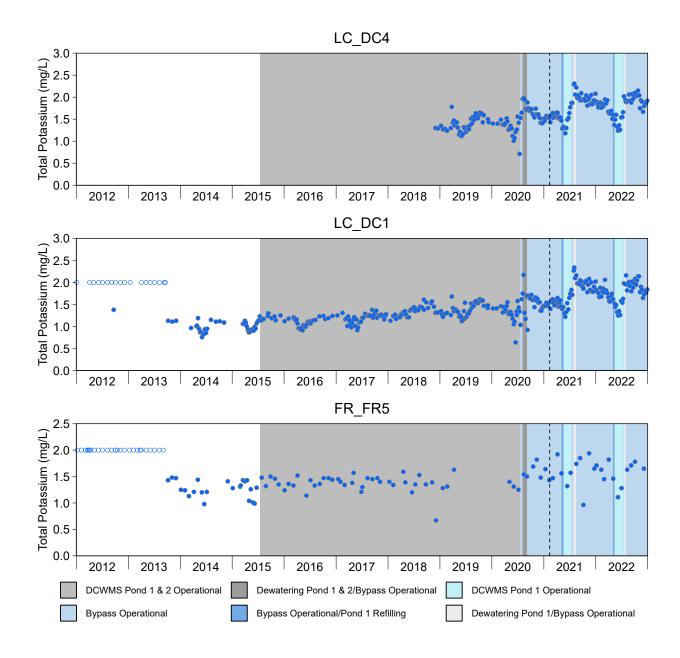


Figure C.17: Time Series Plots for Total Potassium from LCO Dry Creek LAEMP Areas, 2012 to 2022

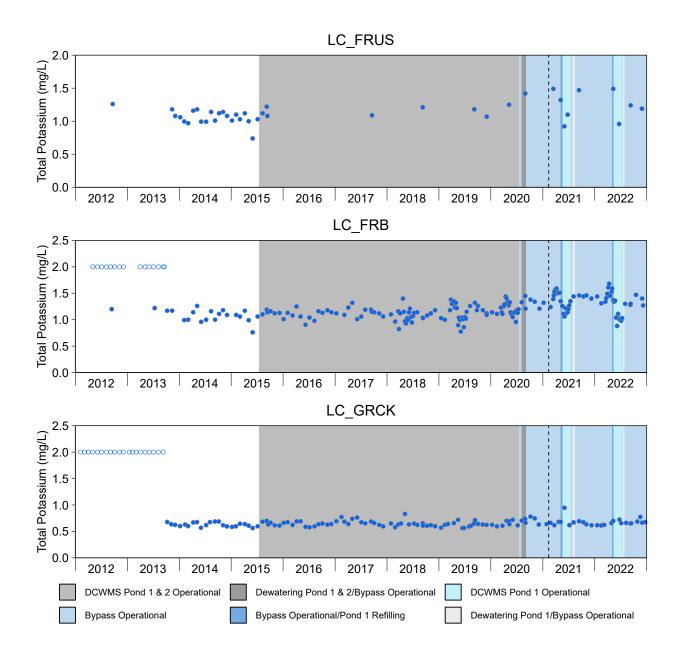


Figure C.17: Time Series Plots for Total Potassium from LCO Dry Creek LAEMP Areas, 2012 to 2022

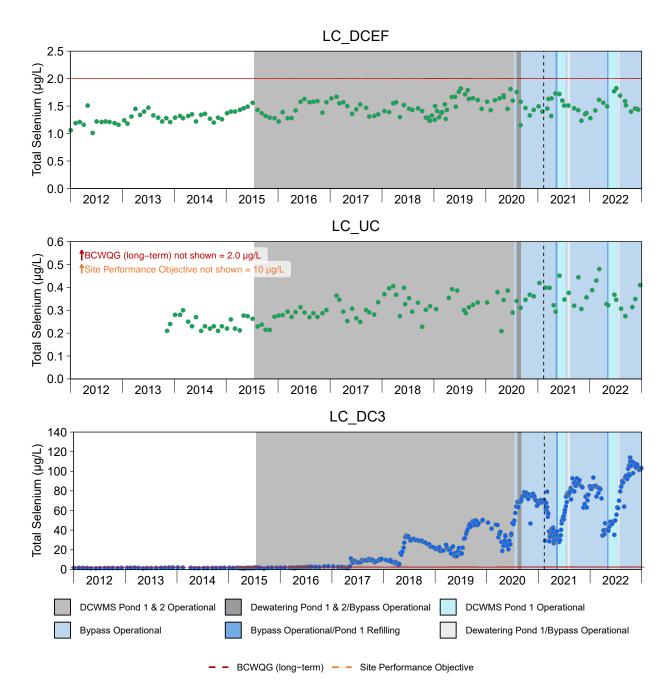


Figure C.18: Time Series Plots for Total Selenium from LCO Dry Creek LAEMP Areas, 2012 to 2022

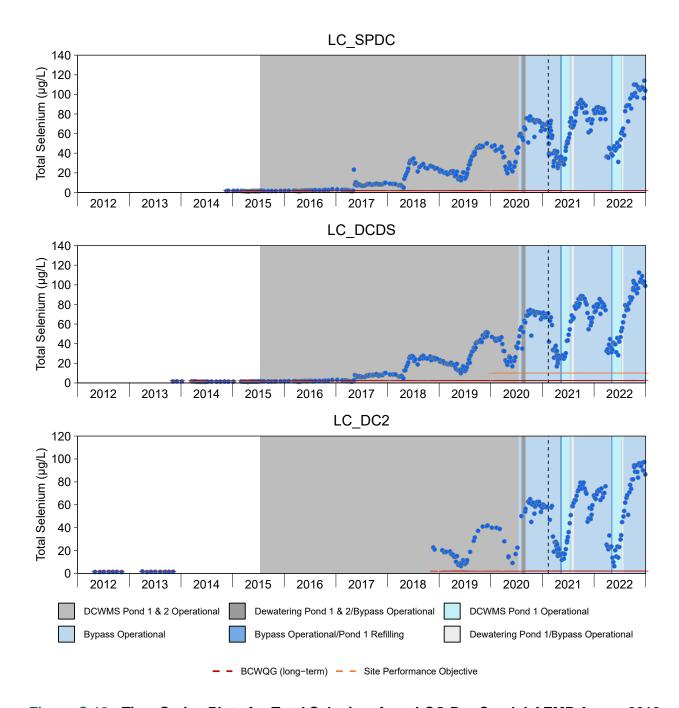


Figure C.18: Time Series Plots for Total Selenium from LCO Dry Creek LAEMP Areas, 2012 to 2022

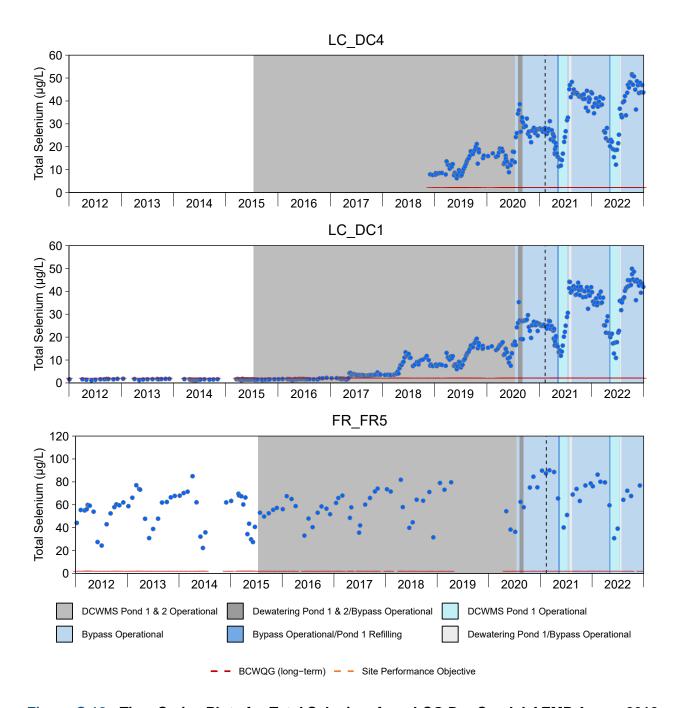


Figure C.18: Time Series Plots for Total Selenium from LCO Dry Creek LAEMP Areas, 2012 to 2022

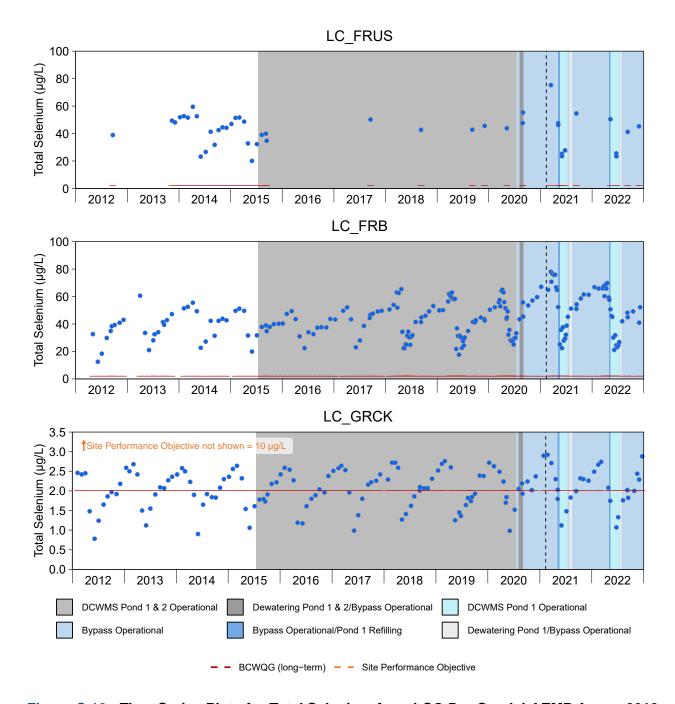


Figure C.18: Time Series Plots for Total Selenium from LCO Dry Creek LAEMP Areas, 2012 to 2022

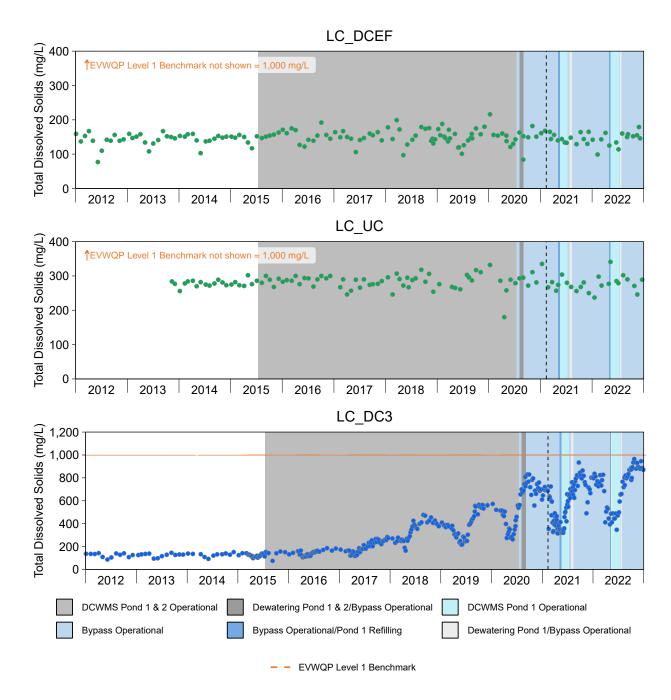


Figure C.19: Time Series Plots for Total Dissolved Solids from LCO Dry Creek LAEMP Areas, 2012 to 2022

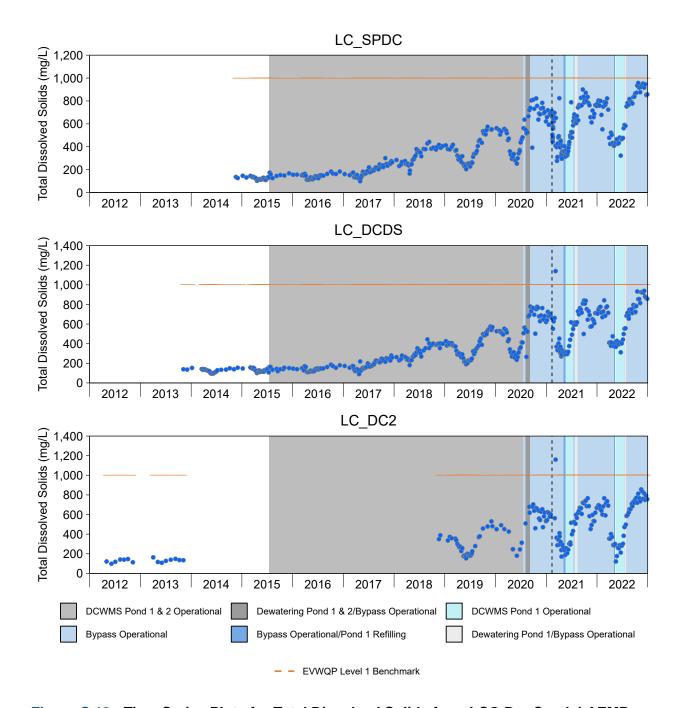


Figure C.19: Time Series Plots for Total Dissolved Solids from LCO Dry Creek LAEMP Areas, 2012 to 2022

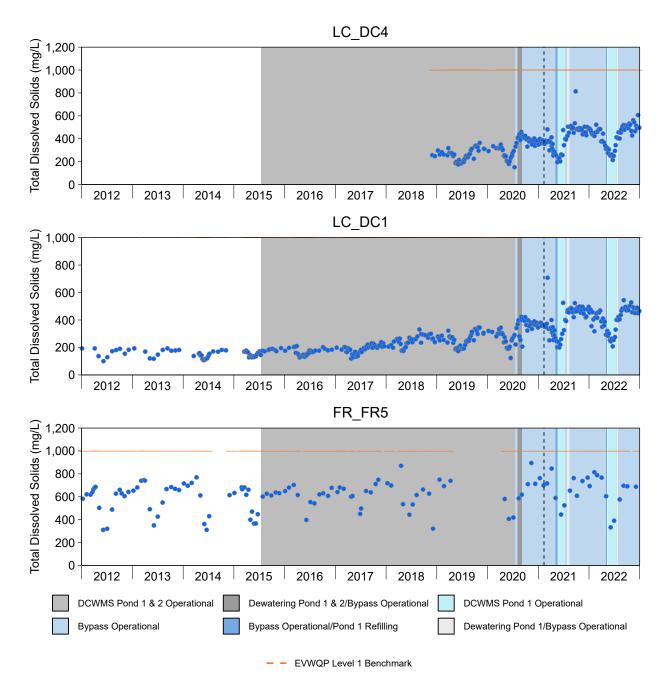


Figure C.19: Time Series Plots for Total Dissolved Solids from LCO Dry Creek LAEMP Areas, 2012 to 2022

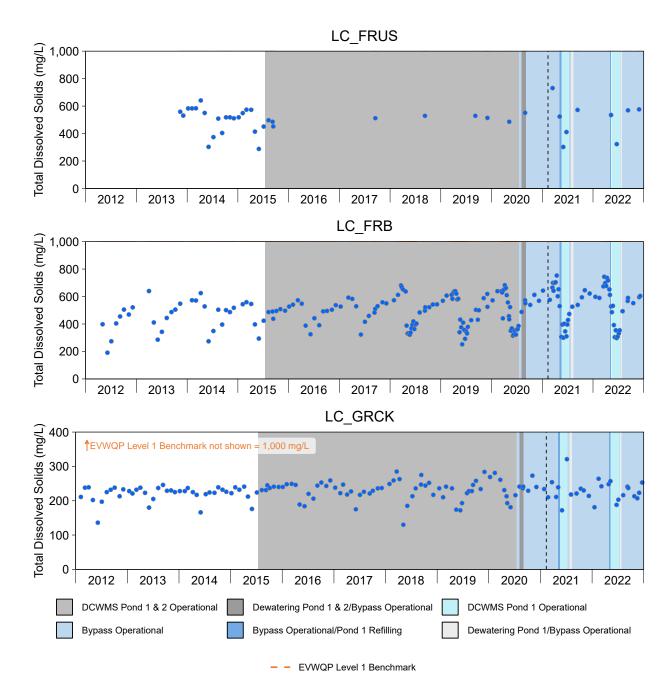


Figure C.19: Time Series Plots for Total Dissolved Solids from LCO Dry Creek LAEMP Areas, 2012 to 2022

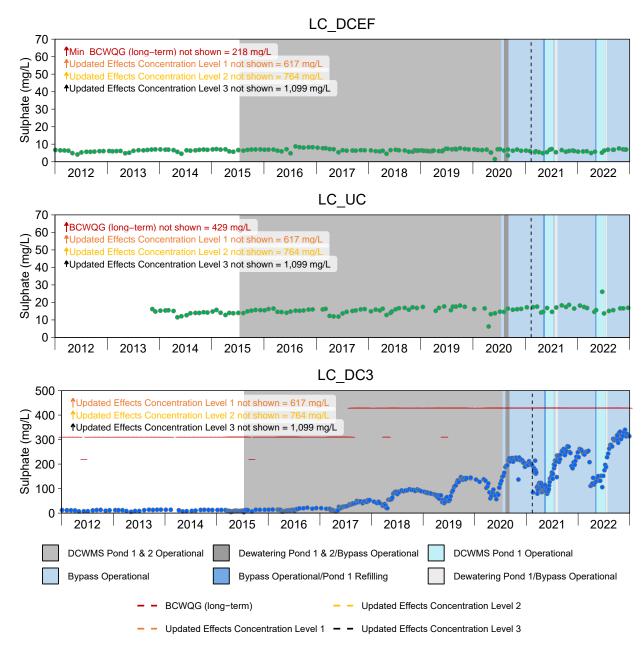


Figure C.20: Time Series Plots for Sulphate from LCO Dry Creek LAEMP Areas, 2012 to 2022

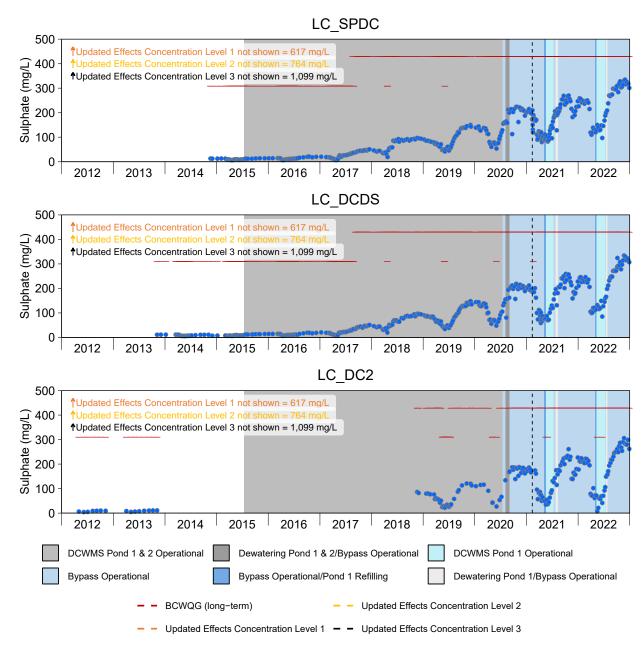


Figure C.20: Time Series Plots for Sulphate from LCO Dry Creek LAEMP Areas, 2012 to 2022

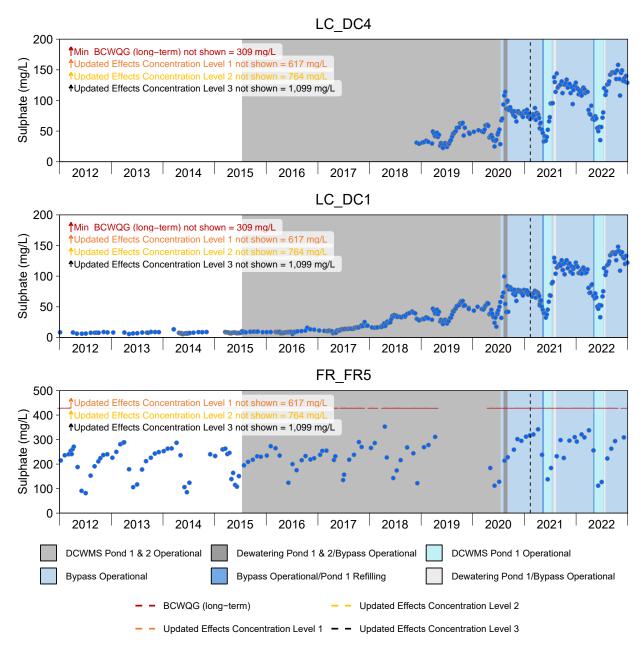


Figure C.20: Time Series Plots for Sulphate from LCO Dry Creek LAEMP Areas, 2012 to 2022

Notes: BCWQG = British Columbia Water Quality Guideline (BCMOECCS 2021a,b). Green data points are used for reference sites and blue data points are used for mine—exposed sites. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness concentrations. EVWQP Level 1 Benchmark is shown in plots where the EVWQP Level 1 Benchmark and the BCWQG are equal. Constituent was plotted because it was identified as a mine—related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). When biological monitoring areas and routine water quality stations were in close proximity to each other and with no additional inputs between them, data collected at the biological monitoring area were combined with routine data and plotted together with the biological monitoring area depicted in parenthesis. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only apply to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, and LC_DC1). Guidelines are dependent on water hardness. EVWQP Level 1 Benchmark is shown in plots where the EVWQP Level 1 Benchmark and the BCWQG are equal.

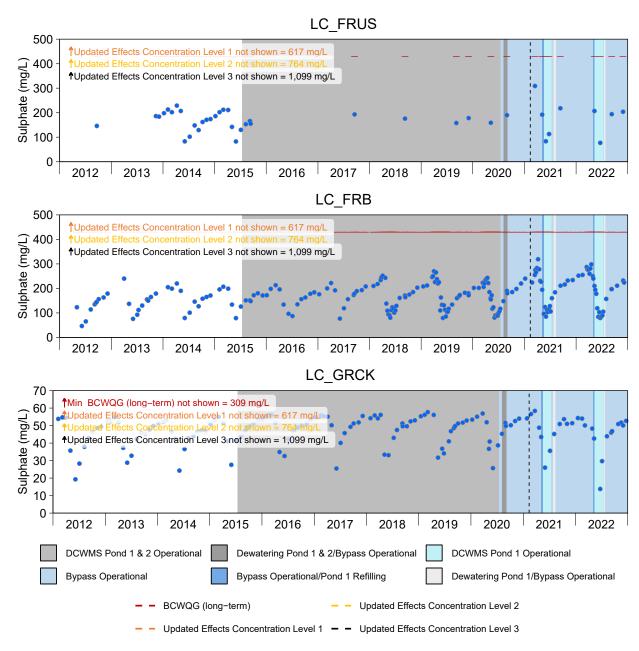


Figure C.20: Time Series Plots for Sulphate from LCO Dry Creek LAEMP Areas, 2012 to 2022

Notes: BCWQG = British Columbia Water Quality Guideline (BCMOECCS 2021a,b). Green data points are used for reference sites and blue data points are used for mine—exposed sites. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness concentrations. EVWQP Level 1 Benchmark is shown in plots where the EVWQP Level 1 Benchmark and the BCWQG are equal. Constituent was plotted because it was identified as a mine—related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). When biological monitoring areas and routine water quality stations were in close proximity to each other and with no additional inputs between them, data collected at the biological monitoring area were combined with routine data and plotted together with the biological monitoring area depicted in parenthesis. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only apply to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, and LC_DC1). Guidelines are dependent on water hardness. EVWQP Level 1 Benchmark is shown in plots where the EVWQP Level 1 Benchmark and the BCWQG are equal.

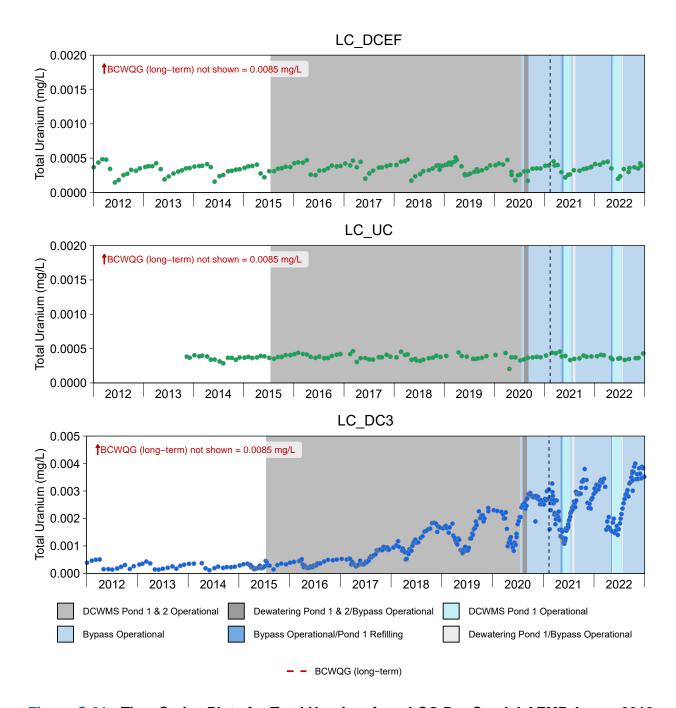


Figure C.21: Time Series Plots for Total Uranium from LCO Dry Creek LAEMP Areas, 2012 to 2022

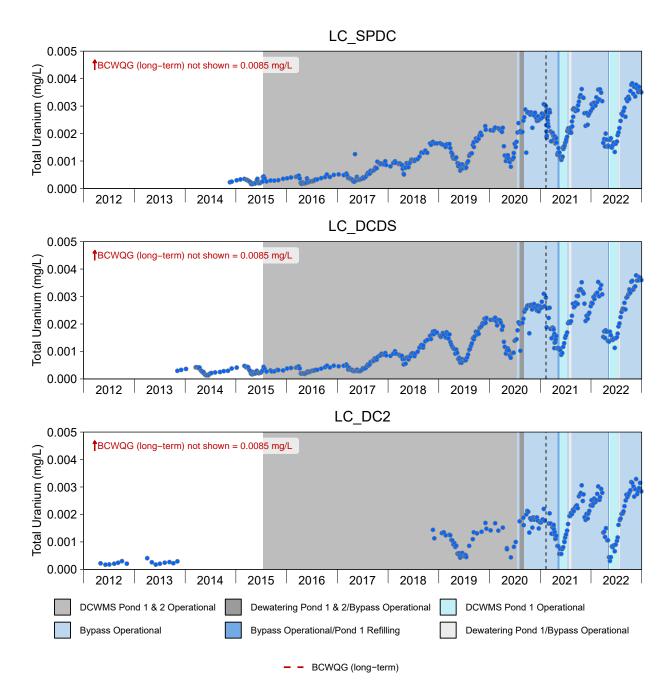


Figure C.21: Time Series Plots for Total Uranium from LCO Dry Creek LAEMP Areas, 2012 to 2022

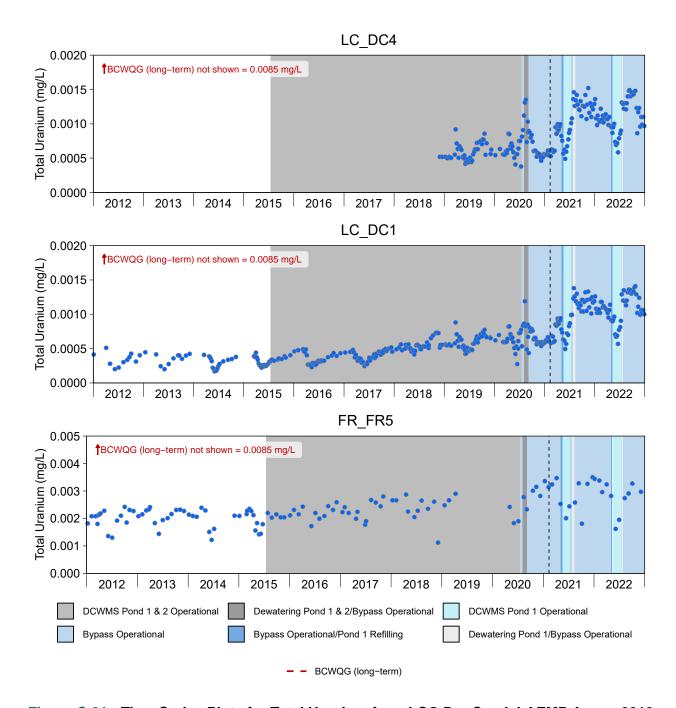


Figure C.21: Time Series Plots for Total Uranium from LCO Dry Creek LAEMP Areas, 2012 to 2022

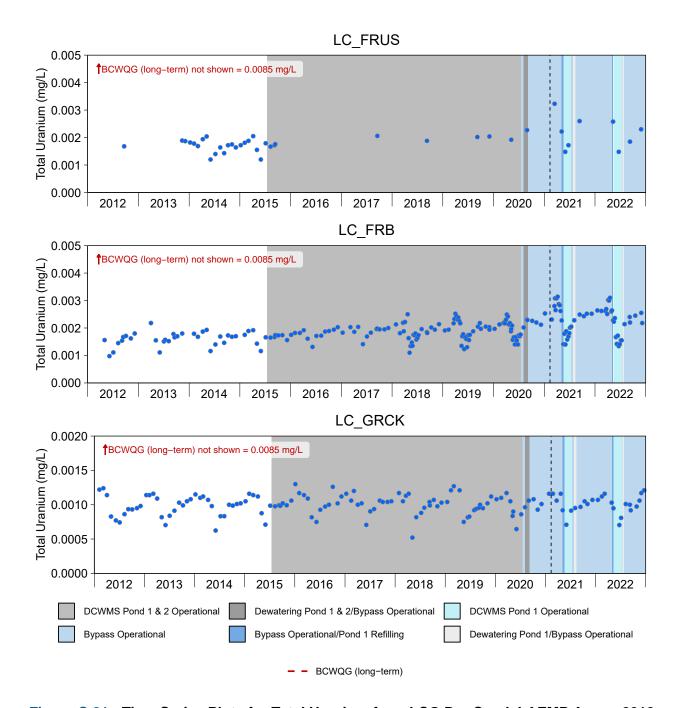


Figure C.21: Time Series Plots for Total Uranium from LCO Dry Creek LAEMP Areas, 2012 to 2022

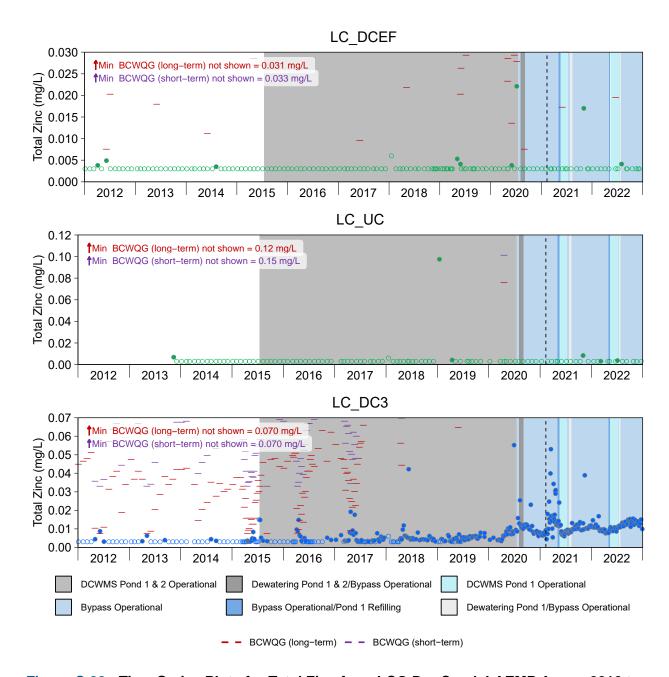


Figure C.22: Time Series Plots for Total Zinc from LCO Dry Creek LAEMP Areas, 2012 to 2022

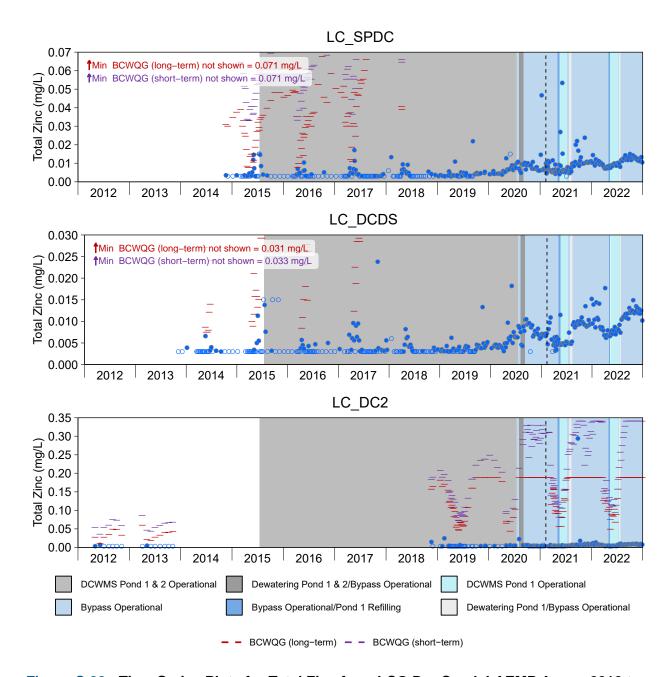


Figure C.22: Time Series Plots for Total Zinc from LCO Dry Creek LAEMP Areas, 2012 to 2022

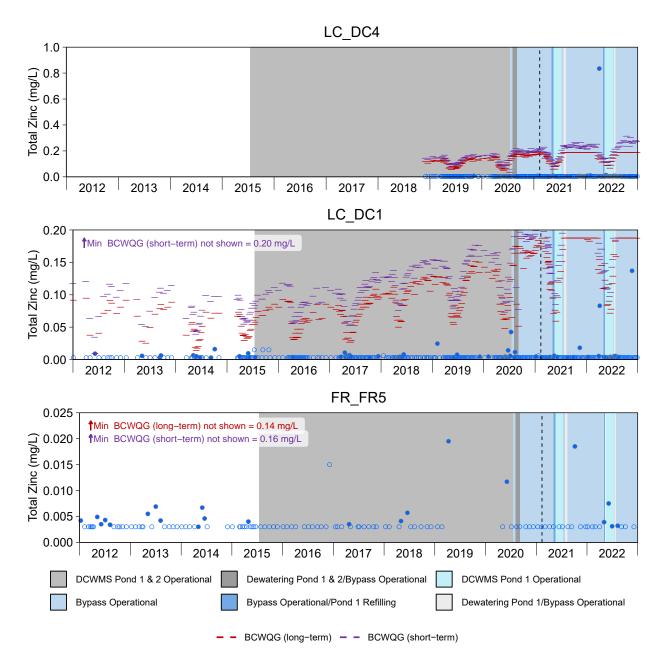


Figure C.22: Time Series Plots for Total Zinc from LCO Dry Creek LAEMP Areas, 2012 to 2022

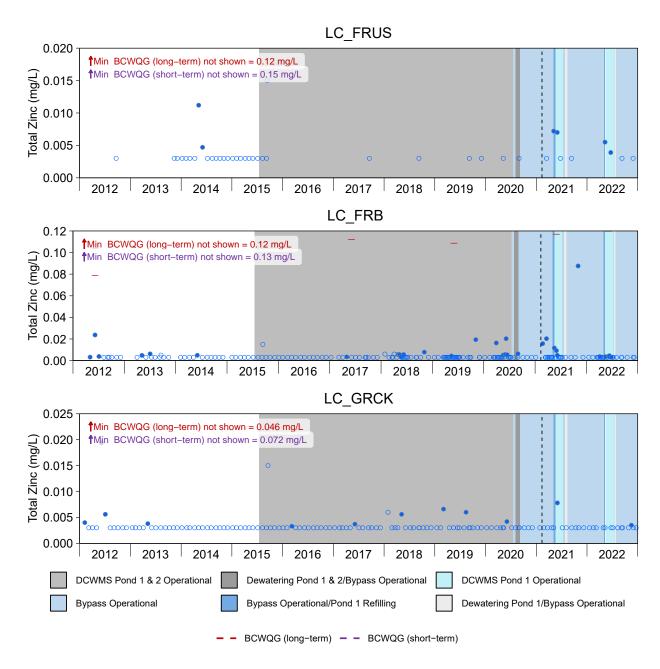


Figure C.22: Time Series Plots for Total Zinc from LCO Dry Creek LAEMP Areas, 2012 to 2022

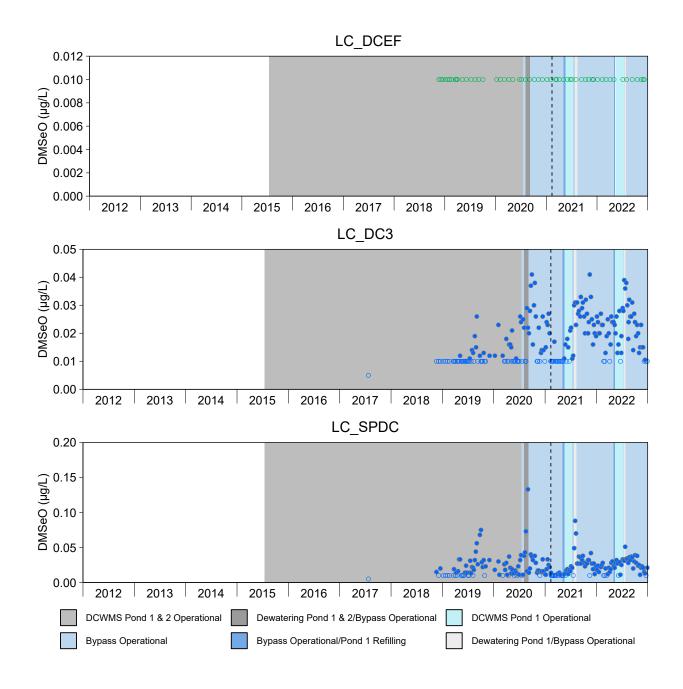


Figure C.23: Time Series Plots for Dimethylselenoxide (DMSeO) from LCO Dry Creek LAEMP Areas, 2012 to 2022

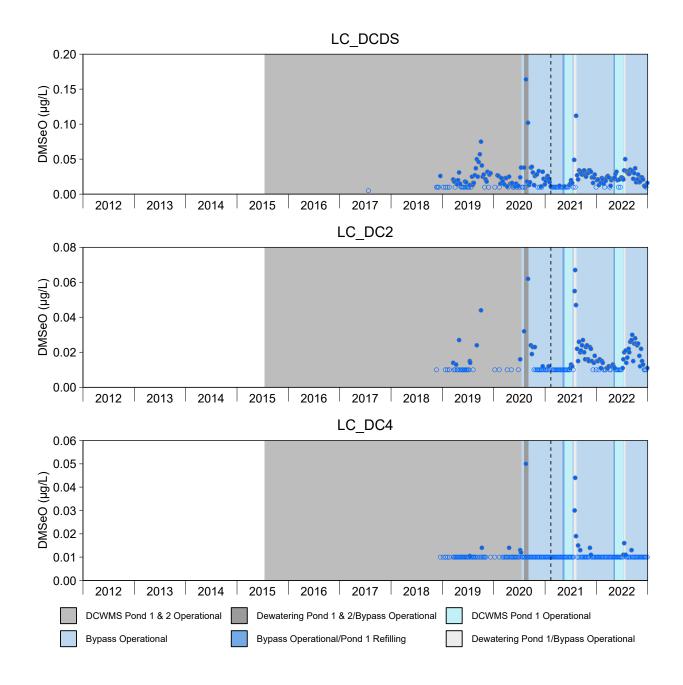


Figure C.23: Time Series Plots for Dimethylselenoxide (DMSeO) from LCO Dry Creek LAEMP Areas, 2012 to 2022

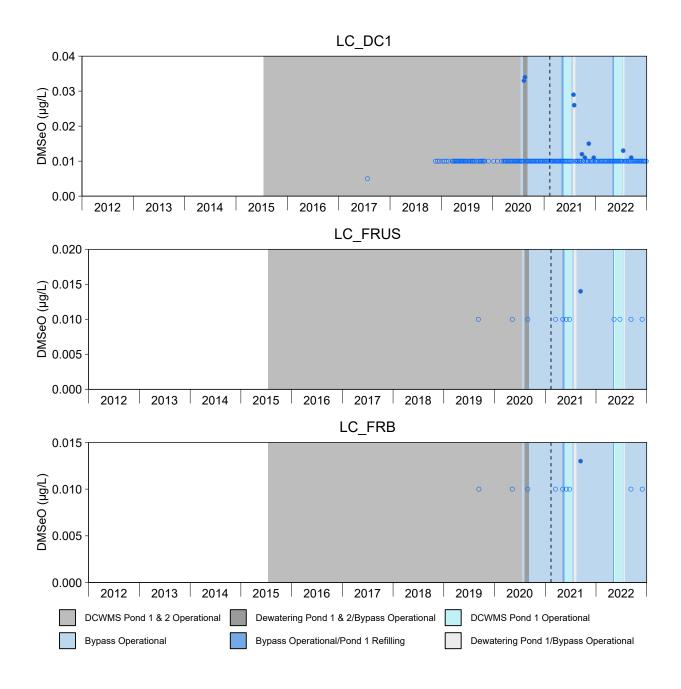


Figure C.23: Time Series Plots for Dimethylselenoxide (DMSeO) from LCO Dry Creek LAEMP Areas, 2012 to 2022

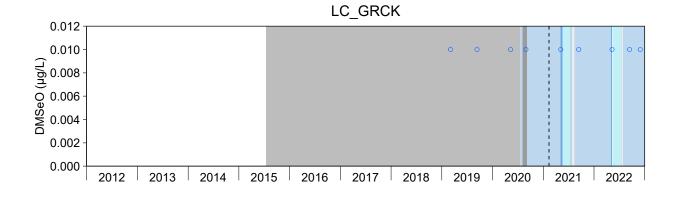


Figure C.23: Time Series Plots for Dimethylselenoxide (DMSeO) from LCO Dry Creek LAEMP Areas, 2012 to 2022

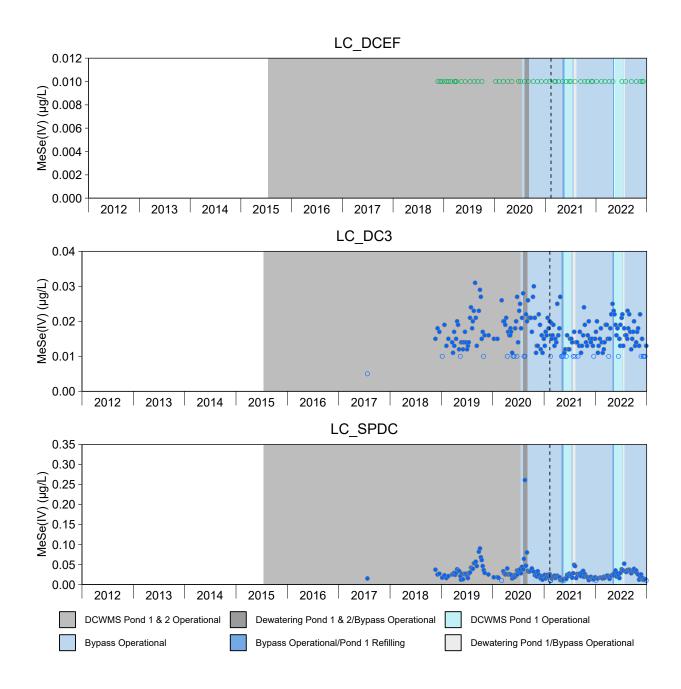


Figure C.24: Time Series Plots for Methylseleninic Acid [MeSe(IV)] from LCO Dry Creek LAEMP Areas, 2012 to 2022

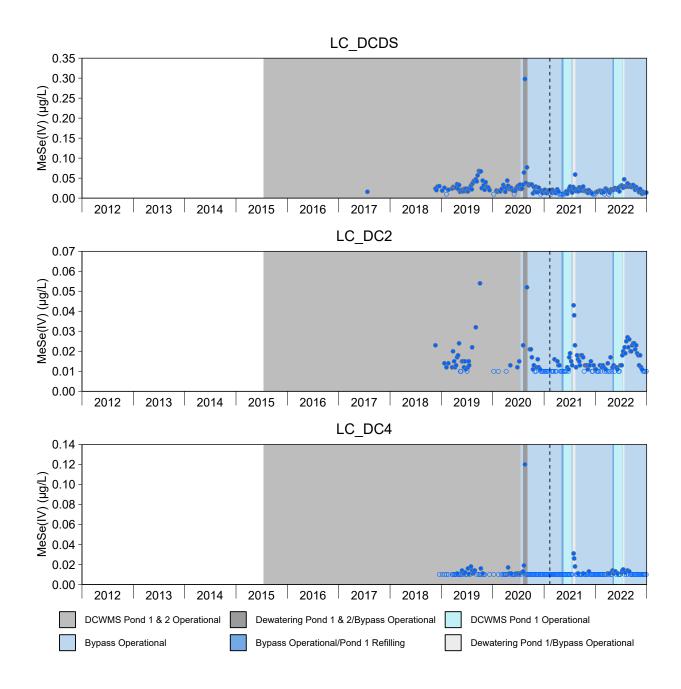


Figure C.24: Time Series Plots for Methylseleninic Acid [MeSe(IV)] from LCO Dry Creek LAEMP Areas, 2012 to 2022

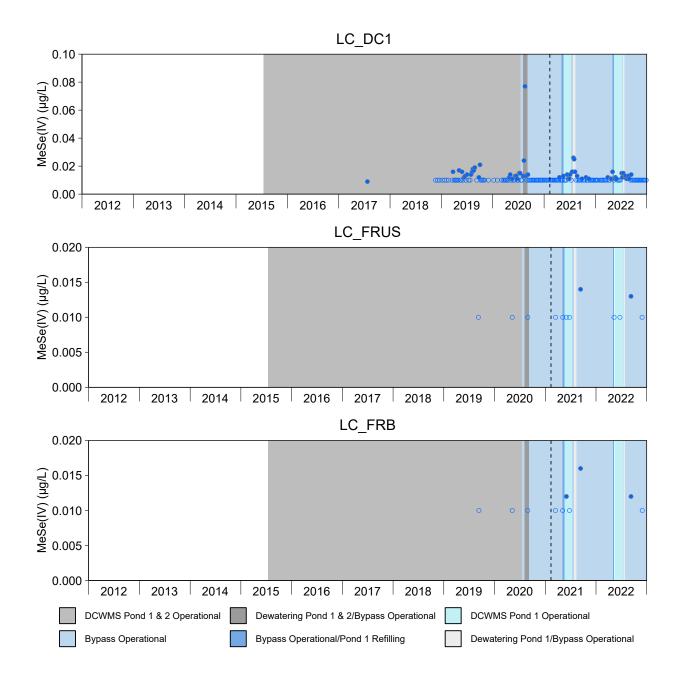
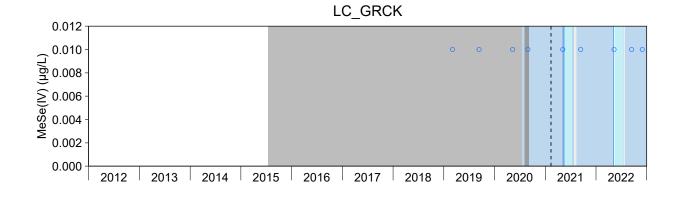



Figure C.24: Time Series Plots for Methylseleninic Acid [MeSe(IV)] from LCO Dry Creek LAEMP Areas, 2012 to 2022

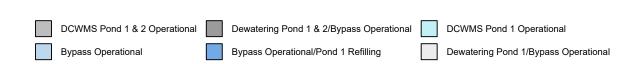


Figure C.24: Time Series Plots for Methylseleninic Acid [MeSe(IV)] from LCO Dry Creek LAEMP Areas, 2012 to 2022

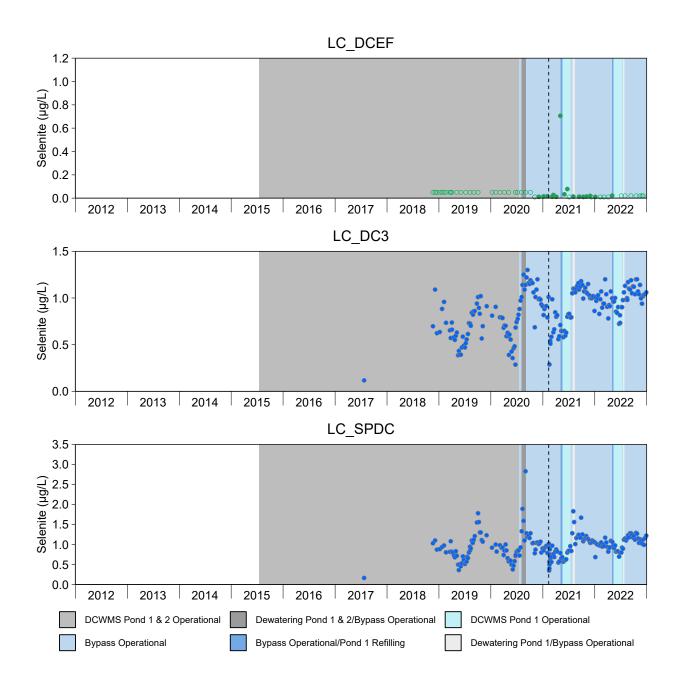


Figure C.25: Time Series Plots for Selenite from LCO Dry Creek LAEMP Areas, 2012 to 2022

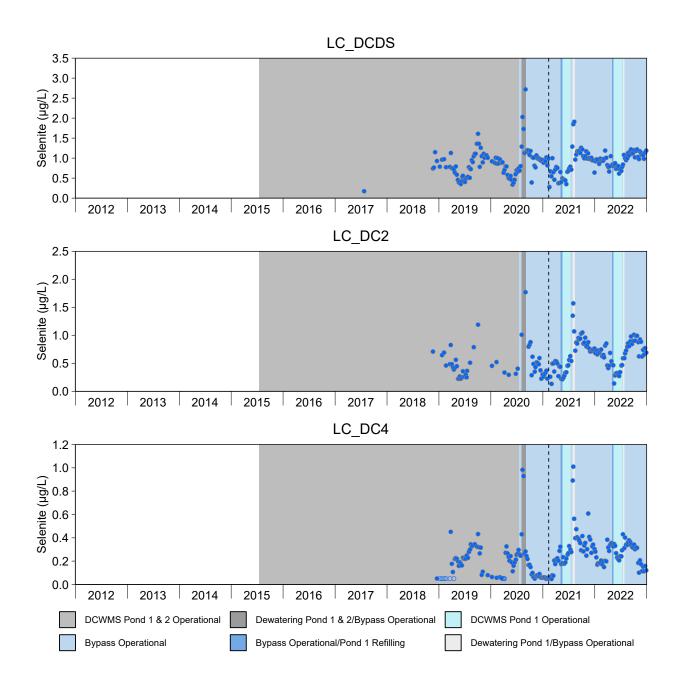


Figure C.25: Time Series Plots for Selenite from LCO Dry Creek LAEMP Areas, 2012 to 2022

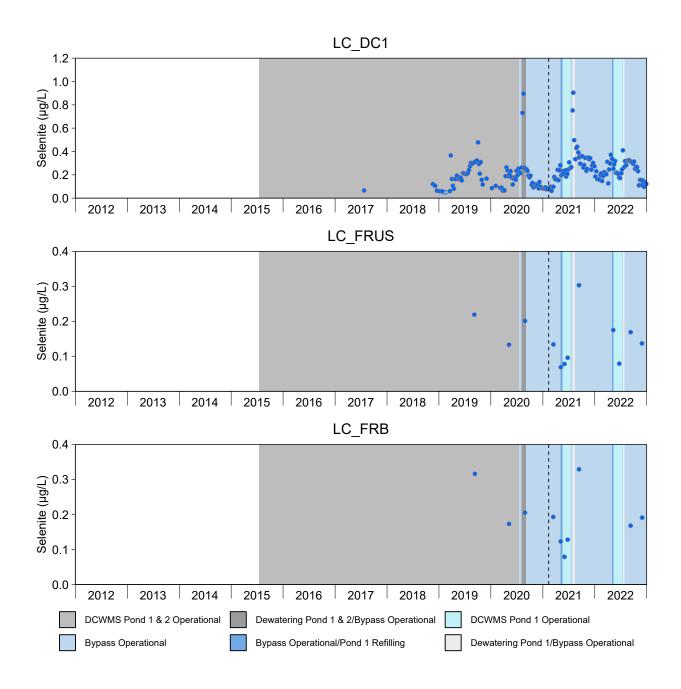
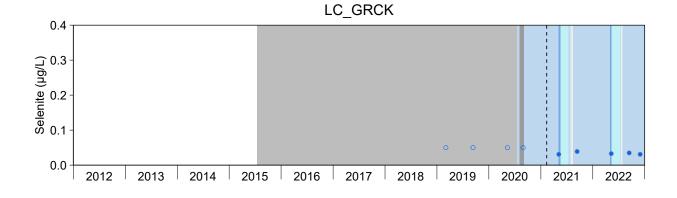



Figure C.25: Time Series Plots for Selenite from LCO Dry Creek LAEMP Areas, 2012 to 2022

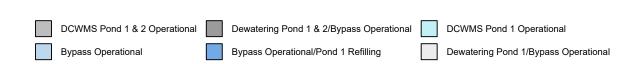


Figure C.25: Time Series Plots for Selenite from LCO Dry Creek LAEMP Areas, 2012 to 2022

Table C.1: British Columbia Water Quality Guidelines, Site-Specific Elk Valley Water Quality Plan (EVWQP) Benchmarks, and Interim Screening Values for Constituents Assessed in the Line Creek Dry Creek LAEMP, 2022

	Constituent	Units	British Columbia Water Quality Guidelines ^a				011. 0	Updated Effects Concentraitonk/ Proposed
	Constituent		Long-term Average	Short-term Maximum	Year	Status	Site-Specific Benchmark ^b	Benckmark
Non-Metals	Total Alkalinity	mg/L	For dissolved calcium = < 4mg/L, BCWQG = <10 For dissolved calcium = 4 to 8 mg/L, BCWQG = 10 to 20 For dissolved calcium = > 8 mg/L, BCWQG = > 20	-	2015	Working	-	-
	Unionized Ammonia ^c	mg/L	pH and Temperature dependent (tabular)	pH and Temperature dependent (tabular)	2009	Approved	-	-
	Chloride	mg/L	150	600	2003	Approved	-	-
	Fluoride	mg/L	-	For hardness ≤ 10 mg/L, BCWQG = 0.4 For hardness > 10 mg/L, BCWQG = [-51.73 + 92.57 × log ₁₀ (hardness)]×0.01 Maximum applicable hardness = 385 mg/L	1990	Approved	-	-
	Nitrate-N	mg/L	3	33	2009	Approved	-	Level 1 Updated Effects Concentration = 10 ^{((log10(9)/(-2.64))} -(1.45-1.18'(log10(hardness)))) Level 2 Updated Effects Concentration = 10 ^{((log10(4)/(-2.64))} -(1.45-1.18'(log10(hardness)))) Level 3 Updated Effects Concentration = 10 ^{((log10(1)/(-2.64))} -(1.45-1.18'(log10(hardness))))
	Nitrite-N ^d	mg/L	0.02 to 0.20	0.06 to 0.60	2009	Approved	-	-
	Dissolved oxygen ^e	mg/L	For buried embryo/alevin life stages, BCWQG (water column) = 11; BCWQG (interstitial) = 8; for other life stages, BCWQG (water column) = 8	For buried embryo/alevin life stages, BCWQG (water column) = 9; BCWQG (interstitial) = 6 For other life stages, BCWQG (water column) = 5	1997	Approved	-	-
	pH ^f	pH units		6.5 - 9.0	1991	Approved	-	-
	Sulphate ^g	mg/L	128 to 429 Maximum applicable hardness = 250 mg/L	-	2013	Approved	-	Level 1 Updated Effects Concentration = 617 Level 2 Updated Effects Concentration = 764 Level 3 Updated Effects Concentration = 1099
	Total Dissolved Solids	mg/L	-	-	-	-	Screening Level 1 Benchmark = 1,000	-
Metals and Metalloids Total	Aluminum	mg/L	Biotic Ligand Model	-	2023	Approved	-	-
	Antimony (III)	mg/L	0.009	-	2015	Working	-	-
	Arsenic	mg/L	-	0.005	2002	Approved	-	-
	Barium	mg/L	1	-	2015	Working	-	-
	Beryllium	mg/L	0.00013	-	2015	Working	-	-
	Cadmium	mg/L	-	-	-	-	Site Performance Objective ^j = ≤0.001×10 ^{0.83(log700-log(hardness))} Maximum applicable hardness = 0.00038 mg/L	-
	Boron	mg/L	1.2	-	2003	Approved	-	-
	Chromium ^h	mg/L	For Cr(VI), BCWQG = 0.001 For Cr(III), BCWQG = 0.0089	-	2015	Working	-	-
	Cobalt	mg/L	0.004	0.11	2004	Approved	-	-
	Iron	mg/L	-	1	2008	Approved	-	-

Note: "-" = no data available.

^a British Columbia Working (BCMOECCS 2021a) or Accepted (BCMOECCS 2021b) Water Quality Guidelines (BCWQG) for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness), guidelines were screened using concurrent values.

b When appropriate, site-specific Elk Valley Water Quality Plan Benchmarks (EVWQP; Teck 2014) or interim screening values were applied in addition to or instead of BC water quality guidelines. Interim screening values are displayed for nickel (Golder 2017b).

 $^{^{\}circ}$ Temperature and pH dependent; range of minimum and maximum values.

^d Dependent on concurrent chloride, range of values reported (BCMOECCS 2021a).

^e Dissolved oxygen guidelines represent a minimum value, and so exceedances were quantified below this guideline.

f Unrestricted change permitted within this pH range

g For hardness-based guidelines, concurrent hardness values were used for calculating guidelines. If hardness values exceeding the maximum applicable hardness, then guidelines were determined using the maximum applicable hardness. If hardness values is lower than the minimum hardness, then guidelines were determined using the minimum hardness.

^h Chromium(VI) is the dominant oxidation state in oxygenated environments, and so its guideline was applied

ⁱ The most conservative guideline (0.00000125 mg/L) was applied.

^j As outlined in Permit 107517.

^k As oulined in WSP Golder. 2022. Task 1: Elk Valley Water Quality Plan Benchmark Validation Nitrate, Sulphate, Selenium

Table C.1: British Columbia Water Quality Guidelines, Site-Specific Elk Valley Water Quality Plan (EVWQP) Benchmarks, and Interim Screening Values for Constituents Assessed in the Line Creek Dry Creek LAEMP, 2022

		Constituent	Units	British Colum	bia Water Quality Guidelines ^a			Cita Cassifia Banahmanla	Updated Effects Concentraiton ^k / Proposed
		Constituent	Units	Long-term Average	Short-term Maximum	Year	Status	Site-Specific Benchmark ^b	Benckmark
	1	Lead ^g	mg/L	For hardness ≤ 8 mg/L, none proposed. For hardness 8 to 360 mg/L, BCWQG = 0.001×{3.31+ exp[1.273 × ln(hardness) - 4.704]} No more than 20% of samples in a 30-d period should be >1.5x the guideline. Maximum applicable hardness = 360 mg/L	For hardness ≤ 8 mg/L, BCWQG ≤ 0.003 For hardness 8 to 360 mg/L, BCWQG = 0.001×{exp[1.273 × ln(hardness) - 1.460]} Maximum applicable hardness = 360 mg/L	1987	Approved	-	-
		Manganese ^g	mg/L	For hardness 37 to 450 mg/L, BCWQG ≤ 0.004 × hardness + 0.605 Maximum applicable hardness = 450 mg/L	For hardness 25 to 259 mg/L, BCWQG ≤ 0.01102 × hardness + 0.54 Maximum applicable hardness = 259 mg/L	2001	Approved	-	-
	Total	Mercury ⁱ	mg/L	MeHg ≤ 0.5% of THg, BCWQG = 0.00002 Else, BCWQG = [0.0001/(MeHg/THg)] OR When MeHg = 0.5% of THg, BCWQG= 0.00002 When MeHg = 1.0% of THg, BCWQG = 0.00001 When MeHg = 8.0% of THg, BCWQG= 0.00000125	-	2001	Approved	-	-
	-	Molybdenum	mg/L	7.6	46	2021	Approved	-	-
	;	Selenium	μg/L	2	-	2014	Approved	-	-
Metals and Metalloids	:	Silver ^f	mg/L	For hardness ≤ 100 mg/L, BCWQG = 0.00005 For hardness > 100 mg/L, BCWQG = 0.0015	For hardness ≤ 100 mg/L, BCWQG = 0.0001 For hardness > 100 mg/L, BCWQG = 0.003	1996	Approved	-	-
d Me		Thallium	mg/L	0.0008	-	1997	Working	-	-
als an		Uranium	mg/L	0.0085	-	2011	Working	-	-
Meta		Zinc ^g	mg/L	For hardness ≤ 90 mg/L, BCWQG = 0.0075 For hardness 90 to 330 mg/L, BCWQG = [7.5 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 330 mg/L	For hardness ≤ 90 mg/L, BCWQG = 0.033 For hardness 90 to 500 mg/L, BCWQG = [33 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 500 mg/L	1999	Approved		-
		Cadmium ^g	μg/L	For hardness = 3.4 to 285 mg/L, BCWQG = {exp[0.736×In(hardness) - 4.943]} Maximum applicable hardness = 285 mg/L	For hardness = 7 to 455 mg/L, BCWQG = {exp[1.03×ln(hardness)-5.274]} Maximum applicable hardness = 455 mg/L	2015	Approved	Level 1 EVWQP Benchmark = 10 ^{0.83(log(hardness))} - 2.53 Maximum applicable hardness = 285 mg/L	-
		Copper	mg/L	Biotic Ligand Model	Biotic Ligand Model	2019	Approved	-	-
	Dissolved	Nickel	μg/L	-	-	-	Proposed		Level 1 Benchmark = log(Benchmark) = 0.547 x (log(DOC)) + 0.411 x (log(Hardness)) - 0.520 x (log(Bicarbonate)) + 0.856 Level 2 Benchmark = log(Benchmark) = 0.547 x (log(DOC)) + 0.411 x (log(Hardness)) - 0.520 x (log(Bicarbonate))) + 1.011 Level 3 Benchmark = log(Benchmark) = 0.547 x (log(DOC)) + 0.411 x (log(Hardness)) - 0.520 x (log(Bicarbonate)) + 1.304
		Iron	mg/L	-	BCWQG = 0.35 mg/L	2008	Approved	-	-

Note: "-" = no data available.

^a British Columbia Working (BCMOECCS 2021a) or Accepted (BCMOECCS 2021b) Water Quality Guidelines (BCWQG) for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness), guidelines were screened using concurrent values.

b When appropriate, site-specific Elk Valley Water Quality Plan Benchmarks (EVWQP; Teck 2014) or interim screening values were applied in addition to or instead of BC water quality guidelines. Interim screening values are displayed for nickel (Golder 2017b).

^c Temperature and pH dependent; range of minimum and maximum values.

^d Dependent on concurrent chloride, range of values reported (BCMOECCS 2021a).

^e Dissolved oxygen guidelines represent a minimum value, and so exceedances were quantified below this guideline.

f Unrestricted change permitted within this pH range.

g For hardness-based guidelines, concurrent hardness values were used for calculating guidelines. If hardness values exceeding the maximum applicable hardness, then guidelines were determined using the minimum hardness. If hardness values is lower than the minimum hardness, then guidelines were determined using the minimum hardness.

^h Chromium(VI) is the dominant oxidation state in oxygenated environments, and so its guideline was applied.

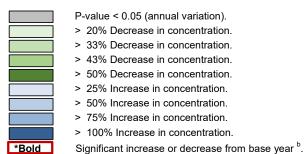
The most conservative guideline (0.00000125 mg/L) was applied.

^j As outlined in Permit 107517.

^k As oulined in WSP Golder. 2022. Task 1: Elk Valley Water Quality Plan Benchmark Validation Nitrate, Sulphate, Selenium

Table C.2: Seasonal Kendall Trend Analysis For Water Quality Constituents Collected at Routine Monitoring Stations, Dry Creek LAEMP, 2012 to 2022

Constituent	Units	Refe	rence					Mine-e	exposed				
Constituent	Omis	LC_DCEF	LC_UC	LC_DC3	LC_SPDC	LC_DCDS	LC_DC2	LC_DC4	LC_DC1	FR_FR5	LC_FRUS	LC_FRB	LC_GRCK
Nitrate (as N)	mg/L	NS	NS	77	42	53	22	38	90	1.2	NS	1.8	1.9
Nitrite (as N)	mg/L	NS	NS	37	12	17	12	6.3	24	NS	NS	NS	NS
Total Kjeldahl Nitrogen	mg/L	NS	NS	17	NS	16	30	50	20	58	147	26	NS
Phosphorus (P)-Total	mg/L	-1.6	-11	-2.6	-3.5	NS	NS	4.6	-2.8	NS	NS	NS	-4.7
Orthophosphate	mg/L	-0.96	NS	-2.9	NS	NS	-3.1	NS	-4.6	NS	NS	NS	NS
Sulphate	mg/L	NS	1.9	68	40	51	25	36	51	2.8	NS	3.1	0.75
Total Dissolved Solids	mg/L	0.63	NS	32	26	27	14	17	13	1.4	2.1	1.8	NS
Antimony (Sb)-Total	mg/L	-1.5	NS	17	15	16	9.3	13	6.8	NS	NS	NS	-
Barium (Ba)-Total	mg/L	0.81	NS	9.4	9.2	6.4	3.3	6.8	6.9	-2.3	-1.7	-0.88	0.44
Boron (B)-Total	mg/L	-2.3	-3.8	0.50	0.83	NS	NS	0.54	0	-1.4	NS	-2.0	-2.6
Cadmium (Cd)-Total	mg/L	NS	NS	20	28	26	16	27	8.5	NS	NS	NS	NS
Iron (Fe)-Total	mg/L	NS	-14	NS	-9.9	-8.8	NS	NS	NS	NS	NS	NS	-8.1
Lithium (Li)-Total	mg/L	NS	NS	23	29	21	17	18	6.9	8.5	7.5	7.8	0.69
Manganese (Mn)-Total	mg/L	NS	NS	13	8.1	10	9.4	NS	4.3	NS	NS	NS	-2.8
Mercury (Hg)-Total	mg/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Molybdenum (Mo)-Total	mg/L	NS	NS	23	24	26	12	26	7.9	1.7	NS	2.0	NS
Nickel (Ni)-Total	mg/L	NS	NS	64	38	38	20	34	25	NS	NS	NS	NS
Potassium (K)-Total	mg/L	NS	NS	15	15	14	4.9	8.8	6.7	2.6	NS	2.9	NS
Selenium (Se)-Total	mg/L	2.2	5.9	96	52	53	29	42	81	3.0	NS	3.3	0.80
Uranium (U)-Total	mg/L	0.90	NS	50	34	35	15	22	13	4.1	3.7	4.1	NS
Zinc (Zn)-Total	mg/L	NS	NS	20	23	19	11	6.1	0.87	NS	NS	NS	NS
Cadmium (Cd)-Dissolved	mg/L	NS	NS	28	46	41	22	27	9.7	NS	NS	NS	NS
Cobalt (Co)-Dissolved	mg/L	NS	NS	6.5	4.2	3.4	NS	LRL	NS	NS	NS	NS	NS
Iron (Fe)-Dissolved	mg/L	NS	NS	NS	-5.8	NS	NS	NS	NS	NS	LRL	NS	NS
Selenium (Se)-Dissolved	mg/L	1.9	6.2	87	50	53	28	42	77	4.0	NS	3.5	NS
Ammonia, Total (as N)	mg/L	15	NS	13	NS	8.8	NS	-35	8.3	NS	13	11	14
Total Organic Carbon	mg/L	-1.5	NS	2.0	NS	NS	NS	NS	-2.1	-2.7	NS	NS	-3.5
Dissolved Organic Carbon	mg/L	NS	NS	2.2	NS	3.3	NS	NS	NS	NS	NS	NS	NS
DMSeO - Dimethylselenoxide	mg/L	NS	-	20	NS	NS	5.4	NS	5.0	-	LRL	LRL	LRL
MeSe(IV) - Methylseleninic Acid	mg/L	NS	-	NS	-11	NS	NS	NS	NS	-	LRL	-	LRL
Se(IV) - Selenite	mg/L	NS	-	9.6	4.1	3.2	NS	12	13	-	-	-	-
Selenium Unknown	mg/L	NS	-	NS	NS	NS	NS	NS	NS	-	LRL	LRL	LRL
MeSe(VI) - Methaneselenonic Acid	mg/L	NS	-	NS	NS	NS	NS	NS	NS	-	LRL	LRL	LRL
Se(VI) - Selenate	mg/L	NS	-	33	32	34	36	42	41	-	-	-	-

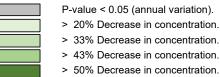

Significant decreasing temporal trend (Seasonal Kendall test for monotonic trend at α = 0.05). Value reported is the Sen's slope reported as a percentage of the median concentration or value.

Significant increasing temporal trend (Seasonal Kendall test for monotonic trend at α = 0.05). Value reported is the Sen's slope reported as a percentage of the median concentration or value.

Notes: ""NS" = no significant temporal trend (Seasonal Kendall test for monotonic trend at $\alpha = 0.05$). "-" = no data or insufficient data (n < 5) to test for trend. LRL = >75% censored data.

Table C.3: Temporal Changes in Water Chemistry Constituents at Stations, Dry Creek LAEMP, 2012 to 2022

Parameter	Area Type	Area		nnual ation ^a	Q1: Is	there a			(b) of	monito	ring?		s since		se year	Q2: Is	the 202	2 annua	al mean	greate	r or less	than a	ll annua (2022		ical me	ans (20	112 to 2022) a	nd the pre	vious year
i arameter	Alea Type	Alea	DF	P-Value	2012	2013	2014	2015	2016		2018	2019	2020	2021	2022	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2022 vs.	2022 v	s. 2021
																											2012-2021	Trend	MOD
	Reference	LC_DCEF	10	0.001	b	4.39	8.15	13.4	-9.98	15.1		-9.97	1.72	19.2	73.3	ВС	ВС	ВС	BC	С	ВС	С	С	ВС	В	Α	↑	1	45.5
	reference	LC_UC	8	0.002	-	-	b	-13.6	15.8	-1.63	-20.8	5.93	-16.5	17.9	11.4	-	-	AB	AB	Α	AB	В	AB	AB	Α	AB	No	No	-5.58
		LC_DC3	10	0.001	b	46.2	30.9	99.5	246	2,122	9,309	11,462	19,403	22,622	24,780	F	EF	EF	E	D	С	В	В	Α	Α	Α	No	No	9.50
		LC_SPDC	7	0.001	-	-	-	b	12.5				21,659			-	-	-	Е	Е	D	С	BC	AB	Α	Α	No	No	8.68
		LC_DCDS	8	0.001	-	-	b	-52.8	-22.6	1,459	6,841	8,496	14,243	16,664	18,948	-	-	D	E	DE	С	В	В	Α	Α	Α	No	No	13.6
Nitrate (as N)		LC_DC2	5	0.001	b	118	-	-	-	-	-	39,427	74,438	85,760	83,295	С	С	-	-	-	-	-	В	Α	Α	Α	No	No	-2.87
Milato (ao M)	Mine-	LC_DC4	3	0.001	-	-	-	-	-	-	-	b	64.9	136	140	-	-	-	-	-	-	-	С	В	Α	Α	No	No	1.73
	Exposed	LC_DC1	10	0.001	b	102	288	200	370			31,284	48,141	-, -		G	FG	EF	EF	E	D	С	BC	В	Α	Α	No	No	6.39
		FR_FR5	9	0.001	b	24.6	28.6	7.28	14.6	15.9	3.07	-	12.9	35.4	25.7	С	AB	AB	BC	ABC	ABC	ВС	-	ABC	Α	AB	No	No	-7.19
		LC_FRUS	1	0.023	-	-	b	-11.1	-	-	-	-	-	-	-	-	-	Α	В	-	-	-	-	-	-	-	\downarrow	\downarrow	-
		LC_FRB	10	0.001	b	34.1	35.2	20.8	19.4	27.5	11.7	15.3	28.1	51.6	46.6	E	ABCD	ABC	CDE	CDE	BCD	DE	CDE	С	Α	AB	No	No	-3.26
		LC_GRCK	10	0.001	b	20.3	43.0	18.2	11.1	27.5	-0.0779	27.5	10.4	32.7	93.3	В	В	AB	В	В	В	В	В	В	В	Α	No	↑	45.6
	Reference	LC_DCEF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	1101010100	LC_UC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC_DC3	6	0.001	-	-	-	-	b	4,869	6,780	1,566			621	-	-	-	-	D	Α	Α	В	В	Α	С	No	↓	-89.1
		LC_SPDC	6	0.001	-	-	-	-	b	2,660	5,460	2,126			832	-	-	-	-	E	BC	Α	С	С	AB	D	No	↓	-77.2
		LC_DCDS	6	0.001	-	-	-	-	b	2,190	4,465	1,931			692	-	-	-	-	Е	BC	Α	BC	С	AB	D	No	\downarrow	-74.2
Nitrite (as N)		LC_DC2	3	0.001	-	-	-	-	-	-	-	b	-33.3	106	-32.2	-	-	-	-	-	-	-	В	В	Α	В	No		-67.0
Titalio (do 11)	Mine-	LC_DC4	3	0.001	-	-	-	-	-	-	-	b	-15.0	103	10.4	-	-	-	-	-	-	-	В	В	Α	В	No	↓	-45.8
	Exposed	LC_DC1	5	0.001	-	-	-	-	-	b	105	38.4	33.6	210	64.3	-	-	-	-	-	С	AB	BC	BC	Α	В	No	\downarrow	-47.1
		FR_FR5	9	0.001	b	19.1	-8.36	-48.5	-38.1	-20.7	-20.7	-	-32.0	-36.0	-27.5	AB	Α	ABC	С	BC	ABC	ABC	-	ABC	BC	ABC	No	No	13.4
		LC_FRUS	1	0.833	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC_FRB	10	0.001	b	26.8	-7.56	-21.3	-43.7	-1.93	-15.8	-25.9	-11.0	9.61	13.4	AB	Α	AB	AB	В	AB	AB	В	AB	Α	Α	No	No	3.48
		LC_GRCK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	Reference	LC_DCEF	9	0.683	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	11010101100	LC_UC	8	0.282	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC_DC3	9	0.001	b	69.6	119	107	138	471	345	18.1	-	76.8	594	CD	BCD	ABCD	BCD	BCD	AB	ABC	D	-	D	Α	No	1	293
		LC_SPDC	6	0.001	-	-	-	b	-22.0	105	67.2	-37.8	-	-73.9	183	-	-	-	BCD	CD	AB	ABC	D	-	Е	Α	No	<u> </u>	986
		LC_DCDS	7	0.001	-	-	b	78.4	78.3	286	340	29.4	-	-24.4	616	-	-	CD	BC	BC	AB	Α	CD	-	D	Α	No	1	847
Total Kjeldahl		LC_DC2	4	0.001	b	27.7	-	-	-	-	-	154	-	10.3	650	В	В	-	-	-	-	-	В	-	В	Α	1	<u> </u>	580
Nitrogen	Mine-	LC_DC4	3	0.001	-	-	-	-	-	-	-	b	-73.4	-31.0	344	-	-	-	-	-	-	-	В	С	В	Α	↑	1	544
	Exposed	LC_DC1	10	0.001	b	54.8	42.2	31.3	31.2	93.3	279	179	-23.1	77.0	469	CD	BCD	BCD	CD	CD	BC	AB	BC	D	С	Α	No	1	222
		FR_FR5	5	0.001	-	-	-	b	302	777	266	-	-	230	209	-	-	-	В	Α	Α	AB	-	-	AB	AB	No	No	-6.46
		LC_FRUS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC_FRB	8	0.001	b	-0.364	-	52.4	135	697	334	106	-	70.2	824	CD	D	-	CD	BCD	AB	ABC	CD	-	CD	Α	No	↑	443
		LC_GRCK	9	0.124	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc


^a The presence of annual variation was determined by a significant Year term ($\alpha = 0.05$) using an ANOVA with factors Year and Month.

b Magnitude of Difference (MOD) was calculated as the concentrations in each year (or 2022) minus the concentration in the first year (or 2021) divided by the concentration in the first year (or 2021) × 100.

[°] Significance between each year determined using all pairwise comparisons with Tukey correction.

Table C.3: Temporal Changes in Water Chemistry Constituents at Stations, Dry Creek LAEMP, 2012 to 2022

				nual ation ^a	Q1: Is	there a	•		(b) of	monito	ring?				se year	Q2: Is	the 202	2 annua	al mean	greate	r or less	s than a	II annua	_	rical me	ans (20	12 to 2022) a	nd the prev	vious year
Parameter	Area Type	Area	vari	ation		ı	Magnitu	de of D	ifferenc	e (MOE)) ^b from	Base Y	'ear (b)	С									(2022	<u>.) </u>					
	7,1		DF	P-Value	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2022 vs. 2012-2021	2022 v	s. 2021 MOD
	- ·	LC DCEF	10	0.001	b	-1.81	-0.132	-5.77	-5.55	-4.26	15.2	-11.0	-3.91	-8.63	-29.3	AB	AB	AB	AB	AB	AB	Α	ВС	AB	AB	С	No	1	-22.6
	Reference	LC UC	2	0.379	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC DC3	10	0.001	b	0.900	-1.84	-6.83	-11.5	-18.1	-13.1	-8.64	-6.14	-47.1	-28.8	Α	Α	Α	Α	Α	AB	Α	Α	Α	С	В	No	↑	34.7
		LC_SPDC	7	0.001	-	-	-	b	-47.2	-23.1	-40.7	-57.7	78.3	-23.0	46.8	-	-	-	ABC	CD	BCD	CD	D	Α	С	AB	No	<u> </u>	90.5
		LC_DCDS	8	0.001	-	-	b	-56.9	-65.3	-52.9	-68.5	-72.1	-1.53	-47.3	-15.2	-	-	AB	CD	CD	CD	CD	D	Α	BC	AB	No	No	60.8
Orthophosphate		LC_DC2	5	0.001	b	-10.7	-	-	-	-	-	-70.3	-36.3	-56.0	-39.2	Α	Α	-	-	-	-	-	С	AB	BC	AB	No	No	38.1
Orthophosphate	Mine-	LC_DC4	3	0.001	-	-	-	-	-	-	-	b	75.0	41.2	57.9	-	-	-	-	-	-	-	В	Α	Α	Α	No	No	11.9
	Exposed	LC_DC1	10	0.001	b	-2.24	25.0	-22.9	-28.2	-24.4	-52.4	-54.1	-27.9	-46.0	-34.5	AB	AB	Α	ABC	BCD	BC	DE	Е	ВС	CDE	BCDE	No	No	21.4
		FR_FR5	3	0.185	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC_FRUS	ı	-	-	-	-	ı	-	-	-	-	-	-	-	ı	-	ı	-	ı	-	-	-	-	-	-	No	No	-
		LC_FRB	10	0.009	b	2.60	-3.89	-39.4	-41.2	-4.24	45.2	-14.3	8.77	-18.4	-37.2	AB	AB	AB	AB	AB	AB	Α	AB	AB	AB	В	No	No	-23.1
		LC_GRCK	10	0.042	b	2.84	5.51	-17.8	-15.7	3.55	5.84	-7.22	19.9	5.16	-32.3	AB	AB	AB	AB	AB	AB	AB	AB	Α	AB	В	No	No	-35.6
	Reference	LC_DCEF	9	0.531	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	Reference	LC_UC	4	0.011	-	-	b	-	-81.0	-55.1	-64.5	-	-	-	-52.8	-	-	Α	-	В	AB	AB	-	-	-	AB	No	No	0
		LC_DC3	9	0.001	-	b	3.53	-3.93	-3.18	-0.847				-1.72	-30.3	1	ABC	ABC	ABC	AB	AB	BC	ABC	AB	Α	С	No	\downarrow	-29.1
		LC_SPDC	7	0.001	-	-	-	b	-39.8	-36.1		-47.6		-46.4	-42.1	-	-	-	Α	BC	BC	С	С	AB	С	BC	No	No	7.94
		LC_DCDS	8	0.001	-	-	b	4.45	-18.1	-14.6	-34.7		-4.74	-26.7	-22.0	-	-	ABC	Α	ABCD	ABCD	D	BCD	AB	CD	ABCD	No	No	6.32
Phosphorus (P)-		LC_DC2	4	0.007	-	b	-	-	-	-	-	-34.4	-17.6	-25.2	-19.6	-	Α	-	-	-	-	-	В	AB	AB	AB	No	No	7.59
Total	Mine-	LC_DC4	3	0.005	-	-	-	-	-	-	-	b	12.3	3.76	22.3	-	-	-	-	-	-	-	В	AB	В	Α	No	↑	17.9
	Exposed	LC_DC1	9	0.001	-	b	24.2	-9.43	-22.0	-26.8	-36.2	-35.7	-28.6	-34.0	-27.0	-	AB	Α	AB	В	В	В	В	В	В	В	No	No	10.6
		FR_FR5	8	0.555	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC_FRUS	1	0.008	-	-	b	-34.8	-	-	-	-	-	-	-	-	-	Α	В	-	-	-	-	-	-	-	\downarrow	\downarrow	-
		LC_FRB	9	0.004	-	b	-5.20	-51.4	-22.9	-50.1	-20.9	-62.6	-47.5	-42.2	-19.2	-	Α	AB	AB	AB	AB	AB	В	AB	AB	Α	No	No	39.8
		LC_GRCK	9	0.081	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	Reference	LC_DCEF	10	0.002	b	7.18	11.8	16.6	23.8	18.1	5.65		0.549	4.72	9.12	В	AB	AB	AB	A	AB	AB	AB	В	AB	AB	No	No	4.20
		LC_UC	8	0.001	Ŀ	-	b	4.17	9.87	3.68	12.2		2.01	19.2	19.9	-	-	В	В	AB	В	AB	Α	В	Α	Α	No	No	0.550
		LC_DC3	10	0.001	b	3.84	4.48	6.73	45.1	159	552	751	1,258	1,540	2,015	Н	Н	Н	Н	G	F	Е	D	С	В	Α	<u> </u>	1	29.0
]	LC_SPDC	7	0.001	-	-	-	b	27.0	125	476	641		1,327	1,749	-	-	-	Н	G	F	E	D	С	В	Α	<u> </u>	1	29.6
		LC_DCDS	8	0.001	-	-	b	4.94	37.5	146	524	699		1,400		-	-	Н	Н	G	F	E	D	С	В	Α	1	1	33.0
Sulphate	<u> </u>	LC_DC2	5	0.001	b	18.8	-	-	-	-	-		1,232	_		D	D	-	-	-	-	-	С	В	AB	Α	No	No	17.7
	_Mine-	LC_DC4	3	0.001	-	-	-	-	-	-	-	b	52.0	116	159	-	-	-	-	-	-	-	D	С	В	Α	<u> </u>	1	20.1
	Exposed	LC_DC1	10	0.001	b	2.37	15.5	24.4	38.6	84.3	297	435	650	1,041	1,292	Н	Н	GH	GH	G	F	E	D	С	В	A	<u> </u>	1	22.0
		FR_FR5	9	0.001	b	9.11	10.9	5.23	12.5	19.1	20.9	-	19.7	37.7	31.8	С	BC	ABC	С	ABC	ABC	ABC	-	ABC	Α	AB	No	No	-4.31
		LC_FRUS	1	0.919	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC_FRB	10	0.001	b	19.5	19.4	20.3	18.0	30.9	25.2	1	30.4	48.3	48.1	С	BC	BC	BC	BC	AB	В	AB	AB	A	A	No	No	-0.188
		LC GRCK	10	0.001	b	6.41	4.95	11.8	13.8	15.9	15.1	17.3	13.1	12.8	3.00	С	ABC	ABC	ABC	AB	Α	AB	Α	AB	ABC	BC	No	No	-8.66

P-value < 0.05 (annual variation).

> 20% Decrease in concentration.

> 33% Decrease in concentration.

> 50% Decrease in concentration.

> 25% Increase in concentration.

> 50% Increase in concentration.

> 75% Increase in concentration.

> 100% Increase in concentration.

*Bold Significant increase or decrease from base year b.

^a The presence of annual variation was determined by a significant Year term (α = 0.05) using an ANOVA with factors Year and Month.

b Magnitude of Difference (MOD) was calculated as the concentrations in each year (or 2022) minus the concentration in the first year (or 2021) divided by the concentration in the first year (or 2021) × 100.

^c Significance between each year determined using all pairwise comparisons with Tukey correction.

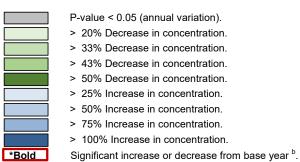
Table C.3: Temporal Changes in Water Chemistry Constituents at Stations, Dry Creek LAEMP, 2012 to 2022

Parameter	Area Type	Area		nnual ation ^a	Q1: Is	there a	positive Magnitu		(b) of	monito	oring?				se year	Q2: Is	the 202	2 annua	al mean	greate	r or less	s than a	II annua (2022		rical me	eans (20	112 to 2022) a	nd the pre	vious year
Parameter	Area Type	Area			2042					•						2010	22.42		2245	2242	2045	2242	22.42		2224		2022 vs.	2022 v	s. 2021
			DF	P-Value	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2012-2021	Trend	MOD
	Reference	LC_DCEF	10	0.293	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	Reference	LC_UC	8	0.645	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC_DC3	10	0.001	b	0.984	2.37	14.4	30.4	60.7	182	212	341	374	461	F	F	F	EF	Е	D	С	С	В	В	Α	↑	↑	18.4
		LC_SPDC	7	0.001	-	-	-	b	7.75	29.3	125	145		291	352	-	-	-	F	F	Е	D	D	С	В	Α	1	1	15.8
	-	LC_DCDS	8	0.001	-	-	b	3.11	9.63	30.1	122	147	241	274	335	-	-	E	Е	Е	D	С	С	В	В	Α	1	↑	16.5
Total Dissolved	-	LC_DC2	5	0.001	b	10.7	-	-	-	-	-	143	234	261	299	D	D	-	-	-	-	-	С	В	AB	Α	No	No	10.5
Solids	Mine-	LC_DC4	3	0.001	-	-	-	-	-	-	-	b	23.1	46.8	58.9	-	-	-	-	-	-	-	D	С	В	Α	<u> </u>	↑	8.28
	Exposed	LC_DC1	10	0.001	b	2.17	-1.99	7.50	11.6	17.1	57.6	61.7	89.8	137	150	Е	DE	E	DE	DE	D	С	С	В	Α	Α	No	No	5.64
		FR_FR5	9	0.005	b	9.52	10.3	2.83	8.79	13.9	9.69	-	17.4	22.0	14.7	В	AB	AB	В	AB	AB	AB	-	AB	Α	AB	No	No	-5.98
	-	LC_FRUS	1	0.309	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	-	LC_FRB	10	0.001	b	14.7	14.2	12.9	13.5	21.0	18.8	+	22.7	30.2	30.4	С	ABC	ABC	BC	BC	AB	AB	AB	AB	Α	Α	No	No	0.114
		LC_GRCK	10	0.347	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	Reference	LC_DCEF	10	0.001	b	11.5	6.10	6.74	2.35	1.16	-0.167	0.0183	-5.48	-0.797	1.77	BC	Α	AB	AB	ABC	ABC	BC	ВС	С	BC	ABC	No	No	2.59
		LC_UC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	No	No	-
	-	LC_DC3	10	0.001	b	6.09	1.30	5.14	14.8	53.8	146	161	152	284	246	E	E	E	E	E	D	С	С	С	Α	В	No	<u></u>	-10.0
	-	LC_SPDC	7	0.001	-	-	-	b	-2.91	24.9	107	116	107	215	194	-	-	-	D	D	С	В	В	В	Α	Α	No	No	-6.53
A () (OL)	-	LC_DCDS	8	0.001	-	-	b	15.4	16.5	55.7	150	160	153	256	245	-	-	E	D	D	С	В	В	В	Α	Α	No	No	-3.17
Antimony (Sb)-		LC_DC2	5	0.001	b	0.226	-	-	-	-	-	117	104	200	181	С	С	-	-	-	-	-	В	В	Α	Α	No	No	-6.16
Total	Mine-	LC_DC4	3	0.001	-	-		-	-	-	-	b	-8.77	34.7	36.6	-	-	-	-	-	-	-	В	В	Α	Α	No	No	1.42
	Exposed	LC_DC1	10	0.001	b	3.59	10.7	4.30	10.5	16.3	39.9	1	27.8	84.1	91.2	D	D	CD	D	D	CD	В	В	BC	Α	Α	No	No	3.87
	-	FR_FR5	9	0.637	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	-	LC_FRUS	1	0.176	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	-	LC_FRB	10	0.001	b	-4.63	-7.59	-11.9	-24.0	-24.3	-8.63	-21.9	-10.3	-6.52	-3.55	AB	AB	AB	AB	AB	AB	AB	В	AB	AB	Α	No	No	3.18
		LC_GRCK	-	- 0.040		- 4.40	-	-	-	- 0.45	-	-		-	- 7.50	-	-	-	-	-	-	-	-	-	-	-	No	No	- 4.00
	Reference	LC_DCEF	10	0.040	b	4.42	-0.202	4.31	3.10	8.15	6.87	9.62	5.17	8.84	7.53	Α	Α	A	A	A	A	A	A	A	A	A	No	No	-1.20
		LC_UC	8	0.005	-	-	b	-0.777	-1.26	1.99	-2.20			1.35	2.56	-	-	AB	AB	AB	A	AB	AB	В	A	A	No	No	1.20
	-	LC_DC3	10	0.001	b	2.01	0.194	10.00	22.4	48.9	93.7 68.1	87.2 59.2		122	70.9	F	F	F	EF	E	D	В	BC	В	A	С	No	—	-23.1
	-	LC_SPDC LC DCDS	7	0.001	-	-	- b	b	2.72	25.7			65.9	87.8 39.8	53.1	-	-	-	D	D	С	В	В	В	A	В	No	—	-18.5
	-	_	8	0.001	- b	- 0 11	b	-12.1	-11.7	-3.13		47.0	31.6 90.1	39.8 62.2	19.6 52.8	- D	- D	С	С	С	С	AB	AB	AB	A	B	No No	N ₁	-14.4 -5.83
Barium (Ba)-Total	Mine-	LC_DC2 LC_DC4	5 3	0.001	b -	8.11	-	-	-	-	-	47.0	11.6	19.1	52.8 19.1	- -	D -	-	-	-	-	-	C	A B	B A	BC A	No No	No No	-5.83 -0.0185
	Exposed	LC_DC4	10	0.001	b b	3.12	-1.26	2.17	3.31	14.6	30.6		47.7	70.1	67.8	E	DE	E	E	E	- D	C	BC	В	A	A	No	No	-1.33
	LAPUSEU	FR FR5	9	0.001	b	9.67	9.34	-3.03	-2.02	-0.937	-10.8		-8.42	-15.0	-15.6	ABC	A	AB	ABCD	ABCD	ABC	CD	- BC	BCD	D	D	No	No	-0.683
	-	LC FRUS	1	0.436																							No	No	
		LC_FRUS	10	0.436	nc b	nc 5.25	nc 3.36	nc 0.941	nc -5.49	nc 3.40	nc -10.6	nc -6.47	nc -8.41	nc -3.84	nc -8.96	nc ABC	nc A	nc A	nc AB	nc ABC	nc A	nc C	nc ABC	nc BC	nc ABC	nc BC	No	No	nc -5.32
		LC_FRB	10	0.001	nc	0.20 nc	nc	nc	-5.49 nc					-3.04 nc	-0.90 nc	nc	nc	nc		nc	nc	nc		nc	nc	nc	No	No	-5.32 nc
		LC_GRCK	9	0.052	b	-7.26	-2.29	-13.3	-23.7	nc	nc -23.8	nc -21.4	nc -22.5	-18.9	- 20.6		AB	_	nc BC	D	HC	D	nc CD	CD	CD	CD	No	No	-2.09
Boron (B)-Total	Reference	_			D					20.4						Α		Α			- DE			E	CD	CDE			-2.09 -4.98
·		LC_UC	8	0.001	-	-	b	-14.0	-22.1	-29.4	-30.2	-25.8	-31.7	-24.4	-28.2	-	-	Α	В	С	DE	DE	CDE	E	CD	UDE	No	No	-4.98

P-value < 0.05 (annual variation).

- > 20% Decrease in concentration.
- > 33% Decrease in concentration.
- > 43% Decrease in concentration.
- > 50% Decrease in concentration.
- > 25% Increase in concentration.
- > 50% Increase in concentration.
- 75% Increase in concentration.100% Increase in concentration.

*Bold Significant increase or decrease from base year b.

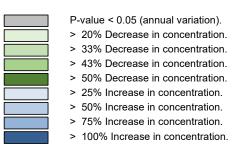

^a The presence of annual variation was determined by a significant Year term ($\alpha = 0.05$) using an ANOVA with factors Year and Month.

b Magnitude of Difference (MOD) was calculated as the concentrations in each year (or 2022) minus the concentration in the first year (or 2021) divided by the concentration in the first year (or 2021) × 100.

 $^{^{\}rm c}$ Significance between each year determined using all pairwise comparisons with Tukey correction.

Table C.3: Temporal Changes in Water Chemistry Constituents at Stations, Dry Creek LAEMP, 2012 to 2022

				nnual ation ^a	Q1: Is	there a	-		(b) of	monito	oring?				se year	Q2: Is	the 202	2 annua	al mean	greater	r or less	s than a	II annua (2022		rical me	eans (20	12 to 2022) a	and the pre	vious year
Parameter	Area Type	Area	DF	P-Value	2012	2013	Magnitu 2014	ude of D 2015	2016	2017	2018	2019	2020	2021	2022	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2022 vs. 2012-2021	2022 v	rs. 2021 MOD
		LC DC3	5	0.001	b	-	-2.05	-8.44			_		-8.89	3.79	1.49	AB		AB	В	_	_			В	۸	۸	No	No	-2.22
		LC_DC3	3	0.001	-	-	-2.05	-0.44 b	-	-	-	-	-6.64	5.80	2.94	AD -	-	AD	AB	_	-	-	-	В	A	A	No	No	-2.22 -2.70
		LC_SFDC	4	0.001		-	b	-9.61	-		-	-	-14.7	-4.91	-4.60			A	BC	-	-	-	-	С	AB	AB	No	No	0.318
	-	LC_DCD3	3	0.047	b	-1.65	-	-9.01	-	-	-		-14.7	- 9 .31	-8.00	A	A	-	-	-				-	A	A	No	No	1.29
	Mine-	LC_DC2	-	0.047	-	-1.00	_	_	_		-	_		-3.17	-0.00	-	-	-	_	_					-	-	No	No	1.20
Boron (B)-Total	Exposed	LC DC1	4	0.002	b	-0.537	3.08	-10.5	_	_	_	_		_	-19.2	AB	AB	Α	AB	-	_			_	_	В	No	No	0
	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	FR FR5	8	0.001	b	-5.84	-3.49	-10.3	-28.6	-	-25.2	-	-21.1	-16.4	-12.8	A	AB	AB	ABC	D	-	CD	_	BCD	BCD	ABCD	No	No	4.32
		LC FRUS	1	0.267	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC FRB	4	0.044	b	0.0951	3.72	-4.59	-	-	-	-	-	-12.0	-	AB	AB	A	AB	-	-	-	-	-	В	-	No	No	-
	ļ.	LC GRCK	10	0.001	b	1.90	4.41	-12.1	-18.5	-18.1	-18.2	-18.7	-13.5	-12.3	-11.7	Α	Α	Α	В	В	В	В	В	В	В	В	No	No	0.636
		LC DCEF	10	0.097	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	Reference	LC UC	8	0.001	-	-	b	-56.4	-63.0	-55.6		-54.5		-54.9	-31.7	_	-	Α	ВС	С	ВС	ВС	ВС	ВС	ВС	AB	No	No	51.5
		LC DC3	10	0.001	b	-6.96	-2.94	33.6	39.8	78.3	110	98.3	198	440	393	Е	Е	Е	DE	DE	CD	С	С	В	Α	Α	No	No	-8.66
	ļ.	LC SPDC	7	0.001	-	-	-	b	-32.0	-15.8	2.98	-2.45		136	220	-	-	-	D	Е	DE	D	D	С	В	Α	↑	↑	35.6
	F	LC DCDS	8	0.001	-	-	b	30.7	2.60	35.4	59.0	62.0	182	266	408	-	-	Е	DE	Е	D	D	D	С	В	Α	<u> </u>	<u> </u>	38.7
Cadmium (Cd)-	ļ-	LC DC2	5	0.001	b	-5.00	-	-	-	-	-	59.8	122	182	261	Е	Е	-	-	-	-	-	D	С	В	Α	<u> </u>	<u> </u>	28.1
Total	Mine-	LC DC4	3	0.001	-	-	-	-	-	-	-	b	25.8	60.4	101	-	-	-	-	-	-	-	D	С	В	Α	<u> </u>	<u> </u>	25.4
	Exposed	LC DC1	10	0.001	b	5.18	12.5	14.3	-1.33	5.21	21.9	24.7	45.6	86.4	159	CD	CD	CD	CD	D	D	CD	CD	ВС	В	Α	<u> </u>	<u> </u>	39.2
	·	FR FR5	9	0.001	b	18.9	8.34	-18.5	-17.2	-18.1	-7.00	-	15.7	-2.20	25.2	AB	Α	AB	В	В	В	AB	-	AB	AB	Α	No	No	28.0
	ļ.	LC FRUS	1	0.022	-	-	b	-20.4	_	-	-	-	-	_	-	_	-	Α	В	_	-	-	_	_	-	-	1		_
	ļ.	LC FRB	10	0.001	b	-7.69	-21.6	-35.5	-44.9	-39.0	-26.5	-39.5	-24.3	-18.0	-17.6	Α	AB	ABC	ABC	С	ВС	ABC	С	ABC	AB	AB	No	No	0.490
	F	LC GRCK	8	0.495	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC DCEF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	_
	Reference	LC_UC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	_
		LC DC3	7	0.001	-	-	-	b	7.65	142	351	207	385	341	41.0	_	-	-	С	С	В	Α	AB	Α	Α	С	No		-68.1
	F	LC SPDC	7	0.001	-	-	-	b	-23.8	54.1	150	67.7	148	144	-19.9	-	-	-	CD	D	ВС	AB	ABC	Α	Α	D	No	.l.	-67.2
	ļ.	LC DCDS	6	0.001	-	-	_	b	-	64.0	192	80.9	163	136	-15.1	_	-	-	CD	_	ВС	Α	В	Α	AB	D	No	Ī	-64.0
	ļ.	LC DC2	2	0.068	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
Cobalt (Co)-Total	Mine-	LC DC4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	Exposed	LC DC1	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	No	No	_
	'	FR FR5	3	0.037	-	_	b	_	_	_	_	_	31.6	-31.3	22.6	_	_	AB	_	_	_	_	_	Α	В	Α	No	1.10	78.5
	<u> </u>	LC FRUS	-	-	١	_	-	_	_	_	_	_	-	-	-	_	_		_	_	_	_	_	-	-	-	No	No	-
	<u> </u>	LC FRB	2	0.166	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	 	LC GRCK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		_0_011011	_	_		_	_	_	_	_		_		_			_				_	_			_	_	. 10	140	_


^a The presence of annual variation was determined by a significant Year term (α = 0.05) using an ANOVA with factors Year and Month.

b Magnitude of Difference (MOD) was calculated as the concentrations in each year (or 2022) minus the concentration in the first year (or 2021) divided by the concentration in the first year (or 2021) × 100.

^c Significance between each year determined using all pairwise comparisons with Tukey correction.

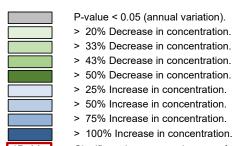
Table C.3: Temporal Changes in Water Chemistry Constituents at Stations, Dry Creek LAEMP, 2012 to 2022

			An	nual	Q1: Is	there a	positive	or neg		nange ir monito		ntration	ns since	the ba	se year	Q2: Is	the 202	2 annua	al mean	greate	r or less	than al	II annua	al histor	ical me	ans (20)12 to 2022) a	nd the pre	vious year
		_	Varia	ation ^a		-	Magnitu	de of D	• •			Rasa V	ear (b)	С									(2022	?)? ^c					
Parameter	Area Type	Area	DF	P-Value	2012	2013	2014	2015		2017	2018	2019	2020	2021	2022	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2022 vs. 2012-2021		rs. 2021
		LO DOFF	40	0.044	-	0.00	0.04	F 00	44.0	2.04	0.004	0.00	0.00	2.07	4.04	4 D	-	1	A D	^	4 D	Б	4 D	Б	4 D	4 D		Trend	MOD
	Reference	LC_DCEF LC UC	10	0.011	b	-2.96	-2.91	5.36	14.9 8.44	3.94	-0.801		-2.33	3.07	1.84 6.58	AB	В	B	AB AB	A	AB ABC	В	AB ABC	В	AB AB	AB	No	No	-1.19
-		_	8	0.001	-	- 2.61	b	3.38	30.2	-0.632		1.49	-6.01	3.66		-	-	ABC		A F	F	BC E		С		A	No	No	2.82 36.5
	:	LC_DC3 LC SPDC	10 7	0.001	b -	-3.61	-7.39	15.7	10.0	31.7 13.2	92.3 65.9	131 94.8	267 193	357 274	523 418	GH -	GH	Н	FG F	F F	F	E	D D	С	В	A			38.5
		_	8			-		b		-22.1			88.8	152	234	-	-	EF	F	<u>г</u> F		E	D	C	B B	A	<u> </u>	<u> </u>	32.5
	-	LC_DCDS LC DC2	5	0.001	b	13.0	b -	-7.68	-8.24	-22.1	10.8	78.3	115	185	244	E	E	⊏□	Г	Г	G		D	С	В	A	<u> </u>		20.6
Lithium (Li)-Total	Mine-	LC_DC2	3	0.001	-	13.0	-	-	-	-	-	7 6.3	11.8	42.0	64.0		-	-	-	-	-	-	D	С	В		<u> </u>		15.4
	Exposed	LC_DC4	10	0.001	- b	0.289	-7.18	7.08	12.6	6.36	20.8		41.9	82.0	110	- FG	FG	G	- F	EF	- F	DE	CD	С	В	A	1	<u> </u>	15.4
	LAPUSEU	FR FR5	9	0.001	b	15.1	16.1	36.0	63.1	65.8	57.5	32.U -	71.6	113	132	E	DE	DE	CD	В	В	BC	-	В	А	A	No	No	8.54
		LC FRUS	1	0.001	-	-	b	12.7	-	-	37.3		7 1.0	113	102	-	DL -	В	A		_	<u>БС</u>		-	-	-	110	1 N O	0.54
		LC_FR03	10	0.001	b	16.4	22.9	35.0	- 55.1	54.8	49.9	61.6	78.5	122	144	F	EF	E	DE	BCD	BCD	CD	BC	В	A	A	No	No	9.96
		LC GRCK	10	0.001	b	5.09	-2.59	-7.58	-9.74	-1.79	-3.78			2.23	11.2	ABCD	AB	BCD	CD	D	BCD	BCD	CD	ABCD	ABC	A	No	No	8.82
		LC_ORER	10	0.016	b	49.6	-46.8	-79.1	-55.6	-52.8	-66.4	-24.2		0.994	14.2	AB	A	AB	B	AB	AB	AB	AB	AB	AB	AB	No	No	13.1
	Reference	LC UC	8	0.001	-	-	b	-73.6	-74.3		-61.4	-62.5		-65.1	-23.3	-	-	A	С	C	ABC	ABC	ABC	BC	ABC	AB	No	No	120
-		LC_DC3	10	0.001	b	-27.9	36.1	133	189		1,178		355		189	FG	G	EFG	DEF	DE	AB	A	BC	CD	A	DE	No	110	-82.8
		LC SPDC	7	0.001	-	-21.9	-	b	-6.43	117	187	42.7	93.7	471	44.0	-	-		D	D	BC	В	CD	BC	A	CD	No	\	-74.8
	:	LC DCDS	8	0.001	-	-	b	127	161	597	826	361	453	1,380	314	_	_	F	E	DE	BC	AB	CD	BC	A	CD	No	\	-72.0
Manganese (Mn)-	:	LC DC2	5	0.001	b	-29.6	-	-	-	-	-	123	54.7	484	131	ВС	С		-	-	-	-	В	BC	A	В	No	↓	-60.4
Total	Mine-	LC DC4	3	0.001	-	-	_	-	-	-	_	b	-5.27	93.7	4.89	-	-	-	_	_	_	_	В	В	A	В	No	\	-45.8
. 5 ta.:	Exposed	LC DC1	10	0.001	b	47.8	2.54	14.8	4.79	35.5	59.2	35.1	21.7	111	35.4	В	AB	В	В	В	В	AB	В	В	A	В	No	↓	-35.8
		FR FR5	9	0.060	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	:	LC FRUS	1	0.001	-	-	b	-29.4	-	-	-	-	-	-	-	-	-	A	В	-	-	-	-	-	-	-	110	1	-
	-	LC FRB	10	0.006	b	6.08	-24.5	-44.6	-47.0	-40.9	-34.9	-49.4	-39.2	-24.9	-36.4	Α	Α	AB	AB	AB	AB	AB	В	AB	AB	AB	No	No	-15.2
		LC GRCK	10	0.140	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC DCEF	5	0.414	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	Reference	LC UC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC DC3	6	0.001	-	-	-	-	b	67.3	23.8	29.4	9.84	79.6	-7.75	-	-	-	-	С	AB	ВС	ABC	С	Α	С	No	Ţ	-48.6
		LC SPDC	5	0.081	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC DCDS	5	0.032	-	-	-	-	b	27.9	0.703			16.0	-	-	-	-	-	Α	Α	Α	Α	Α	Α	-	No	No	-
Mercury (Hg)-		LC DC2	2	0.065	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
Total	Mine-	LC DC4	2	0.421	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	Exposed	LC DC1	5	0.482	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	•	FR FR5	2	0.384	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC FRUS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC FRB	5	0.199	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC GRCK	3	0.689	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc

*Bold Significant increase or decrease from base year ^b.

Notes: "ns" = not significant: "-" insufficient data for comparison, where insufficient data is less than 6 months of recorded data or > 75% LRL data in a given year "nc" = nost.

Notes: "ns" = not significant; "-" insufficient data for comparison, where insufficient data is less than 6 months of recorded data or > 75% LRL data in a given year. "nc" = post-hoc test not conducted because of non-significant year term.


^a The presence of annual variation was determined by a significant Year term (α = 0.05) using an ANOVA with factors Year and Month.

b Magnitude of Difference (MOD) was calculated as the concentrations in each year (or 2022) minus the concentration in the first year (or 2021) divided by the concentration in the first year (or 2021) × 100.

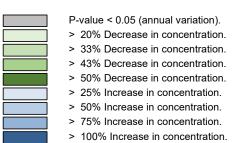
^c Significance between each year determined using all pairwise comparisons with Tukey correction.

Table C.3: Temporal Changes in Water Chemistry Constituents at Stations, Dry Creek LAEMP, 2012 to 2022

				nual ation ^a	Q1: Is	there a	•	or neg	(b) of	monito	ring?				se year	Q2: Is	the 202	2 annua	al mean	greate	r or less	s than a	ll annua (2022		rical me	eans (20)12 to 2022) a	nd the pre	vious year
Parameter	Area Type	Area				'		ide oi D	merenc	e (IVIOL	, 110111	Dase I	ear (D)														2022 vs.	2022 v	s. 2021
			DF	P-Value	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2012-2021	Trend	MOD
	D (LC DCEF	10	0.722	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	Reference	LC UC	8	0.005	-	-	b	5.47	5.97	5.36	8.53	0.950	8.38	7.00	11.9	-	-	В	AB	AB	AB	AB	В	AB	AB	Α	No	No	4.57
		LC DC3	10	0.001	b	-1.36	-6.80	-4.64	9.07	53.0	188	243	262	279	320	FG	FG	FG	G	F	Е	D	С	ВС	В	Α	↑	↑	10.7
		LC_SPDC	7	0.001	-	-	1	b	10.5	50.9	191	230	244	436	588	-	-	-	F	F	Е	D	CD	С	В	Α	<u> </u>	<u> </u>	28.3
		LC_DCDS	8	0.001	-	-	b	0.311	12.0	48.8	177	215	234	407	538	-	-	F	F	F	Е	D	С	С	В	Α	<u> </u>	1	25.7
Molybdenum (Mo)-		LC_DC2	5	0.001	b	8.10	-	-	-	-	-	170	159	345	406	С	С	-	-	-	-	-	В	В	Α	Α	No	No	13.7
Total	Mine-	LC_DC4	3	0.001	-	-	-	-	-	-	-	b	-5.99	55.8	83.4	-	-	-	-	-	-	-	С	С	В	Α	↑	↑	17.7
	Exposed	LC_DC1	10	0.001	b	2.13	-10.8	-7.11	0.379	4.80	36.3	41.4	27.0	105	137	D	D	D	D	D	D	С	С	С	В	Α	↑	↑	15.5
		FR_FR5	9	0.001	b	4.51	-2.11	-6.12	4.01	-2.52	-7.84	-	17.6	17.4	62.8	В	В	В	В	В	В	В	-	В	В	Α	1	↑	38.7
		LC_FRUS	1	0.877	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC_FRB	10	0.001	b	0.242	-4.55	-6.34	-3.37	-6.78	-2.94	-2.42	9.88	18.4	49.5	ВС	ВС	ВС	С	ВС	С	С	С	ВС	В	Α	1	↑	26.3
		LC_GRCK	10	0.693	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	Reference	LC_DCEF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	Neierence	LC_UC	-	-	-	-	-	-	ı	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC_DC3	10	0.001	b	-11.2	-16.0	31.8	36.4	114	459	673	1,293	1,158	1,720	FG	G	G	F	F	Е	D	С	В	В	Α	↑	↑	44.6
		LC_SPDC	7	0.001	-	-	-	b	-14.9	25.7	235	365	683	559	1,049	-	-	-	EF	F	E	D	С	В	В	Α	↑	↑	74.3
		LC_DCDS	8	0.001	-	-	b	44.9	42.3	126	510	716	1,278	1,089	2,004	-	-	G	F	F	E	D	С	В	В	Α	1	1	77.0
Nickel (Ni)-Total		LC_DC2	5	0.001	b	-7.96	-	-	-	-	-	522	677	780	1,348	D	D	-	-	-	-	-	С	BC	В	Α		1	64.5
Moker (M)-Total	Mine-	LC_DC4	3	0.001	-	-	-	-	-	-	-	b	20.8	66.0	195	-	-	-	-	-	-	-	С	С	В	Α	↑	↑	77.7
	Exposed	LC_DC1	10	0.001	b	-0.146	26.5	23.6	10.1	22.5	124	173	252	332	653	Е	E	Е	E	Е	Е	D	CD	BC	В	Α	1	↑	74.4
		FR_FR5	9	0.013	b	12.8	-26.2	-36.9	28.5	-10.5	-12.1	-	-2.14	3.73	32.3	AB	AB	AB	В	Α	AB	AB	-	AB	AB	Α	No	No	27.5
		LC_FRUS	1	0.033	-	-	b	-23.8	-	-	-	-	-	-	-	-	-	Α	Α	-	-	-	-	-	-	-	No	No	-
		LC_FRB	10	0.001	b	-25.1	-55.9	-63.0	-45.7	-49.9	-43.2	-51.2	-32.7	-16.9	-15.2	Α	ABCD	DE	E	BCDE	DE	CDE	DE	ABCD	ABC	AB	No	No	2.08
		LC_GRCK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	Reference	LC_DCEF	10	0.001	b	9.77	8.40	17.4	21.8	23.6	18.1	28.7	28.1	24.8	29.1	D	CD	CD	ВС	AB	AB	ВС	Α	AB	AB	AB	No	No	3.42
]	1.010101100	LC_UC	8	0.001	-	-	b	-1.45	17.4	22.2	35.2	40.6	37.0	50.3	46.0	-	-	D	D	С	BC	AB	AB	AB	Α	Α	No	No	-2.84
		LC_DC3	10	0.001	b	12.8	6.86	24.1	74.4	332	1,325		3,446	4,306	5,293	Н	Н	Н	Н	G	F	E	D	С	В	Α	1	1	22.4
		LC_SPDC	7	0.001	-	-	-	b	32.2	253	994		2,616		4,066	-	-	-	Н	G	F	E	D	С	В	Α	1	1	19.9
		LC_DCDS	8	0.001	-	-	b	2.42	34.0	223	974		2,603	_	_	-	-	Н	Н	G	F	E	D	С	В	Α	1	↑	25.4
Selenium (Se)-		LC_DC2	5	0.001	b	16.1	-	-	-	-	-	1,315	2,508	_	_	D	D	-	-	-	-	-	С	В	AB	Α	No	No	17.4
Total	Mine-	LC_DC4	3	0.001	-	-	-	-	-	-	-	b	75.6	149	187	-	-	-	-	-	-	-	D	С	В	Α	1	↑	15.1
	Exposed	LC_DC1	10	0.001	b	6.43	6.45	10.2	23.4	99.1	421	661	1,177	1,847	2,143	F	F	F	F	F	Е	D	С	В	Α	Α	No	No	15.2
		FR_FR5	9	0.001	b	17.8	19.1	6.17	8.33	20.9	24.1	-	32.1	47.8	35.0	Е	BCDE	BCDE	DE	CDE	ABCDE	ABCD	-	ABC	Α	AB	No	No	-8.61
		LC_FRUS	1	0.136	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC_FRB	10	0.001	b	22.9	22.5	13.5	11.3	27.4	24.5	25.9	41.0	59.1	42.3	D	BCD	BCD	CD	CD	ВС	BC	BC	AB	Α	AB	No	No	-10.6
		LC_GRCK	10	0.002	b	12.4	8.12	6.99	6.81	13.5	12.8	13.9	13.7	17.5	12.0	В	AB	AB	AB	AB	Α	Α	Α	Α	Α	AB	No	No	-4.75

*Bold Significant increase or decrease from base year ^b.

Notes: "ns" = not significant; "-" insufficient data for comparison, where insufficient data is less than 6 months of recorded data or > 75% LRL data in a given year. "nc" = post-hoc test not conducted because of non-significant year term.


^a The presence of annual variation was determined by a significant Year term ($\alpha = 0.05$) using an ANOVA with factors Year and Month.

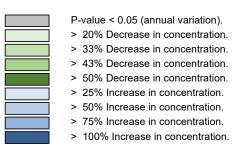
b Magnitude of Difference (MOD) was calculated as the concentrations in each year (or 2022) minus the concentration in the first year (or 2021) divided by the concentration in the first year (or 2021) × 100.

[°] Significance between each year determined using all pairwise comparisons with Tukey correction.

Table C.3: Temporal Changes in Water Chemistry Constituents at Stations, Dry Creek LAEMP, 2012 to 2022

			An	nual	Q1: Is	there a	positive	or neg				entration	ns since	the ba	se year	Q2: Is	the 202	2 annua	al mean	greate	r or less	than a	II annu	al histor	ical me	ans (20)12 to 2022) a	nd the prev	vious vear
				ation ^a					• •	monito						Q2. 10	202	2 aa.	ui iiiouii	grouto	01 1000	, tilali a	(2022		ioui iiio	,u115 (20	712 (0 2022) 0	ina the pro-	vious your
Parameter	Area Type	Area	Valle	ation			Magnitu	de of D	ifferenc	e (MOE)) ^b from	Base Y	ear (b)	C									(2022	-):					
			DF	P-Value	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2022 vs. 2012-2021	2022 vs	s. 2021 MOD
		LC DCEF	10	0.002	b	2.72	0.397	7.82	16.1	14.9	8.71	14.1	2.53	8.68	12.4	Α	Α	Α	Α	Α	۸	Α	۸	Α	Α	Α	No	No	3.44
	Reference	LC UC	8	0.002	-	2.12	0.397 b	6.33	11.5	5.31	4.08		0.346	10.1	4.27	-	-	В	AB	A	A AB	AB	A AB	В	AB	AB	No	No	-5.27
		LC_DC3	10	0.003	b	-4.31	-8.33	13.6	47.2	113	367	468	706	833	942	G	G	G	G		E	D	С	В	A	A	No	No	11.6
		LC_DC3	7	0.001	-	-4.51	-0.33	b	14.6	73.9	258	329	519	622	739	-	-	-	G	G	F	E	D	С	В	A	140	110	16.3
		LC_DCDS	8	0.001	 	-	b	8.57	17.5	64.5	246	316	489	569	693	-	_	G	G	G	F	E	D	C	В	A	<u> </u>	<u> </u>	18.6
		LC_DCD3	5	0.001	b	17.7	-	- 0.57	- 17.5	04.5	240	324	459	597	674	D	D	-	-		<u> </u>		С	В	A	A	No	No	11.0
Uranium (U)-Total	Mine-	LC_DC2	3	0.001	-	-	-			_	-	b	12.9	59.9	89.2	-	-	-			_	_	D	С	В	A	110	110	18.3
	Exposed	LC_DC4	10	0.001	- b	4.08	-7.28	-0.728	10.0	18.1	67.9		94.5	175	225	EFG	EFG	G	FG	EF.	E	D	CD	C	В	A	<u> </u>	<u> </u>	18.4
	Джроооч	FR FR5	9	0.001	b	7.50	3.47	1.80	12.7	16.9	18.7	-	32.5	45.2	44.7	C	С	С	C	BC	BC	BC	-	AB	A	A	No	No	-0.361
		LC FRUS	1	0.199	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC FRB	10	0.001	b	10.2	7.32	8.03	16.3	22.7	21.7	28.0	33.7	52.8	48.8	E	DE	DE	DE	CDE	BCD	BCD	BC	В	A	A	No	No	-2.66
		LC GRCK	10	0.357	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC DCEF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	Reference	LC UC	-	_	-	-	-	-	-	_	-	-	-	_	_	-	-	-	-	-	-	-	-	-	_	_	No	No	-
		LC DC3	9	0.001	b	-7.32	-	17.2	21.8	65.6	84.6	83.1	255	368	375	D	D	-	D	D	CD	С	С	В	Α	Α	No	No	1.49
		LC SPDC	7	0.001	-	-	-	b	-20.5	-17.1	-6.99		95.5	136	201	-	-	-	С	C	С	C	C	В	В	Α	1	↑	27.3
		LC DCDS	6	0.001	-	-	b	-	-	38.6	16.0	33.5	152	182	308	-	-	С	-	-	С	С	С	В	В	Α	<u> </u>	<u> </u>	44.7
7' - (7 ·) T · (·)		LC DC2	4	0.001	b	-	-	-	-	-	-	5.83	50.5	125	173	В	-	-	-	-	-	-	В	В	Α	Α	No	No	21.4
Zinc (Zn)-Total	Mine-	LC DC4	2	0.001	-	-	-	-	-	-	-	-	b	13.2	124	-	-	-	-	-	-	-	-	В	В	Α	↑	↑	97.9
	Exposed	LC_DC1	2	0.805	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		FR_FR5	2	0.264	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC_FRUS		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC_FRB	1	0.162	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		LC_GRCK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	Reference	LC_DCEF	10	0.002	b	6.37	-3.77	-11.9	-8.58	-4.96	6.61	-1.64	-6.97	-3.13	-4.42	AB	Α	AB	В	AB	AB	Α	AB	AB	AB	AB	No	No	-1.33
	Reference	LC_UC	8	0.008	-	-	b	-16.2	-25.3	-22.5	-5.66	-14.0	-4.58	-5.26	-0.271	-	-	AB	AB	В	AB	AB	AB	AB	AB	Α	No	No	5.27
		LC_DC3	10	0.001	b	-2.30	-7.48	3.83	4.31	42.6	139	122	238	190	492	EF	EF	F	F	F	Е	CD	D	В	BC	Α	1	1	104
		LC_SPDC	7	0.001	-	-	-	b	-14.8	28.2	67.3		306	255	643	-	-	-	EF	F	DE	CD	С	В	В	Α	<u></u>	↑	109
		LC_DCDS	8	0.001	-	-	b	-14.0	-24.1	15.7	49.4	61.6	254	215	561	-	-	EF	EF	F	DE	CD	С	В	В	Α	↑	1	110
Cadmium (Cd)-		LC_DC2	5	0.001	b	7.20	-	-	-	-	-	68.1	153	175	354	D	D	-	-	-	-	-	С	В	В	Α	<u></u>	↑	65.0
Dissolved	Mine-	LC_DC4	3	0.001	-	-	-	-	-	-	_	b	32.9	54.7	116	-	-	-	-	-	-	-	D	С	В	Α	1	1	39.4
	Exposed	LC_DC1	10	0.001	b	1.62	-3.30	-8.95	-7.41	4.61	23.5	21.5	61.2	95.8	168	DE	DE	Е	Е	Е	Е	D	D	С	В	Α	↑	1	37.1
		FR_FR5	9	0.005	b	-10.4	-6.32	-18.6	-24.3	-22.4	-9.23	-	4.50	0.0160	6.24	AB	AB	AB	AB	В	AB	AB	-	AB	AB	Α	No	No	6.23
		LC_FRUS	1	0.004	-	-	b	-34.0	-	-	-	-	-	-	-	-	-	Α	В	-	-	-	-	-	-	-	\	\downarrow	-
		LC_FRB	10	0.001	b	14.4	7.69	-26.2	-33.1	-26.7	7.49	-22.0	-2.25	5.91	11.8	ABC	Α	Α	BCD	D	CD	Α	CD	AB	Α	Α	No	No	5.52
		LC_GRCK	5	0.503	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc

*Bold Significant increase or decrease from base year ^b.


^a The presence of annual variation was determined by a significant Year term ($\alpha = 0.05$) using an ANOVA with factors Year and Month.

b Magnitude of Difference (MOD) was calculated as the concentrations in each year (or 2022) minus the concentration in the first year (or 2021) divided by the concentration in the first year (or 2021) × 100.

[°] Significance between each year determined using all pairwise comparisons with Tukey correction.

Table C.3: Temporal Changes in Water Chemistry Constituents at Stations, Dry Creek LAEMP, 2012 to 2022

Parameter	Area Type	Area		nual ation ^a	Q1: Is 1	there a _l				monito	ring?				se year	Q2: Is	the 2022	2 annua	al mean	greate	r or les	s than a	III annua (2022		rical me	ans (20)12 to 2022) a	nd the pre	vious year
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		DF	P-Value	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2022 vs.	2022 v	s. 2021
			D,	1 - Value	2012	2010	2014	2010	2010	2017	2010	2013	2020	2021	LULL	2012	2010	2017	2010	2010	2017	2010	2013	2020	2021	2022	2012-2021	Trend	MOD
	Reference	LC_DCEF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	reservice	LC_UC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	-	LC_DC3	4	0.001	-	-	-	-	-	b	154	31.2	150	108	-	-	-	-	-	-	В	Α	В	Α	Α	-	No	No	-
	-	LC_SPDC	4	0.001	-	-	-	-	-	b	99.5	32.4	157	153	-	-	-	-	-	-	С	AB	ВС	Α	Α	-	No	No	-
		LC_DCDS	4	0.001	-	-	-	-	-	b	141	25.8	174	142	-	-	-	-	-	-	В	Α	В	Α	Α	-	No	No	-
Cobalt (Co)-	-	LC_DC2	1	0.069	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
Dissolved	Mine-	LC_DC4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	Exposed	LC_DC1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		FR_FR5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	-	LC_FRUS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	-	LC_FRB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC_GRCK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	Reference	LC_DCEF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	11010101100	LC_UC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	-	LC_DC3	3	0.001	-	-	-	-	-	-	-	b	99.2	137	178	-	-	-	-	-	-	-	С	В	AB	Α	No	No	17.4
	-	LC_SPDC	3	0.005	-	-	-	-	-	-	-	b	27.3	13.4	48.7	-	-	-	-	-	-	-	В	AB	AB	Α	No	No	31.2
DMSeO -		LC_DCDS	3	0.046	-	-	-	-	-	-	-	b	9.87	1.40	33.6	-	-	-	-	-	-	-	Α	Α	Α	Α	No	No	31.8
Dimethylselenoxid		LC_DC2	3	0.018	-	-	-	-	-	-	-	b	-16.5	13.4	24.8	-	-	-	-	-	-	-	AB	В	AB	Α	No	No	10.0
е	Mine-	LC_DC4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
_	Exposed	LC_DC1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	-	FR_FR5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	-	LC_FRUS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	-	LC_FRB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC_GRCK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	Reference	LC_DCEF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	11010101100	LC_UC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	-	LC_DC3	3	0.023	-	-	-	-	-	-	-	b	9.96	-8.71	-0.135	-	-	-	-	-	-	-	AB	Α	В	AB	No	No	9.39
	-	LC_SPDC	3	0.001	-	-	-	-	-	-	-	b	-3.79	-32.5	-21.1	-	-	-	-	-	-	-	Α	Α	В	В	No	No	16.9
MeSe(IV) -	-	LC_DCDS	3	0.001	-	-	-	-	-	-	-	b	-6.36	-39.6	-20.9	-	-	-	-	-	-	-	Α	AB	С	В	No	1	31.0
Methylseleninic	_	LC_DC2	3	0.001	-	-	-	-	-	-	-	b	-27.5	-28.4	-17.5	-	-	-	-	-	-	-	Α	В	В	AB	No	No	15.2
Acid	Mine-	LC_DC4	1	0.688	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
, .5.5	Exposed	LC_DC1	3	0.806	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
		FR_FR5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC_FRUS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC_FRB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC_GRCK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	No	No	-

*Bold Significant increase or decrease from base year ^b.

Note: "pe" = not significant: " " insufficient data for comparison, where insufficient data is less than 6 months of recorded data or > 75% LPL data in a given year. "pe" = per

Notes: "ns" = not significant; "-" insufficient data for comparison, where insufficient data is less than 6 months of recorded data or > 75% LRL data in a given year. "nc" = post-hoc test not conducted because of non-significant year term.

^a The presence of annual variation was determined by a significant Year term ($\alpha = 0.05$) using an ANOVA with factors Year and Month.

b Magnitude of Difference (MOD) was calculated as the concentrations in each year (or 2022) minus the concentration in the first year (or 2021) divided by the concentration in the first year (or 2021) × 100.

^c Significance between each year determined using all pairwise comparisons with Tukey correction.

Table C.3: Temporal Changes in Water Chemistry Constituents at Stations, Dry Creek LAEMP, 2012 to 2022

				nnual riation ^a	Q1: Is			e or neg	(b) of	monito	ring?				se year	Q2: Is	the 202	2 annu	al mean	greater	or less	s than a	II annua (2022		rical me	ans (20	12 to 2022) a	ind the pre	vious year
Parameter	Area Type	Area	DF	P-Value	2012	2013	2014	ude of D 2015	2016	e (MOL 2017	2018	2019	ear (b) 2020	2021	2022	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2022 vs.	2022 v	rs. 2021
			<u> </u>	1 Value	2012	20.0	2014	2010	2010	2017	2010	2010	2020	2021	2022	2012	2010	2014	2010	2010		2010	2010	2020	2021	2022	2012-2021	Trend	MOD
	Reference	LC_DCEF	3	0.624	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	No	No	nc
	Reference	LC_UC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC_DC3	3	0.001	-	-	-	-	-	-	-	b	74.3	115	172	-	-	-	-	-	-	-	D	С	В	Α	↑	↑	26.6
		LC_SPDC	3	0.001	-	-	-	-	-	-	-	b	77.7	121	174	-	-	-	-	-	-	-	D	С	В	Α	↑	↑	24.2
		LC_DCDS	3	0.001	-	-	-	-	-	-	-	b	78.8	109	174	-	-	-	-	-	-	-	D	С	В	Α	↑	↑	31.5
Se(VI) - Selenate		LC_DC2	3	0.001	-	-	-	-	-	-	-	b	83.3	126	168	-	-	-	-	-	-	-	D	С	В	Α	↑	↑	18.5
Se(VI) - Selenate	Mine-	LC_DC4	3	0.001	-	-	-	-	-	-	-	b	75.4	154	197	-	-	-	-	-	-	-	D	С	В	Α	↑	↑	16.7
	Exposed	LC_DC1	3	0.001	-	-	-	-	-	-	-	b	62.0	141	175	-	-	-	-	-	-	-	D	С	В	Α	↑	↑	14.4
		FR_FR5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC_FRUS	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		No	No	-
		LC_FRB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC_GRCK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	Reference	LC_DCEF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
	Reference	LC_UC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC_DC3	3	0.001	-	-	-	-	-	-	-	b	21.3	26.0	48.3	-	-	-	-	-	-	-	С	В	В	Α	1	↑	17.7
		LC_SPDC	3	0.001	-	-	-	-	-	-	-	b	7.58	6.34	21.2	-	-	-	-	-	-	-	В	В	В	Α	↑	↑	14.0
		LC_DCDS	3	0.001	-	-	-	-	-	-	-	b	9.71	4.33	23.9	-	-	-	-	-	-	-	В	AB	В	Α	No	↑	18.7
Se(IV) - Selenite		LC_DC2	3	0.001	-	-	-	-	-	-	-	b	-16.1	9.39	23.9	-	-	-	-	-	-	-	BC	С	AB	Α	No	No	13.3
Se(IV) - Selerinte	Mine-	LC_DC4	3	0.001	-	-	-	-	-	-	-	b	-13.5	52.9	71.1	-	-	-	-	-	-	-	В	В	Α	Α	No	No	11.9
	Exposed	LC_DC1	3	0.001	-	-	-	-	-	-	-	b	-6.43	42.7	40.8	-	-	-	-	-	-	-	В	В	Α	Α	No	No	-1.35
		FR_FR5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC_FRUS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC_FRB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-
		LC GRCK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	No	-

> 20% Decrease in concentration. > 33% Decrease in concentration. > 43% Decrease in concentration. > 50% Decrease in concentration. > 25% Increase in concentration. > 50% Increase in concentration.

P-value < 0.05 (annual variation).

> 75% Increase in concentration.

> 100% Increase in concentration.

*Bold Significant increase or decrease from base year b.

^a The presence of annual variation was determined by a significant Year term (α = 0.05) using an ANOVA with factors Year and Month.

b Magnitude of Difference (MOD) was calculated as the concentrations in each year (or 2022) minus the concentration in the first year (or 2021) divided by the concentration in the first year (or 2021) × 100.

^c Significance between each year determined using all pairwise comparisons with Tukey correction.

Table C.4: Summary of Water Chemistry Data for Key Parameters for the Dry Creek LAEMP Monitoring Stations, 2022

Area	Summary Statistic	Total Dissolved Solids (mg/L)	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Ammonia (mg/L)	Total Phosphorus (mg/L)	Orthophosphate (mg/L)	Sulphate (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Aluminum (mg/L)
	n	14	14	14	24	14	14	14	14	14	14	14	14	14	14
	Annual Minimum	99	7.8	7.5	10	111	0.087	< 0.001	< 0.005	0.0088	0.0038	5	0.19	0.068	< 0.003
	Annual Maximum	179	8.4	8.1	85	160	0.32	0.0023	0.011	0.021	0.016	7.6	0.34	0.11	0.06
	Annual Mean	144	8.1	7.8	40	145	0.16	0.0011	0.0054	0.013	0.011	6.4	0.27	0.099	0.01
	Annual Median	148	8.2	7.9	11	149	0.13	0.001	0.005	0.013	0.012	6.6	0.29	0.11	0.0038
LC_DCEF	% < LRL	0%	0%	0%	0%	0%	0%	93%	86%	0%	0%	0%	0%	0%	29%
	% > BCWQG ^a	-	-	0%	0%	0%	0%	0%	0%	_	-	0%	0%	_	0%
	% > BCWQG ^b	_	-	_	0%	_	0%	0%	0%	_	_	_	0%	0%	_
	% > Level 1 Benchmark/UEC	0%		_	-	_	0%	-	-	_	_	0%	-	-	_
	% > Level 2 Benchmark/UEC	-	-	-	-		0%	-	_	_	_	0%	-	-	_
	% > Level 3 Benchmark/UEC	-	<u>-</u>	_			0%		_	-	_	0%		_	_
	n	57	57	65	105	63	57	<u>-</u> 57	57	57	57	57	57	57	57
	Annual Minimum	346	6.8	7	103	110	12	0.002	<0.005	0.02	0.012	106	5.1	0.073	0.0038
	Annual Maximum	964	8.3	8.6	87	189	57	0.002	0.003	0.02	0.012	340	25	0.073	0.0036
	Annual Mean	723	8.2	8	41	149	40	0.016	0.013	0.048	0.029	241	17	0.089	0.018
	Annual Median	781	8.2	8.1	12	150	46	0.0035	0.0054	0.026	0.024	258	17	0.088	0.016
10 000	% < LRL	0%	0%	0%	0%	0%	0%	46%	88%	0.026	0.024	258 0%	0%	54%	0.012
LC_DC3															
	% > BCWQG ^a	-	-	0%	0%	0%	100%	0%	0%	-	-	0%	0%	-	0%
	% > BCWQG ^b	-	-	-	0%	-	68%	0%	0%	-	-	-	0%	0%	-
	% > Level 1 Benchmark/UEC	0%	-	-	-	-	100%	-	-	-	-	0%	•	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	79%	-	-	-	-	0%	-	-	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	0%	-	-	-	-	0%	-	-	-
	n	53	53	64	102	61	53	53	53	53	53	53	53	53	53
	Annual Minimum	322	7.2	7.3	8.3	109	11	0.0022	<0.005	0.015	0.0041	97	4.6	0.072	0.0047
	Annual Maximum	957	8.4	8.5	88	173	57	0.069	0.07	0.04	0.029	335	25	0.14	0.2
	Annual Mean	694	8.2	8.1	40	146	38	0.0095	0.0093	0.025	0.021	230	16	0.089	0.017
	Annual Median	766	8.2	8.1	12	147	44	0.0071	0.0062	0.025	0.023	246	18	0.092	0.0086
LC_SPDC	% < LRL	0%	0%	0%	0%	0%	0.0%	13%	43%	0%	0%	0%	0%	53%	0%
	% > BCWQG ^a	-	-	0%	0%	0%	100%	0%	0%	-	-	0%	0%	-	0%
	% > BCWQG ^b	-	-	-	0%	-	64%	0%	0%	-	-		0%	0%	-
	% > Level 1 Benchmark/UEC	0%	-	-	-	-	100%	-	-	-	-	0%	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	75%	-	-	-	-	0%	-	-	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	0%	-	-	-	-	0%	-	-	-
	n	56	56	65	104	62	56	56	56	56	56	56	56	56	56
	Annual Minimum	312	6.9	7.5	9	107	9.6	0.0017	< 0.005	0.017	0.0047	85	4	0.054	0.0054
	Annual Maximum	939	8.4	8.5	94	176	57	0.064	0.035	0.036	0.029	334	25	0.1	0.069
	Annual Mean	667	8.2	8.1	41	147	37	0.0089	0.0087	0.024	0.021	223	16	0.086	0.012
	Annual Median	718	8.2	8.1	12	148	43	0.007	0.0064	0.024	0.022	236	17	0.085	0.0082
LC_DCDS	% < LRL	0%	0%	0%	0%	0%	0.0%	11%	41%	0%	0%	0%	0%	54%	0%
	% > BCWQG ^a	-	-	0%	0%	0%	100%	0%	0%	-	-	0%	0%	-	0%
	% > BCWQG ^b	-	_		0%	_	64%	0%	0%	_	_	_	0%	0%	_
	% > Level 1 Benchmark/UEC ^c	0%		_	570		100%	-	-	_	_	0%	-	-	_
	% > Level 1 Benchmark/UEC % > Level 2 Benchmark/UEC	-	-	+	-		77%		-	-	-	0%			-
	% > Level 2 Benchmark/UEC % > Level 3 Benchmark/UEC	-	-	-	-	-		-	-	-	-		-	-	-
		- 50	- 52	- 61	- 0E	-	0%	- 52	- 52	52	- 52	0%	- 52	- 52	- 52
	n Annual Minimum	52 121	52 7.2	61	95 9.9	59 101	52 0.46	52 0.001	52 <0.005	0.014	52 0.0066	52 7	52 0.26	52 0.062	52 0.0043
				· ·								-		+	
	Annual Maximum	856 574	8.4 8.2	8.4	88	177 148	52	0.069	0.024	0.11	0.026	306	34	0.1	0.26
	Annual Mean	574		8.1	41		30	0.0075	0.0065	0.025	0.019	181	13	0.084	0.022
10.55	Annual Median	656	8.2	8.1	12	148	37	0.0064	0.005	0.023	0.02	208	16	0.082	0.009
LC_DC2	% < LRL	0%	0%	0%	0%	0%	0%	10%	69%	0%	0%	0%	0%	44%	0%
	% > BCWQG ^a	-	-	0%	0%	0%	96%	0%	0%	-	-	0%	0%	-	2%
	% > BCWQG ^b	-	-	-	0%	-	54%	0%	0%	-	-	-	0%	0%	-
	% > Level 1 Benchmark/UEC	0%	-	-	-	-	88%	-	-	-	-	0%	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	62%	-	-	-	-	0%	-	-	-
	% > Level 3 Benchmark/UEC						0%					0%			1

> 5% of samples exceed the guideline or benchmark.

Notes: "UEC" = Updated Effects Concentration. "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. UEC's are shown for Nitrate and Sulphate, Interim Screen Vaues are shown for Total Nickel, and EVWQP benchmarks are shown for all other relevant parameters. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

[°]LC_DCDS, LC_UC, and LC_GRCK Site Performance Objective for Total Cadmium and Total Selenium

Table C.4: Summary of Water Chemistry Data for Key Parameters for the Dry Creek LAEMP Monitoring Stations, 2022

## Annual Maximum 636 54 63 98 224 27 0.016 0.015 0.055 0.051 156 12 0.11	Area	Summary Statistic	Total Dissolved Solids (mg/L)	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Ammonia (mg/L)	Total Phosphorus (mg/L)	Orthophosphate (mg/L)	Sulphate (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Aluminum (mg/L)
Annual Maximum	1	n	52		58	92	58	52	52	52	52	52	52	52	52	52
Annual Mean	1	Annual Minimum	214	7.2	7.6	9.8	107	4	0.0011	<0.005	0.0083	0.0036	35	1.7	0.051	< 0.003
Annual Mean	1	Annual Maximum	606	8.4	8.3	96	204	27	0.018	0.015	0.055	0.019	158	12	0.11	0.14
LC_PC4 Annual Median	1	Annual Mean	430	8.2	8	41	166	18	0.0038	0.0054	0.016		110	7.7		
LC_DC4	1				8	12										
No. Service No.	LC DC4	% < LRL			0%								0%			
No. DEWOOD No. N												-				
## N - Level 2 Benchmark/UEC	1											_				
## Activated Enerhandriv/EC	1				_	070						_				
No. Level 3 Benchmark/UEC - - - - - - - - -	1				-	-						-				
Color	1														+	
## Annual Minimum 208 7.2 7.6 9.6 112 3.7 0.016 -0.006 0.0035 0.0035 33 1.6 0.073 < 0.003 ## Annual Maximum 544 8.5 8.8 91 2.00 2.0 0.007 0.052 0.0070 0.016 0.006 0.006 0.001 ## Annual Mean 410 8.3 8.2 4.2 4.0 4.0 17 0.005 0.0000 0.016 0.0016 0.006 7.2 0.006 0.001 ## **********************************																
Annual Maximum	1															
LC_PC Annual Mean	1															
LC_RC1 Annual Median 442 8.3 8.2 12 170 006 006 006 006 006 006 006	1															
LC_PC1 S_ < LRL 0% 0% 0% 0% 0% 0% 0% 0	1															
## SEWQG*	10.504															
No	LC_DC1										_	0%				
No	1			-	υ%		υ%				-	-				υ%
No.	1			-	-	0%	-		0%	0%	-	-		0%	0%	-
No.	1		0%	-	-	-	-		-	-	-	-		-	-	-
Name	1		-	-	-	-	-		-	-	-	-		-	-	-
## Annual Minimum 332 7.8 6.8 7.5 155 7.8 0.0016 <0.005 <0.002 <0.001 112 1.3 0.12 <0.003 <0.003 <0.001 <0.005 <0.003 <0.001 <0.005 <0.003 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005		% > Level 3 Benchmark/UEC		-	-	-			-	-	-	-				-
Annual Maximum	1															
Annual Man	1				6.8											
FR_FRS Annual Median 691 8.2 8 12 229 19 0.0058 0.005 0.004 0.006 0.00	1	Annual Maximum	814	8.3	8.4	102	250	22	0.02	0.013	0.073	0.0012	338		0.22	0.21
FR_FRS	1	Annual Mean	640	8.2	7.9	40		17	0.0061	0.0065	0.012			3.2	0.15	0.041
No. Service	1	Annual Median	691	8.2	8	12	229		0.0058	0.005	0.0049			2.9	0.14	0.0079
No.	FR_FR5	% < LRL	0%	0%	0%	0%	0%	0.0%	18%	64%	36%	82%	0%	0%	0%	9%
No.	1	% > BCWQG ^a	-	-	0%	5%	0%	100%	0%	0%	-	-	0%	0%	-	9%
% > Level 1 Benchmark/UEC	1		-	-	-	0%	•	0%	0%	0%	-	-	-	0%	0%	_
% > Level 2 Benchmark/UEC	1		0%	-	_		-		-	_	-	_	0%		_	-
No No No No No No No No	1			_	_	_	_		_	_	_	_			_	_
Name	1				_	_			_	_		_			+	+
Annual Minimum 323 8.2 7.7 10 155 6.2 0.0025 <0.005 <0.002 <0.001 77 1.3 0.12 0.006					4	5				4		4				4
Annual Maximum	1	Annual Minimum		•	•			·	•	•	•	· ·	·	•		
Annual Mean	1															
Annual Median 552 8.3 8.2 13 197 12 0.0038 0.005 0.001 199 2.8 0.15 0.027	1															
C_FRUS																
Note	I C EDIIG															
No SCWQGb	LO_PRUS			<u> </u>								7 3 70				
% Level 1 Benchmark/UEC	1			-	0 70		U /0	7.7			-	-	U /0			0 /0
Note Senchmark/UEC Sench				-	-		-				-	-	-			-
% > Level 3 Benchmark/UEC - - - - 0% - - - 0% - - - 0% -				-	-						-					
N 26 26 25 46 26 26 26 26 26 26 26	1															1
Annual Minimum 298 8.2 7.7 9.5 146 5.9 0.0019 <0.005 <0.002 <0.001 79 1 0.1 0.0037																
Annual Maximum 744 8.5 8.4 92 255 20 0.014 0.014 0.027 0.0019 298 5.4 0.19 0.13 Annual Mean 538 8.3 8.1 46 195 13 0.0057 0.0054 0.0084 0.0011 198 2.8 0.15 0.032 Annual Median 579 8.3 8.2 13 200 14 0.0052 0.005 0.0052 0.001 210 2.6 0.14 0.022 **N > LC_FRB** **Security of the control of t	1															
LC_FRB Annual Mean 538 8.3 8.1 46 195 13 0.0057 0.0054 0.0084 0.0011 198 2.8 0.15 0.032 Annual Median 579 8.3 8.2 13 200 14 0.0052 0.005 0.001 210 2.6 0.14 0.022 % < LRL 0% 0% 0% 0% 0.0% 4% 85% 8% 69% 0% 0% 0% % > BCWQG³ - - 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% - - 0% 0% 0% - - 0% 0% 0% - - 0% 0% 0% - - 0% 0% - - - 0% - - - 0% - - - 0% - - - - 0% - -																
LC_FRB Annual Median 579 8.3 8.2 13 200 14 0.0052 0.005 0.001 210 2.6 0.14 0.022 W < LRL 0% 0% 0% 0% 0.006 4% 85% 8% 69% 0% 0% 0% % > BCWQG³ - - 0% 0% 0% 0% 0% - - 0% 0% % > BCWQG³ - - - 0% - 0% 0% - - 0% 0% % > BCWQG³ - - - 0% - 0% 0% - - - 0% 0% % > Level 1 Benchmark/UEC 0% - - - 0% - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																
LC_FRB % < LRL 0% 0% 0% 0% 0% 0.0% 4% 85% 8% 69% 0% 0% 0% % > BCWQG³ - - 0% 0% 0% 0% 0% - - 0% 0% - 0% % > BCWQG³ - - - 0% - 0% 0% - - 0% 0% - - 0% 0% - - 0% 0% - - 0% 0% - - 0% 0% - - - 0% 0% - - - 0% 0% - - - 0% 0% - - - 0% - - - 0% -																
% > BCWQG³ - - 0% 0% 0% 100% 0% - - 0% 0% - 0% % > BCWQG¹b - - - 0% - 0% 0% - - - 0% - % > Level 1 Benchmark/UEC 0% - - - - 0% - - - - - % > Level 2 Benchmark/UEC - - - 0% -																
% > BCWQGb - - 0% - 0% 0% - - - 0% 0% - % > Level 1 Benchmark/UEC 0% - - - 0% -	LC_FRB			0%							8%	69%				
% > Level 1 Benchmark/UEC 0% - - - 0% - - - - - % > Level 2 Benchmark/UEC - - - 0% - - - 0% -	1		-	-	0%		0%			0%	-	-	0%		-	0%
% > Level 1 Benchmark/UEC 0% - - - 0% - - - - - % > Level 2 Benchmark/UEC - - - 0% - - - 0% - - - 0% - <td>1</td> <td>% > BCWQG^b</td> <td>-</td> <td>-</td> <td></td> <td>0%</td> <td>-</td> <td>0%</td> <td>0%</td> <td>0%</td> <td>-</td> <td>-</td> <td>-</td> <td>0%</td> <td>0%</td> <td>-</td>	1	% > BCWQG ^b	-	-		0%	-	0%	0%	0%	-	-	-	0%	0%	-
% > Level 2 Benchmark/UEC 0% 0% 0%			0%	-	-		-				-	-	0%			-
				-	-	-	-		-	-	-	-		-	-	-
		% > Level 3 Benchmark/UEC	-	-	-	-	-	0%	-	-	-	-	0%	-	-	-

> 5% of samples exceed the guideline or benchmark.

Notes: "UEC" = Updated Effects Concentration. "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. UEC's are shown for Nitrate and Sulphate, Interim Screen Vaues are shown for Total Nickel, and EVWQP benchmarks are shown for all other relevant parameters. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

[°]LC_DCDS, LC_UC, and LC_GRCK Site Performance Objective for Total Cadmium and Total Selenium

Table C.4: Summary of Water Chemistry Data for Key Parameters for the Dry Creek LAEMP Monitoring Stations, 2022

Area	Summary Statistic	Total Dissolved Solids (mg/L)	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Ammonia (mg/L)	Total Phosphorus (mg/L)	Orthophosphate (mg/L)	Sulphate (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Aluminum (mg/L)
	n	14	14	14	24	14	14	14	14	14	14	14	14	14	14
	Annual Minimum	181	8.2	8	10	155	0.03	<0.001	<0.005	0.0023	<0.001	14	<0.1	0.098	0.0035
	Annual Maximum	264	8.4	8.6	103	193	0.64	0.0014	0.0083	0.024	0.0035	54	0.55	0.15	0.23
	Annual Mean	227	8.3	8.3	43	172	0.098	0.001	0.0052	0.0071	0.0019	45	0.19	0.13	0.04
	Annual Median	230	8.4	8.3	13	172	0.049	0.001	0.005	0.0052	0.0018	49	0.17	0.13	0.011
LC_GRCK	% < LRL	0%	0%	0%	0%	0%	0.0%	93%	93%	0%	36%	0%	7%	0%	7%
_	% > BCWQG ^a	-	-	0%	0%	0%	0%	0%	0%	-	-	0%	0%	-	14%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	-	-	0%	0%	-
	% > Level 1 Benchmark/UEC ^c	0%	-	-	-	-	0%	-	-	-	-	0%	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	1	-	0%	-	-	-	-	0%	1	-	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	0%	-	-	-	-	0%		-	-
	n	12	12	12	21	12	12	12	12	12	12	12	12	12	12
	Annual Minimum	237	8.1	7.8	11	255	0.025	<0.001	<0.005	<0.002	<0.001	14	0.12	0.094	<0.003
	Annual Maximum	341	8.4	8.2	87	281	0.087	<0.001	0.011	0.027	0.0021	26	0.33	0.16	0.096
	Annual Mean	282	8.3	8	42	267	0.053	<0.001	0.0055	0.0063	0.0011	17	0.16	0.14	0.014
	Annual Median	282	8.3	8	12	266	0.058	<0.001	0.005	0.0022	0.001	17	0.14	0.14	0.0048
LC_UC	% < LRL	0%	0%	0%	0%	0%	0.0%	100%	92%	42%	92%	0%	0%	0%	33%
-	% > BCWQG ^a	-	-	0%	0%	0%	0%	0%	0%	-	-	0%	0%	-	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	-	-	0%	0%	1
	% > Level 1 Benchmark/UEC ^c	0%	-	-	-	-	0%	-	-	-	-	0%	•	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	0%	-	-	-	-	0%	-	-	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	0%	-	-	-	-	0%		-	-

Notes: "UEC" = Updated Effects Concentration. "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. UEC's are shown for Nitrate and Sulphate, Interim Screen Vaues are shown for Total Nickel, and EVWQP benchmarks are shown for all other relevant parameters. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

 $^{^{\}rm a}$ Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

 $^{^{\}rm c}$ LC_DCDS, LC_UC, and LC_GRCK Site Performance Objective for Total Cadmium and Total Selenium

Table C.4: Summary of Water Chemistry Data for Key Parameters for the Dry Creek LAEMP Monitoring Stations, 2022

Area	Summary Statistic	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Boron (mg/L)	Total Cadmium (µg/L)	Total Chromium (mg/L)	Total Cobalt (μg/L)	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Manganese (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Nickel (µg/L)
	n	14	14	14	14	14	14	14	14	14	14	14	14	13	14	14
	Annual Minimum	0.00012	0.00012	0.2	<0.00002	0.01	0.028	<0.0001	<0.0001	<0.01	<0.00005	0.01	<0.0001	<0.0000005	0.00076	<0.5
	Annual Maximum	0.00017	0.00028	0.28	<0.00002	0.011	0.068	0.00086	<0.0001	0.05	0.00008	0.022	0.0031	<0.0000005	0.0027	0.73
	Annual Mean	0.00014	0.00019	0.25	<0.00002	0.01	0.041	0.00018	<0.0001	0.018	0.000053	0.018	0.00072	<0.0000005	0.0012	0.52
	Annual Median	0.00014	0.00018	0.25	<0.00002	0.01	0.035	0.00011	<0.0001	0.01	0.00005	0.019	0.00012	<0.0000005	0.0012	0.5
LC_DCEF	% < LRL	0%	0%	0%	100%	21%	0%	43%	100%	57%	86%	0%	36%	100%	0%	86%
20_502.	% > BCWQG ^a	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	0%	85%	0%	-
	% > BCWQG ^b	-	0%	-	-	-	_	-	0%	0%	0%	_	0%	-	0%	_
	% > Level 1 Benchmark/UEC	_	-	_		-		_	-	-	-		-	_	-	
	% > Level 2 Benchmark/UEC			-		_		_	_			_			-	
	% > Level 3 Benchmark/UEC		_	_		_			_		_	_		_		-
	n	57	57	57	57	57	57	57	57	57	57	57	57	56	57	57
	Annual Minimum	0.00056	0.0003	0.1	<0.00002	<0.01	0.19	<0.0001	0.0001	<0.01	<0.00005	0.014	0.00041	0.00000057	0.0037	8.8
	Annual Maximum	0.00036	0.0003	0.26	<0.00002	0.013	0.19	0.00036	0.0001	0.18	0.00003	0.014	0.00041	0.00000037	0.0054	22
	Annual Mean	0.00093	0.00046	0.20	<0.00002	0.013	0.4	0.00030	0.0004	0.18	0.00023	0.037	0.0093	0.00000022	0.0034	15
	Annual Median	0.00066	0.00035	0.16	<0.00002	0.01	0.31	0.00012	0.00012	0.022	0.00005	0.037	0.002	0.00000031	0.0047	16
LC_DC3	% < LRL	0.00000	0.00033	0%	100%	35%	0%	46%	32%	28%	95%	0%	0.0010	75%	0.0047	0%
FO_DO3	% > BCWQG ^a	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	0%	79%	0%	-
	% > BCWQG ^b	-	0%	-	-	-	· ·	-	0%	0%	0%		0%	-	0%	_
	% > Level 1 Benchmark/UEC	-	-	_		_		_	-	-	-		-	_	-	_
	% > Level 2 Benchmark/UEC	-	_	-		_		_	_	_	_	_		_	-	-
	% > Level 3 Benchmark/UEC	_	_	-	-	_	-	_	_	-	_	_	_	_	_	_
	n	53	53	53	53	53	53	53	53	53	53	53	53	53	53	53
	Annual Minimum	0.00056	0.00027	0.099	<0.00002	<0.01	0.18	<0.0001	<0.0001	<0.01	<0.00005	0.014	0.00089	<0.0000005	0.0038	8
	Annual Maximum	0.00095	0.00047	0.27	<0.00002	0.012	0.4	0.00047	0.00034	0.21	0.00022	0.054	0.0072	0.0000017	0.01	21
	Annual Mean	0.00067	0.00035	0.19	<0.00002	0.011	0.28	0.00013	0.00011	0.018	0.000054	0.035	0.0026	0.00000076	0.0075	14
	Annual Median	0.00066	0.00034	0.2	<0.00002	0.01	0.29	0.00011	0.0001	0.01	0.00005	0.039	0.0023	0.00000065	0.0076	14
LC_SPDC	% < LRL	0%	0%	0%	100%	42%	0%	43%	60%	57%	92%	0%	0%	75%	0%	0%
	% > BCWQG ^a	0%	_	0%	0%	0%	-	0%	0%	•	0%	-	0%	77%	0%	-
	% > BCWQG ^b	_	0%	_	_	_	-	_	0%	0%	0%	_	0%	_	0%	_
	% > Level 1 Benchmark/UEC	-	_	-	_	_	_	_	_	-	_	_	_	-	_	_
	% > Level 2 Benchmark/UEC	-	_	-	_	_	_	_	_	-	-	_	_	_	-	_
	% > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56
	Annual Minimum	0.00052	0.00024	0.11	< 0.00002	<0.01	0.15	<0.0001	<0.0001	<0.01	<0.00005	0.012	0.0011	<0.0000005	0.0036	7.2
	Annual Maximum	0.00078	0.00043	0.27	0.000046	0.015	0.35	0.00057	0.00026	0.1	0.00013	0.051	0.0061	0.0000016	0.0091	19
	Annual Mean	0.00063	0.00033	0.2	0.00002	0.011	0.27	0.00013	0.00011	0.014	0.000051	0.035	0.0022	0.00000069	0.0071	14
	Annual Median	0.00061	0.00033	0.21	0.00002	0.01	0.28	0.0001	0.0001	0.01	0.00005	0.039	0.0019	0.00000064	0.0071	13
LC_DCDS	% < LRL	0%	0%	0%	98%	34%	0%	52%	70%	68%	98%	0%	0%	82%	0%	0%
_	% > BCWQG ^a	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	0%	79%	0%	-
	% > BCWQG ^b	-	0%	-	-	-	-	-	0%	0%	0%	-	0%	-	0%	-
	% > Level 1 Benchmark/UEC ^c	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-
	n	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52
	Annual Minimum	0.00018	0.00023	0.14	<0.00002	<0.01	0.051	0.0001	<0.0001	<0.01	<0.00005	0.0084	0.00066	0.0000005	0.0011	1.6
	Annual Maximum	0.00063	0.0005	0.36	0.00004	0.013	0.3	0.0034	0.00024	0.27	0.0004	0.044	0.013	0.000001	0.0084	14
	Annual Mean	0.00048	0.00029	0.25	0.00002	0.011	0.2	0.00019	0.0001	0.031	0.000062	0.031	0.002	0.00000061	0.0054	8.8
	Annual Median	0.00048	0.00029	0.26	0.00002	0.01	0.23	0.0001	0.0001	0.01	0.00005	0.036	0.0013	0.0000006	0.0057	9.2
LC_DC2	% < LRL	0%	0%	0%	98%	60%	0%	52%	92%	52%	83%	0%	0%	77%	0%	0%
	% > BCWQG ^a	0%	-	0%	0%	0%	-	2%	0%	-	0%	-	0%	75%	0%	-
	% > BCWQG ^b	-	0%	-	-	-	-	-	0%	0%	0%	-	0%	-	0%	-
	% > Level 1 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark/UEC	-	_	I I		i l		I	1		1	I		I	_	_

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

Notes: "UEC" = Updated Effects Concentration. "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. UEC's are shown for Nitrate and Sulphate, Interim Screen Vaues are shown for Total Nickel, and EVWQP benchmarks are shown for all other relevant parameters. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

[°]LC_DCDS, LC_UC, and LC_GRCK Site Performance Objective for Total Cadmium and Total Selenium

Table C.4: Summary of Water Chemistry Data for Key Parameters for the Dry Creek LAEMP Monitoring Stations, 2022

Area	Summary Statistic	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Boron (mg/L)	Total Cadmium (μg/L)	Total Chromium (mg/L)	Total Cobalt (μg/L)	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Manganese (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Nickel (μg/L)
	n	52	52	52	52	52	<u>(μg/L)</u> 52	(Hig/L) 52	52	52	52	52	(IIIg/L) 52	51	(IIIg/L) 52	52
	Annual Minimum	0.00017	0.00014	0.17	<0.00002	<0.01	0.087	<0.0001	<0.0001	<0.01	<0.00005	0.01	0.0007	<0.0000005	0.0016	1.2
	Annual Maximum	0.00017	0.00014	0.17	<0.00002	0.012	0.087	0.00028	0.00017	0.14	0.00003	0.026	0.0007	0.000003	0.0010	7.6
	Annual Mean	0.00032	0.00030	0.28	<0.00002	0.012	0.19	0.00020	0.00017	0.025	0.00021	0.020	0.0073	0.0000013	0.0029	3.4
	Annual Median	0.00029	0.00021	0.20	<0.00002	0.01	0.12	0.00012	0.0001	0.023	0.00005	0.019	0.0018	0.000005	0.0029	3.6
1.0.004	% < LRL	0.0003	0.0002	0%	100%	79%	2%	56%	94%	48%	88%	0.02	0.0013	94%	0.0020	0%
LC_DC4		0%	-	0%	0%	0%	2 /0	0%	0%	-	0%	0 70	0%	78%	0%	-
	% > BCWQG ^a			-		070	-		_	0%	0%	-	0%	_	0%	
	% > BCWQG ^b	-	0%	-	-	-	-	-	0%		-	-	_	-	1	-
	% > Level 1 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark/UEC % > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-	-	-	52	52	<u>-</u> 	- 52	- 52	- 52	52	52	-	-	52	-
	n Americal Minimum	52	52 0.00011	52	<0.00002	_	51	<0.0001	<0.0001	_	<0.00005	0.01	52	52 <0.0000005	0.0018	52
	Annual Minimum	0.00015		0.17		<0.01	0.07			<0.01			0.00075			1.1
	Annual Maximum Annual Mean	0.00051 0.00029	0.00035 0.00021	0.37 0.28	<0.00002 <0.00002	0.014 0.01	0.17 0.098	0.00063 0.00013	0.00018 0.0001	0.16 0.03	0.00019 0.000057	0.025 0.019	0.0092 0.0025	0.0000014 0.00000058	0.0039 0.0027	6.4 2.7
	Annual Median	0.00029	0.00021	0.28	<0.00002	0.01	0.098	0.00013	0.0001	0.03	0.000057	0.019	0.0025	0.0000058	0.0027	
1.0 004	% < LRL	0.0003	0.0002	0.3	100%	73%	0.098	52%	92%	13%	83%	0.02	0.002	96%	0.0027	2.9 0%
LC_DC1		0%		0%	0%	0%	U 70	0%	0%		0%		0%	77%	0%	
	% > BCWQG ^a		- 00/	U 70		U 70	-		0%	- 0%	0%	-	0%		0%	-
	% > BCWQG ^b	-	0%	-	-	-	-	-	-			-	_	-	_	-
	% > Level 1 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark/UEC % > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark/UEC	- 11	11	- 11	<u>-</u> 11	- 11	<u>-</u> 11	11	11	<u>-</u> 11	11	11	<u>-</u> 11	11	11	- 11
	Annual Minimum	<0.0001	<0.0001	0.056	<0.00002	11 <0.01	0.022	0.00012	<0.0001	<0.01	<0.00005	0.018	0.0015	<0.000005	0.00072	<0.5
	Annual Maximum	0.0001	0.00033	0.036	0.000033	0.012	0.022	0.00012	0.00042	0.43	0.00045	0.018	0.0013	<0.0000005	0.00072	3.5
	Annual Mean	0.00024	0.00033	0.12	0.000033	0.012	0.15	0.00041	0.00042	0.43	0.00045	0.041	0.041	<0.0000005	0.0041	1.7
	Annual Median	0.00013	0.00015	0.096	0.000021	0.011	0.031	0.00022	0.00014	0.077	0.000097	0.034	0.0072	<0.0000005	0.0014	1.7
ED EDE	% < LRL	36%	36%	0.1	91%	36%	0.036	0.00017	73%	27%	73%	0.037	0.0022	100%	0.0012	9%
FR_FR5	% > BCWQG ^a	0%	-	0%	0%	0%	0 70	0%	0%	-	0%	-	0%	64%	0%	9 70
			0%			1	-		0%	0%	0%		0%		0%	
	% > BCWQG ^b % > Level 1 Benchmark/UEC	-		-	-	-	-	-	-		-	-	_	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	/6 > Level 3 Belicillia NOEC	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	Annual Minimum	<0.0001	<0.0001	0.055	<0.00002	<0.01	0.022	0.00013	<0.0001	0.01	<0.00005	0.017	0.0018	<0.000005	0.00079	<0.5
	Annual Maximum	0.00017	0.00021	0.11	<0.00002	<0.01	0.056	0.0004	0.00012	0.18	0.00035	0.031	0.013	<0.000005	0.0014	2.7
	Annual Mean	0.00017	0.00021	0.086	<0.00002	<0.01	0.030	0.0004	0.00012	0.18	0.00033	0.025	0.0069	<0.000005	0.0014	1.5
	Annual Median	0.00013	0.00016	0.080	<0.00002	<0.01	0.039	0.00023	0.00011	0.07	0.00013	0.025	0.0062	<0.000005	0.0011	1.4
LC_FRUS	% < LRL	50%	25%	0%	100%	100%	0%	0%	50%	0%	50%	0%	0.0002	100%	0%	25%
23_1 NOO	% > BCWQG ^a	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	0%	100%	0%	-
	% > BCWQG ^b	-	0%	-	-			-	0%	0%	0%	_	0%	-	0%	_
	% > Level 1 Benchmark/UEC	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	<u>-</u>			-	_						-	-
	% > Level 3 Benchmark/UEC	-	-	-	<u> </u>	-	<u> </u>	-	_	-	-	-	-	-	-	-
	n	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
	Annual Minimum	<0.0001	<0.0001	0.054	<0.00002	<0.01	0.017	0.00011	<0.0001	0.01	<0.00005	0.015	0.00086	<0.0000005	0.00081	<0.5
	Annual Maximum	0.00022	0.00023	0.14	<0.00002	0.012	0.083	0.00066	0.00015	0.16	0.00015	0.042	0.013	<0.0000005	0.007	2.6
	Annual Mean	0.00014	0.00014	0.097	<0.00002	0.01	0.039	0.0002	0.00011	0.055	0.000066	0.028	0.0042	<0.0000005	0.0015	1.4
	Annual Median	0.00013	0.00012	0.1	<0.00002	0.01	0.035	0.00016	0.0001	0.042	0.00005	0.029	0.003	<0.0000005	0.0012	1.5
LC_FRB	% < LRL	23%	27%	0%	100%	81%	0%	0%	85%	19%	65%	0%	0%	100%	0%	15%
	% > BCWQG ^a	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	0%	81%	0%	-
	% > BCWQG ^b	-	0%	_	_	_	-	_	0%	0%	0%	_	0%	_	0%	_
	% > Level 1 Benchmark/UEC	-	-	-	_	-	-	-	-	-	-	_	-	_	-	_
	% > Level 2 Benchmark/UEC	-	-	_	_	-	_	-	_	_	-	_	_	-	_	-
	% > Level 3 Benchmark/UEC	-	-	_	_	_	_	-	_	_	-	-	-	-	_	_
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>I</u>	1					l	ı	1	1	L	<u>I</u>	1		

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

Notes: "UEC" = Updated Effects Concentration. "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. UEC's are shown for Nitrate and Sulphate, Interim Screen Vaues are shown for Total Nickel, and EVWQP benchmarks are shown for all other relevant parameters. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

 $^{^{\}rm c}$ LC_DCDS, LC_UC, and LC_GRCK Site Performance Objective for Total Cadmium and Total Selenium

Table C.4: Summary of Water Chemistry Data for Key Parameters for the Dry Creek LAEMP Monitoring Stations, 2022

Area	Summary Statistic	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Boron (mg/L)	Total Cadmium (µg/L)	Total Chromium (mg/L)	Total Cobalt (µg/L)	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Manganese (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Nickel (µg/L)
	n	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14
	Annual Minimum	<0.0001	<0.0001	0.056	<0.00002	0.012	<0.005	0.00013	<0.0001	<0.01	<0.00005	0.0052	0.0013	<0.000005	0.001	<0.5
	Annual Maximum	<0.0001	0.00025	0.068	0.000022	0.017	0.034	0.0005	0.00028	0.45	0.00036	0.0076	0.049	<0.0000005	0.0036	1
	Annual Mean	<0.0001	0.00014	0.062	0.00002	0.014	0.0096	0.00026	0.00012	0.075	0.000085	0.0066	0.0073	<0.000005	0.0016	0.54
	Annual Median	<0.0001	0.00012	0.063	0.00002	0.013	0.0063	0.00022	0.0001	0.018	0.00005	0.0066	0.002	<0.0000005	0.0014	0.5
LC_GRCK	% < LRL	100%	29%	0%	93%	0%	14%	0%	86%	7%	79%	0%	0%	100%	0%	86%
	% > BCWQG ^a	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	0%	79%	0%	-
	% > BCWQG ^b	-	0%	-	-	-	-	-	0%	0%	0%	-	0%	-	0%	-
	% > Level 1 Benchmark/UEC ^c	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark/UEC	ı	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
	Annual Minimum	<0.0001	<0.0001	0.099	<0.00002	0.011	0.007	<0.0001	<0.0001	<0.01	<0.00005	0.0049	0.00055	<0.0000005	0.00058	<0.5
	Annual Maximum	<0.0001	0.00016	0.12	<0.00002	0.014	0.063	0.0012	<0.0001	0.23	0.00011	0.0071	0.036	0.0000028	0.0012	<0.5
	Annual Mean	<0.0001	0.00011	0.11	<0.00002	0.012	0.018	0.00022	<0.0001	0.036	0.000055	0.0059	0.0059	0.0000013	0.00076	<0.5
	Annual Median	<0.0001	0.0001	0.11	<0.00002	0.012	0.011	0.0001	<0.0001	0.012	0.00005	0.0059	0.0015	0.000005	0.00072	<0.5
LC_UC	% < LRL	100%	50%	0%	100%	0%	0%	42%	100%	50%	92%	0%	0%	92%	0%	100%
_	% > BCWQG ^a	0%	-	0%	0%	0%	-	8%	0%	-	0%	-	0%	83%	0%	-
	% > BCWQG ^b	ı	0%	-	-	-	-	-	0%	0%	0%	-	0%	-	0%	-
	% > Level 1 Benchmark/UEC ^c	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark/UEC		-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes: "UEC" = Updated Effects Concentration. "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. UEC's are shown for Nitrate and Sulphate, Interim Screen Vaues are shown for Total Nickel, and EVWQP benchmarks are shown for all other relevant parameters. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

 $^{^{\}rm a}$ Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

 $^{^{\}rm c}$ LC_DCDS, LC_UC, and LC_GRCK Site Performance Objective for Total Cadmium and Total Selenium

Table C.4: Summary of Water Chemistry Data for Key Parameters for the Dry Creek LAEMP Monitoring Stations, 2022

Area	Summary Statistic	Total Selenium (µg/L)	Total Silver (mg/L)	Total Thallium (mg/L)	Total Uranium (mg/L)	Total Zinc (mg/L)	Dissolved Cadmium (µg/L)	Dissolved Copper (mg/L)	Dissolved Iron (mg/L)	Dissolved Nickel (µg/L)
	n	14	14	14	14	14	14	14	14	12
	Annual Minimum	1.3	<0.00001	<0.00001	0.0002	< 0.003	0.021	<0.0002	<0.01	<0.5
	Annual Maximum	1.8	<0.00001	<0.00001	0.00045	0.0041	0.044	0.0004	<0.01	0.58
	Annual Mean	1.5	<0.00001	<0.00001	0.00036	0.0031	0.032	0.00025	<0.01	0.51
	Annual Median	1.5	< 0.00001	<0.00001	0.00036	0.003	0.031	0.00022	<0.01	0.5
LC_DCEF	% < LRL	0%	100%	100%	0%	93%	0%	36%	100%	92%
	% > BCWQG ^a	0%	0%	0%	0%	0%	0%	0%	-	-
	% > BCWQG ^b	-	0%	_	-	0%	0%	0%	0%	_
	% > Level 1 Benchmark/UEC	_	-	_	_	-	0%	-	-	0%
	% > Level 2 Benchmark/UEC	-	_	_	-	_	-	_	-	0%
	% > Level 3 Benchmark/UEC	-	_	_	-	_	_	_	_	0%
	n	59	57	57	57	57	58	58	58	12
	Annual Minimum	34	<0.00001	0.000013	0.0014	0.0076	0.16	0.0002	0.01	8.5
	Annual Maximum	114	<0.00001	0.000013	0.004	0.017	0.46	0.0073	0.012	19
	Annual Mean	79	<0.00001	0.00002	0.0028	0.012	0.29	0.00041	0.01	14
	Annual Median	84	<0.00001	0.000019	0.0031	0.011	0.29	0.00026	0.01	15
LC_DC3	% < LRL	0%	100%	0%	0%	0%	0%	10%	95%	0%
E0_500	% > BCWQG ^a	100%	0%	0%	0%	0%	2%	2%	-	-
	% > BCWQG ^b	-	0%		-	0%	0%	2%	0%	 _
	% > Level 1 Benchmark/UEC	-	-	-	-	-	0%	-	-	100%
	% > Level 1 Benchmark/UEC	_		_			-		_	67%
	% > Level 3 Benchmark/UEC						_	_	_	0%
	n	55	53	53	53	53	53	53	53	12
	Annual Minimum	31	<0.00001	0.000014	0.0013	0.0072	0.15	<0.0002	<0.01	8.5
	Annual Maximum	114	0.000015	0.000014	0.0038	0.015	0.38	0.0017	0.014	18
	Annual Mean	76	0.00001	0.000019	0.0027	0.011	0.26	0.00031	0.01	14
	Annual Median	82	0.00001	0.000018	0.003	0.01	0.26	0.00028	0.01	13
LC_SPDC	% < LRL	0%	98%	0%	0%	0%	0%	9%	96%	0%
LO_01 D0	% > BCWQG ^a	100%	0%	0%	0%	0%	0%	4%	-	-
	% > BCWQG ^b	-	0%	-	-	0%	0%	0%	0%	_
	% > BCWQG % > Level 1 Benchmark/UEC	-	-		-	-	0%	-	- 076	100%
	% > Level 2 Benchmark/UEC	-	-	-	-	-	0 70	-	-	67%
	% > Level 3 Benchmark/UEC	-	_	-	-	-	-	-	-	0%
	n	57	56	56	56	56	56	56	56	12
	Annual Minimum	28	<0.00001	0.000012	0.0011	0.0062	0.14	<0.0002	<0.01	7.4
	Annual Maximum	112	<0.00001	0.000012	0.0038	0.0002	0.37	0.0019	0.012	17
	Annual Mean	72	<0.00001	0.00004	0.0036	0.018	0.37	0.0019	0.012	13
	Annual Median	78	<0.00001	0.000018	0.0020	0.011	0.26	0.00031	0.01	12
LC_DCDS	% < LRL	0%	100%	0%	0.0029	0%	0%	20%	98%	0%
LO_DOD3	% > BCWQG ^a	100%	0%	0%	0%	0%	0%	2%	-	-
	% > BCWQG ^b	-	0%		-	0%	0%	0%	0%	_
		100%	0 /0	<u>-</u>	<u>-</u>	0 70	0%	0 /0	0 70	92%
	% > Level 1 Benchmark/UEC ^c % > Level 2 Benchmark/UEC		-	-	-	-	0 /0	-	-	58%
	% > Level 2 Benchmark/UEC % > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	0%
	% > Level 3 Benchmark/UEC	53	52	- 52	- 52	- 52	52	52	52	12
	Annual Minimum	6.2	<0.00001	<0.00001	0.00031	<0.003	0.043	0.0002	<0.01	3.7
	Annual Maximum	97	<0.00001	0.00001	0.00031	0.003	0.043	0.0002	0.01	13
	Annual Mean	60	<0.00001	0.000022	0.0033	0.0069	0.19	0.003	0.01	8.4
	Annual Median	68	<0.00001	0.000013	0.0021	0.0009	0.19	0.00033	0.01	8.6
LC_DC2	% < LRL	0%	100%	23%	0.0023	4%	0.2	27%	98%	0%
LO_DC2		100%	0%	0%	0%	0%	0%	4%	-	
	% > BCWQG ^a	100 /0		U /0	U /0				- 00/	-
	% > BCWQG ^b	-	0%	-	-	0%	0%	0%	0%	070/
	% > Level 1 Benchmark/UEC	-	-	-	-	-	0%	-	-	67%
	% > Level 2 Benchmark/UEC	-	-	-	-	-	-	-	-	25%
	% > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	0%

