

Prepared for:

**Teck Coal Limited** 

December 7, 2021 Internal Ref: 672386 > Final > V1



## Signature Page

Prepared By:

den ce roject Management

Reviewed By:

Original stamped version on file

SNC-Lavalin Inc. Practice to Permit No. 1002642 Stefan Humphries, MSc, P.Geo. Senior Hydrogeologist/Hydrogeologic Services Manager

Environment & Geoscience Engineering, Design & Project Management



## **Executive Summary**

SNC-Lavalin Inc. (SNC-Lavalin) was retained by Teck Coal Limited (Teck Coal) to act as Subject Matter Expert (SME) in an evaluation of cause of a recently observed decline in the abundance of Westslope Cutthroat Trout (WCT) in the upper Fording River (UFR). This report presents an evaluation of the potential for groundwater to act as a stressor in the UFR that may have contributed to the WCT population decline, where stressors are defined as any biological, chemical, or physical factor causing adverse effects in the environment. Teck Coal has engaged multiple SMEs to evaluate potential stressors to WCT habitat, and this report has been generated for discussion purposes amongst SMEs and Teck Coal.

The evaluation was completed within three localized study areas along the UFR, including:

- i) The S6 Study Area, corresponding to a reach from the South Tailings Pond (STP) to Chauncey Creek;
- ii) The S8 Study Area, corresponding to a reach from the area of the Clode Creek settling ponds to the north end of the North Tailings Pond (NTP); and
- iii) The S10 Study Area, corresponding to Henretta Creek in the vicinity of Henretta Lake.

Each of the localised study areas above were selected because they are located within or downstream of mining operations, are known to discharge groundwater to the UFR or major fish-bearing tributaries (i.e., Henretta Creek), and coincide with WCT spawning and overwintering habitat. Therefore, groundwater in these areas has the potential to indirectly influence the WCT population through discharge to surface water. The analyses done in these areas also supports the understanding of groundwater for other studies being performed by SMEs.

### **Objectives**

The overall objective of this investigation was to evaluate the contribution of groundwater, if any, to the population decline of WCT in the UFR. Specific objectives included:

- > To spatially and temporally characterize groundwater quantity and its influence on surface water flows in the UFR, including identification and quantification of groundwater recharge and discharge zones; and
- > To spatially and temporally characterize groundwater quality and its influence on surface water quality in the UFR valley.

## Approach

There is no direct exposure of WCT to groundwater since their habitat constitutes the surface water courses in the UFR as well as numerous other tributaries, side or braided channels, and oxbow lakes. However, groundwater discharge sustains surface water flow during baseflow periods and groundwater quality locally influences surface water quality in areas where it discharges to surface water. Therefore, both groundwater quantity and quality were evaluated in this report as potential stressors to surface water quantity and quality. The approach to this evaluation was to present hydrogeological conceptual models of each localized study area to provide the appropriate context within which to evaluate the stressors. The conceptual models were



based on review of the available data and identify sources of mine-influenced constituents of interest (CI), interpreted transport pathways, travel times, and groundwater-surface water interactions (recharge and discharge zones).

The following impact hypotheses were evaluated in order to investigate the potential for groundwater to act as a stressor in relation to the objectives above:

- 1. A change in upgradient groundwater levels influenced the groundwater flow regime causing a change to surface water flows and/or to the spatial distribution of groundwater discharge zones.
- 2. A change in upgradient groundwater quality influenced downstream surface water quality.

The approach to evaluate both impact hypotheses was similar, and included review of the historical hydrogeological data from upgradient monitoring wells in order to determine whether any conditions unique to the decline window were likely to have been present. The review was focused on monitoring wells located upgradient of the discharge zones due to a lack of monitoring wells within the discharge zones of each study area. For areas where data were limited or not available, the evaluation was restricted to commentary on whether groundwater could potentially be a stressor given the current understanding. Review of water quality focused on parameters most indicative of mining influence including selenium, nitrate, and sulphate, as well as pH.

Brief description of the conceptual models and findings are described below.

## Findings: S6 Study Area

### **Conceptual Model**

Groundwater flows in the down-valley (southeast) direction under a lateral hydraulic gradient similar to that of the topography, with little seasonal variability. Kilmarnock Creek loses water to ground (i.e., infiltrates) over its alluvial fan, while the Fording River loses water to ground after the South Tailings Pond (STP) for an approximate 5 km reach with the exception of localized and seasonal discharge zones. A regional groundwater discharge zone is present in the Fording River after this losing reach, which is interpreted to coincide with a shallowing of the bedrock/low permeability surface. Three primary pathways for mine-influenced water to reach surface water by groundwater transport were identified:

- Groundwater recharged by Kilmarnock Creek is transported along the east side of the Fording River valley and discharges in the Greenhouse Side Channel and the main stem between the confluence of the Greenhouse Side Channel and surface water station FR\_FRRD. This discharge is part of the larger regional groundwater discharge zone;
- ii) Groundwater recharged by Kilmarnock Creek is seasonally transported across the valley along a shallow preferential flow pathway in a former channel. Discharge to the Fording River is seasonal between late winter (February and March) and early summer (June and July) at a bend in the Fording River located between surface water stations FR\_FR4 and FR\_FRCP1; and
- iii) Groundwater recharged by the Fording River between the STP and the Greenhouse Side Channel confluence that discharges in the regional groundwater discharge zone in Side Channel 2 and the main stem between surface water stations FR\_FRRD and GH\_PC2.



The majority of flow gains in the regional groundwater discharge zone are considered to have been made through the third (Fording River) transport pathway above. Groundwater along this transport pathway is considered to be well mixed. As a result, the surface water quality in the majority of the discharge zone appears to vary less by season. The first and second transport pathways (Kilmarnock Creek) are more discrete and localized, and groundwater and resulting surface water quality in discharge areas will be less mixed and more seasonally variable.

### **Evaluation of Stressors**

There were no indications in the historical water level records that would suggest the spatial distribution of discharge zones or discharge rates were unique to the decline window, including accounting for groundwater travel times. Therefore, there is no strong evidence to suggest that changes in groundwater quantity (flow) played a role in the WCT population decline in the S6 Study Area.

There were also no indications in the historical analytical results of upgradient groundwater to suggest that downstream surface water quality would have been unique to the decline window, including accounting for groundwater travel times. However, groundwater quality along the transport pathways i and ii showed greater mine-influence than the nearest surface water stations downstream of the discharge zones, indicating surface water quality may have been locally affected during the decline window. WCT may also have preferentially migrated to these areas of warmer groundwater discharge during the unusually cold winter conditions in February 2019; however, there are no data related to fish migration in these areas during the decline window. Based on the concentrations of nitrate-N and selenium in groundwater along the flow path compared to recommended screening criteria for juvenile and adult fish, water quality in discharge zones is considered unlikely to have affected the WCT population during the decline window. Therefore, there is no strong evidence that groundwater quality played a role in the WCT population decline in the S6 Study Area.

## Findings: S8 Study Area

### **Conceptual Model**

The groundwater flow direction in the upland areas is towards the Fording River valley bottom, and flow in the valley bottom aquifer is in the down-valley direction. A number of seeps with considerable flow emerge from the base of the spoils on the east side of the valley, resultant from drainage of the mining disturbed Clode Creek and Eagle Creek watersheds. Flow from these seeps either enter the Clode Creek settling ponds or infiltrate to the valley-bottom aquifer. A groundwater discharge zone is present within the Fording River downstream of the Clode Creek settling ponds generally between FR\_FRDSCC1 and Lake Mountain Creek, but the zone can vary by season. Groundwater flow in the vicinity of Clode Creek settling ponds is south or southeast towards this discharge zone.

There are considered to be three primary transport pathways for mine influenced water to reach the Fording River from the Clode Creek watershed, including:

 Decanting of surface water from the Clode Creek settling ponds, which receive drainage from the Clode Creek watershed, groundwater discharge, and seepage water that has daylighted from the base of the spoils;



- ii) Leakage of groundwater from the Clode Creek settling ponds, which discharges either to the Fording River or to Grassy Creek (and ultimately the Fording River); and
- iii) Groundwater from the spoiled portion of the watershed that underflows the Clode Creek settling ponds.

Surface water data upstream and downstream of the inferred groundwater discharge zone as well as from upstream of the Clode Creek settling ponds indicate that constituent loading to the Fording River from groundwater is minimal. The minimal loading is attributed to surface water contributions from the Clode Creek settling ponds and Grassy Creek, corresponding to pathways i (decanting from the ponds) and ii (leakage from the ponds and discharge to Grassy Creek) above.

#### **Evaluation of Stressors**

Groundwater quantity cannot be evaluated as a potential stressor as there are insufficient historical data to establish whether the locations of discharge zones or discharge rates were unique to the decline window. There is no strong evidence to suggest that groundwater quality played a role in the WCT population decline in the S8 Study Area because it does not appear to affect surface water quality in the groundwater discharge zone.

### S10 Study Area

### **Conceptual Model**

Groundwater flow in the spoils and backfilled pits in the vicinity of Henretta Lake is inferred to be south-southwest towards the lake. Groundwater quality in the spoils and backfilled pits is mine influenced; however, surface water quality above and below Henretta Lake is similar, suggesting no constituent loading from groundwater input to the lake. This may be an indication of attenuation along the groundwater flow path or within Henretta Lake, or due to underflow of the lake.

#### **Evaluation of Stressors**

There were no indications in the historical groundwater level data that discharge rates to Henretta Lake or the locations of discharge zones were unique to the decline window; therefore, there is no strong evidence to suggest that groundwater quantity played a role in the WCT population decline. There is also no strong evidence to suggest that groundwater quality played a role in the WCT population decline due to the minimal contaminant loading in Henretta Creek upstream and downstream or Henretta Lake. However, the lack of water quality data at depth within Henretta Lake during the decline window is a key data gap given that dissolved selenium concentrations within the spoils north of Henretta Lake increased throughout the decline window and that groundwater flow is directed towards the lake, which could potentially cause stratification of CI. The potential chronic effects to fish are also uncertain due to the lack of water quality data at depth in Henretta Communication due to the lack of water quality data at depth in Henretta to fish are also uncertain due to the spoils.

## **Operational Influences on Groundwater**

A review of operational factors that have the potential to affect flows in the Fording River, including groundwater extraction, pit development, and water usage from Points of Diversion (POD), was also



completed. The results of the review suggest that there is no strong evidence that any of the operational influences were likely to have played a significant role in the decline of the WCT population when considered on an individual basis. However, several data gaps were identified related to the effects of groundwater withdrawals from the FR\_POTWELLS and Greenhouse Wells, the potential for preferential flow pathways in bedrock through structural discontinuities, and the impact of cumulative effects of water use from POD's and pit dewatering.

A recommendation has been made (Recommendation 1) in the Evaluation of Cause report to consider developing an integrated watershed-scale model of groundwater and surface water to better understand the cumulative effects of these operational influences, including water use, water diversion, and water storage (Evaluation of Cause Team, 2021).



# **Table of Contents**

| Signature Page                                                                                                                                                                                                                                                                                                                         |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Executive Summary                                                                                                                                                                                                                                                                                                                      | i                               |
| Acronyms and Abbreviations                                                                                                                                                                                                                                                                                                             | xvi                             |
| READER'S NOTE                                                                                                                                                                                                                                                                                                                          | xviii                           |
| What is the Evaluation of Cause and what is its purpose?<br>Background                                                                                                                                                                                                                                                                 | xviii                           |
| Evaluation of Cause<br>How the Evaluation of Cause was approached                                                                                                                                                                                                                                                                      |                                 |
| Participation, Engagement & Transparency                                                                                                                                                                                                                                                                                               | xxi                             |
| Citation for the Evaluation of Cause Report<br>Citations for Subject Matter Expert Reports                                                                                                                                                                                                                                             |                                 |
| 1 Introduction                                                                                                                                                                                                                                                                                                                         | 1                               |
| <ul> <li>1.1 Background</li> <li>1.1.1 Overall Background</li> <li>1.1.2 Report-Specific Background</li> <li>1.1.3 Study Area</li> <li>1.1.3.1 Local Study Areas</li> <li>1.1.4 Definitions</li> <li>1.2 Objectives</li> <li>1.2.1 Report-Specific Objectives</li> <li>1.3 Approach</li> <li>1.3.1 Report-Specific Approach</li> </ul> | 1<br>1<br>3<br>3<br>4<br>4<br>4 |
| 2 Regulatory Criteria                                                                                                                                                                                                                                                                                                                  | 6                               |
| <ul> <li>2.1 Primary Screening Criteria</li> <li>2.2 Secondary Screening Criteria</li> </ul>                                                                                                                                                                                                                                           | 6                               |



# Table of Contents (Cont'd)

| 3 | Hy  | droge  | ological Conceptual Model for S6 Study Area                  | 7  |
|---|-----|--------|--------------------------------------------------------------|----|
|   | 3.1 | Settin | g and Physical Geography                                     | 7  |
|   | 3.2 | Hydro  | logy                                                         | 7  |
|   | 3.3 | Geolo  | ду                                                           | 8  |
|   |     | 3.3.1  | Bedrock Geology                                              | 8  |
|   |     | 3.3.2  | Surficial Geology                                            | 8  |
|   | 3.4 | Physic | cal Hydrogeology                                             | 9  |
|   |     | 3.4.1  | Hydraulic Conductivity and Groundwater Flow Velocity         | 9  |
|   |     | 3.4.2  | Groundwater Flow Regime                                      | 12 |
|   | 3.5 | Grour  | ndwater-Surface Water Interactions                           | 14 |
|   |     | 3.5.1  | Regional Groundwater-Surface Water Interactions              | 14 |
|   |     |        | 3.5.1.1 Flow Accretion Studies                               | 15 |
|   |     |        | 3.5.1.2 Drying Surveys                                       | 16 |
|   |     |        | 3.5.1.3 Continuous Flow Data                                 | 16 |
|   |     |        | 3.5.1.4 Summary                                              | 19 |
|   |     | 3.5.2  | Local Scale Groundwater-Surface Interactions                 | 20 |
|   | 3.6 | Grour  | ndwater Quality and Transport Pathways                       | 22 |
|   |     | 3.6.1  | Major Ion Chemistry                                          | 22 |
|   |     | 3.6.2  | Mine-Influenced Waters in the S6 Study Area                  | 24 |
|   |     | 3.6.3  | Transport Pathway Indicators                                 | 25 |
|   |     | 3.6.4  | Groundwater Transport of Kilmarnock Creek Influenced Water   | 26 |
|   |     | 3.6.5  | Groundwater Transport of Fording River Mine-Influenced Water |    |
|   |     | 3.6.6  | Estimated Travel Times                                       | 32 |
| 4 | Str | essor  | 1 – Groundwater Quantity in the S6 Study Area                | 35 |
|   | 4.1 | Impac  | et Hypothesis and Rationale                                  |    |
|   | 4.2 | Analys | ses                                                          | 35 |
|   | 4.3 | Findin | ıgs                                                          | 35 |



# Table of Contents (Cont'd)

|   | 4.4 | Other  | Relevant Observations and Findings                                   | 36 |
|---|-----|--------|----------------------------------------------------------------------|----|
|   |     | 4.4.1  | Discharge at FR_FRABCH                                               | 36 |
|   | 4.5 | Effect | s on Surface Water Flows and Spatial Distribution of Discharge Zones | 37 |
|   |     | 4.5.1  | Biological Influence                                                 | 39 |
| 5 | Str |        | 2 – Groundwater Quality                                              | 40 |
|   | 5.1 | Impac  | t Hypothesis and Rationale                                           | 40 |
|   | 5.2 | Analys | ses                                                                  | 40 |
|   | 5.3 | Findin | ıgs                                                                  | 41 |
|   |     | 5.3.1  | Water Quality                                                        | 41 |
|   |     |        | 5.3.1.1 Kilmarnock Creek Flow Paths                                  | 44 |
|   |     |        | 5.3.1.2 Fording River Flow Path                                      | 44 |
|   |     | 5.3.2  | Trend Analyses                                                       | 47 |
|   |     |        | 5.3.2.1 Kilmarnock Creek Flow Paths                                  | 47 |
|   |     |        | 5.3.2.2 Fording River Flow Path                                      | 48 |
|   |     | 5.3.3  | Data Gaps and Uncertainties                                          | 49 |
|   |     | 5.3.4  | Summary of Water Quality Findings                                    | 49 |
|   | 5.4 | Other  | Relevant Observations and Findings                                   | 50 |
|   |     | 5.4.1  | Groundwater Influence on Surface Water Temperature                   | 50 |
|   |     | 5.4.2  | Speciated Selenium                                                   | 51 |
|   | 5.5 | Effect | s on Downgradient Surface Water Quality                              | 52 |
|   |     | 5.5.1  | Kilmarnock Creek Flow Path Discharge Areas                           | 52 |
|   |     |        | 5.5.1.1 Kilmarnock Creek Seasonal Flow Path                          | 52 |
|   |     |        | 5.5.1.2 Greenhouse Side Channel                                      | 53 |
|   |     |        | 5.5.1.1 Potential Effects on Overwintering Fish                      | 53 |
|   |     | 5.5.2  | Fording River Flow Path Discharge Zone                               | 55 |
|   |     |        | 5.5.2.1 Potential Effects on Overwintering Fish                      | 56 |
|   |     | 5.5.3  | Downstream of Regional Groundwater Discharge Zone                    | 56 |



# Table of Contents (Cont'd)

| 6 | Hy  | drogeological Conceptual Model of the S8 Study Area  | 59 |
|---|-----|------------------------------------------------------|----|
|   | 6.1 | Physical Setting                                     |    |
|   | 6.2 | Hydrology                                            |    |
|   | 6.3 | Surficial Geology                                    | 61 |
|   | 6.4 | Hydrogeology                                         |    |
|   |     | 6.4.1 Hydraulic Conductivities                       |    |
|   |     | 6.4.2 Groundwater Flow Regime                        |    |
|   |     | 6.4.3 Waste Rock Seepages                            |    |
|   |     | 6.4.4 Groundwater-Surface Water Interactions         |    |
|   |     | 6.4.5 Water Quality                                  |    |
|   |     | 6.4.6 Transport Pathways                             |    |
|   |     | 6.4.7 Effects on Downstream Surface Water            |    |
|   |     | 6.4.8 Data Gaps                                      |    |
|   | 6.5 | Stressors during the Decline Window                  |    |
| 7 | Hy  | drogeological Conceptual Model of the S10 Study Area | 73 |
|   | 7.1 | Physical Setting and Geology                         |    |
|   | 7.2 | Physical Hydrogeology                                | 73 |
|   |     | 7.2.1 Groundwater Surface Water Interactions         |    |
|   | 7.3 | Water Quality                                        | 75 |
|   |     | 7.3.1 Historical Groundwater Quality                 |    |
|   |     | 7.3.2 Fate and Transport Pathways                    |    |
|   |     | 7.3.2.1 Potential Effects on Overwintering Fish      |    |
|   | 7.4 | Data Gaps                                            |    |
|   | 7.5 | Stressors during the Decline Window                  |    |
| 8 | Ор  | perational Influences on Groundwater Resources       | 84 |
|   | 8.1 | Groundwater Extraction                               |    |



# Table of Contents (Cont'd)

|    |     | 8.1.1   | FRO Potable Wells              | 84  |
|----|-----|---------|--------------------------------|-----|
|    |     | 8.1.2   | Greenhouse Wells               |     |
|    | 8.2 | Pit De  | velopment                      | 89  |
|    |     | 8.2.1   | Swift Project                  | 90  |
|    |     |         | 8.2.1.1 Shandley Pit           | 90  |
|    |     |         | 8.2.1.2 Swift 1 Pit            | 92  |
|    |     | 8.2.2   | Turnbull Pits                  | 93  |
|    |     | 8.2.3   | Lake Mountain Pit              | 94  |
|    | 8.3 | Other   | PODs                           | 94  |
|    | 8.4 | Summ    | nary of Operational Influences | 96  |
| 9  | Re  | ferenc  | es                             | 98  |
| 10 | No  | tice to | Reader                         | 102 |

#### **In-Text Figures**

9 .....

| Figure 1: | Hydrographs of Monitoring Wells in the Kilmarnock Creel Alluvial Fan Area                                                |
|-----------|--------------------------------------------------------------------------------------------------------------------------|
| Figure 2: | Hydrographs of Monitoring Wells in the Fording River Valley Bottom14                                                     |
| Figure 3: | Measured Flows in the Fording River in October 2019 15                                                                   |
| Figure 4: | Discharge Difference between Stations FR_FRRD and FR_FRCP1SW                                                             |
| Figure 5: | Discharge Difference between Stations GH_PC2 and FR_FRRD                                                                 |
| Figure 6: | Discharge Difference between Stations FR_FRCP1SW and FR_FRCP1 19                                                         |
| Figure 7: | Local-Scale Groundwater-Surface Water Interactions in the Hyporheic Zone                                                 |
|           | (from Stonedahl et al., 2010)                                                                                            |
| Figure 8: | Major Ion Chemistry of Upgradient Monitoring Wells in 2019 as well as Shallow Groundwater,                               |
|           | Seepage Water, and Surface Water in the Greenhouse Side Channel Collected in Support of                                  |
|           | the MBI                                                                                                                  |
| Figure 9: | Major ion Chemistry of Surface Water in Kilmarnock Creek at FR_KC1 and the Fording River at                              |
|           | FR_FRCP1 in 2019, as well as of Surface Water in Samples Collected from the Fording River                                |
|           | during the Flow Accretion Study in October 201924                                                                        |
| Figure 10 | : NO3 <sup>-</sup> -N/SO4 <sup>2-</sup> -S ratios in Surface Water in Kilmarnock Creek, Swift Creek, Cataract Creek, and |
|           | the Fording River above and below SKP2. Lines Connecting Data Points of Surface Water                                    |
|           | Stations are to Orient the Reader and do not Imply Continuous Data                                                       |
| Figure 11 | : NO3 <sup>-</sup> -N/SO4 <sup>2-</sup> -S Ratios Indicative of the Eastern Transport Pathway between Kilmarnock Creek   |
|           | and the Greenhouse Side Channel. Lines Connecting Data Points of Surface Water Stations are                              |
|           | to Orient the Reader and do not Imply Continuous Data27                                                                  |



# Table of Contents (Cont'd)

### In-Text Figures (Cont'd)

| Figure 12: NO <sub>3</sub> <sup>-</sup> -N/SO <sub>4</sub> <sup>2-</sup> -S Ratios Indicative of a Cross Valley Pathway from Kilmarnock Creek to the   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fording River. Lines Connecting Data Points of Surface Water Stations are to Orient the Reader                                                         |
| and do not Imply Continuous Data                                                                                                                       |
| Figure 13: Former Channel believed to be that of Kilmarnock Creek Prior to Development of the Sediment                                                 |
| Ponds. Air Photo Taken in 1990                                                                                                                         |
| Figure 14: NO <sub>3</sub> <sup>-</sup> -N/SO <sub>4</sub> <sup>2-</sup> -S Ratios Indicative of the Influence of Groundwater Recharged by the Fording |
| River on Fording River Surface Water Downstream of the Regional Groundwater Discharge                                                                  |
| Zone. Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do                                                           |
| not Imply Continuous Data                                                                                                                              |
| Figure 15: Discharge Data at FR_FRABCH since 2017                                                                                                      |
| Figure 16: Dissolved Selenium Concentrations in Upgradient Groundwater and Surface Water in                                                            |
| Kilmarnock Creek (FR_KC1) and the Fording River (FR_FR2, FR_FRCP1 and FR_FRRD). Lines                                                                  |
| Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply                                                             |
| Continuous Data                                                                                                                                        |
| Figure 17: Sulphate Concentrations in Upgradient Groundwater and Surface Water in Kilmarnock Creek                                                     |
| (FR_KC1) and the Fording River (FR_FR2, FR_FRCP1 and FR_FRRD). Lines Connecting Data                                                                   |
| Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data 46                                                          |
| Figure 18: Nitrate-N Concentrations in Upgradient Groundwater and Surface Water in Kilmarnock Creek                                                    |
| (FR_KC1) and the Fording River (FR_FR2, FR_FRCP1 and FR_FRRD). Lines Connecting Data                                                                   |
| Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data 46                                                          |
| Figure 19: Temperature Data in the Upper Fording River and Greenhouse Side Channel since 2012.                                                         |
| (Data provided by S. Cope and Teck Coal)                                                                                                               |
| October 2019, As well as the Estimated Ratio of Groundwater Discharge between                                                                          |
| RG_FLA_FR10 and RG_FLA_FR09. Also Shown are the Ranges and Means of NO $_3$ <sup>-</sup> N/SO $_4$ <sup>2-</sup> S                                     |
| ratios in Kilmarnock Creek at FR_KC1 (blue), the Fording River at FR_FRCP1 (red), and the                                                              |
| Fording River at FR FRABCH (green)                                                                                                                     |
| Figure 21: The Clode Creek Catchment showing Eagle 4 and Eagle 6 West SRFs which Decant and Flow                                                       |
| through 9 Seam, Clode, and R4 Backfilled Pits and Diverted Clode Creek into the Clode Creek                                                            |
| Settling Ponds. (From SRK, 2020)                                                                                                                       |
| Figure 22:Historical Flow at FR_CC1 since 1995 Representing Discharge from the Clode Creek Settling                                                    |
| Ponds. (From SRK, 2020)                                                                                                                                |
| Figure 23: Hydrograph of Monitoring Wells in the Vicinity of the Clode Creek Settling Ponds                                                            |
| Figure 24: Nitrate-N Concentrations in Pond Effluent, Seepage, and Groundwater in the Vicinity of the                                                  |
| Clode Creek Settling Ponds. Lines Connecting Points of Surface Water and Seepage Water                                                                 |
| Datasets are to Orient the Reader and do not Imply Continuous Data                                                                                     |
| Figure 25: Selenium Concentrations in Pond Effluent, Seepage, and Groundwater in the Vicinity of the                                                   |
| Clode Creek Settling Ponds. Lines Connecting Points of Surface Water and Seepage Water                                                                 |
| Datasets are to Orient the Reader and do not Imply Continuous Data                                                                                     |



# Table of Contents (Cont'd)

### In-Text Figures (Cont'd)

| Figure 26: Sulphate Concentrations in Pond Effluent, Seepage, and Groundwater in The Vicinity of the  |
|-------------------------------------------------------------------------------------------------------|
| Clode Creek Settling Ponds. Lines Connecting Points of Surface Water and Seepage Water                |
| Datasets are to Orient the Reader and do not Imply Continuous Data                                    |
| Figure 27: Nitrate-N Concentrations in Fording River Surface Water Upstream and Downstream of the     |
| Clode Creek Settling Ponds, Tributaries, and Shallow Groundwater. Lines Connecting Data               |
| Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data 70         |
| Figure 28: Selenium Concentrations in Fording River Surface Water Upstream and Downstream of the      |
| Clode Creek Settling Ponds, Tributaries, and Shallow Groundwater. Lines Connecting Data               |
| Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data 71         |
| Figure 29: Sulphate Concentrations in Fording River Surface Water Upstream and Downstream of the      |
| Clode Creek Settling Ponds, Tributaries, and Shallow Groundwater. Lines Connecting Data               |
| Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data 71         |
| Figure 30: Groundwater and Surface Water Elevations in the Henretta Creek Watershed75                 |
| Figure 31: Dissolved Selenium Concentrations in Groundwater and Surface Water in the Henretta Creek   |
| Watershed. Lines Connecting Data Points of Surface Water Stations are to Orient the Reader            |
| and do not Imply Continuous Data77                                                                    |
| Figure 32: Sulphate Concentrations in Groundwater and Surface Water in the Henretta Creek Watershed.  |
| Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not            |
| Imply Continuous Data78                                                                               |
| Figure 33: Nitrate-N Concentrations in Groundwater and Surface Water in the Henretta Creek Watershed. |
| Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not            |
| Imply Continuous Data79                                                                               |
| Figure 34: Dissolved Selenium Concentrations in Henretta Creek Upstream (FR_HC2) and Downstream       |
| (FR_HC1) of Henretta Lake, as well as at the Henretta Lake Outlet (FR_HL1). Lines Connecting          |
| Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous            |
| Data                                                                                                  |
| Figure 35: Sulphate Concentrations in Henretta Creek Upstream (Fr_Hc2) and Downstream (Fr_Hc1) of     |
| Henretta Lake, as well as at the Henretta Lake Outlet (Fr_HI1). Lines Connecting Data Points of       |
| Surface Water Stations are to Orient the Reader and do not Imply Continuous Data                      |
| Figure 36: Nitrate-N Concentrations in Henretta Creek Upstream (FR_HC2) and Downstream (FR_HC1)       |
| of Henretta Lake, as well as at the Henretta Lake Outlet (FR_HL1). Lines Connecting Data Points       |
| of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data                   |
| Figure 37: Dissolved Selenium Concentrations in Groundwater at FR_POTWELLS and Surface Water at       |
| FR_FR1. Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and           |
| do not Imply Continuous Data85                                                                        |
| Figure 38: Sulphate Concentrations in Groundwater at FR_POTWELLS and Surface Water at FR_FR1.         |
| Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not            |
| Imply Continuous Data85                                                                               |



# Table of Contents (Cont'd)

### In-Text Figures (Cont'd)

| Figure 39: Nitrate-N Concentrations in Concentrations in Groundwater at FR_POTWELLS and Surface       |
|-------------------------------------------------------------------------------------------------------|
| Water at FR_FR1. Lines Connecting Data Points of Surface Water Stations are to Orient the             |
| Reader and do not Imply Continuous Data86                                                             |
| Figure 40: Average Daily Groundwater Extraction at the FR_POTWELLS, Discharge in the Fording River    |
| at FR_FRNTP, and Extracted Groundwater at the FR_POTWELLS Expressed as a Percentage                   |
| of Discharge in the Fording River at FR_FRNTP87                                                       |
| Figure 41: Average Daily Discharge in the Fording River at FR_FRNTP and Daily Water Use from Shandley |
| Pit between 2015 And 201992                                                                           |

#### **In-Text Tables**

| Table A: Bedrock Geology of Upper Fording River         Table B: Summary of Hydraulic Testing Results in Kilmarnock Creek Alluvial Fan and Fording Rive         Bottom | er Valley |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Table C: Summary of Average Linear Groundwater Flow Velocities in Upper Fording River Valley                                                                           | 11        |
| Table D: Summary of Flow Gains in the Regional Groundwater Discharge Zone During October 2019 S                                                                        | Study20   |
| Table E: Summary of Upgradient Groundwater Quality and Surface Water Quality in Kilmarnock Cro<br>Fording River                                                        |           |
| Table F: Summary of Mann-Kendall Trend Analyses in Upgradient Groundwater                                                                                              | 48        |
| Table G: Summary of Mann-Kendall Trend Analyses in the Fording River at FR_FRCP1                                                                                       | 48        |
| Table H: CI Concentrations in Groundwater Along Inferred Seasonal Flow Path and Nearest Dowr                                                                           |           |
| Surface Water                                                                                                                                                          | 52        |
| Table I: Summary of CI Concentrations in Kilmarnock Creek Influenced Discharge Zone                                                                                    | 53        |
| Table J: Nitrate-N and Selenium Screening Values for Juveniles and Adults                                                                                              | 54        |
| Table K: Estimated Loading and CI Concentrations in Side Channel 2 on October 25, 2019                                                                                 | 55        |
| Table L: Summary of Hydraulic Testing Results in the Clode Creek Area                                                                                                  | 62        |
| Table M: Summary of Seepage Flows in the S8 Study Area                                                                                                                 | 64        |
| Table N: Summary of CI Concentrations in Surface Water, Seepage, and Groundwater at Clode<br>Settling Ponds                                                            |           |
| Table O: Summary of Hydraulic Testing Results in the Clode Creek Area                                                                                                  | 74        |
| Table P: Summary of CI Concentrations in Groundwater in S10 Study Area                                                                                                 |           |
| Table Q: Summary of daily groundwater extraction at FR_POTWELLS and Fording River Disch<br>FR_FRNTP                                                                    | -         |
| Table R: Summary of monthly and annual use of water stored in Shandley Pit from 2015 to 2019                                                                           | 91        |
| Table S: Summary of Water Use at POD's between 2015 and 2019, prior to, and during the Declin Window.                                                                  |           |



# Table of Contents (Cont'd)

#### Tables

- 1. Summary of Analytical Results for Groundwater
- 2. Summary of Analytical Results for Seep, Shallow Groundwater and Surface Water in the Upper Fording River
- 3. Summary of Analytical Results for Groundwater Speciated Selenium

#### **Drawings**

- 1. Location Plan
- 2. S6 Study Area Site Plan
- 3. S8 Study Area Site Plan
- 4. S10 Study Area Site Plan
- 5. Block Diagram Showing 3D Conceptual Hydrogeology and Transport Pathways S6 Study Area
- 6. Block Diagram Showing Dissolved Selenium Concentrations and Mine Influenced Waters S6
- 7. Bedrock Geology of the S6 Study Area
- 8. Surficial Geology of the S6 Study Area
- 9. Upper Fording River Study Area 6 Conceptual Geological Cross-Section A-A'
- 10. Study Area 6 Groundwater Levels and Inferred Contours, Q1 2019
- 11. Study Area 6 Groundwater Levels and Inferred Contours, July 2019
- 12. Study Area 6 October 2019 and February 2020 Flow Accretion Results
- 13. September 2018 Flow Accretion Study Results in the S6 Study Area and Kilmarnock Creek (from Teck Coal, 2019)
- 14. October 2018 Flow Accretion Study Results in the S6 Study Area and Kilmarnock Creek (from Teck Coal, 2019)
- 15. February 2019 Flow Accretion Study Results in Kilmarnock Creek (from Teck Coal, 2019)
- 16. April 2019 Flow Accretion Study Results in Kilmarnock Creek (from Teck Coal, 2019)
- 17. May 2019 Flow Accretion Study Results in Kilmarnock Creek (from Teck Coal, 2019)
- 18. Study Area 6 Inferred Source-Receptor Groundwater Transport Pathways
- 19. NO3--N/SO42--S ratios in Groundwater and Surface Water in the S6 Study Area
- 20. Clode Creek Watershed and Settling Ponds (from Golder, 2020b)
- 21. Current Topography of Clode Creek Watershed (from Golder, 2020b)
- 22. Mined-Out Topography of Clode Creek Watershed (from Golder, 2019b)
- 23. Surficial Geology and Conceptual Groundwater Flow of the Clode Creek Watershed (from Golder, 2020b)
- 24. Geomorphic Overview of the S8 Study Area (from Golder, 2014)
- 25. Cross-Section through the Clode Creek Settling Ponds Area (from Golder, 2020b)
- 26. Groundwater Levels and Inferred Contours in the Clode Creek Settling Ponds Area, December 2019 (from Golder, 2020b)
- 27. Flow Accretion Studies in the S8 Study Area in March, April, July, and September 2019 (from Golder, 2020b)
- 28. 2019 and Historical Total Selenium Concentrations in Groundwater and Surface Water (from Golder, 2020b)



# Table of Contents (Cont'd)

#### Drawings (Cont'd)

- 29. Upper Fording River S10 Study Area Inferred Geological Cross Section B-B'
- 30. Study Area 10 Groundwater Levels and Inferred Contours, March 2019
- 31. Potable Wells Area
- 32. Pits and Points of Diversion

#### Appendices

- I: Mann-Kendall Trend Analyses
- II: Potable Well As-Built Drawings

P:\CP\TECK COAL LTD\SPO\672386 CONFIDENTIAL\50\_DEL\53\_FINAL\_RPTS\_20211207\_672386\_RPT\_UFR\_HYDROGEO\_SME\_RPT\_FINAL.DOCX



# **Acronyms and Abbreviations**

| <sup>15</sup> N <sub>nitrate</sub> | Nitrate stable isotope                             |
|------------------------------------|----------------------------------------------------|
| AMP                                | Adaptive Management Plan                           |
| asl                                | above sea level                                    |
| AW                                 | Aquatic Life                                       |
| AWTF                               | Active Water Treatment Facility                    |
| BCM                                | Bank Cubic Metres                                  |
| BCWQG                              | British Columbia Approved Water Quality Guidelines |
| bgs                                | below ground surface                               |
| British Columbia                   | BC                                                 |
| CCME                               | Canadian Council of Ministers of the Environment   |
| CI                                 | Constituents of Interest                           |
| CMO                                | Coal Mountain Operations                           |
| CPX2                               | Cougar Pit Phase 2 Expansion Project               |
| CSR                                | Contaminated Sites Regulation                      |
| D. Se                              | Dissolved Selenium                                 |
| DEM                                | Digital Elevation Model                            |
| Didymo                             | Didymosphenia geminate                             |
| DO                                 | Dissolved Oxygen                                   |
| DW                                 | Drinking Water                                     |
| Ecofish                            | Ecofish Research Ltd.                              |
| ENV                                | Ministry of Environment & Climate Change Strategy  |
| ERT                                | Electrical Resistivity Tomography                  |
| EVO                                | Elkview Operations                                 |
| EVWQP                              | Elk Valley Water Quality Plan                      |
| FRO                                | Fording River Operations                           |
| GHO                                | Greenhills Operations                              |
| GWG                                | Groundwater Working Group                          |
| IFR                                | Instream Flow Requirement                          |
| KWL                                | Kerr Wood Leidal Associates Ltd.                   |
| LCO                                | Line Creek Operations                              |
| Lidar                              | Light Detection and Ranging                        |
| LOEC                               | Lowest Observed Effect Concentration               |
| Lotic                              | Lotic Environmental                                |
| MATC                               | Maximum Allowable Toxicant Concentration           |
| MBI                                | Mass Balance Investigation                         |



| Minnow                         | Minnow Environmental Inc.                        |
|--------------------------------|--------------------------------------------------|
| Nitrate-S; NO3 <sup>-</sup> -N | Nitrate as Nitrogen                              |
| NTP                            | North Tailings Pond                              |
| OHGE                           | O'Neill Hydro-Geotechnical Engineering           |
| ORP                            | Oxidation-Reduction Potential                    |
| POD                            | Point of Diversion                               |
| Q1, Q2, Q3, Q4                 | First, Second, Third, Fourth Quarter             |
| RGMP                           | Regional Groundwater Monitoring Program          |
| RWQM                           | Regional Water Quality Model                     |
| SKP1                           | South Kilmarnock Phase 1 Settling Pond           |
| SKP2                           | South Kilmarnock Phase 2 Secondary Settling Pond |
| SME                            | Subject Matter Expert                            |
| SNC-Lavalin                    | SNC-Lavalin Inc.                                 |
| SRB                            | Sulphate Reducing Bacteria                       |
| SRF                            | Saturated Rock Fill                              |
| SRK                            | SRK Consulting Inc.                              |
| SSGMP                          | Site-Specific Groundwater Monitoring Program     |
| STP                            | South Tailings Pond                              |
| Sulphate-S; SO42S              | Sulphate as Sulphur                              |
| Teck Coal                      | Teck Coal Limited                                |
| UFR                            | Upper Fording River                              |
| WCT                            | Westslope Cutthroat Trout                        |
| WED                            | West Exfiltration Ditch                          |



## **READER'S NOTE**

### What is the Evaluation of Cause and what is its purpose?

The Evaluation of Cause is the process used to investigate, evaluate and report on the reasons the Westslope Cutthroat Trout population declined in the upper Fording River between fall 2017 and fall 2019.

### Background

The Elk Valley is located in the southeast corner of British Columbia (BC), Canada. It contains the main stem of the Elk River (220 km long) and many tributaries, including the Fording River (70 km long). This report focuses on the upper Fording River, which starts 20 km upstream from its confluence with the Elk River at Josephine Falls. The Ktunaxa First Nation has occupied lands in the region for more than 10,000 years. Rivers and streams of the region provide culturally important sources of fish and plants.



The upper Fording River watershed is at a high elevation and is occupied by only one fish species, a genetically pure population of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi) — an iconic fish species that is highly valued in the area. This population is physically isolated because Josephine Falls is a natural barrier to fish movement. The species is protected under the federal Fisheries Act and the Species at Risk Act. In BC, the Conservation Data Center categorized Westslope Cutthroat Trout as "imperiled or of special concern, vulnerable to extirpation or extinction." Finally, it has been identified as a priority sport fish species by the Province of BC.

The upper Fording River watershed is influenced by various human-caused disturbances including roads, a railway, a natural gas pipeline, forest harvesting and coal mining. Teck Coal Limited (Teck Coal) operates the three surface coal mines within the upper Fording River watershed, upstream of Josephine Falls: Fording River Operations, Greenhills Operations and Line Creek Operations.

#### **Evaluation of Cause**

Following identification of the decline in the Westslope Cutthroat Trout population, Teck Coal initiated an Evaluation of Cause process. The overall results of this process are reported in a separate document (Evaluation of Cause Team, 2021) and are supported by a series of Subject Matter Expert reports.

The report that follows this Reader's Note is one of those Subject Matter Expert Reports.

Monitoring conducted for Teck Coal in the fall of 2019 found that the abundance of Westslope Cutthroat Trout adults and sub-adults in the upper Fording River had declined significantly since previous sampling in fall 2017. In addition, there was evidence that juvenile fish density had decreased. Teck Coal initiated an *Evaluation of Cause* process. The overall results of this process are reported separately (Evaluation of Cause Team, 2021) and are supported by a series of Subject Matter Expert reports such as this one. The full list of SME reports follows at the end of this Reader's Note.

Building on and in addition to the Evaluation of Cause, there are ongoing efforts to support fish population recovery and implement environmental improvements in the upper Fording River.

### How the Evaluation of Cause was approached

When the fish decline was identified, Teck Coal established an *Evaluation of Cause Team* (the Team), composed of *Subject Matter Experts* and coordinated by an Evaluation of Cause *Team Lead*. Further



details about the Team are provided in the Evaluation of Cause report. The Team developed a systematic and objective approach (see figure below) that included developing a Framework for Subject Matter Experts to apply in their specific work. All work was subjected to rigorous peer review.



#### Conceptual approach to the Evaluation of Cause for the decline in the upper Fording River Westslope Cutthroat Trout population.

With input from representatives of various regulatory agencies and the Ktunaxa Nation Council, the Team initially identified potential stressors and impact hypotheses that might explain the cause(s) of the population decline. Two overarching hypotheses (essentially, questions for the Team to evaluate) were used:

- Overarching Hypothesis #1: The significant decline in the upper Fording River Westslope Cutthroat Trout population was a result of a single acute stressor<sup>1</sup> or a single chronic stressor<sup>2</sup>.
- Overarching Hypothesis #2: The significant decline in the upper Fording River Westslope Cutthroat Trout population was a result of a combination of acute and/or chronic stressors, which individually may not account for reduced fish numbers, but cumulatively caused the decline.

The Evaluation of Cause examined numerous stressors in the UFR to determine if and to what extent those stressors and various conditions played a role in the Westslope Cutthroat Trout's decline. Given

<sup>&</sup>lt;sup>1</sup> Implies September 2017 to September 2019.

<sup>&</sup>lt;sup>2</sup> Implies a chronic, slow change in the stressor (using 2012–2019 timeframe, data dependent).



that the purpose was to evaluate the cause of the decline in abundance from 2017 to 2019<sup>3</sup>, it was important to identify stressors or conditions that changed or were different during that period. It was equally important to identify the potential stressors or conditions that did not change during the decline window but may, nevertheless, have been important constraints on the population with respect to their ability to respond to or recover from the stressors. Finally, interactions between stressors and conditions had to be considered in an integrated fashion. Where an *impact hypothesis* depended on or may have been exacerbated by interactions among stressors or conditions, the interaction mechanisms were also considered.

The Evaluation of Cause process produced two types of deliverables:

- 1. Individual Subject Matter Expert (SME) reports (such as the one that follows this Note): These reports mostly focus on impact hypotheses under Overarching Hypothesis #1 (see list, following). A Framework was used to align SME work for all the potential stressors, and, for consistency, most SME reports have the same overall format. The format covers: (1) rationale for impact hypotheses, (2) methods, (3) analysis and (4) findings, particularly whether the requisite conditions 4 were met for the stressor(s) to be the sole cause of the fish population decline, or a contributor to it. In addition to the report, each SME provided a summary table of findings, generated according to the Framework. These summaries were used to integrate information for the Evaluation of Cause report. Note that some SME reports did not investigate specific stressors; instead, they evaluated other information considered potentially useful for supporting SME reports and the overall Evaluation of Cause, or added context (such as in the SME report that describes climate (Wright et al., 2021).
- 2. The Evaluation of Cause report (prepared by a subset of the Team, with input from SMEs): This overall report summarizes the findings of the SME reports and further considers interactions between stressors (Overarching Hypothesis #2). It describes the reasons that most likely account for the decline in the Westslope Cutthroat Trout population in the upper Fording River.

### Participation, Engagement & Transparency

To support transparency, the Team engaged frequently throughout the Evaluation of Cause process. Participants in the Evaluation of Cause process, through various committees, included:

• Ktunaxa Nation Council;

<sup>&</sup>lt;sup>3</sup> Abundance estimates for adults/sub-adults are based on surveys in September of each year, while estimates for juveniles are based on surveys in August.

<sup>&</sup>lt;sup>4</sup> These are the conditions that would need to have occurred for the impact hypothesis to have resulted in the observed decline of Westslope Cutthroat Trout population in the upper Fording River.



- BC Ministry of Forests, Lands, Natural Resource Operations and Rural Development;
- BC Ministry Environment & Climate Change Strategy;
- Ministry of Energy, Mines and Low Carbon Innovation; and
- Environmental Assessment Office.

### Citation for the Evaluation of Cause Report

When citing the Evaluation of Cause Report use:

Evaluation of Cause Team, (2021). *Evaluation of Cause — Decline in upper Fording River Westslope Cutthroat Trout population*. Report prepared for Teck Coal Limited by Evaluation of Cause Team.

### Citations for Subject Matter Expert Reports

| Focus                                   | Citation for<br>Subject Matter Expert Reports                                                                                                                                                                                                                                                                                               |  |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Climate, temperature, an<br>streamflow  | Wright, N., Greenacre, D., & Hatfield, T. (2021). Subject Matter Expert<br>Report: Climate, Water Temperature, Streamflow and Water Use Trends.<br><i>Evaluation of Cause – Decline in upper Fording River Westslope Cutthroat</i><br><i>Trout population</i> . Report prepared for Teck Coal Limited. Prepared by<br>Ecofish Research Ltd. |  |  |  |
| lce                                     | Hatfield, T., & Whelan, C. (2021). Subject Matter Expert Report: Ice.<br>Evaluation of Cause – Decline in upper Fording River Westslope Cutthroat<br>Trout population. Report prepared for Teck Coal Ltd. Report Prepared by<br>Ecofish Research Ltd.                                                                                       |  |  |  |
| Habitat availability<br>(instream flow) | Healey, K., Little, P., & Hatfield, T. (2021). Subject Matter Expert Report.<br>Habitat availability. Evaluation of Cause – Decline in upper Fording River<br>Westslope Cutthroat Trout population. Report prepared for Teck Coal<br>Limited by Ecofish Research Ltd.                                                                       |  |  |  |



| Focus                                  | Citation for<br>Subject Matter Expert Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Stranding – ramping                    | Faulkner, S., Carter, J., Sparling, M., Hatfield, T., & Nicholl, S. (202<br>Subject Matter Expert Report: Ramping and stranding. Evaluation of Cau<br>– Decline in upper Fording River Westslope Cutthroat Trout population<br>Report prepared for Teck Coal Limited by Ecofish Research Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Stranding – channel dewatering         | Hatfield, T., Ammerlaan, J., Regehr, H., Carter, J., & Faulkner, S. (2021).<br>Subject Matter Expert Report: Channel dewatering. Evaluation of Cause –<br>Decline in upper Fording River Westslope Cutthroat Trout population.<br>Report prepared for Teck Coal Limited by Ecofish Research Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Stranding – mainstem dewatering        | <ul> <li>Hocking M., Ammerlaan, J., Healey, K., Akaoka, K., &amp; Hatfield T. (2021).</li> <li>Subject Matter Expert Report: Mainstem dewatering. Evaluation of Cause – Decline in upper Fording River Westslope Cutthroat Trout population.</li> <li>Report prepared for Teck Coal Ltd. by Ecofish Research Ltd. and Lotic Environmental Ltd.</li> <li>Zathey, N., &amp; Robinson, M.D. (2021). Summary of ephemeral conditions in the upper Fording River Watershed. In Hocking et al. (2021). Subject Matter Expert Report: Mainstem dewatering. Evaluation of Cause – Decline in upper Fording River Westslope Cutthroat Trout population.</li> <li>Report prepared for Teck Coal Ltd. by Ecofish Research Ltd. and Lotic Environmental Ltd.</li> </ul> |  |  |
| Calcite                                | Hocking, M., Tamminga, A., Arnett, T., Robinson M., Larratt, H., & Hatfield,<br>T. (2021). Subject Matter Expert Report: Calcite. Evaluation of Cause –<br>Decline in upper Fording River Westslope Cutthroat Trout population.<br>Report prepared for Teck Coal Ltd. by Ecofish Research Ltd., Lotic<br>Environmental Ltd., and Larratt Aquatic Consulting Ltd.                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Total suspended solids                 | Durston, D., Greenacre, D., Ganshorn, K & Hatfield, T. (2021). Subject<br>Matter Expert Report: Total suspended solids. Evaluation of Cause –<br>Decline in upper Fording River Westslope Cutthroat Trout population<br>Report prepared for Teck Coal Limited. Prepared by Ecofish Research Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Fish passage<br>(habitat connectivity) | Harwood, A., Suzanne, C., Whelan, C., & Hatfield, T. (2021). Subject Matter<br>Expert Report: Fish passage. Evaluation of Cause – Decline in upper Fording                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |



| Focus                                                                           | Citation for<br>Subject Matter Expert Reports                                                                                                                                                                                                                                                                                                                                       |  |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                 | River Westslope Cutthroat Trout population. Report prepared for Teck<br>Coal Ltd. by Ecofish Research Ltd.                                                                                                                                                                                                                                                                          |  |  |
| Fish passage<br>(habitat connectivity)                                          | Akaoka, K., & Hatfield, T. (2021). Telemetry Movement Analysis. In<br>Harwood et al. (2021). Subject Matter Expert Report: Fish passage.<br>Evaluation of Cause – Decline in upper Fording River Westslope Cutthroat<br>Trout population. Report prepared for Teck Coal Ltd. by Ecofish Research<br>Ltd.                                                                            |  |  |
| Cyanobacteria                                                                   | Larratt, H., & Self, J. (2021). Subject Matter Expert Report: Cyanobacteria<br>periphyton and aquatic macrophytes. Evaluation of Cause – Decline i                                                                                                                                                                                                                                  |  |  |
| Algae / macrophytes                                                             | upper Fording River Westslope Cutthroat Trout population. Repo<br>prepared for Teck Coal Limited. Prepared by Larratt Aquatic Consulting Ltd                                                                                                                                                                                                                                        |  |  |
|                                                                                 | Costa, EJ., & de Bruyn, A. (2021). Subject Matter Expert Report: Water quality. Evaluation of Cause – Decline in upper Fording River Westslope Cutthroat Trout population. Report prepared for Teck Coal Limited. Prepared by Golder Associates Ltd.                                                                                                                                |  |  |
| Water quality<br>(all parameters except water<br>temperature and TSS [Ecofish]) | Healey, K., & Hatfield, T. (2021). Calculator to assess Potential for<br>cryoconcentration in upper Fording River. In Costa, EJ., & de Bruyn, A.<br>(2021). Subject Matter Expert Report: Water quality. Evaluation of Cause<br>– Decline in upper Fording River Westslope Cutthroat Trout population.<br>Report prepared for Teck Coal Limited. Prepared by Golder Associates Ltd. |  |  |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |  |  |



| Focus                                                  | Citation for<br>Subject Matter Expert Reports                                                                                                                                                                                                                                                                                       |  |  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                        | Van Geest, J., Hart, V., Costa, EJ., & de Bruyn, A. (2021). Subject Matter<br>Expert Report: Industrial chemicals, spills and unauthorized<br>releases. Evaluation of Cause – Decline in upper Fording River Westslope<br>Cutthroat Trout population. Report prepared for Teck Coal Limited.<br>Prepared by Golder Associates Ltd.  |  |  |
| Industrial chemicals, spills and unauthorized releases | Branton, M., & Power, B. (2021). Stressor Evaluation – Sewage. In Van<br>Geest et al. (2021). Industrial chemicals, spills and unauthorized releases.<br>Evaluation of Cause – Decline in upper Fording River Westslope Cutthroat<br>Trout population. Report prepared for Teck Coal Limited. Prepared by<br>Golder Associates Ltd. |  |  |
| Wildlife predators                                     | Dean, D. (2021). Subject Matter Expert Report: Wildlife predation<br>Evaluation of Cause – Decline in upper Fording River Westslope Cutthroa<br>Trout population. Report prepared for Teck Coal Limited. Prepared by<br>VAST Resource Solutions Inc.                                                                                |  |  |
| Poaching                                               | Dean, D. (2021). Subject Matter Expert Report: Poaching. Evaluation of<br>Cause – Decline in upper Fording River Westslope Cutthroat Trou<br>population. Report prepared for Teck Coal Limited. Prepared by VAS<br>Resource Solutions Inc.                                                                                          |  |  |
| Food availability                                      | Orr, P., & Ings, J. (2021). Subject Matter Expert Report: Food availability.<br>Evaluation of Cause – Decline in upper Fording River Westslope Cutthroat<br>Trout population. Report prepared for Teck Coal Limited. Prepared by<br>Minnow Environmental Inc.                                                                       |  |  |
| Fish handling                                          | Cope, S. (2020). Subject Matter Expert Report: Fish handling. Evaluation<br>Cause – Decline in upper Fording River Westslope Cutthroat Tra<br>population. Report prepared for Teck Coal Limited. Prepared by Westslo<br>Fisheries Ltd.                                                                                              |  |  |
|                                                        | Korman, J., & Branton, M. (2021). Effects of capture and handling on<br>Westslope Cutthroat Trout in the upper Fording River: A brief review of<br>Cope (2020) and additional calculations. Report prepared for Teck Coal<br>Limited. Prepared by Ecometric Research and Azimuth Consulting Group.                                  |  |  |



| Focus                            | Citation for<br>Subject Matter Expert Reports                                                                                                                                                                                                                                                       |  |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Infectious disease               | Bollinger, T. (2021). Subject Matter Expert Report: Infectious disease<br>Evaluation of Cause – Decline in upper Fording River Westslope Cutthroat<br>Trout population. Report prepared for Teck Coal Limited. Prepared by TKE<br>Ecosystem Health Services Ltd.                                    |  |  |
| Pathophysiology                  | Bollinger, T. (2021). Subject Matter Expert Report: Pathophysiology of stressors on fish. Evaluation of Cause – Decline in upper Fording River Westslope Cutthroat Trout population. Report prepared for Teck Coal Limited. Prepared by TKB Ecosystem Health Services Ltd.                          |  |  |
| Coal dust and sediment quality   | DiMauro, M., Branton, M., & Franz, E. (2021). Subject Matter Expert<br>Report: Coal dust and sediment quality. Evaluation of Cause – Decline ir<br>upper Fording River Westslope Cutthroat Trout population. Report<br>prepared for Teck Coal Limited. Prepared by Azimuth Consulting Group<br>Inc. |  |  |
| Groundwater quality and quantity | Henry, C., & Humphries, S. (2021). Subject Matter Expert Report:<br>Hydrogeological stressors. Evaluation of Cause - Decline in upper Fording<br>River Westslope Cutthroat Trout population. Report Prepared for Teck<br>Coal Limited. Prepared by SNC-Lavalin Inc.                                 |  |  |



## 1 Introduction

SNC-Lavalin Inc. (SNC-Lavalin) has been retained by Teck Coal Limited (Teck Coal) to act as Subject Matter Experts (SME) to evaluate potential causes for a recently observed decline in the abundance of Westslope Cutthroat Trout (WCT) in the upper Fording River (UFR). This report presents an evaluation of potential hydrogeological stressors to the WCT population decline, where stressors are defined as any biological, chemical, or physical factor causing adverse effects in the environment. SNC-Lavalin is part of a broader group of SME's across multiple disciplines evaluating stressors that may have contributed to the decline of the WCT population, and this report has been prepared to generate discussion amongst SMEs and Teck Coal.

## 1.1 Background

### 1.1.1 Overall Background

This document is one of a series of Subject Matter Expert (SME) reports that support the overall Evaluation of Cause into the upper Fording River Westslope Cutthroat Trout population decline (Evaluation of Cause Team, 2021). For general information, see the preceding Reader's Note.

### 1.1.2 Report-Specific Background

This report describes an evaluation of potential hydrogeological stressors including groundwater quantity and quality that may have contributed to the population decline of WCT in the UFR. However, the evaluation is different from those of other SME's as there is no direct exposure of WCT to groundwater. WCT habitat in the UFR encompasses the river itself as well as numerous other tributaries, side or braided channels, and oxbow lakes in the Fording River valley. However, groundwater discharge sustains surface water flow during baseflow periods and, where groundwater quality is affected by mining, it can locally influence surface water quality in discharge areas. Therefore, groundwater is herein considered a potential stressor because of these influences on receiving water flows and quality. Details on specific influences for areas of interest to the WCT decline window are presented in subsequent sections.

This report evaluates hydrogeological stressors through the presentation of a hydrogeological conceptual model for certain sections of the UFR that may locally influence receiving surface water and therefore indirectly influence WCT habitat. The conceptual model describes interaction between groundwater and surface waters and the potential transport pathways from mine influenced areas to aquatic receptors. The stressor evaluation encompasses potential changes in flow or quality that may locally affect receiving waters to assess whether changes in groundwater quantity or quality may have been a contributing factor.

It is recognized that conditions in the UFR are a result of complex interactions between groundwater, surface water, surrounding land usage, and water management practices. These interactions influence the environmental factors that are being individually evaluated as stressors in the SME reports, including surface water quality (Golder), climate, hydrology, instream flow, ice cover, habitat connectivity, stranding, and calcification (all by Ecofish), and biological stressors such as periphyton, cyanobacteria, and macrophytes (Larrat). Integration of these interconnected factors is provided in the Evaluation of Cause.



SNC-Lavalin has extensive experience working with Teck Coal on groundwater and surface water monitoring programs at their Elk Valley mines, both at individual mine sites as well as regional scale projects. SNC-Lavalin has worked most extensively with Teck Coal on groundwater programs, including development and refinement of the Regional Groundwater Monitoring Plan (RGMP), completion and updating the Site-Specific Groundwater Monitoring Programs (SSGMP) at Fording River Operations (FRO), Greenhills Operations (GHO), Elkview Operations (EVO), and Coal Mountain Operations (CMO), the ongoing Mass Balance Investigation (MBI) program, and dozens of investigations at individual mine-sites.

Mr. Chris Henry is a hydrogeologist with a Master of Earth Sciences degree specializing in hydrogeology from Simon Fraser University who has 9 years experience working in the environmental consulting industry with SNC-Lavalin. His experience within that time has included extensive interpretation of geochemical environments and evaluation of groundwater-surface water interactions and at industrial sites across British Columbia (BC), including at mine sites, landfills, railyards, and upstream and downstream oil and gas operations, amongst others. In his capacity as a hydrogeologist his work includes site characterization and development of conceptual site models, 3-D numerical flow modeling, contaminant fate and transport assessments, groundwater resource evaluation, and the planning and execution of various site investigations. Chris' prior experience working on Teck Coal mine sites in the Elk Valley includes support on the RGMP and SSGMP programs, the ongoing MBI program, and completing the Water Quantity Investigation at Line Creek Operations (LCO).

Mr. Stefan Humphries is a senior hydrogeologist in our Nelson, BC office, and has over 18 years of experience in environmental consulting and two years of academics at the University of Waterloo. His BSc. was from the University of Victoria and his BSc. honours thesis was on the regional groundwater geochemistry of British Columbia. His MSc. degree was on geochemistry and hydrogeology from the department of Earth Sciences at the University of Waterloo, a world recognized institution for groundwater sciences. He has worked on domestic and international projects specializing in groundwater and surface water assessment of current and former mine sites, groundwater resource evaluation, contaminated sites and project management. Stefan has assisted numerous clients in meeting regulatory requirements including permitting. He has extensive experience with the BC regulators overseeing the Teck Coal operating mines and has facilitated a number of workshops and presentations with regulators and Ktunaxa Nation Council.

Stefan has practical and theoretical knowledge of mine sites in various complex geological and hydrogeological settings in Canada. He has performed hydrogeological and geochemical assessments at numerous current and former mining sites with water management, metals and acid rock drainage issues. He has extensive experience in the design and implementation of groundwater and seepage monitoring networks and programs, as well as designed of several groundwater remediation and mitigation measures. His most recent projects have included: director for the hydrogeology discipline for the GHO Cougar Pit Phase 2 Expansion Project (CPX2) and Turnbull East/Castle projects; numerous hydrogeological assessments and monitoring program development for Teck Coal mine sites (FRO, GHO and EVO); RGMP development and implementation in the Elk Valley; seepage and surface water assessments for Sparwood Ridge; regional-scale groundwater and surface water assessments at a number of former mines in BC; and, the groundwater lead for the Teck Coal's Adaptive Management Plan (AMP). He has facilitated several technical meetings involving groundwater, both internal to Teck Coal and external stakeholders such as the



Groundwater Working Group (GWG). He has also performed numerous presentations on the regional groundwater program on behalf of Teck Coal.

### 1.1.3 Study Area

The Fording River is a major tributary of the Elk River and is located in the Elk Valley, BC (Drawing 1). The broader study area encompasses the habitat of the genetically pure UFR WCT population, from Josephine Falls in the south to the headwaters in the north. The focus of this report is on three localized areas where groundwater is known to discharge to surface waters important to the life cycle of the WCT, including the S6 Study Area, the S8 Study Area, and the S10 Study Area. The names of the study areas are drawn from the ongoing Upper Fording River Westslope Cutthroat Trout Population Monitoring Project, and correspond to sites where population surveys are completed (Cope, 2020). These areas are shown on Drawings 2, 3 and 4 with locations of groundwater monitoring wells, surface water monitoring stations, surface flow and load accretion study stations, seepage sampling stations, and shallow groundwater (drivepoint) sampling stations. Topography on the site plans is shown as a shaded Digital Elevation Model (DEM) based on Light Detection and Ranging LiDAR data.

#### 1.1.3.1 Local Study Areas

The Study Area for S6 is shown on Drawing 2 and extends from the area south of the South Tailings Pond (STP), where mine influenced water from Kilmarnock and Swift Creeks join the Fording River, to the confluence with Chauncey Creek near the surface water monitoring station FR\_FRABCH. Drawing 2 also shows the S7 area because it is an area where surface water recharge to groundwater is known to occur and where the long-term groundwater monitoring wells are installed. The S6 area is important to consider for groundwater because telemetry data indicate an approximate 2 km to 3 km reach that constitutes WCT spawning and overwintering habitat in the vicinity of and downstream of an important regional groundwater discharge zone that is mine-influenced. Features of interest in the S6 Study Area include Fording River and its tributaries, the 'Greenhouse Side Channel', 'Side Channel 2', and the 'Fording River Oxbow'.

The S8 Study Area is shown on Drawing 3 and extends from the area in the vicinity of the Clode Creek settling ponds to surface water station FR\_MULTIPLATE and the north end of the North Tailings Pond (NTP). Notable features of the valley bottom within the S8 Study Area includes settling ponds of the Clode Creek, Lake Mountain Creek, and Eagle Creek watersheds, as well as a number of ditches and diversions including the West Exfiltration Ditch (WED), Grassy Creek, and the North Greenhills Diversion. Similar to the S6 Study Area, the S8 Study Area is of interest because it constitutes WCT spawning and overwintering habitat that coincides with a groundwater discharge zone in the vicinity of Clode Creek settling ponds and numerous seepage faces in the adjacent waste rock dumps. As with the S6 Study Area, groundwater and surface water are mine-influenced in the S8 Study Area.

The S10 Study Area is shown on Drawing 4 and comprises Henretta Creek in the vicinity of Henretta Lake. The area is of interest as it is mine-influenced and is an area previously identified as high density spawning and fry rearing habitat as well as preferred juvenile rearing habitat with high fry and juvenile densities (Cope, 2020).



### 1.1.4 Definitions

Groundwater refers to water within the saturated zone of the sub-surface, which is the zone beneath which all interstitial pore-space and fractures within soil and rock are completely occupied by water. Included within that definition herein is water flowing through coarse layers of waste rock placed at the base of spoils in former surface-water channels, since the same physical principles of fluid flow within the sub-surface apply. Flow within these channels is sometimes referred to as flow within rock drains, or flow within buried or sub-surface tributaries. Groundwater within these former channels is often discontinuous from the regional water table within native soils beneath the waste rock piles.

The hyporheic zone refers to the zone of sediment and pore-space beneath and alongside stream-beds where exchanges between surface water and the sub-surface occur.

## 1.2 Objectives

### 1.2.1 Report-Specific Objectives

The overall objective of this investigation is to evaluate the contribution of groundwater, if any, to the population decline of WCT in the UFR. As discussed in Section 1.1.2 above, groundwater is not considered a stressor in the traditional sense; however, it can influence WCT habitat in areas within and downgradient of groundwater discharge zones. Therefore, specific objectives of the stressor evaluation include:

- Spatially and temporally characterize groundwater quantity and its influence on surface water flows in the UFR, including identification and quantification of groundwater recharge and discharge zones; and
- Spatially and temporally characterize groundwater quality and its influence on surface water quality in the UFR valley.

## 1.3 Approach

### 1.3.1 Report-Specific Approach

The approach to this report is to present the hydrogeological conceptual models of the localized study areas defined above to provide the appropriate context within which to subsequently evaluate stressors. The conceptual models are based on review of the available groundwater level, quality, hydraulic conductivity, surface water quality and discharge, and flow and load accretion data. The conceptual models identify sources of mine-influenced constituents of interest (CI), interpreted transport pathways, travel times, and groundwater-surface water interactions (recharge and discharge zones). It is noted that the conceptual models are considered 'living' as they are constantly refined through additional investigations and monitoring; as such, these conceptual models should be considered representative of current knowledge and subject to refinement.



To investigate the potential for groundwater to act as a stressor and possible contributor to the WCT population decline, this report evaluates the following impact hypotheses in relation to the objectives described above:

- 1. A change in upgradient groundwater levels influenced the groundwater flow regime causing a change to surface water flows and/or to the spatial distribution to discharge zones.
- 2. A change in upgradient groundwater quality influenced downstream surface water quality.

The approach to evaluate the first impact hypothesis is to review historical groundwater levels and flow patterns in upgradient monitoring wells that may have resulted in corresponding changes to the flows or locations of downstream groundwater discharge zones. Similarly, the approach to evaluate the second impact hypothesis is to review historical groundwater quality data in upgradient monitoring wells to determine whether there are any anomalies or trends that may have resulted in a corresponding change to surface water quality downstream.

The approach to the hydrogeological evaluation was to focus on data from overburden wells as the alluvial aquifers have the greatest potential to influence on surface water quantity and quality on the timeframes relevant to the WCT decline. Groundwater flow and transport in the bedrock aquifers is typically over a longer timeframe, and, as such, groundwater quantity and quality in bedrock aquifers have been excluded in the stressor evaluations below. However, a discussion of operational factors which have the potential to influence the groundwater flow regime and potentially influence baseflow in the Fording River, including water use and pit development, is included in Section 8 of this report.

The focus of the hydrogeological stressor evaluations was on existing data from groundwater monitoring wells that are interpreted to have an influence on downstream surface water quality. The evaluations rely on existing data; where data were not available, the evaluation was limited to a commentary on whether groundwater could potentially be a stressor given the current understanding. Due to a general lack of monitoring wells in the vicinity of inferred groundwater discharge zones, inferences of downstream hydrogeological conditions such as contributions to baseflow, water quality, and in-stream thermal regulations should be regarded as zeroth order approximations, and are largely based on surface water observations in the areas of inferred discharge.



# 2 Regulatory Criteria

## 2.1 Primary Screening Criteria

Analytical results of historical groundwater samples have been compared to the BC Ministry of Environment & Climate Change Strategy<sup>1</sup> (ENV) *Contaminated Sites Regulation* (CSR; BC ENV, 2021) standards for the protection of freshwater aquatic life (AW). Drinking water (DW) standards were not applied since the focus of this report is related to the decline of the WCT population.

Surface water, seepage water, and shallow groundwater samples collected via drivepoint piezometers as part of the MBI program were compared to the *British Columbia Approved Water Quality Guidelines* (BCWQG; BC ENV, 2021), also for protection of freshwater AW. The shallow groundwater analytical results were conservatively screened against the BCWQG AW guidelines because the samples were collected from shallow depths in an area where groundwater is inferred to be upwelling and discharging nearby. This is in accordance with BC CSR Technical Guidance Document 15 (TG15; BC ENV, 2017), which states that the BCWQG apply to groundwater samples collected from within 10 m of the high water mark of a surface water body. Although the BCWQG apply predominantly for total metals constituents (with exception of aluminum, cadmium, copper and iron), the guidelines were conservatively applied to both total and dissolved metals constituents for ease of comparison to the groundwater data (to which CSR standards are applicable for dissolved metals only and therefore analyses of total metals are often run).

## 2.2 Secondary Screening Criteria

Analytical results of samples that exceeded the primary screening criteria were compared to secondary screening criteria. The secondary screening criteria were the level 1 chronic-effects values applied by Golder in their Water Quality SME report (Costa and de Bruyn, 2021). The secondary screening criteria for CI cadmium, selenium, sulphate, and nitrate were the level 1 fish benchmarks derived in the Elk Valley Water Quality Plan (EVWQP). These level 1 benchmarks were derived from site-specific and published chronic testing relevant to the Elk Valley, with a focus on endpoints such as growth or reproduction for sensitive fish species (Costa and de Bruyn, 2021). The level 1 benchmarks for all other constituents were literature based, where the most conservative relevant and reliable chronic effects values for the most sensitive fish species and life stages of fish were applied (Costa and de Bruyn, 2021).

The secondary screening criteria were applied directly to the analytical results of the surface water, seepage water, and shallow groundwater samples collected. Since the screening criteria are applicable to surface water (except where groundwater is within 10 m of the high water mark of a surface water body), the secondary screening criteria values were multiplied by ten for comparison to the groundwater analytical results of samples not collected within 10 m of the high water mark of a surface water body following in accordance with TG15.

<sup>&</sup>lt;sup>1</sup> Formerly known as Ministry of Environment (MoE).



# 3 Hydrogeological Conceptual Model for S6 Study Area

A detailed description of site geology, physical hydrogeology, chemical hydrogeology, and groundwater-surface water interactions is provided below. The hydrogeological conceptual model is illustrated in the 3D block diagrams provided in Drawings 5 (transport pathways and groundwater-surface water interactions) and 6 (concentrations of CI).

## 3.1 Setting and Physical Geography

The Fording River runs for approximately 60 km in a predominantly southern direction from its headwaters in the Rocky Mountains near Fording River Pass and the border with Alberta to its confluence with the Elk River approximately 17 km north of Sparwood. It runs through Teck Coal's FRO where mining activities are focused along the lower eastern slopes of the Greenhills Range, the High Rock Range, and in the Fording River Valley bottom.

The S6 Study Area is an approximate 8 km reach of the UFR between the STP and Chauncey Creek. The Fording River valley along this reach is relatively flat and varies between approximately 500 m to 800 m in width. The valley-bottom topography varies between approximately 1,610 m above sea level (asl) south of the STP to 1,565 m asl at the confluence with Chauncey Creek, corresponding to a topographic gradient of approximately 0.006 m/m (or 0.6%). Steep mountainous terrain with grades up to 0.25 m/m (25%) to elevations up to 2,400 m asl in the undisturbed portions of the tributary watersheds are present on either side of the valley.

The geomorphology and land use history of the UFR are described further in the Evaluation of Cause report (Evaluation of Cause Team, 2021). The climate of the UFR is described by Ecofish Research Ltd. (Wright et al, 2021).

## 3.2 Hydrology

The Fording River flows within a broad, flat floodplain along the valley bottom throughout the study area. A number of braided channels are present between Cataract Creek and the Fording River Oxbow, and transitions to a meandering stream in the downstream portion of the S6 Study Area. Data from Environment Canada and Teck Coal surface water monitoring stations indicate a nival flow regime with base flow in winter and peak flows between May and July driven by snowmelt, with low-flow conditions that return in late summer and fall.

Numerous tributaries flow into the Fording River within the study area, including (from north to south): Kilmarnock Creek, Swift Creek, Cataract Creek, Porter Creek, several creeks emanating from Castle Mountain, and Chauncey Creek (Drawing 2). The hydrology of the UFR system is discussed in detail by Wright et. Al (2021).



## 3.3 Geology

### 3.3.1 Bedrock Geology

Bedrock geology of the study area is shown on Drawing 7 and summarized in Table A. Bedrock in the area consists predominantly of Carboniferous to Lower Cretaceous siliciclastic sedimentary rock. The coal-bearing Kootenay Group Mist Mountain Formation hosts economic coal seams and is the dominant formation east of the Fording River valley bottom. The Mist Mountain Formation is underlain by the Moose Mountain Member of the Morrissey Formation, and overlain by the Elk Formation, which caps select ridges at FRO (Kaiser, 1980). Bedrock underlying the Fording River valley-bottom sediments in the study area consists of the Fernie Formation and the Spray River Group. The Rocky Mountain Supergroup comprises the bedrock east of the Fording River valley in the S6 Study Area.

| Geologic Period /<br>Epoch                      | Lithostratigraphic Unit   |                         |                          | Principle Rock Types                                                            |
|-------------------------------------------------|---------------------------|-------------------------|--------------------------|---------------------------------------------------------------------------------|
| Lower Cretaceous                                | Blairmore Group           |                         |                          | Massive bedded sandstone and<br>conglomerate                                    |
| Upper Jurassic to<br>Lower Cretaceous           | Kootenay<br>Group         | Elk Formation           |                          | Sandstone, siltstone, shale, mudstone,<br>chert pebble conglomerate, minor coal |
|                                                 |                           | Mist Mountain Formation |                          | Sandstone, siltstone, shale, mudstone, thick coal seams                         |
|                                                 |                           | Morrissey<br>Formation  | Moose Mountain<br>Member | Medium- to coarse-grained quartz-chert<br>sandstone                             |
|                                                 |                           |                         | Weary Ridge<br>Member    | Fine- to coarse-grained, slightly ferruginous<br>quartz-chert sandstone         |
| Jurassic                                        | Fernie Formation          |                         | ation                    | Shale, siltstone, fine-grained sandstone                                        |
| Triassic                                        | Spray River Group         |                         | Group                    | Sandy shale, shale quartzite                                                    |
| Carboniferous<br>(Pennsylvanian)<br>and Permian | Rocky Mountain Supergroup |                         |                          | Quartzite, calcareous sandstone                                                 |
| Carboniferous<br>(Mississippian)                | Rundle Group              |                         |                          | Limestone and shale                                                             |

#### Table A: Bedrock Geology of Upper Fording River

After Golder, 2013; Monahan, 2000.

### 3.3.2 Surficial Geology

Surficial geology of the study area is shown on Drawing 8, and is characteristic of a post-glacial Cordilleran mountain setting that was shaped by a single advance of valley glaciers during the Wisconsin Glaciation (George et al., 1987). Sediments in the valley consist primarily of fluvial deposits between the STP and Porter Creek. Fluvial deposits are also coincident with the larger tributaries of Kilmarnock and Chauncey Creeks, where alluvial fans composed of fluvial and glaciofluvial deposits spread where the tributaries join



the valley as shown in the Site Plan included in Drawing 2. The fluvial deposits comprise medium- to coarse-grained sediment. Organic floodplain deposits comprising fine- to medium-grained sediment are present between approximately Porter Creek and Chauncey Creek. These sediments are shallow (1 m to 2 m) and underlain by fluvial or glaciofluvial deposits, and are coincident with a wetland type environment where numerous oxbow lakes are present. Minor till and colluvium are locally present along the edges of the valley throughout the study area. Upland areas are dominated by colluvial veneers and blankets with exposed bedrock in higher peaks. Lower mountain slopes and valley flanks are predominantly till with thick colluvium deposits (e.g., talus piles) in some of the steeper valleys.

Drawing 9 presents a geological cross-section of the S6 Study Area between the STP in the north to an area south of Porter Creek. The section shows that sediment thickness increases from approximately 10 m below ground surface (bgs) immediately south of the STP to approximately 25 m to 30 m bgs in the area of the Kilmarnock Creek alluvial fan. The bedrock dips further to a depth of 68 m bgs in the vicinity of the South Kilmarnock Phase 2 Secondary Settling Pond (SKP2). No boreholes have been drilled sufficiently deep to confirm bedrock depth within the valley downstream of this point (monitoring wells FR MW-FRRD and GH\_MW-PC where bedrock was encountered at 11.9 m bgs and 5.5 m bgs, respectively, are located on the edges of the valley where bedrock is considered to be considerably shallower). Geophysical investigations including electrical resistivity tomography (ERT) surveys across the entire valley in the vicinity of FR MW-FRRD and another location approximately 350 m north completed as part of the MBI program in 2019 suggested that the bedrock surface may be approximately 25 m bgs to 30 m bgs in the center of the valley. This would suggests a considerable decrease in sediment thickness between SKP2 and the area where the geophysical surveys were completed, which is also an area of inferred (and observed, on the eastern side of the valley) groundwater discharge (discussed below in Section 3.5). However, results of a more recent (September 2020) drilling investigation indicate that the feature previously interpreted as the bedrock surface from the geophysical investigation is actually a low permeability unconsolidated unit, interpreted as till interbedded with glaciolacustrine layers of silt and/or clay. These recent drilling results suggest the discharge area coincides with a shallowing of the valley-bottom aquifer due to a thickening till/glaciolacustrine aquitard.