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

Notes: "UEC" = Updated Effects Concentration. "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. UEC's are shown for Nitrate and Sulphate, Interim Screen Vaues are shown for Total Nickel, and EVWQP benchmarks are shown for all other relevant parameters. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

[°]LC_DCDS, LC_UC, and LC_GRCK Site Performance Objective for Total Cadmium and Total Selenium

Table C.4: Summary of Water Chemistry Data for Key Parameters for the Dry Creek LAEMP Monitoring Stations, 2022

Area	Summary Statistic	Total Selenium (µg/L)	Total Silver (mg/L)	Total Thallium (mg/L)	Total Uranium (mg/L)	Total Zinc (mg/L)	Dissolved Cadmium (µg/L)	Dissolved Copper (mg/L)	Dissolved Iron (mg/L)	Dissolved Nickel (µg/L)
	n	53	52	52	52	52	52	52	52	12
	Annual Minimum	12	<0.00001	<0.00001	0.00058	<0.003	0.068	<0.0002	<0.01	1.6
	Annual Maximum	52	<0.00001	0.000015	0.0015	0.84	0.15	0.0015	<0.01	5
	Annual Mean	36	<0.00001	0.00001	0.0011	0.02	0.1	0.00029	<0.01	3.1
	Annual Median	38	<0.00001	0.00001	0.0011	0.0032	0.099	0.0002	<0.01	2.9
LC_DC4	% < LRL	0%	100%	94%	0%	42%	0%	52%	100%	0%
_	% > BCWQG ^a	100%	0%	0%	0%	2%	0%	4%	-	-
	% > BCWQG ^b	-	0%	-	-	2%	0%	0%	0%	-
	% > Level 1 Benchmark/UEC	-	-	-	-	-	0%	-	-	0%
	% > Level 2 Benchmark/UEC	-	-	-	-	-	-	-	-	0%
	% > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	0%
	n	55	52	52	52	52	52	52	52	12
	Annual Minimum	11	<0.00001	<0.00001	0.00057	<0.003	0.06	<0.0002	<0.01	1.3
	Annual Maximum	50	<0.00001	0.000025	0.0014	0.14	0.12	0.0007	0.017	4
	Annual Mean	34	<0.00001	0.00001	0.0011	0.0074	0.082	0.00025	0.01	2.4
	Annual Median	36	<0.00001	0.00001	0.0011	0.003	0.079	0.0002	0.01	2.3
LC_DC1	% < LRL	0%	100%	92%	0%	71%	0%	58%	96%	0%
_	% > BCWQG ^a	100%	0%	0%	0%	0%	0%	0%	-	-
	% > BCWQG ^b	-	0%	-	-	0%	0%	0%	0%	-
	% > Level 1 Benchmark/UEC	-	-	-	-	-	0%	-	-	0%
	% > Level 2 Benchmark/UEC	_	_	_	-	_	-	_	_	0%
	% > Level 3 Benchmark/UEC	_	_	_	-	_	_	_	_	0%
	n	11	11	11	11	11	11	11	11	11
	Annual Minimum	31	<0.00001	<0.0001	0.0016	<0.003	0.02	<0.0002	<0.01	<0.5
	Annual Maximum	86	<0.00001	0.000013	0.0034	0.0075	0.058	0.00022	<0.01	3.1
	Annual Mean	67	<0.00001	0.00001	0.0028	0.0035	0.032	0.0002	<0.01	1.3
	Annual Median	72	<0.00001	0.00001	0.003	0.003	0.028	0.0002	<0.01	1.3
FR_FR5	% < LRL	0%	100%	91%	0%	64%	0%	82%	100%	18%
FK_FK3	% > BCWQG ^a	100%	0%	0%	0%	0%	0%	0%	10070	1070
		-	0%	0 70	0 70	0%	0%	0%	0%	-
	% > BCWQG ^b		-	-	-		_		0%	0%
	% > Level 1 Benchmark/UEC % > Level 2 Benchmark/UEC	-	-	-	-	-	0%	-	-	0%
	% > Level 3 Benchmark/UEC	_	_	-	-	_	_	-	_	0%
	n	5	4	4	4	4	4	4	4	4
	Annual Minimum	23	<0.00001	<0.00001	0.0015	<0.003	0.02	<0.0002	0.01	<0.5
	Annual Maximum	50	0.0015	<0.00001	0.0015	0.0055	0.027	0.00026	0.01	2.4
	Annual Mean	37	0.00037	<0.00001	0.0020	0.0038	0.025	0.00020	0.01	1.3
	Annual Median	41	0.000012	<0.00001	0.0021	0.0034	0.023	0.00022	0.01	1.1
LC_FRUS	% < LRL	0%	50%	100%	0%	50%	0%	75%	75%	25%
20_1 1100	% > BCWQG ^a	100%	0%	0%	0%	0%	0%	0%	-	-
	% > BCWQG ^b	-	0%	-	-	0%	0%	0%	0%	-
	% > Level 1 Benchmark/UEC	_	-	_	-	-	0%	-	-	0%
	% > Level 2 Benchmark/UEC	_	_	-	-	_	-	_	-	0%
	% > Level 3 Benchmark/UEC	_	_	_	-	_	-	-	-	0%
	n	26	26	26	26	26	26	26	26	12
	Annual Minimum	21	<0.00001	<0.00001	0.0013	<0.003	0.012	<0.0002	<0.01	<0.5
	Annual Maximum	70	<0.00001	<0.00001	0.0031	0.0045	0.044	0.0029	0.016	1.9
	Annual Mean	48	<0.00001	<0.00001	0.0023	0.0031	0.028	0.00031	0.01	0.97
	Annual Median	49	<0.00001	<0.00001	0.0024	0.003	0.028	0.0002	0.01	0.85
LC_FRB	% < LRL	0%	100%	100%	0%	81%	0%	62%	88%	17%
LO_I ND	% > BCWQG ^a	100%	0%	0%	0%	0%	0%	4%	-	-
	% > BCWQG % > BCWQG ^b	10070	0%	0 70	0 /0	0%	0%	0%	0%	-
		-		-	-	U%			U%	- 00/
	% > Level 1 Benchmark/UEC	-	-	-	-	-	0%	-	-	0%
	% > Level 2 Benchmark/UEC % > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	0%
	1 % 2 Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	0%

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

Notes: "UEC" = Updated Effects Concentration. "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. UEC's are shown for Nitrate and Sulphate, Interim Screen Vaues are shown for Total Nickel, and EVWQP benchmarks are shown for all other relevant parameters. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

 $^{^{\}circ}$ LC_DCDS, LC_UC, and LC_GRCK Site Performance Objective for Total Cadmium and Total Selenium

Table C.4: Summary of Water Chemistry Data for Key Parameters for the Dry Creek LAEMP Monitoring Stations, 2022

Area	Summary Statistic	Total Selenium (µg/L)	Total Silver (mg/L)	Total Thallium (mg/L)	Total Uranium (mg/L)	Total Zinc (mg/L)	Dissolved Cadmium (µg/L)	Dissolved Copper (mg/L)	Dissolved Iron (mg/L)	Dissolved Nickel (µg/L)
	n	14	14	14	14	14	14	14	14	12
	Annual Minimum	1.1	<0.00001	<0.00001	0.0007	< 0.003	<0.005	<0.0002	<0.01	<0.5
	Annual Maximum	2.9	<0.00001	0.000015	0.0012	0.0035	0.0072	0.00032	<0.01	<0.5
	Annual Mean	2.1	<0.00001	0.000011	0.001	0.003	0.0056	0.00021	<0.01	<0.5
	Annual Median	2	<0.00001	0.00001	0.001	0.003	0.0052	0.0002	<0.01	<0.5
LC_GRCK	% < LRL	0%	100%	79%	0%	93%	50%	86%	100%	100%
_	% > BCWQG ^a	57%	0%	0%	0%	0%	0%	0%	-	-
	% > BCWQG ^b	-	0%	-	-	0%	0%	0%	0%	-
	% > Level 1 Benchmark/UEC ^c	0%	-	-	-	-	0%	-	-	0%
	% > Level 2 Benchmark/UEC	-	-	-	-	-	-	-	-	0%
	% > Level 3 Benchmark/UEC	-	-	1	-	-	-	-	-	0%
	n	12	12	12	12	12	11	11	11	11
	Annual Minimum	0.27	< 0.00001	<0.00001	0.00034	< 0.003	0.0061	<0.0002	<0.01	<0.5
	Annual Maximum	0.48	<0.00001	<0.00001	0.00043	0.0037	0.012	0.00029	0.015	<0.5
	Annual Mean	0.36	< 0.00001	<0.00001	0.00037	0.0031	0.0083	0.00021	0.01	<0.5
	Annual Median	0.35	< 0.00001	<0.00001	0.00036	0.003	0.0082	0.0002	0.01	<0.5
LC_UC	% < LRL	0%	100%	100%	0%	83%	0%	73%	82%	100%
_	% > BCWQG ^a	0%	0%	0%	0%	0%	0%	0%	-	-
	% > BCWQG ^b	-	0%	1	-	0%	0%	0%	0%	-
	% > Level 1 Benchmark/UEC ^c	0%	-	-	-	-	0%	-	-	0%
	% > Level 2 Benchmark/UEC	-	-	•	-	-	-	-	-	0%
	% > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	0%

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

Notes: "UEC" = Updated Effects Concentration. "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. UEC's are shown for Nitrate and Sulphate, Interim Screen Vaues are shown for Total Nickel, and EVWQP benchmarks are shown for all other relevant parameters. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

 $^{^{\}rm a}$ Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

 $^{^{\}circ}$ LC_DCDS, LC_UC, and LC_GRCK Site Performance Objective for Total Cadmium and Total Selenium

Table C.5: Raw Selenium Speciation Data (Brooks) from Dry Creek, Fording River, and Grace Creek, 2022

Wate	er Body	station	Sample Date	DMSeO - Dimethylselenoxide (mg/L)	MeSe(IV) - Methylseleninic Acid (mg/L)	MeSe(VI) - Methaneselenonic Acid (mg/L)	Se(IV) - Selenite (mg/L)	Se(VI) - Selenate (mg/L)	SeCN - Selenocyanate (mg/L)	Selenium Unknown (mg/L)	Selenosulfate (mg/L)	SeMe - Selenomethionine (mg/L)	DMDSe- Dimethyl Diselenide (mg/L)	DMSe - Dimethyl selenide (mg/L)	Organoselenium (mg/L) ^a
			5-Jan-22 9-Feb-22	<0.00001	<0.00001	<0.00001	0.00001 <0.00001	0.00130 0.00131	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			7-Mar-22	<0.00001	<0.00001	<0.00001	<0.00001	0.00133	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
Dry Creek			6-Apr-22 3-May-22	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 0.00002	0.00136 0.00155	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
East Tributary	Reference	LC_DCEF	7-Jul-22 2-Aug-22	<0.00001	<0.00001	<0.00001	<0.00002 <0.00002	0.00151 0.00167	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			12-Sep-22	<0.00001	<0.00001	<0.00001	<0.00002	0.00149	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			18-Oct-22 15-Nov-22	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00002 <0.00002	0.00135 0.00138	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			7-Dec-22 11-May-22	<0.00001 <0.00001	<0.00001	<0.00001	<0.00002 0.00003	0.00128 0.00152	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001 <0.00001
Grace Creek		LC_GRCK	14-Jun-22	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			14-Sep-22 5-Jan-22	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	0.00004 0.00019	0.00185 0.02690	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			12-Jan-22 19-Jan-22	<0.00001	<0.00001	<0.00001	0.00023 0.00016	0.03340 0.03390	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			2-Feb-22	<0.00001	<0.00001	<0.00001	0.00016	0.03380	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			9-Feb-22 15-Feb-22	<0.00001	<0.00001	<0.00001	0.00020 0.00021	0.03410 0.03750	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			22-Feb-22 1-Mar-22	<0.00001 <0.00001	<0.00001	<0.00001	0.00015 0.00019	0.03450 0.03480	<0.00001 <0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	<0.00001
			9-Mar-22	<0.00001	<0.00001		0.00019	0.03400	<0.00001	<0.00001	<0.00001		-	-	<0.00001 <0.00001
			15-Mar-22 23-Mar-22	<0.00001 <0.00001	<0.00001	<0.00001 <0.00001	0.00022 0.00021	0.03780 0.03730	<0.00001 <0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			30-Mar-22	<0.00001	0.00001	<0.00001	0.00031	0.02330	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00001
			6-Apr-22 12-Apr-22	<0.00001	<0.00001 <0.00001	<0.00001 <0.00001	0.00013 0.00025	0.01020 0.02190	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			19-Apr-22 24-Apr-22	<0.00001 <0.00001	0.00001 0.00001	<0.00001	0.00030 0.00037	0.03080 0.03010	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00001 0.00001
			3-May-22	<0.00001	0.00002	<0.00001	0.00034	0.02160	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00002
			12-May-22 17-May-22	<0.00001	<0.00001 0.00001	<0.00001	0.00025 0.00029	0.01800 0.01900	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	<0.00001 0.00001
			24-May-22	<0.00001	0.00001	<0.00001	0.00032	0.02090	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00001
			31-May-22 7-Jun-22	<0.00001 <0.00001	0.00001 <0.00001	<0.00001 <0.00001	0.00022 0.00022	0.01510 0.01540	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00001 <0.00001
			14-Jun-22 21-Jun-22	<0.00001 <0.00001	<0.00001	<0.00001	0.00021 0.00018	0.01810 0.01020	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			28-Jun-22	<0.00001	<0.00001	<0.00001	0.00017	0.01420	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
		LC_DC1	7-Jul-22 12-Jul-22	<0.00001	0.00002	<0.00001	0.00021 0.00025	0.01870 0.02140	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00002 0.00001
			18-Jul-22	0.000013	0.00002	<0.00001	0.00041	0.03280	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			28-Jul-22 2-Aug-22	<0.00001 <0.00001	0.00001 0.00001	<0.00001 <0.00001	0.00027 0.00032	0.02770 0.03480	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00001 0.00001
			9-Aug-22 18-Aug-22	<0.00001	0.00001	<0.00001	0.00028 0.00032	0.03470 0.03710	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00001 0.00001
			23-Aug-22	<0.00001	0.00001	<0.00001	0.00032	0.03990	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00001
			30-Aug-22 8-Sep-22	<0.00001	0.00001 <0.00001	<0.00001 <0.00001	0.00033	0.04160 0.04100	<0.00001	<0.00001 <0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00001 <0.00001
			13-Sep-22 20-Sep-22	0.00001 <0.00001	0.00001	<0.00001	0.00032 0.00031	0.04400 0.04280	<0.00001 <0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00003
	Mine-exposed		27-Sep-22	<0.00001	<0.00001	<0.00001	0.00030	0.04040	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
Dry Creek	Willie exposed		4-Oct-22 11-Oct-22	<0.00001	<0.00001	<0.00001	0.00031 0.00025	0.04200 0.03900	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
2., 5.56			18-Oct-22	<0.00001	<0.00001	<0.00001	0.00027	0.04420	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			25-Oct-22 1-Nov-22	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001	0.00027 0.00023	0.04710 0.04420	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			8-Nov-22 15-Nov-22	<0.00001 <0.00001	<0.00001	<0.00001	0.00011 0.00016	0.03220 0.04550	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			22-Nov-22	<0.00001	<0.00001	<0.00001	0.00016	0.04120	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			29-Nov-22 7-Dec-22	<0.00001	<0.00001	<0.00001	0.00011 0.00015	0.03650 0.04240	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			13-Dec-22	<0.00001	<0.00001	<0.00001	0.00010	0.03830	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
		_	20-Dec-22 29-Dec-22	<0.00001 <0.00001	<0.00001	<0.00001 <0.00001	0.00013 0.00012	0.04180 0.04680	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			5-Jan-22 12-Jan-22	0.00002 0.00002	0.00001	<0.00001	0.00068 0.00073	0.05590 0.06200	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00003 0.00002
			19-Jan-22	<0.00001	<0.00001	<0.00001	0.00066	0.06570	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			24-Jan-22 2-Feb-22	0.00002 0.00001	<0.00001 0.00001	<0.00001 <0.00001	0.00073 0.00069	0.06660 0.06630	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00002 0.00002
			9-Feb-22 15-Feb-22	0.00002 0.00001	<0.00001	<0.00001	0.00073 0.00075	0.06610 0.06740	<0.00001 <0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00002 0.00003
			22-Feb-22	<0.00001	0.00001	<0.00001	0.00063	0.06650	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			3-Mar-22 7-Mar-22	<0.00001	0.00001 <0.00001	<0.00001	0.00065 0.00061	0.06210 0.06340	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00001 <0.00001
			15-Mar-22	0.00001	0.00001	<0.00001	0.00082	0.07550	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00002
			23-Mar-22 30-Mar-22	0.00001 0.00001	<0.00001 0.00001	<0.00001 <0.00001	0.00085 0.00046	0.06700 0.02200	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00001 0.00003
		LC_DC2	6-Apr-22 12-Apr-22	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001	0.00042 0.00046	0.02230 0.02030	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			19-Apr-22	0.00001	0.00002	<0.00001	0.00069	0.03710	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			28-Apr-22 3-May-22	0.00001	<0.00001 0.00001	<0.00001 <0.00001	0.00054 0.00047	0.01900 0.02290	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00001 0.00002
			11-May-22	0.00001	0.00001	<0.00001	0.00047	0.02090	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00002
			17-May-22 24-May-22	<0.00001 <0.00001	0.00001	<0.00001 <0.00001	0.00028	0.00656 0.01610	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001	-	-	<0.00001 0.00001
			31-May-22 7-Jun-22	<0.00001 <0.00001	0.00001 0.00001	<0.00001 <0.00001	0.00032 0.00033	0.01760 0.01870	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00001 0.00001
			14-Jun-22	<0.00001	<0.00001	<0.00001	0.00030	0.02330	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			21-Jun-22 28-Jun-22	<0.00001 <0.00001	<0.00001 0.00001	<0.00001 <0.00001	0.00027 0.00034	0.01260 0.02220	<0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	<0.00001 0.00001
			7-Jul-22 12-Jul-22	0.00001 0.00002	0.00001 0.00002	<0.00001	0.00046 0.00047	0.02850 0.03070	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00002

Table C.5: Raw Selenium Speciation Data (Brooks) from Dry Creek, Fording River, and Grace Creek, 2022

Wate	er Body	station	Sample Date	DMSeO - Dimethylselenoxide (mg/L)	MeSe(IV) - Methylseleninic Acid (mg/L)	MeSe(VI) - Methaneselenonic Acid (mg/L)	Se(IV) - Selenite (mg/L)	Se(VI) - Selenate (mg/L)	SeCN - Selenocyanate (mg/L)	Selenium Unknown (mg/L)	Selenosulfate (mg/L)	SeMe - Selenomethionine (mg/L)	DMDSe- Dimethyl Diselenide (mg/L)	DMSe - Dimethyl selenide (mg/L)	Organoselenium (mg/L) ^a
			18-Jul-22 28-Jul-22	0.00002 0.00002	0.00002 0.00002	<0.00001 <0.00001	0.00059 0.00059	0.04330 0.04280	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00004 0.00004
			2-Aug-22 9-Aug-22	0.00001 0.00002	0.00002	<0.00001 <0.00001	0.00068 0.00073	0.05650 0.05790	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00003 0.00004
			18-Aug-22	0.00002	0.00003	<0.00001	0.00080	0.06490	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005
			23-Aug-22 30-Aug-22	0.00002 0.00003	0.00002	<0.00001	0.00086 0.00081	0.06860 0.06770	<0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00004 0.00005
			8-Sep-22	0.00003	0.00002	<0.00001	0.00089	0.07190	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005
			13-Sep-22 20-Sep-22	0.00003 0.00002	0.00002 0.00002	<0.00001 <0.00001	0.00098 0.00085	0.07860 0.07540	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00005 0.00004
			27-Sep-22 4-Oct-22	0.00003	0.00002	<0.00001	0.00090 0.00101	0.07020 0.07930	<0.00001	<0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00005 0.00005
		LC_DC2	11-Oct-22	0.00003	0.00002	<0.00001	0.00091	0.07230	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005
			18-Oct-22 25-Oct-22	0.00002	0.00002	<0.00001	0.00099	0.08400 0.08800	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005 0.00004
			3-Nov-22	0.00002	0.00002	<0.00001	0.00088	0.08230	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004
			8-Nov-22 15-Nov-22	0.00001 0.00002	0.00001	<0.00001	0.00062 0.00093	0.07450 0.09550	<0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00003 0.00004
			22-Nov-22 29-Nov-22	0.00002	0.00001	<0.00001	0.00088	0.08980	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			7-Dec-22	0.00001 <0.00001	0.00001 <0.00001	<0.00001 <0.00001	0.00062 0.00074	0.08580 0.08800	<0.00001 <0.00001	<0.00001 <0.00001	0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00002 <0.00001
			13-Dec-22 20-Dec-22	<0.00001	<0.00001	<0.00001 <0.00001	0.00066 0.00077	0.08530 0.08420	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			29-Dec-22	0.00001	<0.00001	<0.00001	0.00069	0.09620	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00001
			5-Jan-22 12-Jan-22	0.00003	0.00002	<0.00001	0.00101	0.08070	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004 0.00004
			19-Jan-22	0.00002	0.00001	<0.00001	0.00100	0.08180	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			24-Jan-22 2-Feb-22	0.00002	0.00001	<0.00001	0.00103	0.07950 0.07680	<0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00003 0.00004
			9-Feb-22	0.00002	0.00002	<0.00001	0.00099	0.07820	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004
			15-Feb-22 22-Feb-22	0.00002 <0.00001	0.00001	<0.00001 <0.00001	0.00107 0.00090	0.07860 0.07800	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00004 0.00001
			2-Mar-22 7-Mar-22	<0.00001 0.00001	0.00001	<0.00001	0.00094 0.00094	0.07640 0.07650	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00001 0.00003
			15-Mar-22	0.00002	0.00002	<0.00001	0.00120	0.08580	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			23-Mar-22 30-Mar-22	0.00003	0.00002	<0.00001	0.00104 0.00091	0.07110 0.03080	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004 0.00004
			6-Apr-22	<0.00001	<0.00001	<0.00001	0.00078	0.03600	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			12-Apr-22 17-Apr-22	0.00002	0.00002	<0.00001	0.00092 0.00091	0.03520 0.04670	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003 0.00004
			24-Apr-22	0.00002	0.00002	<0.00001	0.00107	0.04190	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005
			3-May-22 11-May-22	0.00002	0.00003	<0.00001	0.00100 0.00096	0.04060 0.03870	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00005 0.00005
			17-May-22	0.00002	0.00002	<0.00001	0.00096	0.03970	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004
			24-May-22 31-May-22	0.00003 0.00001	0.00002	<0.00001 <0.00001	0.00100 0.00085	0.04890 0.03930	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00005 0.00003
Dry Creek	Mine-exposed		7-Jun-22 14-Jun-22	0.00002 0.00003	0.00002 <0.00001	<0.00001	0.00084 0.00090	0.04560 0.05340	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003 0.00003
			21-Jun-22	<0.00001	0.00002	<0.00001	0.00072	0.03220	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			27-Jun-22 28-Jun-22	0.00001	0.00001	<0.00001	0.00082	0.04460 0.04530	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003 0.00004
		LC_DC3	7-Jul-22	0.00003	0.00002	<0.00001	0.00090	0.05700	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005
			12-Jul-22 18-Jul-22	0.00003 0.00004	0.00002	<0.00001 <0.00001	0.00090	0.05890 0.06030	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00005 0.00005
			25-Jul-22 2-Aug-22	0.00004 0.00004	0.00002 0.00002	<0.00001 <0.00001	0.00106 0.00113	0.06810 0.07910	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00005
			9-Aug-22	0.00004	0.00002	<0.00001	0.000113	0.07910	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005 0.00005
			16-Aug-22 18-Aug-22	0.00002	0.00002	<0.00001 <0.00001	0.00100 0.00098	0.07930 0.07290	<0.00001	<0.00001	<0.00001	<0.00001	<0.000022	- <0.00047	0.00003 0.00005
			23-Aug-22	0.00003	0.00002	<0.00001	0.00117	0.09120	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005
			30-Aug-22 6-Sep-22	0.00003	0.00002	<0.00001	0.00110	0.08490 0.08690	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005 0.00004
			13-Sep-22	0.00003	0.00001	<0.00001	0.00119	0.09510	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004
			20-Sep-22 27-Sep-22	0.00001 0.00003	0.00002	<0.00001 <0.00001	0.00105 0.00113	0.09160 0.09455	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00003 0.00004
			3-Oct-22 11-Oct-22	0.00002 0.00002	0.00002	<0.00001	0.00112 0.00104	0.09310 0.08710	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004 0.00003
			18-Oct-22	0.00002	0.00001	<0.00001	0.00120	0.09900	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			25-Oct-22 1-Nov-22	0.00002	0.00002	<0.00001	0.00120 0.00107	0.10700 0.09260	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004 0.00003
			8-Nov-22	0.00002	0.00001	<0.00001	0.00104	0.09440	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			15-Nov-22 22-Nov-22	0.00002	0.00002 <0.00001	<0.00001	0.00114	0.10600 0.09710	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005 0.00002
			29-Nov-22	0.00002	0.00002	<0.00001	0.00094	0.09570	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			7-Dec-22 13-Dec-22	<0.00001 0.00001	<0.00001 <0.00001	<0.00001 <0.00001	0.00102 0.00099	0.10000 0.10000	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	<0.00001 0.00001
			20-Dec-22 29-Dec-22	<0.00001 <0.00001	<0.00001	<0.00001 <0.00001	0.00104 0.00106	0.09940 0.11500	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	<0.00001
			5-Jan-22	<0.00001	<0.00001	<0.00001	0.00028	0.04710	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			12-Jan-22 19-Jan-22	<0.00001	<0.00001	<0.00001	0.00023 0.00017	0.03550 0.03520	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			24-Jan-22	<0.00001	<0.00001	<0.00001	0.00018	0.03630	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			2-Feb-22 9-Feb-22	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001	0.00018 0.00018	0.03590 0.03430	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			15-Feb-22	<0.00001	<0.00001	<0.00001	0.00021	0.03790	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
		LC_DC4	22-Feb-22 2-Mar-22	<0.00001 <0.00001	<0.00001 <0.00001	+	0.00017 0.00020	0.03740 0.03730	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	<0.00001
			7-Mar-22 15-Mar-22	<0.00001 <0.00001	<0.00001	<0.00001 <0.00001	0.00015 0.00020	0.03550 0.04020	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	<0.00001
			23-Mar-22	<0.00001	<0.00001	<0.00001	0.00020	0.03930	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			30-Mar-22 6-Apr-22	<0.00001 <0.00001	0.00001	<0.00001	0.00038 0.00032	0.02470 0.02520	<0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00001 <0.00001
			12-Apr-22 19-Apr-22	<0.00001 <0.00001 <0.00001	0.00001	<0.00001 <0.00001 <0.00001	0.00032	0.02320 0.02260 0.03140	<0.00001 <0.00001 <0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00001

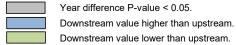
Table C.5: Raw Selenium Speciation Data (Brooks) from Dry Creek, Fording River, and Grace Creek, 2022

Wate	er Body	station	Sample Date	DMSeO - Dimethylselenoxide (mg/L)	MeSe(IV) - Methylseleninic Acid (mg/L)	MeSe(VI) - Methaneselenonic Acid (mg/L)	Se(IV) - Selenite (mg/L)	Se(VI) - Selenate (mg/L)	SeCN - Selenocyanate (mg/L)	Selenium Unknown (mg/L)	Selenosulfate (mg/L)	SeMe - Selenomethionine (mg/L)	DMDSe- Dimethyl Diselenide (mg/L)	DMSe - Dimethyl selenide (mg/L)	Organoselenium (mg/L) ^a
			28-Apr-22 3-May-22	<0.00001 <0.00001	<0.00001 0.00001	<0.00001 <0.00001	0.00036 0.00034	0.01980 0.02220	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	<0.00001 0.00001
			11-May-22 17-May-22	<0.00001	0.00001	<0.00001	0.00033 0.00035	0.02020 0.01960	<0.00001	<0.00001	<0.00001 <0.00001	<0.00001	-	-	0.00001 0.00001
			24-May-22 31-May-22	<0.00001 <0.00001	0.00001	<0.00001	0.00033 0.00027	0.02270 0.01620	<0.00001	<0.00001	<0.00001 <0.00001	<0.00001	-	-	0.00001
			7-Jun-22	<0.00001	0.00001	<0.00001	0.00027	0.01620	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001 0.00001
			14-Jun-22 21-Jun-22	<0.00001 <0.00001	<0.00001	<0.00001 <0.00001	0.00022 0.00021	0.01970 0.01110	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	<0.00001
			28-Jun-22	<0.00001	<0.00001	<0.00001	0.00024	0.01870	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			7-Jul-22 12-Jul-22	<0.00001 0.00001	0.00001	<0.00001	0.00024 0.00029	0.02180 0.02300	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00001 0.00003
			18-Jul-22 28-Jul-22	0.00002 0.00001	0.00002	<0.00001 <0.00001	0.00043 0.00031	0.03410 0.02940	<0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00003 0.00001
			2-Aug-22	<0.00001	0.00001	<0.00001	0.00040	0.03730	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00001
			9-Aug-22 18-Aug-22	<0.00001	<0.00001 0.00001	<0.00001	0.00034 0.00034	0.03700 0.03970	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001 0.00001
		LC_DC4	23-Aug-22	<0.00001	<0.00001	<0.00001	0.00036	0.04330	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			30-Aug-22 8-Sep-22	<0.00001 0.00001	0.00001 <0.00001	<0.00001 <0.00001	0.00038 0.00036	0.04390 0.04420	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00001 0.00001
			13-Sep-22 20-Sep-22	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	0.00034 0.00032	0.04670 0.04510	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			27-Sep-22	<0.00001	<0.00001	<0.00001	0.00032	0.04270	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			4-Oct-22 11-Oct-22	<0.00001	<0.00001	<0.00001	0.00034	0.04460 0.04180	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001 <0.00001
			18-Oct-22	<0.00001	<0.00001	<0.00001	0.00032	0.04680	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			25-Oct-22 3-Nov-22	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	0.00031 0.00019	0.04930 0.04160	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			8-Nov-22 15-Nov-22	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	0.00010 0.00021	0.03340 0.05050	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	<0.00001 <0.00001
			22-Nov-22	<0.00001	<0.00001	<0.00001	0.00017	0.04520	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			29-Nov-22 7-Dec-22	<0.00001	<0.00001	<0.00001	0.00011 0.00015	0.04180 0.04470	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			13-Dec-22	<0.00001	<0.00001	<0.00001	0.00011	0.04160	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			20-Dec-22 29-Dec-22	<0.00001	<0.00001	<0.00001	0.00016 0.00012	0.04480 0.05100	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001 <0.00001
			5-Jan-22 12-Jan-22	0.00002 0.00002	0.00002 0.00002	<0.00001 <0.00001	0.00092 0.00097	0.07150 0.07340	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00004
			19-Jan-22	0.00002	0.00002	<0.00001	0.00097	0.07810	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004 0.00003
			1-Feb-22 9-Feb-22	0.00002	0.00002	<0.00001	0.00086 0.00099	0.07230 0.07800	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004 0.00004
			15-Feb-22	0.00002	0.00001	<0.00001	0.00093	0.07090	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004
			22-Feb-22 1-Mar-22	0.00002 <0.00001	0.00002	<0.00001	0.00095	0.07500 0.06910	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003 0.00002
			8-Mar-22	0.00002	<0.00001	<0.00001	0.00098	0.05260	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00002
Dry Creek	Mine-exposed		15-Mar-22 23-Mar-22	0.00002 0.00003	0.00002	<0.00001 <0.00001	0.00119 0.00101	0.08450 0.07080	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00005 0.00005
Dry Creek	wine-exposed		30-Mar-22 6-Apr-22	0.00002 <0.00001	0.00002 <0.00001	<0.00001	0.00083 0.00078	0.03010 0.03190	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00004 <0.00001
			12-Apr-22	0.00001	0.00001	<0.00001	0.00067	0.02660	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			17-Apr-22 24-Apr-22	0.00002	0.00002	<0.00001	0.00079 0.00105	0.03720 0.04300	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004 0.00004
			5-May-22	0.00002 0.00002	0.00002 0.00002	<0.00001 <0.00001	0.00084 0.00081	0.03180 0.03320	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004
			11-May-22 17-May-22	0.00002	0.00002	<0.00001	0.00085	0.03550	<0.00001	<0.00002	<0.00001	<0.00001	-	-	0.00005 0.00005
			24-May-22 31-May-22	0.00003	0.00003	<0.00001	0.00087	0.04050 0.03310	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00006 0.00004
			7-Jun-22	<0.00001	0.00002	<0.00001	0.00076	0.04000	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00002
			14-Jun-22 21-Jun-22	0.00002 <0.00001	0.00003	<0.00001 <0.00001	0.00080 0.00062	0.04920 0.02540	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00005 0.00002
			28-Jun-22 7-Jul-22	0.00002 0.00002	0.00003	<0.00001	0.00072 0.00068	0.04130 0.04400	<0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001	-	-	0.00005 0.00006
		LC_DCDS	12-Jul-22	0.00002	0.00003	<0.00001	0.00078	0.04630	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005
			18-Jul-22 25-Jul-22	0.00003 0.00005	0.00003	<0.00001	0.00084 0.00108	0.05330 0.05970	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001	-	-	0.00006 0.00010
			2-Aug-22	0.00003	0.00003	<0.00001	0.00100 0.00095	0.06970 0.07020	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00006
			9-Aug-22 16-Aug-22	0.00003	0.00003	<0.00001	0.00107	0.07610	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00006 0.00006
			18-Aug-22 23-Aug-22	0.00003 0.00003	0.00004	<0.00001	0.00100 0.00113	0.07340 0.07930	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001	<0.000022	<0.000047	0.00007 0.00006
			30-Aug-22	0.00004	0.00003	<0.00001	0.00107	0.07660	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00007
			6-Sep-22 13-Sep-22	0.00003	0.00003	<0.00001	0.00117 0.00122	0.07990 0.08720	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00006 0.00006
			20-Sep-22 27-Sep-22	0.00002 0.00003	0.00003	<0.00001	0.00111 0.00113	0.08400 0.08300	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005
			4-Oct-22	0.00004	0.00003	<0.00001	0.00120	0.08620	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00006 0.00006
			11-Oct-22 18-Oct-22	0.00002 0.00002	0.00002	<0.00001 <0.00001	0.00102 0.00118	0.07720 0.09060	<0.00001	<0.00001	<0.00001 <0.00001	<0.00001	-	-	0.00004 0.00005
			25-Oct-22	0.00003	0.00002	<0.00001	0.00122	0.09500	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005
			1-Nov-22 8-Nov-22	0.00002 0.00002	0.00002 0.00002	<0.00001 <0.00001	0.00103 0.00098	0.08360 0.08660	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00004 0.00003
			15-Nov-22 22-Nov-22	0.00002 0.00002	0.00002 0.00001	<0.00001 <0.00001	0.00117 0.00113	0.10300 0.09810	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00005 0.00004
			29-Nov-22	0.00002	0.00001	<0.00001	0.00108	0.09960	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			7-Dec-22 13-Dec-22	0.00001	0.00002	<0.00001	0.00107 0.00098	0.09880 0.09890	<0.00001	<0.00001	<0.00001 <0.00001	<0.00001	-	-	0.00003 0.00002
			20-Dec-22	<0.00001	0.00001	<0.00001	0.00114	0.10100	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00001
			29-Dec-22 5-Jan-22	0.00002 0.00002	0.00001 <0.00001	<0.00001 <0.00001	0.00119 0.00068	0.11400 0.04580	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00003 0.00002
			12-Jan-22 19-Jan-22	0.00002 0.00002	0.00002 0.00002	<0.00001 <0.00001	0.00102 0.00100	0.07440 0.07830	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	<0.00001 <0.00001	-	-	0.00004 0.00003
		LC_SPDC	2-Feb-22	0.00002	0.00002	<0.00001	0.00098	0.07500	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004
			9-Feb-22 15-Feb-22	0.00003	0.00002	<0.00001 <0.00001	0.00101 0.00105	0.07710 0.07610	<0.00001	<0.00001 <0.00001	<0.00001	<0.00001	-	-	0.00004 0.00005

Table C.5: Raw Selenium Speciation Data (Brooks) from Dry Creek, Fording River, and Grace Creek, 2022

Wate	er Body	station	Sample Date	DMSeO - Dimethylselenoxide (mg/L)	MeSe(IV) - Methylseleninic Acid (mg/L)	MeSe(VI) - Methaneselenonic Acid (mg/L)	Se(IV) - Selenite (mg/L)	Se(VI) - Selenate (mg/L)	SeCN - Selenocyanate (mg/L)	Selenium Unknown (mg/L)	Selenosulfate (mg/L)	SeMe - Selenomethionine (mg/L)	DMDSe- Dimethyl Diselenide (mg/L)	DMSe - Dimethyl selenide (mg/L)	Organoselenium (mg/L) ^a
			22-Feb-22	<0.00001	0.00002	<0.00001	0.00095	0.07890	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00002
			2-Mar-22	<0.00001	0.00002	<0.00001	0.00100	0.07540	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00002
			7-Mar-22	0.00002	0.00002	<0.00001	0.00096	0.07480	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004
			15-Mar-22	<0.00001	0.00002	<0.00001	0.00117	0.08500	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00002
			23-Mar-22	0.00001	0.00002	<0.00001	0.00105	0.07130	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			30-Mar-22	0.00002	0.00002	<0.00001	0.00094 0.00082	0.03350	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00004
			6-Apr-22 12-Apr-22	0.00002	0.00002	<0.00001	0.00082	0.03380	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			17-Apr-22	0.00002	0.00001	<0.00001	0.00090	0.03260	<0.00001	<0.00001	<0.00001	<0.00001	-		0.00003 0.00005
			24-Apr-22	0.00003	0.00002	<0.00001	0.00033	0.04580	<0.00001	<0.00001	<0.00001	<0.00001	_	_	0.00005
			5-May-22	0.00002	0.00003	<0.00001	0.00106	0.03870	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005
			11-May-22	0.00002	0.00002	<0.00001	0.00096	0.03680	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004
			17-May-22	0.00003	0.00003	<0.00001	0.00091	0.03990	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00006
			24-May-22	0.00003	0.00004	<0.00001	0.00098	0.04580	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00007
			31-May-22	0.00003	0.00002	<0.00001	0.00082	0.03770	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005
			7-Jun-22	<0.00001	0.00003	<0.00001	0.00083	0.04400	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			14-Jun-22	0.00003	0.00002	<0.00001	0.00083	0.05220	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005
			21-Jun-22	0.00001	0.00002	<0.00001	0.00070	0.02880	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			28-Jun-22	0.00003	0.00003	<0.00001	0.00080	0.04570	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005
			7-Jul-22	0.00003	0.00004	<0.00001	0.00080	0.05180	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00007
			12-Jul-22 18-Jul-22	0.00003	0.00004	<0.00001	0.00092 0.00089	0.05590 0.05850	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00007
Dry Creek		LC_SPDC	25-Jul-22	0.00005	0.00004	<0.00001	0.00089	0.05830	<0.00001	<0.00001	<0.00001	<0.00001			0.00007 0.00010
Dry Orock		20_01 00	2-Aug-22	0.00003	0.00003	<0.00001	0.00112	0.00300	<0.00001	<0.00001	<0.00001	<0.00001	_	_	0.00010
			9-Aug-22	0.00003	0.00003	<0.00001	0.00110	0.07880	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00007
	Mine-exposed		16-Aug-22	0.00003	0.00004	<0.00001	0.00115	0.08070	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00006
	·		23-Aug-22	0.00004	0.00003	<0.00001	0.00123	0.08680	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00007
			30-Aug-22	0.00003	0.00004	<0.00001	0.00118	0.08390	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00007
			6-Sep-22	0.00004	0.00004	<0.00001	0.00128	0.08660	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00007
			13-Sep-22	0.00004	0.00003	<0.00001	0.00128	0.09050	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00006
			20-Sep-22	0.00002	0.00003	<0.00001	0.00124	0.09170	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005
			27-Sep-22	0.00003	0.00004	<0.00001	0.00117	0.09040	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00007
			3-Oct-22	0.00004	0.00004	<0.00001	0.00121	0.08860	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00008
			11-Oct-22	0.00003	0.00003	<0.00001	0.00112	0.08430	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00006
			18-Oct-22 25-Oct-22	0.00004	0.00004	<0.00001	0.00129 0.00127	0.09920 0.10300	<0.00001	<0.00001	<0.00001	<0.00001 <0.00001	-	-	0.00007
			1-Nov-22	0.00002	0.00003	<0.00001	0.00127	0.10300	<0.00001	<0.00001	<0.00001	<0.00001			0.00005 0.00005
			8-Nov-22	0.00003	0.00003	<0.00001	0.00113	0.09170	<0.00001	<0.00001	<0.00001	<0.00001			0.00003
			15-Nov-22	0.00001	0.00001	<0.00001	0.00104	0.10300	<0.00001	<0.00001	<0.00001	<0.00001	_		0.00002
			22-Nov-22	0.00002	0.00003	<0.00001	0.00109	0.09710	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00005
			29-Nov-22	0.00002	0.00002	<0.00001	0.00102	0.09930	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00004
			7-Dec-22	0.00002	0.00001	<0.00001	0.00112	0.10000	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			13-Dec-22	0.00001	0.00001	<0.00001	0.00099	0.09700	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00003
			20-Dec-22	<0.00001	0.00001	<0.00001	0.00116	0.10100	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00001
]		29-Dec-22	0.00002	<0.00001	<0.00001	0.00122	0.11400	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00002
		LC_FRB	10-Sep-22	<0.00001	0.00001	<0.00001	0.00017	0.03470	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00001
		- <u>-</u> - · · ·-	30-Nov-22	<0.00001	<0.00001	<0.00001	0.00019	0.05060	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
Fording			11-May-22	<0.00001	<0.00001	<0.00001	0.00018	0.05270	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
River		LC_FRUS	22-Jun-22	<0.00001	<0.00001	<0.00001	0.00008	0.02130	<0.00001	<0.00001	<0.00001	<0.00001	-	-	<0.00001
			10-Sep-22	<0.00001	0.00001	<0.00001	0.00017	0.04220	<0.00001	<0.00001	<0.00001	<0.00001	-	-	0.00001 <0.00001
			30-Nov-22	<0.00001	<0.00001	<0.00001	0.00017	0.04260	<0.00001	<0.00001	<0.00001	<0.00001	-	-	_

Level 2: Sum of MeSelV and DMSeO ≥ 0.000025 mg/L Level 3: Sum of MeSelV and DMSeO > 0.00005 mg/L

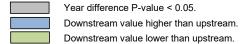

Notes:

^{&#}x27;-' = No data available

^a For the calculation of organoselenium, if both dimethylselenoxide and methylseleninic acid were non-detect values the result is reported as <0.01

Table C.6: Differences in Concentrations Between Areas Upstream (LC_FRUS) and Downstream (LC_FRB) of Dry Creek Input into Fording River, 2014 to 2022

Parameter	Year	Q1. Do differences in Concentrations (downstream - upstream) vary among years?	Q2. Is there a difference in concentrations downstream compared to upstream? ^b	
		Year P-value ^a	Magnitude of Difference (%)	
	2014			
Nitrate (as N)	2015	0.126	NS	
iviliale (as iv)	2021	0.120	110	
	2022			
	2014		NS	
Nitrite (as N)	2015	0.001	NS	
TVILLICE (as IV)	2021	0.001	NS	
	2022		50	
	<lrl< td=""><td></td><td></td></lrl<>			
Total Kjeldahl Nitrogen	2015	0.606	NS	
Total Injuralii Nili Ogen	2021] 0.500	140	
	2022			
	2014		NS	
Orthophosphate	2015	0.782		
Orthophosphate	<lrl< td=""><td rowspan="2">0.782</td></lrl<>	0.782		
	<lrl< td=""><td></td></lrl<>			
	2014		NS	
Dhaanhamia (D) Tatal	2015	1 0.444		
Phosphorus (P)-Total	2021	0.444		
	2022	1		
	2014		NS	
0.1.1.1	2015	0.040	NS	
Sulphate	2021	0.046	-11	
	2022		NS	
	2014		-3.2	
-	2015		NS	
Total Dissolved Solids	2021	0.009	-9.5	
	2022		NS	
	2014	0.883	·	
	2015			
Antimony (Sb)-Total	2021		NS	
	2022			
	2014			
	2015			
Barium (Ba)-Total	2021	0.503	3.9	
	2022	1		
Boron (B)-Total	2014			
	2015	1		
	<lrl< td=""><td>0.412</td><td>NS</td></lrl<>	0.412	NS	
	<lrl< td=""><td>1</td><td></td></lrl<>	1		
	`LITL			


Notes: "ns" indicates non-significant difference (p-value > 0.05) between upstream and downstream. <LRL = Insufficient sample size (<3) for values above detection limits to complete analyses.

^a P-value from an Analysis of Variance conducted on the difference in concentrations upstream and downstream of Dry creek. If significant, each year was compared to upstream separately.

b Post-hoc contrasts testing the difference DS- US against zero with the magnitude of difference (MOD) calculated as (DS-US)/US*100% and application of Kaplan-Meier means for concentrations. Post-hoc tests were adjusted for the number of comparisons using Tukey's Honestly Significant Difference (HSD) tests.

Table C.6: Differences in Concentrations Between Areas Upstream (LC_FRUS) and Downstream (LC_FRB) of Dry Creek Input into Fording River, 2014 to 2022

Parameter	Year	Q1. Do differences in Concentrations (downstream - upstream) vary among years?	Q2. Is there a difference in concentrations downstream compared to upstream? ^b	
		Year P-value ^a	Magnitude of Difference (%)	
	<lrl< td=""><td></td><td rowspan="4"><lrl< td=""></lrl<></td></lrl<>		<lrl< td=""></lrl<>	
Cobalt (Co)-Total	<lrl< td=""><td>- <lrl< td=""></lrl<></td></lrl<>	- <lrl< td=""></lrl<>		
	<lrl< td=""><td></td></lrl<>			
	<lrl< td=""><td></td></lrl<>			
	2014		NS	
Lithium (Li)-Total	2015	0.403		
(=-/	2021			
	2022			
	2014	_	NS	
Manganese (Mn)-Total	2015	0.710		
, ,	2021	-		
	2022			
	<lrl< td=""><td></td><td rowspan="7"><lrl NS</lrl </td></lrl<>		<lrl NS</lrl 	
Mercury (Hg)-Total	<lrl< td=""><td>- <lrl< td=""></lrl<></td></lrl<>	- <lrl< td=""></lrl<>		
	<lrl <lrl< td=""><td></td></lrl<></lrl 			
	_			
	2014	0.316		
Molybdenum (Mo)-Total	2013			
	2021	-		
	2014		NS	
	2015	-		
Nickel (Ni)-Total	2021	0.315		
	2022	-		
	2014		NS	
	2015	-		
Selenium (Se)-Total	2021	0.951		
	2022	1		
	2014	0.094	NS	
Lleanione (LI) Tatal	2015			
Uranium (U)-Total	2021			
	2022	1		
	<lrl< td=""><td></td><td rowspan="3"><lrl< td=""></lrl<></td></lrl<>		<lrl< td=""></lrl<>	
Zinc (Zn) Total	<lrl< td=""><td rowspan="2"><lrl< td=""></lrl<></td></lrl<>	<lrl< td=""></lrl<>		
Zinc (Zn)-Total	<lrl< td=""></lrl<>			
	<lrl< td=""><td></td><td colspan="2"></td></lrl<>			
	2014		NS	
Cadmium (Cd)-Dissolved	2015	0.746		
	2021	0.740		
	2022			

comparisons using Tukey's Honestly Significant Difference (HSD) tests.

Notes: "ns" indicates non-significant difference (p-value > 0.05) between upstream and downstream. <LRL = Insufficient sample size (<3) for values above detection limits to complete analyses.

^a P-value from an Analysis of Variance conducted on the difference in concentrations upstream and downstream of Dry creek. If

significant, each year was compared to upstream separately.

^b Post-hoc contrasts testing the difference DS- US against zero with the magnitude of difference (MOD) calculated as (DS-US)/US*100% and application of Kaplan-Meier means for concentrations. Post-hoc tests were adjusted for the number of

APPENDIX D TOXICITY

Table D.1: Summary of 2022 LC_SPDC, Acute Toxicity Results

EMS ID	Area	Sample Date	Endpoint	Result 96-Hour Rainbow Trout	Result 48-Hour <i>Daphnia magna</i>
E288273	LC_DC3	3-Oct-22	% mortality	0	0
		4-Oct-22		0	0
		5-Oct-22		0	0
		6-Oct-22		0	0
		7-Oct-22		0	0
E295210	LC_DCDS	4-Oct-22		0	0
		5-Oct-22		0	0
		6-Oct-22		0	0
		7-Oct-22		0	0
E295211	LC_SPDC	12-Jan-22		0	0
		5-May-22		0	0
		11-May-22		0	0
		17-May-22		0	0
		24-May-22		0	0
		31-May-22		0	0
		7-Jun-22		0	0
		15-Jun-22		0	0
		16-Aug-22		0	0
		3-Oct-22		0	0
		15-Nov-22		0	0

APPENDIX E BENTHIC INVERTEBRATE COMMUNITY

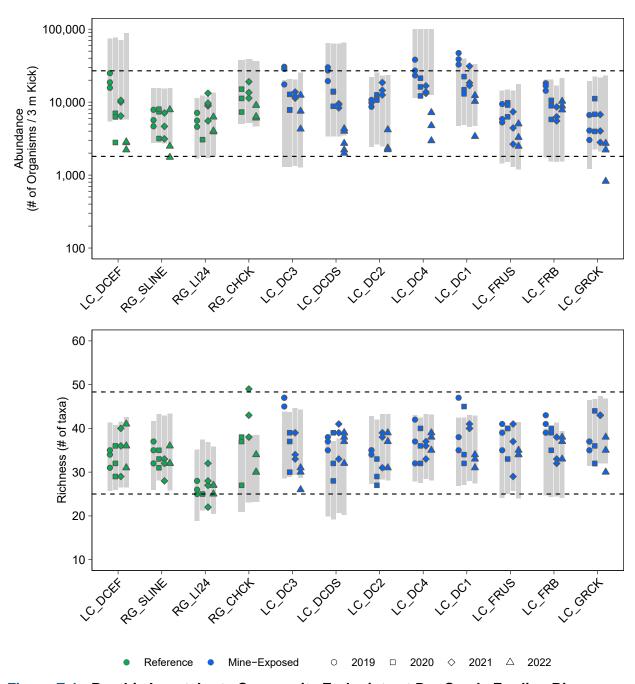


Figure E.1: Benthic Invertebrate Community Endpoints at Dry Creek, Fording River, Grace Creek, and Dry Creek East Tributary Sampling Areas, LCO Dry Creek LAEMP, September 2019 to 2022

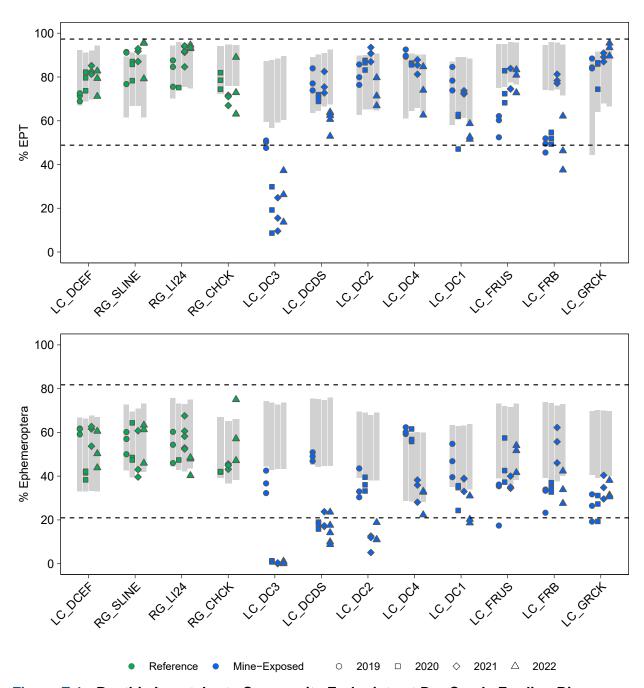


Figure E.1: Benthic Invertebrate Community Endpoints at Dry Creek, Fording River, Grace Creek, and Dry Creek East Tributary Sampling Areas, LCO Dry Creek LAEMP, September 2019 to 2022

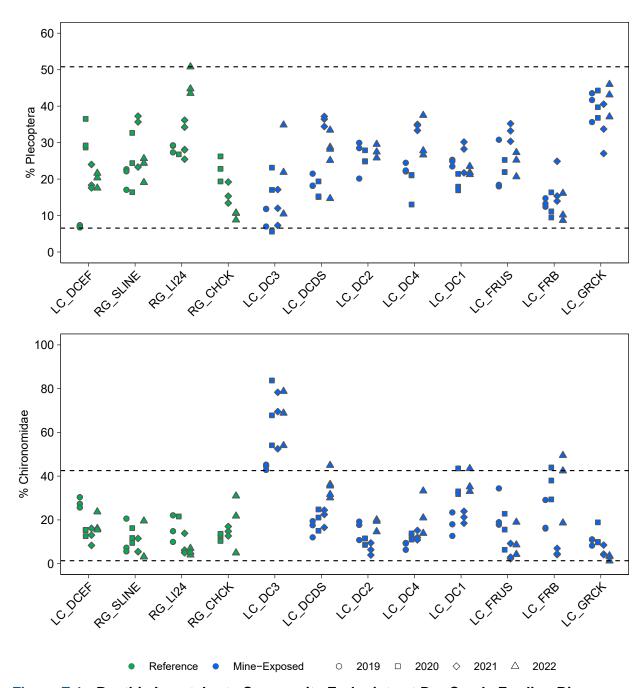


Figure E.1: Benthic Invertebrate Community Endpoints at Dry Creek, Fording River, Grace Creek, and Dry Creek East Tributary Sampling Areas, LCO Dry Creek LAEMP, September 2019 to 2022

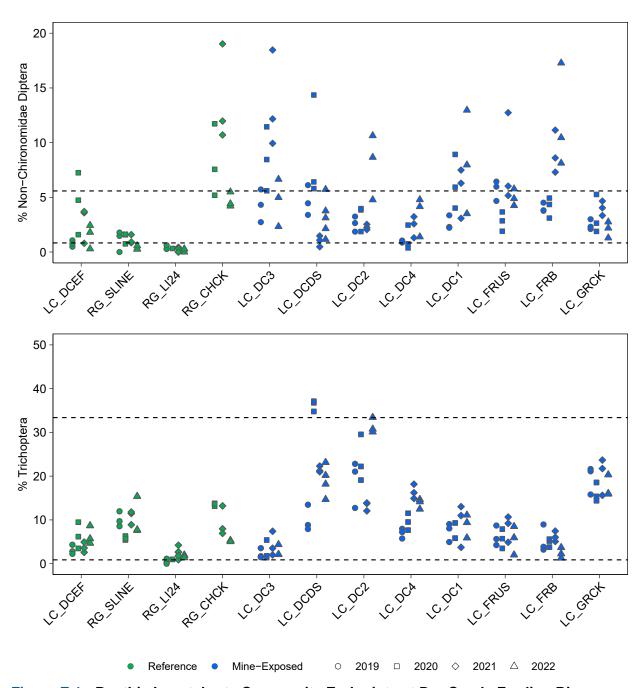


Figure E.1: Benthic Invertebrate Community Endpoints at Dry Creek, Fording River, Grace Creek, and Dry Creek East Tributary Sampling Areas, LCO Dry Creek LAEMP, September 2019 to 2022

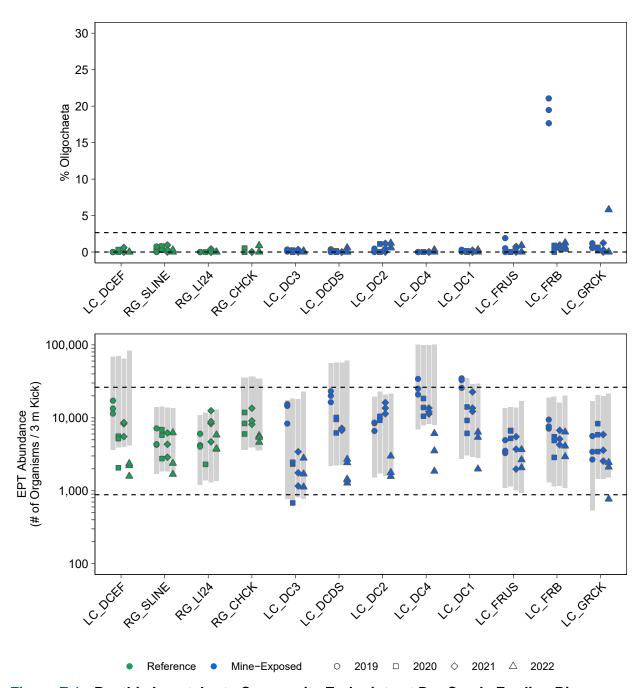


Figure E.1: Benthic Invertebrate Community Endpoints at Dry Creek, Fording River, Grace Creek, and Dry Creek East Tributary Sampling Areas, LCO Dry Creek LAEMP, September 2019 to 2022

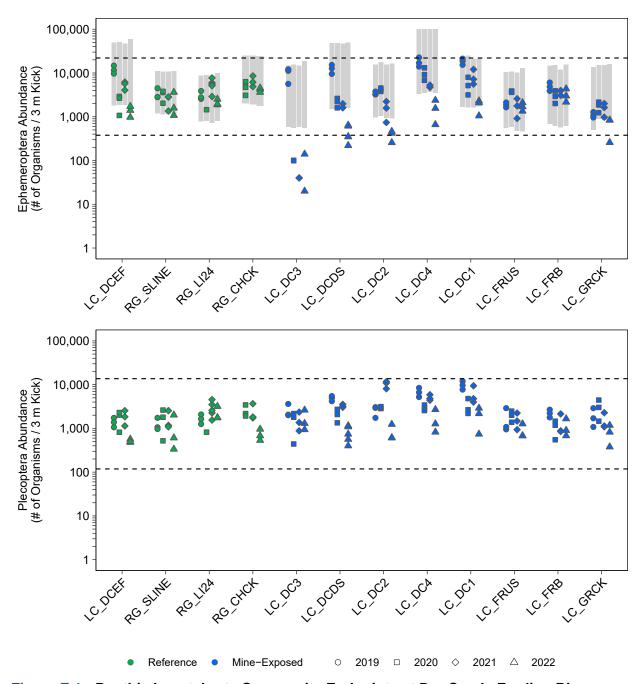


Figure E.1: Benthic Invertebrate Community Endpoints at Dry Creek, Fording River, Grace Creek, and Dry Creek East Tributary Sampling Areas, LCO Dry Creek LAEMP, September 2019 to 2022

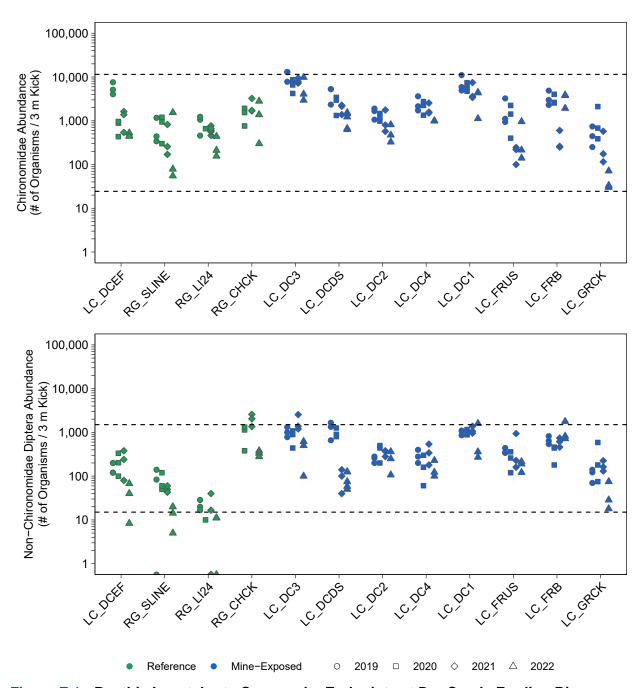


Figure E.1: Benthic Invertebrate Community Endpoints at Dry Creek, Fording River, Grace Creek, and Dry Creek East Tributary Sampling Areas, LCO Dry Creek LAEMP, September 2019 to 2022

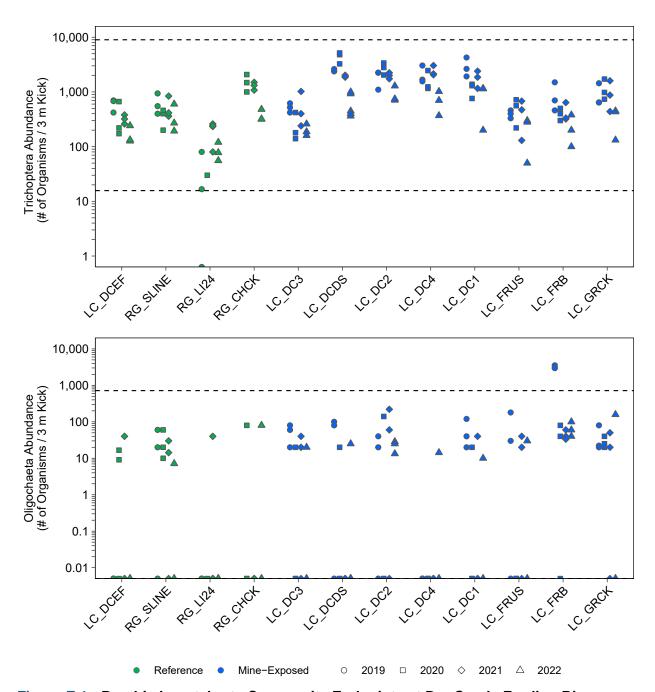


Figure E.1: Benthic Invertebrate Community Endpoints at Dry Creek, Fording River, Grace Creek, and Dry Creek East Tributary Sampling Areas, LCO Dry Creek LAEMP, September 2019 to 2022

Notes: Upper and Lower Dry Creek = LC_DCDS and LC_DC1, respectively, and upstream and downstream in the Fording River = FR_FR5/LC_FRUS and LC_FRB, respectively. Site specific normal ranges using regression models shown with grey shading (when available). Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines.

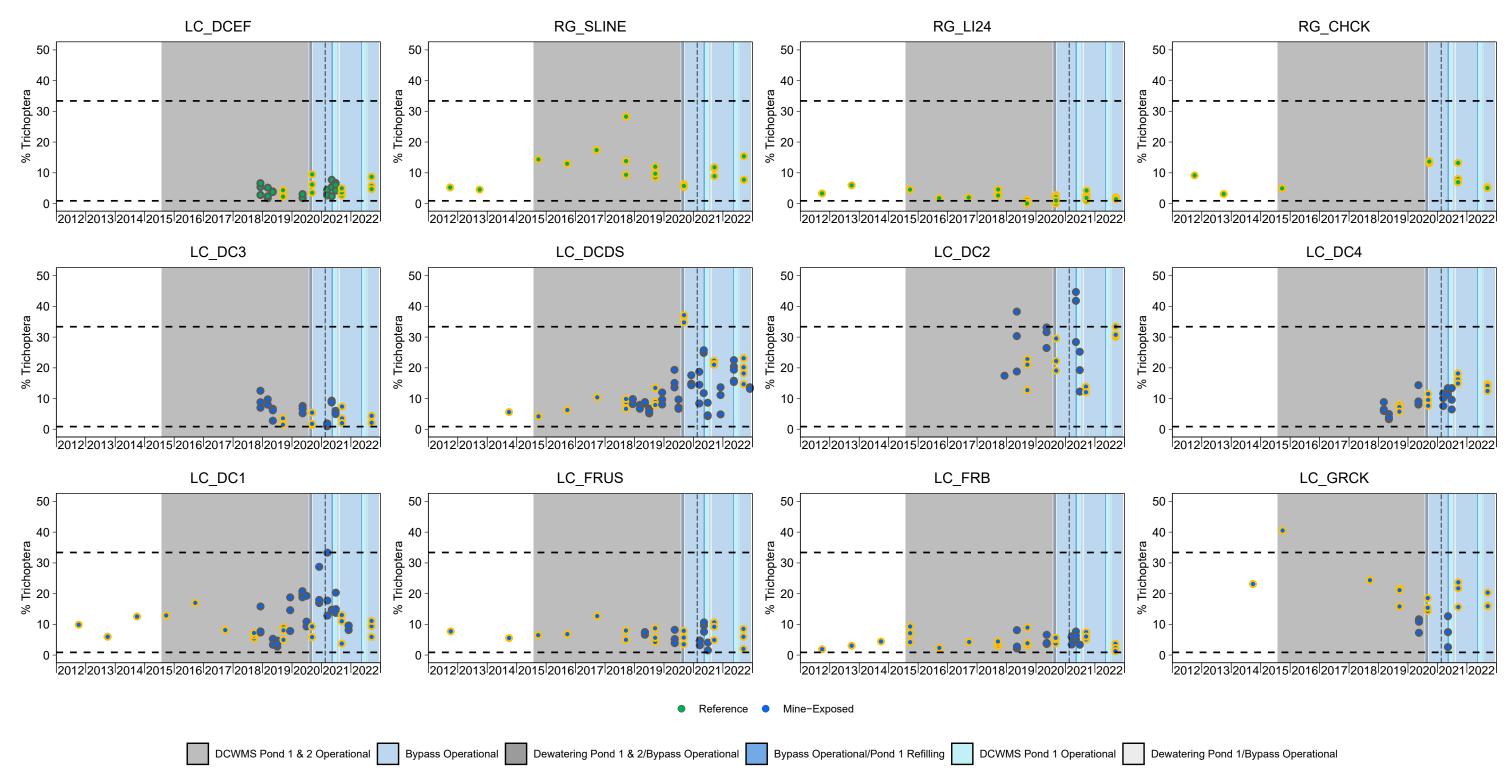


Figure E.2: Benthic Invertebrate Community % Trichoptera from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DC2, LC_DC4, and LC_DC1).

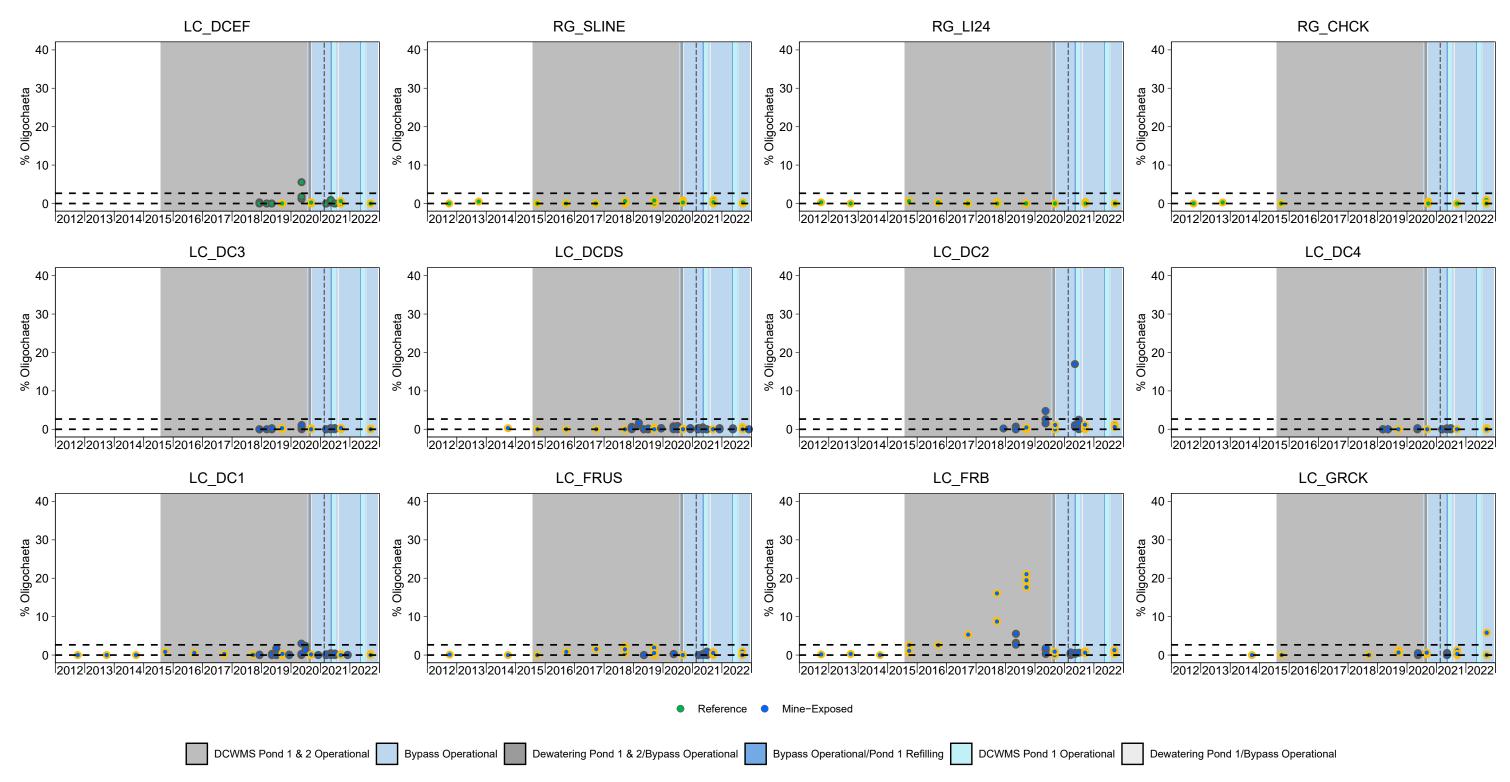


Figure E.3: Benthic Invertebrate Community % Oligochaeta from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_DCD, LC_DCD, LC_DC1).

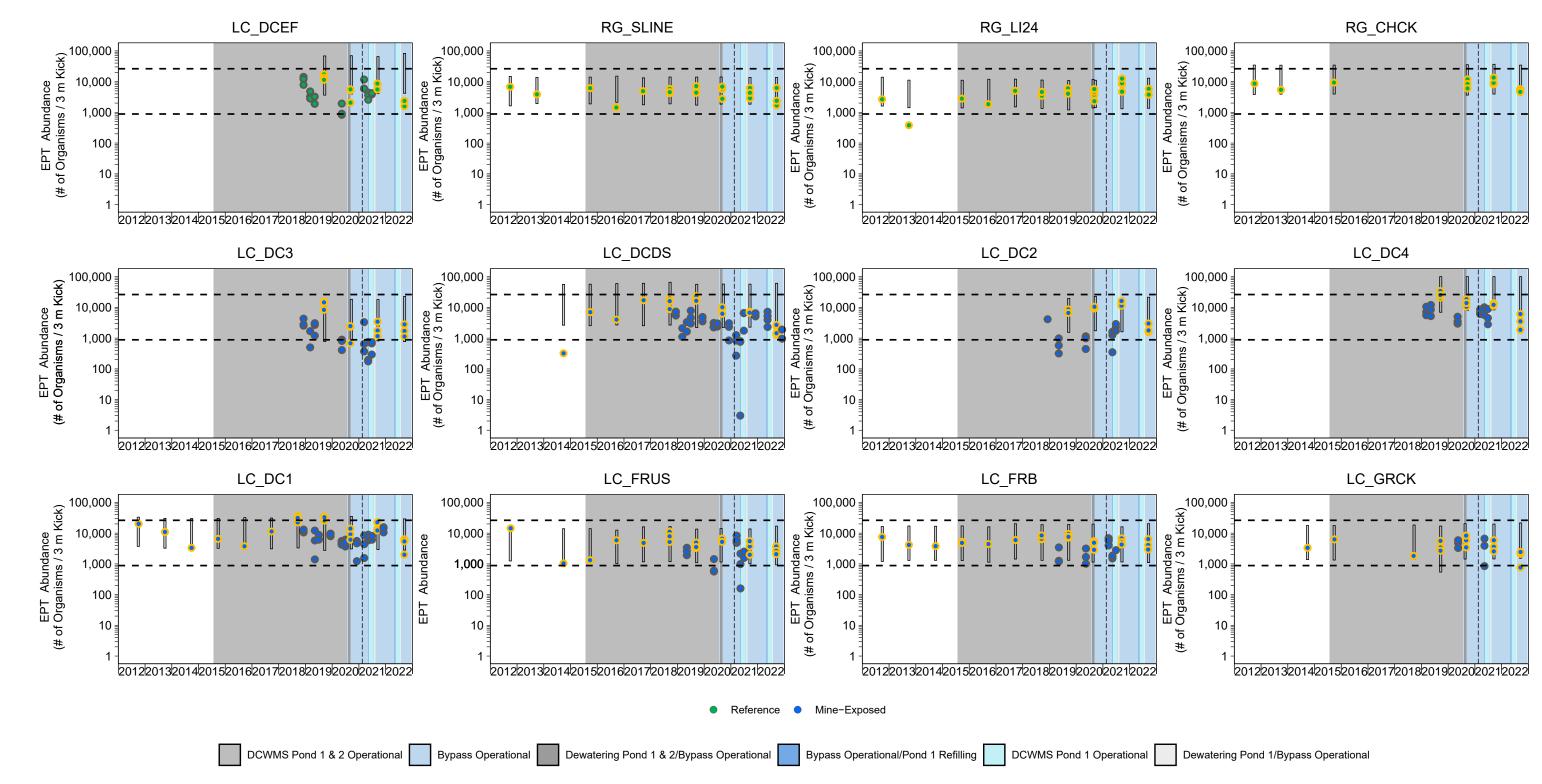


Figure E.4: Benthic Invertebrate Community EPT Abundance from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Site specific normal ranges using regression models shown with grey shading and black rectangle (when available). Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DCD4, and LC_DC1).

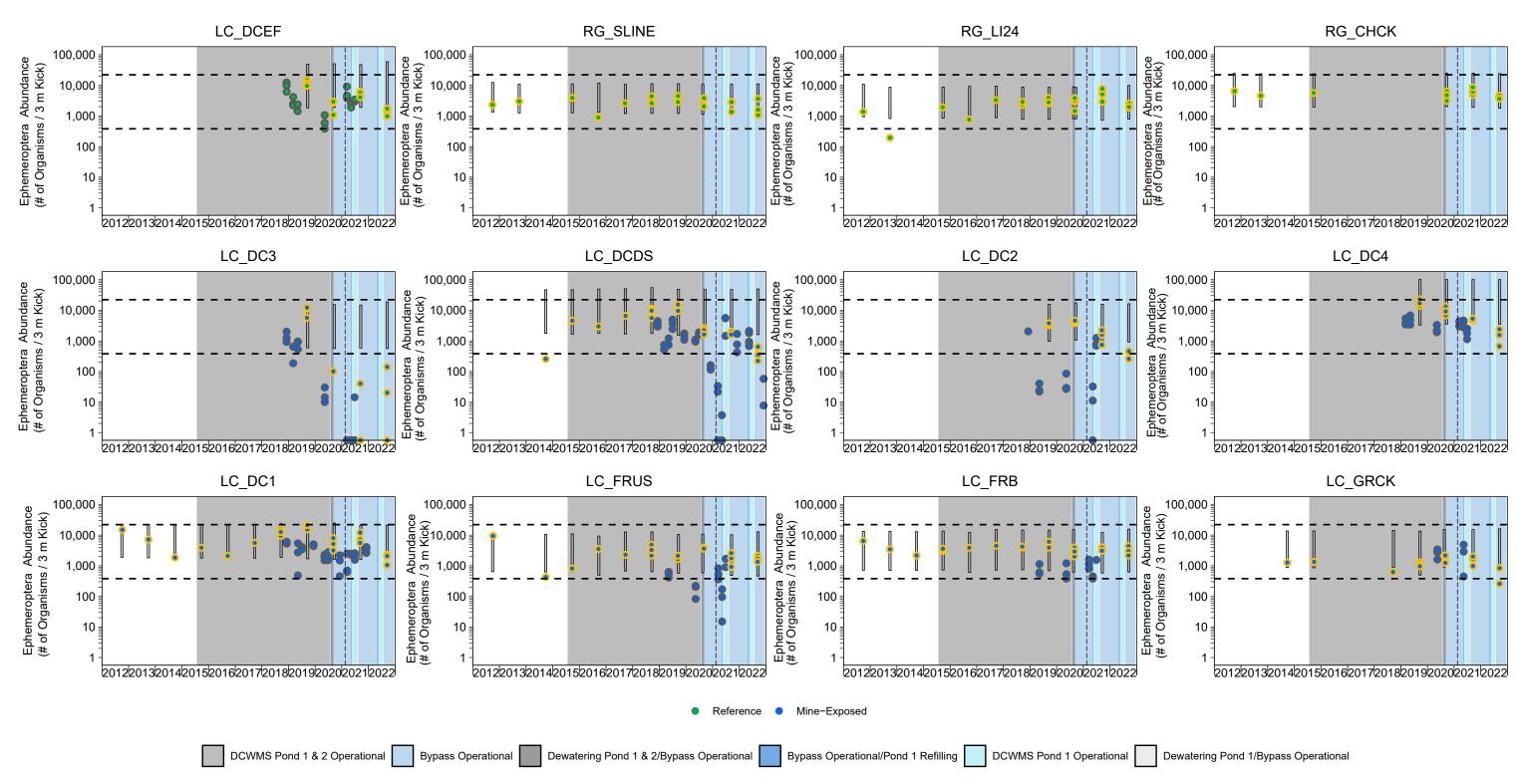


Figure E.5: Benthic Invertebrate Community Ephemeroptera Abundance from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Site specific normal ranges using regression models shown with grey shading and black rectangle (when available). Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC1).

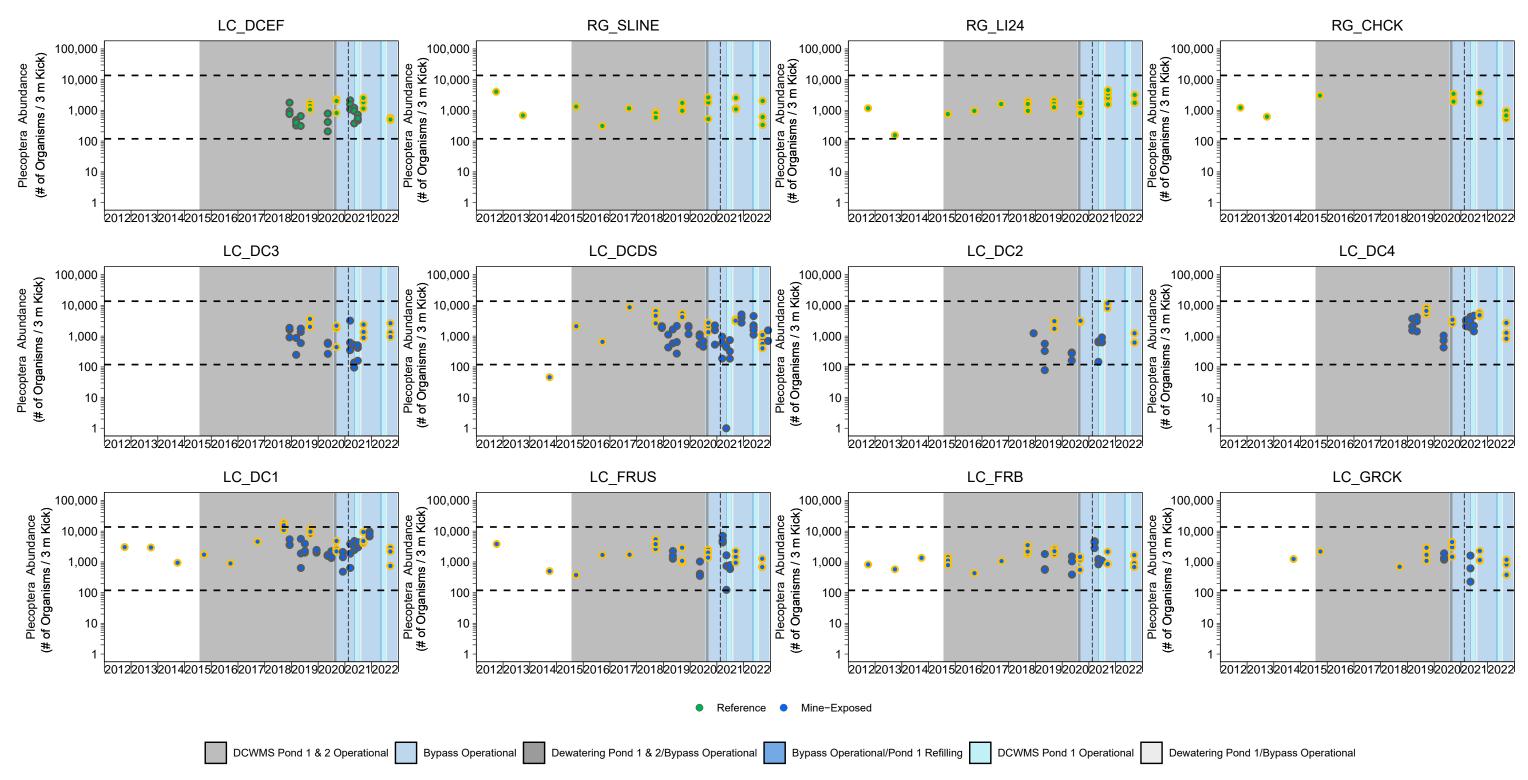


Figure E.6: Benthic Invertebrate Community Plecoptera Abundance from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DC2, LC_DC4, and LC_DC1).

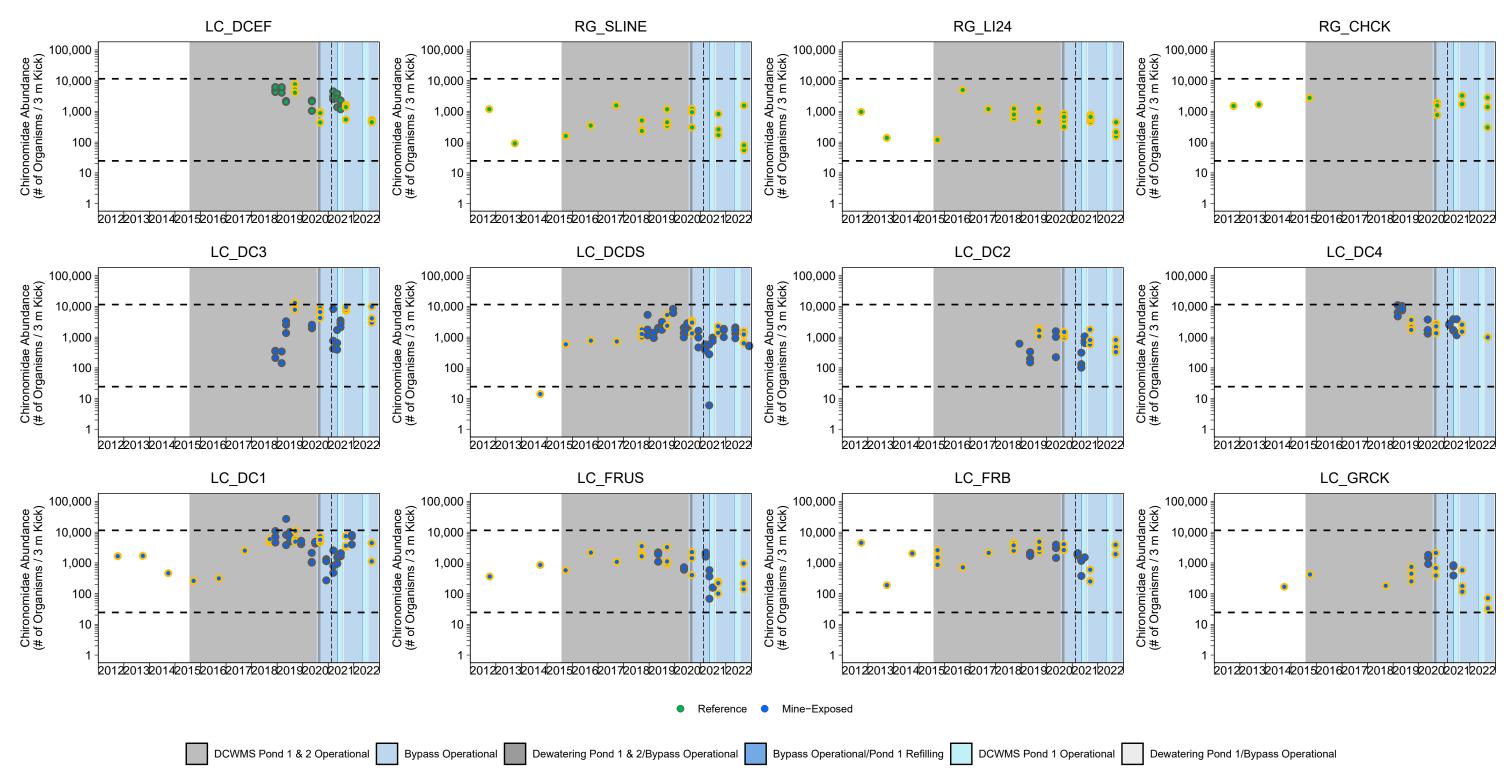


Figure E.7: Benthic Invertebrate Community Chironomidae Abundance (# of Organisms / 3 m Kick) from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DC2, LC_DC4, and LC_DC1).

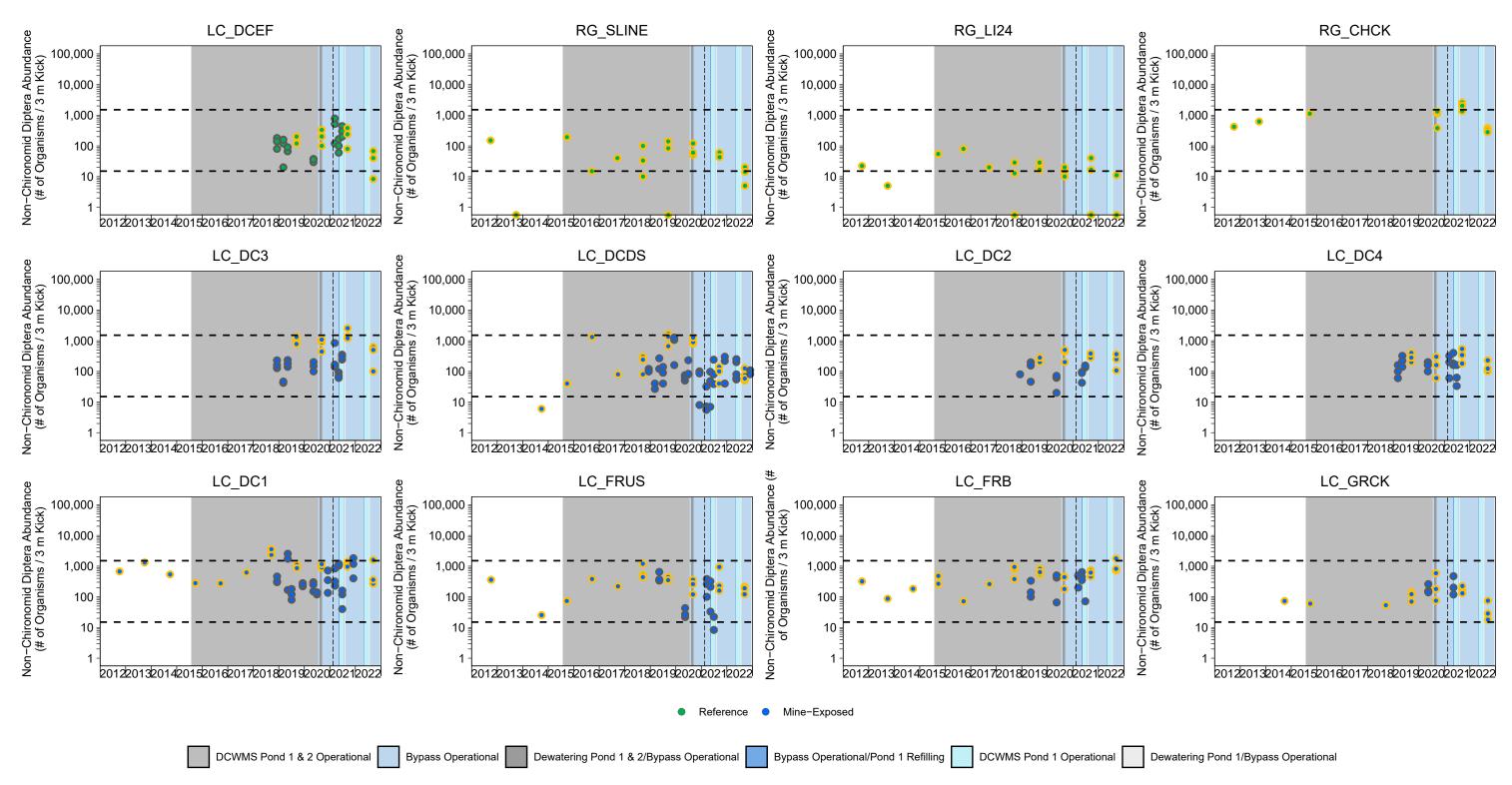


Figure E.8: Benthic Invertebrate Community Non-Chironomid Diptera Abundance (# of Organisms / 3 m Kick) from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DCDS, LC_DC2, LC_DC4, and LC_DC1).

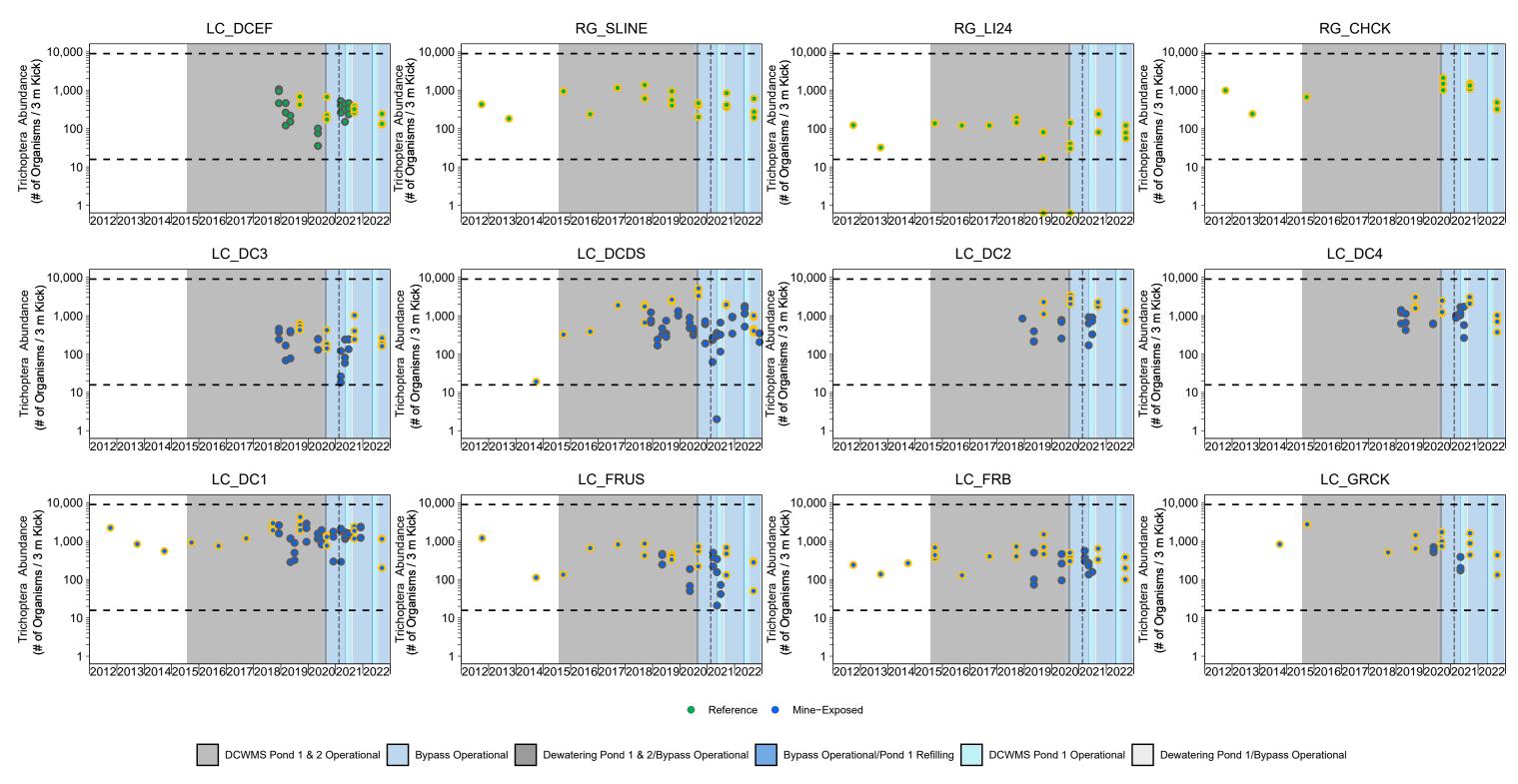


Figure E.9: Benthic Invertebrate Community Trichoptera Abundance from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DC2, LC_DC4, and LC_DC1).

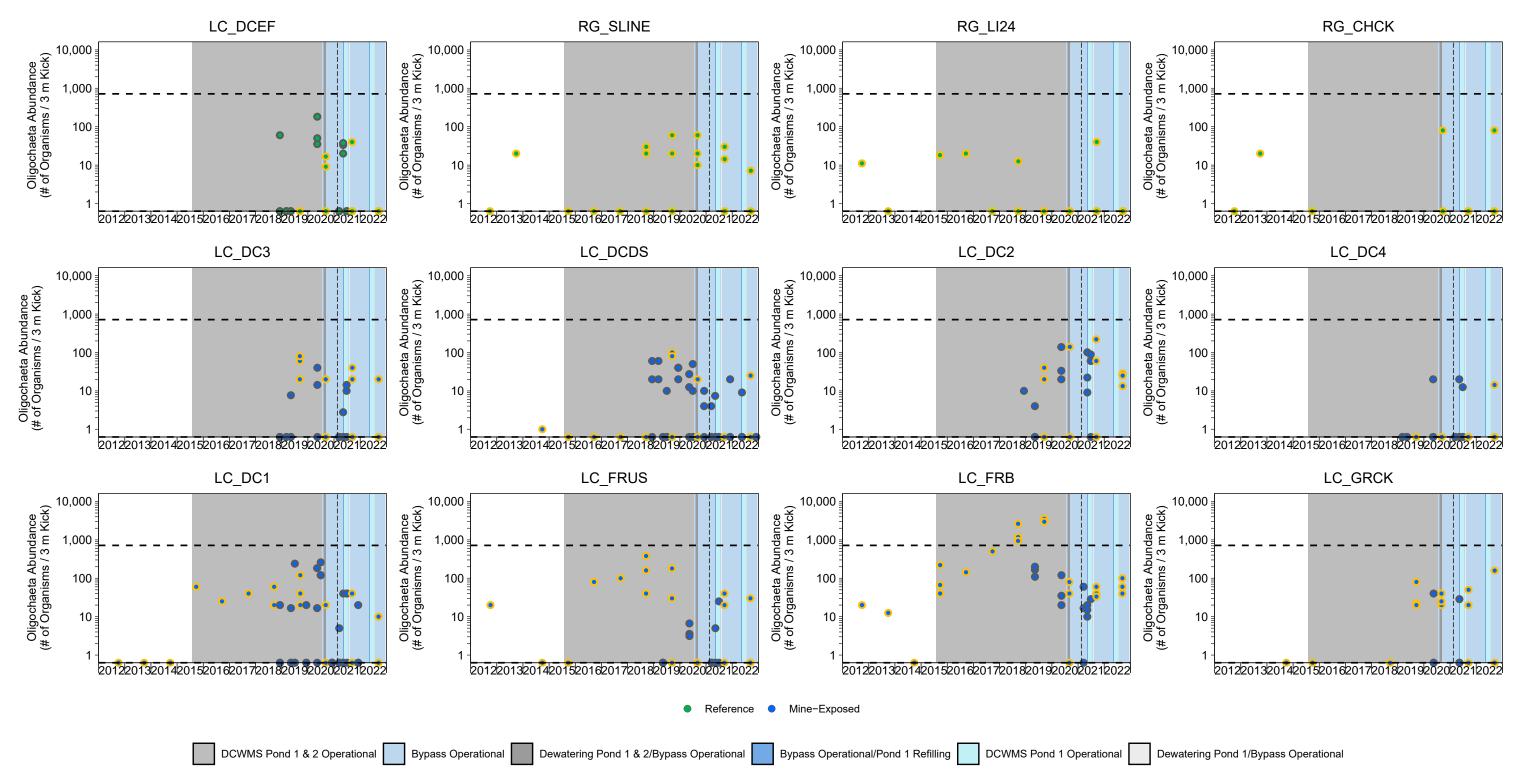


Figure E.10: Benthic Invertebrate Community Oligochaeta Abundance (# of Organisms / 3 m Kick) from Dry Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Orange outline indicates September sampling. Dashed vertical line indicates the Burnt Ridge North spoil failure. Dry Creek Water Management System (DCWMS) operational timelines are displayed for each monitoring area to provide context, but only applies to Dry Creek areas downstream of the DCWMS (LC_SPDC, LC_DC2, LC_DC4, and LC_DC1).

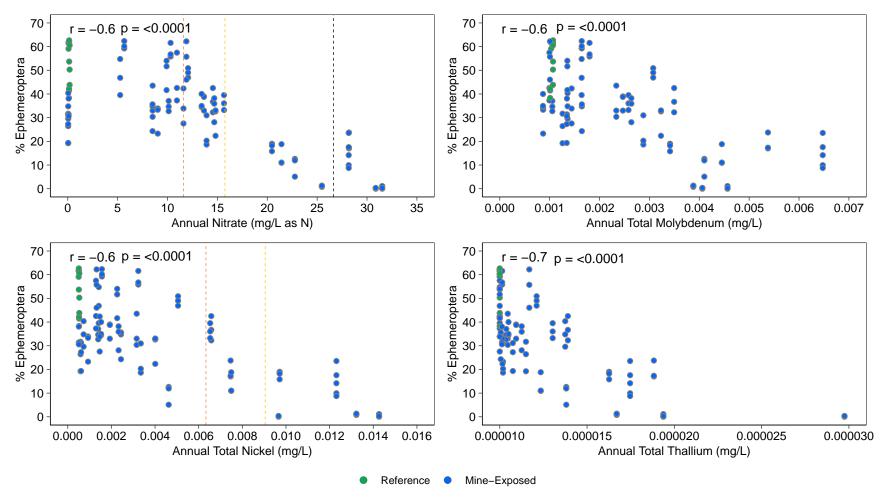


Figure E.11: Scatterplots of Spearman's Correlation Relationships (r > 0.6 or r < -0.6) Between Benthic Invertebrate Community Metrics and Physical and Chemical Parameters, Dry Creek, 2019 to 2022

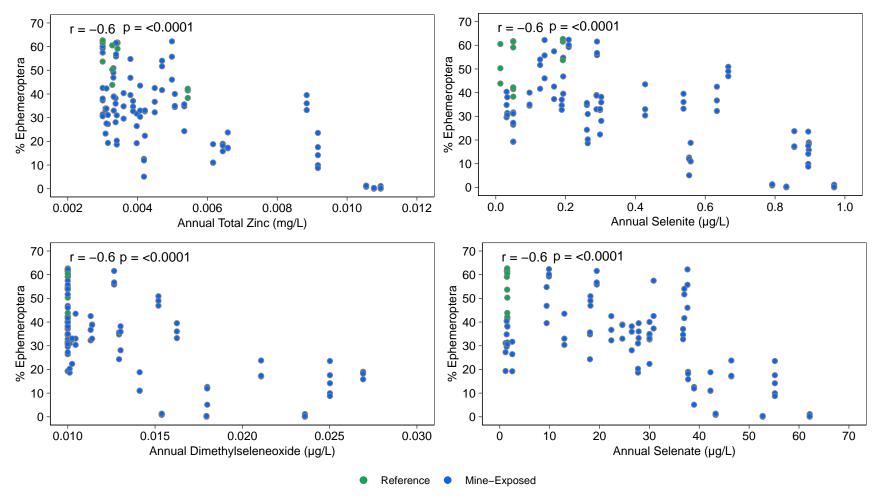


Figure E.11: Scatterplots of Spearman's Correlation Relationships Between Benthic Invertebrate Community Metrics and Physical and Chemical Parameters, Dry Creek, 2019 to 2022

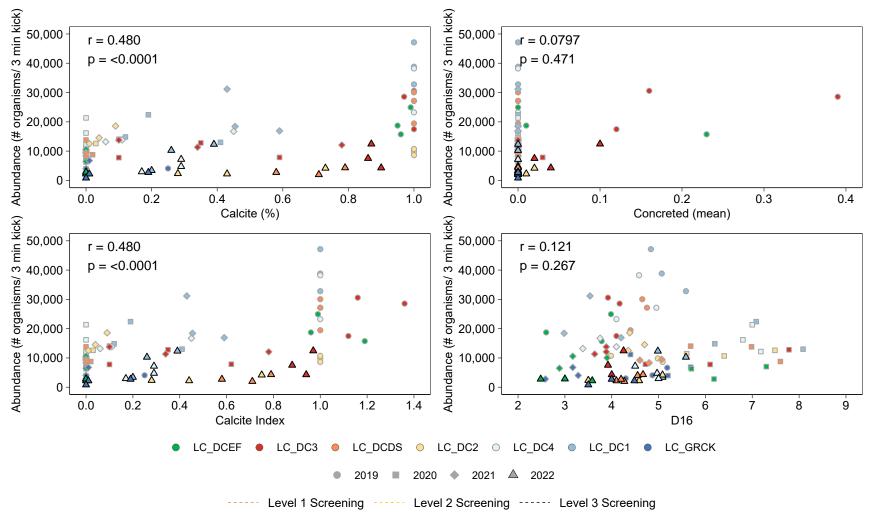


Figure E.12: Scatterplots of Spearman's Correlation Relationships Between Benthic Invertebrate Community Metrics and Physical and Chemical Parameters, LC_DC3, LC_DCDS, LC_DC2, LC_DC4, LC_DCDS and LC_DCEF, 2019 to 2022

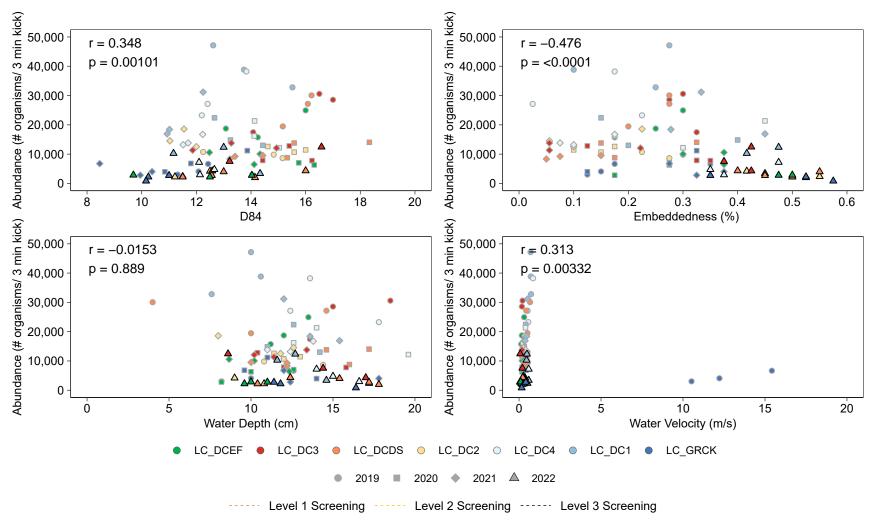


Figure E.12: Scatterplots of Spearman's Correlation Relationships Between Benthic Invertebrate Community Metrics and Physical and Chemical Parameters, LC_DC3, LC_DCDS, LC_DC2, LC_DC4, LC_DCDS and LC_DCEF, 2019 to 2022

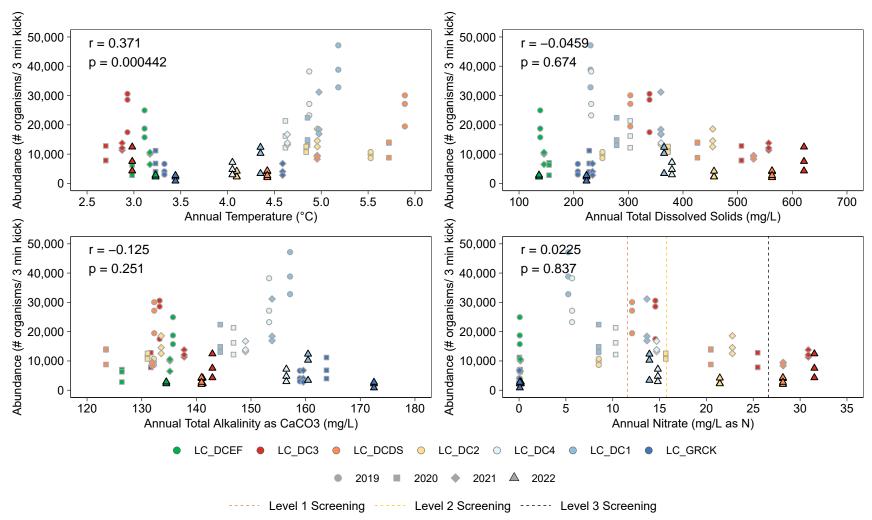


Figure E.12: Scatterplots of Spearman's Correlation Relationships Between Benthic Invertebrate Community Metrics and Physical and Chemical Parameters, LC_DC3, LC_DCDS, LC_DC2, LC_DC4, LC_DCDS and LC_DCEF, 2019 to 2022

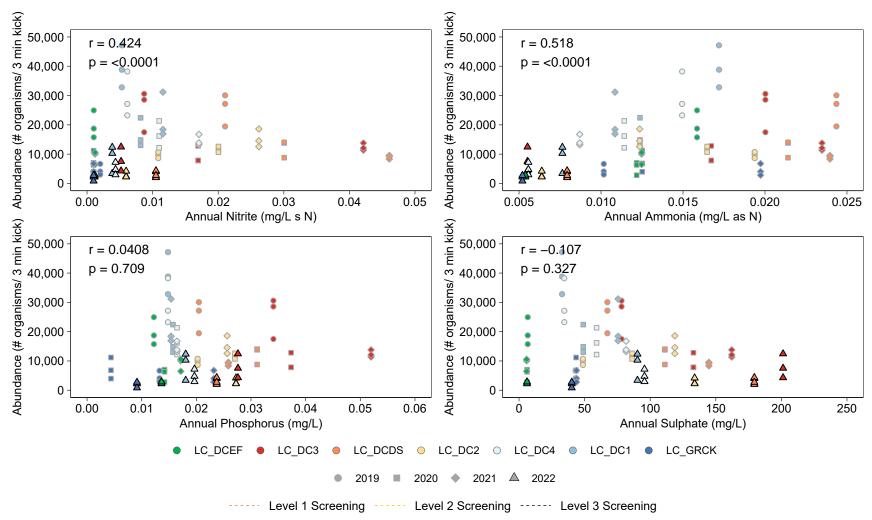


Figure E.12: Scatterplots of Spearman's Correlation Relationships Between Benthic Invertebrate Community Metrics and Physical and Chemical Parameters, LC_DC3, LC_DCDS, LC_DC2, LC_DC4, LC_DCDS and LC_DCEF, 2019 to 2022

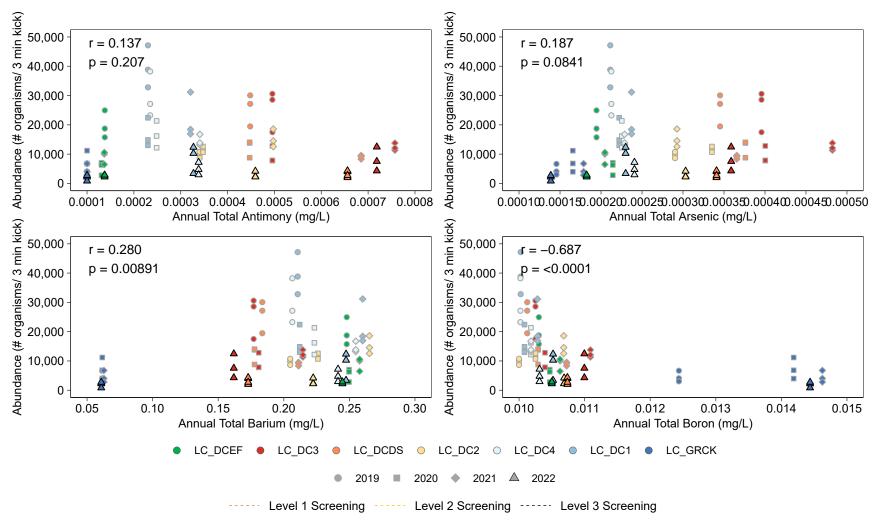


Figure E.12: Scatterplots of Spearman's Correlation Relationships Between Benthic Invertebrate Community Metrics and Physical and Chemical Parameters, LC_DC3, LC_DCDS, LC_DC2, LC_DC4, LC_DCDS and LC_DCEF, 2019 to 2022

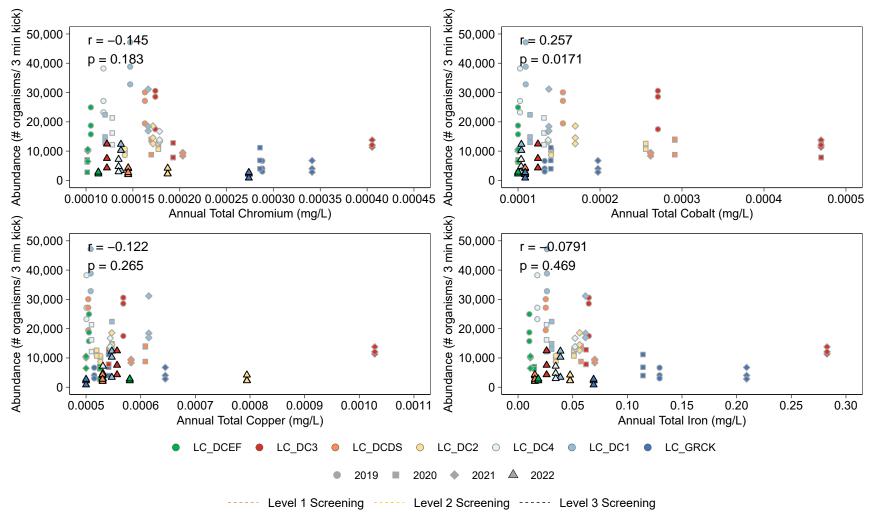


Figure E.12: Scatterplots of Spearman's Correlation Relationships Between Benthic Invertebrate Community Metrics and Physical and Chemical Parameters, LC_DC3, LC_DCDS, LC_DC2, LC_DC4, LC_DCDS and LC_DCEF, 2019 to 2022

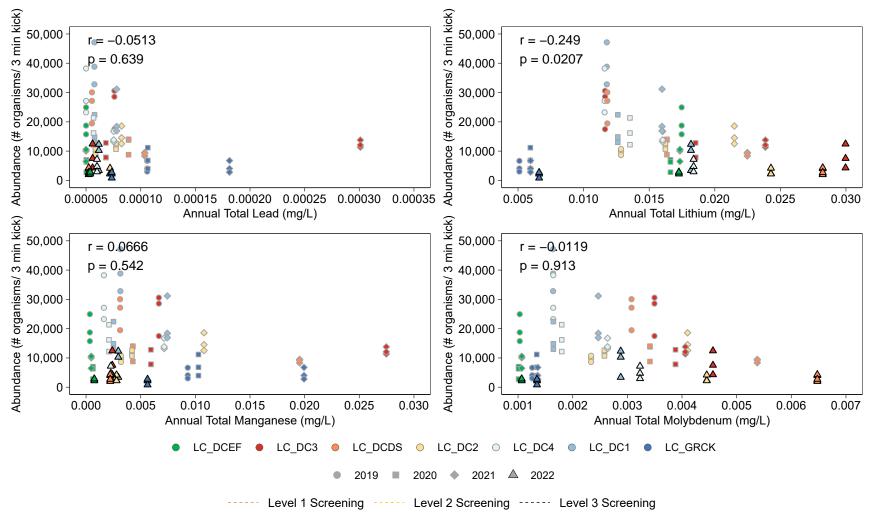


Figure E.12: Scatterplots of Spearman's Correlation Relationships Between Benthic Invertebrate Community Metrics and Physical and Chemical Parameters, LC_DC3, LC_DCDS, LC_DC2, LC_DC4, LC_DCDS and LC_DCEF, 2019 to 2022

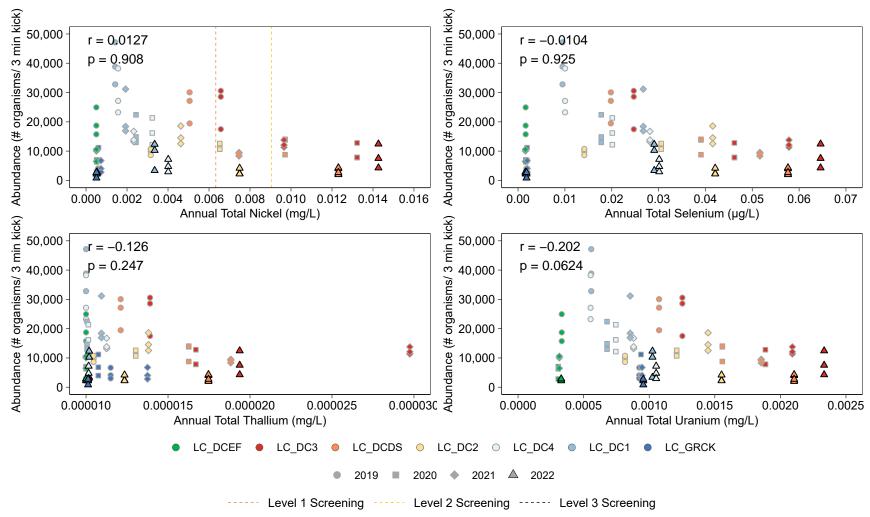


Figure E.12: Scatterplots of Spearman's Correlation Relationships Between Benthic Invertebrate Community Metrics and Physical and Chemical Parameters, LC_DC3, LC_DCDS, LC_DC2, LC_DC4, LC_DCDS and LC_DCEF, 2019 to 2022

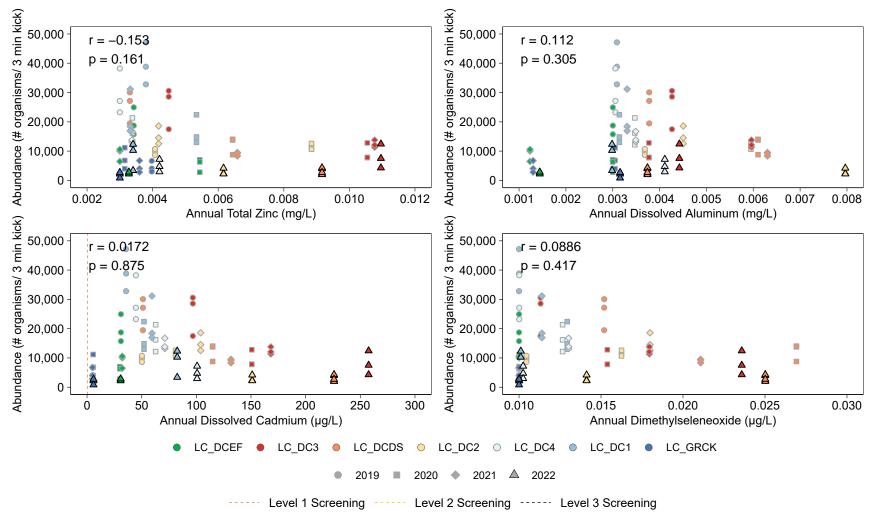


Figure E.12: Scatterplots of Spearman's Correlation Relationships Between Benthic Invertebrate Community Metrics and Physical and Chemical Parameters, LC_DC3, LC_DCDS, LC_DC2, LC_DC4, LC_DCDS and LC_DCEF, 2019 to 2022

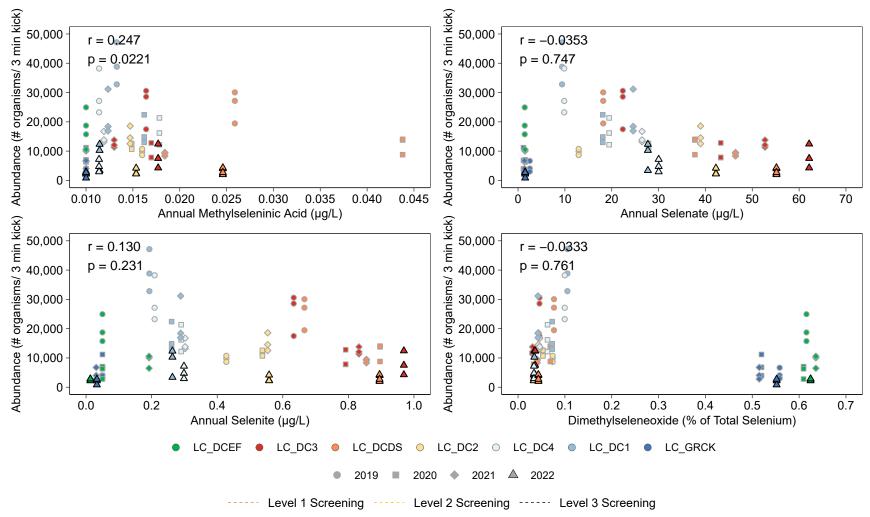


Figure E.12: Scatterplots of Spearman's Correlation Relationships Between Benthic Invertebrate Community Metrics and Physical and Chemical Parameters, LC_DC3, LC_DCDS, LC_DC2, LC_DC4, LC_DCDS and LC_DCEF, 2019 to 2022

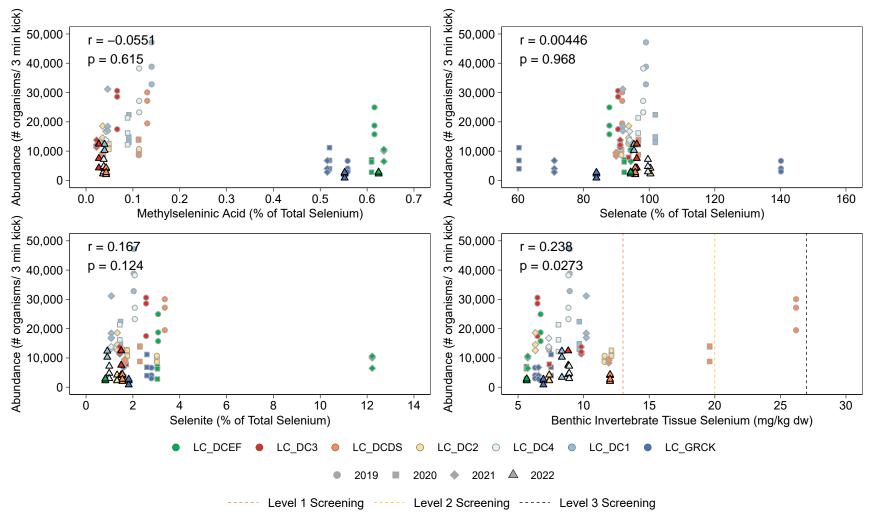


Figure E.12: Scatterplots of Spearman's Correlation Relationships Between Benthic Invertebrate Community Metrics and Physical and Chemical Parameters, LC_DC3, LC_DCDS, LC_DC2, LC_DC4, LC_DCDS and LC_DCEF, 2019 to 2022

Table E.1: Summary of Benthic Invertebrate Endpoints Collected by 3-Minute Kick and Sweep Sampling at Dry Creek, Fording River, and Grace Creek, 2022

						LPL	EI	РТ	Epheme	eroptera	Chiron	omidae	Non-Chire Dip		Oligo	chaeta	Tricho	optera	Pleco	ptera
Area		Biological Area Code	Station	Month	Abundance ^a	Richness	Abundance ^a	Relative Abundance (%)												
		LC_DCDS	LC_DCDS-1		8,700	33	7,200	0.828	940	0.108	1,300	0.149	200	0.0230	0	0	1,780	0.205	4,480	0.515
		LC_DCDS	LC_DCDS-2		5,933	31	3,917	0.660	833	0.140	1,750	0.295	250	0.0421	0	0	1,150	0.194	1,933	0.326
	Mine- Exposed	LC_DCDS	LC_DCDS-3	May	3,282	31	2,300	0.701	673	0.205	918	0.280	54.5	0.0166	9.09	0.00277	518	0.158	1,109	0.338
	·	LC_DCDS	LC_DCDS-4		7,280	26	5,140	0.706	1,780	0.245	2,060	0.283	60.0	0.00824	0	0	1,120	0.154	2,240	0.308
		LC_DCDS	LC_DCDS-5		7,020	29	5,240	0.746	2,100	0.299	1,700	0.242	80.0	0.0114	0	0	1,580	0.225	1,560	0.222
		LC_DCEF	LC_DCEF-1		2,783	37	2,208	0.793	1,400	0.503	449	0.161	67.8	0.0243	0	0	242	0.0868	567	0.204
	Reference	LC_DCEF	LC_DCEF-2		2,220	42	1,580	0.712	973	0.438	527	0.237	40.0	0.0180	0	0	127	0.0571	480	0.216
		LC_DCEF	LC_DCEF-3		2,850	31	2,358	0.827	1,725	0.605	442	0.155	8.33	0.00292	0	0	133	0.0468	500	0.175
		LC_DC3	LC_DC3-1		12,440	31	1,700	0.137	140	0.0113	9,800	0.788	620	0.0498	20.0	0.00161	260	0.0209	1,300	0.105
		LC_DC3	LC_DC3-2		4,288	27	1,125	0.262	0	0	2,950	0.688	100	0.0233	0	0	188	0.0437	938	0.219
		LC_DC3	LC_DC3-3		7,520	32	2,800	0.372	20.0	0.00266	4,060	0.540	500	0.0665	0	0	160	0.0213	2,620	0.348
		LC_DCDS	LC_DCDS-1		2,213	40	1,407	0.636	220	0.0994	667	0.301	127	0.0572	0	0	447	0.202	740	0.334
Dry Creek		LC_DCDS	LC_DCDS-2		4,000	38	2,425	0.606	350	0.0875	1,450	0.362	125	0.0312	0	0	925	0.231	1,150	0.288
		LC_DCDS	LC_DCDS-3		1,994	40	1,275	0.639	350	0.176	631	0.317	75.0	0.0376	0	0	362	0.182	562	0.282
		LC_DCDS	LC_DCDS-4		4,325	41	2,700	0.624	613	0.142	1,538	0.355	50.0	0.0116	25.0	0.00578	1,000	0.231	1,088	0.251
		LC_DCDS	LC_DCDS-5	September	2,725	34	1,442	0.529	642	0.235	1,225	0.450	58.3	0.0214	0	0	400	0.147	400	0.147
	Mine- Exposed	LC_DC2	LC_DC2-1		2,350	40	1,571	0.669	257	0.109	471	0.201	250	0.106	28.6	0.0122	707	0.301	607	0.258
	'	LC_DC2	LC_DC2-2		2,233	32	1,780	0.797	420	0.188	327	0.146	107	0.0478	13.3	0.00597	747	0.334	613	0.275
		LC_DC2	LC_DC2-3		4,188	38	2,988	0.713	463	0.110	813	0.194	362	0.0866	25.0	0.00597	1,288	0.307	1,238	0.296
		LC_DC4	LC_DC4-1		4,771	40	3,529	0.740	1,557	0.326	1,000	0.210	229	0.0479	14.3	0.00299	700	0.147	1,271	0.266
		LC_DC4	LC_DC4-2		7,200	37	6,100	0.847	2,380	0.331	1,000	0.139	100	0.0139	0	0	1,020	0.142	2,700	0.375
		LC_DC4	LC_DC4-3		2,962	39	1,854	0.626	662	0.223	985	0.332	123	0.0416	0	0	369	0.125	823	0.278
		LC_DC1	LC_DC1-1		12,340	35	6,360	0.515	2,300	0.186	4,340	0.352	1,600	0.130	0	0	1,160	0.0940	2,900	0.235
		LC_DC1	LC_DC1-2		3,390	33	1,990	0.587	1,050	0.310	1,120	0.330	270	0.0796	10.00	0.00295	200	0.0590	740	0.218
		LC_DC1	LC_DC1-3		10,260	36	5,400	0.526	2,080	0.203	4,460	0.435	360	0.0351	0	0	1,140	0.111	2,180	0.212

Notes: LPL= Lowest Practical Level; EPT= Ephemeroptera, Plecoptera, and Trichoptera.

^a Units for abundance are number of organisms per 3-minute kick (org/ 3-min kick).

Table E.1: Summary of Benthic Invertebrate Endpoints Collected by 3-Minute Kick and Sweep Sampling at Dry Creek, Fording River, and Grace Creek, 2022

						LPL	EP	т	Ephem	eroptera	Chiron	omidae	Non-Chird		Oligo	chaeta	Trich	optera	Pleco	optera
Area		Biological Area Code	Station	Month	Abundance ^a	Richness	Abundance ^a	Relative Abundance (%)												
		LC_GRCK	LC_GRCK-1		2,214	32	2,114	0.955	843	0.381	71.4	0.0323	28.6	0.0129	0	0	450	0.203	821	0.371
Grace Creek	Mine- Exposed	LC_GRCK	LC_GRCK-2		822	40	768	0.934	258	0.314	30.0	0.0365	18.0	0.0219	0	0	132	0.161	378	0.460
		LC_GRCK	LC_GRCK-3		2,725	37	2,442	0.896	833	0.306	33.3	0.0122	75.0	0.0275	158	0.0581	433	0.159	1,175	0.431
		LC_FRUS	LC_FRUS-1		5,043	37	3,671	0.728	2,100	0.416	957	0.190	214	0.0425	0	0	300	0.0595	1,271	0.252
		LC_FRUS	LC_FRUS-2	September	3,290	36	2,660	0.809	1,700	0.517	140	0.0426	190	0.0578	30.0	0.00912	280	0.0851	680	0.207
Fording	Mine-	LC_FRUS	LC_FRUS-3	-	2,486	35	2,071	0.833	1,343	0.540	214	0.0862	121	0.0489	0	0	50.0	0.0201	679	0.273
River	Exposed	LC_FRB	LC_FRB-1	-	10,300	40	6,400	0.621	4,360	0.423	1,920	0.186	1,780	0.173	40.0	0.00388	380	0.0369	1,660	0.161
		LC_FRB	LC_FRB-2	-	8,860	39	4,100	0.463	3,000	0.339	3,760	0.424	720	0.0813	60.0	0.00677	200	0.0226	900	0.102
		LC_FRB	LC_FRB-3	-	7,840	35	2,940	0.375	2,160	0.276	3,880	0.495	820	0.105	100.0	0.0128	100.0	0.0128	680	0.0867
Dm. Crasl	Mine-	LC_DCDS	LC_DCDS-1	November	1,557	36	957	0.615	57.1	0.0367	505	0.324	81.0	0.0520	0	0	205	0.131	695	0.446
Dry Creek	Exposed	LC_DCDS	LC_DCDS-2	November -	2,531	31	1,892	0.748	7.69	0.00304	523	0.207	108	0.0426	0	0	346	0.137	1,538	0.608

Notes: LPL= Lowest Practical Level; EPT= Ephemeroptera, Plecoptera, and Trichoptera.

 $^{^{\}rm a}$ Units for abundance are number of organisms per 3-minute kick (org/ 3-min kick).

Table E.2: Preliminary Statistical Comparison of Benthic Invertebrate Community Endpoints in Dry Creek, September 2019 to 2022

Endpoint	Transformation	Year	Area	Year:Area	Statio	on			Do endpoints	s differ between	years for each stat	ion? ^a		Do endpoint	s for exposed ar area within		the reference
							2019	2020	2021	2022	2019 vs 2020	2019 vs 2021	2019 vs 2022	2019	2020	2021	2022
					Reference	LC_DCEF	Α	В	В	С	-5.9	-3.4	-8.7	nc	nc	nc	nc
						LC_DC3	Α	В	В	В	-3.2	-2.3	-4.0	ns	ns	ns	7.6
Abundance	log10	<0.001	<0.001	0.002		LC_DCDS	Α	В	В	С	-3.3	-4.5	-9.5	ns	1.7	ns	ns
Abundance	10910	<0.001	<0.001	0.002	Mine-Exposed	LC_DC2	Α	Α	Α	В	ns	ns	-11	-3.0	1.7	ns	ns
						LC_DC4	Α	AB	В	С	ns	-2.7	-7.2	ns	2.3	ns	ns
						LC_DC1	Α	В	В	С	-4.8	-3.3	-9.1	3.0	2.4	3.3	7.7
					Reference	LC_DCEF	Α	Α	Α	Α	ns	ns	ns	nc	nc	nc	nc
						LC_DC3	Α	В	В	В	-11	-11	-19	5.2	ns	ns	ns
LPL Richness	log10	0.011	0.191	0.012		LC_DCDS	Α	Α	Α	Α	ns	ns	ns	ns	ns	ns	ns
LFL NICIIIIess	10910	0.011	0.191	0.012	Mine-Exposed	LC_DC2	Α	Α	Α	Α	ns	ns	ns	ns	ns	ns	ns
						LC_DC4	Α	Α	Α	Α	ns	ns	ns	ns	ns	ns	ns
						LC_DC1	AB	AB	Α	В	ns	ns	ns	ns	ns	ns	ns
					Reference	LC_DCEF	В	AB	Α	AB	ns	6.4	ns	nc	nc	nc	nc
						LC_DC3	Α	В	В	В	-17	-19	-13	-11	-14	-33	-8.7
% EPT	none	<0.001	<0.001	<0.001		LC_DCDS	Α	AB	Α	В	ns	ns	-3.4	ns	ns	ns	-2.9
70 EPT	none	<0.001	<0.001	<0.001	Mine-Exposed	LC_DC2	AB	Α	Α	В	ns	ns	ns	ns	ns	ns	ns
						LC_DC4	Α	Α	Α	В	ns	ns	-9.5	10	ns	ns	ns
						LC_DC1	Α	В	Α	В	-4.0	ns	-4.6	ns	-4.9	ns	-3.9
					Reference	LC_DCEF	Α	В	Α	Α	-15	ns	ns	nc	nc	nc	nc
						LC_DC3	Α	В	В	В	-8.1	-8.4	-8.3	-17	-22	-15	-7.4
% Ephemeroptera	log10	<0.001	<0.001	<0.001		LC_DCDS	Α	В	В	В	-18	-17	-19	ns	-12	-9.3	-5.0
% Epitemeropiera	10910	<0.001	<0.001	<0.001	Mine-Exposed	LC_DC2	Α	Α	В	В	ns	-4.1	-3.5	-19	ns	-12	-5.2
						LC_DC4	Α	Α	В	В	ns	-18	-22	ns	7.9	-5.6	-2.9
						LC_DC1	Α	BC	В	С	-2.1	-1.4	-3.4	-9.9	ns	-4.9	-3.7
					Reference	LC_DCEF	С	Α	В	BC	62	32	ns	nc	nc	nc	nc
1						LC_DC3	В	AB	В	А	ns	ns	129	ns	-15	ns	ns
% Placenters	ronk	<0.001	<0.001	<0.001		LC_DCDS	С	С	Α	В	ns	107	58	ns	-17	17	ns
% Plecoptera	rank	<0.001	V0.001	\(\text{0.001}\)	Mine-Exposed	LC_DC2	В	В	Α	AB	ns	17	ns	60	ns	42	3.8
1						LC_DC4	ВС	С	А	AB	ns	28	ns	43	-10	15	4.0
						LC_DC1	AB	В	Α	AB	ns	ns	ns	50	-14	ns	ns
					Reference	LC_DCEF	В	Α	AB	Α	2.0	ns	2.1	nc	nc	nc	nc
						LC_DC3	Α	Α	Α	Α	ns	ns	ns	ns	-1.8	ns	-2.6
0/ Trick antons	la #10	-0.004	z0.001	0.014		LC_DCDS	С	Α	AB	В	4.7	2.8	2.5	3.5	3.6	5.6	3.7
% Trichoptera	log10	<0.001	<0.001	0.014	Mine-Exposed	LC_DC2	AB	AB	В	Α	ns	ns	ns	5.4	2.7	4.0	5.2
1						LC_DC4	В	AB	А	А	ns	5.2	4.1	2.5	ns	4.7	2.5
						LC_DC1	Α	Α	Α	Α	ns	ns	ns	2.6	ns	2.5	ns

P-value < 0.1 MOD > 2 MOD < -2

Notes: "nc" = no relevant comparison; "ns" = not significant.

^a MOD = MCT_{year/}-MCT_{year/}/SD_{year1} where MCT is the median for rank transformed data and the back-transformed estimated marginal means for others. Median Absolute Deviation (MAD) was used instead of standard deviation for rank-transformed data.

b MOD = MCT_{stn}-MCT_{LC_DCEF}/SD_{LC_DCEF} where MCT is the median for rank transformed data and the back-transformed estimated marginal means for others. Median Absolute Deviation (MAD) was used instead of standard deviation for rank-transformed data.

Table E.2: Preliminary Statistical Comparison of Benthic Invertebrate Community Endpoints in Dry Creek, September 2019 to 2022

Endpoint	Transformation	Year	Area	Year:Area	Static	on			Do endpoints	differ between	years for each stat	ion? ^a		Do endpoints	s for exposed ar area within		the reference
							2019	2020	2021	2022	2019 vs 2020	2019 vs 2021	2019 vs 2022	2019	2020	2021	2022
					Reference	LC DCEF									n	С	
						LC_DC3									n	S	
% Oligochaeta	rank	0.648	0.009	0.264		LC_DCDS	Α	Α	Α	А	ns	no	no		n	S	
% Oligochaeta	Tank	0.046	0.009	0.204	Mine-Exposed	LC_DC2	A	A	A	A	115	ns	ns		n	S	
						LC_DC4									n	S	
						LC_DC1									n	s	
					Reference	LC_DCEF	Α	В	В	AB	-7.7	-9.8	ns	nc	nc	nc	nc
						LC_DC3	Α	Α	Α	Α	ns	ns	ns	ns	13	5.0	5.5
% Chironomidae	log10	<0.001	<0.001	<0.001		LC_DCDS	В	В	В	Α	ns	ns	3.1	-6.4	ns	1.6	2.8
70 Officialidad	10910	40.001	40.001	40.001	Mine-Exposed	LC_DC2	AB	В	С	Α	ns	-2.9	ns	-6.9	ns	-2.0	ns
						LC_DC4	В	В	В	Α	ns	ns	4.3	-14	ns	ns	ns
						LC_DC1	В	Α	В	Α	2.3	ns	2.4	ns	7.8	1.7	3.0
					Reference	LC_DCEF	С	Α	AB	ВС	4.1	2.8	ns	nc	nc	nc	nc
% Non-						LC_DC3	В	AB	Α	В	ns	3.1	ns	4.3	ns	2.0	1.2
Chironomidae	log10	0.007	<0.001	<0.001		LC_DCDS	AB	Α	С	В	ns	-5.4	ns	4.6	ns	ns	ns
Diptera	1.59.10	0.00.	0.00.	0.001	Mine-Exposed	LC_DC2	В	AB	В	Α	ns	ns	3.9	3.1	ns	ns	1.7
'						LC_DC4	В	В	AB	Α	ns	ns	10	ns	-1.9	ns	ns
						LC_DC1	Α	Α	A	Α	ns	ns	ns	3.2	ns	ns	1.6
					Reference	LC_DCEF	Α	BC	AB	С	-6.1	ns	-9.3	nc	nc	nc	nc
						LC_DC3	Α	В	В	В	-6.1	-5.5	-5.7	ns	-1.6	-5.5	ns
EPT Abundance	log10	<0.001	<0.001	<0.001		LC_DCDS	Α	В	В	С	-4.8	-6.0	-14	ns	ns	ns	ns
	3 -				Mine-Exposed	LC_DC2	Α	Α	Α	В	ns	ns	-9.2	ns	1.7	ns	ns
						LC_DC4	Α	AB	В	С	ns	-3.0	-8.2	ns	2.3	ns	ns
						LC_DC1	Α	В	AB	С	-7.5	ns	-13	3.9	1.6	ns	ns
					Reference	LC_DCEF	Α	С	В	С	-3.2	-2.1	-3.6	nc	nc	nc	nc
						LC_DC3	Α	В	В	В	-8.2	-8.2	-8.2	ns	-6.7	-7.6	-2.9
Ephemeroptera	rank	<0.001	<0.001	<0.001	l	LC_DCDS	Α	В	В	С	-2.8	-2.9	-3.3	ns	ns	-5.5	-2.2
Abundance					Mine-Exposed	LC_DC2	Α	Α	В	С	ns	-57	-96	-3.0	4.1	-5.5	ns
						LC_DC4	Α	В	С	D	-1.8	-2.8	-3.5	ns	17	ns	ns
						LC_DC1	Α	В	В	С	-3.5	-3.0	-4.3	ns	6.6	ns	ns

P-value < 0.1 MOD > 2 MOD < -2

Notes: "nc" = no relevant comparison; "ns" = not significant.

^a MOD = MCT_{year/}-MCT_{year/}/SD_{year1} where MCT is the median for rank transformed data and the back-transformed estimated marginal means for others. Median Absolute Deviation (MAD) was used instead of standard deviation for rank-transformed data.

b MOD = MCT_{stn}-MCT_{LC_DCEF}/SD_{LC_DCEF} where MCT is the median for rank transformed data and the back-transformed estimated marginal means for others. Median Absolute Deviation (MAD) was used instead of standard deviation for rank-transformed data.

Table E.3: Statistical Comparison of Benthic Invertebrate Community Endpoints in Fording River, September 2018 to 2022

Endpoint	Transformation	Year	Area	Year:Area	Statio	n			Do endp	oints diff	fer betwe	en years fo	r each statio	on? ^a		Do e	-	s differ fi hin a yea		FRUS
·							2018	2019	2020	2021	2022	2018 vs 2019	2018 vs 2020	2018 vs 2021	2018 vs 2022	2018	2019	2020	2021	2022
Abundance	log10	<0.001	<0.001	0.034	Reference	LC_FRUS	Α	AB	AB	ВС	С	ns	ns	-2.7	-3.4	nc	nc	nc	nc	nc
Abundance	10910	\0.001	\0.001	0.054	Mine-Exposed	LC_FRB	AB	Α	BC	С	ABC	ns	ns	-3.3	ns	ns	2.9	ns	ns	2.7
LPL Richness	log10	0.038	0.917	0.732	Reference	LC_FRUS	Α	AB	AB	В	В	ns	ns	-1.4	-1.4			nc		
	10910	0.000	0.017	0.7 02	Mine-Exposed	LC_FRB			,			110	110	•••	•••		T	ns	T	
% EPT	none	<0.001	<0.001	0.004	Reference	LC_FRUS	AB	В	Α	Α	Α	ns	ns	ns	ns	nc	nc	nc	nc	nc
			0.00.	0.00	Mine-Exposed	LC_FRB	В	В	В	Α	В	ns	ns	3.7	ns	-2.2	-1.8	-3.0	ns	-5.5
% Ephemeroptera	none	0.001	0.785	0.005	Reference	LC_FRUS	В	В	Α	AB	Α	ns	7.0	ns	8.3	nc	nc	nc	nc	nc
				0.000	Mine-Exposed	LC_FRB	В	В	В	Α	В	ns	ns	4.1	ns	ns	ns	-1.0	5.9	-2.2
% Plecoptera	none	0.001	<0.001	0.681	Reference	LC_FRUS	Α	В	В	Α	В	-0.91	-0.94	ns	-0.90	nc	nc	nc	nc	nc
					Mine-Exposed	LC_FRB												-2.1		
% Trichoptera	log10	0.069	0.032	0.713	Reference	LC_FRUS	AB	AB	AB	Α	В	ns	ns	ns	ns			nc		
70 Thomoptora	10910		0.002	0.7 10	Mine-Exposed	LC_FRB			7.05			110	110	110	110			-0.83		
% Oligochaeta	rank	<0.001	0.002	0.466	Reference	LC_FRUS	Α	AB	С	ВС	С	ns	-1.0	-0.90	-0.91			nc		
70 Oligoonadia	Tariit	-0.001	0.002	0.100	Mine-Exposed	LC_FRB	, · ·	7.6				110	1.0		0.01			0.69		
% Chironomidae	log10	<0.001	0.005	0.080	Reference	LC_FRUS	Α	Α	Α	В	AB	ns	ns	-7.9	ns	nc	nc	nc	nc	nc
70 Chilomornidae	10910	·0.001	0.000	0.000	Mine-Exposed	LC_FRB	Α	Α	Α	В	Α	ns	ns	-7.8	ns	ns	ns	1.6	ns	1.8
% Non-Chironomidae	log10	<0.001	0.081	0.018	Reference	LC_FRUS	Α	Α	В	Α	AB	ns	-2.5	ns	ns	nc	nc	nc	nc	nc
Diptera	10910		0.001	0.010	Mine-Exposed	LC_FRB	ВС	С	С	AB	Α	ns	ns	ns	2.8	ns	ns	ns	ns	5.4

P-value < 0.1 MOD > 2 MOD < -2

Notes: "nc" = no relevant comparison; "ns" = not significant.

^a MOD = MCT_{year2} - MCT_{year1} / SD_{year1} where Measure of Central Tendency (MCT) is the median for rank transformed data and the back-transformed data and the back-transformed data.

b MOD = MCT_{stn}-MCT_{LC_FRUS}/SD_{LC_FRUS} where Measure of Central Tendency (MCT) is the median for rank transformed data and the back-transformed estimated marginal means for others. Median Absolute Deviation (MAD) was used instead of standard deviation for rank-transformed data.

APPENDIX F BENTHIC INVERTEBRATE TISSUE CHEMISTRY

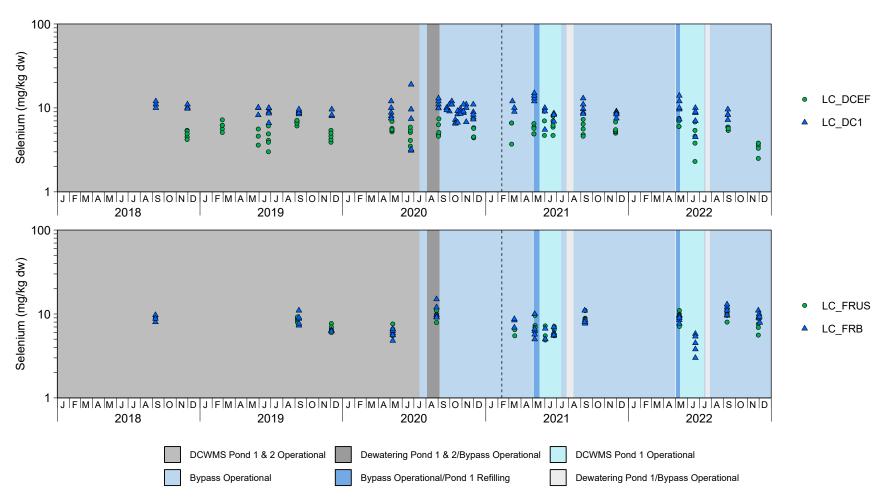


Figure F.1: Benthic Invertebrate Selenium Concentrations, for LC_DC1 (Mine-exposed Areas) Relative to LC_DCEF (Reference Area) and for LC_FRB (Downstream) Relative to LC_FRUS (Upstream), 2018 to 2022

Notes: mg/kg dw = milligrams per kilogram dry weight. Dashed black vertical line indicates the Burnt Ridge North spoil failure. Only data collected simultaneously at both stations are displayed.

Table F.1: Selenium Benchmarks for Benthic Invertebrates in the Elk Valley

				Benchmark	
Endpoint	Tissue Type	Value (µg/g dw)	Туре	Description	Source
	Egg/ovary	25	Site-specific benchmark	Level 1 (~10% effect) benchmark for westslope cutthroat trout reproduction	Teck (2014)
Westslope	Egg/ovary	27	Site-specific benchmark	Level 2 (~20% effect) benchmark for westslope cutthroat trout reproduction	Teck (2014)
cutthroat trout	Egg/ovary	33	Site-specific benchmark	Level 3 (~50% effect) benchmark for westslope cutthroat trout reproduction	Golder (2014)
	Muscle/ muscle plug	15.5	Site-specific benchmark	Muscle equivalent to the 25 mg/kg dw ovary benchmark, based on the relationship observed between selenium in muscle and ovary in westslope cutthroat trout	Nautilus Environmental and Interior Reforestation (2011)
	Whole body	4ª	BC guideline	Interim guideline for aquatic dietary tissue based on weight of evidence of lowest published toxicity thresholds and no uncertainty factor applied	BCMOE (2014)
	Whole body	13	Site-specific benchmark	Level 1 (~10% effect) benchmark for growth, reproduction and survival of invertebrates	Teck (2014)
	Whole body	20	Site-specific benchmark	Level 2 (~20% effect) benchmark for growth, reproduction and survival of invertebrates	Teck (2014)
	Whole body	27	Site-specific benchmark	Level 3 (~50% effect) benchmark for growth, reproduction and survival of invertebrates	Golder (2014)
Benthic	Whole body	11 ^b	Site-specific benchmark	Level 1 (~10% effect) benchmark for dietary effects to juvenile fish (growth)	Teck (2014)
Invertebrates	Whole body	18	Site-specific benchmark	Level 2 (~20% effect) benchmark for dietary effects to juvenile fish (growth)	Teck (2014)
	Whole body	26	Site-specific benchmark	Level 3 (~50% effect) benchmark for dietary effects to juvenile fish (growth)	Golder (2014)
	Whole body	15	Site-specific benchmark	Level 1 (~10% effect) benchmark for dietary effects to juvenile birds	Teck (2014)
	Whole body	22	Site-specific benchmark	Level 2 (~20% effect) benchmark for dietary effects to juvenile birds	Teck (2014)
	Whole body	41	Site-specific benchmark	Level 3 (~50% effect) benchmark for dietary effects to juvenile birds	Golder (2014)

^a BC guidelines were not used in assessment of benthic invertebrate and fish tissue selenium concentrations. Assessment was completed relative to site-specific benchmarks only.

^b Site-specific benchmark is not applicable to effects to juvenile westslope cutthroat trout because studies with Yellowstone cutthroat trout have reported no effects at the Level 1 benchmark (see Teck [2014], Annex E, Appendix D [Elk Valley Water Quality Plan – Selenium Toxicity Literature Review]).

Table F.2: Selenium Concentrations in Benthic Invertebrate Composite-Taxa and Taxon-Specific Samples Collected from Dry Creek, Fording River, and Grace Creek, Dry Creek LAEMP, January to December 2022

		Sample		Sample	Sample		Seler	nium Conc	entration (m	g/kg dw)	Area
Water	body	Туре	Area	Code	Date	Sample Result	Area Mean	Area Median	Area Minimum	Area Maximum	Standard Deviation
				LC_DC3_INV-1_2022-05_NP	10-May-22	7.20 4.70					
				LC_DC3_INV-2_2022-05_NP LC_DC3_INV-3_2022-05_NP	10-May-22 10-May-22	7.60	6.68	7.20	4.70	8.20	1.44
				LC_DC3_INV-4_2022-05_NP	10-May-22	8.20					
				LC_DC3_INV-5_2022-05_NP	10-May-22	5.70					
				LC_DC3_INV-1_2022-06_NP LC_DC3_INV-2_2022-06_NP	20-Jun-22 20-Jun-22	5.90 3.40	-				
				LC DC3 INV-3 2022-06 NP	20-Jun-22	5.10	5.96	5.90	3.40	7.80	1.83
				LC_DC3_INV-4_2022-06_NP	20-Jun-22	7.80	-				
			LC DC3	LC_DC3_INV-5_2022-06_NP	20-Jun-22	7.60					
			_	LC_DC3_INV-1_2022-09-13_N LC_DC3_INV-2_2022-09-13_N	13-Sep-22 13-Sep-22	7.70 9.40	-				
				LC DC3 INV-3 2022-09-13 N	13-Sep-22	9.90	9.16	9.40	7.70	10.0	0.945
				LC_DC3_INV-4_2022-09-13_N	13-Sep-22	8.80					
				LC_DC3_INV-5_2022-09-13_N	13-Sep-22	10.0					
				LC_DC3_INV-1_2022-11_N LC_DC3_INV-2_2022-11_N	29-Nov-22 29-Nov-22	6.90 5.30	-				
				LC_DC3_INV-3_2022-11_N	29-Nov-22	4.40	6.44	6.90	4.40	8.50	1.61
				LC_DC3_INV-4_2022-11_N	29-Nov-22	8.50					
				LC_DC3_INV-5_2022-11_N	29-Nov-22	7.10					
				LC_DCDS_INV-1_2022-05_NP LC_DCDS_INV-2_2022-05_NP	10-May-22 10-May-22	11.0 12.0	-				
				LC DCDS INV-3 2022-05 NP	10-May-22	9.90	10.2	10.0	8.10	12.0	1.45
				LC_DCDS_INV-4_2022-05_NP	10-May-22	10.0					
				LC_DCDS_INV-5_2022-05_NP	10-May-22	8.10					
				LC_DCDS_INV-1_2022-06_NP LC_DCDS_INV-2_2022-06_NP	20-Jun-22 20-Jun-22	5.40 6.20	-				
		Composite		LC DCDS_INV-2_2022-00_NP	20-Jun-22	5.10	6.40	6.20	5.10	9.10	1.59
				LC_DCDS_INV-4_2022-06_NP	20-Jun-22	9.10	-				
			LC DCDS	LC_DCDS_INV-5_2022-06_NP	20-Jun-22	6.20					
			_	LC_DCDS_INV-1_2022-09-13_N LC_DCDS_INV-2_2022-09-13_N	13-Sep-22 13-Sep-22	15.0 10.0	-				
				LC_DCDS_INV-2_2022-09-13_N LC_DCDS_INV-3_2022-09-13_N	13-Sep-22 13-Sep-22	12.0	12.1	12.0	8.30	15.0	2.99
				LC_DCDS_INV-4_2022-09-13_N	13-Sep-22	8.30	-				
				LC_DCDS_INV-5_2022-09-13_N	13-Sep-22	15.0					
				LC_DCDS_INV-1_2022-11_N LC_DCDS_INV-2_2022-11_N	30-Nov-22	15.0	-				
				LC_DCDS_INV-2_2022-11_N LC_DCDS_INV-3_2022-11_N	30-Nov-22 30-Nov-22	12.0 12.0	12.2	12.0	10.0	15.0	1.79
				LC_DCDS_INV-4_2022-11_N	30-Nov-22	10.0					
				LC_DCDS_INV-5_2022-11_N	30-Nov-22	12.0					
				LC_DC4_INV-1_2022-05_NP	11-May-22	10.0	-				
				LC_DC4_INV-2_2022-05_NP LC_DC4_INV-3_2022-05_NP	11-May-22 11-May-22	9.88 9.00	9.16	9.00	8.30	10.0	0.759
				LC DC4 INV-4 2022-05 NP	11-May-22	8.60		0.00	0.00	10.0	0.700
	Mine-			LC_DC4_INV-5_2022-05_NP	11-May-22	8.30					
Dry Creek	Exposed			LC_DC4_INV-1_2022-06_NP	21-Jun-22	3.70	-				
				LC_DC4_INV-2_2022-06_NP LC_DC4_INV-3_2022-06_NP	21-Jun-22 21-Jun-22	5.30 5.80	5.16	5.30	3.70	5.90	0.882
				LC_DC4_INV-4_2022-06_NP	21-Jun-22	5.90	-	0.00	00	0.00	0.002
				LC_DC4_INV-5_2022-06_NP	21-Jun-22	5.10					
			LC_DC4	LC_DC4_COMPNOLI-1_2022-09-12_N	12-Sep-22	7.00	-				
				LC_DC4_INV-2_2022-09-12_N LC_DC4_INV-3_2022-09-12_N	12-Sep-22 12-Sep-22	10.0 9.10	8.52	8.80	7.00	10.0	1.18
				LC DC4 INV-4 2022-09-12 N	12-Sep-22	8.80	0.02	0.00	7.00	10.0	1.10
				LC_DC4_INV-5_2022-09-12_N	12-Sep-22	7.70					
		Oligochaeta	-	LC_DC4_INVOLI-1_2022-09-12_N	12-Sep-22	7.50	7.50	7.50	7.50	7.50	-
				LC_DC4_INV-1_2022-11_N LC_DC4_INV-2_2022-11_N	29-Nov-22 29-Nov-22	3.10 7.60	-				
				LC DC4 INV-3 2022-11 N	29-Nov-22	6.90	5.76	5.70	3.10	7.60	1.72
				LC_DC4_INV-4_2022-11_N	29-Nov-22	5.50					
				LC_DC4_INV-5_2022-11_N	29-Nov-22	5.70					
				LC_DC2_INV-1_2022-05_NP LC_DC2_INV-2_2022-05_NP	10-May-22 10-May-22	11.0 11.0	-				
				LC_DC2_INV-3_2022-05_NP	10-May-22	13.0	11.8	11.0	11.0	13.0	1.10
				LC_DC2_INV-4_2022-05_NP	10-May-22	13.0]				
				LC_DC2_INV-5_2022-05_NP	10-May-22	11.0					
				LC_DC2_INV-1_2022-06_NP LC_DC2_INV-2_2022-06_NP	21-Jun-22 21-Jun-22	5.40 3.30	-				
			LC DC2	LC_DC2_INV-3_2022-06_NP	21-Jun-22	6.90	5.86	6.30	3.30	7.40	1.61
			_	LC_DC2_INV-4_2022-06_NP	21-Jun-22	7.40					
				LC_DC2_INV-5_2022-06_NP	21-Jun-22	6.30					
				LC_DC2_INV-1_2022-09-14_N LC_DC2_INV-2_2022-09-14_N	14-Sep-22 14-Sep-22	7.40 7.90	-				
		Composite		LC DC2 INV-3 2022-09-14 N	14-Sep-22	6.60	7.38	7.40	6.10	8.88	1.09
				LC_DC2_INV-4_2022-09-14_N	14-Sep-22	8.88]				
				LC_DC2_INV-5_2022-09-14_N	14-Sep-22	6.10					
				LC_DC1_INV-1_2022-05_NP	11-May-22	7.30					
				LC_DC1_INV-2_2022-05_NP LC_DC1_INV-3_2022-05_NP	11-May-22 11-May-22	14.0 12.0	10.6	10.0	7.30	14.0	2.54
				LC_DC1_INV-3_2022-05_NP	11-May-22			10.0	7.50	70	2.04
				LC_DC1_INV-5_2022-05_NP	11-May-22	10.0					
				LC_DC1_INV-1_2022-06_NP	21-Jun-22	10.0					
			LC_DC1	LC_DC1_INV-2_2022-06_NP LC_DC1_INV-3_2022-06_NP	21-Jun-22 21-Jun-22	8.70 7.00	7.84	8.70	4.50	10.0	2.16
				LC_DC1_INV-3_2022-06_NP LC_DC1_INV-4_2022-06_NP	21-Jun-22 21-Jun-22	9.00	1.04	0.70	4.50	10.0	2.10
				LC_DC1_INV-5_2022-06_NP	21-Jun-22	4.50			<u> </u>		<u> </u>
				LC_DC1_INV-1_2022-09-12_N	12-Sep-22	8.30					
				LC_DC1_INV-2_2022-09-12_N	12-Sep-22	7.20	8.34	8.30	7.20	9.60	0.850
				LC_DC1_INV-3_2022-09-12_N LC_DC1_INV-4_2022-09-12_N	12-Sep-22 12-Sep-22	8.30 8.30	0.34	0.30	1.20	9.00	U.00U
		ĺ	ĺ	LC DC1 INV-5 2022-09-12 N	12-Sep-22	9.60	1				

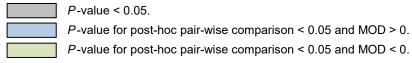
Notes: June sample at LC_FRUS were not collected due to high water levels. November samples for LC_DC1 and LC_DC2 samples were not collected due to ice conditions.

Table F.2: Selenium Concentrations in Benthic Invertebrate Composite-Taxa and Taxon-Specific Samples Collected from Dry Creek, Fording River, and Grace Creek, Dry Creek LAEMP, January to December 2022

							Seler	nium Conce	entration (m	g/kg dw)	
Water	rbody	Sample Type	Area	Sample Code	Sample Date	Sample Result	Area Mean	Area Median	Area Minimum	Area Maximum	Area Standard Deviation
				LC_FRUS_INV-1_2022-05_NP LC_FRUS_INV-2_2022-05_NP	11-May-22 11-May-22	9.20 7.10					
				LC_FRUS_INV-3_2022-05_NP	11-May-22	10.0	9.26	9.20	7.10	11.0	1.44
				LC_FRUS_INV-4_2022-05_NP	11-May-22	9.00					
				LC_FRUS_INV-5_2022-05_NP	11-May-22	11.0					
				LC_FRUS_INV-1_2022-09-10_N LC_FRUS_INV-2_2022-09-10_N	10-Sep-22 10-Sep-22	11.0 9.60					
			LC FRUS	LC_FRUS_INV-2_2022-09-10_N LC_FRUS_INV-3_2022-09-10_N	10-Sep-22 10-Sep-22	8.00	9.70	9.90	8.00	11.0	1.09
			_	LC_FRUS_INV-4_2022-09-10_N	10-Sep-22	10.0					
				LC_FRUS_INV-5_2022-09-10_N	10-Sep-22	9.90					
				LC_FRUS_INV-1_2022-11_N	29-Nov-22	7.60	_				
				LC_FRUS_INV-2_2022-11_N LC_FRUS_INV-3_2022-11_N	29-Nov-22 29-Nov-22	6.90 8.90	7.58	7.60	5.60	8.90	1.40
				LC FRUS INV-4 2022-11 N	29-Nov-22	8.90			0.00	0.00	
				LC_FRUS_INV-5_2022-11_N	29-Nov-22	5.60					
				LC_FRB_INV-1_2022-05_NP	11-May-22	9.69					
Fording	Mine-			LC_FRB_INV-2_2022-05_NP	11-May-22	9.40	0.06	0.00	7 70	0.60	0.786
River	Exposed			LC_FRB_INV-3_2022-05_NP LC_FRB_INV-4_2022-05_NP	11-May-22 11-May-22	8.50 9.00	8.86	9.00	7.70	9.69	0.786
				LC_FRB_INV-5_2022-05_NP	11-May-22	7.70					
				LC_FRB_INV-1_2022-06_NP	21-Jun-22	3.80					
				LC_FRB_INV-2_2022-06_NP	21-Jun-22	5.80	4.50	4.50			
				LC_FRB_INV-3_2022-06_NP	21-Jun-22	3.00 4.50	4.50	4.50	3.00	5.80	1.14
				LC_FRB_INV-4_2022-06_NP LC_FRB_INV-5_2022-06_NP	21-Jun-22 21-Jun-22	5.40					
			LC_FRB	LC FRB INV-1 2022-09-10 N	10-Sep-22	12.0					
				LC_FRB_INV-2_2022-09-10_N	10-Sep-22	11.0					
				LC_FRB_INV-3_2022-09-10_N	10-Sep-22	9.60	11.1	11.0	9.60	13.0	1.47
				LC_FRB_INV-4_2022-09-10_N	10-Sep-22	9.70					
				LC_FRB_INV-5_2022-09-10_N LC_FRB_INV-1_2022-11_N	10-Sep-22 29-Nov-22	13.0 11.0					
				LC_FRB_INV-1_2022-11_N LC_FRB_INV-2_2022-11_N	30-Nov-22	8.90					
				LC FRB INV-3 2022-11 N	01-Dec-22	10.0	9.42	9.30	7.90	11.0	1.16
				LC_FRB_INV-4_2022-11_N	02-Dec-22	9.30					
		Composite		LC_FRB_INV-5_2022-11_N	03-Dec-22	7.90					
				LC_DCEF_INV-1_2022-05_NP	10-May-22	6.00					
				LC_DCEF_INV-2_2022-05_NP LC_DCEF_INV-3_2022-05_NP	10-May-22 10-May-22	6.00 7.40	6.78	7.00	6.00	7.50	0.736
				LC DCEF INV-4 2022-05 NP	10-May-22	7.00	- 0.70	7.00	0.00	7.00	0.700
				LC_DCEF_INV-5_2022-05_NP	10-May-22	7.50					
				LC_DCEF_INV-1_2022-06_NP	20-Jun-22	2.30					
				LC_DCEF_INV-2_2022-06_NP	20-Jun-22	4.60					
				LC_DCEF_INV-3_2022-06_NP	20-Jun-22	6.80	4.58	4.60	2.30	6.80	1.69
Dry Creek				LC_DCEF_INV-4_2022-06_NP LC_DCEF_INV-5_2022-06_NP	20-Jun-22 20-Jun-22	3.80 5.40	_				
East	Reference		LC_DCEF	LC DCEF INV-1 2022-09-12 N	12-Sep-22	5.90					
Tributary				LC_DCEF_INV-2_2022-09-13_N	13-Sep-22	5.90					
				LC_DCEF_INV-3_2022-09-13_N	13-Sep-22	5.40	5.66	5.70	5.40	5.90	0.251
				LC_DCEF_INV-4_2022-09-13_N	13-Sep-22	5.40					
				LC_DCEF_INV-5_2022-09-13_N	13-Sep-22	5.70					
				LC_DCEF_INV-1_2022-11_N LC_DCEF_INV-2_2022-11_N	29-Nov-22 29-Nov-22	2.50 3.80					
				LC_DCEF_INV-3_2022-11_N	29-Nov-22	3.55	3.39	3.55	2.50	3.80	0.539
				LC_DCEF_INV-4_2022-11_N	29-Nov-22	3.80					
				LC_DCEF_INV-5_2022-11_N	29-Nov-22	3.30					
				LC_GRCK_INV-1_2022-05_NP	11-May-22	7.90	4				
				LC_GRCK_INV-2_2022-05_NP LC_GRCK_INV-3_2022-05_NP	11-May-22 11-May-22	7.90 6.80	6.84	6.80	5.60	7.90	1.06
				LC_GRCK_INV-3_2022-05_NP	11-May-22	6.00	0.04	0.00	0.00	7.50	1.00
				LC_GRCK_INV-5_2022-05_NP	11-May-22	5.60					
				LC_GRCK_INV-1_2022-06_NP	22-Jun-22	7.60					
				LC_GRCK_INV-2_2022-06_NP	22-Jun-22	6.40		0.0-	2.25		0.05:
				LC_GRCK_INV-3_2022-06_NP	22-Jun-22	6.20	6.94	6.80	6.20	7.70	0.684
				LC_GRCK_INV-4_2022-06_NP LC_GRCK_INV-5_2022-06_NP	22-Jun-22 22-Jun-22	7.70 6.80					
Grace	Mine-		10.055	LC GRCK COMPNOLI-1 2022-09-14 N	14-Sep-22	7.30					
Creek	Exposed		LC_GRCK	LC_GRCK_COMPNOLI-2_2022-09-14_N	14-Sep-22	7.80					
				LC_GRCK_INV-3_2022-09-14_N	14-Sep-22	4.80	7.18	7.30	4.80	8.70	1.45
				LC_GRCK_INV-4_2022-09-14_N	14-Sep-22	8.70					
				LC_GRCK_INV-5_2022-09-14_N	14-Sep-22	7.30					
		Oligochaeta		LC_GRCK_INVOLI-1_2022-09-14_N LC_GRCK_INVOLI-2_2022-09-14_N	14-Sep-22 14-Sep-22	6.60 3.60	5.10	5.10	3.60	6.60	2.12
				LC_GRCK_INV-1_2022-11_N	30-Nov-22	5.30					
				LC_GRCK_INV-2_2022-11_N	30-Nov-22	8.90					
		Composite		LC_GRCK_INV-3_2022-11_N	30-Nov-22	7.80	7.70	7.80	5.30	9.60	1.69
				LC_GRCK_INV-4_2022-11_N	30-Nov-22	9.60					
				LC_GRCK_INV-5_2022-11_N	30-Nov-22	6.90					

 $Notes: \ \, \text{June sample at LC_FRUS were not collected due to high water levels.} \ \, \text{November samples for LC_DC1 and LC_DC2} \ \, \text{samples were not collected due to ice conditions.} \\$

Table F.3: Selenium Species Bioaccumulation Tool^a Predicted Benthic Invertebrate Tissue Selenium Concentrations Compared to Measured Values, Dry Creek, 2022


		B-	tool Prediction ^a	Fie	ld Measurements
Waterbody	Area	Date	Predicted Benthic Invertebrate Tissue Selenium Concentration	Date	Mean Benthic Invertebrate Tissue Selenium Concentration
			μg/g dw		μg/g dw
Dry Creek East		3-May-22	10.2	10-May-22	6.78
Tributary	LC_DCEF	12-Sep-22	9.54	13-Sep-22	5.66
(Reference)		29-Nov-22	9.37	29-Nov-22	3.39
Grace Creek		11-May-22	5.43	11-May-22	6.84
(Reference)	LC_GRCK	14-Sep-22	5.50	14-Sep-22	7.18
(rtererenee)		30-Nov-22	5.60	30-Nov-22	7.70
		11-May-22	12.8	10-May-22	6.68
	LC DC3	21-Jun-22	10.2	20-Jun-22	5.96
	LO_DO3	13-Sep-22	12.4	13-Sep-22	9.16
		29-Nov-22	10.7	29-Nov-22	6.44
		11-May-22	12.6	10-May-22	10.2
	LC DCDS	21-Jun-22	10.4	20-Jun-22	6.40
		13-Sep-22	13.9	13-Sep-22	12.1
		29-Nov-22	11.2	30-Nov-22	12.2
Dry Creek		11-May-22	9.55	11-May-22	9.16
(Mine-Exposed)	LC DC4	21-Jun-22	9.15	21-Jun-22	5.16
	LO_DO4	13-Sep-22	8.22	12-Sep-22	8.52
		29-Nov-22	7.76	29-Nov-22	5.76
		11-May-22	10.8	10-May-22	11.8
	LC_DC2	21-Jun-22	9.08	21-Jun-22	5.86
		13-Sep-22	12.8	14-Sep-22	7.38
		12-May-22	8.53	11-May-22	10.6
	LC_DC1	21-Jun-22	9.11	21-Jun-22	7.84
		13-Sep-22	10.2	12-Sep-22	8.34
		11-May-22	7.25	11-May-22	9.26
E a Pa a Dia	LC_FRUS	10-Sep-22	8.08	10-Sep-22	9.70
Fording River (Mine-Exposed)		29-Nov-22	6.89	29-Nov-22	7.58
(IVIIIIe-Exposed)	LC EDD	10-Sep-22	7.71	10-Sep-22	11.1
	LC_FRB	30-Nov-22	6.99	29-Nov-22	9.42

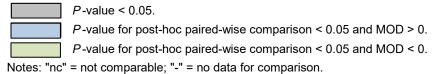
Note: LC_FRB had no May Se speciation samples and therefore could not be included. LC_DCEF, LC_GRCK, and LC_FRUS had no June Se speciation samples and therefore could not be include. LC_DC2 and LC_DC1 had no June Se speciation samples and therefore could not be include.

^a Values derived from de Bruyn and Luoma (2021) using selenium speciation data and sulphate concentrations for each area on each date to predict benthic invertebrate tissue selenium concentrations. Five days range was used to match dates between selenium speciation and sulphate data.

Table F.4: Spatial and Temporal Comparisons of Benthic Invertebrate Tissue Selenium Concentration Among Months, Dry Creek Sampling Areas, 2022

	ANOVA N	Model ^a		٨	rea	Month	Do concentra	tions differ ame each areas? ^b	ong months for			ween reference (within months?	
Transformation	Area	Month	Month x Area	Α'	Ca	Wonth	May	June	September	May	June	September	November
						May	nc	nc	nc				
				Reference	LC-DCEF	June	ns	nc	nc	no	no	no	no
				Reference	LC-DCEF	September	ns	ns	nc	nc	nc	nc	nc
						November	-50	ns	ns				
						May	nc	nc	nc				
					LC_DC3	June	ns	nc	nc	ne	ne	62	90
					LC_DC3	September	ns	54	nc	- ns	ns	02	90
						November	ns	ns	-30				
						May	nc	nc	nc				
					LC_DCDS	June	-37	nc	nc	50	ns	113	260
						September	ns	88	nc	30	113	113	200
none	<0.001	<0.001	<0.001			November	ns	91	ns				
Hone	40.001	40.001	10.001			May	nc	nc	nc				
				Exposed	LC_DC2	June	-50	nc	nc	- 74	ns	ns	_
				Ехрозец	20_502	September	-38	ns	nc	- 7-7	110	110	
						November	nc	nc	nc				
						May	nc	nc	nc	_			
					LC_DC4	June	-44	nc	nc	ns	ns	ns	ns
					20_201	September	ns	62	nc		110		110
						November	-37	ns	-31				
						May	nc	nc	nc				
					LC_DC1	June	-26	nc	nc	56	71	ns	_
						September	ns	ns	nc	- 30			
						November	nc	nc	nc				

Notes: "nc" = not comparable; "-" = no data for comparison.

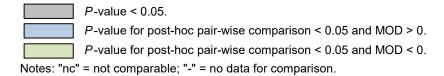

^a *P*-values from Analysis of Variance (ANOVA) including the terms Area, Month and Area x Month.

^b Magnitude of Difference (MOD) was calculated as (MCT_{month2} - MCT_{month1})/MCT_{month1} *100 using the measure of central tendency (MCT; mean).

^c Magnitude of Difference (MOD) was calculated as (MCT_{exp} - MCT_{ref})/MCT_{ref} *100 using the measure of central tendency (MCT; mean).

Table F.5: Spatial and Temporal Comparisons of Benthic Invertebrate Tissue Selenium Concentration Among Months, Fording River Sampling Areas, 2022

	ANOVA	Model ^a		Month			ns differ among each areas? ^b	Do cond	and e	ns differ betwe exposed areas RUS vs LC_FF	? ^c
Transformation	Area	Month	Month x Area		May	June	September	Мау	June	September	November
				May	nc	nc	nc		·	l	
log10	0.090	<0.001	0.215	June	-54	nc	nc]		ne	
10910	0.090	\0.001	0.215	September	ns	148	nc			ns	
				November	ns	101	-19				


^a *P*-values from Analysis of Variance (ANOVA) including the terms Station, Month and Station x Month.

^b Magnitude of Difference (MOD) was calculated as (MCT_{month2} - MCT_{month1})/MCT_{month1} *100 using the measure of central tendency (MCT; geometric mean due to log₁₀ transformation).

^c Magnitude of Difference (MOD) was calculated as (MCT_{LC_FRB} - MCT_{LC_FRUS})/MCT_{LC_FRUS}*100 using the measure of central tendency (geometric mean due to log10 transformation).