# 3.4 Physical Hydrogeology

#### 3.4.1 Hydraulic Conductivity and Groundwater Flow Velocity

A summary of hydraulic conductivity estimates derived from slug and pumping tests within the Kilmarnock alluvial fan and Upper Fording River valley within the study area is provided in Table B below. The hydraulic conductivity values range from  $1.0 \times 10^{-7}$  m/s at FR\_KB-6PW to  $4.0 \times 10^{-3}$  m/s at FR\_KB-8PW. The majority of hydraulic conductivity values are relatively high (i.e., greater than  $1.0 \times 10^{-4}$  m/s). It is recognized that the hydraulic conductivity data presented here may be biased high as the monitoring well installations tend to be preferentially completed in zones of high permeability to investigate contaminant transport pathways. Therefore, the bulk hydraulic conductivity of the valley bottom aquifer may be lower.



# Table B: Summary of Hydraulic Testing Results in Kilmarnock Creek Alluvial Fan and Fording River Valley Bottom

| Well IDs                     | Hydrostratigraphic Unit             | Screened<br>Interval (m bgs) | Hydraulic<br>Conductivity (K)<br>(m/s) | Source                |  |  |
|------------------------------|-------------------------------------|------------------------------|----------------------------------------|-----------------------|--|--|
| FR_09-01-A                   | Sandy gravel                        | 3.8 – 6.9                    | 1.0 x 10 <sup>-3</sup>                 |                       |  |  |
| FR_09-01-B                   | Gravel                              | 17.2 – 18.7                  | 1.5 x 10-4                             |                       |  |  |
| FR_09-02-A                   | Sandy gravel                        | 8.3 - 11.4                   | 1.0 x 10 <sup>-3</sup>                 |                       |  |  |
| FR_09-02-B                   | Gravel                              | 20.8 - 22.3                  | 9.9 x 10 <sup>-5</sup>                 | SNC-Lavalin,          |  |  |
| FR_09-03-A                   | Gravely sand                        | 2.2 - 5.2                    | 3.0 x 10 <sup>-3</sup>                 | 2019a                 |  |  |
| FR_09-03-B                   | Gravel                              | 9.2 - 10.7                   | 2.6 x 10 <sup>-5</sup>                 |                       |  |  |
| FR_09-04-A                   | Sandy gravel                        | 1.1 – 4.7                    | 3.0 x 10 <sup>-3</sup>                 |                       |  |  |
| FR_09-04-B                   | Gravel                              | 5.1 - 6.6                    | 9.6 x 10 <sup>-5</sup>                 |                       |  |  |
| FR_GH_WELL4ª                 | Sand, some Gravel                   | 25.9 - 29.0                  | 1.4 x 10 <sup>-2b</sup>                | Piteau, 2012b         |  |  |
| FR_KB-1A                     | Silty gravel and Sand and<br>Gravel | 5.2 - 8.2                    | 3.0 x 10 <sup>-4</sup>                 |                       |  |  |
| FR_KB-2A                     | Silty sand and bedrock              | 13.1 – 16.2                  | 6.0 x 10 <sup>-6</sup>                 |                       |  |  |
| FR_KB-3A                     | Sand                                | 35.4 - 38.4                  | 3.0 x 10 <sup>-4</sup>                 | Golder,               |  |  |
| FR_KB-3B                     | Gravel                              | 18.3 – 21.3                  | 3.0 x 10 <sup>-4</sup>                 |                       |  |  |
| FR_KB-4MW                    | Silty gravel                        | 10.7 – 13.7                  | 8.0 x 10 <sup>-7</sup>                 | 2020a                 |  |  |
| FR_KB-5PW <sup>a</sup>       | Sand and Gravel                     | 11.6 - 13.4                  | 3.0 x 10 <sup>-3</sup>                 |                       |  |  |
| FR_KB-6PW <sup>a</sup>       | Silty gravel and gravel             | 27.1 - 33.2                  | 1.0 x 10 <sup>-7</sup>                 |                       |  |  |
| FR_KB-7PW <sup>a</sup>       | Silty gravel                        | 13.1 – 19.2                  | 9.0 x 10 <sup>-5</sup>                 |                       |  |  |
| FR_KB-8PW <sup>a</sup>       | Silty gravel and Gravel             | 41.1 - 47.2                  | 4.0 x 10 <sup>-3</sup>                 |                       |  |  |
| FR_MW_SK1-A                  | Sand and gravel                     | 15.0 - 16.5                  | 9.3 x 10 <sup>-4</sup>                 | SNC-Lavalin,          |  |  |
| FR_MW_SK1-B                  | Sand and gravel, silty              | 65.5 - 67.0                  | 4.4 x 10 <sup>-5</sup>                 | 2019b                 |  |  |
| FR_MW_FRRD1                  | Sand                                | 8.8 - 9.3                    | 4.7 x 10 <sup>-5</sup>                 |                       |  |  |
| FR_MW_CASW6-A                | Silty gravel and silt               | 8.8 - 10.3                   | 9.8 x 10 <sup>-6</sup>                 | SNC-Lavalin,<br>2020a |  |  |
| FR_MW_CASW6-B                | Sand and silt                       | 2.5-4.0                      | 8.8 x 10 <sup>-7</sup>                 | 2020d                 |  |  |
| Geometric Mean               |                                     |                              | 7.3 x 10 <sup>-4</sup>                 |                       |  |  |
| Upper 95 <sup>th</sup> %tile |                                     | 4.0 x 10 <sup>-3</sup>       |                                        |                       |  |  |
| Lower 95 <sup>th</sup> %tile |                                     | 1.3 x 10 <sup>-4</sup>       |                                        |                       |  |  |

Note: All hydraulic conductivity tests completed as slug tests unless otherwise stated.

**Bold Italic Font:** Estimate is considered representative of groundwater transport pathways in the Kilmarnock Creek alluvial fan and Fording River valley bottom, and was included in the summary statistics.

a - Hydraulic conductivity estimate from constant rate pumping test.

b - Based on estimated transmissivity of 0.3 m²/s and aquifer thickness of 21 m.



A sub-set of hydraulic conductivity values were selected in order to estimate average linear groundwater flow velocities and travel times representative of transport pathways within the S6 Study Area. These are shown as italicized in Table B. Values were considered for wells screened in the upper 20 m as lateral groundwater flow is expected to dominate. Values from wells near the valley edges were excluded since fluvial or glaciofluvial sediments on the edges of the valley are thin or sometimes not present. Three wells that meet this criteria (i.e., are shallow and not located along the valley edges) were also excluded from the sub-set due to anomalously low hydraulic conductivity values: FR\_09-03-B, FR-KB-2, and FR\_KB-MW4.

The hydraulic conductivity estimate at Greenhouse water supply well FR\_GH\_WELL4 was also excluded due to an exceptionally high value. This result is considered only a qualitative indication that the hydraulic conductivity is high because the pumping test did not sufficiently stress the aquifer (less than 3% of the available drawdown). Nonetheless, the result does suggest the presence of a locally high permeability zone at the Greenhouse Wells location.

The range in the 95<sup>th</sup> percentile confidence intervals of the hydraulic conductivities in the subset is  $1.3 \times 10^{-4}$  m/s to  $4.0 \times 10^{-3}$  m/s, with a geometric mean of  $7.3 \times 10^{-4}$  m/s.

Average linear groundwater flow velocity estimates are presented below in Table C based on the range of the 95<sup>th</sup> percentile confidence intervals and geometric mean of the subset of estimates, as well as gradients representative of seasonally high and low groundwater levels in the upgradient monitoring wells. The velocities were calculated according to:

$$V = Ki/n_e$$

Where:

V = the average linear groundwater flow velocity

K = hydraulic conductivity

i = hydraulic gradient

ne = effective porosity

The groundwater velocity estimates range from approximately 0.12 m/d to 9.2 m/d, or 83 m/yr to 3,357 m/yr.

| Scenario                                          | Hydraulic<br>Conductivity<br>(m/s) | Gradient<br>(m/m) | Effective<br>Porosity | Velocity<br>(m/d) | Velocity<br>(m/yr) |  |
|---------------------------------------------------|------------------------------------|-------------------|-----------------------|-------------------|--------------------|--|
| Lower 95th Percentile K/Low Gradient              | 1.3 x 10 <sup>-4</sup>             | 0.006             |                       | 0.23              | 83                 |  |
| Lower 95 <sup>th</sup> Percentile K/High Gradient | 1.3 x 10 <sup>-4</sup>             | 0.008             |                       | 0.30              | 111                |  |
| Upper 95 <sup>th</sup> Percentile K/Low Gradient  | 4.0 x 10 <sup>-3</sup>             | 0.006             | 0.03                  | 6.9               | 2,519              |  |
| Upper 95th Percentile K/High Gradient             | 4.0 x 10 <sup>-3</sup>             | 0.008             | 0.3ª                  | 9.2               | 3,357              |  |
| Geomean K/Low Gradient                            | 7.3 x 10 <sup>-4</sup>             | 0.006             |                       | 1.3               | 458                |  |
| Geomean K/High Gradient                           | 7.3 x 10 <sup>-4</sup>             | 0.008             |                       | 1.7               | 610                |  |

 $a - Effective porosity (n_e)$  for coarse granular materials may vary between approximately 0.2 and 0.3; the high end of this range was assumed for the purposes of this travel time calculation.

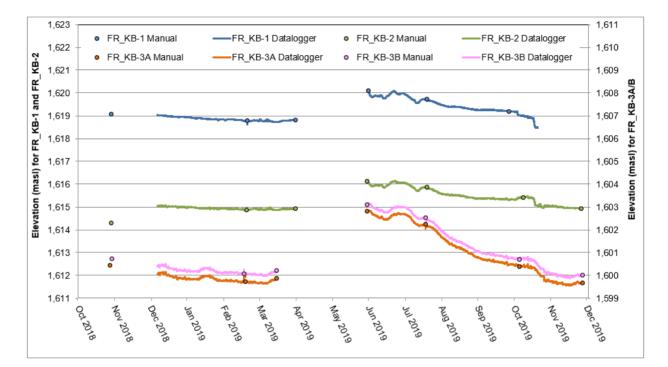


#### 3.4.2 Groundwater Flow Regime

There are no groundwater monitoring data within the S6 study area as the monitoring wells in the Fording River valley are situated to the north closer to FRO<sup>2</sup>. Conceptually, groundwater flow in main stem valley-bottom aquifers can be generally described as:

Groundwater predominantly flows through coarse-grained fluvial and glaciofluvial deposits. Flow converges toward the valley bottom from the valley flanks and transitions to down-valley flow, either parallel or sub-parallel to the river or creek depending on local hydraulic gradients, permeability and surface water interaction. Groundwater ultimately discharges to the Fording River. Groundwater pathways are tortuous due to variations in permeability of overburden materials (SNC-Lavalin 2017a; Teck Coal, 2017).

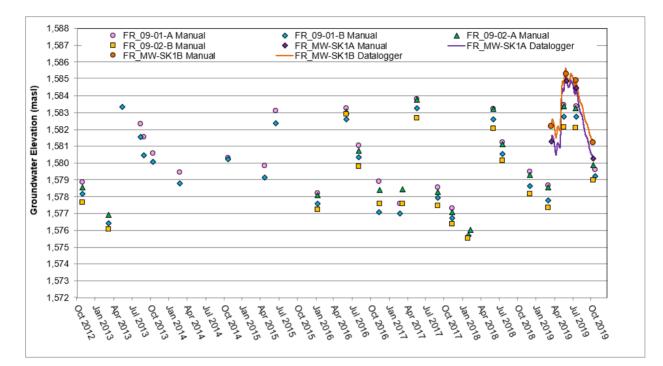
The limited available data in the S6 Study Area support the above description. Groundwater elevations and inferred groundwater flow direction in the study area in the first quarter (Q1) and July 2019 are shown on Drawings 10 and 11, respectively. To supplement measurements made in the monitoring wells, the ground surface elevation in the seepage area that feeds the Greenhouse Side Channel was also used to interpret the contours shown on Drawings 10 and 11. Groundwater flow from Kilmarnock Creek area flows under a steep gradient in the southwest direction parallel to the creek, before turning in a down-valley direction where the gradient dissipates in high permeability fluvial and glaciofluvial sediments of the Kilmarnock Fan. The hydraulic gradient in the Kilmarnock Creek area between monitoring wells FR\_KB-1, FR\_KB-2, and FR\_KB-3A was estimated to be approximately 0.08 m/m towards the southwest during both the Q1 and July 2019 monitoring events.


Groundwater flow in the Fording River valley in the S6 Study Area is in the down-valley (southeast) direction from Kilmarnock alluvial fan area towards a discharge zone that is inferred to occur over an approximate 1.8 km reach between the seepage area feeding the Greenhouse Side Channel and surface water station GH\_PC2, as shown on Drawing 5. It is suspected that either a shallowing of the bedrock surface or a thickening till/glaciolacustrine aquitard between SKP2 and the downstream area cause upwelling of groundwater and discharge into low-lying areas, which include the Fording River but also former channels. There are several areas of groundwater-surface water interactions within the study area, including areas where groundwater is recharged by surface-water bodies and those where groundwater discharges to surface-water bodies, which are discussed in further detail below in Section 3.5.

The hydraulic gradients between monitoring wells FR\_09-01-A, FR-09-02-A, and the seepage area that feeds the Greenhouse Side Channel were approximately 0.006 m/m and 0.008m/m in Q1 and July 2019. Because the water table elevation at the seepage area does not fluctuate meaningfully (i.e., it flows all year at a constant elevation), the gradient fluctuates seasonally according to the magnitude of water level fluctuations upgradient.

Hydrographs showing water level fluctuations in upgradient monitoring wells in the Kilmarnock fan and SKP2 areas are shown on Figure 1 and Figure 2 below. Seasonal water level elevations in the Kilmarnock alluvial fan varied between approximately 1.3 m at FR\_KB-1 and FR\_KB-2 to 3.1 m at FR\_KB-3A and FR\_KB-3B in 2019 (Figure 1). Seasonal water level fluctuations in the vicinity of SKP2 since 2015 have varied between 4.8 m and 7.2 m at FR\_09-02A in 2018 (Figure 2).

<sup>&</sup>lt;sup>2</sup> Monitoring well FR\_MW\_FRRD1 is located upslope and screened above the elevation of the valley bottom and therefore does not inform hydrogeological conditions in the valley bottom.






#### Figure 1: Hydrographs of Monitoring Wells in the Kilmarnock Creel Alluvial Fan Area

Water levels fluctuated by approximately 3.6 m and 3.1 m in 2019 at wells FR\_MW-SK1A and FR\_MW-SK1B, respectively (Figure 2). The hydrographs of all wells show similar seasonal trends, with highest groundwater levels after freshet in June and a decline throughout the remainder of the year. Lowest groundwater levels occur in late winter prior to freshet. Seasonal mounding of groundwater beneath SKP2 is also known to occur during freshet as water from the pond infiltrates to ground (SNC-Lavalin, 2019c), which would cause a temporary hydraulic flow barrier and radial flow from the pond until the mound dissipates.



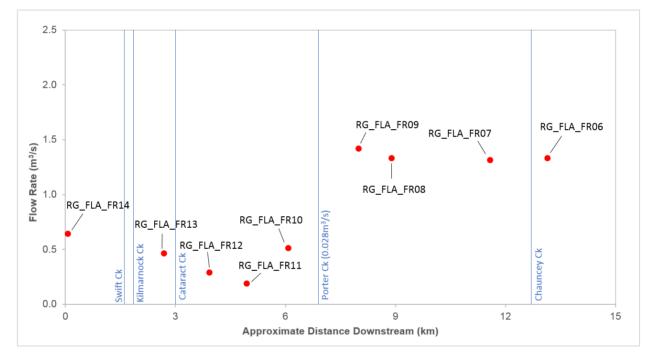


#### Figure 2: Hydrographs of Monitoring Wells in the Fording River Valley Bottom

Vertical hydraulic gradients within the Kilmarnock alluvial fan and in the vicinity of SKP2 are consistently downward between shallow and deep monitoring well pairs, except at well pair FR\_MW-SK1A/B, where the gradient has been consistently upward (Figure 1 and Figure 2). In 2019, downward vertical gradients varied between 0.017 m/m at FR\_KB-3A/B in June and July to 0.104 m/m at FR\_09-02A/B in May. The variation in vertical gradients within well pairs suggests that the lateral component may be more important at times when the vertical gradient is lower. The upward vertical gradients at FR\_MW-SK1A/B varied between 0.008 m/m in June to 0.02 m/m in October. The hydraulic gradient is inferred to be upward downstream where it is suspected that either the bedrock shallows or an aquitard that underlies the valley-bottom aquifer thickness causing groundwater discharge between the Greenhouse Side Channel and GH\_PC2, although the magnitude of the gradient is not known due to a lack of monitoring wells.

### 3.5 Groundwater-Surface Water Interactions

Groundwater-surface water interactions in the S6 Study Area are transient. Groundwater-surface water interactions in the S6 Study Area are characterized below in terms of 'regional-scale' (i.e., on the order of kilometres) and 'local-scale'.


#### 3.5.1 Regional Groundwater-Surface Water Interactions

A number of lines of evidence are used to characterize the regional groundwater-surface water interactions in the S6 Study Area, including flow accretion surveys, drying surveys, and continuous surface flow data.



#### 3.5.1.1 Flow Accretion Studies

The results of flow accretion studies completed along the Fording River and select tributaries in October 2019 and in the Greenhouse Side Channel in February 2020 are shown on Drawing 12. Flows measured in October 2019 are also shown below in Figure 3. The results show that the Fording River loses water to ground between near the STP at RG\_FLA\_FR14 and RG\_FLA\_FR11 approximately 4.5 km downstream. Considerable gains were made between station RG\_FLA\_FR11 and RG\_FLA\_FR09, while minimal gains or losses in flow were detected between RG\_FLA\_FR09 and RG\_FLA\_FR06 just downstream of Chauncey Creek.



#### Figure 3: Measured Flows in the Fording River in October 2019

Flow accretion studies along this reach of the Fording River were completed by Kerr Wood Leidal Associates Ltd. (KWL) in September and October 2018 with similar results, shown on Drawings 13 and 14, respectively. In both studies, losses were measured between FR\_FR2 and a station located between FR\_FRCP1 and FR\_FRRD, while gains were made from the station between FR\_FRCP1 and FR\_FRRD and a station downstream of Porter Creek (Teck Coal, 2019). The September and October 2018 flow accretion studies by KWL also included measurements made along Kilmarnock Creek which showed that the creek loses water to ground over the alluvial fan (Teck Coal, 2019). Similar results were also observed during flow accretion studies on Kilmarnock Creek in February and April 2019 (Teck Coal, 2019), which are shown on Drawings 15 and 16, respectively. A study completed in May 2019 showed Kilmarnock Creek gained flow in a short reach upstream of the new Active Water Treatment Facility (AWTF) intake, and lost flow over the alluvial fan downstream (Drawing 17; Teck Coal, 2019).



The Greenhouse Side Channel gained in flow by a factor of approximately four between the seepage area across the majority of its length, before losing approximately 15% of its flow over the final reach between RG\_FRSC2 and RG\_FRSC1. It was noted by SNC-Lavalin field personnel during the field work in February 2020 that the main stem of the Fording River was dry above the confluence with the Greenhouse Side Channel, and that the side channel was supporting flow in the main stem downstream.

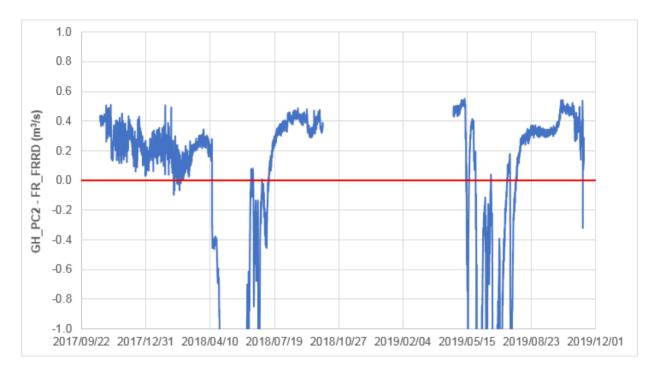
#### 3.5.1.2 Drying Surveys

Monthly drying surveys completed by Minnow Environmental Inc. (Minnow) and Lotic Environmental (Lotic) since 2017 support the observations in the flow accretion surveys. The surveys are completed between August and March as flow in the Fording River main channel between April and July are sufficient to sustain flow (Minnow and Lotic, 2019). The surveys are included in the mainstem dewatering SME report prepared by Ecofish (Hocking et. al, 2021). The surveys showed that an approximate 1.5 km long reach between an area just downstream of FR\_FRCP1 and the confluence of the Fording River and the Greenhouse Side Channel was dry between December 2017 and March 2018 (Minnow and Lotic, 2018). In October 2018, an approximate 280 m reach terminating at the confluence of the main Fording River channel and the Greenhouse Side Channel was noted to be dry; however, water level data at a station (FR\_FRCP1SW) located in the vicinity of RG\_FLA\_FR11 suggested that this reach likely started to dry in September 2018 (Minnow and Lotic, 2019). The dry reach extended to approximately 1,200 m in length in November 2018 and 1,650 m in length in December 2018 (Minnow and Lotic, 2019). Shorter dry sections were identified upstream of the Cataract Creek confluence in November 2018 (approximately 170 m long) and December 2018 (Approximately 480 m long). Another dry reach approximately 630 m long between the outlet of SKP2 and FR\_FR4 in December 2018 was also identified in December 2018 (Minnow and Lotic, 2019).

#### 3.5.1.3 Continuous Flow Data

Continuous flow data collected at four surface water stations (FR\_FRCP1, FR\_FRCP1SW, FR\_FRRD, and GH\_PC2) since 2017 was provided by Lotic. The difference in discharge between successive stations is plotted on Figures 4 through 6 to illustrate the temporal variability of gaining or losing reaches, where a positive difference indicates gaining flow along the reach and negative indicates losses to ground<sup>3</sup>. The flow data indicate the reach between FR\_FRCP1SW and FR\_FRRD was consistently losing during low-flow, except for a period in September and early October 2018 when it was gaining (Figure 4). This gaining reach in September and October 2018 corresponds to the time that the channel went dry at FR\_FRCP1SW, and the gain is therefore attributed to input from the Greenhouse Side Channel upstream of FR\_FRRD.

<sup>&</sup>lt;sup>3</sup> It is noted that since stage-discharge curves could not be established at high flows, the data are considered reliable only during low-flow periods (Mike Robinson, pers. comm.).






#### Figure 4: Discharge Difference between Stations FR\_FRRD and FR\_FRCP1SW

The reach between FR\_FRRD and GH\_PC2 (i.e., downstream of the Greenhouse Side Channel) was consistently gaining, except during periods of very high flow when flows at FR\_FRRD are considerably higher than those at GH\_PC2 (Figure 5). This may result from a large portion of these flows being diverted to the Fording River oxbow upstream of GH\_PC2. The gaining reaches between FR\_FRCP1SW and FR\_FRRD and between FR\_FRRD and GH\_PC2 both support the evidence of the flow accretion studies and drying surveys.





#### Figure 5: Discharge Difference between Stations GH\_PC2 and FR\_FRRD

However, there was a reach between FR\_FRCP and FR\_FRCP1SW that was gaining at times during low-flow (sporadically between October 2017 and March 2018 and between August and November 2019) (Figure 6). This is in contrast to both the flow accretion studies (which showed losses over this reach) and the drying surveys (which showed FR\_FRCP1SW to be frequently dry during winter months). The data supported the flow accretion studies and drying surveys at other periods of low flow, showing losses or indicating FR\_FRCP1SW was dry. Therefore, the gaining flows observed between FR\_FRCP1 and FR\_FRCP1SW are likely seasonal and localized.



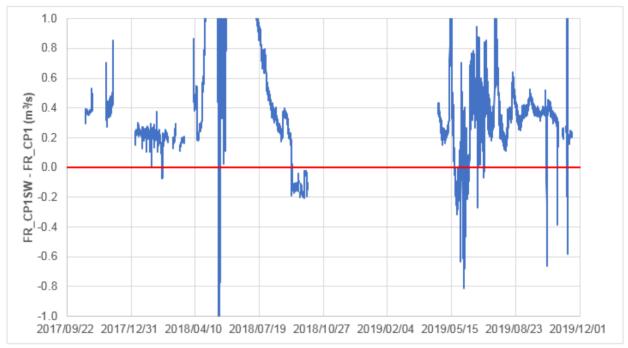



Figure 6: Discharge Difference between Stations FR\_FRCP1SW and FR\_FRCP1

#### 3.5.1.4 Summary

Overall, the drying surveys and flow data suggest the reach of the Fording River between FR\_FRCP1 and the confluence with the Greenhouse Channel frequently dries during the winter months, beginning at the downstream location and progressing upstream throughout the winter, with localized dry areas upstream of the compliance point that can also develop in late winter. There is also a localized reach of between FR\_FRCP1 and FR\_FRCP1SW which periodically and temporarily gains flow along this reach; however, the water gained in this portion of the channel is lost back to groundwater upstream of the Greenhouse confluence. There is evidence from analytical chemistry results of surface water and groundwater that there is another localized reach of groundwater discharge to the Fording River between FR\_FR4 and FR\_FRCP1 that occurs between late winter (February and March) and early summer (June and July). This is discussed further below in Section 3.6.4. The losing reaches over the Kilmarnock Creek alluvial fan and Fording River between the STP and the confluence with the Greenhouse Side Channel (and particularly the frequently dry reach between the compliance point and the confluence with the Greenhouse Side Channel) are considered noteworthy zones of groundwater recharge by streams.

The drying surveys also help to refine interpretation of the flow accretion studies, which broadly identified gaining flow over a reach both upstream and downstream of the confluence with the Greenhouse Side Channel. The information indicates that all gains made along this reach due to groundwater discharge occur after the confluence with the Greenhouse Side Channel, while upstream the main stem is generally considered to lose water to ground with localized exceptions noted above. Gains in flow may still be made upstream of the Greenhouse confluence at high flow, although this is considered more likely to come from surface runoff in the braided channels instead of groundwater discharge.



Therefore, a zone of regionally important groundwater discharge is considered to occur between the seepage area that feeds the Greenhouse Side Channel and station RG\_FLA\_FR 09 (Drawing 5). This groundwater discharge zone has been noted to sustain flow in the main stem in the winter months. However, the discharge only occurs on the east side of the valley upstream of the confluence with the Greenhouse Side Channel. It is also noted that bedrock and/or the till/glaciolacustrine aquitard appeared to be shallower on the eastern side of the northernmost ERT survey (Line 3 on Drawing 9), approximately 350 m north of the Greenhouse Side Channel. Shallower bedrock or aquitard surface on the eastern side of the valley could explain why groundwater discharges further up-valley at the Greenhouse Side Channel compared to the rest of rest of the regional groundwater discharge zone.

Accounting for input from Porter Creek, the gain in flow during the October 2019 flow accretion event between stations RG\_FLA\_FR11 and RG\_FLA\_FR09 was 1.201 m<sup>3</sup>/s, all of which is considered to have occurred downstream of the confluence with the Greenhouse Side Channel. With the caveat that the flow measurements in the Greenhouse Side Channel were made at another date (February 2020, but still during a low flow period), a summary where the flow gains were made is provided in Table D below. The table shows that the vast majority of flow gained in the regional groundwater discharge zone occurred in Side Channel 2 (45%) and in the main Fording River channel between the Greenhouse Side Channel confluence and RG\_FLA\_FR09 (49%), while the Greenhouse Side Channel itself only accounted for 6% of the flow gained.

# Table D: Summary of Flow Gains in the Regional Groundwater Discharge Zone During October 2019 Study Study

| Reach                                                                       | Gain (m³/s) | Percentage of Gain (%) |  |  |  |
|-----------------------------------------------------------------------------|-------------|------------------------|--|--|--|
| RG_FLA_FR11 to RG_FLA_FR09                                                  | 1.201       | 100                    |  |  |  |
| Greenhouse Side Channel                                                     | 0.0721      | 6.0                    |  |  |  |
| Greenhouse Confluence to RG_FLA_FR10(Upstream of Side Channel 2 Confluence) | 0.2509      | 20.9                   |  |  |  |
| Side Channel 2                                                              | 0.541       | 45.0                   |  |  |  |
| RG_FLA_FR10 to RG_FLA_FR09 (Main Stem only)                                 | 0.337       | 28.1                   |  |  |  |

Analytical data for surface water samples collected from FR\_FRABCH and station GH\_PC2, located downstream of Porter Creek between the confluence with Side Channel 2 and RG\_FLA\_FR09, were reviewed to confirm the interpretations of flow contributions above. Concentrations of CI including dissolved selenium, sulphate, and nitrate as nitrogen (nitrate-N) were similar between the two stations, as were the ratios of nitrate-N to sulfate-S (discussed below in Section 3.6.5). This is an indication that the majority of the regional groundwater discharge occurs upstream of GH\_PC2.

#### 3.5.2 Local Scale Groundwater-Surface Interactions

There are additional local scale exchanges that occur within the Fording River valley, including between the regional discharge zone and WCT overwintering area in the vicinity of FR\_FRABCH where no large scale interactions are known to occur. These interactions include bank storage effects and exchanges in the hyporheic zone. Bank storage refers to water stored in the banks of surface water channels. Recharge to



the banks occurs during the freshet or flood stage when the hydraulic gradient is from the channel towards the banks. After the surface water levels in the channel have receded post-freshet, water stored in the banks will continue to be released and contribute flow to the channel for some time due to the gradient reversal towards the channel. The time period over which this occurs depends on the amount of water stored in the banks, the gradient, and the hydraulic conductivity of the channel banks, although the effects are typically most prevalent during the recession limb of a hydrograph (Kondolf et al., 1987). However, it has been found to be a significant contributor to baseflow in some lowland river systems (Rhodes et al., 2017).

Conceptual local scale exchanges are illustrated on Figure 7 and include meander, bedform, and bar driven exchanges. These exchanges have a high degree spatial and temporal variability as they are dependent on a number of variables including surface water and groundwater levels, river morphology, river gradient, and hydraulic properties of the streambed and valley-bottom deposits.

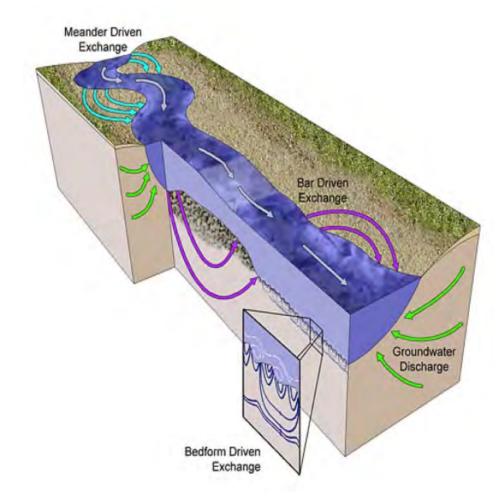



Figure 7: Local-Scale Groundwater-Surface Water Interactions in the Hyporheic Zone (from Stonedahl et al., 2010)



# 3.6 Groundwater Quality and Transport Pathways

Analytical results of groundwater samples collected from upgradient monitoring wells compared to the screening criteria are included in Table 1, while results of surface water samples, seepage water samples, and shallow groundwater samples collected in 2019 as part of the MBI are shown in Table 2.

#### 3.6.1 Major Ion Chemistry

A piper plot showing major ion chemistry of upgradient groundwater, shallow groundwater, seepage water, and Greenhouse Side Channel surface water is included in Figure 8, while Figure 9 shows major ion chemistry in Kilmarnock Creek and the Fording River at FR\_FRCP1 in 2019 along with samples collected from the Fording River during the flow accretion study in October 2019. Data shown on the plots are from 2019 rather than from across the entire span of the decline window (September 2017 to September 2019) since the 2019 data are more robust (and include data collected in support of the MBI program), and therefore are more appropriate to identify groundwater transport pathways of mine-influenced water.

The piper plots show that all surface water and groundwater samples collected are mixed calciummagnesium-sulphate-bicarbonate water types. They also show that all groundwater, seepage water, and water from the Greenhouse Side Channel are within range of the compositions of surface water in Kilmarnock Creek at FR\_KC1 and the Fording River at FR\_FRCP1, and that the major ion chemistries of Kilmarnock Creek and the Fording River are similar. The plots highlight the strong relationship between surface water and groundwater in the S6 Study Area, which supports the strong linkages noted above in Section 3.5. However, due to differences in travel times, groundwater is expected to influence surface water quality in discharge areas, which is relevant when considering mine-influenced waters.

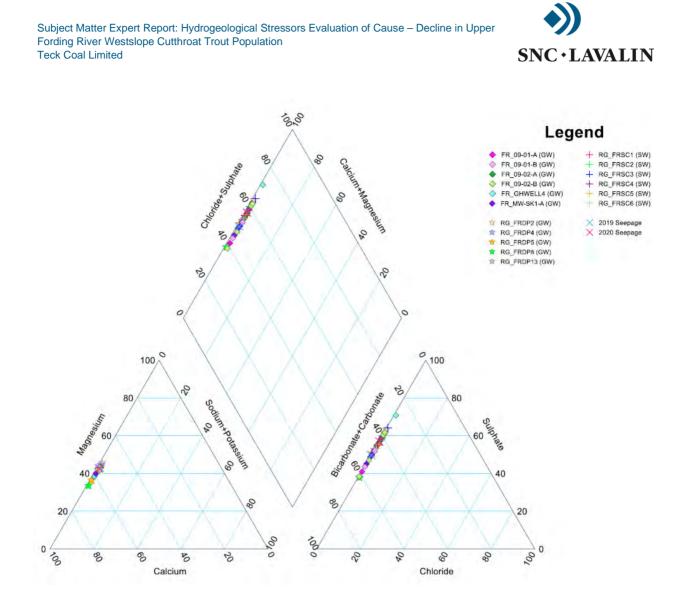



Figure 8: Major Ion Chemistry of Upgradient Monitoring Wells in 2019 as well as Shallow Groundwater, Seepage Water, and Surface Water in the Greenhouse Side Channel Collected in Support of the MBI.



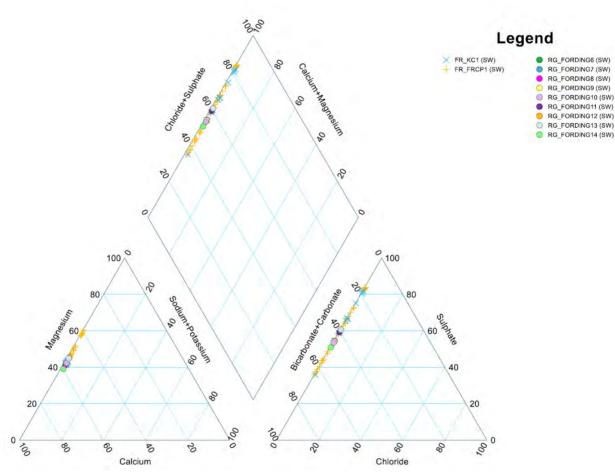



Figure 9: Major ion Chemistry of Surface Water in Kilmarnock Creek at FR\_KC1 and the Fording River at FR\_FRCP1 in 2019, as well as of Surface Water in Samples Collected from the Fording River during the Flow Accretion Study in October 2019

#### 3.6.2 Mine-Influenced Waters in the S6 Study Area

Drawing 6 shows the ranges in concentrations of dissolved selenium in surface water and groundwater in 2019. Dissolved selenium was selected to be presented on Drawing 6 as it is considered to be the best indicator of mine influence in groundwater based on SNC-Lavalin's experience in the Elk Valley.

Mine influenced surface water enters the S6 Study Area via Kilmarnock Creek (FR\_KC1), Swift Creek (GH\_SC1), and Cataract Creek<sup>4</sup> (GH\_CC1), as well as from inputs upstream of the S6 Study Area (captured at station FR\_FR2). Groundwater quality in the Kilmarnock alluvial fan (FR\_KB-1, FR\_KB-2, and FR\_KB-3A/B) is similar to that of Kilmarnock Creek as the creek loses water to ground over the thick permeable sediments of the alluvial fan.

<sup>&</sup>lt;sup>4</sup> Cataract Creek was diverted to Swift Creek in August 2019.



Groundwater quality in the vicinity of SKP2 (FR\_09-01A/B and FR\_09-02A/B) is influenced by Kilmarnock Creek seasonally during and post freshet (May to July). This is considered to be caused both by infiltration from SKP2 during freshet and due to a preferential flow path from Kilmarnock Creek along a former channel (discussed below in Section 3.6.4.).

Groundwater quality at FR\_MWSK1A (located on the eastern side of SKP2) and FR\_GH\_WELL4 (located downstream on the central-eastern side of the valley) shows consistent influence of Kilmarnock Creek, suggesting a transport pathway of mine-influenced groundwater from the Kilmarnock alluvial fan down the eastern side of the Fording River valley. Groundwater quality at deep well FR\_MWSK1B is not mine-influenced.

The presence of a pathway on the eastern side of the valley transporting mine-influenced groundwater from the Kilmarnock alluvial fan is also supported by the water quality of shallow groundwater at RG\_FRDP\_13, the Greenhouse Side Channel and the seepage area that feeds it. Shallow groundwater quality in the centre of the valley (RG\_FRDP\_2, RG\_FRDP\_4, RG\_FRDP\_5, RG\_FRDP\_8) also appears to be mine-influenced, although there is evidence that the Fording River below Swift and Cataract Creeks is a larger influence in the centre of the valley than Kilmarnock Creek (discussed below in Section 3.6.5).


Upgradient of Kilmarnock Creek and south of the STP (monitoring wells FR\_09-04A/B), concentrations of CI (particularly selenium and nitrate-N) are influenced by the STP, and are attenuated by reduction. Groundwater quality on the eastern edge of the valley downgradient of the Greenhouse Side Channel at FR\_MW\_FRRD1 is also not mine-influenced, which is considered attributable to its location on the edge of the valley at higher elevation (the elevation of the well screen assembly is higher than the adjacent Fording River channel). Mine-influenced groundwater with lower CI concentrations is present on the western valley flank (GH\_MW-PC), and is influenced by Porter Creek and the Porter Creek settling pond.

#### 3.6.3 Transport Pathway Indicators

To investigate transport pathways of mine-influenced water from source areas in recharge zones to groundwater discharge zones, the ratios between nitrate-N and sulphate as  $S(NO_3-N/SO_4-S)$  in surface water and groundwater samples were reviewed. Inferred transport pathways are shown on Drawing 18, while the ranges and averages of  $NO_3-N/SO_4-S$  are shown spatially on Drawing 19.

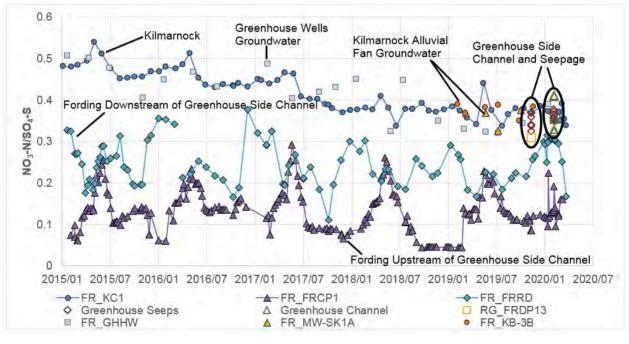
Figure 10 shows the  $NO_3^{-}N/SO_4^{2-}S$  ratios in surface water in Kilmarnock Creek, Swift Creek, Cataract Creek, and several stations within the Fording River above and below SKP2, each of which are considered to influence groundwater quality through infiltration over losing reaches. The figure shows that water in Kilmarnock Creek (FR\_KC1) is elevated in  $NO_3^{-}N/SO_4^{2-}S$  ratios (range of 0.34 to 0.54) compared to other surface waters, while Swift Creek (GH\_SC1; range of 0.04 to 0.07) and Cataract Creek (GH\_CC1; range of 0.04 to 0.05) are much lower compared to Fording River water.





# Figure 10: NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios in Surface Water in Kilmarnock Creek, Swift Creek, Cataract Creek, and the Fording River above and below SKP2. Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data

Water in the Fording River above Kilmarnock, Swift, and Cataract Creeks (FR\_FR2) shows a seasonal pattern where the NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios are highest in winter and lowest during or after freshet in May and June. The opposite seasonal trend is observed in the Fording River below Swift and Cataract Creeks at FR\_FRCP1, with elevated NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios during and post freshet and lower ratios during winter. This is interpreted to result of the relative influences from Swift and Cataract Creeks during the winter months (between October 2018 and March 2019 the signature is entirely that of Swift and Cataract Creeks) and of Kilmarnock Creek between late winter (February and March) to early summer (June and July). The NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios in the Fording River below SKP2 at FR\_FR4 were similar to those upstream at FR\_FR2 except for data after the summer of 2019, when the signature more closely resembled that of FR\_FRCP1. This is noted to coincide with the diversion of Cataract Creek to Swift Creek.


#### 3.6.4 Groundwater Transport of Kilmarnock Creek Influenced Water

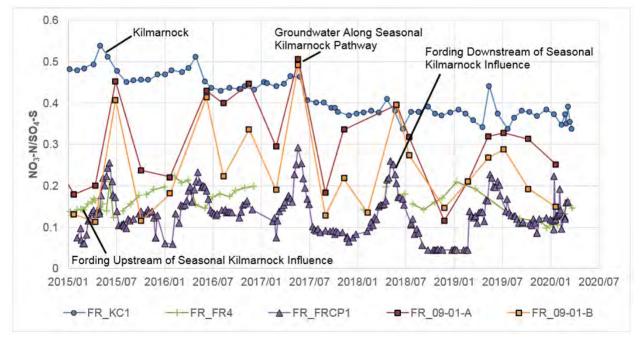
It is interpreted that mine-influenced water from Kilmarnock Creek reaches the Fording River through groundwater via two pathways, including a longer pathway along the eastern side of the valley and a shorter pathway across the valley (Drawing 18). Evidence for the first pathway is presented on Figure 11, which shows the NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios in surface water from Kilmarnock Creek, the Fording River at FR\_CP1 and FR\_FRRD, the Greenhouse Side Channel and seepage area, and groundwater in select monitoring wells along the inferred flow path.



The figure shows that groundwater at the Greenhouse wells (FR\_GHHW) and the east side of SKP2 (FR\_MW-SK1A) are strongly influenced by Kilmarnock Creek at all times. Groundwater in the Kilmarnock alluvial fan (FR\_KB-3A) is similarly consistently influenced by Kilmarnock Creek<sup>5</sup>, supporting the results from flow accretion studies. All seepage samples and surface water collected from the Greenhouse Side Channel, and a shallow groundwater sample (RG\_FRDP13) collected near the seepage area showed the same ratio as Kilmarnock Creek. Water in the Fording River downstream of the Greenhouse Side Channel (FR\_FRRD) shows seasonally elevated NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2</sup>-S ratios in the winter months, and lower ratios more representative of upstream Fording River water at other times when flows are higher. The elevated NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2</sup>-S ratios during winter months at FR\_FRRD are considerably higher than the seasonal winter highs upstream at FR\_FR2, and are interpreted to be due to a strong influence of groundwater transport originating from Kilmarnock Creek in the Greenhouse Side Channel.

The interpreted groundwater discharge zone(s) for groundwater recharged by Kilmarnock Creek and transported down the eastern side of the valley is the Greenhouse Side Channel, the seepage area feeding it, as well as the Fording River main channel on the eastern side of the valley before it crosses west downstream of FR\_FRRD (Drawing 18). The minimal seasonality of the NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2</sup>-S signature in groundwater as well as the baseflow influence evident at FR\_FRRD suggests that this pathway is continual and discharge occurs in this area year-round.






<sup>&</sup>lt;sup>5</sup> Although not shown on the plot, the NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2</sup>-S ratios of the other monitoring wells in the Kilmarnock Creek alluvial fan (FR\_KB-1, FR-KB-2, FR-KB-3A) showed the same influence.



Evidence for the second groundwater pathway from Kilmarnock Creek across the valley to the Fording River is shown on Figure 12, which shows the NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios in Kilmarnock Creek at FR\_KC1, the Fording River at FR\_FRCP1 and FR\_FR4, and two monitoring wells (FR\_09-01A/B) along the inferred flow path. The figure shows the seasonal influence of Kilmarnock Creek at Fording River station FR\_FRCP1 described above, which begins in late winter and continues through early summer. This release is not considered attributable to direct release from the South Kilmarnock Phase 1 Settling Pond (SKP1) or SKP2, as water is released from these ponds only for a short duration around freshet. Also, no water was released from these ponds in 2016 or 2019, yet peaks in NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios were still observed at FR\_FRCP1. Moreover, the beginning of the rise in ratios in late winter follows a period of months when the ponds are dry and/or frozen, and the same rise is not observed in the Fording River at station FR\_FR4 (which is also located downstream of SKP2). It is therefore concluded that the seasonal peaks in NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios at FR\_FRCP1 are due to seasonal groundwater discharge to the Fording River.

Further evidence of groundwater transport along this flow path is observed in the analytical results from groundwater monitoring wells FR\_09-01A and 09-01B, where peaks in NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios are observed coincident to those at FR\_FRCP1<sup>6</sup>. These wells show peak NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios which are close to that of the presumed source (FR\_KC1) or intermediate in value between the FR\_KC1 and FR\_FRCP1.





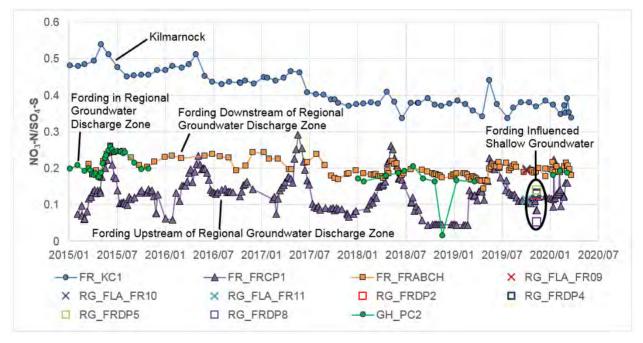
<sup>&</sup>lt;sup>6</sup> In most years the peaks in NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios in the monitoring wells occur slightly after those observed at FR\_FRCP1, which is inferred to be due to the lower sampling frequency of groundwater relative to surface water.



The pathway is interpreted to follow what appears to be a former Kilmarnock Creek channel (Figure 13). The former channel appears to extend approximately 1,700 m from Kilmarnock Creek alluvial fan, beneath the SKP2 to a small bend in the Fording River downstream of FR\_FR4. A recent investigation by Golder (2020a) characterized a zone of high permeability gravelly sediments within the Kilmarnock Creek alluvial fan that likely representing preserved channel deposits, with progressively lower hydraulic conductivities in surrounding alluvial materials moving away from channel deposits. While this feature was only characterized on the alluvial fan portion of Kilmarnock Creek, it is probable that the higher permeability zone is extends along the entire length of former channels, including the one identified above, creating a preferential flow pathway from Kilmarnock Creek to the bend in the Fording River downstream of FR\_FR4. The timing of the inferred discharge (i.e., beginning in late winter) suggests that the source of the groundwater discharge is Kilmarnock Creek rather than SKP2, which is dry and/or frozen in the months prior to discharge.







Figure 13: Former Channel believed to be that of Kilmarnock Creek Prior to Development of the Sediment Ponds. Air Photo Taken in 1990

Internal Ref: 672386 > Final > V1 © 2021 SNC-Lavalin Inc. All Rights Reserved. Confidential.



#### 3.6.5 Groundwater Transport of Fording River Mine-Influenced Water

Figure 14 shows the NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2</sup>-S ratios in surface water from Kilmarnock Creek (FR\_KC1), the Fording River at upstream (FR\_FRCP1) and downstream of the regional groundwater discharge zone (GH\_PC2 and FR\_FRABCH), the Fording River at three locations in the vicinity of the regional discharge zone, and shallow groundwater samples collected from the central valley. The NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios in shallow groundwater in the central area of the valley upgradient of where the Fording River crosses from west to east were very low and similar to those observed in the Fording River at FR\_FRCP1 during winter months. Nitrate stable isotope (<sup>15</sup>N<sub>nitrate</sub>) analytical results indicated two of the samples (RG\_FRDP5 and RG\_FRDP8) were enriched in  $\delta^{15}$ N<sub>nitrate</sub>, suggesting that the nitrate-N n these samples may have been attenuated by denitrification. Field measured parameters support reducing conditions at these locations, with low oxidation-reduction potential (ORP) values of 5.9 mV and -89.6 mV at RG\_FRDP5 and RG\_FRDP8, respectively, and a low dissolved oxygen (DO) value of 0.43 mg/L measured at RG\_FRDP5 (Table 2).



# Figure 14: NO<sub>3</sub><sup>-</sup>-N/SO₄<sup>2-</sup>-S Ratios Indicative of the Influence of Groundwater Recharged by the Fording River on Fording River Surface Water Downstream of the Regional Groundwater Discharge Zone. Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data.

However, the stable isotope results and field redox indicators of the samples collected from RG\_FRDP2 and RG\_FRDP4 indicate that no denitrification occurred. This suggests that the low  $NO_3$ -N/SO<sub>4</sub><sup>2</sup>-S ratios at these locations show influence of Swift and Cataract Creeks, and it is interpreted that the source of this water is the Fording River where it loses to ground (i.e., characteristic of recharging water at FR\_FRCP1 in winter).



The NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratio in the sample collected from RG\_FLA\_FR11 is similar to that at FR\_FRCP1 around the time of the decline, which is located upstream of RG\_FLA\_FR11. The NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios in the samples collected at RG\_FLA\_FR10 and RG\_FLA\_FR09 are similar to those detected downstream at FR\_FRABCH around the time of the event. The NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios downstream at FR\_FRABCH shows less seasonality (range of 0.14 to 0.26) than the other stations in the Fording River, including FR\_FR2, FR\_FR4, FR\_FRCP1, and FR\_FRRD. The water at FR\_FRABCH is considered an integrated signal of all inputs, including those of the Fording River upstream as well as of the regional groundwater discharge zone.

During the low flow season, the NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S signature at FR\_FRABCH is entirely representative of the regional groundwater discharge zone as the Fording River dries upstream of the discharge zone. The NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios at FR\_FRABCH between October and March range from 0.17 to 0.24 with an average of 0.19, indicating that the Fording River (average NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratio of 0.13 at FR\_FRCP1) transport pathway rather than Kilmarnock Creek (average NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratio of 0.41 at FR\_KC1) is the dominant source of discharge in the regional groundwater discharge zone. The restricted range in NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios at FR\_FRABCH compared to FR\_FRCP1 (range of 0.04 to 0.29) is an indication that water is well mixed along the flow path between the Fording River and the discharge zone.

With the exception of one result in December 2018, the NO<sub>3</sub><sup>--</sup>N/SO<sub>4</sub><sup>2-</sup>-S ratios at GH\_PC2 are very similar to those of FR\_FRABCH. The similar signatures are an indication that there are minimal mine-influenced inputs along the Fording River between GH\_PC2 and FR\_FRABCH. They also support the flow data, suggesting the majority of the regional groundwater flow discharges upstream of GH\_PC2 and gains between GH\_PC2 and RG\_FLA\_FR09 or in the oxbow channel due to groundwater discharge are minimal. The major discharge zones groundwater recharged by the Fording River transport flow path is interpreted to be in Side Channel 2 and in the Fording River main channel between FR\_FRRD and GH\_PC2, as shown on Drawing 18.

#### 3.6.6 Estimated Travel Times

Travel times were estimated for the pathways described above for groundwater recharged by Kilmarnock Creek or the Fording River to the receiving environment, including:

- i) From the Kilmarnock Creek alluvial fan to Greenhouse Side Channel seepage area (approximate distance of 3,100 m);
- ii) From the Kilmarnock Creek alluvial fan to the bend in the Fording River between FR\_FR4 and FR\_FRCP1 (approximate distance of 1,700 m); and
- iii) From the Fording River channel to Side Channel 2 at the nearest point (approximate distance of 150 m), and from where the Fording River begins to lose in the vicinity of FR\_FR2 to Side Channel 2 (approximate distance of 4,400 m).



Travel times were calculated using the following version of the Darcy Equation:

Where:

 $\begin{array}{l} T = travel time \\ i = hydraulic gradient \\ d = distance \\ K = hydraulic conductivity \\ n_e = effective porosity \end{array}$ 

For pathways i) and ii), the range of observed hydraulic gradients (0.006 m/m to 0.008 m/m) and hydraulic conductivities equivalent to the geometric mean (7.3 x  $10^{-4}$  m/s) and upper 95<sup>th</sup> percentile confidence interval (4.0 x  $10^{-3}$  m/s) were used. For pathway ii), the observed hydraulic gradient in the vicinity of SKP2 of 0.007 m/m and hydraulic conductivities ranging from 2.0 x  $10^{-3}$  m/s to 4.0 x  $10^{-3}$  m/s were used. An effective porosity of 0.3 representative of sands and gravels was used in all travel time estimates. The range in hydraulic conductivities used for pathway ii) are based on the range detected by Golder (2020a) representative of the channels within the Kilmarnock Creek alluvial fan, since the pathway is considered to be within a former channel.

The travel time estimates are shown on Drawing 18. The upper end of the ranges (6.8 years between the Kilmarnock alluvial fan and Greenhouse Side Channel, and 120 days to 9.6 years from the Fording River to Side Channel 2) are considered estimates of the average groundwater transport time through the valley-bottom aquifer. These average transport times through the valley-bottom may be biased high based on the tendency for monitoring wells to be completed in zones of higher permeability, as noted above in Section 3.4.1. However, there also exists the potential for one or more higher-velocity, preferential pathways to exist. Sediments within the valley-bottom aquifer comprise a combination of high energy/high permeability sand and gravel deposits interspersed with lower energy/lower permeability deposits of silts and sands from overbank flooding, crevasse splays and abandonments. Over time, as the main river channel migrated within the meander belt of the valley-bottom aquifer, most older channel deposits are likely to have been eroded and re-worked. Some of these high energy channel deposits may have been preserved within the sediment column, however. This may occur following an extreme flooding event leading to a sudden shift in the location of the main river channel. A preserved channel deposit is likely to act as a preferential flow path along which groundwater can travel at a much higher velocity.

There are some indications that such preferential pathways are present in the valley, including the pumping test result at FR\_GHWELL4 described above in Section 3.4.1 and the hydraulic conductivity estimates of channel deposits described from pumping tests in the Kilmarnock alluvial fan (Golder, 2020a). Golder developed a numerical model in support of AWTF-South application at FRO, in which the final calibrated hydraulic conductivity for the valley-bottom aquifer was 2.0 x 10<sup>-3</sup> m/s (Golder, 2019b). The model derived travel time using particle tracking from Kilmarnock Creek to an area roughly corresponding to the confluence of the Fording River and the Fording River Oxbow was slightly less than one year. It is considered likely that transport within the valley occurs both preferentially through preserved high permeability channel deposits and as representative of average aquifer conditions.



The travel time estimates from the Kilmarnock Creek alluvial fan across the valley to the Fording River between FR\_FR4 and FR\_FRCP1 ranged from 211 to 410 days. There is a strong degree of seasonal variability in the NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2</sup>-S ratios of groundwater along this flow path and in surface water downstream of the discharge point. The temporary nature and timing of the discharge suggests that the source is a pulse of water from Kilmarnock Creek during freshet of the preceding year, which takes approximately 9 to 10 months to travel the length of the former channel and reach the discharge point at the bend in the Fording River.



# 4 Stressor 1 – Groundwater Quantity in the S6 Study Area

# 4.1 Impact Hypothesis and Rationale

Although groundwater cannot be a stressor that directly contributed to the WCT population decline because it does not constitute WCT habitat, groundwater discharge does affect surface water flows within WCT habitat. With that in mind, the impact hypothesis to evaluate groundwater quantity as a potential stressor states:

> A change in the upgradient groundwater flow regime influenced surface water flows and spatial distribution of discharge zones.

The rationale for investigating upgradient groundwater conditions is that there is limited information available downstream in the inferred area of regional groundwater discharge and the S6 area in general. A lack of monitoring wells in the S6 area prevents direct evaluation of the downstream groundwater flow and discharge estimates. However, downstream effects can be inferred from observations made in upgradient groundwater. Historical groundwater level data in upgradient monitoring wells were therefore reviewed to assess whether any corresponding changes to groundwater discharge rates or locations were considered likely during the decline window.

## 4.2 Analyses

Historical hydrographs of monitoring wells completed in the Kilmarnock Creek alluvial fan since 2018 and in the vicinity of SKP2 since 2012 are shown above on Figures 1 and 2 in Section 3.4.2, respectively. These hydrographs comprise the entire historical record of groundwater levels in these areas. Potentiometric elevations and inferred contours during low-water (Q1 2019) and high water (July 2019) are shown are Drawings 8 and 9, respectively. The year 2019 was selected to produce contour maps as the monitoring event datasets are more comprehensive (the monitoring wells in the Kilmarnock alluvial fan were installed in late 2018). Potentiometric elevations and inferred groundwater flow maps from previous events during fall 2016 (SNC-Lavalin 2017b, fourth quarter Q4 of 2017 (SNC-Lavalin 2018), and Q4 of 2018 (SNC-Lavalin 2019d) were also reviewed and the flow regime in 2019 was consistent with previous years.

# 4.3 Findings

The hydrographs show that seasonal water level fluctuations have remained consistent throughout the monitoring period at all wells. Water levels are highest in June post-freshet and decline throughout the remainder of the year and into the next, with the lowest water levels in late winter or early spring prior to freshet. Although the records of monitoring wells east of SKP2 and within the Kilmarnock Creek alluvial fan only extend to late 2018 and early 2019, water levels were measured continuously with dataloggers and the seasonal patterns observed were consistent with those observed historically at monitoring wells FR\_09-01A/B and FR\_09-02A/B where the historical record is more extensive.

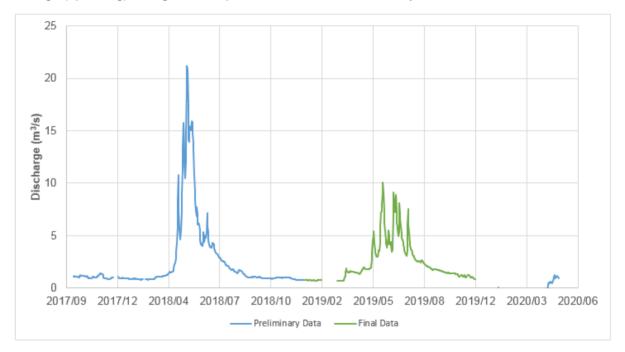


South of the SKP2, the lowest water levels were measured in February 2018, while the highest were measured in late May (May 30) 2013 and early June (June 1) 2017. Peak and low water levels observed over the decline window between September 2017 and September 2019 at these wells were within the historical range, except for the low water levels noted in February 2018 which were marginally lower than other late winter monitoring events. There is nothing unique to the decline window about the groundwater levels that would result in a hydraulic gradient down-valley that would abnormally affect discharge rates, and it is noted that discharge at FR\_FRABCH was slightly higher over the winter of 2017/2018 than 2018/2019 (discussed below in Section 4.4.1) despite the minimum water levels observed in February 2018. Similarly, there are no historical anomalies in the record that would result in an expected change in groundwater flow directions. Inferred groundwater flow directions of all events reviewed between 2016 and 2019 were consistent.

However, a number of data gaps during the evaluation of Impact Hypothesis 1, including:

- Interpretations of down-valley groundwater flow are limited by the spatial distribution of the monitoring well network throughout the S6 Study Area, as transects of monitoring wells in the cross-valley direction are not present. In particular, there is a gap in the down-valley direction where there is known transport of mine-influenced groundwater and also where groundwater extraction occurs from the Greenhouse Wells. The limited monitoring well network also results in a lack of groundwater level data in the inferred regional groundwater discharge zone and downgradient of it, which is an area of key WCT habitat;
- The effects of groundwater extraction from the Greenhouse Wells on the groundwater flow regime and flows in the Fording River are not known, as there are a lack of water-level data in the area. Groundwater extraction from the Greenhouse Wells is discussed further below in Section 8.1.2;
- The monitoring periods for wells in the Kilmarnock Creek alluvial fan and east of the SKP2 are short and extend only to Q4 of 2018 or Q1 of 2019; and
- Datalogger data are not available to supplement manual measurements in the wells south of the SKP2, and therefore historical minimum or maximum elevations or anomalous events may have been missed. However, it is noted that the same seasonal variability was noted for the short period of time where logger data are available at the wells in the Kilmarnock Creek alluvial fan and FR\_MW-SK1A/B.

# 4.4 Other Relevant Observations and Findings


#### 4.4.1 Discharge at FR\_FRABCH

Preliminary and final average daily discharge data since 2017 at station FR\_FRABCH provided by Teck Coal was also reviewed. Baseflow at FR\_FRABCH is interpreted to be composed entirely of groundwater discharge of the regional groundwater discharge zone.

The discharge data are shown on Figure 9. Discharge during the winters of 2017/2018 and 2018/2019 were similar, although slightly higher in 2017-2018. Daily discharge ranged from 0.82 m<sup>3</sup>/s to 1.44 m<sup>3</sup>/s between November 1 and March 15 in the winter of 2017/2018 with an average of 0.96 m<sup>3</sup>/s, compared to a range 0.67 m<sup>3</sup>/s to 1.01 m<sup>3</sup>/s with an average of 0.84 m<sup>3</sup>/s over the same time period during the winter of 2018/2019. Data are missing between February 4 and March 5, 2019, which corresponds to the suspected



time of the population decline (Korman in Evaluation of Cause Team, 2021). The missing data are likely attributable to the extreme cold temperatures during that time. However, based on flows observed prior to and following this data gap as well as baseflows during the previous winter, high variability of groundwater discharge (upwelling) during this time period is not considered to likely to have occurred.





# 4.5 Effects on Surface Water Flows and Spatial Distribution of Discharge Zones

There is no evidence in the available data to suggest that groundwater discharge zones or flows have changed or would reasonably be expected to change spatially over the period of record, nor over the timeframe of the decline (2017 to 2019). Current understanding of the discharge locations that comprise the regional groundwater discharge zone is as described in the conceptual model above, and includes the Greenhouse Side Channel, Side Channel 2, and the Fording River main channel between the Greenhouse confluence and GH\_PC2. The primary controls on the groundwater discharge (upwelling) area are subsurface hydraulic conductivities and bedrock/aquitard topography, both of which will be constant.

However, the rate of discharge should vary according to the seasonal change in gradient caused by water level fluctuations upgradient. In order to evaluate the amount of seasonal variability in discharge that could be expected, groundwater flows were estimated using gradients calculated from the range of water levels observed in upgradient monitoring wells according to Darcy's Law:



$$Q = KAi$$

Where:

- > Q is the Darcy flow;
- > K is the hydraulic conductivity of the medium; and
- A is the cross-sectional area through which groundwater is flowing, and *i* is the gradient (head loss over distance).

The hydraulic conductivity used in the calculation was the geometric mean ( $7.3 \times 10^{-4}$  m/s) presented in Table C above. The cross-sectional area used was 14,000 m<sup>2</sup> corresponding to an approximate aquifer thickness of 25 m and valley width of 560 m in the vicinity of the Greenhouse confluence. The range of gradients used were 0.005 m/m and 0.009 m/m corresponding to historical minimum and maximum water levels observed south of SKP2 in February 2018 and June 2017, respectively.

The resulting range of estimated Darcy flow is 0.051 m<sup>3</sup>/s to 0.091 m<sup>3</sup>/s, indicating seasonal discharge in the regional discharge zone could vary by up to a factor of 1.8. However, this estimated range is approximately an order of magnitude lower than the range of baseflows measured at FR\_FRABCH in the winters of 2017/2018 and 2018/2019 (approximately 0.7 m<sup>3</sup>/s to 1.0 m<sup>3</sup>/s), which are considered to be attributable to discharge entirely from the regional discharge zone.

It is considered likely that the vertical component of groundwater flow will be more dominant in the zone of upwelling groundwater. It may also be that the hydraulic conductivity in the regional groundwater discharge zone is more representative of the conductivity of high permeability channel-deposits (on the order of 2.0 x 10<sup>-3</sup> m/s to 4.0 x 10<sup>-3</sup> m/s; Golder, 2020a) and higher than the geometric mean hydraulic conductivity of the shallow valley-bottom aquifer. If the hydraulic conductivities were in the higher range of the channel deposits, baseflows similar to the range measured at FR\_FRABCH could be expected if the vertical gradient were three to five times that of the observed horizontal gradient<sup>7</sup>. Therefore, groundwater discharge is considered to be more highly sensitive to variability in the vertical hydraulic gradient than in variability in the lateral hydraulic gradient caused by water level fluctuations upgradient.

Based on the above, the range of observed lateral hydraulic gradients are unlikely to have critically affected downstream groundwater discharge rates over the decline period. The variation in vertical hydraulic gradient likely has a much greater influence on the amount of groundwater discharge, however, vertical gradients in the regional groundwater discharge zone are unknown. It is noted that baseflows measured at FR\_FRABCH spanning the decline window in the winters of 2017/2018 and 2018/2019 were generally similar, as noted in Section 4.4.1 above. Without baseflow data prior to 2017/2018, it cannot be determined whether vertical gradients in the regional groundwater discharge area were unique to the decline window.

<sup>&</sup>lt;sup>7</sup> Discharge estimates under this scenario use a revised cross-sectional area of 8,700 m<sup>2</sup> determined from the approximate length of the regional discharge zone (2,900 m) and a channel width of 3 m.



#### 4.5.1 Biological Influence

Filamentous periphyton biofilms along streambeds can also influence groundwater-surface water interactions by reducing the permeability of the riverbed. They are composed of a complex mucopolysaccharide matrix with embedded algae and bacteria (Sabater et al. 2007). In the UFR they are commonly present in areas receiving mine-influenced water due to elevated nutrients from explosives used in mining operations.

The growth of the algal blooms can reduce seepage fluxes by orders of magnitude in a matter of weeks by reducing the hydraulic conductivity due to physical clogging (Newcome et al. 2016). Periphyton growth is frequently greater in groundwater discharge zones than in losing reaches due to differing nutrient concentrations and stable water temperatures (Valett et al. 1994; Ghosh and Gaur 1998; Godillot et al. 2001). The algae blooms reduce hyporheic exchange rates which in turn alter habitat by limiting a series of bioreactor functions of the hyporheic exchange (Larratt and Self, 2021). The blooms typically develop during low-flow periods of the ice-free growing season (summer and early fall). They are not inherently detrimental to habitat and modest green filamentous blooms can be positive (Larratt and Self, 2021). However, intense blooms of Didymosphenia geminate (Didymo) can have adverse habitat effects for trout hatching by increasing the biological oxygen demand through breakdown of increased biomass (Bickel et al. 2008). A substantial amount (50-75%) of substrate was noted to be covered by Didymo algal blooms in much of the UFR mainstem in 2019 (Larratt and Self, 2021).

The occurrence, frequency, intensity, and effects of the algal blooms on hyporheic zone exchange and the WCT population in the UFR is discussed in detail in the SME report prepared by Larratt and Self (2021). It is difficult to determine whether development of algal blooms affected discharge in the regional groundwater discharge from the flows measured at FR\_FRABCH presented in Figure 9. Flows during the falling limb are a result of not only groundwater discharge by also a number of other factors such as release of water stored in banks, surface water runoff, and interflow. However, it is noted that the measured discharge during summer and late fall remained above winter baseflows, and therefore a large reduction in discharge (such as an order of magnitude or more) is not considered likely. Studies in New Zealand have found that Didymo cover such as that noted throughout the UFR in 2019 had no measurable effect on hydraulic conductivity, flow into the substrate, and hyporheic oxygen concentration (Bickel et al. 2008).



# 5 Stressor 2 – Groundwater Quality

# 5.1 Impact Hypothesis and Rationale

As with groundwater quantity, groundwater quality is not considered a stressor that could directly affect the WCT population; however, groundwater quality influences receiving surface water quality in the groundwater discharge area and is therefore investigated as a potential stressor here. The impact hypothesis to evaluate groundwater quality as a potential stressor states:

> A change in upgradient groundwater quality influenced surface water quality downstream.

Since surface water quality is measured directly at a number of downstream monitoring station, the impact hypothesis above applies to those locations where surface water quality is not monitored directly. The rationale for investigating upgradient groundwater quality upgradient is similar to the rationale for Stressor 1: there is a lack of monitoring wells in the vicinity of the regional groundwater discharge zone to directly assess groundwater influence on surface water quality. Therefore, historical groundwater quality in upgradient monitoring wells was reviewed since it will influence surface water quality in downstream receiving areas. Historical water quality results were reviewed since groundwater travel times may take several or more years to reach the receiving environment down-valley, as described above in Section 3.6.6.

# 5.2 Analyses

Historical groundwater quality between 2011 and 2019 at upgradient monitoring wells FR\_09-01A/B, FR\_09-02A/B, and the Greenhouse Wells (FR\_GHHW) was reviewed. Although all data were reviewed, the review was particularly focused on the constituents most commonly associated with mining influence in groundwater in the Elk Valley (i.e., nitrate-N, sulphate, and dissolved selenium). Historical water quality data from surface water stations FR\_KC1, FR\_FR2, and FR\_FRCP1 were also evaluated since both Kilmarnock Creek and the Fording River are known to influence groundwater quality which re-emerges in in the regional groundwater discharge zone as described above in Section 3.6. These stations are the best substitute for historical groundwater recharge chemistry sources of loading of mining related constituents from Kilmarnock, Swift, and Cataract Creeks, and FR\_FRCP1 is particularly important as it is representative of the water quality that infiltrates to ground over the drying reach that extends from FR\_FRCP1 to the confluence with the Greenhouse Side Channel. Station FR\_FR2 is considered representative of surface water that recharges groundwater upstream of the compliance point FR\_FRCP1, and includes contributions of mining activities upstream of the S6 Study Area.

Mann-Kendall trend analyses were completed for the analytical results of nitrate-N, sulphate, and dissolved selenium for the monitoring wells listed above to determine whether there are any statistically significant long-term trends in upgradient groundwater. Trend analyses were also completed for field measured pH. Other field parameters to which the WCT may be sensitive, including temperature and DO, were reviewed but excluded from the analyses due to apparent atmospheric influence of some samples within the dataset. Mann-Kendall trend analyses were also completed for the same parameters for surface water at FR\_FR2 (since 2012) and FR\_FRCP1 (since 2015), since there are no monitoring wells along the inferred flow path between the Fording River downstream of SKP2 and the regional groundwater discharge zone. Trend



analyses were not completed on surface water in Kilmarnock Creek at FR\_KC1 since the Greenhouse Wells are located along the inferred flow path.

To account for seasonality in the dataset the trend analyses were performed for each quarter. The analyses for surface water at FR\_FR2 and FR\_FRCP1 were not completed by quarter since the sampling frequency was not consistent at this station. The analyses were instead completed for the annual maximum and minimum concentrations to account for seasonality.

## 5.3 Findings

#### 5.3.1 Water Quality

Analytical results of upgradient monitoring wells in the S6 Study Area compared to the primary and secondary screening criteria, including those with long-term monitoring records (FR\_09-01A/B, FR\_09-02A/B, and the Greenhouse Wells), are included in Table 1. The concentrations of dissolved selenium exceeded the CSR AW standard of 20  $\mu$ g/L in every sample collected from the monitoring wells identified above except for two (collected from FR\_09-02A in August 2016 and from the Greenhouse Wells in June 2012). The concentrations of nitrite in two samples collected from the Greenhouse Wells in September 2017 and March 2019 also exceeded the CSR AW standards. Concentrations of all other constituents in all samples collected from the aforementioned wells met the primary screening criteria. All of the samples collected from upgradient monitoring wells in the S6 Study Area met the secondary screening criteria.

Analytical results of surface water samples, seepage water samples, and shallow groundwater samples collected in 2019 as part of the MBI compared to the primary and secondary screening criteria are shown in Table 2. All of the samples collected had concentrations of nitrate and selenium that exceeded the primary screening criteria. All of the Kilmarnock-influenced samples in the groundwater discharge zone, including the seepage samples, Greenhouse Side Channel samples, and shallow groundwater sample RG\_FRDP13, had concentrations of nitrate and selenium that exceeded the secondary screening criteria. The concentrations of total dissolved solids (TDS) also exceeded the secondary screening criteria in most of the Kilmarnock-influenced samples. The concentrations of selenium in the Fording River between RG\_FLA\_FR13 (between Swift and Cataract Creeks) and RG\_FLA\_FR06 (downstream of Chauncey Creek) also exceeded the secondary screening criteria. Concentrations of other parameters sporadically exceeded the primary but not secondary screening criteria, including copper, chromium, and iron.

A summary of historical water quality in the upgradient monitoring wells, Kilmarnock Creek, and the Fording River at FR\_FR2 and FR\_FRCP1 is provided below in Table E. Although the concentrations met the CSR AW standards in all samples collected, nitrate-N and sulphate concentrations were generally elevated in these wells and show evidence of mining influence (Table E). For this reason, nitrate-N, sulphate, and dissolved selenium were the primary focus of this review. Temporal plots of dissolved selenium, sulphate, and nitrate-N at monitoring wells FR\_09-01A/B, FR\_09-02A/B, and FR\_GHHW are included in Figure 16, Figure 17, and Figure 18, respectively, along with the concentrations in Kilmarnock Creek at FR\_KC1 and in the Fording River at FR\_FR2, FR\_FRCP1 and FR\_FRRD.



Discussion of the findings is framed by the groundwater flow paths identified above which are summarized here. Groundwater quality at monitoring wells FR GHHW and FR 09-01A is most influenced by Kilmarnock Creek, which is evident from mean concentrations of nitrate-N compared to the other wells (Table E) and Figure 16. The Greenhouse Wells (FR GHHW) are located on the eastern edge of the valley along the inferred groundwater flow path to the Greenhouse Side Channel and Fording River. Monitoring well FR 09-01A is located along the inferred flow path to the seasonal discharge area in the Fording River between FR FR4 and FR FRCP1, which flows seasonally and temporarily between late winter and early summer. Monitoring well FR 09-01B is located along the same flow path, but is completed deeper and shows less seasonal influence of Kilmarnock Creek. During the remainder of the year, groundwater from these wells is interpreted to flow down valley towards the regional groundwater discharge zone. The NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios from monitoring wells FR 09-02A/B suggest they are similarly seasonally influenced by Kilmarnock Creek, but the concentrations of nitrate-N, selenium, and sulphate are lower (Table E). They are not geographically located along the flow path of the former channel and the seasonal Kilmarnock influence is interpreted to be due from infiltration from SKP2, with flow directed to the Fording River due to mounding beneath SKP2. Flow is inferred to be down-valley towards the regional groundwater discharge zone during the remainder of the year, similar to monitoring wells FR 09-01A/B.

| Constituent                     | Parameter          | Groundwater  |                          |                          |                          |                          |                          |                          |                          |                     | Surface Water            |              |                          |              |                          |              |                          |
|---------------------------------|--------------------|--------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------|--------------------------|--------------|--------------------------|--------------|--------------------------|--------------|--------------------------|
| Constituent                     |                    | FR_09-01A    |                          | FR_09-01B                |                          | FR_09-02A                |                          | FR_09-02B                |                          | FR_GHHW/FR_GHWELL4° |                          | FR_KC1       |                          | FR_FR2       |                          | FR_FRCP1     |                          |
| Nitrate-N<br>(mg/L)             | Sampling Period    | 2012 – 2017ª | 2017 – 2019 <sup>b</sup> | 2012 – 2017ª             | 2017 – 2019 <sup>b</sup> | 2012 – 2017ª             | 2017 - 2019 <sup>b</sup> | 2012 – 2017ª             | 2017 – 2019 <sup>b</sup> | 2011 – 2017ª        | 2017 – 2019 <sup>b</sup> | 2011 – 2017ª | 2017 – 2019 <sup>b</sup> | 2011 – 2017ª | 2017 – 2019 <sup>b</sup> | 2015 – 2017ª | 2017 – 2019 <sup>b</sup> |
|                                 | No. of Samples     | 18           | 9                        | 19                       | 10                       | 9                        | 10                       | 9                        | 10                       | 40                  | 10                       | 128          | 28                       | 150          | 45                       | 106          | 90                       |
|                                 | Range              | 14.6 - 68.6  | 11.5 – 54.3              | 10.2 – 43.9              | 12.7 – 29.6              | 7.7 – 39.4               | 9.9 - 31.0               | 8.2 - 40.5               | 8.6 - 31.9               | 8.5 - 68.4          | 22.4 - 43.1              | 14.8 – 126   | 19.4 – 104               | 1.6 – 24.2   | 2.1 – 24.2               | 3.54 – 35.0  | 3.95 – 30.6              |
|                                 | Calculated Average | 36.3         | 29.2                     | 25.3                     | 21.1                     | 20.8                     | 15.4                     | 19.7                     | 16.6                     | 45.0                | 33.7                     | 61.8         | 64.5                     | 9.4          | 10.7                     | 13.6         | 15.8                     |
| Sulphate<br>(mg/L)              | Sampling Period    | 2012 – 2017ª | 2017 - 2019 <sup>b</sup> | 2012 – 2017 <sup>a</sup> | 2017 – 2019 <sup>b</sup> | 2012 – 2017 <sup>a</sup> | 2017 - 2019 <sup>b</sup> | 2012 – 2017 <sup>a</sup> | 2017 – 2019 <sup>b</sup> | 2011 - 2017ª        | 2017 – 2019 <sup>b</sup> | 2011 - 2017ª | 2017 - 2019 <sup>b</sup> | 2011 – 2017ª | 2017 - 2019 <sup>b</sup> | 2015 – 2017ª | 2017 – 2019 <sup>b</sup> |
|                                 | No. of Samples     | 18           | 9                        | 19                       | 10                       | 9                        | 10                       | 9                        | 10                       | 40                  | 10                       | 128          | 28                       | 150          | 45                       | 106          | 90                       |
|                                 | Range              | 178 – 481    | 215 – 486                | 212 - 409                | 201 – 407                | 165 – 291                | 158 – 296                | 171 – 288                | 130 – 319                | 66.7 – 438          | 195 – 400                | 85.0 - 749   | 155 – 863                | 32.9 - 296.0 | 45.4 - 317.0             | 80.1 - 1,770 | 78.8 - 2,070             |
|                                 | Calculated Average | 319          | 314                      | 295                      | 292                      | 229                      | 233                      | 240                      | 238                      | 258                 | 275                      | 355          | 514                      | 158.7        | 182.9                    | 350          | 618                      |
| Dissolved<br>Selenium<br>(µg/L) | Sampling Period    | 2012 – 2017ª | 2017 – 2019 <sup>b</sup> | 2012 - 2017ª             | 2017 – 2019 <sup>b</sup> | 2012 – 2017ª             | 2017 - 2019 <sup>b</sup> | 2012 – 2017ª             | 2017 – 2019 <sup>b</sup> | 2011 – 2017ª        | 2017 – 2019 <sup>b</sup> | 2011 – 2017ª | 2017 – 2019 <sup>b</sup> | 2011 – 2017ª | 2017 - 2019 <sup>b</sup> | 2015 – 2017ª | 2017 – 2019 <sup>b</sup> |
|                                 | No. of Samples     | 18           | 9                        | 19                       | 10                       | 9                        | 10                       | 9                        | 10                       | 40                  | 10                       | 128          | 28                       | 158          | 45                       | 106          | 93                       |
|                                 | Range              | 35.6 – 159   | 38.1 – 166               | 29.7 – 126               | 41.8 – 97.1              | 20.0 - 117               | 33.0 - 96.3              | 21.0 – 117               | 30.6 – 111               | 18.7 – 160          | 76.9 – 147               | 35.0 – 279   | 72.5 – 356               | 5.8 - 55.7   | 6.3 – 70.3               | 14.8 – 508   | 21.6 – 798               |
|                                 | Average            | 87.6         | 96.4                     | 61.7                     | 69.0                     | 54.7                     | 51.9                     | 49.7                     | 53.9                     | 97.5                | 105                      | 127          | 217                      | 28.2         | 36.8                     | 95.0         | 190                      |
|                                 | Sampling Period    | 2012 – 2017ª | 2017 - 2019 <sup>b</sup> | 2012 – 2017ª             | 2017 – 2019 <sup>b</sup> | 2012 – 2017ª             | 2017 - 2019 <sup>b</sup> | 2012 – 2017ª             | 2017 - 2019 <sup>b</sup> | 2011 – 2017ª        | 2017 – 2019 <sup>b</sup> | 2011 – 2017ª | 2017 - 2019 <sup>b</sup> | 2011 – 2017ª | 2017 - 2019 <sup>b</sup> | 2015 – 2017ª | 2017 – 2019 <sup>b</sup> |
| рН                              | No. of Samples     | 16           | 9                        | 17                       | 10                       | 8                        | 10                       | 8                        | 10                       | 12                  | 9                        | 168          | 57                       | 149          | 55                       | 106          | 89                       |
|                                 | Range              | 6.95 - 8.69  | 7.30 – 7.55              | 7.20 – 8.38              | 7.09 – 7.52              | 7.56 – 8.09              | 7.23 - 7.83              | 7.46 - 8.40              | 7.20 – 7.70              | 7.28 - 7.78         | 7.14 - 7.48              | 7.04 - 9.05  | 7.04 – 7.99              | 7.7 – 8.7    | 7.7 – 9.0                | 7.65 – 9.23  | 7.82 – 8.60              |
|                                 | Calculated Average | 7.68         | 7.36                     | 7.59                     | 7.31                     | 7.83                     | 7.64                     | 7.76                     | 7.53                     | 7.53                | 7.34                     | 7.68         | 7.63                     | 8.3          | 8.2                      | 8.26         | 8.18                     |

#### Table E: Summary of Upgradient Groundwater Quality and Surface Water Quality in Kilmarnock Creek and Fording River

Note: The full detection limit was used in determining CI averages.

a – Dataset includes data through August 2017.

b – Dataset includes data from September 2017 through 2019.

c – Supply wells FR\_GHWELL1, 2, 3, and 4 are collectively known as FR\_GHHW. As a recommendation of the hydrogeological assessment, monitoring of a dedicated well from FR\_GHHW (FR\_GH\_WELL4) began in Q4 2017.