Table F.6: Spatial and Temporal Comparisons of Benthic Invertebrate Tissue Selenium Concentration Among Years, Dry Creek Sampling Areas, 2020 to 2022

	ANOVA Model ^a			Δr	·02	Year	Do concentrations differ among years for each areas? ^b		Do concentrations differ between reference (LC_DCEF) and exposed areas within years? ^c		
Transformation	Area	Year	Year x Area	Area		rear	2020	2021	2020	2021	2022
						2020	nc	nc			
				Reference	LC-DCEF	2021	ns	nc	nc	nc	nc
						2022	ns	ns			
						2020	nc	nc			
					LC_DC3	2021	33	nc	ns	73	61
						2022	ns	ns			
						2020	nc	nc			
					LC_DCDS	2021	-46	nc	290	108	108
log10	<0.001	<0.001	<0.001			2022	-46	ns			
						2020	nc	nc			
				Exposed	LC_DC2	2021	-53	nc	134	ns	ns
						2022	-44	ns			
						2020	nc	nc			
					LC_DC4	2021	ns	nc	59	ns	50
						2022	ns	ns			
					10.004	2020	nc	nc	00	70	47
					LC_DC1	2021	ns	nc	90	78 4	47
						2022	ns	ns			

 $^{^{\}mathrm{a}}$ *P*-values from Analysis of Variance (ANOVA) including the terms Area, Year and Area x Year.

^b Magnitude of Difference (MOD) was calculated as (MCT_{year2} - MCT_{year1})/MCT_{year1} *100 using the measure of central tendency (MCT; mean).

^c Magnitude of Difference (MOD) was calculated as (MCT_{exp} - MCT_{ref})/MCT_{ref} *100 using the measure of central tendency (MCT; mean).

Table F.7: Spatial and Temporal Comparisons of Benthic Invertebrate Tissue Selenium Concentration Among Years, Fording River Sampling Areas, 2020 to 2022

	ANOVA Model ^a				Do conce differ amo for each	ong years					
Transformation	Area	Year	Year x Area		2020	2021	2020	2021	2022		
				2020	nc	nc					
log10	0.391	0.123	0.133	2021	ns	nc	ns				
				2022	ns	ns					

P-value < 0.05.

P-value for post-hoc paired-wise comparison < 0.05 and MOD > 0.

P-value for post-hoc paired-wise comparison < 0.05 and MOD < 0.

Notes: "nc" = not comparable; "ns" = not significante; "-" = no data for comparison.

^a *P*-values from Analysis of Variance (ANOVA) including the terms Area, Year and Area x Year.

^b Magnitude of Difference (MOD) was calculated as (MCT_{year2} - MCT_{year1})/MCT_{year1} *100 using the measure of central tendency (MCT; geometric mean due to log₁₀ transformation).

^c Magnitude of Difference (MOD) was calculated as (MCT_{LC_FRB} - MCT_{LC_FRUS})/MCT_{LC_FRUS}*100 using the measure of central tendency (geometric mean due to log10 transformation).

APPENDIX G FISH HABITAT

Table G.1: Monthly Mean Dissolved Oxygen Concentrations (mg/L) in Dry Creek, 2012 to 2022

Year	Month	LC_DCEF	LC_SPDC	LC_DCDS	LC_DC2	LC_DC4	LC_DC1
	January	11.9	-	-	-	-	13.8
	February	-	-	-	-	-	-
	March	12.5	-	-	-	-	-
	April	13.8	-	-	-	-	16.6
	May	11.7	-	-	12.1	-	12.4
2012	June July	11.8 10.7	-	-	11.4 10.1	-	11.8 10.4
	August	10.7	-	-	9.8	-	9.5
	September	10.0	-	-	10.0	-	10.6
	October	10.7	_	_	11.3	_	11.8
	November	9.9	_	-	11.4	-	11.3
	December	10.2	-	-	-	-	12.2
	January	11.2	-	-	-	-	11.4
	February	10.6	-	-	-	-	-
	March	11.2	-	-	-	-	-
	April	10.7	-	-	11.8	-	11.8
	May	12.7	-	-	12.8	-	13.3
2013	June	10.8	-	-	10.6	-	10.9
	July	10.9	-	-	10.1	-	10.2
	August September	10.4 9.9	-	-	9.8 9.5	-	9.9
	October	9.9	-	-	9.5	-	10.3
	November	10.0		11.9	11.3	-	11.6
	December	10.8	-	12.0	-	-	12.2
	January	9.6	-	11.2	-	-	-
	February	10.5	-	-	-	-	-
	March	8.2	-	12.2	-	-	12.4
	April	8.7	-	11.5	-	-	11.2
	May	12.4	-	12.7	-	-	12.9
2014	June	11.3	-	10.8	-	-	10.8
2011	July	9.6	-	10.5	-	-	10.2
	August	10.8	-	10.1	-	-	10.1
	September	11.5	-	12.1	-	-	11.9
	October November	10.1 9.8	12.6	10.8 11.4	-	-	10.9 11.5
	December	1.6	7.0	5.9	-	-	-
	January	11.3	-	12.1	-	-	-
	February	10.0	11.0	-	_	-	_
	March	9.4	11.8	11.7	-	-	13.2
	April	12.5	12.2	12.3	-	-	12.3
	May	10.7	10.9	10.6	-	-	11.4
2015	June	11.2	9.9	9.7	-	-	10.3
2010	July	11.6	8.5	9.0	-	-	10.0
	August	10.1	7.3	8.4	-	-	9.7
	September	10.6	9.9	9.9	-	-	10.7
	October	10.4	9.7	10.4	-	-	10.4
	November December	10.5 10.2	10.8 11.7	11.0 11.5	-	-	12.0 11.6
	January	9.9	11.7	11.5	-	-	11.1
	February	10.1	10.7	9.3	-	-	8.2
	March	13.0	12.6	12.9	-	-	12.4
	April	12.3	11.3	11.2	-	-	11.4
	May	11.9	10.8	11.0	-	-	11.3
2016	June	11.1	9.4	9.6	-	-	10.8
2010	July	11.1	8.6	9.3	-	-	10.5
	August	10.2	7.5	7.9	-	-	10.1
	September	10.9	8.7	8.7	-	-	10.5
	October	9.5	9.8	10.2	-	-	11.0
	November December	10.0 11.6	11.2 10.3	10.8 11.9	-	-	11.0 13.1
	January	11.0	10.3	12.3	-	-	12.4
	February	11.1	13.6	12.6	-	-	12.4
	March	11.3	10.4	10.5	-	-	11.5
	April	12.6	12.3	12.4	-	-	11.9
	May	11.6	11.4	11.4	-	-	11.4
2047	June	10.4	11.4	10.1	-	-	10.3
2017	July	8.9	8.2	8.1	-	-	9.8
	August	10.5	7.9	8.5	-	-	10.1
	September	10.5	9.1	9.8	-	-	12.0
	October	10.0	10.7	10.8	-	-	11.7
	November	10.1	12.2	12.3	-	-	12.0
	December	10.5	10.9	11.4	-	-	12.2

Less than 30-day water column mean criterion of 11 mg/L for buried embryo/alevin life stages (guideline was applied for all months except April, see notes for details).

Notes: "-" = no data/not recorded. Spawning, incubation, and alevin stages for westslope cutthroat trout were included in the application of buried embryo/alevin guideline values, and were applicable to at least some portion of each month except April. The timing of life history stages for this species is approximated from COSEWIC (2016), McPhail and Baxter (1996), and McPhail (2007).

Table G.1: Monthly Mean Dissolved Oxygen Concentrations (mg/L) in Dry Creek, 2012 to 2022

Year	Month	LC_DCEF	LC_SPDC	LC_DCDS	LC_DC2	LC_DC4	LC_DC1
	January	10.1	10.0	9.8	-	-	9.7
	February	10.6	11.5	11.6	-	-	11.8
	March	10.3	11.6	11.6	-	-	11.6
	April	11.4	12.3	12.1	-	-	12.2
	May	11.9	10.2	11.2	-	-	11.4
2018	June	10.5	9.2	9.5	-	-	10.4
2010	July	11.6	9.1	9.4	-	-	11.0
	August	10.4	8.6	8.9	-	-	10.6
	September	10.4	9.3	9.3	-	-	10.8
	October	10.9	11.4	11.4	-	-	11.9
	November	10.3	11.3	11.6	11.8	11.0	11.7
	December	10.5	12.1	12.1	-	11.2	12.6
	January	10.4	10.5	12.8	7.5	11.4	12.1
	February	11.7	10.9	12.0	8.0	11.4	13.2
	March	14.3	14.3	17.5	16.1	15.5	15.9
	April	11.3	11.7	11.9	11.9	11.7	11.9
	May	10.2	10.5	11.4	10.9	11.1	11.0
2019	June	11.1	10.1	10.5	10.7	10.8	10.7
2019	July	10.3	9.4	9.7	10.2	10.2	10.3
	August	10.4	8.9	9.0	9.6	10.5	10.6
	September	10.5	9.3	9.4	10.0	10.4	11.0
	October	10.5	11.2	11.3	11.3	11.3	11.9
	November	10.5	11.8	11.7	11.6	11.3	12.3
	December	10.9	13.1	12.7	13.3	12.4	13.2
	January	10.8	11.7	11.8	11.9	11.7	12.1
	February	11.1	11.8	12.2	-	-	12.3
	March	11.1	12.0	12.1	12.1	11.5	12.1
	April	10.7	11.8	11.9	11.7	11.6	11.7
	May	11.9	11.1	10.9	11.8	11.3	11.3
2020	June	11.1	10.4	10.4	11.0	10.8	10.7
2020	July	10.7	10.1	10.4	10.5	10.8	10.7
	August	10.5	9.1	9.0	9.2	9.8	10.1
	September	10.1	10.7	10.8	10.3	10.6	11.0
	October	10.6	11.5	11.6	11.6	11.2	11.8
	November	10.5	12.3	11.9	11.9	11.2	11.8
	December	10.9	12.1	12.1	12.0	11.4	12.0
	January	10.8	12.0	12.1	11.8	11.5	12.2
	February	10.7	11.9	12.4	12.0	11.5	12.0
	March	11.1	11.3	11.4	11.2	10.6	11.3
	April	10.3	11.3	11.8	11.7	11.6	11.6
	May	10.6	10.7	10.9	11.2	11.0	11.0
0004	June	10.3	9.8	9.8	9.7	10.0	9.8
2021	July	10.0	9.2	9.2	9.4	9.9	9.8
	August	10.2	9.8	9.9	10.0	10.1	10.2
	September	10.3	10.6	10.8	10.8	10.6	10.8
	October	10.6	11.2	11.4	11.6	11.1	11.4
	November	10.8	11.7	11.7	11.9	11.3	11.8
	December	10.6	11.5	11.6	11.5	11.3	11.8
	January	10.5	11.7	11.8	11.7	12.0	11.6
	February	11.1	12.0	11.9	12.1	11.7	12.0
	March	11.0	12.0	12.0	12.0	11.7	12.0
	April	11.8	12.1	12.1	12.0	12.2	12.1
	May	10.5	11.0	10.7	11.1	11.0	11.2
_	June	11.2	10.9	10.9	11.0	10.9	11.0
2022	July	10.9	9.9	9.9	10.2	10.2	10.2
	August	10.4	10.2	10.1	10.3	10.3	10.4
	September	10.6	10.5	10.6	10.6	10.7	10.4
	October	10.6	11.1	11.1	11.1	10.7	11.2
	November	11.4	12.0	12.2	12.3	12.0	12.4
	December	11.4	12.3	12.2	12.5	12.0	12.4
	December	11.1	12.3	12.2	12.0	IZ.U	12.1

Less than 30-day water column mean criterion of 11 mg/L for buried embryo/alevin life stages (guideline was applied for all months except April, see notes for details).

Notes: "-" = no data/not recorded. Spawning, incubation, and alevin stages for westslope cutthroat trout were included in the application of buried embryo/alevin guideline values, and were applicable to at least some portion of each month except April. The timing of life history stages for this species is approximated from COSEWIC (2016), McPhail and Baxter (1996), and McPhail (2007).

APPENDIX H BIOTRIGGERS

BIOLOGICAL TRIGGERS APPENDIX H

H1.	INTRODUCTION	1
H1.1	Background	1
H2.1	METHODS Overview Percent EPT	3
	Benthic Invertebrate Tissue Selenium (BIT Se)	
H3.1	Percent EPT	6
H4.	SUMMARY	7
H5.	REFERENCES	8

H1 INTRODUCTION

H1.1 Background

Biological triggers were developed and implemented to assist with identifying and communicating unexpected and potentially important changes in aquatic ecosystem conditions and are required as part of Teck's Adaptive Management Plan (AMP; Teck 2018). Biological triggers were developed in consultation with the Environmental Monitoring Committee (EMC) for a subset of the biological monitoring endpoints that are effective indicators of changes at the ecosystem level. The purpose of the biological triggers is to quickly identify biological monitoring areas where unexpected biological conditions may be occurring that may require management action. Additionally, information provided from the analysis of biological triggers may lead to responses under the AMP response framework.

Draft biological triggers were developed in the 2018 AMP (Teck 2018) under Management Question 5, with these initially reported on in 2021 in the 2020 Local Aquatic Effects Monitoring Program (LAEMP) reports and Regional Aquatic Effects Monitoring Program (RAEMP) data package, and summarized in the 2020 Annual AMP Report (Teck 2021a). When the 2018 AMP was approved, there was an expectation that the 2018 AMP draft/interim biological triggers would be finalized, through engagement with the EMC, prior to December 15, 2021 AMP Update. The biological triggers were finalized in 2021 (Teck 2021b) and the methods applied in this report reflect the finalized biological triggers (Teck 2021b). It is important to note that the process and/or biological triggers may adjust over time as the purpose of the biological triggers is to be reflective of not only changes in the Elk Valley, but also the current state of knowledge in the area.

The finalized biological triggers (Teck 2021b) include three measurement endpoints:

- Percent EPT (% EPT; Ephemeroptera, Plecoptera, and Trichoptera) based on travelling kick samples (Canadian Aquatic Biomonitoring Network (CABIN) protocol.
- Benthic invertebrate tissue selenium (BIT Se) generally several replicates collected per location per sampling event, where each replicate is a composite sample of invertebrates (i.e. composite-taxa sample).
- Westslope cutthroat trout muscle tissue selenium (WCT Se) generally eight samples collected per location per sampling event, where each sample is taken from a single fish.

Evaluation of these three biological trigger endpoints is complementary to the fulsome evaluation of biological endpoints that is integrated into the LAEMP and the RAEMP data

evaluations. The fulsome evaluation of biological endpoints is used to support answering the specific LAEMP and RAEMP study questions through the consideration of not only the endpoints used in the biological trigger evaluation, but also a full suite of additional biological, chemical, and physical endpoints. Biological triggers do not provide information on cause and effect, report on trends, or feed directly into decision-making processes. Instead, the biological triggers act to flag areas for further evaluation, which would then take place under existing monitoring programs, through the development of supporting studies or through the response framework, as necessary.

Biological monitoring data are compared to triggers annually, and summaries of the LAEMP and RAEMP trigger evaluations and responses are summarized within annual AMP reports.

H2 METHODS

H2.1 Overview

As outlined in Section H1.1, analyses for biological triggers are meant to be complementary to other analyses conducted in the LAEMPs and RAEMP. For the 2022 LCO Dry Creek LAEMP, biological trigger analyses only included two of the three measurement endpoints (%EPT and BIT Se).

For the purpose of application of the biological triggers, expectations for the endpoints evaluated (%EPT and BIT Se) were based on projected water quality, not on measured water quality. Thus, the triggers should detect biological results that were unexpected, regardless of whether those results were due to unexpected water quality or due to unexpected relationships between water quality and biological endpoints. Biological triggers were therefore only applied at locations where water quality projections were available, which for this study were mine-exposed areas LC_DCDS and LC_DC1. Although data for other areas studied under the LCO Dry Creek LAEMP (i.e., LC_DCEF, LC_DC3, LC_DC2, LC_DC4, LC_FRUS, LC_FRB, and LC_GRCK) were not evaluated relative to biological triggers, they were assessed as part of the main LCO Dry Creek LAEMP report.

Detailed methods associated with the evaluation of data associated with each of the applicable biological triggers are provided below.

H2.2 Percent EPT

Data for percent EPT were compared to:

- Normal range: The lower limit of the habitat-adjusted normal range (2.5th percentile). Up-to-date limits for normal ranges¹ are provided in the RAEMP and LAEMPs, where they are recalculated when new data become available (Teck 2019). The derivation of habitat-adjusted normal ranges is described in Appendix J of the 2020 RAEMP, and was based on consideration of more than 30 habitat, (geographic information system) GIS, and land cover variables (Minnow 2020).
- Expectations: The lower limit of the range of %EPT corresponds to the predicted Aquatic Data Integration Tool (ADIT) score. The predicted ADIT scores correspond to potential effects on benthic invertebrate community (BIC) endpoints, based on relationships between water quality projections (for nitrate, sulphate and cadmium)²

² Selenium was not included because selenium effects on BIC endpoints are not expected. Projections were based on the highest maximum monthly mean across all flow scenarios (low, average, and high).

¹ The normal range will be updated as part of the three-year reporting cycle of the RAEMP (Minnow 2021).

and invertebrate toxicity endpoints originally developed for the Elk Valley Water Quality Plan (EVWQP: Teck 2014; Golder 2020a). A predicted ADIT score of 3 corresponds to 50% or greater effects to reproduction of the water flea Ceriodaphnia dubia. 2 corresponds to effects in 20 to 50% of organisms, 1 corresponds to effects in 10 to 20% of organisms, and 0 corresponds to effects in 10% or fewer organisms. Once %EPT is actually measured, the measured results are converted to an ADIT score in relation to the habitat adjusted normal range as follows: an ADIT score of 0 corresponds to expected %EPT ≥ the 10th percentile of the habitat-adjusted normal range; an ADIT score of 1 corresponds to expected %EPT between the 10th percentile and the 2.5th percentile of the habitat-adjusted normal range (and is therefore identical in application to the lower limit of normal range); an ADIT score of 2 corresponds to expected %EPT between the 2.5th percentile and half of the 2.5th percentile of the habitat-adjusted normal range; and finally, an ADIT score of 3 corresponds to expected %EPT ≤ half of the 2.5th percentile and ≥ 0. Individual replicate habitat-adjusted normal ranges were used at each location for establishing the %EPT limits associated with each ADIT score (replicates were evaluated individually). In summary, this component of the biological trigger for %EPT asks whether the ADIT score - calculated based on measured %EPT relative to normal ranges – is greater than the ADIT score that was predicted based on water quality projections.

Benthic invertebrate community data for %EPT collected in the fall (September) for the 2022 LCO Dry Creek LAEMP were included in the biological trigger analysis.

H2.3 Benthic Invertebrate Tissue Selenium (BIT Se)

Data for BIT Se were compared to:

- Normal range: The upper limit of the regional normal range (97.5th percentile) for individual replicates. Up-to-date limits of normal ranges³ are provided in the RAEMP and LAEMPs, where they are recalculated when new data become available (Teck 2019).
- Expectations: The upper limit of the 95% prediction interval based on the water to BIT Se bioaccumulation model for lotic environments. The model originally developed in the EVWQP (Golder 2014) was updated (Golder 2020b) and the updated data set was used to calculate prediction intervals for individual replicates. Methods for estimating the upper limit of the 95% prediction for BIT Se (given any projected value of aqueous selenium) are discussed further in the Biological Trigger Development for the Elk Valley Adaptive Management Plan (Azimuth 2021).

³ The normal range will be updated as part of the three-year reporting cycle of the RAEMP (Minnow 2021).

Benthic invertebrate tissue selenium data from sampling events completed throughout 2022 for the LCO Dry Creek LAEMP (May, June, September, November) were included in the biological trigger analysis although normal range information is based on fall (September) information.

Although EVWQP effects benchmarks are not part of the trigger, they are relevant for interpreting potential significance and responses. Consequently, the level 1, 2 and 3 EVWQP benchmarks for the most sensitive receptor (juvenile fish via dietary exposure) are included in benthic invertebrate tissue plots (11, 18 and 26 mg/kg respectively).

H3 RESULTS

H3.1 Percent EPT

Individual replicates for the %EPT endpoint for both mine-exposed areas (LC_DCDS and LC_DC1) evaluated in the LCO Dry Creek LAEMP were assessed against their respective biological trigger values for the September sampling period (Table H.1, Figure H.1). Each replicate evaluated from LC_DCDS (n=5) and LC_DC1 (n=3) was below the biological trigger values (Table H.1, Figure H.1).

H3.2 Benthic Invertebrate Tissue Selenium (BIT Se)

Benthic invertebrate tissue selenium concentrations at LC_DCDS and LC_DC1 were assessed against their respective biological triggers for individual replicates from each of the sampling events, (May, June, September, and November [only LC_DCDS]; Table H.2, Figure H.2). two replicates in May at LC_DC1 exceeded the biological trigger for BIT Se. Of the 20 samples evaluated in 2022 at LC_DCDS, three exceeded the biological trigger (12.1 mg/kg dw) with BIT Se concentrations of 15 mg/kg dw (two replicates in September and one in November). Of the 15 samples evaluated in 2022 at LC_DC1, two exceeded the biological trigger (12.0 mg/kg dw) in May, with BIT Se concentrations ranging from 12 to 14 mg/kg dw (Table H.2, Figure H.2).

H4 SUMMARY

All the benthic invertebrate community samples from LC_DC1 and LC_DCDS were below the biological trigger values for %EPT. Previously, all %EPT samples were above the biological trigger value (2021 Dry Creek LAEMP; Minnow 2022); the Dry Creek LAEMP will continue monitoring at these sites, with the support of the results of this biological triggers analysis. Efforts to resolve uncertainty around the combined and individual effects of water quality, habitat, and other mine-related stressors on benthic invertebrate communities in lotic areas in the Elk River watershed are underway as Minnow is developing a predictive model for benthic invertebrate community endpoints. Uncertainties are expected to be reduced through these efforts, and additional monitoring or potential management responses will continue to be assessed through the adaptive management process.

Two replicates in September and one replicate in November at LC_DCDS and two replicates from May from LC_DC1 exceeded the biological trigger for benthic invertebrate tissue selenium concentrations. The higher frequency and magnitude of exceedances at LC_DCDS are likely related to its proximity to the DCWMS discharge, while further downstream at LC_DC1 benthic invertebrate tissue selenium concentrations exceeded the biological trigger values slightly less frequently and at a lower magnitude. The biological trigger exceedance for benthic invertebrate tissue selenium concentrations at these areas is likely the result of enhanced selenium bioaccumulation due to the generation of more bioavailable organoselenium in the DCWMS sedimentation ponds (see main report). Mitigation steps were implemented in 2022 to address the elevated benthic invertebrate tissue selenium concentrations observed in the LCO Dry Creek LAEMP. These measures appear to have helped reduce the overall number of biological trigger exceedances in both of these areas in 2022 compared to 2021 (Minnow 2022). Overall, current biological triggers were sufficient to identify monitoring areas where biological responses are occurring, and no additional triggers are recommended at this time.

H5 REFERENCES

- Azimuth (Azimuth Consulting Group Inc). 2021. Development of biological triggers for the Elk Valley Adaptive Management Plan.
- Golder (Golder Associates). 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited. July.
- Golder. 2020a. User's Manual Aquatic Data Integration Tool (ADIT) for the Elk Valley. Prepared for Teck Coal Ltd. 15 September 2020.
- Golder. 2020b. Updates to the lotic and lentic statistical bioaccumulation models for selenium in the Elk Valley. Technical memorandum to Teck Coal Limited. 27 November 2020.
- Minnow (Minnow Environmental Inc). 2020. Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2017 to 2019. Prepared for Teck Coal Limited, Sparwood, BC. November. Project 187202.0011.
- Minnow. 2021. Study Design for the Regional Aquatic Effects Monitoring Program, 2021 to 2023. Prepared for Teck Coal Limited, Sparwood, BC. March. Project 207202.0006.
- Minnow. 2022. Line Creek Operation's Local Aquatic Effects Monitoring Program (LAEMP) Report for Dry Creek, 2021. Prepared for Teck Coal Ltd., Sparwood, BC. Project #217202.0035. May 2022
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2018. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley. December 21, 2018.
- Teck. 2019. Elk Valley Water Quality Plan 2019 Implementation Plan Adjustment. July 2019.
- Teck. 2021a. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2021 Update. Prepared by Teck Coal Limited. December 15, 2021.
- Teck. 2021b. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2020 Annual Report. Prepared by Teck Coal Limited. July 31, 2021.

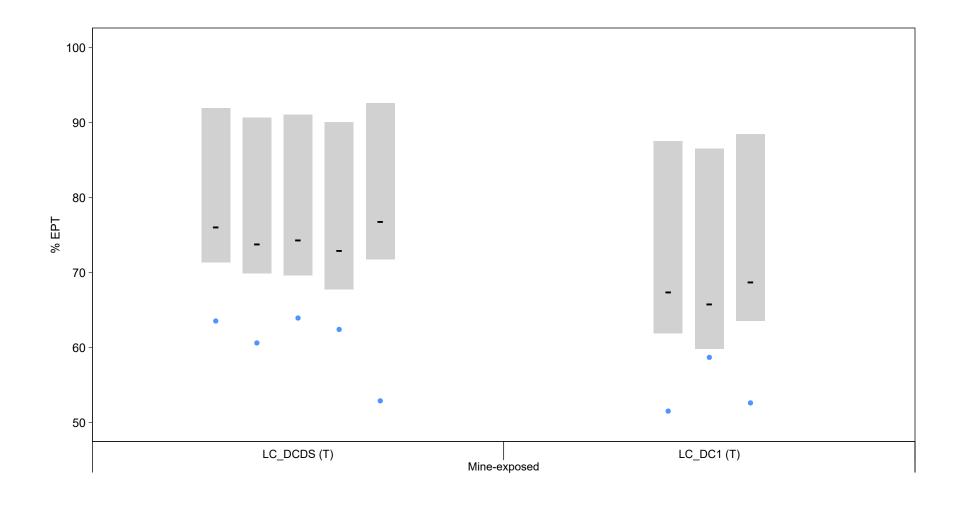


Figure H.1: Biological Trigger Analysis for % EPT Compared to Predicted Values, Dry Creek LAEMP, September 2022

Notes: Black bars indicate the lower limit of the predicted ADIT score for the location. Blue dots represent values exceeding the trigger (below 2.5th percentile of NR and below lower limit of predicted ADIT score). Gray shading represents the habitat-adjusted normal range for each replicate. T = Tributary, M = Mainstem.

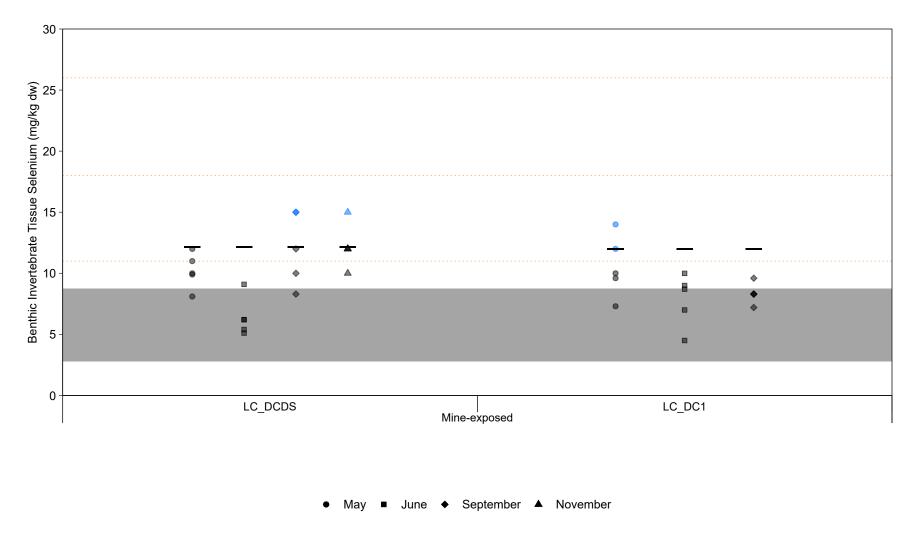


Figure H.2: Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples Compared to Predicted Values, Dry Creek LAEMP, 2022

Notes: Black bars indicate the upper 95th prediction interval of the bioaccumulation model. Blue dots represent values exceeding the trigger (above the 97.5th percentile of normal range and above upper 95% prediction interval). Dotted lines indicate EVWQP benchmarks (11, 18, and 26 mg/kg respectively) for juvenile fish. Gray shading represents the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) reported in the RAEMP. Samples were not collected from LC_DC1 in November due to ice conditions.

Table H.1: Biological Trigger Analysis for %EPT in Dry Creek, September 2022

Waterbody	Exposure	Туре	Area	Replicate	Reported Value	ADIT Value	Lower 2.5th Percentile of the Habitat Adjusted Normal Range
				1	63.5	76.0	71.4
				2	60.6	73.8	69.9
			LC_DCDS	3	64.0	74.3	69.6
Dry Crook	Mine-	Т		4	62.4	72.9	67.8
Dry Creek	exposed	I		5	52.9	76.8	71.8
				1	51.5	67.4	61.9
			LC_DC1	2	58.7	65.8	59.8
				3	52.6	68.7	63.5

Shaded cells signify those individual replicates that were associated with a biological trigger (i.e. lower than both the ADIT value [as based on predicted water quality] and the lower 2.5th percentile of habitat-adjusted normal range).

Note: T = Tributary.

Table H.2: Biological Trigger Analysis for Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples in Dry Creek, May to November 2022

						Benthic In	vertebrate Selenii	um Tissue
Wate	rbody	Stream Type	Area	Date	Predicted Selenium Water Concentration (mg/L)	Upper 95% Prediction Limit (mg/kg dw)	Upper 97.5th Percentile of Normal Range (mg/kg dw)	Reported Concentration (mg/kg dw)
					7.03	12.1	8.74	11.0
					7.03	12.1	Percentile of Normal Range (mg/kg dw)	12.0
				10-May-22	7.03	12.1	8.74	9.90
					7.03	12.1	8.74	10.0
					7.03	12.1	8.74	8.10
					7.03	12.1	8.74	Reported Concentration (mg/kg dw) 11.0 12.0 9.90 10.0 8.10 5.40 6.20 5.10 9.10 6.20 15.0 10.0 12.0 8.30 15.0 12.0 12.0 12.0 12.0 12.0 12.0 10.0 12.0 12
					7.03	12.1	8.74 5.10 8.74 9.10 8.74 6.20 8.74 15.0 8.74 10.0 8.74 12.0	6.20
				20-Jun-22	7.03	12.1	8.74	5.10
					7.03	12.1	8.74	9.10
			LC_DCDS		7.03	12.1	8.74	6.20
					7.03	12.1	8.74	15.0
					7.03	12.1	8.74	10.0
				13-Sep-22	7.03	12.1	2.1 8.74 5.10 2.1 8.74 9.10 2.1 8.74 6.20 2.1 8.74 15.0 2.1 8.74 10.0 2.1 8.74 12.0 2.1 8.74 8.30 2.1 8.74 15.0 2.1 8.74 15.0 2.1 8.74 12.0 2.1 8.74 12.0 2.1 8.74 10.0 2.1 8.74 10.0 2.1 8.74 12.0	
					7.03	12.1		
					7.03	12.1	8.74	15.0
					7.03	12.1	8.74	15.0
	N. Albara				7.03	12.1	8.74	12.0
Dry Creek	Mine- Exposed	Т		30-Nov-22	7.03	12.1	8.74	12.0
	Lxposed				7.03	12.1	8.74	Reported Concentration (mg/kg dw) 8.74
					7.03	12.1	8.74	
					5.86	12.0	8.74	
					5.86	12.0	8.74	14.0
				11-May-22	5.86	12.0	8.74	12.0
					5.86	12.0	8.74	Concentration (mg/kg dw) 11.0 12.0 9.90 10.0 8.10 5.40 6.20 5.10 9.10 6.20 15.0 10.0 12.0 8.30 15.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 10.0 12.0 7.30 14.0 12.0 9.60 10.0 10.0 8.70 7.00 9.00 4.50 8.30 7.20 8.30 8
					5.86	12.0	8.74	10.0
					5.86	12.0	8.74	(mg/kg dw) 11.0 12.0 9.90 10.0 8.10 5.40 6.20 5.10 9.10 6.20 15.0 10.0 12.0 8.30 15.0 12.0 12.0 12.0 12.0 10.0 12.0 7.30 14.0 12.0 9.60 10.0 10.0 8.70 7.00 9.00 4.50 8.30 7.20 8.30 8.30
					5.86	12.0	8.74	8.70
			LC_DC1	21-Jun-22	5.86	12.0	8.74	7.00
					5.86	12.0	8.74	9.00
					5.86	12.0	8.74	4.50
					5.86	12.0	8.74	8.30
					5.86	12.0	8.74	7.20
				12-Sep-22	5.86	12.0	8.74	8.30
					5.86	12.0	8.74	8.30
					5.86	12.0	8.74	9.60

Shaded cells signify those individual replicates that were associated with a biological trigger (i.e. higher than both the upper 95% prediction limit [as based on predicted water quality] and the upper 97.5th percentile of normal range).

Note: T = Tributary. Samples were not collected from LC_DC1 in November due to ice conditions.

APPENDIX I SUPPORTING INFORMATION

Table I.1: Visual Periphyton Coverage Scores from Dry Creek, Fording River, and Grace Creek, 2022

		Dielogical				Station											
Aı	rea	Biological Area Code	Date	1	2	3	4	5	Mean	Standard Deviation							
Reference	Dry Creek	LC_DCEF	13-Sep-22	3	3	3	-	-	3	0							
		LC_DC3	13-Sep-22	2	2	2	-	-	2	0							
		LC DCDS	10-May-22	2	2	2	2	2	2	0							
	Dry Crook	LC_DCD3	13-Sep-22	2	2	2	2	2	2	0							
	Dry Creek	LC_DC4	12-Sep-02	3	3	3	-	-	3	0 0 0 0 0 0 0							
Mine-exposed									LC_DC2	14-Sep-22	3	3	3	-	-	3	0
		LC_DC1	12-Sep-22	3	3	3	-	-	3	0							
	Fording Divor	LC_FRUS	10-Sep-22	2	2	2	-	-	2	0							
	Fording River	LC_FRB	10-Sep-22	2	2	2	-	-	2	0							
	Grace Creek	LC_GRCK	14-Sep-22	2	2	2	-	-	2	0							

Note: "-" indicates data not collected.

Periphyton Coverage Scores (Environment Canada, 2012):

- 1 = Rocks not slippery, no obvious colour (<0.5mm thick)
- 2 = Rocks slightly slippery, yellow-brown to light green colour (0.5-1mm thick)
- 3 = Rocks have noticeable slippery feel, patches of thicker green to brown algae (1-5mm thick)
- 4 = Rocks are very slippery, numerous clumps (5-20mm thick)
- 5 = Rocks mostly obscured by algae mat, may have long strands (>20mm thick)

Table I.2: Supporting Measures Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling, 2022

		Replicate		1	2	3	4	5	Mean
	Date	LC_[·	· I		1
			Depth (cm)	24	26	21	20	14	21
		_		0.21	1.084		0.149	0.145	0.3356
	Date LC_CCCS	1	, ,						-
			. ,						-
			,	47	05.5		0.5	00.5	-
			32.5	28.7					
		0.651	0.845						
		2	` ,						-
			· /						-
g			. , ,	17	30		41	37	31
ose	-22		,					0.142	0.5984
d X:	lay	3	- ' '	0.0	0.00.			311.1	-
e-E			, ,			2.8			-
Mir	~		Bankfull-Wetted Depth (cm)			-			-
			Depth (cm)	24.5	22.6	20.8	29	18.7	23.12
			- ' '	0.633	1.005		0.987	0.057	0.6758
		4	, ,						-
			. ,			3.6			-
			. , ,						-
			. , ,					27	26.8
		E	- ' '	0.895	1.424		1.046	0.753	0.8904
		5	, ,						-
									-
		10				-			-
			_	17	15	14.5	10	7	12.7
								0.508	0.4776
		1	- ' '						-
			· ,			3.6			-
70	- l		Bankfull-Wetted Depth (cm)			20			-
se	22		Depth (cm)	9	21	13	13	17	14.6
λpc	,-de			0.275	0.472		1.476	0.014	0.5886
Щ К	Ϋ́	2	Bankfull Width (m)						-
¶in€	12		. ,			3.4			-
						-			-
			. , ,					9	11.6
		2	- ' '	0.39	0.469		0.551	0.61	0.4554
		3	` '						-
			` '						-
-		IC							_
				12	9	25	23	17	17.2
			• • •					0.425	0.5134
		1	- ' '						-
						-			-
р			Bankfull-Wetted Depth (cm)			-			-
ose	22		. , ,					9	10.8
xpc	de de		- ' '	0.463	0.081		0.316	0.019	0.3024
e-E	1 -S	2	` '						-
۸in	1,								-
					_			4.0	-
			. , ,					18	9
		2	- ' '	0.032	0.136		0.881	0.226	0.2776
		3	` '						-
						J.1 -			_
		I.C.				-			
				10	6	7	16	4	8.6
			• • •					0.291	0.0724
		1	- ' '					1	-
			` '						-
р			` '			12			-
ose	22		. , ,					16	17
хdх	-də		-	0.08	0.02		0.566	0.756	0.361
e-E	3-8	2	` ,						-
۸in	7		` '						-
			• • • • • •	40	4.0		40		-
								9	14.4
		2		0.019	0.183		0.539	0.243	0.204
		3	` '						-
			Bankfull-Wetted Depth (cm)			- -			-
			Dankiuii-wetted Depth (CM)			-			-

Table I.2: Supporting Measures Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling, 2022

		Replicate		1	2	3	4	5	Mean
		LC_							
			Depth (cm)	11	14	23	17	10	15
			Velocity (m/s)	0.011	0.224	0.413	0.171	0.498	0.2634
		1	Bankfull Width (m)			5.5			-
		CC_DC4 Dep Vel Recompose Per Per Per Recompose Per Per Per Per Per Per Recompose Per P	Wetted Width (m)			3.7 26			-
eq	٥.		Bankfull-Wetted Depth (cm)	11	10		1.1	17	- 14
Mine-Exposed)-2%		Depth (cm) Velocity (m/s)	11 0.75	12 0.55	16 0.562	14 0.436	17 0.637	0.587
EX	Sep	2	Bankfull Width (m)	0.75	0.55	10.1	0.430	0.037	0.567
Je-	12-6	_	Wetted Width (m)			3.9			
≅	•		Bankfull-Wetted Depth (cm)			-			_
			Depth (cm)	13	13	24	21	12	16.6
			Velocity (m/s)	0.196	0.107	0.427	0.299	0.316	0.269
		3	Bankfull Width (m)			6.7			-
			Wetted Width (m)			5.2			-
			Bankfull-Wetted Depth (cm)			-			-
		LC_D							
			Depth (cm)	9	16	18	5	4	10.4
			Velocity (m/s)	0.054	0.471	0.322	0.046	0.042	0.187
		1	Bankfull Width (m)			4.2			-
			Wetted Width (m)			2.9			-
			Bankfull-Wetted Depth (cm)	4 4	40	30	40	4.4	- 4E 4
			Depth (cm)	14	13	20	16	14	15.4
		2	Velocity (m/s)	0.166	0.382	0.272 5.5	0.347	0.275	0.2884
		2	Bankfull Width (m)			2.3			-
			Wetted Width (m) Bankfull-Wetted Depth (cm)			- -			-
Mine-Exposed	2		Depth (cm)	10	23	21	19	16	- 17.8
ő	0-2		Velocity (m/s)	0.184	0.219	0.021	0.319	0.223	0.1932
Ϋ́	Sep	3	Bankfull Width (m)	0.104	0.210	3.9	0.010	0.220	-
nė	13-	Ŭ	Wetted Width (m)			2.55			_
≅	,		Bankfull-Wetted Depth (cm)			-			_
			Depth (cm)	19	18	12	7	6	12.4
			Velocity (m/s)	0.579	0.076	0.323	0.08	0.09	0.2296
		4	Bankfull Width (m)		-1	4.9	1	1	-
			Wetted Width (m)			3.5			-
			Bankfull-Wetted Depth (cm)			-			-
			Depth (cm)	17	27	15	15	12	17.2
			Velocity (m/s)	0.068	0.137	0.189	0.013	0.124	0.1062
		5	Bankfull Width (m)			4.9			-
			Wetted Width (m)			3.1			-
		10.5	Bankfull-Wetted Depth (cm)			-			-
		LC_L		14	19	10	7	5	11
			Depth (cm) Velocity (m/s)	0.011	0.039	0.119	0.082	0.011	0.0524
		1	Bankfull Width (m)	0.011	0.039	3.3	0.062	0.011	0.0524
		<u>'</u>	Wetted Width (m)			2			
			Bankfull-Wetted Depth (cm)			27			_
ρ̈́	2		Depth (cm)	15	10	4	5	14	9.6
oue	р-2		Velocity (m/s)	0.015	0.249	0.126	0.022	0.277	0.1378
Reference	-Se	2	Bankfull Width (m)		<u> </u>	4.4	1	1	-
Re	13.		Wetted Width (m)			2.2			-
			Bankfull-Wetted Depth (cm)			-			-
			Depth (cm)	11	8	13	7	11	10
			Velocity (m/s)	0.094	0.046	0.05	0.224	0.082	0.0992
		3	Bankfull Width (m)			3.1			-
			Wetted Width (m)			2.1			-
			Bankfull-Wetted Depth (cm)			-			-
		LC_		40	00	00	00	00	04.4
			Depth (cm)	16	22	20	20	29	21.4
		4	Velocity (m/s)	0.276	0.157	0.216 17	0.582	0.461	0.3384
		'	Bankfull Width (m) Wetted Width (m)			17			-
			Bankfull-Wetted Depth (cm)			-			-
šed	2		Depth (cm)	14	33	36	28	55	33.2
Mine-Exposed)-2 ;		Velocity (m/s)	0.25	0.036	1.355	2.708	0.916	1.053
Ä	Sep	2	Bankfull Width (m)	0.20	0.000	20	2.700	0.010	-
ne-	10-,	_	Wetted Width (m)			15			_
Ξ	•		Bankfull-Wetted Depth (cm)			-			-
			Depth (cm)	17	32	21	20	37	25.4
			Velocity (m/s)	0.984	0.367	0.468	1.712	2.001	1.1064
		3	Bankfull Width (m)		•	31			-
			Wetted Width (m)			28			-
			Bankfull-Wetted Depth (cm)			-			-
				_					

Table I.2: Supporting Measures Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling, 2022

		Replicate		1	2	3	4	5	Mean
		LC_	FRUS						
			Depth (cm)	42	33	20	12	39	29.2
			Velocity (m/s)	0.014	0.481	0.271	0.124	0.366	0.2512
		1	Bankfull Width (m)			18			-
			Wetted Width (m)			-			
0			Bankfull-Wetted Depth (cm)			-			
Mine-Exposed	22		Depth (cm)		64	37	48	40	47.2
ğ.)-de		Velocity (m/s)	0.145	1.332	0.636	1.266	0.482	0.7722
Ω A	10-Sep-22	2	Bankfull Width (m)			20			-
<u>ii</u>	10		Wetted Width (m)			17			-
2			Bankfull-Wetted Depth (cm)			-			-
			Depth (cm)	20	30	20	10	15	19
			Velocity (m/s)	0.145	0.265	0.147	0.379	1.002	0.3876
		3	Bankfull Width (m)			20			-
			Wetted Width (m)			17			-
			Bankfull-Wetted Depth (cm)			-			-
		LC_	GRCK						
			Depth (cm)	19	10	13	9	8	11.8
			Velocity (m/s)	0.057	0.307	0.719 0.199 0.166 6.3			0.2896
		1	Bankfull Width (m)						-
			Wetted Width (m)			2.6		48 40 4 1.266 0.482 0.7 10 15 0.379 1.002 0.3 9 8 1 0.2 0.2 13 12 1 0.2 0.2 12 13 1 0.2 0.2 12 13 1 0.4 0.2 7 7 7 1 0.094 0.2 5 7 9 9 9 1 0.2 0.2 5 7 9 9 1 0.2 <td>-</td>	-
ō			Bankfull-Wetted Depth (cm)			33			-
Mine-Exposed	22		Depth (cm)	19	16	22	13	12	16.4
ă X	-de		Velocity (m/s)	0.223	0.198	0.103	0.215	0.067	0.1612
Щ	14-Sep-22	2	Bankfull Width (m)			4.2			-
¶iv	14		Wetted Width (m)			-			
2			Bankfull-Wetted Depth (cm)			-			-
			Depth (cm)	12	10	10			11.4
			Velocity (m/s)	0.026	0.659	0.674	0.538	0.139	0.4072
		3	Bankfull Width (m)			3.6			-
			Wetted Width (m)			1.8			-
			Bankfull-Wetted Depth (cm)			-			-
		LC_	DCDS						
			Depth (cm)	9	18	12		1	10.6
			Velocity (m/s)	0.379	0.043	0.426	0.071	0.094	0.2026
sed	7	1	Bankfull Width (m)			6			-
pos	V-2		Wetted Width (m)			4.8			-
Mine-Exposed	30-Nov-22		Bankfull-Wetted Depth (cm)			10	T	ı	-
je l	30-		Depth (cm)	10	17	10		-	9.8
Ξ			Velocity (m/s)	0.068	0.117	0.094	0.053	0.009	0.0682
		2	Bankfull Width (m)	4.9					-
		W	Wetted Width (m)	3.8					-
			Bankfull-Wetted Depth (cm)			-			-

Table I.3: In Situ Water Quality from Dry Creek, Fording River, and Grace Creek, 2022

Sampling	Station	Field Parameters	Reference		N	line-exposed Dry Cre	ek		Mine-exposed	l Fording River	Mine-exposed Grace Creek
Event	Otation	Tiola Taramotoro	LC_DCEF	LC_DC3	LC_DCDS	LC_DC4	LC_DC2	LC_DC1	LC_FRB	LC_FRUS	LC_GRCK
		Date	10-May-22	10-May-22	10-May-22	11-May-22	10-May-22	11-May-22	11-May-22	11-May-22	11-May-22
		Temperature (°C)	2.00	1.8	2.6	1.5	3.00	1.7	3.20	2.80	2.00
	_	Dissolved Oxygen (mg/L)	13.7	13.7	13.7	13.7	13.4	14.3	15.1	13.6	14.2
	Station	Dissolved Oxygen (%)	98.9	99.1	101.1	98.6	99.5	102.5	105.3	100.7	102.9
	Sta	Conductivity (µS/cm)	132.6	364.5	267.2	269.2	267	265.1	486.9	489.6	219
		Specific Conductivity (µS/cm)	236.1	645.0	466.5	488.7	460	478.5	835	850	389
		pH	8.47	8.45	8.54	8.28	8.53	8.50	8.46	8.35	8.63
		Date	-	-	10-May-22	-	-	-	-	-	-
		Temperature (°C)	-	-	2.7	-	-	-	-	-	-
	7	Dissolved Oxygen (mg/L)	-	-	14.0	-	-	-	-	-	-
	tio	Dissolved Oxygen (%)	-	-	100.9	-	-	-	-	-	-
	Station	Conductivity (µS/cm)	-	-	277.5	-	-	-	-	-	-
		Specific Conductivity (µS/cm)	-	-	483.4	-	-	-	-	-	-
		pH Hq	-	-	8.52	-	-	-	-	-	-
		Date	-	-	10-May-22	-	-	-	-	_	-
		Temperature (°C)	-	-	2.7	-	-	-	-	-	-
-	က	Dissolved Oxygen (mg/L)	-	-	13.7	-	-	-	-		-
10	tio	Dissolved Oxygen (%)	-	-	100.4	-	-	-	-	-	-
Мау	Station	Conductivity (µS/cm)	-	-	293.5	-	-	-	-	-	-
Σ		Specific Conductivity (µS/cm)	-	-	511.0	-	-	-	-	-	-
		pH	-	-	8.49	-	-	-	-	-	-
		Date	-	-	10-May-22	-	-	-	-	-	-
		Temperature (°C)	-	-	2.6	-	-	-	-	-	-
	4	Dissolved Oxygen (mg/L)	-	-	13.5	-	-	-	-	-	-
	Station	Dissolved Oxygen (%)	-	-	99.6	-	-	-	-	-	-
	Sta	Conductivity (µS/cm)	-	-	313.2	-	-	-	-	-	-
		Specific Conductivity (µS/cm)	-	-	548.0	-	-	-	-	-	-
		pH	-	-	8.46	-	-	-	-	-	-
		Date	-	-	10-May-22	-	-	-	-	-	-
		Temperature (°C)	-	-	2.6	-	-	-	-	-	-
	5 (Dissolved Oxygen (mg/L)	-	-	13.6	-	-	-	-	-	-
	Station	Dissolved Oxygen (%)	-	-	100.4	-	-	-	-	-	-
	Sta	Conductivity (µS/cm)	-	-	341.4	-	-	-	-	-	-
		Specific Conductivity (µS/cm)	-	-	596.0	-	-	-	-	-	-
		pH	-	-	8.45	-	-	-	-	-	-
		Date	20-Jun-22	20-Jun-22	20-Jun-22	21-Jun-22	21-Jun-22	21-Jun-22	21-Jun-22	21-Jun-22	22-Jun-22
က		Temperature (°C)	3.50	3.4	4.4	4.0	3.70	4.8	5.90	5.50	4.00
- 23	1	Dissolved Oxygen (mg/L)	13.5	13.3	13.3	13.4	13.5	13.4	12.8	13.0	13.9
72	Station 1	Dissolved Oxygen (%)	101.1	99.9	101.2	101.5	102.3	104.3	103.1	103.1	105.8
June	Sta	Conductivity (µS/cm)	113.5	302.1	272.9	203.7	204	208.2	305.4	304.8	184
ゔ		Specific Conductivity (µS/cm)	192.5	515.0	448.3	335.3	344	338.8	481	485	295
		рН	8.18	7.93	8.21	8.15	8.22	8.29	8.17	8.15	8.41

Table I.3: In Situ Water Quality from Dry Creek, Fording River, and Grace Creek, 2022

Sampling	Station	Field Parameters	Reference		N	line-exposed Dry Cre	ek		Mine-exposed	l Fording River	Mine-exposed Grace Creek
Event			LC_DCEF	LC_DC3	LC_DCDS	LC_DC4	LC_DC2	LC_DC1	LC_FRB	LC_FRUS	LC_GRCK
		Date	13-Sep-22	13-Sep-22	13-Sep-22	12-Sep-22	14-Sep-22	12-Sep-22	10-Sep-22	10-Sep-22	14-Sep-22
		Temperature (°C)	4.00	4.1	6.0	5.1	6.00	4.7	7.00	5.00	5.90
	7	Dissolved Oxygen (mg/L)	10.8	10.8	10.6	10.6	10.6	11.2	11.0	10.4	10.6
	Station	Dissolved Oxygen (%)	101.0	102.0	105.0	100.0	104.0	104.0	108.0	97.0	102.0
	Sta	Conductivity (µS/cm)	180.0	769.0	740.0	527.0	710	503.0	579.0	544.0	277
		Specific Conductivity (µS/cm)	300.0	1282.0	1161.0	809.0	1,114	823.0	882	880	436
		рН	7.95	8.07	8.32	7.85	8.26	8.28	8.32	8.18	8.35
		Date	13-Sep-22	13-Sep-22	13-Sep-22	12-Sep-22	13-Sep-22	12-Sep-22	10-Sep-22	10-Sep-22	14-Sep-22
		Temperature (°C)	3.90	4.1	6.0	5.2	5.90	4.9	7.40	5.00	5.70
	n 2	Dissolved Oxygen (mg/L)	107.0	10.8	10.6	10.6	10.7	11.1	11.0	10.5	10.7
	ţio	Dissolved Oxygen (%)	100.0	102.0	104.0	100.0	105.0	103.0	109.0	98.0	102.0
	Station	Conductivity (µS/cm)	180.0	771.0	742.0	551.0	709	509.0	584.0	541.0	275
		Specific Conductivity (µS/cm)	301.0	1282.0	1164.0	847.0	116	822.0	881	88	435
		рН	7.96	8.14	8.34	7.87	8.23	8.27	8.28	8.17	8.35
15		Date	13-Sep-22	13-Sep-22	13-Sep-22	12-Sep-22	13-Sep-22	12-Sep-22	10-Sep-22	10-Sep-22	14-Sep-22
		Temperature (°C)	3.90	4.1	5.8	5.3	5.80	5.1	7.90	5.20	5.60
. 10	3	Dissolved Oxygen (mg/L)	10.6	10.8	10.6	10.5	10.7	11.1	10.8	10.5	107.0
ber	Station	Dissolved Oxygen (%)	98.0	102.0	104.0	100.0	104.0	104.0	108.0	99.0	102.0
em	Sta	Conductivity (µS/cm)	179.8	773.0	735.0	530.0	708	509.0	594.0	541.0	274
Septembe		Specific Conductivity (µS/cm)	301.0	1286.0	1162.0	849.0	112	821.0	881	870	435
Ñ		рН	7.85	8.12	8.28	7.89	8.19	8.25	8.30	8.19	8.40
		Date	-	-	13-Sep-22	-	-	-	-	-	-
		Temperature (°C)	-	-	5.7	-	-	-	-	-	-
	4	Dissolved Oxygen (mg/L)	-	-	10.6	-	-	-	-	-	-
	ţio	Dissolved Oxygen (%)	-	-	104.0	-	-	-	-	-	-
	Station	Conductivity (µS/cm)	-	-	726.0	-	-	-	-	-	-
		Specific Conductivity (µS/cm)	-	-	1152.0	-	-	-	-	-	-
	Station 5	рН	-	-	8.29	-	-	-	-	-	-
		Date	-	-	13-Sep-22	-	-	-	-	-	-
		Temperature (°C)	-	-	5.5	-	-	-	-	-	-
		Dissolved Oxygen (mg/L)	-	-	10.6	-	-	-	-	-	-
		Dissolved Oxygen (%)	-	-	103.0	-	-	-	-	-	-
		Conductivity (µS/cm)	-	-	739.0	-	-	-	-	-	-
		Specific Conductivity (µS/cm)	-	-	1180.0	-	-	-	-	-	-
		рН	-	-	8.23	-	-	-	-	-	-
30		Date	29-Nov-22	29-Nov-22	30-Nov-22	29-Nov-22	-	-	29-Nov-22	29-Nov-22	30-Nov-22
		Temperature (°C)	2.00	-0.1	0.2	0.7	-	-	10	.00	0.20
. 29	_	Dissolved Oxygen (mg/L)	11.1	12.0	12.3	12.1	-	-	12.2	12.3	12.5
ber	Station	Dissolved Oxygen (%)	80.4	82.3	85.3	84.3	-	-	83.9	84.2	85.7
embei	Sta	Conductivity (µS/cm)	222.9	969.0	967.0	565.0	-	-	665.0	618.0	295
Nove		Specific Conductivity (µS/cm)	397.6	1860.0	1838.0	1056.0	-	-	1,276	1,184	561
Z		pH	7.74	7.89	7.78	7.83	-	-	7.77	7.74	8.19

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

	LC_DCDS-1 10-May-22			LC_DCDS-2 10-May-22	!		LC_DCDS-3 10-May-22	1		LC_DCDS-4 10-May-22	
Pebble	Intermediate	Embeddedness									
1	Axis (cm) 5.1	(%)	1	Axis (cm) 12.5	(%) -	Peddie 1	Axis (cm) 18.5	(%) -	1	Axis (cm) 7.5	(%)
2	6.8	-	2	8.1	-	2	7.7	-	2	10.1	-
3 4	8.6 8.5	-	3 4	11.7 10.2	-	3 4	5.9 14.5	-	3 4	16.2 27	-
5 6	24.5 4.1		5 6	7.2 13.2		5 6	12.8 17	-	5 6	10.5 17	-
7 8	12.5 6.5	-	7 8	8.9 19	-	7 8	8.1 15.2	-	7 8	12.1 21.5	-
9	5.4	-	9	5.2	-	9	10.3	-	9	9.8	-
10 11	6.2 7.5	0.5	10 11	13.3 8.4	0 -	10 11	8.5 2.2	0 -	10 11	27 15.2	0.5 -
12 13	5.1 2.1	-	12 13	3.5 12.8	-	12 13	13.2 8.7	-	12 13	24 4.1	-
14 15	3.4 6.8	-	14 15	14.5 8.2	-	14 15	5.2 10.3	-	14 15	5.2 14.6	-
16	13	-	16	5.6	-	16	4.1	-	16	4.3	-
17 18	2.1 3.6	-	17 18	2.1	-	17 18	9.2 1.3	-	17 18	8.8 3.1	-
19 20	4.5 5.5	0.5	19 20	11.6 6.3	- 0	19 20	8.6 3.4	- 0.25	19 20	1.9 10.2	0.5
21 22	3.8 11	-	21 22	3.1 4.5	-	21 22	9 13	-	21 22	7.3 24.5	-
23	13.5	-	23	4.8	-	23	6.7	-	23	6.1	-
24 25	3.5 6.5	-	24 25	6.4 3.2	-	24 25	13 8.6	-	24 25	4.2 10.5	-
26 27	8.2 3.8	-	26 27	8.3 1.9	-	26 27	5.1 4.7	-	26 27	5.3 5.4	-
28	3.5 6.8	-	28 29	9.5 9.7	-	28 29	14.6	-	28 29	7.3 5.1	-
29 30	24	0.25	30	17.2	-	30	19.3	0.5	30	7.3	0
31 32	16 8.5	-	31 32	14.1 7.3	-	31 32	12.2 17.5	-	31 32	21.2 4.5	-
33 34	27 12.8	-	33 34	7.6 15.7	-	33 34	7.4 4.9	-	33 34	2.5 25	-
35	5.4	-	35	=	-	35	2.7	-	35	10.3	-
36 37	6.5 21	-	36 37	10.4 9.9	-	36 37	9 6.1	-	36 37	17.5 20.6	-
38 39	3.5 4.4	-	38 39	6.3 2.8	-	38 39	8.5 12.6	-	38 39	7.3 17.1	-
40 41	2 8.5	0 -	40 41	4 4.6	0	40 41	12.7	0	40 41	1.8	0.5
42	11	-	42	7.1	-	42	3.7	-	42	5.2	-
43 44	8.5	-	43 44	3 16.5	-	43 44	5.5 9.7	-	43 44	11.1	-
45 46	7.5 11.6	-	45 46	6.8 5	-	45 46	1.1 8.7	-	45 46	17.2 4.2	-
47 48	10.5	-	47 48	6.2	-	47	17.4	-	47	7.6	-
49	6.5 7.6	-	49	9.7 6.8	-	48 49	11.8 5.4	-	48 49	3.7 18.2	-
50 51	9.2 17.5	0 -	50 51	2.1 4	0 -	50 51	1.2 4.5	0.5	50 51	4.3 13.1	0 -
52 53	13.4 14.5	-	52 53	19.6 6.5	-	52 53	6.7 4.1	-	52 53	1.6 13.2	-
54 55	13	-	54 55	5.8 7.5	-	54 55	10.6	-	54 55	3.8 18.5	-
56	1	-	56	13	-	56	9.1	-	56	11.2	-
57 58	4 3	-	57 58	7 12.5	-	57 58	3.2 9.7	-	57 58	13.5 4.4	-
59 60	14 13	- 0	59 60	12.8 18	- 0	59 60	1.6 3.3	- 0.25	59 60	5.5 3	- 0
61 62	12.5 4.5	-	61 62	11 12	-	61 62	4.9 13.5	-	61 62	16.1 0.5	-
63	10.5	-	63	4.9	-	63	12.5	-	63	12.2	-
64 65	3 9.5	-	64 65	7.6 5.1	-	64 65	10.5 9.2	-	64 65	5.7 9.6	-
66 67	12 7.8	-	66 67	4.5 6.2	-	66 67	6.4 15.3	-	66 67	11.7 15.1	-
68	6	-	68	=	-	68	13.4	-	68	6.1	-
69 70	8 4	0	69 70	2.3 10.3	0.25	69 70	8.7 8.8	0	69 70	8.2 22.1	0.5
71 72	4.2 11.5	-	71 72	10.5 11.4	-	71 72	10.4 3.3	-	71 72	10.5 20.3	-
73 74	3.3	-	73 74	9 3.7	-	73 74	5.1 6.2	-	73 74	2.6 16.2	-
75	10.2	-	75	11	-	75	9	-	75	17	-
76 77	7.5 8	-	76 77	7.5 6.2	-	76 77	10.5 6.7	-	76 77	6.1 12.6	-
78 79	17 8	-	78 79	7.2 9.5	-	78 79	19.3 14.2	-	78 79	11.7 10.5	-
80 81	10.5 9.8	0 -	80 81	5.8 5.3	0.5	80 81	4.3	0.75	80 81	15.8 5.2	0
82	17	-	82	6	-	82	5.9	-	82	16.2	-
83 84	7.2 13.8	-	83 84	7.3 7.1	-	83 84	8.9 1.6	-	83 84	12.1 12.3	-
85 86	7.8 17	-	85 86	- 6.4	-	85 86	5.5 7.7	-	85 86	25.2 12	-
87 88	8.5 5.2	-	87 88	9.4 15.5	-	87 88	6.3	-	87 88	20.1	-
89	6.1	-	89	5.6	-	89	2.6	-	89	11.1	-
90 91	8.6 3.8	0.25	90 91	8.1 12.5	0.25 -	90 91	16.5 10.3	0.25 -	90 91	5.2 8.9	0 -
92 93	13.5 5.2	-	92 93	7.2 11.5	-	92 93	7.6 22	-	92 93	7.6 9.5	-
94	10.7	-	94	14	-	94	4.2	-	94	-	-
95 96	9.5 6.2	-	95 96	15.2 2.5	-	95 96	11.1 9.6	-	95 96	7.2 6.1	-
97 98	14.1 9.8	-	97 98	2.1 9.5	-	97 98	7.6 5.2	-	97 98	16.3 7.2	-
99 100	17 7.6	- 0	99 100	5.7 8.6	- 0	99 100	7 14.3	- 0.25	99 100	7.3 5.8	0.75
Average Cic, Cip and Embed.	8 82	0.15	Average Cic, Cip and Embed.	8.42	0.11	Average Cic, Cip and Embed.	8.59	0.28	Average Cic, Cip and Embed.	11.0	0.28
=			=			=			=		

Notes: nm = not measurable, "-" indicates no data. Intermediate axis is the measurement across the intermediate access of the pebble and presented in cm.

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

Petals		LC_DCDS-5 10-May-22							LC_DC1-1 12-Sep-22									
2	Pebble			Pebble			Calcite Presence		Embeddedness (%)									
3																		
\$ 72		6.5		3	0			24										
6																		
8	6	14.7	-	6	0	0	0	5	-									
10																		
11						-												
13	11	13.4		11	0	0	0	8										
15		-																
16						-												
18	16	13		16	0	0.5	1	4.9										
19																		
21																		
233 8.6 23 0 0.7 1 5.3	21	5.3		21	0	0	0	23.5										
24							· ·											
286	24	27.5	-	24	0	0	0	1.8	-									
28																		
29	27	7.2		27	0	0	0	4.5										
31 9.4 - 31 0 0 0 0 6.8 - 32 - 33	29	11.6	-	29	0	0	0	7	-									
322																		
34	32	4.8	-	32	0	0	0	4.5	-									
386	34	11.1			0	0		5.7										
37																		
39	37	16.5	-	37	0	0.4	1	12	-									
440 6.8 0 441 0 0 0 0 77 0.5 441 12 - 441 0 0 0 0 0 0 77 0.5 442 10.2 - 422 0 0 0 0 0 77 443 10.2 - 424 0 0 0 0 0 0 77 444 10.6 0 - 444 0 0 0 0 0 0 77 445 77 - 445 0 0 0 0 0 0 23.2 446 0 0 0 0 0 13 447 10.2 - 446 0 0 0 0 0 13 448 10.2 - 446 0 0 0 0 0 13 447 12.5 448 10.2 - 446 0 0 0 0 0 13 447 12.5 449 10.2 - 446 0 0 0 0 0 12.3 447 12.5 449 10.2 - 446 0 0 0 0 0 12.3 447 12.5 449 10.2 - 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 - 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 - 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 - 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 - 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 449 10.2 -						-												
442				-		-												
### 66	42	10.2		42	0	0	0	11										
45				-		-												
## 17	45	7.7		45	0	0	0	23.2										
## 16.8	47	29.5						12										
So																		
\$2	50	21.2	0.25	50	0	0	0	7.5	0.25									
S4																		
Second S																		
57	55	9.5	-	55	0	0.2	1	8.4	-									
S8																		
60 10 0.75 60 0 0.1 1 4.88 0.5 61 4.3 - 61 0 0.1 1 1 6.8 - 62 9.5 - 62 0 0 0 0 1 1 10.5 - 63 13.9 - 63 0 0.1 1 1 10.5 - 64 2 - 64 2 - 64 0 0 0.1 1 1 0.5 - 65 8.6 - 65 0 0 0 0 0 8.8 - 66 5.8 - 66 0 0 0.1 1 1 8.2 - 67 10.8 - 67 0 0 0.3 1 7.5 - 68 24.7 - 68 0 0 0.1 1 1 8.2 - 69 6.2 - 69 0 0 0.1 1 1 6.5 - 70 24 0.25 70 0 0 0 0 6.8 - 71 4.8 - 71 0 0 0 0 13 0.5 - 72 6.5 - 72 0 0 0 0 13 0.5 - 74 4.8 - 71 0 0 0 0 6.8 - 72 6.5 - 73 0 0 0 0 15 - 73 16.5 - 73 0 0.2 1 8.3 - 74 15.7 - 74 0 0 0 0 7.7 - 75 6.5 - 75 0 0 0 0 0 4.5 - 76 9 - 77 5.8 - 77 0 0 0 0 0 7.7 - 78 9.6 - 78 0 0 0.2 1 8.3 - 77 75 8.9 6 - 78 0 0 0 0 0 7.6 - 78 9.6 - 78 0 0 0.5 1 11.8 0.5 80 15.5 0.5 80 0 0.5 1 11.8 0.5 81 8.6 - 81 0 0.5 1 1.1 1.8 0.5 82 13.4 - 79 0 0 0 0 7.6 - 83 2.9 - 83 0 0 0.5 1 1 11.8 0.5 84 3.3 - 84 0 0 0.5 1 1 11.8 0.5 85 11.5 0.5 80 0 0 0.5 1 1 11.8 0.5 86 8.7 - 89 0 0 0.0 1 1 1 6.3 - 87 12 - 85 0.5 1 1 11.8 0.5 88 4.3 3 - 84 0 0 0.5 1 1 11.8 0.5 89 11.4 - 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																		
62 9.5 - 62 0 0 0 7.3 - 66 63 13.9 - 63 13.9 - 64 2 - 64 0 0.1 1 1 10.5 - 64 2 - 64 0 0.1 1 1 5.5 - 65 65 8.6 - 65 0 0 0 0 0 6.8 - 66 65 0 0 0.1 1 1 8.2 - 67 10.8 - 67 10.8 - 67 10.8 - 67 10.8 - 67 10.8 - 68 24.7 - 68 0 0.5 1 10.5 - 68 24.7 - 68 0 0.5 1 10.5 - 69 6.2 - 69 0 0.1 1 6.5 - 69 6.2 - 69 0 0.1 1 6.5 - 67 10.8 - 71 4.8 - 71 0 0 0 0 13 0.5 - 71 4.8 - 71 0 0 0 0 0 13 0.5 - 71 4.8 - 71 0 0 0 0 0 6.8 - 72 6.5 - 72 0 0 0 0 0 15 - 73 16.5 - 73 16.5 - 73 0 0.2 1 8.3 - 74 15.7 - 74 0 0 0 0 77 - 75 6.5 - 75 0 0 0 0 0 0 77 - 75 6.5 - 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60	10		60	0	0.1	1	4.8	0.5									
63																		
65 8.6 - 66 0 0 0 0 6.8 - 67 10.8 - 66 6 0 0 0.1 1 1 8.2 - 67 10.8 - 67 10.8 - 67 0 0 0.3 1 7.5 - 68 24.7 - 68 8 0 0 0.5 1 10.5 - 69 62 - 69 0 0 0.1 1 1 6.5 - 69 62 - 69 0 0 0.1 1 1 6.5 - 69 62 - 71 0 0 0 0 0 13 0.5 - 71 4.8 - 71 0 0 0 0 0 15 - 72 6.5 - 72 0 0 0 0 15 - 73 16.5 - 73 16.5 - 73 0 0 0 0 15 - 74 18.3 - 74 19.7 - 74 0 0 0 0 77 - 74 19.7 - 75 6.5 - 75 0 0 0 0 0 77 - 75 6.5 - 75 0 0 0 0 0 0 77 - 75 6.5 - 75 0 0 0 0 0 0 0 4.5 - 75 6.5 - 76 0 0 0 0 0 0 4.5 - 77 1 6.3 - 77	63	13.9		63	0	0.1	1	10.5										
67	65	8.6				0		6.8										
68																		
70	68	24.7	-	68	0	0.5	1	10.5	-									
72 6.5 - 72 0 0 0 15 - 73 16.5 - 73 16.5 - 73 0 0 0.2 1 8.3 - 74 15.7 - 74 0 0 0 0 0 0 7 - 75 6.5 - 75 6.5 - 75 0 0 0 0 0 4.5 - 77 75 6.5 - 75 0 0 0 0 0 0 4.5 - 77 77 75 6.5 - 77 7 0 0 0 0 0 7.6 - 78 0 0 0 0 0 7.6 - 78 0 0 0 0 0 7.6 - 78 0 0 0 0 0 0 7.6 - 78 0 0 0 0 0 0 7.6 - 78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70	24		70	0	0	0	13										
73																		
75 6.5 - 75 0 0 0 0 4.5 - 76 76 9 - 76 0 0.2 1 6.3 - 77 77 5.8 - 77 70 0 0 0 7.6 - 78 9.6 - 78 0 0.5 1 12.3 - 78 9.6 - 78 0 0 0.5 1 12.3 - 79 4.4 - 79 0 0 0 0 0 8.8 - 78 80 0 0.5 1 11.8 0.5 81 8.6 - 81 0 0.5 1 15.5 - 82 13.4 - 82 0 0 0 0 5.5 1 11.8 0.5 83 2.9 - 83 0 0 0 0 5.4 - 83 0 0 0 5.4 - 83 0 0 0 0 5.4 - 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	73	16.5	-	73	0	0.2	1	8.3	-									
76 9 - 76 0 0.2 1 6.3 - 77 5.8 - 77 0 0 0 0 7.6 - 78 9.6 - 78 0 0 0.5 1 12.3 - 79 4.4 - 79 0 0 0 0 0.5 1 111.8 0.5 8.8 - 81 0 0.5 1 111.8 0.5 81 8.6 - 81 0 0.5 1 5.5 - 82 13.4 - 82 0 0 0 0 5.4 - 83 29 - 83 0 0.4 1 11 1 1 - 84 33 - 84 4 0 0 0 0 7 7 - 85 15.2 - 85 0 0 0.1 1 1 8.6 - 85 15.2 - 85 0 0 0.1 1 1 8.6 - 85 15.2 - 86 0 0 0.3 1 16 - 87 12.3 - 88 15.5 - 88 15.2 - 85 0 0 0.1 1 1 8.6 - 85 15.2 - 85 0 0 0.1 1 1 8.6 - 85 15.2 - 85 0 0 0.1 1 1 1 1 - 85 15 - 88 15.2 - 85 0 0 0.1 1 1 1 1 - 85 15 - 85 15.2 - 85 0 0 0.1 1 1 1 1 1 - 85 15 15.2 - 85 15.2 - 85 0 0 0.1 1 1 1 1 - 85 15 15.2 - 85 15.	75	6.5		75	0	0	0	4.5										
78 9.6 - 78 0 0.5 1 12.3 - 79																		
80 15.5 0.5 80 0 0.5 1 11.8 0.5 81 8.6 - 81 0 0.5 1 5.5 - 82 13.4 - 82 0 0 0 5.4 - 83 2.9 - 83 0 0.4 1 11 - 84 3.3 - 84 0 0 0 7 - 85 15.2 - 85 0 0.1 1 8.6 - - 86 8.7 - 86 0 0.3 1 16 - - - 86 0 0.3 1 11 - - 88 0 0 0 0 8.2 - - 88 0 0 0 0 8.2 - - 89 0 0 0 0 7.8 0.75 9	78	9.6	-	78	0	0.5	1	12.3	-									
82 13.4 - 82 0 0 5.4 - 83 2.9 - 83 0 0.4 1 11 - 84 3.3 - 84 0 0 0 7 - 85 15.2 - 85 0 0.1 1 8.6 - 86 8.7 - 86 0 0.3 1 16 - 87 12 - 87 0 0.2 1 11 - 88 4.5 - 88 0 0 0 8.2 - 89 17.7 - 89 0 0 0 8.2 - 89 17.7 - 89 0 0 0 4.3 - 90 5 0.5 90 0 0 0 7.8 0.75 91 3.3 - 91 0 0 0 8.8 - 92 23.5 - 92 0 0.2 1 6.7 - 93 10.4 - 93 0 0.3 1 18 - 95	80	15.5	0.5	80	0	0.5	1	11.8										
83																		
85 15.2 - 85 0 0.1 1 8.6 - 86 8.7 - 86 0 0.3 1 16 - 87 12 - 87 0 0.2 1 11 - 88 4.5 - 88 0 0 0 0 8.2 - 89 17.7 - 89 0 0 0 0 4.3 - 90 5 0.5 90 0 0 0 7.8 0.75 91 3.3 - 91 0 0 0 8.8 - 92 23.5 - 92 0 0.2 1 6.7 - 93 10.4 - 93 0 0.3 1 18 - 94 6.5 - 94 0 0 0 4.3 - 95 5.7 - 95 0 0 0 3.7 - 96 15.8 - 96 0 0 0 3.7 - 99 11.4 - 99 0 0 0 10.	83	2.9	-	83	0	0.4	1	11	-									
87 12 - 87 0 0.2 1 11 - 88 4.5 - 88 0 0 0 8.2 - 89 17.7 - 89 0 0 0 4.3 - 90 5 0.5 90 0 0 0 7.8 0.75 91 3.3 - 91 0 0 0 8.8 - 92 23.5 - 92 0 0.2 1 6.7 - 93 10.4 - 93 0 0.3 1 18 - 94 6.5 - 94 0 0 0 4.3 - 95 5.7 - 95 0 0 0 3.7 - 96 15.8 - 96 0 0 0 6.5 - 98 2.1 -	85	15.2		85	0	0.1	1	8.6										
88 4.5 - 88 0 0 0 8.2 - 89 17.7 - 89 0 0 0 4.3 - 90 5 0.5 90 0 0 0 7.8 0.75 91 3.3 - 91 0 0 0 8.8 - 92 23.5 - 92 0 0.2 1 6.7 - 93 10.4 - 93 0 0.3 1 18 - 94 6.5 - 94 0 0 0 4.3 - 95 5.7 - 95 0 0 0 5.8 - 96 15.8 - 96 0 0 0 3.7 - 97 6.8 - 97 0 0 0 6.5 - 98 2.1 - 98 0 0.2 1 8 - 99 11.4 - 99 0 0 0 8.8 0.5 Average Cic, Cip and Embed. = 0 0.14 0.39 9.202																		
90 5 0.5 90 0 0 0 7.8 0.75 91 3.3 - 91 0 0 0 8.8 - 92 23.5 - 92 0 0.2 1 6.7 - 93 10.4 - 93 0 0.3 1 18 - 94 6.5 - 94 0 0 0 4.3 - 95 5.7 - 95 0 0 0 5.8 - 96 15.8 - 96 0 0 0 3.7 - 97 6.8 - 97 0 0 0 6.5 - 98 2.1 - 98 0 0.2 1 8 - 99 11.4 - 99 0 0 0 10.5 - 100 1.3 0 100<	88	4.5	-	88	0	0	0	8.2	-									
91 3.3 - 91 0 0 0 8.8 - 92 23.5 - 92 0 0.2 1 6.7 - 93 10.4 - 93 0 0.3 1 18 - 94 6.5 - 94 0 0 0 4.3 - 95 5.7 - 95 0 0 0 5.8 - 96 15.8 - 96 0 0 0 3.7 - 97 6.8 - 97 0 0 0 6.5 - 98 2.1 - 98 0 0.2 1 8 - 99 11.4 - 99 0 0 0 10.5 - 100 1.3 0 100 0 0 0 8.8 0.5 Average Cic, Cip and Embed. = Old Calcite Index (CI) = Old																		
93																		
95 5.7 - 95 0 0 0 5.8 - 96 15.8 - 96 0 0 0 3.7 - 97 6.8 - 97 0 0 0 6.5 - 98 2.1 - 98 0 0.2 1 8 - 99 11.4 - 99 0 0 0 10.5 - 100 1.3 0 100 0 0 0 8.8 0.5 Average Cic, Cip and Embed. = 0 0.14 0.39 9.202 0.48	93	10.4	-	93	0	0.3	1	18	-									
96																		
98 2.1 - 98 0 0.2 1 8 - 99 11.4 - 99 0 0 0 0 10.5 - 100 1.3 0 100 0 0 0 8.8 0.5 Average Cic, Cip and Embed. = Old Calcite Index (CI) = 0.39	96	15.8	-	96	0	0	0	3.7	-									
100 1.3 0 100 0 0 0 8.8 0.5 Average Cic, Cip and Embed. = O.33 Cic, Cip and Embed. = 0 0.14 0.39 9.202 0.48 Old Calcite Index (CI) = 0.39 0.39 0.39 0.39 0.39	98	2.1	-	98	0	0.2	1	8	-									
Average Cic, Cip and	99 100			99 100				10.5 8.8										
Old Calcite Index (CI) = 0.39	Average Cic, Cip and			Average Cic, Cip and														
New Calcite Index (CI) = 0.14			<u> </u>	Old Ca	alcite Index (CI) =				<u> </u>									

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

			DC1-2 Sep-22			LC_DC1-3 12-Sep-22						
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddednes s (%)	
1 2	0	0.3	1	8.4 13.2	-	1 2	0	0.5 0.1	1	10.2	-	
3	0	0	0	8.3	-	3	0	0	0	4.5	-	
4 5	0	0 0.5	0	6 14.5	-	4 5	0	0.1 0.7	1	4.5 11.5	-	
6	0	0	0	8	-	6 7	0	0	0	8.5 7.2	-	
8	0	0	0	9	-	8	0	0	0	9	-	
9 10	0	0	0	11.3 16	0.5	9 10	0	0.4 0.4	<u>1</u> 1	9.5 7.8	0.5	
11	0	0	0	7.4 8.2	-	11 12	0	0.5	1 0	11 6.3	-	
13	0	0	0	7.3	-	13	0	0	0	5.3	-	
14 15	0	0	0	14 4	-	14 15	0	0	0	9.3 17.9	-	
16	0	0	0	5	-	16	0	0	0	6.6	-	
17 18	0	0	0	20.5 13	-	17 18	0	0	0	6.7 8.3	-	
19 20	0	0	0	11 14.9	0.5	19 20	0	0 0.1	0	9.5 8.5	0.25	
21	0	0	0	14	-	21	0	0	0	10.6	-	
22 23	0	0	0	6 5	-	22 23	0	0 0.4	0 1	6.2 7	-	
24	0	0	0	22.3	-	24	0	0.1	1	11.6	-	
25 26	0	0	0	5 8	-	25 26	0	0	0	11.5 6.1	-	
27 28	0	0	0	25 24.8	-	27 28	0	0	0	10.1	-	
29	0	0	0	11	-	29	0	0	0	9	-	
30 31	0	0	0	15 11.4	0.75	30 31	0	0	0	6.5 7.6	0.25	
32	0	0	0	5	-	32	0	0	0	5.8	-	
33 34	0	0	0	9.3 13	-	33 34	0	0	0	16.3 8.9	-	
35 36	0	0	0	12 6	-	35 36	0	0	0	9 5.6	-	
37	0	0	0	8.5	-	37	0	0	0	10.3	-	
38 39	0	0	0	12.3 7.5	-	38 39	0	0.1	1 0	9 20	-	
40	0	0	0	7.5 22.5	0.5	40	0	0	0	16	0.25	
41 42	0	0	0	18.5	-	41 42	0	0	0	9	-	
43 44	0	0	0	6.5 8.1	-	43 44	0	0 0.3	0	8	-	
45	0	0	0	6.2	-	45	0	0	0	10	-	
46 47	0	0	0	9.3 31.5	-	46 47	0	0.3	<u> </u>	9.3 8.6	-	
48 49	0	0 0.5	0	4.5 7	-	48 49	0	0	0	9.5 9.2	-	
50	0	0	0	19	0.5	50	0	0.5	1	16.5	0.5	
51 52	0	0	0	9.3 3.8	-	51 52	0	0.3	1 0	5.3 10.6	-	
53	0	0.1	1	4.5	-	53	0	0	0	6.6	-	
54 55	0	0.3	0	11.2 9.6	-	54 55	0	0	0	10.4 5.2	-	
56 57	0	0	0	4.5 4.7	-	56 57	0	0.5 0	1 0	10.3 8.4	-	
58	0	0	0	3.8	-	58	0	0	0	8.9	-	
59 60	0	0.1 0.2	1	5 12.4	0.5	59 60	0	0	0	12.1 4.8	-	
61 62	0	0	0	8.5	-	61	0	0.1	1	10.5	-	
63	0	0	0	11 6.3	-	62 63	0	0	0	8.1 13.5	-	
64 65	0	0 0.2	0 1	11.5 4.2	-	64 65	0	0 0.3	0	4.8 7.9	-	
66	0	0	0	5.1	-	66	0	0.3	1	6.5	-	
67 68	0	0.5 0	0	13.5 5.8	-	67 68	0	0.1	1 0	5.2 10.5	-	
69 70	0	0 0.2	0	7.1 7.2	- 0	69 70	0	0	0	5.5 4.3	-	
71	0	0.5	1	5.1	-	71	0	0	0	9.5	0.5	
72 73	0	0 0.8	0 1	7.2 12.5	-	72 73	0	0	0	3.9 6.5	-	
74 75	0	0 0.1	0	16 6.3	-	74 75	0	0	0	9.5 5.3	-	
76	0	0.2	1	8.5	-	76	0	0	0	5.5	-	
77 78	0	0 0.5	0 1	8.9 7.5	-	77 78	0	0	0	4.3 6.5	-	
79	0	0	0	10.2	-	79	0	0	0	5.6	-	
80 81	0	0.5 0	0	3.8 8.5	0.25	80 81	0	0	0	8.1 8.3	0.5	
82 83	0	0	0	11.5 4.3	-	82 83	0	0.1	1 0	7.5 10.5	-	
84	0	0	0	19	-	84	0	0	0	11.1	-	
85 86	0	0	0	11 25	-	85 86	0	0	0	12 6.5	-	
87	0	0	0	7.3	-	87	0	0	0	4.1	-	
88 89	0	0	0	8.2 8.5	-	88 89	0	0.1	0 1	11.5 7.2	-	
90 91	0	0	0	7.3 7.8	0.25	90 91	0	0	0	13.4 6.5	0.25	
92	0	0	0	14.3	-	92	0	0	0	18.3	-	
93 94	0	0.3 0	0	5.5 7.6	-	93 94	0	0 0.1	0 1	6.5 5.8	-	
95	0	0	0	6.2	-	95	0	0.1	1	9.6	-	
96 97	0	0.5 0	1 0	7.8 1.4	-	96 97	0	0.5 0	1 0	12.4 13.6	-	
98 99	0	0	0	13 5.4	-	98 99	0	0 0.3	0	9.8 8.4	-	
100	0	0	0	15	0.75	100	0	0.3	0	7.6	0.75	
Average Cic, Cip and Embed. =	0	0.07	0.20	9.993	0.45	Average Cic, Cip and Embed. =	0	0.07	0.26	8.76	0.42	
Old Calci	te Index (CI) =			.20	1		te Index (CI) =			0.26	1	
New Calci	te Index (CI) =		0	.07		New Calci	te Index (CI) =			0.07		

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

Status Proportion Presence Axis (cm) ss (%) 1 0 0 0 4 - 2 0 0 0 8.3 - 3 0 0 0 6 - 4 0 0 0 4 - 5 0 0 0 4.5 - 6 0 0.1 1 5 - 7 0 0 0 6 - 8 0 0 0 4.6 - 9 0 0 0 2 - 10 0 0.3 1 13 0.75 11 0 0 0 3 - 12 0 0 0 3 - 13 0 0 0 5 - 14 0 0 0 5 -	Pebble 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Concreted Status 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0	Calcite Proportion 0.1 0 0.3 0 0 0.2 0.3 0 0 0 0.2 0.1 0 0 0.2 0.1 0 0 0.1	Calcite Presence 1	Intermediate Axis (cm) 6.2 4.7 11 3 1.5 6.2 14.3 9.2 5 6.5 11.2 10.5	Embeddedne ss (%)
1 0 0 0 4 - 2 0 0 0 8.3 - 3 0 0 0 6 - 4 0 0 0 4 - 5 0 0 0 4.5 - 6 0 0.1 1 5 - 7 0 0 0 6 - 8 0 0 0 4.6 - 9 0 0 0 2 - 10 0 0.3 1 13 0.75 11 0 0 0 6 - 12 0 0 3 - 13 0 0 0 1.5 - 14 0 0 0 5 - 15 0 0.2 1 11 - 16 0 0.3 1 8 -	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.3 0 0 0.2 0.3 0 0 0 0.2 0.2 0.2 0.1	0 1 0 0 1 1 1 0 0 0 1 1 1 1	6.2 4.7 11 3 1.5 6.2 14.3 9.2 5 6.5 11.2	- - - - - - -
3 0 0 0 6 - 4 0 0 0 4 - 5 0 0 0 4.5 - 6 0 0.1 1 5 - 7 0 0 0 6 - 8 0 0 0 4.6 - 9 0 0 0 2 - 10 0 0.3 1 13 0.75 11 0 0 6 - 12 0 0 3 - 13 0 0 0 1.5 - 14 0 0 0 5 - 15 0 0.2 1 11 - 16 0 0.3 1 8 -	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0 0 0 0 0 0 0 0 0 0 0 0 0	0.3 0 0 0.2 0.3 0 0 0 0.2 0.2 0.2 0.1 0	1 0 0 1 1 1 0 0 0 0 1 1 1 1	11 3 1.5 6.2 14.3 9.2 5 6.5 11.2	
5 0 0 0 4.5 - 6 0 0.1 1 5 - 7 0 0 0 6 - 8 0 0 0 4.6 - 9 0 0 0 2 - 10 0 0.3 1 13 0.75 11 0 0 0 6 - 12 0 0 0 6 - 13 0 0 0 1.5 - 14 0 0 0 5 - 15 0 0.2 1 11 - 16 0 0.3 1 8 -	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0 0 0 0 0 0 0 0 0 0 0	0 0.2 0.3 0 0 0 0.2 0.2 0.1 0	0 1 1 0 0 0 1 1 1	1.5 6.2 14.3 9.2 5 6.5 11.2	- - - -
7 0 0 0 6 - 8 0 0 0 4.6 - 9 0 0 0 2 - 10 0 0.3 1 13 0.75 11 0 0 0 6 - 12 0 0 0 3 - 13 0 0 0 1.5 - 14 0 0 0 5 - 15 0 0.2 1 11 - 16 0 0.3 1 8 -	7 8 9 10 11 12 13 14 15 16 17 18 19	0 0 0 0 0 0 0 0 0	0.3 0 0 0 0.2 0.2 0.1 0	1 0 0 0 1 1 1 1	14.3 9.2 5 6.5 11.2	- - -
8 0 0 0 4.6 - 9 0 0 0 2 - 10 0 0.3 1 13 0.75 11 0 0 0 6 - 12 0 0 0 3 - 13 0 0 0 1.5 - 14 0 0 0 5 - 15 0 0.2 1 11 - 16 0 0.3 1 8 -	8 9 10 11 12 13 14 15 16 17 18 19	0 0 0 0 0 0 0 0 0	0 0 0 0.2 0.2 0.1 0 0	0 0 0 1 1 1 1 0	9.2 5 6.5 11.2	-
10 0 0.3 1 13 0.75 11 0 0 0 6 - 12 0 0 0 3 - 13 0 0 0 1.5 - 14 0 0 0 5 - 15 0 0.2 1 11 - 16 0 0.3 1 8 -	10 11 12 13 14 15 16 17 18 19	0 0 0 0 0 1 0	0 0.2 0.2 0.1 0 0.1	0 1 1 1 0	6.5 11.2	
12 0 0 0 3 - 13 0 0 0 1.5 - 14 0 0 0 5 - 15 0 0.2 1 11 - 16 0 0.3 1 8 -	12 13 14 15 16 17 18 19 20	0 0 0 1 0	0.2 0.1 0 0.1	1 1 0		
14 0 0 0 5 - 15 0 0.2 1 11 - 16 0 0.3 1 8 -	14 15 16 17 18 19 20	0 1 0 0	0 0.1	0		-
15 0 0.2 1 11 - 16 0 0.3 1 8 -	16 17 18 19 20	1 0 0			8 11.3	-
	17 18 19 20	0		1 0	58	-
17 0 0.2 1 9 -	19 20	n	0.5	1	5.1	-
18 0 0 0 3.5 - 19 0 0.3 1 6 -		0	0	0	11.4 5	-
20 0 0 7.5 0.5 21 0 0.1 1 8 -	21	0	0.1 0	1 0	5.6 14	0.75
22 0 0.1 1 4.5 -	22	0	0	0	6.1	-
23 0 0.2 1 10.5 - 24 0 0.2 1 3.5 -	23 24	0	0.2 0.4	1	7 10.2	-
25 0 0 0 3 - 26 0 0.2 1 9 -	25 26	0	0.4 0.2	1	4 9	-
27 0 0.2 1 4.1 -	27 28	0	0.2 0.1	1	11 11.3	-
29 0 0 0 15 -	29	0	0	0	6.5	-
30 0 0 0 9 0.5 31 0 0 0 9.5 -	30 31	0	0.2 0	1 0	9.3 4.5	0.75 -
32 0 0.4 1 5 - 33 0 0 0 0 3.5 -	32	0	0	0	5.6 2.6	-
34 0 0.1 1 12 -	34	0	0	0	2	-
35 0 0 0 3.1 - 36 0 0 0 21 -	35 36	0	0.2 0.5	1 1	6 6	-
37 0 0 0 5 - 38 0 0.1 1 3 -	37 38	0	0	0	9.9 7.6	-
39 0 0 0 7 -	39 40	0	0	0	5	-
41 0 0 0 8.5 -	41	0	0.3	0 1	1 6	0 -
42 0 0 0 8 - 43 0 0 0 9 -	42 43	0	0	0	21 6.4	-
44 0 0 0 4.5 - 45 0 0 0 7 -	44 45	0	0	0	6.1 7	-
46 0 0 0 18 -	46	0	0	0	3	-
47 0 0 0 8 - 48 0 0 0 12.6 -	47 48	0	0	0	12.5 7.1	-
49 0 0 0 7 - 50 0 0 8 0.5	49 50	0	0	0	9 7.6	- 0.75
51 0 0 0 5.1 -	51 52	0	0.3	1	6.1	-
52 0 0.1 1 11.5 - 53 0 0 0 5.5 -	53	0	0.2	1 0	9.5 10.1	-
54 0 0.1 1 6.1 - 55 0 0.1 1 11 -	54 55	0	0	0	3.1 7.5	-
56 0 0 0 3.5 - 57 0 0 0 3 -	56 57	0	0 0.3	0	7.4 9.5	-
58 0 0 0 6.1 -	58	0	0.3	1	10.3	-
59 0 0 0 6 - 60 0 0.5 1 10 0.25	59 60	0	0.5 0	0	16.5 6.5	0.75
61 0 0 6 - 62 0 0 4.3 -	61 62	0	0 0.5	0	3.4 11.4	-
63 0 0 0 8.2 -	63 64	0	0	0	4.6 9.6	-
65 0 0 0 2.3 -	65	0	0.1 0	0	15	-
66 0 0 0 13.5 - 67 0 0 0 17.5 -	66 67	0	0.1 0.5	<u>1</u> 1	9.3 6.6	-
68 0 0 0 4.5 - 69 0 0 0 4.1 -	68 69	0	0	0	7.5 10.4	-
70 0 0 0 11 0.75	70	0	0	0	8.3	0.5
71 0 0.1 1 13.5 - 72 0 0 0 4.5 -	71 72	0	0.1 0	1 0	5.2 7.8	-
73 0 0 0 7.5 - 74 0 0.5 1 15.5 -	73 74	0	0.1 0	1 0	8.9 8.5	-
75 0 0 0 4.5 - 76 0 0 0 0 2.5 -	75 76	0	0	0	9.1	-
77 0 0 0 2 -	77	0	0	0	2.1	-
78 0 0 0 4.5 - 79 0 0 0 19 -	78 79	0	0 0.1	0 1	3 12.4	-
80 0 0.6 1 16.5 0 81 0 0 0 9.5 -	80 81	0	0	0	7 3.9	0.5 -
82 0 0 0 9.5 - 83 0 0 0 10 -	82 83	0	0.3	1 0	14.2 7.5	-
84 0 0 0 7.6 -	84	0	0.1	1	11.3	-
85 0 0.3 1 10.5 - 86 0 0.1 1 8.5 -	85 86	0	0.2	1 0	9.5 9	-
87 0 0 0 19.5 - 88 0 0 0 3.5 -	87 88	0	0.1 0.3	1	11 9.2	-
89 0 0.3 1 5.6 -	89 90	0	0.3	1	7.5	- 0.25
91 0 0 0 5 -	91	0	0	0	5.2 12	-
92 0 0 0 4.5 - 93 0 0.1 1 2.2 -	92 93	0	0	0	9.5 7.2	-
94 0 0 0 4.6 - 95 0 0 0 11.5 -	94 95	0	0.3 0.5	1	8.5 12	-
96 0 0 0 4.2 -	96	0	0	0	6.5	-
97 0 0 0 2 - 98 0 0 0 6.3 -	97 98	0	0 0.1	0 1	5.2 6.6	-
99 0 0.1 1 12.5 - 100 0 0 7.5 0.75	99 100	0	0.1 0	1 0	4 6.5	- 0.5
Average A Cic, Cip and 0 0.06 0.28 7.5 0.55 Cic,	Average c, Cip and Embed. =	0.01	0.11	0.43	8.3	0.50
Old Calcite Index (CI) = 0.28	Old Calcite	e Index (CI) = e Index (CI) =			.44 .12	

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

LC_DC2-3 14-Sep-22						LC_DC3-1 13-Sep-22						
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)	
1	0	0.3	1	5.2	-	1	0	0.7	1	17	-	
3	0	0.6 0.2	<u>1</u> 1	5.5 8.9	-	3	0	0.3 0	1 0	8 5	-	
4	0	0.1	1	7	-	4	0	0.7 0.7	1	9.5	-	
5 6	0	0.5 0.4	1	6 11	-	5 6	0	0.7	1 1	19 18	-	
7 8	0	0.5 0.3	1	7 3.3	-	7 8	0	0.1 0.5	1	2.1 7.2	-	
9	0	0.5	1	14.6	-	9	1	0.7	1	13.5	-	
10 11	0	0.3 0.4	1	7.6 10.5	0.75	10 11	0	0.7 0	1 0	20 14.5	0.5	
12	0	0.5	1	19.3	-	12	0	0	0	3.1	-	
13 14	0	0.3 0.3	1	7 14	-	13 14	0	0	0	3.5 0.2	-	
15	0	0.2	1	15	-	15	0	0	0	1	-	
16 17	0	0.2 0.5	<u> </u>	11 10	-	16 17	0	0 0.7	0	4 11	-	
18	0	0.1	1	6.7	-	18	0	0.5	1	19	-	
19 20	0	0 0.2	0	8.7 10	0.5	19 20	0	0.7 0.5	1	10 14.5	0.5	
21	0	0.4	1	8	-	21	1	0.4	1	13	-	
22 23	0	0 0.2	0	5 6	-	22 23	0	0.7 0.7	1 1	7.5 22.5	-	
24	0	0.1	1	5.1	-	24	0	0.7	1	7.6	-	
25 26	0	0.5 0.4	1	4.2 11	-	25 26	0	0.7 0.7	1	6.6 15	-	
27	0	0.3	1	13	-	27	0	0.7	1	21.5	-	
28 29	0	0 0.1	0	6 7	-	28 29	0	0.8 0.8	1	15 6.5	-	
30	0	0	0	3.2	0.75	30	0	0.7	1	7.5	0	
31 32	0	0	0	23.5 11.5	-	31 32	0	0.5 0.4	1	8.2 12	-	
32	0	0.3	1	11.5 8.2	-	32	0	0.4	0	2	-	
34 35	0	0.2	1	5.5 11	-	34 35	0	0.6	1	6.7	-	
35 36	1	1	1	11 16.5	-	36	0	0.3 0.5	1 1	14 8.2	-	
37 38	0	0.1	1	9.5 7.5	-	37 38	0	0.8	1 0	13 4.9	-	
38 39	0	0	0	7.5 13	-	38	0	0	0	4.9 14.6	-	
40	0	0	0	3	0	40	0	0.7	1	5.6	0.25	
41 42	0	0.3	0	11.6 7	-	41 42	0	0 0.3	1	7.1 4.5	-	
43	0	0	0	3.4	-	43 44	1	0.8	1	18.3 4.3	-	
44 45	0	0	0	4.6 1.8	-	44	0 1	0.5 1	<u> </u>	35	-	
46	0	0.2	1	11	-	46	0	0.8	1	20	-	
47 48	<u>1</u> 0	0.7 0.1	<u> </u>	24 7.3	-	47 48	0	0.8 0.9	<u> </u>	8.5 25	-	
49	0	0.3	1	14	-	49	0	0.8	1	18	-	
50 51	0	0.1 0.3	1	4 5.5	-	50 51	0	0 0.5	0 1	9.1 18.5	0.5	
52	0	0	0	4.3	-	52	0	0.6	1	16	-	
53 54	0	0.1 0.1	1	4.9 8.3	-	53 54	0	1 0.5	1 1	2.5 1.5	-	
55	0	0	0	5.6	-	55	0	0.5	1	2.5	-	
56 57	0	0.5 0.5	1	8.5 11.6	-	56 57	1 1	1 0.8	<u> </u>	12 27	-	
58	0	0.3	1	7.6	-	58	0	0.9	1	15.5	-	
59 60	0	0	0	7.8 5.6	0.25	59 60	0	0.6 0.8	<u> </u>	11.5 9.8	0.5	
61	0	0.4	1	12.5	-	61	0	0.6	1	18.5	-	
62 63	0	0.3	0	7.5 7.6	-	62 63	0	1 0.8	<u> </u>	15.5 15	-	
64	0	0.8	1	9.2	-	64	0	0.9	1	14.5	-	
65 66	0	0.3 0.1	<u>1</u> 1	7.3 8.6	-	65 66	0	0.5 0.5	<u> </u>	8.5 16	-	
67	0	0	0	5.4	-	67	0	0.6	1	15.5	-	
68 69	0	0.5 0	0	6.6 3.1	-	68 69	0	0.5 0.6	<u> </u>	12.5 4.3	-	
70	0	0.5	1	9.2	0.25	70	0	0.5	1	3.5	0.5	
71 72	0	0.3 0.5	1	4.3 7.9	-	71 72	0	0.3 0.6	1 1	2.1 7	-	
73 74	0	0.5	1	9.3	-	73 74	0	0.6	1	12.5	-	
75	0	0 0.5	1	11.5 14.2	-	75	0	1 0.9	1 1	10.5 5.5	-	
76 77	0	0.3	1	12.5	-	76 77	0	0.6	1	9.6	-	
77 78	0	0.5 0.3	1	6 7.6	-	78	0	0.5 0.5	1 1	10.1 5.2	-	
79 80	0	0 0.5	0	8.2 12.8	- 0.25	79 80	0	0.5 0.3	1	5.1 2.2	- 0.5	
81	0	0.5	1	6.3	0.25	81	0	0.5	1 1	16.5	0.5	
82	0	0.2	1	4.8	-	82	0	0.6	1	4.7	-	
83 84	0	0.3 0.5	1	5.1 8.4	-	83 84	0	1 0.9	1 1	15.7 12.5	-	
85 86	0	0 0.5	0	8.9 16.4	-	85 86	0	0 0.9	0	2.5 8.5	-	
87	0	0.5	1	5.8	-	86	0	0.9	1	3.5	-	
88 89	0	0.5 0.2	1	11.8 4.3	-	88 89	0	0.1 0.7	1	5.6 5.9	-	
90	0	0.5	1 1	4.3 13.5	0.25	90	0	0.3	1 1	4.8	0.75	
91 92	0	0.1 0.2	1	6.4 6.5	-	91 92	0	0.7 0.5	1	13 6.5	-	
93	0	0.1	1	6.3	-	93	0	0.7	1	34	-	
94	0	0.3	1	8.5	-	94	0	0.7	1	16	-	
95 96	0	0.2	1	6.2 6.4	-	95 96	0	0.8	1 1	13 3.8	-	
97	0	0	0	3 6.5	-	97	0	0.9	1	8.5	-	
98 99	0	0	0	5.2	-	98 99	0	1	1	10.1 6.5	-	
100	0	0.5	1	14.5	0.75	100	0	0.9	1	10.3	0.25	
Average Cic, Cip and Embed. =	0.02	0.25	0.73	8.5	0.42	Average Cic, Cip and Embed. =	0.10	0.56	0.87	10.7	0.43	
	te Index (CI) =			.75	<u> </u>	Old Calcit	e Index (CI) =			0.97	1	
New Calci	te Index (CI) =		0	.27		New Calcit	e Index (CI) =		(0.66		

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

LC_DC3-2 13-Sep-22						LC_DC3-3 13-Sep-22							
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)		
1	0	0	0	5.3	-	1	0	0.5	1	9.4	-		
2 3	0	0.1	0	4.4 3	-	2 3	0	0.4 0.5	1	22.6 13.2	-		
4 5	0	0	0	2.1 4.9	-	4 5	0	0.2 0.5	1	16 4.1	-		
6	0	0.5	1	26.1	-	6	0	0.5	1	6.6	-		
7 8	0	0.5 0	1 0	9 3.2	-	7 8	0	0.5 0.4	1 1	10.2 14.8	-		
9	0	0.5	1	8.2	-	9	0	0.5	1	5.2	-		
10 11	0	0.5 0.2	1	10 7.5	0.5	10 11	0	0 0.5	0 1	4.6 14.5	0		
12	0	0.5	1	6.1	-	12	0	0.5	1	5.6	-		
13 14	0	0.5 0.1	1	5.3 4.7	-	13 14	0	0.1 0.4	1	4 15.1	-		
15	0	0.8	1	3.6	-	15	0	0	0	3.1	-		
16 17	0	0.5 0.5	1	12 10.9	-	16 17	0	0.2 0.2	1	2.6 2.5	-		
18	0	0.3	1	5	-	18	0	0.5	1	16.9	-		
19 20	0	0.4 0.7	1	5.9 22	0.25	19 20	0	0.3	0	4.6 5.7	0.25		
21	0	0.7	1	8	-	21	0	0.1	1	4.4	-		
22 23	0	0.4 0.4	1	5.5 10.5	-	22 23	0	0.5 0.5	1	3.5	-		
24	0	0.4	1	2.6	-	24	0	0.9	1	7	-		
25 26	0	0.3 0.7	1	6.1 16	-	25 26	0	0.1 0.1	1	4 4.5	-		
27	0	0.4	1	6.5	-	27	0	0.5	1	17	-		
28 29	0	0.4	1	8.4 3.2	-	28 29	0	0.9 0.5	1	21 7	-		
30	0	0.2	1	5.6	0.5	30	0	0	0	4.1	0.75		
31 32	0	0.5 0.8	1	8 17	-	31 32	0	0.4 0.1	1	6 5.1	-		
32	0	0.8	1	9	-	32 33	0	0.1	1 1	5.1 5.1	-		
34	0	0.4	1	7.1	-	34	0	0.4	1	5.7	-		
35 36	0	0.2 0.6	1	6 13	-	35 36	0	0.7	0 1	2.7 6.6	-		
37	0	0	0	1.5	-	37	1	0.8	1	17	-		
38 39	0	0	0	2 2	-	38 39	0	0.5 0.6	1 1	10 11.5	-		
40	0	0	0	2.4	0.75	40	0	0.5	1	7	0.75		
41 42	0	0.6 0.5	<u>1</u> 1	8.5 4	-	41 42	0	0.4 0.3	1 1	4 8.2	-		
43	0	0.5	1	10.1	-	43	0	0.5	1	12.6	-		
44 45	0	0.4 0.9	1	5.1 14	-	44 45	0	0.2	1 0	3.5 2	-		
46	0	0.5	1	4	-	46	0	0.1	1	3	-		
47 48	0	0.1 0.8	1	3.6 13.6	-	47 48	0	0.1 0.7	1	7 11	-		
49	0	0.8	1	20.3	-	49	0	0.9	1	20	-		
50 51	0	0.9 0.6	1	12.3 9.3	0.5 -	50 51	0	0 0.3	0 1	3 5.5	0.75		
52	1	0.5	1	6.5	-	52	0	0	0	3.5	-		
53 54	0	0.6 0.5	1	9.5 7.3	-	53 54	0	0.5 0.3	1	5.3 3.5	-		
55	0	0.4	1	3.8	-	55	0	0	0	3	-		
56 57	0	0.3 0.6	1	8.2 8.7	-	56 57	0	0	0	4 2.2	-		
58	0	0.5	1	5.1	-	58	0	0.5	1	6.8	-		
59 60	0	0.5 0.5	1	7.1 3.6	- 0	59 60	0	0 0.1	0	5.3 3.5	0.25		
61	0	0.5	1	3.4	-	61	0	0.5	1	7.5	-		
62 63	0	0.7 0.6	1	6.2 9.8	-	62 63	0	0.5 0.6	1 1	5.1 2.5	-		
64	0	0.8	1	10.2	-	64	1	0.5	1	14.5	-		
65	0	0.6	1	6.3	-	65	0	0.5	1	8.5	-		
66 67	0	0.7 0.6	<u>1</u> 1	8.4 3.6	-	66 67	0	0.3	1 0	4.5 6.3	-		
68	0	0.4	1	4.2	-	68	0	0.6	1	6.2	-		
69 70	0	0.3 0.3	1	12.5 6.6	0.75	69 70	0	0.8 0.5	1	21 4.5	0.25		
71	0	0.6	1	15.5	-	71	0	0.8	1	15.5	-		
72 73	0	0.7 0.8	1	12.5 7.8	-	72 73	0	0.5 0.6	1	10.2 6.3	-		
74	0	0.5	1	6.5	-	74	0	0.5	1	19	-		
75 76	0	0.3 0.2	1	4.5 4.6	-	75 76	0	0.5 0.7	1	6.5 4.5	-		
77	1	0.8	1	14	-	77	0	0.8	1	9.5	-		
78 79	0	0.6 0.8	1	15 10.5	-	78 79	0	0.7 0.6	1	15.5 10.5	-		
80	0	0.3	1	11.6	0.25	80	0	0.3	1	5.3	0.25		
81 82	0	0.8 0.9	1	16 13.5	-	81 82	0	0.5 0.3	1	2.3 8.5	-		
83	0	0.8	1	9.6	-	83	0	0.5	1	9.3	-		
84 85	0	0.7 0.8	1	5.6 10.3	-	84 85	0	0.6 0.5	1	5.1 5.5	-		
86	0	0.6	1	8.5	-	86	0	0.6	1	7.5	-		
87 88	0	0.8 0.6	1	6.5 6.3	-	87 88	0	0.6 0.5	1	6.3 6.2	-		
89	0	0.8	1	5.6	-	89	0	0.6	1	7.5	-		
90 91	0	0.9 0.8	1	6.8 21	0.25	90 91	0	0.3 0.6	1	6.5 7.5	0.25		
92	0	0.6	1	7.3	-	92	0	0.6	1	12.1	-		
93 94	0	0.4 0.5	1	24 6.6	-	93 94	0	0.3 0.5	1	12.5 12.5	-		
95	0	0.5	1	10.1	-	95	0	0.5	1	6.5	-		
96 97	0	0.5 0.6	1	27 9.5	-	96 97	0	0.3 0.2	1 1	5.2 8.5	-		
98	0	0.3	1	6.5	-	98	0	0.3	1	4.6	-		
99 100	0	0.5 0.3	1	5.3 6.2	- 0.5	99 100	0	0 0.7	0 1	5.1 13.3	0.25		
Average Cic, Cip and Embed. =	0.04	0.48	0.90	8.5		Average Cic, Cip and Embed. =	0.02	0.39	0.86	7.9	0.38		
	te Index (CI) =		0	.94			te Index (CI) =		0	0.88			
New Calci	te Index (CI) =			.52		New Calci	te Index (CI) =			.41			

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

			DC4-1 Sep-22						DC4-2 Sep-22		
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)	Pebble 1	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)
1 2 3	0	0.4 0.1 0	1 0	16 10	-	2 3	0	0	0 0	7.9 7.5	-
4 5	0	0.6	1 0	11.5 11.2	-	4 5	0	0	0	10	-
6	0	0.3	1	10	-	6	0	0	0	5.9	-
7 8	0	0.5 0	1 0	16.3 4.5	-	7 8	0	0.3 0	1 0	12 14	-
9 10	0	0.1 0	1 0	6 7.5	0.5	9 10	0	0 0.1	0	12 10	0.5
11 12	0	0.5 0	1 0	12.5 2	-	11 12	0	0.3	1 0	12.1 11	-
13	0	0	0	6.6	-	13 14	0	0	0	6 6.1	-
15	0	0.3	1	5.5	-	15	0	0	0	8	-
16 17	0	0.7	0	12.2 18.5	-	16 17	0	0	0	7 11.9	-
18 19	0	0	0	12.1 4.1	-	18 19	0	0 0.5	0	5.2 15.5	-
20 21	0	0	0	14 8	0.25	20 21	0	0	0	4.1 8.5	0.5
22	0	0	0	7	-	22	0	0	0	5	-
24	0	0.5	0	12.3 7	-	24	0	0.1	1	12.9 2.1	-
25 26	0	0	0	7 5	-	25 26	0	0 0.1	0	4 12.1	-
27 28	0	0	0	16 8	-	27 28	0	0	0	4.5 2.5	-
29 30	0	0	0	16 12.5	0.25	29 30	0	0	0	4.6 13	0.5
31	0	0	0	17	-	31	0	0	0	12.5	-
32 33	0	0	0	14.5 6.1	-	32 33	0	0.3 0.1	1	12.5 4.1	-
34 35	0	0	0	5 8	-	34 35	0	0 0.3	0	4.6 11.3	-
36 37	0	0.1	1 0	7 5.5	-	36 37	0	0	0	6.1 8.5	
38 39	0	0.1	1 0	7.3 8.5	-	38 39	0	0.2	1 0	10.6 7.5	-
40	0	0.3	1	13.5	0	40	0	0.1	1	13	0.5
41 42	0	0	0	10.6 9.3	-	41 42	0	0	0	4.5 18.5	-
43 44	0	0 0.2	0 1	8.9 14.5	-	43 44	0	0 0.1	0	7 12.5	-
45 46	0	0	0	16.9 10	-	45 46	0	0	0	5 9.2	-
47	0	0	0	9	-	47	0	0	0	10.5	-
48 49	0	0	0	12.5 5.6	-	48 49	0	0.1	1 0	5 5.2	-
50 51	0	0	0	11 3.5	0.5	50 51	0	0	0	10.6 8.8	0.75
52 53	0	0	0	4.5 5.8	-	52 53	0	0 0.2	0	3.9 5.3	-
54 55	0	0.1	1 0	9.8 9.1	-	54 55	0	0	0	2.9 8.7	-
56	0	0.5	1	8.6	-	56	0	0	0	5.2	-
57 58	0	0	0	7.3 10.5	-	57 58	0	0.1 0.1	1	12.1 4.5	-
59 60	0	0	0	5.3 4.6	- 0	59 60	0	0	0	3.2 8.5	0.75
61 62	0	0	0	9.8 4.5	-	61 62	0	0.1	1 0	5.5 5.4	-
63 64	0	0	0	9.9 16.5	-	63 64	0	0	0	8.5 10.2	-
65	0	0.5	1	8.1	-	65	0	0.1	1	5.3	-
66 67	0	0	0	14.5 10.2	-	66 67	0	0	0	5.6 4.5	-
68 69	0	0 0.3	0	4.5 7.6	-	68 69	0	0.1 0.1	1	7.3 6.4	-
70 71	0	0.3	1 0	10.2	0.75	70 71	0	0	0	4.8	0.25
72	0	0.2	1	5.8	-	72	0	0	0	8.5	-
73 74	0	0	0	12.3 5.4	-	73 74	0	0	0	4.4 5.8	-
75 76	0	0.1	0	8.5 1.9	-	75 76	0	0 0.3	0	10.5 11.1	-
77 78	0	0.3	1 0	11.2 15.5	-	77 78	0	0 0.2	0	12.4 10.5	-
79 80	0	0	0	5.2 9.2	- 0.5	79 80	0	0 0.2	0	7.5 6.6	0.5
81	0	0.1	1	6.7	-	81	0	0	0	8.5	-
82 83	0	0 0.3	0 1	1.8 10.3	-	82 83	0	0	0	5.4 9.8	-
84 85	0	0	0	6.5 8.8	-	84 85	0	0.1	1 0	7.2 8.4	-
86 87	0	0.1	1 0	4.3 4.6	-	86 87	0	0.1	1 0	6.5 5.2	
88 89	0	0.8	1 0	11.5 7.9	-	88 89	0	0.1	1 0	13.5 4.1	-
90	0	0	0	8.1	0.5	90	0	0	0	2.2	0
91 92	0	0	0	4.5 7.5	-	91 92	0	0	0	15.6 4	-
93 94	0	0.1	1 0	3.2 7.4	-	93 94	0	0	0	13.5 9.8	-
95 96	0	0	0	15.2 14.1	-	95 96	0	0.1	1 0	9.5 3.6	-
97	0	0	0	5.3	-	97	0	0.1	1	9.7	-
98 99	0	0 0.2	0 1	8.6 4.4	-	98 99	0	0	0	4.7 8.2	-
100 Average Sic, Cip and	0	0.09	0 0.29	4.8 8.9	0.25 0.35	100 Average Cic, Cip and	0	0.3 0.05	0.29	14.5 8.1	0.5 0.48
Embed. =	to Index (0)					Embed. =	to Index (C)			1 20	
	te Index (CI) =	1		.09			te Index (CI) =).29).05	

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

			DC4-3 Sep-22				LC_DCDS-1 13-Sep-22			LC_DCDS-2 13-Sep-22	
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)	Pebble	Intermediate Axis (cm)	Embeddedne ss (%)	Pebble	Intermediate Axis (cm)	Embeddedne ss (%)
1 2	0	0	0	8.4 7.6	-	1 2	8 10.1	-	1 2	4.7 4.1	-
3 4	0	0	0	9	-	3 4	13.2	-	3 4	5	-
5	0	0.1	0	7	-	5	7.1 5.5	-	5	22	-
6 7	0	0	0	11.3 11.5	-	6 7	7.6 6.7	-	6 7	13 5.6	-
8	0	0	0	7.6 12.6	-	8	9.5 6.5	-	8 9	5.7 5.4	-
10	0	0	0	4	0	10	10	0.75	10	6	0.5
11 12	0	0.1	0	7.1 11	-	11 12	7 9	-	11 12	5.6 7.3	-
13 14	0	0.1	1 0	13 3.6	-	13 14	11 17	-	13 14	4.3 5	-
15	0	0	0	11.5	-	15 16	2.5	-	15 16	4 15	-
16 17	0	0	0	7 6.2	-	17	3 4.5	-	17	20	-
18 19	0	0	0	13.5 7	-	18 19	9	-	18 19	11.5 8	-
20 21	0	0	0	7 6.1	0.25	20 21	5.5 6.7	0.5	20 21	13 21	0.25
22	0	0	0	10.6	-	22	7	-	22	21.5	-
23 24	0	0.1	1 0	11 6.5	-	23 24	5 5.6	-	23 24	14 11	-
25 26	0	0	0	3.5 4.2	-	25 26	10 3.1	-	25 26	7.1 8	-
27	0	0.5	1	16	-	27	4	-	27	11	-
28 29	0	0.3	0	10.9 8.4	-	28 29	9.1 16	-	28 29	6.2 1.5	-
30 31	0	0	0	6 6.1	0.5	30 31	11.5 5.7	0.25	30 31	7 8.5	0.5
32	0	0	0	11.5	-	32	6	-	32	8.5	-
33 34	0	0	0	8 12	-	33 34	8.7 4.5	-	33 34	13 7	-
35 36	0	0	0	8	-	35 36	7.3	-	35 36	10	-
37	0	0	0	8.2	-	37	6.1	-	37	13	-
38 39	0	0	0	12.5 11.6	-	38 39	4.3	-	38 39	5.6 9.6	-
40 41	0	0	0	16 9	0.5	40 41	10.5 11.5	0.5	40 41	13.1 10.6	0.5
42	0	0	0	5	-	42	6	-	42	10	-
43 44	0	0	0	10.3 9	-	43 44	9.3 14	-	43 44	7.2 13.3	-
45 46	0	0	0	13 9	-	45 46	19 5.2	-	45 46	15.5 8	-
47	0	0	0	6	-	47	13.3	-	47	8.2	-
48 49	0	0	0	12.3 7	-	48 49	4.6 5.5	-	48 49	7 10	-
50 51	0	0	0	18.9 7.5	0.25	50 51	8 10.3	0.25	50 51	10.5 9.1	0.75
52	0	0	0	13	-	52	7.8	-	52	7.3	-
53 54	0	0.6 0	0	13 4.3	-	53 54	11.2 4.1	-	53 54	3.9 4.6	-
55 56	0	0	0	11.5 16	-	55 56	6.5 2.4	-	55 56	3.8 6.5	-
57	0	0	0	5.3	-	57	8.9	-	57	1.4	-
58 59	0	0.5	1	8	-	58 59	7.4 1	-	58 59	9.8 35.6	-
60 61	0	0 0.1	0 1	5 4.4	0.25	60 61	7 22	0.25	60 61	2.5 3.2	0.5
62	0	0	0	6.3	-	62	21	-	62	2.1	-
63 64	0	0.2	1	4.2 8.8	-	63 64	6.1 5.4	-	63 64	7.6 6.3	-
65 66	0	0 0.1	0	5.8 9.4	-	65 66	6.8 4.3	-	65 66	8.5 7.4	-
67 68	0	0	0	6.7 7.2	-	67 68	4.2 4.6	-	67 68	18 6.8	-
69	0	0	0	6.5	-	69	3.5	-	69	13.5	-
70 71	0	0.2	1 0	7.3 13	0.5	70 71	5.1 0.9	0.75	70 71	7.5 8.5	0.75
72 73	0	0	0	10.4 6.3	-	72 73	8.2 8.4	-	72 73	6.9 5.5	-
74	0	0	0	8.5	-	74	10.1	-	74	7.4	-
75 76	0	0	0	6.4 12.1	-	75 76	9.8 10	-	75 76	10.5 14.6	-
77 78	0	0	0	4.5 1.8	-	77 78	14 3.5	-	77 78	8.5 6.3	-
79	0	0	0	11.7	-	79	2	-	79	7.8	-
80 81	0	0	0	5.5 6.7	0.5	80 81	5.3 9.1	0.5	80 81	6.3 2.4	0.5
82 83	0	0	0	3.2 2.4	-	82 83	4.5 6.5	-	82 83	13.5 3.4	-
84	0	0.2	1	18.3	-	84	19	-	84	5.1	-
85 86	0	0.2	0	8.6 7.5	-	85 86	4.1 6.2	-	85 86	7.2 4.8	-
87 88	0	0.1	1 0	11 1.7	-	87 88	13.5 16.1	-	87 88	5.9 10	-
89	0	0	0	12.4	-	89	13.2	-	89	10.8	-
90 91	0	0	0	7.6 7.7	0.75	90 91	19 5.3	0.5	90 91	7.3 6.8	0.75
92 93	0	0	0	5.6 6.4	-	92 93	6.2 7	-	92 93	9 4.7	-
94	0	0	0	9.5	-	94	4.5	-	94	5.1	-
95 96	0	0	0	8.3 4.8	-	95 96	6.3	-	95 96	9.2	-
97 98	0	0 0.1	0	7.5 13	-	97 98	2.1	-	97 98	7.4 8.3	-
99	0	0	0	5.5	-	99	24	-	99	4	-
Average Cic, Cip and	0 0	0 0.04	0 0.17	5 8.5	0.25 0.38	Average Cic, Cip and	10.3 8.0	0.75 0.50	Average Cic, Cip and	12 8.6	0.5 0.55
Embed. = Old Calcit New Calcit	te Index (CI) =			.17 .04		Embed. =			Embed. =		

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

			DCDS-3 Sep-22					LC_DCDS-4 13-Sep-22			
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)
1 2	0	0.1 0.4	1	55 7.7	-	1 2	0	0.5	0	9 7.5	-
3 4	0	0 0.4	0	5 7.5	-	3 4	0	0.2 0.6	1	6.9 10.3	-
5	0	0.9	1	8.5	-	5	0	0.4	1	8.5	-
6 7	0	0.2 0.5	1	13.5 17	-	6 7	0	0.1 0.3	1 1	12.2 4.7	-
8	0	0.3	1	17.6 17.6	-	8	0	0.2 0.3	1	12 2.9	-
10	0	0.4 0.2	1	12	0.25	10	0	0.3	1 1	9.5	0.5
11 12	0	0 0.2	0	4.3 12.3	-	11 12	0	0.1 0.3	1	4.1 7.5	-
13	0	0.9	1	17	-	13	0	0.1	1	9.5	-
14 15	0	0	0	7.2	-	14 15	0	0.1 0.5	1	7.1 7.6	-
16	0	0.5	1	11.3	-	16	0	0.9	1	21.5	-
17 18	0	0	0	3	-	17 18	0	0.5 0.6	1 1	12 16	-
19	0	0.1	1	5.2	-	19	0	0.7	1	12	-
20 21	0	0.2 0.5	1	5.4 7.6	0.75	20 21	0	0.5 0.7	1	14.5 10	0.25
22	0	0.5	1	6	-	22	0	0	0	4.1	-
23 24	0	0	0	3.2 2.7	-	23 24	0	0.5 0.7	1 1	10.5 16	-
25	0	0.6	1	7.2	-	25	0	0.7	1	12.5	-
26 27	0	0.7 0.4	1	16 16.5	-	26 27	0	0.7 0.8	1 1	19 6	-
28	0	0.5	1	5.6	-	28	0	0.9	1	9	-
29 30	0	0.7 0.8	1	6.7 9.7	0.75	29 30	0	0.7 0.4	1	9.1 10.3	0.75
31	0	0.5	1	15	-	31	0	1	1	8.6	-
32 33	0	0.5 0	0	14.1 4	-	32 33	0	0.5	1 1	25.5 13	-
34	0	0.2	1	5.3	-	34	0	0.7	1	18.3	-
35 36	0	0.7 0.8	1	7.6 4.9	-	35 36	0	0.2 0.9	1	7.1 21	-
37	0	0.7	1	4.7	-	37	0	0.1	1	7	-
38 39	0	0.4	0	3	-	38 39	0	0.3 0.7	1 1	8 12	-
40	0	0.3	1	14.4	0.5	40	0	0	0	8	0.5
41 42	0	0.9 0	0	10 2.9	-	41 42	0	0.5 0.3	1 1	10.5 10	-
43	0	0.5	1	9	-	43	0	0.7	1	19.5	-
44 45	0	0.7 0.5	1	5 10	-	44 45	0	0.4	0	9	-
46	0	0.9	1	21	-	46	0	0.3	1	11.3	-
47 48	0	0.7 0.5	1	7.1	-	47 48	0	0.5	0 1	8 15.3	-
49	0	0.5	1	10.3	-	49	0	0.4	1	7.9	-
50 51	0	0.4 0.5	1	6.5 12.3	0.25	50 51	0	0 0.8	0	5 16.5	0.5
52	0	0.2	1	14	-	52	0	0.5	1	7.5	-
53 54	0	0.5 0.7	1	22 15	-	53 54	0	0.5 0.6	1	4.5 17.5	-
55	0	0	0	8.2	-	55	0	0	0	6.5	-
56 57	0	0.7 8	1	10.5 18	-	56 57	0	0.8	1 0	7.8 2.8	-
58	0	0	0	4.5	-	58	0	0	0	2.2	-
59 60	0	0.7 0.4	1	16.5 8.5	0.5	59 60	0	0.8 0.6	1	9.5 5.5	0.75
61	0	0	0	3.3	-	61	0	0	0	3.5	-
62 63	0	0.5 0.3	1	14 10.5	-	62 63	0	0	0	4.1	-
64	0	0.1	1	3.5	-	64	0	0.8	1	12.5	-
65 66	0	0.4 0.5	1	11.5 21	-	65 66	0	0.9 0.8	1 1	19.5 34.5	-
67	0	0	0	5	-	67	0	0.6	1	20.5	-
68 69	0	0.2	0	10.3 4.5	-	68 69	0	0	0	5.5 5.8	-
70 71	0	0	0	6.5 3.6	0.25	70 71	0	0	0	2.5 5.5	0
72	0	0.5	1	10.2	-	72	0	0.7	0	8.5	-
73 74	0	0	0	8.1 5.2	-	73 74	0	0.5 1	1	17.5 15.6	-
75	0	0.1	1	5.3	-	75	0	0.5	1	4.8	-
76 77	0	0.5 0	1 0	8.4 7.4	-	76 77	0	0	0	3.2 4.1	-
78	0	0.5	1	8.3	-	78	0	0.5	1	7.3	-
79 80	0	0.5 0	1 0	4.1 7.3	- 0.5	79 80	0	1 0	1 0	10.4 4.5	0.25
81	0	0	0	5.7	-	81	0	0.5	1	9.8	0.25
82 83	0	0 0.3	0	10.3 8.6	-	82 83	0	0.6 0.5	1	7.6 10.5	-
84	0	0.6	1	12.5	-	84	0	0.5	1	11	-
85 86	0	0.3	1 0	10.2 2.4	-	85 86	0	0.6	1 0	12 9.2	-
87	0	0.3	1	9.3	-	87	0	0.3	1	8.3	-
88 89	0	0.1 0.4	1	3.4 8.3	-	88 89	0	0.3 0.5	1	11.1 16.2	-
90	0	0.2	1	9.1	0.75	90	0	0.5	1	9.3	0.25
91 92	0	0 0.5	0	5.3 8.1	-	91 92	0	0 0.5	0	0.1 19	-
93	0	0	0	8.4	-	93	0	0.5	1	14.5	-
94 95	0	0.3 0.3	1	9.5 7.8	-	94 95	0	0 0.5	0	2.5 16.3	-
96	0	0	0	3.8	-	96	0	0.2	1	10.1	-
97 98	0	0.1 0.5	1	5.5 18.2	-	97 98	0	0.1 0.4	1 1	11 7.2	-
99	0	0.6	1	12.3	-	99	0	0.3	1	16	-
100	0	0	0	4.6	0.75	100	0	0.1	1	3.8	0.25
Average Cic, Cip and Embed. =	0	0.40	0.71	9.3	0.53	Average Cic, Cip and Embed. =	0	0.41	0.79	10.2	0.40
	te Index (CI) =			.71	1		te Index (CI) =			0.79	1
New Calci	te Index (CI) =		0.40 New Calcite Index (CI) = 0.41								

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

			DCDS-5 Sep-22			LC_DCEF-1 13-Sep-22						
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)	
1 2	0	0	0	9.5 8.2	-	1 2	0	0	0	20	-	
3 4	0	0 0.3	0	9.3 9.4	-	3 4	0	0	0	4 4	-	
5 6	0	0	0	8.5 5.2	-	5 6	0	0	0	2 2.5	-	
7 8	0	0.3 0.2	1	10.1 3.3	-	7 8	0	0	0	14 3.1	-	
9	0	0.3	1 0	13 5.1	- 0.25	9	0	0	0	10.5 18.5	0.5	
11	0	0	0	4.2 15.5	-	11	0	0	0	30 2.6	-	
13 14	0	0.3	0	4.5 10.1	-	13 14	0	0	0	3	-	
15	0	0.5	1	16.5	-	15	0	0	0	8	-	
16 17	0	0	0	9.5 12.3	-	16 17	0	0	0	6 7.9	-	
18 19	0	0.2	1 0	9.5 10.5	-	18 19	0	0	0	4 17.5	-	
20 21	0	0 0.3	0 1	11.3 8.1	0.25	20 21	0	0	0	6 5.2	0.5	
22 23	0	0.6 0.2	1	8.5 11.2	-	22 23	0	0	0	6 23.5	-	
24 25	0	0.1 0.5	1	4.2 6.5	-	24 25	0	0	0	9 6.5	-	
26 27	0	0.5	1 0	13.5	-	26 27	0	0	0	8 14.2	-	
28 29	0	0.3	1 0	6.5 8.3	-	28 29	0	0	0	11 5.5	-	
30	0	0.1	1	6.5	0.5	30	0	0	0	2.4	0.25	
31 32	0	0.3 0	1 0	12.5 5.1	-	31 32	0	0	0	5.6 7.1	-	
33 34	0	0 0.3	0 1	8.5 7.5	-	33 34	0	0	0	9.3 6	-	
35 36	0	0 0.3	0 1	6.5 13.5	-	35 36	0	0	0	3.4 3.2	-	
37 38	0	0.5 0.5	1	6.5 10.5	-	37 38	0	0	0	2 1.2	-	
39 40	0	0	0	1.3	0.75	39 40	0	0	0	2.2	0.5	
41	0	0	0	7.2	-	41	0	0	0	3	-	
42 43	0	0 0.1	0	11.3 5.2	-	42 43	0	0	0	2.8	-	
44 45	0	0.5 1	1 1	11.3 10.5	-	44 45	0	0	0	1.4 7	-	
46 47	0	0 0.4	0 1	5.5 12.5	-	46 47	0	0	0	4.9 23	-	
48 49	0	0	0	5.8 6.5	-	48 49	0	0	0	4 22.3	-	
50 51	0	0	0	6.8 8.5	0.25	50 51	0	0	0	5 5.1	0.75	
52	0	0	0	5	-	52	0	0	0	3	-	
53 54	0	0.6 0	1	10.5 3.4	-	53 54	0	0	0	1.4 6.3	-	
55 56	0	0.1 0	1 0	4 3.9	-	55 56	0	0	0	16.5 4	-	
57 58	0	0	0	2.5 4.5	-	57 58	0	0	0	5.1 20	-	
59 60	0	0 0.7	0	2.9 21.1	0.75	59 60	0	0	0	5 4.5	0.25	
61 62	0	0	0	6.5 17	-	61 62	0	0	0	4.5 2.8	-	
63 64	0	0.5	1 0	12.5 12.2	-	63 64	0	0	0	1.6 5.5	-	
65	0	0	0	3	-	65	0	0	0	23.5	-	
66 67	0	0.3 0.1	1	12.9 7	-	66 67	0	0	0	7.5 13	-	
68 69	0	0.5 0	0	19.5 0.5	-	68 69	0	0	0	10.4 10	-	
70 71	0	0.3 0.7	1 1	8.5 12.3	0.25	70 71	0	0	0	4.6 4.1	0.75	
72 73	0	0.5 0	1 0	29 9	-	72 73	0	0	0	5 3.5	-	
74 75	0	0.1	1 0	3	-	74 75	0	0	0	7.5 9	-	
76 77	0	0.5	1	16.5	-	76	0	0	0	1.5	-	
78	0	0.5 0.4	1 1	2.6 1	-	77 78	0	0	0	16.2 2	-	
79 80	0	0.7 0	1 0	5.1 15	0.5	79 80	0	0	0	15 25	0.75	
81 82	0	0.5 0.5	1	12.3 29	-	81 82	0	0	0	11 2.6	-	
83 84	0	0.6 0	1 0	9	-	83 84	0	0	0	7 7.1	-	
85 86	0	0.5 0.5	1	10 16.5	-	85 86	0	0	0	4 0.7	-	
87 88	0	0	0	2.6	-	87 88	0	0	0	9.5 25.2	-	
89	0	0.1	1	5.1	-	89	0	0	0	12.2	-	
90 91	0	0.6 0.7	1	15 11.2	0.5	90 91	0	0	0	8 2.2	0.5	
92 93	0	0.1 0	1 0	5 5.5	-	92 93	0	0	0	5 4.6	-	
94 95	0	2 0.5	1	7.6 10.5	-	94 95	0	0	0	4.8 2.5	-	
96 97	0	0.7 0.2	1	10	-	96 97	0	0	0	4 3	-	
98	0	0.5 0.7	1	6.5 16	-	98 99	0	0	0	7 25	-	
100	0	0.7	1	7	0.5	100	0	0	0	1.4	0	
Average ic, Cip and Embed. =	0	0.26	0.58	8.9	0.45	Average Cic, Cip and Embed. =	0	0	0	7.7	0.48	
Old Colo	ite Index (CI) =		(0.58	1	Old Calci	te Index (CI) =			0.00	1	

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

LC_DCEF-2 13-Sep-22						LC_DCEF-3 13-Sep-22						
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)	
1 2 3	0 0 0	0 0 0	0 0 0	5.5 7.5 7.3	-	1 2 3	0 0 0	0 0	0 0 0	6 8 23.5	-	
4 5	0	0	0	10.1 4.6	-	3 4 5	0	0 0	0	8 5	-	
6 7	0	0	0	19 11.5	-	6 7	0	0	0	8.2 6	-	
8	0	0	0	8.5	-	8	0	0	0	5.4	-	
9 10	0	0	0	13.1 3.5	0.75	9 10	0 0	0	0	4 6	0.75	
11 12	0	0	0	8.3 14	-	11 12	0	0	0	9 2.1	-	
13 14	0	0	0	7.4 10.3	-	13 14	0	0	0	7.1 9.5	-	
15 16	0	0	0	20.9 15.5	-	15 16	0	0	0	5.5 12	-	
17 18	0 0	0	0	8 16.3	-	17 18	0 0	0	0	23 5.6	-	
19 20	0	0	0	2.1 1.6	0.75	19 20	0	0	0	8 3.6	0.5	
21 22	0	0	0	12.4 14.3	-	21 22	0	0	0	7 4	-	
23	0	0	0	14.6 6.3	-	23	0	0	0	1.8 1.5	-	
25 26	0	0	0	9.5 7	-	25 26	0	0	0	4 3	-	
27 28	0	0	0	8.2	-	27 28	0	0	0	7 10.5	-	
29	0	0	0	3.4		29	0	0	0	6.2		
30 31	0	0	0	20 3.6	0.25	30 31	0	0	0	8.5 2.5	0.75	
32 33	0	0	0	4.1 9.2	-	32 33	0	0	0	3.2 6.7	-	
34 35	0	0	0	6.6 2.5	-	34 35	0	0	0	4.6 7	-	
36 37	0	0	0	6.4 4.5	-	36 37	0	0	0	9 9.2	-	
38 39	0	0	0	6.4 1.7	-	38 39	0	0	0	8 8.9	-	
40 41	0	0	0	10 15.6	0.5	40 41	0	0	0	6.7 5.5	0.25	
42	0	0	0	17 24.2	-	42	0	0	0	12 6.2	-	
44 45	0	0	0	4.6	-	44 45	0	0	0	10.3 7.5	-	
46 47	0	0	0	3.1 6.6	-	46 47	0	0	0	2.2	-	
48	0	0	0	5.9	-	48	0	0	0	1.8	-	
49 50	0	0	0	4.9	0.75	49 50	0	0	0	1.6 3.2	- 0	
51 52	0	0	0	2.2 4.5	-	51 52	0 0	0	0	6 15	-	
53 54	0	0	0	5 2.2	-	53 54	0	0	0	1.6	-	
55 56	0	0	0	6.1 2.6	-	55 56	0	0	0	1.2 3.4	-	
57 58	0	0	0	7.2 4.7		57 58	0	0	0	4.6 2.7		
59 60	0	0	0	4.1 1.6	- 0	59 60	0	0	0	2.2 20	0.75	
61 62	0	0	0	13 4.8	-	61 62	0	0	0	13 16	-	
63 64	0	0	0	4.1	-	63 64	0	0	0	17	-	
65 66	0	0	0	5 2.8	-	65 66	0	0	0	3.2 4.5	-	
67 68	0	0	0	14.5 7.8	-	67 68	0	0	0	11.6 6.6	-	
69	0	0	0	6	-	69	0	0	0	2.6	-	
70 71	0	0	0	3.6 4.5	0.5	70 71	0	0	0	7 6.6	0.25	
72 73	0	0	0	2.3 11.5	-	72 73	0	0	0	4.2	-	
74 75	0	0	0	14.5 11	-	74 75	0	0	0	7 8.9	-	
76 77	0	0	0	8.3 3.5	-	76 77	0	0	0	5.6 7.1	-	
78 79	0	0	0	5.5 2.3	-	78 79	0	0	0	4 25	-	
80 81	0	0	0	3.9 14	0.75	80 81	0	0	0	4 3.6	0.75	
82 83	0	0	0	5.3 5.6	-	82 83	0	0	0	9.6 13		
84 85	0	0	0	7.5 6.3		84 85	0	0	0	48 3.6		
86 87	0	0	0	11 4.5	-	86 87	0	0	0	3	-	
88 89	0	0	0	1.6 9.5	-	88 89	0	0	0	2.5 2.8	-	
90 91	0	0	0	9.5	0.5	90	0	0	0	8.6	0.75	
92	0	0	0	10.5 7.3	-	91 92	0	0	0	4.2 9	-	
93 94	0	0	0	10.5 3.9	-	93 94	0	0	0	10.2 5.4	-	
95 96	0	0	0	12 4.8	-	95 96	0	0	0	4 6.5	-	
97 98	0	0	0	6.3 4.2	-	97 98	0	0	0	3 4	-	
99 100	0	0	0	5.5 4.5	0.5	99 100	0	0	0	6.5 5.6	0.25	
Average Cic, Cip and Embed. =		0	0	7.6	0.53	Average Cic, Cip and Embed. =		0	0	7.2	0.50	
Old Calci	te Index (CI) =			0.00		Old Calci	te Index (CI) =			0.00		
New Calci	te Index (CI) =			0.00		New Calci	te Index (CI) =		(0.00		

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

Part		LC_FRB-1 10-Sep-22						LC_FRB-2 10-Sep-22							
1	Pebble		Calcite	Calcite			Pebble					Embeddedne ss (%)			
3						-					13	-			
\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	0	0.5	1	17	-	3	0	0.5	1	17	-			
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									-						
8	-								-	-					
191 0 0 0 0 0 1 3 0 1 10 0 0 0 3 3 3 3 0 1 10 10 10 10 10 10 10 10 10 10 10 10	8	0	0.3	1	11	-	8	0	0.3	1	11	-			
12	-														
13															
15	13	0	0		4		13		0	0	4	-			
TT	15	0	0	0	3		15	0	0	0	3				
191 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-			•											
221 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1									-	-					
22 0 0 0 0 3 4	20	0	0	0	4	0.25	20	0	0	0	4	0.25			
24 0 0 0 0 S - 224 0 0 0 0 5															
25 0 0 08 1 20 - 25 1 0 08 1 20 - 25 1 0 08 1 20 - 25 20 0 0 0 1 1 20 - 25 20 0 0 0 1 1 1 20 - 25 20 0 0 0 1 1 1 20 - 25 20 0 0 0 0 0 1 1 1 20 - 25 20 0 0 0 0 0 0 1 1 1 20 - 25 20 0 0 0 0 0 0 1 1 1 20 - 25 20 0 0 0 0 0 0 1 1 1 20 - 25 20 0 0 0 0 0 0 0 1 1 1 20 - 25 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
277	25	0	0.8	1	20	-	25	1	0.8	1	20	-			
29	27						27								
30															
32	30	0	0	0	5	0	30	0	0	0	5	0			
34 0 0 0 0 14 - 34 0 0 0 0 14 - 34 0 0 0 0 14 - 34 0 0 0 0 14 - 34 0 0 0 0 14 - 34 0 0 0 0 14 0 - 34 0 0 0 0 0 18 0 - 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32	0	0		7		32	0	0		7				
36 0 0 0 18 - 36 0 0 0 18 - 36 0 0 0 18 - 36 0 0 0 18 - 36 0 0 0 3 1 8 3 - 36 0 0 0 3 1 8 3 - 36 0 0 0 0 0 1 8 3 - 36 0 0 0 0 0 0 1 8 3 - 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				•											
37 0 0 0 0 38 - 37 0 0 0 0 38 - 37 37 0 0 0 0 38 - 38 3 38 0 0 0 0 0 3 3 - 38 38 0 0 0 0 0 0 3 3 - 38 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35	0	0	0	18	-	35	0	0	0	18	-			
39 0 0 0 0 28 - 39 0 0 0 0 28 - 39 0 0 0 0 28 - 5 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37	0	0	0	3.8		37	0	0	0	3.8				
440 0 0 0.5 1 20 0.5 40 0 0.5 1 20 0.5 44 1 0 0 0.5 1 20 0.5 44 1 0 0 0 0 0 4 5 1 20 0.5 44 1 0 0 0 0 0 4 5 1 20 0.5 44 1 0 0 0 0 0 0 4 5 1 20 0 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1									-						
42 0 0 0 0 5 - 42 0 0 0 0 5 - 43 0 0 0 0 5 5 - 43 0 0 0 0 1 1 16.5 - 43 0 0 0 0 0 1 16.5 - 43 0 0 0 0 0 1 16.5 - 43 0 0 0 0 0 0 3.2 - 44 0 0 0 0 0 0 3.2 - 44 0 0 0 0 0 0 3.2 - 44 0 0 0 0 0 0 0 3.2 - 44 0 0 0 0 0 0 0 3.2 - 44 0 0 0 0 0 0 0 3.2 - 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40	0	0.5	1	20	0.5	40	0	0.5	1	20	0.5			
44 0 0 0 0 32 - 44 0 0 0 0 32 - 44 4 0 0 0 0 32 - 44 4 5 0 0 0 0 1 1 - 45 0 0 0 0 1 1 - 45 0 0 0 0 1 1 - 45 0 0 0 0 1 1 - 45 0 0 0 0 1 1 - 45 0 0 0 0 1 1 - 45 0 0 0 0 1 1 - 45 0 0 0 0 1 1 - 45 0 0 0 0 1 1 - 45 0 0 0 0 1 1 - 45 0 0 0 0 1 1 - 45 0 0 0 0 0 1 1 - 45 0 0 0 0 0 1 1 - 45 0 0 0 0 0 1 1 - 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	42				5		42			0					
45 0 0 0 1 1 18.5 - 46 0 0 0 1 1 5.5 - 47 0 0 0.3 1 18.5 - 47 0 0 0.3 1 18.5 - 47 0 0 0.5 1 1 20.1 - 47 1 0 0.6 1 1 20.1 - 5 1 0 0.5 1 1 20.1 - 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-														
47 0 0 0.6 1 20.1 - 47 1 0.6 1 20.1 - 48 0 0 0.3 1 8 - 48 0 0 0.3 1 8 8 - 48 0 0 0.3 1 8 8 - 48 0 0 0.3 1 8 8 - 48 0 0 0.3 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 8 8 - 48 0 0 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45	0	0	0	1		45	0	0	0	1	-			
49 0 0 02 1 8 - 49 0 02 1 8 - 29 0.5 60 0 0 77 1 26 0.5 50 1 0.7 1 29 0.5 61 0 0 0.7 1 26 0.5 50 1 0.7 1 29 0.5 61 0 0 0.6 1 20 - 81 1 0.6 1 20 - 20 1 0.6 1 20 - 20 1 0.6 1 20 - 20 1 0.6 1 20 - 20 1 0.6 1 20 - 20 1 0.6 1 20 - 20 1 0.6 1 20 - 20 1 0.6 1 20 1 20 - 20 1 0.6 1 1 20 - 20 1 0.6 1 1 20 - 20 1 0.6 1 1 20 - 20 1 0.6 1 1 20 - 20 1 0.6 1 1 20 - 20 1 0.6 1 1 20 - 20 1 0.6 1 1 20 - 20 1 0.6 1 1 20 - 20 1 0.6 1 1 20 - 20 1 0.6 1 1 20 - 20 1 0.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	47		0.6	•			47		0.6						
S0			0.3				48 49		0.3						
S2	50	0	0.7	1	26	0.5	50	1	0.7	1	29	0.5			
554 0 0 0.5 1 7.1 - 54 0 0.5 1 7.1 7.1 - 55 5 0 0 0 0 3.3 - 55 0 0 0 0 3.3 - 55 0 0 0 0 3.3 - 55 0 0 0 0 0 3.3 - 55 0 0 0 0 0 3.3 - 55 0 0 0 0 0 3.3 - 55 0 0 0 0 0 3.3 - 55 0 0 0 0 0 0 3.3 - 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52		0.3		7.5		52		0.3		7.5				
55							53 54		0.5 0.5		14.5 7.1				
S7	55	0	0	0	3.3	-	55	0	0	0	3.3	-			
Sep	57		0.3		5		57	0	0.3		5				
660 0 0.3 1 5.2 0.5 660 0 0.3 1 5.2 0.26 61 0 0 0.8 1 6 6 - 61 1 0.8 1 6 6 - 61 1 0.8 1 6 6 - 61 1 10.8 1 6 6 - 61 1 10.8 1 6 6 - 61 1 10.8 1 16 6 - 61 1 10.8 1 16 6 - 61 1 10.8 1 16 6 - 61 1 10.8 1 16 6 - 61 1 10.8 1 16 6 - 61 1 10.8 1 10.8 1 16 6 - 61 1 10.8							58 59								
62	60	0	0.3	1	5.2	0.5	60	0	0.3	1	5.2	0.25			
64 0 0 0.8 1 12.3 - 64 0 0.8 1 12.3 - 65 0 0.6 1 12.2 - 66 6 0 0 0.6 1 12.2 - 66 6 0 0 0.6 1 12.2 - 66 6 0 0 0.1 1 1 4.8 - 66 0 0 0.1 1 1 4.8 - 66 0 0 0.1 1 1 4.8 - 66 0 0 0.1 1 1 4.8 - 66 0 0 0.1 1 1 4.8 - 7 - 67 1 1 0.4 1 1 7 - 68 0 0 0.5 1 1 10.5 - 68 0 0 0.5 1 1 10.5 - 68 0 0 0.5 1 1 10.5 - 7 1 1 0.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	62		0.5		17.5		62		0.5		17.5				
65					3.5 12.3						9.5 12.3				
67	65	0	0.6	1	12.2	-	65	0	0.6	1	12.2	-			
69 0 0 0.6 1 17.5 - 69 1 0.6 1 17.5 - 13 0.25 70 0 0 0.5 1 13 0.25 71 0 0 0.8 1 10.5 - 71 0 0 0.5 1 13 0.25 71 0 0 0.8 1 10.5 - 71 0 0 0.8 1 10.5 - 73 72 0 0 0.5 1 7.5 - 73 0 0 0.5 1 15 73 0 0 0.5 1 7.5 - 73 0 0 0.5 1 7.5 - 74 74 0 0 0.5 1 4.5 - 72 1 0 0.5 1 7.5 - 74 75 0 0 0.4 1 7.3 - 76 0 0.4 1 7.3 - 75 76 0 0.4 1 7.3 - 76 0 0.4 1 7.3 - 76 77 0 0 0.5 1 12.1 - 77 0 0.5 1 12.1 - 77 78 0 0 0.5 1 133 - 78 1 0.5 1 12.1 - 77 79 0 0.5 1 133 - 78 1 0.5 1 12.1 - 77 80 0 0.5 1 133 - 78 1 0.5 1 12.1 - 78 80 0 0.5 1 1 20 0.25 80 0 0.5 1 26 - 88 80 0 0 0.5 1 20 0.25 80 0 0.5 1 20 0.25 81 0 0.8 1 7.5 - 81 0 0.8 1 7.5 - 82 82 0 0.3 1 8.2 - 82 0 0.3 1 8.2 - 82 83 0 0 0.4 1 4.2 - 83 0 0.4 1 4.2 - 83 84 0 0 0.5 1 10 - 84 0 0.5 1 10 - 84 0 0.5 1 10 - 84 84 0 0 0.5 1 10 - 84 0 0.5 1 10 - 84 85 0 0 0 0.5 1 10 0 0.5 1 10 0 0.5 1 10 0 0.5 86 0 0 0 0.5 1 10 0 0.5 1 10 0 0.5 1 10 0 0.5 86 0 0 0 0.5 1 10 0 0.5 1 10 0 0.5 1 10 0 0.5 86 0 0 0 0.5 1 10 0 0.5 1 10 0 0.5 1 10 0 0.5 86 0 0 0 0.5 1 10 0 0.5 1 10 0 0.5 1 10 0 0.5 87 0 0 0.5 1 10 0 0.5 1 10 0 0.5 1 10 0 0.5 88 0 0 0 0.5 1 10 0 0.5 1 10 0 0.5 1 10 0 0.5 89 0 0 0 0 0 0 2 0 0 2 0 0.5 1 10 0 0.5 1 10 0 0.5 89 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0	67		0.4		7		67		0.4		7				
70					10.5 17.5		68 69		0.5 0.6						
72	70	0	0.5	1	13	0.25	70	0	0.5	1	13	0.25			
73	72	0	0.5	1	15	-	72	1	0.5	1	15	-			
75 0 0 0.4 1 7.3 - 75 0 0.4 1 7.3 - 76 0 0.4 1 7.3 - 76 76 0 0.2 1 8.2 - 77 0 0.5 1 8.2 - 77 0 0.5 1 12.1 - 77 0 0.5 1 12.1 - 77 0 0.5 1 12.1 - 78 0 0.5 1 12.1 - 79 0 0.1 12.1 - 79 0 0.5 1 12.	73 74		0.5		7.5		73		0.5		7.5				
77	75	0	0.4	1	7.3	-	75	0	0.4	1	7.3	-			
79	77	0	0.5	1	12.1		77	0	0.5	1	12.1				
80					13 26		78 79		0.5 0.5		13 26				
82	80	0	0.5	1	20	0.25	80	0	0.5	1	20	0.25			
84 0 0.5 1 100 - 84 0 0.5 1 100 - 85 85 0 0.5 1 100 - 85 85 0 0.3 1 8 - 85 0 0.3 1 8 - 85 0 0.3 1 8 - 85 0 0.3 1 8 - 85 0 0.3 1 8 - 85 0 0.3 1 8 - 85 0 0.3 1 8 - 85 0 0.3 1 8 - 85 0 0.3 1 8 - 85 0 0.3 1 8 - 85 0 0.3 1 8 - 85 0 0.3 1 8 - 85 0 0.3 1 9 - 85 0 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	82	0	0.3	1	8.2		82	0	0.3	1	8.2				
85															
87 0 0.5 1 6.5 - 87 0 0.5 1 6.5 - 88 8 0 0.3 1 7.5 - 88 8 0 0.3 1 7.5 - 89 0 0.1 1 1 4.5 - 90 0 0 0.6 1 13 0.25 90 0 0 0.6 1 13 0.25 91 0 0.4 1 7.5 - 91 0 0.4 1 7.5 - 91 0 0.4 1 7.5 - 92 0 0.8 1 18 - 92 0 0.8 1 18 - 92 0 0.8 1 18 - 92 0 0.8 1 18 - 93 0 0 0.7 1 13.4 - 93 0 0 0.7 1 13.4 - 93 0 0 0.6 1 22 - 94 0 0.6 1 22 - 94 0 0.6 1 22 - 95 0 0.3 1 7.5 - 95 0 0.3 1 7.5 - 95 0 0.3 1 7.5 - 95 0 0.3 1 7.5 - 96 0 0.8 1 7.8 - 96 0 0.8 1 7.8 - 97 0 0.1 1 7.2 - 98 0 0.6 1 17.2 - 99 0 0 0.2 1 1 7.2 - 99 0 0 0.2 1 1 5.5 - 99 0 0 0.2 1 1 5.5 - 99 0 0 0.2 1 1 5.5 - 99 0 0 0.2 1 1 5.5 - 99 0 0 0.2 1 1 3.8 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	85	0	0.3	1	8	-	85	0	0.3	1	8	-			
88	87	0	0.5	1	6.5		87	0	0.5	1	6.5				
90				-			88 89								
92 0 0.8 1 18 - 92 0 0.8 1 18 - 93 0 0.7 1 13.4 - 93 0 0.7 1 13.4 - 94 0 0.6 1 22 - 94 0 0.6 1 22 - 95 0 0.3 1 7.5 - 95 0 0.3 1 7.5 - 95 0 0.3 1 7.5 - 96 0 0.8 1 7.8 - 96 0 0.8 1 7.8 - 96 0 0.8 1 7.8 - 96 0 0.8 1 7.8 - 96 0 0.8 1 7.8 - 97 0 0.1 1 7.2 - 97 0 0.1 1 7.2 - 98 1 0.6 1 16 </th <th>90</th> <th>0</th> <th>0.6</th> <th>1</th> <th>13</th> <th>0.25</th> <th>90</th> <th>0</th> <th>0.6</th> <th>1</th> <th>13</th> <th>0.25</th>	90	0	0.6	1	13	0.25	90	0	0.6	1	13	0.25			
94 0 0.6 1 22 - 94 0 0.6 1 22 - 95 0 0.3 1 7.5 - 95 0 0.3 1 7.5 - 96 0 0.8 1 7.8 - 96 0 0.8 1 7.8 - 97 0 0.1 1 7.2 - 97 0 0.1 1 7.2 - 98 0 0.6 1 16 - 98 1 0.6 1 16 - 99 0 0.2 1 5.5 - 99 0 0.2 1 5.5 - 100 0 0.1 1 3.8 0.25 100 0 0.1 1 3.8 0.25 Average Cic, Cip and Embed. = 0 0.68 9.5 0.25 0.25 0.68 9.5 0.25	92	0	0.8	1	18		92	0	0.8	1	18				
95 0 0.3 1 7.5 - 95 0 0.3 1 7.5 - 96 0 0.8 1 7.8 - 96 0 0.8 1 7.8 - 97 0 0.1 1 7.2 - 97 0 0.1 1 7.2 - 98 0 0.6 1 16 - 98 1 0.6 1 16 - 99 0 0.2 1 5.5 - 99 0 0.2 1 5.5 - 100 0 0.1 1 3.8 0.25 100 0 0.1 1 3.8 0.25 Average Embed. = 0 0.32 0.68 9.4 0.28 Cic, Cip and Embed. = 0.15 0.32 0.68 9.5 0.25					13.4 22						1 3.4 22				
97 0 0.1 1 7.2 - 97 0 0.1 1 7.2 - 98 0 0.1 1 7.2 - 98 1 0.6 1 16 - 98 1 0.6 1 16 - 99 0 0.2 1 5.5 - 99 0 0.2 1 5.5 - - 99 0 0.2 1 5.5 - - 100 0 0.1 1 3.8 0.25 0.25 100 0 0.1 1 3.8 0.25 Average Cic, Cip and Embed. = 0.32 0.68 9.5 0.25 0.25 0.68 9.5 0.25 Old Calcite Index (CI) = 0.68 0.68 0.68 0.83 0.83	95	0	0.3	1	7.5	-	95	0	0.3	1	7.5	-			
98 0 0.6 1 16 - 98 1 0.6 1 16 - 99 0 0.2 1 5.5 - 99 0 0.2 1 5.5 - 100 0 0.1 1 3.8 0.25 100 0 0.1 1 3.8 0.25 Average Cic, Cip and Embed. = 0.15 0.32 0.68 9.5 0.25 Old Calcite Index (CI) = 0.68 0.83	97	0	0.1	1	7.2		97	0	0.1	1	7.2				
100 0 0.1 1 3.8 0.25 100 0 0.1 1 3.8 0.25 Average Cic, Cip and Embed. = 0 0.32 0.68 9.4 0.28 Cic, Cip and Embed. = 0.15 0.32 0.68 9.5 0.25 Old Calcite Index (CI) = 0.68 Old Calcite Index (CI) = 0.83			0.6					1	0.6						
Cic, Cip and Embed. = 0.32 0.68 9.4 0.28 Cic, Cip and Embed. = 0.15 0.32 0.68 9.5 0.25 Old Calcite Index (CI) = 0.68 Old Calcite Index (CI) = 0.83					3.8				0.1			0.25			
Old Calcite Index (CI) = 0.68 Old Calcite Index (CI) = 0.83	Cic, Cip and	0	0.32	0.68	9.4	0.28	Cic, Cip and	0.15	0.32	0.68	9.5	0.25			
New Calcite Index (CI) = 0.32 New Calcite Index (CI) = 0.47	Old Calci	te Index (CI) =				ı	Old Calcit	e Index (CI) =				l .			

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

PADD	LC_FRB-3 10-Sep-22						LC_FRUS-1 10-Sep-22							
2		Status	Calcite Proportion	Calcite Presence	Axis (cm)			Status	Calcite Proportion	Calcite Presence	Axis (cm)	Embeddedne ss (%)		
4 5 C C 1 1 3 C C 1 1 3 C C C C C 1 1 123 C C C C C C C C C C C C C C C C C C C	2	0	0.1	1	5		2	0	0	0	11			
## 3	4	0	0.1	-	3		4	0	0.5	1	10.8			
7		-								_				
3	7	0	0.3	1	13.9	-	7	1	0.6	1	14	-		
11										•				
12 3 61 1 7.5 - 12 3 5 0 3 - 17 17 17 17 17 17 1														
141 0 0 05 1 1 207 . 144 0 0 07 1 1 72 1 . 161 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12	0	0.1	1	7.5		12	0	0	0	9			
18										•				
177 0 0 01 1 1 2 0 - 1 17 1 0 77 1 20 - 1 18 19 0 1 18 19 0 1 18 19 0 1 18 19 0 1 18 19 0 1 18 19 0 1 18 19 0 1 18 19 0 1 18 19 19 19 19 19 19 19 19 19 19 19 19 19			0.2		5		15				10.5			
191 0 0 0 2 1 1 5 5 0 1 191 0 0 0 0 1 1 10 0 1 1 1 10 0 1 1 1 1	17	0	0.1	1	2		17	1	0.7	1	20			
281 0 0 04 1 32 103 20 0 0.8 1 1.15 1.2 0.9 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2														
22														
242 0 0 0.2 1 4 - 244 1 0 0 0 3 254 1 1 0 0 0 3 258 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	22	0	0.3	1	5		22	0	0.8	1	11.5			
282 0 0 06 1 52 . 385 0 0 08 1 75 . 386 0 0 08 1 75 . 387 . 388 .										-				
27 0 0 3 1 4 - 27 0 0 0 0 6 . 28 0 0 0 0 0 0 0 6 5 . 28 0 0 0 0 0 0 6 6 5 . 28 0 0 0 0 0 6 6 6 5 . 28 0 0 0 0 0 6 6 6 5 . 29 0 0 0 0 0 6 6 6 5 . 29 0 0 0 0 0 0 6 6 6 5 . 29 0 0 0 0 0 0 1 7 . 20 0 0 0 0 0 1 1 7 . 20 0 0 0 0 0 1 1 7 . 20 0 0 0 0 0 1 1 7 . 20 0 0 0 0 0 1 1 7 . 20 0 0 0 0 0 1 1 7 . 20 0 0 0 0 0 1 1 7 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 1 1 8 . 20 0 0 0 0 1 1 8 . 20 0 0 0 0 1 1 8 . 20 0 0 0 0 1 1 8 . 20 0 0 0 0 1 1 8 . 20 0 0 0 0 1 1 8 . 20 0 0 0 0 1 1 8 . 20 0 0 0 0 1 1 8 . 20 0 0 0 0 1 1 8 . 20 0 0 0 0 1 1 8 . 20 0 0 0 0 1 1 8 . 20 0 0 0 0 1 1 8 . 20 0 0 0 0 1 1 8 . 20 0 0 0 0 1 1 8 . 20 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 0 0 1 1 8 . 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25	0	0.6	1	5.2	-	25	0	0.8	1	7.5	-		
287 0 0 03 1 73 - 288 0 0 0 0 0 2 2 - 3 3														
330 0 02 1 35 0 02 1 35 0 02 34 1 038 1 1 175 0.25 331 0 0 04 1 0 05	-		0				28	0	0	0	8.5			
322	30	0	0.2	1	3.5	0.25	30	1	0.8	1	17.5	0.25		
33 0 0 0.4 1 5.5 - 33 0 0 0.5 1 1 17 - 34 1 18 - 34 1 18 - 34 1 18 18 - 34 18 18 18 18 18 18 18 18 18 18 18 18 18														
35	33	0	0.4	1	5.6	-	33	0	0.5	1	17	-		
37 0 0 0.2 1 0.5 - 38 0 0 0 0 10.8 1.13	35	1	0.4	1	23.5		35	0	0	0	10			
38 0 0 0.2 1 5														
40 0 0 0.1 1 7.4 0 40 0 0 0 0 8 0.5 1 177 - 4 4 1 0 0 0.5 1 177 - 4 4 1 0 0 0.5 1 1 177 - 4 4 1 0 0 0.5 1 1 177 - 4 4 1 0 0 0.5 1 1 177 - 4 4 1 0 0 0.5 1 1 177 - 4 4 1 0 0 0.5 1 1 177 - 4 4 1 0 0 0.5 1 1 175 - 4 4 1 0 0 0.5 1 1 15.5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	38	0	0.2	1	5	-	38	0	0.6	1	11.3	-		
42											8			
43												-		
46 0 0 03 1 1 0 4.8	43	0	0.3	1	15		43	1	0.8	1	23			
46 0 0 0.3 1 1 8										-		-		
48 0 0 0.4 1 5	46	0		1	6		46		0.6		14			
50	48	0	0.4	1	5		48	0	0.5	1	10.5			
St								· ·						
S3	51	0	0.1	1	4.5	-	51	0	0.5	1	7.5	-		
55														
Section Sect														
S8	56	0	0.2	1	5.1	-	56	0	0.7	1	22	-		
60 0 0 0.5 1 7.3 0.25 60 0 0.6 1 10.0 0.75 61 0 0.5 1 1 5.1 - 61 0 0.9 1 1 8.5 - 62 0 0 0 0 0 7.5 - 62 0 0.5 1 13.5 - 63 0 0.3 1 14 - 63 0 0.6 1 7.5 - 64 1 0.5 1 25.5 - 64 0 0.8 1 19 65 0 0.1 1 4.5 - 65 0 0.9 1 13.5 - 66 0 0 0 0 7.7 - 66 0 0.1 17 66 0 0 0 0 0 7 66 0 0.1 17 66 0 0 0 0 0 7 66 0 0.1 17 67 0 0.1 1 12 - 67 0 0.5 1 9 - 68 1 0.5 1 18 - 68 0 0.7 1 11 68 1 0.5 1 18 - 68 0 0.7 1 11 69 0 0.1 1 7.5 - 69 0 0.6 1 8 - 69 0 0.1 1 7.5 - 69 0 0.6 1 8 - 69 0 0.1 1 7.5 - 69 0 0.6 1 8 - 70 0 0 0.2 1 7.5 0.5 70 0 0.8 1 11 70 0 0 0.2 1 7.5 0.5 70 0 0.8 1 11 71 0 0.1 1 6.5 - 72 0 0.7 1 11 72 1 0 0.1 1 6.5 - 72 0 0.7 1 11 73 1 0 0.3 1 4.5 - 72 0 0.7 1 1 74 1 0 0.5 1 3.5 - 72 0 0.7 1 1 75 0 0 0.3 1 13.5 - 73 0 0.7 1 1 75 0 0 0.3 1 13.5 - 73 0 0.7 1 1 76 0 0 0.3 1 13.5 - 73 0 0.7 1 1 77 0 0 0.5 1 8.5 - 72 0 0.7 1 1 78 0 0 0.3 1 13.5 - 73 0 0.7 1 1 78 0 0 0.3 1 13.5 - 73 0 0.7 1 1 78 0 0.0 3 1 13.5 - 74 0 0.2 1 7.5 - 78 0 0.0 3 1 13.5 - 75 0 0.0 2 1 7.5 - 78 0 0 0.3 1 1 17 - 77 0 0.8 11 16 - 79 0 0 0.5 1 8.5 - 79 0 0.3 1 1 15 - 78 0 0 0.5 1 8.5 - 79 0 0.3 1 1 15 - 78 0 0 0.5 1 8.5 - 79 0 0.3 1 1 15 - 78 0 0 0.5 1 18.5 - 79 0 0.3 1 1 15 - 78 0 0 0.5 1 18.5 - 79 0 0.3 1 1 15 - 78 0 0 0.5 1 1 8.5 - 79 0 0.3 1 1 15 - 83 0 0 0.1 1 1 10.4 - 85 0 0.6 1 1 14 0.5 - 83 0 0 0.1 1 1 10.4 - 85 0 0.6 1 1 14 0.5 - 83 0 0 0.1 1 1 10.4 - 85 0 0.6 1 1 14 0.5 - 83 0 0 0.1 1 1 10.4 - 85 0 0.6 1 1 14 0.5 - 83 0 0 0.1 1 1 10.4 - 85 0 0.6 1 1 14 0.5 - 84 0 0 0.5 1 1 9.8 - 84 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
61 0 0 0.5 1 5.1 - 61 0 0.9 1 1 8.5 - 62 0 0.05 1 13.5 - 63 0 0.0 0.5 1 13.5 - 63 0 0.0 0.5 1 13.5 - 64 1 1 0.5 1 25.5 - 64 0 0.8 1 1 19 - 65 0 0.5 1 13.5 - 65 0 0.9 1 1 13.5 - 66 0 0.0 0 7 7 - 66 0 0.9 1 1 13.5 - 66 0 0.0 0 7 7 - 66 0 0.1 1 7 7 - 67 0 0.5 1 1 13.5 - 67 0 0.5 1 1 13.5 - 67 0 0.5 1 1 13.5 - 68 1 0 0.9 1 1 13.5 - 68 1 0 0.9 1 1 13.5 - 68 1 0 0.9 1 1 13.5 - 68 1 0 0.9 1 1 13.5 - 68 1 0 0.9 1 1 13.5 - 68 1 0 0.9 1 1 13.5 - 68 1 0 0.9 1 1 13.5 - 68 1 0 0.9 1 1 13.5 - 68 1 0 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														
63 0 0.3 1 14 - 63 0 0.6 1 7.5 - 64 1 0.5 1 25.5 - 64 0 0.8 1 19 - 65 - 65 0 0.9 1 13.5 - 65 0 0.0 1 1 4.5 - 65 0 0.9 1 13.5 - 67 0 0.5 1 1 25.5 - 66 0 0.9 1 13.5 - 67 0 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	61	0	0.5	1	5.1	-	61	0	0.9	1	8.5	-		
65														
668 0 0 0 0 1 1 1 1 12 - 66 0 0.1 1 1 7 - 68 6 0 0.1 1 1 9 - 68 6 1 0.5 1 9 - 68 6 1 0.5 1 9 - 68 6 1 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	0.5		25.5		64		0.8		19			
688	66	0	0	0	7		66	0	0.1	1	7			
68														
71			0.1		7.5		69							
73	71		0.1		6.5		71		0.5		5.5			
74														
76	74	1	0.5	1	11	-	74	0	0.2	1	7	-		
78	76	1	0.5	1	14		76	0	0.1	1	6			
79			0.1											
81 0 0 0 11 - 81 0 0 0.5 1 15 - 82 0 0.7 1 16 - 83 0 0.1 1 16 - 83 0 0.1 1 16 0 - 83 0 0.1 1 1 10 0 - 84 0 0.2 1 9.8 - 84 0 0.8 1 19 - 85 0 0.6 1 8 5 0 0.1 1 1 10.4 - 85 0 0.6 1 8 5 0 0.6 1 8 5 0 0.6 1 8 5 0 0.6 1 8 5 0 0.6 1 8 5 0 0.6 1 8 5 0 0.6 1 8 5 0 0.6 1 1 8 0 0.8 8 1 0 0.3 1 1 13 0 0.5 1 1 17 0 0 0.5 1 1 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79	0	0.5	1	8.5	-	79	0	0.3	1	5	-		
82	81		0		11				0.5					
84 0 0.2 1 9.8 - 84 0 0.8 1 19 - 85 0 0.6 1 8 1 19 - 85 0 0.6 1 1 8 - 86 0 0 0 0 0 0 6 - 87 0 0.5 1 17 17 - 87 0 0.1 1 1 15 - 88 0 0.3 1 1 13 - 88 0 0.3 1 1 13 - 89 0 0.3 1 1 29 0.25 90 0 0 0.6 1 1 10 0.5 91 0 0 0 0 9 - 91 0 0.5 1 1 20 - 93 0 0.5 1 1 10 0 0.5 91 0 0 0.3 1 1 8 - 92 0 0.3 1 1 9 9 - 93 0 0 0.3 1 1 9 9 - 91 0 0 0.3 1 1 9 9 - 93 0 0 0.5 1 1 10 0 0.5 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					29		82		0.7		16			
86 0 0 0.55 1 177 - 86 0 0 0 6 - 87 0 0.5 1 177 - 87 0 0.1 1 5 - 88 0 0.5 1 199 - 88 0 0.3 1 133 - 89 0 0.4 1 21 - 89 0 0.7 1 144 - 90 0 0.3 1 29 0.25 90 0 0.6 1 10 0.5 91 0 0 0 0 9 - 91 0 0.5 1 20 - 92 0 0.3 1 8 - 92 0 0.3 1 90 - 93 0 0.5 1 22 - 93 0 0.4 1	84	0	0.2	1	9.8	-	84	0	0.8	1	19	-		
87	86		0		7.5				0					
89 0 0.4 1 21 - 89 0 0.7 1 14 - 90 0 0.3 1 29 0.25 90 0 0.6 1 10 0.5 91 0 0 0 9 - 91 0 0.55 1 20 - 92 0 0.3 1 8 - 92 0 0.3 1 9 - 93 0 0.5 1 22 - 93 0 0.4 1 10 - 94 0 0.4 1 7.5 - 94 1 0.8 1 11 - 95 0 0 0 2 - 95 0 0.5 1 15 - 96 0 0 0 0 7 - 97 0 0.3 1 4.8 - <td>87</td> <td>0</td> <td>0.5</td> <td>1</td> <td>17</td> <td>-</td> <td>87</td> <td>0</td> <td>0.1</td> <td>1</td> <td>5</td> <td>-</td>	87	0	0.5	1	17	-	87	0	0.1	1	5	-		
91 0 0 9 - 91 0 0.5 1 20 - 92 0 0.3 1 8 - 92 0 0.3 1 9 - 93 0 0.5 1 92 - 93 0 0.4 1 10 - 94 0 0.4 1 7.5 - 94 1 0.8 1 11 - 95 0 0 0 2 - 95 0 0.5 1 15 - 96 0 0 0 0 2 - 95 0 0.5 1 11 - 97 0 0 0 7 - 97 0 0.3 1 4.8 - 98 0 0.1 1 5.1 - 98 0 0.8 1 19.8 -	89	0	0.4	1	21	-	89	0	0.7	1	14	-		
92 0 0.3 1 8 - 92 0 0.3 1 9 - 93 0 0.5 1 22 - 93 0 0.4 1 10 - 94 0 0.4 1 7.5 - 94 1 0.8 1 11 - 95 0 0 0 2 - 95 0 0.5 1 15 - 96 0 0 0 0 3.5 - 96 0 0.7 1 11 - 97 0 0 0 0 7 - 97 0 0.3 1 4.8 - 98 0 0.1 1 5.1 - 98 0 0.8 1 19.8 - 99 0 0 0 0 4.6 - 99 0 0.6 1														
94 0 0.4 1 7.5 - 94 1 0.8 1 11 - 95 0 0 0 2 - 95 0 0.5 1 15 - 96 0 0 0 3.5 - 96 0 0.7 1 11 - 97 0 0 0 7 - 97 0 0.3 1 4.8 - 98 0 0.1 1 5.1 - 98 0 0.8 1 19.8 - 99 0 0 0 4.6 - 99 0 0.6 1 17.4 - 100 0 0.2 1 5.9 0.5 100 0 0.2 1 6 0 Average Embed. = 0 0 0.82 11.3 0.45	92	0	0.3	1	8	-	92	0	0.3	1	9	-		
96 0 0 0 3.5 - 96 0 0.7 1 11 - 97 0 0 0 7 - 97 0 0.3 1 4.8 - 98 0 0.1 1 5.1 - 98 0 0.8 1 19.8 - 99 0 0 0 0 4.6 - 99 0 0.6 1 17.4 - 100 0 0.2 1 5.9 0.5 100 0 0.2 1 6 0 Average Embed. = 0.08 0.80 9.4 0.35 Cic, Cip and Embed. = 0.09 0.50 0.82 11.3 0.45	94	0	0.4	1	7.5		94	1	0.8	1	11			
97 0 0 0 7 - 97 0 0.3 1 4.8 - 98 0 0.1 1 5.1 - 98 0 0.8 1 19.8 - 99 0 0 0 0 4.6 - 99 0 0.6 1 17.4 - 100 0 0.2 1 5.9 0.5 100 0 0.2 1 6 0 Average Cic, Cip and Embed. = 0.09 0.50 0.82 11.3 0.45 Old Calcite Index (CI) = 0.91												-		
99 0 0 0 4.6 - 99 0 0.6 1 17.4 - 100 0 0.2 1 5.9 0.5 100 0 0.2 1 6 0 Average Cic, Cip and Embed. = 0.09 0.50 0.82 11.3 0.45 Old Calcite Index (CI) = 0.88 Old Calcite Index (CI) = 0.91	97	0	0	0	7	-	97	0	0.3	1	4.8	-		
100 0 0.2 1 5.9 0.5 100 0 0.2 1 6 0 Average Cic, Cip and Embed. = 0.08 0.25 0.80 9.4 0.35 Cic, Cip and Embed. = 0.09 0.50 0.82 11.3 0.45 Old Calcite Index (CI) = 0.88 Old Calcite Index (CI) = 0.91	99	0	0	0	4.6	-	99	0	0.6	1	17.4	-		
Embed. = Embed. = Old Calcite Index (CI) = 0.88 Old Calcite Index (CI) = 0.91	100 Average	0	0.2	1	5.9		100 Average	0	0.2	1	6			
New Calcite Index (CI) = 0.33 New Calcite Index (CI) = 0.59	Embed. =	e Index (CI) =		0	0.88	0.00	Embed. =	e Index (CI) =			0.91	U.70		

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

			FRUS-2 Sep-22			LC_FRUS-3 10-Sep-22							
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)		
1	0	0	0	10	-	1	0	0.8	1	10.5	-		
2	0	0	0	10.5 12	-	2 3	0	0.6 0.5	1	16 7.5	-		
4 5	0	0	0	11 15	-	4 5	0	0.8 0.5	1	8.5 5.5	-		
6	0	0	0	2	-	6	0	0.6	1	15.3	-		
7 8	0	0.7 0.7	1	9 10.5	-	7 8	0	0.7 0.9	1	15.5 10.5	-		
9	0	0	0	9	-	9	0	0.7	1	9.5	- 0.75		
11	0	0.3	0	6	0.5	11	0	0.7	1	7.5 7.5	0.75		
12 13	0	0 0.7	0	5.3 9	-	12 13	0	0.6	1	5.6 9.3	-		
14	0	0	0	7.5	-	14	0	0.5	1	11.4	-		
15 16	0	0 0.4	0 1	6 5.7	-	15 16	0	0.5 0.6	1	6.5 6.8	-		
17 18	0	0.6 0.7	1	5.5 11.5	-	17 18	0	1 0.8	1	7.5 6.8	-		
19	0	0	0	3	-	19	0	0.9	1	8.9	-		
20 21	0	0 0.4	0	1.2 7.3	0.25	20 21	0	0.5 0.6	1	13 8.8	0.75		
22	0	0	0	1	-	22	0	0.7	1	12	-		
23 24	0	0.4 0.4	1	5.6 7	-	23 24	0	0.8	1	5 9.6	-		
25 26	0	0	0	3 7	-	25 26	0	0.5 0.9	1	12.1 13.5	-		
27	0	0.8	1	23	-	27	0	0.6	1	15	-		
28 29	0	0.6 0.8	1 1	8 21	-	28 29	0	0.7 0.5	1	12 9.3	-		
30	0	0.6	1	6.5	0.25	30	0	0.7	1	9	0.5		
31 32	0	0.3	0	9.2	-	31 32	0	0.3 0.4	1	8.2 10.4	-		
33 34	0	0.7 0.4	1	9 9.2	-	33 34	0	0.6 0.7	1	17 14	-		
35	0	0.4	1	15	-	35	0	0.5	1	7	-		
36 37	0	0.5 0.5	1 1	8	-	36 37	0	0.8	1	8.5 7.1	-		
38 39	0	0.9	1	12	-	38 39	0	1 0.7	1	6.8	-		
40	0	0.3	0 1	7	0.5	39 40	0	0.7	1	11 14	0.5		
41 42	0	0.3 0.4	1 1	8.6	-	41 42	0	0.8 0.5	1	7.1 17	-		
43	0	0.5	1	8	-	43	0	0.5	1	20	-		
44 45	0	0.7 0	1 0	16 4	-	44 45	0	0.9 0.5	1	13 10.5	-		
46	0	0	0	4.5	-	46	0	0.8	1	2.6	-		
47 48	0	0.1 0.1	1	7 6.6	-	47 48	0	0.8 0.8	1	3.8 9.2	-		
49 50	0	0	0	6.4 9	0.5	49 50	0	0.8 0.3	1	7.5 16	0.75		
51	0	0.8	1	5.9	-	51	0	0	0	9	-		
52 53	0	0	0	1.9 2.8	-	52 53	0	0.7 0.4	1	4.5 8	-		
54 55	0	0.1 0.3	1	3.8 4.8	-	54 55	0	0.8 0.6	1	7 5	-		
56	0	1	1	8.7	-	56	0	0.9	1	6.7	-		
57 58	0	0.4 0.3	1	5.3 7.1	-	57 58	0	0.5 0.6	1	9.5 11.1	-		
59	0	0	0	7.5	-	59	0	0.5	1	15	-		
60 61	0	0.5 0.1	1	8.7 5.2	0.75	60 61	0	0.5 0.3	1	11 7.6	0.5		
62 63	0	0	0	6.1 7.6	-	62 63	0	1 0.8	1	6.2 4.4	-		
64	0	0.1	1	8.5	-	64	0	0.6	1	13.5	-		
65 66	0	0.1	1 0	9.5 3.5	-	65 66	0	0.6 0.5	1	10 25	-		
67	0	0.1	1	4.2	-	67	0	0.7	1	10.5	-		
68 69	0	0.2	0 1	3 8.5	-	68 69	0	0.9 0.5	1	18 7	-		
70 71	0	0.1 0.1	1	9.5 5.5	0 -	70 71	0	0.6 0.8	1	6.5 7	0.5		
72	0	0.3	1	4.5	-	72	0	0.9	1	6.8	-		
73 74	0	0.1 0.3	1	8.5 7.6	-	73 74	0	0.8 0.7	1 1	19.5 8.1	-		
75 76	0	0.4 0.4	1	6.8 5.8	-	75 76	0	0.9 0.6	1	9.8 8.5	-		
77	0	0	0	3.6	-	77	0	0.5	1	7.9	-		
78 79	0	0.3 0.3	1	7.2 6.1	-	78 79	0	0.1 0.6	1	5 4	-		
80	0	0.1	1	3.5	0	80	0	1	1	12	0.5		
81 82	0	0.4	1 0	5.8 4.5	-	81 82	0 1	0.9 0.8	1	19 34	-		
83 84	0	0.5 0	1 0	14.5 4.5	-	83 84	0	0.6 0.4	1	17.5 13.5	-		
85	0	0.1	1	4.3	-	85	0	0.8	1	12.5	-		
86 87	0	0.3	0 1	3 12	-	86 87	0	0.5 0.6	1	3.6 7.5	-		
88	0	0.2	1	4.3	-	88	0	0.8	1	7.9	-		
89 90	0	0 0.8	0 1	4.5 7.2	0.75	89 90	0	0.9 0.9	1	12 7.5	0.5		
91 92	0	1 0.8	1	4.5 6.5	-	91 92	0	1 0.7	1	5.6 5.2	-		
93	0	0.8	1	5.8	-	93	0	0.7	1	7	-		
94 95	0	0.7 0	1 0	4.5 4.5	-	94 95	0	0.7 0.7	1	8 9.9	-		
96	0	0	0	2.8	-	96	0	0.6	1	15.2	-		
97 98	0	0.1 0.3	1 1	4.5 9.5	-	97 98	0	0.7 0.6	1	16 7	-		
99 100	0	0.5 0.8	1	7 6.5	0.5	99 100	0	0.4 0.4	1	10.1	0.25		
Average Cic, Cip and Embed. =		0.28	0.64	7.1		Average Cic, Cip and Embed. =	0.02	0.67	0.99	10.2	0.55		
	te Index (CI) =		0	0.64			te Index (CI) =			1.01			
New Calci	te Index (CI) =			0.28		New Calci	te Index (CI) =			0.69			

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

LC_GRCK-1 14-Sep-22						LC_GRCK-2 14-Sep-22						
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedn ss (%)	
1 2	0	0	0	11 8.2	-	1 2	0	0	0	9.7 8.8	-	
3 4	0	0	0	8.4 6	-	3 4	0	0	0	10 7.3	-	
5 6	0	0	0	6.3 8.2	-	5 6	0	0	0	7.2 5.4	-	
7	0	0	0	9.5	-	7	0	0	0	4.5	-	
8 9	0	0	0	5.5 5.6	-	8	0	0	0	2.2 4.3	-	
10 11	0	0	0	13 5.3	0.5	10 11	0	0	0	3.7 6.7	-	
12 13	0	0	0	8.1 14.5	-	12 13	0	0	0	3.6 5	-	
14 15	0	0	0	5.1 24.9	-	14 15	0	0	0	9 7.1	-	
16	0	0	0	3.5	-	16	0	0	0	9	-	
17 18	0	0	0	2 4	-	17 18	0	0	0	3.7 3.3	-	
19 20	0	0	0	10 3.5	0.75	19 20	0	0	0	8.5 5	0.75	
21 22	0	0	0	6.2 10	-	21 22	0	0	0	8 7	-	
23	0	0	0	6.7	-	23	0	0	0	3.6	-	
24 25	0	0	0	4.5 7	-	24 25	0	0	0	9 3.2	-	
26 27	0	0	0	7.5 5.5	-	26 27	0	0	0	11 10		
28 29	0	0	0	4 8.5	-	28 29	0	0	0	15 5.6	-	
30	0	0	0	3.1	0.5	30	0	0	0	7.1	0.75	
31 32	0	0	0	5.3 7	-	31 32	0	0	0	5 32		
33 34	0	0	0	5.1 4.4	-	33 34	0	0	0	16 2		
35 36	0	0	0	8.1 2.3	-	35 36	0	0	0	2.5 4.7	-	
37	0	0	0	8	-	37	0	0	0	3	-	
38 39	0	0	0	5 5.5	-	38 39	0	0	0	4.3	-	
40 41	0	0 0.2	0	8	0.75	40 41	0	0	0	16 6	0.75	
42	0	0	0	3.4 10	-	42	0	0	0	8 4.5	-	
44	0	0	0	8.5	-	44	0	0	0	3.1	-	
45 46	0	0	0	16 5.3	-	45 46	0	0	0	2 3	-	
47 48	0	0	0	13 10	-	47 48	0	0	0	17.5 3.5		
49	0	0	0	8	-	49	0	0	0	4	-	
50 51	0	0	0	8.7 8.2	0.25	50 51	0	0	0	4 3.6	0.5	
52 53	0	0	0	9.3 4.5	-	52 53	0	0	0	9.8 7.5	-	
54 55	0	0	0	6.2 8.4	-	54 55	0	0	0	5.1 7.8	-	
56	0	0	0	17	-	56	0	0	0	7	-	
57 58	0	0	0	14.5 10.1	-	57 58	0	0	0	10	-	
59 60	0	0	0	9.6 3.6	0.5	59 60	0	0	0	7.2 6.5	0.5	
61 62	0	0	0	3.9 4.1	-	61 62	0	0	0	4.5 5.6	-	
63	0	0	0	11.4	-	63	0	0	0	4.1	-	
64 65	0	0	0	7.4 8.1	-	64 65	0	0	0	3 18	-	
66 67	0	0	0	12 7.1	-	66 67	0	0	0	11 15	-	
68 69	0	0	0	7.3 9.5	-	68 69	0	0	0	7.1 3.5	-	
70	0	0	0	9.1	0.75	70	0	0	0	4.3	0.75	
71 72	0	0	0	6.8 6.2	-	71 72	0	0	0	7.5 7.6	-	
73 74	0	0	0	11.3 9.8	-	73 74	0	0	0	3.5 7	-	
75 76	0	0	0	8.4	-	75 76	0	0	0	3 2.6	-	
77	0	0	0	13.6	-	77	0	0	0	7.8	-	
78 79	0	0	0	8.1 11	-	78 79	0	0	0	11 11.5	-	
80 81	0	0	0	5.3 11	0.5	80 81	0	0	0	16 12	0.75	
82 83	0	0	0	6.4 6.2	-	82 83	0	0	0	7.6 7.2	-	
84	0	0	0	3.1	-	84	0	0	0	5.9	-	
85 86	0	0	0	3.1 2.6	-	85 86	0	0	0	17 3.2	-	
87 88	0	0 0	0	5.1 4.7	-	87 88	0	0	0	11 4.3	-	
89 90	0	0	0	3.2 15	0.5	89 90	0	0	0	7.5 6.4	0.5	
91	0	0	0	8.5	-	91	0	0	0	11.6	-	
92 93	0	0	0	6.3 21	-	92 93	0	0	0	8.1 7.5	-	
94 95	0	0	0	4.9 5.3	-	94 95	0	0	0	3.2 6.4	-	
96	0	0	0	5.9	-	96	0	0	0	2.5	-	
97 98	0	0	0	5.2 4.5	-	97 98	0	0	0	4.6 7.5	-	
99 100	0	0	0	4.8 8.5	0.25	99 100	0	0	0	5.5 3.7	0.5	
Average c, Cip and Embed. =	0	0.00	0.01	7.7		Average Cic, Cip and Embed. =		0	0	7.1	0.58	
		İ		1	1		1			i .	II.	