#### 5.3.1.1 Kilmarnock Creek Flow Paths

The maximum concentrations of dissolved selenium, sulphate, and nitrate-N at the Greenhouse Wells (FR\_GHHW) were detected in a sample collected in June 2016. However, the concentrations were only marginally higher (i.e., 0.1% to 9% higher than the next highest concentration) than the seasonal peaks that typically occur historically in late winter or early spring, prior to freshet. The timing of the elevated concentrations in June is anomalous and may be an indication that concentrations were more elevated in late winter or early spring since there is a gap in the dataset between January and June of that year. However, the concentrations were not considerably higher compared to the rest of the dataset and would not be expected to cause particularly adverse water quality downstream. Concentrations of dissolved selenium and nitrate-N at the Greenhouse Wells are generally higher than those in the Fording River downstream of the Greenhouse Side Channel at FR\_FRRD, while the concentrations of sulphate are generally similar. This suggests that water quality may be locally poorer in the groundwater discharge zone than where surface water is currently monitored.

The maximum concentrations along the flow path in samples collected at monitoring well FR\_09-01A were in October 2013 (nitrate-N) and November 2017 (sulphate and dissolved selenium). At these times, flow would be expected to be directed down-valley towards the regional groundwater discharge zone and not towards the seasonal discharge area where the strongest influence is post-freshet in May or early June. Concentrations of CI downstream of the seasonal discharge area (the Fording River at FR\_FRCP1) are typically highest in winter when Fording River is influenced by surface water input from Swift and Cataract Creeks (Figures 17 to 19), and groundwater inputs along this flow path are comparatively much less than the direct inputs from Swift and Cataract Creeks during this time. Concentrations of dissolved selenium, sulphate, and nitrate-N are generally higher in groundwater at monitoring wells FR\_09-01A/B than in the Fording River at FR\_FRCP1 in May or June, when groundwater discharge occurs in the seasonal discharge area. This suggests that water quality in the seasonal discharge area is poorer than where monitoring occurs at FR\_FRCP1.

#### 5.3.1.2 Fording River Flow Path

Monitoring wells FR\_09-02A/B are located along the upgradient portion of the inferred flow path between the Fording River recharge area and regional groundwater discharge zone. Concentrations of selenium, sulphate, and nitrate-N in these wells are generally similar to those in Fording River surface water at station FR\_FR2, except seasonally in May or June when they are higher in groundwater. The seasonally elevated concentrations are inferred to due to Kilmarnock Creek-influenced water infiltrating from SKP2.

There are no monitoring wells along the inferred flow path between the Fording River recharge area and regional groundwater discharge zone downgradient of SKP2. As discussed in Section 3.6, groundwater recharged by the Fording River between the STP and the confluence with the Greenhouse Side Channel is inferred to discharge in Side Channel 2 and the main channel between FR\_FRRD and GH\_PC2. Water quality at FR\_FRCP1 is inferred to be a proxy for this flow path and exhibits a seasonal trend with elevated concentrations of selenium, sulphate, and nitrate-N in winter and lowest concentrations post-freshet. The concentrations of dissolved selenium and sulphate at FR\_FRCP1 were elevated for a prolonged period between October 2018 and March 2019, which is attributed to input from Cataract Creek at times of no flow in the Fording River. Peak concentrations of sulphate over that time period were between 1.2 and 2.4 times higher the peak concentrations in previous years, while peak concentrations of dissolved selenium were between 1.6 to 3.0 times higher. However, elevated selenium or sulphate concentrations



were not observed downstream at FR\_FRABCH during or after this timeframe (Golder, 2020d). This is attributed to mixing along the groundwater flow path such that there is less variability in the water quality in the discharge zone than there is in the recharging water, discussed further below in Section 5.5.3.

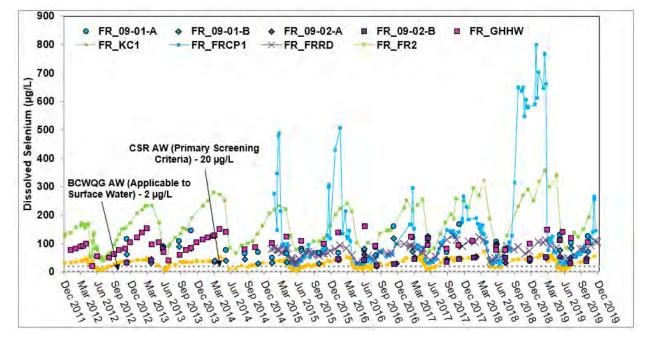
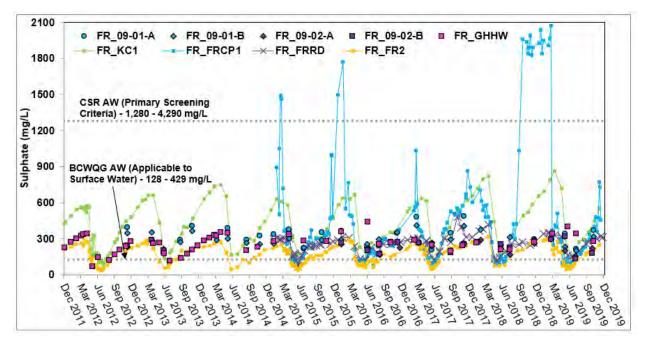




Figure 16: Dissolved Selenium Concentrations in Upgradient Groundwater and Surface Water in Kilmarnock Creek (FR\_KC1) and the Fording River (FR\_FR2, FR\_FRCP1 and FR\_FRRD). Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data







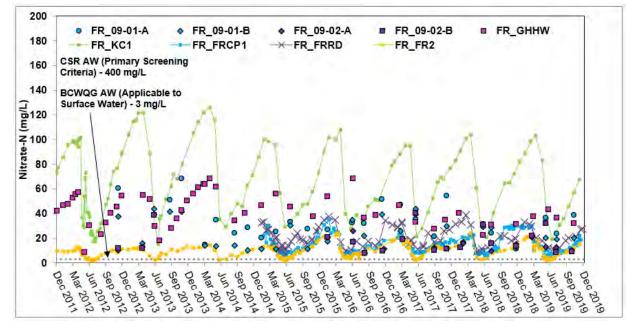



Figure 18: Nitrate-N Concentrations in Upgradient Groundwater and Surface Water in Kilmarnock Creek (FR\_KC1) and the Fording River (FR\_FR2, FR\_FRCP1 and FR\_FRRD). Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data



### 5.3.2 Trend Analyses

The results of the Mann-Kendall trend analyses are included in Appendix A and summarized in Table F (groundwater) and Table G (surface water) below. Trends are identified where the confidence factor is greater than 95%, while probable trends are identified where the confidence factor is greater than 90%.

### 5.3.2.1 Kilmarnock Creek Flow Paths

Decreasing trends in the concentrations of nitrate-N in Q1 and Q4 were identified along the flow path between the Kilmarnock Creek alluvial fan and the Greenhouse Side Channel (FR\_GHHW). This is associated with an apparent decreasing trend in the concentrations of nitrate-N in Kilmarnock Creek (Figure 18). Increasing or probably increasing trends in the concentrations of sulphate and dissolved selenium were identified in the third quarter Q3 and Q4, which may be due to broadly increasing trends in Kilmarnock Creek (Figures 16 and 17). Decreasing or probably decreasing trends in field measured pH were identified in the second quarter Q2 and Q3.

Along the flow path between the Kilmarnock Creek alluvial fan and the Fording River between FR\_FR4 and FR\_FRCP1, a probably decreasing trend was identified in the concentrations of nitrate-N in Q3, while increasing or probably increasing trends were identified in the concentrations of dissolved selenium in Q2 at FR\_09-01A, and in Q1 at monitoring wells FR\_09-01B and FR\_09-02B. Field measured pH values were decreasing or probably decreasing in Q2 and Q4 at FR\_09-01A, and in Q1, Q2, and Q3 at FR\_09-01B.

Parameter Dataset FR 09-01A FR 09-01B FR 09-02A FR 09-02B **FR GHHW** Q1 No Trend No Trend No Trend No Trend Ţ Q2 Stable Stable Stable Stable Stable Nitrate-N No Trend Q3 Probably 1 Stable No Trend No Trend Q4 No Trend Stable Stable Stable T Q1 No Trend No Trend No Trend No Trend Stable Q2 No Trend Stable No Trend No Trend No Trend Sulphate Stable Q3 No Trend Stable Stable ↑ Q4 Stable Stable Stable Stable Probably ↑ Q1 No Trend No Trend Probably ↑ No Trend ↑ No Trend Q2 Probably ↑ No Trend Stable No Trend Dissolved Selenium Q3 No Trend No Trend No Trend No Trend Probably ↑ Q4 Stable No Trend No Trend No Trend Probably ↑ Q1 Stable Stable Stable No Trend Т 02 Probably 1 Probably 1 Stable Stable J. pН Q3 Stable Stable No Trend Probably 1 Q4 Probably 1 Stable Stable Stable Stable

#### Table F: Summary of Mann-Kendall Trend Analyses in Upgradient Groundwater

Subject Matter Expert Report: Hydrogeological Stressors Evaluation of Cause - Decline in Upper

#### 5.3.2.2 Fording River Flow Path

Fording River Westslope Cutthroat Trout Population

**Teck Coal Limited** 

There are no monitoring wells along the inferred flow path between the Fording River and the regional groundwater discharge zone downgradient of SKP2, and FR\_FRCP1 is used as a proxy for this flow path. The annual maximum and minimum concentrations of nitrate-N, sulphate, and dissolved selenium at FR\_FRCP1 were identified either as stable or as not exhibiting any trends.

Trend analyses were also completed for surface water station FR\_FR2 since water quality at this station is representative of groundwater recharge along the upgradient portion of this flow path, and includes contributions of mining activities upstream of the S6 Study Area. Increasing trends were identified in the annual maximum concentrations of nitrate and selenium. However, only an increasing trend in Q1 dissolved selenium concentrations at FR\_09-02B was identified in monitoring wells FR\_09-02A/B, which are located along this flow path.

| Parameter | Dataset                      | Dataset FR_FR2 |          |
|-----------|------------------------------|----------------|----------|
| Nitrate   | Annual Minimum Concentration | No Trend       | Stable   |
| Nitrate   | Annual Maximum Concentration | ↑              | No Trend |
| Sulphoto  | Annual Minimum Concentration | No Trend       | No Trend |
| Sulphate  | Annual Maximum Concentration | No Trend       | No Trend |

#### Table G: Summary of Mann-Kendall Trend Analyses in the Fording River at FR\_FRCP1



| · · · · · · · · · · · · · · · · · · · | , , , , , , , , , , , , , , , , , , , , |            | <u> </u> |
|---------------------------------------|-----------------------------------------|------------|----------|
| Parameter                             | Dataset                                 | FR_FR2     | FR_FRCP1 |
| Dissolved                             | Annual Minimum Concentration            | Probably ↓ | Stable   |
| Cadmium                               | Annual Maximum Concentration            | Probably ↓ | Stable   |
| Dissolved                             | Annual Minimum Concentration            | No Trend   | No Trend |
| Selenium                              | Annual Maximum Concentration            | ↑          | No Trend |

#### Table G (Cont'd): Summary of Mann-Kendall Trend Analyses in the Fording River at FR\_FRCP1

### 5.3.3 Data Gaps and Uncertainties

The monitoring well network with sufficient water quality data is limited to one location along the inferred transport pathway between the Kilmarnock alluvial fan and the Greenhouse Side Channel and several wells located in the vicinity of the SKP2. The distribution of this network is insufficient for monitoring potential influence on surface water quality from the identified groundwater flow paths. With exception of monthly samples collected from the Greenhouse Wells between 2012 and 2014, the sampling frequency of all wells is quarterly (or less). Quarterly sampling is generally sufficient to establish seasonal trends, however, when attempting to resolve the influence of surface water on groundwater quality (and vice versa), more frequent (i.e., monthly) sampling would be ideal.

Surface water quality in the groundwater discharge areas is poorly characterized and limited to select seepage and surface water samples within and upstream of the Greenhouse Side Channel. However, there are likely localized zones where concentrations of mine-related constituents are higher than is currently captured in the surface water monitoring network due to the discharge of mine-influenced groundwater. Moreover, there is potential for WCT to have been exposed to groundwater during the decline window if they aggregated in areas of warmer groundwater discharge during unusually cold winter conditions; however, there are no data related to fish migration in these areas during the decline window. We have provided estimates of the effects of groundwater on localized surface water quality and the WCT population during the decline window in Section 5.5 below.

### 5.3.4 Summary of Water Quality Findings

Groundwater concentrations along the identified Kilmarnock groundwater flow paths are higher than downgradient surface water concentrations at FR\_FRCP1 and FR\_FRRD, indicating groundwater quality may locally affect surface water quality in the seasonal discharge area and Greenhouse Side Channel as indicated in Sections 5.3.1.1 and 5.3.1.2 above. However, there were no anomalous groundwater concentrations in the historical monitoring record that would negatively affect surface water quality and result in the WCT decline. The mine-influenced groundwater quality has remained relatively similar in the years before the decline.

Several trends identified in groundwater above may have implications for downstream surface water quality in discharge areas, including increasing or probably increasing concentrations of dissolved selenium and sulphate and decreasing or probably decreasing trends in pH. These trends have been gradual over a period of time, and there are no indications of abrupt changes in groundwater quality that would have caused corresponding changes in surface water quality that would lead to a sudden decline in WCT populations.



# 5.4 Other Relevant Observations and Findings

### 5.4.1 Groundwater Influence on Surface Water Temperature

Groundwater also has the potential to influence surface water temperature since groundwater temperatures are more consistent and surface water temperatures are subject to greater diurnal and seasonal fluctuations. The influence of groundwater on surface water temperatures in the UFR is of particular interest as areas of known groundwater discharge within the S8 Study Area and S6 Study Area are coincident with WCT spawning and overwintering habitat.

Continuous temperature data provided by Scott Cope between 2012 and 2015 at three locations in the Fording River at Kilmarnock Creek (S7), in the Fording River upstream of Chauncey Creek near FR\_FRABCH (S6), and within the Greenhouse Side Channel (F2) are plotted below in Figure 19. Continuous temperature data at FR\_FRABCH as well as manual measurements made at FR\_FR2, FR\_FRCP1, FR\_FRRD, and FR\_FRABCH since 2017 provided by Teck Coal are also shown on the plot. Manual measurements of groundwater samples collected at GH\_PC2 since 2013, located downstream of Side Channel 2 within the inferred regional groundwater discharge zone, are also shown on Figure 19.

The 2012-2015 continuous data show that winter temperatures within the Greenhouse Side Channel at F2 are significantly warmer than upstream in the Fording River at Kilmarnock Creek (S7). The Greenhouse Side Channel temperatures are also warmer than downstream in the Fording River near FR\_FRABCH (S6) in the winter of 2014-2015 (the only winter for which there are data), though temperatures at S6 were also warmer than upstream at S7. The manual measurements made at GH\_PC2 are similar to the continuous data measured within the Greenhouse Side Channel, with winter (November through March) temperatures that range between 3.5 °C and 6.0°C with exception of one measurement made in March 2015 (0.6°C). This suggests a moderating effect of groundwater on temperatures downstream of the regional groundwater discharge zone.

The temperature data since 2017 show a similar influence. Winter temperatures measured upstream in the Fording at FR\_FR2 and FR\_FRCP1 are lower than those measured at FR\_FRABCH and FR\_FRRD. Winter temperatures at FR\_FRRD are warmer than the temperatures FR\_FRABCH, indicating the influence of warmer groundwater discharging at the Greenhouse Side Channel. There are limited temperature data at GH\_PC2 within the decline window, but manual measurements made in January (4.4°C) and February (4.1°C) of 2018 were similarly (relatively) warm.

The temperature data indicate that the discharge zones are a stable source of relatively warmer water in the surface water channels during winter that moderate temperatures for some distance downstream. This zone extends beyond FR\_FRABCH in the S6 Study Area, encompassing the WCT spawning and overwintering habitat. Over the decline window, average monthly water temperatures during baseflow<sup>1</sup> at FR\_FRABCH ranged from 0.86°C in February 2019 to 4.95°C in October 2018, with an average of 2.63°C. Aside from February 2019, the average water temperatures were also considerably colder than average during December 2017 (1.23°C) and February 2018 (1.06°C). Mean daily water temperatures fell marginally below freezing on only three occasions, on December 25 and 26, 2017 and on February 20, 2018. The above-freezing temperatures are an indication of the moderating influence of groundwater discharge upstream of FR\_FRABCH. However, it is noted that there was an extended period between February 4 and

<sup>&</sup>lt;sup>1</sup> The months of October through March are considered baseflow periods.



14 × 12 × 10 (C) 8 emperature 6 4 2 0 -2 Apr-12 Jan-13 Nov-13 Sep-14 Jul-15 May-16 Mar-17 Dec-17 Oct-18 Aug-19 Jun-20 FR FRABCH (Datalogger) ▲ FR FRABCH (Manual) × FR FRCP1 (Manual) FR FR2 (Manual) • FR FRRD (Manual) GH PC2 (Manual) S7 (Fording at Kilmarnock) - S6 (Fording U/S of Chauncey) -F2 (Greenhouse Side Channel)

February 11, 2019 where mean daily water temperatures did not exceed 0.2°C, and ice was noted in the area. More discussion of ice conditions is provided in Hatfield and Whelan (2021).

Figure 19: Temperature Data in the Upper Fording River and Greenhouse Side Channel since 2012. (Data provided by S. Cope and Teck Coal)

### 5.4.2 Speciated Selenium

The speciation of selenium data can be an indicator of geochemical transformations that may be occurring within a system. The two most dominant forms of inorganic selenium in natural waters are selenate ( $SeO_4^2$ ) and selenite ( $SeO_3^2$ ). Selenate has a valence state of +6 and is dominant in oxidizing conditions, while selenite has a valence state of +4 and is dominant in reducing conditions. Generally, inorganic selenium is more stable in reducing environments and more mobile in oxic environments.

Seepage water samples collected from the Greenhouse Side Channel in February 2020 were analyzed for speciated selenium. The results are included in Table 3 along with other available speciated selenium data at FRO, including FR\_09-01A/B and FR\_09-02A/B south of the SKP2 in December 2018, and monitoring wells southwest (FR\_MW\_STPSW-A/B) and northwest (FR\_MW\_STPNW) off the STP, adjacent (and upslope) of the Greenhouse Side Channel (FR\_MW\_FRRD1), and the Chauncey Creek alluvial fan (FR\_MW-CH1-A) in March 2020.

The analytical results indicate that selenate is the dominant form in all samples except for those collected from FR\_09-02A and FR\_ STPNW. However, selenite was not detected at either of these locations, nor were other species of selenium. Trace amounts of selenite were detected at seepage areas RG\_FRSP1 and RG\_FRSP3 as well as in monitoring wells FR\_MW\_STPSW-A/B, FR\_MW\_FRRD1, and FR\_MW-CH1-A, suggesting the presence of localized sub-oxic zones where nitrate-N and selenate attenuation by reduction may occur.



# 5.5 Effects on Downgradient Surface Water Quality

Since there are no direct measurements of surface water quality in the groundwater discharge zones, the effects of groundwater quality on surface water quality in the groundwater discharge zones are estimated below based on available data.

### 5.5.1 Kilmarnock Creek Flow Path Discharge Areas

The conceptual model identified two groundwater flow paths and related discharge areas of mine-influenced water originating from Kilmarnock Creek: localized and seasonal discharge to the bend in the Fording River between FR\_FR4 and FR\_FRCP1; and, the Greenhouse Side Channel, the seepage area that feeds it, and a portion of the Fording River main stem downstream of the Greenhouse Side Channel on the eastern side of the valley. Each Kilmarnock Creek influenced discharge area is discussed separately below.

### 5.5.1.1 Kilmarnock Creek Seasonal Flow Path

The NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios of samples collected from surface water monitoring station FR\_FRCP1 suggests that Kilmarnock Creek influenced groundwater discharges within the seasonal discharge zone between late winter (February or March) and early summer (July), with peak NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios in late May or June (Section 3.6.4; Figure 12). The Q2 concentrations of nitrate, sulphate, and dissolved selenium in groundwater along the inferred seasonal flow path (monitored by FR\_09-01A/B) during the decline window are shown below in Table H along with concentrations in surface water upstream (FR\_FR4) and downstream (FR\_FRCP1) of the inferred discharge zone. There were no samples collected from FR\_FR4 between April and September of 2019. The Q2 data were selected for this evaluation because the NO<sub>3</sub><sup>--</sup>N/SO<sub>4</sub><sup>2--</sup>S ratios suggest the Kilmarnock Creek influence along this flow path is strongest in late May or early June. The surface water samples presented below were collected on the nearest date on or after the groundwater samples were collected.

The table shows that CI concentrations are higher in groundwater than in surface water, and also higher in surface water downstream of the discharge zone than upstream. This suggests there is potential for water quality in the discharge zone to be locally poorer than where it is monitored at FR\_FRCP1. Alternatively, water quality at FR\_FRCP1 when groundwater is seasonally discharged may be representative of water quality in the discharge zone mixed with upstream input (FR\_FR4). This water is conceptualized to re-enter the groundwater system downstream of this point and re-emerge in the regional groundwater discharge zone.

| Downstream Surface Water |                  |                 |                           |
|--------------------------|------------------|-----------------|---------------------------|
| Location                 | Nitrate-N (mg/L) | Sulphate (mg/L) | Dissolved Selenium (µg/L) |
| Q2 2018                  |                  |                 |                           |
| FR_FR4 (Jun. 21 2018)    | 5.8              | 101             | 27.6                      |
| FR_09-01A (Jun. 13 2018) | 31.6             | 239             | 106                       |
| FR_FRCP1 (Jun. 13 2018)  | 11.0             | 160             | 55.4                      |
| Q2 2019                  |                  |                 |                           |
| FR_09-01A (May 30 2019)  | 36.5             | 343             | 130                       |
| FR_FRCP1 (Jun. 04 2019)  | 6.32             | 83.2            | 21.6                      |

#### Table H: CI Concentrations in Groundwater Along Inferred Seasonal Flow Path and Nearest Downstream Surface Water



### 5.5.1.2 Greenhouse Side Channel

Water quality in the Kilmarnock Creek flow path discharge area on the east side of the Fording River valley has been monitored directly in shallow groundwater, seepage water, and the Greenhouse Side Channel as part of the MBI program in late 2019 and early 2020. Kilmarnock Creek discharge is also inferred to occur in the Fording River on the east side of the valley between the Greenhouse Side Channel confluence and FR FRRD. A summary of the concentrations of nitrate, sulphate, and dissolved selenium in the Kilmarnock Creek influenced discharge zone is presented below in Table H, as well at the nearest downstream surface water station FR FRRD at approximately the same time. The concentrations were generally comparable to those historically observed at the upgradient Greenhouse Wells (FR\_GHHW), which are located along the interpreted flow path. All concentrations in the receiving environment were within the historical range observed at the Greenhouse Wells with the exception of dissolved selenium in the Greenhouse Side Channel and seepage water in February 2020. A portion of the effects of Kilmarnock Creek influenced groundwater discharge on surface water are captured by surface monitoring station FR\_FRRD, which is located approximately 170 m downstream of the Greenhouse Side Channel confluence. However, FR FRRD may not fully capture the localized effects of groundwater discharge as the nitrate-N and selenium concentrations in the discharge zone were slightly higher than those measured at FR\_FRRD at similar times of the year (Table I). Therefore, concentrations in the discharge zone were likely slightly higher than those measured at station FR FRRD.

| Location                               | Nitrate-N (mg/L) | Sulphate (mg/L) | Dissolved Selenium (µg/L) |  |  |  |  |  |
|----------------------------------------|------------------|-----------------|---------------------------|--|--|--|--|--|
| RG_FRDP13 (Dec. 04 2019)               | 32.2             | 312             | 122                       |  |  |  |  |  |
| Seepage (Dec. 03 2019)                 | 34.0 to 38.8     | 310 to 320      | 131 to 143                |  |  |  |  |  |
| FR_FRRD (Dec. 09 2019)                 | 27.2             | 310             | 109                       |  |  |  |  |  |
| Seepage (Feb. 27 2020)                 | 47.7 to 50.9     | 389 to 420      | 158 to 204                |  |  |  |  |  |
| Greenhouse Side Channel (Feb. 28 2020) | 37.4 to 49.7     | 346 to 364      | 125 to 166                |  |  |  |  |  |
| FR_FRRD (Mar. 03 2020)                 | 37.1             | 369             | 124                       |  |  |  |  |  |

#### Table I: Summary of CI Concentrations in Kilmarnock Creek Influenced Discharge Zone

### 5.5.1.1 Potential Effects on Overwintering Fish

As mentioned above in Section 5.3.3, overwintering WCT may have been exposed to groundwater by preferentially migrating to warmer areas of groundwater discharge, although there are no data related to fish migration in these areas during the decline window. Overwintering fish in the upper Fording River are in the juvenile or adult life-cycle stages (Evaluation of Cause Team, 2021); therefore, potential effects of groundwater in winter were evaluated for juvenile and adult life stages using nitrate-N and selenium screening criteria from the surface water quality report (Costa and de Bruyn 2021; Table J). The screening criteria presented in Table J are considered applicable to groundwater along the flow paths without a tenfold dilution factor since there is the potential that dilution would be lower since discharge areas are inferred to be predominantly sustained by groundwater during baseflow. It is noted that the selenium criterion is intended to be applied for selenate-dominated waters. This is appropriate since selenate is the mobile and dominant species of dissolved selenium in oxic environments, such as in the Fording River valley-bottom aquifer.



| Constituent | Criteria | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nitrate-N   | 50 mg/L  | Costa and de Bruyn (2021) summarized juvenile and chronic effects data from Canadian Council of Ministers of the Environment (CCME 2012) and three additional studies that reported chronic effects data for juvenile fish subsequent to the CCME (2012) compilation. The lowest effect concentration for juvenile and adult fish was a maximum allowable toxicant concentration (MATC) of 50 mg/L as N for medaka growth (CCME 2012; in Costa and de Bruyn, 2021). As discussed in Costa and de Bruyn (2021), of the fish species with effects data for juveniles and adults, rainbow trout is expected to be the most relevant species to interpret potential effects to the congeneric WCT; Davidson et al. (2014) reported 87.9% survival for juvenile rainbow trout exposed to 91 mg/L as N for three months. |
| Selenium    | 466 µg/L | Teck Coal (2014) derived aqueous selenium benchmarks for juvenile fish.<br>The level 2 benchmark is a lowest observed effect concentration (LOEC) for growth of chinook salmon larvae; dietary exposure to 18 mg/kg dw resulted in a 22% reduction in weight (Hamilton et al. 1990). As discussed in Teck Coal (2014), no survival effects were observed for chinook salmon at the dietary concentration of 18 mg/kg dw. The level 2 benchmark of 18 mg/kg dw was converted to an aqueous selenium concentration of 466 µg/L using a site-specific bioaccumulation model (Teck Coal, 2014). Because no survival effects were reported at this concentration, the level 2 aqueous benchmark (466 µg/L) was used herein to evaluate potential survival effects on fish.                                              |

#### Table J: Nitrate-N and Selenium Screening Values for Juveniles and Adults

The concentrations of nitrate-N and dissolved selenium in groundwater along the Kilmarnock Creek flow paths (monitoring wells FR\_09-01A/B along the seasonal flow path and FR\_GHHW/FR\_GHWELL4 along the eastern flow path) prior to and during the decline window are summarized in Table E above. Complete results of all samples are also provided in Table 1.

The concentrations of dissolved selenium in all groundwater samples collected from monitoring wells along these flow paths were less than the screening criteria of 466  $\mu$ g/L. Therefore, selenium concentrations in the groundwater discharge zones during the decline window would not be expected to result in potential effects on juvenile survival.

The concentrations of nitrate-N in groundwater samples collected during the decline window from monitoring wells along these flow paths were less than the screening criterion of 50 mg/L, except for one sample collected from FR\_09-01A on 22 November 2017 that had a nitrate concentration of 54.3 mg/L as N (Figure 17; Table E; Table 1). Thus, in all but one sample, the available information indicates that nitrate concentrations would not result in chronic effects to adult or juvenile WCT. For the single sample, the screening results indicate a potential for growth effects on sensitive adult or juvenile fish that were exposed to undiluted groundwater. As discussed in Table J, chronic effects data for rainbow trout are expected to be the most relevant species to interpret potential effects to the congeneric WCT. A 12% effect on the survival of rainbow trout (which is considered more relevant to interpret potential effects to the congeneric WCT) was reported at a nitrate-N concentration of 91 mg/L for water with a hardness of 308 mg/L (Davidson et al., 2014; in Costa and de Bruyn, 2021). If rainbow trout toxicity data are indeed more relevant for interpreting effects to WCT, then nitrate effects to juvenile and adult fish would not be expected.

In aggregate, the available information indicates that nitrate concentrations in groundwater would not result in chronic effects to overwintering adult or juvenile fish. This interpretation is further supported by the



observation that rainbow trout exhibited high survival at concentrations almost two times higher than the medaka MATC. Potential growth-related effects could not be ruled out for one sample collected from FR\_09-01A, but the available information indicates a small magnitude of exceedance and that potential effects would be sublethal in nature.

### 5.5.2 Fording River Flow Path Discharge Zone

As described above in the conceptual model, groundwater recharged by the Fording River is inferred to discharge in Side Channel 2 and the Fording River main channel between FR\_FRRD and GH\_PC2. The majority of discharge in the regional groundwater discharge zone is considered to occur along this reach. Surface water quality has been directly measured in this discharge area during the October 2019 flow accretion study at RG\_FLA\_FR10, and historically at GH\_PC2 (although data are limited during the decline window). However, the largest gain within the regional groundwater discharge zone occurs between RG\_FLA\_FR10 and RG\_FLA\_FR09, which accounted for approximately 73% (or 0.878 m<sup>3</sup>/s) of the 1.201 m<sup>3</sup>/s of flow gained between RG\_FLA\_FR11 and RG\_FLA\_FR09 during the October 2019 flow accretion study. Of this 0.878 m<sup>3</sup>/s gain in flow, 0.541 m<sup>3</sup>/s was sourced from Side Channel 2.

Water quality data in Side Channel 2 do not exist. Therefore, water quality of groundwater discharge between RG\_FLA\_FR10 and RG\_FLA\_FR09 (where 62% of the 0.878 m<sup>3</sup>/s gain in flow occurred within Side Channel 2) during low flow in October 2019 was estimated using a loading approach to understand the localized surface water quality in the Fording River-influenced discharge zone (i.e., pathway iii in Section 3.6.6 above and shown in yellow on Drawing 18) during the decline window. The instantaneous load<sup>2</sup> of CI in groundwater discharge between RG\_FLA\_FR10 and RG\_FLA\_FR09 was calculated by subtracting the load at RG\_FLA\_FR10 from that calculated at RG\_FLA\_FR09, accounting for loading from Porter Creek at PC\_GH1. Locations of the stations are shown on Drawing 12. The CI concentrations were then back-calculated from the load gained between RG\_FLA\_FR10 and RG\_FLA\_FR09 using the measured gain in flow rate between the two stations. This water quality estimate incorporates gains made in Side Channel 2, the Fording River, as well as the oxbow channel; however, gains made in the oxbow channel are thought to be minimal due to the similarity in water chemistry between GH\_PC2 and downstream station FR\_FRABCH, as discussed above in Section 3.6.5.

|                                              | Flow   |                | Nitrate-N               |                | Sulphate                |                | Dissolved Selenium       |  |
|----------------------------------------------|--------|----------------|-------------------------|----------------|-------------------------|----------------|--------------------------|--|
| Location                                     | (m³/s) | Load<br>(mg/s) | Concentration<br>(mg/L) | Load<br>(mg/s) | Concentration<br>(mg/L) | Load<br>(mg/s) | Concentrati<br>on (mg/L) |  |
| RG_FLA_FR09                                  | 1.42   | 25,276         | 17.8                    | 391,290        | 276                     | 120.1          | 0.0846                   |  |
| GH_PC1 <sup>a</sup>                          | 0.028  | 95.5           | 3.41                    | 12,824         | 458                     | 2.4            | 0.0865                   |  |
| RG_FLA_FR10                                  | 0.514  | 9,663          | 18.8                    | 145,976        | 284                     | 45.8           | 0.0891                   |  |
| Between<br>RG_FLA_FR10<br>and<br>RG_FLA_FR09 | 0.878  | 15,517         | 17.7                    | 233,310        | 265.5                   | 71.9           | 0.0819                   |  |

#### Table K: Estimated Loading and CI Concentrations in Side Channel 2 on October 25, 2019

<sup>a</sup> Analytical results used to calculate the load at GH\_PC1 were from a sampling event on October 15, 2019, while the flow was measured on October 25, 2019. Station GH\_PC1 was not sampled on October 25, 2019.

<sup>&</sup>lt;sup>2</sup> Instantaneous load refers to the rate of mass solute addition and is determined by multiplying the CI concentration by the flow rate.



The predicted CI concentrations of groundwater discharge between RG\_FLA\_FR10 and RG\_FLA\_FR09, including within Side Channel 2 and within the main stem, are very similar to those detected at RG\_FLA\_FR09 (Table K). The predicted  $NO_3^{-}-N/SO_4^{2-}-S$  ratio was 0.20.

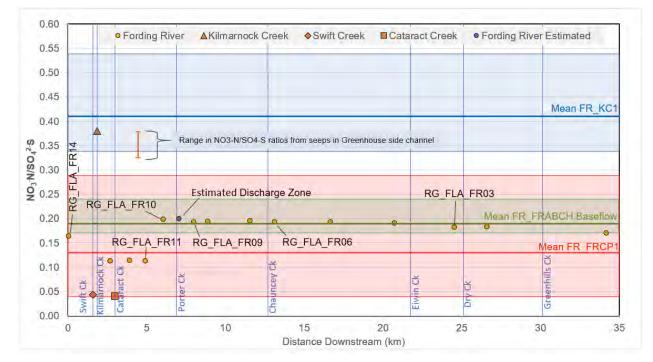
There are insufficient data to predict concentrations in the Fording River discharge zone during the decline window using the methodology above. However, analytical data downstream indicate that groundwater along this flow path is well mixed such that the seasonal variability of water quality in the recharge input (monitoring at Fording River station FR\_FRCP1 is considered representative of this input) is attenuated at the point of groundwater discharge. This is discussed further above in Section 3.6.5 and below in Section 5.5.3.

### 5.5.2.1 Potential Effects on Overwintering Fish

As indicated above, overwintering WCT may have been exposed to groundwater by preferentially migrating to warmer areas of groundwater discharge (although there are no data related to fish migration during the decline window). Therefore, potential effects of undiluted groundwater in winter were evaluated for juvenile and adult life stages using nitrate-N and selenium screening criteria from the surface water quality report (Costa and de Bruyn 2021; Table J).

The predicted concentrations of nitrate-N and selenium in the regional groundwater discharge zone between RG\_FLA\_FR10 and RG\_FLA\_FR09, including contributions from Side Channel 2, were less than the screening criteria for juveniles and adults in Table J. These results indicate that nitrate and selenium concentrations in groundwater would not result in chronic survival effects to overwintering adult or juvenile fish.

Although these predicted concentrations are based on only one flow and load accretion study completed in October 2019, it is considered unlikely for the concentrations of nitrate-N and selenium in the regional groundwater discharge zone between RG\_FLA\_FR10 and RG\_FLA\_FR09 to have impacted the WCT population because:


- Analytical data of samples collected from surface water stations downstream of the discharge zone suggest that groundwater along the Fording River flow path is relatively well mixed and unlikely to vary as much seasonally as groundwater along the Kilmarnock flow paths; and
- The concentrations of nitrate-N and selenium in downstream surface water at GH\_PC2 (since 2013) and FR\_FRABCH (since 2015) have never exceeded the screening criteria for juveniles and adults.

### 5.5.3 Downstream of Regional Groundwater Discharge Zone

Since the majority of groundwater that discharges in the regional groundwater discharge zone is recharged by the Fording River, this pathway will have a greater influence on downstream surface water quality than Kilmarnock Creek. This is illustrated on Figure 20 below, which shows the NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2</sup>-S ratios in the Fording River during the flow accretion study in October 2019 along with the ratios of inputs from Kilmarnock, Swift, and Cataract Creeks, the range in ratios in the Greenhouse Side Channel in February 2020, and the estimated ratio of water in the discharge zone between RG\_FLA\_FR10 and RG\_FLA\_FR09 in October 2019. The figure also shows the averages and ranges of NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2</sup>-S ratios in source waters (Kilmarnock Creek at FR\_KC1 and Fording River at FR\_FRCP1) and downstream of the regional groundwater discharge zone during baseflow (FR\_FRABCH). The figure shows that there is a drop in the NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2</sup>-S ratios between stations RG\_FLA\_FR14 and RG\_FLA\_FR13 after Swift Creek (which had water diverted from Cataract Creek at the time) and a rise in ratios between stations RG\_FLA\_FR11



and RG\_FLA\_FR10 after the confluence with the Greenhouse Side Channel. The ratios remain very similar following the confluence with the Greenhouse Side Channel all the way to Josephine Falls. The predicted ratio groundwater discharge between RG\_FLA\_FR10 and RG\_FLA\_FR09 is very similar to all the ratios downstream of the Greenhouse Side Channel confluence.





The NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2</sup>-S ratios within and downstream of the regional groundwater discharge zone (0.17 to 0.20) and the estimated ratio in between RG\_FLA\_FR10 and RG\_FLA\_FR09 (0.20) are very similar to the mean baseflow (October to March) ratio at FR\_FRABCH (0.19), which is inferred to be sourced entirely from discharge in the regional groundwater discharge zone. This mean NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2</sup>-S ratio of 0.19 is considered to be representative of the mean year-round NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2</sup>-S inputs from Kilmarnock Creek at FR\_KC1 (0.41) and the Fording River at FR\_FRCP1 (0.13), weighted more heavily towards inputs from the Fording River (which is inferred to supply the majority of the gains in the regional discharge zone). However, the tighter distribution in NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios in FR\_FRABCH (0.14 to 0.26 overall and 0.17 to 0.24 during baseflow) compared to the overall datasets at FR\_FRCP1 (0.04 to 0.29) and FR\_KC1 (0.34 to 0.54) suggests that groundwater is well mixed along the flow pathways. There is some seasonality in NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios in the Kilmarnock and Fording River groundwater discharge zones is expected to be considerably less than the surface waters in their source areas.

This is considered particularly true of groundwater recharged by the Fording River since the recharge zone spans the approximately 5 km reach between the STP and the Greenhouse Side Channel confluence.



Groundwater travelling along this pathway will therefore continuously mix with recharging water from the Fording River, incorporating inputs from all seasons over the travel period. Groundwater discharge in the Kilmarnock Creek influenced discharge zone is considered more likely to retain the seasonal inputs of the source because the recharge zone is more discrete and does not span the length of the flow path (which is evident in the seasonality observed at the Greenhouse Wells), although some mixing will occur with inputs from precipitation. It is noted that the wide range in NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios in Kilmarnock Creek is more due to an overall decline in the historic dataset rather than large-scale seasonal fluctuations (Figure 10 to Figure 12 above).

Groundwater discharge in the regional discharge zone that is well-mixed along the flow paths, particularly along the flow pathway of groundwater recharged by the Fording River, is the likely cause of the integrated  $NO_3^{-}-N/SO_4^{2-}-S$  ratio signal in FR\_FRABCH baseflow. It may also explain why very elevated concentrations of selenium and sulphate at FR\_FRCP1 in the winter of 2018/2019 did not appear downstream upon re-emergence and arrival at FR\_FRABCH.



# 6 Hydrogeological Conceptual Model of the S8 Study Area

A description of site geology, physical hydrogeology, chemical hydrogeology, and groundwater-surface water interactions is provided below. The descriptions are based on work performed by Golder (2020c) with additional information provided based upon review of other information in the area.

## 6.1 Physical Setting

The S8 Study Area spans the Fording River between approximately Kilmarnock Creek to the south to Fish Pond Creek to the north (Cope, 2020). The area of interest for this investigation is the reach spanning the Clode Creek settling ponds to the north end of the NTP as shown on the Site Plan in Drawing 3. This reach is influenced by mining operations and in particular by the Clode Creek watershed, which is the primary focus of this conceptual model as groundwater is known to play a role in the transport of mine-influenced water and the area is a known area of groundwater discharge to surface water.

The Clode Creek watershed drains an area of approximately 10.5 km<sup>2</sup> (Golder, 2020b). The Clode Creek catchment is shown on Drawing 20, while current and mined-out topographies are shown on Drawings 21 and 22. Elevations in the catchment range from 1,670 m asl in the vicinity of the Clode Creek ponds to 2,500 at the peak of Mount Turnbull (Golder, 2020b).

Approximately 67% of the catchment has been mined or spoiled, with roughly 438 million bank cubic metres (BCM) of waste rock placed in the watershed since mine development began in the 1970s through the end of 2018 (SRK Consulting Inc. [SRK], 2020). The remaining 33% of the area located in the northern portion of the catchment is undeveloped (SRK, 2020), which includes the south side of Mount Turnbull. The disturbed portions of the catchment include Eagle Mountain and a number of pits, as shown on Drawing 22.

# 6.2 Hydrology

The Clode Creek watershed includes Clode Creek as well as the Clode Creek diversion, which was constructed in the early 1970's. The northern and upland portions of the catchment are drained by the original Clode Creek channel, which flows subsurface beneath waste rock and receives water from a number of spoiled and undisturbed tributaries (Drawing 20). In the southern portion of the watershed, two large pits being developed into Saturated Rock Fills (SRFs), including the Eagle 4 SRF and Eagle 6 West SRF, decant through a series of backfilled pits (9 Seam Pit, Clode Pit, and R4 Pit in Figure 21) and flow via the diverted Clode Creek into the Clode Creek settling ponds (SRK, 2020).

The portion of the historic, pre-diverted Clode Creek forms the EC1 – Eagle Pond watershed along with two other tributaries, which discharge to Eagle Pond (Drawing 20). This sub-watershed is approximately 2 km<sup>2</sup> in area and all channels are submerged by waste rock. A small sub-watershed is present north of EC1 – Eagle Pond consisting of two relatively small tributaries that also flow beneath spoils, named the EC1 – Clode Seeps watershed. The area drains approximately 0.2 km<sup>2</sup> and discharges as a seepage face adjacent to the Clode Creek settling ponds.





# Figure 21: The Clode Creek Catchment showing Eagle 4 and Eagle 6 West SRFs which Decant and Flow through 9 Seam, Clode, and R4 Backfilled Pits and Diverted Clode Creek into the Clode Creek Settling Ponds. (From SRK, 2020)

The Clode Creek settling ponds consist of two ponds as shown which discharge to the Fording River. Discharge from the ponds varied from less than 0.1 m<sup>3</sup>/s to 1 m<sup>3</sup>/s between 1995 and 2019 (Figure 22 below).



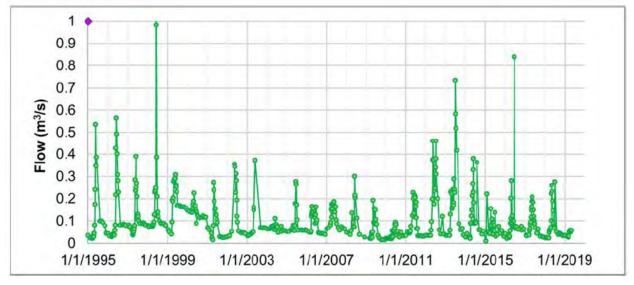



Figure 22: Historical Flow at FR\_CC1 since 1995 Representing Discharge from the Clode Creek Settling Ponds. (From SRK, 2020)

Downstream of the Clode Creek watershed, the Fording River also receives water from Lake Mountain Creek to the west and Eagle Pond to the east.

# 6.3 Surficial Geology

Surficial geology of the Clode Creek area is shown on Drawing 23. Similar to elsewhere in the Elk Valley, the surficial geology in the upland areas consists of colluvial deposits or till. Also similar to elsewhere in the Elk Valley, the fluvial and alluvial sediments are considerably more permeable than the colluvial or till deposits, and are therefore of more significance hydrogeologically.

Fluvial sediments are present in the vicinity of the Clode Creek settling ponds and Fording River. An alluvial fan is identified on the map in Drawing 23 that extends from the northwest portion of the EC1 – Eagle Pond watershed in the vicinity of Eagle Pond to northeast of the Clode Creek settling ponds in the westernmost portion of the Clode Creek watershed. Another geomorphic characterization completed by Golder (2014) identified the alluvial fan as much smaller, located in the area of Eagle Pond where the historic Clode Creek channel met the Fording River valley as shown on Drawing 24. This is considered to be the more accurate interpretation of the location of the alluvial fan, since the Clode Creek diversion was constructed in the early 1970s while sediments in at the mouth of the historic Clode Creek may have been deposited over thousands of years.

Surficial geology in the area of the Clode Creek settling ponds is also shown on the geological cross-section included on Drawing 25. The figure shows that the valley-bottom sediments increase in thickness north of the primary pond and southwest of the secondary pond. There is a bedrock high to the southeast of the secondary pond. Low permeability silty or clayey soils are present north of the primary pond which form a confining layer in the vicinity at FR\_CB-1A/B/C and FR\_CB-3A/B and overlie more permeable fluvial sediments. Lower permeability soils were also identified east of the secondary pond at FR\_CB-4A/B below 3.0 m bgs. Till was identified beneath the fluvial deposits south of the secondary pond at FR\_GCMW-1A/B below 11.5 m bgs.



# 6.4 Hydrogeology

Monitoring wells in the area are limited to the vicinity of the Clode Creek settling ponds (13 wells) and one well (FR\_MW-1B) just upstream of Eagle Pond (Drawing 3). With exception of FR\_MW-1B, none of the wells have available data prior to December 2017.

The primary hydrostratigraphic units are present in the S8 Study Area are as follows:

- > Till/colluvium;
- > Fluvial sediments, including both the historical Clode Creek alluvial fan and Fording River valley-bottom deposits;
- > Weathered bedrock; and
- > Bedrock.

### 6.4.1 Hydraulic Conductivities

The hydraulic conductivity of the fluvial sediments (in the range of  $10^{-6}$  to  $10^{-3}$  m/s) are several orders of magnitude higher than the range of hydraulic conductivities of the till and colluvial deposits or weathered bedrock/bedrock (in the range of  $10^{-9}$  to  $10^{-6}$  m/s; Golder, 2019c). As such, the hydrogeology in the Clode Creek catchment is strongly controlled by the permeable surficial materials, as well as the bedrock topography where mined out.

Hydraulic conductivity values of monitoring wells in the Clode Creek area are shown below in Table L. Although the wells are located where fluvial sediments have been mapped, the hydraulic conductivity estimates for the majority of the wells are lower than expected for fluvial deposits. Only shallow wells FR\_MW-1B, FR\_GCMW-2, and FR\_CB-3B and deep well FR\_CB-1B have hydraulic conductivity estimates characteristic of fluvial sediments. The remaining wells are interpreted to be completed in till comprised primarily of silt and gravel. The higher hydraulic conductivity at depth at FR\_CB-1B may be indicative of buried channels within the till. The higher estimate at FR\_MW-1B does not match the logged clay or bedrock, and may be representative of the upper 0.3 m of the screened interval, which was logged as 'till composed of gravel and cobbles' but may actually be fluvial deposits. Alternatively, the bedrock may be highly weathered.

| Well IDs   | Hydrostratigraphic Unit   | Screened<br>Interval<br>(m bgs) | Hydraulic<br>Conductivity (K)<br>(m/s) | Source             |
|------------|---------------------------|---------------------------------|----------------------------------------|--------------------|
| FR_MW-1B   | Clay/Bedrock              | 5.2 - 8.2                       | 4.0 x 10 <sup>-4</sup>                 | SNC-Lavalin, 2018  |
| FR_GCMW-1A | Cobbles and Boulders with | 19.5 – 21.0                     | 3.0 x 10 <sup>-6</sup>                 |                    |
| FR_GCMW-1B | silty gravel matrix       | 14.4 – 15.9                     | 1.6 x 10 <sup>-6</sup>                 | SNC-Lavalin, 2017c |
| FR_GCMW-2  | Sandy Gravel              | 7.6 – 9.1                       | 3.0 x 10 <sup>-4</sup>                 |                    |
| FR_CB-1A   | Medium to coarse Sand     | 22.9 - 25.9                     | 2.0 x 10 <sup>-7</sup>                 |                    |
| FR_CB-1B   | Medium to coarse Sand     | 18.3 – 21.3                     | 3.0 x 10 <sup>-5</sup>                 | Golder, 2019a      |
| FR_CB-1C   | Clayey Sand               | 3.1 – 5.5                       | 2.0 x 10 <sup>-7</sup>                 |                    |

#### Table L: Summary of Hydraulic Testing Results in the Clode Creek Area

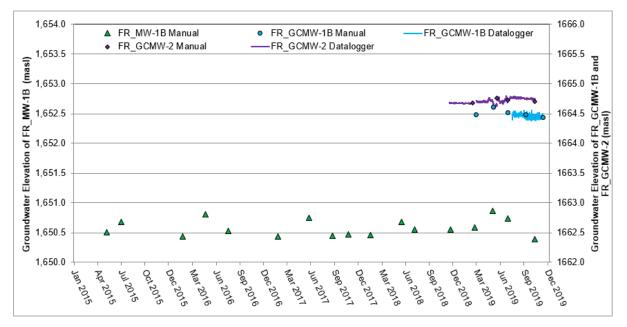


| Well IDs | Hydrostratigraphic Unit       | Screened<br>Interval<br>(m bgs) | Hydraulic<br>Conductivity (K)<br>(m/s) | Source        |
|----------|-------------------------------|---------------------------------|----------------------------------------|---------------|
| FR_CB-2A | Fine to coarse Sand           | 11.3 - 14.3                     | 2.0 x 10 <sup>-7</sup>                 |               |
| FR_CB-3A | Silty Gravel                  | 18.3 - 24.4                     | 4.0 x 10 <sup>-7</sup>                 |               |
| FR_CB-3B | Silty Sand                    | 6.0-9.0                         | 8.0 x 10 <sup>-5</sup>                 |               |
| FR_CB-4A | Silt and Gravel               | 9.1 - 12.2                      | 6.0 x 10 <sup>-6</sup>                 |               |
| FR_CB-4B | Silty Clay to Silt and Gravel | 5.0-8.0                         | 6.0 x 10 <sup>-7</sup>                 | Golder, 2020b |
| FR_CB-5A | Silty Gravel                  | 10.3 – 13.4                     | 5.0 x 10 <sup>-9</sup>                 | 1             |
| FR_CB-5B | Silty Gravel                  | 5.9-9.0                         | 2.0 x 10 <sup>-8</sup>                 | 1             |
| FR_CB-6A | Silty Gravel                  | 7.6 - 10.7                      | 1.0 x 10 <sup>-8</sup>                 |               |

#### Table L (Cont'd): Summary of Hydraulic Testing Results in the Clode Creek Area

Note: All hydraulic conductivity tests completed as slug tests.

### 6.4.2 Groundwater Flow Regime


A hydrograph showing groundwater levels at FR\_GCMW1B and FR\_GCMW2 in 2019 as well as FR\_MW-1B since 2015 is shown in Figure 23. The hydrographs show that there is minimal variation in water levels at all three of these wells. Water levels varied by 0.18 m at FR\_GCMW1B and by 0.08 m at FR\_GCMW2 in 2019, with peak elevations in May lowest elevations in December (FR\_GCMW1B) or March (FR\_GCMW2). Groundwater levels at FR\_MW-1B varied by 0.48 m since 2015, also with peak water levels in May or June and lowest water levels in winter.

The vertical hydraulic gradient between FR\_GCMW1B and FR\_GCMW2 was consistently downward in 2019, with the exception of May 31, 2019. The vertical gradient was calculated to be 0.054 m/m downward on July 26, 2019 (the only day with manual measurements at both wells). A similar downward gradient of 0.051 m/m was calculated between the wells in August 2017 (SNC-Lavalin, 2017c). Upward vertical gradients are present north of the Clode Creek settling ponds that measured approximately 0.08 m/m at FR\_CB-1A/B in November 2018 and 0.06 m/m at FR\_CB-3A/B in December 2019. The upward vertical gradients indicate that the low permeability soils in the area are confining.

The potentiometric elevations and inferred groundwater flow contours in the vicinity of the Clode Creek settling ponds in December 2019 are shown below in Drawing 26. Groundwater east and north of the ponds is inferred to flow down-valley towards the ponds. Flow is inferred to be radial from the secondary pond. However, analytical and flow accretion data (discussed below) suggest that groundwater does not intersect the WED from the east, and that the primary flow pathway to the Fording River from the secondary ponds is in the southern or southwestern direction (i.e., down-valley). The lateral hydraulic gradient during the December 2019 monitoring event completed by Golder (2020c) was approximately 0.011 m/m, directed towards the southeast.

**SNC·LAVALIN** 

Subject Matter Expert Report: Hydrogeological Stressors Evaluation of Cause – Decline in Upper Fording River Westslope Cutthroat Trout Population Teck Coal Limited





### 6.4.3 Waste Rock Seepages

There are numerous seeps that emerge from the base of the spoils in the vicinity of the Clode Creek settling ponds and along the EC1-Clode Seeps and EC1-Eagle Ponds watersheds, as shown on Drawing 3. A summary of measured flow rates at the seeps is presented in Table M below. Flows emanating from several of the seeps are substantial, and have been cumulatively measured at more than 15,000 m<sup>3</sup>/d (or 0.174 m<sup>3</sup>/s; Table M). The seeps are considered to be representative of groundwater flowing through the base of the spoil that has not infiltrated the unsaturated native ground surface below due to the relatively large differences in hydraulic conductivities between the waste rock (i.e., rock drain flow) and native soils in the uplands. Three seeps are captured by the Clode Creek settling ponds where they emerge upgradient of the ponds (i.e., FR\_CCSEEPE1, FR\_CCSEEPE2, FR\_CCSEEPE3). Those that emerge cross-gradient or downgradient of the ponds (i.e., seeps FR\_CCSEEPSE1 through FR\_CCSEEPSE5) are considered to infiltrate to the valley bottom fluvial aquifer.

| Seep         | Range of Flows (m <sup>3</sup> /d) | Range of Flows (m <sup>3</sup> /s)                | Date of Maximum Flow      |  |  |  |  |  |  |
|--------------|------------------------------------|---------------------------------------------------|---------------------------|--|--|--|--|--|--|
| FR_CCSEEPE1  | 2,160-6,910                        | 0.025 - 0.080                                     | 2018/10/17                |  |  |  |  |  |  |
| FR_CCSEEPE2  | 0-260                              | 0-0.003                                           | 2018/10/01                |  |  |  |  |  |  |
| FR_CCSEEPE3  | 2,590 - 15,550                     | 0.030 - 0.180                                     | 2018/10/17                |  |  |  |  |  |  |
| FR_CCSEEPSE1 | 86                                 | 0.001                                             | 2018/06/04 and 2018/10/17 |  |  |  |  |  |  |
| FR_CCSEEPSE2 | 2-43                               | 2.31 x 10 <sup>-5</sup> – 0.0005                  | 2018/06/04                |  |  |  |  |  |  |
| FR_CCSEEPSE3 | 1-3                                | 1.16 x 10 <sup>-5</sup> – 3.47 x 10 <sup>-5</sup> | 2018/10/17                |  |  |  |  |  |  |
| FR_CCSEEPSE4 | 860-2,590                          | 0.010 - 0.030                                     | 2018/10/17                |  |  |  |  |  |  |
| FR_CCSEEPSE5 | 670 - 2,630                        | 0.008 - 0.030                                     | 2020/04/20                |  |  |  |  |  |  |

| Table M: | Summary | of Seepage | Flows in t | he S8 Study Area |
|----------|---------|------------|------------|------------------|
|----------|---------|------------|------------|------------------|

Note: All seeps monitored twice in June and October 2018 except for FR\_CCSEEPSE5, which has been monitored 35 times between June 2018 and April 2020.



### 6.4.4 Groundwater-Surface Water Interactions

Flow accretion studies in the S8 Study Area were completed by KWL in March, April, July, and September 2019 (Golder, 2020b). Results of the flow accretion studies are shown on Drawing 27. In all four events, the Fording River and Henretta Creek were losing above the Turnbull STP, and gaining or neutral upstream of the Clode Creek settling ponds. The Fording River was neutral adjacent to and gaining downstream of the Clode Creek settling ponds between FR\_FRDSCC1 and the confluence with Lake Mountain Creek in April, July, and September 2019. However, the Fording River gained adjacent to the ponds between FR\_CC1 and FR\_ FRDSCC1 and lost between FR\_FRDSCC1 and Lake Mountain Creek in March 2019. The Fording River was gaining immediately downstream of this losing reach between in March 2019 from Lake Mountain Creek to adjacent to FR\_FRNTP adjacent to the NTP south of the S8 Study Area.

The Fording River downstream of the Clode Creek settling ponds is considered a groundwater discharge zone. It appears this discharge zone is located between FR\_ FRDSCC1 and Lake Mountain Creek for the majority of the year, but occurs adjacent to the Clode Creek settling ponds and downstream of Lake Mountain Creek in late winter. Water lost to ground between FR\_ FRDSCC1 and Lake Mountain Creek in winter is considered to discharge back to the Fording River immediately downstream.

The gains between FR\_DSCC1 and Lake Mountain Creek were approximately 5,600 m<sup>3</sup>/d (0.065 m<sup>3</sup>/s) in April 2019, 26,400 m<sup>3</sup>/d (0.306 m<sup>3</sup>/s) in July 2019, and 8,000 m<sup>3</sup>/d (0.093 m<sup>3</sup>/s) in September 2019. In March 2019, the loss between FR\_FRDSCC1 and Lake Mountain Creek was approximately 11,000 m<sup>3</sup>/d (0.127 m<sup>3</sup>/s) while the gain between Lake Mountain Creek and the Liver Pool Ponds was approximately 16,900 m<sup>3</sup>/d (0.196 m<sup>3</sup>/s), for a net gain of approximately 5,900 m<sup>3</sup>/d (0.068 m<sup>3</sup>/s) in the discharge area downstream of the Clode Creek settling ponds. These results suggest that discharge south of the Clode Creek settling ponds varies considerably seasonally and are greater during high flows.

### 6.4.5 Water Quality

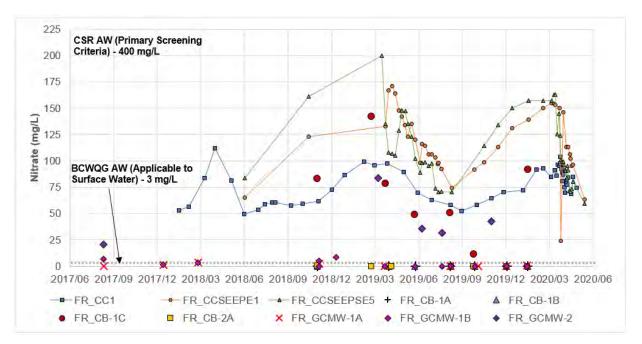
Water in the Clode Creek watershed is influenced by mining operations. Analytical results of groundwater samples collected in the S8 Study Area compared to the primary and secondary screening criteria are included in Table 1. Table N below presents a summary of nitrate-N, sulphate, and selenium concentration in discharge from the settling ponds at FR\_CC1, as well as in seepage and groundwater in the vicinity of the ponds. Figure 24, Figure 25, and Figure 26 show the concentrations of nitrate-N, dissolved selenium, and sulphate, respectively, for the same locations. Historical and 2019 concentrations of total selenium in groundwater and surface water in vicinity of the ponds of work completed by Golder (2020c) are also shown on Drawing 28.

Exceedances of the primary screening criteria are limited to the concentrations of dissolved selenium in samples collected from monitoring wells FR\_MW-1B, FR\_GCMW-1B, FR\_GCMW-2, FR\_CB-1C, FR\_CB-4A, and FR\_CB-4B, as well as the concentrations of fluoride in two samples collected from FR\_GCMW-1A. All of the groundwater samples collected in Study Area S8 met the secondary screening criteria.

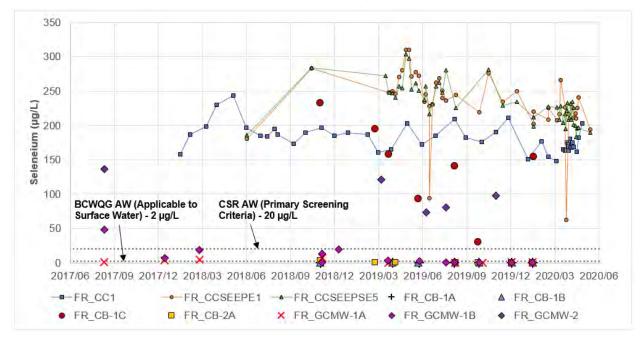
| Location Interv |             | Nitrate-N (mg/L) |             | Sulphate (mg/L) |    | D. Selenium (µg/L) |      |    |             |       |
|-----------------|-------------|------------------|-------------|-----------------|----|--------------------|------|----|-------------|-------|
|                 | (m bgs)     | n                | Range       | Mean            | n  | Range              | Mean | n  | Range       | Mean  |
| FR_CC1          | n/a         | 49               | 49.3 – 112  | 77.2            | 49 | 455 – 702          | 589  | 45 | 148 – 243   | 181   |
| FR_CCSEEPE1     | n/a         | 41               | 24 – 171    | 118             | 41 | 281 – 1030         | 835  | 44 | 62.6 – 310  | 234   |
| FR_CCSEEPSE5    | n/a         | 48               | 59.1 – 200  | 112             | 48 | 556 – 1020         | 746  | 49 | 183 – 304   | 232   |
| FR_CB-1A        | 22.9 - 25.9 | 7                | ND - 0.018  | 0.013           | 7  | ND - 10.7          | 2.25 | 7  | ND - 0.22   | 0.079 |
| FR_CB-1B        | 18.3 – 21.3 | 7                | ND          | 0.010           | 7  | ND                 | 0.47 | 7  | ND – 0.136  | 0.062 |
| FR_CB-1C        | 3.1 – 5.5   | 7                | 11.3 – 142  | 72.3            | 7  | 132 – 764          | 511  | 7  | 30 – 233    | 144   |
| FR_CB-2A        | 11.3 – 14.3 | 7                | ND - 0.396  | 0.067           | 7  | ND - 8.42          | 2.72 | 7  | ND – 2.85   | 0.56  |
| FR_GCMW-1A      | 19.5 – 21.0 | 9                | ND – 3.35   | 0.89            | 9  | 0.71 – 83.6        | 27.4 | 9  | ND – 7.31   | 2.12  |
| FR_GCMW-1B      | 14.4 – 15.9 | 13               | ND – 8.5    | 1.94            | 13 | 5.25 – 494         | 77.3 | 13 | 0.10 – 47.9 | 8.59  |
| FR_GCMW-2       | 7.6 – 9.1   | 5                | 20.3 - 83.5 | 42.7            | 5  | 300 – 574          | 408  | 5  | 73.8 - 136  | 102   |

#### Table N: Summary of CI Concentrations in Surface Water, Seepage, and Groundwater at Clode Creek Settling Ponds

n – Sample Size

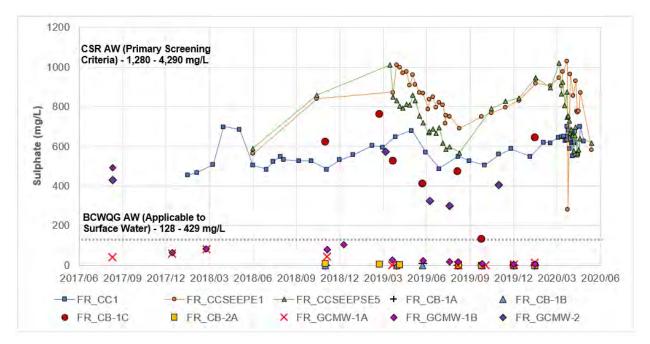

n/a - Not Applicable

ND - Non-Detectable


Note: The full detection limit was used in calculating the mean.

Concentrations are highest in the seepage samples, which is expected as they represent undiluted contact water. There is mine influenced groundwater both upgradient (FR\_CB-1C) and downgradient (FR\_GCMW-1B and FR\_GCMW-2) of the settling ponds. The mine influenced groundwater is stratified in the valley-bottom aquifer, with little impacts below 16 m bgs (Table N). There is some seasonality in the concentrations of nitrate-N in the settling pond discharge, with highest concentrations in late winter or early spring between February and April and declining concentrations through the summer and into fall, before concentrations begin to rise again. The same pattern is apparent in both shallow groundwater and the seepage water (Figure 24). Similar seasonality is apparent in the concentrations of sulphate in groundwater, seepage, and pond effluent; however, maximum concentrations of the pond discharge occur slightly later in the year in April and May (Figure 26). There are no obvious seasonal patterns in the concentrations of dissolved selenium in pond effluent, seepage, or shallow groundwater (Figure 25). There appears to be an overall decline in selenium concentrations in the seepage water, although the dataset is short.
















# Figure 26: Sulphate Concentrations in Pond Effluent, Seepage, and Groundwater in The Vicinity of the Clode Creek Settling Ponds. Lines Connecting Points of Surface Water and Seepage Water Datasets are to Orient the Reader and do not Imply Continuous Data.

### 6.4.6 Transport Pathways

There are three primary pathways for mine-influenced water from the Clode Creek watershed to reach the Fording River:

- i) Decanting of surface water from the Clode Creek settling ponds;
- ii) Leakage of groundwater from the Clode Creek settling ponds; and
- iii) Groundwater from the spoiled portion of the watershed that underflows the Clode Creek settling ponds.

The Clode Creek settling ponds receive water from a number of sub-surface channels and pits within the watershed via the Clode Creek diversion. The ponds also receive groundwater from the watershed that discharges directly to the ponds through the fluvial valley-bottom aquifer, as well as from seepage that emerges at the base of the spoil and enters the ponds via runoff. The ponds decant to Clode Creek which joins the Fording River a short distance downstream.

Leakage to the underlying fluvial valley-bottom aquifer is inferred to occur from both ponds. Leakage from the primary Clode pond is inferred to flow through the valley-bottom aquifer and discharge to the secondary pond due to the difference in hydraulic head between the two ponds. Leakage from the secondary pond flows through the valley-bottom aquifer and slows in a southern and southeastern direction, discharging to Grassy Creek to the Fording River discharge zone between FR\_DSSC1 and Lake Mountain Creek. Although a gaining reach was identified adjacent to the Clode Creek settling ponds during the flow accretion study in March 2019, analytical data from the WED (discussed below) are representative of the Fording River, indicating that that WED does not intercept leakage from the Secondary pond.

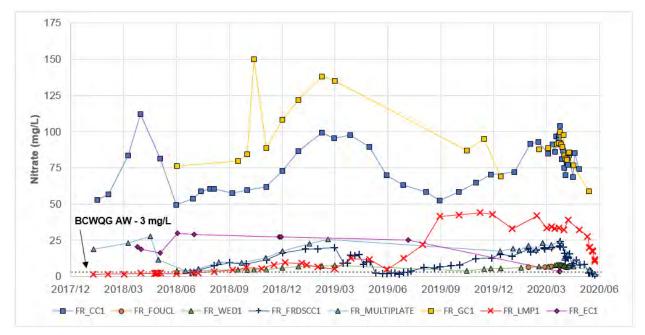


Finally, groundwater underflow of the Clode Creek settling ponds is also inferred to occur, resulting in discharge to the Fording River. This includes both seepage water that infiltrates to the fluvial valley-bottom aquifer once they emerge from the base of the spoil, as well as groundwater that enters the fluvial valley-bottom aquifer from native soils beneath the spoil.

Travel times from the secondary pond to the groundwater discharge zone downstream of the settling ponds beginning at FR\_FRDSCC1 were calculated using the equation presented above in Section 3.6.6. The travel times were calculated using the observed hydraulic gradient in the vicinity of the Clode Creek ponds of 0.011 m/m, a range of hydraulic conductivities representative of shallow fluvial sediments observed at FR\_CB-3B (8.0 x 10<sup>-5</sup> m/s) and FR\_GCMW-2 (3.0 x 10<sup>-4</sup> m/s), an effective porosity of 0.3 representative of sand and gravel, and a distance of 175 m from the southern edge of the Secondary to FR\_FRDSCC1. The estimated range of travel times between the Clode Creek settling ponds and the groundwater discharge zone downstream is 180 days to 690 days.

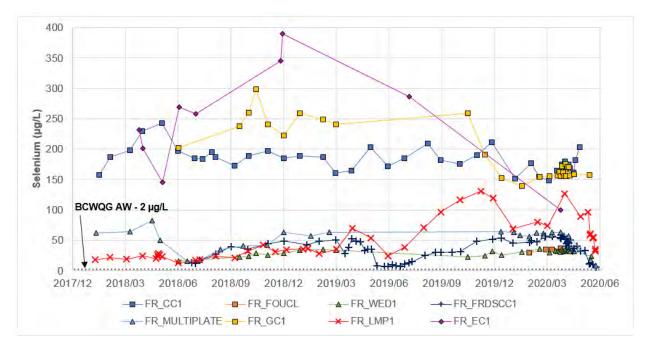
Downstream of the Clode Creek watershed, mine influenced water can also reach enter the Fording River via surface water flow or groundwater discharge from the Lake Mountain Creek and/or EC1-Eagle Pond watersheds. There is limited information on the groundwater transport pathways from these areas.

### 6.4.7 Effects on Downstream Surface Water

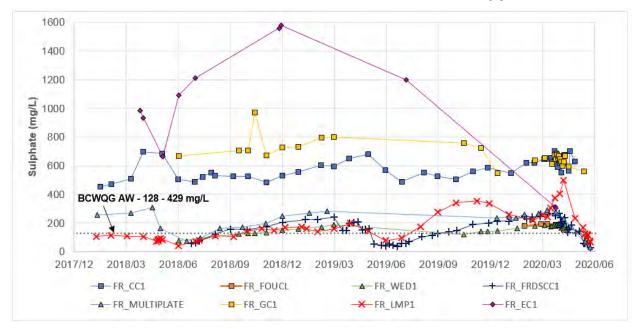

Concentrations of nitrate-N, selenium, and sulphate in surface water upstream and downstream of the Clode Creek settling ponds are shown in Figures 27, 28, and 29, respectively, as well as in tributaries of the Fording River. The plots show that water quality upstream of the settling ponds at FR\_FOUCL is similar to that in the WED. Although the dataset of FR\_FOUCL is limited to only Q1 and Q2 of 2020, the chemistry of WED can be used as an analogue for water quality in the Fording River upstream of the settling ponds to provide an idea as to constituent loading resulting from the groundwater discharge zone south between FR\_FRDSCC1. This is considered an acceptable approach as the WED is interpreted to be influenced by the Fording River.

Nitrate-N concentrations in Grassy Creek (FR\_GC1) and the Clode Ponds (FR\_CC1) appear to exhibit a seasonal trend of elevated concentrations in late winter and early spring and lower concentrations in the summer and fall. This results in seasonal loading of nitrate-N in late winter and early spring (February to early April) at downstream stations FR\_FRDSCC1 and FR\_MULTIPLATE when compared to upstream using the WED analogue. Nitrate-N concentrations in Lake Mountain Creek (FR\_LMP1) were higher in late 2019 and 2020 than in 2018 and early 2019. However, this does not appear to have materially influenced the concentrations at downstream station FR\_MULTIPLATE, as concentrations were similar to 2018. Also, nitrate-N concentrations at FR\_MULTIPLATE are only marginally higher than those at FR\_DSSC1 (located at the inferred beginning of the groundwater discharge zone), suggesting that there is minimal loading due to groundwater along this reach.

A similar pattern in selenium and sulphate loading occurs at downstream locations FR\_FRDSCC1 and FR\_MULTIPLATE, with lower concentrations during and after freshet and higher concentrations during winter. However, effluent from the Clode Creek settling ponds and surface water in Grassy Creek show less seasonal patterns than nitrate-N, with more stable concentrations of selenium and sulphate. Selenium and sulphate concentration patterns in Lake Mountain Creek are similar to nitrate-N, suggesting it is not the source of loading. Selenium and sulphate concentrations of nitrate-N but do not show the same seasonality. Therefore, neither the elevated selenium concentrations in Lake Mountain Creek nor Eagle Pond effluent appear to influence the concentrations in downstream station FR\_MULTIPLATE. Similar to nitrate-N, selenium and sulphate concentrations are only marginally higher at FR\_MULTIPLATE than FR\_FRDSCC1.




The minimal increase in concentrations of nitrate-N, selenium, and sulphate between the Fording River at FR\_FRDSCC1 (located at the beginning of the inferred groundwater discharge zone) and downstream station FR\_MULTIPLATE suggests there is minimal loading from groundwater. Although a notable amount of discharge is considered to occur, it may be that the extent of the mining influence observed in groundwater at wells FR\_CB-1C and FR\_GCMW-2 is limited. The increase in concentrations at FR\_FRDSCC1 and FR\_MULTIPLATE compared to upstream FR\_FOUCL and the WED is considered to be effluent from the Clode Creek settling ponds and input from Grassy Creek (transport pathways i and ii above representative of direct discharge from the ponds and leakage from the ponds that is transported to Grassy Creek). Similar seasonality is observed in each of the nitrate-N, selenium, and sulphate concentration patterns in downstream locations FR\_FRDSCC1 and FR\_MULTIPLATE, which is not the case of the presumed input at FR\_CC1 and FR\_GC1. This is considered possible if a stable input occurs throughout the winter during baseflow, leading to the elevated concentrations downstream during late winter, which are diluted during freshet.