Table I.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations in Dry Creek, Fording River, and Grace Creek, 2022

			GRCK-3 Sep-22				LC_DCDS-1 30-Nov-22			LC_DCDS-2 30-Nov-22	
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne ss (%)	Pebble	Intermediate Axis (cm)	Embeddedne ss (%)	Pebble	Intermediate Axis (cm)	Embeddedne ss (%)
1 2	0	0	0	6 16	-	1 2	12.5 7.5	-	1 2	9 17	-
3 4	0	0	0	5 8.5	-	3 4	15 10.5	-	3 4	16.5 17.5	
5 6	0	0 0.4	0 1	6.6 14	-	5 6	4.5 9	-	5 6	7 9	-
7 8	0	0.1 0	1 0	10.5 5.6	-	7 8	8 17	-	7 8	16 4.5	
9	0	0.1 0.3	1	10 7.8	0.25	9	12 4	0.5	9	13 13	0.75
11	0	0	0	7.3 5.3	-	11	5	-	11	8 21	-
13 14	0	0	0	6.1	-	13 14	5	-	13 14	15	-
15	0	0.1	1	7.1	-	15	4.5	-	15	7.5	-
16 17	0	0 0.2	0	4.2 6.1	-	16 17	4 5.5	-	16 17	9.5 15	-
18 19	0	0	0	7.6 3	-	18 19	4.5 9	-	18 19	8 12.5	-
20 21	0	0	0	7.6 11.1	0.5	20 21	5 8	0.25	20 21	10.5 6	0.5
22 23	0	0.1 0.5	1	11.5 20.3	-	22 23	6 14	-	22 23	7.5 7.5	-
24 25	0	0.5 0.1	1 1	9 14	-	24 25	14 8.5	-	24 25	4	
26 27	0	0.5 0.3	1	17 8	-	26 27	4 12.5	-	26 27	5.5 11.5	-
28 29	0	0	0	7	-	28 29	4 9	-	28 29	3	-
30	0	0	0	3 2	0.5	30	9.5	0.5	30	11.5	0
31 32	0	0	0	5 4	-	31 32	11 7	-	31 32	8	-
33 34	0	0	0	12 6	-	33 34	7.5 7.5	-	33 34	6 10.5	-
35 36	0	0 0.4	0 1	14 5	-	35 36	14 4	-	35 36	8.5 6.5	
37 38	0	0	0	9 5	-	37 38	5.5 8	-	37 38	20 13	-
39 40	0	0.4	1 0	10.6	0.25	39 40	14 10	- 0	39 40	5	0.75
41	0	0	0	9.3	-	41 42	9 8.5	-	41 42	9.5	-
42 43	0	0 0.1	0	5 11	-	43	8	-	43	10 13	-
44 45	0	0 0.3	0	6.1 10	-	44 45	5.5 4	-	44 45	4 11	-
46 47	0	0.4 0.1	1	8 5	-	46 47	11 4.5 22	-	46 47	4.5 6.5	-
48 49	0	0	0	6.6 7.3	-	48 49	22 7.5	-	48 49	13 10	
50 51	0	0	0	4 7.6	0.25	50 51	10 15	0.75	50 51	11 8.5	0.75
52 53	0	0	0	4.1	-	52 53	7.5 5	-	52 53	6	-
54	0	0	0	5.2	-	54	6	-	54	10.5 7	-
55 56	0	0	0	3.9 5.5	-	55 56	5.5 4	-	55 56	7 9	-
57 58	0	0	0	7.5 4.9	-	57 58	6	-	57 58	16 11	-
59 60	0	0	0	9.5 8.5	0.5	59 60	5.5 8	0.25	59 60	5.5 7	0.5
61 62	0	0	0	5.6 5.5	-	61 62	18 15	-	61 62	6 4	
63 64	0	0	0	4.8	-	63 64	9 7.5	-	63 64	6.5 12	-
65	0	0	0	4.1	-	65	8	-	65	5.5	-
66 67	0	0	0	3.9 3.5	-	66 67	10 8.5 14	-	66 67	10 8	-
68 69	0	0	0	4 10	-	68 69	7	-	68 69	8 7.5	-
70 71	0	0	0	3 11.5	0.5	70 71	5.5 5 6	0.25	70 71	16 13	0.25
72 73	0	0 0	0	10.5 7	-	72 73	6 9	-	72 73	10 9.5	
74 75	0	0	0	11 5.6	-	74 75	7 10	-	74 75	9.5 8	-
76 77	0	0	0	12.3 10	-	76 77	8	-	76 77	12 5	-
78 79	0	0	0	7.5 7.8	-	78 79	9 9 7.5	-	78 79	7.5 6	-
80	0	0	0	3.2	0	80	5.5 6	0.25	80	12	0.5
81 82	0	0	0	3.8 6	-	81 82	5.5	-	81 82	5 6.5	-
83 84	0	0	0	4.5 5	-	83 84	4.5	-	83 84	10 4.5	
85 86	0	0	0	13.1 10.2	-	85 86	5 8	-	85 86	12.5 8	
87 88	0	0	0	9.8 7.5	-	87 88	6 7.5	-	87 88	4 4.5	
89 90	0	0	0	8 8.9	0.25	89 90	12	0.25	89 90	7 5.5	0.75
91	0	0	0	16	-	91 92	5	-	91 92	14	-
92 93	0	0	0	6.8	-	93	3.5 9	-	93	4.5 9	-
94 95	0	0	0	2.3	-	94 95	4.5 8	-	94 95	12.5 9.5	-
96 97	0	0	0	10 10.1	-	96 97	1 19		96 97	8 2	
98 99	0	0	0	3.5 3.3	-	98 99	8 5.5	-	98 99	2	-
100 Average c, Cip and Embed. =	0	0.05	0 0.19	7.6	0.5 0.35	100 Average Cic, Cip and Embed. =	2.5 7.9	0.25 0.33	100 Average Cic, Cip and Embed. =	2.5 8.9	0.75 0.55
Old Calcit	te Index (CI) =).19).05		EIIIDEA. =			EIIIDEG. =		

APPENDIX J LABORATORY REPORTS

WATER CHEMISTRY

ALS Laboratory Report CG2205677 (Finalized 23-May-22)

CERTIFICATE OF ANALYSIS

Work Order : CG2205677

Client : Teck Coal Limited

Contact : Mike Pope

Address : Line Creek Operations PO BOX 2003 15km North Hwy 43

Sparwood BC Canada V0B 2G0

Telephone : ---

Project : LINE CREEK OPERATION

PO : VPO00816101

C-O-C number : LCO_Dry Creek LAEMP_ALS

Sampler : ---Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 7

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800
Date Samples Received : 12-May-2022 09:20

Date Analysis Commenced : 13-May-2022

Issue Date : 23-May-2022 11:00

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia	
Delson Resende	Lab Assistant	Metals, Burnaby, British Columbia	
Elke Tabora		Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Kyle Chang	Lab Assistant	Metals, Burnaby, British Columbia	
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta	
Owen Cheng		Metals, Burnaby, British Columbia	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Shirley Li		Inorganics, Calgary, Alberta	

Page : 3 of 7 Work Order

: CG2205677 Client

: Teck Coal Limited

Project : LINE CREEK OPERATION

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

>: greater than.

Page : 4 of 7
Work Order : CG2205677
Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	lient sample ID	LC_FRUS_WS_ LAEMP_DRY_2 022-05_N	LC_GRCK_WS_ LAEMP_DRY_2 022-05_N	 	
			Client samp	oling date / time	11-May-2022 10:30	11-May-2022 12:45	 	
Analyte	CAS Number	Method	LOR	Unit	CG2205677-001	CG2205677-002	 	
					Result	Result	 	
Physical Tests								
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	188	159	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	229	194	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	7.0	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	4.2	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	188	166	 	
conductivity		E100	2.0	μS/cm	796	365	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	430	193	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	510	518	 	
pH		E108	0.10	pH units	8.24	8.37	 	
solids, total dissolved [TDS]		E162	10	mg/L	535	257	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	9.0	3.7	 	
turbidity		E121	0.10	NTU	2.53	1.06	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	3.19	0.19	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.122	0.098	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	1.36 DLM	<0.050 DLM	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	13.6	0.0453	 	
nitrite (as N)	14797-55-8	E235.NO3-L	0.0030	mg/L	0.0040	<0.0010	 	
phosphate, ortho-, dissolved (as P)		E378-U	0.0010		<0.0010	0.0019	 	
	14265-44-2	E376-U E372-U	0.0010	mg/L	0.0076	0.0019		
phosphorus, total	7723-14-0	E372-0 E235.SO4	0.0020	mg/L	207	42.6	 	
sulfate (as SO4)	14808-79-8	£235.3U4	0.30	mg/L	201	42.0	 	
Organic / Inorganic Carbon		E358-L	0.50	me/l	1.31	1.23		
carbon, dissolved organic [DOC]			0.50	mg/L			 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	1.45	1.09	 	

Page : 5 of 7
Work Order : CG2205677
Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Analytical Results

Sub-Matrix: Water (Matrix: Water)								
			Client samp	ling date / time	022-05_N 11-May-2022 10:30	022-05_N 11-May-2022 12:45		
Analyte	CAS Number	Method	LOR	Unit	CG2205677-001	CG2205677-002		
					Result	Result		
Ion Balance anion sum		EC101	0.10	meq/L	9.13	4.22		
cation sum		EC101	0.10	meq/L	8.76	4.01		
ion balance (cations/anions)		EC101	0.010	%	95.9	95.0		
ion balance (APHA)		EC101	0.010	%	2.07	2.55		
Total Metals				,,,				
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0485	0.0110		
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00017	<0.00010		
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00019	0.00016		
barium, total	7440-39-3	E420	0.00010	mg/L	0.0823	0.0601		
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020		
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050		
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	0.016		
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0561	0.0082		
calcium, total	7440-70-2	E420	0.050	mg/L	103	47.4		
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00034	0.00033		
cobalt, total	7440-48-4	E420	0.10	μg/L	0.11	<0.10		
copper, total	7440-50-8	E420	0.00050	mg/L	0.00097	<0.00050		
iron, total	7439-89-6	E420	0.010	mg/L	0.072	0.024		
lead, total	7439-92-1	E420	0.000050	mg/L	0.000352	<0.000050		
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0314	0.0070		
magnesium, total	7439-95-4	E420	0.0050	mg/L	44.5	17.6		
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0133	0.00307		
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.0000050		
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00138	0.00136		
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00268	<0.00050		
potassium, total	7440-09-7	E420	0.050	mg/L	1.49	0.699		
selenium, total	7782-49-2	E420	0.050	μg/L	51.5	1.66		
silicon, total	7440-21-3	E420	0.10	mg/L	1.97	2.72		
silver, total	7440-22-4	E420	0.000010	mg/L	0.00146	<0.000010		
sodium, total	7440-23-5	E420	0.050	mg/L	2.93	2.92		

Page : 6 of 7
Work Order : CG2205677
Client : Teck Coal Limited
Project : LINE CREEK OPERATION

ALS

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	LC_FRUS_WS_	LC_GRCK_WS_	 	
(Matrix: Water)					LAEMP_DRY_2	LAEMP_DRY_2		
					022-05_N	022-05_N		
			Client sampl	ling date / time	11-May-2022	11-May-2022	 	
					10:30	12:45		
Analyte	CAS Number	Method	LOR	Unit	CG2205677-001	CG2205677-002	 	
					Result	Result	 	
Total Metals								
strontium, total	7440-24-6	E420	0.00020	mg/L	0.147	0.180	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	72.2	14.5	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	0.00140	<0.00030	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00258	0.000948	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00062	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0055	<0.0030	 	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00013	<0.00010	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0828	0.0596	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	0.015	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0372	<0.0050	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	97.8	47.1	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00012	0.00016	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00026	<0.00020	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	0.010	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0291	0.0065	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	45.2	18.4	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00312	0.00044	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00137	0.00137	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00236	<0.00050	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.38	0.658	 	
,	7 . 13-03-7		1				l	l l

Page : 7 of 7
Work Order : CG2205677
Client : Teck Coal Limited
Project : LINE CREEK OPERATION

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	LC_FRUS_WS_ LAEMP_DRY_2 022-05_N	LC_GRCK_WS_ LAEMP_DRY_2 022-05_N	 	
			Client samp	ling date / time	11-May-2022 10:30	11-May-2022 12:45	 	
Analyte	CAS Number	Method	LOR	Unit	CG2205677-001	CG2205677-002	 	
					Result	Result	 	
Dissolved Metals								
selenium, dissolved	7782-49-2	E421	0.050	μg/L	60.8	2.23	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.84	2.64	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	2.81	2.92	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.142	0.175	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	75.8	16.2	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00249	0.000962	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0015	<0.0010	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2205677** Page : 1 of 16

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Mike Pope
 Account Manager
 : Lyudmyla Shvets

Address : Line Creek Operations PO BOX 2003 15km North Hwy 43 Address : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : LINE CREEK OPERATION
 Date Samples Received
 : 12-May-2022 09:20

C-O-C number : LCO Dry Creek LAEMP ALS

Sampler : ---Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 16 Work Order : CG2205677

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: ≭ =	Holding time exce	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pro	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
LC_FRUS_WS_LAEMP_DRY_2022-05_N	E298	11-May-2022	14-May-2022				14-May-2022	28 days	3 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
LC_GRCK_WS_LAEMP_DRY_2022-05_N	E298	11-May-2022	14-May-2022				14-May-2022	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
LC_FRUS_WS_LAEMP_DRY_2022-05_N	E235.Br-L	11-May-2022					13-May-2022	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
LC_GRCK_WS_LAEMP_DRY_2022-05_N	E235.Br-L	11-May-2022					13-May-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
LC_FRUS_WS_LAEMP_DRY_2022-05_N	E235.CI-L	11-May-2022					13-May-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										,
LC_GRCK_WS_LAEMP_DRY_2022-05_N	E235.CI-L	11-May-2022					13-May-2022	28 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
UDDE	I	1					I	I		
HDPE LC FRUS WS LAEMP DRY 2022-05 N	E378-U	11-May-2022					13-May-2022	3 days	2 days	✓
LO_FROS_WS_LAEWIP_DR1_ZUZZ-US_IN	L370-0	1 1-iviay-2022					13-iviay-2022	3 uays	∠ uays	•

Page : 4 of 16
Work Order : CG2205677

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
nions and Nutrients : Dissolved Orthophosphate by Colourimetry	(Ultra Trace Level 0.001									
HDPE										
LC_GRCK_WS_LAEMP_DRY_2022-05_N	E378-U	11-May-2022					13-May-2022	3 days	2 days	✓
nions and Nutrients : Fluoride in Water by IC										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-05_N	E235.F	11-May-2022					13-May-2022	28 days	2 days	✓
nions and Nutrients : Fluoride in Water by IC										
LC_GRCK_WS_LAEMP_DRY_2022-05_N	E235.F	11-May-2022					13-May-2022	28 days	2 days	✓
original Matrices and Matrices										
nions and Nutrients : Nitrate in Water by IC (Low Level) HDPE										
LC_FRUS_WS_LAEMP_DRY_2022-05_N	E235.NO3-L	11-May-2022					13-May-2022	3 days	2 days	✓
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-05_N	E235.NO3-L	11-May-2022					13-May-2022	3 days	2 days	✓
121 1 2 2 2 1 112		,					, ,			
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-05_N	E235.NO2-L	11-May-2022					13-May-2022	3 days	2 days	✓
nions and Nutrients : Nitrite in Water by IC (Low Level)										
LC_GRCK_WS_LAEMP_DRY_2022-05_N	E235.NO2-L	11-May-2022					13-May-2022	3 days	2 days	✓
nions and Nutrients : Sulfate in Water by IC										
HDPE										
LC_FRUS_WS_LAEMP_DRY_2022-05_N	E235.SO4	11-May-2022					13-May-2022	28 days	2 days	✓
nions and Nutrients : Sulfate in Water by IC										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-05_N	E235.SO4	11-May-2022					13-May-2022	28 days	2 days	✓
20_0	2200.004									•

Page : 5 of 16 Work Order : CG2205677

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					L\	/aiuation. ^ =	Holding time exce	euance , •	- vviti iiii	nolaling Tim
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) LC_FRUS_WS_LAEMP_DRY_2022-05_N	E318	11-May-2022	17-May-2022				17-May-2022	28 days	6 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) LC_GRCK_WS_LAEMP_DRY_2022-05_N	E318	11-May-2022	17-May-2022				17-May-2022	28 days	6 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) LC_FRUS_WS_LAEMP_DRY_2022-05_N	E372-U	11-May-2022	17-May-2022				17-May-2022	28 days	6 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) LC_GRCK_WS_LAEMP_DRY_2022-05_N	E372-U	11-May-2022	17-May-2022				17-May-2022	28 days	6 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) LC_FRUS_WS_LAEMP_DRY_2022-05_N	E421.Cr-L	11-May-2022	17-May-2022				18-May-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) LC_GRCK_WS_LAEMP_DRY_2022-05_N	E421.Cr-L	11-May-2022	17-May-2022				18-May-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) LC_FRUS_WS_LAEMP_DRY_2022-05_N	E509	11-May-2022	16-May-2022				16-May-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) LC_GRCK_WS_LAEMP_DRY_2022-05_N	E509	11-May-2022	16-May-2022				16-May-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) LC_FRUS_WS_LAEMP_DRY_2022-05_N	E421	11-May-2022	17-May-2022				18-May-2022	180 days	6 days	✓

Page : 6 of 16
Work Order : CG2205677

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

viaurix: water						alaation.	nolding time exce	cuarioc ,	- vvicini	Tiolaling Til
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
LC_GRCK_WS_LAEMP_DRY_2022-05_N	E421	11-May-2022	17-May-2022				18-May-2022	180	6 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low	Level)									
Amber glass dissolved (sulfuric acid)										
LC FRUS WS LAEMP DRY 2022-05 N	E358-L	11-May-2022	18-May-2022				19-May-2022	28 days	8 davs	✓
		,	, ,						,	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low	Level)									
Amber glass dissolved (sulfuric acid)										
LC_GRCK_WS_LAEMP_DRY_2022-05_N	E358-L	11-May-2022	18-May-2022				19-May-2022	28 days	8 days	✓
		·	-						-	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combi	ustion (Low Level)									
Amber glass total (sulfuric acid)										
LC_FRUS_WS_LAEMP_DRY_2022-05_N	E355-L	11-May-2022	18-May-2022				19-May-2022	28 days	8 days	✓
		·								
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combi	ustion (Low Level)									
Amber glass total (sulfuric acid)										
LC_GRCK_WS_LAEMP_DRY_2022-05_N	E355-L	11-May-2022	18-May-2022				19-May-2022	28 days	8 days	✓
Physical Tests : Acidity by Titration										
HDPE										
LC_FRUS_WS_LAEMP_DRY_2022-05_N	E283	11-May-2022					13-May-2022	14 days	2 days	✓
Physical Tests : Acidity by Titration										
HDPE										
LC_GRCK_WS_LAEMP_DRY_2022-05_N	E283	11-May-2022					13-May-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
LC_FRUS_WS_LAEMP_DRY_2022-05_N	E290	11-May-2022					13-May-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
LC_GRCK_WS_LAEMP_DRY_2022-05_N	E290	11-May-2022					13-May-2022	14 days	2 days	✓

Page : 7 of 16
Work Order : CG2205677

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: **Water**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Container / Client Sample ID(s) Preparation Date Preparation Date Preparation Rec Actual Analysis Date HOPE HORIZON Rec Actual Analysis Date HOPE	alysis ding Time Actu ys 2 da	ual
Physical Tests : Conductivity in Water HDPE LC_FRUS_WS_LAEMP_DRY_2022-05_N E100 11-May-2022 Physical Tests : Conductivity in Water	Actu	ual
Physical Tests : Conductivity in Water HDPE LC_FRUS_WS_LAEMP_DRY_2022-05_N E100 11-May-2022 13-May-2022 28 c Physical Tests : Conductivity in Water		
HDPE LC_FRUS_WS_LAEMP_DRY_2022-05_N E100 11-May-2022 13-May-2022 28 c Physical Tests : Conductivity in Water	ys 2 da	nus 4
HDPE LC_FRUS_WS_LAEMP_DRY_2022-05_N E100 11-May-2022 13-May-2022 28 c Physical Tests : Conductivity in Water	ys 2 da	ave 4
Physical Tests : Conductivity in Water	ys 2 da	nve 🗸
Physical Tests : Conductivity in Water	^	2γ5 *
	ys 2 da	avs 🗸
LC_GRCK_WS_LAEMP_DR1_2022_05_N	ys Z ua	ays v
Physical Tests: ORP by Electrode		
HDPE		
LC_GRCK_WS_LAEMP_DRY_2022-05_N E125 11-May-2022 18-May-2022 0.:	169 h	
		EHTR-FM
Physical Tests : ORP by Electrode		
HDPE		
LC_FRUS_WS_LAEMP_DRY_2022-05_N E125 11-May-2022 18-May-2022 0.:	171 h	hrs *
		EHTR-FM
Physical Tests : pH by Meter HDPE		
	49 h	hrs 🗶
'=' ' =		
h		EHTR-FM
Physical Tests : pH by Meter		
HDPE		
LC_FRUS_WS_LAEMP_DRY_2022-05_N E108 11-May-2022 13-May-2022 0.	51 h	
h		EHTR-FM
Physical Tests : TDS by Gravimetry		·
HDPE		
LC_FRUS_WS_LAEMP_DRY_2022-05_N E162 11-May-2022 17-May-2022 7 d	s 6 da	ays 🗸
Physical Tests : TDS by Gravimetry		
HDPE	rs 6 da	avs ✓
LC_GRCK_WS_LAEMP_DRY_2022-05_N E162 11-May-2022 17-May-2022 7 d	o da	ayo 🔻
Physical Tests : TSS by Gravimetry (Low Level)		
HDPE		
LC_FRUS_WS_LAEMP_DRY_2022-05_N E160-L 11-May-2022 17-May-2022 7 d	/s 6 da	ays 🗸

Page : 8 of 16
Work Order : CG2205677

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						aluation. ^ -	Holding time exce	euance , v	– vviti iii i	Holding Tir
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
LC_GRCK_WS_LAEMP_DRY_2022-05_N	E160-L	11-May-2022					17-May-2022	7 days	6 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
LC_FRUS_WS_LAEMP_DRY_2022-05_N	E121	11-May-2022					14-May-2022	3 days	3 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
LC_GRCK_WS_LAEMP_DRY_2022-05_N	E121	11-May-2022					14-May-2022	3 days	3 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)	F400 0 1	44 M 0000					40.140000		0.1	,
LC_GRCK_WS_LAEMP_DRY_2022-05_N	E420.Cr-L	11-May-2022					19-May-2022	180	8 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)	E420.Cr-L	11-May-2022					19-May-2022	400	0 daya	✓
LC_FRUS_WS_LAEMP_DRY_2022-05_N	E420.CI-L	11-Way-2022					19-Way-2022	180 days	9 days	•
								uays		
Total Metals: Total Mercury in Water by CVAAS							I			
Glass vial total (hydrochloric acid) LC_FRUS_WS_LAEMP_DRY_2022-05_N	E508	11-May-2022					17-May-2022	28 days	6 days	√
EC_11(00_VVO_EAEIVII _DI(1_2022-00_IV	2000	11-Way-2022					17-Way-2022	20 days	o days	•
Total Matala : Total Maraumi in Water by CVAAS										
Total Metals : Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid)							I			
LC GRCK WS LAEMP DRY 2022-05 N	E508	11-May-2022					17-May-2022	28 days	6 davs	✓
							,		,-	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
LC GRCK WS LAEMP DRY 2022-05 N	E420	11-May-2022					19-May-2022	180	8 days	✓
		-						days	-	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
LC_FRUS_WS_LAEMP_DRY_2022-05_N	E420	11-May-2022					19-May-2022	180	9 days	✓
								days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

 Page
 : 9 of 16

 Work Order
 : CG2205677

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Rec. HT: ALS recommended hold time (see units).

Page : 10 of 16 Work Order : CG2205677

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type		·	С	ount		Frequency (%)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)					<u>'</u>		
Acidity by Titration	E283	487130	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	487140	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	488266	1	20	5.0	5.0	<u>√</u>
Bromide in Water by IC (Low Level)	E235.Br-L	487065	1	20	5.0	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	487066	1	20	5.0	5.0	<u>√</u>
Conductivity in Water	E100	487138	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	490470	1	10	10.0	5.0	<u>√</u>
Dissolved Mercury in Water by CVAAS	E509	489577	1	20	5.0	5.0	<u>√</u>
Dissolved Metals in Water by CRC ICPMS	E421	490471	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	492103	1	8	12.5	5.0	<u>√</u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	486949	1	20	5.0	5.0	√
Fluoride in Water by IC	E235.F	487069	1	20	5.0	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	487067	1	20	5.0	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	487068	1	20	5.0	5.0	√
ORP by Electrode	E125	492076	1	20	5.0	5.0	√
pH by Meter	E108	487139	1	20	5.0	5.0	√
Sulfate in Water by IC	E235.SO4	487064	1	20	5.0	5.0	√
TDS by Gravimetry	E162	489470	1	20	5.0	5.0	1
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	489088	1	19	5.2	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	489194	1	20	5.0	5.0	√
Total Mercury in Water by CVAAS	E508	490000	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	489089	1	20	5.0	5.0	√
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	492104	1	8	12.5	5.0	√
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	488387	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	487508	1	20	5.0	5.0	√
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	487130	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	487140	1	20	5.0	5.0	<u>√</u>
Ammonia by Fluorescence	E298	488266	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	487065	1	20	5.0	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	487066	1	20	5.0	5.0	√
Conductivity in Water	E100	487138	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	490470	1	10	10.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	489577	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	490471	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	492103	1	8	12.5	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	486949	1	20	5.0	5.0	√

Page : 11 of 16 Work Order : CG2205677

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: Water		Evaluatio	n: × = QC freque	ncy outside spe	cification; ✓ = 0	QC frequency with	nin specification.
Quality Control Sample Type				unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	487069	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	487067	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	487068	1	20	5.0	5.0	✓
ORP by Electrode	E125	492076	1	20	5.0	5.0	✓
pH by Meter	E108	487139	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	487064	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	489470	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	489088	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	489194	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	490000	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	489089	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	492104	1	8	12.5	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	488387	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	489463	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	487508	1	20	5.0	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	487130	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	487140	1	20	5.0	5.0	√
Ammonia by Fluorescence	E298	488266	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	487065	1	20	5.0	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	487066	1	20	5.0	5.0	√
Conductivity in Water	E100	487138	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	490470	1	10	10.0	5.0	√
Dissolved Mercury in Water by CVAAS	E509	489577	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	490471	1	20	5.0	5.0	<u>√</u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	492103	1	8	12.5	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	486949	1	20	5.0	5.0	√
Fluoride in Water by IC	E235.F	487069	1	20	5.0	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	487067	1	20	5.0	5.0	√
Nitrite in Water by IC (Low Level)	E235.NO2-L	487068	1	20	5.0	5.0	<u>√</u>
Sulfate in Water by IC	E235.SO4	487064	1	20	5.0	5.0	1
TDS by Gravimetry	E162	489470	1	20	5.0	5.0	<u> </u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	489088	1	19	5.2	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	489194	1	20	5.0	5.0	<u> </u>
Total Mercury in Water by CVAAS	E508	490000	1	20	5.0	5.0	√
Total Metals in Water by CRC ICPMS	E420	489089	1	20	5.0	5.0	<u>√</u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	492104	1	8	12.5	5.0	<u>√</u>
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	488387	1	20	5.0	5.0	<u>√</u>
TSS by Gravimetry (Low Level)	E160-L	489463	1	20	5.0	5.0	<u> </u>
Turbidity by Nephelometry	E121	487508	1	20	5.0	5.0	<u>√</u>

Page : 12 of 16
Work Order : CG2205677

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

Quality Control Sample Type			Co	ount		Frequency (%)	6)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Matrix Spikes (MS)								
Ammonia by Fluorescence	E298	488266	1	20	5.0	5.0	✓	
Bromide in Water by IC (Low Level)	E235.Br-L	487065	1	20	5.0	5.0	✓	
Chloride in Water by IC (Low Level)	E235.CI-L	487066	1	20	5.0	5.0	✓	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	490470	1	10	10.0	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	489577	1	20	5.0	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	490471	1	20	5.0	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	492103	1	8	12.5	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	486949	1	20	5.0	5.0	✓	
Fluoride in Water by IC	E235.F	487069	1	20	5.0	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	487067	1	20	5.0	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	487068	1	20	5.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	487064	1	20	5.0	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	489088	1	19	5.2	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	489194	1	20	5.0	5.0	✓	
Total Mercury in Water by CVAAS	E508	490000	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	489089	1	20	5.0	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	492104	1	8	12.5	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	488387	1	20	5.0	5.0	✓	

Page : 13 of 16 Work Order : CG2205677

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is
	O James Facilities			measured by immersion of a conductivity cell with platinum electrodes into a water
mili bu Makan	Calgary - Environmental	10/-4	ADUA 4500 H (sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
	Calgary - Environmental			at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light
Taiblaity by Nophlolemony	LIZI	Water	74 11/12 100 B (mod)	scatter under defined conditions.
	Calgary - Environmental			Social dilasi delinod estidiatione.
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the
				platinum metal-reference electrode employed, measured in mV. For high accuracy test
	Calgary - Environmental			results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
	Calgary - Environmental			filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
, ,				filter, with evaporation of the filtrate at $180 \pm 2^{\circ}$ C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental	147.4	EDA 000 4 (1)	
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
, ,	2200.1		,	detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
Nitrate is Metallical (Level 1991)	Calgary - Environmental	147.4	EDA 000 4 (*** 1)	
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
<u> </u>			, ,	detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	0.1			
	Calgary - Environmental			

Page : 14 of 16
Work Order : CG2205677

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 15 of 16
Work Order : CG2205677

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.

Page : 16 of 16 Work Order : CG2205677

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order : CG2205677

Client : Teck Coal Limited

Contact : Mike Pope

Address : Line Creek Operations PO BOX 2003 15km North Hwy 43

Sparwood BC Canada V0B 2G0

Telephone : ---

Project : LINE CREEK OPERATION

PO : VPO00816101

C-O-C number : LCO_Dry Creek LAEMP_ALS

Sampler : --Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone :+1 403 407 1800

Date Samples Received : 12-May-2022 09:20
Date Analysis Commenced : 13-May-2022

Issue Date : 23-May-2022 11:00

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Caleb Deroche	Lab Analyst	Vancouver Metals, Burnaby, British Columbia
Delson Resende	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Elke Tabora		Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Kyle Chang	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Maria Tuguinay	Lab Assistant	Calgary Inorganics, Calgary, Alberta
Owen Cheng		Vancouver Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Calgary Inorganics, Calgary, Alberta
Robin Weeks	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta
Sara Niroomand		Calgary Inorganics, Calgary, Alberta
Shirley Li		Calgary Inorganics, Calgary, Alberta

 Page
 : 2 of 18

 Work Order
 : CG2205677

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATION

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2205677

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATION

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Physical Tests (QC	C Lot: 487130)												
CG2205638-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	5.0	7.0	2.0	Diff <2x LOR			
Physical Tests (QC	C Lot: 487138)												
CG2205638-001	Anonymous	conductivity		E100	2.0	μS/cm	502	495	1.40%	10%			
Physical Tests (QC	C Lot: 487139)												
CG2205638-001	Anonymous	pH		E108	0.10	pH units	7.97	8.01	0.501%	4%			
Physical Tests (QC	C Lot: 487140)												
CG2205638-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	2.0	mg/L	267	258	3.69%	20%			
		alkalinity, carbonate (as CaCO3)		E290	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR			
		alkalinity, hydroxide (as CaCO3)		E290	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR			
		alkalinity, total (as CaCO3)		E290	2.0	mg/L	267	258	3.69%	20%			
Physical Tests (QC	C Lot: 487508)												
CG2205677-001	LC_FRUS_WS_LAEMP_D RY 2022-05 N	turbidity		E121	0.10	NTU	2.53	2.58	1.80%	15%			
Physical Tests (QC													
CG2205639-001	Anonymous	solids, total dissolved [TDS]		E162	10	mg/L	<10	<10	0	Diff <2x LOR			
Physical Tests (QC	C Lot: 492076)							I .					
CG2205658-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	540	535	0.874%	15%			
Anions and Nutrier	nts (QC Lot: 486949)												
CG2205677-001	LC_FRUS_WS_LAEMP_D RY_2022-05_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR			
Anions and Nutrier	nts (QC Lot: 487064)												
CG2205677-001	LC_FRUS_WS_LAEMP_D RY_2022-05_N	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	207	208	0.731%	20%			
Anions and Nutrier	nts (QC Lot: 487065)												
CG2205677-001	LC_FRUS_WS_LAEMP_D RY_2022-05_N	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR			
Anions and Nutrier	nts (QC Lot: 487066)												
CG2205677-001	LC_FRUS_WS_LAEMP_D RY_2022-05_N	chloride	16887-00-6	E235.CI-L	0.10	mg/L	3.19	3.15	1.17%	20%			
	nts (QC Lot: 487067)												
CG2205677-001	LC_FRUS_WS_LAEMP_D RY_2022-05_N	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	13.6	13.8	0.924%	20%			
	nts (QC Lot: 487068)												
CG2205677-001	LC_FRUS_WS_LAEMP_D RY_2022-05_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0040	0.0041	0.0001	Diff <2x LOR			

 Page
 : 4 of 18

 Work Order
 : CG2205677

 Client
 : Teck Coal Limited

Laboratory sample ID		Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier			
Anions and Nutrients	(QC Lot: 487069)													
	LC_FRUS_WS_LAEMP_D RY_2022-05_N	fluoride	16984-48-8	E235.F	0.020	mg/L	0.122	0.123	0.0007	Diff <2x LOR				
Anions and Nutrients	(QC Lot: 488266)													
	LC_FRUS_WS_LAEMP_D RY_2022-05_N	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR				
Anions and Nutrients	(QC Lot: 488387)													
CG2205636-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR				
Anions and Nutrients	(QC Lot: 489194)													
CG2205658-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.500	mg/L	2.59	2.53	0.066	Diff <2x LOR				
Organic / Inorganic C	arbon (QC Lot: 492103	3)												
	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	2.14	2.21	0.08	Diff <2x LOR				
Organic / Inorganic C	arbon (QC Lot: 492104	4)												
	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	1.68	1.63	0.04	Diff <2x LOR				
Fotal Metals (QC Lot	·· 480088)													
	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00012	0.00016	0.00004	Diff <2x LOR				
	•													
otal Metals (QC Lot: CG2205658-001	: 489089) Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0035	0.0048	0.0013	Diff <2x LOR				
JG2203030-001	Anonymous		7429-90-3	E420	0.00010	-	<0.00010	<0.0040	0.0013	Diff <2x LOR				
		antimony, total	7440-38-2	E420	0.00010	mg/L	0.00262	0.00266	1.28%	20%				
		arsenic, total				mg/L								
		barium, total	7440-39-3	E420	0.00010	mg/L	4.24	4.39	3.40%	20%				
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR				
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR				
		boron, total	7440-42-8	E420	0.010	mg/L	0.025	0.025	0.0002	Diff <2x LOR				
		cadmium, total	7440-43-9	E420	0.0000100	mg/L	<0.0100 µg/L	<0.0000100	0	Diff <2x LOR				
		calcium, total	7440-70-2	E420	0.050	mg/L	60.3	59.2	1.74%	20%				
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.42 μg/L	0.00043	0.000008	Diff <2x LOR				
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR				
		iron, total	7439-89-6	E420	0.010	mg/L	2.98	2.99	0.355%	20%				
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR				
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.608	0.614	0.928%	20%				
		magnesium, total	7439-95-4	E420	0.0050	mg/L	37.0	37.1	0.469%	20%				
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0227	0.0232	2.08%	20%				
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.0221	0.0216	2.62%	20%				
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR				
		potassium, total	7440-09-7	E420	0.050	mg/L	25.2	26.1	3.66%	20%				
										1				

 Page
 : 5 of 18

 Work Order
 : CG2205677

 Client
 : Teck Coal Limited

Laboratory sample ID	Client sample ID										
Total Metals (QC Lo		Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
rotal motalo (do 20	t: 489089) - continued										
CG2205658-001 Anonymo	Anonymous	silicon, total	7440-21-3	E420	0.10	mg/L	3.04	2.96	2.47%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	35.6	35.9	0.999%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.246	0.240	2.16%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000094	0.000092	0.000002	Diff <2x LOR	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
Total Metals (QC Lo	t: 490000)										
CG2205635-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (Q	C Lot: 489577)										
CG2205633-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
Dissolved Metals (Q	C Lot: 490470)										
CG2205658-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals (Q	C Lot: 490471)										
CG2205658-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0016	0.0013	0.0003	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00020	0.00010	0.00010	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00297	0.00280	5.84%	20%	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	4.19	4.23	0.901%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.027	0.028	0.0006	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0050 µg/L	<0.0000050	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	61.0	63.3	3.72%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.42 µg/L	0.00043	0.00001	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	2.82	2.91	2.97%	20%	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.651	0.688	5.50%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	35.4	35.8	1.09%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0227	0.0233	2.80%	20%	
		molybdenum, dissolved	7439-90-3	E421	0.00010	mg/L	0.0227	0.0233	0.939%	20%	

 Page
 : 6 of 18

 Work Order
 : CG2205677

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATION

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 490471) - con	inued									
CG2205658-001	Anonymous	nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	24.7	25.6	3.73%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.050 µg/L	<0.000050	0	Diff <2x LOR	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.76	2.78	0.671%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	34.2	35.0	2.27%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.239	0.245	2.14%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000090	0.000090	0.0000008	Diff <2x LOR	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0021	0.0021	0.00003	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2205677

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATION

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 487130)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 487138)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 487140)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 487508)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 489463)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 489470)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 486949)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 487064)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 487065)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 487066)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 487067)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 487068)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 487069)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 488266)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 488387)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 489194)					

 Page
 : 8 of 18

 Work Order
 : CG2205677

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATION

ALS

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 48919	34) - continued				
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Organic / Inorganic Carbon (QCLot:	492103)				
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot:	492104)			'	
carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Fotal Metals (QCLot: 489088)				'	
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 489089)				,	
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
poron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.0000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	

Page : 9 of 18
Work Order : CG2205677
Client : Teck Coal Limited

Project : LINE CREEK OPERATION

ALS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 489089) - co	ntinued					
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Fotal Metals (QCLot: 490000)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.0000050	
Dissolved Metals (QCLot: 489577)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.0000050	
Dissolved Metals (QCLot: 490470)						
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 490471)						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
poron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
nolybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	

 Page
 : 10 of 18

 Work Order
 : CG2205677

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATION

ALS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 490471) - (continued					
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	

 Page
 : 11 of 18

 Work Order
 : CG2205677

 Client
 : Teck Coal Limite

Client : Teck Coal Limited
Project : LINE CREEK OPERATION

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Cor	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 487130)									
acidity (as CaCO3)		E283	2	mg/L	50 mg/L	110	85.0	115	
Physical Tests (QCLot: 487138)									
conductivity		E100	1	μS/cm	146.9 μS/cm	97.8	90.0	110	
Physical Tests (QCLot: 487139)									
рН		E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 487140)									
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	105	85.0	115	
Physical Tests (QCLot: 487508)									
turbidity		E121	0.1	NTU	200 NTU	104	85.0	115	
Physical Tests (QCLot: 489463)									
solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	106	85.0	115	
Physical Tests (QCLot: 489470)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	97.8	85.0	115	
Physical Tests (QCLot: 492076)									
oxidation-reduction potential [ORP]		E125		mV	220 mV	103	95.4	104	
Anions and Nutrients (QCLot: 486949)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	98.5	80.0	120	
Anions and Nutrients (QCLot: 487064)									
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 487065)									
bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	100	85.0	115	
Anions and Nutrients (QCLot: 487066)									
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	99.1	90.0	110	
Anions and Nutrients (QCLot: 487067)									
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 487068)									
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 487069)									
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	98.4	90.0	110	
Anions and Nutrients (QCLot: 488266)									
ammonia, total (as N)	7664-41-7	F298	0.005	mg/L	0.2 mg/L	97.4	85.0	115	
, , ,	7004-41-7	2200	0.000	9/ =	0.2 Hg/L	31.4	00.0		

 Page
 : 12 of 18

 Work Order
 : CG2205677

 Client
 : Teck Coal Limited

 Project
 : LINE CREEK OPERATION

Laboratory Control Sample (LCS) Report Sub-Matrix: Water Recovery (%) Spike Recovery Limits (%) CAS Number Method LOR Unit Qualifier Analyte Concentration LCS Low High Anions and Nutrients (QCLot: 488387) - continued phosphorus, total 7723-14-0 E372-U 0.002 mg/L 102 80.0 120 8.02 mg/L Anions and Nutrients (QCLot: 489194) Kjeldahl nitrogen, total [TKN] ---- E318 0.05 125 75.0 mg/L 4 mg/L 105 Organic / Inorganic Carbon (QCLot: 492103) ---- E358-L 8.57 mg/L carbon, dissolved organic [DOC] 0.5 mg/L 96.7 0.08 120 Organic / Inorganic Carbon (QCLot: 492104) ---- E355-L 0.5 80.0 120 carbon, total organic [TOC] mg/L 8.57 mg/L 99.8 Total Metals (QCLot: 489088) 7440-47-3 E420.Cr-L 0.0001 chromium, total mg/L 0.25 mg/L 99.4 80.0 120 Total Metals (QCLot: 489089) aluminum, total 7429-90-5 E420 0.003 mg/L 80.0 120 2 mg/L 105 7440-36-0 E420 antimony, total 0.0001 mg/L 1 mg/L 104 80.0 120 7440-38-2 E420 0.0001 mg/L 80.0 120 arsenic, total 1 mg/L 103 7440-39-3 E420 0.0001 mg/L 80.0 120 barium, total 0.25 mg/L 99.2 7440-41-7 E420 0.00002 beryllium, total mg/L 0.1 mg/L 99.2 80.0 120 bismuth, total 7440-69-9 E420 0.00005 mg/L 80.0 120 1 mg/L 106 7440-42-8 E420 0.01 80.0 120 boron, total mg/L 1 mg/L 92.0 7440-43-9 E420 0.000005 80.0 120 cadmium, total mg/L 0.1 mg/L 101 calcium, total 7440-70-2 E420 0.05 mg/L 50 mg/L 100 0.08 120 7440-48-4 E420 cobalt, total 0.0001 mg/L 0.25 mg/L 99.2 80.0 120 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 99.8 80.0 120 copper, total 7439-89-6 E420 0.01 80.0 120 iron, total mg/L 1 mg/L 99.8 7439-92-1 E420 0.00005 lead, total mg/L 0.5 mg/L 103 80.0 120 7439-93-2 E420 lithium, total 0.001 mg/L 0.25 mg/L 105 80.0 120 7439-95-4 E420 0.005 mg/L 80.0 120 magnesium, total 50 mg/L 97.1 7439-96-5 E420 0.0001 80.0 120 mg/L 0.25 mg/L 98.8 manganese, total 7439-98-7 E420 0.00005 80.0 120 mg/L molybdenum, total 0.25 mg/L 105 7440-02-0 E420 0.0005 80.0 120 nickel, total mg/L 0.5 mg/L 100 7440-09-7 E420 0.05 80.0 120 potassium, total mg/L 50 mg/L 109 selenium, total 7782-49-2 E420 0.00005 mg/L 102 0.08 120 1 mg/L silicon, total 7440-21-3 E420 0.1 80.0 120 mg/L 10 mg/L 101 silver, total 7440-22-4 E420 0.00001 mg/L 92.6 0.08 120 0.1 mg/L 7440-23-5 E420 0.05 80.0 sodium, total mg/L 50 mg/L 106 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 103 0.08 120 7704-34-9 E420 0.08 120 sulfur, total 0.5 mg/L 50 mg/L 91.3

 Page
 : 13 of 18

 Work Order
 : CG2205677

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATION

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 489089) - continue	ed								
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	102	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	102	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	99.1	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	105	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	102	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	94.0	80.0	120	
Total Metals (QCLot: 490000)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	105	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	99.0	80.0	120	
Dissolved Metals (QCLot: 490470)									
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	99.3	80.0	120	
Dissolved Metals (QCLot: 490471)									'
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	98.3	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	107	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	102	80.0	120	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	98.1	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	112	80.0	120	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	100	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	105	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	97.2	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	106	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	96.7	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	97.0	80.0	120	
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	112	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	105	80.0	120	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	110	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	98.0	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	97.2	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	105	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	97.4	80.0	120	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	102	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	89.1	80.0	120	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	100	80.0	120	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	91.8	80.0	120	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	104	80.0	120	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	98.4	80.0	120	

: 14 of 18 : CG2205677 Page Work Order Client

: Teck Coal Limited

Project : LINE CREEK OPERATION

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 490471) - c	ontinued								
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	97.3	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	104	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	97.7	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	95.9	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	101	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	99.2	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	102	80.0	120	

 Page
 : 15 of 18

 Work Order
 : CG2205677

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

					-					
Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutr	ients (QCLot: 486949)									
CG2205677-002	LC_GRCK_WS_LAEMP_D RY_2022-05_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0510 mg/L	0.05 mg/L	102	70.0	130	
Anions and Nutr	ients (QCLot: 487064)									
CG2205677-002	LC_GRCK_WS_LAEMP_D RY_2022-05_N	sulfate (as SO4)	14808-79-8	E235.SO4	89.0 mg/L	100 mg/L	89.0	75.0	125	
Anions and Nutr	ients (QCLot: 487065)									
CG2205677-002	LC_GRCK_WS_LAEMP_D RY_2022-05_N	bromide	24959-67-9	E235.Br-L	0.472 mg/L	0.5 mg/L	94.4	75.0	125	
Anions and Nutr	ients (QCLot: 487066)									
CG2205677-002	LC_GRCK_WS_LAEMP_D RY_2022-05_N	chloride	16887-00-6	E235.CI-L	91.1 mg/L	100 mg/L	91.1	75.0	125	
Anions and Nutr	ients (QCLot: 487067)									
CG2205677-002	LC_GRCK_WS_LAEMP_D RY_2022-05_N	nitrate (as N)	14797-55-8	E235.NO3-L	2.29 mg/L	2.5 mg/L	91.6	75.0	125	
Anions and Nutr	ients (QCLot: 487068)									
CG2205677-002	LC_GRCK_WS_LAEMP_D RY_2022-05_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.470 mg/L	0.5 mg/L	94.0	75.0	125	
Anions and Nutr	ients (QCLot: 487069)									
CG2205677-002	LC_GRCK_WS_LAEMP_D RY_2022-05_N	fluoride	16984-48-8	E235.F	0.920 mg/L	1 mg/L	92.0	75.0	125	
Anions and Nutr	ients (QCLot: 488266)									
CG2205677-002	LC_GRCK_WS_LAEMP_D RY_2022-05_N	ammonia, total (as N)	7664-41-7	E298	0.0986 mg/L	0.1 mg/L	98.6	75.0	125	
Anions and Nutr	ients (QCLot: 488387)									
CG2205636-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0507 mg/L	0.0676 mg/L	75.1	70.0	130	
Anions and Nutr	ients (QCLot: 489194)									
CG2205658-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.98 mg/L	2.5 mg/L	119	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 492	103)								
CG2205658-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	4.82 mg/L	5 mg/L	96.4	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 492	104)								
CG2205658-001	Anonymous	carbon, total organic [TOC]		E355-L	5.13 mg/L	5 mg/L	103	70.0	130	
Total Metals (Q0	CLot: 489088)									
CG2205658-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0398 mg/L	0.04 mg/L	99.6	70.0	130	
	1	1		1	1				1	1

 Page
 : 16 of 18

 Work Order
 : CG2205677

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATION

Sub-Matrix: Water							Matrix Spil	ke (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
otal Metals (QC	Lot: 489089)									
CG2205658-002	Anonymous	aluminum, total	7429-90-5	E420	0.205 mg/L	0.2 mg/L	103	70.0	130	
		antimony, total	7440-36-0	E420	0.0203 mg/L	0.02 mg/L	102	70.0	130	
		arsenic, total	7440-38-2	E420	0.0208 mg/L	0.02 mg/L	104	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0410 mg/L	0.04 mg/L	103	70.0	130	
		bismuth, total	7440-69-9	E420	0.00981 mg/L	0.01 mg/L	98.1	70.0	130	
		boron, total	7440-42-8	E420	0.097 mg/L	0.1 mg/L	97.5	70.0	130	
		cadmium, total	7440-43-9	E420	0.00386 mg/L	0.004 mg/L	96.6	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0194 mg/L	0.02 mg/L	96.9	70.0	130	
		copper, total	7440-50-8	E420	0.0191 mg/L	0.02 mg/L	95.6	70.0	130	
		iron, total	7439-89-6	E420	1.91 mg/L	2 mg/L	95.4	70.0	130	
		lead, total	7439-92-1	E420	0.0200 mg/L	0.02 mg/L	100	70.0	130	
		lithium, total	7439-93-2	E420	0.104 mg/L	0.1 mg/L	104	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0209 mg/L	0.02 mg/L	104	70.0	130	
		nickel, total	7440-02-0	E420	0.0380 mg/L	0.04 mg/L	95.1	70.0	130	
		potassium, total	7440-09-7	E420	4.30 mg/L	4 mg/L	108	70.0	130	
		selenium, total	7782-49-2	E420	0.0384 mg/L	0.04 mg/L	95.9	70.0	130	
		silicon, total	7440-21-3	E420	9.40 mg/L	10 mg/L	94.0	70.0	130	
		silver, total	7440-22-4	E420	0.00415 mg/L	0.004 mg/L	104	70.0	130	
		sodium, total	7440-23-5	E420	2.11 mg/L	2 mg/L	105	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	19.5 mg/L	20 mg/L	97.5	70.0	130	
		thallium, total	7440-28-0	E420	0.00386 mg/L	0.004 mg/L	96.5	70.0	130	
		tin, total	7440-31-5	E420	0.0198 mg/L	0.02 mg/L	98.8	70.0	130	
		titanium, total	7440-32-6	E420	0.0398 mg/L	0.04 mg/L	99.4	70.0	130	
		uranium, total	7440-61-1	E420	0.00406 mg/L	0.004 mg/L	101	70.0	130	
		vanadium, total	7440-62-2	E420	0.100 mg/L	0.1 mg/L	100	70.0	130	
		zinc, total	7440-66-6	E420	0.373 mg/L	0.4 mg/L	93.3	70.0	130	
otal Metals (QC	Lot: 490000)									
G2205635-002	Anonymous	mercury, total	7439-97-6	E508	0.000102 mg/L	0.0001 mg/L	102	70.0	130	
issolved Metals	(QCLot: 489577)									
CG2205677-001	LC_FRUS_WS_LAEMP_DR Y_2022-05_N	mercury, dissolved	7439-97-6	E509	0.0000972 mg/L	0.0001 mg/L	97.2	70.0	130	

 Page
 : 17 of 18

 Work Order
 : CG2205677

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATION

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 490470)									
CG2205658-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0398 mg/L	0.04 mg/L	99.6	70.0	130	
Dissolved Metals	(QCLot: 490471)								1	
CG2205658-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.199 mg/L	0.2 mg/L	99.5	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0199 mg/L	0.02 mg/L	99.6	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0205 mg/L	0.02 mg/L	102	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0398 mg/L	0.04 mg/L	99.4	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00899 mg/L	0.01 mg/L	89.9	70.0	130	
		boron, dissolved	7440-42-8	E421	0.097 mg/L	0.1 mg/L	97.5	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00403 mg/L	0.004 mg/L	101	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0192 mg/L	0.02 mg/L	96.0	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0189 mg/L	0.02 mg/L	94.4	70.0	130	
		iron, dissolved	7439-89-6	E421	1.80 mg/L	2 mg/L	90.0	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0190 mg/L	0.02 mg/L	95.1	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0954 mg/L	0.1 mg/L	95.4	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0203 mg/L	0.02 mg/L	101	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0382 mg/L	0.04 mg/L	95.5	70.0	130	
		potassium, dissolved	7440-09-7	E421	4.00 mg/L	4 mg/L	100.0	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0437 mg/L	0.04 mg/L	109	70.0	130	
		silicon, dissolved	7440-21-3	E421	8.95 mg/L	10 mg/L	89.5	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00402 mg/L	0.004 mg/L	100	70.0	130	
		sodium, dissolved	7440-23-5	E421	1.98 mg/L	2 mg/L	99.2	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	20.9 mg/L	20 mg/L	105	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00373 mg/L	0.004 mg/L	93.2	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0190 mg/L	0.02 mg/L	95.3	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0382 mg/L	0.04 mg/L	95.5	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00381 mg/L	0.004 mg/L	95.2	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.102 mg/L	0.1 mg/L	102	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.392 mg/L	0.4 mg/L	98.1	70.0	130	

: 18 of 18 : CG2205677 Page Work Order Client

Telephone : +1 403 407 1800	obin Valleau				Emergency (1 Rusiness Day) - 100% surcharge	Emergency (1
		Ro	Sampler's Name	fault) X	Regular (default) X Priority (2-3 business days) - 50% surcharge	Priority (2
					ubject to availability)	SERVICU REQUEST (rush - subject to availability).
4						
		-		T	And the second s	
	May 11, 2021	Ī	Robin Valleau	: -	:	
Telephone: +1 403 407 1800		EILIATION	RELINQUISHED BY/AFEIDIATION		CIAL INSTRUCTIONS	ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS/
Telephone: +1 403 407 1800						:
Telephone: +1 403 407 1800						
Telephone: +1 403 407 1800						
				Significant of the state of the		
			1 100			
			102 G	100 m	-	
			and Jan			
1 1 1	1	G 7	11-May-22 12:45	ws "n	LC_GRCK	LC_GRCK_WS_LAEMP_DRY_2022-05_N
work Order Heference	1 1 1	G 7	14 616	WS P	LC_FRUS	LC FRUS WS LAFMP DRY 2022-05 N
HG-T-U-CVAF-VA TECKCOAL-MET-D-VA TECKCOAL-METNHG T-CL TECKCOAL- ROUTINE-VA	ALS_Package- TKN/TOC	G=Grab C=Com #	Date	×	Sample Location (sys loc code)	Sample ID
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAGE H2SO4 H2SO4 HC					
ANALYSIS REQUESTED	100 407 1777			VILS -	SAMPLE DETAILS	I HORE LATHOUT
try Canada Po number Provosiojui	71Y 7B5 Country	Postal Code	Country Canada		250-725-8137	Postal Code Postal Code
AB Email 5:	Calgary	City	1"		Sparwood	City
Email 4:			Ì			
Email 3: Teck Lab Results@leck.com X X		Address			Address RRI HWY 3	Address
Email 2: teckcoal@equisonline;com		Email			Email Harman Report	Email
com X		Lab Contact			Mike Pope	Project Manager Mike Pope
Report Format / Distribution Excel PDF EDD	ALS Calgary	Lab Name			Facility Name / Job# Line Creek Operation	Facility Name / Job#
egular	1 -	TURNAROUN	LCO_Dry Creek LAEMP_ALS	<u>Dry Cr</u>	COC ID: LCC	
				3) , k	1	I CK

WATER CHEMISTRY

ALS Laboratory Report CG2208042 (Finalized 07-July-22)

CERTIFICATE OF ANALYSIS

Work Order : CG2208042

: Teck Coal Limited

Contact : Nicole Zathey

Address : Line Creek Operations PO BOX 2003 15km North Hwy 43

Sparwood BC Canada V0B 2G0

Telephone : ---

Client

Project : LINE CREEK OPERATION

PO : VPO00816101

C-O-C number : LCO_Dry Creek LAEMP_ALS

Sampler : ROBIN VALLEAU

Site : --

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 23-Jun-2022 09:30

Date Analysis Commenced : 23-Jun-2022

Issue Date : 07-Jul-2022 17:09

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Ann Joby	Lab Assistant	Metals, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Benjamin Oke	Lab Assistant	Metals, Burnaby, British Columbia
Elke Tabora		Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Shirley Li		Inorganics, Calgary, Alberta
Woochan Song	Lab Analyst	Metals, Burnaby, British Columbia

 Page
 : 2 of 6

 Work Order
 : CG2208042

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATION

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Sample Comments

Sample	Client Id	Comment
CG2208042-004	LC_RD1_WS_LAEMP_DRY_2 022-06_N	004 - hg vial submitted

Qualifiers

Qualifier	Description
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within
	hold time.
RRV	Reported result verified by repeat analysis.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 3 of 6
Work Order : CG2208042
Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Analytical Results

Sub-Matrix: Water (Matrix: Water)			C	lient sample ID	LC_FRUS_WS_ LAEMP_DRY_2 022-06_N	LC_CC1_WS_L AEMP_DRY_20 22-06_N	LC_MT1_WS_L AEMP_DRY_20 22-06_N	LC_RD1_WS_L AEMP_DRY_20 22-06_N	
			Client samp	oling date / time	21-Jun-2022 14:15	21-Jun-2022 14:15	21-Jun-2022 14:15	21-Jun-2022 14:15	
Analyte	CAS Number	Method	LOR	Unit	CG2208042-001	CG2208042-002	CG2208042-003	CG2208042-004	
					Result	Result	Result	Result	
Physical Tests									
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0	<2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	153	<1.0	151	<1.0	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	187	<1.0	184	<1.0	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	2.0	<1.0	4.4	<1.0	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	1.2	<1.0	2.6	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	155	<1.0	155	<1.0	
conductivity		E100	2.0	μS/cm	487	<2.0	483	<2.0	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	256	<0.50	251	<0.50	
oxidation-reduction potential [ORP]		E125	0.10	mV	315	306	499	502	
pH		E108	0.10	pH units	8.18	5.41	8.23	5.17	
solids, total dissolved [TDS]		E162	10	mg/L	323	<10	320	<10	
solids, total suspended [TSS]		E160-L	1.0	mg/L	29.0	<1.0	27.9	<1.0	
turbidity		E121	0.10	NTU	5.26	<0.10	8.25	<0.10	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	<0.0050	0.0074 RRV	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	1.27	<0.10	1.13	<0.10	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.136	<0.020	0.136	<0.020	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.638	<0.050	0.394 TKNI	<0.050	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	6.21	<0.0050 HTD	6.20	<0.0050	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0035	<0.0010	0.0042	<0.0010	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0.0011	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0218	<0.0020	0.0219	<0.0020	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	77.0	<0.30	76.8	<0.30	
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	2.02	<0.50	2.02	<0.50	
carbon, total organic [TOC]		E355-L	0.50	mg/L	1.94	<0.50	1.98	<0.50	

Page : 4 of 6
Work Order : CG2208042
Client : Teck Coal Limited
Project : LINE CREEK OPERATION

ALS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	LC_FRUS_WS_ LAEMP_DRY_2 022-06_N	LC_CC1_WS_L AEMP_DRY_20 22-06_N	LC_MT1_WS_L AEMP_DRY_20 22-06_N	LC_RD1_WS_L AEMP_DRY_20 22-06_N	
			Client samp	ling date / time	21-Jun-2022 14:15	21-Jun-2022 14:15	21-Jun-2022 14:15	21-Jun-2022 14:15	
Analyte	CAS Number	Method	LOR	Unit	CG2208042-001	CG2208042-002	CG2208042-003	CG2208042-004	
					Result	Result	Result	Result	
Ion Balance									
anion sum		EC101	0.10	meq/L	5.19	<0.10	5.18	<0.10	
cation sum		EC101	0.10	meq/L	5.22	<0.10	5.11	<0.10	
ion balance (cations/anions)		EC101	0.010	%	100	100	98.6	100 RRV	
ion balance (APHA)		EC101	0.010	%	0.288	<0.010	0.680	<0.010	
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.136	<0.0030	0.168	<0.0030	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00014	<0.00010	0.00014	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00021	<0.00010	0.00021	<0.00010	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0549	<0.00010	0.0545	<0.00010	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0535	<0.0050	0.0588	<0.0050	
calcium, total	7440-70-2	E420	0.050	mg/L	61.2	<0.050	60.6	<0.050	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00040	<0.00010	0.00034	<0.00010	
cobalt, total	7440-48-4	E420	0.10	μg/L	0.12	<0.10	0.13	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00050	<0.00050	0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	0.185	<0.010	0.202	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	0.000155	<0.000050	0.000160	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0166	<0.0010	0.0165	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	24.1	<0.0050	24.5	<0.0050	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0106	<0.00010	0.0110	<0.00010	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.0000050	<0.000050	<0.0000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00133	<0.000050	0.000988	<0.000050	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00185	<0.00050	0.00191	<0.00050	
potassium, total	7440-09-7	E420	0.050	mg/L	0.958	<0.050	0.971	<0.050	
selenium, total	7782-49-2	E420	0.050	μg/L	25.5	<0.050	25.6	<0.050	
silicon, total	7440-21-3	E420	0.10	mg/L	2.21	<0.10	2.29	<0.10	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total	7440-23-5	E420	0.050	mg/L	1.60	<0.050	1.60	<0.050	
,	1 440-20-0	0	0.000	9, _		0.555		0.000	

Page : 5 of 6
Work Order : CG2208042
Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	LC_FRUS_WS_ LAEMP_DRY_2 022-06 N	LC_CC1_WS_L AEMP_DRY_20 22-06 N	LC_MT1_WS_L AEMP_DRY_20 22-06 N	LC_RD1_WS_L AEMP_DRY_20 22-06 N	
			Client samp	ling date / time	21-Jun-2022 14:15	21-Jun-2022 14:15	21-Jun-2022 14:15	21-Jun-2022 14:15	
Analyte	CAS Number	Method	LOR	Unit	CG2208042-001	CG2208042-002	CG2208042-003	CG2208042-004	
Total Metals					Result	Result	Result	Result	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0880	<0.00020	0.0878	<0.00020	
sulfur, total	7704-34-9	E420	0.50	mg/L	27.5	<0.50	27.6	<0.50	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	0.00202	<0.00030	0.00399	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00148	<0.000010	0.00146	<0.000010	
vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00075	<0.00050	0.00088	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0039	<0.0030	0.0032	<0.0030	
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0021	<0.0010	0.0024	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00012	<0.00010	0.00012	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00011	<0.00010	0.00011	<0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0499	<0.00010	0.0503	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0216	<0.0050	0.0240	<0.0050	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	62.5	<0.050	61.0	<0.050	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00011	<0.00010	<0.00010	<0.00010	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0164	<0.0010	0.0168	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	24.4	<0.0050	24.0	<0.0050	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00169	<0.00010	0.00164	<0.00010	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.0000050	<0.0000050	<0.000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00110	<0.000050	0.00112	<0.000050	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00135	<0.00050	0.00137	<0.00050	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.954	<0.050	0.960	<0.050	

Page : 6 of 6
Work Order : CG2208042
Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	LC_FRUS_WS_	LC_CC1_WS_L	LC_MT1_WS_L	LC_RD1_WS_L	
(Matrix: Water)					LAEMP_DRY_2 022-06_N	AEMP_DRY_20 22-06_N	AEMP_DRY_20 22-06_N	AEMP_DRY_20 22-06_N	
				ling date / time	21-Jun-2022 14:15	21-Jun-2022 14:15	21-Jun-2022 14:15	21-Jun-2022 14:15	
Analyte	CAS Number	Method	LOR	Unit	CG2208042-001	CG2208042-002	CG2208042-003	CG2208042-004	
					Result	Result	Result	Result	
Dissolved Metals									
selenium, dissolved	7782-49-2	E421	0.050	μg/L	24.2	<0.050	24.3	<0.050	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.96	<0.050	2.10	<0.050	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	1.53	<0.050	1.54	<0.050	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0932	<0.00020	0.0937	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	26.8	<0.50	28.3	<0.50	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00150	<0.000010	0.00151	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0012	<0.0010	0.0013	<0.0010	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : CG2208042 Page : 1 of 21

Client : Teck Coal Limited Laboratory : Calgary - Environmental
Contact : Nicole Zathey Account Manager : Lyudmyla Shvets

Address : Line Creek Operations PO BOX 2003 15km North Hwy 43 Address : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : LINE CREEK OPERATION
 Date Samples Received
 : 23-Jun-2022 09:30

Project : LINE CREEK OPERATION Date Samples Received : 23-Jun-2022 09:30
PO : VPO00816101 Issue Date : 07-Jul-2022 17:10

C-O-C number : LCO_Dry Creek LAEMP_ALS

Sampler : ROBIN VALLEAU

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 21 Work Order : CG2208042

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: ≭ =	Holding time exce	edance ; 🗸	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pro	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
LC_CC1_WS_LAEMP_DRY_2022-06_N	E298	21-Jun-2022	26-Jun-2022				26-Jun-2022	28 days	5 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
LC_FRUS_WS_LAEMP_DRY_2022-06_N	E298	21-Jun-2022	26-Jun-2022				26-Jun-2022	28 days	5 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
LC_MT1_WS_LAEMP_DRY_2022-06_N	E298	21-Jun-2022	26-Jun-2022				26-Jun-2022	28 days	5 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
LC_RD1_WS_LAEMP_DRY_2022-06_N	E298	21-Jun-2022	26-Jun-2022				26-Jun-2022	28 days	5 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										,
LC_CC1_WS_LAEMP_DRY_2022-06_N	E235.Br-L	21-Jun-2022					23-Jun-2022	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE	E005 D. I	04 1 0000						00.1		,
LC_FRUS_WS_LAEMP_DRY_2022-06_N	E235.Br-L	21-Jun-2022					23-Jun-2022	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE	F025 D- I	04 1 2000					00 1 0000	00 4	0 4	✓
LC_MT1_WS_LAEMP_DRY_2022-06_N	E235.Br-L	21-Jun-2022					23-Jun-2022	28 days	∠ days	∀

Page : 4 of 21 Work Order : CG2208042

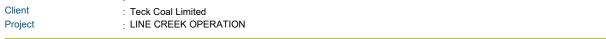
Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: Water		-				aluation: × =	Holding time exce			Holding ⁻
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys		
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
nions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE LC_RD1_WS_LAEMP_DRY_2022-06_N	E235.Br-L	21-Jun-2022					23-Jun-2022	28 days	2 days	✓
nions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE LC_CC1_WS_LAEMP_DRY_2022-06_N	E235.CI-L	21-Jun-2022					23-Jun-2022	28 days	2 days	✓
nions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-06_N	E235.CI-L	21-Jun-2022					23-Jun-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE LC_MT1_WS_LAEMP_DRY_2022-06_N	E235.CI-L	21-Jun-2022					23-Jun-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE LC_RD1_WS_LAEMP_DRY_2022-06_N	E235.CI-L	21-Jun-2022					23-Jun-2022	28 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trac	ce Level 0.001									
HDPE LC_CC1_WS_LAEMP_DRY_2022-06_N	E378-U	21-Jun-2022					23-Jun-2022	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trac	ce Level 0.001									
HDPE LC_FRUS_WS_LAEMP_DRY_2022-06_N	E378-U	21-Jun-2022					23-Jun-2022	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trad	ce Level 0.001									
HDPE LC_MT1_WS_LAEMP_DRY_2022-06_N	E378-U	21-Jun-2022					23-Jun-2022	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trad	ce Level 0.001									
HDPE LC_RD1_WS_LAEMP_DRY_2022-06_N	E378-U	21-Jun-2022					23-Jun-2022	3 days	2 days	✓

 Page
 : 5 of 21

 Work Order
 : CG2208042



nalyte Group	Method	Sampling Date	Ev	traction / Pr	enaration			Analys	is	
Container / Client Sample ID(s)	Method	Sampling Date	Preparation Date		g Times Actual	Eval	Analysis Date		g Times Actual	Eval
nions and Nutrients : Fluoride in Water by IC										
HDPE LC_CC1_WS_LAEMP_DRY_2022-06_N	E235.F	21-Jun-2022					23-Jun-2022	28 days	2 days	✓
nions and Nutrients : Fluoride in Water by IC										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-06_N	E235.F	21-Jun-2022					23-Jun-2022	28 days	2 days	✓
nions and Nutrients : Fluoride in Water by IC										
HDPE LC_MT1_WS_LAEMP_DRY_2022-06_N	E235.F	21-Jun-2022					23-Jun-2022	28 days	2 days	4
nions and Nutrients : Fluoride in Water by IC										
HDPE LC_RD1_WS_LAEMP_DRY_2022-06_N	E235.F	21-Jun-2022					23-Jun-2022	28 days	2 days	~
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-06_N	E235.NO3-L	21-Jun-2022					23-Jun-2022	3 days	2 days	1
nions and Nutrients : Nitrate in Water by IC (Low Level)							<u> </u>			
HDPE LC_MT1_WS_LAEMP_DRY_2022-06_N	E235.NO3-L	21-Jun-2022					23-Jun-2022	3 days	2 days	✓
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE LC_RD1_WS_LAEMP_DRY_2022-06_N	E235.NO3-L	21-Jun-2022					23-Jun-2022	3 days	2 days	✓
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE LC_CC1_WS_LAEMP_DRY_2022-06_N	E235.NO3-L	21-Jun-2022					26-Jun-2022	3 days	5 days	# EHT
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_CC1_WS_LAEMP_DRY_2022-06_N	E235.NO2-L	21-Jun-2022					23-Jun-2022	3 days	2 days	✓

 Page
 : 6 of 21

 Work Order
 : CG2208042

Analyte Group	Method	Sampling Date	Fxt	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)	Wiethod	Camping Date	Preparation		g Times	Eval	Analysis Date	Analysis Date Holding Times		
			Date	Rec	Actual	2707	7 maryolo Bato	Rec	Actual	Eval
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-06_N	E235.NO2-L	21-Jun-2022					23-Jun-2022	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_MT1_WS_LAEMP_DRY_2022-06_N	E235.NO2-L	21-Jun-2022					23-Jun-2022	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_RD1_WS_LAEMP_DRY_2022-06_N	E235.NO2-L	21-Jun-2022					23-Jun-2022	3 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE LC_CC1_WS_LAEMP_DRY_2022-06_N	E235.SO4	21-Jun-2022					23-Jun-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-06_N	E235.SO4	21-Jun-2022					23-Jun-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE LC_MT1_WS_LAEMP_DRY_2022-06_N	E235.SO4	21-Jun-2022					23-Jun-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE LC_RD1_WS_LAEMP_DRY_2022-06_N	E235.SO4	21-Jun-2022					23-Jun-2022	28 days	2 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) LC_CC1_WS_LAEMP_DRY_2022-06_N	E318	21-Jun-2022	30-Jun-2022				30-Jun-2022	28 days	9 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) LC_FRUS_WS_LAEMP_DRY_2022-06_N	E318	21-Jun-2022	30-Jun-2022				30-Jun-2022	28 days	9 days	✓

 Page
 : 7 of 21

 Work Order
 : CG2208042

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: water						aluation. *	nolding time exce	cuarioc ,	- vvicinii	riolaling rill
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation					
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
LC_MT1_WS_LAEMP_DRY_2022-06_N	E318	21-Jun-2022	30-Jun-2022				30-Jun-2022	28 days	9 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
LC_RD1_WS_LAEMP_DRY_2022-06_N	E318	21-Jun-2022	30-Jun-2022				30-Jun-2022	28 days	9 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
LC_CC1_WS_LAEMP_DRY_2022-06_N	E372-U	21-Jun-2022	28-Jun-2022				28-Jun-2022	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
LC_FRUS_WS_LAEMP_DRY_2022-06_N	E372-U	21-Jun-2022	28-Jun-2022				28-Jun-2022	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
LC_MT1_WS_LAEMP_DRY_2022-06_N	E372-U	21-Jun-2022	28-Jun-2022				28-Jun-2022	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
LC_RD1_WS_LAEMP_DRY_2022-06_N	E372-U	21-Jun-2022	28-Jun-2022				28-Jun-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
LC_CC1_WS_LAEMP_DRY_2022-06_N	E421.Cr-L	21-Jun-2022	27-Jun-2022				28-Jun-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
LC_FRUS_WS_LAEMP_DRY_2022-06_N	E421.Cr-L	21-Jun-2022	27-Jun-2022				28-Jun-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
LC_MT1_WS_LAEMP_DRY_2022-06_N	E421.Cr-L	21-Jun-2022	27-Jun-2022				28-Jun-2022	180	7 days	✓
_								days		

 Page
 : 8 of 21

 Work Order
 : CG2208042

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: water						uluulion.	noiding time exce	oddiioo ,	***************************************	riolaling rill
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Lev	rel)									
HDPE dissolved (nitric acid)										
LC_RD1_WS_LAEMP_DRY_2022-06_N	E421.Cr-L	21-Jun-2022	27-Jun-2022				28-Jun-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
LC_CC1_WS_LAEMP_DRY_2022-06_N	E509	21-Jun-2022	30-Jun-2022				30-Jun-2022	28 days	9 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
LC_FRUS_WS_LAEMP_DRY_2022-06_N	E509	21-Jun-2022	30-Jun-2022				30-Jun-2022	28 days	9 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS								-	1	
Glass vial dissolved (hydrochloric acid)										
LC_MT1_WS_LAEMP_DRY_2022-06_N	E509	21-Jun-2022	30-Jun-2022				30-Jun-2022	28 days	9 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
LC_RD1_WS_LAEMP_DRY_2022-06_N	E509	21-Jun-2022	30-Jun-2022				30-Jun-2022	28 days	9 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
LC_CC1_WS_LAEMP_DRY_2022-06_N	E421	21-Jun-2022	27-Jun-2022				28-Jun-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
LC_FRUS_WS_LAEMP_DRY_2022-06_N	E421	21-Jun-2022	27-Jun-2022				28-Jun-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
LC_MT1_WS_LAEMP_DRY_2022-06_N	E421	21-Jun-2022	27-Jun-2022				28-Jun-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
LC_RD1_WS_LAEMP_DRY_2022-06_N	E421	21-Jun-2022	27-Jun-2022				28-Jun-2022	180	7 days	✓
								days		

 Page
 : 9 of 21

 Work Order
 : CG2208042

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: **Water**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation					
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	I)									
Amber glass dissolved (sulfuric acid) LC_CC1_WS_LAEMP_DRY_2022-06_N	E358-L	21-Jun-2022	29-Jun-2022				06-Jul-2022	28 days	15 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	I)									
Amber glass dissolved (sulfuric acid)										,
LC_FRUS_WS_LAEMP_DRY_2022-06_N	E358-L	21-Jun-2022	29-Jun-2022				06-Jul-2022	28 days	15 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	I)									
Amber glass dissolved (sulfuric acid)										
LC_MT1_WS_LAEMP_DRY_2022-06_N	E358-L	21-Jun-2022	29-Jun-2022				06-Jul-2022	28 days	15 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	I)									
Amber glass dissolved (sulfuric acid)										
LC_RD1_WS_LAEMP_DRY_2022-06_N	E358-L	21-Jun-2022	29-Jun-2022				06-Jul-2022	28 days	15 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low Level)									
Amber glass total (sulfuric acid)										
LC_CC1_WS_LAEMP_DRY_2022-06_N	E355-L	21-Jun-2022	29-Jun-2022				06-Jul-2022	28 days	15 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low Level)									
Amber glass total (sulfuric acid)										
LC_FRUS_WS_LAEMP_DRY_2022-06_N	E355-L	21-Jun-2022	29-Jun-2022				06-Jul-2022	28 days	15 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low Level)									
Amber glass total (sulfuric acid)										
LC_MT1_WS_LAEMP_DRY_2022-06_N	E355-L	21-Jun-2022	29-Jun-2022				06-Jul-2022	28 days	15 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low L <u>evel)</u>									
Amber glass total (sulfuric acid)										
LC_RD1_WS_LAEMP_DRY_2022-06_N	E355-L	21-Jun-2022	29-Jun-2022				06-Jul-2022	28 days	15 days	✓
Physical Tests : Acidity by Titration										
HDPE										
LC_CC1_WS_LAEMP_DRY_2022-06_N	E283	21-Jun-2022					28-Jun-2022	14 days	7 days	✓

Page : 10 of 21 Work Order : CG2208042

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: Water

Evaluation: x = Holding time exceedance; ✓ = Within Holding Time	
---	--

nalyte Group Container / Client Sample ID(s) hysical Tests : Acidity by Titration	Method	Sampling Date	Ext Preparation	traction / Pro Holding		Eval	Analysis Date	Analys Holding		Eval
			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
hysical Tests : Acidity by Titration		1 1		Preparation Holding Times		Eval Analysis Date		ate Holding Times		
hysical Tests : Acidity by Titration		1	Date	Rec	Actual			Rec	Actual	
HDPE										
LC_FRUS_WS_LAEMP_DRY_2022-06_N	E283	21-Jun-2022					28-Jun-2022	14 days	7 days	✓
hysical Tests : Acidity by Titration										
HDPE										
LC_MT1_WS_LAEMP_DRY_2022-06_N	E283	21-Jun-2022					28-Jun-2022	14 days	7 days	✓
hysical Tests : Acidity by Titration										
HDPE										
LC_RD1_WS_LAEMP_DRY_2022-06_N	E283	21-Jun-2022					28-Jun-2022	14 days	7 days	✓
hysical Tests : Alkalinity Species by Titration										
HDPE										
LC_CC1_WS_LAEMP_DRY_2022-06_N	E290	21-Jun-2022					28-Jun-2022	14 days	7 days	✓
hysical Tests : Alkalinity Species by Titration										
HDPE										
LC_FRUS_WS_LAEMP_DRY_2022-06_N	E290	21-Jun-2022					28-Jun-2022	14 days	7 days	✓
hysical Tests : Alkalinity Species by Titration										
HDPE										
LC_MT1_WS_LAEMP_DRY_2022-06_N	E290	21-Jun-2022					28-Jun-2022	14 days	7 days	✓
hysical Tests : Alkalinity Species by Titration										
HDPE										
LC_RD1_WS_LAEMP_DRY_2022-06_N	E290	21-Jun-2022					28-Jun-2022	14 days	7 days	✓
hysical Tests : Conductivity in Water										
HDPE										
LC_CC1_WS_LAEMP_DRY_2022-06_N	E100	21-Jun-2022					28-Jun-2022	28 days	7 days	✓
hysical Tests : Conductivity in Water										
HDPE										
MUFE										
LC_FRUS_WS_LAEMP_DRY_2022-06_N	E100	21-Jun-2022					28-Jun-2022	28 days	7 days	✓

Page : 11 of 21 Work Order : CG2208042

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: **Water**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: water						araaro	Holding time exce		*********	r returning r m
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation					
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE										
LC_MT1_WS_LAEMP_DRY_2022-06_N	E100	21-Jun-2022					28-Jun-2022	28 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE								T		
LC RD1 WS LAEMP DRY 2022-06 N	E100	21-Jun-2022					28-Jun-2022	28 days	7 days	✓
EO_101_WO_D/CIVII _DIVI _2022-00_W	2.00	2 : 54 2522					20 ddii 2022	20 dayo	, dayo	
Physical Tests : ORP by Electrode										
HDPE	E40E	24 Jun 2022					04 11 2022	0.05	212 bro	*
LC_CC1_WS_LAEMP_DRY_2022-06_N	E125	21-Jun-2022					04-Jul-2022	0.25	313 hrs	
								hrs		EHTR-FM
Physical Tests : ORP by Electrode										
HDPE										
LC_FRUS_WS_LAEMP_DRY_2022-06_N	E125	21-Jun-2022					04-Jul-2022	0.25	313 hrs	*
								hrs		EHTR-FM
Physical Tests : ORP by Electrode										
HDPE										
LC_MT1_WS_LAEMP_DRY_2022-06_N	E125	21-Jun-2022					04-Jul-2022	0.25	313 hrs	*
								hrs		EHTR-FM
Physical Tests : ORP by Electrode										
HDPE										
LC_RD1_WS_LAEMP_DRY_2022-06_N	E125	21-Jun-2022					04-Jul-2022	0.25	313 hrs	x
20 ⁷ .70.71.027.72.11.72.72.00 ⁷ .								hrs		EHTR-FM
								10		
Physical Tests : pH by Meter									I	
HDPE	E400	24 Jun 2022					00 1 0000	0.05	405 5	×
LC_CC1_WS_LAEMP_DRY_2022-06_N	E108	21-Jun-2022					28-Jun-2022	0.25	165 hrs	
								hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
LC_FRUS_WS_LAEMP_DRY_2022-06_N	E108	21-Jun-2022					28-Jun-2022	0.25	165 hrs	*
								hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
	E400	04 1 0000					28-Jun-2022	0.05	16E bro	3c
LC_MT1_WS_LAEMP_DRY_2022-06_N	E108	21-Jun-2022					28-Jun-2022	0.25	165 hrs	

Page : 12 of 21
Work Order : CG2208042

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pre	paration		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE LC_RD1_WS_LAEMP_DRY_2022-06_N	E108	21-Jun-2022					28-Jun-2022	0.25 hrs	165 hrs	* EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE LC_CC1_WS_LAEMP_DRY_2022-06_N	E162	21-Jun-2022					28-Jun-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-06_N	E162	21-Jun-2022					28-Jun-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE LC_MT1_WS_LAEMP_DRY_2022-06_N	E162	21-Jun-2022					28-Jun-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE LC_RD1_WS_LAEMP_DRY_2022-06_N	E162	21-Jun-2022					28-Jun-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE LC_CC1_WS_LAEMP_DRY_2022-06_N	E160-L	21-Jun-2022					28-Jun-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-06_N	E160-L	21-Jun-2022					28-Jun-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE LC_MT1_WS_LAEMP_DRY_2022-06_N	E160-L	21-Jun-2022					28-Jun-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE LC_RD1_WS_LAEMP_DRY_2022-06_N	E160-L	21-Jun-2022					28-Jun-2022	7 days	7 days	√

Page : 13 of 21
Work Order : CG2208042

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

viainx: water					Analysis					
Analyte Group	Method	Sampling Date		traction / Pr	•					
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Turbidity by Nephelometry										
HDPE										
LC_CC1_WS_LAEMP_DRY_2022-06_N	E121	21-Jun-2022					23-Jun-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
LC_FRUS_WS_LAEMP_DRY_2022-06_N	E121	21-Jun-2022					23-Jun-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
LC_MT1_WS_LAEMP_DRY_2022-06_N	E121	21-Jun-2022					23-Jun-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
LC_RD1_WS_LAEMP_DRY_2022-06_N	E121	21-Jun-2022					23-Jun-2022	3 days	2 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
LC_CC1_WS_LAEMP_DRY_2022-06_N	E420.Cr-L	21-Jun-2022					28-Jun-2022	180	7 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
LC_FRUS_WS_LAEMP_DRY_2022-06_N	E420.Cr-L	21-Jun-2022					28-Jun-2022	180	7 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
LC_MT1_WS_LAEMP_DRY_2022-06_N	E420.Cr-L	21-Jun-2022					28-Jun-2022	180	7 days	✓
								days	-	
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
LC_RD1_WS_LAEMP_DRY_2022-06_N	E420.Cr-L	21-Jun-2022					28-Jun-2022	180	7 days	✓
								days	,	
Total Metals : Total Mercury in Water by CVAAS								,		
Glass vial total (hydrochloric acid)										
LC_CC1_WS_LAEMP_DRY_2022-06_N	E508	21-Jun-2022					30-Jun-2022	28 days	9 davs	✓
==_= :_···=_= :=···· _=···· _=···-= vv_!									,-	

Page : 14 of 21 Work Order : CG2208042

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

natrix: water						valuation. ^ -	Holding time exce	euance,	- vvitiiiii	Holding
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding Times		Eva
			Date	Rec	Actual			Rec	Actual	
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) LC_FRUS_WS_LAEMP_DRY_2022-06_N	E508	21-Jun-2022					30-Jun-2022	28 days	9 days	✓
Fotal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) LC_MT1_WS_LAEMP_DRY_2022-06_N	E508	21-Jun-2022					30-Jun-2022	28 days	9 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) LC_RD1_WS_LAEMP_DRY_2022-06_N	E508	21-Jun-2022					30-Jun-2022	28 days	9 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) LC_CC1_WS_LAEMP_DRY_2022-06_N	E420	21-Jun-2022					28-Jun-2022	180 days	7 days	✓
otal Metals : Total Metals in Water by CRC ICPMS									1	
HDPE total (nitric acid) LC_FRUS_WS_LAEMP_DRY_2022-06_N	E420	21-Jun-2022					28-Jun-2022	180 days	7 days	✓
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) LC_MT1_WS_LAEMP_DRY_2022-06_N	E420	21-Jun-2022					28-Jun-2022	180 days	7 days	✓
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) LC_RD1_WS_LAEMP_DRY_2022-06_N	E420	21-Jun-2022					28-Jun-2022	180 days	7 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 15 of 21 Work Order : CG2208042

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	541834	1	19	5.2	5.0	1
Alkalinity Species by Titration	E290	541448	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	539290	2	40	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	536408	1	9	11.1	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	536409	1	9	11.1	5.0	1
Conductivity in Water	E100	541447	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	539105	1	20	5.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	544103	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	539104	2	20	10.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	543248	1	18	5.5	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	536138	1	8	12.5	5.0	✓
Fluoride in Water by IC	E235.F	536407	1	9	11.1	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	536410	1	9	11.1	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	536411	1	9	11.1	5.0	✓
ORP by Electrode	E125	546132	1	20	5.0	5.0	✓
pH by Meter	E108	541446	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	536412	1	9	11.1	5.0	1
TDS by Gravimetry	E162	540104	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	539402	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	543342	2	32	6.2	5.0	✓
Total Mercury in Water by CVAAS	E508	544092	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	539401	1	19	5.2	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	543249	1	12	8.3	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	536291	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	536333	1	15	6.6	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	541834	1	19	5.2	5.0	1
Alkalinity Species by Titration	E290	541448	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	539290	2	40	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	536408	1	9	11.1	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	536409	1	9	11.1	5.0	√
Conductivity in Water	E100	541447	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	539105	1	20	5.0	5.0	√
Dissolved Mercury in Water by CVAAS	E509	544103	1	20	5.0	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	539104	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	543248	1	18	5.5	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	536138	1	8	12.5	5.0	1

Page : 16 of 21 Work Order : CG2208042

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

Quality Control Sample Type			Co	ount			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	536407	1	9	11.1	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	536410	1	9	11.1	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	536411	1	9	11.1	5.0	✓
ORP by Electrode	E125	546132	1	20	5.0	5.0	✓
pH by Meter	E108	541446	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	536412	1	9	11.1	5.0	✓
TDS by Gravimetry	E162	540104	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	539402	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	543342	2	32	6.2	5.0	✓
Total Mercury in Water by CVAAS	E508	544092	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	539401	1	19	5.2	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	543249	1	12	8.3	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	536291	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	540097	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	536333	1	15	6.6	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	541834	1	19	5.2	5.0	✓
Alkalinity Species by Titration	E290	541448	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	539290	2	40	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	536408	1	9	11.1	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	536409	1	9	11.1	5.0	✓
Conductivity in Water	E100	541447	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	539105	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	544103	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	539104	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	543248	1	18	5.5	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	536138	1	8	12.5	5.0	✓
Fluoride in Water by IC	E235.F	536407	1	9	11.1	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	536410	1	9	11.1	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	536411	1	9	11.1	5.0	✓
Sulfate in Water by IC	E235.SO4	536412	1	9	11.1	5.0	✓
TDS by Gravimetry	E162	540104	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	539402	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	543342	2	32	6.2	5.0	✓
Total Mercury in Water by CVAAS	E508	544092	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	539401	1	19	5.2	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	543249	1	12	8.3	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	536291	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	540097	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	536333	1	15	6.6	5.0	✓

Page : 17 of 21 Work Order : CG2208042

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

			40	orres caronae epo	- Qo noquency main epocined			
Quality Control Sample Type			Co	ount				
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Matrix Spikes (MS)								
Ammonia by Fluorescence	E298	539290	2	40	5.0	5.0	✓	
Bromide in Water by IC (Low Level)	E235.Br-L	536408	1	9	11.1	5.0	✓	
Chloride in Water by IC (Low Level)	E235.CI-L	536409	1	9	11.1	5.0	✓	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	539105	1	20	5.0	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	544103	1	20	5.0	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	539104	1	20	5.0	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	543248	1	18	5.5	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	536138	1	8	12.5	5.0	✓	
Fluoride in Water by IC	E235.F	536407	1	9	11.1	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	536410	1	9	11.1	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	536411	1	9	11.1	5.0	✓	
Sulfate in Water by IC	E235.SO4	536412	1	9	11.1	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	539402	1	19	5.2	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	543342	2	32	6.2	5.0	✓	
Total Mercury in Water by CVAAS	E508	544092	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	539401	1	19	5.2	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	543249	1	12	8.3	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	536291	1	20	5.0	5.0	✓	
				_				

Page : 18 of 21 Work Order : CG2208042

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
	Calgary - Environmental			at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
Trushidita ha Nasahalasa 4m.	0 7	\A/-4	A DUI A 0400 D ()	pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			scatter under defined conditions.
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the
				platinum metal-reference electrode employed, measured in mV. For high accuracy test
	Calgary - Environmental			results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
				filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
	2102		,	filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Colorani. Faringana antal			detection.
Chlorida in Water by IC (Levy Leval)	Calgary - Environmental	Water	EDA 200.1 (mad)	
Chloride in Water by IC (Low Level)	E235.CI-L	water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			detection.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
I with a te in water by 10 (Low Level)	E235.NO3-L	vvater	Li A 300.1 (mod)	detection.
	Calgary - Environmental			detection.
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			
	Jaigary - Environmental			

Page : 19 of 21 Work Order : CG2208042

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 20 of 21
Work Order : CG2208042

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS	E421.Cr-L	Water	APHA 3030 B/EPA	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by
(Low Level)	.,		6020B (mod)	Collision/Reaction Cell ICPMS
	Vancouver - Environmental			
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	Vancouver - Environmental			
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Calgary - Environmental			
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
2.552.753 Models Fields Findalish	Vancouver -	, ac		
	Environmental			

Page : 21 of 21 Work Order : CG2208042

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order : CG2208042

Client : Teck Coal Limited
Contact : Nicole Zathey

Address : Line Creek Operations PO BOX 2003 15km North Hwy 43

Sparwood BC Canada V0B 2G0

Telephone : ---

Project : LINE CREEK OPERATION

PO : VPO00816101

C-O-C number : LCO_Dry Creek LAEMP_ALS

Sampler : ROBIN VALLEAU

Site :--

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 23-Jun-2022 09:30

Date Analysis Commenced : 23-Jun-2022

Laboratory Department

Issue Date : 07-Jul-2022 17:10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

Position

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signaturies	FOSITION	Laboratory Department
Angela Ren	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia
Ann Joby	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Benjamin Oke	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Elke Tabora		Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Owen Cheng		Vancouver Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Calgary Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta
Sara Niroomand		Calgary Inorganics, Calgary, Alberta
Shirley Li		Calgary Inorganics, Calgary, Alberta
Woochan Song	Lab Analyst	Vancouver Metals, Burnaby, British Columbia

 Page
 : 2 of 18

 Work Order
 : CG2208042

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATION

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2208042

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATION

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water			Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 536333)										
CG2207929-002	Anonymous	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR	
Physical Tests (QC	Lot: 540104)										
CG2208014-005	Anonymous	solids, total dissolved [TDS]		E162	40	mg/L	2720	2620	3.64%	20%	
Physical Tests (QC	Lot: 541446)										
CG2208042-001	LC_FRUS_WS_LAEMP_D RY_2022-06_N	рН		E108	0.10	pH units	8.18	8.23	0.609%	4%	
Physical Tests (QC	Lot: 541447)										
CG2208042-001	LC_FRUS_WS_LAEMP_D RY_2022-06_N	conductivity		E100	2.0	μS/cm	487	485	0.412%	10%	
Physical Tests (QC	Lot: 541448)										
CG2208042-001	LC_FRUS_WS_LAEMP_D RY_2022-06_N	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	153	152	0.720%	20%	
l		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	2.0	<1.0	1.0	Diff <2x LOR	
l		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
l		alkalinity, total (as CaCO3)		E290	1.0	mg/L	155	152	2.01%	20%	
Physical Tests (QC	Lot: 541834)										
CG2208041-006	Anonymous	acidity (as CaCO3)		E283	10.0	mg/L	28.8	19.9	8.9	Diff <2x LOR	
Physical Tests (QC	Lot: 546132)										
CG2208034-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	381	386	1.43%	15%	
Anions and Nutrien	ts (QC Lot: 536138)										
CG2208040-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0017	0.0017	0.00004	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 536291)										
CG2208041-003	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 536407)										
CG2208023-004	Anonymous	fluoride	16984-48-8	E235.F	0.400	mg/L	<0.400	<0.400	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 536408)										
CG2208023-004	Anonymous	bromide	24959-67-9	E235.Br-L	1.00	mg/L	<1.00	<1.00	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 536409)										
CG2208023-004	Anonymous	chloride	16887-00-6	E235.CI-L	2.00	mg/L	52.0	49.9	4.03%	20%	
Anions and Nutrien	ts (QC Lot: 536410)										
CG2208023-004	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.100	mg/L	36.4	35.2	3.41%	20%	
Anions and Nutrien	ts (QC Lot: 536411)										
THE RESERVE OF THE PARTY OF THE											

Page : 4 of 18 Work Order : CG2208042 : Teck Coal Limited Client : LINE CREEK OPERATION Project

Laboratory Duplicate (DUP) Report Sub-Matrix: Water Laboratory sample ID Client sample ID CAS Number Method LOR Unit Qualifier Analyte Original Duplicate RPD(%) or Duplicate

							Result	Result	Difference	Limits	
Anions and Nutrie	nts (QC Lot: 536412)										
CG2208023-004	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	6.00	mg/L	1130	1090	3.35%	20%	
Anions and Nutrie	nts (QC Lot: 539290)										
CG2207996-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.125	mg/L	2.39	2.38	0.528%	20%	
Anions and Nutrie	nts (QC Lot: 539291)										
CG2208042-004	LC_RD1_WS_LAEMP_DR	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0074	0.0067	0.0007	Diff <2x LOR	
	Y_2022-06_N										
	nts (QC Lot: 543342)	10.11.11.11		E040	0.050		.0.050	-0.050		D:# +0 + OD	
CG2208014-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
	nts (QC Lot: 543343)										
CG2208042-002	LC_CC1_WS_LAEMP_DR Y_2022-06_N	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
	c Carbon (QC Lot: 54324	18)									
CG2208041-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Organic / Inorganic	c Carbon (QC Lot: 54324	19)									
CG2208041-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
otal Metals (QC L	Lot: 539401)										
CG2208029-002	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0117	0.0095	0.0022	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00036	0.00037	0.00001	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00016	0.00016	0.0000004	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0254	0.0258	1.26%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.012	0.013	0.0004	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.504 μg/L	0.000524	3.87%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	73.9	76.0	2.79%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.26 μg/L	0.00027	0.00001	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00075	0.00073	0.00002	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.013	0.013	0.0002	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0342	0.0360	5.18%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	38.7	39.4	1.71%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00222	0.00200	10.4%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00184	0.00188	1.70%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00993	0.00985	0.768%	20%	
						•				200/	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.37	1.38	0.568%	20%	

 Page
 : 5 of 18

 Work Order
 : CG2208042

 Client
 : Teck Coal Limited

Sub-Matrix: Water			Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 539401) - continued										
CG2208029-002	Anonymous	silicon, total	7440-21-3	E420	0.10	mg/L	1.84	1.82	0.832%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	4.78	4.69	1.82%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.139	0.138	0.681%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	57.9	56.8	1.83%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000017	0.000017	0.0000001	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00284	0.00287	1.08%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0228	0.0227	0.0001	Diff <2x LOR	
Total Metals (QC L	ot: 539402)										
CG2208029-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00012	0.00010	0.00002	Diff <2x LOR	
Total Metals (QC L	ot: 544092)										
CG2208029-002	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 539104)										
CG2208029-004	Anonymous	nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00154	0.00157	0.00003	Diff <2x LOR	
CG2208029-004	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0024	0.0017	0.0006	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00014	0.00014	0.000002	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00013	0.00011	0.00002	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0502	0.0513	2.20%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0201 µg/L	0.0000216	0.0000014	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	58.8	60.2	2.42%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0161	0.0164	1.84%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	23.0	23.7	3.03%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00084	0.00092	0.00008	Diff <2x LOR	
		· ·				-					
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00115	0.00114	0.749%	20%	

 Page
 : 6 of 18

 Work Order
 : CG2208042

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier				
Dissolved Metals (QC Lot: 539104) - cor	ntinued													
CG2208029-004	Anonymous	selenium, dissolved	7782-49-2	E421	0.000050	mg/L	21.5 µg/L	0.0211	1.86%	20%					
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.10	2.07	1.56%	20%					
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR					
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	1.89	1.95	3.00%	20%					
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.102	0.104	1.78%	20%					
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	28.8	28.3	1.72%	20%					
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR					
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR					
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR					
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00150	0.00155	3.20%	20%					
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR					
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0018	0.0018	0.00004	Diff <2x LOR					
Dissolved Metals (QC Lot: 539105)														
CG2208029-004	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR					
Dissolved Metals (QC Lot: 544103)														
CG2208029-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR					

 Page
 : 7 of 18

 Work Order
 : CG2208042

 Client
 : Teck Coal Limited

 Project
 : LINE CREEK OPERATION

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 536333)					
urbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 540097)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 540104)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 541447)					
conductivity	E100	1	μS/cm	1.7	
Physical Tests (QCLot: 541448)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 541834)					
acidity (as CaCO3)	E283	2	mg/L	2.2	
Anions and Nutrients (QCLot: 536138)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 536291)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 536407)					
luoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 536408)					
promide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 536409)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 536410)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 536411)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 536412)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 539290)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 539291)				· · · · · · · · · · · · · · · · · · ·	

Page : 8 of 18 : CG2208042 Work Order Client

: Teck Coal Limited Project : LINE CREEK OPERATION

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 53929	1) - continued				
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 54334	2)				
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 54334	3)				
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Organic / Inorganic Carbon (QCLot:	543248)				
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot:	543249)				
carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 539401)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.0000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6 E420	0.01	mg/L	<0.010	
lead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	

Page : 9 of 18
Work Order : CG2208042
Client : Teck Coal Limited

Project : LINE CREEK OPERATION

ALS

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 539401) - cont	inued				
tin, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	
uranium, total	7440-61-1 E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2 E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 539402)					
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 544092)					
mercury, total	7439-97-6 E508	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 539104)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.00010	

 Page
 : 10 of 18

 Work Order
 : CG2208042

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATION

ALS

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 539104) - conti	nued				
tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 539105)					
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 544103)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.0000050	

 Page
 : 11 of 18

 Work Order
 : CG2208042

 Client
 : Teck Coal Limited

 Project
 : LINE CREEK OPERATION

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Triangle	ub-Matrix: Water						Laboratory Cor	ntrol Sample (LCS)	Report	
Physical Tests (OCLot: \$48633)						Spike	Recovery (%)	Recovery	Limits (%)	
Triangle	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tosts (QCLot: \$40097)	Physical Tests (QCLot: 536333)									
Second Second (TISS) Figure Figure 1 mg/L 150 mg/L 929 850 115 Figure F	turbidity		E121	0.1	NTU	200 NTU	102	85.0	115	
Physical Tosts (QCLot: 540104) soids, foul disast/ved [TDS]	Physical Tests (QCLot: 540097)									
Physical Tests (QCLot: 541446) File Fi	solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	92.9	85.0	115	
Physical Tests (QCLot: \$41445) Physical Tests (QCLot: \$41447) Physical Tests (QCLot: \$41447) Physical Tests (QCLot: \$41448) Physical Tests (QCLot: \$41448) Physical Tests (QCLot: \$41448) Physical Tests (QCLot: \$41448) Physical Tests (QCLot: \$41484) Physical Tests (QCLot: \$41484) Physical Tests (QCLot: \$41484) Physical Tests (QCLot: \$41834) Physical Tests (QCLot: \$418344) Physical Tests (QCLot: \$418344) Physical Tests (QCLot: \$41834	Physical Tests (QCLot: 540104)									
Physical Tests (QCLot: 541447)	solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	101	85.0	115	
Physical Tests (QCLot: 541447)	Physical Tests (QCLot: 541446)									
Physical Tests (QCLot: 541448) Physical Tests (QCLot: 541848) Physical Tests (QCLot: 541834) Physical Tests (QCLot: 54184) Physical Tests (QCLot: 541845)	pH		E108		pH units	7 pH units	99.0	98.6	101	
Physical Tests (QCLot: 541448) Physical Tests (QCLot: 541848) Physical Tests (QCLot: 541834) Physical Tests (QCLot: 54184) Physical Tests (QCLot: 541845)	Physical Tests (QCLot: 541447)									
Alcalinity, total (as CaCO3) E290 1 mg/L S00 mg/L 103 85.0 115 mg/L	conductivity		E100	1	μS/cm	146.9 μS/cm	105	90.0	110	
Physical Tosts (QCLot: 541834) acidity (as CaCO3)	Physical Tests (QCLot: 541448)									
Physical Tests (QCLot: 546132)	alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	103	85.0	115	
Physical Tests (QCLot: 546132) oxidation-reduction potential [QRP]	Physical Tests (QCLot: 541834)									
Anions and Nutrients (QCLot: 536138) phosphate, orthor, dissolved (as P) 14265-44-2 [S78-U 0.001 mg/L 0.02 mg/L 102 80.0 120 Anions and Nutrients (QCLot: 536291) phosphorous, total 7723-14-0 [S37-U 0.002 mg/L 8.02 mg/L 114 80.0 120 Anions and Nutrients (QCLot: 536407) fluoride 16984-48-8 [S25.F 0.02 mg/L 1 mg/L 96.3 90.0 110 Anions and Nutrients (QCLot: 536408) tromide 24959-67-9 [S25.Br-L 0.05 mg/L 0.5 mg/L 91.2 85.0 115 Anions and Nutrients (QCLot: 536409) chloride 16887-00-6 [S25.Cl-L 0.1 mg/L 100 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 536409) chloride 16887-00-6 [S25.Cl-L 0.1 mg/L 100 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 536410) mitrate (as N) 14797-55-8 [S25.NO2-L 0.001 mg/L 0.5 mg/L 9.5 mg/L 90.0 90.0 110 Anions and Nutrients (QCLot: 536411) mitrate (as N) 14797-65-0 [S25.NO2-L 0.001 mg/L 0.5 mg/L 96.0 90.0 110 Anions and Nutrients (QCLot: 536411) mitrate (as N) 14797-65-0 [S25.NO2-L 0.001 mg/L 0.5 mg/L 96.0 90.0 110 Anions and Nutrients (QCLot: 536412) suffate (as SO4) 14808-79-8 [S25.SO4 0.3 mg/L 100 mg/L 99.1 90.0 110	acidity (as CaCO3)		E283	2	mg/L	50 mg/L	104	85.0	115	
Anions and Nutrients (QCLot: 536418) phosphate, ortho-, dissolved (as P) 14265-44-2 878-U 0.001 mg/L 0.02 mg/L 102 80.0 120 Anions and Nutrients (QCLot: 536291) phosphorus, total 7723-14-0 837-U 0.002 mg/L 8.02 mg/L 114 80.0 120 Anions and Nutrients (QCLot: 536407) fluoride 16984-48-8 823.F 0.02 mg/L 1 mg/L 96.3 90.0 110 Anions and Nutrients (QCLot: 536408) bromide 24959-67-9 8235.Br-L 0.05 mg/L 0.5 mg/L 91.2 85.0 115 Anions and Nutrients (QCLot: 536409) chloride 16987-006 8235.Cr-L 0.1 mg/L 100 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 536410) mitrie (as N) 14797-55-8 8235.NO3-L 0.005 mg/L 2.5 mg/L 9.05 mg/L 90.0 90.0 110 Anions and Nutrients (QCLot: 536411) mitrie (as N) 14797-65-0 8235.NO3-L 0.001 mg/L 0.5 mg/L 9.6 mg/L 99.1 90.0 110 Anions and Nutrients (QCLot: 536412) mitrie (as SO4) 14808-79-8 8235.NO3-L 0.001 mg/L 0.5 mg/L 99.1 90.0 110 Anions and Nutrients (QCLot: 536412) sufface (as SO4) 14808-79-8 8235.NO3-L 0.001 mg/L 0.5 mg/L 99.1 90.0 110	Physical Tests (QCLot: 546132)									
Phosphate, ortho-, dissolved (as P) 14285-44-2 [878-U 0.001 mg/L 0.02 mg/L 102 80.0 120	oxidation-reduction potential [ORP]		E125		mV	220 mV	97.0	95.4	104	
Phosphate, ortho-, dissolved (as P) 14285-44-2 [878-U 0.001 mg/L 0.02 mg/L 102 80.0 120										
Anions and Nutrients (QCLot: 536407) phosphorus, total 7723-14-0 [872-U 0.002 mg/L 8.02 mg/L 114 80.0 120 Anions and Nutrients (QCLot: 536407) fluoride 16984-48-8 [235.F 0.02 mg/L 1 mg/L 96.3 90.0 110 Anions and Nutrients (QCLot: 536408) bromide 24959-67-9 [235.Br-L 0.05 mg/L 0.5 mg/L 91.2 85.0 115 Anions and Nutrients (QCLot: 536409) chloride 16887-00-6 [235.Cl-L 0.1 mg/L 100 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 536410) nitrate (as N) 14797-55-8 [235.NO3-L 0.005 mg/L 2.5 mg/L 100 90.0 110 Anions and Nutrients (QCLot: 536411) nitrate (as N) 14797-65-0 [235.NO2-L 0.01 mg/L 0.5 mg/L 9.5 mg/L 96.0 90.0 110 Anions and Nutrients (QCLot: 536412) nitrate (as N) 14797-85-1 [235.NO2-L 0.001 mg/L 0.5 mg/L 96.0 90.0 110 Anions and Nutrients (QCLot: 536412) sulfate (as SO4) 14808-79-8 [235.SO4 0.3 mg/L 100 mg/L 99.1 90.0 110	Anions and Nutrients (QCLot: 536138)									
Phosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.02 mg/L 114 80.0 120	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	102	80.0	120	
Anions and Nutrients (QCLot: 536407) ffluoride 16984-48-8	Anions and Nutrients (QCLot: 536291)									
fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 96.3 90.0 110 Anions and Nutrients (QCLot: 536408) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 91.2 85.0 115 Anions and Nutrients (QCLot: 536409) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 536410) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 100 90.0 110 Anions and Nutrients (QCLot: 536411) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 96.0 90.0 110 Anions and Nutrients (QCLot: 536412) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 99.1 90.0 110	phosphorus, total	7723-14-0	E372-U	0.002	mg/L	8.02 mg/L	114	80.0	120	
Anions and Nutrients (QCLot: 536408) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 91.2 85.0 115 Anions and Nutrients (QCLot: 536409) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 536410) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 100 90.0 110 Anions and Nutrients (QCLot: 536411) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 96.0 90.0 110 Anions and Nutrients (QCLot: 536412) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 99.1 90.0 110	Anions and Nutrients (QCLot: 536407)									
bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 91.2 85.0 115 Anions and Nutrients (QCLot: 536409) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 536410) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 100 90.0 110 Anions and Nutrients (QCLot: 536411) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 96.0 90.0 110 Anions and Nutrients (QCLot: 536412) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 99.1 90.0 110	fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	96.3	90.0	110	
Anions and Nutrients (QCLot: 536409) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 536410) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 100 90.0 110 Anions and Nutrients (QCLot: 536411) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 96.0 90.0 110 Anions and Nutrients (QCLot: 536412) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 99.1 90.0 110	Anions and Nutrients (QCLot: 536408)									
chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 97.7 90.0 110 Anions and Nutrients (QCLot: 536410) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 100 90.0 110 Anions and Nutrients (QCLot: 536411) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 96.0 90.0 110 Anions and Nutrients (QCLot: 536412) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 99.1 90.0 110	bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	91.2	85.0	115	
Anions and Nutrients (QCLot: 536410) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 100 90.0 110 Anions and Nutrients (QCLot: 536411) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 96.0 90.0 110 Anions and Nutrients (QCLot: 536412) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 99.1 90.0 110	Anions and Nutrients (QCLot: 536409)									
Anions and Nutrients (QCLot: 536411) nitrite (as N) 14797-65-0 E235.NO2-L 0.005 mg/L 2.5 mg/L 100 90.0 110 Anions and Nutrients (QCLot: 536411) Sulfate (as SO4) 14808-79-8 E235.NO2-L 0.001 mg/L 0.5 mg/L 96.0 90.0 110 Anions and Nutrients (QCLot: 536412) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 99.1 90.0 110	chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	97.7	90.0	110	
Anions and Nutrients (QCLot: 536411) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 96.0 90.0 110 Anions and Nutrients (QCLot: 536412) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 99.1 90.0 110	Anions and Nutrients (QCLot: 536410)									
Anions and Nutrients (QCLot: 536412) sulfate (as SO4) 14808-79-8 E235.NO2-L 0.001 mg/L 0.5 mg/L 96.0 90.0 110	nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 536412) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 99.1 90.0 110	Anions and Nutrients (QCLot: 536411)									
sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 99.1 90.0 110	nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	96.0	90.0	110	
	Anions and Nutrients (QCLot: 536412)									
Anions and Nutrients (QCLot: 539290)	sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	99.1	90.0	110	
	Anions and Nutrients (QCLot: 539290)									

 Page
 : 12 of 18

 Work Order
 : CG2208042

 Client
 : Teck Coal Limited

ub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	/ Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Anions and Nutrients (QCLot: 539290) - c	ontinued									
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	101	85.0	115		
Anions and Nutrients (QCLot: 539291)										
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	112	85.0	115		
Anions and Nutrients (QCLot: 543342)									•	
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	100	75.0	125		
Anions and Nutrients (QCLot: 543343)										
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	100	75.0	125		
Organic / Inorganic Carbon (QCLot: 54324	8)									
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	104	80.0	120		
Organic / Inorganic Carbon (QCLot: 54324	9)									
carbon, total organic [TOC]		E355-L	0.5	mg/L	8.57 mg/L	96.7	80.0	120		
Total Metals (QCLot: 539401)									•	
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	102	80.0	120		
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	105	80.0	120		
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	99.5	80.0	120		
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	104	80.0	120		
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	100	80.0	120		
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	101	80.0	120		
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	96.4	80.0	120		
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	99.2	80.0	120		
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	102	80.0	120		
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	95.9	80.0	120		
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	97.0	80.0	120		
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	98.8	80.0	120		
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	102	80.0	120		
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	98.0	80.0	120		
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	103	80.0	120		
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	98.6	80.0	120		
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	101	80.0	120		
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	95.6	80.0	120		
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	98.5	80.0	120		
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	101	80.0	120		
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	106	80.0	120		
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	96.9	80.0	120		
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	99.6	80.0	120		

 Page
 : 13 of 18

 Work Order
 : CG2208042

 Client
 : Teck Coal Limited

ALS

-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 539401) - continued										
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	96.7	80.0	120		
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	98.1	80.0	120		
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	105	80.0	120		
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	97.9	80.0	120		
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	93.5	80.0	120		
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	102	80.0	120		
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	99.3	80.0	120		
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	93.1	80.0	120		
Total Metals (QCLot: 539402)										
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	95.9	80.0	120		
Total Metals (QCLot: 544092)										
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	108	80.0	120		
Dissolved Metals (QCLot: 539104)										
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	95.3	80.0	120		
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	96.8	80.0	120		
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	99.6	80.0	120		
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	97.3	80.0	120		
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	93.1	80.0	120		
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	104	80.0	120		
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	90.5	80.0	120		
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	97.9	80.0	120		
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	96.3	80.0	120		
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	95.0	80.0	120		
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	95.9	80.0	120		
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	97.5	80.0	120		
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	99.1	80.0	120		
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	92.4	80.0	120		
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	95.7	80.0	120		
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	100.0	80.0	120		
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	100	80.0	120		
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	97.4	80.0	120		
potassium, dissolved	7440-09-7		0.05	mg/L	50 mg/L	97.4	80.0	120		
selenium, dissolved	7782-49-2		0.00005	mg/L	1 mg/L	91.4	80.0	120		
silicon, dissolved	7440-21-3		0.05	mg/L	10 mg/L	102	80.0	120		
silver, dissolved	7440-22-4		0.00001	mg/L	0.1 mg/L	93.6	80.0	120		
sodium, dissolved	7440-23-5		0.05	mg/L	50 mg/L	96.5	80.0	120		

 Page
 : 14 of 18

 Work Order
 : CG2208042

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Matrix: Water					Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%) Recovery Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 539104) - co	ntinued								
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	96.7	80.0	120	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	89.8	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	100	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	97.0	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	96.4	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	103	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	97.2	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	98.7	80.0	120	
Dissolved Metals (QCLot: 539105)									'
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	95.2	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	99.2	80.0	120	

 Page
 : 15 of 18

 Work Order
 : CG2208042

 Client
 : Teck Coal Limited

ALS

Project : LINE CREEK OPERATION

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

results for the assoc	lated cample (or cirrilar can	ipies) may be subject to bias. ND - 1	todovory not dotom	iniou, buonground lover	TX OPINO TOVOI.						
Sub-Matrix: Water					Matrix Spike (MS) Report						
					Sp	ike	Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Anions and Nutr	ents (QCLot: 536138)										
CG2208040-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0495 mg/L	0.05 mg/L	99.0	70.0	130		
Anions and Nutr	ents (QCLot: 536291)								1		
CG2208041-004	Anonymous	phosphorus, total	7723-14-0	E372-U	ND mg/L	0.0676 mg/L	ND	70.0	130		
Anions and Nutr	ents (QCLot: 536407)										
CG2208042-004	LC_RD1_WS_LAEMP_DRY _2022-06_N	fluoride	16984-48-8	E235.F	0.865 mg/L	1 mg/L	86.5	75.0	125		
Anions and Nutr	ents (QCLot: 536408)										
CG2208042-004	LC_RD1_WS_LAEMP_DRY _2022-06_N	bromide	24959-67-9	E235.Br-L	0.436 mg/L	0.5 mg/L	87.1	75.0	125		
Anions and Nutr	ents (QCLot: 536409)										
CG2208042-004	LC_RD1_WS_LAEMP_DRY _2022-06_N	chloride	16887-00-6	E235.CI-L	90.2 mg/L	100 mg/L	90.2	75.0	125		
Anions and Nutr	ents (QCLot: 536410)										
CG2208042-004	LC_RD1_WS_LAEMP_DRY _2022-06_N	nitrate (as N)	14797-55-8	E235.NO3-L	2.37 mg/L	2.5 mg/L	94.8	75.0	125		
Anions and Nutr	ents (QCLot: 536411)										
CG2208042-004	LC_RD1_WS_LAEMP_DRY _2022-06_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.444 mg/L	0.5 mg/L	88.8	75.0	125		
Anions and Nutr	ents (QCLot: 536412)										
CG2208042-004	LC_RD1_WS_LAEMP_DRY _2022-06_N	sulfate (as SO4)	14808-79-8	E235.SO4	92.3 mg/L	100 mg/L	92.3	75.0	125		
Anions and Nutr	ents (QCLot: 539290)										
CG2207996-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125		
Anions and Nutr	ents (QCLot: 539291)										
CG2208046-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125		
Anions and Nutr	ents (QCLot: 543342)										
CG2208014-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	ND mg/L	2.5 mg/L	ND	70.0	130		
Anions and Nutr	ents (QCLot: 543343)										
CG2208042-003	LC_MT1_WS_LAEMP_DRY _2022-06_N	Kjeldahl nitrogen, total [TKN]		E318	2.51 mg/L	2.5 mg/L	100	70.0	130		
Organic / Inorga	nic Carbon (QCLot: 5432	248)									
CG2208041-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	4.44 mg/L	5 mg/L	88.7	70.0	130		

 Page
 : 16 of 18

 Work Order
 : CG2208042

 Client
 : Teck Coal Limited

ub-Matrix: Water					0	Matrix Spike (MS) Report Spike Recovery (%) Recovery Limits (%)					
	Oliant agreed ID		040 Words and	88-461	-		Recovery (%)		· · ·	0	
boratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie	
ganic / Inorgar	ic Carbon (QCLot: 5	43249)									
G2208041-001	Anonymous	carbon, total organic [TOC]		E355-L	4.61 mg/L	5 mg/L	92.1	70.0	130		
otal Metals (QC	Lot: 539401)										
CG2208029-003	Anonymous	aluminum, total	7429-90-5	E420	0.190 mg/L	0.2 mg/L	95.0	70.0	130		
		antimony, total	7440-36-0	E420	0.0198 mg/L	0.02 mg/L	99.2	70.0	130		
		arsenic, total	7440-38-2	E420	0.0193 mg/L	0.02 mg/L	96.6	70.0	130		
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130		
		beryllium, total	7440-41-7	E420	0.0392 mg/L	0.04 mg/L	97.9	70.0	130		
		bismuth, total	7440-69-9	E420	0.00944 mg/L	0.01 mg/L	94.4	70.0	130		
		boron, total	7440-42-8	E420	0.098 mg/L	0.1 mg/L	98.2	70.0	130		
		cadmium, total	7440-43-9	E420	0.00392 mg/L	0.004 mg/L	98.1	70.0	130		
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130		
		cobalt, total	7440-48-4	E420	0.0185 mg/L	0.02 mg/L	92.4	70.0	130		
		copper, total	7440-50-8	E420	0.0190 mg/L	0.02 mg/L	94.8	70.0	130		
		iron, total	7439-89-6	E420	1.90 mg/L	2 mg/L	95.2	70.0	130		
		lead, total	7439-92-1	E420	0.0190 mg/L	0.02 mg/L	94.8	70.0	130		
		lithium, total	7439-93-2	E420	0.0941 mg/L	0.1 mg/L	94.1	70.0	130		
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130		
		manganese, total	7439-96-5	E420	0.0186 mg/L	0.02 mg/L	92.8	70.0	130		
		molybdenum, total	7439-98-7	E420	0.0207 mg/L	0.02 mg/L	104	70.0	130		
		nickel, total	7440-02-0	E420	0.0365 mg/L	0.04 mg/L	91.3	70.0	130		
		potassium, total	7440-09-7	E420	3.67 mg/L	4 mg/L	91.7	70.0	130		
		selenium, total	7782-49-2	E420	0.0417 mg/L	0.04 mg/L	104	70.0	130		
		silicon, total	7440-21-3	E420	9.21 mg/L	10 mg/L	92.1	70.0	130		
		silver, total	7440-22-4	E420	0.00390 mg/L	0.004 mg/L	97.4	70.0	130		
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130		
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130		
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130		
		thallium, total	7440-28-0	E420	0.00377 mg/L	0.004 mg/L	94.3	70.0	130		
		tin, total	7440-31-5	E420	0.0194 mg/L	0.02 mg/L	96.8	70.0	130		
		titanium, total	7440-32-6	E420	0.0365 mg/L	0.04 mg/L	91.2	70.0	130		
		uranium, total	7440-61-1	E420	0.00390 mg/L	0.004 mg/L	97.4	70.0	130		
		vanadium, total	7440-62-2	E420	0.0962 mg/L	0.1 mg/L	96.2	70.0	130		
		zinc, total	7440-66-6	E420	0.377 mg/L	0.4 mg/L	94.3	70.0	130		
otal Metals (QC	Lot: 539402)										
G2208029-003	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0386 mg/L	0.04 mg/L	96.4	70.0	130		

 Page
 : 17 of 18

 Work Order
 : CG2208042

 Client
 : Teck Coal Limited

ub-Matrix: Water					0	Matrix Spike (MS) Report Spike Recovery (%) Recovery Limits (%)					
	Client comple ID	Analista	CAS Number	Method	-	Ke Target	Recovery (%) MS		· · ·	Qualifie	
boratory sample	Client sample ID	Analyte	CAS Number	Wethod	Concentration	rarget	IVIS	Low	High	Qualific	
otal Metals (QC	Lot: 544092) - continu	ed									
G2208029-003	Anonymous	mercury, total	7439-97-6	E508	0.000101 mg/L	0.0001 mg/L	101	70.0	130		
issolved Metals	(QCLot: 539104)										
CG2208029-005	Anonymous	aluminum, dissolved	7429-90-5	E421	0.192 mg/L	0.2 mg/L	96.3	70.0	130		
		antimony, dissolved	7440-36-0	E421	0.0198 mg/L	0.02 mg/L	99.2	70.0	130		
		arsenic, dissolved	7440-38-2	E421	0.0195 mg/L	0.02 mg/L	97.6	70.0	130		
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130		
		beryllium, dissolved	7440-41-7	E421	0.0379 mg/L	0.04 mg/L	94.7	70.0	130		
		bismuth, dissolved	7440-69-9	E421	0.00905 mg/L	0.01 mg/L	90.5	70.0	130		
		boron, dissolved	7440-42-8	E421	0.092 mg/L	0.1 mg/L	91.7	70.0	130		
		cadmium, dissolved	7440-43-9	E421	0.00390 mg/L	0.004 mg/L	97.4	70.0	130		
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130		
		cobalt, dissolved	7440-48-4	E421	0.0185 mg/L	0.02 mg/L	92.7	70.0	130		
		copper, dissolved	7440-50-8	E421	0.0186 mg/L	0.02 mg/L	92.9	70.0	130		
		iron, dissolved	7439-89-6	E421	1.93 mg/L	2 mg/L	96.4	70.0	130		
		lead, dissolved	7439-92-1	E421	0.0195 mg/L	0.02 mg/L	97.4	70.0	130		
		lithium, dissolved	7439-93-2	E421	0.0925 mg/L	0.1 mg/L	92.5	70.0	130		
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130		
		manganese, dissolved	7439-96-5	E421	0.0194 mg/L	0.02 mg/L	97.2	70.0	130		
		molybdenum, dissolved	7439-98-7	E421	0.0205 mg/L	0.02 mg/L	102	70.0	130		
		nickel, dissolved	7440-02-0	E421	0.0377 mg/L	0.04 mg/L	94.3	70.0	130		
		potassium, dissolved	7440-09-7	E421	3.79 mg/L	4 mg/L	94.8	70.0	130		
		selenium, dissolved	7782-49-2	E421	0.0368 mg/L	0.04 mg/L	92.0	70.0	130		
		silicon, dissolved	7440-21-3	E421	9.11 mg/L	10 mg/L	91.1	70.0	130		
		silver, dissolved	7440-22-4	E421	0.00383 mg/L	0.004 mg/L	95.7	70.0	130		
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130		
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130		
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130		
		thallium, dissolved	7440-28-0	E421	0.00390 mg/L	0.004 mg/L	97.4	70.0	130		
		tin, dissolved	7440-31-5	E421	0.0197 mg/L	0.02 mg/L	98.3	70.0	130		
		titanium, dissolved	7440-32-6	E421	0.0386 mg/L	0.04 mg/L	96.5	70.0	130		
		uranium, dissolved	7440-61-1	E421	0.00392 mg/L	0.004 mg/L	98.0	70.0	130		
		vanadium, dissolved	7440-62-2	E421	0.0954 mg/L	0.1 mg/L	95.4	70.0	130		
		zinc, dissolved	7440-66-6	E421	0.393 mg/L	0.4 mg/L	98.2	70.0	130		
ssolved Metals	(QCLot: 539105)										
G2208029-005	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0384 mg/L	0.04 mg/L	96.0	70.0	130		

 Page
 : 18 of 18

 Work Order
 : CG2208042

 Client
 : Teck Coal Limited

Sub-Matrix: Water			Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	Dissolved Metals (QCLot: 544103) - continued									
CG2208029-003	Anonymous	mercury, dissolved	7439-97-6	E509	0.000103 mg/L	0.0001 mg/L	103	70.0	130	

V

Calgary

Sample ID

LC_FRUS_WS_LAEMP_DRY_2022-06_N

LC_CC1_WS_LAEMP_DRY_2022-06_N

LC_MT1_WS_LAEMP_DRY_2022-06_N

LC_RD1_WS_LAEMP_DRY_2022-06_N

LCO Dry Creek LAEMP ALS COC ID: TURNAROUND TIME: RUSH: N/A Regular Facility Name / Job# Line Creek Operation - Lab Contact II yudinyla Shvets Email i Email Lyudmyla.Shvets@ALSGlobal.com Email Nicole Zathey@Teck.com Email 2: Teck Lab Results@teck.com A Address RR1 HWY 3 Address 2559 29 Street NE Email 3: Email 4: City Calgary City Sparwood Province Province AB Email 5: Canada V0B 2G1 Country Canada Postal Code T1Y 7B5 Country PO number **Environmental Division** Phone Number 403 407 1794 25-8137 SAMPLE DETAILS Work Order Reference CG2208042 HNOS NONE NONE NONE H2SO4 H2SO4 Hazardous Material (Yes/No) ALS_Package-TKN/TOC ECKCOAL-ROUTINE FECKCOAL-METINHG TECKCOAL-MET-D-VA ALS_Package-DOC HG-T-U-CVAF-VA G-Grab C=Com #Of Sample Location Field Time (sys loc code) Matrix Date (24hr) Cont. n LC FRUS WS 21-Jun-22 14:15 G 7 1 1 1 1 1 1 LC_CC1 WS 21-Jun-22 G 7 1 14:15 1 1 LC_MT1 WS 21-Jun-22 14:15 G 7 1 1 1 1 1 1 LC_RD1 WS 21-Jun-22 14:15 $\mathbf{F}\mathbf{G}$ 1 7 1 1 1 HE RELINGUISHED BY/AFPILIATION Y .. DATE/TIME Robin Valleau June 22/2022

Robin Valleau

Mobile #

Date/Time

SERVICE REQUEST COMPANDES TO ANALOGOUS AND A

Sampler's Name

Sampler's Signature

Regular (default) X

Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge

For Emergency <1 Day, ASAP or Weekend - Contact ALS

June 22/2022

416-970-7535

WATER CHEMISTRY

ALS Laboratory Report CG2212407 (Finalized 26-Sept-22)

CERTIFICATE OF ANALYSIS

Page **Work Order** : CG2212407 : 1 of 6

Amendment : 1

Client : Teck Coal Limited Laboratory : Calgary - Environmental Contact : Nicole Zathey Account Manager : Lyudmyla Shvets Address Address : 421 Pine Avenue : 2559 29th Street NE

Sparwood BC Canada V0B2G0

Telephone

Project : LINE CREEK OPERATIONS

PO : VPO00817033

C-O-C number : REP LAEMP DRY 2022-09 ALS

Sampler : Jennifer Ings

Site

: Teck Coal Master Quote Quote number

No. of samples received : 2 : 2 No. of samples analysed

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800 Date Samples Received : 13-Sep-2022 09:11

Date Analysis Commenced : 13-Sep-2022

Issue Date : 26-Sep-2022 08:57

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Elke Tabora		Inorganics, Calgary, Alberta
Kevin Baxter		Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Sara Niroomand		Metals, Calgary, Alberta
Sonthuong Bui	Laboratory Analyst	Metals, Calgary, Alberta
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

Page : 2 of 6

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
HTA	Analytical holding time was exceeded.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page

: 3 of 6 : CG2212407 Amendment 1 Work Order

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			CI	lient sample ID	LC_FRB_WS_L AEMP_DRY_20	LC_FRUS_WS_ LAEMP_DRY_2	 	
(Wattis. Water)					22-09_N	022-09_N		
			Client samp	oling date / time	10-Sep-2022 14:00	10-Sep-2022 09:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212407-001	CG2212407-002	 	
					Result	Result	 	
Physical Tests		F000	0.0		-0.0	-0.0		
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	202	201	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	247	246	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	7.8	4.2	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	4.7	2.5	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	210	206	 	
conductivity		E100	2.0	μS/cm	769	742	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	410	395	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	327	328	 	
рН		E108	0.10	pH units	8.38	8.30	 	
solids, total dissolved [TDS]		E162	10	mg/L	590	569	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	 	
turbidity		E121	0.10	NTU	0.17 HTA	0.23 HTA	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	2.89	2.49	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.171	0.176	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.546 TKNI	0.782 TKNI	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	12.4	11.7	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0079	0.0041	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0017	0.0021	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0026	0.0024	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	197	194	 	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	0.62	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	0.53	 	

Page

: 4 of 6 : CG2212407 Amendment 1 Work Order

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analytical Results

				LC_FRB_WS_L AEMP_DRY_20 22-09 N	LC_FRUS_WS_ LAEMP_DRY_2 022-09 N	 		
			Client samp	ling date / time	10-Sep-2022 14:00	10-Sep-2022 09:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212407-001	CG2212407-002	 	
Jan Balanca					Result	Result	 	
lon Balance anion sum		EC101	0.10	meg/L	9.27	9.07	 	l
cation sum		EC101	0.10	meq/L	8.36	8.05	 	
ion balance (cations/anions)		EC101	0.010	// // // // // // // // // // // // //	90.2	88.8	 	
ion balance (APHA)		EC101	0.010	%	5.16	5.96	 	
		20101	0.010	70	0.10	0.00		
Total Metals aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0046	0.0062	 	
antimony, total	7440-36-0	E420	0.0030	mg/L	0.0040	<0.0002	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00011	0.00010	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.109	0.101	 	
beryllium, total		E420	0.00010	μg/L	<0.020	<0.020	 	
•	7440-41-7	E420	0.00050		<0.00050	<0.0000	 	
bismuth, total	7440-69-9		0.00030	mg/L	0.000	<0.000		
boron, total	7440-42-8	E420		mg/L			 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0284	0.0217	 	
calcium, total	7440-70-2	E420	0.050	mg/L	97.2	78.6	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00012	0.00013	 	
cobalt, total	7440-48-4	E420	0.10	μg/L 	<0.10	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0322	0.0250	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	45.2	45.6	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00160	0.00178	 	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00128	0.000998	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00096	0.00087	 	
potassium, total	7440-09-7	E420	0.050	mg/L	1.30	1.24	 	
selenium, total	7782-49-2	E420	0.050	μg/L	50.0	45.0	 	
silicon, total	7440-21-3	E420	0.10	mg/L	2.17	2.21	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	0.000013	 	
sodium, total	7440-23-5	E420	0.050	mg/L	2.80	2.77	 	

Page

: 5 of 6 : CG2212407 Amendment 1 Work Order

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	LC_FRB_WS_L AEMP_DRY_20 22-09_N	LC_FRUS_WS_ LAEMP_DRY_2 022-09_N	 	
			·	ling date / time	10-Sep-2022 14:00	10-Sep-2022 09:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212407-001 Result	CG2212407-002 Result	 	
Total Metals					Nesuit	Result	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.145	0.122	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	68.2	67.6	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00220	0.00185	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	 	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00011	<0.00010	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0951	0.0868	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0277	0.0208	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	94.4	91.4	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00010	<0.00010	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0264	0.0260	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	42.4	40.6	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00121	0.00137	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00126	0.00110	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00086	0.00082	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.34	1.25	 	

Page : 6 of 6

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	LC_FRB_WS_L	LC_FRUS_WS_	 	
(Matrix: Water)					AEMP_DRY_20 22-09 N	LAEMP_DRY_2 022-09 N		
			Client samp	ling date / time	10-Sep-2022 14:00	10-Sep-2022 09:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212407-001	CG2212407-002	 	
					Result	Result	 	
Dissolved Metals								
selenium, dissolved	7782-49-2	E421	0.050	μg/L	46.8	51.1	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.20	2.25	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	2.91	2.71	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.153	0.146	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	63.8	66.2	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00235	0.00222	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	0.0027	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2212407** Page : 1 of 15

Amendment : 1

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Nicole Zathey
 Account Manager
 : Lyudmyla Shvets

 Address
 : 421 Pine Avenue
 Address
 : 2559 29th Street NE

Sparwood BC Canada V0B2G0

Calgary, Alberta Canada T1Y 7B5

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : LINE CREEK OPERATIONS
 Date Samples Received
 : 13-Sep-2022 09:11

 PO
 : VPO00817033
 Issue Date
 : 26-Sep-2022 08:57

C-O-C number : REP LAEMP DRY 2022-09 ALS

Sampler : Jennifer Ings

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

<u>No</u> Quality Control Sample Frequency Outliers occur.		

Page : 3 of 15

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; •	/ = Within	Holding Time
Analyte Group	Method	Sampling Date	Ext		Analysis					
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval Analysis Date		Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) LC_FRB_WS_LAEMP_DRY_2022-09_N	E298	10-Sep-2022	13-Sep-2022				13-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) LC_FRUS_WS_LAEMP_DRY_2022-09_N	E298	10-Sep-2022	13-Sep-2022				13-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE LC_FRB_WS_LAEMP_DRY_2022-09_N	E235.Br-L	10-Sep-2022	13-Sep-2022				13-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-09_N	E235.Br-L	10-Sep-2022	13-Sep-2022				13-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE LC_FRB_WS_LAEMP_DRY_2022-09_N	E235.CI-L	10-Sep-2022	13-Sep-2022				13-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-09_N	E235.CI-L	10-Sep-2022	13-Sep-2022				13-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001						1			
HDPE LC_FRB_WS_LAEMP_DRY_2022-09_N	E378-U	10-Sep-2022	13-Sep-2022				13-Sep-2022	3 days	3 days	1

Page : 4 of 15

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

latrix: Water						aluation: × =	Holding time exce			Holding T
Analyte Group	Method	Sampling Date	Ex	traction / Pr			-	Analys		
Container / Client Sample ID(s)			Preparation Date	Holding Rec	7 Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra	Trace Level 0.001		Date	Nec	Actual			rec	Actual	
HDPE										
LC_FRUS_WS_LAEMP_DRY_2022-09_N	E378-U	10-Sep-2022	13-Sep-2022				13-Sep-2022	3 days	3 days	✓
nions and Nutrients : Fluoride in Water by IC										
HDPE LC_FRB_WS_LAEMP_DRY_2022-09_N	E235.F	10-Sep-2022	13-Sep-2022				13-Sep-2022	28 days	3 days	✓
nions and Nutrients : Fluoride in Water by IC										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-09_N	E235.F	10-Sep-2022	13-Sep-2022				13-Sep-2022	28 days	3 days	✓
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE LC_FRB_WS_LAEMP_DRY_2022-09_N	E235.NO3-L	10-Sep-2022	13-Sep-2022	3 days	3 days	✓	13-Sep-2022	3 days	0 days	✓
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-09_N	E235.NO3-L	10-Sep-2022	13-Sep-2022	3 days	3 days	✓	13-Sep-2022	3 days	0 days	✓
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_FRB_WS_LAEMP_DRY_2022-09_N	E235.NO2-L	10-Sep-2022	13-Sep-2022				13-Sep-2022	3 days	3 days	✓
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-09_N	E235.NO2-L	10-Sep-2022	13-Sep-2022				13-Sep-2022	3 days	3 days	✓
nions and Nutrients : Sulfate in Water by IC										
HDPE LC_FRB_WS_LAEMP_DRY_2022-09_N	E235.SO4	10-Sep-2022	13-Sep-2022				13-Sep-2022	28 days	3 days	✓
nions and Nutrients : Sulfate in Water by IC										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-09_N	E235.SO4	10-Sep-2022	13-Sep-2022				13-Sep-2022	28 days	3 days	✓

Page : 5 of 15

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

 Matrix: Water
 Evaluation: x = Holding time exceedance; √ = Within Holding Time

 Analyte Group
 Method
 Sampling Date
 Extraction / Preparation
 Analysis

Analyte Group	Method	Sampling Date	Ex	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
LC FRB WS LAEMP DRY 2022-09 N	E318	10-Sep-2022	14-Sep-2022				14-Sep-2022	28 days	4 days	✓
LO_111B_VVO_B1ENII _B111_2022-00_1V	2010	10 00p 2022	11 COP 2022				11 000 2022	20 dayo	ladyo	•
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
LC FRUS WS LAEMP DRY 2022-09 N	E318	10-Sep-2022	14-Sep-2022				14-Sep-2022	28 days	4 days	✓
		· ·	,				, ,	,	, ,	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
LC_FRB_WS_LAEMP_DRY_2022-09_N	E372-U	10-Sep-2022	14-Sep-2022				15-Sep-2022	28 days	5 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)									1	
Amber glass total (sulfuric acid)										
LC_FRUS_WS_LAEMP_DRY_2022-09_N	E372-U	10-Sep-2022	14-Sep-2022				15-Sep-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
LC_FRB_WS_LAEMP_DRY_2022-09_N	E421.Cr-L	10-Sep-2022	14-Sep-2022				14-Sep-2022	180	4 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
LC_FRUS_WS_LAEMP_DRY_2022-09_N	E421.Cr-L	10-Sep-2022	14-Sep-2022				14-Sep-2022	180	4 days	✓
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)	F500	40 0 0000	44.0 0000				44.0 0000	00.1	4 4	
LC_FRB_WS_LAEMP_DRY_2022-09_N	E509	10-Sep-2022	14-Sep-2022				14-Sep-2022	28 days	4 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS					I			T		
Glass vial dissolved (hydrochloric acid)	F500	40.0 0000	44.0 2000				44.0 0000	00.4	F 4	,
LC_FRUS_WS_LAEMP_DRY_2022-09_N	E509	10-Sep-2022	14-Sep-2022				14-Sep-2022	28 days	o days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved) LC FRB WS LAEMP DRY 2022-09 N	E421	10-Sep-2022	14-Sep-2022				14-Sep-2022	180	4 days	√
FO_LVD_440_FVFIAIL_DI/L_5055-09_IA	L721	10-06p-2022	1-4-06p-2022				1-4-06p-2022		- uays	•
								days		

Page : 6 of 15

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

atrix: Water							Holding time exce			
Analyte Group	Method	Sampling Date		traction / Pr	•			Analys		
Container / Client Sample ID(s)			Preparation Date	Holding Rec	7 Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved) LC_FRUS_WS_LAEMP_DRY_2022-09_N	E421	10-Sep-2022	14-Sep-2022				14-Sep-2022	180 days	4 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Lo	w Level)									
Amber glass dissolved (sulfuric acid) LC_FRB_WS_LAEMP_DRY_2022-09_N	E358-L	10-Sep-2022	13-Sep-2022				14-Sep-2022	28 days	3 days	√
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Lo	w Level)									
Amber glass dissolved (sulfuric acid) LC_FRUS_WS_LAEMP_DRY_2022-09_N	E358-L	10-Sep-2022	13-Sep-2022				14-Sep-2022	28 days	3 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Com	ibustion (Low Level)									
Amber glass total (sulfuric acid) LC_FRB_WS_LAEMP_DRY_2022-09_N	E355-L	10-Sep-2022	13-Sep-2022				14-Sep-2022	28 days	3 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Com	bustion (Low Level)									
Amber glass total (sulfuric acid) LC_FRUS_WS_LAEMP_DRY_2022-09_N	E355-L	10-Sep-2022	13-Sep-2022				14-Sep-2022	28 days	3 days	✓
Physical Tests : Acidity by Titration										
HDPE LC_FRB_WS_LAEMP_DRY_2022-09_N	E283	10-Sep-2022	14-Sep-2022				14-Sep-2022	14 days	4 days	✓
Physical Tests : Acidity by Titration										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-09_N	E283	10-Sep-2022	14-Sep-2022				14-Sep-2022	14 days	4 days	✓
Physical Tests : Alkalinity Species by Titration							1			
HDPE LC_FRB_WS_LAEMP_DRY_2022-09_N	E290	10-Sep-2022	14-Sep-2022				14-Sep-2022	14 days	4 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE LC FRUS WS LAEMP DRY 2022-09 N	E290	10-Sep-2022	14-Sep-2022				14-Sep-2022	14 days	4 days	1

Page : 7 of 15

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

Matrix: Water						aluation: × =	Holding time exce			Holding Tin
Analyte Group	Method	Sampling Date	Ext	traction / Pre				Analys		
Container / Client Sample ID(s)		P		Holding Rec	Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Physical Tests : Conductivity in Water										
HDPE LC_FRB_WS_LAEMP_DRY_2022-09_N	E100	10-Sep-2022	14-Sep-2022				14-Sep-2022	28 days	4 days	✓
Physical Tests : Conductivity in Water										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-09_N	E100	10-Sep-2022	14-Sep-2022				14-Sep-2022	28 days	4 days	✓
Physical Tests : ORP by Electrode										
HDPE LC_FRB_WS_LAEMP_DRY_2022-09_N	E125	10-Sep-2022					14-Sep-2022	0.25 hrs	93 hrs	× EHTR-FM
Physical Tests : ORP by Electrode										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-09_N	E125	10-Sep-2022					14-Sep-2022	0.25 hrs	98 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE LC_FRB_WS_LAEMP_DRY_2022-09_N	E108	10-Sep-2022	14-Sep-2022				14-Sep-2022	0.25 hrs	0.26 hrs	* EHTR-FN
Physical Tests : pH by Meter										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-09_N	E108	10-Sep-2022	14-Sep-2022				14-Sep-2022	0.25 hrs	0.26 hrs	* EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE LC_FRB_WS_LAEMP_DRY_2022-09_N	E162	10-Sep-2022					14-Sep-2022	7 days	4 days	✓
Physical Tests : TDS by Gravimetry										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-09_N	E162	10-Sep-2022					14-Sep-2022	7 days	4 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE LC_FRB_WS_LAEMP_DRY_2022-09_N	E160-L	10-Sep-2022					14-Sep-2022	7 days	4 days	✓

Page : 8 of 15

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

: LINE CREEK OPERATIONS Project

Matrix: Water					Ev	valuation: ≭ = l	Holding time excee	edance ; 🛚	/ = Within	Holding Time
Analyte Group	Method Sampling Date Extraction / Preparation Analysis				Extraction / Preparation		is			
Container / Client Sample ID(s)			Preparation	ration Holding Times		Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-09_N	E160-L	10-Sep-2022					14-Sep-2022	7 days	4 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE LC_FRB_WS_LAEMP_DRY_2022-09_N	E121	10-Sep-2022					13-Sep-2022	3 days	3 days	✓

			Date	Rec	Actual		Rec	Actual	
Physical Tests : TSS by Gravimetry (Low Level)									
HDPE LC_FRUS_WS_LAEMP_DRY_2022-09_N	E160-L	10-Sep-2022				14-Sep-2022	7 days	4 days	1
		·				·	-	-	
hysical Tests : Turbidity by Nephelometry									
HDPE	E121	10-Sep-2022				13-Sep-2022	0 4	3 days	✓
LC_FRB_WS_LAEMP_DRY_2022-09_N	EIZI	10-Sep-2022				13-Sep-2022	3 days	3 days	_
hysical Tests : Turbidity by Nephelometry									
HDPE	E121	10-Sep-2022				13-Sep-2022	3 days	3 days	/
LC_FRUS_WS_LAEMP_DRY_2022-09_N	E121	10-Зер-2022				13-3ep-2022	3 uays	3 uays	,
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)									
HDPE - total (lab preserved) LC_FRB_WS_LAEMP_DRY_2022-09_N	E420.Cr-L	10-Sep-2022	14-Sep-2022			14-Sep-2022	400	4 days	_
LC_FRD_WS_LAEMP_DR1_2022-09_N	E420.GI-L	10-Зер-2022	14-Зер-2022			14-3ep-2022	180 days	4 uays	,
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)									
HDPE - total (lab preserved) LC_FRUS_WS_LAEMP_DRY_2022-09_N	E420.Cr-L	10-Sep-2022	14-Sep-2022			14-Sep-2022	180	4 days	1
E0_1 1005_440_21.EMI _51(1_2022 00_1(2.20.0. 2	10 000 2022	11 000 2022			11 Cop 2022	days	, dayo	
otal Metals : Total Mercury in Water by CVAAS									
Glass vial total (hydrochloric acid)	E508	10-Sep-2022	14-Sep-2022			14-Sep-2022	28 days	4 days	1
LC_FRB_WS_LAEMP_DRY_2022-09_N	E306	10-Зер-2022	14-3ep-2022			14-3ep-2022	20 days	4 uays	,
otal Metals : Total Mercury in Water by CVAAS									
Glass vial total (hydrochloric acid)	E508	10-Sep-2022	14-Sep-2022			14-Sep-2022	29 days	5 dovo	1
LC_FRUS_WS_LAEMP_DRY_2022-09_N	E306	10-Зер-2022	14-5ep-2022			14-3ep-2022	28 days	5 days	,
otal Metals : Total Metals in Water by CRC ICPMS									
HDPE - total (lab preserved)	E400	40.0 2000	44.0 2000			44.0 0000		4 -1	/
LC_FRB_WS_LAEMP_DRY_2022-09_N	E420	10-Sep-2022	14-Sep-2022			14-Sep-2022	180 days	4 days	_
otal Metals : Total Metals in Water by CRC ICPMS								I	
				I	T. Control of the Con				
HDPE - total (lab preserved) LC FRUS WS LAEMP DRY 2022-09 N	E420	10-Sep-2022	14-Sep-2022			14-Sep-2022	180	4 days	1

Legend & Qualifier Definitions

Page : 9 of 15

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Rec. HT: ALS recommended hold time (see units).

Page : 10 of 15

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type	Co	ount		Frequency (%))		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	646040	1	9	11.1	5.0	1
Alkalinity Species by Titration	E290	646035	1	20	5.0	5.0	<u>√</u>
Ammonia by Fluorescence	E298	645526	1	9	11.1	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	645371	1	4	25.0	5.0	<u>√</u>
Chloride in Water by IC (Low Level)	E235.CI-L	645372	1	4	25.0	5.0	✓
Conductivity in Water	E100	646037	1	5	20.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	646741	1	18	5.5	5.0	1
Dissolved Mercury in Water by CVAAS	E509	647532	1	13	7.6	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	646742	1	18	5.5	5.0	<u>√</u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	645441	1	9	11.1	5.0	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	645355	1	20	5.0	5.0	<u> </u>
Fluoride in Water by IC	E235.F	645370	1	4	25.0	5.0	
Nitrate in Water by IC (Low Level)	E235.NO3-L	645373	1	4	25.0	5.0	<u> </u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	645374	1	4	25.0	5.0	<u> </u>
ORP by Electrode	E125	646219	1	9	11.1	5.0	
pH by Meter	E108	646036	1	5	20.0	5.0	<u> </u>
Sulfate in Water by IC	E235.SO4	645375	1	4	25.0	5.0	
TDS by Gravimetry	E162	647154	1	11	9.0	5.0	<u> </u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	646084	1	5	20.0	5.0	<u>√</u>
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	645448	1	9	11.1	5.0	
Total Mercury in Water by CVAAS	E508	647531	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	646083	1	6	16.6	5.0	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	645442	1	9	11.1	5.0	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	646476	1	9	11.1	5.0	<u>√</u>
Turbidity by Nephelometry	E121	645376	1	6	16.6	5.0	✓
Laboratory Control Samples (LCS)			_				
Acidity by Titration	E283	646040	1	9	11.1	5.0	1
Alkalinity Species by Titration	E290	646035	1	20	5.0	5.0	<u> </u>
Ammonia by Fluorescence	E298	645526	1	9	11.1	5.0	<u> </u>
Bromide in Water by IC (Low Level)	E235.Br-L	645371	1	4	25.0	5.0	
Chloride in Water by IC (Low Level)	E235.CI-L	645372	1	4	25.0	5.0	<u> </u>
Conductivity in Water	E100	646037	1	5	20.0	5.0	<u> </u>
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	646741	1	18	5.5	5.0	<u> </u>
Dissolved Mercury in Water by CVAAS	E509	647532	1	13	7.6	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	646742	1	18	5.5	5.0	<u> </u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	645441	1	9	11.1	5.0	<u> </u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	645355	1	20	5.0	5.0	

Page : 11 of 15

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

: LINE CREEK OPERATIONS Project

Matrix: Water	<u> </u>	Evaluati	ion: × = QC frequ		ecification; ✓ =		<u> </u>
Quality Control Sample Type				ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	645370	1	4	25.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	645373	1	4	25.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	645374	1	4	25.0	5.0	✓
ORP by Electrode	E125	646219	1	9	11.1	5.0	✓
pH by Meter	E108	646036	1	5	20.0	5.0	✓
Sulfate in Water by IC	E235.SO4	645375	1	4	25.0	5.0	✓
TDS by Gravimetry	E162	647154	1	11	9.0	5.0	√
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	646084	1	5	20.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	645448	1	9	11.1	5.0	✓
Total Mercury in Water by CVAAS	E508	647531	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	646083	1	6	16.6	5.0	√
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	645442	1	9	11.1	5.0	<u>√</u>
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	646476	1	9	11.1	5.0	
TSS by Gravimetry (Low Level)	E160-L	647137	1	17	5.8	5.0	<u>√</u>
Turbidity by Nephelometry	E121	645376	1	6	16.6	5.0	
Method Blanks (MB)							-
Acidity by Titration	E283	646040	1	9	11.1	5.0	1
Alkalinity Species by Titration	E290	646035	1	20	5.0	5.0	
Ammonia by Fluorescence	E298	645526	1	9	11.1	5.0	<u>√</u>
Bromide in Water by IC (Low Level)	E235.Br-L	645371	1	4	25.0	5.0	
Chloride in Water by IC (Low Level)	E235.CI-L	645372	1	4	25.0	5.0	
Conductivity in Water	E100	646037	1	5	20.0	5.0	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	646741	1	18	5.5	5.0	
Dissolved Mercury in Water by CVAAS	E509	647532	1	13	7.6	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	646742	1	18	5.5	5.0	<u> </u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	645441	1	9	11.1	5.0	<u> </u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	645355	1	20	5.0	5.0	
Fluoride in Water by IC	E235.F	645370	1	4	25.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.F E235.NO3-L	645373	1	4	25.0	5.0	✓
Nitrite in Water by IC (Low Level)		645374	1	4	25.0	5.0	
Sulfate in Water by IC	E235.NO2-L E235.SO4	645375	1	4	25.0	5.0	<u>√</u>
TDS by Gravimetry		647154	1	11	9.0	5.0	
Total Chromium in Water by CRC ICPMS (Low Level)	E162	646084	1	5	20.0	5.0	√
, ,	E420.Cr-L		1	9	11.1	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	645448	1			1 1	√
Total Mercury in Water by CVAAS	E508	647531		13	7.6	5.0	<u>√</u>
Total Metals in Water by CRC ICPMS	E420	646083	1	6	16.6	5.0	<u>√</u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	645442	1	9	11.1	5.0	<u>√</u>
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	646476	1	9	11.1	5.0	<u>√</u>
TSS by Gravimetry (Low Level)	E160-L	647137	1	17	5.8	5.0	√
Turbidity by Nephelometry	E121	645376	1	6	16.6	5.0	✓

Page : 12 of 15

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Wattix. Water		Lvaldati	on Qo nega	ericy outside spe	cincultori,	QU ITEQUETICY WIL	inin specification
Quality Control Sample Type		Co	ount		Frequency (%))	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	645526	1	9	11.1	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	645371	1	4	25.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	645372	1	4	25.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	646741	1	18	5.5	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	647532	1	13	7.6	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	646742	1	18	5.5	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	645441	1	9	11.1	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	645355	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	645370	1	4	25.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	645373	1	4	25.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	645374	1	4	25.0	5.0	✓
Sulfate in Water by IC	E235.SO4	645375	1	4	25.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	646084	1	5	20.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	645448	1	9	11.1	5.0	✓
Total Mercury in Water by CVAAS	E508	647531	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	646083	1	6	16.6	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	645442	1	9	11.1	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	646476	1	9	11.1	5.0	√

Page : 13 of 15

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
all by Makes	Calgary - Environmental	14/	ADIIA 4500 II (sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
(Calgary - Environmental			filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Calgary - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Chloride in Water by IC (Low Level)	E235.CI-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Fluoride in Water by IC	E235.F Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	Calgary - Environmental E235.SO4 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental		, ,	

Page : 14 of 15

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 15 of 15

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Calgary - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Calgary - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.

QUALITY CONTROL REPORT

Work Order : CG2212407

Amendment : 1

Client : Teck Coal Limited
Contact : Nicole Zathey
Address : 421 Pine Avenue

Sparwood BC Canada V0B2G0

Telephone : ----

Project : LINE CREEK OPERATIONS

PO : VPO00817033

C-O-C number : REP_LAEMP_DRY_2022-09_ALS

Sampler : Jennifer Ings

Site :---

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 18

Laboratory : Calgary - Environmental
Account Manager : Lyudmyla Shvets
Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone :+1 403 407 1800

Date Samples Received :13-Sep-2022 09:11

Date Analysis Commenced : 13-Sep-2022

Issue Date : 26-Sep-2022 08:57

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

This Quality Control Report Contains the following information.