#### Figure 27: Nitrate-N Concentrations in Fording River Surface Water Upstream and Downstream of the Clode Creek Settling Ponds, Tributaries, and Shallow Groundwater. Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data









#### Figure 29: Sulphate Concentrations in Fording River Surface Water Upstream and Downstream of the Clode Creek Settling Ponds, Tributaries, and Shallow Groundwater. Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data



### 6.4.8 Data Gaps

Monitoring wells in the Clode Creek area are relatively new, installed between 2017 and 2019. As such, water level and water quality data only cover the decline window, and there are no historical data within which to contextualize the available data or evaluate whether they were likely to produce conditions in the receiving environment unique to the decline window. Moreover, a considerable amount of field measured temperature data are missing from the existing dataset (Table 1), which were either not collected or (more likely) not uploaded to Teck's database. There is also a general lack of monitoring wells in the S8 Study Area outside of the area of the Clode Creek settling ponds. Monitoring wells along the inferred groundwater discharge zone would be particularly useful in direct monitoring of groundwater influence.

# 6.5 Stressors during the Decline Window

The S8 Study Area between the Clode Creek settling ponds and NTP is a reach of the Fording River that coincides with WCT spawning and overwintering habitat, as well as influence from mining operations and an area of known groundwater discharge. Groundwater and surface water analytical data during the decline window suggest there is minimal loading of mine-influenced groundwater to the Fording River in the inferred groundwater discharge zone. However, both the groundwater and surface water datasets over that timeframe are limited, as the groundwater dataset is quarterly and there are large gaps in the surface water dataset at key monitoring stations upstream (FR\_FOUCL) and downstream (FR\_MULTIPLATE) of the discharge zone.

Although there are a lack of data for time period of interest, mine-influenced groundwater does not appear to have a meaningful effect on surface water quality and, as such, there is no strong evidence to suggest that groundwater quality played a role in the WCT population decline in the S8 Area.

The historical groundwater level data in the Clode Creek area only cover the decline window and not the period leading up to it. Therefore, the dataset is insufficient to evaluate whether the groundwater discharge rates or spatial distribution of discharge zones were likely to have been unique to the decline window since the historical data are unavailable for comparison.



# 7 Hydrogeological Conceptual Model of the S10 Study Area

Henretta Lake was identified as an area where spawning and overwintering of WTC occurs. In comparison to information available for the S6 and S8 Study Areas, the groundwater information for the S10 Study Area is relatively limited. Therefore, the basis for the hydrogeological conceptual model is limited resulting in a less detailed conceptual model than for the other study areas.

# 7.1 Physical Setting and Geology

A site plan of the S10 Study Area is included on Drawing 4, while a geological cross-section is included in Drawing 29. In the Henretta Lake area, the surface elevation ranges from approximately 2,300 m asl near the crest of Henretta Ridge, to topographic lows at the confluence of Henretta Creek and Fording River at 1,700 m asl. The elevation of the lake is approximately 1710 m asl. The original topography in the reclaimed area of Henretta Creek has been highly altered by historical mining and subsequent backfilling. The historical mining includes a South Pit which extends to an elevation below 1,660 m asl which has subsequently backfilled. The historical South Pit was informally subdivided into east and west portions by an anticline structure that forms a north-south bedrock ridge high that was not mined (Golder, 2013). Henretta Lake is a man-made lake situated on the west portion of the backfilled pit. Because of the historical mining, much of the surficial materials have been removed. The surficial geology in the undisturbed areas include till/morainal upland deposits and fluvial deposits in the valley-bottom. At FR\_HMW3, spoils overlie an approximate 10m thick gravel which is inferred to be fluvial.

# 7.2 Physical Hydrogeology

Bedrock topography is a controlling factor for groundwater flow directions in upland areas (SNC-Lavalin, 2017a). Groundwater monitoring well FR\_HMW2 is completed within the spoils to the north of Henretta Lake and logged lithology indicates waste rock overlying bedrock. Bedrock was identified at 47.7 m at FR\_HMW2.

Depth to bedrock in the valley bottom in the area from borehole logs indicates ranges from 22.5 m bgs at FR\_HMW3 to 33.5 m bgs at FR\_HMW1S/D in the backfilled South Pit; however, the deepest portion of the backfilled pit is known to be approximately 60 m bgs. A down-valley groundwater flow path is inferred in the valley bottom; however, the groundwater flow pattern may be interrupted by the backfilled pits extending below the valley bottom as they can be hydraulic sinks as well as recharge zones to the regional groundwater system (Golder, 2013).

Hydraulic conductivities of the monitoring wells in the vicinity of Henretta Lake are summarized in Table O below. They are generally high and representative of the coarse material of the backfilled pits or spoils within which they are completed.



| Well IDs | Hydrostratigraphic Unit                   | Screened<br>Interval<br>(m bgs) | Hydraulic<br>Conductivity (K)<br>(m/s) | Source            |
|----------|-------------------------------------------|---------------------------------|----------------------------------------|-------------------|
| FR_HMW1D | Waste rock /coal/bedrock (backfilled pit) | 51.2 - 54.3                     | 1.0 x 10 <sup>-4</sup>                 |                   |
| FR_HMW1S | Waste rock (backfilled pit)               | 29.9 - 32.5                     | 3.0 x 10 <sup>-3</sup>                 | SNC-Lavalin, 2018 |
| FR_HMW2  | Coal/spoils                               | 43.3 – 46.3                     | 3.0 x 10 <sup>-3</sup>                 |                   |
| FR_HMW3  | Silty gravel                              | 16.7 – 19.7                     | 7.0 x 10 <sup>-4</sup>                 |                   |

#### Table O: Summary of Hydraulic Testing Results in the Clode Creek Area

**Note:** Hydraulic conductivity tests at all locations listed were completed as slug tests. Constant rate tests were also completed at FR\_HMW1D, FR\_HMW2, and FR\_HMW3.

Drawing 30 shows the potentiometric elevations and inferred contours in the vicinity of Henretta Lake in March 2019. Based on potentiometric elevations in FR\_HMW2 compared to FR\_HMW1D, FR\_HMW1S and FR\_HMW3, groundwater flows from the spoils towards the valley bottom in a west-southwesterly direction under a gradient of approximately 0.026 m/m. Groundwater flow in the valley-bottom is inferred in the down-valley direction; however, the groundwater flow pattern may be interrupted by the backfilled pits extending below the valley bottom as they can be hydraulic sinks as well as recharge zones to the regional groundwater system (Golder, 2013).

### 7.2.1 Groundwater Surface Water Interactions

Groundwater levels in the vicinity of Henretta Lake since 2015 are shown in Figure 30, below. The figure shows that groundwater levels at FR\_HMW2 do not fluctuate highly seasonally. There is more seasonal fluctuation in monitoring wells FR\_HMW1S/D and FR\_HMW3, all completed within backfilled pits. The seasonal influence at these wells corresponds to freshet and suggests a hydraulic connection between the backfilled pits and Henretta Creek at this time of year. Groundwater levels are fairly stable at these wells during the remainder of the year, similar to FR\_HMW2.

Vertical gradients between in the deep (i.e., 54 m bgs) backfilled pit at monitoring wells FR\_HMW1S/D are consistently upward since 2015, except for manual measurements made in Q1 of 2016 and Q2 of 2018 when the gradients were downward. The transducer data also indicate a reversal of the vertical gradient to upwards in the summer and fall of 2016. The manual measurement made in Q2 of 2018 is considered to be a field error where the shallow measurement was recorded as deep and vice versa, since the datalogger data indicate an upward gradient. The same is suspected to be true of the measurement made in Q1 of 2016 as gradients are consistently upward, although there is a lack of datalogger at the time of the measurement to corroborate this suspicion.



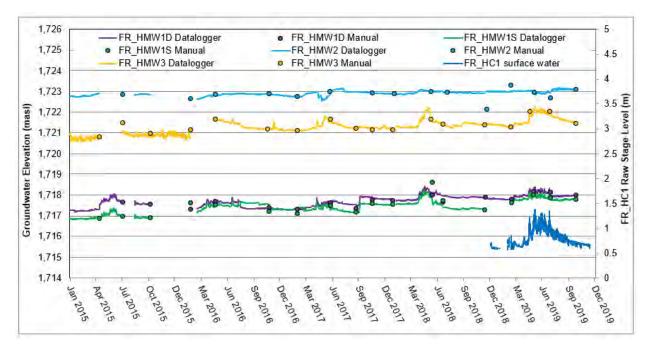



Figure 30: Groundwater and Surface Water Elevations in the Henretta Creek Watershed

# 7.3 Water Quality

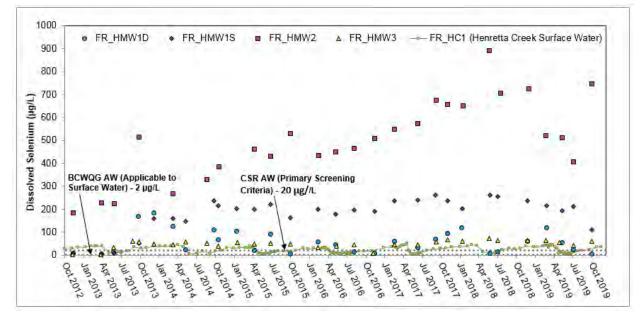
Analytical results of groundwater samples collected in the S10 Study Area compared to the primary and secondary screening criteria are included in Table 1. The concentrations of dissolved selenium exceeded the primary screening criteria in groundwater samples collected from all wells in the S10 Study Area. The concentrations of nitrate and dissolved selenium in several samples collected from FR\_HMW2 also exceeded the secondary screening criteria, as did the nitrate concentration of one sample collected from FR\_HMW1S. It is noted that the secondary screening criteria for nitrate is hardness dependent and that the equation is valid up to a hardness of 500 mg/L, and that the hardness concentrations of all samples that exceeded the criteria were considerably higher than 500 mg/L.

Table P below shows a summary of nitrate-N, sulphate and dissolved selenium concentrations in monitoring wells FR\_HMW1S/D, FR\_HMW2, and FR\_HMW3, seep FR\_HENSEEP1, and surface water stations FR\_HC2 and FR-HC1 which are located upstream and downstream of Henretta Lake. As indicated in the table, concentrations of these constituents are relatively high in groundwater compared to surface water.



| Location    | Screen<br>Interval<br>(m bgs) | Sample<br>Size | Nitrate-N (mg/L) |       | Sulphate (mg/L) |       | D. Selenium (µg/L) |       |
|-------------|-------------------------------|----------------|------------------|-------|-----------------|-------|--------------------|-------|
|             |                               |                | Range            | Mean  | Range           | Mean  | Range              | Mean  |
| FR_HMW1D    | 51.2 – 54.3                   | 31             | 105 – 203        | 155   | 1,410 – 2,110   | 1,731 | 4.46 – 184         | 56.4  |
| FR_HMW1S    | 29.9 – 32.5                   | 31             | 110 – 227        | 164   | 1,230 – 1,940   | 1,628 | 6.00 - 262         | 181   |
| FR_HMW2     | 43.3 - 46.3                   | 28             | 48.9 – 259       | 139   | 1,100 - 1,990   | 1,640 | 184 – 891          | 513   |
| FR_HMW3     | 16.7 – 19.7                   | 31             | 1.80 – 28.4      | 12.7  | 151 – 452       | 263   | 0.97 – 73.5        | 47.5  |
| FR_HC1      | n/a                           | 221            | 0.78 – 10.9      | 4.90  | 3.85 – 266      | 126   | 3.17 – 55.5        | 22.7  |
| FR_HC2      | n/a                           | 94             | 0.72 – 10.1      | 5.00  | 14.1 – 203      | 106   | 2.60 - 50.9        | 22.9  |
| FR_HENSEEP1 | n/a                           | 2              | 0.098 - 55.9     | 28.00 | 726 – 861       | 794   | 0.63 – 287         | 143.8 |

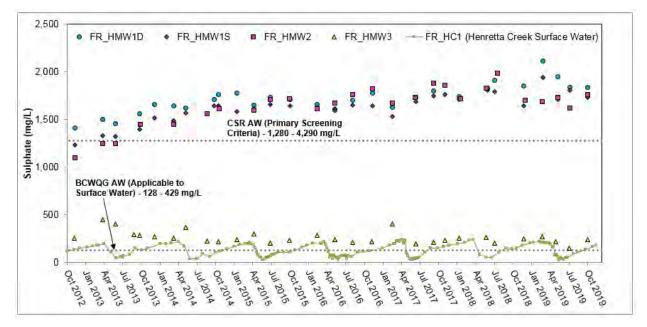
#### Table P: Summary of CI Concentrations in Groundwater in S10 Study Area


n/a - Not Applicable

There are no recent water quality samples from Henretta Lake and therefore the lake water quality can only be inferred through concentrations at the downstream station, FR\_HC1. The seepage water is considered to represent groundwater; however, concentrations of dissolved selenium and nitrate-N vary by up to three orders of magnitude while sulphate does not. This variation may be the result of seasonal geochemical attenuation of nitrate-N and selenium relative to sulphate, although such seasonal attenuation is not apparent in the backfilled pits at monitoring wells FR\_HMW1S/D or FR\_HMW3. It is noted that the FR\_HENSEEP1 has only been sampled twice and therefore there is considerable uncertainty in this interpretation.

### 7.3.1 Historical Groundwater Quality

Concentrations of dissolved selenium, sulphate, and nitrate-N in groundwater in the vicinity of Henretta Lake and surface water downstream of Henretta Lake are shown on Figure 31, Figure 32, and Figure 33 below, respectively. Monitoring well FR\_HMW2 was specifically installed to monitor upland groundwater with elevated concentrations of mining-related constituents north of the Henretta reclaimed channel near the base of the spoil. Dissolved selenium concentrations and sulphate concentrations have displayed increasing concentrations since the well was installed (Figure 34 and Figure 35) and were the highest concentrations measured in the Henretta valley. In contrast, nitrate-N concentrations displayed decreasing concentrations since installation (Figure 36). This well was installed upgradient of the Henretta valley bottom and the spoil appears to be an ongoing source of dissolved selenium and sulphate to groundwater in the valley bottom.






#### Figure 31: Dissolved Selenium Concentrations in Groundwater and Surface Water in the Henretta Creek Watershed. Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data

Dissolved selenium concentrations in shallow and deep monitoring wells FR\_HMW1S/D, installed in backfilled pits between the Henretta reclaimed channel and the spoils to the north, show no clear seasonal historical pattern or apparent long-term trends (Figure 31). Sulphate concentrations in both wells have been increasing when compared with previous years (Figure 32); whereas, nitrate-N concentrations appear to be decreasing with time (Figure 33). A similar pattern was displayed in FR\_HMW2, completed in the spoils upgradient of the backfilled pits. However, dissolved selenium concentrations differ between FR\_HMW2, where they are increasing, and FR\_HMW1S/D, where they have been stable between since 2015. It is noted that the maximum historical concentration of dissolved selenium in groundwater in the spoils north of Henretta Lake was detected during the decline window at FR\_HMW2 (891 µg/L in June of 2018), which is screened at the base of the spoil between 43.3 and 46.3 m bgs. It is suspected that the cause of the decreasing nitrate-N concentrations is related to decreasing effects of residual nitrate-N from blasting residue, whereas the increasing selenium and sulphate concentrations are from leaching of waste rock. However, they do not appear to be adversely affecting surface water or downgradient groundwater, as discussed below.





#### Figure 32: Sulphate Concentrations in Groundwater and Surface Water in the Henretta Creek Watershed. Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data

Monitoring well FR\_HMW3 monitors groundwater in backfilled pits in the eastern portion of the former South Henretta Pit. Concentrations of dissolved selenium, sulphate, and nitrate-N at this well are considerably lower than at FR\_HMW1S/D or FR\_HMW2, and similar to (but slightly higher than the concentrations Henretta Creek downstream of Henretta Lake at FR\_HC1 (Figure 31 to Figure 33).



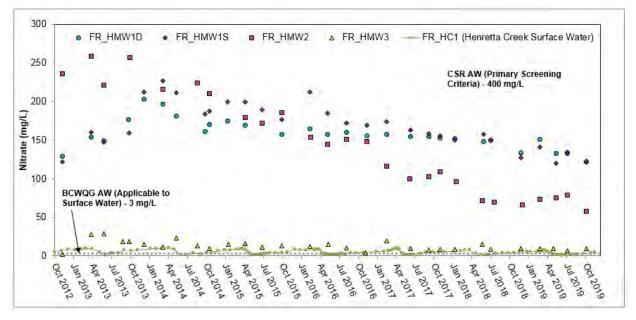



Figure 33: Nitrate-N Concentrations in Groundwater and Surface Water in the Henretta Creek Watershed. Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data

### 7.3.2 Fate and Transport Pathways

Drawing 30 indicates groundwater with elevated concentrations of mining-related constituents flows from the upland spoils towards Henretta Lake, suggesting discharge of mine-influenced groundwater into the lake. However, water quality at the surface water stations upstream (FR\_HC2) and downstream (FR\_HC1) of Henretta Lake, as well as at the Henretta Lake outlet (FR\_HL1, assumed to be collected near surface), do not demonstrate that. The concentrations of dissolved selenium, sulphate, and nitrate-N are shown in Figure 34, Figure 35, and Figure 36 below, respectively. The plots show that the concentrations of all three parameters are generally similar at each station (particularly between downstream station FR\_HC1 and the Henretta Lake outlet at FR\_HL1), and show seasonal variations of higher concentrations in winter and lowest concentrations during freshet (Figure 34 to Figure 36). Marginal differences in concentrations between stations FR\_HC1 and FR\_HC2 are generally only apparent during winter. Minimal loading of sulphate and nitrate-N is apparent between stations FR\_HC1 and FR\_HC2 during the winters of 2013/2014 and 2014/2015 (Figure 35 and Figure 36). However, attenuation between stations FR\_HC1 and FR\_HC2 is apparent in the concentrations of dissolved selenium during the winters of 2010/2011 through 2013/2014 and of nitrate-N in the winters of 2011/2012 and 2012/2013 (Figure 34 and Figure 36).



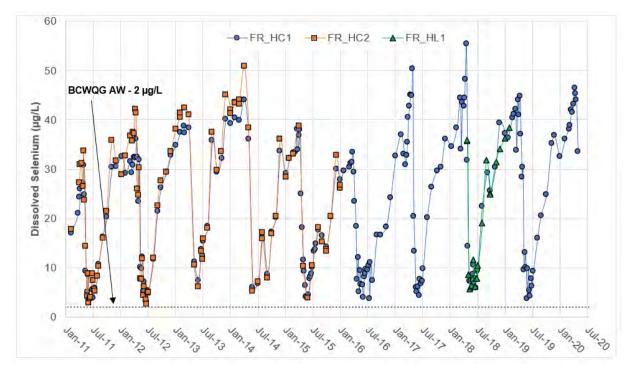



Figure 34: Dissolved Selenium Concentrations in Henretta Creek Upstream (FR\_HC2) and Downstream (FR\_HC1) of Henretta Lake, as well as at the Henretta Lake Outlet (FR\_HL1). Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data



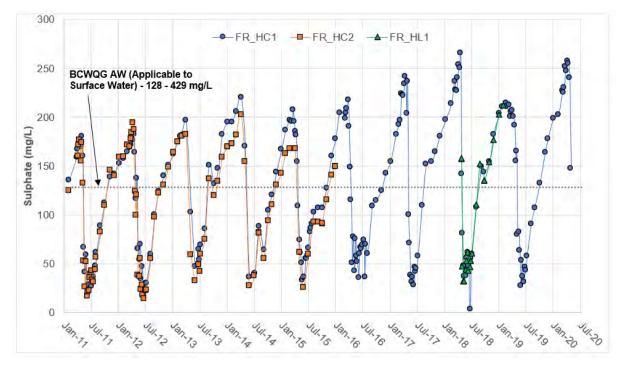
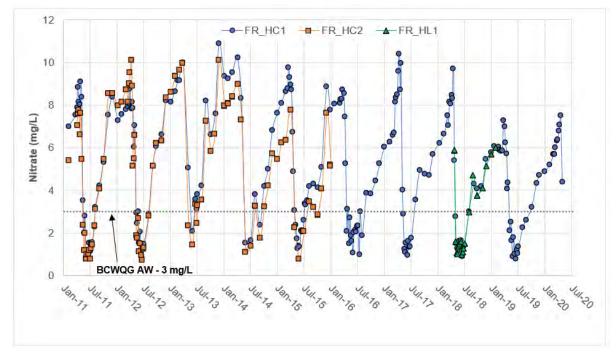




Figure 35: Sulphate Concentrations in Henretta Creek Upstream (Fr\_Hc2) and Downstream (Fr\_Hc1) of Henretta Lake, as well as at the Henretta Lake Outlet (Fr\_Hl1). Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data





#### Figure 36: Nitrate-N Concentrations in Henretta Creek Upstream (FR\_HC2) and Downstream (FR\_HC1) of Henretta Lake, as well as at the Henretta Lake Outlet (FR\_HL1). Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data

Overall, the similar water quality between the stations shown on these plots suggests that there is minimal loading from groundwater to Henretta Lake in the area of the backfilled pits. Although concentrations of mining-related constituents in the spoiled backfilled pits are consistently high, there are no apparent downgradient effects in the Fording River valley bottom or Henretta Lake resulting from groundwater transport from these sources. It may be that elevated concentrations of mining-related constituents are attenuated by reduction of nitrate and selenate along the flow path, mitigating loading from groundwater to Henretta Lake. An alternative explanation could be underflow of groundwater beneath Henretta Lake, rather than discharge to it.

### 7.3.2.1 Potential Effects on Overwintering Fish

As discussed in Section 5.5.1.1 and Section 5.5.2.1, it cannot be ruled out that WCT could have been exposed to undiluted groundwater by preferentially migrating to warmer areas of groundwater discharge. Therefore, concentrations nitrate-N and dissolved selenium from upgradient well FR\_HMW2 were compared to acute and chronic screening values developed by Costa and de Bruyn (2021). Chronic values are summarized in Table J; acute values were 4.2 mg/L selenium and 381 mg/L nitrate as N.

Concentrations of nitrate and selenium in upgradient well FR\_HMW2 were below acute screening values, indicating that acute effects to fish would not be expected. Concentrations of nitrate and selenium were above their respective chronic screening values; these results indicate that, if fish lived in undiluted groundwater chronically, then there is a potential for chronic adverse effects. The FR\_HMW2 well is completed in the source materials of the Henretta spoils on top of bedrock, and is not located in the valley



bottom. There are no groundwater data for the valley bottom downgradient of the spoils nor are there water quality data at the base of Henretta Lake, which is recognized as a data gap (discussed below in 7.4). However, dilution would be expected in the valley bottom groundwater downgradient of the spoils; for concentrations to be below the chronic screening criteria, an approximate two-times dilution would be required. As discussed in the surface water quality report (Costa and de Bruyn 2021), surface water quality concentrations at the outlet of Henretta Lake were below chronic screening values, indicating that chronic effects to fish are unlikely.

In aggregate, the above information indicates that acute effects of nitrate and selenium would not be expected and that the interpretation for potential chronic effects is uncertain. It is recognized that the localized water quality in the lake and upgradient groundwater valley bottom is an uncertainty in the assessment.

## 7.4 Data Gaps

There are limited water quality data available for Henretta Lake -which is the presumed discharge zone of groundwater in the spoils and backfilled pits upgradient. - both historically and during the decline window. The limited water quality data available for Henretta Lake was collected at the outlet, which appears to correlate well with FR\_HC1. Therefore, historical water quality in the lake has been inferred from downstream water quality in Henretta Creek at FR\_HC1. However, there could be stratification of CI in Henretta Lake that has not been captured through surface water sampling at FR\_HL1 or FR\_HC1, with potentially higher concentrations at depth if mining influenced groundwater in the backfilled pits and spoils discharges to the lake bed. As discussed above, the potential chronic effects to fish are uncertain due to the lack of water quality data in Henretta Lake at depth and of groundwater quality data in the valley-bottom downgradient of the spoils.

## 7.5 Stressors during the Decline Window

Historical groundwater level data were reviewed since there were sufficient data during the decline window. The hydrographs show that seasonal water level fluctuations have remained consistent throughout the monitoring period at all wells. There is nothing unique to the decline window about the groundwater levels that would abnormally affect discharge to Henretta Lake. Similarly, there are no historical anomalies in the record that would result in an expected change in groundwater flow directions.

The hydrogeological conceptual model and review of the available data indicate that water quality downstream of Henretta Lake is better than the quality of upgradient groundwater that is inferred to discharge to the lake, indicating minimal constituent loading to the lake from groundwater discharge. This may be due to attenuation of mining-related constituents along the flow path, or due to underflow of Henretta Lake by groundwater. Since there is no indication of constituent loading to Henretta Lake, there is no strong evidence to suggest that groundwater quality played a role in the WCT population decline in the S10 Study Area. However, the lack of water quality data at depth within Henretta Lake during the decline window is a key data gap given that dissolved selenium concentrations within the spoils north of Henretta Lake increased throughout the decline window and that groundwater flow is directed towards the lake, which could potentially cause stratification of CI. The potential chronic effects to fish are also uncertain due to the lack of water quality data at depth in Henretta Lake and in valley-bottom groundwater downgradient of the spoils.



# 8 Operational Influences on Groundwater Resources

The stressor evaluations for each study area focused on available monitoring data (i.e., groundwater, surface water, seep, drive point). This was considered appropriate as they are direct measurements and the best indicators of changes with respect to identified potential stressors of water quantity and quality. However, there are operational activities that may influence groundwater and therefore have the potential to influence baseflow (i.e., water quantity) in the Fording River, including groundwater extraction, consumptive use of water stored in ponds or pits, and pit development.

Groundwater extraction from supply wells has the potential to affect base flow in the river if there is a direct hydraulic connection between the wells and the river, or by altering the flow field and affecting groundwater discharge to the river. Consumptive use of stored water in pits and ponds may influence the amount of groundwater recharge, which can in turn affect the amount of groundwater discharge in gaining reaches. Pit development can influence whether groundwater is directed towards or away from the river depending on the water level maintained within the pit if the base of the pit is below that of the river. The following sections summarize the state of knowledge, key data gaps and/or uncertainties regarding the influence of water use at Points of Diversion (POD's) where water is extracted, as well as the influence of the development of several pits. Trends in water use across FRO during the decline window were also evaluated by Ecofish (Wright et al., 2021).

## 8.1 Groundwater Extraction

## 8.1.1 FRO Potable Wells

The potable wells (FR\_POTWELLS) at FRO consist of six production wells completed in fluvial sediments in the Fording River valley-bottom adjacent to Turnbull Pit (Drawing 31), with the nearest well (FR\_PW91) located approximately 65 m southeast of the river. Well construction details are provided in the as-built drawings included in Appendix II. Despite the name, groundwater withdrawn from the FR\_POTWELLS is used for operational purposes and is not used as a potable water source.

A section of the Fording River upgradient and adjacent to the FR\_POTWELLS dries seasonally in the winter months (Hocking et. al, 2021) and shown on Drawing 31. Daily pumping data from the FR\_POTWELLS are available since 2015; however, pumping tests on individual wells to understand the well yields and aquifer transmissivity have not been completed. Analyses of the pumping data during operation of the wells has also not been completed since the wells are not instrumented with pressure transducers. Capture zone analyses to understand zone of influence have also not been completed due to a lack of aquifer transmissivity and hydraulic gradient data. Additionally, the pumping data are the combined rates from all six production wells; pumping rates of individual wells (also needed for capture zone analyses) are not available. Groundwater elevation data are not available in the vicinity of the FR\_POTWELLS and the wells are unable to be instrumented with dataloggers due to safety concerns (confined space) and the infrastructure of the wells (the pumps would need to be removed and drop tubes would need to be installed). The similarity in concentrations of CI between the FR\_POTWELLS and nearest surface water monitoring station in the Fording River (FR\_FR1) suggests that there is a hydraulic connection between the extraction wells and the river (Figure 37 to Figure 39).



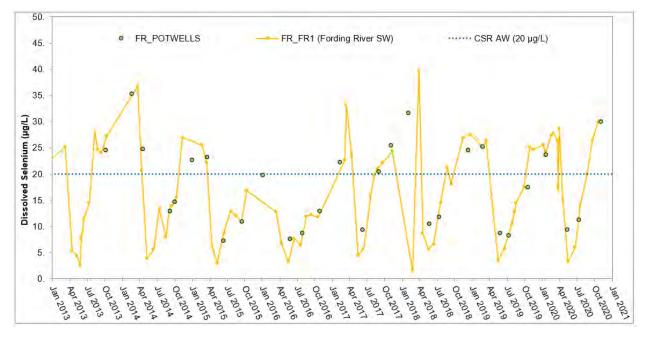



Figure 37: Dissolved Selenium Concentrations in Groundwater at FR\_POTWELLS and Surface Water at FR\_FR1. Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data

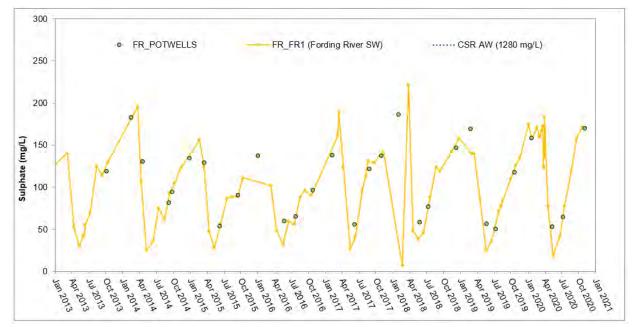
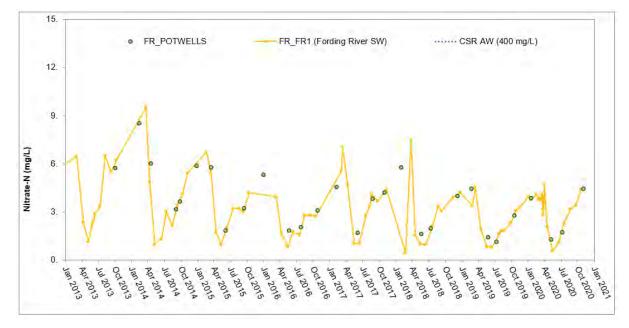
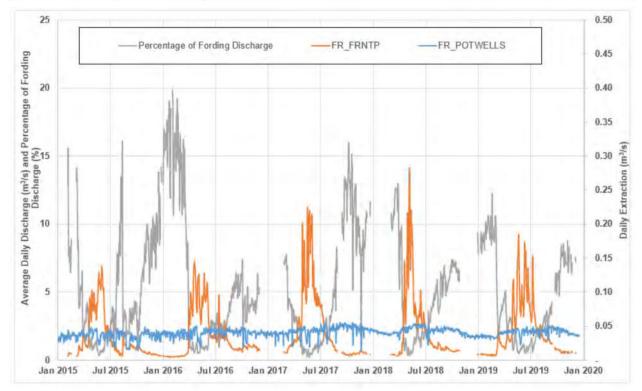




Figure 38: Sulphate Concentrations in Groundwater at FR\_POTWELLS and Surface Water at FR\_FR1. Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data





#### Figure 39: Nitrate-N Concentrations in Concentrations in Groundwater at FR\_POTWELLS and Surface Water at FR\_FR1. Lines Connecting Data Points of Surface Water Stations are to Orient the Reader and do not Imply Continuous Data


Groundwater extraction at the FR\_POTWELLS between 2015 and 2019 is summarized along with discharge at station FR\_FRNTP (approximately 3.5 km downstream) in Table Q below. For context, the table also expresses the water withdrawn the FR\_POTWELLS as a percentage of flow in the Fording River as measured at FR\_FRNTP. This represents the upper bound of potential flow reduction in the Fording River caused by groundwater extraction at the FR\_POTWELLS in the absence of knowing the true influence. Figure 40 also shows the average daily groundwater extraction at the FR\_POTWELLS, Fording River discharge at FR\_FRNTP, and potential withdrawal as a temporal plot.

The data show that the percentages of Fording River discharge are greatest during the winter months when flow in the river is lowest, and the highest percentages of Fording River discharge occurred prior to the decline window during the winter of 2015-2016 (Figure 40). There is no apparent change in groundwater extraction volumes during the decline window compared to earlier data (Figure 40). It is noted that a change in pumping rate is not necessarily required to influence flows in the river if the flows were lower during the decline window. However, the influence of groundwater extraction cannot be evaluated independently or separated from other stressors, and therefore the flows were evaluated directly in Wright et al. (2021). The available data indicate that average annual streamflow in the Fording River was among the highest during the decline window compared to previous years, although flows were particularly low in December 2018 and February 2019 (Wright et. al, 2021).



#### Table Q: Summary of daily groundwater extraction at FR\_POTWELLS and Fording River Discharge at FR\_FRNTP

| Value                         | Statistic | 2015 - 2019 | Prior to Decline (2015<br>to Sep. 2017) | Decline Window (Sep. 2017 to<br>Sep. 2019) |
|-------------------------------|-----------|-------------|-----------------------------------------|--------------------------------------------|
| FR_POTWELLS                   | Minimum   | 0.013       | 0.014                                   | 0.013                                      |
| Average Daily<br>Pumping Rate | Maximum   | 0.055       | 0.054                                   | 0.055                                      |
| (m <sup>3</sup> /s)           | Average   | 0.040       | 0.039                                   | 0.042                                      |
| FR_FRNTP                      | Minimum   | 0.207       | 0.207                                   | 0.288                                      |
| Average Daily<br>Discharge    | Maximum   | 14.1        | 11.2                                    | 14.1                                       |
| (m <sup>3</sup> /s)           | Average   | 1.94        | 2.01                                    | 1.97                                       |
| Percentage of                 | Minimum   | 0.179       | 0.179                                   | 0.358                                      |
| Fording                       | Maximum   | 19.8        | 19.8                                    | 16.0                                       |
| Discharge (%)                 | Average   | 4.98        | 4.70                                    | 5.17                                       |



# Figure 40: Average Daily Groundwater Extraction at the FR\_POTWELLS, Discharge in the Fording River at FR\_FRNTP, and Extracted Groundwater at the FR\_POTWELLS Expressed as a Percentage of Discharge in the Fording River at FR\_FRNTP



While a hydraulic connection between the FR\_POTWELLS and the Fording River is evident from the chemistry data, the extraction and flow data discussed above suggest the influence of FR\_POTWELLS pumping on flows in the Fording is unlikely to have been pronounced during the decline window. However, there are some gaps in the available discharge data in winter on Figure 40 above, and there are also no direct groundwater monitoring measurements to fully understand the influence of pumping on the river. It is acknowledged that there is a likely effect of groundwater withdrawal from the FR\_POTWELLS on flow in the Fording River, which is considered a data gap.

### 8.1.2 Greenhouse Wells

The Greenhouse Wells are located approximately 350 m east of the Fording River and surface water monitoring station FR\_FRCP1 (Drawing 2). The Greenhouse Wells are pumped intermittently at low volumes between January to October. Well FR\_GHWELL4 pumps approximately 3.6 m<sup>3</sup>/d during these months, while the remaining wells pump approximately 0.9 m<sup>3</sup>/d three days per week during the same months (SNC-Lavalin, 2019a). The combined extraction between January and October is therefore approximately 3.6 to 6.3 m<sup>3</sup>/d, or 2.5 to 4.5 L/min.

For comparison, continuous flow data provided by Teck for surface water monitoring station FR\_FRABCH (Figure 15) ranged from 0.67 m<sup>3</sup>/s (57,816 m<sup>3</sup>/d) to 21.2 m<sup>3</sup>/s (more than 1.8 million m<sup>3</sup>/d) over the decline window, with average winter baseflows of 0.96 m<sup>3</sup>/s (82,944 m<sup>3</sup>/d) over the winter of 2017/2018 and 0.84 m<sup>3</sup>/s (72,576 m<sup>3</sup>/d) over the winter of 2018/2019 (Section 4.4.1).

As discussed above in Section 3.5.1.2, the Fording River seasonally dries in the winter along a reach extending from the confluence between the main-stem and the Greenhouse Side Channel north to approximately FR\_FRCP1 (cross-gradient and downgradient of the Greenhouse Wells), with isolated areas that also dry north of FR\_FRCP1. An evaluation was conducted using available data to understand the potential influence of these wells on the drying reach and also the downgradient discharge area.

Given that the direction of groundwater flow is down-valley, the vast majority of groundwater drawn from the Greenhouse Wells would come from upgradient to the north. The lateral extent of the capture zone of a single Greenhouse Well pumping at the maximum extraction rate of all wells combined cited above (6.3 m<sup>3</sup>/d, or 4.5 L/min) was estimated using Step 2 of the ENV Water Protection Toolkit according to:

$$Y = \frac{Q}{2000Ti}$$

and

$$T = Kb$$

where Y is the half width of the capture zone in m, Q is the pumping rate in L/s, T is the transmissivity of the aquifer in  $m^2/s$ , *i* is the hydraulic gradient, K is the hydraulic conductivity, and *b* is the aquifer thickness. This analytical solution is applicable to unconsolidated aquifers that have a uniform ambient (i.e., non-pumping) water table slope (ENV, 2004).

Using the equations above and a pumping rate equal to 0.075 L/s (6.3 m<sup>3</sup>/d, or 4.5 L/min), hydraulic gradient of 0.008 m/m observed in the S6 Study Area, a range of hydraulic conductivities equal to the range of the lower and upper 95<sup>th</sup> percentiles presented above in Section 3.4.1 (1.3 x 10<sup>-4</sup> to 4.0 x 10<sup>-3</sup> m/s), and aquifer thickness of 30 m based on the log of FR\_GH\_WELL4 (Piteau, 2012b), the half-width of the capture zone was estimated to range between 0.04 m and 1.2 m. These widths are very small compared to the distance



to the Fording River (approximately 350 m east), and indicate that almost all water will be drawn from upgradient and not laterally from the Fording River. Although the zone of influence extends beyond the capture zone, it is not expected to extend to the Fording River considering relatively long distance.

Finally, the analytical chemistry data of groundwater samples collected from the Greenhouse Wells and surface water samples collected from the Fording River also indicate that there is no influence of the Fording River on groundwater chemistry at the Greenhouse Wells. The NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2</sup>-S ratios of groundwater extracted from the Greenhouse Wells indicate that the source is groundwater recharged by Kilmarnock Creek (Figure 11). The NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2</sup>-S ratios of samples collected from the Fording River at FR\_FR4 (Figure 12) and FR\_FRCP1 (Figure 11 and Figure 12) are considerably different to groundwater samples collected from the Greenhouse Wells, especially at FR\_FRCP1 during baseflow when there is a strong input from Swift and Cataract creeks.

Based on the evidence above, it is concluded that groundwater extraction from the Greenhouse Wells does not affect the Fording River or contribute to the drying reach between FR\_FRCP1 and the confluence of the Greenhouse Side Channel with the main stem.

## 8.2 Pit Development

The conceptual models and stressor evaluations of each Study Area presented in earlier sections of this report focused on groundwater flow through valley-bottom alluvial aquifer since it is the primary conduit for to reach the Fording River. However, pit development can also influence conditions in the Fording River which is a transport pathway that occurs primarily through bedrock.

Groundwater flow in bedrock is topographically driven and predominantly limited to fracture flow within bedding, joints, or along faults. The primary porosity in bedrock (i.e., matrix porosity, or rock pore space), is considered to be relatively minimal compared to the secondary porosity (i.e., fracture flow). A high spatial variability in bedrock hydraulic conductivity is common, and in combination with topographic relief, has a strong effect on determining direction of groundwater flow (BC MWLAP, 1994). From a regional perspective, the bedrock flow system has previously been divided into shallow, intermediate and deep flow systems (SNC-Lavalin, 2020b and references therein).