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Elke Tabora		Calgary Inorganics, Calgary, Alberta
Kevin Baxter		Calgary Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Calgary Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta
Sara Niroomand		Calgary Inorganics, Calgary, Alberta
Sara Niroomand		Calgary Metals, Calgary, Alberta
Sonthuong Bui	Laboratory Analyst	Calgary Metals, Calgary, Alberta
Vladka Stamenova	Analyst	Calgary Inorganics, Calgary, Alberta

Page : 2 of 18

Work Order : CG2212407 Amendment 1

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 18

Work Order : CG2212407 Amendment 1 : Teck Coal Limited Client

: LINE CREEK OPERATIONS Project

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	atory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 645376)										
CG2212395-001	Anonymous	turbidity		E121	0.10	NTU	0.48	0.47	0.02	Diff <2x LOR	
Physical Tests (QC	Lot: 646035)										
CG2212400-003	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	575	594	3.33%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	2.0	mg/L	575	594	3.33%	20%	
Physical Tests (QC	Lot: 646036)										
CG2212407-001	LC_FRB_WS_LAEMP_DR Y_2022-09_N	рН		E108	0.10	pH units	8.38	8.38	0.00%	4%	
Physical Tests (QC	Lot: 646037)										
CG2212407-001	LC_FRB_WS_LAEMP_DR Y_2022-09_N	conductivity		E100	2.0	μS/cm	769	762	0.914%	10%	
Physical Tests (QC	Lot: 646040)										
CG2212395-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 646219)										
CG2212395-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	313	315	0.541%	15%	
Physical Tests (QC	Lot: 647154)										
CG2212395-001	Anonymous	solids, total dissolved [TDS]		E162	40	mg/L	529	542	2.43%	20%	
Anions and Nutrien	ts (QC Lot: 645355)										
CG2212395-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0042	0.0042	0.00003	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 645370)										
CG2212405-001	Anonymous	fluoride	16984-48-8	E235.F	0.100	mg/L	0.101	0.102	0.0005	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 645371)										
CG2212405-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.250	mg/L	<0.250	<0.250	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 645372)										
CG2212405-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.50	mg/L	11.8	11.8	0.634%	20%	
Anions and Nutrien	ts (QC Lot: 645373)										
CG2212405-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0250	mg/L	13.8	13.7	0.681%	20%	
Anions and Nutrien	its (QC Lot: 645374)										
CG2212405-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 645375)										
CG2212405-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	1070	1060	0.940%	20%	
				1			l				

Page : 4 of 18

Work Order : CG2212407 Amendment 1
Client : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	ts (QC Lot: 645448)										
CG2212395-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.500	mg/L	<0.500	<0.500	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 645526)										
CG2212395-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 646476)										
CG2212395-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0071	0.0072	0.00009	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 64544	1)									
CG2212395-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 64544	2)									
CG2212395-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 646083)										
CG2212407-001	LC_FRB_WS_LAEMP_DR Y 2022-09 N	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0046	0.0048	0.0002	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00011	0.00010	0.000007	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	0.00012	0.00002	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.109	0.108	1.48%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.011	0.010	0.0001	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0284 µg/L	0.0000292	0.0000008	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	97.2	98.5	1.30%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0322	0.0312	3.20%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	45.2	44.6	1.36%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00160	0.00147	8.14%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00128	0.00128	0.270%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00096	0.00088	0.00008	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.30	1.28	1.35%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	50.0 μg/L	0.0474	5.39%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.17	2.15	0.874%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	2.80	2.79	0.0809%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.145	0.145	0.295%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	68.2	68.4	0.334%	20%	

Page : 5 of 18

Work Order : CG2212407 Amendment 1
Client : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	ur) keport		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC L	ot: 646083) - continued										
CG2212407-001	LC_FRB_WS_LAEMP_DR Y_2022-09_N	thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00220	0.00216	2.03%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
otal Metals (QC L	ot: 646084)										
CG2212407-001	LC_FRB_WS_LAEMP_DR Y_2022-09_N	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00012	0.00016	0.00003	Diff <2x LOR	
Total Metals (QC Lo	ot: 647531)										
CG2212395-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 646741)										
CG2212207-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 646742)										
CG2212207-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00065	0.00067	0.00002	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00010	<0.00010	0.000003	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0502	0.0508	1.31%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.031	0.032	0.0007	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0869 µg/L	0.0000969	10.9%	20%	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	223	228	2.24%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.306	0.305	0.501%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	125	128	2.52%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00044	0.00048	0.00005	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00269	0.00280	3.97%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00659	0.00652	1.04%	20%	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	6.59	6.77	2.82%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	128 µg/L	0.135	5.63%	20%	
									The second secon		

Page : 6 of 18

Work Order : CG2212407 Amendment 1
Client : Teck Coal Limited

Sub-Matrix: Water	Matrix: Water				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (C	QC Lot: 646742) - contin	ued									
CG2212207-001	Anonymous	silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	10.8	11.1	2.46%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.381	0.392	2.84%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	179	188	4.75%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.0113	0.0116	2.59%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0031	0.0032	0.00007	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 647532)										
CG2212395-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Page : 7 of 18

Work Order : CG2212407 Amendment 1
Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Method Blank (MB) Report

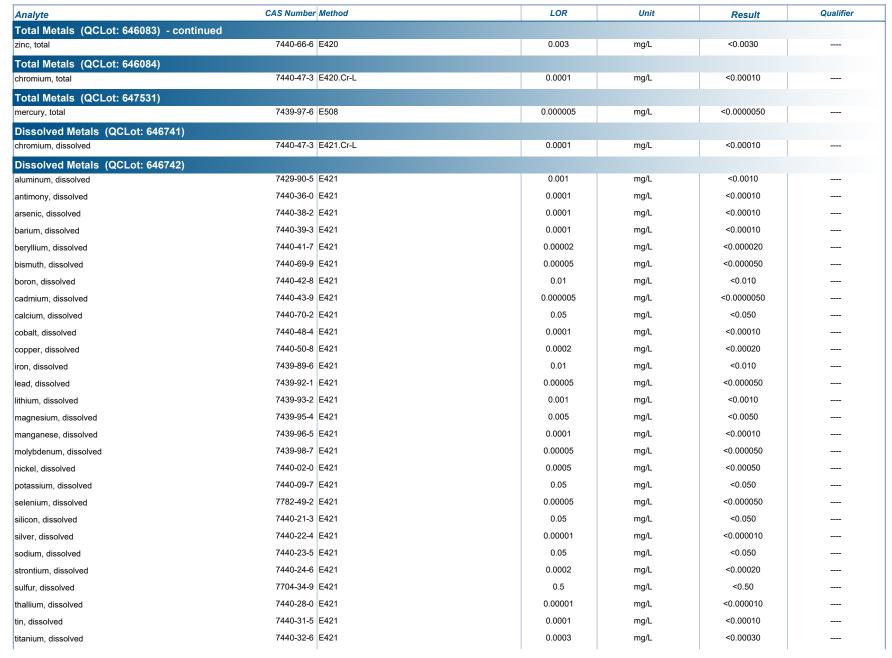
A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 645376)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 646035)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 646037)					
conductivity	E100	1	μS/cm	1.2	
Physical Tests (QCLot: 646040)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 647137)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 647154)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 645355)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 645370)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 645371)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 645372)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 645373)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 645374)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 645375)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 645448)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 645526)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 646476)					

Page : 8 of 18

Work Order : CG2212407 Amendment 1
Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS



Page : 9 of 18

Work Order : CG2212407 Amendment 1
Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Page : 10 of 18

Work Order : CG2212407 Amendment 1
Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Page : 11 of 18

Work Order : CG2212407 Amendment 1
Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Cor	trol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Me	ethod	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 645376)									
turbidity	E1	121	0.1	NTU	200 NTU	104	85.0	115	
Physical Tests (QCLot: 646035)									
alkalinity, total (as CaCO3)	E2	290	1	mg/L	500 mg/L	104	85.0	115	
Physical Tests (QCLot: 646036)									
pH	E1	108		pH units	7 pH units	101	98.6	101	
Physical Tests (QCLot: 646037)									
conductivity	E1	100	1	μS/cm	146.9 µS/cm	96.9	90.0	110	
Physical Tests (QCLot: 646040)									
acidity (as CaCO3)	E2	283	2	mg/L	50 mg/L	104	85.0	115	
Physical Tests (QCLot: 646219)									
oxidation-reduction potential [ORP]	E1	125		mV	220 mV	102	95.4	104	
Physical Tests (QCLot: 647137)									
solids, total suspended [TSS]	E1	160-L	1	mg/L	150 mg/L	99.8	85.0	115	
Physical Tests (QCLot: 647154)									
solids, total dissolved [TDS]	E1	162	10	mg/L	1000 mg/L	99.0	85.0	115	
Anions and Nutrients (QCLot: 645355)									
phosphate, ortho-, dissolved (as P)	14265-44-2 E3	378-U	0.001	mg/L	0.03 mg/L	96.4	80.0	120	
Anions and Nutrients (QCLot: 645370)									
fluoride	16984-48-8 E2	235.F	0.02	mg/L	1 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 645371)									
bromide	24959-67-9 E2	235.Br-L	0.05	mg/L	0.5 mg/L	102	85.0	115	
Anions and Nutrients (QCLot: 645372)									
chloride	16887-00-6 E2	235.CI-L	0.1	mg/L	100 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 645373)									
nitrate (as N)	14797-55-8 E2	235.NO3-L	0.005	mg/L	2.5 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 645374)									
nitrite (as N)	14797-65-0 E2	235.NO2-L	0.001	mg/L	0.5 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 645375)									
sulfate (as SO4)	14808-79-8 E2	235.SO4	0.3	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 645448)									
Kjeldahl nitrogen, total [TKN]	E3	318	0.05	mg/L	4 mg/L	99.6	75.0	125	
Anions and Nutrients (QCLot: 645526)									
Amono ana Natricitto (QOEOt. 043020)									

Page : 12 of 18

Work Order : CG2212407 Amendment 1
Client : Teck Coal Limited

Sub-Matrix: Water					Laboratory Co	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 645526)	- continued							
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	98.4	85.0	115	
Anions and Nutrients (QCLot: 646476)								
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	0.03 mg/L	94.4	80.0	120	
Organic / Inorganic Carbon (QCLot: 64	45441)							
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	8.57 mg/L	103	80.0	120	
Organic / Inorganic Carbon (QCLot: 64	15442)							
carbon, total organic [TOC]	E355-L	0.5	mg/L	8.57 mg/L	105	80.0	120	
Total Metals (QCLot: 646083)							1	
aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	98.5	80.0	120	
antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	95.8	80.0	120	
arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	93.0	80.0	120	
barium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	96.0	80.0	120	
beryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	95.5	80.0	120	
bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	102	80.0	120	
boron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	92.3	80.0	120	
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	94.6	80.0	120	
calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	93.0	80.0	120	
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	93.9	80.0	120	
copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	93.0	80.0	120	
iron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	104	80.0	120	
lead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	102	80.0	120	
lithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	102	80.0	120	
magnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	102	80.0	120	
manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	96.2	80.0	120	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	96.5	80.0	120	
nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	93.9	80.0	120	
potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	97.2	80.0	120	
selenium, total	7782-49-2 E420	0.00005	mg/L	1 mg/L	90.8	80.0	120	
silicon, total	7440-21-3 E420	0.1	mg/L	10 mg/L	103	60.0	140	
silver, total	7440-22-4 E420	0.00001	mg/L	0.1 mg/L	83.2	80.0	120	
sodium, total	7440-23-5 E420	0.05	mg/L	50 mg/L	98.3	80.0	120	
strontium, total	7440-24-6 E420	0.0002	mg/L	0.25 mg/L	95.7	80.0	120	
sulfur, total	7704-34-9 E420	0.5	mg/L	50 mg/L	93.9	80.0	120	
thallium, total	7440-28-0 E420	0.00001	mg/L	1 mg/L	97.8	80.0	120	
tin, total	7440-31-5 E420	0.0001	mg/L	0.5 mg/L	96.1	80.0	120	
,		0.000.		J.J IIIg/L	00.1			

Page : 13 of 18

Work Order : CG2212407 Amendment 1
Client : Teck Coal Limited

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 646083) - continued									
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	91.7	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	91.5	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	94.1	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	91.0	80.0	120	
Total Metals (QCLot: 646084)									
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	95.9	80.0	120	
Total Metals (QCLot: 647531)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	100	80.0	120	
Dissolved Metals (QCLot: 646741)									1
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	99.0	80.0	120	
Dissolved Metals (QCLot: 646742)								1	1
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	103	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	101	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	99.1	80.0	120	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	99.7	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	106	80.0	120	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	98.2	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	98.6	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	98.8	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	95.4	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	96.0	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	96.5	80.0	120	
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	108	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	98.7	80.0	120	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	91.7	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	94.9	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	96.4	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	99.5	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	94.7	80.0	120	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	99.2	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	90.2	80.0	120	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	100	60.0	140	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	89.0	80.0	120	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	99.7	80.0	120	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	101	80.0	120	
sulfur, dissolved	7704-34-9		0.5	mg/L	50 mg/L	99.0	80.0	120	

Page : 14 of 18

Work Order : CG2212407 Amendment 1

Sub-Matrix: Water						Laboratory Cor	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 646742) - conf	inued								
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	99.4	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	97.2	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	98.8	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	96.2	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	99.8	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	103	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	104	80.0	120	

Page : 15 of 18

Work Order : CG2212407 Amendment 1
Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report						
					Spi		Recovery (%)	Recovery	Limits (%)		
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie	
Anions and Nutr	ients (QCLot: 645355)										
CG2212395-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0473 mg/L	0.05 mg/L	94.5	70.0	130		
Anions and Nutr	ients (QCLot: 645370)										
CG2212405-002	Anonymous	fluoride	16984-48-8	E235.F	0.816 mg/L	1 mg/L	81.6	75.0	125		
Anions and Nutr	ients (QCLot: 645371)										
CG2212405-002	Anonymous	bromide	24959-67-9	E235.Br-L	0.497 mg/L	0.5 mg/L	99.4	75.0	125		
Anions and Nutr	ients (QCLot: 645372)										
CG2212405-002	Anonymous	chloride	16887-00-6	E235.CI-L	97.7 mg/L	100 mg/L	97.7	75.0	125		
Anions and Nutr	ients (QCLot: 645373)										
CG2212405-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	ND mg/L	2.5 mg/L	ND	75.0	125		
Anions and Nutr	ients (QCLot: 645374)										
CG2212405-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.492 mg/L	0.5 mg/L	98.4	75.0	125		
Anions and Nutr	ients (QCLot: 645375)								1		
CG2212405-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125		
Anions and Nutr	ients (QCLot: 645448)										
CG2212395-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.54 mg/L	2.5 mg/L	101	70.0	130		
Anions and Nutr	ients (QCLot: 645526)										
CG2212395-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.109 mg/L	0.1 mg/L	109	75.0	125		
Anions and Nutr	ients (QCLot: 646476)										
CG2212395-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0472 mg/L	0.05 mg/L	94.4	70.0	130		
Organic / Inorga	nic Carbon (QCLot: 645	441)									
CG2212395-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	5.72 mg/L	5 mg/L	114	70.0	130		
Organic / Inorga	nic Carbon (QCLot: 645	442)									
CG2212395-001	Anonymous	carbon, total organic [TOC]		E355-L	5.80 mg/L	5 mg/L	116	70.0	130		
otal Metals (Q0	CLot: 646083)										
CG2212407-001	LC_FRB_WS_LAEMP_DRY	aluminum, total	7429-90-5	E420	1.92 mg/L	2 mg/L	96.3	70.0	130		
	_2022-09_N	antimony, total	7440-36-0	E420	0.186 mg/L	0.2 mg/L	93.2	70.0	130		
		arsenic, total	7440-38-2	E420	0.190 mg/L	0.2 mg/L	94.8	70.0	130		
		barium, total	7440-39-3	E420	0.178 mg/L	0.2 mg/L	88.8	70.0	130		
	1	beryllium, total	7440-41-7	E420	0.373 mg/L	0.4 mg/L	93.2	70.0	130		

Page : 16 of 18

Work Order : CG2212407 Amendment 1
Client : Teck Coal Limited

ub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
otal Metals (QC	Lot: 646083) - continue	d								
CG2212407-001	LC_FRB_WS_LAEMP_DRY	bismuth, total	7440-69-9	E420	0.0998 mg/L	0.1 mg/L	99.8	70.0	130	
	_2022-09_N	boron, total	7440-42-8	E420	0.899 mg/L	1 mg/L	89.9	70.0	130	
		cadmium, total	7440-43-9	E420	0.0393 mg/L	0.04 mg/L	98.2	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.192 mg/L	0.2 mg/L	95.8	70.0	130	
		copper, total	7440-50-8	E420	0.194 mg/L	0.2 mg/L	97.0	70.0	130	
		iron, total	7439-89-6	E420	19.1 mg/L	20 mg/L	95.4	70.0	130	
		lead, total	7439-92-1	E420	0.203 mg/L	0.2 mg/L	102	70.0	130	
		lithium, total	7439-93-2	E420	0.934 mg/L	1 mg/L	93.4	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.194 mg/L	0.2 mg/L	96.9	70.0	130	
		molybdenum, total	7439-98-7	E420	0.199 mg/L	0.2 mg/L	99.5	70.0	130	
		nickel, total	7440-02-0	E420	0.384 mg/L	0.4 mg/L	96.0	70.0	130	
		potassium, total	7440-09-7	E420	38.3 mg/L	40 mg/L	95.8	70.0	130	
		selenium, total	7782-49-2	E420	0.388 mg/L	0.4 mg/L	97.0	70.0	130	
		silicon, total	7440-21-3	E420	102 mg/L	100 mg/L	102	70.0	130	
		silver, total	7440-22-4	E420	0.0384 mg/L	0.04 mg/L	96.1	70.0	130	
		sodium, total	7440-23-5	E420	19.6 mg/L	20 mg/L	97.9	70.0	130	
		strontium, total	7440-24-6	E420	0.197 mg/L	0.2 mg/L	98.5	70.0	130	
		sulfur, total	7704-34-9	E420	174 mg/L	200 mg/L	87.0	70.0	130	
		thallium, total	7440-28-0	E420	0.0361 mg/L	0.04 mg/L	90.2	70.0	130	
		tin, total	7440-31-5	E420	0.184 mg/L	0.2 mg/L	91.9	70.0	130	
		titanium, total	7440-32-6	E420	0.378 mg/L	0.4 mg/L	94.4	70.0	130	
		uranium, total	7440-61-1	E420	0.0373 mg/L	0.04 mg/L	93.3	70.0	130	
		vanadium, total	7440-62-2	E420	0.954 mg/L	1 mg/L	95.4	70.0	130	
		zinc, total	7440-66-6	E420	3.84 mg/L	4 mg/L	95.9	70.0	130	
otal Metals (QC	Lot: 646084)									
CG2212407-001	LC_FRB_WS_LAEMP_DRY _2022-09_N	chromium, total	7440-47-3	E420.Cr-L	0.392 mg/L	0.4 mg/L	98.1	70.0	130	
otal Metals (QC	Lot: 647531)						·			
CG2212395-002	Anonymous	mercury, total	7439-97-6	E508	0.000103 mg/L	0.0001 mg/L	103	70.0	130	
issolved Metals	(QCLot: 646741)									
CG2212207-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.451 mg/L	0.4 mg/L	113	70.0	130	
issolved Metals	(QCLot: 646742)									
CG2212207-002	Anonymous	aluminum, dissolved	7429-90-5	E421	2.29 mg/L	2 mg/L	114	70.0	130	
	T.	antimony, dissolved	7440-36-0	E421	0.219 mg/L	0.2 mg/L	109	70.0	130	

Page : 17 of 18

Work Order : CG2212407 Amendment 1
Client : Teck Coal Limited

ub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
issolved Metals	(QCLot: 646742) -	continued								
CG2212207-002	Anonymous	arsenic, dissolved	7440-38-2	E421	0.213 mg/L	0.2 mg/L	106	70.0	130	
		barium, dissolved	7440-39-3	E421	0.148 mg/L	0.2 mg/L	74.3	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.439 mg/L	0.4 mg/L	110	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.111 mg/L	0.1 mg/L	111	70.0	130	
		boron, dissolved	7440-42-8	E421	1.05 mg/L	1 mg/L	105	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.0445 mg/L	0.04 mg/L	111	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.216 mg/L	0.2 mg/L	108	70.0	130	
		copper, dissolved	7440-50-8	E421	0.220 mg/L	0.2 mg/L	110	70.0	130	
		iron, dissolved	7439-89-6	E421	21.2 mg/L	20 mg/L	106	70.0	130	
		lead, dissolved	7439-92-1	E421	0.225 mg/L	0.2 mg/L	112	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.956 mg/L	1 mg/L	95.6	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.222 mg/L	0.2 mg/L	111	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.217 mg/L	0.2 mg/L	108	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.433 mg/L	0.4 mg/L	108	70.0	130	
		potassium, dissolved	7440-09-7	E421	40.9 mg/L	40 mg/L	102	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.362 mg/L	0.4 mg/L	90.6	70.0	130	
		silicon, dissolved	7440-21-3	E421	82.1 mg/L	100 mg/L	82.1	70.0	130	
		silver, dissolved	7440-22-4	E421	0.0463 mg/L	0.04 mg/L	116	70.0	130	
		sodium, dissolved	7440-23-5	E421	20.3 mg/L	20 mg/L	101	70.0	130	
		strontium, dissolved	7440-24-6	E421	0.238 mg/L	0.2 mg/L	119	70.0	130	
		sulfur, dissolved	7704-34-9	E421	141 mg/L	200 mg/L	70.4	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.0425 mg/L	0.04 mg/L	106	70.0	130	
		tin, dissolved	7440-31-5	E421	0.222 mg/L	0.2 mg/L	111	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.451 mg/L	0.4 mg/L	113	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.0404 mg/L	0.04 mg/L	101	70.0	130	
		vanadium, dissolved	7440-62-2	E421	1.08 mg/L	1 mg/L	108	70.0	130	
		zinc, dissolved	7440-66-6	E421	4.76 mg/L	4 mg/L	119	70.0	130	
ssolved Metals	(QCLot: 647532)									
G2212395-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.000100 mg/L	0.0001 mg/L	100	70.0	130	

Page : 18 of 18

Work Order : CG2212407 Amendment 1
Client : Teck Coal Limited

Teck						Page	1	of	1											
ICCK	COCUP. KI	EP_LA	EMP	_DKY_ZU.	ZZ-	TURNA	DOUN	ר חו	'IME					RUSH: Priority						
puo	COC ID:		UO_4	7.5		201010			ABORA	TORY	2-	3 Busine	ess Day:	<u>s</u>			ER INFO	-		
	ECT/CLIENT INFO Regional Effects Program					Name		S Calgar				Re	nort For	mat / D	istributi		Excel	PDF	EDD	
Project Manage								L	idmyla S					ail 1:	III.	Stillouti	UII.	v	X	Y
	Nicole Zathey@Teck.com					- Lao		ĻŤ	tmyla.Shve		Slobal.com			ail 2:	tocked	ചരവ	isonline.	com	<u></u>	X
<u> </u>	421 Pine Avenune						<u> </u>	9 29 Str					ail 3:			ults@tec		v	Y	
Addless	421 Fine Avenune					 	- Luci C33							ail 4:		ron@minr		v	v	v
Oi.	- Smarrand			Province BC			City	Ca	gary/		Province	AB		ail 5:		alleau@mìr		l v	v	v
City Postal Code				Country Can		Post	al Code				Country	Canada		ail 5:			Teck.com	X	X	X
<u> </u>	r 1-250-865-3048			country Can					407 179	94	Country	Cunada		umber	Jessica	2.1XII.2(Q)		817033		
	SAMPLE DETAILS					1 Hone 1	tuinoci	70.	107 177		LYSIS RE	OUESTI		iumooi_		Fib	tered - F: Fie			Lab, N: None
Environmental Division	SAM DE DETAILS					· · ·		1	-		1	1	1		T	T				
Calgary Work Order Reference								ŧ	F	F		1		ĺ	N	1.				
Work Order Reference CG2212407			6					ESERV.	H2SO4	HCL					H2SO4					
			ξ					P.		100			<u> </u>		1-100000			<u> </u>		
		:	Hazardous Material (Yes/No)					ANALYSIS		Mercury_Dissolved	Mercury_Total	TECKCOAL_METNH	TECKCOAL_METNH G_T	FECKCOAL_ROUTIN	I_PT					
main at symmetry, is matin			Suc					Ž.		7	L_	Õ	Ö	Įõ	₹					
Telephone: +1 403 407 1600			rdo			G=Grab		1		Ë	Ë	15	3	15	TOC_TKN					
	Sample Location	Field	223		Time	C=Com	#Of		DOC	<u>e</u> rc	er e	TEC	걸다	2	8		1			
Sample ID	(sys loc code)	Matrix	王	Date	(24hr)	р	Cont.	⊢	<u> </u>			1 5	1		— •	+	+	-		
LC_FRB_WS_LAEMP_DRY_2022-09_N	LC_FRB	ws		2022/09/10	14:00	G	7		1	1	1	1	1	1	1		<u> </u>	<u> </u>		ļ
LC_FRUS_WS_LAEMP_DRY_2022-09_N	LC_FRUS	ws		2022/09/10	9:00	G	7		1	1	1	1	1	1	1					
			1													ļ				1
								1												
	-	, ,						1						ļ		-	1			
								1				-		1		+.				· · · · · · · · · · · · · · · · · · ·
						_		1				.		 	 		+-	 	-	
																			1	
								١,												
					-	 					<u> </u>	<u> </u>			 	+	+			
												1		+	ļ	+	-	 -	 	
						l		L				1		1						
ADDITIONAL COMMENTS/SPECIA		a	R	ELINQUISHE			N		DATE/I		* ACC	EPTED		FILIATI	ON			ATE/TI		
Dissolved metals were field filtered an				Jennifer	Ings/Mir	now			12-Se	ep			NC				13/09/	22	_ 09	lt
Total metals to be lab pr	reserved																			•
	· ·																			
		F																		
SERVICE REQUEST (rush - subje	SERVICE REQUEST (rush - subject to availability)			reser		 		 	z' g		No. 7		·à.	*		- S. S. S. S. S. S.	*******	14	٠.	
The state of the s	Regular (de	*****				Ι						34-1	bile#	T			5195003	144		
Priority (2	-3 business days) - 50% surc			Sampler's Nai	пе 	<u> </u>		Jen	nifer In	Rz		IVIO	vii¢ #				11730034	144		
Emergency (1 Business Day) - 100% surc	harge	Ça	mpler's Signa	ture		_					Date	/Time			Sept	ember 1	2, 2022		
For Emergency <1 Day,	ASAP or Weekend - Contact	ALS		b.c. 2 0.8111		L	·							<u> </u>						

WATER CHEMISTRY

ALS Laboratory Report CG2212551 (Finalized 16-Sept-22)

CERTIFICATE OF ANALYSIS

Work Order : CG2212551

: Teck Coal Limited

Contact : Nicole Zathey

Address : Line Creek Operations PO BOX 2003 15km North Hwy 43

Sparwood BC Canada V0B 2G0

Telephone : --

Client

Project : LINE CREEK OPERATIONS

PO : VPO00817033

C-O-C number : LCO_LAEMP_DRY_2022-09_ALS

Sampler : Jennifer Ings/Minnow

Site : --

Quote number : Teck Coal Master Quote

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 14-Sep-2022 09:00

Date Analysis Commenced : 15-Sep-2022

Issue Date : 16-Sep-2022 18:23

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Supervisor - Inorganic	Inorganics, Calgary, Alberta
Dwayne Bennett	Supervisor - Inorganic	Metals, Calgary, Alberta
Elke Tabora		Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Metals, Calgary, Alberta
Mackenzie Lamoureux	Laboratory Analyst	Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Shirley Li		Metals, Calgary, Alberta

Page : 2 of 6 Work Order : CG2212551 Client

: Teck Coal Limited

Project : LINE CREEK OPERATIONS

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

>: greater than.

Page : 3 of 6
Work Order : CG2212551
Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			C	lient sample ID	LC_DCEF_WS_ LAEMP_DRY_2	 	
(Matrix. Water)					022-09_N		
			Client same	oling date / time	12-Sep-2022	 	
			,	3	14:30		
Analyte	CAS Number	Method	LOR	Unit	CG2212551-001	 	
					Result	 	
Physical Tests							
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	149	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	181	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	149	 	
conductivity		E100	2.0	μS/cm	265	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	140	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	307	 	
pH		E108	0.10	pH units	8.07	 	
solids, total dissolved [TDS]		E162	10	mg/L	158	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	22.7	 	
turbidity		E121	0.10	NTU	5.63	 	
Anions and Nutrients							
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.24	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.108	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.500 DLM	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0866	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0038	 	
phosphorus, total	7723-14-0	E372-U	0.0010	mg/L	0.0117	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	6.85	 	
Organic / Inorganic Carbon				J			
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.00	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	1.11	 	

Page : 4 of 6
Work Order : CG2212551
Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analytical Results

Sub-Matrix: Water (Matrix: Water)	ient sample ID	LC_DCEF_WS_ LAEMP_DRY_2 022-09_N		 				
		Mathad		ling date / time	12-Sep-2022 14:30		 	
Analyte	CAS Number	Method	LOR	Unit	CG2212551-001 Result		 	
Ion Balance					rtosait			
anion sum		EC101	0.10	meq/L	3.14		 	
cation sum		EC101	0.10	meq/L	2.91		 	
ion balance (cations/anions)		EC101	0.010	%	92.7		 	
ion balance (APHA)		EC101	0.010	%	3.80		 	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0312		 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00014		 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00022		 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.249		 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020		 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050		 	
boron, total	7440-42-8	E420	0.010	mg/L	0.010		 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0676		 	
calcium, total	7440-70-2	E420	0.050	mg/L	33.3		 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00012		 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10		 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050		 	
iron, total	7439-89-6	E420	0.010	mg/L	0.046		 	
lead, total	7439-92-1	E420	0.000050	mg/L	0.000060		 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0163		 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	14.1		 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00307		 	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050		 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00111		 	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050		 	
potassium, total	7440-09-7	E420	0.050	mg/L	1.00		 	
selenium, total	7782-49-2	E420	0.050	μg/L	1.66		 	
silicon, total	7440-21-3	E420	0.10	mg/L	3.00		 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010		 	
sodium, total	7440-23-5	E420	0.050	mg/L	2.30		 	

Page : 5 of 6
Work Order : CG2212551
Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analytical Results

Sub-Matrix: Water (Matrix: Water)	ent sample ID	LC_DCEF_WS_ LAEMP_DRY_2 022-09_N	 	 			
			·	ling date / time	12-Sep-2022 14:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212551-001 Result	 	
Total Metals					Nesuit	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0525	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	2.90	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	0.00066	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000357	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00090	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	 	
Dissolved Metals							
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0011	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00013	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00016	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.254	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.011	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0397	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	33.3	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00024	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0181	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	13.7	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00017	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00111	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.993	 	

Page : 6 of 6
Work Order : CG2212551
Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	LC_DCEF_WS_	 	
(Matrix: Water)					LAEMP_DRY_2		
					022-09_N		
			Client samp	ling date / time	12-Sep-2022	 	
			, , , , , , ,	3	14:30		
Analyte	CAS Number	Method	LOR	Unit	CG2212551-001	 	
					Result	 	
Dissolved Metals							
selenium, dissolved	7782-49-2	E421	0.050	μg/L	1.94	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	3.03	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	2.28	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0497	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	3.12	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000299	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	0.00055	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	 	
dissolved mercury filtration location		EP509	-	-	Field	 	
dissolved metals filtration location		EP421	-	-	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2212551** Page : 1 of 12

Client : Teck Coal Limited Laboratory : Calgary - Environmental
Contact : Nicole Zathey Account Manager : Lyudmyla Shvets

Address : Line Creek Operations PO BOX 2003 15km North Hwy 43 Address : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : LINE CREEK OPERATIONS
 Date Samples Received
 : 14-Sep-2022 09:00

PO : VPO00817033 | Issue Date : 16-Sep-2022 18:23

C-O-C number : LCO_LAEMP_DRY_2022-09_ALS

Sampler : Jennifer Ings/Minnow

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 1
No. of samples analysed : 1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 12 Work Order : CG2212551

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) LC_DCEF_WS_LAEMP_DRY_2022-09_N	E298	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-09_N	E235.Br-L	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-09_N	E235.CI-L	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE LC_DCEF_WS_LAEMP_DRY_2022-09_N	E378-U	12-Sep-2022	15-Sep-2022				15-Sep-2022	3 days	3 days	* EHT
Anions and Nutrients : Fluoride in Water by IC										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-09_N	E235.F	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)									1	
HDPE LC_DCEF_WS_LAEMP_DRY_2022-09_N	E235.NO3-L	12-Sep-2022	15-Sep-2022	3 days	3 days	✓	15-Sep-2022	3 days	0 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)									'	
HDPE LC_DCEF_WS_LAEMP_DRY_2022-09_N	E235.NO2-L	12-Sep-2022	15-Sep-2022				15-Sep-2022	3 days	3 days	# EHT

Page : 4 of 12 Work Order : CG2212551

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

viaurix: water						alaation.	Holding time exce	oudinoo ,	***************************************	
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
LC_DCEF_WS_LAEMP_DRY_2022-09_N	E235.SO4	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
LC_DCEF_WS_LAEMP_DRY_2022-09_N	E318	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)	F070 !!	40.0	45.0				40.0	00.1		
LC_DCEF_WS_LAEMP_DRY_2022-09_N	E372-U	12-Sep-2022	15-Sep-2022				16-Sep-2022	28 days	3 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)				I	1		ı	I		
HDPE dissolved (nitric acid)	E421.Cr-L	12-Sep-2022	16-Sep-2022				16-Sep-2022	400	4 days	1
LC_DCEF_WS_LAEMP_DRY_2022-09_N	E421.GI-L	12-3ep-2022	10-Sep-2022				10-3ep-2022	180 days	4 uays	,
								uays		
Dissolved Metals : Dissolved Mercury in Water by CVAAS Glass vial dissolved (hydrochloric acid)							I			
LC DCEF WS LAEMP DRY 2022-09 N	E509	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	√
E0_B0E1_W0_E1EMI _BIX1_2022-00_IV		.2 336 2322	10 00p 2022				10 000 2022	20 days	, dayo	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS							<u> </u>			
HDPE dissolved (nitric acid)										
LC_DCEF_WS_LAEMP_DRY_2022-09_N	E421	12-Sep-2022	16-Sep-2022				16-Sep-2022	180	4 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)										
LC_DCEF_WS_LAEMP_DRY_2022-09_N	E358-L	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	on (Low Level)									
Amber glass total (sulfuric acid)										
LC_DCEF_WS_LAEMP_DRY_2022-09_N	E355-L	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
							L			
Physical Tests : Acidity by Titration							I	T		
HDPE	E283	12-Sep-2022	15-Sep-2022				15-Sep-2022	14 days	3 days	1
LC_DCEF_WS_LAEMP_DRY_2022-09_N	L203	12-0ch-2022	10-06h-2022				10-0ch-2022	14 uays	Juays	•

Page 5 of 12 CG2212551 Work Order

Client

: Teck Coal Limited : LINE CREEK OPERATIONS Project

Matrix: Water						aluation: 🗴 =	Holding time exce			Holding Tir
Analyte Group	Method	Sampling Date	Ext	traction / Pi				Analys		
Container / Client Sample ID(s)			Preparation Date	Holding Times Eval Rec Actual		Analysis Date	Holding Times Rec Actual		Eval	
Physical Tests : Alkalinity Species by Titration										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-09_N	E290	12-Sep-2022	15-Sep-2022				15-Sep-2022	14 days	3 days	✓
Physical Tests : Conductivity in Water										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-09_N	E100	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	4
Physical Tests : ORP by Electrode										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-09_N	E125	12-Sep-2022					16-Sep-2022	0.25 hrs	93 hrs	# EHTR-FM
Physical Tests : pH by Meter										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-09_N	E108	12-Sep-2022	15-Sep-2022				15-Sep-2022	0.25 hrs	0.25 hrs	# EHTR-FN
Physical Tests : TDS by Gravimetry										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-09_N	E162	12-Sep-2022					15-Sep-2022	7 days	3 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-09_N	E160-L	12-Sep-2022					15-Sep-2022	7 days	3 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-09_N	E121	12-Sep-2022					15-Sep-2022	3 days	3 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid) LC_DCEF_WS_LAEMP_DRY_2022-09_N	E420.Cr-L	12-Sep-2022	16-Sep-2022				16-Sep-2022	180 days	4 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) LC_DCEF_WS_LAEMP_DRY_2022-09_N	E508	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	✓

Page : 6 of 12 Work Order : CG2212551

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Wild Mild Fracti						diddion.	riolaning airio oxooc	danoo ,	***************************************	riolanig riili
Analyte Group	Method	Sampling Date	Ext	raction / Pre	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) LC_DCEF_WS_LAEMP_DRY_2022-09_N	E420	12-Sep-2022	16-Sep-2022				16-Sep-2022	180 days	4 days	√

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 7 of 12 Work Order : CG2212551

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Frequency (%) Expected	Evaluation
Laboratory Duplicates (DUP)					<u>'</u>		
Acidity by Titration	E283	649325	1	4	25.0	5.0	1
Alkalinity Species by Titration	E290	649329	1	6	16.6	5.0	
Ammonia by Fluorescence	E298	649577	1	17	5.8	5.0	<u> </u>
Bromide in Water by IC (Low Level)	E235.Br-L	649483	1	16	6.2	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	649484	1	16	6.2	5.0	√
Conductivity in Water	E100	649328	1	6	16.6	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	650008	1	15	6.6	5.0	√
Dissolved Mercury in Water by CVAAS	E509	650160	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	650009	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	649550	1	17	5.8	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	649627	1	20	5.0	5.0	<u>√</u>
Fluoride in Water by IC	E235.F	649482	1	16	6.2	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	649485	1	19	5.2	5.0	√
Nitrite in Water by IC (Low Level)	E235.NO2-L	649486	1	19	5.2	5.0	√
ORP by Electrode	E125	650422	1	10	10.0	5.0	✓
pH by Meter	E108	649327	1	8	12.5	5.0	√
Sulfate in Water by IC	E235.SO4	649487	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	649536	1	16	6.2	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	649992	1	8	12.5	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	649378	1	4	25.0	5.0	✓
Total Mercury in Water by CVAAS	E508	650164	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	649993	1	8	12.5	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	649551	1	18	5.5	5.0	✓
Turbidity by Nephelometry	E121	649414	1	4	25.0	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	649325	1	4	25.0	5.0	✓
Alkalinity Species by Titration	E290	649329	1	6	16.6	5.0	✓
Ammonia by Fluorescence	E298	649577	1	17	5.8	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	649483	1	16	6.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	649484	1	16	6.2	5.0	✓
Conductivity in Water	E100	649328	1	6	16.6	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	650008	1	15	6.6	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	650160	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	650009	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	649550	1	17	5.8	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	649627	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	649482	1	16	6.2	5.0	✓

Page : 8 of 12 Work Order : CG2212551

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

Quality Control Sample Type		Lvaluati	ion: × = QC rreque	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued		40 201			1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
Nitrate in Water by IC (Low Level)	E235.NO3-L	649485	1	19	5.2	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	649486	1	19	5.2	5.0	
ORP by Electrode	E125	650422	1	10	10.0	5.0	
pH by Meter	E108	649327	1	8	12.5	5.0	
Sulfate in Water by IC	E235.SO4	649487	1	16	6.2	5.0	
TDS by Gravimetry	E162	649536	1	16	6.2	5.0	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	649992	1	8	12.5	5.0	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	649378	1	4	25.0	5.0	
Total Mercury in Water by CVAAS	E508	650164	1	20	5.0	5.0	
Total Metals in Water by CRC ICPMS	E420	649993	1	8	12.5	5.0	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	649551	1	18	5.5	5.0	
TSS by Gravimetry (Low Level)	E160-L	649523	1	12	8.3	5.0	
Turbidity by Nephelometry	E121	649414	1	4	25.0	5.0	
Method Blanks (MB)	E121	0.0			20.0	0.0	<u> </u>
Acidity by Titration	F292	649325	1	4	25.0	5.0	
Alkalinity Species by Titration	E283 E290	649329	1	6	16.6	5.0	√
Ammonia by Fluorescence	E298	649577	1	17	5.8	5.0	
Bromide in Water by IC (Low Level)		649483	1	16	6.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.Br-L E235.Cl-L	649484	1	16	6.2	5.0	✓
Conductivity in Water		649328	1	6	16.6	5.0	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E100 E421.Cr-L	650008	1	15	6.6	5.0	√
Dissolved Mercury in Water by CVAAS		650160	1	20	5.0	5.0	
Dissolved Metals in Water by CRC ICPMS	E509	650009	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E421	649550	1	17	5.8	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E358-L	649627	1	20	5.0	5.0	√
Fluoride in Water by IC	E378-U	649482	1	16	6.2	5.0	√
Nitrate in Water by IC (Low Level)	E235.F	649485	1	19	5.2	5.0	<u> </u>
Nitrite in Water by IC (Low Level)	E235.NO3-L	649486	1	19	5.2	5.0	✓
Sulfate in Water by IC	E235.NO2-L	649487	1	16	6.2	5.0	
TDS by Gravimetry	E235.SO4	649536	1	16	6.2	5.0	√
Total Chromium in Water by CRC ICPMS (Low Level)	E162	649992	1	8	12.5	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E420.Cr-L	649378	1	4	25.0	5.0	√
Total Mercury in Water by CVAAS	E318	650164	1	20	5.0	5.0	√
Total Metals in Water by CRC ICPMS	E508		1	8	12.5	5.0	√
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E420	649993 649551	1	18	5.5	5.0	√
	E355-L	649523	1	12			√
TSS by Gravimetry (Low Level)	E160-L	649523	1	4	8.3 25.0	5.0 5.0	√
Turbidity by Nephelometry	E121	049414	1	4	25.0	5.0	✓
Matrix Spikes (MS)		040		4-		F.0	
Ammonia by Fluorescence	E298	649577	1	17	5.8	5.0	<u>√</u>
Bromide in Water by IC (Low Level)	E235.Br-L	649483	1	16	6.2	5.0	✓

Page : 9 of 12 Work Order : CG2212551

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

						~ · · · · · · · · · · · · · · · · · · ·	
Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
Chloride in Water by IC (Low Level)	E235.CI-L	649484	1	16	6.2	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	650008	1	15	6.6	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	650160	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	650009	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	649550	1	17	5.8	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	649627	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	649482	1	16	6.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	649485	1	19	5.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	649486	1	19	5.2	5.0	✓
Sulfate in Water by IC	E235.SO4	649487	1	16	6.2	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	649992	1	8	12.5	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	649378	1	4	25.0	5.0	✓
Total Mercury in Water by CVAAS	E508	650164	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	649993	1	8	12.5	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	649551	1	18	5.5	5.0	✓

Page : 10 of 12 Work Order : CG2212551

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Calgary - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108 Calgary - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121 Calgary - Environmental	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L Calgary - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Calgary - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Chloride in Water by IC (Low Level)	E235.CI-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Fluoride in Water by IC	E235.F Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	E235.SO4 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Acidity by Titration	E283 Calgary - Environmental	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3

Page : 11 of 12 Work Order : CG2212551

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 12 of 12 Work Order : CG2212551

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Calgary - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Calgary - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.

QUALITY CONTROL REPORT

Work Order : CG2212551

Client : Teck Coal Limited
Contact : Nicole Zathey

Address Line Creek Operations PO BOX 2003 15km North Hwy 43

Sparwood BC Canada V0B 2G0

Telephone : ---

Project : LINE CREEK OPERATIONS

PO : VPO00817033

C-O-C number : LCO LAEMP DRY 2022-09 ALS

Sampler : Jennifer Ings/Minnow

Site : --

Quote number : Teck Coal Master Quote

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 14-Sep-2022 09:00

Date Analysis Commenced : 15-Sep-2022

Issue Date : 16-Sep-2022 18:23

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Supervisor - Inorganic	Calgary Inorganics, Calgary, Alberta
Dwayne Bennett	Supervisor - Inorganic	Calgary Metals, Calgary, Alberta
Elke Tabora		Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta
Mackenzie Lamoureux	Laboratory Analyst	Calgary Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Calgary Inorganics, Calgary, Alberta
Sara Niroomand		Calgary Inorganics, Calgary, Alberta
Shirley Li		Calgary Metals, Calgary, Alberta

 Page
 : 2 of 18

 Work Order
 : CG2212551

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATIONS

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2212551

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report							
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie		
Physical Tests (Q	,												
CG2212550-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR			
Physical Tests (Q	C Lot: 649327)												
CG2212457-001	Anonymous	рН		E108	0.10	pH units	8.06	8.06	0.00%	4%			
Physical Tests (Q	C Lot: 649328)												
CG2212462-001	Anonymous	conductivity		E100	2.0	μS/cm	68.5	67.3	1.77%	10%			
Physical Tests (Q	C Lot: 649329)												
CG2212462-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	47.0	44.0	6.59%	20%			
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR			
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR			
		alkalinity, total (as CaCO3)		E290	2.0	mg/L	47.0	44.0	6.59%	20%			
Physical Tests (Q	C Lot: 649414)												
CG2212550-001	Anonymous	turbidity		E121	0.10	NTU	0.37	0.40	0.03	Diff <2x LOR			
Physical Tests (Q	C Lot: 649536)												
CG2212460-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	1540	1550	0.453%	20%			
Physical Tests (Q	2 Lot: 650422)	, , , , , , , , , , , , , , , , , , , ,											
CG2212550-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	302	299	0.765%	15%			
	,	oxidation roddetion potential [Orti]		2.20	0.10		002	200	0.10070	.070			
Anions and Nutriei CG2212550-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.500	mg/L	<0.500	<0.500	0	Diff <2x LOR			
	,	Kjeldani filitogen, total [TKN]		L310	0.500	mg/L	~0.300	~0.500	0	DIII VZX LOIX			
	nts (QC Lot: 649482)		10001 10 0	5005 F	0.400		.0.400	20,400		D:# .0 1.0D			
CG2212545-001	Anonymous	fluoride	16984-48-8	E235.F	0.400	mg/L	<0.400	<0.400	0	Diff <2x LOR			
	nts (QC Lot: 649483)												
CG2212545-001	Anonymous	bromide	24959-67-9	E235.Br-L	1.00	mg/L	<1.00	<1.00	0	Diff <2x LOR			
	nts (QC Lot: 649484)												
CG2212545-001	Anonymous	chloride	16887-00-6	E235.CI-L	2.00	mg/L	10.7	10.7	0.01	Diff <2x LOR			
Anions and Nutrie	nts (QC Lot: 649485)												
CG2212545-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.100	mg/L	209	208	0.299%	20%			
Anions and Nutrie	nts (QC Lot: 649486)												
CG2212545-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0200	mg/L	0.611	0.616	0.880%	20%			
Anions and Nutrie	nts (QC Lot: 649487)							<u> </u>					
CG2212545-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	6.00	mg/L	1430	1430	0.266%	20%			

 Page
 : 4 of 18

 Work Order
 : CG2212551

 Client
 : Teck Coal Limited

ub-Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie		
nions and Nutrien	ts (QC Lot: 649577)	- continued											
CG2212550-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR			
Inions and Nutrien	ts (QC Lot: 649627)												
CG2212545-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR			
Organic / Inorganic	Carbon (QC Lot: 649	9550)											
CG2212550-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR			
Organic / Inorganic	Carbon (QC Lot: 649	9551)											
CG2212550-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR			
otal Metals (QC Lo	ot: 649992)												
CG2212550-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00037	0.00024	0.00013	Diff <2x LOR			
Total Metals (QC Lo	ot: 649993)												
CG2212550-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0069	0.0098	0.0029	Diff <2x LOR			
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR			
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00018	0.00018	0.000006	Diff <2x LOR			
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0536	0.0552	2.97%	20%			
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR			
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR			
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR			
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0138 μg/L	0.0000175	0.0000037	Diff <2x LOR			
		calcium, total	7440-70-2	E420	0.050	mg/L	71.0	71.6	0.777%	20%			
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR			
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR			
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	0.014	0.004	Diff <2x LOR			
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR			
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0066	0.0066	0.00002	Diff <2x LOR			
		magnesium, total	7439-95-4	E420	0.0050	mg/L	41.7	43.4	3.84%	20%			
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00090	0.00086	0.00004	Diff <2x LOR			
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000912	0.000917	0.596%	20%			
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00069	0.00068	0.00001	Diff <2x LOR			
		potassium, total	7440-09-7	E420	0.050	mg/L	0.807	0.828	2.61%	20%			
		selenium, total	7782-49-2	E420	0.000050	mg/L	36.3 µg/L	0.0365	0.568%	20%			
		silicon, total	7440-21-3	E420	0.10	mg/L	2.22	2.24	0.816%	20%			
		silver, total	7440-22-4	E420	0.000010	mg/L	0.000013	<0.000010	0.000003	Diff <2x LOR			
		sodium, total	7440-23-5	E420	0.050	mg/L	1.38	1.41	1.88%	20%			
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.116	0.117	0.562%	20%			
		sulfur, total	7704-34-9	E420	0.50	mg/L	65.7	65.4	0.479%	20%			

 Page
 : 5 of 18

 Work Order
 : CG2212551

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier			
Total Metals (QC Lo	ot: 649993) - continue	d												
CG2212550-001	Anonymous	thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR				
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR				
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR				
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00232	0.00234	1.02%	20%				
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR				
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR				
Total Metals (QC Lo	ot: 650164)													
CG2212515-001	Anonymous	mercury, total	7439-97-6	E508	0.000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR				
Dissolved Metals (QC Lot: 650008)													
CG2212268-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR				
Dissolved Metals ((QC Lot: 650009)													
CG2212268-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0041	0.0040	0.0001	Diff <2x LOR				
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR				
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00011	0.00010	0.000010	Diff <2x LOR				
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0412	0.0419	1.78%	20%				
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR				
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR				
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR				
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0000342	0.0000278	0.0000064	Diff <2x LOR				
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	51.4	52.3	1.68%	20%				
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR				
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR				
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR				
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR				
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0033	0.0034	0.00008	Diff <2x LOR				
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	25.4	25.4	0.0305%	20%				
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00149	0.00149	0.0188%	20%				
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00122	0.00126	3.23%	20%				
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR				
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.790	0.797	0.821%	20%				
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.00182	0.00182	0.348%	20%				
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.61	2.66	1.84%	20%				
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR				
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	0.910	0.904	0.640%	20%				
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.116	0.118	1.69%	20%				

Page : 6 of 18
Work Order : CG2212551
Client : Teck Coal Limited

Sub-Matrix: Water	o-Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier			
Dissolved Metals (0	QC Lot: 650009) - continu	ued												
CG2212268-001	Anonymous	sulfur, dissolved	7704-34-9	E421	0.50	mg/L	22.1	22.6	2.39%	20%				
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000013	0.000012	0.0000008	Diff <2x LOR				
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	0.00032	0.00032	0.000004	Diff <2x LOR				
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR				
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00285	0.00296	3.68%	20%				
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR				
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0030	0.0028	0.0001	Diff <2x LOR				
Dissolved Metals (0	QC Lot: 650160)													
CG2212336-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR				

 Page
 : 7 of 18

 Work Order
 : CG2212551

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 649325)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 649328)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 649329)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 649414)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 649523)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 649536)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 649378)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 649482)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 649483)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 649484)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 649485)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 649486)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 649487)	44000 70 0 5005 004	0.0		.0.00	
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 649577)	7004 44 7 5000	0.007		10.0050	
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 649627)	1007 110 7070 11	0.05			
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Organic / Inorganic Carbon (QCLot: 649550)					

 Page
 : 8 of 18

 Work Order
 : CG2212551

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATIONS

ALS

		1				
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Organic / Inorganic Carbon (QCLot						
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon(QCLot						
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 649992)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 649993)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
intimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
poron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.0000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6	E420	0.01	mg/L	<0.010	
ead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.00050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7		0.05	mg/L	<0.050	
selenium, total	7782-49-2		0.00005	mg/L	<0.000050	
silicon, total	7440-21-3		0.1	mg/L	<0.10	
ilver, total	7440-22-4		0.00001	mg/L	<0.00010	
odium, total	7440-23-5		0.05	mg/L	<0.050	
trontium, total	7440-24-6		0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9		0.5	mg/L	<0.50	
hallium, total	7440-28-0		0.00001	mg/L	<0.000010	
n, total	7440-31-5		0.0001	mg/L	<0.00010	
itanium, total	7440-31-6		0.0003	mg/L	<0.00010	
ıranium, total	7440-61-1		0.0003	mg/L	<0.00030	
vanadium, total	7440-62-2	E42U	0.0005	mg/L	<0.00050	

 Page
 : 9 of 18

 Work Order
 : CG2212551

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATIONS

ALS

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 649993) - co					
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 650164)					
mercury, total	7439-97-6 E508	0.000005	mg/L	<0.0000050	
Dissolved Metals (QCLot: 650008)					
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 650009)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
poron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
hallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
in, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
itanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	

 Page
 : 10 of 18

 Work Order
 : CG2212551

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier			
Dissolved Metals (QCLot: 650009) - continued									
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010				
Dissolved Metals (QCLot: 650160)									
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.0000050				

Page : 11 of 18 Work Order : CG2212551 Client

: Teck Coal Limited

: LINE CREEK OPERATIONS Project

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number M	ethod	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 649325)											
acidity (as CaCO3)	E2	283	2	mg/L	50 mg/L	104	85.0	115			
Physical Tests (QCLot: 649327)											
рН	E1	108		pH units	7 pH units	101	98.6	101			
Physical Tests (QCLot: 649328)											
conductivity	E1	100	1	μS/cm	146.9 μS/cm	100	90.0	110			
Physical Tests (QCLot: 649329)											
alkalinity, total (as CaCO3)	E2	290	1	mg/L	500 mg/L	101	85.0	115			
Physical Tests (QCLot: 649414)											
turbidity	E1	121	0.1	NTU	200 NTU	109	85.0	115			
Physical Tests (QCLot: 649523)											
solids, total suspended [TSS]	E1	160-L	1	mg/L	150 mg/L	95.7	85.0	115			
Physical Tests (QCLot: 649536)											
solids, total dissolved [TDS]	E1	162	10	mg/L	1000 mg/L	95.0	85.0	115			
Physical Tests (QCLot: 650422)											
oxidation-reduction potential [ORP]	E1	125		mV	220 mV	101	95.4	104			
Anions and Nutrients (QCLot: 649378)									ı		
Kjeldahl nitrogen, total [TKN]	E3	318	0.05	mg/L	4 mg/L	100	75.0	125			
Anions and Nutrients (QCLot: 649482)									ı		
fluoride	16984-48-8 E2	235.F	0.02	mg/L	1 mg/L	104	90.0	110			
Anions and Nutrients (QCLot: 649483)											
bromide	24959-67-9 E2	235.Br-L	0.05	mg/L	0.5 mg/L	95.0	85.0	115			
Anions and Nutrients (QCLot: 649484)									ı		
chloride	16887-00-6 E2	235.CI-L	0.1	mg/L	100 mg/L	101	90.0	110			
Anions and Nutrients (QCLot: 649485)									ı		
nitrate (as N)	14797-55-8 E2	235.NO3-L	0.005	mg/L	2.5 mg/L	102	90.0	110			
Anions and Nutrients (QCLot: 649486)											
nitrite (as N)	14797-65-0 E2	235.NO2-L	0.001	mg/L	0.5 mg/L	101	90.0	110			
Anions and Nutrients (QCLot: 649487)											
sulfate (as SO4)	14808-79-8 E2	235.SO4	0.3	mg/L	100 mg/L	104	90.0	110			
Anions and Nutrients (QCLot: 649577)											
ammonia, total (as N)	7664-41-7 E2	298	0.005	mg/L	0.2 mg/L	99.2	85.0	115			
Anions and Nutrients (QCLot: 649627)											

 Page
 : 12 of 18

 Work Order
 : CG2212551

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report							
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 649627) - continu	ued							
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	0.03 mg/L	102	80.0	120	
Organic / Inorganic Carbon (QCLot: 649550)								
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	8.57 mg/L	90.6	80.0	120	
Organic / Inorganic Carbon (QCLot: 649551)								
carbon, total organic [TOC]	E355-L	0.5	mg/L	8.57 mg/L	97.1	80.0	120	
Total Metals (QCLot: 649992)								
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	103	80.0	120	
Total Metals (QCLot: 649993)								
aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	101	80.0	120	
antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	107	80.0	120	
arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	100	80.0	120	
barium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	102	80.0	120	
beryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	99.5	80.0	120	
bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	97.9	80.0	120	
boron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	94.4	80.0	120	
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	101	80.0	120	
calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	97.0	80.0	120	
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	101	80.0	120	
copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	101	80.0	120	
iron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	115	80.0	120	
lead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	100	80.0	120	
lithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	94.7	80.0	120	
magnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	103	80.0	120	
manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	99.8	80.0	120	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	104	80.0	120	
nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	103	80.0	120	
potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	103	80.0	120	
selenium, total	7782-49-2 E420	0.00005	mg/L	1 mg/L	99.0	80.0	120	
silicon, total	7440-21-3 E420	0.1	mg/L	10 mg/L	106	60.0	140	
silver, total	7440-22-4 E420	0.00001	mg/L	0.1 mg/L	97.7	80.0	120	
sodium, total	7440-23-5 E420	0.05	mg/L	50 mg/L	106	80.0	120	
strontium, total	7440-24-6 E420	0.0002	mg/L	0.25 mg/L	104	80.0	120	
sulfur, total	7704-34-9 E420	0.5	mg/L	50 mg/L	111	80.0	120	
thallium, total	7440-28-0 E420	0.00001	mg/L	1 mg/L	101	80.0	120	
tin, total	7440-31-5 E420	0.0001	mg/L	0.5 mg/L	104	80.0	120	

 Page
 : 13 of 18

 Work Order
 : CG2212551

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number Meth	hod	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 649993) - continued										
titanium, total	7440-32-6 E420	0	0.0003	mg/L	0.25 mg/L	104	80.0	120		
uranium, total	7440-61-1 E420	0	0.00001	mg/L	0.005 mg/L	103	80.0	120		
vanadium, total	7440-62-2 E420	0	0.0005	mg/L	0.5 mg/L	104	80.0	120		
zinc, total	7440-66-6 E420	0	0.003	mg/L	0.5 mg/L	104	80.0	120		
Total Metals (QCLot: 650164)							·			
mercury, total	7439-97-6 E508	3	0.000005	mg/L	0.0001 mg/L	101	80.0	120		
Dissolved Metals (QCLot: 650008)										
chromium, dissolved	7440-47-3 E421	1.Cr-L	0.0001	mg/L	0.25 mg/L	95.8	80.0	120		
Dissolved Metals (QCLot: 650009)										
aluminum, dissolved	7429-90-5 E421	1	0.001	mg/L	2 mg/L	98.2	80.0	120		
antimony, dissolved	7440-36-0 E421	1	0.0001	mg/L	1 mg/L	101	80.0	120		
arsenic, dissolved	7440-38-2 E421	1	0.0001	mg/L	1 mg/L	96.9	80.0	120		
barium, dissolved	7440-39-3 E421	1	0.0001	mg/L	0.25 mg/L	95.4	80.0	120		
beryllium, dissolved	7440-41-7 E421	1	0.00002	mg/L	0.1 mg/L	95.9	80.0	120		
bismuth, dissolved	7440-69-9 E421	1	0.00005	mg/L	1 mg/L	97.9	80.0	120		
boron, dissolved	7440-42-8 E421	1	0.01	mg/L	1 mg/L	102	80.0	120		
cadmium, dissolved	7440-43-9 E421	1	0.000005	mg/L	0.1 mg/L	96.6	80.0	120		
calcium, dissolved	7440-70-2 E421	1	0.05	mg/L	50 mg/L	97.2	80.0	120		
cobalt, dissolved	7440-48-4 E421	1	0.0001	mg/L	0.25 mg/L	97.9	80.0	120		
copper, dissolved	7440-50-8 E421	1	0.0002	mg/L	0.25 mg/L	94.6	80.0	120		
iron, dissolved	7439-89-6 E421	1	0.01	mg/L	1 mg/L	109	80.0	120		
lead, dissolved	7439-92-1 E421	1	0.00005	mg/L	0.5 mg/L	96.5	80.0	120		
lithium, dissolved	7439-93-2 E421	1	0.001	mg/L	0.25 mg/L	94.5	80.0	120		
magnesium, dissolved	7439-95-4 E421	1	0.005	mg/L	50 mg/L	97.6	80.0	120		
manganese, dissolved	7439-96-5 E421	1	0.0001	mg/L	0.25 mg/L	97.9	80.0	120		
molybdenum, dissolved	7439-98-7 E421	1	0.00005	mg/L	0.25 mg/L	97.4	80.0	120		
nickel, dissolved	7440-02-0 E421	1	0.0005	mg/L	0.5 mg/L	95.6	80.0	120		
potassium, dissolved	7440-09-7 E421	1	0.05	mg/L	50 mg/L	98.3	80.0	120		
selenium, dissolved	7782-49-2 E421	1	0.00005	mg/L	1 mg/L	96.2	80.0	120		
silicon, dissolved	7440-21-3 E421	1	0.05	mg/L	10 mg/L	102	60.0	140		
silver, dissolved	7440-22-4 E421	1	0.00001	mg/L	0.1 mg/L	88.6	80.0	120		
sodium, dissolved	7440-23-5 E421	1	0.05	mg/L	50 mg/L	96.6	80.0	120		
strontium, dissolved	7440-24-6 E421	1	0.0002	mg/L	0.25 mg/L	94.4	80.0	120		
sulfur, dissolved	7704-34-9 E421	1	0.5	mg/L	50 mg/L	117	80.0	120		
thallium, dissolved	7440-28-0 E421	1	0.00001	mg/L	1 mg/L	97.1	80.0	120		
tin, dissolved	7440-31-5 E421	1	0.0001	mg/L	0.5 mg/L	96.2	80.0	120		

 Page
 : 14 of 18

 Work Order
 : CG2212551

 Client
 : Teck Coal Limited

Sub-Matrix: Water	p-Matrix: Water						Laboratory Control Sample (LCS) Report						
							Recovery (%) Recovery Limits (%						
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier				
Dissolved Metals (QCLot: 650009) - continu	ed												
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	100	80.0	120					
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	93.1	80.0	120					
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	95.8	80.0	120					
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	94.3	80.0	120					
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	99.9	80.0	120					

 Page
 : 15 of 18

 Work Order
 : CG2212551

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

ub-Matrix: Water						Matrix Spike (MS) Report									
					Spike		Recovery (%)	Recovery Limits (%)							
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier					
Anions and Nutr	ients (QCLot: 649378)														
CG2212550-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.82 mg/L	2.5 mg/L	113	70.0	130						
Anions and Nutr	ients (QCLot: 649482)														
CG2212545-004	Anonymous	fluoride	16984-48-8	E235.F	1.05 mg/L	1 mg/L	105	75.0	125						
Anions and Nutr	ients (QCLot: 649483)														
CG2212545-004	Anonymous	bromide	24959-67-9	E235.Br-L	0.448 mg/L	0.5 mg/L	89.6	75.0	125						
Anions and Nutr	ients (QCLot: 649484)														
CG2212545-004	Anonymous	chloride	16887-00-6	E235.CI-L	101 mg/L	100 mg/L	101	75.0	125						
Anions and Nutr	ients (QCLot: 649485)														
CG2212545-004	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.72 mg/L	2.5 mg/L	109	75.0	125						
Anions and Nutr	ients (QCLot: 649486)														
CG2212545-004	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.509 mg/L	0.5 mg/L	102	75.0	125						
Anions and Nutr	ients (QCLot: 649487)														
CG2212545-004	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	105 mg/L	100 mg/L	105	75.0	125						
Anions and Nutr	ients (QCLot: 649577)														
CG2212550-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.102 mg/L	0.1 mg/L	102	75.0	125						
Anions and Nutr	ients (QCLot: 649627)														
CG2212545-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0468 mg/L	0.05 mg/L	93.6	70.0	130						
Organic / Inorga	nic Carbon (QCLot: 64	9550)													
CG2212550-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	5.18 mg/L	5 mg/L	104	70.0	130						
Organic / Inorga	nic Carbon (QCLot: 64	9551)													
CG2212550-001	Anonymous	carbon, total organic [TOC]		E355-L	5.41 mg/L	5 mg/L	108	70.0	130						
Total Metals (Q0	CLot: 649992)								1						
CG2212550-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.374 mg/L	0.4 mg/L	93.5	70.0	130						
otal Metals (Q0	CLot: 649993)									-					
CG2212550-002	Anonymous	aluminum, total	7429-90-5	E420	1.82 mg/L	2 mg/L	90.9	70.0	130						
		antimony, total	7440-36-0	E420	0.195 mg/L	0.2 mg/L	97.5	70.0	130						
		arsenic, total	7440-38-2	E420	0.178 mg/L	0.2 mg/L	88.8	70.0	130						
		barium, total	7440-39-3	E420	0.178 mg/L	0.2 mg/L	88.8	70.0	130						
	1	beryllium, total	7440-41-7	E420	0.352 mg/L	0.4 mg/L	88.1	70.0	130						

 Page
 : 16 of 18

 Work Order
 : CG2212551

 Client
 : Teck Coal Limited

ub-Matrix: Water	-Matrix: Water					Matrix Spike (MS) Report								
						ke	Recovery (%)	Recovery						
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie				
otal Metals (QC	Lot: 649993) - conti	nued												
CG2212550-002	Anonymous	bismuth, total	7440-69-9	E420	0.0936 mg/L	0.1 mg/L	93.6	70.0	130					
		boron, total	7440-42-8	E420	0.872 mg/L	1 mg/L	87.2	70.0	130					
		cadmium, total	7440-43-9	E420	0.0377 mg/L	0.04 mg/L	94.3	70.0	130					
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130					
		cobalt, total	7440-48-4	E420	0.184 mg/L	0.2 mg/L	91.8	70.0	130					
		copper, total	7440-50-8	E420	0.189 mg/L	0.2 mg/L	94.4	70.0	130					
		iron, total	7439-89-6	E420	18.6 mg/L	20 mg/L	93.1	70.0	130					
		lead, total	7439-92-1	E420	0.185 mg/L	0.2 mg/L	92.6	70.0	130					
		lithium, total	7439-93-2	E420	0.808 mg/L	1 mg/L	80.8	70.0	130					
		magnesium, total	7439-95-4	E420	ND mg/L	10 mg/L	ND	70.0	130					
		manganese, total	7439-96-5	E420	0.177 mg/L	0.2 mg/L	88.7	70.0	130					
		molybdenum, total	7439-98-7	E420	0.188 mg/L	0.2 mg/L	94.2	70.0	130					
		nickel, total	7440-02-0	E420	0.384 mg/L	0.4 mg/L	96.1	70.0	130					
		potassium, total	7440-09-7	E420	36.2 mg/L	40 mg/L	90.5	70.0	130					
		selenium, total	7782-49-2	E420	0.386 mg/L	0.4 mg/L	96.6	70.0	130					
		silicon, total	7440-21-3	E420	89.8 mg/L	100 mg/L	89.8	70.0	130					
		silver, total	7440-22-4	E420	0.0393 mg/L	0.04 mg/L	98.2	70.0	130					
		sodium, total	7440-23-5	E420	18.0 mg/L	20 mg/L	90.2	70.0	130					
		strontium, total	7440-24-6	E420	0.178 mg/L	0.2 mg/L	89.0	70.0	130					
		sulfur, total	7704-34-9	E420	176 mg/L	200 mg/L	88.1	70.0	130					
		thallium, total	7440-28-0	E420	0.0374 mg/L	0.04 mg/L	93.4	70.0	130					
		tin, total	7440-31-5	E420	0.191 mg/L	0.2 mg/L	95.5	70.0	130					
		titanium, total	7440-32-6	E420	0.386 mg/L	0.4 mg/L	96.4	70.0	130					
		uranium, total	7440-61-1	E420	0.0384 mg/L	0.04 mg/L	96.0	70.0	130					
		vanadium, total	7440-62-2	E420	0.926 mg/L	1 mg/L	92.6	70.0	130					
		zinc, total	7440-66-6	E420	3.88 mg/L	4 mg/L	97.1	70.0	130					
otal Metals (QC	Lot: 650164)													
G2212515-002	Anonymous	mercury, total	7439-97-6	E508	0.0000968 mg/L	0.0001 mg/L	96.8	70.0	130					
issolved Metals	(QCLot: 650008)													
G2212268-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.385 mg/L	0.4 mg/L	96.3	70.0	130					
issolved Metals	(QCLot: 650009)													
G2212268-002	Anonymous	aluminum, dissolved	7429-90-5	E421	1.90 mg/L	2 mg/L	95.1	70.0	130					
		antimony, dissolved	7440-36-0	E421	0.195 mg/L	0.2 mg/L	97.7	70.0	130					
		arsenic, dissolved	7440-38-2	E421	0.189 mg/L	0.2 mg/L	94.6	70.0	130					
		barium, dissolved	7440-39-3	E421	0.186 mg/L	0.2 mg/L	93.2	70.0	130					
	1	beryllium, dissolved	7440-41-7	E421	0.380 mg/L	0.4 mg/L	94.9	70.0	130					

 Page
 : 17 of 18

 Work Order
 : CG2212551

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Matrix Spike (MS) Report									
	CAS Number Market						Recovery (%)	Recovery	Limits (%)						
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier					
	(QCLot: 650009) -	continued													
CG2212268-002	Anonymous	bismuth, dissolved	7440-69-9	E421	0.0910 mg/L	0.1 mg/L	91.0	70.0	130						
		boron, dissolved	7440-42-8	E421	0.974 mg/L	1 mg/L	97.4	70.0	130						
		cadmium, dissolved	7440-43-9	E421	0.0388 mg/L	0.04 mg/L	97.0	70.0	130						
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130						
		cobalt, dissolved	7440-48-4	E421	0.192 mg/L	0.2 mg/L	95.8	70.0	130						
		copper, dissolved	7440-50-8	E421	0.189 mg/L	0.2 mg/L	94.4	70.0	130						
		iron, dissolved	7439-89-6	E421	19.1 mg/L	20 mg/L	95.5	70.0	130						
		lead, dissolved	7439-92-1	E421	0.185 mg/L	0.2 mg/L	92.6	70.0	130						
		lithium, dissolved	7439-93-2	E421	0.944 mg/L	1 mg/L	94.4	70.0	130						
		magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130						
		manganese, dissolved	7439-96-5	E421	0.192 mg/L	0.2 mg/L	96.2	70.0	130						
		molybdenum, dissolved	7439-98-7	E421	0.191 mg/L	0.2 mg/L	95.6	70.0	130						
		nickel, dissolved	7440-02-0	E421	0.382 mg/L	0.4 mg/L	95.6	70.0	130						
		potassium, dissolved	7440-09-7	E421	37.7 mg/L	40 mg/L	94.4	70.0	130						
		selenium, dissolved	7782-49-2	E421	0.392 mg/L	0.4 mg/L	98.0	70.0	130						
		silicon, dissolved	7440-21-3	E421	97.6 mg/L	100 mg/L	97.6	70.0	130						
		silver, dissolved	7440-22-4	E421	0.0393 mg/L	0.04 mg/L	98.2	70.0	130						
		sodium, dissolved	7440-23-5	E421	19.0 mg/L	20 mg/L	95.2	70.0	130						
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.2 mg/L	ND	70.0	130						
		sulfur, dissolved	7704-34-9	E421	206 mg/L	200 mg/L	103	70.0	130						
		thallium, dissolved	7440-28-0	E421	0.0363 mg/L	0.04 mg/L	90.7	70.0	130						
		tin, dissolved	7440-31-5	E421	0.189 mg/L	0.2 mg/L	94.7	70.0	130						
		titanium, dissolved	7440-32-6	E421	0.346 mg/L	0.4 mg/L	86.6	70.0	130						
		uranium, dissolved	7440-61-1	E421	0.0362 mg/L	0.04 mg/L	90.5	70.0	130						
		vanadium, dissolved	7440-62-2	E421	0.939 mg/L	1 mg/L	93.9	70.0	130						
		zinc, dissolved	7440-66-6	E421	3.79 mg/L	4 mg/L	94.9	70.0	130						
issolved Metals	(QCLot: 650160)														
CG2212336-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000785 mg/L	0.0001 mg/L	78.5	70.0	130						

 Page
 : 18 of 18

 Work Order
 : CG2212551

 Client
 : Teck Coal Limited

algary Work Order Reference

	COC ID:	rco_r		AIC	J44-	TURNA	AROUN	D TIME:		2.	-3 Busine	ess Dave	s		RUSH: Priori	ty		
The state of the s	ROJECT/CLIENT INFO							LABOR	ATORY						OTHER INFO			
	Job# Line Creek Operations							ALS Calga						mat / Di	stribution	Excel	PDF	ED
	ager Nicole Zathey					Lab		Lyudmyla					ail I:	Apun Schab (P. Lac	z.eog	x	<u>x</u>	X
	mail Nicole Zathey@Teck.co	om_				ļ		Lyudmyla.Sh		Global.com		Ema	ail 2:		al@equisonline			X
Ad	dress 421 Pine Avenune					ļ	Address	2559 29 St	reet NE				ail 3:	Teck.L	ab.Results@te	X	X	X
				,	· · · ·			·					ail 4:	Lisa.Bowr	on@minnow.ca	X	X	X
	City Sparw	_		Province BC				Calgary		Province	AB	Ema	ail 5:		lleau@minnow.ca	X	X	X
Postal		G1		Country Ca	nada			TIY 7B5		Country	Canada	Ema	ail 5:	Jessica	.Ritz@Teck.com		X	X
Phone Nu	mber 1-250-865-3048					Phone 1	Number	403 407 13					umber			0817033		
5	SAMPLE DETAIL	S				T	*		ANA	LYSIS RE	QUESTI	ED	· · · · · · · · · · · · · · · · · · ·	r	Filtered - F: Fi	ld, L: Lab, F	L: Field &	Lab, N:
								₽ F	F		F			N			1	
			1						ļ		-			 		-	<u> </u>	
				4	-			H2SO4]-
			9					#2SO4	HCL		NO3	NO3]	H2SO4				
			Hazardous Material (Yes/No)			1		-	<u> </u>		<u> </u>							-
			K		1					İ	⊭	×	Z	- *	' .			
) je			1			-		TECKCOAL_METNH	Z ·	15	İ				1
·	•		Ē	1		1		, l	ķ		Æ	Ä	Ϊ́Ξ		•			'
			Z	1		1		ISA3	880	l a	<u>[</u>	ادًا		<u> </u>		1		
			S				,	ANALYSIS 7	Į Ē,	<u>P</u> , `	₹	[¥	Z	z	1]			ŀ
			흥			G=Grab	1 1	`	<u>`</u>	_ 5.	5	\mathcal{Z}	2	X	1 .			i
	Sample Location	Field	zar		Time	C=Com	# Of	ုပ္	Mercury_Dissolved	₽,	L Č	\ ₹_	🕇	- ان ا		İ	١.	. J
Sample ID	(sys loc code)	Matrix	⊥Ha	Date	(24hr)	р	Cont.	D0C	ξ	Mercury_Total		TECKCOAL_METNH G_T	TECKCOAL_ROUTINE	TOC_TKN_PT	Environ	ments	al Div	مامان
LC_DCEF_WS_LAEMP_DRY_2022-09_N	LC_DCEF	ws		2022/09/12	14:30	G	7	1	1	1	1	1	1	1	Calgary Work CC	///O/IE		13101
					1.	-				<u> </u>	j				Work	Order A	lefere	nce
			 						-	 	 		<u> </u>		CG	199	101	55
								<u> </u>		<u> </u>						122	1 4	
		İ .		1			.]	1							— –	.		
		-	 		 	 	1		·	 	-							
						1	<u> </u>	<u> </u>		 				<u></u>			14.	
	-		ŀ			İ				ĺ			İ	,		የም የነት		
			1												JE () () ()	1 - 10 10	1	
	 			_				-		ļ			!	<u> </u>		WAN IN	1	
·			i .										1		Telephone :	+ 1 403 40	7 180n	
																	. 1000	
		-	 		+-	-			 		1				1	1	i	i
ADDITIONAL COMMENTS/SPE	CIAL INSTRUCTIONS	<u> </u>	 -	RELINQUISH	L ED RV/AF	 FILIATIO		DATE/	TIME	ACC	EPTED I	DV/A125	11 1 47114	ON:		<u> </u> ATE/TIN	4 F	<u> </u>
· ADDITIONAL COMMISSIONS	CHAE MOINDETTONS		 		Ings/Mir		**	13-8		ACC	EI IED	J I /AIT	ILIAIN	0.1	0.01	AL 12/11/	116	
									- <u>-</u>						9/14			
															1101	·		
			<u> </u>	<u> </u>											9-	00		
	***************************************		ļ							<u> </u>			, .		-	<u> </u>		
SERVICE REQUEST (rush - s		,				,		·					·					
The first	Regular	(default)	4	Sampler's Na	me		J	ennifer 11	igs		Mob	ile#			51950034	144		
Finance	ty (2-3 business days) - 50% : icy (1 Business Day) - 100% :	surcharge X		<u>·</u>		 					 							
For Emergency < 1 F	Day, ASAP or Weekend - Con	surcharge	1 8	Sampler's Sign:	ature		-	land &	, •		Date/	Time			September 1	3, 2022		
1 Of Emergency 11 E	my, ABAI OF WEEKEING - COI	naci ALO	ـــــــــــــــــــــــــــــــــــ								└		L					

WATER CHEMISTRY

ALS Laboratory Report CG2212647 (Finalized 26-Sept-22)

CERTIFICATE OF ANALYSIS

Work Order : CG2212647

: Teck Coal Limited

Contact : Nicole Zathey

Address : Line Creek Operations PO BOX 2003 15km North Hwy 43

Sparwood BC Canada V0B 2G0

Telephone : --

Client

Project : LINE CREEK OPERATIONS

PO : VPO00816101

C-O-C number : LCO_LAEMP_DRY_2022-09_ALS

Sampler : Jennifer Ings

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 16-Sep-2022 08:50

Date Analysis Commenced : 16-Sep-2022

Issue Date : 26-Sep-2022 17:38

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Inorganics, Calgary, Alberta	
Anthony Calero	Supervisor - Inorganic	Metals, Calgary, Alberta	
Elke Tabora		Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Metals, Calgary, Alberta	
Millicent Brentnall	Laboratory Analyst	Metals, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	

Page : 2 of 6
Work Order : CG2212647

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

- No Unit % percent μg/L micrograms per litre	
·	
micrograms per litro	
µg/L micrograms per litte	
μS/cm Microsiemens per centimetre	
meq/L milliequivalents per litre	
mg/L milligrams per litre	
mV millivolts	
NTU nephelometric turbidity units	
pH units pH units	

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLB	Detection Limit Raised. Analyte detected at comparable level in Method Blank.
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.

>: greater than.

Page : 3 of 6
Work Order : CG2212647
Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analytical Results

(Matrix: Water)	LC_GRCK_WS_ LAEMP_DRY_2 022-09_N	LC_MT1_WS_L AEMP_DRY_20 22-09_N	LC_CC1_WS_L AEMP_DRY_20 22-09_N	 				
			Client samp	oling date / time	14-Sep-2022 13:30	14-Sep-2022 13:30	14-Sep-2022 13:30	
Analyte	CAS Number	Method	LOR	Unit	CG2212647-001	CG2212647-002	CG2212647-003	
					Result	Result	Result	
Physical Tests								
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	161	<1.0	170	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	196	<1.0	207	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	6.6	<1.0	5.6	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	4.0	<1.0	3.4	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	167	<1.0	175	
conductivity		E100	2.0	μS/cm	374	<2.0	374	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	214	<0.50	215	
oxidation-reduction potential [ORP]		E125	0.10	mV	294	519	282	
pH		E108	0.10	pH units	8.33	5.21	8.31	
solids, total dissolved [TDS]		E162	10	mg/L	237	<10	248	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.4	<1.0	1.4	
turbidity		E121	0.10	NTU	0.60	<0.10	0.75	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	<0.0050	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.17	<0.10	0.18	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.144	<0.020	0.146	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	<0.050	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0455	<0.0050 HTD	0.0434	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	<0.0010	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0054	<0.0020	0.0048	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	46.8	<0.30	47.0	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	<0.50	
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	<0.50	

Page : 4 of 6
Work Order : CG2212647
Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	LC_GRCK_WS_ LAEMP_DRY_2 022-09_N	LC_MT1_WS_L AEMP_DRY_20 22-09_N	LC_CC1_WS_L AEMP_DRY_20 22-09_N	
			Client samp	ling date / time	14-Sep-2022 13:30	14-Sep-2022 13:30	14-Sep-2022 13:30	
Analyte	CAS Number	Method	LOR	Unit	CG2212647-001	CG2212647-002	CG2212647-003	
					Result	Result	Result	
Ion Balance								
anion sum		EC101	0.10	meq/L	4.33	<0.10	4.49	
cation sum		EC101	0.10	meq/L	4.41	<0.10	4.44	
ion balance (cations/anions)		EC101	0.010	%	102	100	98.9	
ion balance (APHA)		EC101	0.010	%	0.915	<0.010	0.560	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0150 DLB	<0.0030	<0.0150 DLB	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00015	<0.00010	0.00017	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0634	<0.00010	0.0625	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.016	<0.010	0.017	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0061	<0.0050	0.0063	
calcium, total	7440-70-2	E420	0.050	mg/L	49.2	<0.050	49.3	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00022	<0.00010	0.00023	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	0.017	<0.010	0.017	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0073	<0.0010	0.0072	
magnesium, total	7439-95-4	E420	0.0050	mg/L	18.1	<0.0050	17.7	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00378	<0.00010	0.00357	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.0000050	<0.0000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00134	<0.000050	0.00139	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
potassium, total	7440-09-7	E420	0.050	mg/L	0.653	<0.050	0.642	
selenium, total	7782-49-2	E420	0.050	μg/L	1.82	<0.050	1.86	
silicon, total	7440-21-3	E420	0.10	mg/L	2.88	<0.10	2.81	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, total	7440-23-5	E420	0.050	mg/L	2.56	<0.050	2.53	

Page : 5 of 6
Work Order : CG2212647
Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	LC_GRCK_WS_ LAEMP_DRY_2 022-09_N	LC_MT1_WS_L AEMP_DRY_20 22-09_N	LC_CC1_WS_L AEMP_DRY_20 22-09_N	
			Client samp	ling date / time	14-Sep-2022 13:30	14-Sep-2022 13:30	14-Sep-2022 13:30	
Analyte	CAS Number	Method	LOR	Unit	CG2212647-001 Result	CG2212647-002 Result	CG2212647-003 Result	
Total Metals					Result	Result	Result	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.189	<0.00020	0.190	
sulfur, total	7704-34-9	E420	0.50	mg/L	15.5	<0.50	15.4	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000918	<0.000010	0.000943	
vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00068	<0.00050	0.00069	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	<0.0030	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0.0015	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0748	<0.00010	0.0761	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.016	<0.010	0.015	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0060	<0.0050	0.0058	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	51.0	<0.050	51.6	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00025	<0.00010	0.00020	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0071	<0.0010	0.0070	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	21.0	<0.0050	21.0	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00084	<0.00010	0.00072	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00149	<0.000050	0.00143	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.649	<0.050	0.654	

Page : 6 of 6
Work Order : CG2212647
Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	LC_GRCK_WS_ LAEMP DRY 2	LC_MT1_WS_L AEMP DRY 20	LC_CC1_WS_L AEMP_DRY_20	
(Matrix: Water)					022-09_N	22-09_N	22-09_N	
			Client samp	ling date / time	14-Sep-2022 13:30	14-Sep-2022 13:30	14-Sep-2022 13:30	
Analyte	CAS Number	Method	LOR	Unit	CG2212647-001	CG2212647-002	CG2212647-003	
					Result	Result	Result	
Dissolved Metals								
selenium, dissolved	7782-49-2	E421	0.050	μg/L	2.43	<0.050	2.35	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.92	<0.050	2.97	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	2.80	<0.050	2.80	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.186	<0.00020	0.189	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	16.8	<0.50	16.3	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000902	<0.000010	0.000898	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2212647** Page : 1 of 18

Client : Teck Coal Limited Laboratory : Calgary - Environmental
Contact : Nicole Zathey Account Manager : Lyudmyla Shvets

Address : Line Creek Operations PO BOX 2003 15km North Hwy 43 Address : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5

Telephone : +1 403 407 1800

 Project
 : LINE CREEK OPERATIONS
 Date Samples Received
 : 16-Sep-2022 08:50

 PO
 : VPO00816101
 Issue Date
 : 26-Sep-2022 17:39

C-O-C number : LCO_LAEMP_DRY_2022-09_ALS

Sampler : Jennifer Ings

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 3
No. of samples analysed : 3

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 18 Work Order : CG2212647

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Total Metals	QC-MRG2-6602610		aluminum, total	7429-90-5	E420	0.0034 MB-LOR	0.003 mg/L	Blank result exceeds
	01					mg/L		permitted value

Result Qualifiers

Qualifier	Description
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.

Page : 4 of 18 Work Order : CG2212647

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
LC_CC1_WS_LAEMP_DRY_2022-09_N	E298	14-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
LC_GRCK_WS_LAEMP_DRY_2022-09_N	E298	14-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
LC_MT1_WS_LAEMP_DRY_2022-09_N	E298	14-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE	5005 D. I	44.0 0000	40.0				40.0 0000	00.1		,
LC_CC1_WS_LAEMP_DRY_2022-09_N	E235.Br-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE LC GRCK WS LAEMP DRY 2022-09 N	E235.Br-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	1
LC_GRCK_WS_LAEMP_DRY_2022-09_N	E233.DI-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	20 days	2 days	•
Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE		1						1		
LC MT1 WS LAEMP DRY 2022-09 N	E235.Br-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	✓
EO_WITI_VVO_EAEWII _BIXT_2022-09_IV		11 000 2022	10-00p-2022				10-00p-2022	20 days	2 days	
Aniana and Nutrianta - Chlarida in Water by IC (Level aval)										
Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE										
LC CC1 WS LAEMP DRY 2022-09 N	E235.CI-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 davs	✓
20_000_25			P 						,	

 Page
 : 5 of 18

 Work Order
 : CG2212647

Client : Teck Coal Limited

latrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Ti
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation		Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-09_N	E235.CI-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)							1			
HDPE LC_MT1_WS_LAEMP_DRY_2022-09_N	E235.CI-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE LC_CC1_WS_LAEMP_DRY_2022-09_N	E378-U	14-Sep-2022	17-Sep-2022				17-Sep-2022	3 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	evel 0.001									
HDPE LC_GRCK_WS_LAEMP_DRY_2022-09_N	E378-U	14-Sep-2022	17-Sep-2022				17-Sep-2022	3 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE LC_MT1_WS_LAEMP_DRY_2022-09_N	E378-U	14-Sep-2022	17-Sep-2022				17-Sep-2022	3 days	3 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE LC_CC1_WS_LAEMP_DRY_2022-09_N	E235.F	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-09_N	E235.F	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC							1			
HDPE LC_MT1_WS_LAEMP_DRY_2022-09_N	E235.F	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE LC_CC1_WS_LAEMP_DRY_2022-09_N	E235.NO3-L	14-Sep-2022	16-Sep-2022	3 days	2 days	✓	16-Sep-2022	3 days	0 days	✓

 Page
 : 6 of 18

 Work Order
 : CG2212647

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Matrix: Water Evaluation: ▼ = Holding time exceedance ; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Date Extraction / Preparation				Analysis			_
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date		g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-09_N	E235.NO3-L	14-Sep-2022	16-Sep-2022	3 days	2 days	✓	16-Sep-2022	3 days	0 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE LC_MT1_WS_LAEMP_DRY_2022-09_N	E235.NO3-L	14-Sep-2022	16-Sep-2022	3 days	2 days	✓	26-Sep-2022	3 days	10 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_CC1_WS_LAEMP_DRY_2022-09_N	E235.NO2-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-09_N	E235.NO2-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	3 days	2 days	4
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_MT1_WS_LAEMP_DRY_2022-09_N	E235.NO2-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	3 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE LC_CC1_WS_LAEMP_DRY_2022-09_N	E235.SO4	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-09_N	E235.SO4	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE LC_MT1_WS_LAEMP_DRY_2022-09_N	E235.SO4	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	√
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) LC_CC1_WS_LAEMP_DRY_2022-09_N	E318	14-Sep-2022	18-Sep-2022				18-Sep-2022	28 days	4 days	✓

Page : 7 of 18 Work Order : CG2212647

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Matrix: **Water**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

water						diddion.	noiding time exce	cuarioc ,	- vviciiiii	riolaling rii
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
LC_GRCK_WS_LAEMP_DRY_2022-09_N	E318	14-Sep-2022	18-Sep-2022				18-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
LC_MT1_WS_LAEMP_DRY_2022-09_N	E318	14-Sep-2022	18-Sep-2022				18-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
LC_CC1_WS_LAEMP_DRY_2022-09_N	E372-U	14-Sep-2022	21-Sep-2022				23-Sep-2022	28 days	9 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
LC_GRCK_WS_LAEMP_DRY_2022-09_N	E372-U	14-Sep-2022	21-Sep-2022				23-Sep-2022	28 days	9 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
LC_MT1_WS_LAEMP_DRY_2022-09_N	E372-U	14-Sep-2022	21-Sep-2022				23-Sep-2022	28 days	9 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
LC_CC1_WS_LAEMP_DRY_2022-09_N	E421.Cr-L	14-Sep-2022	23-Sep-2022				23-Sep-2022	180	9 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
LC_GRCK_WS_LAEMP_DRY_2022-09_N	E421.Cr-L	14-Sep-2022	23-Sep-2022				23-Sep-2022	180	9 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
LC_MT1_WS_LAEMP_DRY_2022-09_N	E421.Cr-L	14-Sep-2022	23-Sep-2022				23-Sep-2022	180	9 days	✓
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
LC_CC1_WS_LAEMP_DRY_2022-09_N	E509	14-Sep-2022	23-Sep-2022				23-Sep-2022	28 days	9 days	✓

Page : 8 of 18 Work Order : CG2212647

Client : Teck Coal Limited

: LINE CREEK OPERATIONS Project

Matrix: Water					E۱	valuation: × =	Holding time exce	edance ; 🗸	∕ = Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
LC_GRCK_WS_LAEMP_DRY_2022-09_N	E509	14-Sep-2022	23-Sep-2022				23-Sep-2022	28 days	9 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
LC_MT1_WS_LAEMP_DRY_2022-09_N	E509	14-Sep-2022	23-Sep-2022				23-Sep-2022	28 days	9 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)	 .		00.0				00.0			,
LC_CC1_WS_LAEMP_DRY_2022-09_N	E421	14-Sep-2022	23-Sep-2022				23-Sep-2022	180 days	9 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)	E421	44.0 2000	00.0 0000				00.0 0000		0 -1	✓
LC_GRCK_WS_LAEMP_DRY_2022-09_N	E421	14-Sep-2022	23-Sep-2022				23-Sep-2022	180 days	9 days	•
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)	E421	44.0 2000	00.00000				00.0 0000		0.1	√
LC_MT1_WS_LAEMP_DRY_2022-09_N	E421	14-Sep-2022	23-Sep-2022				23-Sep-2022	180 days	9 days	•
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)	E358-L	14 Con 2022	17 Can 2022				10 Con 2022	20 days	E dovo	✓
LC_CC1_WS_LAEMP_DRY_2022-09_N	E356-L	14-Sep-2022	17-Sep-2022				19-Sep-2022	28 days	5 days	•
Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)	E358-L	14 Con 2022	47 0 2000				40.0 2000	00 4	F -1	1
LC_GRCK_WS_LAEMP_DRY_2022-09_N	E330-L	14-Sep-2022	17-Sep-2022				19-Sep-2022	28 days	5 days	•
Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)	F050 !	44.0. 0000	47.0				10.0. 0005	00.1	5 1	,
LC_MT1_WS_LAEMP_DRY_2022-09_N	E358-L	14-Sep-2022	17-Sep-2022				19-Sep-2022	28 days	5 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	n (Low Level)									
Amber glass total (sulfuric acid)	F255 !	44.0 0000	47.0 0000				40.0 0000	00 4	F -1	,
LC_CC1_WS_LAEMP_DRY_2022-09_N	E355-L	14-Sep-2022	17-Sep-2022				19-Sep-2022	28 days	5 days	✓

 Page
 : 9 of 18

 Work Order
 : CG2212647

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

viaurix: water							noiding time exce	, ,	***********	rioidiiig riii
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	on (Low Level)									
Amber glass total (sulfuric acid)										
LC_GRCK_WS_LAEMP_DRY_2022-09_N	E355-L	14-Sep-2022	17-Sep-2022				19-Sep-2022	28 days	5 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	on (Low Level)									
Amber glass total (sulfuric acid)										
LC_MT1_WS_LAEMP_DRY_2022-09_N	E355-L	14-Sep-2022	17-Sep-2022				19-Sep-2022	28 days	5 days	✓
Physical Tests : Acidity by Titration										
HDPE										
LC_CC1_WS_LAEMP_DRY_2022-09_N	E283	14-Sep-2022	17-Sep-2022				17-Sep-2022	14 days	3 days	✓
Physical Tests : Acidity by Titration										
HDPE										
LC_GRCK_WS_LAEMP_DRY_2022-09_N	E283	14-Sep-2022	17-Sep-2022				17-Sep-2022	14 days	3 days	✓
Physical Tests : Acidity by Titration										
HDPE										
LC_MT1_WS_LAEMP_DRY_2022-09_N	E283	14-Sep-2022	17-Sep-2022				17-Sep-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
LC_CC1_WS_LAEMP_DRY_2022-09_N	E290	14-Sep-2022	17-Sep-2022				17-Sep-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
LC_GRCK_WS_LAEMP_DRY_2022-09_N	E290	14-Sep-2022	17-Sep-2022				17-Sep-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE	_									_
LC_MT1_WS_LAEMP_DRY_2022-09_N	E290	14-Sep-2022	17-Sep-2022				17-Sep-2022	14 days	3 days	✓
Physical Tests : Conductivity in Water										
HDPE										,
LC_CC1_WS_LAEMP_DRY_2022-09_N	E100	14-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	3 days	✓
LO_CCI_WS_LAEMP_DRY_2022-09_N	E100	14-5ep-2022	17-Sep-2022				17-Sep-2022	∠o days	3 days	~

Page : 10 of 18
Work Order : CG2212647

Client : Teck Coal Limited

Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analysis		
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Physical Tests : Conductivity in Water										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-09_N	E100	14-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	3 days	✓
Physical Tests : Conductivity in Water										
HDPE LC_MT1_WS_LAEMP_DRY_2022-09_N	E100	14-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	3 days	4
Physical Tests : ORP by Electrode										
HDPE LC_CC1_WS_LAEMP_DRY_2022-09_N	E125	14-Sep-2022					23-Sep-2022	0.25 hrs	219 hrs	# EHTR-FN
Physical Tests : ORP by Electrode										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-09_N	E125	14-Sep-2022					23-Sep-2022	0.25 hrs	219 hrs	# EHTR-FN
Physical Tests : ORP by Electrode										
HDPE LC_MT1_WS_LAEMP_DRY_2022-09_N	E125	14-Sep-2022					23-Sep-2022	0.25 hrs	219 hrs	# EHTR-FI
Physical Tests : pH by Meter										
HDPE LC_CC1_WS_LAEMP_DRY_2022-09_N	E108	14-Sep-2022	17-Sep-2022				17-Sep-2022	0.25 hrs	0.25 hrs	# EHTR-FN
Physical Tests : pH by Meter										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-09_N	E108	14-Sep-2022	17-Sep-2022				17-Sep-2022	0.25 hrs	0.25 hrs	# EHTR-FN
Physical Tests : pH by Meter										
HDPE LC_MT1_WS_LAEMP_DRY_2022-09_N	E108	14-Sep-2022	17-Sep-2022				17-Sep-2022	0.25 hrs	0.25 hrs	# EHTR-FI
Physical Tests : TDS by Gravimetry										
HDPE LC_CC1_WS_LAEMP_DRY_2022-09_N	E162	14-Sep-2022					19-Sep-2022	7 days	5 days	✓

Page : 11 of 18 Work Order : CG2212647

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-09_N	E162	14-Sep-2022					19-Sep-2022	7 days	5 days	✓
Physical Tests : TDS by Gravimetry										
HDPE LC_MT1_WS_LAEMP_DRY_2022-09_N	E162	14-Sep-2022					19-Sep-2022	7 days	5 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE LC_CC1_WS_LAEMP_DRY_2022-09_N	E160-L	14-Sep-2022					20-Sep-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-09_N	E160-L	14-Sep-2022					20-Sep-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE LC_MT1_WS_LAEMP_DRY_2022-09_N	E160-L	14-Sep-2022					20-Sep-2022	7 days	6 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE LC_CC1_WS_LAEMP_DRY_2022-09_N	E121	14-Sep-2022					16-Sep-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-09_N	E121	14-Sep-2022					16-Sep-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE LC_MT1_WS_LAEMP_DRY_2022-09_N	E121	14-Sep-2022					16-Sep-2022	3 days	2 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid) LC_CC1_WS_LAEMP_DRY_2022-09_N	E420.Cr-L	14-Sep-2022	23-Sep-2022				23-Sep-2022	180 days	9 days	✓

Page : 12 of 18 Work Order : CG2212647

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

atrix: water						/aluation. ^ –	Holding time exce	euance,	- vviti iii i	Holding
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eva
			Date	Rec	Actual			Rec	Actual	
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
LC_GRCK_WS_LAEMP_DRY_2022-09_N	E420.Cr-L	14-Sep-2022	23-Sep-2022				23-Sep-2022	180	9 days	✓
								days		
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
LC_MT1_WS_LAEMP_DRY_2022-09_N	E420.Cr-L	14-Sep-2022	23-Sep-2022				23-Sep-2022	180	9 days	✓
								days		
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
LC_CC1_WS_LAEMP_DRY_2022-09_N	E508	14-Sep-2022	23-Sep-2022				23-Sep-2022	28 days	9 days	✓
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
LC_GRCK_WS_LAEMP_DRY_2022-09_N	E508	14-Sep-2022	23-Sep-2022				23-Sep-2022	28 days	9 days	✓
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
LC_MT1_WS_LAEMP_DRY_2022-09_N	E508	14-Sep-2022	23-Sep-2022				23-Sep-2022	28 days	9 days	✓
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
LC_CC1_WS_LAEMP_DRY_2022-09_N	E420	14-Sep-2022	23-Sep-2022				23-Sep-2022	180	9 days	✓
								days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
LC_GRCK_WS_LAEMP_DRY_2022-09_N	E420	14-Sep-2022	23-Sep-2022				23-Sep-2022	180	9 days	✓
								days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
LC_MT1_WS_LAEMP_DRY_2022-09_N	E420	14-Sep-2022	23-Sep-2022				23-Sep-2022	180	9 days	✓
								days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 13 of 18 Work Order : CG2212647

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	652501	1	11	9.0	5.0	1
Alkalinity Species by Titration	E290	652505	1	11	9.0	5.0	✓
Ammonia by Fluorescence	E298	652189	1	19	5.2	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	651629	1	11	9.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	651630	1	11	9.0	5.0	✓
Conductivity in Water	E100	652504	1	11	9.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	659978	1	17	5.8	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	661779	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	659979	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	652465	1	11	9.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651930	1	9	11.1	5.0	✓
Fluoride in Water by IC	E235.F	651628	1	11	9.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	651631	1	11	9.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	651632	1	11	9.0	5.0	✓
ORP by Electrode	E125	660632	1	20	5.0	5.0	✓
pH by Meter	E108	652503	1	11	9.0	5.0	1
Sulfate in Water by IC	E235.SO4	651633	1	11	9.0	5.0	✓
TDS by Gravimetry	E162	652307	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	660261	1	3	33.3	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	652134	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	661783	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	660262	1	6	16.6	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	652469	1	12	8.3	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	657682	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	651627	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	652501	1	11	9.0	5.0	1
Alkalinity Species by Titration	E290	652505	1	11	9.0	5.0	<u> </u>
Ammonia by Fluorescence	E298	652189	1	19	5.2	5.0	<u>√</u>
Bromide in Water by IC (Low Level)	E235.Br-L	651629	1	11	9.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	651630	1	11	9.0	5.0	<u>√</u>
Conductivity in Water	E100	652504	1	11	9.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	659978	1	17	5.8	5.0	1
Dissolved Mercury in Water by CVAAS	E509	661779	1	20	5.0	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	659979	1	19	5.2	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	652465	1	11	9.0	5.0	<u>√</u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651930	1	9	11.1	5.0	1

Page : 14 of 18 Work Order : CG2212647

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

Quality Control Sample Type		. Evaluati	Co	ount		Frequency (%)	<u> </u>
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	651628	1	11	9.0	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	651631	1	11	9.0	5.0	
Nitrite in Water by IC (Low Level)	E235.NO2-L	651632	1	11	9.0	5.0	
ORP by Electrode	E125	660632	1	20	5.0	5.0	
pH by Meter	E108	652503	1	11	9.0	5.0	
Sulfate in Water by IC	E235.SO4	651633	1	11	9.0	5.0	
TDS by Gravimetry	E162	652307	1	20	5.0	5.0	<u> </u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	660261	1	3	33.3	5.0	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	652134	1	20	5.0	5.0	<u> </u>
Total Mercury in Water by CVAAS	E508	661783	1	20	5.0	5.0	
Total Metals in Water by CRC ICPMS	E420	660262	1	6	16.6	5.0	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	652469	1	12	8.3	5.0	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	657682	1	20	5.0	5.0	<u> </u>
TSS by Gravimetry (Low Level)	E160-L	652301	1	15	6.6	5.0	<u> </u>
Turbidity by Nephelometry	E121	651627	1	20	5.0	5.0	
Method Blanks (MB)							
Acidity by Titration	E283	652501	1	11	9.0	5.0	✓
Alkalinity Species by Titration	E290	652505	1	11	9.0	5.0	
Ammonia by Fluorescence	E298	652189	1	19	5.2	5.0	
Bromide in Water by IC (Low Level)	E235.Br-L	651629	1	11	9.0	5.0	
Chloride in Water by IC (Low Level)	E235.CI-L	651630	1	11	9.0	5.0	<u> </u>
Conductivity in Water	E100	652504	1	11	9.0	5.0	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	659978	1	17	5.8	5.0	
Dissolved Mercury in Water by CVAAS	E509	661779	1	20	5.0	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	659979	1	19	5.2	5.0	<u> </u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	652465	1	11	9.0	5.0	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651930	1	9	11.1	5.0	<u>√</u>
Fluoride in Water by IC	E235.F	651628	1	11	9.0	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	651631	1	11	9.0	5.0	<u>-</u> ✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	651632	1	11	9.0	5.0	<u>√</u>
Sulfate in Water by IC	E235.SO4	651633	1	11	9.0	5.0	√
TDS by Gravimetry	E162	652307	1	20	5.0	5.0	<u>√</u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	660261	1	3	33.3	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	652134	1	20	5.0	5.0	<u> </u>
Total Mercury in Water by CVAAS	E508	661783	1	20	5.0	5.0	√
Total Metals in Water by CRC ICPMS	E420	660262	1	6	16.6	5.0	√
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	652469	1	12	8.3	5.0	<u>√</u>
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	657682	1	20	5.0	5.0	√
TSS by Gravimetry (Low Level)	E160-L	652301	1	15	6.6	5.0	√
Turbidity by Nephelometry	E121	651627	1	20	5.0	5.0	√

Page : 15 of 18 Work Order : CG2212647

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Width. Water		Lvaidati	on Qo nega	crity butside spe	cincultori,	QO II CQUCITOY WIL	inin specification
Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	652189	1	19	5.2	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	651629	1	11	9.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	651630	1	11	9.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	659978	1	17	5.8	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	661779	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	659979	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	652465	1	11	9.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651930	1	9	11.1	5.0	✓
Fluoride in Water by IC	E235.F	651628	1	11	9.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	651631	1	11	9.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	651632	1	11	9.0	5.0	✓
Sulfate in Water by IC	E235.SO4	651633	1	11	9.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	660261	1	3	33.3	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	652134	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	661783	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	660262	1	6	16.6	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	652469	1	12	8.3	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	657682	1	20	5.0	5.0	√

Page : 16 of 18 Work Order : CG2212647

Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
	Calgary - Environmental			at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
Trushidita ha Nasahalasa 4m.	0 7	\A/-4	ADUA 0400 D (pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			scatter under defined conditions.
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the
				platinum metal-reference electrode employed, measured in mV. For high accuracy test
	Calgary - Environmental			results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
				filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
	2102		,	filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Colorani. Faringana antal			detection.
Chlorida in Water by IC (Levy Leval)	Calgary - Environmental	Water	EDA 200.1 (mad)	
Chloride in Water by IC (Low Level)	E235.CI-L	water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			detection.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
I with a te in water by 10 (Low Level)	E235.NO3-L	vvater	Li A 300.1 (mod)	detection.
	Calgary - Environmental			detection.
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			
	Jaigary - Environmental			

Page : 17 of 18 Work Order : CG2212647

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 18 of 18 Work Order : CG2212647

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS	E421.Cr-L	Water	APHA 3030 B/EPA	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by
(Low Level)	Calgary - Environmental		6020B (mod)	Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction
			, ,	with stannous chloride, and analyzed by CVAAS
Pinchal Manageria Water La OVAAO	Calgary - Environmental	144 - 4		
Dissolved Mercury in Water by CVAAS	E509	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by
	Calgary - Environmental		1001E (mod)	CVAAS.
Dissolved Hardness (Calculated)	EC100	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and
	Calgary - Environmental			Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
				calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA
	Calgary - Environmental			Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present.
				Ion Balance cannot be calculated accurately for waters with very low electrical
				conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Calgary - Environmental			
Digestion for TKN in water	EP318	Water	APHA 4500-Norg D	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst,
	Calgary - Environmental		(mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the
	Calgary - Environmental			analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be
				biased low.
Preparation for Total Organic Carbon by	EP355	Water		Preparation for Total Organic Carbon by Combustion
Combustion	Calgary - Environmental			
Preparation for Dissolved Organic Carbon for	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Combustion			, ,	
Discretical for Total Discrete and in such a	Calgary - Environmental	10/-4	ADUA 4500 D.E. (
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Calgary - Environmental			
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Calgary - Environmental			
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Calgary - Environmental			

QUALITY CONTROL REPORT

Work Order : CG2212647

Client : Teck Coal Limited
Contact : Nicole Zathey

Address : Line Creek Operations PO BOX 2003 15km North Hwy 43

Sparwood BC Canada V0B 2G0

Telephone : ---

Project : LINE CREEK OPERATIONS

PO : VPO00816101

C-O-C number : LCO LAEMP DRY 2022-09 ALS

Sampler : Jennifer Ings

Site :--

Quote number : Teck Coal Master Quote

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 16-Sep-2022 08:50

Date Analysis Commenced : 16-Sep-2022

Issue Date : 26-Sep-2022 17:38

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Calgary Inorganics, Calgary, Alberta	
Anthony Calero	Supervisor - Inorganic	Calgary Metals, Calgary, Alberta	
Elke Tabora		Calgary Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta	
Millicent Brentnall	Laboratory Analyst	Calgary Metals, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Calgary Inorganics, Calgary, Alberta	
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta	
Sara Niroomand		Calgary Inorganics, Calgary, Alberta	

Page : 2 of 18 Work Order : CG2212647 Client

: Teck Coal Limited

Project : LINE CREEK OPERATIONS

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 18 Work Order : CG2212647

Project

: Teck Coal Limited Client : LINE CREEK OPERATIONS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Physical Tests (QC Lot: CG2212619-005 Anor Physical Tests (QC Lot: CG2212633-002 Anor Physical Tests (QC Lot: CG2212637-001 Anor Physical Tests (QC Lot:	651627) nymous 652307) nymous	Analyte turbidity solids, total dissolved [TDS]	CAS Number	Method	0.10	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
CG2212619-005 Anor Physical Tests (QC Lot: CG2212633-002 Anor Physical Tests (QC Lot: CG2212637-001 Anor Physical Tests (QC Lot:	652307) nymous 652501)			E121	0.10						
Physical Tests (QC Lot: CG2212633-002 Anor Physical Tests (QC Lot: CG2212637-001 Anor Physical Tests (QC Lot:	652307) nymous 652501)			E121	0.10						
CG2212633-002 Anor Physical Tests (QC Lot: CG2212637-001 Anor Physical Tests (QC Lot:	652501)	solids, total dissolved [TDS]				NTU	<0.10	<0.10	0	Diff <2x LOR	
Physical Tests (QC Lot: CG2212637-001 Anor Physical Tests (QC Lot:	652501)	solids, total dissolved [TDS]									
CG2212637-001 Anor Physical Tests (QC Lot:				E162	40	mg/L	2050	2260	10.0%	20%	
Physical Tests (QC Lot:	nymous										
<u> </u>		acidity (as CaCO3)		E283	2.0	mg/L	3.8	3.9	0.08	Diff <2x LOR	
CC2212627 001 Apor	652503)										
2G2212037-001 Alloi	nymous	рН		E108	0.10	pH units	8.06	8.10	0.495%	4%	
Physical Tests (QC Lot:	652504)										
CG2212637-001 Anor	nymous	conductivity		E100	2.0	μS/cm	1060	1060	0.755%	10%	
Physical Tests (QC Lot:	652505)										
	nymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	246	240	2.72%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	246	240	2.72%	20%	
Physical Tests (QC Lot:	660632)					-					
	nymous	oxidation-reduction potential [ORP]		E125	0.10	mV	289	286	1.01%	15%	
Anions and Nutrients (Q)C L at: CE4C20\	1 2 2									
	GRCK WS LAEMP D	fluoride	16984-48-8	E235.F	0.020	mg/L	0.144	0.144	0.0003	Diff <2x LOR	
· -	2022-09_N	illuoride	10004 40 0	2200.1	0.020	mg/L	0.144	0.144	0.0000	Dill 2X LOT	
Anions and Nutrients (Q	C Lot: 651629)										
-	GRCK_WS_LAEMP_D 2022-09 N	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrients (Q											
CG2212647-001 LC_0	GRCK_WS_LAEMP_D 2022-09 N	chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.17	0.18	0.009	Diff <2x LOR	
Anions and Nutrients (Q	_										
CG2212647-001 LC_0	GRCK_WS_LAEMP_D 2022-09 N	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0455	0.0466	0.0011	Diff <2x LOR	
nions and Nutrients (Q	_										
CG2212647-001 LC_0	GRCK_WS_LAEMP_D 2022-09 N	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrients (Q	_										
CG2212647-001 LC_0	GRCK_WS_LAEMP_D 2022-09 N	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	46.8	46.7	0.379%	20%	

 Page
 : 4 of 18

 Work Order
 : CG2212647

 Client
 : Teck Coal Limited

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
	ts (QC Lot: 651930) - co	ontinued									
CG2212636-004	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 652134)										
CG2212616-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.770	0.768	0.260%	20%	
Anions and Nutrient	ts (QC Lot: 652189)										
CG2212631-007	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.125	mg/L	5.21	5.11	1.97%	20%	
Anions and Nutrient	ts (QC Lot: 657682)										
CG2212633-005	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 65246	5)									
CG2212626-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	0.53	0.03	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 65246	9)									
CG2212626-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	0.55	0.05	Diff <2x LOR	
otal Metals (QC Lo	ot: 660261)										
CG2212647-001	LC_GRCK_WS_LAEMP_D RY_2022-09_N	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00022	0.00019	0.00004	Diff <2x LOR	
otal Metals (QC Lo	ot: 660262)										
G2212647-001	LC_GRCK_WS_LAEMP_D RY 2022-09 N	aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0150	0.0095	0.0055	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00015	0.00018	0.00003	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0634	0.0621	1.96%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.016	0.016	0.0002	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0061 µg/L	0.0000088	0.0000027	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	49.2	49.0	0.500%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.017	0.018	0.0006	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0073	0.0072	0.00003	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	18.1	17.6	2.80%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00378	0.00370	2.33%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00134	0.00136	0.949%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	0.653	0.628	3.92%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	1.82 µg/L	0.00190	4.25%	20%	

 Page
 : 5 of 18

 Work Order
 : CG2212647

 Client
 : Teck Coal Limited

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 660262) - continued										
CG2212647-001	LC_GRCK_WS_LAEMP_D RY 2022-09 N	silicon, total	7440-21-3	E420	0.10	mg/L	2.88	2.82	2.04%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	2.56	2.48	2.95%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.189	0.187	0.901%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	15.5	15.3	1.22%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000918	0.000909	0.998%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00068	0.00068	0.000003	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
otal Metals (QC Lo	ot: 661783)										
G2212590-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
issolved Metals (QC Lot: 659978)										
G2212647-001	LC_GRCK_WS_LAEMP_D RY_2022-09_N	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00025	0.00023	0.00003	Diff <2x LOR	
issolved Metals (QC Lot: 659979)										
CG2212647-001	LC_GRCK_WS_LAEMP_D RY_2022-09_N	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0748	0.0759	1.40%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.016	0.016	0.0002	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0060 µg/L	0.0000073	0.0000013	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	51.0	51.4	0.665%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0071	0.0070	0.0001	Diff <2x LOR	
		and the second second	7439-95-4	E421	0.0050	mg/L	21.0	21.1	0.134%	20%	
		magnesium, dissolved	1400-00-4								
		magnesium, dissolved	7439-96-5	E421	0.00010	mg/L	0.00084	0.00085	0.00001	Diff <2x LOR	
					0.00010 0.000050	mg/L mg/L	0.00084 0.00149	0.00085 0.00147	0.00001 1.11%	Diff <2x LOR	

Page : 6 of 18
Work Order : CG2212647
Client : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 659979) - contin	ued									
CG2212647-001	LC_GRCK_WS_LAEMP_D RY 2022-09 N	potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.649	0.657	1.29%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	2.43 µg/L	0.00235	3.47%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.92	2.92	0.0760%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	2.80	2.79	0.336%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.186	0.185	0.616%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	16.8	16.5	1.95%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000902	0.000894	0.900%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 661779)										
CG2212615-008	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	0.0000081	0.0000062	0.0000019	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2212647

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 651627)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 652301)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 652307)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 652501)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 652504)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 652505)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 651628)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 651629)					
promide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 651630)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 651631)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 651632)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 651633)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 651930)					
ohosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 652134)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 652189)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	< 0.0050	

 Page
 : 8 of 18

 Work Order
 : CG2212647

 Client
 : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 657682)	- continued				
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Organic / Inorganic Carbon (QCLot: 65	2465)				
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 65	2469)				
carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 660261)					
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 660262)					
aluminum, total	7429-90-5 E420	0.003	mg/L	# 0.0034	MB-LOR
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
poron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
elenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
trontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
hallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	

Page : 9 of 18
Work Order : CG2212647
Client : Teck Coal Limited

Project : LINE CREEK OPERATIONS

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 660262) -	continued					
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 661783)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.0000050	
Dissolved Metals (QCLot: 6599)	78)					
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 6599)	79)					
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
ooron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	

 Page
 : 10 of 18

 Work Order
 : CG2212647

 Client
 : Teck Coal Lim

Client : Teck Coal Limited
Project : LINE CREEK OPERATIONS

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier					
Dissolved Metals (QCLot: 659979) - co	ntinued									
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010						
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050						
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010						
Dissolved Metals (QCLot: 661779)										
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.0000050						

Qualifiers

Qualifier Description

MB-LOR Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.

 Page
 : 11 of 18

 Work Order
 : CG2212647

 Client
 : Teck Coal Lin

Client : Teck Coal Limited
Project : LINE CREEK OPERATIONS

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report							
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS	Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 651627)								
turbidity	E121	0.1	NTU	200 NTU	113	85.0	115	
Physical Tests (QCLot: 652301)								
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	91.4	85.0	115	
Physical Tests (QCLot: 652307)								
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	100	85.0	115	
Physical Tests (QCLot: 652501)								
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	108	85.0	115	
Physical Tests (QCLot: 652503)								
рН	E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 652504)								
conductivity	E100	1	μS/cm	146.9 μS/cm	96.5	90.0	110	
Physical Tests (QCLot: 652505)								
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	101	85.0	115	
Physical Tests (QCLot: 660632)								
oxidation-reduction potential [ORP]	E125		mV	220 mV	99.2	95.4	104	
Anions and Nutrients (QCLot: 651628)				_				
fluoride 169	984-48-8 E235.F	0.02	mg/L	1 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 651629)								
bromide 249	959-67-9 E235.Br-L	0.05	mg/L	0.5 mg/L	102	85.0	115	
Anions and Nutrients (QCLot: 651630)				_			1	
chloride 168	887-00-6 E235.CI-L	0.1	mg/L	100 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 651631)								
nitrate (as N) 147	797-55-8 E235.NO3-L	0.005	mg/L	2.5 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 651632)								
nitrite (as N) 147	797-65-0 E235.NO2-L	0.001	mg/L	0.5 mg/L	99.7	90.0	110	
Anions and Nutrients (QCLot: 651633)								
sulfate (as SO4) 148	808-79-8 E235.SO4	0.3	mg/L	100 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 651930)								
phosphate, ortho-, dissolved (as P) 142	265-44-2 E378-U	0.001	mg/L	0.03 mg/L	93.0	80.0	120	
Anions and Nutrients (QCLot: 652134)								
								The second secon
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	95.2	75.0	125	

Page : 12 of 18 : CG2212647 Work Order Client

: Teck Coal Limited

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report							
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	Low High	
Anions and Nutrients (QCLot: 652189)	- continued							
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	102	85.0	115	
Anions and Nutrients (QCLot: 657682)								
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	0.03 mg/L	98.2	80.0	120	
Organic / Inorganic Carbon (QCLot: 652	2465)							'
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	8.57 mg/L	118	80.0	120	
Organic / Inorganic Carbon (QCLot: 652	2469)							'
carbon, total organic [TOC]	E355-L	0.5	mg/L	8.57 mg/L	110	80.0	120	
Total Metals (QCLot: 660261)								
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	94.1	80.0	120	
Total Metals (QCLot: 660262)								
aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	96.2	80.0	120	
antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	104	80.0	120	
arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	94.3	80.0	120	
barium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	96.0	80.0	120	
beryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	90.9	80.0	120	
bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	96.4	80.0	120	
boron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	84.8	80.0	120	
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	94.0	80.0	120	
calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	89.6	80.0	120	
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	94.7	80.0	120	
copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	93.0	80.0	120	
iron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	106	80.0	120	
lead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	96.1	80.0	120	
lithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	96.4	80.0	120	
magnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	89.6	80.0	120	
manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	95.7	80.0	120	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	99.9	80.0	120	
nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	93.8	80.0	120	
potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	95.1	80.0	120	
selenium, total	7782-49-2 E420	0.00005	mg/L	1 mg/L	88.2	80.0	120	
silicon, total	7440-21-3 E420	0.1	mg/L	10 mg/L	95.9	60.0	140	
silver, total	7440-22-4 E420	0.00001	mg/L	0.1 mg/L	88.7	80.0	120	
sodium, total	7440-23-5 E420	0.05	mg/L	50 mg/L	94.9	80.0	120	
strontium, total	7440-24-6 E420	0.0002	mg/L	0.25 mg/L	97.7	80.0	120	
sulfur, total	7704-34-9 E420	0.5	mg/L	50 mg/L	89.0	80.0	120	

 Page
 : 13 of 18

 Work Order
 : CG2212647

 Client
 : Teck Coal Limited

p-Matrix: Water						Laboratory Cor	trol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 660262) - continued									
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	96.4	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	99.1	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	94.2	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	92.5	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	97.1	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	88.0	80.0	120	
Total Metals (QCLot: 661783)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	101	80.0	120	
Dissolved Metals (QCLot: 659978)									
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	95.6	80.0	120	
Dissolved Metals (QCLot: 659979)									I
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	101	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	97.2	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	95.4	80.0	120	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	97.9	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	99.3	80.0	120	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	93.6	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	101	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	93.5	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	97.1	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	94.3	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	93.8	80.0	120	
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	97.9	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	99.2	80.0	120	
lithium, dissolved	7439-93-2		0.001	mg/L	0.25 mg/L	102	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	105	80.0	120	
manganese, dissolved	7439-96-5		0.0001	mg/L	0.25 mg/L	94.0	80.0	120	
molybdenum, dissolved	7439-98-7		0.00005	mg/L	0.25 mg/L	98.5	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	93.6	80.0	120	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	99.6	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	95.0	80.0	120	
silicon, dissolved	7440-21-3		0.05	mg/L	10 mg/L	103	60.0	140	
silver, dissolved	7440-22-4		0.00001	mg/L	0.1 mg/L	84.0	80.0	120	
sodium, dissolved	7440-23-5		0.05	mg/L	50 mg/L	102	80.0	120	
strontium, dissolved	7440-24-6		0.0002	mg/L	0.25 mg/L	95.4	80.0	120	
sulfur, dissolved	7704-34-9		0.5	mg/L	50 mg/L	92.4	80.0	120	

 Page
 : 14 of 18

 Work Order
 : CG2212647

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Matrix: Water						Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Dissolved Metals (QCLot: 659979) - continued												
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	97.8	80.0	120				
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	97.7	80.0	120				
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	96.2	80.0	120				
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	89.0	80.0	120				
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	97.2	80.0	120				
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	92.6	80.0	120				
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	103	80.0	120				

Page : 15 of 18 Work Order : CG2212647 Client

: Teck Coal Limited

: LINE CREEK OPERATIONS Project

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND - Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water	-Matrix: Water						Matrix Spike (MS) Report					
					Spi	ike	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
	ients (QCLot: 651628)											
CG2212647-002	LC_MT1_WS_LAEMP_DRY _2022-09_N	fluoride	16984-48-8	E235.F	1.02 mg/L	1 mg/L	102	75.0	125			
Anions and Nutr	ients (QCLot: 651629)											
CG2212647-002	LC_MT1_WS_LAEMP_DRY _2022-09_N	bromide	24959-67-9	E235.Br-L	0.510 mg/L	0.5 mg/L	102	75.0	125			
Anions and Nutr	ients (QCLot: 651630)											
CG2212647-002	LC_MT1_WS_LAEMP_DRY _2022-09_N	chloride	16887-00-6	E235.CI-L	100 mg/L	100 mg/L	100	75.0	125			
Anions and Nutr	ients (QCLot: 651631)											
CG2212647-002	LC_MT1_WS_LAEMP_DRY _2022-09_N	nitrate (as N)	14797-55-8	E235.NO3-L	2.53 mg/L	2.5 mg/L	101	75.0	125			
Anions and Nutr	ients (QCLot: 651632)											
CG2212647-002	LC_MT1_WS_LAEMP_DRY _2022-09_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.515 mg/L	0.5 mg/L	103	75.0	125			
Anions and Nutr	ients (QCLot: 651633)											
CG2212647-002	LC_MT1_WS_LAEMP_DRY _2022-09_N	sulfate (as SO4)	14808-79-8	E235.SO4	102 mg/L	100 mg/L	102	75.0	125			
Anions and Nutr	ients (QCLot: 651930)											
CG2212647-001	LC_GRCK_WS_LAEMP_D RY_2022-09_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0497 mg/L	0.05 mg/L	99.4	70.0	130			
Anions and Nutr	ients (QCLot: 652134)											
CG2212647-001	LC_GRCK_WS_LAEMP_D RY_2022-09_N	Kjeldahl nitrogen, total [TKN]		E318	2.47 mg/L	2.5 mg/L	98.8	70.0	130			
Anions and Nutr	ients (QCLot: 652189)											
CG2212631-008	Anonymous	ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125			
Anions and Nutr	ients (QCLot: 657682)											
CG2212633-006	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0455 mg/L	0.05 mg/L	91.1	70.0	130			
Organic / Inorga	nic Carbon (QCLot: 6524	465)										
CG2212626-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	5.84 mg/L	5 mg/L	117	70.0	130			
Organic / Inorgai	nic Carbon (QCLot: 6524	469)										
CG2212626-001	Anonymous	carbon, total organic [TOC]		E355-L	5.91 mg/L	5 mg/L	118	70.0	130			
Total Metals (QC	Lot: 660261)											
CG2212647-002	LC_MT1_WS_LAEMP_DRY 2022-09 N	chromium, total	7440-47-3	E420.Cr-L	0.480 mg/L	0.4 mg/L	120	70.0	130			

Page : 16 of 18 : CG2212647 Work Order Client

: Teck Coal Limited

Sub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Fotal Metals (QC	Lot: 660262)									
CG2212647-002	LC_MT1_WS_LAEMP_DRY	aluminum, total	7429-90-5	E420	2.37 mg/L	2 mg/L	118	70.0	130	
	_2022-09_N	antimony, total	7440-36-0	E420	0.228 mg/L	0.2 mg/L	114	70.0	130	
		arsenic, total	7440-38-2	E420	0.230 mg/L	0.2 mg/L	115	70.0	130	
		barium, total	7440-39-3	E420	0.234 mg/L	0.2 mg/L	117	70.0	130	
		beryllium, total	7440-41-7	E420	0.482 mg/L	0.4 mg/L	120	70.0	130	
		bismuth, total	7440-69-9	E420	0.115 mg/L	0.1 mg/L	115	70.0	130	
		boron, total	7440-42-8	E420	1.09 mg/L	1 mg/L	109	70.0	130	
		cadmium, total	7440-43-9	E420	0.0485 mg/L	0.04 mg/L	121	70.0	130	
		calcium, total	7440-70-2	E420	46.8 mg/L	40 mg/L	117	70.0	130	
		cobalt, total	7440-48-4	E420	0.242 mg/L	0.2 mg/L	121	70.0	130	
		copper, total	7440-50-8	E420	0.245 mg/L	0.2 mg/L	122	70.0	130	
		iron, total	7439-89-6	E420	23.8 mg/L	20 mg/L	119	70.0	130	
		lead, total	7439-92-1	E420	0.240 mg/L	0.2 mg/L	120	70.0	130	
		lithium, total	7439-93-2	E420	1.21 mg/L	1 mg/L	121	70.0	130	
		magnesium, total	7439-95-4	E420	11.3 mg/L	10 mg/L	113	70.0	130	
		manganese, total	7439-96-5	E420	0.240 mg/L	0.2 mg/L	120	70.0	130	
		molybdenum, total	7439-98-7	E420	0.226 mg/L	0.2 mg/L	113	70.0	130	
		nickel, total	7440-02-0	E420	0.484 mg/L	0.4 mg/L	121	70.0	130	
		potassium, total	7440-09-7	E420	46.4 mg/L	40 mg/L	116	70.0	130	
		selenium, total	7782-49-2	E420	0.468 mg/L	0.4 mg/L	117	70.0	130	
		silicon, total	7440-21-3	E420	89.6 mg/L	100 mg/L	89.6	70.0	130	
		silver, total	7440-22-4	E420	0.0495 mg/L	0.04 mg/L	124	70.0	130	
		sodium, total	7440-23-5	E420	24.1 mg/L	20 mg/L	120	70.0	130	
		strontium, total	7440-24-6	E420	0.239 mg/L	0.2 mg/L	119	70.0	130	
		sulfur, total	7704-34-9	E420	216 mg/L	200 mg/L	108	70.0	130	
		thallium, total	7440-28-0	E420	0.0454 mg/L	0.04 mg/L	114	70.0	130	
		tin, total	7440-31-5	E420	0.228 mg/L	0.2 mg/L	114	70.0	130	
		titanium, total	7440-32-6	E420	0.440 mg/L	0.4 mg/L	110	70.0	130	
		uranium, total	7440-61-1	E420	0.0468 mg/L	0.04 mg/L	117	70.0	130	
		vanadium, total	7440-62-2	E420	1.20 mg/L	1 mg/L	120	70.0	130	
		zinc, total	7440-66-6	E420	4.62 mg/L	4 mg/L	116	70.0	130	
otal Metals (QC	Lot: 661783)									
G2212615-008	Anonymous	mercury, total	7439-97-6	E508	0.0001000 mg/L	0.0001 mg/L	100.0	70.0	130	
issolved Metals	(QCLot: 659978)									
CG2212647-002	LC_MT1_WS_LAEMP_DRY 2022-09 N	chromium, dissolved	7440-47-3	E421.Cr-L	0.378 mg/L	0.4 mg/L	94.4	70.0	130	

 Page
 : 17 of 18

 Work Order
 : CG2212647

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 659979)									
CG2212647-002	LC_MT1_WS_LAEMP_DRY	aluminum, dissolved	7429-90-5	E421	1.92 mg/L	2 mg/L	96.3	70.0	130	
	_2022-09_N	antimony, dissolved	7440-36-0	E421	0.179 mg/L	0.2 mg/L	89.4	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.188 mg/L	0.2 mg/L	94.2	70.0	130	
		barium, dissolved	7440-39-3	E421	0.192 mg/L	0.2 mg/L	95.8	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.388 mg/L	0.4 mg/L	97.0	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.0936 mg/L	0.1 mg/L	93.6	70.0	130	
		boron, dissolved	7440-42-8	E421	0.986 mg/L	1 mg/L	98.6	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.0390 mg/L	0.04 mg/L	97.4	70.0	130	
		calcium, dissolved	7440-70-2	E421	39.6 mg/L	40 mg/L	99.1	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.190 mg/L	0.2 mg/L	94.8	70.0	130	
		copper, dissolved	7440-50-8	E421	0.190 mg/L	0.2 mg/L	94.9	70.0	130	
		iron, dissolved	7439-89-6	E421	19.0 mg/L	20 mg/L	95.0	70.0	130	
		lead, dissolved	7439-92-1	E421	0.198 mg/L	0.2 mg/L	99.1	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.973 mg/L	1 mg/L	97.3	70.0	130	
		magnesium, dissolved	7439-95-4	E421	9.66 mg/L	10 mg/L	96.6	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.188 mg/L	0.2 mg/L	94.0	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.192 mg/L	0.2 mg/L	96.2	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.380 mg/L	0.4 mg/L	94.9	70.0	130	
		potassium, dissolved	7440-09-7	E421	38.5 mg/L	40 mg/L	96.3	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.387 mg/L	0.4 mg/L	96.7	70.0	130	
		silicon, dissolved	7440-21-3	E421	101 mg/L	100 mg/L	101	70.0	130	
		silver, dissolved	7440-22-4	E421	0.0377 mg/L	0.04 mg/L	94.3	70.0	130	
		sodium, dissolved	7440-23-5	E421	20.0 mg/L	20 mg/L	99.9	70.0	130	
		strontium, dissolved	7440-24-6	E421	0.193 mg/L	0.2 mg/L	96.7	70.0	130	
		sulfur, dissolved	7704-34-9	E421	178 mg/L	200 mg/L	89.2	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.0349 mg/L	0.04 mg/L	87.4	70.0	130	
		tin, dissolved	7440-31-5	E421	0.176 mg/L	0.2 mg/L	88.1	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.368 mg/L	0.4 mg/L	92.1	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.0352 mg/L	0.04 mg/L	88.0	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.946 mg/L	1 mg/L	94.6	70.0	130	
		zinc, dissolved	7440-66-6	E421	3.80 mg/L	4 mg/L	94.9	70.0	130	
issolved Metals	(QCLot: 661779)									
CG2212615-009	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000877 mg/L	0.0001 mg/L	87.7	70.0	130	

 Page
 : 18 of 18

 Work Order
 : CG2212647

 Client
 : Teck Coal Limited

LC_GRCK_WS_LAEMP_DRY_2022-09_N LC_MTI_WS_LAEMP_DRY_2022-09_N LC_CC1_WS_LAEMP_DRY_2022-09_N Calgary
Work Order Reference
CG2212647 **Environmental Division** Telaphone: +1 403 407 1600 ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS SERVICE REQUEST (rush - subject to availability) Emergency (1 Business Day) - 100% surcharge For Emergency <1 Day, ASAP or Weekend - Contact ALS Facility Name / Job# Line Creek Operations Project Manager Nicole Zathey Phone Number 1-250-865-3048 Postal Code Regular (default)
Priority (2-3 business days) - 50% surcharge X Address 421 Pine Avenune Email Nicole Zathey@Teck.com PROJECT/CLIENT INFO CITY Sample Location SAMPLE DETAILS COC ID: (sys loc code) LC_MT1 LC_GRCK TC_CC1 Sparwood V0B 2G1 LCO_LAEMIP_DKY_2022-Matrix Field WS W/S WS S IV OU Hazardous Material (Yes/No) Sampler's Signature RELINQUISHED BY/AFFILIATION Sampler's Name Country Province 2022/09/14 2022/09/14 2022/09/14 Jennifer Ings/Minnow Canada BC (24hr)13:30 13:30 13:30 Time C=Com G=Grab TURNAROUND TIME: Phone Number |403 407 1794 ଦ د q Postal Code T1Y 7B5 Lab Contact Lyudmyla Shvets Page Lab Name ALS Calgary Address 2559 29 Street NE Cont #Of Email Lyudmyla Shyets@ALSGlobal.com 7 7 City Calgary <u>۔</u> ع Jennifer Ings ANALYSIS PRESERV Filt. DATE/IIME LABORATORY HZSO4 DOC * 15-Sep HCL -Mercury_Dissolved ANALYSIS REQUESTED Country Province Mercury_Total ACCEPTED BY/AFFILIATION 2-3 Business Days Canada ΑB TECKCOAL_METNH NO3 Date/Time Mobile # TECKCOAL_METNH NO3 PO number Email 5: Email 5: Email 4: Email 3: Email 2: Email 1: G_T Report Format / Distribution TECKCOAL_ROUTIN H2S04 Teck Lab Results@tect Jessica.Ritz@Teck.com teckcoal@equisonline.com obin. Valleau@minnow.ca sa.Bowron@minnow.ca TOC_TKN_PT RUSH Priority September 15, 2022 OTHER INFO Hered - F: Field, L: Lab, FL: Field & Lab, N: None 5195003444 VPO00816101 DATE/TIME Excel PDF **Environmental Division**

Environmental Division
Calgary
Work Order Reference
CG2212647

WATER CHEMISTRY

ALS Laboratory Report CG2216696 (Finalized 01-Dec-22)

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : CG2216696 Page : 1 of 10

Client : Teck Coal Limited Laboratory : Calgary - Environmental **Account Manager** Contact : Nicole Zathey : Lyudmyla Shvets Address : 421 Pine Avenue Address : 2559 29th Street NE

> Sparwood BC Canada V0B 2G1 Calgary AB Canada T1Y 7B5

> > **Date Analysis Commenced**

Telephone Telephone : +1 403 407 1800

Project : LINE CREEK OPERATION Date Samples Received : 01-Dec-2022 09:00 PO : VPO00816101

: 01-Dec-2022 C-O-C number : LAEMP_DRY_2022-11_ALS Issue Date : 07-Dec-2022 17:54

Sampler :, Robin Valleau

Site ----

Quote number : Teck Coal Master Quote

No. of samples received : 7 No. of samples analysed : 7

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Supervisor - Inorganic	Inorganics, Calgary, Alberta
Elke Tabora		Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Metals, Calgary, Alberta
Kevin Baxter	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Kevin Baxter	Team Leader - Inorganics	Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Metals, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Shirley Li	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Shirley Li	Team Leader - Inorganics	Metals, Calgary, Alberta
Sonthuong Bui	Laboratory Analyst	Metals, Calgary, Alberta

Page : 2 of 10
Work Order : CG2216696

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
%	percent
μg/L	micrograms per litre
μS/cm	microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).
RRV	Reported result verified by repeat analysis.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

 Page
 :
 3 of 10

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Li

Client : Teck Coal Limited
Project : LINE CREEK OPERATION

AEMP_DRY_20	Analytical Results									
Client sampling date / time 30-Mav-2022	Sub-Matrix: Water			CI	ient sample ID	LC_RD1_WS_L	LC_MT1_WS_L	LC_CC1_WS_L	LC_FRB_WS_L	LC_GRCK_WS_
Client sampling date / Bine 30-Nov-2022 20-Nov-2022	(Matrix: Water)									LAEMP_DRY_2
Analyte CAS Number Method LOR Unit CG2216698-012 CG2216698-003 CG2216698-004 CG22 Result						22-11_NP	22-11_NP	22-11_NP	22-11_N	022-11_N
Analyte CAS Number Method LOR Unit CG2216698-012 CG2216698-003 CG2216698-004 CG22 Result				Client samp	oling date / time	30-Nov-2022	30-Nov-2022	30-Nov-2022	30-Nov-2022	30-Nov-2022
Physical Tests				γ.	3					10:30
Physical Tests acidity (as CaCO3) E283 2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 mg/L <2.0 <2.0 mg/L <2.0 mg/L <2.0 <2.0 mg/L <2.0 <2.0 mg/L <2.0 mg/L <2.0 <2.0 mg/L <2.0 <2.0 mg/L <2.0 <2.0 mg/L <2.0 <2.0 mg/L <2.0 <2.0 mg/L <2.0 <2.0 mg/L <2.0 <2.0 mg/L <2.0 <2.0 mg/L <2.0 <2.0 mg/L <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	Analyte	CAS Number	Method	LOR	Unit	CG2216696-001	CG2216696-002	CG2216696-003	CG2216696-004	CG2216696-005
Scidity (as CaCO3)						Result	Result	Result	Result	Result
Scidity (as CaCO3)	Physical Tests									
alkalinity, bicarbonate (as HCO3) 71-52-3 E290 1.0 mg/L 4-1.0 4-1.0 12.2 16.4 alkalinity, carbonate (as CaCO3) 3812-32-6 E290 1.0 mg/L 4-1.0 4-1.0 7.3 9.8 alkalinity, tydroxide (as CaCO3) 3812-32-6 E290 1.0 mg/L 4-1.0 4-1			E283	2.0	mg/L	<2.0 RRV	<2.0 RRV	<2.0	<2.0	<2.0
alkalinity, carbonate (as CaCO3) 3812-32-6 E290 1.0 mg/L -1.0	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	<1.0	2.2	199	195	159
alkalinity, carbonate (as CO3) 3812-32-6 E290 1.0 mg/L 41.0	alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	<1.0	2.7	243	238	194
alkalinity, hydroxide (as CaCO3)	alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	12.2	16.4	13.0
alkalinity, hydroxide (as OH) alkalinity, hydroxide (as OH) 14280-30-9 E290 1.0 mg/L 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	7.3	9.8	7.8
alkalinity, total (as CaCO3)	alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
conductivity E100 2.0 μS/cm <2.0	alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
hardness (as CaCO3), dissolved	alkalinity, total (as CaCO3)		E290	1.0	mg/L	<1.0	2.2	211	211	172
oxidation-reduction potential [ORP]	conductivity		E100	2.0	μS/cm	<2.0	3.4	856	862	377
pH E108 0.10 pH units 5.59 6.27 8.38 8.40 solids, total dissolved [TDS] E162 10 mg/L <10	hardness (as CaCO3), dissolved		EC100	0.50	mg/L	<0.50	<0.50	545	541	225
Solids, total dissolved [TDS]	oxidation-reduction potential [ORP]		E125	0.10	mV	535	543	352	374	403
Solids, total suspended [TSS]	pH		E108	0.10	pH units	5.59	6.27	8.38	8.40	8.44
turbidity E121 0.10 NTU <0.10	solids, total dissolved [TDS]		E162	10	mg/L	<10	<10	597	596	223
Anions and Nutrients ammonia, total (as N) 7664-41-7 E298 0.0050 mg/L <0.0050 <0.0050 0.0062 <0.0050 <0.0050 bromide 24959-67-9 E235.Br-L 0.050 mg/L <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 chloride 16887-00-6 E235.Cl-L 0.10 mg/L <0.10 <0.10 5.22 5.40 fluoride 16984-48-8 E235.F 0.020 mg/L <0.020 <0.020 0.162 0.168 Kjeldahl nitrogen, total [TKN]	solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	2.9
ammonia, total (as N) 7664-41-7 E298 0.0050 mg/L <0.0050	turbidity		E121	0.10	NTU	<0.10	<0.10	0.36	0.34	0.28
bromide 24959-67-9 E235.Br-L 0.050 mg/L <0.050	Anions and Nutrients									
chloride 16887-00-6 E235.Cl-L 0.10 mg/L <0.10	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0.0062	<0.0050	<0.0050
fluoride 16984-48-8 E235.F 0.020 mg/L <0.020 <0.020 0.162 0.168	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
Kjeldahl nitrogen, total [TKN] E318 0.050 mg/L <0.050	chloride	16887-00-6	E235.CI-L	0.10	mg/L	<0.10	<0.10	5.22	5.40	0.17
nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050	fluoride	16984-48-8	E235.F	0.020	mg/L	<0.020	<0.020	0.162	0.168	0.139
nitrite (as N) 14797-65-0 E235.NO2-L 0.0010 mg/L <0.0010 <0.0010 0.0033 0.0035 <	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	0.987 TKNI	0.745 TKNI	<0.500 DLM
	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	14.4	14.3	0.0771
phosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.0010 mg/L <0.0010 <0.0010 <0.0010 <0.0010	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0.0033	0.0035	<0.0010
	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	0.0019
phosphorus, total 7723-14-0 E372-U 0.0020 mg/L <0.0020 <0.0020 <0.0020 <0.0020	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	<0.0020	<0.0020	0.0026
sulfate (as \$04) 14808-79-8 E235.SO4 0.30 mg/L <0.30	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	<0.30	<0.30	234	232	50.1
Organic / Inorganic Carbon	Organic / Inorganic Carbon									
carbon, dissolved organic [DOC] E358-L 0.50 mg/L <0.50			E358-L	0.50	mg/L		<0.50	0.68	0.64	<0.50

Page : 4 of 10
Work Order : CG2216696
Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	LC_RD1_WS_L AEMP_DRY_20 22-11_NP	LC_MT1_WS_L AEMP_DRY_20 22-11_NP	LC_CC1_WS_L AEMP_DRY_20 22-11_NP	LC_FRB_WS_L AEMP_DRY_20 22-11_N	LC_GRCK_WS_ LAEMP_DRY_2 022-11_N
			Client samp	ling date / time	30-Nov-2022 10:30	30-Nov-2022 10:30	30-Nov-2022 10:30	30-Nov-2022 10:30	30-Nov-2022 10:30
Analyte	CAS Number	Method	LOR	Unit	CG2216696-001	CG2216696-002	CG2216696-003	CG2216696-004	CG2216696-005
					Result	Result	Result	Result	Result
Organic / Inorganic Carbon									
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0.71	<0.50	<0.50
Ion Balance									
anion sum		EC101	0.10	meq/L	<0.10	<0.10	10.3	10.2	4.50
cation sum		EC101	0.10	meq/L	<0.10	<0.10	11.1	11.0	4.62
ion balance (cations/anions)		EC101	0.010	%	100	100	108	108	103
ion balance (APHA)		EC101	0.01	%	<0.01	<0.01	3.74	3.77	1.32
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	<0.0030	0.0037	0.0054	0.0048
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
barium, total	7440-39-3	E420	0.00010	mg/L	<0.00010	0.00090 RRV	0.124	0.123	0.0607
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	<0.020
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	0.012
cadmium, total	7440-43-9	E420	0.0050	μg/L	<0.0050	<0.0050	0.0255	0.0200	<0.0050
calcium, total	7440-70-2	E420	0.050	mg/L	<0.050	0.106 RRV	112	113	50.2
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0.00016	0.00014	0.00014
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	<0.10
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	0.00056 RRV	<0.00050	<0.00050	<0.00050
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	0.012
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	0.0290	0.0289	0.0064
magnesium, total	7439-95-4	E420	0.0050	mg/L	<0.0050	0.0067 RRV	49.6	48.0	19.4
manganese, total	7439-96-5	E420	0.00010	mg/L	<0.00010	0.00015 RRV	0.00151	0.00164	0.00185
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.0000050
molybdenum, total	7439-98-7	E420	0.000050	mg/L	<0.000050	<0.000050	0.000844	0.000806	0.00150
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0.00066	<0.00050	<0.00050
potassium, total	7440-09-7	E420	0.050	mg/L	<0.050	<0.050	1.51	1.40	0.666
selenium, total	7782-49-2	E420	0.050	μg/L	<0.050	<0.050	55.8	55.8	2.54

Page : 5 of 10
Work Order : CG2216696
Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	LC_RD1_WS_L AEMP_DRY_20 22-11 NP	LC_MT1_WS_L AEMP_DRY_20 22-11 NP	LC_CC1_WS_L AEMP_DRY_20 22-11 NP	LC_FRB_WS_L AEMP_DRY_20 22-11 N	LC_GRCK_WS_ LAEMP_DRY_2 022-11 N
			Client samp	ling date / time	30-Nov-2022 10:30	30-Nov-2022 10:30	30-Nov-2022 10:30	30-Nov-2022 10:30	30-Nov-2022 10:30
Analyte	CAS Number	Method	LOR	Unit	CG2216696-001	CG2216696-002	CG2216696-003	CG2216696-004	CG2216696-005
					Result	Result	Result	Result	Result
Total Metals									
silicon, total	7440-21-3	E420	0.10	mg/L	<0.10	0.35 RRV	2.62	2.67	2.96
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, total	7440-23-5	E420	0.050	mg/L	<0.050	0.511 RRV	3.47	3.40	2.49
strontium, total	7440-24-6	E420	0.00020	mg/L	<0.00020	0.00062 RRV	0.158	0.161	0.180
sulfur, total	7704-34-9	E420	0.50	mg/L	<0.50	<0.50	85.9	86.2	20.2
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	<0.000010	0.00260	0.00255	0.00117
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L		<0.0010	<0.0010	<0.0010	<0.0010
antimony, dissolved	7440-36-0	E421	0.00010	mg/L		<0.00010	0.00011	<0.00010	<0.00010
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010
barium, dissolved	7440-39-3	E421	0.00010	mg/L		0.00038 RRV	0.128	0.124	0.0596
beryllium, dissolved	7440-41-7	E421	0.020	μg/L		<0.020	<0.020	<0.020	<0.020
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L		<0.000050	<0.000050	<0.000050	<0.000050
boron, dissolved	7440-42-8	E421	0.010	mg/L		<0.010	<0.010	<0.010	0.012
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L		<0.0050	0.0291	0.0186	0.0053
calcium, dissolved	7440-70-2	E421	0.050	mg/L	<0.050	<0.050	131	127	55.6
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L		<0.00010	0.00017	0.00017	0.00017
cobalt, dissolved	7440-48-4	E421	0.10	μg/L		<0.10	<0.10	<0.10	<0.10
copper, dissolved	7440-50-8	E421	0.00020	mg/L		0.00051 RRV	0.00038	0.00025	<0.00020
iron, dissolved	7439-89-6	E421	0.010	mg/L		<0.010	<0.010	<0.010	<0.010
lead, dissolved	7439-92-1	E421	0.000050	mg/L		<0.000050	<0.000050	<0.000050	<0.000050
lithium, dissolved	7439-93-2	E421	0.0010	mg/L		<0.0010	0.0312	0.0307	0.0061
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	<0.0050	0.0079 RRV	52.9	54.4	20.9
manganese, dissolved	7439-96-5	E421	0.00010	mg/L		0.00015 RRV	0.00127	0.00129	0.00056
1 3,	7 100 00-0		1	J. –			1	l	

 Page
 :
 6 of 10

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Li

Client : Teck Coal Limited
Project : LINE CREEK OPERATION

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	LC_RD1_WS_L	LC_MT1_WS_L	LC_CC1_WS_L	LC_FRB_WS_L	LC_GRCK_WS_
(Matrix: Water)					AEMP_DRY_20 22-11 NP	AEMP_DRY_20 22-11 NP	AEMP_DRY_20 22-11 NP	AEMP_DRY_20 22-11 N	LAEMP_DRY_2 022-11 N
					22-11_NF	22-11_NF	22-11_NP	22-11_14	022-11_N
			Client samp	ling date / time	30-Nov-2022	30-Nov-2022	30-Nov-2022	30-Nov-2022	30-Nov-2022
					10:30	10:30	10:30	10:30	10:30
Analyte	CAS Number	Method	LOR	Unit	CG2216696-001	CG2216696-002	CG2216696-003	CG2216696-004	CG2216696-005
					Result	Result	Result	Result	Result
Dissolved Metals									
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L		<0.0000050	<0.0000050	<0.0000050	<0.0000050
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L		<0.000050	0.000887	0.000890	0.00156
nickel, dissolved	7440-02-0	E421	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050
potassium, dissolved	7440-09-7	E421	0.050	mg/L	<0.050	<0.050	1.45	1.48	0.616
selenium, dissolved	7782-49-2	E421	0.050	μg/L		<0.050	59.6	60.9	2.84
silicon, dissolved	7440-21-3	E421	0.050	mg/L		<0.050	2.40	2.42	2.63
silver, dissolved	7440-22-4	E421	0.000010	mg/L		<0.000010	<0.000010	<0.000010	<0.000010
sodium, dissolved	7440-23-5	E421	0.050	mg/L	<0.050	0.284 RRV	3.35	3.52	2.48
strontium, dissolved	7440-24-6	E421	0.00020	mg/L		<0.00020	0.172	0.176	0.193
sulfur, dissolved	7704-34-9	E421	0.50	mg/L		<0.50	85.4	87.4	19.2
thallium, dissolved	7440-28-0	E421	0.000010	mg/L		<0.000010	<0.000010	<0.000010	<0.000010
tin, dissolved	7440-31-5	E421	0.00010	mg/L		0.00025 RRV	<0.00010	<0.00010	<0.00010
titanium, dissolved	7440-32-6	E421	0.00030	mg/L		<0.00030	<0.00030	<0.00030	<0.00030
uranium, dissolved	7440-61-1	E421	0.000010	mg/L		<0.000010	0.00256	0.00256	0.00117
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050
zinc, dissolved	7440-66-6	E421	0.0010	mg/L		<0.0010	0.0013	0.0013	<0.0010
dissolved mercury filtration location		EP509	-	-		Field	Field	Field	Field
dissolved metals filtration location		EP421	-	-	Laboratory	Field	Field	Field	Field

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 7 of 10
Work Order : CG2216696
Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Sub-Matrix: Water			CI	ient sample ID	LC_FRUS_WS_	LC_DCEF_WS_	 	
(Matrix: Water)				•	LAEMP_DRY_2	LAEMP_DRY_2		
					022-11_N	022-11_N		
			Client same	ling date / time	20 N 2022	00 N 0000	 	
			Cherit Samp	iing date / time	29-Nov-2022 10:30	29-Nov-2022 10:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2216696-006	CG2216696-007	 	
					Result	Result	 	
Physical Tests								
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	201	147	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	245	179	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	16.6	9.0	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	10.0	5.4	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	218	156	 	
conductivity		E100	2.0	μS/cm	792	269	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	485	164	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	413	384	 	
рН		E108	0.10	pH units	8.43	8.39	 	
solids, total dissolved [TDS]		E162	10	mg/L	576	179	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.1	<1.0	 	
turbidity		E121	0.10	NTU	0.24	0.12	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	4.15	0.30	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.162	0.110	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.876 TKNI	<0.500 DLM	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	11.8	0.130	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0025	<0.0010	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	0.0135	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	0.0132 DLM	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	204	6.93	 	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	0.77	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	0.90	 	
1	'		1			'		'

Page : 8 of 10
Work Order : CG2216696
Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	LC_FRUS_WS_ LAEMP_DRY_2	LC_DCEF_WS_ LAEMP_DRY_2	 	
					022-11_N	022-11_N		
			Client samp	ling date / time	29-Nov-2022 10:30	29-Nov-2022 10:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2216696-006	CG2216696-007	 	
					Result	Result	 	
Ion Balance								
anion sum		EC101	0.10	meq/L	9.57	3.28	 	
cation sum		EC101	0.10	meq/L	9.84	3.41	 	
ion balance (cations/anions)		EC101	0.010	%	103	104	 	
ion balance (APHA)		EC101	0.01	%	1.39	1.94	 	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0060	0.0035	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	0.00015	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	0.00018	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.106	0.249	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	0.011	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0238	0.0347	 	
calcium, total	7440-70-2	E420	0.050	mg/L	102	35.2	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00013	0.00013	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	0.013	<0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0252	0.0189	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	43.5	14.5	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00187	<0.00010	 	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000788	0.00114	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	 	
potassium, total	7440-09-7	E420	0.050	mg/L	1.19	1.09	 	
selenium, total	7782-49-2	E420	0.050	μg/L	50.9	1.51	 	
silicon, total	7440-21-3	E420	0.10	mg/L	2.71	3.32	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	 	

 Page
 :
 9 of 10

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Li

Client : Teck Coal Limited
Project : LINE CREEK OPERATION

ALS

Sub-Matrix: Water			Cl	ient sample ID	LC_FRUS_WS_	LC_DCEF_WS_		
(Matrix: Water)					LAEMP_DRY_2	LAEMP_DRY_2		
· · · · ·					022-11_N	022-11_N		
			Client samn	ling date / time	29-Nov-2022	29-Nov-2022		
			Cherit samp	iiiig date / tiiiie	29-NOV-2022 10:30	29-N6V-2022 10:30		
Analyte	CAS Number	Method	LOR	Unit	CG2216696-006	CG2216696-007		
,					Result	Result		
Total Metals								
sodium, total	7440-23-5	E420	0.050	mg/L	3.07	2.59		
strontium, total	7440-24-6	E420	0.00020	mg/L	0.153	0.0506		
sulfur, total	7704-34-9	E420	0.50	mg/L	86.2	3.63		
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010		
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010		
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030		
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00230	0.000424		
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	0.00054		
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030		
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010		
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	0.00014		
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	0.00018		
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.104	0.261		
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020		
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050		
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	0.010		
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0196	0.0373		
calcium, dissolved	7440-70-2	E421	0.050	mg/L	117	41.3		
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00016	0.00011		
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10		
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020		
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010		
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050		
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0280	0.0199		
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	46.8	14.8		
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00165	<0.00010		
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050		
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000856	0.00125		
1			1	'		'	'	1

Page : 10 of 10 Work Order : CG2216696

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	LC_FRUS_WS_ LAEMP_DRY_2	LC_DCEF_WS_ LAEMP_DRY_2	 	
(Matrix: Water)					022-11_N	022-11_N		
			Client samp	ling date / time	29-Nov-2022 10:30	29-Nov-2022 10:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2216696-006	CG2216696-007	 	
					Result	Result	 	
Dissolved Metals								
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.19	1.00	 	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	52.0	1.70	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.35	2.86	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	2.84	2.36	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.165	0.0557	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	78.6	2.65	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00236	0.000425	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2216696** Page : 1 of 30

Client : Teck Coal Limited Laboratory : Calgary - Environmental
Contact : Nicole Zathev Account Manager : Lyudmyla Shyets

Contact : Nicole Zathey Account Manager : Lyudmyla Shvets
Address : 421 Pine Avenue Address : 2559 29th Street NE

Sparwood BC Canada V0B 2G1 Calgary, Alberta Canada T1Y 7B5

Telephone :--- Telephone :+1 403 407 1800

 Project
 : LINE CREEK OPERATION
 Date Samples Received
 : 01-Dec-2022 09:00

 PO
 : VPO00816101
 Issue Date
 : 07-Dec-2022 17:55

C-O-C number : LAEMP DRY 2022-11 ALS

Sampler :, Robin Valleau

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received :7
No. of samples analysed :7

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

• No Method Blank value outliers occur.

- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ● Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 30 Work Order : CG2216696

Matrix: Water

Analyte Group

Container / Client Sample ID(s)

Anions and Nutrients : Ammonia by Fluorescence

Anions and Nutrients: Ammonia by Fluorescence

LC DCEF WS LAEMP DRY 2022-11 N

LC FRUS WS LAEMP DRY 2022-11 N

Amber glass total (sulfuric acid)

Amber glass total (sulfuric acid)

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Eval

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analysis Date

01-Dec-2022

01-Dec-2022

28 days

28 days 2 days

2 days

Analysis

Rec

Holding Times

Actual

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Sampling Date

Extraction / Preparation

Rec

Preparation

Date

01-Dec-2022

01-Dec-2022

Holding Times

Actual

Eval

Method

E298

E298

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Anions and Nutrients : Ammonia by Fluorescence								
Amber glass total (sulfuric acid) LC_CC1_WS_LAEMP_DRY_2022-11_NP	E298	30-Nov-2022	01-Dec-2022	 	01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Ammonia by Fluorescence								
Amber glass total (sulfuric acid) LC_FRB_WS_LAEMP_DRY_2022-11_N	E298	30-Nov-2022	01-Dec-2022	 	01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Ammonia by Fluorescence								
Amber glass total (sulfuric acid) LC_GRCK_WS_LAEMP_DRY_2022-11_N	E298	30-Nov-2022	01-Dec-2022	 	01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Ammonia by Fluorescence								
Amber glass total (sulfuric acid) LC_MT1_WS_LAEMP_DRY_2022-11_NP	E298	30-Nov-2022	01-Dec-2022	 	01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Ammonia by Fluorescence								
Amber glass total (sulfuric acid) LC_RD1_WS_LAEMP_DRY_2022-11_NP	E298	30-Nov-2022	01-Dec-2022	 	01-Dec-2022	28 days	1 days	✓

29-Nov-2022

29-Nov-2022

✓

Page : 4 of 30 Work Order : CG2216696

Client : Teck Coal Limited
Project : LINE CREEK OPERATION

Matrix: Water					Εν	/aluation: ≭ =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE LC_CC1_WS_LAEMP_DRY_2022-11_NP	E235.Br-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE LC_FRB_WS_LAEMP_DRY_2022-11_N	E235.Br-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)									1	
HDPE LC_GRCK_WS_LAEMP_DRY_2022-11_N	E235.Br-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	4
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE LC_MT1_WS_LAEMP_DRY_2022-11_NP	E235.Br-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE LC_RD1_WS_LAEMP_DRY_2022-11_NP	E235.Br-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-11_N	E235.Br-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-11_N	E235.Br-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE LC_CC1_WS_LAEMP_DRY_2022-11_NP	E235.CI-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE LC_FRB_WS_LAEMP_DRY_2022-11_N	E235.CI-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓

Page : 5 of 30 Work Order : 5 of 30 CG2216696

Client : Teck Coal Limited

Matrix: Water					Ev	⁄aluation: ≭ = l	Holding time exce	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-11_N	E235.CI-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
LC_MT1_WS_LAEMP_DRY_2022-11_NP	E235.CI-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE LC_RD1_WS_LAEMP_DRY_2022-11_NP	E235.CI-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	√
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-11_N	E235.CI-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-11_N	E235.CI-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE										
LC_CC1_WS_LAEMP_DRY_2022-11_NP	E378-U	30-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	1 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE										
LC_FRB_WS_LAEMP_DRY_2022-11_N	E378-U	30-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	1 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE LC_GRCK_WS_LAEMP_DRY_2022-11_N	E378-U	30-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	1 days	4

Page : 6 of 30 Work Order : CG2216696

Client : Teck Coal Limited

				· · · · · · · · · · · · · · · · · · ·			Holding time excee			
Analyte Group Container / Client Sample ID(s)	Method	Sampling Date	Preparation Date	Holding Rec	Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Lo	evel 0.001									
HDPE LC_MT1_WS_LAEMP_DRY_2022-11_NP	E378-U	30-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	1 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Lo	evel 0.001									
HDPE LC_RD1_WS_LAEMP_DRY_2022-11_NP	E378-U	30-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	1 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Lo	evel 0.001									
HDPE LC_DCEF_WS_LAEMP_DRY_2022-11_N	E378-U	29-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Lo	evel 0.001									
HDPE LC_FRUS_WS_LAEMP_DRY_2022-11_N	E378-U	29-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE LC_CC1_WS_LAEMP_DRY_2022-11_NP	E235.F	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE LC_FRB_WS_LAEMP_DRY_2022-11_N	E235.F	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-11_N	E235.F	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
nions and Nutrients : Fluoride in Water by IC										
HDPE LC_MT1_WS_LAEMP_DRY_2022-11_NP	E235.F	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓

Page : 7 of 30 Work Order : CG2216696

Matrix: Water					E	valuation: × =	Holding time exce	edance ; •	✓ = Within	Holding Tin
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
LC_RD1_WS_LAEMP_DRY_2022-11_NP	E235.F	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
LC_DCEF_WS_LAEMP_DRY_2022-11_N	E235.F	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
LC_FRUS_WS_LAEMP_DRY_2022-11_N	E235.F	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
LC CC1 WS LAEMP DRY 2022-11 NP	E235.NO3-L	30-Nov-2022	01-Dec-2022	3 days	1 days	✓	01-Dec-2022	3 days	0 days	✓
									-	
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
LC_FRB_WS_LAEMP_DRY_2022-11_N	E235.NO3-L	30-Nov-2022	01-Dec-2022	3 days	1 days	✓	01-Dec-2022	3 days	0 days	✓
				,					,	
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
LC_GRCK_WS_LAEMP_DRY_2022-11_N	E235.NO3-L	30-Nov-2022	01-Dec-2022	3 days	1 days	1	01-Dec-2022	3 days	0 days	✓
20_01.01C_1/0_21.221(1_2022_11_1)			0. 200 2022	o dayo	. aayo		0.2002022	l c days	o aayo	
Anione and Netwignts - Nitrate in Water by IC / and avail										
Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE							1			
LC MT1 WS LAEMP DRY 2022-11 NP	E235.NO3-L	30-Nov-2022	01-Dec-2022	3 days	1 days	√	01-Dec-2022	3 days	0 days	√
EO_WITT_WO_EAEWII_BIXT_2022-TT_WI	L200.1400-L	00-1404-2022	01-00-2022	o days	1 days	,	01-000-2022	o days	o days	·
Anima and Nickinstan Mikasa in Massa in 10 (1)			and the second s							
Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE							I			
LC_RD1_WS_LAEMP_DRY_2022-11_NP	E235.NO3-L	30-Nov-2022	01-Dec-2022	3 days	1 days	✓	01-Dec-2022	3 days	0 days	√
LO_ND1_WO_LALIVIF_DIX1_Z0ZZ-11_NF	L200.1400-L	50-1404-2022	01-060-2022	Juays	, days	•	01-060-2022	Juays	Juays	•
Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE										
	E235.NO3-L	29-Nov-2022	01-Dec-2022	3 days	2 days	√	01-Dec-2022	3 days	0 days	√
LC_DCEF_WS_LAEMP_DRY_2022-11_N	LZ33.NO3-L	23-1100-2022	01-DeC-2022	o uays	∠ uays	*	01-086-2022	3 days	o days	*

Page : 8 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Matrix: Water					Εν	/aluation: 🗴 =	Holding time exce	edance ; •	✓ = Within	Holding Tin
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-11_N	E235.NO3-L	29-Nov-2022	01-Dec-2022	3 days	2 days	✓	01-Dec-2022	3 days	0 days	4
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_CC1_WS_LAEMP_DRY_2022-11_NP	E235.NO2-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	1 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_FRB_WS_LAEMP_DRY_2022-11_N	E235.NO2-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	1 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-11_N	E235.NO2-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	1 days	4
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_MT1_WS_LAEMP_DRY_2022-11_NP	E235.NO2-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	1 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_RD1_WS_LAEMP_DRY_2022-11_NP	E235.NO2-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	1 days	√
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-11_N	E235.NO2-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-11_N	E235.NO2-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE LC_CC1_WS_LAEMP_DRY_2022-11_NP	E235.SO4	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	4

Page : 9 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Matrix: Water					Εν	/aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC HDPE										
LC_FRB_WS_LAEMP_DRY_2022-11_N	E235.SO4	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-11_N	E235.SO4	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE LC_MT1_WS_LAEMP_DRY_2022-11_NP	E235.SO4	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE LC_RD1_WS_LAEMP_DRY_2022-11_NP	E235.SO4	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-11_N	E235.SO4	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-11_N	E235.SO4	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) LC_CC1_WS_LAEMP_DRY_2022-11_NP	E318	30-Nov-2022	03-Dec-2022				03-Dec-2022	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) LC_FRB_WS_LAEMP_DRY_2022-11_N	E318	30-Nov-2022	03-Dec-2022				03-Dec-2022	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) LC_GRCK_WS_LAEMP_DRY_2022-11_N	E318	30-Nov-2022	03-Dec-2022				03-Dec-2022	28 days	3 days	✓

Page : 10 of 30 Work Order : CG2216696

Client : Teck Coal Limited

									Holding Ti
Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
		Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
		Date	Rec	Actual			Rec	Actual	
E318	30-Nov-2022	03-Dec-2022				03-Dec-2022	28 days	3 days	✓
E318	30-Nov-2022	03-Dec-2022				03-Dec-2022	28 days	3 days	✓
								1	
				<u> </u>		<u> </u>	<u> </u>		
E318	29-Nov-2022	03-Dec-2022				03-Dec-2022	28 davs	4 davs	✓
								, ,	
E318	29-Nov-2022	03-Dec-2022				03-Dec-2022	28 days	4 days	✓
		00 200 2022				00 200 2022	20 44,0	. aayo	
						<u> </u>			
E372-U	30-Nov-2022	02-Dec-2022				07-Dec-2022	28 davs	7 davs	✓
						** = = = = = =		, -	
						<u> </u>			
F372-U	30-Nov-2022	02-Dec-2022				07-Dec-2022	28 days	7 days	1
20.2 0	00 1101 2022	02 000 2022				0, 500 2022	20 dayo	, dayo	
				<u> </u>			<u> </u>		
F372-II	30-Nov-2022	02-Dec-2022				07-Dec-2022	28 days	7 days	1
2072-0	00-1404-2022	02-000-2022				07-200-2022	20 days	r days	•
						<u> </u>			
E372 I I	30 Nov 2022	02 Dec 2022				07 Dec 2022	28 days	7 days	✓
L372-0	30-1107-2022	02-060-2022				07-060-2022	20 days	7 days	•
E372-I I	30-Nov-2022	02-Dec 2022				07-Dec 2022	28 days	7 days	1
2372-0	30-140V-2022	02-060-2022				01-060-2022	20 days	r uays	•
	E318	E318 30-Nov-2022 E318 29-Nov-2022 E318 29-Nov-2022 E372-U 30-Nov-2022 E372-U 30-Nov-2022 E372-U 30-Nov-2022	E318 30-Nov-2022 03-Dec-2022 E318 29-Nov-2022 03-Dec-2022 E318 29-Nov-2022 03-Dec-2022 E372-U 30-Nov-2022 02-Dec-2022 E372-U 30-Nov-2022 02-Dec-2022 E372-U 30-Nov-2022 02-Dec-2022	E318 30-Nov-2022 03-Dec-2022 E318 29-Nov-2022 03-Dec-2022 E318 29-Nov-2022 03-Dec-2022 E372-U 30-Nov-2022 02-Dec-2022 E372-U 30-Nov-2022 02-Dec-2022 E372-U 30-Nov-2022 02-Dec-2022 E372-U 30-Nov-2022 02-Dec-2022	Barrel Preparation Date Rec Actual	E318 30-Nov-2022 03-Dec-2022 E318 29-Nov-2022 03-Dec-2022 E318 29-Nov-2022 03-Dec-2022 E318 29-Nov-2022 03-Dec-2022 E372-U 30-Nov-2022 02-Dec-2022 E372-U 30-Nov-2022 02-Dec-2022 E372-U 30-Nov-2022 02-Dec-2022 E372-U 30-Nov-2022 02-Dec-2022	Preparation Date Holding Times Eval Analysis Date Rec Actual	E318 30-Nov-2022 03-Dec-2022 03-Dec-2022 28 days	Preparation Date Holding Times Rec Actual Analysis Date Holding Times Rec Actual

Page : 11 of 30 Work Order : CG2216696

Client : Teck Coal Limited

latrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; 🔻	/ = Within	Holding T
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
LC_DCEF_WS_LAEMP_DRY_2022-11_N	E372-U	29-Nov-2022	02-Dec-2022				07-Dec-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) LC_FRUS_WS_LAEMP_DRY_2022-11_N	E372-U	29-Nov-2022	02-Dec-2022				07-Dec-2022	28 days	8 davs	1
20_1100_110_212		20 1101 2022	02 200 2022				0. 200 2022	20 44,0	o dayo	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
LC_CC1_WS_LAEMP_DRY_2022-11_NP	E421.Cr-L	30-Nov-2022	05-Dec-2022				05-Dec-2022	180	5 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved) LC FRB WS LAEMP DRY 2022-11 N	E421.Cr-L	30-Nov-2022	05-Dec-2022				05-Dec-2022	180	5 days	1
LC_FRB_W3_LAEMIF_DR1_2022-11_N	L421.01-L	30-1107-2022	03-Dec-2022				03-Dec-2022	days	Juays	•
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)								days		
HDPE - dissolved (lab preserved)										
LC_GRCK_WS_LAEMP_DRY_2022-11_N	E421.Cr-L	30-Nov-2022	05-Dec-2022				05-Dec-2022	180	5 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
LC_MT1_WS_LAEMP_DRY_2022-11_NP	E421.Cr-L	30-Nov-2022	05-Dec-2022				05-Dec-2022	180	5 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)	E421.Cr-L	29-Nov-2022	05-Dec-2022				05-Dec-2022	400	6 days	1
LC_DCEF_WS_LAEMP_DRY_2022-11_N	E421.CI-L	29-INOV-2022	05-Dec-2022				05-Dec-2022	180 days	o days	•
Discalled Metals a Discalled Chromium in Weter by CDC (CDMC (1 and 1 and 1)			and the second					uays		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level) HDPE - dissolved (lab preserved)										
LC_FRUS_WS_LAEMP_DRY_2022-11_N	E421.Cr-L	29-Nov-2022	05-Dec-2022				05-Dec-2022	180	6 days	✓
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
LC_CC1_WS_LAEMP_DRY_2022-11_NP	E509	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓

Page : 12 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Matrix: Water					E	valuation: × =	Holding time exce	edance ; •	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) LC_FRB_WS_LAEMP_DRY_2022-11_N	E509	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) LC_GRCK_WS_LAEMP_DRY_2022-11_N	E509	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) LC_MT1_WS_LAEMP_DRY_2022-11_NP	E509	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) LC_DCEF_WS_LAEMP_DRY_2022-11_N	E509	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	1
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) LC_FRUS_WS_LAEMP_DRY_2022-11_N	E509	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved) LC_CC1_WS_LAEMP_DRY_2022-11_NP	E421	30-Nov-2022	05-Dec-2022				05-Dec-2022	180 days	5 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved) LC_FRB_WS_LAEMP_DRY_2022-11_N	E421	30-Nov-2022	05-Dec-2022				05-Dec-2022	180 days	5 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved) LC_GRCK_WS_LAEMP_DRY_2022-11_N	E421	30-Nov-2022	05-Dec-2022				05-Dec-2022	180 days	5 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved) LC_MT1_WS_LAEMP_DRY_2022-11_NP	E421	30-Nov-2022	05-Dec-2022				05-Dec-2022	180 days	5 days	✓

Page : 13 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Matrix: Water					E۱	/aluation: ≭ =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved) LC_RD1_WS_LAEMP_DRY_2022-11_NP	E421	30-Nov-2022	05-Dec-2022				05-Dec-2022	180 days	5 days	√
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved) LC_DCEF_WS_LAEMP_DRY_2022-11_N	E421	29-Nov-2022	05-Dec-2022				05-Dec-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved) LC_FRUS_WS_LAEMP_DRY_2022-11_N	E421	29-Nov-2022	05-Dec-2022				05-Dec-2022	180 days	6 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid) LC_CC1_WS_LAEMP_DRY_2022-11_NP	E358-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	4
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid) LC_FRB_WS_LAEMP_DRY_2022-11_N	E358-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level										
Amber glass dissolved (sulfuric acid) LC_GRCK_WS_LAEMP_DRY_2022-11_N	E358-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level										
Amber glass dissolved (sulfuric acid) LC_MT1_WS_LAEMP_DRY_2022-11_NP	E358-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level										
Amber glass dissolved (sulfuric acid) LC_DCEF_WS_LAEMP_DRY_2022-11_N	E358-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid) LC_FRUS_WS_LAEMP_DRY_2022-11_N	E358-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓

Page : 14 of 30 Work Order : CG2216696

Client : Teck Coal Limited

latrix: Water					E	valuation: 🗴 =	Holding time exce	edance ; 🔹	= Within	Holding Tir
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)									
Amber glass total (sulfuric acid)										
LC_CC1_WS_LAEMP_DRY_2022-11_NP	E355-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)									
Amber glass total (sulfuric acid)										
LC_FRB_WS_LAEMP_DRY_2022-11_N	E355-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)									
Amber glass total (sulfuric acid)										
LC_GRCK_WS_LAEMP_DRY_2022-11_N	E355-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)									
Amber glass total (sulfuric acid)										
LC_MT1_WS_LAEMP_DRY_2022-11_NP	E355-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)									
Amber glass total (sulfuric acid)										
LC_RD1_WS_LAEMP_DRY_2022-11_NP	E355-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)									
Amber glass total (sulfuric acid)										
LC_DCEF_WS_LAEMP_DRY_2022-11_N	E355-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)						•			
Amber glass total (sulfuric acid)										
LC_FRUS_WS_LAEMP_DRY_2022-11_N	E355-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Physical Tests : Acidity by Titration										
HDPE										
LC_CC1_WS_LAEMP_DRY_2022-11_NP	E283	30-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	2 days	✓
Physical Tests : Acidity by Titration										
HDPE										
LC_FRB_WS_LAEMP_DRY_2022-11_N	E283	30-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	2 days	✓

Page : 15 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; 🔻	/ = Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation	Ana			sis	
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Acidity by Titration				I						
HDPE LC_GRCK_WS_LAEMP_DRY_2022-11_N	E283	30-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	2 days	✓
Physical Tests : Acidity by Titration										
HDPE LC_MT1_WS_LAEMP_DRY_2022-11_NP	E283	30-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	2 days	✓
Physical Tests : Acidity by Titration									1	
HDPE LC_RD1_WS_LAEMP_DRY_2022-11_NP	E283	30-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	2 days	✓
Physical Tests : Acidity by Titration										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-11_N	E283	29-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	3 days	✓
Physical Tests : Acidity by Titration										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-11_N	E283	29-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE LC_CC1_WS_LAEMP_DRY_2022-11_NP	E290	30-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE LC_FRB_WS_LAEMP_DRY_2022-11_N	E290	30-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-11_N	E290	30-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE LC_MT1_WS_LAEMP_DRY_2022-11_NP	E290	30-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	2 days	✓

Page : 16 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Matrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	Analysis	
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date	Holding		Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration								T		
HDPE LC_RD1_WS_LAEMP_DRY_2022-11_NP	E290	30-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-11_N	E290	29-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-11_N	E290	29-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	3 days	✓
Physical Tests : Conductivity in Water										
HDPE LC_CC1_WS_LAEMP_DRY_2022-11_NP	E100	30-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE LC_FRB_WS_LAEMP_DRY_2022-11_N	E100	30-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-11_N	E100	30-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE LC_MT1_WS_LAEMP_DRY_2022-11_NP	E100	30-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE LC_RD1_WS_LAEMP_DRY_2022-11_NP	E100	30-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-11_N	E100	29-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	3 days	✓

Page : 17 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Matrix: Water						/aluation: × =	Holding time exce			Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr				Analysis		
Container / Client Sample ID(s)			Preparation		Times	Eval	Analysis Date		g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water				ı						
HDPE LC_FRUS_WS_LAEMP_DRY_2022-11_N	E100	29-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	3 days	✓
Physical Tests : ORP by Electrode										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-11_N	E125	29-Nov-2022					03-Dec-2022	0.25 hrs	100 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-11_N	E125	29-Nov-2022					03-Dec-2022	0.25 hrs	100 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE LC_CC1_WS_LAEMP_DRY_2022-11_NP	E125	30-Nov-2022					03-Dec-2022	0.25 hrs	76 hrs	# EHTR-FM
Physical Tests : ORP by Electrode										
HDPE LC_FRB_WS_LAEMP_DRY_2022-11_N	E125	30-Nov-2022					03-Dec-2022	0.25 hrs	76 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-11_N	E125	30-Nov-2022					03-Dec-2022	0.25 hrs	76 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE LC_MT1_WS_LAEMP_DRY_2022-11_NP	E125	30-Nov-2022					03-Dec-2022	0.25 hrs	76 hrs	# EHTR-FM
Physical Tests : ORP by Electrode										
HDPE LC_RD1_WS_LAEMP_DRY_2022-11_NP	E125	30-Nov-2022					03-Dec-2022	0.25 hrs	76 hrs	# EHTR-FM
Physical Tests : pH by Meter										
HDPE LC_CC1_WS_LAEMP_DRY_2022-11_NP	E108	30-Nov-2022	02-Dec-2022				02-Dec-2022	0.25 hrs	0.26 hrs	* EHTR-FM

Page : 18 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Matrix: Water					Ev	/aluation: × =	Holding time excee	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analysis		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE										
LC_DCEF_WS_LAEMP_DRY_2022-11_N	E108	29-Nov-2022	02-Dec-2022				02-Dec-2022	0.25	0.26	x
								hrs	hrs	EHTR-FM
Physical Tests : pH by Meter										
HDPE										
LC_FRB_WS_LAEMP_DRY_2022-11_N	E108	30-Nov-2022	02-Dec-2022				02-Dec-2022	0.25	0.26	#
								hrs	hrs	EHTR-FM
Physical Tests : pH by Meter										
HDPE	E108	29-Nov-2022	02-Dec-2022				02-Dec-2022	0.05	0.00	*
LC_FRUS_WS_LAEMP_DRY_2022-11_N	L100	29-1100-2022	02-Dec-2022				02-Dec-2022	0.25 hrs	0.26 hrs	EHTR-FM
								1115	1115	LITTIX-I IVI
Physical Tests : pH by Meter HDPE								1		
LC GRCK WS LAEMP DRY 2022-11 N	E108	30-Nov-2022	02-Dec-2022				02-Dec-2022	0.25	0.26	×
			02 200 2022				02 200 2022	hrs	hrs	EHTR-FM
Physical Tests : pH by Meter								10		
HDPE					<u> </u>					
LC_MT1_WS_LAEMP_DRY_2022-11_NP	E108	30-Nov-2022	02-Dec-2022				02-Dec-2022	0.25	0.26	3c
								hrs	hrs	EHTR-FM
Physical Tests : pH by Meter										
HDPE										
LC_RD1_WS_LAEMP_DRY_2022-11_NP	E108	30-Nov-2022	02-Dec-2022				02-Dec-2022	0.25	0.26	st.
								hrs	hrs	EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE										
LC_CC1_WS_LAEMP_DRY_2022-11_NP	E162	30-Nov-2022					03-Dec-2022	7 days	3 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
LC_FRB_WS_LAEMP_DRY_2022-11_N	E162	30-Nov-2022					03-Dec-2022	7 days	3 days	✓
Physical Tests : TDS by Gravimetry										
HDPE	E400	00 N 0000					00 0 0000			
LC_GRCK_WS_LAEMP_DRY_2022-11_N	E162	30-Nov-2022					03-Dec-2022	7 days	3 days	✓

Page : 19 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Matrix: Water					E	/aluation: × =	Holding time exce	edance ;	✓ = Within	Holding Ti
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation	Analysis		sis		
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE										
LC_MT1_WS_LAEMP_DRY_2022-11_NP	E162	30-Nov-2022					03-Dec-2022	7 days	3 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
LC_RD1_WS_LAEMP_DRY_2022-11_NP	E162	30-Nov-2022					03-Dec-2022	7 days	3 days	✓
Physical Tests : TDS by Gravimetry								1		
HDPE										
LC_DCEF_WS_LAEMP_DRY_2022-11_N	E162	29-Nov-2022					03-Dec-2022	7 days	4 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
LC_FRUS_WS_LAEMP_DRY_2022-11_N	E162	29-Nov-2022					03-Dec-2022	7 days	4 days	✓
									,	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE							<u> </u>			
LC_DCEF_WS_LAEMP_DRY_2022-11_N	E160-L	29-Nov-2022					03-Dec-2022	7 days	4 days	1
20_5021 _W0_5/LIW _5/W_2022 W_W	2.002	20 1101 2022					00 200 2022	,	· aayo	
Plactic IT of a TOO by One to do do a locally										
Physical Tests : TSS by Gravimetry (Low Level) HDPE										
LC FRUS WS LAEMP DRY 2022-11 N	E160-L	29-Nov-2022					03-Dec-2022	7 days	4 days	1
LC_TNOS_WS_LALIWIF_DIXT_2022-TT_IX	E100-E	20-1101-2022					03-Dec-2022	1 days	4 days	Ť
Physical Tests : TSS by Gravimetry (Low Level)								1		
HDPE	E160-L	30-Nov-2022					06-Dec-2022	7 days	6 days	√
LC_CC1_WS_LAEMP_DRY_2022-11_NP	E100-L	30-INOV-2022					06-Dec-2022	7 days	6 days	•
Physical Tests : TSS by Gravimetry (Low Level)		1								
HDPE	E400 !	20 Nov. 2022					00 D 0000	7 -1-10	0 4-11	
LC_FRB_WS_LAEMP_DRY_2022-11_N	E160-L	30-Nov-2022					06-Dec-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
LC_GRCK_WS_LAEMP_DRY_2022-11_N	E160-L	30-Nov-2022					06-Dec-2022	7 days	6 days	✓

Page : 20 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Matrix: Water					Ev	valuation: × =	Holding time excee	edance ; 🛚	/ = Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation		Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry (Low Level)						ı				
HDPE LC_MT1_WS_LAEMP_DRY_2022-11_NP	E160-L	30-Nov-2022					06-Dec-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE LC_RD1_WS_LAEMP_DRY_2022-11_NP	E160-L	30-Nov-2022					06-Dec-2022	7 days	6 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE LC_CC1_WS_LAEMP_DRY_2022-11_NP	E121	30-Nov-2022					02-Dec-2022	3 days	2 days	4
Physical Tests : Turbidity by Nephelometry										
HDPE LC_DCEF_WS_LAEMP_DRY_2022-11_N	E121	29-Nov-2022					01-Dec-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE LC_FRB_WS_LAEMP_DRY_2022-11_N	E121	30-Nov-2022					02-Dec-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE LC_FRUS_WS_LAEMP_DRY_2022-11_N	E121	29-Nov-2022					01-Dec-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE LC_GRCK_WS_LAEMP_DRY_2022-11_N	E121	30-Nov-2022					02-Dec-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE LC_MT1_WS_LAEMP_DRY_2022-11_NP	E121	30-Nov-2022					02-Dec-2022	3 days	2 days	√
Physical Tests : Turbidity by Nephelometry										
HDPE LC_RD1_WS_LAEMP_DRY_2022-11_NP	E121	30-Nov-2022					02-Dec-2022	3 days	2 days	✓

Page : 21 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) **Holding Times** Eval Analysis Date Holding Times Eval Preparation Rec Actual Rec Actual Date Total Metals: Total Chromium in Water by CRC ICPMS (Low Level) HDPE - total (lab preserved) E420.Cr-L 30-Nov-2022 ✓ LC CC1 WS LAEMP DRY 2022-11 NP 04-Dec-2022 04-Dec-2022 180 4 days days Total Metals: Total Chromium in Water by CRC ICPMS (Low Level) HDPE - total (lab preserved) LC_FRB_WS_LAEMP_DRY_2022-11_N E420.Cr-L 30-Nov-2022 04-Dec-2022 04-Dec-2022 4 days ✓ 180 days Total Metals : Total Chromium in Water by CRC ICPMS (Low Level) HDPE - total (lab preserved) E420.Cr-L 30-Nov-2022 04-Dec-2022 04-Dec-2022 ✓ LC GRCK WS LAEMP DRY 2022-11 N 4 days 180 days Total Metals: Total Chromium in Water by CRC ICPMS (Low Level) HDPE - total (lab preserved) LC_MT1_WS_LAEMP_DRY_2022-11_NP E420.Cr-L 30-Nov-2022 04-Dec-2022 04-Dec-2022 4 days 180 days Total Metals : Total Chromium in Water by CRC ICPMS (Low Level) HDPE total (nitric acid) E420.Cr-L 30-Nov-2022 04-Dec-2022 04-Dec-2022 ✓ LC RD1 WS LAEMP DRY 2022-11 NP 180 4 days days Total Metals: Total Chromium in Water by CRC ICPMS (Low Level) HDPE - total (lab preserved) E420.Cr-L 29-Nov-2022 ✓ LC DCEF WS LAEMP DRY 2022-11 N 04-Dec-2022 04-Dec-2022 180 5 days ---days Total Metals : Total Chromium in Water by CRC ICPMS (Low Level) HDPE - total (lab preserved) LC FRUS WS LAEMP DRY 2022-11 N E420.Cr-L 04-Dec-2022 04-Dec-2022 ✓ 29-Nov-2022 5 days 180 days **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) LC_CC1_WS_LAEMP_DRY_2022-11_NP E508 30-Nov-2022 01-Dec-2022 01-Dec-2022 28 days 1 days ✓ **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) 01-Dec-2022 E508 30-Nov-2022 28 days | 1 days ✓ LC_FRB_WS_LAEMP_DRY_2022-11_N 01-Dec-2022

Page : 22 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation Date	Holding Rec	7 Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) LC_GRCK_WS_LAEMP_DRY_2022-11_N	E508	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) LC_MT1_WS_LAEMP_DRY_2022-11_NP	E508	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) LC_RD1_WS_LAEMP_DRY_2022-11_NP	E508	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) LC_DCEF_WS_LAEMP_DRY_2022-11_N	E508	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) LC_FRUS_WS_LAEMP_DRY_2022-11_N	E508	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Total Metals : Total metals in Water by CRC ICPMS										
HDPE - total (lab preserved) LC_CC1_WS_LAEMP_DRY_2022-11_NP	E420	30-Nov-2022	04-Dec-2022				04-Dec-2022	180 days	4 days	✓
Total Metals : Total metals in Water by CRC ICPMS										
HDPE - total (lab preserved) LC_FRB_WS_LAEMP_DRY_2022-11_N	E420	30-Nov-2022	04-Dec-2022				04-Dec-2022	180 days	4 days	✓
Total Metals : Total metals in Water by CRC ICPMS										
HDPE - total (lab preserved) LC_GRCK_WS_LAEMP_DRY_2022-11_N	E420	30-Nov-2022	04-Dec-2022				04-Dec-2022	180 days	4 days	✓
Total Metals : Total metals in Water by CRC ICPMS										
HDPE - total (lab preserved) LC_MT1_WS_LAEMP_DRY_2022-11_NP	E420	30-Nov-2022	04-Dec-2022				04-Dec-2022	180 days	4 days	✓

Page : 23 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

						raidatioiii	Troising time onco	, ,	**********	rieiunig iiii
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total metals in Water by CRC ICPMS										
HDPE total (nitric acid) LC_RD1_WS_LAEMP_DRY_2022-11_NP	E420	30-Nov-2022	04-Dec-2022				04-Dec-2022	180 days	4 days	✓
Total Metals : Total metals in Water by CRC ICPMS										
HDPE - total (lab preserved) LC_DCEF_WS_LAEMP_DRY_2022-11_N	E420	29-Nov-2022	04-Dec-2022				04-Dec-2022	180 days	5 days	√
Total Metals : Total metals in Water by CRC ICPMS										
HDPE - total (lab preserved) LC_FRUS_WS_LAEMP_DRY_2022-11_N	E420	29-Nov-2022	04-Dec-2022				04-Dec-2022	180 days	5 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended Rec. HT: ALS recommended hold time (see units).

Page : 24 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
aboratory Duplicates (DUP)							
Acidity by Titration	E283	765406	2	37	5.4	5.0	1
Alkalinity Species by Titration	E290	765590	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	764773	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	764810	1	9	11.1	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	764811	1	9	11.1	5.0	√
Conductivity in Water	E100	765588	1	20	5.0	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767115	1	19	5.2	5.0	√
Dissolved Mercury in Water by CVAAS	E509	764834	1	6	16.6	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	767114	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	764778	1	19	5.2	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	764740	1	18	5.5	5.0	√
Fluoride in Water by IC	E235.F	764809	1	9	11.1	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	764812	1	9	11.1	5.0	<u>√</u>
litrite in Water by IC (Low Level)	E235.NO2-L	764813	1	9	11.1	5.0	1
DRP by Electrode	E125	764762	1	20	5.0	5.0	√
H by Meter	E108	765589	1	20	5.0	5.0	1
Sulfate in Water by IC	E235.SO4	764814	1	9	11.1	5.0	1
TDS by Gravimetry	E162	765146	2	39	5.1	5.0	<u>√</u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	766892	1	17	5.8	5.0	1
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	765499	1	16	6.2	5.0	✓
Total Mercury in Water by CVAAS	E508	764833	1	7	14.2	5.0	1
otal metals in Water by CRC ICPMS	E420	766893	1	20	5.0	5.0	1
otal Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	764779	1	20	5.0	5.0	√
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	765467	2	40	5.0	5.0	1
Turbidity by Nephelometry	E121	764765	3	41	7.3	5.0	1
aboratory Control Samples (LCS)							
Acidity by Titration	E283	765406	2	37	5.4	5.0	1
Alkalinity Species by Titration	E290	765590	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	764773	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	764810	1	9	11.1	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	764811	1	9	11.1	5.0	1
Conductivity in Water	E100	765588	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767115	1	19	5.2	5.0	√
Dissolved Mercury in Water by CVAAS	E509	764834	1	6	16.6	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	767114	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	764778	1	19	5.2	5.0	✓

Page : 25 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Matrix: Water Quality Control Sample Type		Lvaluati	on: × = QC frequ	ount		<u> </u>	
	Method	QC Lot #	QC	Regular	Actual	Frequency (%) Expected	Evaluation
Analytical Methods	Wethou	QO LOI #	40	rtogulai	Actual	Lxpected	Evaluation
Laboratory Control Samples (LCS) - Continued		704740	4	40	5.5	5.0	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	764740	1	18	5.5	5.0	<u>√</u>
Fluoride in Water by IC	E235.F	764809	1	9	11.1	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	764812	1	9	11.1	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	764813	1	9	11.1	5.0	✓
ORP by Electrode	E125	764762	1	20	5.0	5.0	✓
pH by Meter	E108	765589	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	764814	1	9	11.1	5.0	✓
TDS by Gravimetry	E162	765146	2	39	5.1	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	766892	1	17	5.8	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	765499	1	16	6.2	5.0	✓
Total Mercury in Water by CVAAS	E508	764833	1	7	14.2	5.0	✓
Total metals in Water by CRC ICPMS	E420	766893	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	764779	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	765467	2	40	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	765142	2	36	5.5	5.0	✓
Turbidity by Nephelometry	E121	764765	3	41	7.3	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	765406	2	37	5.4	5.0	1
Alkalinity Species by Titration	E290	765590	1	20	5.0	5.0	
Ammonia by Fluorescence	E298	764773	1	20	5.0	5.0	<u> </u>
Bromide in Water by IC (Low Level)	E235.Br-L	764810	1	9	11.1	5.0	
Chloride in Water by IC (Low Level)	E235.CI-L	764811	1	9	11.1	5.0	<u> </u>
Conductivity in Water	E100	765588	1	20	5.0	5.0	<u> </u>
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767115	1	19	5.2	5.0	<u> </u>
Dissolved Mercury in Water by CVAAS	E509	764834	1	6	16.6	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	767114	1	20	5.0	5.0	<u> </u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	764778	1	19	5.2	5.0	<u> </u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	764740	1	18	5.5	5.0	<u> </u>
Fluoride in Water by IC	E235.F	764809	1	9	11.1	5.0	<u>√</u>
Nitrate in Water by IC (Low Level)	E235.NO3-L	764812	1	9	11.1	5.0	<u>√</u>
Nitrite in Water by IC (Low Level)	E235.NO3-L E235.NO2-L	764813	1	9	11.1	5.0	<u> </u>
Sulfate in Water by IC		764814	1	9	11.1	5.0	<u> </u>
•	E235.SO4	765146	2	39	5.1	5.0	√
TDS by Gravimetry Total Chromium in Water by CRC ICPMS (Low Level)	E162	765146	1	17	5.1	5.0	√
<u> </u>	E420.Cr-L	766892 765499			6.2	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318		1	16			<u>√</u>
Total Mercury in Water by CVAAS	E508	764833	1	7	14.2	5.0	<u>√</u>
Total metals in Water by CRC ICPMS	E420	766893	1	20	5.0	5.0	<u>√</u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	764779	1	20	5.0	5.0	<u>√</u>
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	765467	2	40	5.0	5.0	✓

Page : 26 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Matrix: Water		Evaluatio	n: × = QC freque	ency outside spe	ecification; ✓ = 0	QC frequency wit	hin specificatio
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
TSS by Gravimetry (Low Level)	E160-L	765142	2	36	5.5	5.0	✓
Turbidity by Nephelometry	E121	764765	3	41	7.3	5.0	√
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	764773	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	764810	1	9	11.1	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	764811	1	9	11.1	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767115	1	19	5.2	5.0	√
Dissolved Mercury in Water by CVAAS	E509	764834	1	6	16.6	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	767114	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	764778	1	19	5.2	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	764740	1	18	5.5	5.0	✓
Fluoride in Water by IC	E235.F	764809	1	9	11.1	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	764812	1	9	11.1	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	764813	1	9	11.1	5.0	√
Sulfate in Water by IC	E235.SO4	764814	1	9	11.1	5.0	√
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	766892	1	17	5.8	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	765499	1	16	6.2	5.0	✓
Total Mercury in Water by CVAAS	E508	764833	1	7	14.2	5.0	✓
Total metals in Water by CRC ICPMS	E420	766893	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	764779	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	765467	2	40	5.0	5.0	√

Page : 27 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Calgary - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
pH by Meter	E108	Water	APHA 4500-H (mod)	sample. Conductivity measurements are temperature-compensated to 25°C. pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
	Calgary - Environmental			results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L Calgary - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Calgary - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Chloride in Water by IC (Low Level)	E235.CI-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Fluoride in Water by IC	E235.F Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Sulfate in Water by IC	E235.SO4 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.

Page : 28 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate,
, main, opone 2, main.	L230		7.1.1.1.2020 2 (11104)	carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	Calgary - Environmental			alkalinity values.
Ammonia by Fluorescence	E298	Water	Method Fialab 100,	Ammonia in water is determined by automated continuous flow analysis with membrane
	Calgary - Environmental		2018	diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
Total Kjeldahl Nitrogen by Fluorescence (Low	E318	Water	Method Fialab 100.	This method is approved under US EPA 40 CFR Part 136 (May 2021) TKN in water is determined by automated continuous flow analysis with membrane
Level)	E316	Water	2018	diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
20.0.7	Calgary - Environmental		20.0	This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by	E355-L	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct
Combustion (Low Level)				measurement of TOC after an acidified sample has been purged to remove inorganic
	Calgary - Environmental			carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2.
				NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common),
				this method is more accurate and more reliable than the TOC by subtraction method (i.e.
				TC minus TIC).
Dissolved Organic Carbon by Combustion	E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a
(Low Level)	Calgary - Environmental			direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
	Calgary - Environmental			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are
				purged off with IC. For samples where the majority of DC (dissolved carbon) is
				comprised of IC (which is common), this method is more accurate and more reliable than
				the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated
mg/L)	Calgary - Environmental			persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry	E378-U	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab
(Ultra Trace Level 0.001 mg/L)	2070 0		,	or field filtered through a 0.45 micron membrane filter.
	Calgary - Environmental			·
				Field filtration is recommended to ensure test results represent conditions at time of
Total metals in Water by CRC ICPMS	F400	Water	EDA 000 0/0000	sampling.
Total filetals III Water by CRC ICPIVIS	E420	vvalei	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Calgary - Environmental		(mod)	Complete the control will be a
				Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Total Chromium in Water by CRC ICPMS (Low	E420.Cr-L	Water	EPA 200.2/6020B	Water samples are digested with nitric and hydrochloric acids, and analyzed by
Level)	Calgary - Environmental		(mod)	Collision/Reaction Cell ICPMS.
	Gaigary - Environmental			

Page : 29 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Calgary - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Calgary - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	АРНА 2340В	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Calgary - Environmental			

Page : 30 of 30 Work Order : CG2216696

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Calgary - Environmental			
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Calgary - Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : CG2216696 Page : 1 of 18

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Nicole Zathey
 Account Manager
 : Lyudmyla Shvets

:421 Pine Avenue Address :2559 29th Street NE

Sparwood BC Canada V0B 2G1 Calgary, Alberta Canada T1Y 7B5

Telephone : Telephone :+1 403 407 1800

Project :LINE CREEK OPERATION Date Samples Received :01-Dec-2022 09:00

Project : LINE CREEK OPERATION Date Samples Received : 01-Dec-2022 09:00
PO : VPO00816101 Date Analysis Commenced : 01-Dec-2022

C-O-C number : LAEMP DRY 2022-11 ALS Issue Date : 07-Dec-2022 17:54

Sampler :, Robin Valleau_

Site :----

Quote number : Teck Coal Master Quote

No. of samples analysed : 7

No. of samples analysed : 7

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Calgary Inorganics, Calgary, Alberta	
Elke Tabora		Calgary Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta	
Kevin Baxter	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta	
Kevin Baxter	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Calgary Metals, Calgary, Alberta	
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta	
Shirley Li	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta	
Shirley Li	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta	
Sonthuong Bui	Laboratory Analyst	Calgary Metals, Calgary, Alberta	

Page : 2 of 18 Work Order : CG2216696

Client : Teck Coal Limited

Project : LINE CREEK OPERATION

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 :
 3 of 18

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Limited

 Project
 :
 LINE CREEK OPERATION

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	ntory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 764762)										
CG2216691-003	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	297	306	2.92%	15%	
Physical Tests (QC	Lot: 764765)										
CG2216657-001	Anonymous	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR	
Physical Tests (QC	Lot: 765146)										
CG2216669-002	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	244	244	0.00%	20%	
Physical Tests (QC	Lot: 765401)										
CG2216663-001	Anonymous	turbidity		E121	0.10	NTU	1.82	1.85	1.74%	15%	
Physical Tests (QC	Lot: 765402)										
CG2216696-002	LC_MT1_WS_LAEMP_DR Y_2022-11_NP	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR	
Physical Tests (QC	Lot: 765406)										
CG2216683-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 765407)										
CG2216696-007	LC_DCEF_WS_LAEMP_D RY_2022-11_N	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC											
CG2216681-002	Anonymous	conductivity		E100	2.0	μS/cm	1550	1580	1.60%	10%	
Physical Tests (QC	Lot: 765589)										
CG2216681-002	Anonymous	рН		E108	0.10	pH units	7.76	7.74	0.258%	4%	
Physical Tests (QC	Lot: 765590)										
CG2216681-002	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	446	460	3.13%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	446	460	3.13%	20%	
Physical Tests (QC	Lot: 766414)										
CG2216688-001	Anonymous	solids, total dissolved [TDS]		E162	40	mg/L	2420	2520	4.17%	20%	
Anions and Nutrien	ts (QC Lot: 764740)										
CG2216696-001	LC_RD1_WS_LAEMP_DR Y_2022-11_NP	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 764773)										
CG2216689-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	

ALS

 Page
 :
 4 of 18

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (Dl	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	s (QC Lot: 764809)										
CG2216689-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.401	0.396	1.38%	20%	
Anions and Nutrient	s (QC Lot: 764810)										
CG2216689-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 764811)										
CG2216689-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.35	0.34	0.004	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 764812)										
CG2216689-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.251	0.252	0.159%	20%	
Anions and Nutrient	s (QC Lot: 764813)										
CG2216689-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 764814)										
CG2216689-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	85.3	84.8	0.593%	20%	
Anions and Nutrient	s (QC Lot: 765467)										
CG2216679-004	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 765468)										
CG2216696-004	LC_FRB_WS_LAEMP_DR Y_2022-11_N	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	0.0028	0.0008	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 765499)										
CG2216695-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	1.42	1.45	1.43%	20%	
Organic / Inorganic	Carbon (QC Lot: 764778										
CG2216689-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 764779										
CG2216689-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 764833)										
CG2216696-001	LC_RD1_WS_LAEMP_DR Y_2022-11_NP	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 766892)										
CG2216689-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00021	0.00029	0.00007	Diff <2x LOR	
Total Metals (QC Lo	ot: 766893)										
CG2216689-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0033	0.0061	0.0028	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00021	0.00013	0.00007	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0470	0.0477	1.53%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	

 Page
 :
 5 of 18

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Limited

 Project
 :
 LINE CREEK OPERATION

Sub-Matrix: Water	o-Matrix: Water					Labora	tory Duplicate (D	UP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier			
Total Metals (QC Lo	ot: 766893) - continued													
CG2216689-001	Anonymous	cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0088 μg/L	<0.0000050	0.0000038	Diff <2x LOR				
		calcium, total	7440-70-2	E420	0.050	mg/L	51.0	53.1	4.00%	20%				
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR				
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR				
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR				
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR				
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0044	0.0041	0.0003	Diff <2x LOR				
		magnesium, total	7439-95-4	E420	0.0050	mg/L	14.9	15.6	4.47%	20%				
		manganese, total	7439-96-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR				
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00108	0.00108	0.0389%	20%				
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	0.00051	0.00001	Diff <2x LOR				
		potassium, total	7440-09-7	E420	0.050	mg/L	0.311	0.307	0.004	Diff <2x LOR				
	selenium, total	7782-49-2	E420	0.000050	mg/L	3.91 µg/L	0.00379	2.99%	20%					
		silicon, total	7440-21-3	E420	0.10	mg/L	1.96	1.96	0.0285%	20%				
	silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR					
		sodium, total	7440-23-5	E420	0.050	mg/L	1.42	1.48	3.96%	20%				
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.199	0.203	1.84%	20%				
		sulfur, total	7704-34-9	E420	0.50	mg/L	31.8	31.5	1.11%	20%				
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR				
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR				
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR				
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00184	0.00189	2.44%	20%				
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR				
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR				
Dissolved Metals (C	QC Lot: 764834)													
CG2216696-002	LC_MT1_WS_LAEMP_DR Y 2022-11 NP	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR				
Dissolved Metals (C	QC Lot: 767114)													
CG2216696-002	LC_MT1_WS_LAEMP_DR Y_2022-11_NP	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR				
	_ _	antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR				
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR				
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.00038	0.00040	0.00002	Diff <2x LOR				
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR				
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR				

 Page
 :
 6 of 18

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Limited

 Project
 :
 LINE CREEK OPERATION

Laboratory Duplicate (DUP) Report Sub-Matrix: Water Laboratory sample ID Client sample ID Analyte CAS Number Method LOR Unit Original **Duplicate** RPD(%) or **Duplicate** Qualifier Difference Limits Result Result Dissolved Metals (QC Lot: 767114) - continued CG2216696-002 LC MT1 WS LAEMP DR boron, dissolved 7440-42-8 E421 0.010 mg/L <0.010 <0.010 0 Diff <2x LOR Y 2022-11 NP 7440-43-9 E421 0.0000050 <0.0050 µg/L < 0.0000050 0 Diff <2x LOR cadmium, dissolved mg/L 7440-70-2 E421 0.050 < 0.050 < 0.050 0 Diff <2x LOR calcium, dissolved mg/L 7440-48-4 E421 0.00010 mg/L <0.10 µg/L < 0.00010 0 Diff <2x LOR cobalt, dissolved Diff <2x LOR 7440-50-8 E421 0.00020 0.00051 0.00051 0.000006 copper, dissolved mg/L iron, dissolved 7439-89-6 E421 0.010 mg/L < 0.010 < 0.010 0 Diff <2x LOR <0.000050 < 0.000050 Diff <2x LOR 7439-92-1 E421 0.000050 0 lead, dissolved mg/L lithium, dissolved 7439-93-2 E421 0.0010 mg/L < 0.0010 < 0.0010 0 Diff <2x LOR magnesium, dissolved 7439-95-4 E421 0.0050 mg/L 0.0079 0.0075 0.0004 Diff <2x LOR 0.00005 7439-96-5 E421 0.00010 mg/L 0.00015 < 0.00010 Diff <2x LOR manganese, dissolved 7439-98-7 E421 0.000050 < 0.000050 < 0.000050 0 Diff <2x LOR molybdenum, dissolved mg/L Diff <2x LOR 7440-02-0 E421 0.00050 mg/L <0.00050 < 0.00050 0 nickel, dissolved 7440-09-7 E421 0.050 mg/L < 0.050 < 0.050 0 Diff <2x LOR potassium, dissolved ____ 7782-49-2 E421 0.000050 <0.050 µg/L < 0.000050 Diff <2x LOR 0 selenium, dissolved mg/L silicon, dissolved 7440-21-3 E421 0.050 mg/L < 0.050 < 0.050 0 Diff <2x LOR E421 0.000010 < 0.000010 Diff <2x LOR 7440-22-4 < 0.000010 0 silver, dissolved mg/L E421 0.277 0.007 Diff <2x LOR 7440-23-5 0.050 0.284 sodium, dissolved mg/L strontium, dissolved 7440-24-6 E421 0.00020 mg/L <0.00020 < 0.00020 0 Diff <2x LOR 7704-34-9 E421 0.50 < 0.50 < 0.50 Diff <2x LOR sulfur, dissolved mg/L 0 thallium, dissolved 7440-28-0 E421 0.000010 < 0.000010 < 0.000010 0 Diff <2x LOR mg/L Diff <2x LOR tin, dissolved 7440-31-5 E421 0.00010 mg/L 0.00025 0.00025 0.000003 titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 < 0.00030 0 Diff <2x LOR 7440-61-1 E421 0.000010 <0.000010 < 0.000010 0 Diff <2x LOR uranium, dissolved mg/L E421 0.00050 <0.00050 < 0.00050 Diff <2x LOR vanadium, dissolved 7440-62-2 mg/L 0 E421 Diff <2x LOR zinc, dissolved 7440-66-6 0.0010 mg/L < 0.0010 < 0.0010 0 ----Dissolved Metals (QC Lot: 767115) CG2216696-002 LC_MT1_WS_LAEMP_DR 7440-47-3 E421.Cr-L 0.00010 mg/L <0.00010 < 0.00010 0 Diff <2x LOR chromium, dissolved Y 2022-11 NP

 Page
 :
 7 of 18

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Limited

 Project
 :
 LINE CREEK OPERATION

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 764765)				riodari	
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 765142)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 765146)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 765401)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 765402)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 765406)					
acidity (as CaCO3)	E283	2	mg/L	2.2	
Physical Tests (QCLot: 765407)				•	
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 765588)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 765590)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 766409)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 766414)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 764740)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 764773)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 764809)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 764810)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	

 Page
 :
 8 of 18

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Limited

 Project
 :
 LINE CREEK OPERATION

Analyte	CAS Number Met	hod	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 764811)						
chloride	16887-00-6 E23	5.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 764812)						
nitrate (as N)	14797-55-8 E23	5.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 764813)						
nitrite (as N)	14797-65-0 E23	5.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 764814)						
sulfate (as SO4)	14808-79-8 E23	5.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 765467)						
phosphorus, total	7723-14-0 E37	'2-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 765468)						
phosphorus, total	7723-14-0 E37	2-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 765499)						
Kjeldahl nitrogen, total [TKN]	E31	8	0.05	mg/L	<0.050	
Organic / Inorganic Carbon (QCLot: 76	4778)					
carbon, dissolved organic [DOC]	E35	8-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 76	4779)					
carbon, total organic [TOC]	E35	5-L	0.5	mg/L	<0.50	
Fotal Metals (QCLot: 764833)						
mercury, total	7439-97-6 E50	8	0.000005	mg/L	<0.0000050	
Fotal Metals (QCLot: 766892)						
chromium, total	7440-47-3 E42	0.Cr-L	0.0001	mg/L	<0.00010	
Fotal Metals (QCLot: 766893)						
aluminum, total	7429-90-5 E42	0	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E42	0	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E42	0	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E42	0	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E42	0	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E42	0	0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E42	0	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E42	0	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E42	0	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E42	0	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E42	0	0.0005	mg/L	<0.00050	
iron, total	7439-89-6 E42	0	0.01	mg/L	<0.010	
lead, total	7439-92-1 E42		0.00005	mg/L	<0.000050	

 Page
 :
 9 of 18

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Limited

 Project
 :
 LINE CREEK OPERATION

Analyte	CAS Number	Method	L	LOR	Unit	Result	Qualifier
otal Metals (QCLot: 766893) - co	ntinued						
lithium, total	7439-93-2	E420	0	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.	.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.0	00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.	.0005	mg/L	<0.00050	
potassium, total	7440-09-7	E420	(0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0.0	00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420		0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.0	00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	(0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.	.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420		0.5	mg/L	<0.50	
thallium, total	7440-28-0	E420	0.0	00001	mg/L	<0.000010	
tin, total	7440-31-5	E420	0.	.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.	.0003	mg/L	<0.00030	
uranium, total	7440-61-1	E420	0.0	00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.	.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0	0.003	mg/L	<0.0030	
issolved Metals (QCLot: 764834)							
mercury, dissolved	7439-97-6	E509	0.0	000005	mg/L	<0.0000050	
issolved Metals (QCLot: 767114)							
aluminum, dissolved	7429-90-5	E421	0	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.	.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.	.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.	.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.0	00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9	E421	0.0	00005	mg/L	<0.000050	
boron, dissolved	7440-42-8	E421	(0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.0	000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	(0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.	.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.	.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6	E421	(0.01	mg/L	<0.010	
lead, dissolved	7439-92-1	E421	0.0	00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2	E421	0	0.001	mg/L	<0.0010	

 Page
 :
 10 of 18

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Limited

 Project
 :
 LINE CREEK OPERATION

ALS

Analyte	CAS Number	Method	LOF	R Unit	Result	Qualifier
Dissolved Metals (QCLot: 767114) - continued					
magnesium, dissolved	7439-95-4	E421	0.00	5 mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.000)1 mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.000	05 mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.000	05 mg/L	<0.00050	
potassium, dissolved	7440-09-7	E421	0.08	5 mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.000	05 mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.08	5 mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.000	01 mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.08	5 mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.000)2 mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.000	01 mg/L	<0.000010	
tin, dissolved	7440-31-5	E421	0.000)1 mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.000	03 mg/L	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000	01 mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.000	05 mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.00	1 mg/L	<0.0010	
Dissolved Metals (QCLot: 767115)					
chromium, dissolved	7440-47-3	E421.Cr-L	0.000)1 mg/L	<0.00010	

 Page
 :
 11 of 18

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Limited

 Project
 :
 LINE CREEK OPERATION

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	p-Matrix: Water					Laboratory Control Sample (LCS) Report				
				Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 764762)										
oxidation-reduction potential [ORP]	E125		mV	220 mV	99.8	95.4	104			
Physical Tests (QCLot: 764765)										
turbidity	E121	0.1	NTU	200 NTU	100.0	85.0	115			
Physical Tests (QCLot: 765142)										
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	94.8	85.0	115			
Physical Tests (QCLot: 765146)										
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	97.0	85.0	115			
Physical Tests (QCLot: 765401)										
turbidity	E121	0.1	NTU	200 NTU	102	85.0	115			
Physical Tests (QCLot: 765402)						25.0		1		
turbidity	E121	0.1	NTU	200 NTU	103	85.0	115			
Physical Tests (QCLot: 765406)	Food		"	"		05.0	445	1		
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	107	85.0	115			
Physical Tests (QCLot: 765407)	L-200		77 m/l			05.0	445	1		
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	107	85.0	115			
Physical Tests (QCLot: 765588)	E100	1	uS/om	440.0.04	00.7	90.0	110	ĺ		
conductivity	= 100	'	μS/cm	146.9 μS/cm	99.7	90.0	110			
Physical Tests (QCLot: 765589)	E108		pH units	7 11 14	404	98.6	101			
	[[100		pri units	7 pH units	101	90.0	101			
Physical Tests (QCLot: 765590) alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/l	104	85.0	115			
	2230		mg/L	500 mg/L	104	00.0	110			
Physical Tests (QCLot: 766409) solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	98.2	85.0	115			
	2.00 2		9/2	100 mg/L	30.2	30.0	1.0			
Physical Tests (QCLot: 766414) solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	94.4	85.0	115			
solido, total dissolved [126]	2.02		9/2	1000 Hig/L	04.4	55.5				
Anions and Nutrients (QCLot: 764740)										
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	0.03 mg/L	98.1	80.0	120			
Anions and Nutrients (QCLot: 764773)							I	I		
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	101	85.0	115			
Anions and Nutrients (QCLot: 764809)										
fluoride	16984-48-8 E235.F	0.02	mg/L	1 mg/L	102	90.0	110			
I control of the cont	I I	T	· -	ĭ	1		I	I		

 Page
 :
 12 of 18

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Limited

 Project
 :
 LINE CREEK OPERATION

Laboratory Control Sample (LCS) Report Sub-Matrix: Water Spike Recovery (%) Recovery Limits (%) CAS Number Method LOR Unit Qualifier Analyte Concentration LCS Low High Anions and Nutrients (QCLot: 764810) 24959-67-9 E235.Br-L 0.05 85.0 115 mg/L 0.5 mg/L 101 Anions and Nutrients (QCLot: 764811) chloride 16887-00-6 E235.CI-L 0.1 mg/L 90.0 110 100 mg/L 100 Anions and Nutrients (QCLot: 764812) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 764813) 14797-65-0 E235.NO2-L 0.001 nitrite (as N) mg/L 0.5 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 764814) 14808-79-8 E235.SO4 sulfate (as SO4) 0.3 mg/L 102 90.0 110 100 mg/L Anions and Nutrients (QCLot: 765467) 7723-14-0 E372-U 0.03 mg/L phosphorus, total 0.002 mg/L 102 0.08 120 Anions and Nutrients (QCLot: 765468) phosphorus, total 7723-14-0 E372-U 0.002 80.0 120 mg/L 0.03 mg/L 97.2 Anions and Nutrients (QCLot: 765499) ---- E318 Kjeldahl nitrogen, total [TKN] 0.05 mg/L 4 mg/L 99.3 75.0 125 Organic / Inorganic Carbon (QCLot: 764778) ---- E358-L 0.5 carbon, dissolved organic [DOC] mg/L 97.7 80.0 120 8.57 mg/L Organic / Inorganic Carbon (QCLot: 764779) carbon, total organic [TOC] ---- E355-L 0.5 mg/L 8.57 mg/L 104 0.08 120 Total Metals (QCLot: 764833) mercury, total 7439-97-6 E508 0.000005 80.0 120 mg/L 0.0001 mg/L 93.9 Total Metals (QCLot: 766892) chromium, total 7440-47-3 E420.Cr-L 0.0001 mg/L 0.25 mg/L 101 80.0 120 Total Metals (QCLot: 766893) 7429-90-5 E420 aluminum, total 0.003 mg/L 2 mg/L 106 80.0 120 antimony, total 7440-36-0 E420 0.0001 mg/L 1 mg/L 100 0.08 120 7440-38-2 E420 0.0001 mg/L 80.0 120 arsenic, total 1 mg/L 98.4 7440-39-3 E420 0.0001 mg/L 80.0 120 barium, total 0.25 mg/L 102 7440-41-7 E420 0.00002 80.0 120 beryllium, total mg/L 0.1 mg/L 97.5 7440-69-9 E420 0.00005 mg/L 80.0 120 bismuth, total 1 mg/L 100 boron, total 7440-42-8 E420 0.01 mg/L 80.0 120 1 mg/L 91.1 7440-43-9 E420 0.000005 mg/L 80.0 120 cadmium, total 0.1 mg/L 99.9 calcium, total 7440-70-2 E420 0.05 mg/L 97.2 80.0 120 50 mg/L 7440-48-4 E420 cobalt, total 0.0001 mg/L 0.08 120 0.25 mg/L 97.4

 Page
 :
 13 of 18

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Limited

copper, dissolved

iron, dissolved

LINE CREEK OPERATION Project Laboratory Control Sample (LCS) Report Sub-Matrix: Water Spike Recovery (%) Recovery Limits (%) CAS Number Method LOR Unit Qualifier Analyte Concentration LCS Low High Total Metals (QCLot: 766893) - continued 7440-50-8 E420 0.0005 80.0 120 copper, total mg/L 0.25 mg/L 100 7439-89-6 E420 0.01 mg/L 0.08 120 iron, total 1 mg/L 106 lead, total 7439-92-1 E420 0.00005 mg/L 0.5 mg/L 105 0.08 120 lithium, total 7439-93-2 E420 0.001 mg/L 0.25 mg/L 101 80.0 120 7439-95-4 E420 magnesium, total 0.005 mg/L 50 mg/L 99.5 80.0 120 manganese, total 7439-96-5 E420 0.0001 mg/L 0.25 mg/L 113 80.0 120 7439-98-7 E420 0.00005 120 molybdenum, total mg/L 0.25 mg/L 99.4 80.0 nickel, total 7440-02-0 E420 0.0005 mg/L 98.0 80.0 120 0.5 mg/L 7440-09-7 E420 0.05 80.0 120 mg/L potassium, total 50 mg/L 105 7782-49-2 E420 0.00005 80.0 120 selenium, total mg/L 94.7 1 mg/L 7440-21-3 E420 silicon, total 0.1 60.0 140 mg/L 10 mg/L 102 silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 95.2 80.0 120 7440-23-5 E420 0.05 0.08 120 sodium, total mg/L 50 mg/L 101 strontium, total 7440-24-6 E420 0.0002 mg/L 80.0 120 0.25 mg/L 101 7704-34-9 E420 sulfur, total 0.5 mg/L 50 mg/L 107 0.08 120 7440-28-0 E420 0.00001 80.0 120 thallium, total mg/L 1 mg/L 102 tin, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 101 80.0 120 7440-32-6 E420 0.0003 80.0 120 titanium, total mg/L 0.25 mg/L 97.8 7440-61-1 E420 0.00001 mg/L 80.0 120 uranium, total 0.005 mg/L 104 7440-62-2 E420 0.0005 80.0 120 mg/L vanadium, total 0.5 mg/L 103 7440-66-6 E420 0.003 80.0 120 zinc, total mg/L 0.5 mg/L 91.4 7439-97-6 E509 0.000005 80.0 120 mercury, dissolved mg/L 0.0001 mg/L 92.2 Dissolved Metals (QCLot: 767114) 7429-90-5 E421 aluminum, dissolved 0.001 mg/L 109 80.0 120 2 mg/L antimony, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 104 80.0 120 7440-38-2 E421 0.0001 80.0 120 arsenic, dissolved mg/L 1 mg/L 103 7440-39-3 E421 0.0001 mg/L 80.0 120 barium, dissolved 0.25 mg/L 105 7440-41-7 E421 0.00002 80.0 120 mg/L beryllium, dissolved 0.1 mg/L 105 7440-69-9 E421 0.00005 mg/L 96.6 80.0 120 bismuth, dissolved 1 mg/L 7440-42-8 E421 0.01 80.0 120 boron, dissolved mg/L 1 mg/L 96.3 cadmium, dissolved 7440-43-9 E421 0.000005 mg/L 101 0.08 120 0.1 mg/L calcium, dissolved 7440-70-2 E421 0.05 0.08 120 mg/L 50 mg/L 102 cobalt, dissolved 7440-48-4 E421 0.0001 mg/L 103 0.08 120 0.25 mg/L

0.0002

0.01

mg/L

mg/L

0.25 mg/L

1 mg/L

101

102

0.08

0.08

120

120

7440-50-8 E421

7439-89-6 E421

 Page
 :
 14 of 18

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Limited

 Project
 :
 LINE CREEK OPERATION

zinc, dissolved

chromium, dissolved

Dissolved Metals (QCLot: 767115)

Laboratory Control Sample (LCS) Report Sub-Matrix: Water Spike Recovery (%) Recovery Limits (%) CAS Number Method LOR Unit Qualifier Analyte Concentration LCS Low High Dissolved Metals (QCLot: 767114) - continued 7439-92-1 E421 0.00005 80.0 120 lead, dissolved mg/L 0.5 mg/L 99.0 7439-93-2 E421 0.001 mg/L 80.0 120 lithium, dissolved 0.25 mg/L 108 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 114 80.0 120 7439-96-5 E421 manganese, dissolved 0.0001 mg/L 0.25 mg/L 106 80.0 120 7439-98-7 E421 0.00005 molybdenum, dissolved mg/L 0.25 mg/L 101 80.0 120 7440-02-0 E421 0.0005 nickel, dissolved mg/L 0.5 mg/L 102 80.0 120 7440-09-7 E421 0.05 80.0 120 potassium, dissolved mg/L 50 mg/L 106 selenium, dissolved 7782-49-2 E421 0.00005 mg/L 1 mg/L 98.7 80.0 120 7440-21-3 E421 0.05 60.0 140 mg/L silicon, dissolved 10 mg/L 103 7440-22-4 E421 silver, dissolved 0.00001 mg/L 80.0 120 0.1 mg/L 95.5 7440-23-5 E421 120 0.05 mg/L 80.0 sodium, dissolved 50 mg/L 104 strontium, dissolved 7440-24-6 E421 0.0002 mg/L 0.25 mg/L 105 80.0 120 sulfur, dissolved 7704-34-9 E421 0.5 mg/L 50 mg/L 80.0 120 104 thallium, dissolved 7440-28-0 E421 0.00001 mg/L 95.9 80.0 120 1 mg/L 7440-31-5 E421 0.0001 tin, dissolved mg/L 0.5 mg/L 105 80.0 120 7440-32-6 E421 0.0003 mg/L 80.0 120 titanium, dissolved 0.25 mg/L 101 7440-61-1 E421 uranium, dissolved 0.00001 mg/L 0.005 mg/L 106 80.0 120 7440-62-2 E421 0.0005 80.0 mg/L 120 vanadium, dissolved 0.5 mg/L 107

0.001

0.0001

mg/L

mg/L

0.5 mg/L

0.25 mg/L

98.8

105

80.0

80.0

120

120

7440-66-6 E421

7440-47-3 E421.Cr-L

 Page
 :
 15 of 18

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Limited

 Project
 :
 LINE CREEK OPERATION

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report						
					Spi	ike	Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Anions and Nutri	ents (QCLot: 764740)										
CG2216696-002	LC_MT1_WS_LAEMP_DRY _2022-11_NP	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0520 mg/L	0.05 mg/L	104	70.0	130		
Anions and Nutri	ents (QCLot: 764773)										
CG2216689-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.105 mg/L	0.1 mg/L	105	75.0	125		
Anions and Nutri	ents (QCLot: 764809)										
CG2216689-002	Anonymous	fluoride	16984-48-8	E235.F	0.970 mg/L	1 mg/L	97.0	75.0	125		
Anions and Nutri	ents (QCLot: 764810)										
CG2216689-002	Anonymous	bromide	24959-67-9	E235.Br-L	0.479 mg/L	0.5 mg/L	95.8	75.0	125		
Anions and Nutri	ents (QCLot: 764811)										
CG2216689-002	Anonymous	chloride	16887-00-6	E235.CI-L	96.3 mg/L	100 mg/L	96.3	75.0	125		
Anions and Nutri	ents (QCLot: 764812)										
CG2216689-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.42 mg/L	2.5 mg/L	96.7	75.0	125		
Anions and Nutri	ents (QCLot: 764813)										
CG2216689-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.488 mg/L	0.5 mg/L	97.7	75.0	125		
Anions and Nutri	ents (QCLot: 764814)										
CG2216689-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	94.5 mg/L	100 mg/L	94.5	75.0	125		
Anions and Nutri	ents (QCLot: 765467)										
CG2216681-001	Anonymous	phosphorus, total	7723-14-0	E372-U	ND mg/L	0.05 mg/L	ND	70.0	130		
Anions and Nutri	ents (QCLot: 765468)										
CG2216696-005	LC_GRCK_WS_LAEMP_D RY_2022-11_N	phosphorus, total	7723-14-0	E372-U	0.0466 mg/L	0.05 mg/L	93.1	70.0	130		
Anions and Nutri	ents (QCLot: 765499)										
CG2216695-003	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.64 mg/L	2.5 mg/L	106	70.0	130		
Organic / Inorgar	nic Carbon (QCLot: 7647	778)									
CG2216689-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	5.43 mg/L	5 mg/L	108	70.0	130		
Organic / Inorgar	nic Carbon (QCLot: 7647	779)									
CG2216689-001	Anonymous	carbon, total organic [TOC]		E355-L	5.51 mg/L	5 mg/L	110	70.0	130		
Total Metals (QC	Lot: 764833)										

 Page
 :
 16 of 18

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Limited

 Project
 :
 LINE CREEK OPERATION

Matrix Spike (MS) Report Sub-Matrix: Water Recovery (%) Recovery Limits (%) Spike Laboratory sample Client sample ID Analyte CAS Number Method Concentration Target MS Low High Qualifier Total Metals (QCLot: 764833) - continued CG2216696-002 LC MT1 WS LAEMP DRY mercury, total 7439-97-6 E508 0.0000977 mg/L 0.0001 mg/L 97.7 70.0 130 2022-11 NP Total Metals (QCLot: 766892) CG2216689-002 Anonymous chromium, total 7440-47-3 E420.Cr-L 0.388 mg/L 96.9 70.0 130 0.4 mg/L Total Metals (QCLot: 766893) CG2216689-002 Anonymous aluminum, total 7429-90-5 E420 2.27 mg/L 2 mg/L 113 70.0 130 antimony, total 7440-36-0 E420 0.199 mg/L 0.2 mg/L 99.6 70.0 130 arsenic, total 7440-38-2 E420 0.190 mg/L 0.2 mg/L 95.0 70.0 130 barium, total E420 7440-39-3 0.198 mg/L 98.8 70.0 130 0.2 mg/L beryllium, total 7440-41-7 E420 0.394 mg/L 98.6 70.0 130 0.4 mg/L bismuth, total 7440-69-9 E420 0.108 mg/L 0.1 mg/L 108 70.0 130 boron, total 7440-42-8 E420 0.904 mg/L 90.4 70.0 130 1 mg/L cadmium, total 7440-43-9 E420 0.0404 mg/L 0.04 mg/L 101 70.0 130 calcium, total E420 7440-70-2 ND mg/L 40 mg/L ND 70.0 130 cobalt, total 7440-48-4 E420 0.186 mg/L 0.2 mg/L 92.8 70.0 130 copper, total 7440-50-8 E420 0.199 mg/L 0.2 mg/L 99.7 70.0 130 iron, total E420 7439-89-6 20.0 mg/L 20 mg/L 100 70.0 130 lead, total 7439-92-1 E420 0.199 mg/L 0.2 mg/L 99.6 70.0 130 lithium, total 7439-93-2 E420 0.923 mg/L 1 mg/L 92.3 70.0 130 magnesium, total E420 7439-95-4 ND mg/L 10 mg/L ND 70.0 130 manganese, total E420 7439-96-5 0.204 mg/L 0.2 mg/L 102 70.0 130 molybdenum, total 7439-98-7 E420 0.195 mg/L 0.2 mg/L 97.7 70.0 130 nickel, total 7440-02-0 E420 0.373 mg/L 0.4 mg/L 93.2 70.0 130 potassium, total 7440-09-7 E420 40 mg/L 40.3 mg/L 101 70.0 130 selenium, total 7782-49-2 E420 0.399 mg/L 0.4 mg/L 99.7 70.0 130 silicon, total 7440-21-3 E420 101 mg/L 100 mg/L 101 70.0 130 silver, total 7440-22-4 E420 0.0436 ma/L 0.04 mg/L 109 70.0 130 sodium, total 7440-23-5 E420 18.6 mg/L 20 mg/L 93.0 70.0 130 strontium, total 7440-24-6 E420 0.196 mg/L 98.0 70.0 130 0.2 mg/L sulfur, total 7704-34-9 E420 188 mg/L 200 mg/L 94.0 70.0 130 thallium, total 7440-28-0 E420 0.0410 mg/L 0.04 mg/L 102 70.0 130 tin, total 7440-31-5 E420 0.197 mg/L 0.2 mg/L 98.7 70.0 130 titanium, total 7440-32-6 E420 0.382 mg/L 0.4 mg/L 95.5 70.0 130 uranium, total 7440-61-1 E420 0.0419 mg/L 0.04 mg/L 105 70.0 130 vanadium, total 7440-62-2 E420 0.958 mg/L 95.8 70.0 130 1 mg/L

 Page
 :
 17 of 18

 Work Order
 :
 CG2216696

 Client
 :
 Teck Coal Limited

 Project
 :
 LINE CREEK OPERATION

Matrix Spike (MS) Report Sub-Matrix: Water Recovery (%) Recovery Limits (%) Spike Laboratory sample Client sample ID Analyte CAS Number Method Concentration Target MS Low High Qualifier Total Metals (QCLot: 766893) - continued CG2216689-002 Anonymous zinc, total 7440-66-6 E420 3.53 mg/L 4 mg/L 88.4 70.0 130 Dissolved Metals (QCLot: 764834) CG2216696-003 LC_CC1_WS_LAEMP_DRY mercury, dissolved 7439-97-6 E509 0.0000968 mg/L 0.0001 mg/L 96.8 70.0 130 2022-11 NP Dissolved Metals (QCLot: 767114) CG2216696-003 LC CC1 WS LAEMP DRY aluminum, dissolved E421 7429-90-5 2.09 mg/L 2 mg/L 104 70.0 130 _2022-11_NP antimony, dissolved 7440-36-0 E421 0.196 mg/L 0.2 mg/L 97.8 70.0 130 arsenic, dissolved 7440-38-2 E421 0.202 mg/L 0.2 mg/L 101 70.0 130 barium, dissolved E421 7440-39-3 98.9 70.0 0.198 mg/L 0.2 mg/L 130 beryllium, dissolved 7440-41-7 E421 0.432 mg/L 108 70.0 130 0.4 mg/L bismuth, dissolved 7440-69-9 E421 0.0957 mg/L 0.1 mg/L 95.7 70.0 130 boron, dissolved 7440-42-8 E421 0.962 mg/L 96.2 70.0 130 1 mg/L cadmium, dissolved 7440-43-9 E421 0.0398 mg/L 99.6 70.0 130 0.04 mg/L calcium, dissolved ND mg/L 7440-70-2 E421 ND 70.0 130 40 mg/L cobalt, dissolved 7440-48-4 E421 0.201 mg/L 0.2 mg/L 100 70.0 130 copper, dissolved 7440-50-8 E421 0.201 mg/L 100 70.0 130 0.2 mg/L iron, dissolved 7439-89-6 E421 19.3 mg/L 20 mg/L 96.7 70.0 130 lead, dissolved 7439-92-1 E421 0.195 mg/L 0.2 mg/L 97.5 70.0 130 lithium, dissolved 7439-93-2 E421 1.08 mg/L 1 mg/L 108 70.0 130 magnesium, dissolved 7439-95-4 E421 ND mg/L 10 mg/L ND 70.0 130 manganese, dissolved E421 0.2 mg/L 7439-96-5 0.206 mg/L 103 70.0 130 molybdenum, dissolved 7439-98-7 E421 0.212 mg/L 106 70.0 130 0.2 mg/L nickel, dissolved 7440-02-0 E421 0.400 mg/L 0.4 mg/L 100 70.0 130 potassium, dissolved 7440-09-7 E421 40.7 mg/L 40 mg/L 102 70.0 130 selenium, dissolved 7782-49-2 E421 0.394 mg/L 0.4 mg/L 98.6 70.0 130 silicon, dissolved 7440-21-3 E421 96.8 mg/L 100 mg/L 96.8 70.0 130 silver, dissolved 7440-22-4 E421 0.0408 ma/L 0.04 mg/L 102 70.0 130 sodium, dissolved 7440-23-5 E421 21.5 mg/L 20 mg/L 108 70.0 130 strontium, dissolved 7440-24-6 E421 0.213 mg/L 106 70.0 130 0.2 mg/L sulfur, dissolved 7704-34-9 E421 195 mg/L 70.0 130 200 mg/L 97.5 thallium, dissolved 7440-28-0 E421 0.0378 mg/L 0.04 mg/L 94.6 70.0 130 tin, dissolved 7440-31-5 E421 0.195 mg/L 97.7 70.0 130 0.2 mg/L titanium, dissolved 7440-32-6 E421 0.371 mg/L 0.4 mg/L 92.7 70.0 130 uranium, dissolved 7440-61-1 E421 0.0428 mg/L 0.04 mg/L 107 70.0 130 vanadium, dissolved 7440-62-2 E421 102 70.0 130 1.02 mg/L 1 mg/L

Page 18 of 18 CG2216696 Work Order: Client

Teck Coal Limited

Sub-Matrix: Water	Matrix: Water				Matrix Spike (MS) Report						
				Spike Recovery (%)		Recovery	Recovery Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Dissolved Metals (QCLot: 767114) - continued											
CG2216696-003	LC_CC1_WS_LAEMP_DRY	zinc, dissolved	7440-66-6	E421	3.84 mg/L	4 mg/L	96.0	70.0	130		
Dissolved Metals	issolved Metals (QCLot: 767115)										
CG2216696-003	LC_CC1_WS_LAEMP_DRY _2022-11_NP	chromium, dissolved	7440-47-3	E421.Cr-L	0.407 mg/L	0.4 mg/L	102	70.0	130		

Teck LAEMP DRY 2022-11 ALS RUSH N/A COC ID: TURNAROUND TIME: Regulat PROJECT/CLIENT INFO OTHER INFO LABORATORY Lab Name ALS Facility Name / Job# Line Creek Operation Report Format / Distribution Excel Project Manager Nicole Zathey Email Lyudmyla.Shvets@ALSGlobal.com Email 2: teckcoal@equisonlinc.com Address Box 2003 Address 2559 29 Street NE Email 3 Teck Lab Results@teck.co 15km North Hwy 43 Email 4: Hannah.Penner@teck.co BC Province City Calgary AB Email 5: City Sparwood Province aquascilab@teck.com Postal Code T1Y 7B5 V0B 2G0 Country Canada Country Canada Email 6: lborwon@minnow.ca **Environmental Division** Phone Number 1-403-407-1781 -425-8478 VPO00816101 PO number Calgary SAMPLE DETAILS ANALYSIS REQUESTED Filtered - F: Field, L: Lab, F Work Order Reference N N N CG2216696 H2SO4 HCL HCL HNO3 HNO3 NONE H2SO4 Hazardous Material (Yes/No) FECKCOAL_ROUTIN TECKCOAL_METNH G_D FECKCOAL_METNH G_T TOC_TKN_NH3_TP Mercury_Dissolved Mercury_Total Telephone: +1 403 407 1800 G=Grab Sample Location Field Time C=Com # Of Date 36 Matrix (24hr) Sample ID (sys loc code) Cont 90490 LC RD1 WS LAEMP DRY 2022-#DIAM TP2 #NAM 2022/11/94 LC RD1 WS G 1 1 1 1 11 NP LCMTI_WS-LAFMP_DRY 2022/11/16 10:30 × LC-MT w s G × X × × × × LC. CCI-WS-LAEMP-DRY 2022/11/20 #PEASM W 5 × LCCCI X X X × 10:30 X X 7 10 1011-11-NP C- FRB.WS -LAEMP-DRY-2022 11 200 10:30 #NAM LCFRB W S 6 × X × × አ x 2022-11-N **7**€? LC-GRCK. WS-LAGHP-DRY #NAM 7 E2 2022/11/20 10:30 LC-GRCK WS K X × × 4 1 LC-FRUS-WS-LAEMP-PRY-#NAM G 2022/11/28 13:30 × × LC-FRUS WS ~ * × ~ × 7 E? C- DOEF - WS - LACHT - DRY -#NAM 2022 11 29 [0:30 LC PCEF WS × × × X X × × #NAM #NAM #NAM ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS RELINQUISHED BY/AFFILIATION DATE/TIME ACCEPTED BY/AFFILIATION DATE/TIME BOURDBIN VALLEAU NOV 3012022 nunnas SERVICE REQUEST (rush - subject to availability) Klalleur Regular (default) 46 970.7535 Sampler's Name Mobile # Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge 2012. Sampler's Signature Date/Time

For Emergency <1 Day, ASAP or Weekend - Contact ALS

SELENIUM SPECIATION

BAL Final Report 2205247 (Finalized 02-June-22)

18804 North Creek Parkway, Ste 100, Bothell, WA 98011 • USA • T: 206 632 6206 F: 206 632 6017 • info@brooksapplied.com

June 2, 2022

Confidential

Teck Resources Limited - Vancouver Mike Pope 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 mike.pope@teck.com

Re: Line creek operations

Dear Mike Pope,

On May 19, 2022, Brooks Applied Labs (BAL) received four (4) aqueous samples. The samples were loggedin for total recoverable selenium [Se], dissolved Se [Se], and Se speciation analyses, according to the chainof-custody (COC) form.

The sample fractions for total recoverable Se and dissolved Se were not preserved in the field. The samples were preserved (pH < 2) upon receipt at BAL. All sample fractions for total recoverable Se and dissolved Se were preserved within the (14 calendar day) preservation holding time.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable Se and Dissolved Se

Each aqueous sample fraction for dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Selenium Speciation

Each aqueous sample was analyzed for selenium speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenocyanate [SeCN], methylseleninic selenite [Se(IV)], selenate acid [MeSe(IV)]. [Se(VI)]. selenomethionine methaneselenonic acid [MeSe(VI)], [SeMet], selenosulfate [SeSO₃], dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk Se Sp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional selenium

Confidential BAL Final Report 2205247

species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting selenium species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances where a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the relative percent difference (RPD) of the MS/MSD set was not calculated (N/C).

In cases when either the native sample concentration was non-detectable (reported as less than or equal to the MDL) and/or the corresponding DUP result was also non-detectable, the RPD between the two values was not calculated (**N/C**).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited meet all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager

Jeremy@brooksapplied.com

Confidential

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BROOKS APPLIED BAL Final Report 2205247 Client PM: Mike Pope Client Project: Line creek operations

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Confidential

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205247
Client PM: Mike Pope
Client Project: Line creek operations

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard) Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)				
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn				
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn				
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn				
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn				
BAL-5000	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness				
	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn				
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn				
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn				
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury				
EPA 1630	Non-Potable Waters	Methyl Mercury				
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury				
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs				
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)				
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)				
SM2340B	Non-Potable Waters	Hardness				

Confidential

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205247 Client PM: Mike Pope Client Project: Line creek operations

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)					
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn					
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)					
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)					
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury					
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury					
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)					
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)					
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb					
5.1. 4466	Non-Potable Waters	As(III), As(V), DMAs, MMAs					
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)					
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)					
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet					
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)					
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)					
SM2340B	Non-Potable Waters	Hardness					
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight					

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205247
Client PM: Mike Pope
Client Project: Line creek operations

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
LC_FRUS_WS_LAEMP_LCO_DRY_ 2022-05_NP	2205247-01	WS	Sample	05/11/2022	05/19/2022
LC_FRUS_WS_LAEMP_LCO_DRY_ 2022-05_NP	2205247-02	WS	Sample	05/11/2022	05/19/2022
LC_FRUS_WS_LAEMP_LCO_DRY_ 2022-05 NP	2205247-03	WS	Sample	05/11/2022	05/19/2022
 LC_GRCK_WS_LAEMP_LCO_DRY_ 2022-05 NP	2205247-04	WS	Sample	05/11/2022	05/19/2022
 LC_GRCK_WS_LAEMP_LCO_DRY_ 2022-05 NP	2205247-05	WS	Sample	05/11/2022	05/19/2022
 LC_GRCK_WS_LAEMP_LCO_DRY_ 2022-05 NP	2205247-06	WS	Sample	05/11/2022	05/19/2022

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	05/19/2022	05/20/2022	B221103	S220553
MeSe(IV)	Water	SOP BAL-4201	05/19/2022	05/20/2022	B221103	S220553
MeSe(VI)	Water	SOP BAL-4201	05/19/2022	05/20/2022	B221103	S220553
Se	Water	EPA 1638 Mod	05/20/2022	05/23/2022	B221118	S220564
Se(IV)	Water	SOP BAL-4201	05/19/2022	05/20/2022	B221103	S220553
Se(VI)	Water	SOP BAL-4201	05/19/2022	05/20/2022	B221103	S220553
SeCN	Water	SOP BAL-4201	05/19/2022	05/20/2022	B221103	S220553
SeMet	Water	SOP BAL-4201	05/19/2022	05/20/2022	B221103	S220553
SeSO3	Water	SOP BAL-4201	05/19/2022	05/20/2022	B221103	S220553
Unk Se Sp	Water	SOP BAL-4201	05/19/2022	05/20/2022	B221103	S220553

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205247
Client PM: Mike Pope
Client Project: Line creek operations

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence			
LC FRUS WS	LAEMP LCO	DRY 2022-05 NF	•										
2205247-01	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221103	S220553			
2205247-01	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221103	S220553			
2205247-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221103	S220553			
2205247-01	Se(IV)	WS	D	0.175		0.010	0.075	μg/L	B221103	S220553			
2205247-01	Se(VI)	WS	D	52.7		0.010	0.055	μg/L	B221103	S220553			
2205247-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221103	S220553			
2205247-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221103	S220553			
2205247-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221103	S220553			
2205247-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221103	S220553			
I C FRIIS WS	LC_FRUS_WS_LAEMP_LCO_DRY_2022-05_NP												
2205247-02	_ <i></i> Se	_ D .(1_2022-00_/\) WS	D	49.0		0.165	0.528	μg/L	B221118	S220564			
2200241-02	00	***	Б	40.0		0.100	0.020	µ9/∟	BZZTTTO	0220004			
LC_FRUS_WS	_LAEMP_LCO	_DRY_2022-05_NF	•										
2205247-03	Se	WS	TR	49.4		0.165	0.528	μg/L	B221118	S220564			
LC GRCK WS LAEMP LCO DRY 2022-05 NP													
2205247-04	DMSeO	_ <i>DR1_2022-03_N</i> WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221103	S220553			
2205247-04	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221103	S220553			
2205247-04	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221103	S220553			
2205247-04	Se(IV)	WS	D	0.033	J	0.010	0.075	μg/L	B221103	S220553			
2205247-04	Se(VI)	WS	D	1.52	-	0.010	0.055	μg/L	B221103	S220553			
2205247-04	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221103	S220553			
2205247-04	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221103	S220553			
2205247-04	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221103	S220553			
2205247-04	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221103	S220553			
10 0001/ 11/0		DDV 2020 05 **	n										
		_DRY_2022-05_N		4.00		0.465	0.500	/1	D004440	0000504			
2205247-05	Se	WS	D	1.68		0.165	0.528	μg/L	B221118	S220564			
LC_GRCK_WS_LAEMP_LCO_DRY_2022-05_NP													
2205247-06	Se	WS	TR	1.79		0.165	0.528	μg/L	B221118	S220564			

BAL Final Report 2205247
Client PM: Mike Pope
Client Project: Line creek operations

Accuracy & Precision Summary

Batch: B221103 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B221103-BS1	Blank Spike, (2124033)						
	MeSe(IV)		5.095	5.515	μg/L	108% 75-125	
	Se(IV)		5.000	4.996	μg/L	100% 75-125	
	Se(VI)		5.000	4.875	μg/L	98% 75-125	
	SeCN		5.015	4.810	μg/L	96% 75-125	
	SeMet		4.932	4.935	μg/L	100% 75-125	
B221103-DUP4	Duplicate, (2205247-04)						
	DMSeO	ND		ND	μg/L		N/C 25
	MeSe(IV)	ND		ND	μg/L		N/C 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	0.033		0.027	μg/L		22% 25
	Se(VI)	1.520		1.490	μg/L		2% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B221103-MS4	Matrix Spike, (2205247-0	4)					
	Se(IV)	0.033	4.900	4.741	μg/L	96% 75-125	
	Se(VI)	1.520	5.100	6.358	μg/L	95% 75-125	
	SeCN	ND	1.962	1.703	μg/L	87% 75-125	
	SeMet	ND	1.977	1.835	μg/L	93% 75-125	
B221103-MSD4	Matrix Spike Duplicate, (2205247-04	1				
	Se(IV)	0.033	, 4.900	4.693	μg/L	95% 75-125	1% 25
	Se(VI)	1.520	5.100	6.366	μg/L	95% 75-125	0.1% 25
	SeCN	ND	1.962	1.725	μg/L	88% 75-125	1% 25
	SeMet	ND	1.977	1.824	μg/L	92% 75-125	0.6% 25

BAL Final Report 2205247
Client PM: Mike Pope
Client Project: Line creek operations

Accuracy & Precision Summary

Batch: B221118 Lab Matrix: Water Method: EPA 1638 Mod

Sample B221118-BS1	Analyte	Native	Spike	Result	Units	REC &	Limits	RPD & Limits
B221110-B31	Blank Spike, (2128022) Se		200.0	195.1	μg/L	98%	75-125	
B221118-BS2	Blank Spike, (2128022) Se		200.0	195.9	μg/L	98%	75-125	
B221118-BS3	Blank Spike, (2128022) Se		200.0	197.9	μg/L	99%	75-125	
B221118-SRM1	Reference Material (21450	11, TMDA 5				-	75.405	
	Se		14.30	13.87	μg/L	97%	75-125	
B221118-SRM2	Reference Material (21450) Se	11, TMDA 5	1.5 Reference 14.30	Standard - 14.08	- Bottle 10 - μg/L	•	75-125	
B221118-SRM3	Reference Material (21450	11, TMDA 5	1.5 Reference 14.30	Standard - 13.91	- Bottle 10 - μg/L	•	75-125	
B221118-DUP3	Duplicate, (2205247-06) Se	1.793		1.721	μg/L			4% 20
B221118-MS3	Matrix Spike, (2205247-06) Se	1.793	220.0	216.5	μg/L	98%	75-125	
B221118-MSD3	Matrix Spike Duplicate, (2:	205247-06) 1.793	220.0	221.6	μg/L	100%	75-125	2% 20

BAL Final Report 2205247
Client PM: Mike Pope
Client Project: Line creek operations

Method Blanks & Reporting Limits

Batch: B221103 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

Sample	Result	Units
B221103-BLK1	0.00	μg/L
B221103-BLK2	0.00	μg/L
B221103-BLK3	0.00	μg/L
B221103-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

Sample	Result	Units
B221103-BLK1	0.00	μg/L
B221103-BLK2	0.00	μg/L
B221103-BLK3	0.00	μg/L
B221103-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

Sample	Result	Units
B221103-BLK1	0.00	μg/L
B221103-BLK2	0.00	μg/L
B221103-BLK3	0.00	μg/L
B221103-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

BAL Final Report 2205247
Client PM: Mike Pope
Client Project: Line creek operations

Method Blanks & Reporting Limits

Analyte: Se(IV)

Sample	Result	Units
B221103-BLK1	0.00	μg/L
B221103-BLK2	0.00	μg/L
B221103-BLK3	0.00	μg/L
B221103-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Analyte: Se(VI)

Sample	Result	Units
B221103-BLK1	0.00	μg/L
B221103-BLK2	0.00	μg/L
B221103-BLK3	0.00	μg/L
B221103-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Sample	Result	Units
B221103-BLK1	0.00	μg/L
B221103-BLK2	0.00	μg/L
B221103-BLK3	0.00	μg/L
B221103-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B221103-BLK1	0.00	μg/L
B221103-BLK2	0.00	μg/L
B221103-BLK3	0.00	μg/L
B221103-BI K4	0.00	ua/l

Average: 0.000 **MDL:** 0.002 **Limit:** 0.005 **MRL:** 0.005

BAL Final Report 2205247 Client PM: Mike Pope Client Project: Line creek operations

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B221103-BLK1	0.00	μg/L
B221103-BLK2	0.00	μg/L
B221103-BLK3	0.00	μg/L
B221103-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B221103-BLK1	0.00	μg/L
B221103-BLK2	0.00	μg/L
B221103-BLK3	0.00	μg/L
B221103-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205247 Client PM: Mike Pope Client Project: Line creek operations

Method Blanks & Reporting Limits

Batch: B221118 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B221118-BLK1	0.097	μg/L
B221118-BLK2	0.071	μg/L
B221118-BLK3	0.083	μg/L
B221118-BLK4	0.028	μg/L

Average: 0.070 **MDL:** 0.150 **Limit:** 0.480 **MRL:** 0.480

BAL Final Report 2205247
Client PM: Mike Pope
Client Project: Line creek operations

2205247

Sample Containers

Sam	ID: 2205247-01 ple: FRUS_WS_LAEMP_LCO_DR\	/ 2022-05 NP		Report Matrix: WS Sample Type: Sample + Sum	Collected: 05/11/2022 Received: 05/19/2022				
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 5 - 2205247		
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 5 - 2205247		
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 5 - 2205247		
Sam	ID: 2205247-02 ple: FRUS WS LAEMP LCO DRY	/ 2022-05 NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 05/11/2022 ived: 05/19/2022		
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2152004	<2	Cooler 5 - 2205247		
Sam	ID: 2205247-03 ple: FRUS WS LAEMP LCO DRY	/ 2022-05 NP		Report Matrix: WS Sample Type: Sample + Sum	Collected: 05/11/2022 Received: 05/19/2022				
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2152004	<2	Cooler 5 - 2205247		
Lab ID: 2205247-04 Sample: LC GRCK WS LAEMP LCO DRY 2022-05 NP				Report Matrix: WS Sample Type: Sample + Sum			cted: 05/11/2022 ived: 05/19/2022		
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 5 - 2205247		
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 5 - 2205247		
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 5 -		

Project ID: TRL-VC2101 **PM**: Jeremy Maute

BAL Final Report 2205247 Client PM: Mike Pope Client Project: Line creek operations

Sample Containers

Lab ID: 2205247-05

Sample:

LC_GRCK_WS_LAEMP_LCO_DRY_2022-05_NP

Des Container

Client-Provided - TM 40 mL

Report Matrix: WS
Sample Type: Sample + Sum

Lot Preservation na 10% HNO3 (BAL)

ation P-Lot

P-Lot pH 2152004 <2

Cooler 5 -2205247

Collected: 05/11/2022 Received: 05/19/2022

Collected: 05/11/2022

Received: 05/19/2022

Ship. Cont.

Lab ID: 2205247-06

Sample:

LC_GRCK_WS_LAEMP_LCO_DRY_2022-05_NP

Des Container Size
A Client-Provided - TM 40 mL

Report Matrix: WS

Lot

na

Sample Type: Sample + Sum

Preservation 10% HNO3 (BAL) P-Lot 2152004 pH Ship. Cont. <2 Cooler 5 -

2205247

Shipping Containers

Cooler 5 - 2205247

Received: May 19, 2022 7:00

Tracking No: PAPS#RWHV99228 via Courier

Coolant Type: Ice Temperature: 1.8 °C Description: Large Cooler Damaged in transit? No Returned to client? No Comments: IR#33 Custody seals present? No Custody seals intact? No COC present? Yes

	The second secon	— ** ** ** ** ** ** ** ** ** ** ** ** **
11.5	and the second	_
		_

ieck	COC ID:	LCO Dry	LAEN	4P_2022_MAY	Brooks	TURN	AROUND	TIM	1E:							RUSH				
PRO	PROJECT/CLIENT INFO				LABORATORY				THE ROOM				OTHE	RINFO		110				
Facility Name / Job#	Line creek operations						Lab Name	Broo	ks App	plied La	bs		Re	port Fo	rmat / D	istributio	on	Excel	PDF	EDD
Project Manager	Mike Pope					La	b Contact	Ben ¹	Wozni	ak			Ema	ail 1:				¥	X	X
Email	Mike Pope@teck.com						Email	Ben@	@broo	ksappli	ed.com		Ema	ail 2:	teckcual?	equisoniu	ie.comi			N
Address	421 Pine Ave						Address	1880	4 Nort	h Creek	Parkway		Ema	ail 3:		Results@t		X	X	1.
								Suite	100				Ema	ail 4:		Labilited		x	X	1
City	Sparw	ond.		Province BC			City	Both	ell		Province	WA	Ema	ail 5:	-	aminnaw.		x	X"	T _V
Postal Code	V0B	2G0		Country Can	ada '	Po	ostal Code	9801	1		Country	United	Ema	ail 6:			minnow o	x		l _v
Phone Number	250-425-8202					Phon	e Number	(206)	753-6	5158	-	-	PO nu	umber	Lorenta	-11-5-11-11-11-11-11-11-11-11-11-11-11-1	748	540		
	SAMPLE DE	TAILS	1040	No.			Dec Street	I de	SEC	ANA	LYSIS RE	QUESTI	ED		The same	1	ternif P. Can	of the Labor P	C. Child in	Lab. No. S
								1	P	y	N					+				
								2												
			9					MINI	N	N	N									
			es/N					Ĩ		A		BS.001752755790			83	200 70			2.74	
			faterial (Y					3.00	peciation											
Sample ID	Sample Location (sys loc code)	Field Matrix	Hazardous Material (Yes/No)	Date	Time (24hr)	G=Grab C=Com	# Of Cont.	TEAT	Brooks_Se_Speciation	Brooks_Se_D	Brooks_Se_T									
LC_FRUS_WS_LAEMP_LCO_DRY_2022-05_NP	I.C FRUS	ws	No	11-May-22	10:30	G	1		1											+-
LC_FRUS_WS_LAEMP_LCO_DRY_2022-05_NP	LC FRUS	ws	No	11-May-22	10:30	G	2			1	1									
LC_GRCK_WS_LAEMP_LCO_DRY_2022-05_NP	LC_GRCK	ws	No	11-May-22	13:30	G	1		1											
LC_GRCK_WS_LAEMP_LCO_DRY_2022-05_NP	LC_GRCK	WS	No	11-May-22	13:30	G	2			1	1	-				-				+
						-			-		-				-					-
Α.																				
ADDITIONAL COMMENTS/SPECIAL	INSTRUCTIONS			RELINQU	Vallegu	ILIATION	SITE OF STREET	-		11ME 2022	ACC	AN	BYIAFI	BLIATI	ON	61	bii.i	TETTI	1100	
											U	1		,		21	MILUE		Doc	
SERVICE REQUEST (rush - subject	Regul	ar (default) X	12010	Sampler's	Name	THE REAL PROPERTY.	D.	thin '	Valles			Ma	bile#		XOU	41	16-970-7	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	19 19	4
	1-3 business days) - 50% 1 Business Day) - 100%	6 surcharge		Sampler's S			Y	7	/			+	/Time			_	10-970-7: 1ay 13 20	_		

71 P+

Revision 004

STRAIGHT BILL OF LADING NOT NEGOTIABLE

No. 92280

24 Hour Hot Shot Service

Sparwood, BC Terrace, BC

Effective 7/29/20

Vancouver, BC Calgary, AB

Prince George, BC **
Edmonton, AB Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT

Tumbler Ridge, BC Hinton, AB Gillette, WY

E
8 .
* t
POSTAL CODE
FREIGHT CHARGES SHIPPER TO CHECK
PREPAID COLLECT If not indicated, shipping will automatically move collect.
,
FEE
WAITING.
XPU
CHARGES
FSC _
, ,
US
SUB TOTAL
GST
,
TOTAL \$ IF AT OWNER'S RISK, WRITE ORD HERE.
DATE
TIME
NUMBER OF PIECES RECEIVED
, , ,

IR: 33
The same of the sa
SP T/U SP

SELENIUM SPECIATION

BAL Final Report 2206435 (Finalized 22-July-22)

July 22, 2022

Teck Resources Limited - Vancouver Nicole Zathev 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 nicole.zathey@teck.com

Re: Line creek operations

Dear Nicole Zathey,

On June 30, 2022, Brooks Applied Labs (BAL) received four (4) aqueous samples. The samples were loggedin for total recoverable selenium [Se], dissolved Se [Se], and Se speciation analyses, according to the chainof-custody (COC) form.

The client sample LC_CC1_WS_LAEMP_DRY_2022-06_NP was listed on the COC form, but there were no containers with this description included in the sample shipment. Brooks Applied Labs (BAL) did receive an extra set of samples. The information on the container labels is provided in in the table below.

Extra Samples Received with the Sample Shipment

Sample ID (on container label)	Analysis
LC_MTI_WS_2022-06-NP	Se Speciation
LC_MTI_WS_2022-06-NP_NAL	Dissolved Recoverable Se
LC_MTI_WS_2022-06-NP_NAL	Total Recoverable Se

The client was informed, and BAL was advised that the LC_MTI samples were the missing LC_CC1 samples present on the COC form. For reporting, the LC_MTI samples were renamed to reflect the LC_CC1 samples described on the COC form. A summary of the Sample ID designations is provided in the table below.

Samples ID Cross Reference Table

Laboratory ID	Sample ID (on COC form)	Sample ID (on container label)	Analysis
2206435-07	LC_CC1_WS_LAEMP_DRY_2022-06_NP	LC_MTI_WS_2022-06-NP	Se Speciation
2206435-08	LC_CC1_WS_LAEMP_DRY_2022-06_NP	LC_MTI_WS_2022-06-NP_NAL	Dissolved Se
2206435-09	LC_CC1_WS_LAEMP_DRY_2022-06_NP	LC_MTI_WS_2022-06-NP_NAL	Total Recoverable Se

For samples 2206435-07, 2206435-08, and 2206435-09, the **Sample ID** values provided on the COC form (*column two in the table above*) were used for reporting.

Date/Time Collected values listed on the chain-of-custody (COC) form did not exactly match the corresponding **Date/Time Collected** values on the container labels for 2206435-02 and 2206435-03. The discrepancies are described in the table below.

Date/Time Collected Discrepancies

Laboratory ID	Sample ID	Date/Time Collected (on COC form)	Date/Time Collected (or container label)		
2206435-02	LC_FRUS_WS_LAEMP_LCO_DRY_2022- 06_NP	06/22/2022 12:00	06/21/2022 12:00		
2206435-03	LC_FRUS_WS_LAEMP_LCO_DRY_2022- 06_NP	06/22/2022 12:00	06/21/2022 12:00		

2206435-02 and 2206435-03 were logged in and reported using the **Date/Time Collected** values listed on the COC form (column 3 in the table above).

The sample fractions for total recoverable Se and dissolved Se were not preserved in the field. The samples were preserved (pH < 2) upon receipt at BAL. All sample fractions for total recoverable Se and dissolved Se were preserved within the (14 calendar day) preservation holding time.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable Se and Dissolved Se

Each aqueous sample fraction for dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

In the trace metals digest (Batch B221452), the four method blank samples (B221452-BLK1, B221452-BLK2, B221452-BLK3, and B221452-BLK4) produced selenium results greater than the associated method reporting limits (MRL). Associated client sample results are greater than ten times the value of the elevated results in the method blanks. The potential the impact of the of the elevated selenium in (B221452-BLK1, B221452-BLK3, and B221452-BLK4) is minimal for these samples. No corrective actions were needed, and no data were qualified based on the elevated selenium in the Batch B221452 method blanks.

Selenium Speciation

Each aqueous sample was analyzed for selenium speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(IV)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(IV)], selenomethionine [SeMet], selenosulfate $[SeSO_3]$, and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk SeSp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional selenium species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting selenium species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances where a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the relative percent difference (RPD) of the MS/MSD set was not calculated (N/C).

In cases when either the native sample concentration was non-detectable (reported as less than or equal to the MDL) and/or the corresponding DUP result was also non-detectable, the RPD between the two values was not calculated (**N/C**).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited meet all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager

Jeremy@brooksapplied.com

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2206435 Client PM: Nicole Zathey Client Project: Line creek operations

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	Т	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2206435 Client PM: Nicole Zathey Client Project: Line creek operations

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)
Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury
EPA 1630	Non-Potable Waters	Methyl Mercury
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)
SM2340B	Non-Potable Waters	Hardness

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2206435 Client PM: Nicole Zathey Client Project: Line creek operations

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)					
EPA 1638 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn					
EPA 6020 Mod							
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)					
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)					
EPA 1631E Mod	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury					
BAL-3100	, , ,						
EPA 1630 Mod	Non-Potable Waters, Solids/Chemicals	Methyl Mercury					
BAL-3200	Biological	,,					
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)					
BAL-3300	Biological/Food						
	Solids/Chemicals	Inorganic Arsenic (ISO Only)					
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb					
	Non-Potable Waters	As(III), As(V), DMAs, MMAs					
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)					
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)					
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet					
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)					
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)					
SM2340B	Non-Potable Waters	Hardness					
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight					

BAL Final Report 2206435 Client PM: Nicole Zathey Client Project: Line creek operations

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
LC_FRUS_WS_LAEMP_LCO_DRY_ 2022-06_NP	2206435-01	WS	Sample	06/22/2022	06/30/2022
LC_FRUS_WS_LAEMP_LCO_DRY_ 2022-06_NP	2206435-02	WS	Sample	06/22/2022	06/30/2022
LC_FRUS_WS_LAEMP_LCO_DRY_ 2022-06_NP	2206435-03	WS	Sample	06/22/2022	06/30/2022
Sample does not exist	2206435-04	WS	Sample	06/22/2022	06/30/2022
Sample does not exist	2206435-05	WS	Sample	06/22/2022	06/30/2022
Sample does not exist	2206435-06	WS	Sample	06/22/2022	06/30/2022
LC_CC1_WS_LAEMP_DRY_2022-0 6_NP	2206435-07	WS	Sample	unknown	06/30/2022
LC_CC1_WS_LAEMP_DRY_2022-0 6_NP	2206435-08	WS	Sample	unknown	06/30/2022
LC_CC1_WS_LAEMP_DRY_2022-0 6_NP	2206435-09	WS	Sample	unknown	06/30/2022

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	06/29/2022	07/01/2022	B221439	S220685
MeSe(IV)	Water	SOP BAL-4201	06/29/2022	07/01/2022	B221439	S220685
MeSe(VI)	Water	SOP BAL-4201	06/29/2022	07/01/2022	B221439	S220685
Se	Water	EPA 1638 Mod	07/01/2022	07/08/2022	B221452	S220697
Se(IV)	Water	SOP BAL-4201	06/29/2022	07/01/2022	B221439	S220685
Se(VI)	Water	SOP BAL-4201	06/29/2022	07/01/2022	B221439	S220685
SeCN	Water	SOP BAL-4201	06/29/2022	07/01/2022	B221439	S220685
SeMet	Water	SOP BAL-4201	06/29/2022	07/01/2022	B221439	S220685
SeSO3	Water	SOP BAL-4201	06/29/2022	07/01/2022	B221439	S220685
Unk Se Sp	Water	SOP BAL-4201	06/29/2022	07/01/2022	B221439	S220685

BAL Final Report 2206435
Client PM: Nicole Zathey
Client Project: Line creek operations

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
LC FRUS WS	LAEMP LCO	DRY 2022-06 NF	•							
2206435-01	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B221439	S220685
2206435-01	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221439	S220685
2206435-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221439	S220685
2206435-01	Se(IV)	WS	D	0.079		0.010	0.075	μg/L	B221439	S220685
2206435-01	Se(VI)	WS	D	21.3		0.010	0.055	μg/L	B221439	S220685
2206435-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221439	S220685
2206435-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221439	S220685
2206435-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221439	S220685
2206435-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221439	S220685
		DDV 0000 00 M	_							
		_DRY_2022-06_NF		00.7		0.405	0.500		D004450	000000
2206435-02	Se	WS	D	23.7		0.165	0.528	μg/L	B221452	S220697
IC EDIIS WS	I AEMP I CO	DRY 2022-06 NF	•							
2206435-03	_ <i></i>	_ DK1_2022-00_W WS	TR	23.4		0.165	0.528	μg/L	B221452	S220697
2200433-03	00	WO	111	20.4		0.100	0.020	ру/L	DZZ 140Z	0220031
LC_CC1_WS_I	LAEMP_DRY_2	2022-06_NP								
2206435-07	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221439	S220685
2206435-07	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221439	S220685
2206435-07	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221439	S220685
2206435-07	Se(IV)	WS	D	0.080		0.010	0.075	μg/L	B221439	S220685
2206435-07	Se(VI)	WS	D	21.2		0.010	0.055	μg/L	B221439	S220685
2206435-07	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221439	S220685
2206435-07	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221439	S220685
2206435-07	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221439	S220685
2206435-07	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221439	S220685
LC CC1 WS I	AEMD DDY 1	2022 OF ND								
		—	Б	22.4		0.165	0.520	ua/l	D2244E2	000007
2206435-08	Se	WS	D	23.4		0.165	0.528	μg/L	B221452	S220697
LC_CC1_WS_I	LAEMP DRY 2	2022-06 NP								
2206435-09	Se -	ws	TR	24.2		0.165	0.528	μg/L	B221452	S220697

BAL Final Report 2206435 Client PM: Nicole Zathey Client Project: Line creek operations

Accuracy & Precision Summary

Batch: B221439 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B221439-BS1	Blank Spike, (2124033)						
	MeSe(IV)		5.095	5.761	μg/L	113% 75-125	
	Se(IV)		5.000	4.815	μg/L	96% 75-125	
	Se(VI)		5.000	4.567	μg/L	91% 75-125	
	SeCN		5.015	4.982	μg/L	99% 75-125	
	SeMet		4.932	4.865	μg/L	99% 75-125	
B221439-DUP4	Duplicate, (2206434-07)						
	DMSeO	0.020		0.019	μg/L		8% 25
	MeSe(IV)	0.042		0.044	μg/L		4% 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	0.523		0.525	μg/L		0.4% 25
	Se(VI)	2.104		2.081	μg/L		1% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B221439-MS4	Matrix Spike, (2206434-0	7)					
	Se(IV)	0.523	4.900	4.942	μg/L	90% 75-125	
	Se(VI)	2.104	5.100	6.583	μg/L	88% 75-125	
	SeCN	ND	1.962	1.783	μg/L	91% 75-125	
	SeMet	ND	1.977	1.901	μg/L	96% 75-125	
B221439-MSD4	Matrix Spike Duplicate, (2206434-07	1				
	Se(IV)	0.523	4.900	4.932	μg/L	90% 75-125	0.2% 25
	Se(VI)	2.104	5.100	6.535	μg/L	87% 75-125	0.7% 25
	SeCN	ND	1.962	1.774	μg/L	90% 75-125	0.5% 25
	SeMet	ND	1.977	1.894	μg/L μg/L	96% 75-125	0.4% 25
	CONTOL	140	1.077	1.00 r	P9′ -	3070 70 120	0.170 20

BAL Final Report 2206435 Client PM: Nicole Zathey Client Project: Line creek operations

Accuracy & Precision Summary

Batch: B221452 Lab Matrix: Water Method: EPA 1638 Mod

Sample B221452-BS1	Analyte	Native	Spike	Result	Units	REC &	Limits	RPD & Lir	nits
B221432-B31	Blank Spike , (2137005) Se		200.0	186.3	μg/L	93%	75-125		
B221452-BS2	Blank Spike, (2137005) Se		200.0	195.5	μg/L	98%	75-125		
B221452-SRM1	Reference Material (22140	10, TMDA 5	51.5 Referenc	e Standard	- Bottle 2 -	SRM)			
	Se		14.30	14.34	μg/L	100%	75-125		
B221452-SRM2	Reference Material (22140)	10, TMDA 5	51.5 Referenc 14.30	e Standard 13.38	- Bottle 2 - μg/L	•	75-125		
B221452-DUP2	Duplicate, (2206435-03) Se	23.43		23.32	μg/L			0.5%	20
B221452-MS2	Matrix Spike, (2206435-03) Se) 23.43	220.0	235.2	μg/L	96%	75-125		
B221452-MSD2	Matrix Spike Duplicate, (2)	206435-03) 23.43	220.0	230.2	ug/l	040/	75-125	2%	20
	S€	23.43	220.0	230.2	μg/L	9470	10-120	∠%	20

BAL Final Report 2206435 Client PM: Nicole Zathey Client Project: Line creek operations

Method Blanks & Reporting Limits

Batch: B221439 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

 Sample
 Result
 Units

 B221439-BLK1
 0.00
 μg/L

 B221439-BLK2
 0.00
 μg/L

 B221439-BLK3
 0.00
 μg/L

 B221439-BLK4
 0.00
 μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

Analyte: MeSe(IV)

 Sample
 Result
 Units

 B221439-BLK1
 0.00
 μg/L

 B221439-BLK2
 0.00
 μg/L

 B221439-BLK3
 0.00
 μg/L

 B221439-BLK4
 0.00
 μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

 Sample
 Result
 Units

 B221439-BLK1
 0.00
 μg/L

 B221439-BLK2
 0.00
 μg/L

 B221439-BLK3
 0.00
 μg/L

 B221439-BLK4
 0.00
 μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

BAL Final Report 2206435 Client PM: Nicole Zathey Client Project: Line creek operations

Method Blanks & Reporting Limits

Analyte:	Se(I	V)
----------	------	----

Sample	Result	Units
B221439-BLK1	0.00	μg/L
B221439-BLK2	0.00	μg/L
B221439-BLK3	0.00	μg/L
B221439-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.015 MRL: 0.015

Analyte: Se(VI)

Sample	Result	Units
B221439-BLK1	0.00	μg/L
B221439-BLK2	0.00	μg/L
B221439-BLK3	0.00	μg/L
B221439-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Sample		Result	Units
B221439-BLK1		0.00	μg/L
B221439-BLK2		0.00	μg/L
B221439-BLK3		0.00	μg/L
B221439-BLK4		0.00	μg/L
	_		

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B221439-BLK1	0.00	μg/L
B221439-BLK2	0.00	μg/L
B221439-BLK3	0.00	μg/L
B221439-BI K4	0.00	ua/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2206435 Client PM: Nicole Zathey Client Project: Line creek operations

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B221439-BLK1	0.00	μg/L
B221439-BLK2	0.00	μg/L
B221439-BLK3	0.00	μg/L
B221439-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B221439-BLK1	0.00	μg/L
B221439-BLK2	0.00	μg/L
B221439-BLK3	0.00	μg/L
B221439-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2206435 Client PM: Nicole Zathey Client Project: Line creek operations

Method Blanks & Reporting Limits

Batch: B221452 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B221452-BLK1	0.626	μg/L
B221452-BLK2	0.566	μg/L
B221452-BLK3	0.574	μg/L
B221452-BLK4	0.521	μg/L

Average: 0.572 **MDL:** 0.150 **Limit:** 0.480 **MRL:** 0.480

BAL Final Report 2206435
Client PM: Nicole Zathey
Client Project: Line creek operations

Sample Containers

Sam	ID: 2206435-01 ple: FRUS_WS_LAEMP_LCO_DR	Y 2022-06 NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 06/22/2022 ived: 06/30/2022
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 6 - 2206435
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 6 - 2206435
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 6 - 2206435
•				Report Matrix: WS Sample Type: Sample + Sum			cted: 06/22/2022 ived: 06/30/2022
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2218038	<2	Cooler 6 - 2206435
Lab ID: 2206435-03 Sample: LC_FRUS_WS_LAEMP_LCO_DRY_2022-06_NP			Report Matrix: WS Sample Type: Sample + Sum			Collected: 06/22/2022 Received: 06/30/2022	
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2218038	<2	Cooler 6 - 2206435
	ID: 2206435-04 ple: Sample does not exist			Report Matrix: WS Sample Type: Sample + Sum			cted: 06/22/2022 ived: 06/30/2022
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 6 - 2206435
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 6 - 2206435
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 6 - 2206435

BAL Final Report 2206435
Client PM: Nicole Zathey
Client Project: Line creek operations

Sample Containers

Samı	D: 2206435-05 ple: Sample does not exist Container	Size	Lot	Report Matrix: WS Sample Type: Sample + Sum Preservation	P-Lot	Recei	ted: 06/22/2022 ved: 06/30/2022	
A	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2218038	pH <2	Ship. Cont. Cooler 6 - 2206435	
	D: 2206435-06 ple: Sample does not exist			Report Matrix: WS Sample Type: Sample + Sum			ted: 06/22/2022 ved: 06/30/2022	
	Container	Size	Lot	Preservation	P-Lot	pH	Ship. Cont.	
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2218038	<2	Cooler 6 - 2206435	
	D : 2206435-07			Report Matrix: WS		Coll	ected: unknown	
	ple: LC_CC1_WS_LAEMP_D			Sample Type: Sample + Sum			ved: 06/30/2022	
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 6 - 2206435	
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 6 - 2206435	
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 6 - 2206435	
	D : 2206435-08 ple: LC_CC1_WS_LAEMP_D	RY 2022-06 NP		Report Matrix: WS Sample Type: Sample + Sum			ected: unknown ved: 06/30/2022	
-	Container	Size	Lot	Preservation	P-Lot	pH	Ship. Cont.	
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2218038	<2	Cooler 6 - 2206435	
Sam Des	D: 2206435-09 ple: LC_CC1_WS_LAEMP_Di Container	Size	Lot	Report Matrix: WS Sample Type: Sample Preservation	P-Lot	Receive pH	ected: unknown ved: 06/30/2022 Ship. Cont.	
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2218038	<2	Cooler 6 - 2206435	

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2206435 Client PM: Nicole Zathey Client Project: Line creek operations

Shipping Containers

Cooler 6 - 2206435

Received: June 30, 2022 7:00

Tracking No: PAPS#RWHV55065 via Courier

Coolant Type: Ice Temperature: -1.8 °C Description: stryrofoam cooler Damaged in transit? No Returned to client? No Comments: IR#:33 Custody seals present? No Custody seals intact? No COC present? Yes

	COC ID:	LCO Dry	y LAEN	AP_2022_June	Brooks	TURN.	AROUNE	TIM	Œ:							RUSH:				
PRO	PROJECT/CLIENT INTO Facility Name / Job# Line creek operations					LABORATORY							OTHER INFO							
Facility Name / Job#						Lab Name Brooks Applied Labs						Re	ort Fo	rmat / Di	istributio	n	Excel	PDF	ED	
Project Manager	Nicole Zathey					Lab Contact Ben Wozniak							Ema	il 1:	+ 7/5/2×0	e D		X	X	l.v
Email	nicole.zathev@teck.com						Email	Ben@	broo	ksapplie	d.com		Ema	il 2:	100000000000000000000000000000000000000	inguisontin	e comi	A TODA		T.
Address	421 Pine Ave					Address 18804 North Creek Parkway						Ema	il 3:	- International	Results at		Y	v	1	
					for			Suite	100				Ema	il 4;	PERSONAL PROPERTY.	Labifateck		y .		v.
City	Sparwo	od		Province BC			City	Bothe	ell		Province	WA	Ema	il 5:				J	v.	20.7
Postal Code				Country Canada		Po	ostal Code	98011	1			United !	Ema		Robin valleau@minnow			,	0	U.
Phone Number							ie Number	_		158			PO nu		LOWSHIE S.	Gricacina	PO 81		1/3	- 10
	SAMPLE DET	AILS		2002 .0054.000000;	1000 E	S L		1		ANA	LYSIS RI	OUEST			4000	276	need (2) Fee		L Fred A	Lah, N
									_										100	
									F	F	N									300
									N	N	N									
			(oN/					Ž		13885										
			Hazardous Material (Yes/No)						E .											
			terria					2	Brooks_Se_Speciation											
			Ma					1	Spe	۵	_					1	13			4
			ST					N. C.	اور	Brooks_Se_D	Brooks_Se_T									
			- 원			G=Grab			او	· ·	gi	1								
	Sample Location	Field	ıza			C=Com	# Of		90	900k	90	1								1
Sample ID	(sys_loc_code)	Matrix	Ħ	Date	Time (24hr)	р	Cont.		B	Br	Ä								<u> </u>	_
LC_FRUS_WS_LAEMP_LCO_DRY_2022-06_NP	LC_FRUS	WS	No	22-Jun-22	12:00 1	G	1		1											
LC_FRUS_WS_LAEMP_LCO_DRY_2022-06_NP	LC_FRUS	WS	No	22-Jun-22	12:00	G	2			1	1									4
LC_CC1_WS_LAEMP_DRY_2022-06_NP	rc_cci	WS	No	22-Jun-22	12:00	G	1		1							-				1
LC_CC1_WS_LAEMP_DRY_2022-06_NP	LC-CC1	WS	No	22-Jun-22	12:00	G	2			1	1									+
					-				_							-				+
																			-	+
						-									1	-		-		+
															+			-		+
																				t
ADDITIONAL COMMENTS SPECIAL	INSTRUCTIONS	miles de la compa		RELINQU	ISHED BY/AFF	HIATION	851		ATE		AC	m	BY/AFF	HLAT	ION		D.	TE/H	ME	
					Robin Valleau			Ju	ine 22.	, 2022	4	m	- (13/	4L)	61	30/2	22	07	.0
												•		27.	8					
SERVICE REQUEST (rush - subject	t to availability)	C-10-0	summer.	en rang		CO STATE OF THE PARTY OF THE PA	120 00			36		150			anning.		0000	(conti	20.60	0.5
	Regula	r (default) X		Sampler's	Name	HEE	II.	tobiv '	Valles	111		T				4	16-970-7	535		
Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge				Samplet S Name			Robin Valleau				Ш				•	- e - 1 V*1				
				Sampler's S	ignature							Date	/Time	Time June 22, 2022						
For Emergency <1 Day,	ASAP or Weekend - Co	ntact ALS			-8	1														

55065

RW Hot Shot Service Inc. 24 Hour Hot Shot Service PHONE: (250) 425-7447

STRAIGHT BILL OF LADING NOT NEGOTIABLE

FAX: (250) 425-7450

INVOICE TO						DATE	ne 28-22					
BILL OF LADING #				PURCHASE ORDER NUMBER								
SHIPPER (FROM)	Cost Ho			CONSIGNEE (TO)	s Appli	ed 1	Mados					
STREET	Time (re	EK Web	Twee 21	STREET	abel Ch	Ma	HINE (Ste Ing					
CITY/PROVINCE	ROBEL PO	PO	STAL CODE	CITY/PROVINCE	: NAA .		POSTAL CODE					
INTERLINE CARRI	ER	V	AY BILL #									
SPECIAL INSTRUC	TIONS	B)c(#)	1200A	063								
PACKAGES		DESCRIPTION OF ARTICLES	AND SPECIAL MARKS		WEIGHT (Subject to Correction) F	FREIGHT CHARGES					
	Chalets		-Smarale	-3	149 485	□PR	PPER TO CHECK EPAID COLLECT					
					ministration.	If not in	dicated shipping will automatically move collect					
				A.C.		WAIT	ING					
						XPU.						
DAI)CH D	LUV	550	L 5								
	Jun 1)	MILI	JUU	D		CHA	RGES					
						FSC_						
UNIT#	PERMIT#		liability of carrier is \$2	JATION: Maximum 2 00 per lb. (\$4 41 per lared valuation states								
13			otherwise		\$	SUB	TOTAL					
DRIVER'S SIGNATU	JRE - PICK UP BY		DRIVER'S SIGNATU	RE DELIVERY BY		GST						
NOTICE OF CLAIM: (a) No ca respect of such loss damage of	irrier is liable for loss, damage or delay of any g or delay is given in writing to the originating can	oods under the Bill of Lading unless not her or the delivering carrier within sixty i	the therefor setting out particulars of the income the goods of the go	origin, destination and gale of shipment in the case of failure to make delivery copy of the gald freight bill	claimed in shipment	TOTAL &						
(b) The final statement of RECEIVED at the point of our destined as indicated be this mutually agreed, as to eac all the conditions standard Bill	writer is labile for loss, damage or delay of any given relaying given in writing to the originating care to the claim must be filled within in nin on the date specified from the consignor me town which the carrier agrees to call the carrier of all or any of the goods over all or all of Ladding in opened at the read to the carrier agrees. The care of the carrier of the carrier of the goods over all or all of Ladding in opened at the read to by the consideration of the goods listed in the Bill of Ladding is governing the carrier of the goods listed in the Bill of Ladding is governing the carrier of the goods listed in the Bill of Ladding is governing the carrier of the goods listed in the Bill of Ladding is governing the carrier of the goods listed in the Bill of Ladding is governing the carrier of the carrier of the goods listed in the Bill of Ladding is governing the carrier of	intoned herein the property herein desiry and to deliver to the consignity portion of the route to destination and have hereto agreed by the consignor as the control of the consignor as the control of the consignor as the control of the consignor as the control of the control	cribed in apparent good order except as ined at the said destination, sub dias to each paily of any time interested in diaccepted for himself and his assigns of and his assigns.	s noted (contents and condition of contents) pect to the rates and classifica in all or any of the goods that every ser Printed or written including conditions's	inipment subject to power at	IF AT OWNER'S RISK, WRITE ORD HERE						
SHIPPER	irch are hereby agreed by the cons if the goods listed in the Bilt of Lading is govern	ed by regulation in force in the jurisdiction	CONSIGNEE		uch conditions	DATE	30					
PRINT			CONSIGNEE	01/0	TIME	TIME						
SHIPPER SIGN			SIGN	GST # 8	64540398RT0001	NUMBE	R OF PIECES RECEIVED					
AMISS SERVING WHITE	E Office YELLOW Carrie	PINK. Consignee	GOLDENROAD Shipp	per			YOU					
Cooler II	D: Cover V		COC(Y/N)	Temperature:	:-1.8		IR: 33					
Coolant		Blue Ice Am	bient									
Notes:				2.0			1					
	g Locations:	EV	LC	R6	6	1						
•	-	(T/D) (SP)	(T/D) 6	P T/D	(F) (T/D)	(SP)	T/D SP					
Sample 1		40nl 025.	16 40 nc fet	<u>&</u>	lastic yearl	Plc3fa						
	er Types:	GICSS toles	C 6/cs/ O/c	stic	161655	1"	1					
Opened	By: ERL	•	Date: 6/30/	22								
DEEE	R46430122											

Effective 7/29/20

Revision 004

SELENIUM SPECIATION

BAL Final Report 2209181 (Finalized 21-Sept-22) September 21, 2022

Confidential

Teck Resources Limited - Vancouver Nicole Zathey 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 nicole.zathey@teck.com

Re: Line Creek Operation

Dear Nicole Zathey,

On September 15, 2022, Brooks Applied Labs (BAL) received four (4) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se [Se], and Se speciation analyses, according to the chain-of-custody (COC) form.

Sample ID values listed on the chain-of-custody (COC) form did not exactly match the corresponding **Sample ID** values listed on container labels for samples 2209181-01, 2209181-02, 2209181-03, 2209181-05, and 2209181-06. The discrepancies are described in the table below.

Sample ID Agreement Issues

Laboratory ID	Sample ID (From COC)	Sample ID (From Container Label)					
2209181-01	LC_FRB_LAEMP_DRY_2022-09_N	LC_FRB_LAEMP_DRY_2022-09_N					
2209181-02	LC_FRB_LAEMP_DRY_2022-09_NP- NAL	LC_FRB_LAEMP_DRY_2022-09_NP-NAL					
2209181-03	LC_FRB_LAEMP_DRY_2022-09_NP- NAL	LC_FRB_LAEMP_DRY_2022-09_NP-NAL					
2209181-05	LC_FRUS_LAEMP_DRY_2022-09_NP- NAL	LC_FRUS_LAEMP_DRY_2022-09_NP- NAL					
2209181-06	LC_FRUS_LAEMP_DRY_2022-09_NP- NAL	LC_FRUS_LAEMP_DRY_2022-09_NP- NAL					

2209181-01, 2209181-02, 2209181-03, 2209181-05, and 2209181-06 were logged in and reported using the **Sample ID** values listed on the COC form.

The sample fractions for total recoverable Se and dissolved Se were not preserved in the field. The samples were preserved (pH < 2) upon receipt at BAL. All sample fractions for total recoverable Se and dissolved Se were preserved within the (14 calendar day) preservation holding time.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable Se and Dissolved Se

Each aqueous sample fraction for dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Selenium Speciation

Each aqueous sample was analyzed for selenium speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(IV)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(IV)], selenomethionine [SeMet], selenosulfate $[SeSO_3]$, and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk Se Sp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional selenium species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting selenium species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances where a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the relative percent difference (RPD) of the MS/MSD set was not calculated (N/C).

In cases when either the native sample concentration was non-detectable (reported as less than or equal to the MDL) and/or the corresponding DUP result was also non-detectable, the RPD between the two values was not calculated (**N/C**).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited meet all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager

Jeremy@brooksapplied.com

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209181
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC2101 **PM**: Jeremy Maute

BAL Final Report 2209181 Client PM: Nicole Zathey Client Project: Line Creek Operation

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)
Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury
EPA 1630	Non-Potable Waters	Methyl Mercury
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)
SM2340B	Non-Potable Waters	Hardness

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209181 Client PM: Nicole Zathey Client Project: Line Creek Operation

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)
EPA 1638 Mod EPA 200.8 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn
EPA 6020 Mod		
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)
EPA 1631E Mod	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury
BAL-3100	, ,	
EPA 1630 Mod	Non-Potable Waters, Solids/Chemicals	Methyl Mercury
BAL-3200	Biological	,
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)
BAL-3300	Biological/Food	In annualis Arabasis (190 Only)
	Solids/Chemicals	Inorganic Arsenic (ISO Only)
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb
B	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)
SM2340B	Non-Potable Waters	Hardness
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight

BAL Final Report 2209181 Client PM: Nicole Zathey Client Project: Line Creek Operation

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
LC_FRB_LAEMP_DRY_2022-09_N	2209181-01	WS	Sample	09/10/2022	09/15/2022
LC_FRB_LAEMP_DRY_2022-09_NP -NAL	2209181-02	WS	Sample	09/10/2022	09/15/2022
LC_FRB_LAEMP_DRY_2022-09_NP -NAL	2209181-03	WS	Sample	09/10/2022	09/15/2022
LC_FRUS_LAEMP_DRY_2022-09_N	2209181-04	WS	Sample	09/10/2022	09/15/2022
LC_FRUS_LAEMP_DRY_2022-09_N P-NAL	2209181-05	WS	Sample	09/10/2022	09/15/2022
LC_FRUS_LAEMP_DRY_2022-09_N P-NAL	2209181-06	WS	Sample	09/10/2022	09/15/2022

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	09/14/2022	09/15/2022	B222056	S220953
MeSe(IV)	Water	SOP BAL-4201	09/14/2022	09/15/2022	B222056	S220953
MeSe(VI)	Water	SOP BAL-4201	09/14/2022	09/15/2022	B222056	S220953
Se	Water	EPA 1638 Mod	09/16/2022	09/20/2022	B222134	S220972
Se(IV)	Water	SOP BAL-4201	09/14/2022	09/15/2022	B222056	S220953
Se(VI)	Water	SOP BAL-4201	09/14/2022	09/15/2022	B222056	S220953
SeCN	Water	SOP BAL-4201	09/14/2022	09/15/2022	B222056	S220953
SeMet	Water	SOP BAL-4201	09/14/2022	09/15/2022	B222056	S220953
SeSO3	Water	SOP BAL-4201	09/14/2022	09/15/2022	B222056	S220953
Unk Se Sp	Water	SOP BAL-4201	09/14/2022	09/15/2022	B222056	S220953

BAL Final Report 2209181 Client PM: Nicole Zathey Client Project: Line Creek Operation

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
LC FRB LAEI	MP DRY 2022-	·09 N								
2209181-01	DMSeO	- WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222056	S220953
2209181-01	MeSe(IV)	WS	D	0.012	J	0.010	0.025	μg/L	B222056	S220953
2209181-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222056	S220953
2209181-01	Se(IV)	WS	D	0.168		0.020	0.075	μg/L	B222056	S220953
2209181-01	Se(VI)	WS	D	34.7		0.010	0.055	μg/L	B222056	S220953
2209181-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B222056	S220953
2209181-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222056	S220953
2209181-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222056	S220953
2209181-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B222056	S220953
LC EDD LAE	MD DDV 2022	OO NE NA								
	MP_DRY_2022- Se	.09_NP-NAL WS	TR	39.9		0.165	0.528	ua/l	B222134	5220072
2209181-02	36	VVS	IK	39.9		0.103	0.326	μg/L	DZZZ 13 4	S220972
LC_FRB_LAE	MP_DRY_2022-	·09_NP-NAL								
2209181-03	Se	WS	D	36.9		0.165	0.528	μg/L	B222134	S220972
	EMP_DRY_202	_						_		
2209181-04	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222056	S220953
2209181-04	MeSe(IV)	WS	D	0.013	J	0.010	0.025	μg/L	B222056	S220953
2209181-04	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222056	S220953
2209181-04	Se(IV)	WS	D	0.169		0.020	0.075	μg/L	B222056	S220953
2209181-04	Se(VI)	WS	D	42.2		0.010	0.055	μg/L	B222056	S220953
2209181-04	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B222056	S220953
2209181-04	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222056	S220953
2209181-04	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222056	S220953
2209181-04	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B222056	S220953
LC FRUS LAI	EMP DRY 202	2-09 NP-NAL								
2209181-05	Se	WS WS	TR	37.5		0.165	0.528	μg/L	B222134	S220972
	EMP_DRY_202	_								
2209181-06	Se	WS	D	41.4		0.165	0.528	μg/L	B222134	S220972

BAL Final Report 2209181 Client PM: Nicole Zathey Client Project: Line Creek Operation

Accuracy & Precision Summary

Batch: B222056 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B222056-BS1	Blank Spike, (2124033)						
	MeSe(IV)		5.095	5.504	μg/L	108% 75-125	
	Se(IV)		5.000	4.917	μg/L	98% 75-125	
	Se(VI)		5.000	4.657	μg/L	93% 75-125	
	SeCN		5.015	4.709	μg/L	94% 75-125	
	SeMet		4.932	4.821	μg/L	98% 75-125	
B222056-DUP5	Duplicate, (2209181-04)						
	DMSeO	ND		ND	μg/L		N/C 25
	MeSe(IV)	0.013		ND	μg/L		N/C 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	0.169		0.172	μg/L		2% 25
	Se(VI)	42.16		42.48	μg/L		0.7% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B222056-MS5	Matrix Spike, (2209181-0	4)					
	Se(IV)	0.169	4.900	5.007	μg/L	99% 75-125	
	Se(VI)	42.16	5.100	47.46	μg/L	NR 75-125	
	SeCN	ND	1.962	1.850	μg/L	94% 75-125	
	SeMet	ND	1.977	1.892	μg/L	96% 75-125	
B222056-MSD5	Matrix Spike Duplicate, (2209181-04)				
	Se(IV)	0.169	4.900	4.903	μg/L	97% 75-125	2% 25
	Se(VI)	42.16	5.100	46.96	μg/L	NR 75-125	N/C 25
	SeCN	ND	1.962	1.816	μg/L	93% 75-125	2% 25
	SeMet	ND	1.977	1.909	μg/L	97% 75-125	0.9% 25

BAL Final Report 2209181 Client PM: Nicole Zathey Client Project: Line Creek Operation

Accuracy & Precision Summary

Batch: B222134 Lab Matrix: Water Method: EPA 1638 Mod

Sample B222134-BS1	Analyte	Native	Spike	Result	Units	REC 8	Limits	RPD & Lir	mits
	Blank Spike , (2128023) Se		200.0	163.3	μg/L	82%	75-125		
B222134-BS2	Blank Spike, (2128023) Se		200.0	159.2	μg/L	80%	75-125		
B222134-BS3	Blank Spike, (2128023) Se		200.0	160.1	μg/L	80%	75-125		
B222134-SRM1	Reference Material (221401 Se	14, TMDA 5	1.5 Reference	Standard	- Bottle 6 - \$ µg/L	•	75-125		
B222134-SRM2	Reference Material (221401 Se	14, TMDA 5	14.30	Standard 12.50	- Bottle 6 - \$ µg/L	•	75-125		
B222134-SRM3	Reference Material (221401	4, TMDA 5				•			
	Se		14.30	11.52	µg/L	81%	75-125		
B222134-DUP1	Duplicate, (2209182-02) Se	64.23		68.25	μg/L			6%	20
B222134-MS1	Matrix Spike, (2209182-02) Se	64.23	220.0	268.3	μg/L	93%	75-125		
B222134-MSD1	Matrix Spike Duplicate, (22 Se	209182-02) 64.23	220.0	242.4	μg/L	81%	75-125	10%	20

BAL Final Report 2209181 Client PM: Nicole Zathey Client Project: Line Creek Operation

Method Blanks & Reporting Limits

Batch: B222056 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

 Sample
 Result
 Units

 B222056-BLK1
 0.00
 μg/L

 B222056-BLK2
 0.00
 μg/L

 B222056-BLK3
 0.00
 μg/L

 B222056-BLK4
 0.00
 μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

 Sample
 Result
 Units

 B222056-BLK1
 0.00
 μg/L

 B222056-BLK2
 0.00
 μg/L

 B222056-BLK3
 0.00
 μg/L

 B222056-BLK4
 0.00
 μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

 Sample
 Result
 Units

 B222056-BLK1
 0.00
 μg/L

 B222056-BLK2
 0.00
 μg/L

 B222056-BLK3
 0.00
 μg/L

 B222056-BLK4
 0.00
 μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

BAL Final Report 2209181 Client PM: Nicole Zathey Client Project: Line Creek Operation

Method Blanks & Reporting Limits

Analyte: Se(IV)

Sample	Result	Units
B222056-BLK1	0.00	μg/L
B222056-BLK2	0.00	μg/L
B222056-BLK3	0.00	μg/L
B222056-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.004 Limit: 0.015 MRL: 0.015

Analyte: Se(VI)

Sample	Result	Units
B222056-BLK1	0.00	μg/L
B222056-BLK2	0.00	μg/L
B222056-BLK3	0.00	μg/L
B222056-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Result	Units
0.00	μg/L
0.00	μg/L
0.00	μg/L
0.00	μg/L
	0.00 0.00 0.00

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B222056-BLK1	0.00	μg/L
B222056-BLK2	0.00	μg/L
B222056-BLK3	0.00	μg/L
B222056-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.005 **MRL:** 0.005

BAL Final Report 2209181 Client PM: Nicole Zathey Client Project: Line Creek Operation

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B222056-BLK1	0.00	μg/L
B222056-BLK2	0.00	μg/L
B222056-BLK3	0.00	μg/L
B222056-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.011 MRL: 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B222056-BLK1	0.00	μg/L
B222056-BLK2	0.00	μg/L
B222056-BLK3	0.00	μg/L
B222056-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209181 Client PM: Nicole Zathey Client Project: Line Creek Operation

Method Blanks & Reporting Limits

Batch: B222134 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B222134-BLK1	0.023	μg/L
B222134-BLK2	0.073	μg/L
B222134-BLK3	0.041	μg/L
B222134-BLK4	-0.013	μg/L

 Average: 0.031
 MDL: 0.150

 Limit: 0.480
 MRL: 0.480

BAL Final Report 2209181 Client PM: Nicole Zathey Client Project: Line Creek Operation

Sample Containers

				Report Matrix: WS Collected: 0				
	ple: LC_FRB_LAEMP_DRY_2			Sample Type: Sample + Sum	Received: 09/15/2022			
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 4 - 2209181	
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2209181	
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 4 - 2209181	
	D: 2209181-02	ACCO OO NID NAL		Report Matrix: WS			cted: 09/10/2022	
	ple: LC_FRB_LAEMP_DRY_2	_	1 -4	Sample Type: Sample + Sum	D.L.at		ved: 09/15/2022	
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2230023	<2	Cooler 2 - 2209181	
Lab ID: 2209181-03			Report Matrix: WS	Collected: 09/10/2022 Received: 09/15/2022				
	ple: LC_FRB_LAEMP_DRY_2 Container	-	1 -4	Sample Type: Sample + Sum Preservation	D.L.at			
		Size	Lot		P-Lot	pН	Ship. Cont.	
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2230023	<2	Cooler 2 - 2209181	
	I D : 2209181-04 ple: LC_FRUS_LAEMP_DRY_	2022-09 N		Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/10/2022 Received: 09/15/2022		
	Container	Size	Lot	Preservation	P-Lot	pH	Ship. Cont.	
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 4 - 2209181	
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2209181	
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 4 - 2209181	

Project ID: TRL-VC2101 PM: Jeremy Maute

BAL Final Report 2209181 Client PM: Nicole Zathey Client Project: Line Creek Operation

Sample Containers

Lab ID: 2209181-05

Sample:

LC FRUS LAEMP DRY 2022-09 NP-NAL **Des Container**

Client-Provided - TM

40 mL

40 ml

Report Matrix: WS

Sample Type: Sample + Sum

Lot **Preservation** na

10% HNO3 (BAL)

P-Lot 2230023 рH Ship. Cont. <2

Cooler 2 -2209181

Collected: 09/10/2022

Received: 09/15/2022

Lab ID: 2209181-06

Sample:

LC_FRUS_LAEMP_DRY_2022-09_NP-NAL **Des Container** Size

Client-Provided - TM

Report Matrix: WS

Lot

na

Sample Type: Sample + Sum

Preservation 10% HNO3 (BAL)

P-Lot 2230023 рΗ

<2

Ship. Cont. Cooler 2 -

Collected: 09/10/2022 Received: 09/15/2022

2209181

Shipping Containers

Cooler 2 - 2209181

Received: September 15, 2022 7:10 Tracking No: RWHV95580 via Courier

Coolant Type: Ice Temperature: 5.3 °C

Cooler 4 - 2209181

Received: September 15, 2022 7:10 Tracking No: RWHV95580 via Courier

Coolant Type: Ice Temperature: 2.4 °C

Cooler 4 - 2209181

Received: September 15, 2022 7:43 Tracking No: RWHV95580 via Courier

Coolant Type: Ice Temperature: 2.4 °C **Description:** Styrofoam cooler Damaged in transit? No Returned to client? No Comments: IR#:1

Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: IR#:2

Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: IR#:2

Custody seals present? No Custody seals intact? No **COC present?** Yes

Custody seals present? No Custody seals intact? No

COC present? Yes

Custody seals present? No Custody seals intact? No **COC present?** Yes

BAL Final Report 2209181 KEP LAEWP DRY 2022-TURNAROUND TIME: RUSH NA COC ID: Regular UN BBOOKS OTHER INFO LABORATORY PROJECT/CLIENT INFO Lab Name Brooks Applied Labs Facility Name / Job# Line Creek Operation Email 1: AquaScrLub@Teck.com Lab Contact Ben Wozniak Project Manager Nicole Zathey Email 2: teckcoal@equisonline.com Email Ben@brooksapplied.com Email Nicole.Zathey@Teck.com Email 3: Teck Lab Results@teck.com Address 421 Prine Avenue Address 13751 Lake City Way Email 4: Lisa Bowron@minnow.ca Suite 108 Email 5: Robin Valleau@monow.ca BC City Seattle City Sparwood Province Province WA Email 5: Jessica Ritz th Teck com Postal Code V0B 2G0 Country Canada Postal Code 98125 Country United \$ PO number VPO00817033 Phone Number 1-250-425-8478 Phone Number (206) 753-6158 SAMPLE DETAILS ANALYSIS REQUESTED Filtered - F: Field, L: Lab, Fl.: Field & Lub, N: None F N Hazardous Material (Yes/No) Brooks_Se_Speciation Brooks_Se_D Brooks_Se_T G=Grab Sample Location Field C=Com # Of Sample ID (sys loc code) Matrix Date Time (24hr) Cont LC_FRB_WS_LAEMP_DRY_2022-09_N LC_FRB 2022/09/10 WS G 14:00 1 1 LC_FRB WS 2022/09/10 LC_FRB_WS_LAEMP_DRY_2022-09_NP-NAL 14:00 G 2 1 1 LC FRUS WS 2022/09/10 LC_FRUS_WS_LAEMP_DRY_2022-09_N 9:00 G 1 1 LC_FRUS LC_FRUS_WS_LAEMP_DRY_2022-09_NP-NAL WS 2022/09/10 9:00 G 2 1 1 RELINQUISHED BY/AFFILIATION DATE/TIME ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS ACCEPTED BY/AFFILIATION DATE/TIME Jennifer Ings/Minnow ############## NW BAC SERVICE REQUEST (rush - subject to availability) Regular (default) 519-500-3444 Sampler's Name Jennifer Ings Mobile # Priority (2-3 business days) - 50% surcharge X Land La Par Emergency (1 Business Day) - 100% surcharge Sampler's Signature September 12, 2022 Date/Time For Emergency <1 Day, ASAP or Weekend - Contact ALS

NOT NEGOTIABLE

250-425-7447 24 Hour Hot Skot Service No. 95580

Confidential

Sparwood, BC Terrace, BC Red Deer, AB

Vancouver, BC Calgary, AB Montreal, QC

Prince George, BC **Edmonton, AB** Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT

DATE

Tumbler Ridge, BC

BAL Final Report 2209181

Hinton, AB Gillette, WY

INVOICE FO				Day Book	
BILL OF LADING #	Torest Estimate	PURCHASE ORDER	NUMBER		
SHIPPER (FROM)	HIPPER (FROM)				
STREET		STREET			
SIREE	Car state Land		ANTELLIA DE LA		200711 0005
CITY/PROVINCE	POSTAL CODE	CITY/PROVINCE			POSTAL CODE
SPECIAL INSTRUCTIONS				Control of the last	GHT CHARGES
PACKAGES DESCRIPTION OF ARTICLE	ES AND SPECIAL MARKS		WEIGHT (Subject to Correction)	□ PREPA	
- CCCCCC WOLLD			W.F.W.E.S	- 17 24 -	shipping will automatically move collect
				FEE	
		TOTAL STREET		WAITING-	
	To Eliterate			XPU	
21,141,05	SRA			CHARGES	
MALL	7000			FSC	
			40re	us	
UNIT#	DECLARED VALU liability of carrier is \$2 kilogram) unless dec otherwise.	ATION: Maximum .00 per lb. (\$4.41 per ared valuation states			
DRIVER'S SIGNATURE - PICK UP BY PICK UP TIME	DRIVER'S SIGNATUI	RE - DELIVERY BY	FINISH TIME	GST	
seein nach 10 kg ag aber henn seein seein seein seein seein seein seein seein seein seein seein seein seein se	notice therefor setting out particulars of the	e origin isstination and data of shi	pment of the goods and the estimated amount claims		
NOTICE OF CLAM: (a) No camer is liable for loss, demage or delay of any goods under the Bit of Lating where respect of such loss, damage or delay is given in writing to the originating camer or the determing carrier within as respect to the control of the control of the control of the determination of the control of the	thy (50) days after the delivery of the grads of shipment logether with the contest of signed at the said destination said and as to each party of any time interested and accepted for himself and his accepted for himself and his accepted for himself and his accepted for himself and his accepted.	om the case of failure to make del py of the paid freight bill inoted (contents and condition of o ject to the rates and class in all or any of the goods, that eve Printed or written including condition	ivery within nine (9) months from the date of shipment ontents of package unknown; marked, consigned and floation in effect on the date of shipment by service to be performed hereunder shall be subject is set asked by the standard Bell of Lading in power a	TOTAL \$	ISK, WRITE ORD HERE
THE DATE OF ISSUING WHITE WHITE HE goods listed in the Bill of Lacron is governed by regulation in force in the juried SHIPPER PRINT	CONSIGNEE PRINT	d is subject. It are conditions and to	R in succi conditions	DATE	
SHIPPEII SIGN	CONSIGNEE SIGN	ENEXA!		TIME	
WHITE: Office YELLOW: Carrier PINK: Consignee	GOLDENROAD: Shipp	GST #	864540398RT0001	NUMBER OF PI	ECES RECEIVED
OCCS PRINTING		wane.			THE REPORT OF
			Y		
	\sim		1 7		ır: 7
Cooler ID: Cooler 2	COC((Y/N)	Temperat	ure: 5.3		1111
Coolant Type: (Ice) Blue Ice	Ambient				
Notes:) C	£	

Effective 7/29/2

Sampling Locations:

Sample Types:

Container Types:

Opened By: ERL

Date: 4/15/22

Revision 004

SP

T/D

T/D

SP

NOT NEGOTIABLE

250-425-7447 24 Hour Hot Skot Service טסככל יחון

Confidential

Sparwood, BC Terrace, BC Red Deer, AB

Vancouver, BC Calgary, AB Montreal, QC

Prince George, BC Edmonton, AB Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT

DATE

BAL Final Report 2209181 Tumbler Ridge, BC Hinton, AB Gillette, WY

Progression of suppring ord in domain all progressions and purpose of the control	INVOICE TO				7000	
STREET STREET	BILL OF LADING #		PURCHASE ORDER	RNUMBER		
TREET STREET STREET POSTAL CODE GITY/PROVINCE POSTAL CODE GITY/PROVINCE POSTAL CODE GITY/PROVINCE POSTAL CODE FREIGHT CHARGE SHIPPER TO CHECK DHEREAD COLL Frein-Audad Stage of the Control of	SHIPPER (FROM)	CONSIGNEE (TO)	EVAVIATE LINE			
POSTAL CODE CITY/PROVINCE POSTAL CODE CITY/PROVINCE POSTAL CODE FREIGHT CHARGE SHIPPER TO CHECK SHIPPER TO CHECK SHIPPER TO CHECK SHIPPER TO CHECK SHIPPER TO CHECK SHIPPER TO CHECK SHIPPER TO CHECK SHIPPER TO CHECK SHIPPER TO CHECK SPELLARED VALUATION: Maximum unabling of certain is \$2,000 per to, 15,44 1 per MAITING XPU CHARGES RIVER'S SIGNATURE - PICK UP BY PICK UP TIME DRIVER'S SIGNATURE - DELIVERY BY FINISH TIME GST STORY CHECK SIGNATURE - PICK UP BY PICK UP TIME DRIVER'S SIGNATURE - DELIVERY BY FINISH TIME GST TOTAL GST TOTAL TOTAL ON THE SHIPPER TO CHECK SPELLARED VALUATION: Maximum unabling of certain is \$2,000 per to, 15,44 1 per MAITING SUB TOTAL GST TOTAL GST TOTAL ON THE SHIPPER TO CHECK SPELLARED VALUATION: Maximum unabling of certain is \$2,000 per to, 15,44 1 per MAITING SUB TOTAL GST TOTAL ON THE SHIPPER TO CHECK SPELLARED VALUATION: Maximum unabling of certain is \$2,000 per to, 15,44 1 per MAITING SUB TOTAL GST TOTAL ON THE SHIPPER TO CHECK SPELLARED VALUATION: Maximum unabling of certain is \$2,000 per to, 15,44 1 per MAITING SUB TOTAL GST TOTAL ON THE SHIPPER TO CHECK SPELLARED VALUATION: Maximum unabling of certain is \$2,000 per to, 15,44 1 per MAITING SUB TOTAL GST TOTAL ON THE SHIPPER TO CHECK SPELLARED VALUATION: Maximum unabling of certain is \$2,000 per to, 15,44 1 per MAITING GST TOTAL ON THE SHIPPER TO CHECK SPELLARED VALUATION: Maximum unabling of certain is \$2,000 per to, 15,44 1 per MAITING GST TOTAL WITH CHECK OF THE SHIPPER TO CHECK SPELLARED VALUATION: Maximum unabling of certain is \$2,000 per to, 15,44 1 per MAITING GST TOTAL WITH CHECK OF THE SHIPPER TO CHECK SPELLARED VALUATION: Maximum unabling of certain is \$2,000 per to, 15,44 1 per MAITING GST TOTAL WITH CHECK OF THE SHIPPER TO CHECK SPELLARED VALUATION: Maximum unabling of certain is \$2,000 per to, 15,44 1 per MAITING GST TOTAL WITH CHECK OF THE SHIPPER TO CHECK OF THE SHIPPER TO CHECK OF THE SHIPPER TO CHECK OF THE SHIPPER TO CHECK OF THE SHIPPER TO CHECK SPELLARED	Mest Live Could		STREET			
PECIAL INSTRUCTIONS ACKAGES DESCRIPTION OF ARTICLES AND SPECIAL MARKS WEIGHT (Subject to Correction) FEE WAITING WA	TREET	Fred to	17.751			POSTAL CODE
SHIPPER TO CHECK PREPAID COLLE For natural shipping of all attributable for Control of the Contr	ITY/PROVINCE	POSTAL CODE	CITY/PROVINCE			POSTALOGE
PECHAGES DESCRIPTION OF ARTICLES AND SPECIAL MARKS WEIGHT Subject to Correction From challanced aboption of automatically not APPL CHARGES NIT # DECLARED VALUATION: Maximum isignify of carrier is \$2.00 per ib. (\$4.41 per kilogram) unless declared valuation states otherwises. BUS SUB TOTAL SUB TOTAL GST OTALS FINISH TIME OF CLARED VALUATION: Maximum isignify of carrier is \$2.00 per ib. (\$4.41 per kilogram) unless declared valuation states otherwises. SUB TOTAL GST OTALS TOTALS TOTALS TOTALS TOTALS TOTALS TOTALS WHITE: Office YELLOW: Carrier PINK: Corrisignee GOLDENROAD: Shipper WHITE: Office YELLOW: Carrier PINK: Corrisignee GOLDENROAD: Shipper GST # 864540398RT0001 NUMBER OF RECES RECEIVED NUMBER OF PICKS RECEIVED NUMBER OF RECES RECEIVED NUMBER OF RECES RECEIVED NUMBER OF RECES RECEIVED NUMBER OF RECES RECEIVED NUMBER OF RECES RECEIVED NUMBER OF RECES RECEIVED NUMBER OF RECES RECEIVED	PECIAL INSTRUCTIONS					
DECLARED VALUATION: Maximum liability of carrier is \$2.00 per ib. (\$4.41 per kilogram) unless declared valuation states otherwise. US_ SINERY'S SIGNATURE - PICK UP BY PICK UP TIME DRIVER'S SIGNATURE - DELIVERY BY FINISH TIME GST_ THIS OF CLAMM (a) No carrier is labels to lot. Acades a device of dry goods upper to the profit of the pr	PACKAGES DESCRIPTION OF ARTICI	LES AND SPECIAL MARKS		WEIGHT (Subject to Correction)	□PREPA	AID COLLECT
DECLARED VALUATION: Maximum liability of carrier's \$2.00 per ib, (\$4.41 per kloper) and the second of the second o	THE COMES WOULD	SATUR.				snipping will automatically move co
RIVER'S SIGNATURE - PICK UP BY PICK UP TIME DRIVER'S SIGNATURE - DELIVERY BY PICK UP TIME DRIVER'S SIGNATURE - DELIVERY BY PICK UP TIME DRIVER'S SIGNATURE - DELIVERY BY FINISH TIME GST TOTAL S SUB TOTAL GST TOTAL S	亚国教教 似于自然解析的。 15 国					
DECLARED VALUATION: Maximum liability of carrier is \$2,000 per Ib. (\$4.41 per kilogram) unless declared valuation states otherwise. RIVER'S SIGNATURE - PICK UP BY PICK UP TIME DRIVER'S SIGNATURE - DELIVERY BY FINISH TIME GST TOTAL GST TOTAL S TOT	AND THE PROPERTY OF BUILDING		Tujikana in		WAITING-	
DECLARED VALUATION: Maximum liability of carrier is \$2.00 per lb. (\$4.41 per kidgaran) unless declared valuation states \$ SUB TOTAL STRIVER'S SIGNATURE - PICK UP BY PICK UP TIME DRIVER'S SIGNATURE - DELIVERY BY FINISH TIME STRIPER'S SIGNATURE - DELIVERY BY FINISH TIME GST TOTAL \$					XPU	
DECLARED VALUATION: Maximum Wability of carrier is \$2.00 per lb. (\$4.41 per kilogram) unless declared valuation states otherwise. RIVER'S SIGNATURE - PICK UP BY PICK UP TIME DRIVER'S SIGNATURE - DELIVERY BY FINISH TIME GST TOTAL \$ CONSIGNED TO SIGNED	01.111/05	SEA			CHARGES	
DECLARED VALUATION: Maximum liability of carrier is \$2.00 per lb. (\$4.41 per klogram) unless declared valuation states otherwise. SUB TOTAL SUB TOTAL SUB TOTAL SUB TOTAL SUB TOTAL DRIVER'S SIGNATURE - PICK UP BY PICK UP TIME DRIVER'S SIGNATURE - DELIVERY BY FINISH TIME GST TOTAL 5 TOTAL	MNHV-	7700			FSC	
DECLARED VALUATION: Maximum liability of carrier is \$2.00 per lb. (\$4.41 per klogram) unless declared valuation states otherwise. SUB TOTAL SUB TOTAL SUB TOTAL SUB TOTAL SUB TOTAL DRIVER'S SIGNATURE - PICK UP BY PICK UP TIME DRIVER'S SIGNATURE - DELIVERY BY FINISH TIME GST TOTAL 5 TOTAL						
TOTAL \$ TOT	NIT#	liability of carrier is \$ kilogram) unless dec	2.00 per lb. (\$4.41 per	\$	THE ST	
HIPPER RINT CONSIGNEE SIGN WHITE: Office YELLOW: Carrier PINK: Consignee GOLDENROAD: Shipper GST # 864540398RT0001 NUMBER OF PIECES RECEIVED OS PRINTING	RIVER'S SIGNATURE - PICK UP BY PICK UP TIME	DRIVER'S SIGNATU	RE - DELIVERY BY	FINISH TIME	GST	
HIPPER RINT CONSIGNEE SIGN WHITE: Office YELLOW: Carrier PINK: Consignee GOLDENROAD: Shipper GST # 864540398RT0001 NUMBER OF PIECES RECEIVED OS PRINTING	TICE OF CLABB: (a) No carrier is liable for loss, damage or deley of any goods under the Bid of Lading unless the black house, damage or delay is given in writing to the originating carrier or the delivering carrier within 1 he black house damage or delay is given in writing to the originating carrier or the delivering carrier within 1 he black house house the black house hou	ss notice, therefor setting out particulars of the analy (60) days after the delivery of the goods (e.g., and a septement together with a condescribed in apparent good order, except a few said destination surpliced in the said destination surpliced to the said destination surpliced to the said destination surpliced to the said destination surpliced to the said destination surpliced to the said destination surpliced to the said destination surpliced to the said of the sa	be origin, lostination and date of shi, pin the case of failure to make de apy of the paid freight bill is insted (contents and condition of bject to the rates and class in all or any of the goods, that eve Printed or written, including condition	pment of the goods and the estimated amount claimed when within nine (9) months from the dark of shipment contents of package unknown maded, conspired and inflication, in in maded, conspired and inflication, the content of the dark of shipment properties the performed hereunder shall be supplied one set aside by the standard bill of Lading in power at	TOTAL \$	RISK, WRITE ORD HERE
CONSIGNEE SIGN WHITE: Office YELLOW: Carrier PINK: Consignee GOLDENROAD: Shipper GST # 864540398RT0001 NUMBER OF PIECES RECEIVED SEPRENTING	HIPPER	COMPIGNEE	nd is subject. To the conditions set of	ALT II SUCH CONDITIONS	DATE	
WHITE; Office YELLOW: Carrier PINK: Consignee GOLDENROAD: Shipper GST # 864540398RT0001 NUMBER OF MECES RECEIVED DIS PRINTING	HIPPER				TIME	
OS PRINTING	anu a mi	e GOLDENROAD: Ship	per GST #	# 864540398RT0001	NUMBER OF PI	ECES RECEIVED
IR: 2.						
Cooler ID: (Coc (Coc (YN) Temperature. 22)	Cooler ID: lacter 4	coc (1/N)	Temperat	:ure: 2.4°C		IR: Z

Notes:

Sampling Locations:

Sample Types:

40 M

SP 125mL Plantic

EV T/D

T/D

SP T/D

Container Types: Opened By: AM

Date: 9/15

Revision 004

Effective 7/29/20

T/D

SELENIUM SPECIATION

BAL Final Report 2209283 (Finalized Oct-12-22)

BAL Final Report 2209283

18804 North Creek Parkway, Ste 100, Bothell, WA 98011 • USA • T: 206 632 6206 F: 206 632 6017 • info@brooksapplied.com

October 12, 2022

Confidential

Teck Resources Limited - Vancouver Nicole Zathey 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 nicole.zathey@teck.com

Re: Line Creek Operation

Dear Nicole Zathey,

On September 22, 2022, Brooks Applied Labs (BAL) received eight (8) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se [Se], and Se speciation analyses, according to the chain-of-custody (COC) form.

The sample fractions for total recoverable Se and dissolved Se were not preserved in the field. The samples were preserved (pH < 2) upon receipt at BAL. All sample fractions for total recoverable Se and dissolved Se were preserved within the (14 calendar day) preservation holding time.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable Se and Dissolved Se

Each aqueous sample fraction for dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Selenium Speciation

Each aqueous sample was analyzed for selenium speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(IV)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMef], selenosulfate $[SeSO_3]$, and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk SeSp].

Confidential BAL Final Report 2209283

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional selenium species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting selenium species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances where a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the relative percent difference (RPD) of the MS/MSD set was not calculated (N/C).

In cases when either the native sample concentration was non-detectable (reported as less than or equal to the MDL) and/or the corresponding DUP result was also non-detectable, the RPD between the two values was not calculated (**N/C**).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited meet all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute Senior Project Manager

Jeremy@brooksapplied.com

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	scv	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	Т	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard) Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
EPA 6020	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn
BAL-5000	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness
	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury
EPA 1630	Non-Potable Waters	Methyl Mercury
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)
SM2340B	Non-Potable Waters	Hardness

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb
DAI 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)
SM2340B	Non-Potable Waters	Hardness
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
LC_DCEF_WS_LAEMP_DRY_2022- 09_N	2209283-01	WS	Sample	09/12/2022	09/22/2022
LC_DCEF_WS_LAEMP_DRY_2022- 09_NP-NAL	2209283-02	WS	Sample	09/12/2022	09/22/2022
LC_DCEF_WS_LAEMP_DRY_2022- 09_NP-NAL	2209283-03	WS	Sample	09/12/2022	09/22/2022
LC_GRCK_WS_LAEMP_DRY_2022- 09_N	2209283-04	WS	Sample	09/14/2022	09/22/2022
LC_GRCK_WS_LAEMP_DRY_2022- 09_NP-NAL	2209283-05	WS	Sample	09/14/2022	09/22/2022
LC_GRCK_WS_LAEMP_DRY_2022- 09_NP-NAL	2209283-06	WS	Sample	09/14/2022	09/22/2022
LC_MT1_WS_LAEMP_DRY_2022-0 9_N	2209283-07	WS	Sample	09/14/2022	09/22/2022
LC_MT1_WS_LAEMP_DRY_2022-0 9_N-NAL	2209283-08	WS	Sample	09/14/2022	09/22/2022
LC_MT1_WS_LAEMP_DRY_2022-0 9_N-NAL	2209283-09	WS	Sample	09/14/2022	09/22/2022
LC_CC1_WS_LAEMP_DRY_2022-0 9_N	2209283-10	WS	Sample	09/14/2022	09/22/2022
LC_CC1_WS_LAEMP_DRY_2022-0 9_N-NAL	2209283-11	WS	Sample	09/14/2022	09/22/2022
LC_CC1_WS_LAEMP_DRY_2022-0 9_N-NAL	2209283-12	WS	Sample	09/14/2022	09/22/2022

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	09/27/2022	09/27/2022	B222236	S221003
DMSeO	Water	SOP BAL-4201	09/29/2022	10/01/2022	B222236	S221017
MeSe(IV)	Water	SOP BAL-4201	09/27/2022	09/27/2022	B222236	S221003
MeSe(IV)	Water	SOP BAL-4201	09/29/2022	10/01/2022	B222236	S221017
MeSe(VI)	Water	SOP BAL-4201	09/27/2022	09/27/2022	B222236	S221003
MeSe(VI)	Water	SOP BAL-4201	09/29/2022	10/01/2022	B222236	S221017
Se	Water	EPA 1638 Mod	09/23/2022	09/26/2022	B222203	S221000
Se(IV)	Water	SOP BAL-4201	09/27/2022	09/27/2022	B222236	S221003
Se(IV)	Water	SOP BAL-4201	09/29/2022	10/01/2022	B222236	S221017
Se(VI)	Water	SOP BAL-4201	09/27/2022	09/27/2022	B222236	S221003
Se(VI)	Water	SOP BAL-4201	09/29/2022	10/01/2022	B222236	S221017
SeCN	Water	SOP BAL-4201	09/27/2022	09/27/2022	B222236	S221003
SeCN	Water	SOP BAL-4201	09/29/2022	10/01/2022	B222236	S221017
SeMet	Water	SOP BAL-4201	09/27/2022	09/27/2022	B222236	S221003
SeMet	Water	SOP BAL-4201	09/29/2022	10/01/2022	B222236	S221017
SeSO3	Water	SOP BAL-4201	09/27/2022	09/27/2022	B222236	S221003
SeSO3	Water	SOP BAL-4201	09/29/2022	10/01/2022	B222236	S221017
Unk Se Sp	Water	SOP BAL-4201	09/27/2022	09/27/2022	B222236	S221003
Unk Se Sp	Water	SOP BAL-4201	09/29/2022	10/01/2022	B222236	S221017

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
LC DCEF WS	LAEMP DRY	2022-09 N								
2209283-01	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B222236	S221003
2209283-01	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222236	S221003
2209283-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222236	S221003
2209283-01	Se(IV)	WS	D	≤ 0.020	U	0.020	0.075	μg/L	B222236	S221003
2209283-01	Se(VI)	WS	D	1.49		0.010	0.055	μg/L	B222236	S221003
2209283-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B222236	S221003
2209283-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222236	S221003
2209283-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222236	S221003
2209283-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B222236	S221003
IC DOFF WS	I AFMP DRY	_2022-09_NP-NAL								
2209283-02	_ <i></i>	_2022-03_N/ -NAL WS	D	1.56		0.165	0.528	μg/L	B222203	S221000
2200200-02	00	***	D	1.00		0.100	0.020	M9/L	DEELECO	0221000
LC_DCEF_WS	_LAEMP_DRY	_2022-09_NP-NAL								
2209283-03	Se	WS	TR	1.44		0.165	0.528	μg/L	B222203	S221000
LC_GRCK_WS	LAEMD DOV	2022 00 N								
2209283-04	DMSeO	_2022-09_N WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222236	S221003
2209283-04	MeSe(IV)	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.025	μg/L μg/L	B222236	S221003 S221003
2209283-04	MeSe(VI)	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.025	μg/L μg/L	B222236	S221003
2209283-04	Se(IV)	WS	D	0.035	J	0.020	0.075	μg/L	B222236	S221003
2209283-04	Se(VI)	WS	D	1.85	Ū	0.010	0.055	μg/L	B222236	S221003
2209283-04	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B222236	S221003
2209283-04	SeMet	WS	D	≤ 0.010	Ü	0.010	0.025	μg/L	B222236	S221003
2209283-04	SeSO3	WS	D	≤ 0.010	Ü	0.010	0.055	μg/L	B222236	S221003
2209283-04	Unk Se Sp	WS	D	≤ 0.010	Ü	0.010	0.075	μg/L	B222236	S221003
								1-3/		
		2022-09_NP-NAL								
2209283-05	Se	WS	D	1.69		0.165	0.528	μg/L	B222203	S221000
LC GRCK WS	S LAEMP DRY	2022-09 NP-NAL	_							
2209283-06	Se	- ws	TR	1.83		0.165	0.528	μg/L	B222203	S221000

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
LC MT1 WS	LAEMP DRY 2	2022-09 N								
2209283-07	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222236	S221003
2209283-07	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222236	S221003
2209283-07	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222236	S221003
2209283-07	Se(IV)	WS	D	≤ 0.020	U	0.020	0.075	μg/L	B222236	S221003
2209283-07	Se(VI)	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222236	S221003
2209283-07	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B222236	S221003
2209283-07	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222236	S221003
2209283-07	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222236	S221003
2209283-07	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B222236	S221003
IC MT1 WS I	IAFMP DRY 2	2022-09 N-NAL								
2209283-08	Se	WS	D	0.208	J	0.165	0.528	μg/L	B222203	S221000
2200200 00				0.200	Ü	0.100	0.020	⊬ 9/ –	522200	0221000
LC_MT1_WS_I	LAEMP_DRY_2	2022-09_N-NAL								
2209283-09	Se	WS	TR	≤ 0.165	U	0.165	0.528	μg/L	B222203	S221000
LC_CC1_WS_I		_	_			0.040	0.005		B000000	
2209283-10	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L "	B222236	S221017
2209283-10	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L "	B222236	S221017
2209283-10	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222236	S221017
2209283-10	Se(IV)	WS	D	0.032	J	0.020	0.075	μg/L	B222236	S221017
2209283-10	Se(VI)	WS	D	1.53		0.010	0.055	μg/L "	B222236	S221017
2209283-10	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B222236	S221017
2209283-10	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222236	S221017
2209283-10	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222236	S221017
2209283-10	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B222236	S221017
LC_CC1_WS_I	LAEMP_DRY_2	2022-09_N-NAL								
2209283-11	Se	WS	D	1.87		0.165	0.528	μg/L	B222203	S221000
LC CC1 WS	LAEMP DRY 2	2022-09 N-NAL								
2209283-12	Se	WS	TR	1.81		0.165	0.528	μg/L	B222203	S221000

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Accuracy & Precision Summary

Batch: B222203 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B222203-BS1 Blank Spike, (2128023) Se	Blank Spike, (2128023) Se		200.0	174.3	μg/L	87% 75-12	5
B222203-BS2	Blank Spike, (2128023) Se		200.0	178.8	μg/L	89% 75-129	5
B222203-BS3	Blank Spike, (2128023) Se		200.0	179.9	μg/L	90% 75-12	5
B222203-BS4	Blank Spike, (2128023) Se		200.0	173.4	μg/L	87% 75-12	5
B222203-BS5	Blank Spike, (2128023) Se		200.0	182.9	μg/L	91% 75-12	5
B222203-SRM1	Reference Material (22140) Se	16, TMDA 5	5 1.5 Referenc 14.30	e Standard 12.81	- Bottle 8 - 3 μg/L	SRM) 90% 75-12	5
B222203-SRM2	Reference Material (22140) Se	16, TMDA 5	51.5 Referenc 14.30	e Standard 13.33	- Bottle 8 - \$ µg/L	SRM) 93% 75-12	5
B222203-SRM3	Reference Material (22140) Se	16, TMDA 5	51.5 Referenc 14.30	e Standard 13.09	- Bottle 8 - \$ µg/L	SRM) 92% 75-129	5
B222203-SRM4	Reference Material (22140) Se	16, TMDA 5	5 1.5 Referenc 14.30	e Standard 13.25	- Bottle 8 - \$ µg/L	SRM) 93% 75-12	5
B222203-SRM5	Reference Material (22140) Se	16, TMDA 5	51.5 Referenc 14.30	e Standard 13.11	- Bottle 8 - \$ µg/L	SRM) 92% 75-12	5
B222203-DUP1	Duplicate, (2209283-06) Se	1.829		1.882	μg/L		3% 20

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Accuracy & Precision Summary

Batch: B222203 Lab Matrix: Water Method: EPA 1638 Mod

Sample B222203-MS1	Analyte Matrix Spike, (2209283-06)	Native	Spike	Result	Units	REC & Limits	RPD & Limits
	Se	1.829	220.0	198.2	μg/L	89% 75-125	
B222203-MSD1	Matrix Spike Duplicate, (22 Se	209283-06) 1.829	220.0	202.7	μg/L	91% 75-125	2% 20

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Accuracy & Precision Summary

Batch: B222236 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B222236-BS1	Blank Spike, (2236035)						
	MeSe(IV)		5.095	5.336	μg/L	105% 75-125	
	Se(IV)		5.000	5.147	μg/L	103% 75-125	
	Se(VI)		5.000	4.836	μg/L	97% 75-125	
	SeCN		5.015	4.828	μg/L	96% 75-125	
	SeMet		4.982	4.782	μg/L	96% 75-125	
B222236-DUP1	Duplicate, (2209289-06)						
	DMSeO	0.013		ND	μg/L		N/C 25
	MeSe(IV)	0.013		0.015	μg/L		9% 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	0.219		0.223	μg/L		2% 25
	Se(VI)	20.72		20.98	μg/L		1% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B222236-MS1	Matrix Spike, (2209289-0	6)					
	Se(IV)	0.219	4.900	5.274	μg/L	103% 75-125	
	Se(VI)	20.72	5.100	26.18	μg/L	NR 75-125	
	SeCN	ND	1.962	1.977	μg/L	101% 75-125	
	SeMet	ND	1.977	2.015	μg/L	102% 75-125	
B222236-MSD1	Matrix Spike Duplicate, (2209289-06)				
	Se(IV)	0.219	4.900	5.335	μg/L	104% 75-125	1% 25
	Se(VI)	20.72	5.100	26.45	μg/L	NR 75-125	N/C 25
	SeCN	ND	1.962	1.970	μg/L	100% 75-125	0.4% 25
	SeMet	ND	1.977	2.010	μg/L	102% 75-125	0.2% 25

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Method Blanks & Reporting Limits

Batch: B222203 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B222203-BLK1	-0.026	μg/L
B222203-BLK2	-0.076	μg/L
B222203-BLK3	-0.031	μg/L
B222203-BLK4	-0.040	μg/L
B222203-BLK5	-0.054	μg/L

 Average: -0.045
 MDL: 0.150

 Limit: 0.480
 MRL: 0.480

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Method Blanks & Reporting Limits

Batch: B222236 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

Sample	Result	Units
B222236-BLK1	0.00	μg/L
B222236-BLK2	0.00	μg/L
B222236-BLK3	0.00	μg/L
B222236-BLK4	0.00	ua/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

Sample	Result	Units
B222236-BLK1	0.00	μg/L
B222236-BLK2	0.00	μg/L
B222236-BLK3	0.00	μg/L
B222236-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

Sample	Result	Units
B222236-BLK1	0.00	μg/L
B222236-BLK2	0.00	μg/L
B222236-BLK3	0.00	μg/L
B222236-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Method Blanks & Reporting Limits

Analyte: Se(IV)

Sample	Result	Units
B222236-BLK1	0.0009	μg/L
B222236-BLK2	0.0005	μg/L
B222236-BLK3	0.00	μg/L
B222236-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.004 Limit: 0.015 MRL: 0.015

Analyte: Se(VI)

Sample	Result	Units
B222236-BLK1	0.001	μg/L
B222236-BLK2	0.0007	μg/L
B222236-BLK3	0.0005	μg/L
B222236-BLK4	0.00	μg/L

 Average: 0.001
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Sample	Result	Units
B222236-BLK1	0.00	μg/L
B222236-BLK2	0.00	μg/L
B222236-BLK3	0.00	μg/L
B222236-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B222236-BLK1	0.00	μg/L
B222236-BLK2	0.00	μg/L
B222236-BLK3	0.00	μg/L
B222236-BLK4	0.00	ua/l

Average: 0.000 **MDL:** 0.002 **Limit:** 0.005 **MRL:** 0.005

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B222236-BLK1	0.00	μg/L
B222236-BLK2	0.00	μg/L
B222236-BLK3	0.00	μg/L
B222236-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.011 **MRL:** 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B222236-BLK1	0.00	μg/L
B222236-BLK2	0.00	μg/L
B222236-BLK3	0.00	μg/L
B222236-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Sample Containers

Lab ID: 2209283-01 Sample: LC_DCEF_WS_LAEMP_DRY_2022-09_N				Report Matrix: WS Sample Type: Sample + Sum			cted: 09/12/2022 ved: 09/22/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 7 - 2209283
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 7 - 2209283
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 7 - 2209283
Lab ID: 2209283-02 Sample: LC_DCEF_WS_LAEMP_DRY_2022-09_NP-NAL			Report Matrix: WS Sample Type: Sample + Sum			cted: 09/12/2022 ved: 09/22/2022	
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2230023	<2	Cooler 6 - 2209283
Lab ID: 2209283-03 Sample: LC DCEF WS LAEMP DRY 2022-09 NP-NAL			Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/12/2022 Received: 09/22/2022		
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2230023	<2	Cooler 6 - 2209283
Lab ID: 2209283-04 Sample: LC_GRCK_WS_LAEMP_DRY_2022-09_N Des Container Size Lo		Lot	Report Matrix: WS Sample Type: Sample + Sum Preservation P-Lot		Collected: 09/14/2022 Received: 09/22/2022 pH Ship. Cont.		
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 7 - 2209283
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 7 - 2209283
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 7 - 2209283

BAL Final Report 2209283

Client PM: Nicole Zathey

Client Project: Line Creek Operation

2209283

Sample Containers

Lab ID: 2209283-05 Report Matrix: WS Collected: 09/14/2022 Sample: Received: 09/22/2022 Sample Type: Sample + Sum LC GRCK WS LAEMP DRY 2022-09 NP-NAL **Des Container** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 40 mL na 2230023 <2 Cooler 6 -2209283 Lab ID: 2209283-06 Report Matrix: WS Collected: 09/14/2022 Received: 09/22/2022 Sample: Sample Type: Sample + Sum LC_GRCK_WS_LAEMP_DRY_2022-09_NP-NAL рΗ **Des Container** Size **Preservation** P-Lot Lot Ship. Cont. Client-Provided - TM 40 ml 10% HNO3 (BAL) 2230023 <2 Cooler 6 na 2209283 Lab ID: 2209283-07 Report Matrix: WS Collected: 09/14/2022 Sample: LC MT1 WS LAEMP DRY 2022-09 N Sample Type: Sample + Sum Received: 09/22/2022 **Des Container** Size **Preservation** P-Lot Lot pН Ship. Cont. 15 mL Α Cent Tube 15mL Se-Sp none Cooler 7 na na na 2209283 В XTRA VOL 15 mL na none na na Cooler 7 -2209283 С XTRA_VOL Cooler 7 -125 mL na none na na 2209283 Lab ID: 2209283-08 Collected: 09/14/2022 Report Matrix: WS Received: 09/22/2022 Sample: Sample Type: Sample + Sum LC_MT1_WS_LAEMP_DRY_2022-09_N-NAL **Des Container** Size Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 40 mL 10% HNO3 (BAL) 2230023 <2 Cooler 6 na 2209283 Lab ID: 2209283-09 Report Matrix: WS Collected: 09/14/2022 Sample: Received: 09/22/2022 Sample Type: Sample + Sum LC MT1 WS LAEMP DRY 2022-09 N-NAL Ship. Cont. **Des Container** Size **Preservation** P-Lot Lot Ha Client-Provided - TM 40 mL 10% HNO3 (BAL) 2230023 <2 Cooler 6 na

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

2209283

Sample Containers

Lab ID: 2209283-10 Sample: LC_CC1_WS_LAEMP_DRY_2022-09_N		Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/14/2022 Received: 09/22/2022			
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 7 - 2209283
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 7 - 2209283
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 7 - 2209283
Lab ID: 2209283-11 Sample: LC CC1 WS LAEMP DRY 2022-09 N-NAL		Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/14/2022 Received: 09/22/2022			
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2230023	<2	Cooler 6 - 2209283
Lab ID: 2209283-12 Sample: LC_CC1_WS_LAEMP_DRY_2022-09_N-NAL		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/14/2022 ived: 09/22/2022		
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2230023	<2	Cooler 6 -

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209283
Client PM: Nicole Zathey
Client Project: Line Creek Operation

Shipping Containers

Cooler 6 - 2209283

Received: September 22, 2022 7:37 **Tracking No:** RWHV95583 via Courier

Coolant Type: Blue Ice Temperature: 12.5 °C

Cooler 7 - 2209283

Received: September 22, 2022 7:37 **Tracking No:** RWHV95583 via Courier

Coolant Type: Blue Ice Temperature: -0.8 °C Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: IR#:1

Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: IR#:1 Custody seals present? No Custody seals intact? No COC present? Yes

Custody seals present? No Custody seals intact? No COC present? Yes

21	Ωf	2

Jennifer Ings

10 1 3

Mobile #

Date/Time

519-500-3444

September 19, 2022

Sampler's Name

Sampler's Signature

SERVICE REQUEST (rush - subject to availability)

Regular (default)

Priority (2-3 business days) - 50% surcharge X

Emergency (1 Business Day) - 100% surcharge

For Emergency <1 Day, ASAP or Weekend - Contact ALS

STRAIGHT BILL OF LADING NOT NEGOTIABLE

24 Hour Hot Shot Service

Sparwood, BC Terrace, BC Red Deer, AB

Vancouver, BC Calgary, AB Montreal, QC

Prince George, BC Edmonton, AB Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT

Tumbler Ridge, BC Hinton, AB Gillette, WY

INVOICE TO	100 300	MAHAM				DATE SOLD DO (23)
BILL OF LADING	#			PURCHASE ORDE	RNUMBER	
SHIPPER (FROM	(i)	1		CONSIGNEE (TO)	Andread la	r garage and a second
STREET	LAND COM			STREET		VEN NE
CITY/PROVINCE	COL PLE		POSTAL CODE	CITY/PROVINCE	u 10	POSTAL CODE
SPECIAL INSTRU	UCTIONS			THE R		FREIGHT CHARGES
PACKAGES		DESCRIPTION OF ARTIC	LES AND SPECIAL MARKS		WEIGHT	SHIPPER TO CHECK
					(Subject to Correction)	□ PREPAID □ COLLECT If not indicated, snipping will automatically move collect
7	Contrac		Y	1.6	Tyle lles	FEE
		7	1 1111	11.3	000 (0)	WAITING
			1-12-2			
	0 11	1.10	06	-		XPU
	KINI	THO	SSX	<		CHARGES
	1110	110	000)		FSC
I IN RET						
UNIT #			DECLARED VALU- liability of carrier is \$2 kilogram) unless declar otherwise.	.00 per lb. (\$4.41 per	\$	SUB TOTAL
DRIVER'S SIGNAT	URE - PICK UP BY	PICK UP TIME	DRIVER'S SIGNATUR	F - DELIVERY BY	FINISH TIME	SUB IOTAL
		The state of				GST
NOTICE OF CLAIM: (a) No conspect of such loss, damage b) The fina statement RECEIVAD at the point is less than day appeared in the mutually appeared in the mutual of issuing a land. En the first of issuing with the state of is	camer to the for his sidemage or delay of any or delay of any or delay of any or delay of any or delay of any or delay of any or delay of any or delay of any or delay of any or delay of any or delay of any or delay of any or delay of any or delay of any or delay of any or delay of any or delay of any or delay of any or delay or delay of any or delay or	goods under the Bill of Lading unless affier or the lillhering carner within stine (9) in units from the date entioned herein, the property herein dirry and to deriver to the contany portion of the route to destination, chaire hereto agreed by the consignor gnor and accepted for himself.	notice, there is, eiting our particular of the ixty (60) days after the delivery of the poods, or of shipment together with a con- lescitud, in apparent good order a sept as signed at the said destination subject signed at the said destination subject and accepted to himself and the destination and accepted to himself and the destign. En 1 and this assigns.	destination and date of shift in the case of failure to make deli- y of the paid freight bill loted contents and condition of out to the rates and classi- all or any of the goods, that even nited to written including condition	momen of the goods and the estimated amount dis- vivery within nine (9) months from the date of ship- montens of package unknown) marked, consigned inclusion in affect on the date of ship- inclusion in affect on the date of ship- ting ship-ship-ship-ship-ship-ship-ship-ship-	med in ordinate in
HIPPER PHYT	** It is seen in the Big of Lading is gover	med by regulation in force in the junsd	CONSIGNEE PRINT	s subject to the conditions set or	if in such conditions	DATE
SHIPPE"		111	CONSIGNEE			TIME
	E: Office YELLOW: Corrie	er PINK: Consignee	GOLDENROAD: Shippe	GST#	864540398RT0001	NUMBER OF PIECES RECEIVED
OR POLICE			District Colors	STATE INTO	n de biten, autobie	
Coole	rID: cevier6		COC (YN)	Temperati	ire: 12.5	IR: Z
Çoola	nt Type: Ice	Blue Ice	Ambient			

Notes:

Sampling Locations:

Sample Types:

Container Types: Opened By: ERL

T/D

SP

T/D

Date: 9/27/22

Revision 004

SP

Effective 7/29/20

INVOICE TO

STRAIGHT BILL OF LADING NOT NEGOTIABLE

BAL Final Report 2209283

No. 95583

Sparwood, BC Terrace, BC Red Deer, AB Vancouver, BC Caigary, AB Montreal, QC Prince George, BC Edmonton, AB Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT

DATE

Tumbler Ridge, BC Hinton, AB Gillette, WY

BILL OF LADING #				PURCHASE ORDER	NUMBER	1 198
SHIPPER (FROM)	1 7	A		CONSIGNEE (TO)		
STREET	Letter	CA		STREET	the last	S PARTY NAMED IN
BILL AND IN		K		SINCE	EXECUTE OF	WALLE TO
CITY/PROVINCE			POSTAL CODE	CITY/PROVINCE	1.10	POSTAL CODE
SPECIAL INSTRUCTIONS				1 20063 1832	0.154	EDECUT CHARGES
PACKAGES						FREIGHT CHARGES SHIPPER TO CHECK
PAUNAGES		DESCRIPTION OF ART	ICLES AND SPECIAL MARKS		(Subject to Correction)	□PREPAID □COLLECT
				9270		If not indicated, shipping will automatically move collect
12 12 17	MINE	E WWW	to the second		VILLE	FEE
Control of the last of the las	-1-1-		2011	11.3	ONOR IND	
E S S S S S S S S S S S S S S S S S S S	11 4 11	DESCRIPTION OF	A SHIP SHIP			WAITING
						XPU
ESTECHE ST	A.T		CEO	2		
	IM	440	M	7		CHARGES
	110	111	1000			FSC
						LEGISLA WILLIAM
UNIT #			DECLARED VALUE	JATION: Maximum		US
			kilogram) unless ded otherwise.	2.00 per lb. (\$4.41 per lared valuation states	\$	SUB TOTAL
DRIVER'S SIGNATURE - PI	CK UP BY	PICK UP TIME	DRIVER'S SIGNATU	RE - DELIVERY BY	FINISH TIME	SUB TUTAL
			Diverto dionaro	NE - DELIVER! B!	FINISH TIME	GST
OTICE OF CLAIM: (s) No carrier is liable for	or loss, damage or delay of a	ny goods under the Bill of Lading uni-	ess notice, thereto, selting out particulars of the	of m. destination and date of shipme	this of the poods and the estimated amount claimed	
b) The final statement of the claim ECEIVED at the point of origin on the date estined as indicated below which	must be fited within specified from the consignor the carrier agrees to c	camer of the sellyering camer within nine (9) months from the di- mentioned herein, the property here- carry and to deliver to the co-	sty (60) days after the delivery of the goods, alle of shipment together with a count described, in apparent good order, except as onsigned, at the said destination, sub-	on the case of failure to make deliver, py of the paid fraight bill noted contents and condition of conte	within nine (9) months from the date of shipment. ents of package unknown, marked, consigned and	TOTAL \$
is including agreed, as to each carrier of all is the conditions standard Bill of Lading, in pi ne data of issuing, which are here he Contract for the carriage of the goods list	or any of the goods over all o ower at the date of issuing, w iby agreed by the con- ed in the Bill of Lading is gov	or any portion of the route to destinate high are hereto agreed by the consig signor and accepted for hims remed by regulation in force in the wa	ion, and as to each party of any time interested nor and accepted for himself and his assigns. self and his assigns, and of the time and place of shapment and	in all or any of the goods, that every se trinted or written, including conditions se	int of the goods and the estimated amount claimed within nine (9) months from the date of shipment ents of package timonorin, marked, consigned and titto in effect on the date of shipment envice to be parformed hereunder shall be subject to a stake by the standard bill of Lading, in power at such conditions.	IF AT OWNER'S RISK, WRITE ORD HERE
HIPPER RINT			CONSIGNEE	and subject to the conditions set out in	such conditions	DATE
HIPPER IGN			CONSIGNEE			TIME
WHITE: Office	YELLOW: Carri	ier PINK: Consigne	e GOLDENROAD: Shipp	GST # 86	4540398RT0001	NUMBER OF PIECES RECEIVED
OII PRINTING						
	7 0			A LONG TOWN		
Cooler ID: (onler 7		coc (Y)N)	Temperature	e: ~ O. 8	IR: 7
	_				0 - 0	····
Coolant Type	e: Ice	Blue Ice	Ambient			
Notes:				/		
Committies	and a line	00	11/	1 (1	14	

Sampling Locations:

Sample Types:
Container Types:

Opened By: ERL

T/D (SP) T/D 125AL PICSHIZ PICSHIC

125n 4 90 Stiz Date: 9/22/22

COPY

T/D

SP

CONC

FICSTEL

T/D

Revision 004

SP

T/D

Effective 7/29/20

SELENIUM SPECIATION

BAL Final Report 2212302 (Finalized 13-Jan-23) Confidential BAL Final Report 2212302

January 13, 2023

Teck Resources Limited - Vancouver Nicole Zathey Box 2003 15km North Hwy 43 Sparwood, B.C. CANADA V0B2G0 nicole.zathey@teck.com

Re: Line Creek Operation

Dear Nicole Zathey,

On December 15, 2022, Brooks Applied Labs (BAL) received twelve (12) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se [Se], and Se speciation analyses, according to the chain-of-custody (COC) forms.

The total recoverable Se fraction for *LC_DCEF_WS_LAEMP_DRY_2022-11_NP-NAL* (Laboratory ID = 2212302-16) arrived in a broken container and most of the volume was lost during shipment. Enough volume was remaining to undergo an acid digest and subsequent analysis for selenium. Since it is unknown if contamination occurred during shipment/storage, the total recoverable Se result for 2212302-16 is qualified as estimated (**J-1**) due to a broken container/leaking during shipment.

The dissolved Se fraction for *LC_CC1_WS_LAEMP_DRY_2022-11_NP-NAL* (laboratory ID 2212302-17) also arrived at BAL in a broken container with no volume remaining for quantitation. Volume from the corresponding field filtered selenium speciation fraction (laboratory ID 2212302-06) was poured off into a new container to support the dissolved Se analysis. This new dissolved Se fraction (2212302-17) was preserved (pH < 2) upon receipt at BAL.

The sample fractions for total recoverable Se and dissolved Se were not preserved in the field. The samples were preserved (pH < 2) upon receipt at BAL. The preservation took place beyond the (14-calander day) preservation holding time. Consequently, all total recoverable Se and dissolved Se results are qualified (\mathbf{H}) for preservation time violations.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable Se and Dissolved Se

Each aqueous sample fraction for dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Confidential BAL Final Report 2212302

The total recoverable Se result for 2212302-16 is qualified as estimated (**J-1**) due to a broken container/leaking during shipment. All total recoverable Se and dissolved Se results are qualified (**H**) for preservation time violations.

Selenium Speciation

Each aqueous sample was analyzed for selenium speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], selenomethionine methaneselenonic acid [MeSe(VI)], [SeMet]. selenosulfate [SeSO₃]. dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified in the report as [Unk Se Sp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional selenium species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting selenium species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances where a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the relative percent difference (RPD) of the MS/MSD set was not calculated (N/C).

In cases when either the native sample concentration was non-detectable (reported as less than or equal to the MDL) and/or the corresponding DUP result was also non-detectable, the RPD between the two values was not calculated (**N/C**).

Except for concentration qualifiers and items noted above, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL verifies that the reported results of all analyses for which the laboratory is accredited meet the requirements of the accrediting body, unless otherwise noted in the report narrative. For more information regarding accreditations please see the *Report Information* and *Batch Summary* pages. This report must be used in its entirety for interpretation of results.

Confidential BAL Final Report 2212302

Please feel free to contact us if you have any questions regarding this report.

Şincerely,

Jeremy Maute

Senior Project Manager

Jeremy@brooksapplied.com

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Report Information

General Disclaimers

Test results are based solely upon the sample submitted to Brooks Applied Labs in the condition it was received. This report shall not be reproduced or copied, except in full, without written approval of the laboratory. Brooks Applied Labs is not responsible for the consequences arising from the use of a partial report.

Laboratory Accreditation

BAL maintains accreditation with various state and national agencies for select test methods. For a current list of BAL accreditations, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/. The reported analyte/matrix/method combination shall be considered outside BAL's scopes of accreditation unless otherwise identified as ISO, TNI, or ISO,TNI in the tables. It is the responsibility of the client to verify whether a specific accreditation is required for the intended data use.

ISO: ISO/IEC 17025:2017 accredited test method. Issued by ANSI National Accreditation Board (ANAB), #ADE-1447.02

TNI: NELAP accredited test method. Issued by the State of Florida Department of Health, #E87982.

ISO,TNI: Test method is accredited under both the ISO/IEC 17025:2017 and NELAP accreditations referenced above.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- M Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- N Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
LC_FRB_WS_LAEMP_DRY_2022-11 _N	2212302-01	WS	Sample	11/30/2022	12/15/2022
LC_FRUS_WS_LAEMP_DRY_2022- 11_N	2212302-02	WS	Sample	11/29/2022	12/15/2022
LC_GRCK_WS_LAEMP_DRY_2022- 11_N	2212302-03	WS	Sample	11/30/2022	12/15/2022
LC_MT1_WS_LAEMP_DRY_2022-11 _NP	2212302-04	WS	Sample	11/30/2022	12/15/2022
LC_DCEF_WS_LAEMP_DRY_2022- 11_N	2212302-05	WS	Sample	11/29/2022	12/15/2022
LC_CC1_WS_LAEMP_DRY_2022-11 _NP	2212302-06	WS	Sample	11/30/2022	12/15/2022
LC_FRB_WS_LAEMP_DRY_2022-11 _NP-NAL	2212302-07	WS	Sample	11/30/2022	12/15/2022
LC_FRB_WS_LAEMP_DRY_2022-11 _NP-NAL	2212302-08	WS	Sample	11/30/2022	12/15/2022
LC_FRUS_WS_LAEMP_DRY_2022- 11_NP-NAL	2212302-09	WS	Sample	11/29/2022	12/15/2022
LC_FRUS_WS_LAEMP_DRY_2022- 11_NP-NAL	2212302-10	WS	Sample	11/29/2022	12/15/2022
LC_GRCK_WS_LAEMP_DRY_2022- 11_NP-NAL	2212302-11	WS	Sample	11/30/2022	12/15/2022
LC_GRCK_WS_LAEMP_DRY_2022- 11_NP-NAL	2212302-12	WS	Sample	11/30/2022	12/15/2022
LC_MT1_WS_LAEMP_DRY_2022-11 _NP-NAL	2212302-13	WS	Sample	11/30/2022	12/15/2022
LC_MT1_WS_LAEMP_DRY_2022-11 _NP-NAL	2212302-14	WS	Sample	11/30/2022	12/15/2022
LC_DCEF_WS_LAEMP_DRY_2022- 11_NP-NAL	2212302-15	WS	Sample	11/29/2022	12/15/2022
LC_DCEF_WS_LAEMP_DRY_2022- 11_NP-NAL	2212302-16	WS	Sample	11/29/2022	12/15/2022
LC_CC1_WS_LAEMP_DRY_2022-11 _NP-NAL	2212302-17	WS	Sample	11/30/2022	12/15/2022
LC_CC1_WS_LAEMP_DRY_2022-11 _NP-NAL	2212302-18	WS	Sample	11/30/2022	12/15/2022

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Batch Summary

Analyte	Lab Matrix	Method	Accred.	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201		12/15/22	12/18/22	B223068	S221316
MeSe(IV)	Water	SOP BAL-4201		12/15/22	12/18/22	B223068	S221316
MeSe(VI)	Water	SOP BAL-4201		12/15/22	12/18/22	B223068	S221316
Se	Water	EPA 1638 Mod		12/21/22	12/22/22	B223142	S221342
Se(IV)	Water	SOP BAL-4201	ISO,TNI	12/15/22	12/18/22	B223068	S221316
Se(VI)	Water	SOP BAL-4201	ISO,TNI	12/15/22	12/18/22	B223068	S221316
SeCN	Water	SOP BAL-4201	ISO	12/15/22	12/18/22	B223068	S221316
SeMet	Water	SOP BAL-4201	ISO	12/15/22	12/18/22	B223068	S221316
SeSO3	Water	SOP BAL-4201		12/15/22	12/18/22	B223068	S221316
Unk Se Sp	Water	SOP BAL-4201		12/15/22	12/18/22	B223068	S221316

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
LC_FRB_WS_	LAEMP DRY 2	2022-11 N								
2212302-01	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-01	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-01	Se(IV)	WS	D	0.191		0.020	0.075	μg/L	B223068	S221316
2212302-01	Se(VI)	WS	D	50.6		0.010	0.055	μg/L	B223068	S221316
2212302-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223068	S221316
2212302-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223068	S221316
2212302-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223068	S221316
LC_FRUS_WS	_LAEMP_DRY	_2022-11_N								
2212302-02	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-02	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-02	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-02	Se(IV)	WS	D	0.137		0.020	0.075	μg/L	B223068	S221316
2212302-02	Se(VI)	WS	D	42.6		0.010	0.055	μg/L	B223068	S221316
2212302-02	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223068	S221316
2212302-02	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-02	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223068	S221316
2212302-02	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223068	S221316
LC_GRCK_WS	LAEMP_DRY	_2022-11_N								
2212302-03	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-03	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-03	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-03	Se(IV)	WS	D	0.031	J	0.020	0.075	μg/L	B223068	S221316
2212302-03	Se(VI)	WS	D	2.28		0.010	0.055	μg/L	B223068	S221316
2212302-03	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223068	S221316
2212302-03	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-03	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223068	S221316
2212302-03	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223068	S221316

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
LC_MT1_WS_I	LAEMP_DRY_2	2022-11_NP								
2212302-04	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-04	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-04	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-04	Se(IV)	WS	D	≤ 0.020	U	0.020	0.075	μg/L	B223068	S221316
2212302-04	Se(VI)	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223068	S221316
2212302-04	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223068	S221316
2212302-04	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-04	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223068	S221316
2212302-04	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223068	S221316
LC DCEF WS	I AFMP DRY	2022-11 N								
2212302-05	DMSeO	_ W S	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-05	MeSe(IV)	WS	D	≤ 0.010	Ü	0.010	0.025	μg/L	B223068	S221316
2212302-05	MeSe(VI)	WS	D	≤ 0.010	Ü	0.010	0.025	μg/L	B223068	S221316
2212302-05	Se(IV)	WS	D	≤ 0.020	Ü	0.020	0.075	μg/L	B223068	S221316
2212302-05	Se(VI)	WS	D	1.39	•	0.010	0.055	μg/L	B223068	S221316
2212302-05	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223068	S221316
2212302-05	SeMet	WS	D	≤ 0.010	Ü	0.010	0.025	μg/L	B223068	S221316
2212302-05	SeSO3	WS	D	≤ 0.010	Ü	0.010	0.055	μg/L	B223068	S221316
2212302-05	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223068	S221316
LC_CC1_WS_I	IAEMP DRV :	2022-11 NP								
2212302-06	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-06	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L μg/L	B223068	S221316
2212302-06	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223068	S221316
2212302-06	Se(IV)	WS	D	0.176	O	0.020	0.025	μg/L μg/L	B223068	S221316
2212302-06	Se(VI)	WS	D	48.2		0.010	0.055	μg/L	B223068	S221316
2212302-06	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223068	S221316
2212302-06	SeMet	WS	D	≤ 0.010	Ü	0.010	0.025	μg/L	B223068	S221316
2212302-06	SeSO3	WS	D	≤ 0.010	Ü	0.010	0.055	μg/L	B223068	S221316
2212302-06	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223068	S221316
IC EDD We	I AEMD DDY	2022-11_NP-NAL								
	LAEWP_DR1_/ Se	2022-11_NP-NAL WS	D	46.1	Н	0.165	0.528	ua/l	B223142	S221342
2212302-07	Se	VVO	U	40.1	17	0.100	0.320	μg/L	D223142	3221342
LC FRB WS	LAEMP DRY	2022-11 NP-NAL								
2212302-08	Se	WS	TR	45.6	Н	0.165	0.528	μg/L	B223142	S221342

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence	
LC FRUS WS	LAEMP DRY	_2022-11_NP-NAL									
2212302-09	Se	WS	D	41.9	Н	0.165	0.528	μg/L	B223142	S221342	
LC_FRUS_WS_	LAEMP_DRY	_2022-11_NP-NAL									
2212302-10	Se	WS	TR	39.5	Н	0.165	0.528	μg/L	B223142	S221342	
LC GRCK WS LAEMP DRY 2022-11 NP-NAL											
2212302-11	Se	WS	D	2.43	Н	0.165	0.528	μg/L	B223142	S221342	
LC_GRCK_WS	_LAEMP_DRY	Y_2022-11_NP-NAL									
2212302-12	Se	WS	TR	2.04	Н	0.165	0.528	μg/L	B223142	S221342	
LC_MT1_WS_L	AEMP_DRY_	2022-11_NP-NAL									
2212302-13	Se	WS	D	≤ 0.165	ΗU	0.165	0.528	μg/L	B223142	S221342	
LC_MT1_WS_L	AEMP_DRY_	2022-11_NP-NAL									
2212302-14	Se	WS	TR	≤ 0.165	ΗU	0.165	0.528	μg/L	B223142	S221342	
LC_DCEF_WS_	LAEMP_DRY										
2212302-15	Se	WS	D	1.23	Н	0.165	0.528	μg/L	B223142	S221342	
LC_DCEF_WS_	LAEMP_DRY										
2212302-16	Se	WS	TR	1.39	H J-1	0.165	0.528	μg/L	B223142	S221342	
LC_CC1_WS_L	AEMP_DRY_	2022-11_NP-NAL									
2212302-17	Se	WS	D	45.8	Н	0.165	0.528	μg/L	B223142	S221342	
LC_CC1_WS_L	AEMP_DRY_	2022-11_NP-NAL									
2212302-18	Se	WS	TR	47.4	Н	0.165	0.528	μg/L	B223142	S221342	

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Accuracy & Precision Summary

Batch: B223068 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B223068-BS1	Blank Spike, (2236035)		- P				
	MeSe(IV)		5.095	5.608	μg/L	110% 75-125	
	Se(IV)		5.000	4.946	μg/L	99% 75-125	
	Se(VI)		5.000	4.638	μg/L	93% 75-125	
	SeCN		5.015	4.822	μg/L	96% 75-125	
	SeMet		4.982	5.088	μg/L	102% 75-125	
B223068-DUP8	Duplicate, (2212302-01)						
	DMSeO	ND		ND	μg/L		N/C 25
	MeSe(IV)	ND		ND	μg/L		N/C 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	0.191		0.194	μg/L		2% 25
	Se(VI)	50.57		49.65	μg/L		2% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B223068-MS8	Matrix Spike, (2212302-0	1)					
	Se(IV)	0.191	4.900	5.224	μg/L	103% 75-125	
	Se(VI)	50.57	5.100	55.91	μg/L	NR 75-125	
	SeCN	ND	1.962	1.952	μg/L	100% 75-125	
	SeMet	ND	1.977	2.070	μg/L	105% 75-125	
B223068-MSD8	Matrix Spike Duplicate, (2212302-01)				
	Se(IV)	0.191	4.900	5.215	μg/L	103% 75-125	0.2% 25
	Se(VI)	50.57	5.100	55.59	μg/L	NR 75-125	N/C 25
	SeCN	ND	1.962	1.922	μg/L	98% 75-125	2% 25
	SeMet	ND	1.977	2.023	μg/L	102% 75-125	2% 25

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Accuracy & Precision Summary

Batch: B223142 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B223142-BS1	Blank Spike, (2137006) Se		200.0	179.2	μg/L	90% 75-125	
B223142-BS2	Blank Spike, (2137006) Se		200.0	181.7	μg/L	91% 75-125	
B223142-BS3	Blank Spike, (2137006) Se		200.0	177.3	μg/L	89% 75-125	
B223142-SRM1	Reference Material (212801 Se	9, T221)	3.800	3.405	μg/L	90% 75-125	
B223142-SRM2	Reference Material (212801 Se	9, T221)	3.800	3.355	μg/L	88% 75-125	
B223142-SRM3	Reference Material (212801 Se	9, T221)	3.800	3.288	μg/L	87% 75-125	
B223142-DUP5	Duplicate, (2212302-08) Se	45.60		45.64	μg/L		0.08% 20
B223142-MS5	Matrix Spike, (2212302-08) Se	45.60	220.0	239.2	μg/L	88% 75-125	
B223142-MSD5	Matrix Spike Duplicate, (22 Se	45.60	220.0	250.7	μg/L	93% 75-125	5% 20
B223142-DUP6	Duplicate , (2212302-18) Se	47.45		46.65	μg/L		2% 20
B223142-MS6	Matrix Spike, (2212302-18) Se	47.45	220.0	242.5	μg/L	89% 75-125	

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Accuracy & Precision Summary

Batch: B223142 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B223142-MSD6	Matrix Spike Duplicate,	(2212302-18)					
	Se	47.45	220.0	236.6	ua/L	86% 75-125	2% 20

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Method Blanks & Reporting Limits

Batch: B223068 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

Sample	Result	Units
B223068-BLK1	0.00	μg/L
B223068-BLK2	0.00	μg/L
B223068-BLK3	0.00	μg/L
B223068-BLK4	0.00	ua/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

Sample	Result	Units
B223068-BLK1	0.00	μg/L
B223068-BLK2	0.00	μg/L
B223068-BLK3	0.00	μg/L
B223068-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

Sample	Result	Units
B223068-BLK1	0.00	μg/L
B223068-BLK2	0.00	μg/L
B223068-BLK3	0.00	μg/L
B223068-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Method Blanks & Reporting Limits

Analyte: Se(IV)

Sample	Result	Units
B223068-BLK1	0.00	μg/L
B223068-BLK2	0.00	μg/L
B223068-BLK3	0.00	μg/L
B223068-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.004 Limit: 0.015 MRL: 0.015

Analyte: Se(VI)

Sample	Result	Units
B223068-BLK1	0.00	μg/L
B223068-BLK2	0.00	μg/L
B223068-BLK3	0.00	μg/L
B223068-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Sample	Result	Units
B223068-BLK1	0.00	μg/L
B223068-BLK2	0.00	μg/L
B223068-BLK3	0.00	μg/L
B223068-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B223068-BLK1	0.00	μg/L
B223068-BLK2	0.00	μg/L
B223068-BLK3	0.00	μg/L
B223068-BLK4	0.00	ua/l

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B223068-BLK1	0.00	μg/L
B223068-BLK2	0.00	μg/L
B223068-BLK3	0.00	μg/L
B223068-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B223068-BLK1	0.00	μg/L
B223068-BLK2	0.00	μg/L
B223068-BLK3	0.00	μg/L
B223068-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Method Blanks & Reporting Limits

Batch: B223142 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B223142-BLK1	0.041	μg/L
B223142-BLK2	0.039	μg/L
B223142-BLK3	0.070	μg/L
B223142-BLK4	0.011	μg/L

 Average: 0.040
 MDL: 0.150

 Limit: 0.480
 MRL: 0.480

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

2212302

Sample Containers

	I D: 2212302-01 ple: LC_FRB_WS_LAEMP_DI	RY_2022-11_N		Report Matrix: WS Sample Type: Sample + Sum			cted: 11/30/2022 ved: 12/15/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube Se-Sp	15 mL	na	none	na	na	Cooler 6 - 2212302
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 6 - 2212302
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 6 - 2212302
	ID: 2212302-02			Report Matrix: WS			cted: 11/29/2022
	ple: LC_FRUS_WS_LAEMP_I			Sample Type: Sample + Sum			ved: 12/15/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube Se-Sp	15 mL	na	none	na	na	Cooler 6 - 2212302
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 6 - 2212302
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 6 - 2212302
	ID: 2212302-03 ple: LC_GRCK_WS_LAEMP_	DRY_2022-11_N		Report Matrix: WS Sample Type: Sample + Sum			cted: 11/30/2022 ved: 12/15/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube Se-Sp	15 mL	na	none	na	na	Cooler 6 - 2212302
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 6 - 2212302
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 6 -

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Sample Containers

	D : 2212302-04 ple: LC_MT1_WS_LAEMP_DF	RY 2022-11 NP		Report Matrix: WS Sample Type: Sample + Sum			ted: 11/30/2022 ved: 12/15/2022
-	Container	Size	Lot	Preservation	P-Lot	pH	Ship. Cont.
Α	Cent Tube Se-Sp	15 mL	na	none	na	na	Cooler 6 - 2212302
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 6 - 2212302
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 6 - 2212302
	D: 2212302-05	NDV 2022 44 N		Report Matrix: WS			eted: 11/29/2022
-	ple: LC_DCEF_WS_LAEMP_[Container	Size	Lot	Sample Type: Sample + Sum Preservation	P-Lot	pH	ved: 12/15/2022 Ship. Cont.
A	Cent Tube Se-Sp	15 mL	na	none	na	na	Cooler 6 - 2212302
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 6 - 2212302
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 6 - 2212302
Samı	D: 2212302-06 ple: LC_CC1_WS_LAEMP_DF	RY_2022-11_NP Size	Lot	Report Matrix: WS Sample Type: Sample + Sum Preservation	P-Lot		cted: 11/30/2022 ved: 12/15/2022 Ship. Cont.
A	Cent Tube Se-Sp	15 mL	na	none	na	na	Cooler 6 - 2212302
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 6 - 2212302
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 6 - 2212302
Samı	D: 2212302-07 ple: FRB_WS_LAEMP_DRY_2022-	11_NP-NAL		Report Matrix: WS Sample Type: Sample + Sum			eted: 11/30/2022 ved: 12/15/2022
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	zClient-Provided - TM	40 mL	na	10 % HNO3 (BAL)	2244016	<2	Cooler 6 - 2212302

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2212302
Client PM: Nicole Zathey
Client Project: Line Creek Operation

2212302

Sample Containers

 Lab ID: 2212302-08
 Report Matrix: WS
 Collected: 11/30/2022

 Sample:
 Sample Type: Sample + Sum
 Received: 12/15/2022

LC_FRB_WS_LAEMP_DRY_2022-11_NP-NAL

LC_FRUS_WS_LAEMP_DRY_2022-11_NP-NAL

Des ContainerSizeLotPreservationP-LotpHShip. Cont.A zClient-Provided - TM40 mLna10 % HNO3 (BAL)2244016<2</td>Cooler 6 -
2212302

 Lab ID: 2212302-09
 Report Matrix: WS
 Collected: 11/29/2022

 Sample:
 Sample Type: Sample + Sum
 Received: 12/15/2022

Sample: Sample Type: Sample + Sum Received: 12/15
LC_FRUS_WS_LAEMP_DRY_2022-11_NP-NAL

Des ContainerSizeLotPreservationP-LotpHShip. Cont.A zClient-Provided - TM40 mLna10 % HNO3 (BAL)2244016<2</td>Cooler 6 -

Lab ID: 2212302-10 **Report Matrix:** WS **Collected:** 11/29/2022

Sample: Sample Type: Sample + Sum Received: 12/15/2022

DesContainerSizeLotPreservationP-LotpHShip. Cont.AzClient-Provided - TM40 mLna10 % HNO3 (BAL)2244016<2</td>Cooler 6 -

A zClient-Provided - TM 40 mL na 10 % HNO3 (BAL) 2244016 <2 Cooler 6 - 2212302

 Lab ID: 2212302-11
 Report Matrix: WS
 Collected: 11/30/2022

Sample: Sample Type: Sample + Sum Received: 12/15/2022 LC_GRCK_WS_LAEMP_DRY_2022-11_NP-NAL

Des ContainerSizeLotPreservationP-LotpHShip. Cont.A zClient-Provided - TM40 mLna10 % HNO3 (BAL)2244016<2</td>Cooler 6 -

2212302

 Lab ID: 2212302-12
 Report Matrix: WS
 Collected: 11/30/2022

Sample: Sample Type: Sample + Sum Received: 12/15/2022 LC GRCK WS LAEMP DRY 2022-11 NP-NAL

Des ContainerSizeLotPreservationP-LotpHShip. Cont.A zClient-Provided - TM40 mLna10 % HNO3 (BAL)2244016<2</td>Cooler 6 -

2212302

Project ID: TRL-VC2101 PM: Jeremy Maute

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Sample Containers

Lab ID: 2212302-13 Report Matrix: WS Collected: 11/30/2022 Sample: Received: 12/15/2022 Sample Type: Sample + Sum LC MT1 WS LAEMP DRY 2022-11 NP-NAL **Des Container** Lot **Preservation** P-Lot рH Ship. Cont. Cooler 6 zClient-Provided - TM 40 mL na 10 % HNO3 (BAL) 2244016 <2 2212302 Lab ID: 2212302-14 Report Matrix: WS Collected: 11/30/2022 Received: 12/15/2022 Sample: Sample Type: Sample + Sum LC_MT1_WS_LAEMP_DRY_2022-11_NP-NAL рΗ **Des Container** Size **Preservation** P-Lot Lot Ship. Cont. zClient-Provided - TM 40 ml 10 % HNO3 (BAL) 2244016 <2 Cooler 6 na 2212302 Lab ID: 2212302-15 Report Matrix: WS Collected: 11/29/2022 Sample: Sample Type: Sample + Sum Received: 12/15/2022 LC_DCEF_WS_LAEMP_DRY_2022-11_NP-NAL **Preservation** P-Lot Ship. Cont. **Des Container** Size Lot pΗ 40 mL <2 zClient-Provided - TM na 10 % HNO3 (BAL) 2244016 Cooler 6 -2212302 Lab ID: 2212302-16 Report Matrix: WS Collected: 11/29/2022 Sample: Sample Type: Sample + Sum Received: 12/15/2022 LC_DCEF_WS_LAEMP_DRY_2022-11_NP-NAL

Des Container Size Lot **Preservation** P-Lot pН Ship. Cont.

zClient-Provided - TM 40 mL 10 % HNO3 (BAL) 2244016 <2 na Cooler 6 -2212302

Lab ID: 2212302-17 Collected: 11/30/2022 Report Matrix: WS

Sample: Sample Type: Sample + Sum Received: 12/15/2022 LC CC1 WS LAEMP DRY 2022-11 NP-NAL

Des Container Size Lot **Preservation** P-Lot pН Ship. Cont. zClient-Provided - TM 40 mL 10 % HNO3 (BAL) <2 Cooler 6 -2244016 na

2212302

Project ID: TRL-VC2101 **PM**: Jeremy Maute

BAL Final Report 2212302 Client PM: Nicole Zathey Client Project: Line Creek Operation

Sample Containers

Lab ID: 2212302-18

Sample:

LC_CC1_WS_LAEMP_DRY_2022-11_NP-NAL

Des Container Size

A zClient-Provided - TM

40 mL

Report Matrix: WS

Sample Type: Sample + Sum

Lot Preservation
na 10 % HNO3 (BAL)

P-Lot 2244016 pH Ship. Cont. <2 Cooler 6 -

Custody seals present? No

Collected: 11/30/2022 Received: 12/15/2022

> Cooler 6 -2212302

Shipping Containers

Cooler 6 - 2212302

Received: December 15, 2022 7:08 **Tracking No:** RWHV 97355 via Courier

Coolant Type: Blue Ice Temperature: -2.5 °C Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: R-IR-2

nsit? No Custody seals intact? No COC present? Yes

Teck

TECK	COC ID:			RY_2022-		TURNA	ROUN	DΤ	IME:			Regul				RUSH	N/A			Теры
	PROJECT/CLIENT I	INFO	RD	OOKS				L	ABORA	TORY		regu				OTHE	RINFO			
Facility Name / Job# I						Lab	Name	Вто	oks App	lied Lab	s		Re	port Fo	rmat / D	istributio	on	Excel	PDF	EDD
Project Manager 1						Lab (Contact	Ben	Woznia	ık			Ema	ul 1:	and the street	and a	1	X	X	X
	icoln Zathey@teck.com						Email	Ber	@broo	ksappli	ed.com		Éma	ail 2:	teckcoal	dequisonli	ne.com			X
Address 1						A	ddress	188	04 Nortl	n Creek	Parkway		Ema	ail 3:		.Results@	6 0 0 0	X	X	X
	15km North Hwy 43							Suit	te 100				Ema	ail 4:	Hennet Perner@			X	X	X
City	Sparwe	nod		Province BC			City	_			Province	WA		ail 5:	equestleb@leck			V	v	v
Postal Code	VOB 2			Country Can:	ada	Posta	al Code	_			Country	United		umber	- Aguna canograeca	son.	VPOOL	817033	10	^
Phone Number				Country Cum		Phone N		-		158	Country	Omtou	1011	umoei		-	71000	01,000		
1 Hone Ivanioes		DETAILS				7 110110 1	(dineti	(33	7,722 0		LYSIS RE	OUESTI	D			E	Hered - Fr Pa	eld, Lr Lake	FL: Field &	Lab. N: N
	572 \$115.5 525								10//. A				N. V.		J. J.			1		
		1 1						Ě	F	N	N	P-B		100	Manual Street	CRES				
								A.										1	THE	
								ESER				ALEXANDE						1 .	100	100
			(o)					188				100		100					188	The same
1			Hazardous Material (Yes/No)																	
			رخ			1		1 3	g .			1								
		1	iai						atio										1	
			ter					SIS	Brooks_Se_Speciation							A.				
			Ψa					KIDE	Sp	Α.	⊢.									
			ns]					3	e e	او	او ا									
			දි			G=Grab			92	Brooks_Se_D	Brooks_Se_T				1	1				
	Sample Location	Field	zar		Time	C=Com	# Of		0k) ok	00k				11				1	
Sample ID	(sys_loc_code)	Matrix	Ha	Date	(24hr)	p	Cont.		M.	P.	P. B.									
DCEF_WS_LAEMP_DRY_2022-	LC_DCEF	ws		2022/11/29	10:30	G	2		1	1	1									
NP-NAL	LC_DCEF	77.5		2022/11/29	10:30	G	-			1	, A	-		-	-	-	-	-	-	+
C_FRB_WS_LAEMP_DRY_2022- N	LC_FRB	ws		2022/11/30	10:30	G	1		1									1	1	
C_FRB_WS_LAEMP_DRY_2022-	LC_FRB	ws	Ε.,	2022/11/30	10:30	G	2			1	1									
NP-NAL C_FRUS_WS_LAEMP_DRY_2022-	LC_FRUS	ws		2022/11/29	13:30	G	1		1									1	1	1
N . C_FRUS_WS_LAEMP_DRY_2022-		_		2022/11/2>	15,50	-	-	-		1	-	-	-	-	-	-	-	+	+	_
C_FRUS_WS_LAEMF_DRY_2022-	LC_FRUS	ws		2022/11/29	13:30	G	2			1	1									
C_GRCK_WS_LAEMP_DRY_2022- N	LC_GRCK	ws		2022/11/30	9:20	G	1		1											
C_GRCK_WS_LAEMP_DRY_2022-	LC_GRCK	ws	LIE	2022/11/30	9:20	G	2	1		1	1									
NP-NAL C_MT1_WS_LAEMP_DRY_2022-					-	+	1			<u> </u>	-		-	+		+	+			+-
NP	LC_MT1	WS		2022/11/30	10:30	G	1		1				-	_			1		_	_
C_MT1_WS_LAEMP_DRY_2022- NP-NAL	LC_MT1	ws	I SY	2022/11/30	10:30	G	2	1		1	1									
C_CC1_WS_LAEMP_DRY_2022- NP	LC_CC1	ws		2022/11/30	10:30	G	1		1											
C_CC1_WS_LAEMP_DRY_2022- NP-NAL	LC_CC1	ws		2022/11/30	10:30	G	2			1	1									
ADDITIONAL COMMENT	S/SPECIAL INSTRUCT	IONS		RELINQUISHI	D BY/AI	FILIATIO	N		DATE	TIME	AC	CEPTER	BY/AF	FILIA	TION			DATE/T	IME	
				Alex	m	· CL	44.10	4	6-D		E	26/	13.4	1 -		17	1157	22	7.0	18
				/			14-4	1	0 0			- U.				1			/	
			-					-			-					-				
								1			1									
SERVICE REQUEST (re	ish - subject to availabili	ity)												W						
	The second secon	ar (default) X		Camalanta N		1.						3.7	ahila #	_a	_					
Priority (2	2-3 business days) - 50%			Sampler's Na	me	AU	SK /	15	e Cl	311-41	- de	Mobile # 780-293-6750								
	1 Business Day) - 100%			Complete Sic-	atura		1	The same of	3			Do	e/Time							
For Emergency <1 Day,				Sampler's Sign	ature	1	15	Lane				Dai	c/ 1 line	6	-De	-20	22			
ror Emergency <1 Day,	ASAP OF WEEKENG - C	ontact ALS	1			1 (_							10						

Teck

ICCIX	COC ID:			RY_ZUZZ-		TURNA	ROUN	DΤ	IME:			Regul		RUSH: N/A						
	PROJECT/CLIENT	INFO	RD	OOKS		(1)			ABORA	TORY		Kegui	ar			1	R INFO	<u></u>		
Facility Name / Job#						Lat	Name	Bro	oks App	lied Lab	S		Re	ort Fo	mat / D	istributi	on	Excel	PDF	EDD
Project Manager						Lab (Contact	Ber	Woznia	ık			Ema					X	X	X
	Nicole Zather/Citeck Scott						Email	Ber	n@broo	ksapplie	ed.com		Ema	ıil 2:	teckcoal(equisonli	ne.com			X
Address	Box 2003					A	Address	188	04 Nortl	h Creek	Parkway		Ema	iil 3:		.Results@		X	X	X
	15km North Hwy 43							Sui	te 100				Ema	til 4:	Harcat, Parracibi	BCK GORT	Mr.	X	X	X
City	Sparv	ood .		Province BC			City	Bot	hell		Province	WA	Ema	iil 5:	ecuns clab (Black, c	om		X	X	X
Postal Code	V0B	2G0		Country Can	ada	Posta	al Code	980	11		Country	United 5	PO n	ımber	VPO		VPO00	0817033		
Phone Number	1-250-425-8478			- 1		Phone N	Vumber	(20	6) 753-6	158										
	SAMPL	E DETAILS		-	,					ANA	LYSIS REC	QUESTI	D		,	F	ittered - Fr Fi	ield, L.: Lab,	FL: Field a	Lab, N: Non
								#	F	N	N		100	10.00	NE.	100	MAL.			
				(*				0 = 5					
								W.						1.30		TIX.				1
				N.				RESE		0.1	-	- 02				-				
			ု ဗိ					E.					- T							
			Hazardous Material (Yes/No)																	
									00											
			ria					1742	iati											
			late					Sec.	bec											
			S Z					NAL	\(\oldsymbol{O}_{\old		L L						1			
			log			G=Grab			Ø,	Brooks_Se_D	Brooks_Se_T					1		1		
	Sample Location	Field	zaro		Time	C=Com			SK	oks	oks		1			1		1		
Sample ID	(sys_loc_code)	Matrix	Haz	Date	(24hr)	р	Cont		Brooks_Se_Speciation	Bro	Bro									
LC_DCEF_WS_LAEMP_DRY_2022-	LC_DCEF	ws		2022/11/29	10:30	G	1		1											
11 N		,,,,			10.00	-	<u></u>				-		1	-					+	+
	_		N. A. C.																	
			-			_	1			1					+	+				
				4	-							-			-	_	1	_		
				-																
				1													7			
				-				-		-	+	-	+	-	-		+		+	-
					Vi															
				-	-	-	+	-		-		1	1	-	+	+				+
					1					_									4	
									1											
							+													
ADDITIONAL COMMENT	TO/ODE/CIAL INCTIDUO	TIME		RELINQUISH	ED DV/A	TELL LATER	ON		DATE	TIME	AFF	EPTED	DVIAE	ER LAS	TON		1	DATE/I	TATE	
ADDITIONAL COMMENT	DISPECIAL INSTRUC	110/15		KELISQUISH	CH BY/AI	PILIATI		-	DATE	THATE				EHLIA	TON	1-0	1572	2	>	_
								+		-	ERL	1004				14	17/1	- ,	-108	
								+			1									
- 11,00	200							L												
SERVICE REQUEST (r												upo .								
	Regu	lar (default) X		Sampler's Na	ame							Mo	bile#							
	2-3 business days) - 50°		-			+						-		-						
	(1 Business Day) - 100		-	Sampler's Sign	ature							Dat	e/Time							
For Emergency <1 Day,	, ASAP or weekend - (ontact ALS							_					1						

BAL Final Report 2212302

Creek Operation ole Zathey athey@tock.com 2 2003 m North Hwy 43 Sparwoo V0B 20	od		2022-11_BRO	OKS	Lab		LAB	ORATO			Reg		ort For		RUSH:	RINFO	Excel	PDF	EDD
c Creek Operation cole Zathey ather@fack.com 2003 m North Hwy 43 Sparwoo V0B 20	od	4										Rer	ort For	mat / Dis			Excel	PDF	EDD
ole Zathey athey@tek.com 2003 m North Hwy 43 Sparwoo V0B 20		_4					Brooks A	applied La	abs			Ret	ort For	mat / Dis	tribution		Excel	PDF	EDD
ather@teck.com 2003 m North Hwy 43 Sparwoo V0B 20		-5			Lab C	Lab Name Brooks Applied Labs Lab Contact Ben Wozniak					Report Format / Distribut								
2003 m North Hwy 43 Sparwoo V0B 20		-4										Ema		-	co.		X	X	X
m North Hwy 43 Sparwoo V0B 20								ooksapp				Ema	il 2:	teckcoal@	equisonlin	e.com			X
Sparwoo V0B 2C					Α	ddress	18804 N	orth Cree	k Parkw	ay		Ema	il 3:	Teck.Lab.	Results@te	ck.com	X	X	X
V0B 20							Suite 100)				Ema	il 4:	Name Provide	£ 100)		X	X	X
			Province BC			City 1	Bothell			Province	WA	Ema	il 5:	Aller Modern II	alwig :		X	X	X
50-425-8478	30		Country Cana	nda	Posta	l Code	98011			Country	US	PO nu	ımber			VPO00	817033		
			· ·		Phone N	lumber ((206) 75	3-6158											
	DETAIL	S		ANALYSIS REQUESTED Filtered - F. Freid, L. Lab, FL.					FL: Field &	Lab, N. Nem									
							FIRE	F	N	N					474				
							J.	1										Web.	
		(No)					PRESERV												N-11
ample Location	Field Matrix	Hazardous Material (Yes	Date	Time (24hr)	G=Grab C=Com	# Of Cont.	ANALYSIS	Brooks_Se_Speciation	Brooks_Se_D	Brooks_Se_T									
LC_FRB	ws	n	2022/11/30	10:30	G	1		1											
LC_FRUS	ws	n	2022/11/29	13:30	G	1		1											
LC_GRCK	ws	n	2022/11/30	9:20	G	1		1											
LC_MT1	ws	n	2022/11/30	10:30	G	1		1											
LC_DCEF	ws	n	2022/11/29	10:30	G	1		1											
LC_CC1	ws	n	2022/11/30	10:30	G	1		1											
CIAL INSTRUCT	FIONS					N .	_						FILIA	TION	101	I de la	ATE/I	IME	1
			Alex I	McClymo	ont		Dec	ember 9	, 2022	HM	13H	<u>ا</u>			12/	15/22	. G	7:Q	1
subject to availabil	ity)						-								-		T		
							41 3-	C)	. 4		3.5	1 11 "			_	00.000	CEEC		
		1	Sampler's Na	me		1	Alex Mo	cClymor	nt		Mo	obile # 780-293-6750							
ss Day) - 100% sui	rcharge	-	Sampler's Signa	ature	- W	2					Dat	e/Time			Dec	ember !	9, 2022		
arr	mple Location ys_loc_code) LC_FRB LC_FRUS LC_GRCK LC_MT1 LC_DCEF LC_CC1 CIAL INSTRUCT abject to availabil Regular (ess days) - 50% sur s Day) - 100% su	mple Location Field Matrix LC_FRB WS LC_FRUS WS LC_MT1 WS LC_CC1 WS CIAL INSTRUCTIONS	mple Location Field Matrix LC_FRB WS n LC_FRUS WS n LC_GRCK WS n LC_DCEF WS n LC_CC1 WS n CIAL INSTRUCTIONS abject to availability) Regular (default) X ss days) - 50% surcharge s Day) - 100% surcharge	mple Location Field SAMPLE DETAILS mple Location Field SAMPLE DETAILS mple Location Field Matrix H Date LC_FRB WS n 2022/11/30 LC_FRUS WS n 2022/11/29 LC_GRCK WS n 2022/11/30 LC_MT1 WS n 2022/11/30 LC_DCEF WS n 2022/11/30 LC_CC1 WS n 2022/11/30 CIAL INSTRUCTIONS RELINQUISHE Alex I	SAMPLE DETAILS SAMPLE DETAILS SAMPLE DETAILS	SAMPLE DETAILS Phone N	Phone Number SAMPLE DETAILS	Phone Number (206) 75 SAMPLE DETAILS Phone Number (206) 75 Phone Number (206) 75 Phone Number (206) 75 Phone Number (206) 75 Phone Number (206) 75 Phone Number (206) 75 Phone Number (206) 75 Phone Number (206) 75 Phone Number (206) 75 Phone Number (206) 75 Phone Number (206)	Phone Number	Phone Number (206) 753-6158 ANALY	Phone Number	Phone Number (206) 753-6158	Phone Number	Phone Number 2006) 753-6158	Phone Number	O-425-8478	Phone Number	Phone Number Coco 753-6158	O-425-8478

250-425-7447 24 Hour Hot Shot Service

Sparwood, BC Terrace, BC Red Deer, AB

Vancouver, BC Calgary, AB Montreal, QC

Prince George, BC **Edmonton, AB** Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT

Tumbler Ridge, BC Hinton, AB Gillette, WY

CONTRACTOR DE LA CONTRA			ATE DOC 13123			
BILL OF LADING #	PURCHASE ORDER	NUMBER				
SHIPPER (FROM)	CONSIGNEE (TO)	Books A.	solved India			
STREET	STREET	To lake C	to like NE			
CITY/PROVINCE	POSTAL CODE CITY/PROVINCE		POSTAL CODE			
SPECIAL INSTRUCTIONS			FREIGHT CHARGES			
PACKAGES DESCRIPTION OF	ARTICLES AND SPECIAL MARKS	WEIGHT (Subject to Correction)	SHIPPER TO CHECK OPREPAID OCOLLECT			
1 Cooks Link	Samuel L	70 lbs	If not neicated, shipping will automatically move collect			
原图ST 型物性的 30mm系统		A SECRET SOLES				
			WAITING			
			XPU			
			CHARGES			
			FSC			
NIT#	DECLARED V LUATION: Maximum liability of carrier \$2.00 per lb. (\$4.41 per		US			
	kilogram) unless declared valuation states otherwise	\$	SUB TOTAL			
RIVER'S SIGNATURE - PICK UP E PICK UP TIME	DRIVER'S SIGNATURE - DELIVERY BY	FINISH TIME	GST.			
OTICE OF CLAIM: (a) No camer is lable for loss claimed in the good of any good under the Bill of Lac operior loss claiming or other is given in M/Ring to the implicating camer or the debivering camer of the claiming of the camer in the given in the camer in the given in the camer in the given in the camer in the given in the camer in the given in the camer in the given in the camer in the given in the camer in the given in the camer in the given in the camer in the given in the camer in the given in the camer in the given in the camer in the given in the given in the camer in the given in the giv	ing unless notice therefor setting our particulars of the origin destination and date of shipm within strity (601 days after the delivery of this goods, our line case of failure to make deliver the date of a hipment to gother with a copy of the paid freight bill the consigned at the said destination, subject to the rates and classific sharedown and accepted failure of the property of the consigned of the property of the property of originary and accepted failure and the saught Printed or written including conditions at the periodicion of the property of the printed or the printe	ent of the goods and the estimated amount claims, within nine f9 months from the date of shipment claims of package unknown, marked, consigned and attoo. In effect on the date of ahipment service to be performed heraunder shall be subjected as deceived to the standard Biff of Lading, in power an auch conditions.	TOTAL \$			
IIPPER IIVI	CONSIGNEE PRINT	CONSIGNEE				
IIPPER GN	CONSIGNEE SIGN		TIME			
WHITE: Office YELLOW Carrier PINK: Con	ignee GOLDENROAD: Shipper GST # 80	64540398RT0001	NUMBER OF PIECES RECEIVED			
1 = morte:	THE PERSON OF THE PROPERTY.					

Cooler ID: (00 ler 6

COC (YN)

Temperature: -2.5

IR: R-1R-2

Coolant Type:

Blue Ice

Notes:

Sampling Locations:

Sample Types:

Container Types:

Opened By: FRL

Ambient

T/D

SP

Date: 12/15/22

Revision 004

Effective 7/29/20

BENTHIC COMMUNITY

Cordillera Report 220144

Project: 22-19 (LCO Dry Creek LAEMP)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

 $\underline{scottfinlayson@cordilleraconsulting.ca}$

250-494-7553

Site:	2022	2022	2022	2022	2022
					LC_DCDS_BIC-05_2022-05_NP
Sample Collection Date: CC#:	10-May-22 CC230046	10-May-22 CC230047	10-May-22 CC230048	10-May-22 CC230049	10-May-22 CC230050
Sieve Size:	400	400	400	400	400
Subsample %:	5	6	11	5	5
Phylum: Arthropoda	0	0	0	0	0
Subphylum: Hexapoda Class: Insecta	0 0	0 0	0 0	0 0	0
Order: Ephemeroptera	0	0	0	0	0
Family: Ameletidae	0	0	0	0	0
<u>Ameletus</u>	0	2	2	0	2
Family: Baetidae	0 4 ND	0 4	0 1 ND	0 6 ND	0 8
<u>Baetis</u> <u>Baetis rhodani qroup</u>	2	0	1 10	3	2
<u>Baetis bicaudatus</u>	0	0	1	0	0
Family: Caenidae	0	0	0	0	0
<u>Caenis</u> Family: Ephemerellidae	0 14	0 23	1 19 ND	0 11 ND	0 18
Drunella	0	0	2	11 ND	6
<u>Drunella doddsii</u>	0	0	2	0	2
<u>Ephemerella</u>	1	3	0	0	0
Family: Heptageniidae	26	18	45	68	67
Order: Plecoptera	1	0	0	0	0
Family: Chloroperlidae	0	0	6	0	0
<u>Sweltsa</u>	8	3	2	5	6
Family: Nemouridae	6 193	4 97	4 89 ND	4 91 ND	2 52 ND
<u>Zapada</u> Zapada oregonensis group	193	97 2	10	3 J	52 ND 4
Zapada cinctipes	1	0	0	1	0
Family: Peltoperlidae	0	0	0	0	0
<u>Yoraperla</u> L. Family: Parladidae	1 0	0 5	0 5 ND	0 6 ND	0 6 ND
Family: Perlodidae <u>Isoperla</u>	0 5	0	5 ND 0	6 ND	6 ND
<u>Koqotus</u>	1	0	2	1	1
<u>Megarcys</u>	5	1	1	1	3
Family: Taeniopterygidae	0 1	0 4	0 3	0 0	0 3
<u>Taenionema</u>	1	4	3	Ü	3
Order: Trichoptera	0	0	0	0	0
Family: Glossosomatidae	0	0	0	0	0
Glossosoma Family: Hydropsychidae	0 6	2 0	0 0	0	1 0
Arctopsyche	20	10	15	7	20
Family: Limnephilidae	0	0	0	0	0
Ecclisomyia	0	2	0	5	1
Family: Rhyacophilidae Rhyacophila	0 42	0 40	0 30 ND	0 39	0 50
Rhyacophila betteni group	1	0	1	0	0
Rhyacophila brunnea/vemna group	2	1	1	1	1
<u>Rhyacophila hyalinata qroup</u> <u>Rhyacophila vofixa qroup</u>	5 2	0 3	0 2	0 0	0
Rhyacophila narvae	2	2	3	0	1
Family: Thremmatidae	0	0	0	0	0
<u>Oligophlebodes</u>	9	7	5	4	5
Family: Uenoidae <u>Neothremma</u>	0 0	0 2	0 0	0 0	0 0
	-	_	•	-	
Order: Coleoptera Family: Staphylinidae	0 0	0 0	0 0	0 1	0 0
i i diiniy. Stapriyimuae	0	U	<u> </u>	±	J
Order: Diptera	0	0	0	0	0
Family: Chironomidae Subfamily: Chironominae	4 ND 0	11 ND 0	4 ND 0	17 0	16 0
Tribe: Chironomini	0	0	0	0	0
<u>Polypedilum</u>	0	0	0	0	1
Tribe: Tanytarsini	1	4 0	22 3	8 2	9 ND
<u>Micropsectra</u> Subfamily: Diamesinae	0	0	0	0	0
Tribe: Diamesini	0	0	0	0	0
<u>Diamesa</u>	0	0	0	1	0
<u>Paqastia</u> Subfamily: Orthocladiinae	4 0	33 0	5 0	2 0	5 0
<u>Brillia</u>	2	2	3	0	5
Cricotopus (Nostococladius)	3	1	0	0	0
<u>Eukiefferiella</u> Krenosmittia	17 0	52 0	17 0	15 1	26 0
<u>Krenosmittia</u> Limnophyes	0	0 1	1	1 0	0
<u>Orthocladius complex</u>	30	0	43	55	17
Rheocricotopus	0	0	1	0	0
<u>Tvetenia</u> Family: Empididae	4 0	1 0	2	2 0	2
Chelifera/ Metachela	5	6	1	0	0
Family: Psychodidae	0	0	0	0	0
Pericoma/Telmatoscopus	3	5	5	0	2
Family: Simuliidae <u>Simulium</u>	0	0 3	0	1 0	2 0
Family: Tipulidae	0	0	0	0	0
<u>Dicranota</u>	2	1	0	2	0

Project: 22-19 (LCO Dry Creek LAEMP)

Minnow Environmental (BC)
Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

Sia	2022	2022	2022	2022	2022
Site:	2022	2022	2022		2022
				IPLC_DCDS_BIC-04_2022-05_NF	
Sample Collection Date:	10-May-22	10-May-22	10-May-22	10-May-22	10-May-22
CC#:	CC230046	CC230047	CC230048	CC230049	CC230050
Sieve Size:	400	400	400	400	400
Subsample %:	5	6	11	5	5
Phylum: Mollusca	0	0	0	0	0
Class: Gastropoda	0	0	0	0	0
Order: Basommatophora	0	0	0	0	0
Family: Lymnaeidae	0	1	0	0	0
Phylum: Annelida	0	0	0	0	0
Subphylum: Clitellata	0	0	0	0	0
Class: Oligochaeta	0	0	0	0	0
Order: Tubificida	0	0	0	0	0
Family: Enchytraeidae	0	0	0	0	0
<u>Enchytraeus</u>	0	0	1	0	0
Totals:	435	356	361	364	351
Taxa present but not included:					
Phylum: Arthropoda	0	0	0	0	0
Subphylum: Crustacea	0	0	0	0	0
Class: Ostracoda	1	1	1	1	1
Class: Branchiopoda	0	0	0	0	0
Order: Cladocera	1	0	0	0	0
Phylum: Platyhelminthes	0	0	0	0	0
Class: Turbellaria	1	1	1	1	1
Totals:	3	2	2	2	2

ND designation of a taxa represents a non-distinct taxa. This adjusts where the associated taxa fall in the metrics for this sample because the individuals are likely represented by Genus or Species level identifications.

Methods and QC Report 2022

Project ID: LCO Dry Creek (22-19)

Client: Minnow Environmental

P: 250.494.7553

F: 250.494.7562

Prepared by:

Cordillera Consulting Inc. Summerland, BC © 2022

Table of Contents

Sample Reception	3
Sample Sorting	3
Sorting Quality Control - Sorting Efficiency	4
Sorting Quality Control - Sub-Sampling QC	5
Taxonomic Effort	8
Taxonomists	8
Taxonomic QC	9
Error Summary	10
Error Rationale	10
References	11
Taxonomic Keys	12

Sample Reception

On May 20, 2022, Cordillera Consulting received 5 benthic samples from Minnow Environmental. When samples arrived to Cordillera Consulting, exterior packaging was initially inspected for damage or wet spots that would have indicated damage to the interior containers.

Samples were logged into a proprietary software database (INSTAR1) where the clients assigned sample name was recorded along with a Cordillera Consulting (CC) number for cross-reference. Each sample was checked to ensure that all sites and replicates recorded on field sheets or packing lists were delivered intact and with adequate preservative. Any missing, mislabelled or extra samples were reported to the client immediately to confirm the total numbers and correct names on the sample jars. The client representative was notified of the arrival of the shipment and provided a sample inventory once intake was completed.

See table below for sample inventory:

Table 1: Summary of sample information including Cordillera Consulting (CC) number

Sample	CC#	Date	Size	# of Jars
LC_DCDS_BIC-01_2022-05_NP	CC230046	5/10/2022	400μΜ	2
LC_DCDS_BIC-02_2022-05_NP	CC230047	5/10/2022	400μΜ	1
LC_DCDS_BIC-03_2022-05_NP	CC230048	5/10/2022	400μΜ	1
LC_DCDS_BIC-04_2022-05_NP	CC230049	5/10/2022	400μΜ	1
LC_DCDS_BIC-05_2022-05_NP	CC230050	5/10/2022	400μΜ	1

Sample Sorting

- Using a gridded Petri dish, fine forceps and a low power stereo-microscope (Olympus, Nikon, Leica) the sorting technicians removed the invertebrates and sorted them into family/orders.
- The sorting technician kept a running tally of total numbers excluding organisms from Porifera, Nemata, Platyhelminthes, Ostracoda, Copepoda, Cladocera and terrestrial drop-ins such as aphids. These organisms were marked for their presence (given a value of 1) only and left in the sample. They were not included towards the 300-organism subsample count.
- Where specimens are broken or damaged, only heads were counted.
- Subsampling was conducted with the use of a Marchant Box.
- When using the Marchant box, cells were extracted at the same time in the order indicated by a random number table. If the 300th organism was found part way into sorting a cell then the balance of that cell was sorted. If the organism count had not reached 300 by the 50th cell then the entire sample was sorted.

- The total number of cells sorted and the number of organisms removed were recorded manually on a bench sheet and then recorded into INSTAR1
- Organisms were stored in vials containing 80% ethanol and an interior label indicating the site names, date of sampling, site code numbers and portion subsampled. This information was also recorded on the laboratory bench sheet and on INSTAR1.
- The sorted portion of the debris was preserved and labeled separately from the unsorted portion and was tested for sorting efficiency (Sorting Quality Control – Sorting Efficiency). The unsorted portion was also labeled and preserved in separate jars.

Percent sub-sampled and total countable invertebrates pulled from the samples were summarized in the table below.

Table 2: Percent sub-sample and invertebrate count for each sample

Sample	Date	CC#	400 micron fraction	
			% Sampled	# Invertebrates
LC_DCDS_BIC-01_2022-05_NP	10-May-22	CC230046	5%	435
LC_DCDS_BIC-02_2022-05_NP	10-May-22	CC230047	6%	356
LC_DCDS_BIC-03_2022-05_NP	10-May-22	CC230048	11%	361
LC_DCDS_BIC-04_2022-05_NP	10-May-22	CC230049	5%	364
LC_DCDS_BIC-05_2022-05_NP	10-May-22	CC230050	5%	351

Sorting Quality Control - Sorting Efficiency

As a part of Cordillera's laboratory policy, all projects undergo sorting efficiency checks.

- As sorting progresses, 10% of samples were randomly chosen by senior members of the sorting team for resorting.
- All sorters working on a project had at least 1 sample resorted by another sorter.
- An efficiency of 90 % was expected (95% for CABIN samples).
- If 90/95% efficiency was not met, samples from that sorter were resorted.
- To calculated sorting efficiency the following formula was used:

$$\frac{\#OrganismsMissed}{TotalOrganismsFound}*100 = \%OM$$

Table 3 Summary of sorting efficiency

			Total from Sample	Percent Efficiency
Site - QC, Sample - QC 1, CC# - CC220750, Pc	ercent			
sampled = 100%, Sieve size = 250				
Plecoptera		2		
Trichoptera		1		
Chironomidae		3		
	Total:	6	147	96%
Site - QC, Sample - QC 2, CC# - CC220753, Pc	ercent			
sampled = 100%, Sieve size = 250				
Oligochaeta		1		
Trombidiformes		1		
	Total:	2	180	99%
Site - QC, Sample - QC 3, CC# - CC220765, Pc	ercent			
sampled = 100%, Sieve size = 250				
Trombidiformes		15		
Oligochaeta		2		
Chironomidae		1		
	Total:	18	343	95%

Sorting Quality Control - Sub-Sampling QC

Certain Provincial and Mining projects require additional sorting checks in the form of sub-sampling QC, (Environmental Effects Monitoring (EEM) protocol). This ensured that any fraction of the total sample that was examined was actually an accurate representation of the number of total organisms. Organisms from the additional sub-samples were not identified; rather total organism count only was compared.

Sub-Sampling efficiency was measured on 10% of the number of sub-sampled samples in the project. Ex. In a project where 50 of 100 total samples were processed through subsampling using a Marchant box, then 10% of 50; or 5 samples were used for sub sampling efficiency.

Sub-Sampling efficiency was performed by fractioning the entire sample into subsample percentages. On each sub-sampled portion, a total organism count was

recorded and compared to the rest of the sub-samples. In order to pass, all fractions were required to be within 20% of total organism count.

Example: If 300 organisms are found in 10% of the sample, the sorter will continue to sample in 10% fractions until the entire sample is separated. They will then count the total number of organisms in each of the 10 fractions of 10% and compare the organism count.

When divergence is >20% the sorting manager examines for the source of the problem and takes steps to correct it. With the Marchant box, the problem typically rested with how the box is flipped back to the upright position. For this reason, subsampling was performed by experienced employees only. Another common source of error would be the type of debris in the sample. Samples with algae or heavy with periphyton have a higher incident of failure due to clumping than clear samples.

Table 4 Summary of Sub Sample efficiency

	Station ID		Organisms in Subsample								So	orter	Actua	Pred	cision	Acc	uracy											
CC#	Sample Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Ву	Tim e	l Total		cent nge	Min	Max
23005 0	LC_DCDS_BIC05_2022- 05_NP	34 9	30 0	31 4	30 0	30 1	31 7	30 2	30 0	30 8	29 0	29 0	30 8	30 1	30 2	31 4	29 8	33 3	32 8	32 7	33 0	M P	960	6212	0.0	16.91	0.8 4	12.3 6

Taxonomic Effort

The next procedure was the identification to genus-species level where possible of all the organisms in the sample.

- Identifications were made at the genus/species level for all insect organisms found including Chironomidae (Based on CABIN protocol).
- Non-insect organisms (except those not included in CABIN count) were identified to genus/species where possible and to a minimum of family level with intact and mature specimens.
- The Standard Taxonomic Effort lists compiled by the CABIN manual¹, SAFIT², and PNAMP³ were used as a guide line for what level of identification to achieve where the condition and maturity of the organism enabled.
- Organisms from the same families/order were kept in separate vials with 80% ethanol and an interior label of printed laser paper.
- Chironomidae was identified to genus/species level where possible and was aided by slide mounts. CMC-10 was used to clear and mount the slide.
- Oligochaetes was identified to family/genus level with the aid of slide mounts. CMC-10 was used to clear and mount the slide.
- Other Annelida (leeches, polychaetes) were identified to the family/genus/species level with undamaged, mature specimens.
- Mollusca was identified to family and genus/species where possible
- Decapoda, Amphipoda and Isopoda were identified at family/genus/species level where possible.
- Bryozoans and Nemata remained at the phylum level
- Hydrachnidae and Cnidaria were identified at the family/genus level where possible.
- When requested, reference collections were made containing at least one individual from each taxa listed. Organisms represented will have been identified to the lowest practical level.
- Reference collection specimens were stored in 55 mm glass vials with screw-cap lids with polyseal inserts (museum quality). They were labeled with taxa name, site code, date identified and taxonomist name. The same information was applied to labels on the slide mounts.

Taxonomists

The taxonomists for this project were certified by the Society of Freshwater Science (SFS) Taxonomic Certification Program at level 2 which is the required certification for CABIN projects:

Scott Finlayson: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae (East/West); Group 4 Oligochaeta

Adam Bliss: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae

Rita Avery: Group 1 General Arthropods (East/West); Group 2 EPT (East/West)

Taxonomic QC

Taxonomic QC was performed in house by someone other than the original taxonomist.

- Quality control protocol involved complete, blind re-identification and reenumeration of at least 10% of samples by a second SFS-certified taxonomist.
- Samples for taxonomic quality control were randomly selected and quality control procedures were conducted as the project progresses through the laboratories.
- The second (QC) taxonomist will calculate and record four types of errors:
 - 1. Misidentification error
 - 2. Enumeration error
 - 3. Questionable taxonomic resolution error
 - 4. Insufficient taxonomic resolution error

The QC coordinator then calculates the following estimates of taxonomic precision.

1. The percent total identification error rate is calculated as:

$$\frac{Sum\ of\ incorrect\ identifications}{total\ or\ ganisms\ counted\ in\ audit}*(100)$$

The average total identification error rate of audited samples did not exceed 5%. All samples that exceed a 5% error rate were re-evaluated to determine whether repeated errors or patterns in error contributed.

2. The percent difference in enumeration (PDE) to quantify the consistency of specimen counts.

$$PDE = \frac{|n_1 - n_2|}{n_1 + n_2} x100$$

3. The percent taxonomic disagreement (PTD) to quantify the shared precision between two sets of identifications.

$$PTD = \left(1 - \left[\frac{a}{N}\right]\right) x100$$

4. Bray Curtis dissimilarity Index to quantify the differences in identifications.

$$BC_{ij} = 1 - \frac{2C_{ij}}{S_j + S_i}$$

Error Summary

All samples report errors within the acceptable limits for CABIN Laboratory methods (less than 5% error).

Table 5 Summary of taxonomic error following QC

Site	Taxa Identified	% Error	PDE	PTD	Bray - Curtis Dissimilarity index
Site - 2022, Sample - LC_DCDS_BIC-03_2022-					
05_NP, CC# - CC230048, Percent sampled =					
11%, Sieve size = 400	362	0.00	0.13831259	0.55248619	0.00414938

There will always be disagreements between taxonomists regarding the degree of taxonomic resolution in immature specimens and when laboratories make use of different keys for certain groups (Mollusks is an especially disputed group). It is always possible that some taxa found by the original taxonomist were overlooked in QC.

All of the Taxonomic QC samples that were observed passed testing according to the CABIN misidentification protocols. See the tables below for results from taxonomic QC audit.

Error Rationale

Site - 2022, Sample - LC_DCDS_BIC-03_2022- 05_NP, CC# - CC230048, Percent sampled = 11%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Ameletus	2	2						
Arctopsyche	15	14	No			Χ		
Baetis	1	1						
Baetis bicaudatus	1	1						
Baetis rhodani group	1	1						
Brillia	3	3						
Caenis	1	1						

Chelifera/ Metachela	1	1						
Chironomidae	4	4						
Chloroperlidae	6	6						
Drunella	2	2						
Drunella doddsii	2	2						
Enchytraeus	1	1						
Ephemerellidae	19	19						
Eukiefferiella	17	17						
Heptageniidae	45	45						
Kogotus	2	2						
Limnophyes	1	1						
Megarcys	1	1						
Micropsectra	3	3						
Nemouridae	4	4						
Oligophlebodes	5	5						
Orthocladius complex	43	44	No			Х		
Pagastia	5	5						
Pericoma/Telmatoscopus	5	5						
Perlodidae	5	5						
Rheocricotopus	1	1						
Rhyacophila	30	30						
Rhyacophila betteni group	1	1						
Rhyacophila								
brunnea/vemna group	1	1						
Rhyacophila narvae	3	3						
Rhyacophila vofixa group	2	2						
Sweltsa	2	2						
Taenionema	3	3						
Tanytarsini	22	22						
Tvetenia	2	2						
Zapada	89	90	No			Х		
Zapada oregonensis group	10	10						
Total:	361	362						
					0	3	0	
% Total Misidentification Rate	misidentifications	x100	0.00	Pass				
=	total number	=						

References

Taxonomic Keys

Below is a reference list of taxonomic keys utilized by taxonomists at Cordillera Consulting. Cordillera taxonomists routinely seek out new literature to ensure the most accurate identification keys are being utilized. This is not reflective of the exhaustive list of resources that we use for identification. A more complete list of taxonomic resources can be found at Southwest Association of Freshwater Invertebrate Taxonomists. (2015).

http://www.safit.org/Docs/SAFIT_Taxonomic_Literature_Database_1_March_2011.enl

Brook, Arthur R. and Leonard A. Kelton. 1967. Aquatic and semiaquatic Heteroptera of Alberta, Saskatchewan and Manitoba (Hemiptera) Memoirs of the Entomological Society of Canada. No. 51.

Brown HP & White DS (1978) Notes on Seperation and Identification of North American Riffle Beetles (Coleoptera: Dryopidea: Elmidae). Entomological News 89 (1&2): 1-13

Clifford, Hugh F. 1991. Aquatic Invertebrates of Alberta. University of Alberta Press Edmonton, Alberta.

Epler, John. 2001 The Larval Chironomids of North and South Carolina. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Water Beetles of Florida. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Aquatic and Semi-aquatic Heteroptera of Florida. http://home.earthlink.net/~johnepler/

Trond Andersen, Peter S. Cranston & John H. Epler (Eds) (2013) Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1. Larvae. *Insect Systematics and Evolution Supplements* 66: 1-571.

Jacobus, Luke and Pat Randolph. 2005. Northwest Ephemeroptera Nymphs. Manual from Northwest Biological Assessment Working Group. Moscow Idaho 2005. Not Published.

Jacobus LM, McCafferty WP (2004) Revisionary Contributions to the Genus Drunella (Ephemeroptera : Ephemerellidae). Journal of the New York Entomological Society 112: 127-147

Jacobus LM, McCafferty WP (2003) Revisionary Contributions to North American Ephemerella and Serratella (Ephemeroptera: Ephemerellidae). Journal of the New York Entomological Society 111 (4): 174-193.

Kathman, R.D., R.O. Brinkhurst. 1999. Guide to the Freshwater Oligochaetes of North America. Aquatic Resources Center, College Grove, Tennessee.

Larson, D.J., Y. Alarie, R.E. Roughly. 2005. Predaceous Diving Beetles (Coleoptera: Dytiscidae) of the Neararctic Region. NRC-CNRC Research Press. Ottawa.

Merritt, R.W., K.W. Cummins, M. B. Berg. (eds.). 2007. An introduction to the aquatic insects of North America, 4th. Kendall/Hunt, Dubuque, IA

¹ McDermott, H., Paull, T., Strachan, S. (May 2014). Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples, Environment Canada. ISBN: 978-1-100-25417-3

² Southwest Association of Freshwater Invertebrate Taxonomists. (2015). www.safit.org

Pacific Northwest Aquatic Monitoring Partnership (Accessed 2015). www.pnamp.org

Morihara DK, McCafferty WP (1979) The Baetis Larvae of North American (Ephemeroptera: Baetidae). Transactions of the American Entomological Society 105: 139-221.

Needham, James, M. May, M. Westfall Jr. 2000. Dragonflies of North America. Scientific Publishers. Gainsville FL.

Prescott David, R.C.and Medea M. Curteanu. 2004. Survey of Aquatic Gastropods of Alberta. Species at Risk Report No. 104. ISSN: 1496-7146 (Online Edition)

Needham, K. 1996. An Identification Guide to the Nymphal Mayflies of British Columbia. Publication #046 Resource Inventory Committee, Government of British Columbia.

Oliver, Donald R. and Mary E. Roussel. 1983. The Insects and Arachnids of Canada Part 11. The Genera of Iarval midges of Canada. Biosystematics Research Institute. Ottawa, Ontario. Research Branch, Agriculture Canada. Publication 1746.

Proctor, H. The 'Top 18' Water Mite Families in Alberta. Zoology 351. University of Alberta, Edmonton, Alberta.

Rogers, D.C. and M. Hill, 2008. Key to the Freshwater Malacostraca (Crustacea) of the mid-Atlantic Region. EPA-230-R-08-017. US Environmental Protection Agency, Office of Environmental Information, Washington, DC.

Stewart, Kenneth W. and Bill Stark. 2002. The Nymphs of North American Stonefly Genera (Plecoptera). The Caddis Press. Columbus Ohio.

Stewart, Kenneth W. and Mark W. Oswood. 2006 The Stoneflies (Plecoptera) of Alaska and Western Canada. The Caddis Press.

Stonedahl, Gary and John D. Lattin. 1986. The Corixidae of Oregon and Washington (Hemiptera: Heteroptera). Technical Bulletin 150. Oregon State University, Corvalis Oregon.

Thorpe, J. H. and A. P. Covich [Eds.] 1991. Ecology and classification of North American freshwater invertebrates. Academic Press, San Diego.

Tinerella, Paul P. and Ralph W. Gunderson.2005. The Waterboatmen (Insecta: Heteroptera: Corixidae) of Minisota. Publication No.23 Dept. Of Entomology, North Dakota State University, Fargo, North Dakota, USA.

Weiderholm, Torgny (Ed.) 1983. The larvae of Chironomidae (Diptera) of the Holartic region. Entomologica Scaninavica. Supplement No. 19.

Westfall, Minter J. Jr. and May, Michael L. 1996. Damselflies of North America. Scientific Publishers, Gainesville, FL.

Wiggins, Glenn B. 1998. Larvae of the North American Caddisfly Genera (Tricoptera) 2nd ed. University of Toronto Press. Toronto Ontario.

BENTHIC COMMUNITY

Cordillera Report 230020

Project: 22-19 (LCO Dry LAEMP) Minnow Environmental (BC)

Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250 404 7552

250-494-7553								
Site:	2022		2022		2022		2022	
	LC_DC1_BIC-1_2022	-09-12_N						
Sample Collection Date:	12-Sep-22		12-Sep-22		12-Sep-2		14-Sep-2	
CC#:	CC231037		CC231038	3	CC23103	9	CC23104	.0
Sieve Size: Subsample %:	400 5		400 10		400 5		400 14	
Phylum: Arthropoda	0		0		0		0	
Order: Collembola	0		0		0		0	
1 0.00	· ·		Ū				ŭ	
Subphylum: Hexapoda	0		0		0		0	
Class: Insecta	0		0		0		0	
Order: Ephemeroptera	0		0		0		0	
Family: Ameletidae	0		0		0		0	
<u>Ameletus</u>	0		1		0		0	
Family: Baetidae	9	ND	5	ND	5	ND	0	
<u>Baetis</u>	1	ND	2		3		0	
<u>Baetis fuscatus gr.</u>	0		0		0		0	
Baetis rhodani group	29 2		28 0		26 0		4 0	
Baetis bicaudatus Family: Ephemerellidae	15		15		17		18	
Drunella	0		0		0		0	
<u>Drunella grandis group</u>	0		0		0		0	
Drunella coloradensis	0		0		0		0	
Drunella doddsii	16		12		11		6	
Family: Heptageniidae	21		15		14		3	
<u>Cinyamula</u>	22		27		27		5	
<u>Epeorus</u>	0		0		1		0	
<u>Rhithrogena</u>	0		0		0		0	
Family: Siphlonuridae	0		0		0		0	
<u>Siphlonurus</u>	0		0		0		0	
Order: Placenters	0	ND	7	ND	2	ND	1	ND
Order: Plecoptera Family: Capniidae	9	טא	2 0	ND	2	ND	1 0	טאו
Mesocapnia	0		0		0		0	
Family: Chloroperlidae	0		0		0		3	
<u>Haploperla</u>	0		0		0		0	
<u>Plumiperla</u>	0		0		0		0	
<u>Sweltsa</u>	3		0		3		2	
<u>Utaperla</u>	0		0		0		0	
Family: Leuctridae	0		0		0		0	
<u>Paraleuctra</u>	0	NB	0	ND	0		0	NB
Family: Nemouridae Malenka	2 0	ND	1 0	ND	1 0	ND	1 0	ND
Visoka cataractae	1		0		0		0	
Zapada	30	ND	11	ND	21		31	
Zapada oregonensis group	67	ND	42	ND	61		25	
Zapada cinctipes	4		2		0		0	
Zapada columbiana	18		7		12		15	
Family: Peltoperlidae	0		0		0		0	
<u>Yoraperla</u>	0		0		0		1	
Family: Perlidae	0		0		0		0	
<u>Hesperoperla</u>	0		0		0		0	
Family: Perlodidae	1		4		1		2	
<u>Isoperla</u>	0 3		0 1		0 1		0 0	
<u>Koqotus</u> <u>Megarcys</u>	3		0		3		1	
<u>Setvena</u>	0		0		0		0	
Family: Taeniopterygidae	4		4		4		3	
Order: Trichoptera	33	ND	12		38		20	ND
Family: Brachycentridae	0		0		0		0	
<u>Brachycentrus</u>	0		0		0		0	
Micrasema	0		0		0		0	
Family: Glossosomatidae	0		0		0		1	
Glossosoma Family: Hydropsychidae	0 7		0 3		0 4		0 23	
Parapsyche	0		0		0		0	
Parapsyche elsis	6		1		2		3	
Family: Leptoceridae	0		0		0		0	
Family: Limnephilidae	2		1		0		4	
<u>Clostoeca disjuncta</u>	0		0		0		0	
<u>Dicosmoecus</u>	0		0		0		0	
<u>Ecclisomyia</u>	0		0		0		1	
Family: Rhyacophilidae	0		0		0		0	
Rhyacophila	0		0		1	ND	4	
<u>Rhyacophila betteni qroup</u> <u>Rhyacophila brunnea/vemna qroup</u>	0 2		0 1		0 4		6 0	
Rhyacophila hyalinata group	0		1		1		0	
Rhyacophila vetina complex	0		0		0		0	
Rhyacophila vofixa group	0		0		0		1	
Rhyacophila atrata complex	0		0		0		0	
<u>Rhyacophila narvae</u>	3		1		4		0	
Family: Thremmatidae	0		0		0		0	
<u>Oligophlebodes</u>	5		0		3		36	
Family: Uenoidae	0		0		0		0	
<u>Neothremma</u>	0		0		0		0	
Order: Coleoptera	0		0		0		0	
Order: Coleoptera Family: Elmidae	0		0 0		0		0 1	ND
,,	· ·		Ŭ		- U		-	.,,,

250-494-7553				
Site:	2022	2022	2022	2022
Sample:	LC_DC1_BIC-1_2022-09-12_N	LC_DC1_BIC-2_2022-09-12_N	LC_DC1_BIC-3_2022-09-12_N	LC_DC2_BIC-1_2022-09-14_N
Sample Collection Date:	12-Sep-22	12-Sep-22	12-Sep-22	14-Sep-22
CC#:	CC231037	CC231038	CC231039	CC231040
Sieve Size:	400	400	400	400
Subsample %:	5	10	5	14
<u>Heterlimnius</u>	0	0	1	1
Family: Staphylinidae	0	0	0	_ 1
,,,		ū	· ·	_
Order: Diptera	0	0	0	0
Family: Ceratopogonidae	0	0	0	0
Mallochohelea	0	0	0	0
Family: Chironomidae	25 ND			
				19 ND 0
Subfamily: Chironominae	0	0	0	
Tribe: Tanytarsini	0	2	1	0
<u>Micropsectra</u>	0	1	1	1
<u>Stempellinella</u>	0	0	0	0
Subfamily: Diamesinae	0	0	0	0
Tribe: Diamesini	0	0	0	0
<u>Diamesa</u>	29	9	33	4
<u>Pagastia</u>	38	19	35	4
<u>Pseudodiamesa</u>	1	1	0	2
Subfamily: Orthocladiinae	1	0	0	0
<u>Brillia</u>	0	0	0	0
Corynoneura	0	0	0	0
Cricotopus (Nostococladius)	0	0	1	0
<u>Diplocladius cultriger</u>	0	0	0	0
<u>Eukiefferiella</u>	35	4	45	5
<u>Hydrobaenus</u>	10	20	7	19
<u>Limnophyes</u>	0	0	0	0
Metriocnemus	0	0	0	0
<u>Orthocladius complex</u>	60	26	44	7
	0	0	0	0
Parametriocnemus Pararthogladius				
Parorthocladius Phaesricatorus	2	1 5	2 5	0
Rheocricotopus	2			1
Tvetenia	14	10	9	4
Subfamily: Tanypodinae	0	0	0	0
Krenopelopia	0	1	0	0
Tribe: Pentaneurini	0	0	0	0
<u>Telmatopelopia</u>	0	0	0	0
<u>Thienemannimyia group</u>	0	0	0	0
Family: Empididae	1	1	0	0
Chelifera/ Metachela	1	0	0	3
Clinocerinae Unknown Genus A	0	0	0	0
<u>Neoplasta</u>	0	1	1	3
<u>Oreogeton</u>	0	0	0	0
<u>Trichoclinocera</u>	0	0	0	0
Family: Pelecorhynchidae	0	0	0	0
<u>Glutops</u>	0	0	0	0
Family: Psychodidae	0	0	0	0
Pericoma/Telmatoscopus	77	25	15	27
Family: Simuliidae	0	0	0	0
<u>Prosimulium</u>	0	0	0	0
<u>Prosimulium/Helodon</u>	0	0	0	1
Simulium	0	0	2	1
Family: Tipulidae	0	0	0	0
<u>Antocha</u>	0	0	0	0
<u>Dicranota</u>	0	0	0	0
<u>Molophilus</u>	0	0	0	0
<u>Pedicia</u>	0	0	0	0
<u>rearcia</u> <u>Tricyphona</u>	1	0	0	0
		ū	· ·	·
Subphylum: Chelicerata	0	0	0	0
Class: Arachnida	0	0	0	0
Crass: Arachnida Order: Trombidiformes	0	0	0	0
Family: Feltriidae	0	0	0	0
Feltria	0	0	1	0
Family: Hydryphantidae	0	0	0	0
Albertathyas	0	0	0	0
Family: Hygrobatidae	0	0	0	0
	0	0	0	0
<u>Atractides</u> <u>Hygrobates</u>	0	0	0	0
<u>Hygrobates</u> Family: Lebertiidae	0		0	0
		0		
Lebertia	0	0	0	0
Family: Sperchontidae	0	0	0	0
<u>Sperchon</u>	1	0	0	0
Family: Torrenticolidae	0	0	0	0
<u>Testudacarus</u>	0	0	0	0
Louis Contract	•	2		•
Order: Sarcoptiformes	0	0	0	0
Order: Oribatida	0	0	0	0
Family: Hydrozetidae	1	0	0	0
Phylum: Mollusca	0	0	0	0
Class: Gastropoda	0	0	0	1
Phylum: Annelida	0	0	0	0
Subphylum: Clitellata	0	0	0	0
Class: Oligochaeta	0	0	0	0
Order: Lumbriculida	0	0	0	0
Family: Lumbriculidae	0	0	0	0
<u>Rhynchelmis</u>	0	0	0	0
		- -		- -
Order: Tubificida	0	0	0	0
•	-	-		-

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca 250-494-7553

Totals:

3

Site 2022	250-494-7555				
Sample Collection Date: 12-Sep-22 12-Sep-22 12-Sep-22 14-Sep-22 14-Sep-22 12-Sep-22 14-Sep-22 14					
CC231037 CC231038 CC231039 CC231040 Sieve Size:	Sample:	LC_DC1_BIC-1_2022-09-12_N	LC_DC1_BIC-2_2022-09-12_N	LC_DC1_BIC-3_2022-09-12_N	LC_DC2_BIC-1_2022-09-14_N
Family: Enchytraeidae	Sample Collection Date:	12-Sep-22	12-Sep-22	12-Sep-22	14-Sep-22
Family: Enchytraeidae	CC#:	CC231037	CC231038	CC231039	CC231040
Family: Enchytraeidae		400	400	400	400
Family: Naididae 0	Subsample %:	5	10	5	14
Nois Stylario locustris 0	Family: Enchytraeidae	0	1	0	3
Stylario locustris	Family: Naididae	0	0	0	0
Subfamily: Tubificinae with hair chaeta	<u>Nais</u>	0	0	0	0
Totals: 617 339 513 329	<u>Stylaria lacustris</u>	0	0	0	1
Taxa present but not included:	Subfamily: Tubificinae with hair chaeta	0	0	0	0
Phylum: Arthropoda	Totals:	617	339	513	329
Subphylum: Hexapoda 0					
Class: Insecta					
Order: Diptera					
Family: Cecidomyiidae	•				
Order: Homoptera	•				
Family: Cicadellidae	Family: Cecidomyiidae	0	1	0	0
Family: Cicadellidae	L Order: Hemontera	0	0	0	0
Order: Psocodea	•				
Subphylum: Crustacea 0 0 0 0 Class: Ostracoda 1 1 1 1 Phylum: Annelida 0 0 0 0 Subphylum: Clitellata 0 0 0 0 Class: Oligochaeta 0 0 0 0 Order: Tubificida 0 0 0 0 Family: Lumbricidae 0 0 0 0 Phylum: Nemata 1 1 1 1 1 Phylum: Platyhelminthes 0 0 0 0 0	railily. Cicadellidae	0	O	O	Ü
Class: Ostracoda	Order: Psocodea	0	0	0	0
Class: Ostracoda	Subphylum: Crustacea	0	0	0	0
Phylum: Annelida 0					
Subphylum: Clitellata 0 0 0 0 Class: Oligochaeta 0 0 0 0 Order: Tubificida 0 0 0 0 Family: Lumbricidae 0 0 0 0 Phylum: Nemata 1 1 1 1 Phylum: Platyhelminthes 0 0 0 0	•				
Class: Oligochaeta	Phylum: Annelida	0	0	0	0
Order: Tubificida	Subphylum: Clitellata	0	0	0	0
Family: Lumbricidae 0 0 0 0 Phylum: Nemata 1 1 1 1 Phylum: Platyhelminthes 0 0 0 0	Class: Oligochaeta	0	0	0	0
Phylum: Nemata 1 1 1 1 1 1 Phylum: Platyhelminthes 0 0 0 0	Order: Tubificida	0	0	0	0
Phylum: Nemata 1 1 1 1 1 1 Phylum: Platyhelminthes 0 0 0 0	Family: Lumbricidae	0	0	0	0
Phylum: Platyhelminthes 0 0 0					
Phylum: Platyhelminthes 0 0 0 0	Phylum: Nemata	1	1	1	1
		0	0	0	0
		1	1	1	1

4

3

Project: 22-19 (LCO Dry LAEMP) Minnow Environmental (BC) Taxonomist: Scott Finlayson scottfinlayson@cordilleraconsulting.ca 250-494-7553

| Family: Elmidae

250-494-7553				
Site:		2022	2022	2022
				LC_DC3_BIC-2_2022-09-13_N
Sample Collection Date: CC#:	14-Sep-22	14-Sep-22 CC231042	13-Sep-22 CC231043	13-Sep-22 CC231044
Sieve Size:	CC231041 400	400	400	400
Subsample %:	15	8	5	8
Phylum: Arthropoda	0	0	0	0
Order: Collembola	0	0	1	0
Colorbodono Hanna da	0		0	0
Subphylum: Hexapoda Class: Insecta	0 0	0	0 0	0 0
Order: Ephemeroptera	0	0	0	0
Family: Ameletidae	0	0	0	0
<u>Ameletus</u>	0	0	0	0
Family: Baetidae	3	0	0	0
<u>Baetis</u> <u>Baetis fuscatus qr.</u>	0 0	0	0 0	0 0
Baetis rhodani group	12	4	0	0
Baetis bicaudatus	0	0	0	0
Family: Ephemerellidae	27	17	0	0
<u>Drunella</u>	0	0	0	0
<u>Drunella grandis group</u> <u>Drunella coloradensis</u>	0 0	0	0 0	0 0
Drunella doddsii	5	3	0	0
Family: Heptageniidae	10	4	0	0
<u>Cinygmula</u>	6	7	7	0
<u>Epeorus</u>	0	2	0	0
Rhithrogena	0	0	0	0
Family: Siphlonuridae Siphlonurus	0 0	0	0 0	0 0
<u></u>		Ŭ		Ĭ
Order: Plecoptera	2 ND	4 ND	0	0
Family: Capniidae	0	0	8	3
Mesocapnia	0	0	0	0
Family: Chloroperlidae <u>Haploperla</u>	2 0	5 0	2 0	3 0
<u>Plumiperla</u>	0	0	0	0
<u>Sweltsa</u>	2	4	1	1
<u>Utaperla</u>	0	0	0	0
Family: Leuctridae	0	0	1	0
<u>Paraleuctra</u> Family: Nemouridae	0 3 ND	0 4 ND	0 0	0 0
Malenka	0	0	0	0
Visoka cataractae	0	0	0	0
<u>Zapada</u>	21 ND	27 ND	1 ND	1
Zapada oregonensis group	34	21	19	15
Zapada cinctipes Zapada columbiana	3 17	2 20	0 30	0 43
Family: Peltoperlidae	0	0	0	0
<u>Yoraperla</u>	0	0	1	3
Family: Perlidae	0	0	0	0
<u>Hesperoperla</u> Family: Perlodidae	0 5	0	0 0	0 1
Isoperla	0	0	0	0
<u>Koqotus</u>	0	3	0	0
<u>Megarcys</u>	1	5	2	5
<u>Setvena</u>	0	0	0	0
Family: Taeniopterygidae	2	3	0	0
Order: Trichoptera	11	2 ND	1 ND	1 ND
Family: Brachycentridae	0	0	0	0
<u>Brachycentrus</u>	0	0	0	0
Micrasema	0	0	0	0
Family: Glossosomatidae Glossosoma	0 0	0	0 0	0 0
Family: Hydropsychidae	45	71	0	0
<u>Parapsyche</u>	0	0	0	0
Parapsyche elsis	2	7	0	0
Family: Leptoceridae	0	0	0	0
Family: Limnephilidae <u>Clostoeca disjuncta</u>	0 0	1 0	2 0	0 0
<u>Dicosmoecus</u>	0	0	0	0
Ecclisomyia	1	0	2	1
Family: Rhyacophilidae	0	0	0	0
Rhyacophila	1	1	2	5
Rhyacophila betteni group Rhyacophila brunnea/vemna group	5 1	7 2	0 6	0 3
Rhyacophila hyalinata group	1	2	0	5 1
Rhyacophila vetina complex	0	0	0	0
Rhyacophila vofixa group	0	0	0	3
Rhyacophila atrata complex	0	0	0	0
Rhyacophila narvae Family: Thremmatidae	0 0	2	0 0	1 0
Oligophlebodes	45	7	0	0
Family: Uenoidae	0	0	0	0
<u>Neothremma</u>	0	0	0	0
L Ouden Celescoters	0	2	0	2
Order: Coleoptera Family: Elmidae	0	0	0 0	0 0

0

250-494-7553	2022	2022	2022	2022
Site:	2022	2022	2022	2022
Sample Collection Date:		LC_DC2_BIC-3_2022-09-14_N	13-Sep-22	
CC#:	14-Sep-22 CC231041	14-Sep-22 CC231042	CC231043	13-Sep-22 CC231044
Sieve Size:	400	400	400	400
Subsample %:	15	8	5	8
Heterlimnius	0	0	0	0
Family: Staphylinidae	0	0	0	0
Tulliny. Staphymilade	o o	ŭ	0	O .
Order: Diptera	0	0	0	0
Family: Ceratopogonidae	0	0	0	0
Mallochohelea	0	0	0	0
Family: Chironomidae	17 ND	11 ND	38 ND	17 ND
Subfamily: Chironominae	0	0	0	0
Tribe: Tanytarsini	0	0	0	0
•	1		0	0
Micropsectra		1		
Stempellinella	0	0	0	0
Subfamily: Diamesinae	0	0	0	0
Tribe: Diamesini	0	0	0	0
<u>Diamesa</u>	1	9	2	1
<u>Pagastia</u>	3	2	64	61
Pseudodiamesa	2	0	52	10
Subfamily: Orthocladiinae	0	0	0	0
<u>Brillia</u>	0	0	0	0
Corynoneura	0	0	0	0
Cricotopus (Nostococladius)	0	0	0	0
<u>Diplocladius cultriger</u>	0	0	0	0
Eukiefferiella	6	8	95	38
<u>Hydrobaenus</u> Limpophyes	0	12	26	3
<u>Limnophyes</u>	0	0	0	1
Metriocnemus Orthogladius complex	0	0	0	0
Orthocladius complex	16	17	199	96
Parametriocnemus Describe a la disco	0	0	0	0
Parorthocladius Phonography	3	3	12	7
<u>Rheocricotopus</u>	0	0	0	0
<u>Tvetenia</u>	0	2	2	2
Subfamily: Tanypodinae	0	0	0	0
<u>Krenopelopia</u>	0	0	0	0
Tribe: Pentaneurini	0	0	0	0
<u>Telmatopelopia</u>	0	0	0	0
<u>Thienemannimyia group</u>	0	0	0	0
Family: Empididae	0	0	2	0
<u>Chelifera/ Metachela</u>	1	2	0	0
Clinocerinae Unknown Genus A	0	0	0	0
<u>Neoplasta</u>	1	4	0	0
<u>Oreogeton</u>	0	0	2	0
<u>Trichoclinocera</u>	0	0	5	2
Family: Pelecorhynchidae	0	0	0	0
<u>Glutops</u>	0	0	0	0
Family: Psychodidae	0	0	0	0
Pericoma/Telmatoscopus	14	19	19	4
Family: Simuliidae	0	0	0	0
<u>Prosimulium</u>	0	0	0	0
<u>Prosimulium/Helodon</u>	0	3	0	0
<u>Simulium</u>	0	0	0	0
Family: Tipulidae	0	0	0	0
<u>Antocha</u>	0	0	0	0
<u>Dicranota</u>	0	1	3	2
<u>Molophilus</u>	0	0	0	0
<u>Pedicia</u>	0	0	0	0
<u>Tricyphona</u>	0	0	0	0
Subphylum: Chelicerata	0	0	0	0
Class: Arachnida	0	0	0	0
Order: Trombidiformes	0	0	0	0
Family: Feltriidae	0	0	0	0
<u>Feltria</u>	0	0	2	0
Family: Hydryphantidae	0	0	0	0
Albertathyas	0	0	0	2
Family: Hygrobatidae	0	0	0	0
Atractides	0	0	1	0
<u>Hygrobates</u>	0	0	0	0
Family: Lebertiidae	0	0	0	0
<u>Lebertia</u>	1	0	10	7
Family: Sperchontidae	0	0	0	0
Sperchon	0	0	0	0
Family: Torrenticolidae	0	0	0	0
<u>Testudacarus</u>	0	0	0	0
Order: Sarcontiformes	0	0	0	0
Order: Sarcoptiformes	0	0	0	0
Order: Oribatida	0	0	1	0
Family: Hydrozetidae	0	0	0	0
Dhuluma 86-U	2	2	0	0
Phylum: Mollusca	0	0	0	0
Class: Gastropoda	0	0	0	0
Phylum: Annelida	0	0	0	0
Subphylum: Clitellata	0	0	0	0
Class: Oligochaeta	0	0	0	0
Order: Lumbriculida	0	0	0	0
Family: Lumbriculidae	0	0	0	0
<u>Rhynchelmis</u>	0	0	0	0
Order: Tubificida	0	0	0	0

Minnow Environmental (BC) Taxonomist: Scott Finlayson

250-494-7553				
Site:	2022	2022	2022	2022
Sample:	LC_DC2_BIC-2_2022-09-14_N	LC_DC2_BIC-3_2022-09-14_N	LC_DC3_BIC-1_2022-09-13_N	LC_DC3_BIC-2_2022-09-13_N
Sample Collection Date:	14-Sep-22	14-Sep-22	13-Sep-22	13-Sep-22
CC#:	CC231041	CC231042	CC231043	CC231044
Sieve Size:	400	400	400	400
Subsample %:	15	8	5	8
Family: Enchytraeidae	2	2	1	0
Family: Naididae	0	0	0	0
<u>Nais</u>	0	0	0	0
Stylaria lacustris	0	0	0	0
Subfamily: Tubificinae with hair chaeta	0	0	0	0
Totals:	335	335	622	343
Taxa present but not included:				
Phylum: Arthropoda	0	0	0	0
Subphylum: Hexapoda	0	0	0	0
Class: Insecta	0	0	0	0
Order: Diptera	0	0	0	0
Family: Cecidomyiidae	0	0	0	0
		-		
Order: Homoptera	0	0	0	0
Family: Cicadellidae	0	0	0	1
Order: Psocodea	0	0	0	0
Subphylum: Crustacea	0	0	0	0
Class: Ostracoda	1	1	1	1
Phylum: Annelida	0	0	0	0
Subphylum: Clitellata	0	0	0	0
Class: Oligochaeta	0	0	0	0
Order: Tubificida	0	0	0	0
Family: Lumbricidae	0	1	0	0
Phylum: Nemata	1	1	0	1
Phylum: Platyhelminthes	0	0	0	0
Class: Turbellaria	1	1	1	1
Totals:	3	4	2	4

Project: 22-19 (LCO Dry LAEMP) Minnow Environmental (BC) Taxonomist: Scott Finlayson $\underline{scottfinlays on@cordiller a consulting.ca}$

250	1-4	94.	.75	53

Site:	2022	2022 LC DC/L BIC-1 2022-09-12 N	2022
		LC_DC4_BIC-1_2022-09-12_N	
Sample Collection Date:	13-Sep-22	12-Sep-22	12-Sep-22
CC#:	CC231045	CC231046	CC231047
Sieve Size:	400	400	400
Subsample %:	5	7	5
Phylum: Arthropoda	0	0	0
Order: Collembola	0	0	0
wheels were Harran and	0	0	0
ubphylum: Hexapoda	0	0	0
Class: Insecta	0	0	0
Order: Ephemeroptera	0	0	0
Family: Ameletidae	0	0	0
Ameletus	0	2	2
Family: Baetidae	0	2	0
<u>Baetis</u>	0	0	2 ND
Baetis fuscatus gr.	0	0	0
Baetis rhodani group	0	12	28
Baetis bicaudatus	0	0	0
Family: Ephemerellidae	1	24	17
<u>Orunella</u>	0	0	0
<u>Orunella grandis group</u>	0	0	0
<u>Orunella coloradensis</u>	0	1	0
<u> Drunella doddsii</u>	0	11	11
Family: Heptageniidae	0	45	26
<u>Cinygmula</u>	0	12	33
<u>peorus</u>	0	0	0
Rhithrogena	0	0	0
Family: Siphlonuridae	0	0	0
<u>iphlonurus</u>	0	0	0
Order: Plecoptera	0	1 ND	3
Family: Capniidae	31	0	1
<u>Mesocapnia</u>	0	0	0
Family: Chloroperlidae	4	6	2
<u>laploperla</u>	0	0	0
<u>Plumiperla</u>	1	0	0
<u>weltsa</u>	1	4	7
<u>Itaperla</u>	0	0	0
Family: Leuctridae	0	0	0
<u>Paraleuctra</u>	0	0	0
Family: Nemouridae	1 ND	1 ND	1 ND
<u>Malenka</u>	1	0	0
<u> ⁄isoka cataractae</u>	0	0	0
<u>'apada</u>	2 ND	4	2 ND
apada oregonensis group	11	51	69
'apada cinctipes	0	0	1
<u>'apada columbiana</u>	72	8	25
Family: Peltoperlidae	0	0	0
<u>ʻoraperla</u>	0	0	2
Family: Perlidae	0	0	0
<u>lesperoperla</u>	0	0	0
Family: Perlodidae	0	3	5
<u>soperla</u>	0	0	0
<u>Cogotus</u>	0	3	2
<u>Megarcys</u>	7	5	15
<u>etvena</u>	0	0	0
Family: Taeniopterygidae	0	3	0
Order: Trichoptera	0	14	14 ND
Family: Brachycentridae	0	0	0
Brachycentrus	0	0	0
<u> Micrasema</u>	0	0	0
Family: Glossosomatidae	0	0	0
<u>Glossosoma</u>	0	1	0
Family: Hydropsychidae	0	4	0
<u>Parapsyche</u>	0	1 ND	0
Parapsyche elsis	0	9	3
Family: Leptoceridae	0	0	0
Family: Limnephilidae	2	8	13
Clostoeca disjuncta	0	0	0
Dicosmoecus	0	1	0
<u> Ccclisomyia</u>	0	0	1
Family: Rhyacophilidae	0	0	0
Rhyacophila	3	1	0
Rhyacophila betteni group	0	0	1
Rhyacophila brunnea/vemna group	2	2	1
Rhyacophila hyalinata group	0	1	2
Rhyacophila vetina complex	0	0	0
Rhyacophila vofixa group	1	1	2
Rhyacophila atrata complex	0	1	1
Rhyacophila narvae	0	5	11
Family: Thremmatidae	0	0	0
Pligophlebodes	0	0	2
Family: Uenoidae		0	
LAUDIV. DEUDIDAE	0		0
	0	Λ	0
<u>leothremma</u>	0	0	0
	0	0	0

Minnow Environmental (BC) Taxonomist: Scott Finlayson

250-494-7553			
Site:	2022	2022	2022
Sample	LC_DC3_BIC-3_2022-09-13_N	IC DC/L BIC-1 2022-00-12 N	
Sample Collection Date:	13-Sep-22	12-Sep-22	12-Sep-22
CC#:	CC231045	CC231046	CC231047
Sieve Size:	400	400	400
Subsample %:	5	7	5
<u>Heterlimnius</u>	0	0	0
Family: Staphylinidae	0	0	0
i anniy. Staphyiinidae	0	O	O
Order: Diptera	0	0	0
Family: Ceratopogonidae	0	0	0
<u>Mallochohelea</u>	0	0	0
Family: Chironomidae	12 ND	16 ND	14 ND
Subfamily: Chironominae	0	0	0
Tribe: Tanytarsini	0	1	0
<u>Micropsectra</u>	0	0	0
<u>Stempellinella</u>	0	0	0
Subfamily: Diamesinae	0	0	0
Tribe: Diamesini	0	0	0
Diamesa	2	1	0
<u>Pagastia</u>	28	25	12
<u>Pseudodiamesa</u>	33	0	1
Subfamily: Orthocladiinae	0	0	0
<u>Brillia</u>	1	0	0
<u>Corynoneura</u>	0	0	0
Cricotopus (Nostococladius)	0	0	0
	0	0	0
<u>Diplocladius cultriger</u>			
<u>Eukiefferiella</u>	22	7	3
<u>Hydrobaenus</u>	6	2	2
<u>Limnophyes</u>	1	0	0
<u>Metriocnemus</u>	0	0	0
<u>Orthocladius complex</u>	84	12	7
	0	0	0
<u>Parametriocnemus</u>			
<u>Parorthocladius</u>	9	1	0
<u>Rheocricotopus</u>	0	4	6
Tvetenia	5	1	5
Subfamily: Tanypodinae	0	0	0
<u>Krenopelopia</u>	0	0	0
Tribe: Pentaneurini	0	0	0
•			0
<u>Telmatopelopia</u>	0	0	0
Thienemannimyia group	0	0	0
Family: Empididae	0	0	1
<u>Chelifera/ Metachela</u>	0	1	0
<u>Clinocerinae Unknown Genus A</u>	0	2	0
Neoplasta	0	2	0
<u>Oreogeton</u>	1	0	0
<u>Trichoclinocera</u>	5	0	0
Family: Pelecorhynchidae	0	0	0
<u>Glutops</u>	0	4	1
Family: Psychodidae	0	0	0
Pericoma/Telmatoscopus	12	7	0
Family: Simuliidae	0	0	0
<u>Prosimulium</u>	1	0	0
<u>Prosimulium/Helodon</u>	0	0	0
	0		
<u>Simulium</u>		0	2
Family: Tipulidae	0	0	0
<u>Antocha</u>	0	0	0
<u>Dicranota</u>	5	0	1
<u>Molophilus</u>	1	0	0
Pedicia	0	0	0
<u>Tricyphona</u>	0	0	0
тпсурнопи_	U	U	U
Subphylum: Chelicerata	0	0	0
Class: Arachnida	0	0	0
•			
Order: Trombidiformes	0	0	0
Family: Feltriidae	0	0	0
Feltria	0	0	0
Family: Hydryphantidae	0	0	0
<u>Albertathyas</u>	3	0	0
Family: Hygrobatidae	0	0	0
<u>Atractides</u>	0	0	0
<u>Hygrobates</u>	0	0	0
Family: Lebertiidae	0	0	0
		0	0
<u>Lebertia</u>	4		
Family: Sperchontidae	0	0	0
Sperchon	0	0	0
Family: Torrenticolidae	0	0	0
-			
<u>Testudacarus</u>	0	0	0
Order: Sarcoptiformes	0	0	0
•			
Order: Oribatida	1	0	0
Family: Hydrozetidae	0	0	0
Dhadaaa 84 U	2	2	0
Phylum: Mollusca	0	0	0
Class: Gastropoda	0	0	0
		-	
n		_	
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
Class: Oligochaeta	0	0	0
Order: Lumbriculida	0	0	0
Family: Lumbriculidae	0	0	0
Rhynchelmis	0	0	0
mynenenns	U	U	U
Order: Tubificida	0	0	0

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca 250-494-7553

230-494-7333			
Site:	2022	2022	2022
Sample:	LC_DC3_BIC-3_2022-09-13_N	LC_DC4_BIC-1_2022-09-12_N	LC_DC4_BIC-2_2022-09-12_N
Sample Collection Date:	13-Sep-22	12-Sep-22	12-Sep-22
CC#:	CC231045	CC231046	CC231047
Sieve Size:	400	400	400
Subsample %:	5	7	5
Family: Enchytraeidae	0	1	0
Family: Naididae	0	0	0
<u>Nais</u>	0	0	0
Stylaria lacustris	0	0	0
Subfamily: Tubificinae with hair chaeta	0	0	0
Totals:	376	334	360

Taxa present but not included:

Phylum: Arthropoda	0	0	0	
Subphylum: Hexapoda	0	0	0	
Class: Insecta	0	0	0	
Order: Diptera	0	0	0	
Family: Cecidomyiidae	0	0	0	
Order: Homoptera	0	0	0	
Family: Cicadellidae	0	0	0	
Order: Psocodea	0	0	0	
Subphylum: Crustacea	0	0	0	
Class: Ostracoda	1	1	1	
Phylum: Annelida	0	0	0	
Subphylum: Clitellata	0	0	0	
Class: Oligochaeta	0	0	0	
Order: Tubificida	0	0	0	
Family: Lumbricidae	0	0	0	
Phylum: Nemata	1	1	0	
Phylum: Platyhelminthes	0	0	0	
Class: Turbellaria	1	1	1	
Totals:	3	3	2	

Project: 22-19 (LCO Dry LAEMP) Minnow Environmental (BC)

Taxonomist: Scott Finlayson scottfinlayson@cordilleraconsulting.ca

250-494-7553

250-494-7553			
Site:	2022	2022	2022
Sample:	LC_DC4_BIC-3_2022-09-12_N	LC_DCDS_BIC-1_2022-09-13_N	LC_DCDS_BIC-2_2022-09-13_N
Sample Collection Date:	12-Sep-22	13-Sep-22	13-Sep-22
CC#:	CC231048	CC231049	CC231050
Sieve Size:	400	400	400
Subsample %:	13	15	8
Phylum: Arthropoda	0	0	0
Order: Collembola	0	0	0
Order: Collettibola	0	O .	O
Colorbodoros Harranda	2	0	0
Subphylum: Hexapoda	0	0	0
Class: Insecta	0	0	0
Order: Ephemeroptera	0	0	0
Family: Ameletidae	0	0	0
<u>Ameletus</u>	0	0	0
Family: Baetidae	1 ND	1	0
<u>Baetis</u>	1 ND	0	0
Baetis fuscatus gr.	0	0	0
Baetis rhodani group	19	2	3
Baetis bicaudatus	1	0	0
Family: Ephemerellidae	22	16	19
<u>Drunella</u>	0	0	0
<u>Drunella grandis group</u>	0	0	0
Drunella coloradensis	1	1	1
<u>Drunella doddsii</u>	4	5	1
Family: Heptageniidae	19	2	0
<u>Cinygmula</u>	18	6	3
<u>Epeorus</u>	0	0	1
Rhithrogena	0	0	0
Family: Siphlonuridae	0	0	0
<u>Siphlonurus</u>	0	0	0
Order: Plecoptera	0	0	1 ND
Family: Capniidae	0	2	0
Mesocapnia	0	0	0
Family: Chloroperlidae	1	0	0
<u>Haploperla</u>	0	0	0
<u>Plumiperla</u>	0	0	0
<u>Sweltsa</u>	6	2	2
<u>Swertsu</u> Utaperla	1	0	0
' <u></u>		0	
Family: Leuctridae	0		0
<u>Paraleuctra</u>	0	0	0
Family: Nemouridae	1	1 ND	0
<u>Malenka</u>	0	0	0
<u>Visoka cataractae</u>	0	1	0
<u>Zapada</u>	0	4	4
Zapada oregonensis group	64	41	24
Zapada cinctipes	0	0	0
Zapada columbiana	5	47	40
Family: Peltoperlidae	0	0	0
<u>Yoraperla</u>	1	0	1
Family: Perlidae	0	0	0
<u>Hesperoperla</u>	0	0	0
Family: Perlodidae	5	7	9
Isoperla	0	0	0
<u>Kogotus</u>	3	0	0
<u>Negarcys</u>	19	5	10
<u>Setvena</u>	0	0	0
Family: Taeniopterygidae	1	1	1
Talling. Taemopteryglade	1	1	<u> </u>
Order: Trichenters	20	0	14 ND
Order: Trichoptera		0	
Family: Brachycentridae	0	0	0
Brachycentrus Microscoma	0	0	0
Micrasema	0	0	0
Family: Glossosomatidae	0	0	0
<u>Glossosoma</u>	0	0	0
Family: Hydropsychidae	0	20	21
<u>Parapsyche</u>	0	0	0
Parapsyche elsis	3	6	0
Family: Leptoceridae	0	0	0
Family: Limnephilidae	13	3	5
<u>Clostoeca disjuncta</u>	0	0	0
<u>Dicosmoecus</u>	0	0	0
<u>Ecclisomyia</u>	1	0	3
Family: Rhyacophilidae	0	0	0
<u>Rhyacophila</u>	0	9	2
Rhyacophila betteni group	1	3	4
Rhyacophila brunnea/vemna group	2	6	2
Rhyacophila hyalinata group	1	1	0
Rhyacophila vetina complex	0	0	0
Rhyacophila vofixa group	1	3	1
Rhyacophila atrata complex	1	0	0
Rhyacophila narvae	5	10	6
Family: Thremmatidae	0	0	0
<u>Oligophlebodes</u>	0	6	16
Family: Uenoidae	0	0	0
<u>Neothremma</u>	0	0	0
Order: Coleoptera	0	0	0
Family: Elmidae	0	0	0

Minnow Environmental (BC) Taxonomist: Scott Finlayson

250-494-7553			
Site:	2022	2022	2022
Sample:	LC_DC4_BIC-3_2022-09-12_N	LC_DCDS_BIC-1_2022-09-13_N	LC_DCDS_BIC-2_2022-09-13_N
Sample Collection Date:	12-Sep-22	13-Sep-22	13-Sep-22
CC#:	CC231048	CC231049	CC231050
Sieve Size:	400	400	400
Subsample %:	13	15	8
Heterlimnius	0	0	0
	0	0	0
Family: Staphylinidae	U	U	U
Order: Diptera	0	0	0
Family: Ceratopogonidae	0	0	0
<u>Mallochohelea</u>	0	0	0
Family: Chironomidae	11 ND	15 ND	18 ND
Subfamily: Chironominae	0	0	0
Tribe: Tanytarsini	0	0	0
	0	0	1
<u>Micropsectra</u>			
<u>Stempellinella</u>	1	0	0
Subfamily: Diamesinae	0	0	0
Tribe: Diamesini	0	0	0
<u>Diamesa</u>	2	16	6
Pagastia	41	7	6
<u> </u>			
<u>Pseudodiamesa</u>	0	8	9
Subfamily: Orthocladiinae	0	0	0
Brillia	0	0	0
<u>Corynoneura</u>	0	0	1
Cricotopus (Nostococladius)	0	0	0
<u>Diplocladius cultriger</u>	0	0	0
<u>Eukiefferiella</u>	10	5	8
<u>Hydrobaenus</u>	28	2	8
<u>Limnophyes</u>	0	0	0
<u>Metriocnemus</u>	0	0	0
<u>Orthocladius complex</u>	25	40	48
<u>Parametriocnemus</u>	0	0	0
<u>Parorthocladius</u>	8	3	2
<u>Rheocricotopus</u>	1	1	1
Tvetenia	1	3	8
<u> </u>			
Subfamily: Tanypodinae	0	0	0
<u>Krenopelopia</u>	0	0	0
	0		
Tribe: Pentaneurini		0	0
<u>Telmatopelopia</u>	0	0	0
Thienemannimyia group	0	0	0
Family: Empididae	2	0	0
<u>Chelifera/ Metachela</u>	3	10	0
Clinocerinae Unknown Genus A	1	0	0
<u>Neoplasta</u>	1	1	1
<u>Oreogeton</u>	0	0	1
<u>Trichoclinocera</u>	1	0	0
Family: Pelecorhynchidae	0	0	0
Glutops	1	0	0
Family: Psychodidae	0	0	0
Pericoma/Telmatoscopus	6	5	4
Family: Simuliidae	1	0	0
<u>Prosimulium</u>	0	0	0
<u>Prosimulium/Helodon</u>	0	0	0
Simulium	0	1	2
Family: Tipulidae	0	0	0
<u>Antocha</u>	0	0	0
<u>Dicranota</u>	0	2	2
· · · · · · · · · · · · · · · · · · ·			
<u>Molophilus</u>	0	0	0
<u>Pedicia</u>	0	0	0
<u>Tricyphona</u>	0	0	0
псурнони	·	· ·	v
Subphylum: Chelicerata	0	0	0
Class: Arachnida	0	0	0
•			
Order: Trombidiformes	0	0	0
Family: Feltriidae	0	0	0
<u>Feltria</u>	0	1	0
Family: Hydryphantidae	0	0	0
<u>Albertathyas</u>	0	0	0
Family: Hygrobatidae	0	0	0
<u>Atractides</u>	0	0	0
<u>Hygrobates</u>	0	0	0
Family: Lebertiidae	0	0	0
<u>Lebertia</u>	0	0	0
Family: Sperchontidae	0	0	0
<u>Sperchon</u>	0	0	0
Family: Torrenticolidae	0	0	0
<u>Testudacarus</u>	0	0	0
Order: Careentiferness	0	0	0
Order: Sarcoptiformes	0	0	0
Order: Oribatida	0	0	0
Family: Hydrozetidae	0	0	0
, ranny. Hydrozendae	· ·	<u> </u>	J
Phylum: Mollusca	0	0	0
Class: Gastropoda	0	1	0
,	~	-	Ĭ
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
Class: Oligochaeta	0	0	0
Order: Lumbriculida	0	0	0
Family: Lumbriculidae	0	0	0
<u>Rhynchelmis</u>	0	0	0
Order: Tubificida	0	0	0
1 (wannered	<u>-</u>	· · · · · · · · · · · · · · · · · · ·	·

Minnow Environmental (BC) Taxonomist: Scott Finlayson

250 .5 . 7555			
Site:	2022	2022	2022
Sample:	LC_DC4_BIC-3_2022-09-12_N	LC_DCDS_BIC-1_2022-09-13_N	LC_DCDS_BIC-2_2022-09-13_N
Sample Collection Date:	12-Sep-22	13-Sep-22	13-Sep-22
CC#:	CC231048	CC231049	CC231050
Sieve Size:	400	400	400
Subsample %:	13	15	8
Family: Enchytraeidae	0	0	0
Family: Naididae	0	0	0
Nais	0	0	0
Stylaria lacustris	0	0	0
Subfamily: Tubificinae with hair chaeta	0	0	0
Totals:	385	332	320
Taxa present but not included:			
Taxa present but not included.			
Phylum: Arthropoda	0	0	0
Subphylum: Hexapoda	0	0	0
Class: Insecta	0	0	0
Order: Diptera	0	0	0
Family: Cecidomyiidae	0	0	0
1	· ·		Ů
Order: Homoptera	0	0	0
Family: Cicadellidae	0	0	0
,	· ·		Ů
Order: Psocodea	0	0	0
1 0.00	· ·		Ů
Subphylum: Crustacea	0	0	0
Class: Ostracoda	1	1	1
1	-		-
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
Class: Oligochaeta	0	0	0
Order: Tubificida	0	0	0
Family: Lumbricidae	0	0	0
1	•	<u> </u>	,
Phylum: Nemata	1	1	1
Phylum: Platyhelminthes	0	0	0
Class: Turbellaria	1	1	1
Totals:	3	3	3
Totais.	•	•	J

Project: 22-19 (LCO Dry LAEMP) Minnow Environmental (BC)

Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

250-494-7553			
Site:	2022	2022	2022
Sample:		LC_DCDS_BIC-4_2022-09-13_N	LC_DCDS_BIC-5_2022-09-13_N
Sample Collection Date:	13-Sep-22	13-Sep-22	13-Sep-22
CC#:		CC231052	CC231053
Sieve Size:		400	400
Subsample %:	16	8	12
Phylum: Arthropoda	0	0	0
Order: Collembola	0	1	0
Subphylum: Hexapoda	0	0	0
Class: Insecta	0	0	0
Order: Ephemeroptera	0	0	0
Family: Ameletidae	0	0	0
<u>Ameletus</u>	0	0	0
Family: Baetidae	0	2 ND	0
<u>Baetis</u>	1	2	1
Baetis fuscatus gr.	0	0	0
Baetis rhodani group	1	2	2
<u>Baetis bicaudatus</u>	0	0	0
Family: Ephemerellidae	40	31	58
<u>Drunella</u>	0	0	0
<u>Drunella grandis group</u>	0	0	0
<u>Drunella coloradensis</u>	0	0	0
<u>Drunella doddsii</u>	7	4	3
Family: Heptageniidae	3	2	2
<u>Cinyamula</u>	4	5	11
<u>Epeorus</u>	0	1	0
Rhithrogena	0	0	0
Family: Siphlonuridae	0	0	0
<u>Siphlonurus</u>	0	0	0
L Oudow Discours	1		0
Order: Plecoptera	1 ND	1 ND	0
Family: Capniidae	4 0	2 0	3 0
Mesocapnia	5		
Family: Chloroperlidae	0	4 0	3 0
<u>Haploperla</u> Plumiperla	0	0	0
<u>Sweltsa</u>	5	3	4
<u>Swertsu</u> Utaperla	0	0	0
Family: Leuctridae	0	0	0
Paraleuctra	0	0	0
Family: Nemouridae	2 ND	1 ND	0
Malenka	0	0	0
Visoka cataractae	1	0	0
<u>Zapada</u>	1	7 ND	1 ND
Zapada oregonensis group	16	14	9
Zapada cinctipes	0	1	0
Zapada columbiana	30	28	16
Family: Peltoperlidae	0	0	0
<u>Yoraperla</u>	0	0	0
Family: Perlidae	0	0	0
<u>Hesperoperla</u>	0	0	0
Family: Perlodidae	18	16	6
<u>Isoperla</u>	0	0	0
<u>Kogotus</u>	0	2	2
<u>Megarcys</u>	6	5	4
<u>Setvena</u>	0	0	0
Family: Taeniopterygidae	1	3	0
1.0.1		40	
Order: Trichoptera	7 ND	19 ND	8 ND
Family: Brachycentridae	0	0	0
Brachycentrus Microscoma	0	0	0
Micrasema	0	0	0
Family: Glossosomatidae	0	1 0	0 0
Glossosoma Family: Hydropsychidae	20	0 31	13
Parapsyche	0	0	0
<u>Parapsyche</u> <u>Parapsyche elsis</u>	1	0	0
Family: Leptoceridae	1	0	0
Family: Leptoceridae Family: Limnephilidae	1	1	4
Clostoeca disjuncta	0	0	1
<u>Dicosmoecus</u>	0	0	0
Ecclisomyia	0	1	1
Family: Rhyacophilidae	0	0	0
Rhyacophila	0	1	3
Rhyacophila betteni group	2	3	4
Rhyacophila brunnea/vemna group	3	1	1
Rhyacophila hyalinata group	2	0	0
Rhyacophila vetina complex	0	0	0
Rhyacophila vofixa group	2	2	2
Rhyacophila atrata complex	0	0	0
<u>Rhyacophila narvae</u>	8	1	8
Family: Thremmatidae	0	0	0
<u>Oligophlebodes</u>	11	19	3
Family: Uenoidae	0	0	0
<u>Neothremma</u>	0	0	0
Order: Coleoptera	0	0	0
Family: Elmidae	0	0	0

Minnow Environmental (BC) Taxonomist: Scott Finlayson

250-494-7553			
Site:		2022	2022
Sample:	LC_DCDS_BIC-3_2022-09-13_N	LC_DCDS_BIC-4_2022-09-13_N	LC_DCDS_BIC-5_2022-09-13_N
Sample Collection Date:	13-Sep-22	13-Sep-22	13-Sep-22
CC#:		CC231052	CC231053
Sieve Size:		400	
			400
Subsample %:	16	8	12
<u>Heterlimnius</u>	0	0	0
Family: Staphylinidae	1	0	0
Order: Dinters	0	0	0
Order: Diptera	0		0
Family: Ceratopogonidae	0	0	0
<u>Mallochohelea</u>	0	0	0
Family: Chironomidae	16 ND	15 ND	9
Subfamily: Chironominae	0	0	0
Tribe: Tanytarsini	0	2	0
<u>Micropsectra</u>	2	3	7
<u>Stempellinella</u>	0	0	0
Subfamily: Diamesinae	0	0	0
Tribe: Diamesini	0	0	0
<u>Diamesa</u>	6	4	0
<u>Pagastia</u>	7	7	7
<u>Pseudodiamesa</u>	10	21	44
Subfamily: Orthocladiinae	0	0	1
<u>Brillia</u>	0	0	0
<u>Corynoneura</u>	0	1	0
Cricotopus (Nostococladius)	0	0	0
Diplocladius cultriger	0	0	0
Eukiefferiella	9	12	1
<u>Hydrobaenus</u>	7	4	18
<u>Limnophyes</u>	0	0	0
<u>Metriocnemus</u>	0	0	0
<u>Orthocladius complex</u>	38	48	54
<u>Parametriocnemus</u>	0	0	0
		2	
<u>Parorthocladius</u>	3		6
<u>Rheocricotopus</u>	1	0	0
<u>Tvetenia</u>	2	4	0
Subfamily: Tanypodinae	0	0	0
<u>Krenopelopia</u>	0	0	0
Tribe: Pentaneurini	0	0	0
•			
<u>Telmatopelopia</u>	0	0	0
<u>Thienemannimyia group</u>	0	0	0
Family: Empididae	0	0	0
<u>Chelifera/ Metachela</u>	5	0	1
Clinocerinae Unknown Genus A	0	0	0
<u>Neoplasta</u>	4	1	3
<u>Oreogeton</u>	0	0	2
<u>Trichoclinocera</u>	0	0	0
Family: Pelecorhynchidae	0	0	0
<u>Glutops</u>	0	0	0
Family: Psychodidae	0	0	0
Pericoma/Telmatoscopus	2	2	1
	0	0	0
Family: Simuliidae			
<u>Prosimulium</u>	0	0	0
<u>Prosimulium/Helodon</u>	0	0	0
<u>Simulium</u>	0	0	0
Family: Tipulidae	0	0	0
<u>Antocha</u>	0	0	0
<u>Dicranota</u>	1	1	0
	0	0	0
<u>Molophilus</u>			
<u>Pedicia</u>	0	0	0
<u>Tricyphona</u>	0	0	0
Subphylum: Chelicerata	0	0	0
Class: Arachnida	0	0	0
Order: Trombidiformes	0	0	0
•			
Family: Feltriidae	0	0	0
<u>Feltria</u>	0	0	0
Family: Hydryphantidae	0	0	0
<u>Albertathyas</u>	0	0	0
Family: Hygrobatidae	0	0	0
Atractides	0	0	0
<u>Hygrobates</u>	0	0	0
Family: Lebertiidae	0	0	0
<u>Lebertia</u>	1	0	0
Family: Sperchontidae	0	0	0
<u>Sperchon</u>	0	0	0
Family: Torrenticolidae	0	0	0
		0	
<u>Testudacarus</u>	0	U	0
		_	
Order: Sarcoptiformes	0	0	0
Order: Oribatida	0	0	0
Family: Hydrozetidae	0	0	0
. , ,			
Phylum: Mallusca	0	0	0
Phylum: Mollusca	0	0	0
Class: Gastropoda	0	0	0
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
Class: Oligochaeta	0	0	0
Order: Lumbriculida	0	0	0
Family: Lumbriculidae	0	0	0
<u>Rhynchelmis</u>	0	0	0
Order: Tubificida	0	0	0

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca 250-494-7553

Totals:

250-494-7553			
Site:	2022	2022	2022
Sample:	LC_DCDS_BIC-3_2022-09-13_N	LC_DCDS_BIC-4_2022-09-13_N	LC_DCDS_BIC-5_2022-09-13_N
Sample Collection Date:	13-Sep-22	13-Sep-22	13-Sep-22
CC#:	CC231051	CC231052	CC231053
Sieve Size:	400	400	400
Subsample %:	16	8	12
Family: Enchytraeidae	0	2	0
Family: Naididae	0	0	0
<u>Nais</u>	0	0	0
<u>Stylaria lacustris</u>	0	0	0
Subfamily: Tubificinae with hair chaeta	0	0	0
Totals:	319	346	327
Taxa present but not included:			
Phylum: Arthropoda	0	0	0
Subphylum: Hexapoda	0	0	0
Class: Insecta	0	0	0
Order: Diptera	0	0	0
Family: Cecidomyiidae	0	1	0
Order: Homoptera	0	0	0
Family: Cicadellidae	0	0	0
Order: Psocodea	0	0	0
Subphylum: Crustacea	0	0	0
Class: Ostracoda	1	1	1
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
Class: Oligochaeta	0	0	0
Order: Tubificida	0	0	0
Family: Lumbricidae	0	0	0
Phylum: Nemata	1	0	1
Phylum: Platyhelminthes	0	0	0
Class: Turbellaria	1	1	1
Totals:	3	2	2

Project: 22-19 (LCO Dry LAEMP) Minnow Environmental (BC)

Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

250-494-7553			
Site:	2022	2022	2022
Sample:	LC_DCEF_BIC-1_2022-09-13_N	LC_DCEF_BIC-2_2022-09-13_N	LC_DCEF_BIC-3_2022-09-13_N
Sample Collection Date:	13-Sep-22	13-Sep-22	13-Sep-22
CC#:	CC231054	CC231055	CC231056
Sieve Size:	400	400	400
Subsample %:	12	15	12
Phylum: Arthropoda	0	0	0
Order: Collembola	0	0	0
Subphylum: Hexapoda	0	0	0
Class: Insecta	0	0	0
Order: Ephemeroptera	0	0	0
Family: Ameletidae	0	0	0
<u>Ameletus</u>	4	9	9
Family: Baetidae	3 ND	0	0
<u>Baetis</u>	1	0	0
<u>Baetis fuscatus gr.</u>	0	0	0
Baetis rhodani group	4	2	0
<u>Baetis bicaudatus</u>	0	0	0
Family: Ephemerellidae	41	28	37
<u>Drunella</u>	0	0	0
<u>Drunella grandis group</u>	0	0	0
<u>Drunella coloradensis</u>	0	0	0
<u>Drunella doddsii</u>	3	6	2
Family: Heptageniidae	48	41	93
<u>Cinygmula</u>	57	50	59
<u>Epeorus</u>	6	4	5
Rhithrogena	1	6	2
Family: Siphlonuridae	0	0	0
<u>Siphlonurus</u>	0	0	0
L Oudon Diot	0	0	2
Order: Plecoptera	0	0	0
Family: Capniidae	3	2	6
Mesocapnia	0 8	0 15	0 19
Family: Chloroperlidae			
Haploperla	0	0	0
<u>Plumiperla</u> <u>Sweltsa</u>	14	0 22	0 15
<u>Utaperla</u>	0	0	0
Family: Leuctridae	0	0	1
_	0	0	0
<u>Paraleuctra</u> Family: Nemouridae	0	0	0
Malenka	0	1	0
Visoka cataractae	0	3	4
Zapada	0	1 ND	3
Zapada oregonensis group	1	2	0
Zapada cinctipes	0	0	0
Zapada columbiana	18	7	0
Family: Peltoperlidae	0	0	0
Yoraperla	1	2	3
Family: Perlidae	0	0	0
Hesperoperla	0	0	0
Family: Perlodidae	9	6	4
<u>Isoperla</u>	0	0	0
<u>Kogotus</u>	0	1	0
<u>Megarcys</u>	3	8	5
<u>Setvena</u>	11	2	0
Family: Taeniopterygidae	0	0	0
Order: Trichoptera	14	7	6
Family: Brachycentridae	0	0	0
<u>Brachycentrus</u>	0	0	0
<u>Micrasema</u>	0	0	0
Family: Glossosomatidae	0	0	0
Glossosoma	0	0	0
Family: Hydropsychidae	0	0	0
Parapsyche	0	0	0
Parapsyche elsis	0	0	0
Family: Leptoceridae	0	0	0
Family: Limnephilidae	5	1	2
Clostoeca disjuncta	1	2	1
<u>Dicosmoecus</u>	0	0	0
Ecclisomyia Family: Rhyacophilidae	1 0	1	0
Rhyacophila	0 5	8	3
Rhyacophila betteni group	0	0	3 1
Rhyacophila betteni group Rhyacophila brunnea/vemna group	2	0	1
Rhyacophila brunnea/vemna group Rhyacophila hyalinata group	0	0	0
Rhyacophila vetina complex	1	0	0
Rhyacophila vetina complex Rhyacophila vofixa group	0	0	0
Rhyacophila atrata complex	0	0	0
Rhyacophila narvae	0	0	2
Family: Thremmatidae	0	0	0
Oligophlebodes	0	0	0
Family: Uenoidae	0	0	0
Neothremma	0	0	0
	<u> </u>		Ŭ
Order: Coleoptera	0	0	0
Family: Elmidae	0	0	0
	-		<u>-</u>

Minnow Environmental (BC) Taxonomist: Scott Finlayson

250-494-7553			
Site:	2022	2022	2022
Sample:	LC_DCEF_BIC-1_2022-09-13_N	LC_DCEF_BIC-2_2022-09-13_N	LC_DCEF_BIC-3_2022-09-13_N
Sample Collection Date:	13-Sep-22	13-Sep-22	13-Sep-22
CC#:	CC231054	CC231055	CC231056
Sieve Size:			
	400	400	400
Subsample %:	12	15	12
<u>Heterlimnius</u>	0	0	0
Family: Staphylinidae	1	0	0
Order: Diptera	1	0	0
Family: Ceratopogonidae	0	0	0
<u>Mallochohelea</u>	0	0	0
Family: Chironomidae	14 ND	9 ND	5 ND
Subfamily: Chironominae	0	0	0
Tribe: Tanytarsini	0	0	0
Micropsectra	0	1	0
·			
<u>Stempellinella</u>	0	1	0
Subfamily: Diamesinae	0	0	0
Tribe: Diamesini	0	0	0
<u>Diamesa</u>	1	3	11
Pagastia	3	10	4
	8	8	
<u>Pseudodiamesa</u>			0
Subfamily: Orthocladiinae	0	0	0
<u>Brillia</u>	4	1	0
	0	0	0
<u>Corynoneura</u>			
Cricotopus (Nostococladius)	0	0	0
<u>Diplocladius cultriger</u>	0	0	0
	1	3	6
<u>Eukiefferiella</u>			
<u>Hydrobaenus</u>	1	11	0
Limnophyes	0	0	1
	0		0
<u>Metriocnemus</u>		1	
<u>Orthocladius complex</u>	5	18	15
<u>Parametriocnemus</u>	0	1	0
<u>Parorthocladius</u>	6	4	4
<u>Rheocricotopus</u>	2	2	1
Tvetenia	8	6	6
Subfamily: Tanypodinae	0	0	0
<u>Krenopelopia</u>	0	0	0
Tribe: Pentaneurini	0	0	0
<u>Telmatopelopia</u>	0	0	0
Thienemannimyia group	0	0	0
Family: Empididae	1	0	0
Chelifera/ Metachela	0	0	0
Clinocerinae Unknown Genus A	1	0	0
<u>Neoplasta</u>	0	0	0
<u>Oreogeton</u>	1	1	0
<u>Trichoclinocera</u>	0	0	0
Family: Pelecorhynchidae	0	0	0
<u>Glutops</u>	0	0	0
Family: Psychodidae	0	0	0
	5	4	0
Family: Simuliidae	0	0	0
<u>Prosimulium</u>	0	0	0
	0	0	0
<u>Prosimulium/Helodon</u>			
<u>Simulium</u>	0	0	0
Family: Tipulidae	0	0	0
<u>Antocha</u>	0	0	0
<u>Dicranota</u>	0	1	0
<u>Molophilus</u>	0	0	0
	0	0	1
<u>Pedicia</u>			1
<u>Tricyphona</u>	0	0	0
Subphylum: Chelicerata	0	0	0
Class: Arachnida	0	0	0
Order: Trombidiformes	0	0	1
Family: Feltriidae	0	0	0
<u>Feltria</u>	0	0	0
Family: Hydryphantidae	0	0	0
<u>Albertathyas</u>	0	0	0
Family: Hygrobatidae	0	0	0
<u>Atractides</u>	0	0	0
Hygrobates	0	0	0
· · · · · · · · · · · · · · · · · · ·			
Family: Lebertiidae	0	0	0
<u>Lebertia</u>	6	8	3
Family: Sperchontidae	0	0	0
<u>Sperchon</u>	0	0	0
Family: Torrenticolidae	0	0	0
<u>. </u>	0	0	0
. 53544446474J	•	· ·	J
Order: Sarcoptiformes	0	0	0
Order: Oribatida	0	0	0
•			
Family: Hydrozetidae	0	3	1
Phylum: Mollusca	0	0	0
Class: Gastropoda	0	0	0
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
Class: Oligochaeta	0	0	0
Order: Lumbriculida	0	0	0
Family: Lumbriculidae	0	0	0
<u>Rhynchelmis</u>	0	0	0
Order: Tubificida	0	0	0
Order: Tubificida	0	0	0

Minnow Environmental (BC) Taxonomist: Scott Finlayson

250-494-7553			
Site:	2022	2022	2022
Sample:	LC_DCEF_BIC-1_2022-09-13_N	LC_DCEF_BIC-2_2022-09-13_N	LC_DCEF_BIC-3_2022-09-13_N
Sample Collection Date:	13-Sep-22	13-Sep-22	13-Sep-22
CC#:	CC231054	CC231055	CC231056
Sieve Size:	400	400	400
Subsample %:	12	15	12
Family: Enchytraeidae	0	0	0
Family: Naididae	0	0	0
Nais	0	0	0
Stylaria lacustris	0	0	0
Subfamily: Tubificinae with hair chaeta	0	0	0
Totals:	334	333	342
Taxa present but not included:			
Phylum: Arthropoda	0	0	0
Subphylum: Hexapoda	0	0	0
Class: Insecta	0	0	0
Order: Diptera	0	0	0
Family: Cecidomyiidae	0	0	0
, . , ,			
Order: Homoptera	0	0	0
Family: Cicadellidae	0	0	0
, , , , , , , , , , , , , , , , , , , ,			
Order: Psocodea	0	0	0
•			
Subphylum: Crustacea	0	0	0
Class: Ostracoda	1	1	1
•			
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
Class: Oligochaeta	0	0	0
Order: Tubificida	0	0	0
Family: Lumbricidae	0	0	0
•			
Phylum: Nemata	1	0	0
Phylum: Platyhelminthes	0	0	0
Class: Turbellaria	0	0	1
Totals:	2	1	2

Project: 22-19 (LCO Dry LAEMP) Minnow Environmental (BC) Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

250-494-7553				
Site:	2022	2022	2022	
Sample:	LC_FRB_BIC-1_2022-09-10_N	LC_FRB_BIC-2_2022-09-10_N	LC_FRB_BIC-3_2022-09-10_N	
Sample Collection Date:	10-Sep-22	10-Sep-22	10-Sep-22	
CC#:	CC231057	CC231058	CC231059	
Sieve Size:	400	400	400	
Subsample %:	5	5	5	
Phylum: Arthropoda	0	0	0	
Order: Collembola	0	0	0	
Subphylum: Hexapoda	0	0	0	
Class: Insecta	0	0	0	
Order: Ephemeroptera	0	0	0	
Family: Ameletidae	0	0	0	
<u>Ameletus</u>	1	1	1	
Family: Baetidae	2 ND	15 ND	10 ND	
<u>Baetis</u>	1	2	1	
<u>Baetis fuscatus gr.</u>	0	0	0	
<u>Baetis rhodani group</u>	28	23	25	
<u>Baetis bicaudatus</u>	0	0	0	
Family: Ephemerellidae	13	3	0	
<u>Drunella</u>	0	0	0	
<u>Drunella grandis group</u>	1	2	3	
<u>Drunella coloradensis</u>	0	0	0	
<u>Drunella doddsii</u>	2	0	0	
Family: Heptageniidae	0	5	0	
<u>Cinyqmula</u> -	152	94	65	
<u>Epeorus</u>	12	4	2	
Rhithrogena	6	1	1	
Family: Siphlonuridae	0	0	0	
<u>Siphlonurus</u>	0	0	0	
L Oudou Placanter	2	0		
Order: Plecoptera	0	0	0	
Family: Capniidae	23 0	8 0	5 0	
<u>Mesocapnia</u> Family: Chloroperlidae	1	0	0	
Haploperla	3	0	0	
<u>нарюрена</u> Plumiperla	0	0	0	
<u>Sweltsa</u>	1	3	0	
<u>Swertsu</u> Utaperla	0	0	0	
Family: Leuctridae	0	0	0	
Paraleuctra	0	0	0	
Family: Nemouridae	0	0	0	
Malenka	0	0	0	
Visoka cataractae	0	0	0	
<u>Zapada</u>	16	7 ND	1	
Zapada oregonensis group	3	4	2	
Zapada cinctipes	2	1	2	
Zapada columbiana	0	1	0	
Family: Peltoperlidae	0	0	0	
<u>Yoraperla</u>	0	0	0	
Family: Perlidae	0	0	0	
<u>Hesperoperla</u>	0	0	0	
Family: Perlodidae	12	4	10	
<u>Isoperla</u>	2	5	7	
<u>Kogotus</u>	2	2	3	
<u>Megarcys</u>	2	2	2	
<u>Setvena</u>	0	0	0	
Family: Taeniopterygidae	16	7	2	
Order: Trichoptera	0	0	0	
Family: Brachycentridae	0	0	0	
Brachycentrus Microscoma	0	0	0	
Micrasema	0	0	0	
Family: Glossosomatidae	1	0	0	
Glossosoma	1	0	0	
Family: Hydropsychidae	1	2 0	1	
<u>Parapsyche</u> Parapsyche elsis	0	0	1	
Parapsyche elsis Family: Leptoceridae	0	0	0	
Family: Limnephilidae	0	0	1	
<u>Clostoeca disjuncta</u>	0	0	0	
<u> Dicosmoecus</u>	0	0	0	
<u>Ecclisomyia</u>	0	0	0	
Family: Rhyacophilidae	0	0	0	
Rhyacophila	0	1	1	
Rhyacophila betteni group	0	1	0	
Rhyacophila brunnea/vemna group	5	5	1	
Rhyacophila hyalinata group	0	0	0	
Rhyacophila vetina complex	0	0	0	
Rhyacophila vofixa group	0	0	0	
Rhyacophila atrata complex	3	1	0	
<u>Rhyacophila narvae</u>	0	0	0	
Family: Thremmatidae	0	0	0	
<u>Oligophlebodes</u>	1	0	0	
Family: Uenoidae	0	0	0	
<u>Neothremma</u>	0	0	0	
Order: Coleoptera	0	0	0	
Family: Elmidae	1 ND	1 ND	1 ND	

Minnow Environmental (BC) Taxonomist: Scott Finlayson

250-494-7553			
Site: Sample:		2022 LC_FRB_BIC-2_2022-09-10_N	2022 LC_FRB_BIC-3_2022-09-10_N
Sample Collection Date:		10-Sep-22	10-Sep-22
CC#: Sieve Size:		CC231058 400	CC231059 400
Subsample %:		5	5
<u>Heterlimnius</u> Family: Staphylinidae	3	3 0	1 0
ганну. этарнуннцае	U	Ü	U
Order: Diptera	0	0	0
Family: Ceratopogonidae <u>Mallochohelea</u>	0	0 0	0 0
Family: Chironomidae	18 ND	15 ND	17 ND
Subfamily: Chironominae	0	0	0
Tribe: Tanytarsini Micropsectra	0 2	0 0	0 2
<u>Stempellinella</u>	0	0	1
Subfamily: Diamesinae	0	0	0
Tribe: Diamesini Diamesa	0 2	0 5	0 7
Pagastia	3	4	4
<u>Pseudodiamesa</u> Subfamily: Orthocladiinae	0	0 1	0
Brillia	0	1 ND 0	0 0
<u>Corynoneura</u>	0	0	0
<u>Cricotopus (Nostococladius)</u> <u>Diplocladius cultriger</u>	0	0	0 0
<u>Diploctaalus Cultriger</u> <u>Eukiefferiella</u>	2	1 7	14
<u>Hydrobaenus</u>	1	0	0
<u>Limnophyes</u> Metriocnemus	0	0 0	0 0
<u>Orthocladius complex</u>	57	145	144
<u>Parametriocnemus</u>	0	0	0
<u>Parorthocladius</u> <u>Rheocricotopus</u>	0	1 1	1 0
<u>Tvetenia</u>	10	8	2
Subfamily: Tanypodinae	0	0	0
<u>Krenopelopia</u> Tribe: Pentaneurini	0	0 0	0 0
<u>Telmatopelopia</u>	0	0	2
Thienemannimyia group	1 0	0	0
Family: Empididae <u>Chelifera/ Metachela</u>	0	0 0	0
Clinocerinae Unknown Genus A	0	0	0
<u>Neoplasta</u> <u>Oreogeton</u>	1	0 0	0
<u>Trichoclinocera</u>	0	0	0
Family: Pelecorhynchidae	0	0	0
<u>Glutops</u> Family: Psychodidae	0 0	0 0	0
Pericoma/Telmatoscopus	85	30	37
Family: Simuliidae	2	0	0
<u>Prosimulium</u> <u>Prosimulium/Helodon</u>	0	0 0	0
<u>Simulium</u>	1	6	4
Family: Tipulidae <u>Antocha</u>	0	0 0	0
<u>Dicranota</u>	0	0	0
Molophilus	0	0	0
<u>Pedicia</u> <u>Tricyphona</u>	0	0 0	0
Subphylum: Chelicerata Class: Arachnida	0	0 0	0
Order: Trombidiformes	0	0	0
Family: Feltriidae	0	0	0
<u>Feltria</u> Family: Hydryphantidae	0	0 0	0 0
<u>Albertathyas</u>	0	0	0
Family: Hygrobatidae Atractides	0	0 0	0
<u>Atractiaes</u> <u>Hygrobates</u>	0	0 1	0
Family: Lebertiidae	0	0	0
<u>Lebertia</u> Family: Sperchontidae	3 0	5 0	2
<u>Sperchon</u>	1	1	0
Family: Torrenticolidae	0	0	0
<u>Testudacarus</u>	0	0	0
Order: Sarcoptiformes	0	0	0
Order: Oribatida Family: Hydrozetidae	0	0 0	1 0
i i diiniy. Hydrozeddae	, and the second	Ü	<u> </u>
Phylum: Mollusca	0	0	0
Class: Gastropoda	0	0	0
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
Class: Oligochaeta Order: Lumbriculida	0	0 0	0 0
Family: Lumbriculidae	0	0	0
<u>Rhynchelmis</u>	0	0	0
Order: Tubificida	0	0	0

Minnow Environmental (BC) Taxonomist: Scott Finlayson

 $\underline{scottfinlayson@cordilleraconsulting.ca}$

| Class: Turbellaria

Totals:

	94-	

250-494-7553			
Site:	2022	2022	2022
Sample:	LC_FRB_BIC-1_2022-09-10_N	LC_FRB_BIC-2_2022-09-10_N	LC_FRB_BIC-3_2022-09-10_N
Sample Collection Date:	10-Sep-22	10-Sep-22	10-Sep-22
CC#:	CC231057	CC231058	CC231059
Sieve Size:	400	400	400
Subsample %:	5	5	5
Family: Enchytraeidae	0	0	0
Family: Naididae	0	0	0
<u>Nais</u>	2	3	5
<u>Stylaria lacustris</u>	0	0	0
Subfamily: Tubificinae with hair chaeta	0	0	0
Totals:	515	443	392
Taxa present but not included:			
Phylum: Arthropoda	0	0	0
Subphylum: Hexapoda	0	0	0
Class: Insecta	0	0	0
Order: Diptera	0	0	0
Family: Cecidomyiidae	0	0	0
,	•	•	•
Order: Homoptera	0	0	0
Family: Cicadellidae	0	0	0
Order: Psocodea	0	0	0
Subphylum: Crustacea	0	0	0
Class: Ostracoda	1	1	1
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
Class: Oligochaeta	0	0	0
Order: Tubificida	0	0	0
Family: Lumbricidae	0	0	0
i . amily. Europhologic		Ü	
Phylum: Nemata	0	0	0
Phylum: Platyhelminthes	0	0	0
l Class: Turbollaria	1	1	1

Project: 22-19 (LCO Dry LAEMP) Minnow Environmental (BC)

Taxonomist: Scott Finlayson
scottfinlayson@cordilleraconsulting.ca
250-494-7553

250-494-7553						
Site:	2	.022	2	2022	2	2022
Sample:	LC_FRUS_BIC-	1_2022-09-10_N	LC_FRUS_BIC-	2_2022-09-10_N	LC_FRUS_BIC	-3_2022-09-10_N
Sample Collection Date:	10-9	Sep-22	10-9	Sep-22	10-	Sep-22
CC#:		31060	CC2	231061	CC	231062
Sieve Size:	4	400	4	400		400
Subsample %:		7		10		14
Phylum: Arthropoda	0		0		0	
Order: Collembola	0		0		0	
Subphylum: Hexapoda	0		0		0	
Class: Insecta	0		0		0	
Order: Ephemeroptera	1	ND	0		0	
Family: Ameletidae	0		0		0	
<u>Ameletus</u>	0		0		42	
Family: Baetidae	6	ND	1	ND	1	ND
<u>Baetis</u>	1		1		2	ND
<u>Baetis fuscatus gr.</u>	0		0		1	
<u>Baetis rhodani group</u>	31		14		5	
<u>Baetis bicaudatus</u>	0		0		0	
Family: Ephemerellidae	6		14		1	
<u>Drunella</u>	0		0		0	
<u>Drunella grandis group</u> <u>Drunella coloradensis</u>	1 0		0 1		2	
<u>Drunella doddsii</u>	1		2		0	
Family: Heptageniidae	3		4	ND	9	
<u>Cinyamula</u>	97		132	ND	124	
Epeorus	0		1		0	
Rhithrogena	0		0		0	
Family: Siphlonuridae	0		0		0	
<u>Siphlonurus</u>	0		0		1	
<u></u>						
Order: Plecoptera	0		0		0	
Family: Capniidae	1		1		3	
<u>Mesocapnia</u>	0		0		1	
Family: Chloroperlidae	3		4		0	
<u>Haploperla</u>	0		1		0	
<u>Plumiperla</u>	0		0		0	
<u>Sweltsa</u>	0		3		0	
<u>Utaperla</u>	0		0		0	
Family: Leuctridae	0		0		0	
<u>Paraleuctra</u>	0		0		0	
Family: Nemouridae	0		0		0	
<u>Malenka</u>	0		0		0	
<u>Visoka cataractae</u>	0		0		0	
<u>Zapada</u>	5	ND	3		0	
Zapada oregonensis group	10		3		12	
Zapada cinctipes	3		0		0	
Zapada columbiana	1 0		0		0	
Family: Peltoperlidae	0		0		0	
<u>Yoraperla</u> Family: Perlidae	0		0		3	
Hesperoperla	1		0		1	
Family: Perlodidae	20		7		24	
Isoperla	27		19		36	
<u>Kogotus</u>	10		8		14	
Megarcys	4		5		1	
<u>Setvena</u>	0		0		0	
Family: Taeniopterygidae	4		14		0	

Order: Trichoptera	0		1	ND	0	
Family: Brachycentridae	0		0		0	
<u>Brachycentrus</u>	1		0		0	
<u>Micrasema</u>	3		0		0	
Family: Glossosomatidae	0		0		0	
<u>Glossosoma</u>	0		0		0	
Family: Hydropsychidae	5		5		1	
<u>Parapsyche</u>	1	ND	0		0	
Parapsyche elsis	2		0		1	
Family: Leptoceridae	0		0		0	
Family: Limnephilidae	0		0		0	
Clostoeca disjuncta	0		0		0	
<u>Dicosmoecus</u> Ecclisomyia	0 0		0		0	
Family: Rhyacophilidae	0		0		0	
Rhyacophila	1	ND	3		0	
<u>knyacopnila</u> <u>Rhyacophila betteni group</u>	0	IND	2		0	
Rhyacophila betteni group Rhyacophila brunnea/vemna group	6		3		3	
Rhyacophila hyalinata group	0		1		0	
Rhyacophila vetina complex	0		0		0	
Rhyacophila vofixa group	0		0		0	
Rhyacophila atrata complex	1		4		0	
Rhyacophila narvae	1		9		2	
Family: Thremmatidae	0		0		0	
Oligophlebodes	0		0		0	
Family: Uenoidae	0		0		0	
<u>Neothremma</u>	0		0		0	
Order: Coleoptera	0		0		0	
Family: Elmidae	0		0		0	

Minnow Environmental (BC) Taxonomist: Scott Finlayson

250-494-7553			
Site:	2022	2022	2022
Sample:	LC_FRUS_BIC-1_2022-09-10_N	LC_FRUS_BIC-2_2022-09-10_N	LC_FRUS_BIC-3_2022-09-10_N
Sample Collection Date:	10-Sep-22	10-Sep-22	10-Sep-22
CC#:	CC231060	CC231061	CC231062
Sieve Size:	400	400	400
Subsample %:	7	10	14
<u>Heterlimnius</u>	11	23	4
Family: Staphylinidae	0	0	0
Order: Diptera	0	0	0
Family: Ceratopogonidae	0	0	0
<u>Mallochohelea</u>	1	1	0
Family: Chironomidae	9 ND	4 ND	5 ND
	0	0	0
Subfamily: Chironominae			
Tribe: Tanytarsini	0	0	0
<u>Micropsectra</u>	0	1	0
<u>Stempellinella</u>	0	0	0
Subfamily: Diamesinae	0	0	0
Tribe: Diamesini	0	0	0
Diamesa	7	0	0
Pagastia	0	0	2
<u> </u>			
<u>Pseudodiamesa</u>	0	0	0
Subfamily: Orthocladiinae	0	0	0
<u>Brillia</u>	0	0	0
Corynoneura	0	0	0
Cricotopus (Nostococladius)	0	0	0
<u>Diplocladius cultriger</u>	0	0	0
<u>Eukiefferiella</u>	5	0	0
<u>Hydrobaenus</u>	0	0	5
<u>Limnophyes</u>	0	1	0
<u>Metriocnemus</u>	0	0	0
<u>Orthocladius complex</u>	46	7	10
<u>Parametriocnemus</u>	0	0	0
<u>Parorthocladius</u>	0	0	1
<u>Rheocricotopus</u>	0	0	2
<u>Tvetenia</u>	0	1	5
Subfamily: Tanypodinae	0	0	0
	0	0	0
<u>Krenopelopia</u>			
Tribe: Pentaneurini	0	0	0
<u>Telmatopelopia</u>	0	0	0
Thienemannimyia group	0	0	0
Family: Empididae			
	0	1	0
<u>Chelifera/ Metachela</u>	1	2	1
Clinocerinae Unknown Genus A	0	0	0
Neoplasta	3	6	8
<u>Oreogeton</u>	0	0	0
<u>Trichoclinocera</u>	0	0	1
Family: Pelecorhynchidae	0	0	0
<u>Glutops</u>	0	0	0
Family: Psychodidae	0	0	0
Pericoma/Telmatoscopus	4	7	4
Family: Simuliidae	0	0	0
<u>Prosimulium</u>	0	0	0
<u>Prosimulium/Helodon</u>	0	0	0
<u>Simulium</u>	6	0	0
Family: Tipulidae	0	1 ND	0
Antocha	0	0	3
<u>Dicranota</u>	0	1	0
<u>Molophilus</u>	0	0	0
<u>Pedicia</u>	0	0	0
<u>Tricyphona</u>	0	0	0
	~	· ·	Ĭ
	_		
Subphylum: Chelicerata	0	0	0
Class: Arachnida	0	0	0
Order: Trombidiformes	0	1 ND	0
Family: Feltriidae	0	0	0
<u>Feltria</u>	0	0	0
Family: Hydryphantidae	0	0	0
<u>Albertathyas</u>	0	0	0
Family: Hygrobatidae	0	0	0
<u>Atractides</u>	0	0	0
<u>Hygrobates</u>	0	0	0
Family: Lebertiidae	0	0	0
<u>Lebertia</u>	2	3	5
Family: Sperchontidae	0	0	0
<u>Sperchon</u>	0	0	2
Family: Torrenticolidae	0	0	0
<u>Testudacarus</u>	1	0	0
	-	Ÿ	- V
			_
Order: Sarcoptiformes	0	0	0
Order: Oribatida	0	0	0
Family: Hydrozetidae	0	0	0
i ranniy. riyurozenude	U	· ·	U
Phylum: Mollusca	0	0	0
Class: Gastropoda	0	0	0
, 5.55. 55. 0000	•	· ·	Ŭ
			_
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
Class: Oligochaeta	0	0	0
Order: Lumbriculida	0	0	0
Family: Lumbriculidae	0	0	0
<u>Rhynchelmis</u>	0	0	0
			
Oudou Tukifisida	0	0	0
Order: Tubificida	0	0	0

Minnow Environmental (BC) Taxonomist: Scott Finlayson

250-494-7553			
Site:	2022	2022	2022
Sample:	LC_FRUS_BIC-1_2022-09-10_N	LC_FRUS_BIC-2_2022-09-10_N	LC_FRUS_BIC-3_2022-09-10_N
Sample Collection Date:	10-Sep-22	10-Sep-22	10-Sep-22
CC#:	CC231060	CC231061	CC231062
Sieve Size:	400	400	400
Subsample %:	7	10	14
Family: Enchytraeidae	0	0	0
Family: Naididae	0	0	0
<u>Nais</u>	0	3	0
Stylaria lacustris	0	0	0
Subfamily: Tubificinae with hair chaeta	0	0	0
Totals:	353	329	348
Taxa present but not included:			
Phylum: Arthropoda	0	0	0
Subphylum: Hexapoda	0	0	0
Class: Insecta	0	0	0
Order: Diptera	0	0	0
Family: Cecidomyiidae	0	0	0
Order: Homoptera	0	0	0
Family: Cicadellidae	0	0	0
Order: Psocodea	0	0	0
Subphylum: Crustacea	0	0	0
Class: Ostracoda	1	1	1
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
Class: Oligochaeta	0	0	0
Order: Tubificida	0	0	0
Family: Lumbricidae	0	0	0
Phylum: Nemata	1	1	1
Phylum: Platyhelminthes	0	0	0
Class: Turbellaria	1	1	1
Totals:	3	3	3

Project: 22-19 (LCO Dry LAEMP) Minnow Environmental (BC)

Taxonomist: Scott Finlayson scottfinlayson@cordilleraconsulting.ca

250-494-7553						
Site:		2022		2022	20)22
Sample:	LC GRCK BIG	C-1_2022-09-14_N	LC GRCK BIG	C-2_2022-09-14_N	LC GRCK BIC-3	3_2022-09-14_N
Sample Collection Date:		-Sep-22		-Sep-22		 ep-22
CC#:		231063		2231064		31065
Sieve Size:		400	CC	400		00
Subsample %:		14	_	50		.2
Phylum: Arthropoda	0		0		0	
Order: Collembola	0		0		0	
Subphylum: Hexapoda	0		0		0	
Class: Insecta	0		0		0	
Order: Ephemeroptera	0		0		0	
Family: Ameletidae	0		0		0	
	1		8			
Ameletus		ND		ND	1	ND
Family: Baetidae	23	ND	4	ND	9	ND
<u>Baetis</u>	2		1		1	
<u>Baetis fuscatus gr.</u>	0		0		0	
<u>Baetis rhodani group</u>	7		11		6	
<u>Baetis bicaudatus</u>	0		0		0	
Family: Ephemerellidae	0		2		2	
<u>Drunella</u>	0		0		0	
<u>Drunella grandis group</u>	0		0		0	
Drunella coloradensis	0		0		0	
<u>Drunella doddsii</u>	3		7		3	
Family: Heptageniidae	2		2		0	
<u>Cinygmula</u> -	17		53		20	
<u>Epeorus</u>	51		27		47	
<u>Rhithrogena</u>	12		14		11	
Family: Siphlonuridae	0		0		0	
<u>Siphlonurus</u>	0		0		0	
Order: Plecoptera	1	ND	0		0	
Family: Capniidae	11		24		13	
Mesocapnia	0		0		0	
Family: Chloroperlidae	1		1		0	
<u>Haploperla</u>	0		0		0	
<u>Plumiperla</u>	0		0		0	
<u>Sweltsa</u>	3		11		11	
<u>Utaperla</u>	0		0		0	
Family: Leuctridae	1		0		0	
<u>Paraleuctra</u>	0		1		2	
Family: Nemouridae	3	ND	1	ND	3	ND
Malenka	0		0		0	
Visoka cataractae	18		56		36	
<u>Zapada</u>	5		2		7	
Zapada oregonensis group	5		10		3	
Zapada cinctipes	0		0		0	
Zapada columbiana	49		56		39	
Family: Peltoperlidae	0		0		0	
<u>Yoraperla</u>	4		9		4	
Family: Perlidae	0		0		0	
<u>Hesperoperla</u>	0		0		0	
Family: Perlodidae	6		5		9	
<u>Isoperla</u>	0		0		0	
<u>Koqotus</u>	0		0		0	
<u>Megarcys</u>	0		3		2	
<u>Setvena</u>	1		5		3	
Family: Taeniopterygidae	7		5		9	
Faililly, Taelilopterygluae	,		3		9	
l Oudous Trible subsur	2		2		0	
Order: Trichoptera	0		3		0	
Family: Brachycentridae	0		0		0	
<u>Brachycentrus</u>	0		0		0	
<u>Micrasema</u>	0		0		0	
Family: Glossosomatidae	0		0		0	
<u>Glossosoma</u>	0		0		0	
Family: Hydropsychidae	12		4		3	
<u>Parapsyche</u>	0		0		0	
Parapsyche elsis	0		0		0	
Family: Leptoceridae	0		0		0	
Family: Limnephilidae	1		2		1	
	1		0		1	
Clostoeca disjuncta	0					
<u>Dicosmoecus</u>	•		0		0	
Ecclisomyia	0		3		0	
Family: Rhyacophilidae	0		0		0	
<u>Rhyacophila</u>	18		11		7	
Rhyacophila betteni group	0		0		1	
Rhyacophila brunnea/vemna group	6		2		1	
Rhyacophila hyalinata group	0		0		1	
Rhyacophila vetina complex	0		0		0	
Rhyacophila vofixa group	2		5		6	
Rhyacophila atrata complex	0		0		0	
Rhyacophila narvae Rhyacophila narvae	12		16		9	
Family: Thremmatidae	0		0		0	
<u>Oligophlebodes</u>	0		0		0	
Family: Uenoidae	0		0		0	
<u>Neothremma</u>	11		20		22	
Order: Coleoptera	0		0		0	
Family: Elmidae	0		0		0	
•						

Minnow Environmental (BC) Taxonomist: Scott Finlayson

250-494-7553	2022	22	2017
Site:		2022	2022
Sample:	LC_GRCK_BIC-1_2022-09-14_N	LC_GRCK_BIC-2_2022-09-14_N	LC_GRCK_BIC-3_2022-09-14_N
Sample Collection Date:		14-Sep-22	14-Sep-22
CC#:		CC231064	CC231065
Sieve Size:		400	
			400
Subsample %:	14	50	12
<u>Heterlimnius</u>	0	0	2
Family: Staphylinidae	0	0	0
Order: Diptera	0	0	0
Family: Ceratopogonidae	0	0	0
<u>Mallochohelea</u>	0	0	0
Family: Chironomidae	1 ND	7 ND	4
Subfamily: Chironominae	0	0	0
Tribe: Tanytarsini	0	0	0
	6	0	0
<u>Micropsectra</u>			
<u>Stempellinella</u>	0	0	0
Subfamily: Diamesinae	0	0	0
Tribe: Diamesini	0	0	0
Diamesa	0	0	0
Pagastia Pagastia	0	1	0
<u>Pseudodiamesa</u>	0	1	0
Subfamily: Orthocladiinae	0	0	0
<u>Brillia</u>	2	2	0
<u>Corynoneura</u>	0	0	0
Cricotopus (Nostococladius)	0	0	0
	0	0	0
<u>Diplocladius cultriger</u>			
<u>Eukiefferiella</u>	0	1	0
<u>Hydrobaenus</u>	0	0	0
<u>Limnophyes</u>	0	1	0
<u>Metriocnemus</u>	0	0	0
<u>Orthocladius complex</u>	0	0	0
	1	1	0
Parametriocnemus			
<u>Parorthocladius</u>	0	1	0
Rheocricotopus	0	0	0
<u>Tvetenia</u>	0	0	0
Subfamily: Tanypodinae	0	0	0
<u>Krenopelopia</u>	0	0	0
Tribe: Pentaneurini	0	0	0
<u>Telmatopelopia</u>	0	0	0
<u>Thienemannimyia group</u>	0	0	0
Family: Empididae	0	0	0
<u>Chelifera/ Metachela</u>	1	2	1
Clinocerinae Unknown Genus A	0	0	0
<u>Neoplasta</u>	0	1	0
<u>Oreogeton</u>	0	0	0
<u>Trichoclinocera</u>	0	0	0
Family: Pelecorhynchidae	0	0	0
Glutops	0	1	4
Family: Psychodidae	0	0	0
Pericoma/Telmatoscopus	2	0	1
Family: Simuliidae	0	5	2
<u>Prosimulium</u>	0	0	0
<u>Prosimulium/Helodon</u>	0	0	1
Simulium	0	0	0
Family: Tipulidae	0	0	0
<u>Antocha</u>	0	0	0
<u>Dicranota</u>	1	0	0
<u>Molophilus</u>	0	0	0
<u>Pedicia</u>	0	0	0
<u>Tricyphona</u>	0	0	0
Subphylum: Chelicerata	0	0	0
Class: Arachnida	0	0	0
Order: Trombidiformes	0	0	0
Family: Feltriidae	0	0	0
Feltria	0	0	0
Family: Hydryphantidae	0	0	0
<u>Albertathyas</u>	0	0	0
Family: Hygrobatidae	0	0	0
<u>Atractides</u>	0	3	0
<u>Hygrobates</u>	0	0	0
Family: Lebertiidae	0	0	0
Lebertia	0	0	0
Family: Sperchontidae	0	0	0
<u>Sperchon</u>	0	0	0
Family: Torrenticolidae	0	0	0
<u>Testudacarus</u>	0	0	0
Order: Sarcontiformes	0	0	0
Order: Sarcoptiformes	0	0	0
Order: Oribatida	0	0	0
Family: Hydrozetidae	0	0	0
Phylum: Mollusca	0	0	0
Class: Gastropoda	0	0	0
1 class. Gasti opoda	· ·	J	· ·
81.1 5 93			
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
Class: Oligochaeta	0	0	0
Order: Lumbriculida	0	0	0
Family: Lumbriculidae	0	0	0
<u>Rhynchelmis</u>	0	0	1
Order: Tubificida	0	0	0

Project: 22-19 (LCO Dry LAEMP)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca 250-494-7553

Totals:

250-494-7553			
Site:	2022	2022	2022
Sample:	LC_GRCK_BIC-1_2022-09-14_N	LC_GRCK_BIC-2_2022-09-14_N	LC_GRCK_BIC-3_2022-09-14_N
Sample Collection Date:	14-Sep-22	14-Sep-22	14-Sep-22
CC#:	CC231063	CC231064	CC231065
Sieve Size:	400	400	400
Subsample %:	14	50	12
Family: Enchytraeidae	0	0	0
Family: Naididae	0	0	0
<u>Nais</u>	0	0	0
<u>Stylaria lacustris</u>	0	0	0
Subfamily: Tubificinae with hair chaeta	0	0	18
Totals:	310	411	327
Taxa present but not included:			
Phylum: Arthropoda	0	0	0
Subphylum: Hexapoda	0	0	0
Class: Insecta	0	0	0
Order: Diptera	0	0	0
Family: Cecidomyiidae	0	0	0
Order: Homoptera	0	0	0
Family: Cicadellidae	0	0	0
Order: Psocodea	0	3	0
Subphylum: Crustacea	0	0	0
Class: Ostracoda	0	1	0
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
Class: Oligochaeta	0	0	0
Order: Tubificida	0	0	0
Family: Lumbricidae	0	0	0
Phylum: Nemata	1	1	1
Phylum: Platyhelminthes	0	0	0
Class: Turbellaria	1	1	1
Totals:	2	6	2

Methods and QC Report 2022

Project ID: LCO Dry (22-19)

Client: Minnow Environmental

P: 250.494.7553

F: 250.494.7562

Prepared by:

Cordillera Consulting Inc. Summerland, BC © 2022

Table of Contents

Sample Reception	3
Sample Sorting	4
Sorting Quality Control - Sorting Efficiency	5
Sorting Quality Control - Sub-Sampling QC	6
Taxonomic Effort	9
Taxonomists	9
Taxonomic QC	10
Error Summary	11
Error Rationale	11
References	15
Taxonomic Kevs	15

Sample Reception

On September 26, 2022, Cordillera Consulting received 29 benthic samples from Minnow Environmental. When samples arrived to Cordillera Consulting, exterior packaging was initially inspected for damage or wet spots that would have indicated damage to the interior containers.

Samples were logged into a proprietary software database (INSTAR1) where the clients assigned sample name was recorded along with a Cordillera Consulting (CC) number for cross-reference. Each sample was checked to ensure that all sites and replicates recorded on field sheets or packing lists were delivered intact and with adequate preservative. Any missing, mislabelled or extra samples were reported to the client immediately to confirm the total numbers and correct names on the sample jars. The client representative was notified of the arrival of the shipment and provided a sample inventory once intake was completed.

See table below for sample inventory:

Table 1: Summary of sample information including Cordillera Consulting (CC) number

Sample	CC#	Date	Size	# of Jars
LC_DC1_BIC-1_2022-09-12_N	CC231037	9/12/2022	400μΜ	1
LC_DC1_BIC-2_2022-09-12_N	CC231038	9/12/2022	400μΜ	1
LC_DC1_BIC-3_2022-09-12_N	CC231039	9/12/2022	400μΜ	1
LC_DC2_BIC-1_2022-09-14_N	CC231040	9/14/2022	400μΜ	1
LC_DC2_BIC-2_2022-09-14_N	CC231041	9/14/2022	400μΜ	1
LC_DC2_BIC-3_2022-09-14_N	CC231042	9/14/2022	400μΜ	1
LC_DC3_BIC-1_2022-09-13_N	CC231043	9/13/2022	400μΜ	1
LC_DC3_BIC-2_2022-09-13_N	CC231044	9/13/2022	400μΜ	1
LC_DC3_BIC-3_2022-09-13_N	CC231045	9/13/2022	400μΜ	1
LC_DC4_BIC-1_2022-09-12_N	CC231046	9/12/2022	400μΜ	1
LC_DC4_BIC-2_2022-09-12_N	CC231047	9/12/2022	400μΜ	1
LC_DC4_BIC-3_2022-09-12_N	CC231048	9/12/2022	400μΜ	1
LC_DCDS_BIC-1_2022-09-13_N	CC231049	9/13/2022	400μΜ	1
LC_DCDS_BIC-2_2022-09-13_N	CC231050	9/13/2022	400μM	1
LC_DCDS_BIC-3_2022-09-13_N	CC231051	9/13/2022	400μM	1
LC_DCDS_BIC-4_2022-09-13_N	CC231052	9/13/2022	400μM	1
LC_DCDS_BIC-5_2022-09-13_N	CC231053	9/13/2022	400μM	1
LC_DCEF_BIC-1_2022-09-13_N	CC231054	9/13/2022	400μM	1
LC_DCEF_BIC-2_2022-09-13_N	CC231055	9/13/2022	400μM	1
LC_DCEF_BIC-3_2022-09-13_N	CC231056	9/13/2022	400μM	1
LC_FRB_BIC-1_2022-09-10_N	CC231057	9/10/2022	400μM	1
LC_FRB_BIC-2_2022-09-10_N	CC231058	9/10/2022	400μM	1
LC_FRB_BIC-3_2022-09-10_N	CC231059	9/10/2022	400μM	1
LC_FRUS_BIC-1_2022-09-10_N	CC231060	9/10/2022	400μM	1
LC_FRUS_BIC-2_2022-09-10_N	CC231061	9/10/2022	400μΜ	1
LC_FRUS_BIC-3_2022-09-10_N	CC231062	9/10/2022	400μΜ	1
LC_GRCK_BIC-1_2022-09-14_N	CC231063	9/14/2022	400μM	1

LC_GRCK_BIC-2_2022-09-14_N	CC231064	9/14/2022	400μΜ	1
LC_GRCK_BIC-3_2022-09-14_N	CC231065	9/14/2022	400μΜ	1

Sample Sorting

- Using a gridded Petri dish, fine forceps and a low power stereo-microscope (Olympus, Nikon, Leica) the sorting technicians removed the invertebrates and sorted them into family/orders.
- The sorting technician kept a running tally of total numbers excluding organisms from Porifera, Nemata, Platyhelminthes, Ostracoda, Copepoda, Cladocera and terrestrial drop-ins such as aphids. These organisms were marked for their presence (given a value of 1) only and left in the sample. They were not included towards the 300-organism subsample count.
- Where specimens are broken or damaged, only heads were counted.
- Subsampling was conducted with the use of a Marchant Box.
- When using the Marchant box, cells were extracted at the same time in the order indicated by a random number table. If the 300th organism was found part way into sorting a cell then the balance of that cell was sorted. If the organism count had not reached 300 by the 50th cell then the entire sample was sorted.
- The total number of cells sorted and the number of organisms removed were recorded manually on a bench sheet and then recorded into INSTAR1
- Organisms were stored in vials containing 80% ethanol and an interior label indicating the site names, date of sampling, site code numbers and portion subsampled. This information was also recorded on the laboratory bench sheet and on INSTAR1.
- The sorted portion of the debris was preserved and labeled separately from the unsorted portion and was tested for sorting efficiency (Sorting Quality Control – Sorting Efficiency). The unsorted portion was also labeled and preserved in separate jars.

Percent sub-sampled and total countable invertebrates pulled from the samples were summarized in the table below.

Table 2: Percent sub-sample and invertebrate count for each sample

Sample	Date	CC#	400 micron fraction	
			% Sampled	# Invertebrates
LC_DC1_BIC-1_2022-09-12_N	12-Sep-22	CC231037	5%	617
LC_DC1_BIC-2_2022-09-12_N	12-Sep-22	CC231038	10%	339
LC_DC1_BIC-3_2022-09-12_N	12-Sep-22	CC231039	5%	513
LC_DC2_BIC-1_2022-09-14_N	14-Sep-22	CC231040	14%	329
LC_DC2_BIC-2_2022-09-14_N	14-Sep-22	CC231041	15%	335
LC_DC2_BIC-3_2022-09-14_N	14-Sep-22	CC231042	8%	335

LC_DC3_BIC-1_2022-09-13_N	13-Sep-22	CC231043	5%	622
LC_DC3_BIC-2_2022-09-13_N	13-Sep-22	CC231044	8%	343
LC_DC3_BIC-3_2022-09-13_N	13-Sep-22	CC231045	5%	376
LC_DC4_BIC-1_2022-09-12_N	12-Sep-22	CC231046	7%	334
LC_DC4_BIC-2_2022-09-12_N	12-Sep-22	CC231047	5%	360
LC_DC4_BIC-3_2022-09-12_N	12-Sep-22	CC231048	13%	385
LC_DCDS_BIC-1_2022-09-13_N	13-Sep-22	CC231049	15%	332
LC_DCDS_BIC-2_2022-09-13_N	13-Sep-22	CC231050	8%	320
LC_DCDS_BIC-3_2022-09-13_N	13-Sep-22	CC231051	16%	319
LC_DCDS_BIC-4_2022-09-13_N	13-Sep-22	CC231052	8%	346
LC_DCDS_BIC-5_2022-09-13_N	13-Sep-22	CC231053	12%	327
LC_DCEF_BIC-1_2022-09-13_N	13-Sep-22	CC231054	12%	334
LC_DCEF_BIC-2_2022-09-13_N	13-Sep-22	CC231055	15%	333
LC_DCEF_BIC-3_2022-09-13_N	13-Sep-22	CC231056	12%	342
LC_FRB_BIC-1_2022-09-10_N	10-Sep-22	CC231057	5%	515
LC_FRB_BIC-2_2022-09-10_N	10-Sep-22	CC231058	5%	443
LC_FRB_BIC-3_2022-09-10_N	10-Sep-22	CC231059	5%	392
LC_FRUS_BIC-1_2022-09-10_N	10-Sep-22	CC231060	7%	353
LC_FRUS_BIC-2_2022-09-10_N	10-Sep-22	CC231061	10%	329
LC_FRUS_BIC-3_2022-09-10_N	10-Sep-22	CC231062	14%	348
LC_GRCK_BIC-1_2022-09-14_N	14-Sep-22	CC231063	14%	310
LC_GRCK_BIC-2_2022-09-14_N	14-Sep-22	CC231064	50%	411
LC_GRCK_BIC-3_2022-09-14_N	14-Sep-22	CC231065	12%	327

Sorting Quality Control - Sorting Efficiency

As a part of Cordillera's laboratory policy, all projects undergo sorting efficiency checks.

- As sorting progresses, 10% of samples were randomly chosen by senior members of the sorting team for resorting.
- All sorters working on a project had at least 1 sample resorted by another sorter.
- An efficiency of 90 % was expected (95% for CABIN samples).
- If 90/95% efficiency was not met, samples from that sorter were resorted.
- To calculated sorting efficiency the following formula was used:

$$\frac{\#OrganismsMissed}{TotalOrganismsFound}*100 = \%OM$$

Table 3 Summary of sorting efficiency

			Total from Sample	Percent Efficiency
Site - QC, Sample - QC3, CC# - CC231042, Psampled = 8%, Sieve size = 400	ercent			
Chironomidae		1		
		3		
Lepidoptera	Tatal.		225	000/
	Total:	4	335	99%
Site - QC, Sample - QC2, CC# - CC231044, P	Parcant			
sampled = 8%, Sieve size = 400	ercent			
Plecoptera		3		
Chironomidae		3		
Cimonomidae	Total:	6	343	98%
	iotai.	0	343	30%
Site - QC, Sample - QC1, CC# - CC231062, P	ercent			
sampled = 14%, Sieve size = 400	Crcciic			
Chironomidae		1		
Heptageniidae		1		
		1		
Plecoptera				222/
	Total:	3	348	99%

Sorting Quality Control - Sub-Sampling QC

Certain Provincial and Mining projects require additional sorting checks in the form of sub-sampling QC, (Environmental Effects Monitoring (EEM) protocol). This ensured that any fraction of the total sample that was examined was actually an accurate representation of the number of total organisms. Organisms from the additional subsamples were not identified; rather total organism count only was compared.

Sub-Sampling efficiency was measured on 10% of the number of sub-sampled samples in the project. Ex. In a project where 50 of 100 total samples were processed through subsampling using a Marchant box, then 10% of 50; or 5 samples were used for sub sampling efficiency.

Sub-Sampling efficiency was performed by fractioning the entire sample into subsample percentages. On each sub-sampled portion, a total organism count was recorded and compared to the rest of the sub-samples. In order to pass, all fractions were required to be within 20% of total organism count.

Example: If 300 organisms are found in 10% of the sample, the sorter will continue to sample in 10% fractions until the entire sample is separated. They will then count the total number of organisms in each of the 10 fractions of 10% and compare the organism count.

When divergence is >20% the sorting manager examines for the source of the problem and takes steps to correct it. With the Marchant box, the problem typically rested with how the box is flipped back to the upright position. For this reason, subsampling was performed by experienced employees only. Another common source of error would be the type of debris in the sample. Samples with algae or heavy with periphyton have a higher incident of failure due to clumping than clear samples.

Table 4 Summary of Sub Sample efficiency

	Station ID	on ID Organisms in Subsample										So	orter		Precision		Accuracy											
CC#	Sample Name		T	Organisms in Subsample									By Time		Actual Total	Percer	nt Range	Min	Max									
CC#	Sample Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Бу	Time		Percent Range		IVIIII	IVIUX
230050	LC_DCDS_BIC05_2022-05_NP	349	300	314	300	301	317	302	300	308	290	290	308	301	302	314	298	333	328	327	330	MP	960	6212	0.00	16.91	0.84	12.36

Taxonomic Effort

The next procedure was the identification to genus-species level where possible of all the organisms in the sample.

- Identifications were made at the genus/species level for all insect organisms found including Chironomidae (Based on CABIN protocol).
- Non-insect organisms (except those not included in CABIN count) were identified to genus/species where possible and to a minimum of family level with intact and mature specimens.
- The Standard Taxonomic Effort lists compiled by the CABIN manual¹, SAFIT², and PNAMP³ were used as a guide line for what level of identification to achieve where the condition and maturity of the organism enabled.
- Organisms from the same families/order were kept in separate vials with 80% ethanol and an interior label of printed laser paper.
- Chironomidae was identified to genus/species level where possible and was aided by slide mounts. CMC-10 was used to clear and mount the slide.
- Oligochaetes was identified to family/genus level with the aid of slide mounts. CMC-10 was used to clear and mount the slide.
- Other Annelida (leeches, polychaetes) were identified to the family/genus/species level with undamaged, mature specimens.
- Mollusca was identified to family and genus/species where possible
- Decapoda, Amphipoda and Isopoda were identified at family/genus/species level where possible.
- Bryozoans and Nemata remained at the phylum level
- Hydrachnidae and Cnidaria were identified at the family/genus level where possible.
- When requested, reference collections were made containing at least one individual from each taxa listed. Organisms represented will have been identified to the lowest practical level.
- Reference collection specimens were stored in 55 mm glass vials with screw-cap lids with polyseal inserts (museum quality). They were labeled with taxa name, site code, date identified and taxonomist name. The same information was applied to labels on the slide mounts.

Taxonomists

The taxonomists for this project were certified by the Society of Freshwater Science (SFS) Taxonomic Certification Program at level 2 which is the required certification for CABIN projects:

Scott Finlayson: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae (East/West); Group 4 Oligochaeta

Adam Bliss: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae

Rita Avery: Group 1 General Arthropods (East/West); Group 2 EPT (East/West)

Taxonomic QC

Taxonomic QC was performed in house by someone other than the original taxonomist.

- Quality control protocol involved complete, blind re-identification and reenumeration of at least 10% of samples by a second SFS-certified taxonomist.
- Samples for taxonomic quality control were randomly selected and quality control procedures were conducted as the project progresses through the laboratories.
- The second (QC) taxonomist will calculate and record four types of errors:
 - 1. Misidentification error
 - 2. Enumeration error
 - 3. Questionable taxonomic resolution error
 - 4. Insufficient taxonomic resolution error

The QC coordinator then calculates the following estimates of taxonomic precision.

1. The percent total identification error rate is calculated as:

$$\frac{Sum\ of\ incorrect\ identifications}{total\ or\ ganisms\ counted\ in\ audit}*(100)$$

The average total identification error rate of audited samples did not exceed 5%. All samples that exceed a 5% error rate were re-evaluated to determine whether repeated errors or patterns in error contributed.

2. The percent difference in enumeration (PDE) to quantify the consistency of specimen counts.

$$PDE = \frac{|n_1 - n_2|}{n_1 + n_2} x 100$$

3. The percent taxonomic disagreement (PTD) to quantify the shared precision between two sets of identifications.

$$PTD = \left(1 - \left[\frac{a}{N}\right]\right) x100$$

4. Bray Curtis dissimilarity Index to quantify the differences in identifications.

$$BC_{ij} = 1 - \frac{2C_{ij}}{S_j + S_i}$$

Error Summary

All samples report errors within the acceptable limits for CABIN Laboratory methods (less than 5% error).

Table 5 Summary of taxonomic error following QC

Site	Taxa Identified	% Error	PDE	PTD	Bray - Curtis Dissimilarity index
Site - 2022, Sample - LC_DC1_BIC-2_2022-09-					
12_N, CC# - CC231038, Percent sampled = 10%,					
Sieve size = 400	339	0.00	0	0.29498525	0.00294985
Site - 2022, Sample - LC_DC3_BIC-3_2022-09-					
13_N, CC# - CC231045, Percent sampled = 5%,					
Sieve size = 400	379	0.00	0.39735099	0.79155673	0.00397351
Site - 2022, Sample - LC_DCEF_BIC-3_2022-09-					
13_N, CC# - CC231056, Percent sampled = 12%,					
Sieve size = 400	341	0.00	0.14641288	1.4619883	0.01317716

There will always be disagreements between taxonomists regarding the degree of taxonomic resolution in immature specimens and when laboratories make use of different keys for certain groups (Mollusks is an especially disputed group). It is always possible that some taxa found by the original taxonomist were overlooked in QC.

All of the Taxonomic QC samples that were observed passed testing according to the CABIN misidentification protocols. See the tables below for results from taxonomic QC audit.

Error Rationale

Site - 2022, Sample - LC_DC1_BIC-2_2022-09- 12_N, CC# - CC231038, Percent sampled = 10%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Ameletus	1	1						
Baetidae	5	5						

Baetis	2	2			
Baetis rhodani group	28	29	No	Х	
Chironomidae	13	13			
Cinygmula	27	27			
Diamesa	9	9			
Drunella doddsii	12	12			
Empididae	1	1			
Enchytraeidae	1	1			
Ephemerellidae	15	15			
Eukiefferiella	4	4			
Heptageniidae	15	15			
Hydrobaenus	20	20			
Hydropsychidae	3	3			
Kogotus	1	1			
Krenopelopia	1	1			
Limnephilidae	1	1			
Micropsectra	1	1			
Nemouridae	1	1			
Neoplasta	1	1			
Orthocladius complex	26	26			
Pagastia	19	19			
Parapsyche elsis	1	1			
Parorthocladius	1	1			
Pericoma/Telmatoscopus	25	25			
Perlodidae	4	4			
Plecoptera	2	2			
Pseudodiamesa	1	1			
Rheocricotopus	5	5			
Rhyacophila					
brunnea/vemna group	1	1			
Rhyacophila hyalinata					
group	1	1			
Rhyacophila narvae	1	1			
Taeniopterygidae	4	4			
Tanytarsini	2	2			
Trichoptera	12	11	No	X	
Tvetenia	10	10			
Zapada	11	11			
Zapada cinctipes	2	2			
Zapada columbiana	7	7			
Zapada oregonensis group	42	42			

Total:	339	339						
Totali	333	333			0	2	0	
% Total Misidentification Rate	misidentifications	x100	0.00	Pass				
=	total number	=						
Site - 2022, Sample - LC_DC3_BIC-3_2022-09- 13_N, CC# - CC231045, Percent sampled = 5%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Albertathyas	3	3						<u> </u>
Brillia	1	1						
Capniidae	31	32	No			Χ		
Chironomidae	12	12						
Chloroperlidae	4	4						
Diamesa	2	2						
Dicranota	5	5						
Ephemerellidae	1	1						
Eukiefferiella	22	22						
Hydrobaenus	6	6						
Lebertia	4	4						
Limnephilidae	2	2						
Limnophyes	1	1						
Malenka	1	1						
Megarcys	7	7						
Molophilus	1	1						
Nemouridae	1	1						
Oreogeton	1	1						
Oribatida	1	1						
Orthocladius complex	84	84						
Pagastia	28	29	No			Χ		
Parorthocladius	9	9						
Pericoma/Telmatoscopus	12	12						
Plumiperla	1	1						
Prosimulium	1	1						
Pseudodiamesa	33	33						
Rhyacophila	3	3						
Rhyacophila								
brunnea/vemna group	2	2						
Rhyacophila vofixa group	1	1						

Sweltsa	1	1						
Trichoclinocera	5	5						
Tvetenia	5	5						
Zapada	2	2						
Zapada columbiana	72	73	No			Χ		
Zapada oregonensis group	11	11						
1 0 0 1								
Total:	376	379						
					0	3	0	
% Total Misidentification Rate	misidentifications	x100	0.00	Pass				
=	total number	=						
Site - 2022, Sample - LC_DCEF_BIC-3_2022-09- 13_N, CC# - CC231056, Percent sampled = 12%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Ameletus	9	9						
Capniidae	6	6						
Chironomidae	5	5						
Chloroperlidae	19	18	No			Χ		
Cinygmula	59	55	No			Χ		
Clostoeca disjuncta	1	1						
Diamesa	11	11						
Drunella doddsii	2	2						
Epeorus	5	5						
Ephemerellidae	37	37						
Eukiefferiella	6	6						
Heptageniidae	93	97	No			Χ		
Hydrozetidae	1	1						
Lebertia	3	3						
Leuctridae	1	1						
Limnephilidae	2	2						
Limnophyes	1	1						
Megarcys	5	5						
Orthocladius complex	15	15						
Pagastia	4	4						
Parorthocladius	4	4						
Pedicia	1	1						
Perlodidae	4	4						

Rheocricotopus	1	1						
Rhithrogena	2	2						
Rhyacophila	3	3						
Rhyacophila betteni group	1	1						
Rhyacophila								
brunnea/vemna group	1	1						
Rhyacophila narvae	2	2						
Sweltsa	15	15						
Trichoptera	6	6						
Trombidiformes	1	1						
Tvetenia	6	6						
Visoka cataractae	4	4						
Yoraperla	3	3						
Zapada	3	3						
Total:	342	341						
					0	3	0	
% Total Misidentification Rate	misidentifications	x100	0.00	Pass				
=	total number	=						

References

Taxonomic Keys

Below is a reference list of taxonomic keys utilized by taxonomists at Cordillera Consulting. Cordillera taxonomists routinely seek out new literature to ensure the most accurate identification keys are being utilized. This is not reflective of the exhaustive list of resources that we use for identification. A more complete list of taxonomic resources can be found at Southwest Association of Freshwater Invertebrate Taxonomists. (2015).

http://www.safit.org/Docs/SAFIT_Taxonomic_Literature_Database_1_March_2011.enl

Brook, Arthur R. and Leonard A. Kelton. 1967. Aquatic and semiaquatic Heteroptera of Alberta, Saskatchewan and Manitoba (Hemiptera) Memoirs of the Entomological Society of Canada. No. 51.

Brown HP & White DS (1978) Notes on Seperation and Identification of North American Riffle Beetles (Coleoptera: Dryopidea: Elmidae). Entomological News 89 (1&2): 1-13

¹ McDermott, H., Paull, T., Strachan, S. (May 2014). Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples, Environment Canada. ISBN: 978-1-100-25417-3

² Southwest Association of Freshwater Invertebrate Taxonomists. (2015). www.safit.org

³ Pacific Northwest Aquatic Monitoring Partnership (Accessed 2015). www.pnamp.org

Clifford, Hugh F. 1991. Aquatic Invertebrates of Alberta. University of Alberta Press Edmonton, Alberta.

Epler, John. 2001 The Larval Chironomids of North and South Carolina. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Water Beetles of Florida. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Aquatic and Semi-aquatic Heteroptera of Florida. http://home.earthlink.net/~johnepler/

Trond Andersen, Peter S. Cranston & John H. Epler (Eds) (2013) Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1. Larvae. *Insect Systematics and Evolution Supplements* 66: 1-571.

Jacobus, Luke and Pat Randolph. 2005. Northwest Ephemeroptera Nymphs. Manual from Northwest Biological Assessment Working Group. Moscow Idaho 2005. Not Published.

Jacobus LM, McCafferty WP (2004) Revisionary Contributions to the Genus Drunella (Ephemeroptera: Ephemerellidae). Journal of the New York Entomological Society 112: 127-147

Jacobus LM, McCafferty WP (2003) Revisionary Contributions to North American Ephemerella and Serratella (Ephemeroptera: Ephemerellidae). Journal of the New York Entomological Society 111 (4): 174-193.

Kathman, R.D., R.O. Brinkhurst. 1999. Guide to the Freshwater Oligochaetes of North America. Aquatic Resources Center, College Grove, Tennessee.

Larson, D.J., Y. Alarie, R.E. Roughly. 2005. Predaceous Diving Beetles (Coleoptera: Dytiscidae) of the Neararctic Region. NRC-CNRC Research Press. Ottawa.

Merritt, R.W., K.W. Cummins, M. B. Berg. (eds.). 2007. An introduction to the aquatic insects of North America, 4th. Kendall/Hunt, Dubuque, IA

Morihara DK, McCafferty WP (1979) The Baetis Larvae of North American (Ephemeroptera: Baetidae). Transactions of the American Entomological Society 105: 139-221.

Needham, James, M. May, M. Westfall Jr. 2000. Dragonflies of North America. Scientific Publishers. Gainsville FL.

Prescott David, R.C.and Medea M. Curteanu. 2004. Survey of Aquatic Gastropods of Alberta. Species at Risk Report No. 104. ISSN: 1496-7146 (Online Edition)

Needham, K. 1996. An Identification Guide to the Nymphal Mayflies of British Columbia. Publication #046 Resource Inventory Committee, Government of British Columbia.

Oliver, Donald R. and Mary E. Roussel. 1983. The Insects and Arachnids of Canada Part 11. The Genera of larval midges of Canada. Biosystematics Research Institute. Ottawa, Ontario. Research Branch, Agriculture Canada. Publication 1746.

Proctor, H. The 'Top 18' Water Mite Families in Alberta. Zoology 351. University of Alberta, Edmonton, Alberta.

Rogers, D.C. and M. Hill, 2008. Key to the Freshwater Malacostraca (Crustacea) of the mid-Atlantic Region. EPA-230-R-08-017. US Environmental Protection Agency, Office of Environmental Information, Washington, DC.

Stewart, Kenneth W. and Bill Stark. 2002. The Nymphs of North American Stonefly Genera (Plecoptera). The Caddis Press. Columbus Ohio.

Stewart, Kenneth W. and Mark W. Oswood. 2006 The Stoneflies (Plecoptera) of Alaska and Western Canada. The Caddis Press.

Stonedahl, Gary and John D. Lattin. 1986. The Corixidae of Oregon and Washington (Hemiptera: Heteroptera). Technical Bulletin 150. Oregon State University, Corvalis Oregon.

Thorpe, J. H. and A. P. Covich [Eds.] 1991. Ecology and classification of North American freshwater invertebrates. Academic Press, San Diego.

Tinerella, Paul P. and Ralph W. Gunderson.2005. The Waterboatmen (Insecta: Heteroptera: Corixidae) of Minisota. Publication No.23 Dept. Of Entomology, North Dakota State University, Fargo, North Dakota, USA.

Weiderholm, Torgny (Ed.) 1983. The larvae of Chironomidae (Diptera) of the Holartic region. Entomologica Scaninavica. Supplement No. 19.

Westfall, Minter J. Jr. and May, Michael L. 1996. Damselflies of North America. Scientific Publishers, Gainesville, FL.

Wiggins, Glenn B. 1998. Larvae of the North American Caddisfly Genera (Tricoptera) 2nd ed. University of Toronto Press. Toronto Ontario.

BENTHIC TISSUE CHEMISTRY

TrichAnalytics Laboratory Report 2022-334 (Finalized 26-May-22)

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Client: Mike Pope Date Received: 16 May 2022

Project Manager

Teck Coal Limited

Date of Analysis: 22 May 2022
Final Report Date: 26 May 2022

 Phone:
 (250) 425-8449
 Project No.:
 2022-334

 Email:
 mike.pope@teck.com; jessica.ritz@teck.com;
 Method No.:
 MET-002.06

teckcoal@eguisonline.com; aguascilab@teck.com; robin.valleau@minnow.com

Client Project: LCO_LAEMP (PO 818999)

Analytical Request: Composite Benthic Invertebrate Tissue Microchemistry (total metals & moisture) - 45 samples.

See chain of custody form provided for sample identification numbers.

Notes:

Analytical results are expressed in parts per million (ppm) dry weight (equivalent to mg/kg) Samples quantified using DORM-4, NIST-1566b, and NIST-2976 certified reference standards.

Aluminum concentrations above 1,000 ppm are outside linear range of the calibration curve.

RPD values calculated according to the British Columbia Environmental Laboratory Manual (2020) criteria.

Client specific DQO for Selenium accuracy is 90-110% of the certified value; result achieved 102% (ranging from 97-106%).

This report provides the analytical results only for tissue samples noted above as received from the Client.

Reviewed and Approved by Jennie Christensen, PhD, RPBio

26 May 2022

[The analytical report shall not be reproduced except in full under the expressed written consent of TrichAnalytics Inc.]

TrichAnalytics Inc. 207-1753 Sean Heights Saanichton, BC V8M 0B3 www.trichanalytics.com

Project No: 2022-334

			LC_FRB_INV-	LC_FRB_INV-	LC_FRB_INV-	LC_FRB_INV-	LC_FRB_INV-
		Client ID	1_2022-05_NP	2_2022-05_NP	3_2022-05_NP	4_2022-05_NP	5_2022-05_NP
		Lab ID	317	318	319	320	321
	We	et Weight (g)	0.2734	0.2554	0.5036	0.3749	0.2703
		y Weight (g)	0.0628	0.0588	0.1181	0.0733	0.0777
		Moisture (%)	77.0	77.0	76.5	80.4	71.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.010	0.033	6.8	1.3	1.3	1.3	1.5
11B	0.067	0.223	11	2.4	2.4	2.9	4.2
23Na	2.6	8.7	3,651	3,101	3,575	2,958	3,246
24Mg	0.065	0.217	2,055	1,689	1,681	1,637	1,551
27Al	0.036	0.120	7,956	1,858	1,763	2,312	2,610
31P	67	223	11,849	12,441	12,719	11,040	10,674
39K	2.4	8.0	12,459	11,910	10,313	9,195	11,037
44Ca	7.6	25	3,373	3,500	4,083	3,539	3,627
49Ti	0.224	0.747	787	153	179	153	245
51V	0.035	0.117	23	3.7	4.3	4.9	7.4
52Cr	0.094	0.313	76	21	27	27	48
55Mn	0.006	0.020	127	62	80	86	59
57Fe	0.956	3.2	2,635	1,066	1,111	1,470	1,314
59Co	0.011	0.037	4.8	1.7	3.2	3.4	2.5
60Ni	0.001	0.003	162	37	41	48	61
63Cu	0.013	0.043	25	21	24	20	21
66Zn	0.242	0.807	289	262	373	290	228
75As	0.417	1.4	1.2	0.843	0.813	0.783	0.873
77Se	0.374	1.2	9.7	9.4	8.5	9.0	7.7
88Sr	0.001	0.003	16	6.9	5.9	5.8	8.0
95Mo	0.001	0.003	0.631	0.702	0.365	0.449	0.365
107Ag	0.001	0.003	0.168	0.165	0.199	0.151	0.151
111Cd	0.066	0.220	2.9	4.0	3.0	3.3	1.4
118Sn	0.037	0.123	0.456	0.782	0.571	0.274	0.281
121Sb	0.003	0.010	0.160	0.061	0.075	0.081	0.094
137Ba	0.001	0.003	152	57	60	61	78
202Hg	0.022	0.073	0.078	0.065	0.065	0.049	0.049
205Tl	0.001	0.003	0.129	0.041	0.051	0.060	0.063
208Pb	0.003	0.010	1.3	0.502	0.620	0.712	0.684
238U	0.001	0.003	0.257	0.088	0.086	0.125	0.134

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	LC_FRUS_INV- 1_2022-05_NP	LC_FRUS_INV- 2_2022-05_NP	LC_FRUS_INV- 3_2022-05_NP	LC_FRUS_INV- 4_2022-05_NP	LC_FRUS_INV- 5_2022-05_NP
		Lab ID	322	323	324	325	326
	We	et Weight (g)	0.2878	0.5570	0.2929	0.4102	0.4014
		y Weight (g)	0.0553	0.1456	0.0716	0.1087	0.1039
		Moisture (%)	80.8	73.9	75.6	73.5	74.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.010	0.033	2.2	2.7	2.4	0.928	1.4
11B	0.067	0.223	5.5	5.1	4.5	2.0	2.7
23Na	2.6	8.7	3,247	3,178	3,300	2,845	3,528
24Mg	0.065	0.217	1,461	2,144	1,803	1,746	1,703
27Al	0.036	0.120	4,031	3,923	4,048	1,497	2,554
31P	67	223	10,946	10,668	11,367	12,472	11,908
39K	2.4	8.0	10,275	11,070	12,267	9,419	11,183
44Ca	7.6	25	4,399	8,435	4,742	4,335	3,245
49Ti	0.224	0.747	269	363	338	106	194
51V	0.035	0.117	8.6	8.2	9.4	3.2	5.0
52Cr	0.094	0.313	25	39	51	25	30
55Mn	0.006	0.020	60	78	74	47	49
57Fe	0.956	3.2	2,193	2,039	2,891	1,057	1,629
59Co	0.011	0.037	1.0	3.1	3.4	2.1	2.3
60Ni	0.001	0.003	42	56	79	37	42
63Cu	0.013	0.043	27	19	24	24	24
66Zn	0.242	0.807	229	176	245	285	242
75As	0.417	1.4	0.693	0.964	0.994	0.663	0.723
77Se	0.374	1.2	9.2	7.1	10	9.0	11
88Sr	0.001	0.003	7.4	12	9.5	7.7	6.8
95Mo	0.001	0.003	0.730	0.533	0.561	0.281	0.477
107Ag	0.001	0.003	0.206	0.158	0.165	0.160	0.165
111Cd	0.066	0.220	1.1	1.3	3.9	2.5	4.0
118Sn	0.037	0.123	0.998	0.312	0.690	0.427	0.886
121Sb	0.003	0.010	0.091	0.151	0.097	0.053	0.074
137Ba	0.001	0.003	80	131	112	55	75
202Hg	0.022	0.073	0.072	0.065	0.068	0.078	0.065
205Tl	0.001	0.003	0.064	0.083	0.078	0.038	0.046
208Pb	0.003	0.010	1.2	1.5	1.1	0.529	0.614
238U	0.001	0.003	0.128	0.144	0.173	0.075	0.101

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	LC_DC4_INV- 1_2022-05_NP	LC_DC4_INV- 2_2022-05_NP	LC_DC4_INV- 3_2022-05_NP	LC_DC4_INV- 4_2022-05_NP	LC_DC4_INV- 5_2022-05_NP
		Lab ID	327	328	329	330	331
	We	et Weight (g)	0.3353	0.6203	0.4071	0.3858	0.4998
		y Weight (g)	0.0547	0.1493	0.0882	0.0780	0.1143
		Moisture (%)	83.7	75.9	78.3	79.8	77.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.010	0.033	0.826	0.664	1.7	0.941	1.2
11B	0.067	0.223	2.3	1.3	5.0	2.8	3.3
23Na	2.6	8.7	3,693	3,700	4,118	3,106	3,003
24Mg	0.065	0.217	1,753	1,139	1,685	1,542	1,889
27Al	0.036	0.120	1,197	796	2,871	1,914	2,185
31P	67	223	14,032	13,564	14,041	12,343	11,796
39K	2.4	8.0	11,466	11,646	12,070	10,449	10,583
44Ca	7.6	25	3,943	2,422	5,713	4,015	4,389
49Ti	0.224	0.747	130	56	276	166	205
51V	0.035	0.117	3.9	3.7	9.8	8.0	8.3
52Cr	0.094	0.313	12	21	45	34	24
55Mn	0.006	0.020	45	59	72	67	83
57Fe	0.956	3.2	763	735	1,832	1,607	1,393
59Co	0.011	0.037	0.761	1.5	1.4	2.4	2.0
60Ni	0.001	0.003	25	45	80	62	46
63Cu	0.013	0.043	15	13	18	16	17
66Zn	0.242	0.807	200	198	246	236	224
75As	0.417	1.4	1.5	1.7	2.0	1.7	1.8
77Se	0.374	1.2	10	9.9	9.0	8.6	8.3
88Sr	0.001	0.003	6.6	3.6	8.9	6.9	7.4
95Mo	0.001	0.003	1.1	0.856	1.3	0.898	0.646
107Ag	0.001	0.003	0.131	0.103	0.155	0.137	0.220
111Cd	0.066	0.220	2.7	1.2	2.0	3.8	1.8
118Sn	0.037	0.123	0.723	0.323	0.612	0.479	0.311
121Sb	0.003	0.010	0.112	0.077	0.194	0.157	0.165
137Ba	0.001	0.003	109	114	175	168	180
202Hg	0.022	0.073	0.072	0.059	0.091	0.065	0.098
205Tl	0.001	0.003	0.055	0.032	0.089	0.078	0.094
208Pb	0.003	0.010	0.523	0.386	0.912	0.881	0.990
238U	0.001	0.003	0.104	0.080	0.193	0.162	0.198

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	LC_DC1_INV- 1_2022-05_NP	LC_DC1_INV- 2_2022-05_NP	LC_DC1_INV- 3_2022-05_NP	LC_DC1_INV- 4_2022-05_NP	LC_DC1_INV- 5_2022-05_NP
		Lab ID	332	333	334	335	336
	We	et Weight (g)	0.7797	0.4728	0.4700	0.5640	0.5795
		y Weight (g)	0.1849	0.0902	0.1253	0.1047	0.1263
		Moisture (%)	76.3	80.9	73.3	81.4	78.2
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.010	0.033	0.448	0.733	1.0	0.853	1.8
11B	0.067	0.223	1.0	2.1	1.9	2.1	5.6
23Na	2.6	8.7	2,714	3,245	4,253	3,651	3,310
24Mg	0.065	0.217	1,364	1,839	1,526	1,835	1,532
27Al	0.036	0.120	342	1,432	1,259	1,464	4,363
31P	67	223	10,512	13,965	14,721	13,000	11,011
39K	2.4	8.0	8,380	11,722	12,565	11,501	12,086
44Ca	7.6	25	3,755	3,067	2,395	3,319	2,722
49Ti	0.224	0.747	33	67	75	87	282
51V	0.035	0.117	1.5	4.2	4.0	4.2	11
52Cr	0.094	0.313	9.4	16	27	18	60
55Mn	0.006	0.020	56	63	95	67	88
57Fe	0.956	3.2	435	856	1,153	972	2,398
59Co	0.011	0.037	0.952	1.1	2.0	1.7	2.3
60Ni	0.001	0.003	25	32	63	41	87
63Cu	0.013	0.043	11	19	16	16	13
66Zn	0.242	0.807	184	269	316	365	193
75As	0.417	1.4	0.964	0.911	1.2	1.5	1.6
77Se	0.374	1.2	7.3	14	12	9.6	10
88Sr	0.001	0.003	3.9	6.4	5.0	5.4	9.7
95Mo	0.001	0.003	0.407	0.638	0.667	0.580	1.3
107Ag	0.001	0.003	0.069	0.132	0.136	0.129	0.136
111Cd	0.066	0.220	4.9	2.5	5.2	9.8	4.0
118Sn	0.037	0.123	0.123	0.553	0.336	1.1	0.524
121Sb	0.003	0.010	0.076	0.116	0.119	0.110	0.303
137Ba	0.001	0.003	57	123	155	110	204
202Hg	0.022	0.073	0.059	0.071	0.098	0.102	0.078
205Tl	0.001	0.003	0.041	0.061	0.061	0.075	0.115
208Pb	0.003	0.010	0.140	0.408	0.477	0.444	1.1
238U	0.001	0.003	0.054	0.095	0.096	0.112	0.128

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	LC_GRCK_INV- 1_2022-05_NP	LC_GRCK_INV- 2_2022-05_NP	LC_GRCK_INV- 3_2022-05_NP	LC_GRCK_INV- 4_2022-05_NP	LC_GRCK_INV- 5_2022-05_NP
		Lab ID	337	338	339	340	341
	We	et Weight (g)	0.5422	0.5966	0.5969	0.4255	0.4614
		y Weight (g)	0.1177	0.1229	0.1240	0.0768	0.0906
		Moisture (%)	78.3	79.4	79.2	82.0	80.4
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.010	0.033	1.2	1.0	1.2	1.5	1.8
11B	0.067	0.223	5.0	4.7	6.3	4.3	8.7
23Na	2.6	8.7	3,852	3,158	4,389	3,755	3,422
24Mg	0.065	0.217	2,100	1,914	1,552	1,325	2,075
27Al	0.036	0.120	2,252	1,853	2,884	1,885	3,786
31P	67	223	12,420	12,395	9,187	10,522	10,920
39K	2.4	8.0	13,208	12,077	12,048	10,376	12,099
44Ca	7.6	25	4,257	3,250	2,207	3,078	5,844
49Ti	0.224	0.747	242	150	184	108	269
51V	0.035	0.117	3.4	4.2	4.5	3.3	7.3
52Cr	0.094	0.313	21	18	17	17	34
55Mn	0.006	0.020	145	158	84	81	173
57Fe	0.956	3.2	1,543	1,740	1,556	1,240	2,378
59Co	0.011	0.037	2.4	2.4	1.4	1.3	2.8
60Ni	0.001	0.003	32	30	29	26	52
63Cu	0.013	0.043	23	20	14	19	19
66Zn	0.242	0.807	205	244	112	156	206
75As	0.417	1.4	1.6	1.7	2.5	0.829	1.8
77Se	0.374	1.2	7.9	7.9	6.8	6.0	5.6
88Sr	0.001	0.003	16	10	8.6	10	19
95Mo	0.001	0.003	0.986	0.914	1.7	0.551	0.812
107Ag	0.001	0.003	0.106	0.083	0.053	0.068	0.091
111Cd	0.066	0.220	3.4	3.6	1.9	1.3	3.3
118Sn	0.037	0.123	0.913	0.607	0.365	0.532	0.906
121Sb	0.003	0.010	0.089	0.077	0.111	0.053	0.105
137Ba	0.001	0.003	157	72	75	90	138
202Hg	0.022	0.073	0.081	0.075	0.051	0.047	0.068
205Tl	0.001	0.003	0.094	0.093	0.094	0.067	0.094
208Pb	0.003	0.010	0.775	0.646	0.794	0.557	1.3
238U	0.001	0.003	0.220	0.175	0.268	0.119	0.348

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			LC_DC2_INV-	LC_DC2_INV-	LC_DC2_INV-	LC_DC2_INV-	LC_DC2_INV-
		Client ID	1_2022-05_NP	2_2022-05_NP	3_2022-05_NP	4_2022-05_NP	5_2022-05_NP
		Lab ID	342	343	344	345	346
		et Weight (g)	0.5495	0.3888	0.3497	0.2357	0.3307
		ry Weight (g)	0.1571	0.0844	0.0786	0.0666	0.0730
		Moisture (%)	71.4	78.3	77.5	71.7	77.9
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.010	0.033	1.3	0.874	0.733	2.2	1.3
11B	0.067	0.223	2.8	1.3	1.5	8.3	2.8
23Na	2.6	8.7	3,116	4,259	3,263	2,897	2,945
24Mg	0.065	0.217	1,093	1,379	1,733	2,127	1,762
27Al	0.036	0.120	2,466	1,537	1,117	6,646	2,541
31P	67	223	10,647	12,962	12,131	11,898	12,033
39K	2.4	8.0	10,731	12,480	10,839	12,714	9,599
44Ca	7.6	25	2,059	1,767	2,696	4,034	4,260
49Ti	0.224	0.747	255	99	104	486	209
51V	0.035	0.117	6.2	3.0	4.3	22	7.4
52Cr	0.094	0.313	23	22	33	140	40
55Mn	0.006	0.020	123	67	92	84	87
57Fe	0.956	3.2	1,447	869	1,094	4,198	1,407
59Co	0.011	0.037	1.9	1.0	2.5	7.1	2.3
60Ni	0.001	0.003	53	44	67	223	66
63Cu	0.013	0.043	15	17	20	24	18
66Zn	0.242	0.807	193	218	388	262	232
75As	0.417	1.4	0.976	0.781	0.667	1.4	0.716
77Se	0.374	1.2	11	11	13	13	11
88Sr	0.001	0.003	5.1	4.3	7.7	14	8.9
95Mo	0.001	0.003	0.812	0.957	0.972	1.5	0.725
107Ag	0.001	0.003	0.159	0.159	0.204	0.242	0.174
111Cd	0.066	0.220	1.3	2.4	3.1	1.4	1.9
118Sn	0.037	0.123	0.197	0.465	0.609	0.662	0.489
121Sb	0.003	0.010	0.132	0.101	0.118	0.389	0.167
137Ba	0.001	0.003	124	98	131	197	136
202Hg	0.022	0.073	0.088	0.081	0.109	0.105	0.081
205Tl	0.001	0.003	0.062	0.046	0.057	0.134	0.081
208Pb	0.003	0.010	0.741	0.443	0.452	1.5	0.680
238U	0.001	0.003	0.156	0.085	0.095	0.368	0.184

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			LC_DCEF_INV-	LC_DCEF_INV-	LC_DCEF_INV-	LC_DCEF_INV-	LC_DCEF_INV-
		Client ID	1_2022-05_NP	2_2022-05_NP	3_2022-05_NP	4_2022-05_NP	5_2022-05_NP
		Lab ID	347	348	349	350	351
	We	et Weight (g)	0.3833	0.2707	0.2837	0.2546	0.2696
		ry Weight (g)	0.0810	0.0479	0.0557	0.0520	0.0553
		Moisture (%)	78.9	82.3	80.4	79.6	79.5
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.010	0.033	0.479	0.546	0.620	0.497	0.424
11B	0.067	0.223	0.940	1.1	1.4	0.819	2.1
23Na	2.6	8.7	2,682	3,558	4,026	3,097	4,076
24Mg	0.065	0.217	1,594	1,138	1,468	1,295	1,578
27Al	0.036	0.120	187	307	402	416	422
31P	67	223	13,674	11,815	11,871	11,076	11,722
39K	2.4	8.0	9,077	10,494	11,723	10,052	12,026
44Ca	7.6	25	4,115	1,935	2,704	1,707	2,716
49Ti	0.224	0.747	10	17	37	25	29
51V	0.035	0.117	0.986	1.1	1.9	1.3	2.1
52Cr	0.094	0.313	8.3	8.0	21	13	11
55Mn	0.006	0.020	28	22	27	25	41
57Fe	0.956	3.2	398	380	576	423	532
59Co	0.011	0.037	0.268	0.651	1.1	0.505	0.866
60Ni	0.001	0.003	11	11	32	21	19
63Cu	0.013	0.043	20	16	22	19	20
66Zn	0.242	0.807	261	197	207	217	223
75As	0.417	1.4	1.2	1.3	2.2	1.3	2.4
77Se	0.374	1.2	6.0	6.0	7.4	7.0	7.5
88Sr	0.001	0.003	4.4	3.0	3.4	2.8	3.3
95Mo	0.001	0.003	0.522	0.377	0.377	0.609	0.365
107Ag	0.001	0.003	0.121	0.068	0.106	0.083	0.060
111Cd	0.066	0.220	5.2	10	7.9	8.7	9.6
118Sn	0.037	0.123	0.184	0.834	0.701	0.403	0.267
121Sb	0.003	0.010	0.056	0.051	0.061	0.056	0.053
137Ba	0.001	0.003	109	84	88	72	118
202Hg	0.022	0.073	0.068	0.047	0.061	0.061	0.064
205Tl	0.001	0.003	0.019	0.024	0.028	0.024	0.046
208Pb	0.003	0.010	0.102	0.159	0.179	0.229	0.252
238U	0.001	0.003	0.048	0.054	0.070	0.051	0.069

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	LC_DCDS_INV- 1_2022-05_NP	LC_DCDS_INV- 2_2022-05_NP	LC_DCDS_INV- 3_2022-05_NP	LC_DCDS_INV- 4_2022-05_NP	LC_DCDS_INV- 5_2022-05_NP
		Lab ID	352	353	354	355	356
	We	et Weight (g)	0.4702	0.1976	0.2825	0.5246	0.4669
		y Weight (g)	0.0985	0.0480	0.0604	0.1073	0.1082
		Moisture (%)	79.1	75.7	78.6	79.5	76.8
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.010	0.033	0.598	1.8	1.3	0.820	0.692
11B	0.067	0.223	1.7	6.4	3.1	2.5	1.7
23Na	2.6	8.7	3,704	3,190	2,675	3,480	3,494
24Mg	0.065	0.217	1,144	1,506	1,579	1,263	1,367
27Al	0.036	0.120	993	5,858	2,968	1,530	902
31P	67	223	13,608	12,692	11,153	13,264	13,341
39K	2.4	8.0	11,112	10,548	9,439	10,565	9,959
44Ca	7.6	25	2,095	3,605	2,989	2,416	3,105
49Ti	0.224	0.747	61	571	233	109	65
51V	0.035	0.117	3.0	13	7.3	4.4	2.9
52Cr	0.094	0.313	22	95	39	27	16
55Mn	0.006	0.020	84	112	104	90	75
57Fe	0.956	3.2	716	2,715	1,549	884	569
59Co	0.011	0.037	2.2	5.4	1.5	2.4	1.4
60Ni	0.001	0.003	50	161	79	50	31
63Cu	0.013	0.043	13	20	16	13	11
66Zn	0.242	0.807	203	277	263	200	205
75As	0.417	1.4	0.706	1.1	1.0	0.723	0.538
77Se	0.374	1.2	11	12	9.9	10	8.1
88Sr	0.001	0.003	5.1	13	8.6	5.0	5.5
95Mo	0.001	0.003	0.814	1.3	1.1	0.617	0.449
107Ag	0.001	0.003	0.121	0.174	0.174	0.121	0.151
111Cd	0.066	0.220	1.6	4.4	4.9	2.6	3.7
118Sn	0.037	0.123	0.345	0.858	0.590	0.353	0.249
121Sb	0.003	0.010	0.091	0.237	0.180	0.119	0.093
137Ba	0.001	0.003	105	156	162	96	224
202Hg	0.022	0.073	0.064	0.078	0.078	0.064	0.071
205Tl	0.001	0.003	0.055	0.163	0.097	0.081	0.047
208Pb	0.003	0.010	0.388	1.3	0.820	0.545	0.326
238U	0.001	0.003	0.123	0.225	0.208	0.103	0.111

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	LC_DC3_INV- 1_2022-05_NP	LC_DC3_INV- 2_2022-05_NP	LC_DC3_INV- 3_2022-05_NP	LC_DC3_INV- 4_2022-05_NP	LC_DC3_INV- 5_2022-05_NP
		Lab ID	357	358	359	360	361
	We	et Weight (g)	0.2991	0.2610	0.3314	0.2074	0.2462
		y Weight (g)	0.0693	0.0716	0.0839	0.0462	0.0570
		Moisture (%)	76.8	72.6	74.7	77.7	76.8
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.010	0.033	1.4	0.445	0.174	0.643	0.215
11B	0.067	0.223	5.3	1.2	0.414	2.6	0.518
23Na	2.6	8.7	3,181	2,935	2,588	3,509	2,766
24Mg	0.065	0.217	1,429	1,639	1,162	1,031	1,036
27Al	0.036	0.120	3,965	815	154	1,888	296
31P	67	223	10,106	14,161	10,777	12,201	10,341
39K	2.4	8.0	8,895	7,367	8,294	10,196	7,107
44Ca	7.6	25	2,695	4,004	979	1,510	1,232
49Ti	0.224	0.747	348	67	9.3	120	21
51V	0.035	0.117	8.9	2.5	0.606	4.9	0.953
52Cr	0.094	0.313	57	33	11	33	17
55Mn	0.006	0.020	61	40	39	39	33
57Fe	0.956	3.2	2,067	866	267	2,091	437
59Co	0.011	0.037	1.9	2.2	0.747	2.3	0.583
60Ni	0.001	0.003	98	64	19	60	31
63Cu	0.013	0.043	17	15	12	23	16
66Zn	0.242	0.807	163	145	156	162	168
75As	0.417	1.4	0.639	0.605	< 0.417	0.470	< 0.417
77Se	0.374	1.2	7.2	4.7	7.6	8.2	5.7
88Sr	0.001	0.003	7.1	5.7	2.3	4.6	2.4
95Mo	0.001	0.003	0.940	0.225	0.253	0.393	0.449
107Ag	0.001	0.003	0.113	0.147	0.083	0.344	0.140
111Cd	0.066	0.220	1.0	0.725	0.690	0.846	0.690
118Sn	0.037	0.123	0.329	0.123	0.133	0.285	0.188
121Sb	0.003	0.010	0.159	0.069	0.036	0.178	0.049
137Ba	0.001	0.003	95	39	32	42	35
202Hg	0.022	0.073	0.067	0.028	0.050	0.057	0.057
205Tl	0.001	0.003	0.139	0.061	0.026	0.096	0.031
208Pb	0.003	0.010	1.3	0.504	0.138	0.486	0.148
238U	0.001	0.003	0.143	0.047	0.031	0.093	0.028

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

Page 10 of 21

Teck Coal Limited
Tissue QA/QC Relative Percent Difference Results

C	Client ID	LC_FRB_	INV-5_2022	2-05_NP	LC_FRUS	_INV-4_202	2-05_NP	LC_DC1	_INV-2_2022	2-05_NP
	Lab ID		321			325			333	
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.010	1.5	1.7	13	0.928	1.3	33	0.733	0.684	6.9
11B	0.067	4.2	4.6	9.1	2.0	2.7	30	2.1	2.0	4.9
23Na	2.6	3,246	2,908	11	2,845	2,674	6.2	3,245	3,503	7.6
24Mg	0.065	1,551	1,516	2.3	1,746	2,081	18	1,839	1,808	1.7
27Al	0.036	2,610	3,745	36	1,497	2,122	35	1,432	1,122	24
31P	67	10,674	10,403	2.6	12,472	12,688	1.7	13,965	14,469	3.5
39K	2.4	11,037	9,685	13	9,419	9,307	1.2	11,722	11,668	0.5
44Ca	7.6	3,627	3,595	0.9	4,335	6,330	37	3,067	2,823	8.3
49Ti	0.224	245	323	28	106	146	32	67	64	4.6
51V	0.035	7.4	8.3	12	3.2	4.4	32	4.2	3.3	24
52Cr	0.094	48	48	0.0	25	18	33	16	20	22
55Mn	0.006	59	63	6.6	47	49	4.2	63	57	10
57Fe	0.956	1,314	1,462	11	1,057	1,168	10	856	818	4.5
59Co	0.011	2.5	2.8	11	2.1	2.0	4.9	1.1	1.2	8.7
60Ni	0.001	61	69	12	37	29	24	32	36	12
63Cu	0.013	21	17	21	24	22	8.7	19	16	17
66Zn	0.242	228	174	27	285	273	4.3	269	292	8.2
75As	0.417	0.873	0.753	-	0.663	0.843	-	0.911	1.1	-
77Se	0.374	7.7	7.3	5.3	9.0	8.0	12	14	12	15
88Sr	0.001	8.0	5.9	30	7.7	11	35	6.4	6.7	4.6
95Mo	0.001	0.365	0.351	3.9	0.281	0.365	26	0.638	0.609	4.7
107Ag	0.001	0.151	0.131	14	0.160	0.223	33	0.132	0.113	16
111Cd	0.066	1.4	1.3	7.4	2.5	2.4	4.1	2.5	2.9	15
118Sn	0.037	0.281	0.202	-	0.427	0.415	2.9	0.553	0.730	28
121Sb	0.003	0.094	0.080	16	0.053	0.079	39	0.116	0.094	21
137Ba	0.001	78	64	20	55	69	23	123	100	21
202Hg	0.022	0.049	0.065	-	0.078	0.072	-	0.071	0.068	-
205Tl	0.001	0.063	0.060	4.9	0.038	0.046	19	0.061	0.055	10
208Pb	0.003	0.684	0.692	1.2	0.529	0.648	20	0.408	0.462	12
238U	0.001	0.134	0.136	1.5	0.075	0.072	4.1	0.095	0.082	15

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited
Tissue QA/QC Relative Percent Difference Results

(Client ID	LC_DCDS		2-05_NP	LC_DCDS_INV-4_2022-05_NP							
	Lab ID		352			355						
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)					
7Li	0.010	Cab ID Sample (ppm) DL (ppm) Cpm)	0.820	0.966	16							
11B	0.067	1.7	2.5	38	2.5	3.2	25					
23Na	2.6	3,704	4,056	9.1	3,480	4,370	23					
24Mg	0.065	1,144	1,298	13	1,263	1,345	6.3					
27AI	0.036	993	1,482	40	1,530	1,991	26					
31P	67	13,608	11,552	16	13,264	14,022	5.6					
39K	2.4	11,112	11,528	3.7	10,565	12,657	18					
44Ca	7.6	2,095	2,461	16	2,416	2,451	1.4					
49Ti	0.224	61	82	29	109	132	19					
51V	0.035	3.0	4.3	36	4.4	5.5	22					
52Cr	0.094	22	28	24	27	20	30					
55Mn			84	0.0	90	131	37					
57Fe	0.956	716	895	22	884	1,062	18					
59Co	0.011	2.2	2.7	20	2.4	2.4	0.0					
60Ni	0.001	50	55	9.5	50	46	8.3					
63Cu	0.013	13	13	0.0	13	12	8.0					
66Zn	0.242	203	202	0.5	200	211	5.4					
75As	0.417	0.706	0.739	-	0.723	0.941	-					
77Se	0.374	11	9.1	19	10	11	9.5					
88Sr	0.001	5.1	5.2	1.9	5.0	6.1	20					
95Mo	0.001	0.814	0.702	15	0.617	0.674	8.8					
107Ag	0.001	0.121	0.106	13	0.121	0.117	3.4					
111Cd	0.066	1.6	1.7	6.1	2.6	3.0	14					
118Sn	0.037	0.345	0.456	-	0.353	0.487	-					
121Sb	0.003	0.091	0.098	7.4	0.119	0.143	18					
137Ba	0.001	105	113	7.3	96	129	29					
202Hg	0.022	0.064	0.064	-	0.064	0.078	-					
205TI	0.001	0.055	0.075	31	0.081	0.092	13					
208Pb	0.003	0.388	0.536	32	0.545	0.655	18					
238U	0.001	0.123	0.113	8.5	0.103	0.152	38					

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	S	ample Group ID		01			02			
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)		
7Li	0.010	1.21	1.3	109	12	1.3	107	5.4		
11B	0.067	4.5	4.5	100	2.4	4.6	103	1.2		
23Na	2.6	14,000	16,217	116	4.1	14,069	100	5.8		
24Mg	0.065	910	1,045	115	6.5	929	102	5.1		
27Al	0.036	197.2	180	92	9.3	183	93	4.6		
31P	67	8,000	8,976	112	4.9	7,670	96	5.6		
39K	2.4	15,500	16,754	108	6.0	15,789	102	3.6		
44Ca	7.6	2,360	2,571	109	4.7	2,372	100	2.2		
49Ti	0.224	12.24	13	105	17	10	86	9.7		
51V	0.035	1.57	1.7	111	6.6	1.5	96	16		
52Cr	0.094	1.87	2.2	116	5.3	2.0	105	7.7		
55Mn	0.006	3.17	3.6	113	6.1	3.1	98	5.1		
57Fe	0.956	343	375	109	3.2	346	101	6.8		
59Co	0.011	0.25	0.289	116	8.6	0.250	100	6.5		
60Ni	0.001	1.34	1.5	112	6.7	1.5	112	9.4		
63Cu	0.013	15.7	18	115	5.6	17	106	6.9		
66Zn	0.242	51.6	58	112	4.0	51	99	5.0		
75As	0.417	6.87	7.4	108	3.3	6.8	98	5.2		
77Se	0.374	3.45	3.6	106	8.8	3.3	97	6.2		
88Sr	0.001	10.1	11	105	5.2	10	99	6.2		
95Mo	0.001	0.29	0.348	120	4.4	0.293	101	2.3		
107Ag	0.001	0.0252	0.028	113	11	0.027	105	15		
111Cd	0.066	0.299	0.303	102	9.0	0.316	106	9.5		
118Sn	0.037	0.061	0.058	95	14	0.078	128	18		
121Sb	0.003	0.011	0.013	115	16	0.011	104	19		
137Ba	0.001	8.6	8.2	95	2.9	7.8	91	3.2		
202Hg	0.022	0.412	0.473	115	6.1	0.429	104	7.2		
205TI	0.001	0.0013	-	-	-	-	-	-		
208Pb	0.003	0.404	0.386	95	11	0.356	88	13		
238U	0.001	0.05	0.050	100	11	0.050	100	10		

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

Sample Group ID 03

Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)				
7Li	0.010	1.21	1.2	98	7.1				
11B	0.067	4.5	4.4	97	2.6				
23Na	2.6	14,000	13,693	98	3.0				
24Mg	0.065	910	893	98	5.7				
27AI	0.036	197.2	194	98	4.8				
31P	67	8,000	7,872	98	1.4				
39K	2.4	15,500	14,714	95	3.1				
44Ca	7.6	2,360	2,343	99	2.5				
49Ti	0.224	12.24	11	87	13				
51V	0.035	1.57	1.7	106	8.1				
52Cr	0.094	1.87	1.9	104	5.9				
55Mn	0.006	3.17	3.2	101	4.4				
57Fe	0.956	343	351	102	3.0				
59Co	0.011	0.25	0.272	109	5.3				
60Ni	0.001	1.34	1.3	100	6.7				
63Cu	0.013	15.7	16	103	5.2				
66Zn	0.242	51.6	52	101	1.9				
75As	0.417	6.87	7.0	102	2.3				
77Se	0.374	3.45	3.6	103	5.5				
88Sr	0.001	10.1	10	99	0.9				
95Mo	0.001	0.29	0.292	101	5.2				
107Ag	0.001	0.0252	0.027	105	15				
111Cd	0.066	0.299	0.314	105	15				
118Sn	0.037	0.061	0.069	113	19				
121Sb	0.003	0.011	0.011	103	5.1				
137Ba	0.001	8.6	8.2	95	5.5				
202Hg	0.022	0.412	0.429	104	3.7				
205Tl	0.001	0.0013	-	-	-				
208Pb	0.003	0.404	0.363	90	12				
238U	0.001	0.05	0.049	99	4.2				

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Sample Group Information

Sample Group ID	Client ID	Lab ID	Date of Analysis
01	LC_FRB_INV-1_2022-05_NP	317	22 May 2022
	LC_FRB_INV-2_2022-05_NP	318	
	LC_FRB_INV-3_2022-05_NP	319	
	LC_FRB_INV-4_2022-05_NP	320	
	LC_FRB_INV-5_2022-05_NP	321	
	LC_FRUS_INV-1_2022-05_NP	322	
	LC FRUS INV-2 2022-05 NP	323	
	LC_FRUS_INV-3_2022-05_NP	324	
	LC_FRUS_INV-4_2022-05_NP	325	
	LC_FRUS_INV-5_2022-05_NP	326	
	 LC_DC4_INV-1_2022-05_NP	327	
	LC_DC4_INV-2_2022-05_NP	328	
	LC_DC4_INV-3_2022-05_NP	329	
	LC_DC4_INV-4_2022-05_NP	330	
	LC_DC4_INV-5_2022-05_NP	331	
	LC_DC1_INV-1_2022-05_NP	332	
02	LC_DC1_INV-2_2022-05_NP	333	22 May 2022
	LC_DC1_INV-3_2022-05_NP	334	
	LC_DC1_INV-4_2022-05_NP	335	
	LC_DC1_INV-5_2022-05_NP	336	
	LC_GRCK_INV-1_2022-05_NP	337	
	LC_GRCK_INV-2_2022-05_NP	338	
	LC_GRCK_INV-3_2022-05_NP	339	
	LC_GRCK_INV-4_2022-05_NP	340	
	LC_GRCK_INV-5_2022-05_NP	341	
	LC_DC2_INV-1_2022-05_NP	342	
	LC_DC2_INV-2_2022-05_NP	343	
	LC_DC2_INV-3_2022-05_NP	344	
	LC_DC2_INV-4_2022-05_NP	345	
	LC_DC2_INV-5_2022-05_NP	346	
	LC_DCEF_INV-1_2022-05_NP	347	
	LC_DCEF_INV-2_2022-05_NP	348	
	LC_DCEF_INV-3_2022-05_NP	349	
	LC_DCEF_INV-4_2022-05_NP	350	
03	LC_DCEF_INV-5_2022-05_NP	351	22 May 2022
	LC_DCDS_INV-1_2022-05_NP	352	
	LC_DCDS_INV-2_2022-05_NP	353	
	LC_DCDS_INV-3_2022-05_NP	354	
	LC_DCDS_INV-4_2022-05_NP	355	
	LC_DCDS_INV-5_2022-05_NP	356	

Teck Coal Limited Sample Group Information

Sample	Cli - ID		Date of
Group ID	Client ID	Lab ID	Analysis
03	LC_DC3_INV-1_2022-05_NP	357	22 May 2022
	LC_DC3_INV-2_2022-05_NP	358	
	LC_DC3_INV-3_2022-05_NP	359	
	LC_DC3_INV-4_2022-05_NP	360	
	LC_DC3_INV-5_2022-05_NP	361	

_						325		323	322	321	320	319	318	418	Ć D										
Emer	Pri	SERVICE REQUEST (rush - subject to availability)			WWO TENOTHORY	8	LC_FRUS_INV-3_2022-05_NP>	LC_FRUS_INV-2_2022-05_NP	LC_FRUS_INV-1_2022-05_NP \	LC_FRB_INV-5_2022-05_NP_	LC_FRB_INV-4_2022-05_NP/	LC_FRB_INV-3_2022-05_NP	LC_FRB_INV-2_2022-05_NP /	LC_FRB_INV-1_2022-05_NP_	Sample ID	<i>y</i> .	Pho					Proje	Facility N		
Emergency (1 Business Day) - 100% surcharge	iority (2-3 busin	l' (rush - subject		1 0 010777	ENINSPECIAL										~ ~		Phone Number 250-425-8449	Postal Code	City		Address 421 Pine Ave	Project Manager Mike Pope	Name / Job# Line	PROJ	Γ
ss Day) - 100% si	Regular (default) Priority (2-3 business days) - 50% surcharge	to availability)			PO \$18000	LC_FRUS	LC_FRUS	LC_FRUS	LC_FRUS	LC_FRB	LC_FRB	LC_FRB	LC_FRB	LC_FRB	Sample Location (sys loc code)	SAMPLE DETAILS	425-8449	V0B 2G0	Sparwood		ddress 421 Pine Ave	e Pope	Facility Name / Job# Line Creek Operations	COC ID:	
rcharge X	default) ircharge					TA	TA	TA	TA	TA	TA	TA	TA	TA	Field Matrix	DETAILS		GO	bod				0.		
						Z	Z	Z	z	Z	N	Z	Z	z	Hazardous Material (Yes/No)									CO	
	Sampler's Name			2	RELINQUIS	11-May-22 /	11-May-22 🗸	11-May-22 🗸	11-May-22 /	11-May-22 🗸	11-May-22 /	11-May-22 /	11-May-22 /	11-May-22 ✓	Date			Country Ca	Province BC					LCO_LAEMP	
	me			Robin Valleau	HED BY/A	10:45	10:40	10:35	10:30	11:35	11:30	11:25	11:20	11:15	Time (24hr)			Canada	()						
		÷?		eau	MEDIATION	ВІТ	ВІТ	BIT	BTT	BIT	BIT	ВІТ	BIT	BIT	Species	, J. J.	P							TUR	
	Robin				ION	Composite	Composite	Composite	Composite	Composite	Composite	Composite	Composite	0	Sample Type		Phone Number	Postal Code V8M 0B3	City	Addiess	Email	Lab Contact Jennie Christensen	Lab Name TrichAnalytics Inc	TURNAROUND TIME:	
	Robin Valleau			May 15, 2022	DATE			-		-	-			-	ANALYSIS PRESERV. Fig. Number of Containers			V8M 0	City Saanichton	207-17	jennie.	Jennie	TrichA	TIME:	
	=	Salaria Salaria		5, 2022	TE/TIME	x	x	X	X	x	х	Х	×	×	Metals in Biota by CRC ICPMS (wet and dry)	AN		В3	nton	Address 207-1755 Sean Heights	christense	Christens	nalytics I	IE:	
		7.0			ACC	X	X	X	X	×	x	×	×	×	Mercury in Biota by CVAAS (wet, dry & routine)	ANALYSIS REQUESTED		Country	Province	leights	Email jennie.christensen@trichanalytics	en	nc.		
	Mobile #				BPIEDB	X	x	×	х	×	×	×	×	X	Moisture Content by Gravimetry	EQUEST		Canada	BC		alytics				
	#				CCEPTED BY/APPILIATION											ED	PO number		Email 5:	Email 4:	Email 2:	Email 1:	Report		
					NOW					-							er						Format /	74	
	416-970-7535				D.											Fillered - F. J	818999	(Robin valleau@minnow.ca	teckcoal@equisonline.com	essica.Ritz@teck.com	mike.pope@teck.com	Report Format / Distribution	RUSH:	
	535				DATE/TIME											Filtered - F: Field, L. Lab, FL: Field & Lab, N; Nor			Y X		x x		Excel		
											-	-				Field & Lab					1		PDF 1		
																N; None							EDD		

Received by: Alex Wade

Project #: 2022 - 334

							333	332 1	331	330		328	32.7	326	Reduit										
Fo	Pri	SERVICE REQUEST		P	ADDITIONAL COMME	IC DC1 INV.3 2022-05 ND	LC_DC1_INV-2_2022-05_NP_/	LC_DC1_INV-1_2022-05_NP	LC_DC4_INV-5_2022-05_NP_	LC_DC4_INV-4_2022-05_NP /	LC_DC4_INV-3_2022-05_NP /	LC_DC4_INV-2_2022-05_NP	LC_DC4_INV-1_2022-05_NP /	LC_FRUS_INV-5_2022-05_NP	Sample ID		Phor	P				Projec	Facility N		Teck
gency (1 E	ority (2-3	(rush - st		PO 818999	MINISPE												ne Numbe	Postal Code	City	Addres	Ema	ct Manage	lame / Job		
For Emergency <1 Day, ASAP or Weekend	Priority (2-3 business days) - 50% surcharge	- subject to availability) Reoular (CIAL INSTRUCTIONS	10 PC	LC DC1	LC_DC1	LC_DC4	LC_DC4	LC_DC4	LC_DC4	LC_DC4	LC_FRUS	Sample Location (sys loc code)	SAMPLE DETAILS	Phone Number 250-425-8449	e V0B 2G0	y Sparwood	Address 421 Pine Ave	Email Mike.pope@teck.com	Project Manager Mike Pope	Facility Name / Job# Line Creek Operations	COC ID:	
rcharge X eekend	rcharge	default)			IA	! 5	TA	TA	TA	TA	TA	TA	TA	TA	Field Matrix	DETAILS		30	od						
Sa					2	2	2	2	Z	Z	N	Z	Z	Z	Hazardous Material (Yes/No)									LCO_	
Sampler's Signature	Sampler's Name			Ra	RELINOUSHED BY A FILL TON	II-iviay-22	11_May_22	11-May-22 /	11-May-22 🗸	11-May-22	11-May-22	11-May-22 /	11-May-22	11-May-22/	Date			Country Ca	Province BC					LAEMP	
ture	ne			Robin Valleau	9:40	9:35	0.25	9:30	9:05	9:00	8:55	8:50	8:45	10:50	Time (24hr)			Canada							
				eau	BUT	ВП	PIT	BIT	BIT	BIT	TIB	віт	BIT	ВІТ	Species		Ph							TURN	,
	Robin			\$	Composite	Composite		Composite	Composite	Composite	Composite	Composite	Composite	Composite	Sample Type		Phone Number	Postal Code V8M 0B3	City	Address	Emai	Lab Contact Jennie Christensen	Lab Name TrichAnalytics Inc	TURNAROUND TIME:	age
	Robin Valleau			May 1				_	-		-			-	ANALYSIS PRESERV. Fig. Number of Containers			V8M 0	City Saanichton	207-17	jennie.	Jennie	ne TrichA	TIME:	9
	_			1ay 15, 2022	1 X	×		×	х	×	x	x	×	×	Metals in Biota by CRC ICPMS (wet and dry)	AN		В3	iton	Address 207-1753 Sean Heights	hristense	Christens	ichAnalytics I		1
		01-11		Alve	×	×	4 ;	×	×	×	x	X	x	x	Mercury in Biota by CVAAS (wet, dry & routine)	ANALYSIS REQUESTED		Country	Province	Teights	Email jennie.christensen@trichanalytics	en	nc.		
Date/Time	Mobile #				X	×		×	×	×	×	×	х	Х	Moisture Content by Gravimetry	EQUEST		Canada	ВС		dytics				
ime	e#				X X											ED	PO number		Email 5:	Email 3:	Email 2:	Email 1:	Renort		
				KILON	NOW.												ег					2	Eormat		
May 15, 2022	416-970-7535															Filtered - F:	818999		AquaSciLab@teck.com Robin valleau@minnow.ca	teckcoal@equisonline.com	essica.Ritz@teck.com	Email 1: mike pope@teck.com	OTHER INFO	RUSH:	
022	535			The state of the s									-			Filtered - Fr Field, L. Lah, F3.: Field & Lab. N: No			× ×	X	X	EXCE	10000		
				VIE												, FL: Field d			* *	X	×	Y	- 100		
												-				Lab, N: N			e k	X	X	Y EDD	EDD		

Page 2 of 5

Received by: Alex wade

Project #: 2022 - 334

Page	
6	
w	
2	

Date Time Sample Sample Time Dat	N 10-May-22 / RELINQUISHE Robi	Regular (default) Priority (2-3 business days) - 50% surcharge	Priority (2-3 busines
omposite Type Omposite Type ANALYSIS Number of Containers Number of Containers Number of Containers X X X X X Metals in Biota by CRC (wet and dry) May 15, 2022 May 15, 2022			
omposite DATE/TIME May 15, 2022 Mercury in Biota by CRC (wet and dry) Mercury in Biota by CRC (wet and dry)		availability)	SERVICE REQUEST (rash - subject to availability)
omposite Type Omposite Type ANALYSIS Number of Containers Number of Containers Number of Containers X X X X X X Metals in Biota by CRC (wet and dry) May 15, 2022			
omposite I I I I I I I I I Number of Containers Number of Containers X X X X X X X X Metals in Biota by CRC (wet and dry) Mercury in Biota by CRC			PO 818999
Time (24hr) Species Sample (24hr) Species Type Species Type Species Type Type Of Composite Sample Species Type Species Type Species Type Species Type Species Type Species Type Species Type Species Type Species Type Species Type Species Type Species Type Species Sample Species Sample Species Type Species Sample Species Type Species Sample Species Sp		TIONS	NEWNO
Time (24hr) Species Sample (24hr) Species Sample Sample Sample Sample Sample Sample Species Type Composite Sample Sample Species Type Type Composite Sample Sample Sample Species Type Sample Sample Species Type Composite Sample Species Type Composite Sample Species Species Specie		LC_DC2 TA	LC_DC2_INV-2_2022-05_NP _
Time Time Time (24hr) Species Sample 9:48 BIT Composite 13:45 BIT Composite 1 1 1 1 1 1	N 10-May-22	LC_DC2 TA	LC_DC2_INV-1_2022-05_NP_/
Time Time Time Time Time Species Sample 9:45 BIT Composite In the species of Containers ANALYSIS Number of Containers Wetals in Biota by CRO (wet and dry) XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	N 11-May-22	LC_GRCK TA	LC_GRCK_INV-5_2022-05_NP
Time (24hr) Species Sample (24hr) Species Type Sample Species Type Composite Type Composite Number of Containers X X X X X Mercury in Biota by CRC (wet, dry & routine) X X X X X X Moisture Content by X X X X X X Moisture Content by X X X X X X X X X X X X X X X X X X	N 11-May-22-/	LC_GRCK TA	LC_GRCK_INV-4_2022-05_NP
Time Time Time Opension	N 11-May-22 /	LC_GRCK TA	LC_GRCK_INV-3_2022-05_NP/
9:50 BIT Composite 1 1 Number of Containers X X Metals in Biota by CRC (wet, dry & routine) X X Moisture Content by Moisture Content by	N 11-May-22	LC_GRCK TA	LC_GRCK_INV-2_2022-05_NP /
9:50 BIT Composite Number of Containers Metals in Biota by CRC (wet, dry & routine) Moisture Content by Moisture Content by	N 11-May-22	LC_GRCK TA	LC_GRCK_INV-1_2022-05_NP
9:45 BIT Composite ANALYSIS Number of Containers Metals in Biota by CRC (wet and dry) Mercury in Biota by CRC (wet, dry & routine) Moisture Content by	N 11-May-22	LC_DC1 TA	LC_DC1_INV-5_2022-05_NP /
24hr) Species Sample ANALYSIS Number of Containers Metals in Biota by CRC (wet and dry) Mercury in Biota by CRC (wet, dry & routine) Moisture Content by	N 11-May-22	LC_DC1 TA	LC_DCI_INV-4_2022-05_NP /
PICPMS VAAS	Hazardous Material (Yes/No)	Sample Location Field (Sys loc code) Matrix	Sample ID (Si
ANALYSIS REQUESTED PRICE - FIGH L Lab, FL FER & Lab, N. P.		SAMPLE DETAILS	
		25-8449	Phone Number 250-425-8449
Canada Postal Code V8M 0B3 Country Canada	Country	V0B 2G0	Postal Code
BC City Saanichton Province BC	Province	Sparwood	City
Email 4:			
Email 3:		ine Ave	Address 421 Pine Ave
atrichanalytics Email 2:		Email Mike.pope@teck.com	Email Mike
TIO,		Pope	Project Manager Mike Pope
		# Line Creek Operations	Facility Name / Joh# Line Creek Operations
TURNAROUND TIM	LCO_LAEMP)

Received by Alex wode
Projed #: 2022 - 334

Emergen For E	PO 818999 SERVICE REQUEST (rush - subject to availability) Regul Priority (2-3 business days) - 50%		ADDITIONAL COMMENTS/SPEC	352 LC_DCDS_INV-1_2022-05_NP	351 LC_DCEF_INV-5_2022-05_NP/	350 LC_DCEF_INV-4_2022-05_NP/	349 LC_DCEF_INV-3_2022-05_NP /	348 LC_DCEF_INV-2_2022-05_NP	LC_DCEF_INV-1_2022-05_NP /	LC_DC2_INV-5_2022-05_NP /	345 LC_DC2_INV-4_2022-05_NP	344 LC_DC2_INV-3_2022-05_NP >	Sample ID		Phone Y	Post				Project N	Facility Nam			
Emergency (1 Business Day) - 100% surcharge For Emergency <1 Day, ASAP or Weekend	Regular (default) Priority (2-3 business days) - 50% surcharge	ish - subject (o availability)		\$18999	SSPECIAL INSTRUCTIONS	LC_DCDS	LC_DCEF	LC_DCEF	LC_DCEF	LC_DCEF	LC_DCEF	LC_DC2	LC_DC2	LC_DC2	Sample Location (sys loc code)	SAMPLE I	Phone Number 250-425-8449		City Sparwood	Addieso and the Care	Address 421 Pine Ave	Project Manager Mike Pope	Facility Name / Job# Line Creek Operations	PROJECT/CLIENT INFO
rcharge X eekend	default) rcharge					TA	TA	TA	TA	TA	TA	TA	TA	TA	Field Matrix	DETAILS		30	bo					
Sam	Sa					2	Z	Z	Z	Z	Z	Z	N	Z	Hazardous Material (Yes/No)			C	P					
Sampler's Signature	Sampler's Name			R	RELINQUISHED BY/AFFILIATION	10-May-22	10-May-22 J	10-May-22 /	10-May-22 J	10-May-22~	10-May-22	10-May-22 /	10-May-22 /	10-May-22	Date				Province BC					
ture	ne			Robin Valleau	HED BY/A	12:30	11:20	11:15	11:10	11:05	11:00	15:50	15:45	15:40	Time (24hr)			Canada						
		*		au	IN I HE	BIT	ВІТ	BIT	BIT	BIT	ВІТ	BIT	ВІТ	ВІТ	Species		Pł							avavi
	Robin				ON .	Composite	Composite	Composite	Composite	Composite	Composite	Composite	Composite	Composite	Sample Type		Phone Number	Postal Code	City	Address	Email	Lab Contact Jennie Christensen	Lab Name TrichAnalytics Inc	
	Robin Valleau			May 15, 2022	DATE	-	E.		E		-		-	-	ANALYSIS PRESERV. Pile. Number of Containers			V8M 0B3	City Saanichton	Address 207-1755 Sean Heights	Email jennie.christensen@trichanalytics	Jennie C	TrichAn	Yath Yata
				, 2022	MINID	×	x	Х	Х	Х	х	Х	x	×	Metals in Biota by CRC ICPMS (wet and dry)	ANA				3 Sean He	nristensen	hristenser	alytics Inc	AGION
					ACC	×	×	x	X	X	x	×	×	×	Mercury in Biota by CVAAS (wet, dry & routine)	LYSISR		Country	Province	aghts	@trichana			
Date/Time	Mobile #				EPZTE D R	×	×	×	×	X	X	×	×	X	Moisture Content by Gravimetry	ANALYSIS REQUESTED			BC		alytics			
me	#				ACCEPTED BYANESH ATTON											a	PO number	Cilian C.	Email 4:	Email 3:	Email 2:	Email 1:	Report Format / Distribution	
					ON .													NOUBL VE	AquaSciLa	teckcoal@	jessica.R	mike.pop	rmat / Dis	
May 15, 2022	416-970-7535				T.											Filtered - F: Fi	818999	Koonii valeau@iiiiiiow.ca	AquaSclLab@teck.com	teckcoal@equisonline.com	essica.Ritz@teck.com	mike.pope@teck.com	stribution	AND DESIGNATION OF THE PARTY OF
)22	35				N CONTRACTOR											Filtered F. Field to Lab VI. Paul & Lab W. No.		À	×	X	×	500000	Excel	
																2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2			X		PDF	
																		-	X	×	X	X	EDD	

Page 4 of 5

17 may 2012

Received by: Alex White

Project #: 2022 -334

LC_DCDS_INV-5_2022-05_NP LC_DC3_INV-5_2022-05_NP > LC_DC3_INV-4_2022-05_NP / LC_DC3_INV-3_2022-05_NP LC_DCDS_INV-4_2022-05_NP LC_DC3_INV-2_2022-05_NP_ LC_DC3_INV-1_2022-05_NP LC_DCDS_INV-2_2022-05_NP LC_DCDS_INV-3_2022-05_NP DDITIONAL COMMENTS/SPECIAL INSTRUCTIONS Sample ID Emergency (1 Business Day) - 100% surcharge X
For Emergency <1 Day, ASAP or Weekend Phone Number 250-425-8449 Regular (default)
Priority (2-3 business days) - 50% surcharge PO 818999 Postal Code Address 421 Pine Ave Sample Location (sys loc code) LC_DCDS LC_DC3 LC_DC3 LC_DCDS LC_DCDS LC_DCDS LC_DC3 LC_DC3 LC_DC3 Sparwood V0B 2G0 Field Matrix TA TA TA TA TA TA TA TA TA Z Z 2 Z Z Z 2 Z Hazardous Material (Yes/No) Country Province 10-May-22 10-May-22 Date

\$55

354

358

£58 926

361 360 359 53 CS ID

Teck

Facility Name / Job# Line Creek Operations

PROJECT/CLIENT INFO

COC ID:

Project Manager Mike Pope

Email Mike.pope@teck.com

S 4 5

1702 nam F1

LCO_LAEMP Sampler's Signature Sampler's Name 10-May-22 J 10-May-22 / 10-May-22 -10-May-22 10-May-22 10-May-22 10-May-22 Canada ВС Robin Valleau Time (24hr) 10:20 10:15 10:00 10:10 10:05 12:45 12:40 12:35 12:50 Species BIT BIT HIT BIT BIT BIT BIT BIT BIT TURNAROUND TIME: Phone Number Page Postal Code V8M 0B3 Lab Contact Jennie Christensen Composite Composite Composite Composite Composite Composite Composite Lab Name TrichAnalytics Inc. Composite Composite Sample Type Address 207-1753 Sean Heights Robin Valleau Email jennie.christensen@trichanalytics City Saanichton LABORATORY 1 of May 15, 2022 -Number of Containers 2 Metals in Biota by CRC ICPMS × × × × × × × × × wet and dry) ANALYSIS REQUESTED Received Country Province Mercury in Biota by CVAAS (wet, dry & routine) × × × × × × × × × Canada BC Moisture Content by Date/Time × × × × × × × × Mobile # Gravimetry ha PO number Email 2: Email 5: Email 4: Email 3: Email 1: Report Format / Distribution Alex Robin valleau@minnow.ca // teckcoal@equisonline.com mike.pope@teck.com AquaSciLab@teck.com essica.Ritz@teck.com appe RUSH: OTHER INFO 818999 May 15, 2022 416-970-7535 Filtered - F: Field, L: Lab. FL: Field & Lab. N: No. Project #: 2022 - 334 Excel PDF EDD

BENTHIC TISSUE CHEMISTRY

TrichAnalytics Laboratory Report 2022-393 (Finalized 13-Oct-22)

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Client: Nicole Zathey Date Received: 29 Sep 2022

Project Manager

Teck Coal Ltd

Date of Analysis: 05 Oct 2022

Final Report Date: 13 Oct 2022

Phone: (250) 865-3048 Project No.: 2022-393 Email: nicole.zathey@teck.com; aquascilab@teck.com; jessica.ritz@teck.com; Method No.: MET-002.06

teck.lab.results@teck.com; lbowron@minnow.ca; robin.valleau@minnow.ca;

teckcoal@equisonline.com

Client Project: LCO_LAEMP_DRY_2022-09 Line Creek Operation (PO 818999)

Analytical Request: Composite Benthic Invertebrate Tissue Microchemistry (total metals & moisture) - 48 samples.

See chain of custody form provided for sample identification numbers.

Notes:

Analytical results are expressed in parts per million (ppm) dry weight (equivalent to mg/kg).

Samples quantified using DORM-4, NIST-1566b, and NIST-2976 certified reference standards.

Aluminum concentrations above 1,000 ppm are outside linear range of the calibration curve.

RPD values calculated according to the British Columbia Environmental Laboratory Manual (2020) criteria.

Client specific DQO for Selenium accuracy is 90-110% of the certified value; result achieved 108% (ranging from 107-109%).

This report provides the analytical results only for tissue samples noted above as received from the Client.

Reviewed and Approved by Jennie Christensen, PhD, RPBio

13 Oct 2022

Date

[The analytical report shall not be reproduced except in full under the expressed written consent of TrichAnalytics Inc.]

TrichAnalytics Inc. 207-1753 Sean Heights Saanichton, BC V8M 0B3 www.trichanalytics.com

Project No: 2022-393

			LC_DC1_INV-	LC_DC1_INV-	LC_DC1_INV-	LC_DC1_INV-	LC_DC1_INV-
		Client ID	1_2022-09-12_N	2_2022-09-12_N	3_2022-09-12_N	4_2022-09-12_N	5_2022-09-12_N
		Lab ID	419	420	421	422	423
		et Weight (g)	0.4333	0.4106	0.2347	0.3648	0.6957
	Di	y Weight (g)	0.1164	0.0972	0.0559	0.0816	0.1592
		Moisture (%)	73.1	76.3	76.2	77.6	77.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.025	0.083	2.5	1.8	1.7	0.991	1.3
11B	0.074	0.247	5.3	3.6	3.6	0.969	2.7
23Na	3.2	11	3,778	2,583	3,081	5,014	2,755
24Mg	0.050	0.167	1,660	1,476	1,404	1,330	1,166
27Al	0.053	0.177	4,628	3,567	2,849	602	2,585
31P	63	210	12,991	8,878	10,247	16,025	9,709
39K	3.1	10	17,444	11,043	11,537	18,017	10,636
44Ca	13	43	4,911	8,654	8,303	3,462	4,561
49Ti	0.001	0.003	350	258	202	43	172
51V	0.025	0.083	13	8.9	7.1	1.8	7.0
52Cr	0.153	0.510	27	8.1	36	10	19
55Mn	0.006	0.020	67	69	58	24	56
57Fe	1.5	5.0	2,396	1,657	2,231	548	1,548
59Co	0.009	0.030	1.8	0.974	0.986	0.397	0.943
60Ni	0.030	0.100	63	29	62	18	38
63Cu	0.149	0.497	18	14	14	11	14
66Zn	0.335	1.1	155	122	116	123	182
75As	0.453	1.5	1.4	1.2	1.1	0.604	0.893
77Se	0.381	1.3	8.3	7.2	8.3	8.3	9.6
88Sr	0.001	0.003	10	17	12	3.7	8.1
95Mo	0.014	0.047	0.776	0.662	0.799	0.480	0.662
107Ag	0.001	0.003	0.132	0.111	0.102	0.072	0.126
111Cd	0.036	0.120	1.9	2.4	2.2	0.908	2.2
118Sn	0.019	0.063	0.400	0.646	0.625	0.090	0.357
121Sb	0.004	0.013	0.165	0.122	0.125	0.030	0.113
137Ba	0.001	0.003	167	287	199	44	185
202Hg	0.025	0.083	0.056	0.051	0.056	0.031	0.074
205TI	0.001	0.003	0.063	0.056	0.045	0.016	0.040
208Pb	0.002	0.007	0.861	0.695	0.668	0.137	0.488
238U	0.001	0.003	0.221	0.177	0.132	0.031	0.147

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	LC_DC2_INV- 1_2022-09-14_N	LC_DC2_INV- 2_2022-09-14_N	LC_DC2_INV- 3_2022-09-14_N	LC_DC2_INV- 4_2022-09-14_N	LC_DC2_INV- 5_2022-09-14_N
		Lab ID	424	425	426	427	428
		et Weight (g)	0.4722	0.1764	0.3899	0.6971	0.5792
		ry Weight (g)	0.0916	0.0399	0.0820	0.1530	0.1424
		Moisture (%)	80.6	77.4	79.0	78.1	75.4
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.025	0.083	0.522	1.7	1.1	2.1	0.631
11B	0.074	0.247	0.345	4.1	1.7	4.2	0.942
23Na	3.2	11	2,712	2,387	2,842	2,684	1,522
24Mg	0.050	0.167	207	650	453	773	428
27Al	0.053	0.177	86	3,347	1,652	3,706	926
31P	63	210	11,301	9,368	10,186	9,601	7,217
39K	3.1	10	7,771	9,438	10,283	11,072	4,298
44Ca	13	43	467	2,357	1,253	2,779	1,629
49Ti	0.001	0.003	4.8	227	107	239	54
51V	0.025	0.083	0.343	8.9	3.9	10	2.3
52Cr	0.153	0.510	3.6	63	8.5	43	12
55Mn	0.006	0.020	10	48	25	64	42
57Fe	1.5	5.0	114	1,747	756	1,726	459
59Co	0.009	0.030	0.274	1.4	0.695	2.4	0.662
60Ni	0.030	0.100	11	117	22	86	22
63Cu	0.149	0.497	8.8	16	10	18	10
66Zn	0.335	1.1	93	135	114	247	100
75As	0.453	1.5	< 0.453	0.704	0.553	1.2	< 0.453
77Se	0.381	1.3	7.4	7.9	6.6	8.9	6.1
88Sr	0.001	0.003	0.712	6.6	3.2	8.8	3.4
95Mo	0.014	0.047	0.240	1.1	0.343	0.959	0.365
107Ag	0.001	0.003	0.078	0.156	0.114	0.132	0.093
111Cd	0.036	0.120	0.942	1.8	1.1	3.5	1.2
118Sn	0.019	0.063	0.032	0.436	1.1	0.513	0.197
121Sb	0.004	0.013	0.030	0.125	0.086	0.187	0.043
137Ba	0.001	0.003	31	115	72	145	54
202Hg	0.025	0.083	0.072	0.092	0.072	0.107	0.087
205TI	0.001	0.003	0.010	0.061	0.031	0.077	0.018
208Pb	0.002	0.007	0.047	0.582	0.304	0.893	0.224
238U	0.001	0.003	0.021	0.202	0.083	0.219	0.058

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	LC_DC3_INV- 1_2022-09-13_N	LC_DC3_INV- 2_2022-09-13_N	LC_DC3_INV- 3_2022-09-13_N	LC_DC3_INV- 4_2022-09-13_N	LC_DC3_INV- 5_2022-09-13_N
		CHOILID	1_2022 05 15_14	2_2022 03 13_14	5_2022 05 15_14	4_2022 05 15_11	5_2022 05 15_14
		Lab ID	429	430	431	432	433
	We	et Weight (g)	0.2440	0.2556	0.3614	0.2269	0.4485
		y Weight (g)	0.0465	0.0514	0.0921	0.0604	0.0884
		Moisture (%)	80.9	79.9	74.5	73.4	80.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.025	0.083	1.5	2.2	1.8	0.841	1.4
11B	0.074	0.247	2.5	4.4	4.1	1.2	0.983
23Na	3.2	11	3,487	3,307	2,969	3,472	7,549
24Mg	0.050	0.167	1,511	1,668	1,829	1,601	1,003
27Al	0.053	0.177	2,097	3,661	2,838	797	676
31P	63	210	12,545	12,116	12,977	14,308	10,744
39K	3.1	10	11,037	12,351	15,186	14,627	11,501
44Ca	13	43	6,321	8,202	7,314	3,020	1,431
49Ti	0.001	0.003	129	262	206	59	46
51V	0.025	0.083	5.5	11	9.8	2.5	1.9
52Cr	0.153	0.510	9.2	48	13	10	5.0
55Mn	0.006	0.020	46	65	58	32	16
57Fe	1.5	5.0	794	2,220	1,526	556	152
59Co	0.009	0.030	1.0	3.1	2.0	1.1	0.302
60Ni	0.030	0.100	35	88	49	30	11
63Cu	0.149	0.497	16	18	21	21	6.1
66Zn	0.335	1.1	144	167	170	156	66
75As	0.453	1.5	0.578	0.931	0.905	0.616	< 0.453
77Se	0.381	1.3	7.7	9.4	9.9	8.8	10
88Sr	0.001	0.003	12	16	11	3.9	2.7
95Mo	0.014	0.047	0.548	0.685	0.708	0.411	0.367
107Ag	0.001	0.003	0.090	0.132	0.207	0.162	0.036
111Cd	0.036	0.120	1.4	1.8	2.1	1.3	0.266
118Sn	0.019	0.063	0.979	0.837	0.678	0.625	0.131
121Sb	0.004	0.013	0.111	0.155	0.148	0.055	0.037
137Ba	0.001	0.003	139	169	126	35	8.1
202Hg	0.025	0.083	0.074	0.079	0.092	0.056	0.038
205Tl	0.001	0.003	0.056	0.071	0.067	0.031	0.013
208Pb	0.002	0.007	0.501	0.868	0.686	0.252	0.061
238U	0.001	0.003	0.161	0.262	0.224	0.060	0.038

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			LC_DC4_COMPN		LC_DC4_INV-	LC_DC4_INV-	LC_DC4_INV-
		Client ID	OLI-1_2022-09-	2_2022-09-12_N	3_2022-09-12_N	4_2022-09-12_N	5_2022-09-12_N
			12_N				
		Lab ID	434	435	436	437	438
	We	et Weight (g)	0.2631	0.3397	0.5776	0.7787	0.6136
	Di	y Weight (g)	0.0464	0.0735	0.1233	0.1881	0.1446
		Moisture (%)	82.4	78.4	78.7	75.8	76.4
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.025	0.083	1.3	1.1	0.615	0.552	0.646
11B	0.074	0.247	2.4	2.4	0.940	0.812	0.841
23Na	3.2	11	3,077	4,059	3,132	3,094	2,816
24Mg	0.050	0.167	1,345	1,025	875	817	1,253
27Al	0.053	0.177	2,109	1,717	491	549	599
31P	63	210	10,186	13,418	12,601	11,302	10,466
39K	3.1	10	11,603	13,304	10,591	9,695	11,057
44Ca	13	43	3,494	3,245	1,522	869	1,816
49Ti	0.001	0.003	119	116	34	39	41
51V	0.025	0.083	5.8	5.3	1.8	1.8	1.9
52Cr	0.153	0.510	45	20	10	9.0	11
55Mn	0.006	0.020	37	52	24	37	22
57Fe	1.5	5.0	1,562	955	335	410	463
59Co	0.009	0.030	2.1	1.0	0.573	0.418	1.2
60Ni	0.030	0.100	72	44	19	26	22
63Cu	0.149	0.497	15	12	9.9	13	10
66Zn	0.335	1.1	138	155	107	118	199
75As	0.453	1.5	1.0	1.1	0.785	0.606	0.799
77Se	0.381	1.3	7.0	10	9.1	8.8	7.7
88Sr	0.001	0.003	5.4	5.3	2.3	1.4	1.9
95Mo	0.014	0.047	0.480	0.502	0.343	0.580	0.316
107Ag	0.001	0.003	0.108	0.120	0.093	0.082	0.076
111Cd	0.036	0.120	2.0	2.7	0.984	0.846	2.0
118Sn	0.019	0.063	0.647	0.431	0.142	0.141	0.189
121Sb	0.004	0.013	0.091	0.101	0.048	0.050	0.046
137Ba	0.001	0.003	93	190	55	60	42
202Hg	0.025	0.083	0.054	0.097	0.066	0.042	0.084
205Tl	0.001	0.003	0.039	0.034	0.018	0.018	0.026
208Pb	0.002	0.007	0.440	0.525	0.137	0.180	0.200
238U	0.001	0.003	0.138	0.171	0.053	0.050	0.049

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			LC_DCDS_INV-	LC_DCDS_INV-	LC_DCDS_INV-	LC_DCDS_INV-	LC_DCDS_INV-
		Client ID	1_2022-09-13_N	2_2022-09-13_N	3_2022-09-13_N	4_2022-09-13_N	5_2022-09-13_N
		Lab ID	439	440	441	442	443
		et Weight (g)	0.1824	0.6907	0.5320	0.6808	0.3517
		y Weight (g)	0.0472	0.1456	0.1195	0.1702	0.0850
		Moisture (%)	74.1	78.9	77.5	75.0	75.8
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.025	0.083	4.5	2.2	1.5	0.359	1.9
11B	0.074	0.247	9.7	3.7	2.4	0.798	3.5
23Na	3.2	11	2,375	2,978	3,941	1,697	3,020
24Mg	0.050	0.167	1,521	1,237	1,538	614	1,328
27Al	0.053	0.177	6,410	2,937	1,243	299	2,875
31P	63	210	10,526	10,989	14,586	5,860	11,307
39K	3.1	10	11,080	10,475	14,385	5,611	11,725
44Ca	13	43	5,706	3,686	3,733	1,237	3,334
49Ti	0.001	0.003	691	240	100	19	228
51V	0.025	0.083	26	9.0	4.0	1.1	8.3
52Cr	0.153	0.510	37	25	12	5.3	25
55Mn	0.006	0.020	100	89	75	38	94
57Fe	1.5	5.0	3,069	1,541	706	216	1,495
59Co	0.009	0.030	3.1	2.3	1.2	0.745	1.9
60Ni	0.030	0.100	94	84	50	18	68
63Cu	0.149	0.497	20	15	16	7.5	16
66Zn	0.335	1.1	249	199	179	83	251
75As	0.453	1.5	1.7	1.6	0.854	0.468	0.909
77Se	0.381	1.3	15	10	12	8.3	15
88Sr	0.001	0.003	18	9.3	7.5	2.0	7.7
95Mo	0.014	0.047	1.1	0.659	0.685	0.264	0.765
107Ag	0.001	0.003	0.275	0.223	0.254	0.062	0.223
111Cd	0.036	0.120	2.7	1.9	2.1	0.804	2.5
118Sn	0.019	0.063	0.413	0.331	0.344	0.050	0.398
121Sb	0.004	0.013	0.498	0.229	0.124	0.046	0.207
137Ba	0.001	0.003	298	168	121	30	144
202Hg	0.025	0.083	0.163	0.114	0.120	0.060	0.154
205TI	0.001	0.003	0.196	0.072	0.048	0.023	0.074
208Pb	0.002	0.007	1.7	0.808	0.486	0.112	0.753
238U	0.001	0.003	0.407	0.226	0.131	0.031	0.188

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			LC_DCEF_INV-	LC_DCEF_INV-	LC_DCEF_INV-	LC_DCEF_INV-	LC_DCEF_INV-
		Client ID	1_2022-09-12_N	2_2022-09-13_N	3_2022-09-13_N	4_2022-09-13_N	
		Lab ID	444	445	446	447	448
		et Weight (g)	0.3793	0.2747	0.2072	0.2528	0.3388
	Di	y Weight (g)	0.0822	0.0645	0.0411	0.0498	0.0669
		Moisture (%)	78.3	76.5	80.2	80.3	80.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.025	0.083	0.574	0.574	0.929	0.516	1.0
11B	0.074	0.247	2.1	0.641	2.3	1.1	2.4
23Na	3.2	11	2,928	2,784	3,197	1,986	3,052
24Mg	0.050	0.167	1,278	1,364	1,460	932	1,349
27Al	0.053	0.177	138	181	939	340	1,434
31P	63	210	12,378	12,221	12,332	9,679	9,809
39K	3.1	10	11,775	10,396	10,235	8,039	11,559
44Ca	13	43	2,755	2,838	2,944	1,528	3,462
49Ti	0.001	0.003	10	11	74	20	117
51V	0.025	0.083	1.3	1.1	4.1	1.7	5.3
52Cr	0.153	0.510	8.7	7.1	15	6.8	17
55Mn	0.006	0.020	28	15	28	14	31
57Fe	1.5	5.0	237	230	664	247	817
59Co	0.009	0.030	0.453	0.321	0.836	0.445	1.1
60Ni	0.030	0.100	11	10	24	11	24
63Cu	0.149	0.497	22	20	16	12	16
66Zn	0.335	1.1	263	179	136	107	144
75As	0.453	1.5	0.744	0.702	2.6	1.3	2.3
77Se	0.381	1.3	5.9	5.9	5.4	5.4	5.7
88Sr	0.001	0.003	2.7	3.1	4.2	2.1	5.4
95Mo	0.014	0.047	0.448	0.475	0.422	0.264	0.525
107Ag	0.001	0.003	0.124	0.137	0.103	0.117	0.117
111Cd	0.036	0.120	1.9	2.1	2.4	1.6	3.9
118Sn	0.019	0.063	0.356	0.379	0.556	0.171	0.699
121Sb	0.004	0.013	0.058	0.044	0.097	0.045	0.120
137Ba	0.001	0.003	247	51	106	39	129
202Hg	0.025	0.083	0.084	0.084	0.084	0.096	0.066
205Tl	0.001	0.003	0.007	0.009	0.024	0.012	0.031
208Pb	0.002	0.007	0.080	0.098	0.334	0.121	0.388
238U	0.001	0.003	0.115	0.069	0.090	0.033	0.118

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	LC_FRB_INV- 1_2022-09-10_N	LC_FRB_INV- 2_2022-09-10_N	LC_FRB_INV- 3_2022-09-10_N	LC_FRB_INV- 4_2022-09-10_N	LC_FRB_INV- 5_2022-09-10_N
		Cilotte 15	1_2022 03 10_11		3_2022 03 10_11	1_2022 03 10_11	3_2022 03 10_11
		Lab ID	449	450	451	452	453
	We	et Weight (g)	0.4700	0.1917	0.3821	0.4954	0.4292
		ry Weight (g)	0.0914	0.0398	0.0691	0.0998	0.1115
		Moisture (%)	80.6	79.2	81.9	79.9	74.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.025	0.083	1.2	1.3	0.857	1.2	1.2
11B	0.074	0.247	0.826	1.5	0.513	1.4	2.2
23Na	3.2	11	2,622	2,193	2,340	2,823	3,144
24Mg	0.050	0.167	1,246	1,442	1,136	1,396	1,983
27Al	0.053	0.177	381	845	229	715	1,312
31P	63	210	9,117	9,106	10,035	10,008	12,894
39K	3.1	10	8,675	9,462	8,936	10,758	13,257
44Ca	13	43	3,279	4,851	2,440	5,016	5,617
49Ti	0.001	0.003	25	167	15	50	96
51V	0.025	0.083	1.0	4.0	0.648	2.0	3.2
52Cr	0.153	0.510	12	48	4.8	7.5	14
55Mn	0.006	0.020	64	54	34	51	54
57Fe	1.5	5.0	532	1,405	252	654	1,026
59Co	0.009	0.030	0.900	2.8	0.729	1.3	2.1
60Ni	0.030	0.100	19	78	8.7	16	28
63Cu	0.149	0.497	17	16	11	18	19
66Zn	0.335	1.1	173	171	158	158	286
75As	0.453	1.5	0.482	0.716	0.523	0.551	1.0
77Se	0.381	1.3	12	11	9.6	9.7	13
88Sr	0.001	0.003	3.7	6.1	2.6	5.6	7.9
95Mo	0.014	0.047	0.593	0.554	0.422	0.409	0.814
107Ag	0.001	0.003	0.131	0.158	0.096	0.210	0.157
111Cd	0.036	0.120	2.0	2.8	2.3	2.1	3.5
118Sn	0.019	0.063	0.257	0.632	0.387	0.537	0.695
121Sb	0.004	0.013	0.027	0.059	0.020	0.053	0.055
137Ba	0.001	0.003	36	39	18	41	55
202Hg	0.025	0.083	0.060	0.054	0.060	0.063	0.039
205Tl	0.001	0.003	0.013	0.026	0.010	0.019	0.028
208Pb	0.002	0.007	0.214	0.398	0.096	0.357	0.371
238U	0.001	0.003	0.058	0.074	0.036	0.067	0.099

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			LC_FRUS_INV-	LC_FRUS_INV-	LC_FRUS_INV-	LC_FRUS_INV-	LC_FRUS_INV-
		Client ID	1_2022-09-10_N	2_2022-09-10_N	3_2022-09-10_N	4_2022-09-10_N	5_2022-09-10_N
		Lab ID	454	455	456	457	458
		et Weight (g)	0.6246	0.2170	0.2562	0.5051	0.5845
		y Weight (g)	0.1330	0.0463	0.0538	0.1283	0.1305
		Moisture (%)	78.7	78.7	79.0	74.6	77.7
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.025	0.083	1.3	1.0	1.1	1.1	0.938
11B	0.074	0.247	3.2	2.8	2.4	1.9	1.7
23Na	3.2	11	2,488	2,681	1,888	2,251	2,430
24Mg	0.050	0.167	1,745	1,509	1,333	1,360	1,334
27Al	0.053	0.177	1,482	981	1,404	1,047	1,044
31P	63	210	9,361	10,340	7,464	9,551	8,705
39K	3.1	10	10,269	11,806	8,498	10,051	9,465
44Ca	13	43	6,032	6,222	4,485	5,067	3,913
49Ti	0.001	0.003	84	80	111	30	72
51V	0.025	0.083	3.6	2.6	3.4	1.1	2.3
52Cr	0.153	0.510	11	15	17	5.7	10
55Mn	0.006	0.020	64	51	47	67	61
57Fe	1.5	5.0	1,082	849	1,145	427	746
59Co	0.009	0.030	2.3	2.0	2.5	1.1	1.8
60Ni	0.030	0.100	21	24	31	10	18
63Cu	0.149	0.497	18	18	17	18	17
66Zn	0.335	1.1	194	235	215	203	284
75As	0.453	1.5	0.854	0.569	0.840	0.527	0.683
77Se	0.381	1.3	11	9.6	8.0	10	9.9
88Sr	0.001	0.003	14	9.3	6.7	5.9	4.8
95Mo	0.014	0.047	0.575	0.589	0.533	0.449	0.631
107Ag	0.001	0.003	0.103	0.097	0.073	0.091	0.103
111Cd	0.036	0.120	4.3	2.8	3.8	2.0	3.5
118Sn	0.019	0.063	0.460	0.959	1.0	0.188	0.476
121Sb	0.004	0.013	0.055	0.051	0.044	0.028	0.035
137Ba	0.001	0.003	60	53	44	59	48
202Hg	0.025	0.083	0.050	0.033	0.028	0.044	0.072
205TI	0.001	0.003	0.031	0.019	0.025	0.016	0.022
208Pb	0.002	0.007	0.436	0.327	0.369	0.200	0.309
238U	0.001	0.003	0.179	0.149	0.095	0.131	0.102

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

TrichAnalytics Inc.

Project No: 2022-393

Page 9 of 23

			LC_GRCK_COMP		LC_GRCK_INV-	LC_GRCK_INV-	LC_GRCK_INV-
		Client ID	NOLI-1_2022-09-	NOLI-2_2022-09-	3_2022-09-14_N	4_2022-09-14_N	5_2022-09-14_N
			14_N	14_N			
		Lab ID	459	460	461	462	463
		et Weight (g)	0.1929	0.1823	0.0342	0.0735	0.2062
		y Weight (g)	0.0431	0.0413	0.0089	0.0133	0.0458
		Moisture (%)	77.7	77.3	74.0	81.9	77.8
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.025	0.083	1.7	3.8	1.4	3.2	1.2
11B	0.074	0.247	5.5	12	5.7	11	5.1
23Na	3.2	11	2,401	2,564	1,857	2,254	2,455
24Mg	0.050	0.167	1,542	1,825	823	1,973	1,876
27Al	0.053	0.177	3,281	7,085	2,937	6,575	2,671
31P	63	210	9,460	9,265	5,753	7,509	8,721
39K	3.1	10	9,721	12,525	7,500	11,558	9,187
44Ca	13	43	2,835	4,426	3,426	4,903	3,114
49Ti	0.001	0.003	296	705	182	689	216
51V	0.025	0.083	6.0	13	4.5	12	5.6
52Cr	0.153	0.510	28	56	31	50	32
55Mn	0.006	0.020	68	117	40	101	93
57Fe	1.5	5.0	2,243	4,576	1,988	4,255	1,857
59Co	0.009	0.030	2.2	4.0	1.8	2.8	2.3
60Ni	0.030	0.100	45	94	45	79	51
63Cu	0.149	0.497	21	23	15	19	15
66Zn	0.335	1.1	198	216	149	169	155
75As	0.453	1.5	1.2	1.7	0.683	1.7	1.1
77Se	0.381	1.3	7.3	7.8	4.8	8.7	7.3
88Sr	0.001	0.003	8.8	16	11	13	8.9
95Mo	0.014	0.047	0.646	1.1	0.519	1.6	0.758
107Ag	0.001	0.003	0.085	0.079	0.085	0.048	0.054
111Cd	0.036	0.120	1.7	1.8	1.3	4.2	1.4
118Sn	0.019	0.063	0.726	0.577	0.941	0.837	0.983
121Sb	0.004	0.013	0.063	0.111	0.074	0.089	0.050
137Ba	0.001	0.003	65	125	56	104	72
202Hg	0.025	0.083	0.106	0.081	0.056	0.072	0.067
205Tl	0.001	0.003	0.055	0.099	0.045	0.081	0.053
208Pb	0.002	0.007	0.839	1.6	0.667	1.4	0.713
238U	0.001	0.003	0.134	0.276	0.120	0.257	0.120

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			LC_GRCK_INVOLI-	LC_GRCK_INVOLI-	LC_DC4_INVOLI-
		Client ID	1_2022-09-14_N	2_2022-09-14_N	1_2022-09-12_N
		Lab ID	464	465	466
		et Weight (g)	0.0038	0.0057	0.0341
	Dı	y Weight (g)	0.0018	0.0011	0.0137
		Moisture (%)	52.6	80.7	59.8
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)
7Li	0.025	0.083	0.099	0.046	0.625
11B	0.074	0.247	< 0.074	0.097	< 0.074
23Na	3.2	11	3,185	1,647	2,116
24Mg	0.050	0.167	596	670	872
27Al	0.053	0.177	2.2	16	17
31P	63	210	5,919	3,944	5,058
39K	3.1	10	5,555	2,533	3,361
44Ca	13	43	1,361	2,358	3,022
49Ti	0.001	0.003	0.408	0.816	0.816
51V	0.025	0.083	<0.025	0.036	0.138
52Cr	0.153	0.510	1.2	3.3	6.0
55Mn	0.006	0.020	2.0	3.8	4.6
57Fe	1.5	5.0	22	57	97
59Co	0.009	0.030	0.035	0.052	0.198
60Ni	0.030	0.100	0.073	2.4	6.8
63Cu	0.149	0.497	7.3	4.8	9.1
66Zn	0.335	1.1	95	100	64
75As	0.453	1.5	< 0.453	< 0.453	< 0.453
77Se	0.381	1.3	6.6	3.6	7.5
88Sr	0.001	0.003	4.2	9.9	4.2
95Mo	0.014	0.047	0.112	0.112	0.196
107Ag	0.001	0.003	0.091	0.042	0.079
111Cd	0.036	0.120	3.4	1.6	2.1
118Sn	0.019	0.063	0.080	0.097	0.037
121Sb	0.004	0.013	< 0.004	0.005	0.007
137Ba	0.001	0.003	3.3	55	36
202Hg	0.025	0.083	0.078	0.056	0.067
205Tl	0.001	0.003	0.003	0.003	0.004
208Pb	0.002	0.007	0.006	0.013	0.010
238U	0.001	0.003	0.001	0.002	0.002

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

(Client ID	LC_DC1_	INV-1_2022-	09-12_N	LC_DC2_	INV-4_2022-	-09-14_N	LC_DCEF	_INV-1_2022-	-09-12_N
	Lab ID		419			427			444	
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.025	2.5	2.0	22	2.1	1.9	8.2	0.574	0.529	8.2
11B	0.074	5.3	4.2	23	4.2	4.7	10	2.1	1.7	21
23Na	3.2	3,778	3,577	5.5	2,684	2,761	2.8	2,928	2,454	18
24Mg	0.050	1,660	1,662	0.1	773	856	10	1,278	1,097	15
27AI	0.053	4,628	3,476	28	3,706	4,909	28	138	196	35
31P	63	12,991	14,744	13	9,601	9,605	0.0	12,378	9,767	24
39K	3.1	17,444	15,010	15	11,072	10,555	4.8	11,775	10,416	12
44Ca	13	4,911	4,206	16	2,779	3,026	8.5	2,755	3,176	14
49Ti	0.001	350	238	38	239	282	17	10	13	26
51V	0.025	13	10	26	10	13	23	1.3	1.3	0.0
52Cr	0.153	27	35	26	43	63	38	8.7	7.5	15
55Mn	0.006	67	51	27	64	64	0.4	28	27	3.6
57Fe	1.5	2,396	1,757	31	1,726	2,116	20	237	264	11
59Co	0.009	1.8	1.8	0.0	2.4	3.1	27	0.453	0.412	9.5
60Ni	0.030	63	63	0.0	86	116	29	11	10	9.5
63Cu	0.149	18	15	18	18	16	12	22	19	15
66Zn	0.335	155	166	6.9	247	217	13	263	206	24
75As	0.453	1.4	1.2	-	1.2	1.1	7.2	0.744	0.689	-
77Se	0.381	8.3	8.4	1.2	8.9	9.8	10	5.9	5.1	15
88Sr	0.001	10	7.9	24	8.8	8.9	1.5	2.7	2.8	3.6
95Mo	0.014	0.776	0.617	23	0.959	0.891	7.4	0.448	0.448	0.0
107Ag	0.001	0.132	0.108	20	0.132	0.168	24	0.124	0.103	19
111Cd	0.036	1.9	1.7	11	3.5	3.1	11	1.9	2.0	5.1
118Sn	0.019	0.400	0.322	22	0.513	0.539	4.8	0.356	0.470	28
121Sb	0.004	0.165	0.162	1.8	0.187	0.179	4.6	0.058	0.060	3.4
137Ba	0.001	167	124	30	145	150	3.3	247	223	10
202Hg	0.025	0.056	0.056	=-	0.107	0.153	35	0.084	0.090	
205TI	0.001	0.063	0.055	14	0.077	0.073	5.9	0.007	0.009	-
208Pb	0.002	0.861	0.779	10	0.893	0.814	9.2	0.080	0.106	28
238U	0.001	0.221	0.152	37	0.219	0.251	14	0.115	0.112	2.6

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Project No: 2022-393

Teck Coal Limited
Tissue QA/QC Relative Percent Difference Results

	Jilent ID	LC_FRB_	INV-5_2022-	09-10_N	LC_GRCK	_INV-5_2022	-09-14_N
	Lab ID		453			463	
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.025	1.2	1.2	0.0	1.2	1.2	0.0
11B	0.074	2.2	1.8	20	5.1	4.7	8.2
23Na	3.2	3,144	2,825	11	2,455	2,808	13
24Mg	0.050	1,983	2,162	8.6	1,876	1,557	19
27Al	0.053	1,312	1,149	13	2,671	2,723	1.9
31P	63	12,894	13,380	3.7	8,721	9,412	7.6
39K	3.1	13,257	12,826	3.3	9,187	10,921	17
44Ca	13	5,617	5,961	5.9	3,114	3,123	0.3
49Ti	0.001	96	106	9.9	216	230	6.3
51V	0.025	3.2	3.0	6.5	5.6	5.6	0.0
52Cr	0.153	14	13	7.4	32	35	9.0
55Mn	0.006	54	51	5.7	93	86	7.8
57Fe	1.5	1,026	845	19	1,857	2,067	11
59Co	0.009	2.1	1.9	10	2.3	2.5	8.3
60Ni	0.030	28	24	15	51	60	16
63Cu	0.149	19	21	10	15	19	24
66Zn	0.335	286	301	5.1	155	174	12
75As	0.453	1.0	0.797	-	1.1	1.2	-
77Se	0.381	13	14	7.4	7.3	8.0	9.2
88Sr	0.001	7.9	8.0	1.3	8.9	10	12
95Mo	0.014	0.814	0.730	11	0.758	0.870	14
107Ag	0.001	0.157	0.206	27	0.054	0.067	22
111Cd	0.036	3.5	3.6	2.8	1.4	1.8	25
118Sn	0.019	0.695	0.600	15	0.983	0.907	8.0
121Sb	0.004	0.055	0.054	1.8	0.050	0.057	13
137Ba	0.001	55	46	18	72	74	2.7
202Hg	0.025	0.039	0.072	-	0.067	0.069	-
205TI	0.001	0.028	0.025	11	0.053	0.057	7.3
208Pb	0.002	0.371	0.331	11	0.713	0.796	11

6.8

Notes:

238U

ppm = parts per million

RPD = relative percent difference

0.001

0.099

Client ID

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

0.106

0.120

0.153

24

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	Sa	ample Group ID		01			02	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.025	1.21	1.3	111	11	1.3	111	8.5
11B	0.074	4.5	4.8	107	1.5	4.8	107	4.4
23Na	3.2	14,000	14,409	103	5.6	16,153	115	7.4
24Mg	0.050	910	1,012	111	5.7	996	110	8.2
27Al	0.053	197.2	193	98	6.1	198	100	3.5
31P	63	8,000	8,232	103	5.9	9,153	114	6.8
39K	3.1	15,500	16,308	105	3.7	17,459	113	12
44Ca	13	2,360	2,462	104	6.7	2,610	111	5.6
49Ti	0.001	12.24	13	105	10	14	116	10
51V	0.025	1.57	1.6	101	2.8	1.9	120	10
52Cr	0.153	1.87	2.0	105	6.8	2.1	112	5.8
55Mn	0.006	3.17	3.4	108	5.3	3.4	107	4.2
57Fe	1.5	343	356	104	5.8	384	112	4.3
59Co	0.009	0.25	0.299	120	6.3	0.293	117	2.8
60Ni	0.030	1.34	1.4	103	6.1	1.5	113	5.5
63Cu	0.149	15.7	18	117	4.9	18	112	5.1
66Zn	0.335	51.6	55	106	8.5	58	113	7.8
75As	0.453	6.87	7.4	108	5.7	7.7	113	7.2
77Se	0.381	3.45	3.8	109	8.1	3.7	107	3.0
88Sr	0.001	10.1	11	106	5.0	12	117	7.1
95Mo	0.014	0.29	0.302	104	3.4	0.335	116	3.6
107Ag	0.001	0.0252	0.031	124	16	0.028	113	11
111Cd	0.036	0.299	0.338	113	12	0.285	95	16
118Sn	0.019	0.061	0.065	107	9.1	0.066	108	14
121Sb	0.004	0.011	0.010	89	8.5	0.014	127	8.7
137Ba	0.001	8.6	8.8	102	4.6	9.5	111	6.5
202Hg	0.025	0.412	0.447	108	5.8	0.492	119	6.6
205Tl	0.001	0.0013	-	-	-	-	-	-
208Pb	0.002	0.404	0.407	101	4.9	0.511	126	17
238U	0.001	0.05	0.050	100	14	0.054	108	9.4

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

Sample Group ID	03

Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.025	1.21	1.3	107	7.7
11B	0.074	4.5	5.0	110	5.4
23Na	3.2	14,000	16,427	117	2.4
24Mg	0.050	910	1,043	115	3.4
27Al	0.053	197.2	204	103	5.2
31P	63	8,000	9,253	116	2.0
39K	3.1	15,500	18,539	120	5.4
44Ca	13	2,360	2,806	119	5.3
49Ti	0.001	12.24	15	124	11
51V	0.025	1.57	1.9	124	10
52Cr	0.153	1.87	2.2	116	4.1
55Mn	0.006	3.17	3.7	116	3.5
57Fe	1.5	343	409	119	4.1
59Co	0.009	0.25	0.291	116	9.0
60Ni	0.030	1.34	1.5	113	5.5
63Cu	0.149	15.7	19	122	4.4
66Zn	0.335	51.6	60	116	3.5
75As	0.453	6.87	8.2	119	2.7
77Se	0.381	3.45	3.7	107	2.7
88Sr	0.001	10.1	12	119	5.9
95Mo	0.014	0.29	0.359	124	8.5
107Ag	0.001	0.0252	0.026	105	12
111Cd	0.036	0.299	0.337	113	12
118Sn	0.019	0.061	0.070	115	16
121Sb	0.004	0.011	0.009	84	18
137Ba	0.001	8.6	9.8	114	2.2
202Hg	0.025	0.412	0.456	111	4.7
205Tl	0.001	0.0013	-	-	-
208Pb	0.002	0.404	0.481	119	2.5
238U	0.001	0.05	0.057	113	8.8

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Sample Group Information

Sample Group ID	Client ID	Lab ID	Date of Analysis
01	LC_DC1_INV-1_2022-09-12_N	419	05 Oct 2022
	LC_DC1_INV-2_2022-09-12_N	420	
	LC_DC1_INV-3_2022-09-12_N	421	
	LC_DC1_INV-4_2022-09-12_N	422	
	LC_DC1_INV-5_2022-09-12_N	423	
	LC_DC2_INV-1_2022-09-14_N	424	
	LC_DC2_INV-2_2022-09-14_N	425	
	LC_DC2_INV-3_2022-09-14_N	426	
	LC_DC2_INV-4_2022-09-14_N	427	
	LC_DC2_INV-5_2022-09-14_N	428	
	LC_DC3_INV-1_2022-09-13_N	429	
	LC_DC3_INV-2_2022-09-13_N	430	
	LC_DC3_INV-3_2022-09-13_N	431	
	LC_DC3_INV-4_2022-09-13_N	432	
	LC_DC3_INV-5_2022-09-13_N	433	
	LC_DC4_COMPNOLI-1_2022-09-12_N	434	
	LC_DC4_INV-2_2022-09-12_N	435	
02	LC_DC4_INV-3_2022-09-12_N	436	05 Oct 2022
	LC_DC4_INV-4_2022-09-12_N	437	
	LC_DC4_INV-5_2022-09-12_N	438	
	LC_DCDS_INV-1_2022-09-13_N	439	
	LC_DCDS_INV-2_2022-09-13_N	440	
	LC_DCDS_INV-3_2022-09-13_N	441	
	LC_DCDS_INV-4_2022-09-13_N	442	
	LC_DCDS_INV-5_2022-09-13_N	443	
	LC_DCEF_INV-1_2022-09-12_N	444	
	LC_DCEF_INV-2_2022-09-13_N	445	
	LC_DCEF_INV-3_2022-09-13_N	446	
	LC_DCEF_INV-4_2022-09-13_N	447	
	LC_DCEF_INV-5_2022-09-13_N	448	
	LC_FRB_INV-1_2022-09-10_N	449	
	LC_FRB_INV-2_2022-09-10_N	450 451	
	LC_FRB_INV-3_2022-09-10_N	451 452	
03	LC_FRB_INV-4_2022-09-10_N	452 452	05 Oct 2022
03	LC_FRB_INV-5_2022-09-10_N LC_FRUS_INV-1_2022-09-10_N	453 454	US OCT 2022
	LC_FRUS_INV-1_2022-09-10_N LC_FRUS_INV-2_2022-09-10_N	454 455	
	LC_FRUS_INV-3_2022-09-10_N LC_FRUS_INV-3_2022-09-10_N	456 456	
	LC_FRUS_INV-3_2022-09-10_N LC_FRUS_INV-4_2022-09-10_N	450 457	
	LC_FRUS_INV-4_2022-09-10_IN LC_FRUS_INV-5_2022-09-10_N	457 458	
	LC_LUO2_1111.1-7_7055-02-10_1/	430	

Teck Coal Limited Sample Group Information

Sample			Date of
Group ID	Client ID	Lab ID	Analysis
03	LC_GRCK_COMPNOLI-1_2022-09-14_N	459	05 Oct 2022
	LC_GRCK_COMPNOLI-2_2022-09-14_N	460	
	LC_GRCK_INV-3_2022-09-14_N	461	
	LC_GRCK_INV-4_2022-09-14_N	462 463	
	LC_GRCK_INV-5_2022-09-14_N LC_GRCK_INVOLI-1_2022-09-14_N	463 464	
	LC_GRCK_INVOLI-1_2022-09-14_N	465	
	LC_DC4_INVOLI-1_2022-09-12_N	466	

	COC ID:	LCO_LAEMP_DRY 09 TRICH	AEMP 09 TR	IP_DRY	_2022-	TURN	TURNAROUND TIME:	IME:						RUSH:		
	PROJECT/CLIENT INFO		1				LA	LABORATORY	ORY	のなるのは				OTHER INEO		
Facility Name / Job	Facility Name / Job# Line Creek Operation						Lab	Lab Name TrichAnalytics Inc.	chAnalyt	ics Inc.		Rer	ort Form	Report Format / Distribution	Even DI	pne Enn
Project Manag	Project Manager Nicole Zathey						Lab Co	Lab Contact Jennie Christensen	mie Chris	stensen		Email 1:		Acres Coll ab@Tack com	1,000	18
Ema	Email Nicole.Zathey@teck.com	ш					I	mail jen	nie.christ	Email jennie.christensen@trichanalytics	chanalyti			teckcosl@equisonline.com		< >
Addre	Address 421 Pine Ave						Ad	dress 20	7-1753 Se	Address 207-1753 Sean Heights	s			Teck I ah Results@teck.com	A	* *
												Email 4:		lbowron@minnow ca	v A	4 ×
City		po	Province		BC			City Saanichton	anichton	Pro	Province BC			Rohin Valleau@mipnow.ca	e A	(A
Postal Code	le V0B 2G0	0	Country		Canada		Postal Code	Code				Email 5:	Г	Inceica DitroTack com		()
Phone Numb	Phone Number 1-250-865-3048						Phone Number	nber				PO number	1	VPO00818999		*
	SAMP	SAMPLE DETAILS			Sample of the same				THE STATE OF	ANALYS	SIS REO	ANALYSIS REQUESTED		Filtered - F. Field, L. Lab, FL: Field & Lab, N: None	L: Lab, FL: F	eld & Lab.
		(Or	(0)	8				PRESERV. FIIL.								
		(Yes/Y) And (Yes/I	LICO I) MUNOMINI CO		3782.5		\$100mm	SISATYNY		ota by CRC and dry)	routine)					
Sample ID	Sample Location (sys loc code)	Field and Matrix H		Date	Time Ti	Tissue Ti	Tissue Sample Species Structure	ARTHUR PROPERTY.	Vumber of	CPMS (wet	wet, dry &	Fravimetry				
LC_DC1_INV-1_2022-09-12_N	IZ_DC1	TA	12-5	12-Sep-22	00:6	INV Cor		osite	-							
LC_DC1_INV-2_2022-09-12_N	LC_DC1	TA	12-8	12-Sep-22	10:00	INV Cor	Composite Composite	osite	-	×	×	×				
LC_DC1_INV-3_2022-09-12_N	LC_DC1	TA	12-8	12-Sep-22	11:00	INV Cor	Composite Composite	osite	-	X	×	×			-	
LC_DC1_INV-4_2022-09-12_N	LC_DC1	TA	12-S	12-Sep-22	12:00	INV Con	Composite Composite	osite	-	×	×	×				
LC_DC1_INV-5_2022-09-12_N	LC_DC1	TA	12-S	12-Sep-22	13:00	INV Con	Composite Composite	site	-	×	x					+
LC_DC2_INV-1_2022-09-14_N	LC_DC2	TA	14-8	14-Sep-22	00:6	INV Con	Composite Composite	site	-	×	x					
LC_DC2_INV-2_2022-09-14_N	LC_DC2	TA	14-8	14-Sep-22	10:00	INV Con	Composite Composite	site	-	×	x					
LC_DC2_INV-3_2022-09-14_N	LC_DC2	TA	14-S	14-Sep-22	11:00	INV Con	Composite Composite	site	1	×	х					-
LC_DC2_INV-4_2022-09-14_N	LC_DC2	TA	14-S	14-Sep-22	12:00 I	INV Con	Composite Composite	site	-	×	x					+
ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS	ECIAL INSTRUCTIONS			RELINQU	ISHED BY	RELINQUISHED BY/AFFILIATION	NOI	D	DATE/TIME		ACCEPT	ACCEPTED BY/AFFILIATION	LIATIO		DATE/TIME	
FO 818999	,				Jennifer Ings	sgu		#	#######################################	Y	sumi sumi	ie Cal	Sine	39 840 202	7	08:40
SERVICE REOUEST (rush - subject to availability)	subject to availability)													(Project # 2022	2-393	100
Priority (Regular (default) Priority (2-3 business days) - 50% surcharge	Regular (default) - 50% surcharge	Sampl	pler's Name			Jennif	Jennifer Ings				Mobile #		5195003444		
Fmergency	Emargancy (1 Business Day) 1000/ aughana	- Paralosino									+	İ				

(coc Redd: 29 sprow)

	COC ID:	COOT	LAEMP 09 TR	LCO_LAEMP_DRY 09 TRICH	_2022	II	URNAROL	TURNAROUND TIME:						RUSH	H		
	PROJECT/CLIENT INFO							LABORATORY	ATORY		The second			OTH	OTHER INFO		
Facility Name / Jo	Facility Name / Job# Line Creek Operation							Lab Name TrichAnalytics Inc.	TrichAna	ulytics Inc			Report Fo	Report Format / Distribution		Excel P	PDF FDD
Project Manag	Project Manager Nicole Zathey							Lab Contact Jennie Christensen	Jennie C.	hristensen			Email 1:	AquaScil ah@Teck com		100	30
Em	Email Nicole.Zathey@teck.com	_						Email	jennie.ch	ristensen(Email jennie.christensen@trichanalytics	ytics	Email 2:	teckcoal@aquisonline com	line com		4 >
Addre	Address 421 Pine Ave							Address	Address 207-1753 Sean Heights	Sean He	ights		Email 3:	Teck Lab.Results@teck.com	ateck com	X X	X
. i.C	Poormon		-		0								Email 4:	Ibowron@minnow.ca	/,ca	X X	X
Poetal Code			2 2	Province	BC Grant			City	City Saanichton		Province BC	BC	Email 5:	Robin Valleau@minnow.ca	innow.ca	X X	X
Dhona Mumh	1-250.865.304		3	Country	Canada		2	Postal Code					Email 5:	Jessica Ritz@Teck.com	k.com	K X	
Luone Nume		T PETAT	9				Phc	Phone Number				-	PO number		VPO00818999	66681	
	SAMIL	SAMPLE DETAILS	3							ANA	YSIS RE	ANALYSIS REQUESTED	D	EII.	Filtered - F: Field, L.: Lab, FL: Field & Lab, N: Non	L: Lab, FL: F	leld & La
			(oN)						PRESERV. FIIL.								
			ial (Yes						s	Э	SVVA						
	Sample Location	F.:	zardous Mater		T.	Ticena	L.	2	ANALYSIS Der of Container	s in Biota by CRO	Ory in Biota by C dry & routine)	ure Content by					
Sample ID	(sys loc code)	Matrix	Haz	Date	(24hr)	type	Species	Structure	lmuN			tsioM ivra ivra					
LC_DC2_INV-5_2022-09-14_N	LC_DC2	TA		14-Sep-22	13:00	INV	Composite	Composite	-	×	×	×					
LC_DC3_INV-1_2022-09-13_N	LC_DC3	TA		13-Sep-22	9:00	INV	Composite	Composite	-	×	×	×					
LC_DC3_INV-2_2022-09-13_N	LC_DC3	TA		13-Sep-22	10:00	INV	Composite	Composite	-	×	×	×					
LC_DC3_INV-3_2022-09-13_N	LC_DC3	TA		13-Sep-22	11:00	INV	Composite	Composite	-	×	×	×					
LC_DC3_INV-4_2022-09-13_N	LC_DC3	TA		13-Sep-22	12:00	INV	Composite	Composite	1	×	×	×					
LC_DC3_INV-5_2022-09-13_N	LC_DC3	TA		13-Sep-22	13:00	INV	Composite	Composite	-	×	×	×					
LC_DC4_COMPNOLI-1_2022-09-12_N	LC_DC4	TA	Fair	12-Sep-22	9:00	INV	compnoli	Composite	-	x	×	×					+
LC_DC4_INV-2_2022-09-12_N	LC_DC4	TA		12-Sep-22	10:00	INV	Composite	Composite	1	×	×	×					
LC_DC4_INV-3_2022-09-12_N	LC_DC4	TA		12-Sep-22	11:00	INV	Composite	Composite	-	×	×	×					
ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS	ECIAL INSTRUCTIONS			RELINC	UISHED I	RELINQUISHED BY/AFFILIATION	IATION		DATE/TIME	TIME	ACCE	PTED BY	ACCEPTED BY/AFFILIATION	NOI	DAT	DATE/TIME	
FO 818999 Reade: 七色	99				Jennifer Ings	er Ings			#######################################	#######	Sen	ienerie l	4 Brie	295	2207025	0/2	06:40
)	(Pro.	Propert # 2007 - 393	07-39	7
SERVICE REQUEST (rush - subject to availability)	subject to availability)													611	7	1	1
Priority (Regular (default) Priority (2-3 business days) - 50% surcharge	(default) rrcharge	Sal	Sampler's Name	9			Jennifer Ings	SS			Mobile #	#	15	5195003444		

Filtered - F: Field, L: Lab, FL: Field & Lab, N: Non-EDD 06:80 Project # 2022-393 PDF Excel VPO00818999 September 19, 2022 29 800 2022 5195003444 OTHER INFO Feck Lab. Results@teck.com Robin. Valleau@minnow.ca teckcoal@equisonline.com ssica Ritz@Teck.com Report Format / Distribution wron@minnow.ca RUSH: ral ACCEPTED BY/AFFILIATION PO number Email 1: Email 2: Email 4: Email 5: Email 3: Email 5: 0 ANALYSIS REQUESTED Date/Time Mobile # rellene **Ста**чітету Email jennie.christensen@trichanalytics × × × × × × × × Moisture Content by Province BC Mercury in Biota by CVAAS (wet, dry & routine) × × × × × × × × Address 207-1753 Sean Heights Lab Name TrichAnalytics Inc. Lab Contact Jennie Christensen ICPMS (wet and dry) ################ DATE/TIME X × × × × × × × × Metals in Biota by CRC Saanichton Number of Containers ----3 of Filt PRESERV. SISATVNY Jennifer Ings TURNAROUND TIME: City Postal Code Phone Number Sample Structure Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Tissue Composite Composite Composite Species Composite Composite Composite Composite RELINQUISHED BY/AFFILIATION Page Tissue type N N N N Jennifer Ings N N N N N LCO LAEMP DRY 2022 BC Canada Time (24hr) 10:00 12:00 13:00 10:00 11:00 12:00 13:00 9:00 9:00 Sampler's Signature Sampler's Name 13-Sep-22 13-Sep-22 12-Sep-22 12-Sep-22 13-Sep-22 13-Sep-22 13-Sep-22 13-Sep-22 12-Sep-22 Date Province Country Hazardous Material (Yes/No) SAMPLE DETAILS Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge For Emergency <1 Day, ASAP or Weekend Matrix Regular (default) Field LA LA LA TA LA TA TA LA TA Email Nicole.Zathey@teck.com Sparwood V0B 2G0 PROJECT/CLIENT INFO ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS Facility Name / Job# Line Creek Operation Sample Location (sys loc code) SERVICE REQUEST (rush - subject to availability) COC ID: Phone Number 1-250-865-3048 Project Manager Nicole Zathey Address 421 Pine Ave LC_DCDS LC_DCDS LC_DCDS LC_DCEF C DCDS LC_DCDS LC DCEF LC DC4 LC_DC4 PO 818999 City Postal Code > > Sample ID | LC_DCEF_INV-1_2022-09-12_N HO LC_DCDS_INV-2_2022-09-13_N 142 LC_DCDS_INV-4_2022-09-13_N |45 LC_DCEF_INV-2_2022-09-13_N LC_DCDS_INV-1_2022-09-13_N (41) LC_DCDS_INV-3_2022-09-13_N LC_DCDS_INV-5_2022-09-13_N LC_DC4_INV-4_2022-09-12_N LC_DC4_INV-5_2022-09-12_N 300 137 138 139 143

Filtered - F: Field, L. Lab, FL: Field & Lab, N: Non EDD 06:80 -363 PDF Project # 2022 VPO00818999 Excel September 19, 2022 29 540 2022 5195003444 OTHER INFO Teck Lab. Results@teck.com Robin. Valleau@minnow.ca Jessica. Ritz@Teck.com Report Format / Distribution innow.ca Sur ACCEPTED BY/AFFILIATION PO number Email 4: Email 1: Email 5: Email 5: Email 2: Email 3: Cal ANALYSIS REQUESTED reviene Date/Time Mobile # Fravimetry Email jennie.christensen@trichanalytics × × × × × × × × × Moisture Content by BC Province wet, dry & routine) × × × × × × × × Address 207-1753 Sean Heights Mercury in Biota by CVAAS Lab Name TrichAnalytics Inc. Lab Contact Jennie Christensen Metals in Biota by CRC (wet and dry) ############### DATE/TIME × X × × × X × × City Saanichton Number of Containers -EHF PRESERV. 4 of SISATYNY lound Bro Jennifer Ings TURNAROUND TIME: Postal Code Phone Number Structure Sample Composite Composite Composite Composite Composite Species Composite Composite Composite Composite Composite Composite Composite Tissue RELINQUISHED BY/AFFILIATION Page Tissue type Jennifer Ings N N N N N N N N N LCO LAEMP DRY 2022 Canada Time (24hr) 11:00 12:00 13:00 10:00 11:00 12:00 13:00 00:6 9:00 BC Sampler's Signature Sampler's Name 09 TRICH 13-Sep-22 10-Sep-22 10-Sep-22 13-Sep-22 13-Sep-22 10-Sep-22 10-Sep-22 10-Sep-22 10-Sep-22 Date Province Country Hazardous Material (Yes/No) SAMPLE DETAILS Regular (default) Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge Matrix For Emergency <1 Day, ASAP or Weekend Field TA TA TA TA TA LA LA TA TA Email Nicole.Zathey@teck.com Sparwood V0B 2G0 PROJECT/CLIENT INFO ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS Facility Name / Job# Line Creek Operation Sample Location (sys loc code) SERVICE REQUEST (rush - subject to availability) COC ID: Phone Number 1-250-865-3048 Project Manager Nicole Zathey Address 421 Pine Ave LC_DCEF LC_DCEF LC_DCEF LC_FRUS LC_FRB LC_FRB LC_FRB LC_FRB LC_FRB PO 818999 City Postal Code > > > Sample ID 446 LC_DCEF_INV-3_2022-09-13_N 147 LC_DCEF_INV-4_2022-09-13_N LC_DCEF_INV-5_2022-09-13_N SH LC FRUS INV-1 2022-09-10 N | HQ | LC_FRB_INV-1_2022-09-10_N LC_FRB_INV-5_2022-09-10_N LC_FRB_INV-2_2022-09-10_N LC_FRB_INV-3_2022-09-10_N LC_FRB_INV-4_2022-09-10_N Sich B 宁 150 151 125 153

Filtered - F: Field, L. Lab, FL: Field & Lab, N: Non. EDD 02:80 -393 PDF Project # 2022 VPO00818999 Excel September 19, 2022 29 8-62 5195003444 OTHER INFO Feck. Lab. Results@teck.com Robin, Valleau@minnow.ca Fessica Ritz@Teck.com Report Format / Distribution now.ca ACCEPTED BY/AFFILIATION PO number Email 4: Email 5: Email 1: Email 5: Email 2: Email 3: retiene (a ANALYSIS REQUESTED Date/Time Mobile # Fravimetry Email jennie.christensen@trichanalytics × × × × × × × × × Moisture Content by BC Province wet, dry & routine) × × × × × × × × Address 207-1753 Sean Heights Mercury in Biota by CVAAS Lab Name TrichAnalytics Inc. Lab Contact Jennie Christensen Metals in Biota by CRC (wet and dry) ############## DATE/TIME × × × X × × × × Saanichton Number of Containers PRESERV. 5 of BHF SISATVNV land And Jennifer Ings TURNAROUND TIME: City Postal Code Phone Number Sample Structure Composite Composite Composite Composite Composite Species Composite Composite Composite Composite Composite Tissue compnoli compnoli RELINQUISHED BY/AFFILIATION Page Tissue type Jennifer Ings N N N N Š N N N N LCO LAEMP DRY 2022 Canada Time (24hr) 11:00 10:00 12:00 13:00 00:6 10:00 11:00 12:00 13:00 BC Sampler's Signature Sampler's Name 09 TRICH 14-Sep-22 14-Sep-22 10-Sep-22 10-Sep-22 10-Sep-22 10-Sep-22 14-Sep-22 14-Sep-22 14-Sep-22 Date Province Country Hazardous Material (Yes/No) SAMPLE DETAILS Emergency (1 Business Day) - 100% surcharge Field Matrix Regular (default) Priority (2-3 business days) - 50% surcharge For Emergency <1 Day, ASAP or Weekend TA LA TA TA TA TA TA TA LA Email Nicole.Zathey@teck.com Sparwood V0B 2G0 ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS Facility Name / Job# Line Creek Operation Sample Location (sys loc code) SERVICE REQUEST (rush - subject to availability) COC ID: Phone Number 1-250-865-3048 Project Manager Nicole Zathey Address 421 Pine Ave LC_GRCK LC_GRCK LC_GRCK LC GRCK LC_FRUS LC_FRUS LC_GRCK LC_FRUS LC_FRUS PO 818999 Postal Code 1 4to LC_GRCK_COMPNOLI-2_2022-09-14_N LC_GRCK_COMPNOLI-1_2022-09-14_N Sample ID LC_GRCK_INV-3_2022-09-14_N LC_GRCK_INV-4_2022-09-14_N 463 LC_GRCK_INV-5_2022-09-14_N LC_FRUS_INV-2_2022-09-10_N 458 LC_FRUS_INV-5_2022-09-10_N 156 LC_FRUS_INV-3_2022-09-10_N LC_FRUS_INV-4_2022-09-10_N STATE TO 25 ts 55 191 19

	COCID	TOOT	AEMP_DRY	LY_2022		TURNAROUND TIME:	UND TIME	,,					HSIIA	H		
	PRO IECTICI IENT INEO		09 TRICH			No.	TABOUT	ADOL ADOL					WO	2116		
Facility Name / Jobs	Facility Name / Job# Line Creek Operation						Lab Name Trich Analytics Inc	TrichA	nalytics Inc			Donort E.	Dancet Formet / Distribution	INFO	Parent In	TO L
Project Manage	Project Manager Nicole Zathey						Lab Contact Jennie Christensen	Jennie	Christenser			Fmail 1	Illiat / Disti ID		100	1
Emai	Email Nicole.Zathey@teck.com						Email	jennie.	hristensen	Email jennie.christensen@trichanalytics	so	Email 2:	Aquascil abia leck.com	eck com	*	
Addres	Address 421 Pine Ave						Address	207-17	Address 207-1753 Sean Heights	ights		Email 3:	Teck Lab Results@teck.com	s@teck com	*	
												Email 4:	lbowron@minnow.ca	w.ca X	×	
City			Province	BC			City	City Saanichton	ton	Province BC	0	Email 5:	Robin Valleau@minnow.ca	minnow.ca X	X	
Postal Code	e V0B 2G0		Country	Canada			Postal Code					Email 5:	Jessica Ritz@Teck.com	ck.com X	×	
Phone Numbe	Phone Number 1-230-863-3048					Pho	Phone Number				_	PO number		VPO00818999	6668	
	SAMPLE	SAMPLE DETAILS	_						ANA	ANALYSIS REQUESTED	UESTEI			Filtered - F: Field, L.: Lab, FL: Field & Lab, N: Non-	: Lab, FL: F	leld &
	:	(o)	(0)				-	PRESERV, FILL								
		Material (Yes/						ALYSIS ontainers	a by CRC	(anitine)	fa ma					
Sample ID	Sample Location (sys loc code)	Field Matrix Hazardons	Date	Time (24hr)	Tissue type	Tissue Species	Sample Structure	Number of Co	Metals in Biota ICPMS (wet an	Mercury in Bio (wet, dry & rou	Moisture Conto Gravimetry					
LC_GRCK_INV0LI-1_2022-09-14_N	LC_GRCK	TA	14-Sep-22	9:01	INV	INVOLI	Composite	-	×	×	×					
LC_GRCK_INVOLI-2_2022-09-14_N	LC_GRCK	TA	14-Sep-22	10:01	INV	INVOLI	Composite	-	×	×	×					
LC_DC4_INVOLI-1_2022-09-12_N	LC_DC4	TA	12-Sep-22	9:01	INV	INVOLI	Composite	-	×	×	×					
											+					
ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS	ECIAL INSTRUCTIONS		REL	NOUISHE	RELINQUISHED BY/AFFILIATION	IATION		DATE	DATE/TIME	ACCEP	TED BY	ACCEPTED BY/AFFILIATION	ION	DAT	DATE/TIME	
FO 818999	66			Jenn	Jennifer Ings			#######################################	#######################################	Gumi	. 3	La Brie	52	22020456	1	02:80
SERVICE PROTECT (ruch, subject to availabilite)	orking to availability)												(R	Roject #: 202-39	202	80
SERVICE REQUEST (TUSH-	subject to availability)															
Priority (2	Regular (default) Priority (2-3 business days) - 50% surcharge	efault) charge	Sampler's Name	ame			Jennifer Ings	Sä			Mobile #			5195003444		
Emergency	Emergency (1 Business Day) - 100% surcharge	ohoros										+				

BENTHIC TISSUE CHEMISTRY

TrichAnalytics Laboratory Report 2022-445 (Finalized 12-Dec-22)

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Date Received: **Client:** Nicole Zathey Date of Analysis:

Project Manager Teck Coal Limited Phone: 250-425-8449

Email: nicole.zathey@teck.com; mike.pope@teck.com; jessica.ritz@teck.com;

Line Creek Operation (PO 818999)

teckcoal@equisonline.com; aquascilab@teck.com; robin.valleau@minnow.ca

Analytical Request: Composite Benthic Invertebrate Tissue Microchemistry (total metals & moisture) - 35 samples.

See chain of custody form provided for sample identification numbers.

Notes:

Client Project:

Analytical results are expressed in parts per million (ppm) dry weight (equivalent to mg/kg).

Samples quantified using DORM-4, NIST-1566b, and NIST-2976 certified reference standards.

Aluminum concentrations above 1,000 ppm are outside linear range of the calibration curve.

RPD values calculated according to the British Columbia Environmental Laboratory Manual (2020) criteria.

Client specific DQO for Selenium accuracy is 90-110% of the certified value; result achieved 100% (ranging from 97-102%).

This report provides the analytical results only for tissue samples noted above as received from the Client.

Reviewed and Approved by Jennie Christensen, PhD, RPBio

[The analytical report shall not be reproduced except in full under the expressed written consent of TrichAnalytics Inc.]

TrichAnalytics Inc. 207-1753 Sean Heights Saanichton, BC V8M 0B3 www.trichanalytics.com

12 Dec 2022

Project No: 2022-445

06 Dec 2022

09 Dec 2022

12 Dec 2022

MET-002.06

2022-445

Final Report Date:

Project No.:

Method No.:

		Client ID	LC_FRB_INV- 1_2022-11_N	LC_FRB_INV- 2_2022-11_N	LC_FRB_INV- 3_2022-11_N	LC_FRB_INV- 4_2022-11_N	LC_FRB_INV- 5_2022-11_N
		Lab ID	047	048	049	050	051
	\\/	et Weight (g)	0.0964	0.2839	0.5065	0.4348	0.4411
		ry Weight (g)	0.0258	0.2633	0.1114	0.0996	0.0975
		Moisture (%)	73.2	77.2	78.0	77.1	77.9
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.023	0.077	1.8	1.2	1.0	1.4	1.1
11B	0.107	0.357	4.3	1.2	1.6	1.8	2.1
23Na	2.7	9.0	5,444	8,433	5,368	6,452	5,250
24Mg	0.089	0.297	2,179	1,763	1,439	1,636	1,778
27AI	0.142	0.473	2,940	561	501	1,318	1,369
31P	73	243	19,115	18,018	14,910	15,405	13,895
39K	4.3	14	16,836	15,257	9,496	12,035	10,374
44Ca	53	177	6,921	3,971	2,093	3,027	6,469
49Ti	0.001	0.003	140	39	40	, 78	100
51V	0.033	0.110	5.5	1.8	1.9	3.1	3.8
52Cr	0.174	0.580	29	13	5.6	12	29
55Mn	0.007	0.023	59	43	81	57	69
57Fe	0.872	2.9	1,690	661	568	602	1,155
59Co	0.017	0.057	0.925	0.790	0.713	0.655	1.7
60Ni	0.086	0.287	41	19	8.0	15	43
63Cu	0.018	0.060	34	20	13	24	15
66Zn	0.313	1.0	248	233	150	227	243
75As	0.327	1.1	0.951	0.533	0.533	0.457	0.723
77Se	0.448	1.5	11	8.9	10	9.3	7.9
88Sr	0.001	0.003	9.7	5.1	4.3	5.3	9.7
95Mo	0.001	0.003	0.832	0.340	0.303	0.378	0.303
107Ag	0.001	0.003	0.302	0.248	0.108	0.194	0.151
111Cd	0.106	0.353	1.5	2.1	1.2	1.7	2.6
118Sn	0.022	0.073	1.7	0.695	0.339	0.244	0.430
121Sb	0.004	0.013	0.102	0.038	0.056	0.050	0.062
137Ba	0.001	0.003	75	33	38	67	69
202Hg	0.023	0.077	0.049	0.030	0.030	0.036	0.042
205Tl	0.001	0.003	0.051	0.020	0.028	0.031	0.033
208Pb	0.002	0.007	0.973	0.305	0.303	0.343	0.467
238U	0.001	0.003	0.147	0.048	0.062	0.076	0.090

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	LC_DC3_INV- 1_2022-11_N	LC_DC3_INV- 2_2022-11_N	LC_DC3_INV- 3_2022-11_N	LC_DC3_INV- 4_2022-11_N	LC_DC3_INV- 5_2022-11_N
		Lab ID	052	053	054	055	056
	We	et Weight (g)	0.0988	0.7005	0.2121	0.3413	0.0788
		y Weight (g)	0.0176	0.1870	0.0463	0.0679	0.0138
		Moisture (%)	82.2	73.3	78.2	80.1	82.5
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.023	0.077	1.1	0.932	1.4	1.4	0.800
11B	0.107	0.357	2.9	3.6	5.4	4.2	2.0
23Na	2.7	9.0	2,971	3,090	2,330	4,669	3,848
24Mg	0.089	0.297	1,344	1,424	1,383	1,770	1,636
27Al	0.142	0.473	1,690	2,285	3,307	2,266	1,047
31P	73	243	10,598	11,270	9,356	13,686	12,104
39K	4.3	14	7,447	8,829	6,875	11,369	8,490
44Ca	53	177	4,515	3,668	4,025	3,131	3,326
49Ti	0.001	0.003	120	147	335	171	78
51V	0.033	0.110	5.3	5.6	9.6	7.3	3.1
52Cr	0.174	0.580	27	17	34	21	20
55Mn	0.007	0.023	39	37	33	44	34
57Fe	0.872	2.9	968	938	1,267	1,126	596
59Co	0.017	0.057	1.1	1.8	1.7	1.6	0.824
60Ni	0.086	0.287	54	55	65	46	36
63Cu	0.018	0.060	24	14	11	14	16
66Zn	0.313	1.0	185	179	141	216	172
75As	0.327	1.1	0.609	1.0	1.0	0.951	0.457
77Se	0.448	1.5	6.9	5.3	4.4	8.5	7.1
88Sr	0.001	0.003	8.2	5.9	10	8.9	6.2
95Mo	0.001	0.003	0.757	0.340	0.416	0.378	0.567
107Ag	0.001	0.003	0.140	0.130	0.130	0.130	0.108
111Cd	0.106	0.353	2.5	2.4	1.5	1.2	1.1
118Sn	0.022	0.073	1.7	0.355	0.326	0.434	0.800
121Sb	0.004	0.013	0.114	0.102	0.141	0.158	0.071
137Ba	0.001	0.003	75	90	89	97	50
202Hg	0.023	0.077	0.061	0.058	0.042	0.079	0.055
205Tl	0.001	0.003	0.072	0.082	0.099	0.097	0.046
208Pb	0.002	0.007	0.637	0.546	0.852	0.911	0.323
238U	0.001	0.003	0.264	0.116	0.162	0.183	0.106

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	LC_DC4_INV- 1_2022-11_N	LC_DC4_INV- 2_2022-11_N	LC_DC4_INV- 3_2022-11_N	LC_DC4_INV- 4_2022-11_N	LC_DC4_INV- 5_2022-11_N
		Lab ID	057	058	059	060	061
	We	et Weight (g)	0.0313	0.7176	0.8149	0.5904	0.2990
		y Weight (g)	0.0080	0.1846	0.1888	0.1248	0.0693
		Moisture (%)	74.4	74.3	76.8	78.9	76.8
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.023	0.077	0.335	0.445	0.460	0.402	0.603
11B	0.107	0.357	0.911	0.781	1.0	0.933	1.3
23Na	2.7	9.0	1,453	3,451	4,073	3,026	3,353
24Mg	0.089	0.297	633	939	1,026	801	1,230
27Al	0.142	0.473	442	483	689	566	614
31P	73	243	4,872	14,631	14,515	11,268	11,452
39K	4.3	14	3,740	8,466	10,121	6,486	9,076
44Ca	53	177	1,625	1,282	2,429	1,267	2,979
49Ti	0.001	0.003	29	26	40	40	59
51V	0.033	0.110	1.6	1.7	1.9	2.1	2.9
52Cr	0.174	0.580	6.2	9.9	8.5	11	17
55Mn	0.007	0.023	7.7	20	16	20	21
57Fe	0.872	2.9	558	590	614	539	827
59Co	0.017	0.057	0.323	0.434	0.453	0.438	0.443
60Ni	0.086	0.287	9.6	15	18	17	29
63Cu	0.018	0.060	5.7	12	11	8.8	11
66Zn	0.313	1.0	113	148	137	83	148
75As	0.327	1.1	0.628	0.647	1.0	0.647	0.932
77Se	0.448	1.5	3.1	7.6	6.9	5.5	5.7
88Sr	0.001	0.003	2.2	2.1	2.7	2.7	3.8
95Mo	0.001	0.003	0.378	0.567	0.416	0.303	0.530
107Ag	0.001	0.003	0.043	0.076	0.097	0.076	0.108
111Cd	0.106	0.353	1.9	1.1	1.7	1.0	1.6
118Sn	0.022	0.073	0.411	0.310	0.193	0.160	0.734
121Sb	0.004	0.013	0.038	0.037	0.049	0.044	0.074
137Ba	0.001	0.003	35	54	72	64	64
202Hg	0.023	0.077	< 0.023	0.036	0.042	0.036	0.030
205Tl	0.001	0.003	0.028	0.018	0.022	0.024	0.042
208Pb	0.002	0.007	0.189	0.178	0.246	0.234	0.404
238U	0.001	0.003	0.045	0.054	0.071	0.053	0.065

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			LC_GRCK_INV-	LC_GRCK_INV-	LC_GRCK_INV-	LC_GRCK_INV-	LC_GRCK_INV-
		Client ID	1_2022-11_N	2_2022-11_N	3_2022-11_N	4_2022-11_N	5_2022-11_N
		Lab ID	062	063	064	065	066
		et Weight (g)	0.0367	0.1443	0.0873	0.1051	0.1457
	Di	y Weight (g)	0.0085	0.0367	0.0189	0.0243	0.0306
		Moisture (%)	76.8	74.6	78.4	76.9	79.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.023	0.077	1.2	0.254	0.557	0.660	1.0
11B	0.107	0.357	5.3	1.1	2.5	4.9	6.2
23Na	2.7	9.0	2,479	3,530	2,862	5,246	5,565
24Mg	0.089	0.297	1,106	1,549	1,968	2,303	1,966
27Al	0.142	0.473	1,033	242	875	1,176	1,507
31P	73	243	6,476	13,342	12,333	16,133	16,463
39K	4.3	14	6,938	10,484	8,738	14,398	15,856
44Ca	53	177	3,312	2,008	4,165	4,057	3,410
49Ti	0.001	0.003	170	11	65	77	150
51V	0.033	0.110	4.1	0.521	2.1	2.1	3.7
52Cr	0.174	0.580	25	6.6	11	11	13
55Mn	0.007	0.023	101	59	68	78	94
57Fe	0.872	2.9	1,486	304	643	823	1,204
59Co	0.017	0.057	2.1	1.5	1.3	2.0	1.5
60Ni	0.086	0.287	32	9.7	15	17	18
63Cu	0.018	0.060	8.2	24	15	23	22
66Zn	0.313	1.0	140	582	269	414	234
75As	0.327	1.1	1.7	0.602	1.0	2.0	1.8
77Se	0.448	1.5	5.3	8.9	7.8	9.6	6.9
88Sr	0.001	0.003	10	5.1	8.2	10	11
95Mo	0.001	0.003	0.454	0.532	0.580	0.725	0.580
107Ag	0.001	0.003	0.032	0.076	0.022	0.119	0.108
111Cd	0.106	0.353	3.2	6.9	3.6	8.3	2.6
118Sn	0.022	0.073	0.977	0.355	0.839	0.289	0.505
121Sb	0.004	0.013	0.056	0.023	0.040	0.052	0.113
137Ba	0.001	0.003	60	16	31	40	56
202Hg	0.023	0.077	< 0.023	0.085	0.043	0.050	0.057
205TI	0.001	0.003	0.059	0.046	0.049	0.070	0.060
208Pb	0.002	0.007	1.0	0.110	0.315	0.457	0.711
238U	0.001	0.003	0.139	0.056	0.121	0.164	0.196

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			LC_DCEF_INV-	LC_DCEF_INV-	LC_DCEF_INV-	LC_DCEF_INV-	LC_DCEF_INV-
		Client ID	1_2022-11_N	2_2022-11_N	3_2022-11_N	4_2022-11_N	5_2022-11_N
		Lab ID	067	068	069	070	071
		et Weight (g)	0.0654	0.1022	0.1046	0.1467	0.0343
	Di	ry Weight (g)	0.0107	0.0235	0.0246	0.0275	0.0068
		Moisture (%)	83.6	77.0	76.5	81.3	80.2
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.023	0.077	0.422	0.660	0.465	0.957	0.379
11B	0.107	0.357	0.385	1.8	1.0	4.3	1.2
23Na	2.7	9.0	4,011	4,196	2,541	3,842	1,731
24Mg	0.089	0.297	935	1,171	1,480	1,280	597
27Al	0.142	0.473	84	746	429	1,276	591
31P	73	243	11,484	12,854	13,189	13,418	5,424
39K	4.3	14	8,326	10,851	7,777	10,922	6,200
44Ca	53	177	2,919	2,639	5,571	2,762	1,416
49Ti	0.001	0.003	7.3	65	23	94	43
51V	0.033	0.110	0.413	3.6	1.5	5.5	2.5
52Cr	0.174	0.580	8.1	19	18	36	10
55Mn	0.007	0.023	13	22	20	23	31
57Fe	0.872	2.9	169	703	484	1,279	453
59Co	0.017	0.057	0.267	0.918	0.534	1.6	0.564
60Ni	0.086	0.287	9.8	29	26	53	15
63Cu	0.018	0.060	12	18	17	15	7.4
66Zn	0.313	1.0	108	116	163	109	84
75As	0.327	1.1	0.387	1.9	1.1	2.6	0.752
77Se	0.448	1.5	2.5	3.8	3.5	3.8	3.3
88Sr	0.001	0.003	3.1	3.9	6.9	6.5	2.4
95Mo	0.001	0.003	0.242	0.532	0.628	0.483	0.387
107Ag	0.001	0.003	0.054	0.097	0.076	0.065	0.032
111Cd	0.106	0.353	1.2	2.4	4.0	2.4	3.1
118Sn	0.022	0.073	0.662	0.332	0.682	0.731	0.478
121Sb	0.004	0.013	0.035	0.215	0.086	0.231	0.154
137Ba	0.001	0.003	49	110	127	118	163
202Hg	0.023	0.077	< 0.023	0.043	0.036	0.043	<0.023
205TI	0.001	0.003	0.006	0.025	0.020	0.050	0.024
208Pb	0.002	0.007	0.082	0.366	0.154	0.591	0.240
238U	0.001	0.003	0.022	0.122	0.071	0.163	0.131

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

TrichAnalytics Inc.

Project No: 2022-445

Page 6 of 16

		Client ID	LC_DCDS_INV- 1_2022-11_N	LC_DCDS_INV- 2_2022-11_N	LC_DCDS_INV- 3_2022-11_N	LC_DCDS_INV- 4_2022-11_N	LC_DCDS_INV- 5_2022-11_N
		Lab ID	072	073	074	075	076
	We	et Weight (g)	0.1058	0.2908	0.1429	0.4021	0.1961
		y Weight (g)	0.0243	0.0521	0.0250	0.0756	0.0414
		Moisture (%)	77.0	82.1	82.5	81.2	78.9
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.023	0.077	1.3	1.7	1.6	1.4	0.920
11B	0.107	0.357	4.9	5.3	26	3.2	2.1
23Na	2.7	9.0	3,892	5,586	4,309	5,287	5,661
24Mg	0.089	0.297	1,851	1,655	1,511	1,551	1,203
27Al	0.142	0.473	2,953	3,481	3,281	2,227	1,153
31P	73	243	13,686	15,529	12,066	14,199	15,815
39K	4.3	14	11,049	14,371	10,486	11,565	11,976
44Ca	53	177	4,888	5,157	4,997	4,016	2,604
49Ti	0.001	0.003	244	260	256	179	82
51V	0.033	0.110	7.9	10	9.8	6.5	3.8
52Cr	0.174	0.580	25	30	30	15	11
55Mn	0.007	0.023	116	91	105	93	102
57Fe	0.872	2.9	1,429	1,616	2,012	1,063	644
59Co	0.017	0.057	2.4	1.8	2.6	1.7	1.2
60Ni	0.086	0.287	78	78	92	55	37
63Cu	0.018	0.060	16	24	18	16	13
66Zn	0.313	1.0	284	216	152	206	197
75As	0.327	1.1	0.795	1.2	0.860	0.989	0.602
77Se	0.448	1.5	15	12	12	10	12
88Sr	0.001	0.003	15	12	12	8.5	5.0
95Mo	0.001	0.003	0.773	0.918	0.822	0.628	0.773
107Ag	0.001	0.003	0.151	0.454	0.205	0.259	0.194
111Cd	0.106	0.353	6.3	3.3	2.5	2.5	1.9
118Sn	0.022	0.073	0.830	0.947	0.689	0.319	0.363
121Sb	0.004	0.013	0.303	0.255	0.223	0.205	0.132
137Ba	0.001	0.003	332	134	130	105	84
202Hg	0.023	0.077	0.089	0.107	0.085	0.100	0.071
205Tl	0.001	0.003	0.189	0.138	0.104	0.083	0.051
208Pb	0.002	0.007	0.916	1.2	1.1	0.766	0.453
238U	0.001	0.003	0.260	0.197	0.215	0.140	0.111

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

TrichAnalytics Inc.

Project No: 2022-445

Page 7 of 16

		Client ID	LC_FRUS_INV- 1_2022-11_N	LC_FRUS_INV- 2_2022-11_N	LC_FRUS_INV- 3_2022-11_N	LC_FRUS_INV- 4_2022-11_N	LC_FRUS_INV- 5_2022-11_N
		Lab ID	077	078	079	080	081
	We	et Weight (g)	0.1366	0.3863	0.3766	0.6683	0.3434
		y Weight (g)	0.0294	0.0624	0.0745	0.1765	0.0707
		Moisture (%)	78.5	83.8	80.2	73.6	79.4
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.023	0.077	3.1	1.8	1.2	1.2	1.1
11B	0.107	0.357	11	4.7	2.7	2.0	3.7
23Na	2.7	9.0	3,133	4,460	3,697	4,148	2,548
24Mg	0.089	0.297	2,091	1,759	1,711	1,196	1,403
27Al	0.142	0.473	4,133	2,008	1,538	1,365	1,474
31P	73	243	11,161	12,466	12,280	13,364	10,682
39K	4.3	14	11,172	9,670	10,251	10,463	7,561
44Ca	53	177	4,207	6,984	4,978	, 1,872	4,484
49Ti	0.001	0.003	604	181	118	93	107
51V	0.033	0.110	20	5.2	3.5	2.9	3.3
52Cr	0.174	0.580	61	20	15	8.8	15
55Mn	0.007	0.023	99	58	58	97	43
57Fe	0.872	2.9	4,247	1,531	994	871	944
59Co	0.017	0.057	2.6	1.2	1.5	0.848	0.639
60Ni	0.086	0.287	103	30	24	14	22
63Cu	0.018	0.060	17	21	16	15	13
66Zn	0.313	1.0	177	136	205	123	140
75As	0.327	1.1	1.5	0.903	0.946	0.602	0.774
77Se	0.448	1.5	7.6	6.9	8.9	8.9	5.6
88Sr	0.001	0.003	14	8.8	6.8	3.3	6.2
95Mo	0.001	0.003	1.3	0.387	0.387	0.580	0.435
107Ag	0.001	0.003	0.097	0.130	0.108	0.130	0.097
111Cd	0.106	0.353	3.2	1.1	2.4	1.1	1.3
118Sn	0.022	0.073	0.703	0.617	0.411	0.176	0.326
121Sb	0.004	0.013	0.256	0.093	0.081	0.063	0.083
137Ba	0.001	0.003	132	70	62	58	50
202Hg	0.023	0.077	0.064	0.028	0.043	0.036	0.046
205TI	0.001	0.003	0.112	0.051	0.039	0.030	0.034
208Pb	0.002	0.007	1.8	0.724	0.575	0.551	0.507
238U	0.001	0.003	0.299	0.144	0.113	0.068	0.095

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck Coal Limited
Tissue QA/QC Relative Percent Difference Results

(Client ID	LC_FRE	3_INV-4_202	22-11_N	LC_DC	3_INV-2_202	22-11_N	LC_DC	3_INV-4_202	22-11_N
	Lab ID		050			053			055	
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.023	1.4	1.7	19	0.932	1.2	25	1.4	1.2	15
11B	0.107	1.8	2.5	33	3.6	4.3	18	4.2	3.7	13
23Na	2.7	6,452	8,920	32	3,090	3,325	7.3	4,669	4,383	6.3
24Mg	0.089	1,636	1,780	8.4	1,424	1,535	7.5	1,770	2,166	20
27Al	0.142	1,318	1,293	1.9	2,285	2,279	0.3	2,266	1,894	18
31P	73	15,405	16,128	4.6	11,270	13,192	16	13,686	14,427	5.3
39K	4.3	12,035	13,089	8.4	8,829	9,929	12	11,369	10,382	9.1
44Ca	53	3,027	3,668	19	3,668	4,576	22	3,131	3,228	3.1
49Ti	0.001	78	95	20	147	150	2.0	171	131	27
51V	0.033	3.1	3.5	12	5.6	6.9	21	7.3	5.9	21
52Cr	0.174	12	15	22	17	18	5.7	21	26	21
55Mn	0.007	57	51	11	37	46	22	44	47	6.6
57Fe	0.872	602	665	9.9	938	1,073	13	1,126	1,033	8.6
59Co	0.017	0.655	0.814	22	1.8	1.9	5.4	1.6	1.9	17
60Ni	0.086	15	19	24	55	62	12	46	54	16
63Cu	0.018	24	17	34	14	17	19	14	13	7.4
66Zn	0.313	227	202	12	179	187	4.4	216	190	13
75As	0.327	0.457	0.533	-	1.0	1.4	-	0.951	1.1	-
77Se	0.448	9.3	11	17	5.3	6.1	14	8.5	7.5	13
88Sr	0.001	5.3	6.2	16	5.9	9.8	50	8.9	8.7	2.3
95Mo	0.001	0.378	0.303	22	0.340	0.378	11	0.378	0.340	11
107Ag	0.001	0.194	0.194	0.0	0.130	0.151	15	0.130	0.119	8.8
111Cd	0.106	1.7	1.5	13	2.4	2.1	13	1.2	1.2	0.0
118Sn	0.022	0.244	0.332	31	0.355	0.362	2.0	0.434	0.410	5.7
121Sb	0.004	0.050	0.047	6.2	0.102	0.141	32	0.158	0.162	2.5
137Ba	0.001	67	62	7.8	90	98	8.5	97	109	12
202Hg	0.023	0.036	0.036	-	0.058	0.055	-	0.079	0.079	-
205TI	0.001	0.031	0.038	20	0.082	0.102	22	0.097	0.086	12
208Pb	0.002	0.343	0.386	12	0.546	0.727	28	0.911	0.630	37
238U	0.001	0.076	0.063	19	0.116	0.151	26	0.183	0.142	25

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Project No: 2022-445

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

(Client ID	LC_GRC	K_INV-2_20	22-11_N
	Lab ID		063	
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.023	0.254	0.368	37
11B	0.107	1.1	1.6	37
23Na	2.7	3,530	3,860	8.9
24Mg	0.089	1,549	1,686	8.5
27Al	0.142	242	348	36
31P	73	13,342	15,313	14
39K	4.3	10,484	12,138	15
44Ca	53	2,008	2,520	23
49Ti	0.001	11	12	8.7
51V	0.033	0.521	0.492	5.7
52Cr	0.174	6.6	8.7	28
55Mn	0.007	59	69	16
57Fe	0.872	304	403	28
59Co	0.017	1.5	1.6	6.5
60Ni	0.086	9.7	11	13
63Cu	0.018	24	29	19
66Zn	0.313	582	604	3.7
75As	0.327	0.602	0.602	-
77Se	0.448	8.9	9.6	7.6
88Sr	0.001	5.1	6.4	23
95Mo	0.001	0.532	0.580	8.6
107Ag	0.001	0.076	0.101	28
111Cd	0.106	6.9	6.4	7.5
118Sn	0.022	0.355	0.440	21
121Sb	0.004	0.023	0.030	-
137Ba	0.001	16	22	32
202Hg	0.023	0.085	0.085	-
205TI	0.001	0.046	0.047	2.2
208Pb	0.002	0.110	0.159	36
238U	0.001	0.056	0.078	33

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	S	ample Group ID		01			02	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.023	1.21	1.2	96	9.8	1.2	96	10
11B	0.107	4.5	4.1	92	3.2	4.3	96	2.5
23Na	2.7	14,000	14,074	100	4.0	12,422	89	5.6
24Mg	0.089	910	920	101	8.1	838	92	4.7
27Al	0.142	197.2	186	94	2.2	193	98	4.9
31P	73	8,000	7,970	100	6.3	7,163	90	5.2
39K	4.3	15,500	16,154	104	7.1	14,521	94	7.0
44Ca	53	2,360	2,350	100	4.9	2,262	96	4.1
49Ti	0.001	12.24	12	95	12	11	88	12
51V	0.033	1.57	1.5	96	9.4	1.4	90	14
52Cr	0.174	1.87	2.0	106	5.5	1.8	96	7.9
55Mn	0.007	3.17	3.2	102	8.3	3.2	100	5.7
57Fe	0.872	343	349	102	6.7	338	98	5.7
59Co	0.017	0.25	0.264	106	5.8	0.247	99	2.7
60Ni	0.086	1.34	1.5	109	3.8	1.3	98	11
63Cu	0.018	15.7	18	112	6.5	15	96	6.7
66Zn	0.313	51.6	49	95	4.4	47	92	6.9
75As	0.327	6.87	6.9	100	3.7	6.3	92	4.6
77Se	0.448	3.45	3.4	97	2.7	3.5	102	2.4
88Sr	0.001	10.1	10	102	5.9	9.5	94	3.8
95Mo	0.001	0.29	0.295	102	11	0.314	108	7.6
107Ag	0.001	0.0252	0.026	103	20	0.024	95	19
111Cd	0.106	0.299	0.359	120	18	0.269	90	11
118Sn	0.022	0.061	0.078	128	16	0.049	80	15
121Sb	0.004	0.011	0.013	114	16	0.015	136	14
137Ba	0.001	8.6	7.7	90	3.4	7.8	91	2.6
202Hg	0.023	0.412	0.416	101	7.5	0.427	104	3.2
205Tl	0.001	0.0013	-	-	-	-	-	-
208Pb	0.002	0.404	0.369	91	18	0.425	105	13
238U	0.001	0.05	0.046	92	10	0.045	90	13

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Sample Group Information

Sample Group ID	Client ID	Lab ID	Date of Analysis
01	LC_FRB_INV-1_2022-11_N	047	09 Dec 2022
	LC_FRB_INV-2_2022-11_N	048	
	LC_FRB_INV-3_2022-11_N	049	
	LC_FRB_INV-4_2022-11_N	050	
	LC_FRB_INV-5_2022-11_N	051	
	LC_DC3_INV-1_2022-11_N	052	
	LC_DC3_INV-2_2022-11_N	053	
	LC_DC3_INV-3_2022-11_N	054	
	LC_DC3_INV-4_2022-11_N	055	
	LC_DC3_INV-5_2022-11_N	056	
	LC_DC4_INV-1_2022-11_N	057	
	LC_DC4_INV-2_2022-11_N	058	
	LC_DC4_INV-3_2022-11_N	059	
	LC_DC4_INV-4_2022-11_N	060	
	LC_DC4_INV-5_2022-11_N	061	
	LC_GRCK_INV-1_2022-11_N	062	
02	LC_GRCK_INV-2_2022-11_N	063	09 Dec 2022
	LC_GRCK_INV-3_2022-11_N	064	
	LC_GRCK_INV-4_2022-11_N	065	
	LC_GRCK_INV-5_2022-11_N	066	
	LC_DCEF_INV-1_2022-11_N	067	
	LC_DCEF_INV-2_2022-11_N	068	
	LC_DCEF_INV-3_2022-11_N	069	
	LC_DCEF_INV-4_2022-11_N	070	
	LC_DCEF_INV-5_2022-11_N	071	
	LC_DCDS_INV-1_2022-11_N	072	
	LC_DCDS_INV-2_2022-11_N	073	
	LC_DCDS_INV-3_2022-11_N	074	
	LC_DCDS_INV-4_2022-11_N	075	
	LC_DCDS_INV-5_2022-11_N	076	
	LC_FRUS_INV-1_2022-11_N	077	
	LC_FRUS_INV-2_2022-11_N	078	
	LC_FRUS_INV-3_2022-11_N	079	
	LC_FRUS_INV-4_2022-11_N	080	
	LC_FRUS_INV-5_2022-11_N	081	

	COC ID:					П	TURNAROUND TIME:	ND TIME:						RI	RUSH:		
P	PROJECT/CLIENT INFO		EAST OF				の日本のできる	LABORATORY	ATORY					0.	OTHER INFO		
Facility Name / Jobs	Facility Name / Job# Line Creek Operation							Lab Name TrichAnalytics Inc.	TrichAn	alytics Inc			Report I	Report Format / Distribution		Excel PDF	OF EDD
Project Manager Nicole Zathey	Nicole Zathey						L	Lab Contact Jennie Christensen	Jennie C	hristenser			Email 1:	mike.pope@teck.com	teck.com	X	×
Emai	Email nicole.zathey@teck.com	200 18-						Email	jennie.c.	nristensen	Email jennie.christensen@trichanalytics	ytics	Email 2:	jessica.Ritz@teck.com	gteck.com	X	×
Address	Address 421 Pine Ave							Address	207-175	Address 207-1753 Sean Heights	ights		Email 3:	teckcoal@equisonline.com	isonline.com	X 2	×
			1.8										Email 4:	AquaSciLab@teck.com	reck.com	X	X
City	Sparwood		P	Province	BC				Saanichton	uo	Province	BC	Email 5:	Robin.vallea	Robin.valleau@minnow.ca	X)	X
Postal Code	e V0B 2G0						P	Postal Code									
Phone Number	Phone Number 250-425-8449						Phor	Phone Number					PO number	ı	818999		
		SAMPLE DETAILS	LS							ANA	ANALYSIS REQUESTED	COUEST	ED		Filtered - F. Field, L. Lab, FL. Field & Lab, N. Non	L: Lab, FL: Fi	ield & Lab
									SERV. FILL								
			(oN						Баяа								
			Yes/								sv						
) lsir						Lancer 1			7					
			s Mate						NALYSIS			ntent by					
Sample ID	Sample Location (svs. loc code)	Field Matrix	Hazardous	Date	Time (24hr)	Tissue	Tissue Species	Sample Structure	A Number of	Metals in Bio ICPMS (wet	Mercury in I (wet, dry & 1	Moisture Co Gravimetry				į.	
244 LC_FRB_INV-1_2022-11_N /	LC_FRB	TA	z	29-Nov-22	10:30	INV	Composite	Composite	1	x	x	×					
JUS IC_FRB_INV-2_2022-11_N /	LC_FRB	TA	z	29-Nov-22	10:35	INV	Composite	Composite	-	×	×	×					
DUG LC_FRB_INV-3_2022-11_N	LC_FRB	TA	z	29-Nov-22	10:40	INA	Composite	Composite	-	×	x	х					
256 LC_FRB_INV-4_2022-11_N /	LC_FRB	TA	z	29-Nov-22	10:45	INV	Composite	Composite	-	×	×	×				7	
LC_FRB_INV-5_2022-11_N ,	LC_FRB	TA	z	29-Nov-22	10:50	INV	Composite	Composite	-	х	х	x					
OS2 LC_DC3_INV-1_2022-11_N ,	LC_DC3	TA	z	29-Nov-22	10:00	INV	Composite	Composite	-	x	x	x					
LC_DC3_INV-2_2022-11_N ,	LC_DC3	TA	z	29-Nov-22	10:05	INV	Composite	Composite	-	x	x	x					
LC_DC3_INV-3_2022-11_N ,	EDG_DC3	TA	Z	29-Nov-22	10:10	INV	Composite	Composite	-	x	x	x					
LC_DC3_INV-4_2022-11_N	LC_DC3	TA	z	29-Nov-22	10:15	INV	Composite	Composite	-	x	x	×					
ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS	ECIAL INSTRUCTIONS			RELIN	QUISHED	RELINQUISHED BY/AFFILIATION	IATION		DATI	DATE/TIME	ACC	EPTED	ACCEPTED BY/AFFILIATION	ATION	DA	DATE/TIME	
PO 818999	66				Robin	Robin Valleau			Decemb	December 2, 2022	Alex	7	Wade		07 Dec 2022	7	1:00
											5	7		1			
		and the same of th				The second second					(1/10)eut	ent #	+: 5077- H	143)			
SERVICE REQUEST (rush - subject to availability)	subject to availability)	ity) Regular (default)											-				
Priority (Priority (2-3 business days) - 50% surcharge	urcharge		Sampler's Name	me			Robin Valleau	ean			Mobile #	le#		416-970-7535	35	
1																	

	COC ID:					TU	RNAROU	TURNAROUND TIME:		104	(401 06 Welter-	25		RUSH:		
	PROJECT/CLIENT INFO							LABOR	LABORATORY					OTHER INFO		
Facility Name / Job	Facility Name / Job# Line Creek Operation							Lab Name TrichAnalytics Inc.	TrichAnal	ytics Inc.		R	sport Forma	Report Format / Distribution	Excel PDF	EDD
Project Manage	Project Manager Nicole Zathey						Г	Lab Contact Jennie Christensen	Jennie Chr	istensen			Email 1: m	mike.pope@teck.com	X	×
Ema	Email nicole.zathey@teck.com							Email	Email jennie.christensen@trichanalytics	stensen@t	richanalytie			jessica.Ritz@teck.com	X	*
Addres	Address 421 Pine Ave							Address	Address 207-1753 Sean Heights	Sean Heigh	ıts	E		teckcoal@equisonline.com	X	×
i												+		AquaSciLab@teck.com	X	×
City			-F	Province	BC				Saanichton		Province BC		Email 5: R	Robin.valleau@minnow.ca	X	*
Postal Code	e V0B 2G0						Ь	Postal Code								
Phone Numbe	Phone Number 250-425-8449						Pho	Phone Number				PO	PO number	818999		
	SAMPLE DETAILS	DETAIL	rs							ANALY	ANALYSIS REOUESTED	UESTED		Filtered - F: Field, L: Lab, FL: Field & Lab, N: None	L: Lab, FL: Field	& L3
Tree_19 Sample ID	Sample Location (sys loc code)	Field Matrix	Hazardous Material (Yes/No)	Date	Time (24hr)	Tissue	Tissue	Sample	ANALYSIS PRESERY, FIIL. Number of Containers	Metals in Biota by CRC ICPMS (wet and dry)	Mercury in Biota by CVAAS (wet, dry & routine) Moisture Content by	Стачітейту				
JG6 LC_DC3_INV-5_2022-11_N ,	EDG_DZ3	TA	z	29-Nov-22	10:20	INV	Composite	Composite	-	×	×	×				
553 LC_DC4_INV-1_2022-11_N /	LC_DC4	TA	z	29-Nov-22	12:30	INV	Composite	Composite	-	x	x	x				
LC_DC4_INV-2_2022-11_N· /	LC_DC4	TA	z	29-Nov-22	12:35	INV	Composite	Composite	-	x	x	x				+
554 LC_DC4_INV-3_2022-11_N ,	LC_DC4	TA	z	29-Nov-22	12:40	INV	Composite	Composite	-	×	x	x				
360 LC_DC4_INV-4_2022-11_N ,	LC_DC4	TA	z	29-Nov-22	12:45	INV	Composite	Composite	-	×	x	x				
LC_DC4_INV-5_2022-11_N /	LC_DC4	TA	z	29-Nov-22	12:50	INV	Composite	Composite	1	х	x	x				
261 LC_GRCK_INV-1_2022-11_N J	LC_GRCK	TA	Z	30-Nov-22	9:30	INV	Composite	Composite	-	×	x	x				
LC_GRCK_INV-2_2022-11_N ,	LC_GRCK	TA	z	1-Dec-22	9:35	INV	Composite	Composite	-	x	x	x				
364 I.C_GRCK_INV-3_2022-11_N /	LC_GRCK	TA	z	2-Dec-22	9:40	INV	Composite	Composite	-	×	×	x				
ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS	ECIAL INSTRUCTIONS			RELINC	UISHED	RELINQUISHED BY/AFFILIATION	IATION		DATE/TIME	IME	ACCEP	FED BY/AF	ACCEPTED BY/AFFILIATION		DATE/TIME	
PO 818999	66				Robin	Robin Valleau			December 1, 2022	1, 2022	Alex	Lunde		0+Dec 70 72	00:11/2	0
										3/	mont	Proce # 2003	(ANN-			
SERVICE REQUEST (rush - subject to availability)	subject to availability)									-		2000	2			
Priority	Regular (default)	default)	Š	Sampler's Name	ne			Robin Valleau	an			Mobile #		416-970-7535	8	
Emergency	Emergency (1 Duciness Day) 1000 curchange	0									-					

								1		1 De Dectori	crors						
	COC ID:					TU	RNAROU	TURNAROUND TIME:						RUSH	H;		
Р	PROJECT/CLIENT INFO							LABORATORY	LTORY					OTHER	IER INFO		
Facility Name / Jobs	Facility Name / Job# Line Creek Operation							Lab Name TrichAnalytics Inc	TrichAnal	ytics Inc.			Report For	Report Format / Distribution		Excel PDF	J.
Project Manage	Project Manager Nicole Zathey						L	Lab Contact Jennie Christensen	Jennie Ch	ristensen		I	Email 1:	mike.pope@teck.com	k.com X	X	R
Emai	Email nicole.zathey@teck.com							Email	ennie.chr	stensen@	Email jennie.christensen@trichanalytics		Email 2:	jessica.Ritz@teck.com	ck.com X	X	SY
Addres	Address 421 Pine Ave							Address 207-1753 Sean Heights	207-1753	Sean Heig	ghts	F	Email 3:	teckcoal@equisonline.com	nline.com X	X	
										100		F	Email 4:	AquaSciLab@teck.com	k.com X	X	
City	Sparwood		Pr	Province	BC			City	Saanichton		Province BC		Email 5:	Robin.valleau@minnow.ca	@minnow.ca X	X	
Postal Code	e V0B 2G0						Ь	Postal Code									
Phone Numbe	Phone Number 250-425-8449						Phor	Phone Number				PC	PO number	8	818999		
	130	SAMPLE DETAILS	S							ANAL	VSIS RE	ANALYSIS REOLIESTED		The second second second	Filtered - F: Field, L: Lab. FL: Field & Lab. N: Non-	Lab. FL: Fie	ald &
			(oN						PRESERV. FILL								
		7 7 8	ardous Material (Yes/		Ë	Ē	į		ANALYSIS stanianiners	s in Biota by CRC S (wet and dry)	ary in Biota by CVAAS dry & routine)	ure Content by					
Sample ID	Sample Location (sys loc code)	Field	Haza	Date	Time (24hr)	Tissue	Tissue Species	Sample Structure	quinN		(wet, d						
LC_GRCK_INV-4_2022-11_N~	LC_GRCK	TA	z	30-Nov-22	9:45	INV	Composite	Composite	-	×	×	×					
LC_GRCK_INV-5_2022-11_N '	LC_GRCK	TA	z	30-Nov-22	9:50	INV	Composite	Composite	-	х	х	x					
LC_DCEF_INV-1_2022-11_N /	LC_DCEF	TA	Z	29-Nov-22	10:30	INV	Composite	Composite	-	x	x	×					
LC_DCEF_INV-2_2022-11_N ,	LC_DCEF	TA	z	29-Nov-22	10:35	INV	Composite	Composite	-	х	х	×					
LC_DCEF_INV-3_2022-11_N ,	LC_DCEF	TA	z	29-Nov-22	10:40	INV	Composite	Composite	-	х	x	x					
λλο LC_DCEF_INV-4_2022-11_N ,	LC_DCEF	TA	z	29-Nov-22	10:45	INV	Composite	Composite	-	x	х	x					
LC_DCEF_INV-5_2022-11_N /	LC_DCEF	TA	z	29-Nov-22	10:50	INV	Composite	Composite	-	x	x	x					
LC_DCDS_INV-1_2022-11_N /	rc_bcbs	TA	z	30-Nov-22	12:00	INV	Composite	Composite	-	×	х	x					4 6 7
LC_DCDS_INV-2_2022-11_N /	rc_bcbs	TA	z	30-Nov-22	12:05	INV	Composite	Composite	-	×	×	x					
ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS	ECIAL INSTRUCTIONS			RELING	RELINQUISHED	BY/AFFILIATION	IATION		DATE/TIME	IME	ACCE	ACCEPTED BY/AFFILIATION	VFFILIAT	ION	DATI	DATE/TIME	
PO 818999	60				Robin	Robin Valleau			December 1, 2022	1, 2022	Alex	ex wade	de	Ö	07 Dec 2011	111:00	0
											Å	1	1				
											Project	Project #: 2022	2-445				
SERVICE REQUEST (rush - subject to availability)	subject to availability)													,			
Priority (Regular (default) Priority (2-3 business days) - 50% surcharge	Regular (default)	S	Sampler's Name	ne		1	Robin Valleau	au			Mobile #		4	416-970-7535		

	COC ID:					Т	TURNAROUND TIME:	ND TIME:							RUSH:		
PI	PROJECT/CLIENT INFO							LABORATORY	ATOR	1					OTHER INFO	0	
Facility Name / Job#	Facility Name / Job# Line Creek Operation							Lab Name TrichAnalytics Inc.	TrichA	nalytics I	JC.	The contract	Report	Report Format / Distribution	Distribution	Excel	PDF
Project Manager Nicole Zathey	Nicole Zathey						П	Lab Contact Jennie Christensen	Jennie (Christens	Sn.		Email 1:		mike.pope@teck.com	X	×
Email	Email nicole.zathey@teck.com							Email	jennie.c	hristense	Email jennie.christensen@trichanalytics	alytics	Email 2:		jessica.Ritz@teck.com	X	X
Address	Address 421 Pine Ave							Address 207-1753 Sean Heights	207-17	53 Sean I	leights		Email 3:		teckcoal@equisonline.com	X	×
												No.	Email 4:		AquaSciLab@teck.com	X	×
City			H.	Province	BC			City	Saanichton	ton	Province BC	BC	Email 5:		Robin.valleau@minnow.ca	× sa ×	×
Postal Code	V0B 2G0						P	Postal Code									
Phone Number 250-425-8449	250-425-8449						Pho	Phone Number					PO number	ver	818999		
		SAMPLE DETAILS	TS							AN	ANALYSIS REQUESTED	EQUEST	ED	No. of the last of	Filtered - F: F	Filtered - F: Field, L: Lab, FL: Field & Lab, N: No.	L. Field 8
			(0)		7				PRESERV. FILL								
			rdous Material (Yes/l						ANALYSIS er of Containers	in Biota by CRC 5 (wet and dry)	ry in Biota by CVAAS	re Content by		**************************************			
Sample ID	Sample Location (sys loc code)	Field	Haza	Date	Time (24hr)	Tissue	Tissue Species	Sample Structure				Moistun					
LC_DCDS_INV-3_2022-11_N _	rc_bcds	TA	z	30-Nov-22	12:10	INV	Composite	Composite	-	×	×	×					
LC_DCDS_INV-4_2022-11_N ^	C_DCDS	TA	Z	30-Nov-22	12:15	INV	Composite	Composite	-	x	x	×					
LC_DCDS_INV-5_2022-11_N /	rc_bcbs	TA	z	30-Nov-22	12:20	INV	Composite	Composite	-	х	х	x					
LC_FRUS_INV-1_2022-11_N ,	LC_FRUS	TA	z	29-Nov-22	13:30	INV	Composite	Composite	-	x	x	х					
LC_FRUS_INV-2_2022-11_N ,	LC_FRUS	TA	z	29-Nov-22	13:35	INV	Composite	Composite	-	х	x	x			(6)		
LC_FRUS_INV-3_2022-11_N ,	LC_FRUS	TA	z	29-Nov-22	13:40	INV	Composite	Composite	-	×	х	x					
LC_FRUS_INV-4_2022-11_N ,	LC_FRUS	TA	z	29-Nov-22	13:45	INV	Composite	Composite	-	х	х	x					
LC_FRUS_INV-5_2022-11_N ,	LC_FRUS	TA	Z	29-Nov-22	13:50	INV	Composite	Composite	-	x	×	×					
ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS	CIAL INSTRUCTIONS			RELING	UISHED	RELINQUISHED BY/AFFILIATION	ATION		DATE	DATE/TIME	ACC	EPTED	ACCEPTED BY/AFFILIATION	ATION		DATE/TIME	E
PO 818999	0				Robin	Robin Valleau			Decemb	December 1, 2022		Alex	unde		07 Dec 2022		00:11
													Ø				
											Prove	Provent #: 2022	1022-4	-44S)			
SERVICE REQUEST (rush - subject to availability)	ubject to availability)				THE COLUMN									-			
Priority (2	Regular (default) Priority (2-3 business days) - 50% surcharge	Regular (default)	<i>3</i> 2	Sampler's Name	ne		-	Robin Valleau	eau			Mobile #	# a		416-970-7535	7535	