The shallow bedrock flow system consists of groundwater in weathered or fractured bedrock that is at or near the surface, or near the overburden contact. Groundwater in the shallow bedrock is hydraulically connected to the unconsolidated flow system and thus flow directions and hydraulic gradients reflect the unconsolidated system. Localized flow in shallow bedrock is expected to follow topography both within the existing mining footprint and on the flanks of the mountains (SNC-Lavalin, 2020b).

The intermediate bedrock flow system has longer flow paths and residence times than the shallow system, with discharge to the valley flanks and not the valley bottoms of the main stems. The intermediate flow system is controlled by variations in bedrock permeability where more permeable units (i.e., units that exhibit greater fracturing due to brittle deformation) outcrop on the valley flank, which may locally increase permeability. Where it outcrops, weathering may also increase the localized permeability. Flow in these units is expected to follow bedding planes and structural features. Discharge from these exposures can occur along flanks of upland areas and results in surface or shallow groundwater flow in the tributary drainage; as such, the intermediate flow system is still relatively localized and does not play an important role in regional groundwater flow.



A deeper, regional flow system exists that ultimately discharges to the valley-bottom sediments in either the main stem rivers or significant tributaries. The deep system represents a relatively small portion of total regional groundwater flow because it is a rock mass broadly demonstrated to have low permeability (Section 5.3.3). Residence times for the bedrock mass in the deep flow system have been modelled to be on the order of decades to millennia at LCO (Teck, 2011), FRO (Golder, 2014b) and EVO (Golder, 2015b). As such, from a regional water balance perspective, volumetric flow through the deeper bedrock mass is minor compared to flow through surface water and unconsolidated aquifers. Isolated localized exceptions may occur where karst and faults result in elevated hydraulic conductivity.

Hydraulic conductivity within bedrock is highly variable, ranging between  $10^{-11}$  and  $10^{-6}$  m/s within the Mist Mountain Formation at FRO (Golder, 2014; SNC-Lavalin, 2015). Bedrock hydraulic conductivity is generally greatest near the bedrock surface due to weathering and decreases with depth due to increasing lithostatic pressure that reduces fracture apertures. Regionally, the geometric mean of bedrock in the upper 100 m is  $1.0 \times 10^{-7}$  m/s, which is reduced by an order of magnitude to  $1.0 \times 10^{-8}$  m/s at depths of 300 m to 400 m (Golder, 2015).

Considering the generally lower permeability and longer travel times, the discussion below on the potential influence of pit development on flows in the Fording River is limited to pits in close proximity to the Fording River valley bottom. The discussion below is further limited to consideration of changes in flow to the Fording River only, due to a lack of data to evaluate impacts to flow in tributaries. However, it is acknowledged that there may have been reductions in flow to Fording River tributaries from the pre-mining condition due to a number of factors such as upstream diversions, direct losses to pits, and changes in hydraulic gradients, and that these losses also affect flows in the Fording River.

### 8.2.1 Swift Project

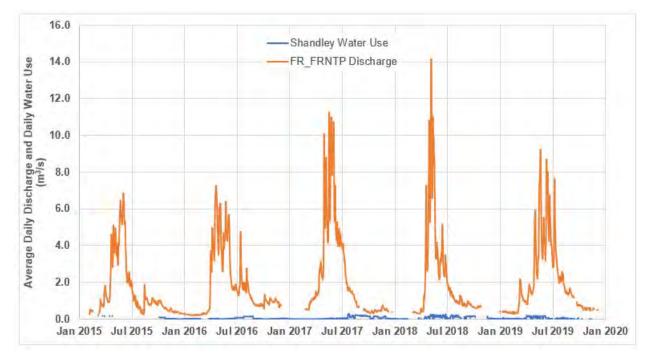
### 8.2.1.1 Shandley Pit

Shandley Pit is part of the Swift Project and is located west of the NTP as shown on Drawing 32. Water currently stored in Shandley Pit is used as make-up water for the Process Plant (Teck Coal, 2017). In the future, Shandley Pit will be dewatered as part of the development of Swift Pit. The base of Shandley Pit is below the elevation of the Fording River, with the hydraulic gradient under current conditions towards the Fording River. The hydraulic gradient under the future de-watered scenario is expected to be reversed.

O'Neill Hydro-Geotechnical Engineering (OHGE) recently completed an evaluation of the hydraulic connectivity between Shandley Pit and the Fording River to assess the potential reduction in flow due to the gradient reversal during future dewatering. OHGE estimated that seepage to Shandley Pit under the future dewatering scenario to be 0.002 m<sup>3</sup>/s or 0.7% of Fording River baseflow, with a predicted travel time from the river to the pit would be on the order of nine years (OHGE, 2020a). Using a gradient (0.1 m/m) based on the average water level of the pit lake (1645 m asl) and Fording River adjacent to the pit (1625 m asl), and same hydraulic conductivity (8 x 10<sup>-8</sup> m/s), cross-sectional area (112,200 m<sup>2</sup>), distance (200 m), and effective porosity (0.025) reported by OHGE, SNC-Lavalin estimates that the current discharge to the Fording River from the Shandley Pit Lake to be on the order of 0.001 m<sup>3</sup>/s with a travel time of approximately 20 years.

Monthly and annual use of water stored in Shandley Pit between 2015 and 2019 is summarized in Table R below. Generally, water use was highest between June to October and comparatively lower during the winter months. Shandley Pit water usage was also higher during the decline window than prior to it; however, Ecofish noted that Teck's POD data records improved following the issue of current water licenses




in 2017 (Wright et. al, 2021) so the higher usage may be a result of better record keeping. For the Fording River to lose water to Shandley Pit via leakage, consumptive water use would have to draw the water level in the pit below the elevation of the Fording River, and there would need to be a hydraulic connection between the pit and the river. However, the hydrograph included in OHGE indicated that the water level in the pit was continually above the elevation of the river prior to and during the decline window (UHGE, 2020). Since the water level in the pit is greater than the elevation of the Fording River, the water removed from Shandley Pit represents a potential reduction in recharge to the Fording River if there were to be a hydraulic connection between the pit and the river. However, the water used from Shandley Pit represents a small proportion of flow in the Fording River (Figure 41), and considering the long travel times along the relatively low-permeability bedrock pathway and low estimated discharge rate to the Fording River emanating from the pit, it is considered unlikely that water use from Shandley Pit would have deleteriously reduced baseflows in the Fording River during the decline window.

| /olume Used<br>(m³) | 2015    | 2016      | 2017      | 2018      | 2019    |
|---------------------|---------|-----------|-----------|-----------|---------|
| January             | -       | 43,585    | 7,595     | 22,855    | 26,896  |
| February            |         | 47,618    | 2,154     | 8,822     | 22,317  |
| March               | 149,902 | 4,106     | 507       |           | 16,625  |
| April               | 136,275 | 58,268    | 2,024     | 52,847    | 208,670 |
| May                 | 54,510  | 12,152    | 21,445    | 346,124   | 266,579 |
| June                | 40,882  | 75,270    | 61,296    | 362,621   | 243,292 |
| July                | 05      | 212,043   | 134,126   | 259,369   | 34,645  |
| August              | 1       | 360,871   | 404,618   | 322,236   | 83,067  |
| September           |         | 65,238    | 449,296   | 223,607   | 28,029  |
| October             | 161,849 | 1,426     | 274,122   | 214,446   | 8,919   |
| November            | 59,790  | 48,780    | 226,173   | 32,221    | 178     |
| December            | 6,567   | 80,817    | 128,474   | 31,677    | -       |
| Annual              | 609,775 | 1,010,174 | 1,711,830 | 1,876,825 | 939,217 |

#### Table R: Summary of monthly and annual use of water stored in Shandley Pit from 2015 to 2019

Bold - Water used during the WCT population decline window (September 2017 to September 2019).





#### Figure 41: Average Daily Discharge in the Fording River at FR\_FRNTP and Daily Water Use from Shandley Pit between 2015 And 2019

It is acknowledged that the above assessment conceptualizes groundwater movement as occurring though porous media rather than through discrete structural discontinuities, which may form preferential pathways for groundwater flow. Groundwater flow velocities through a high permeability discontinuity could be considerably higher than the estimates cited above. However, the available data indicate that the hydraulic conductivity of the Erickson Fault is relatively low and similar to competent bedrock (OHGE, 2020), and there is no evidence that such preferential flow through structural discontinuities exists.

### 8.2.1.2 Swift 1 Pit

A review of multiple lines of evidence by OHGE (2021) indicated that that there is likely no hydraulic connection between the Fording River and the larger Swift 1 Pit, of which Shandley Pit is a part of. OHGE (2021) summarized the rationale for why it is unlikely that the Fording River will lose water through percolation towards Swift 1 Pit, using the following lines of evidence:

- There is a topographic high comprising undisturbed ground and the NTP between the Fording River and Swift 1 Pit that is approximately 40 m higher than the river, which is expected to act as a groundwater divide. Vibrating wire piezometers installed in bedrock, soils, and the NTP facility between the Swift 1 Pit and the river show that the water level within the NTP facility is above both the river and the level of the NTP foundation soils;
- > Flow accretion studies completed in 2019 (Golder, 2020b) indicate that the Fording River is stable or gaining between the Liverpool Ponds and surface water station FR\_FRNTP;
- The bedrock formation (Spray River Group) through which water from the Fording River would need to travel to Swift 1 Pit is composed of low-permeability mudstone, siltstone, and shale. The estimated



hydraulic conductivity is low (4.0 x  $10^{-9}$  m/s) and the average yield of six wells completed within the Spray River Group in the Elk Valley is also low (19 m<sup>3</sup>/d). The Erickson Fault which lies adjacent to the east side of the Swift 1 Pit is also estimated to have a low hydraulic conductivity (9.0 x  $10^{-9}$  m/s); and

Considering the hydraulic properties of the Spray River Group, if any water from the Fording River did migrate to Swift 1 Pit, the volume would be very low and the travel time would be very long.

## 8.2.2 Turnbull Pits

The Turnbull South Pit is located east of the Fording River between Henretta and Clode Creeks as shown on Drawing 32. Turnbull South Pit has been used as a tailings storage facility (the Turnbull South Tailings Storage Facility) since mining was completed in the pit in 2016. An impact assessment was completed by Golder in 2012 prior to completion of the Turnbull Tailings Storage Facility (Golder 2012), including a field investigation to characterize the hydraulic properties of the bedrock and modeling to predict the amount of discharge to the Fording River originating from the storage facility.

The bedrock hydraulic conductivity among nine tests completed within six boreholes located along the western side of the South Pit varied between 1 x  $10^{-8}$  m/s to 4 x  $10^{-5}$  m/s, with a geometric mean of 2 x  $10^{-7}$  m/s. Hydraulic conductivities of tests completed on boreholes that intersected a major thrust fault and a minor thrust fault (a splay of the major) were estimated to be 2 x  $10^{-8}$  m/s and 7 x  $10^{-8}$  m/s, respectively, suggesting the faults do not act as preferential flow paths. This was confirmed through visual inspection of seepage along the pit wall, which indicated minimal seepage. Two relatively high hydraulic conductivity values (4 x  $10^{-5}$  m/s and 7 x  $10^{-6}$  m/s) measured in the same borehole corresponded to a thin (less than 6 m) sub-horizontal bedding interval associated with a coal bed seam. These relatively high values were deemed to be representative of a small volume of bedrock in the vicinity of the borehole and not the bulk hydraulic conductivity of the bedrock, based on the results of five long-term pump tests completed in a similar structural regime with similar bedrock types in support of the development of Swift Pit which indicated low bulk hydraulic conductivity of the bedrock (3 x  $10^{-8}$  m/s to 3 x  $10^{-5}$  m/s: Golder, 2012). The numerical modeling performed for the impact assessment indicated that up to 220 m<sup>3</sup>/d of groundwater originating from the tailings storage facility would discharge to the adjacent Fording River, which is less than 3% of baseflow (Golder, 2012).

Consumptive water use data provided by Teck indicated that no water from the Turnbull South Tailings Storage Facility was used between 2015 and 2019. It is therefore concluded that there was no influence of the Turnbull South Tailings Storage Facility on flows in the Fording River during the decline window.

An application was submitted in June 2018 to expand the mining operations at Turnbull. Called the Turnbull West Project, it is an eastward pushback of the upper highwall of the existing Turnbull South Pit. A groundwater impact assessment for the project concluded that a groundwater sink would be created by the open pit during mining, but that the reduction in groundwater discharge to Henretta Creek and the Fording River would be negligible due to the moderate to low hydraulic conductivity of the bedrock and the relatively small size of the Turnbull West Pit (Teck Coal, 2018). Considering the recency of the application, any development of the Turnbull West Pit that may have occurred during the decline window is not considered to have been a contributor to the WCT population decline due to the relatively low hydraulic conductivity of the bedrock and limited size of the pit.



## 8.2.3 Lake Mountain Pit

Lake Mountain Pit is located west of the Fording River, as shown on Drawing 32. Mining of Lake Mountain Pit began in 2017 and is expected to continue until 2022, and as such this timeframe spanned the WCT population decline. The pit encompasses portions of both the Lake Mountain Creek and Fording River catchments. Groundwater modeling was completed by OHGE in 2017 and refined in 2019 to evaluate the impact of the pit on groundwater-surface water interactions and flows in the Fording River.

The modeling consisted of developing a Base Case model to simulate the average groundwater flow regime prior to mining activities that began in 2017, based on average groundwater elevations and flow rates in and out of surface water bodies within and around the planned final footprint of the pit. A Post Mining Case was then simulated to estimate groundwater inflows to the pit and quantify changes in groundwater-surface water interactions from the Base Case. Additional scenarios were also simulated to investigate uncertainty associated with potential variability of input parameters and the presence of structural discontinuities. These simulations included a High Flux Case where the three most sensitive model input parameters were increased by 50% from the Post Mining Case simulation, and a Structural Uncertainty Case where structural discontinuities that have not been identified were hypothesized to cross-cut the Erickson Fault and provide a hydraulic connection between the Fording River and the pit (OHGE, 2020b).

However, it is SNC-Lavalin's understanding that mining of Lake Mountain Pit did not progress below the elevation of the Fording River until December of 2020. Therefore, considerations of flow reduction in the Fording River induced by a reversal in gradient from the river towards the pit are not relevant to the decline window. The primary concern of relevance to the decline window would be a reduction in groundwater discharge to the Fording River caused a reduction in recharge associated with dewatering the pit during development.

The pre-mining piezometric surface indicated the presence of a groundwater mound, with flow directed towards Lake Mountain Creek to the west and south, as well as flow towards the Fording River to the east. The calibrated Base Case model indicated a groundwater flux of 2.76 x 10<sup>-3</sup> m<sup>3</sup>/s that discharges that discharges to the Fording River along a 740 m long reach adjacent to the east wall of the final pit shell (OHGE, 2020b). For comparison, the average annual flow at surface water monitoring station FR\_FR1 between 1995 and 2016 was 1.26 m<sup>3</sup>/s, while the average annual baseflow (October and April) was 0.19 m<sup>3</sup>/s (OHGE, 2020b). Therefore, the simulated groundwater contribution to baseflow in the Fording River adjacent to the pit is approximately 1.5% of baseflow as measured at FR\_FR1. Considering the small contribution to baseflow from the pit area adjacent to the Fording River, the relatively small footprint of the pit, and relatively long travel time to reach the river through bedrock once the overburden has been stripped, it is likely that the reduction in flow in the Fording River caused by reduced recharge within the footprint of the developing pit would have been negligible during the decline window (i.e., a likely small percentage of the model-simulated 1.5% contribution of discharge to Fording River baseflow adjacent to the pit).

## 8.3 Other PODs

There are 22 POD's associated with FRO located above Chauncey Creek, which are shown on Drawing 32. Four of the POD's do not have minimum instream flow requirements (IFR's) in the water license because they are in pits or ponds that either have small local drainages, are not hydraulically connected to the Fording River, or have long inferred flow pathways (Wright et al., 2021). Water use data provided by Teck indicates that water from eight of the PODs (at nine locations) was used between 2015 and 2019. This consumption is discussed



briefly below. Trends in water use at six of the PODs (at seven locations) are also discussed in the report prepared by Ecofish (Wright et al., 2021); water use from Eagle 4 Pit and the Eagle Settling Ponds were not discussed in the Ecofish report as there are no IFR's for those POD's.

Total water use by POD between 2015 and 2019 and during the decline window is summarized below in Table S. The most water used from any POD between 2015 and 2019 and during the decline window was removed from Shandley Pit. The effects on water use from Shandley Pit are discussed above in Section 8.2.

The next highest amounts of water used between 2015 and 2019 was withdrawn from the Kilmarnock Control Pond and the Kilmarnock Phase 1 Secondary Settling Pond. All of the water withdrawn from the Kilmarnock Phase 1 Secondary Settling Pond between 2015 and 2019 was withdrawn during the decline window. Water stored in the Kilmarnock Control Pond and the Kilmarnock Phase 1 Secondary Settling Pond infiltrates to groundwater, flows down-valley, and is ultimately inferred to emerge in the downstream in the regional groundwater discharge zone. Therefore, the water withdrawals from these ponds may result in a reduction in base flows in the Fording River. The volume of water withdrawn from Kilmarnock Control Pond and the Kilmarnock Phase 1 Secondary Settling Pond during the decline window was approximately 3,950 m<sup>3</sup>/d, or approximately 0.046 m<sup>3</sup>/s (Table S), which corresponds to approximately 7% of the minimum baseflow (0.67 m<sup>3</sup>/s) detected at downstream surface water monitoring station FR\_FRABCH during the decline window.

The local and cumulative effects of water use from these locations on groundwater resources and flows in the Fording River are currently unknown. On an average monthly basis, total water use during the decline window (332,204 m<sup>3</sup>/month) was higher than prior to the decline (244,506 m<sup>3</sup>/month) by approximately 26%. This apparent increase is likely partially attributable to the improvement in record keeping beginning in 2017 noted by Ecofish (Wright et al., 2017), where earlier water use may have been underestimated. While an increase in water use during the decline window could potentially influence flows in the Fording River, the available data indicate that average annual streamflow was relatively high during the decline window (Wright et al., 2021). However, there were gaps in the flow data and flow was particularly low during the decline window in December 2018 and February 2019 (Wright et al., 2021). Travel times along the groundwater transport pathways between the points of consumption and the Fording River are also not known, but would need to be relatively short for there to have been any direct influence on flows during the decline window considering the relatively short timeframe (i.e., September 2017 to September 2019). These travel times between the POD's and river also constitute a data gap.

| POD      | Water Source         | Total Water Use –<br>2015 to 2019 (m³) | Total Water Use –<br>2015 to August 2017<br>(m <sup>3</sup> ) | Total Water Use –<br>Sep. 2017 to Sep.<br>2019 (m <sup>3</sup> ) |
|----------|----------------------|----------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|
| PD23455  | Kalmakoff Pod        | 143,845                                | 143,845                                                       | -                                                                |
| DD400000 | Shandley Pit         | 6,147,821                              | 2,253,714                                                     | 3,885,009                                                        |
| PD189629 | I Pit                | 1,051,088                              | 1,051,088                                                     | 2                                                                |
| PD64428  | Lake Mountain Pit    | 31,046                                 | -                                                             | 31,046                                                           |
| PD189638 | Eagle 4 Pit          | 645,520                                | 242,698                                                       | 402,822                                                          |
| PD189633 | Eagle Settling Ponds | 1,040,954                              | 562,169                                                       | 420,259                                                          |

# Table S: Summary of Water Use at POD's between 2015 and 2019, prior to, and during the Decline Window



#### Table S (Cont'd): Summary of Water Use at POD's between 2015 and 2019, prior to, and during the **Decline Window**

| POD      | Water Source                                  | Total Water Use –<br>2015 to 2019 (m³) | Total Water Use –<br>2015 to August 2017<br>(m <sup>3</sup> ) | Total Water Use –<br>Sep. 2017 to Sep.<br>2019 (m³) |
|----------|-----------------------------------------------|----------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|
| PD189635 | Lee's Lake                                    | 833,960                                | 833,960                                                       | ā.                                                  |
| PD61147  | Kilmarnock Control Pond                       | 3,086,134                              | 2,736,706                                                     | 349,428                                             |
| PD189652 | Kilmarnock Phase 1<br>Secondary Settling Pond | 2,884,321                              | H.                                                            | 2,884,321                                           |
| Total    | All Water Sources                             | 15,864,689                             | 7,972,886                                                     | 7,824,180                                           |

#### Summary of Operational Influences 8.4

**Teck Coal Limited** 

A review of available information pertaining to operational influences that may have potentially influenced flows in the Fording River during the decline window was completed. The following available information suggests that there is no strong evidence that any of these operational influences played a role in the WCT population decline when considered on an individual basis:

- There were no changes in groundwater extraction of the FRO potable wells during the decline window > from prior to the decline window, and flows in the Fording River were not anomalously low during the decline window (Wright et al., 2021);
- > The estimated width of the capture zone of the Greenhouse Wells (up to 2.4 m) was very small compared to the distance to the Fording River (approximately 250 m), the extraction rates are low, and the wells are pumped only intermittently for part of the year. The available groundwater and surface water analytical chemistry data also indicate there is no hydraulic influence of the river on groundwater extracted from the production wells;
- The estimated contribution of water stored in Shandley Pit to baseflow in the Fording River is very small > (less than 0.5%) with relatively long travel times (on the order of 20 years);
- The presence of a groundwater divide between the Fording River and Swift 1 Pit and the properties of 3 the bedrock formation make a hydraulic connection through bedrock extremely unlikely;
- There was no consumptive water use from the Turnbull South Tailings Storage Facility during the > decline window, and the application for the development of another pit was recent (June 2018), with a localized project footprint and long transport pathway to the river; and
- Mined out topography of Lake Mountain Pit did not extend below the elevation of the Fording River until > 2021; reduction in flow in the Fording River caused by reduced recharge from pit dewatering is likely negligible considering the small simulated pre-mining contribution to base flow of the area adjacent to the Fording River, the relatively small project footprint, and longer pathway through low-permeability bedrock once overburden has been stripped.

However, water usage data provided by Teck indicates total average monthly consumption amongst all POD's was greater during the decline window than prior to the decline window, although this may be partially attributable to an improvement in record keeping in 2017(Wright et al., 2021). Although an increase in consumptive water use could potentially have influenced flows in the Fording River during the decline



window, the travel times between the POD's and the river would need to be short, and the available flow data indicate that flows were not anomalously low during the decline window (Wright et al., 2021).

Several data gaps were identified, including:

- > The effects of groundwater withdrawals from the FRO potable wells and Greenhouse Wells on flows in the Fording River are not known;
- > It is unknown whether structural discontinuities that may form preferential flow pathways within bedrock between pits and the Fording River are present, although such discontinuities would be expected to be localized and discrete;
- > Flow losses to Fording River tributaries in areas of pit development have not been estimated; and
- The impact of cumulative effects of water use from POD's and pit dewatering on groundwater resources and consequent flows in the Fording River, including travel times between POD's and the river and the reduction of groundwater recharge from pit dewatering and consumptive use, are not known.

A recommendation has been made (Recommendation 1) in the Evaluation of Cause report to consider developing an integrated watershed-scale model of groundwater and surface water to better understand the cumulative effects of these operational influences, including water use, water diversion, and water storage (Evaluation of Cause Team, 2021).



# 9 References

- Bickel, Tobias and Closs, Gerard. (2008). Impact of Didymosphenia geminata on hyporheic conditions in trout redds: Reason for concern? Marine and Freshwater Research - MAR FRESHWATER RES. 59. 10.1071/MF08011.
- British Columbia Ministry of Environment and Climate Change Strategy. 2004. Step 2 Define the Well Protection Area. *Water Protection & Sustainability Branch Well Protection Toolkit*. Available at <u>https://www.env.gov.bc.ca/wsd/plan\_protect\_sustain/groundwater/wells/well\_protection/wellprotection/wellprotect.html</u>.
- British Columbia Ministry of Environment and Climate Change Strategy. 2017. Technical Guidance 15 on Contaminated Sites. *Concentration Limits for the Protection of Aquatic Receiving Environments*. Version 2.0 November 1, 2017.
- British Columbia Ministry of Environment and Climate Change Strategy. 2020. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Summary Report. July 2020.
- British Columbia Ministry of Environment and Climate Change Strategy. 2021. *Contaminated Sites Regulation* (CSR), B.C. Reg. 375/96, includes amendments up to B.C. Reg. 161/2020. February 1, 2021.
- Canadian Council of Ministers of the Environment (CCME), 2012. Canadian Water Quality Guidelines: Nitrate Ion. Scientific Criteria Document. Canadian Council of Ministers of the Environment, Winnipeg.
- Cope, S. 2020. *Upper Fording River Westslope Cutthroat Trout Monitoring Project: 2019.* Report Prepared for Teck Coal Limited, Sparwood, BC. Report prepared by Westslope Fisheries Ltd., Cranbrook, BC. Dated March 15, 2020.
- Costa EJ., de Bruyn A. 2021. Subject Matter Expert Report: Water Quality. Evaluation of Cause Decline in Upper Fording River Westslope Cutthroat Trout Population. Report prepared for Teck Coal Limited. Prepared by Golder Associates Ltd.
- Davidson, J, Good, C, Welsh, C, and ST Summerfelt. 2014. Comparing the effects of high vs low nitrate on the health, performance, and welfare of juvenile rainbow trout *Oncorhynchus mykiss* within water recirculating aquaculture systems. Aquacultural Engineering 59: 30-40.
- Evaluation of Cause Team 2021. Evaluation of Cause Decline in Upper Fording River Westslope Cutthroat Trout Population. Report prepared for Teck Coal Limited by Evaluation of Cause Team.
- George, H., W.A. Gorman, and D.F. VanDine, 1987. *Late quaternary geology and geomorphology of the Elk Valley, southeastern British Columbia.* Canadian Journal of Earth Science, 24, 741-751
- Ghosh, M., and Gaur, J.P. (1998). Current velocity and the establishment of stream algal periphyton communities. *Aquatic Botany*, *60*(1), 1–10. doi:10.1016/S0304-3770(97)00073-9
- Godillot, R., Caussade, B., Ameziane, T., and Capblancq, J. (2001). Interplay between turbulence and periphyton in rough open-channel flow. *Journal of Hydraulic Research*, 39(3), 227–239. doi:10.1080/00221680109499826



- Golder Associates Ltd. 2012. Turnbull South Pit Tailings Storage Facility Assessment. Report submitted to Teck Coal Limited, dated March 21, 2012.
- Golder Associates Ltd. 2013. *Teck Fording River Operations Site-Wide Groundwater Monitoring Review.* Report submitted to Teck Coal Limited, dated April 2013.
- Golder Associates Ltd. 2014. Fording River Operations Swift Project Environmental Assessment. Hydrogeology Baseline Report. Submitted to Teck Coal Limited, dated November 2014.
- Golder Associates Ltd. 2015. *Hydrogeology Baseline Report: Cougar Pit Extension Project*. Report submitted to Teck Coal Ltd., dated September 30, 2015.
- Golder Associates Ltd. 2019a. DRAFT Groundwater Study in Support of Fording River AWTF North, Construction and Permitting Clode Ponds, Turnbull Bridge Spoils, Post Ponds Rock Drain. Report submitted to Teck Coal Limited, dated February 2019.
- Golder Associates Ltd., 2019b. Fording River Operations AWTF-South Permitting, Groundwater Modelling for Kilmarnock Creek. Report submitted to Teck Coal Limited, November 2019.
- Golder Associates Ltd., 2019c. Groundwater Conceptual Model for Clode Creek Watershed (Updated). Memorandum submitted to Teck Coal Limited, dated September 10, 2019.
- Golder Associates Ltd., 2020a. Fording River Operations AWTF South Permitting, Groundwater Modelling Updates for Kilmarnock Creek. Report submitted to Teck Coal Limited, June 2020.
- Golder Associates Ltd., 2020b. Teck Coal Limited Fording River Operations Additional Hydrogeologic Field Program for Clode Ponds: Results and Summary. Report submitted to Teck Coal Limited, dated June 5, 2020.
- Hatfield, T. and C. Whelan. 2021. Subject Matter Expert Report: Ice. Evaluation of Cause Decline in Upper Fording River Westslope Cutthroat Trout Population. Report prepared for Teck Coal Ltd. Prepared by Ecofish Research Ltd
- Hocking, M., Ammerlaan, J., Healy, K., and T. Hatfield. 2021. Subject Matter Expert Report: Mainstem Dewatering. Evaluation of Cause – Decline in Upper Fording River Westslope Cutthroat Trout Population. Report prepared for Teck Coal Ltd. Prepared by Ecofish Research Ltd.
- Kaiser Resources Ltd., (Kaiser) 1980. *Greenhills Coal Project Stage I Environmental Assessment*. Prepared for Kaiser Resources Ltd. by BC Research, Vancouver.
- Kondolf, G.M., Maloney, L.M. and J.G. Williams. 1987. *Effects of bank storage and well pumping on base flow, Carmel River, Monterey County, California*. Journal of Hydrology 91 (3-4): 351-369.
- Larratt H., and J. Self. 2021. Subject Matter Expert Report: Cyanobacteria, Periphyton and Aquatic Macrophytes. Evaluation of Cause Decline in Upper Fording River Westslope Cutthroat Trout Population. Report prepared for Teck Coal Limited. Prepared by Larratt Aquatic Consulting Ltd.
- Minnow and Lotic. 2018. Fording River Operations Local Aquatic Effects Monitoring Program (LAEMP) Report, 2017. Prepared for Teck Coal Limited, dated May 2018.
- Minnow and Lotic. 2019. Fording River Operations Local Aquatic Effects Monitoring Program (LAEMP) 2018 Report. Prepared for Teck Coal Limited, dated May 2019.



- Monahan, P.A., 2000. *Map 1, Geological Map of the Flathead and Fernie Elk Valley Areas*. British Columbia Ministry of Energy and Mines.
- Newcome, M. E., Hubbard, S. S., Fleckenstein, J. H., Maier, U., Schmidt, C., Thullner, M., Ulrich, C., Flipo, N., and Rubin, Y. (2016). Simulating bioclogging effects on dynamic riverbed permeability and infiltration. *Water Resources Research*, *52*(4), 2883–2900. <u>https://doi.org/10.1002/2015WR018351</u>
- O'Neill Hydro-Geotechnical Engineering, 2020a. Hydraulic Connectivity between Shandley Pit and Fording River. Memorandum to Teck Coal Limited, dated July 31, 2020.
- O'Neill Hydro-Geotechnical Engineering, 2020b. Lake Mountain Pit Numerical Groundwater Flow Model 2019. Memorandum to Teck Coal Limited, dated January 20, 2020.
- O'Neill Hydro-Geotechnical Engineering, 2021. Response to KNC February Hydrogeological Comments, dated April 15, 2021.
- Piteau Associates Engineering Ltd., 2012. Borehole Log and Pumping Test Interpretation Plots (no report provided). Documents prepared for Kerr Wood Leidal Associates Ltd and Teck Coal Limited, November 2012.
- Rhodes, K.A., Proffitt, T., Rowley, T., Knappett, P.S.K., Montiel, D., Dimova, N., Tebo, D., and G.R. Miller, 2017. The importance of bank storage in supplying baseflow to rivers flowing through compartmentalized, alluvial aquifers. Water Resources Research 53 (10): 539-557.
- SNC-Lavalin Inc. 2015. Fording River Operations Site Wide Groundwater Monitoring Program (2015 Update). Report prepared for Teck Coal Limited, dated October 2015.
- SNC-Lavalin Inc., 2017a. *Regional Groundwater Monitoring Program, Elk Valley, BC.* Prepared for Teck Coal Limited, dated September 29, 2017.
- SNC-Lavalin, 2017b. *Hydrogeological Assessment, Fording River Operations, Elkford, BC.* Report submitted to Teck Coal Limited, dated September 28, 2017.
- SNC-Lavalin Inc. 2017c. 2017 Field Program Results for Turnbull West Project Hydrogeology Baseline. Report prepared for Teck Coal Limited, dated December 18, 2017.
- SNC-Lavalin, 2018. 2017 Annual Groundwater Monitoring Report, Fording River Operations. Report submitted to Teck Coal Limited, dated March 28, 2018.
- SNC-Lavalin Inc., 2019a. Fording River Operations Site Specific Groundwater Monitoring Program 2018 Update. Prepared for Teck Coal Limited, dated September 30, 2019.
- SNC-Lavalin Inc., 2019b. SSGMP FR\_MW\_SK1-A/B Well Installation and Monitoring Report. Submitted to Teck Coal Limited, dated June 6, 2019.
- SNC-Lavalin, 2019c. South Kilmarnock Phase 2 Infiltration Rates Assessment to Support FRO Castle Water Management Plan. Memorandum to Teck Coal Limited, dated October 23, 2019.
- SNC-Lavalin, 2019d. 2018 Site-Specific Groundwater Monitoring Report, Fording River Operations. Report submitted to Teck Coal Limited, dated March, 28 2019.
- SNC-Lavalin, 2020a. 2018-2019 Drilling, Well Installation, and Groundwater Monitoring Fording River Operations Castle Baseline Hydrogeology. Submitted to Teck Coal Limited, dated January 6, 2020.



- SNC-Lavalin, 2020b. 2020 Regional Groundwater Monitoring Plan Update. Submitted to Teck Coal Limited, dated December, 2020.
- SRK Consulting Inc., 2017. Water Chemistry Review of MSAW Pit Water Monitoring. Prepared for Teck Coal Limited, dated May 2017.
- SRK Consulting Inc., 2020. *Clode Creek Characterization Study*. Report submitted to Teck Coal Limited, dated January, 2020.
- Stonedahl, S.H., Worman, A., and M. Salehin. 2010. *A multiscale model for integrating hyporheic exchange from ripples to meanders*. Water Resources Research 46, W12539, doi:10.1029/2009WR008865
- Teck Coal Limited., 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Ministry of the Environment, July 22, 2014. Approved November 18, 2014. Sparwood, BC. 290 pp.
- Teck Coal Limited., 2017. 2017 Elk Valley Regional Water Quality Model Update Overview Report (with Annexes). Report dated October, 2017.
- Teck Coal Limited., 2018. *Fording River Operations Turnbull West Project*. Application submitted to Ministry of Energy, Mines and Petroleum Resources and Ministry of Environment and Climate Change Strategy. Dated June, 2018.
- Teck Coal Limited., 2019. Operations Application, Fording River Operations, Active Water Treatment Facility South. Application submitted to Ministry of Energy, Mines and Petroleum Resources and Ministry of Environment and Climate Change Strategy. Dated November, 2019.
- Valett, H.M., Fisher, S.G., Grimm, N.B., and Camill, P. (1994). Vertical hydrologic exchange and ecological stability of a desert stream ecosystem. *Ecology*, *75*(2), 548-560.
- Wright, N., D. Greenacre, and T. Hatfield. 2021. Subject Matter Expert Report: Climate, Temperature, and Streamflow Trends. Evaluation of Cause – Decline in Upper Fording River Westslope Cutthroat Trout Population. Report prepared for Teck Coal Limited. Prepared by Ecofish Research Ltd.



# 10 Notice to Reader

This report has been prepared and the work referred to in this report have been undertaken by SNC-Lavalin Inc. (SNC-Lavalin) for the exclusive use of Teck Coal Limited (Teck), who has been party to the development of the scope of work and understands its limitations. The methodology, findings, conclusions and recommendations in this report are based solely upon the scope of work and subject to the time and budgetary considerations described in the proposal and/or contract pursuant to which this report was issued. Any use, reliance on, or decision made by a third party based on this report is the sole responsibility of such third party. SNC-Lavalin accepts no liability or responsibility for any damages that may be suffered or incurred by any third party as a result of the use of, reliance on, or any decision made based on this report. Should this report be submitted to the BC Ministry of Environment & Climate Change Strategy (ENV) by Teck, the ENV is authorized to rely on the results in the report, subject to the limitations set out herein, for the sole purpose of determining whether Teck has fulfilled its obligations with respect to meeting the regulatory requirements of the ENV.

The findings, conclusions and recommendations in this report (i) have been developed in a manner consistent with the level of skill normally exercised by professionals currently practicing under similar conditions in the area, and (ii) reflect SNC-Lavalin's best judgment based on information available at the time of preparation of this report. No other warranties, either expressed or implied, are made as to the professional services provided under the terms of our original contract and included in this report. The findings and conclusions contained in this report are valid only as of the date of this report and may be based, in part, upon information provided by others. If any of the information is inaccurate, new information is discovered, site conditions change or standards are amended, modifications to this report may be necessary. The results of this assessment should in no way be construed as a warranty that the subject site is free from any and all environmental impact.

Any soil and rock descriptions in this report and associated logs have been made with the intent of providing general information on the subsurface conditions of the site. This information should not be used as geotechnical data for any purpose unless specifically addressed in the text of this report. Groundwater conditions described in this report refer only to those observed at the location and time of observation noted in the report.

This report must be read as a whole, as sections taken out of context may be misleading. If discrepancies occur between the preliminary (draft) and final version of this report, it is the final version that takes precedence. Nothing in this report is intended to constitute or provide a legal opinion.

The contents of this report are confidential and proprietary. Other than by Teck, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of Teck and SNC-Lavalin.

# Tables

- 1: Summary of Analytical Results for Groundwater
- 2: Summary of Analytical Results for Seep, Shallow Groundwater and Surface Water in the Upper Fording River
- 3: Summary of Analytical Results for Groundwater Speciated Selenium

|                    |                                                        |               |                                 |             | F                         | Physical Para                                           | meters                             |                                                        |                                 |         | Fie      | eld Para          | ameters          | ;                           |        |                     |             |                              |                     |       |                                |          | Dissolv                      | ed Inorg                     | anics                                                                                |       |                                   |          |                         |                            |              | ,                                                         |
|--------------------|--------------------------------------------------------|---------------|---------------------------------|-------------|---------------------------|---------------------------------------------------------|------------------------------------|--------------------------------------------------------|---------------------------------|---------|----------|-------------------|------------------|-----------------------------|--------|---------------------|-------------|------------------------------|---------------------|-------|--------------------------------|----------|------------------------------|------------------------------|--------------------------------------------------------------------------------------|-------|-----------------------------------|----------|-------------------------|----------------------------|--------------|-----------------------------------------------------------|
|                    |                                                        |               |                                 |             |                           |                                                         |                                    | E E                                                    |                                 |         |          |                   |                  |                             |        |                     |             |                              |                     |       |                                |          |                              |                              |                                                                                      |       |                                   | -        |                         |                            |              |                                                           |
| Sample<br>Location | Sample<br>ID                                           |               | д. рп (lab)<br>6d Hardness<br>7 | Z Turbidity | w<br>T∕r<br>T/Dial Anions | au<br>Total Cations<br>Sd Total Cations<br>Conductivity | a<br>B Total Dissolved Solids<br>T | a Total Suspended Solids<br>T Dissolved Organic Carbon | Oxidation Reductic<br>Potential |         | . LL     | Z Field Turbidity | bissolved Oxygen | 년 pH (field)<br>게 Field ORP | Total  | J J                 | Nitrate (as | Nitrite (as N)               | Nitrate+Nitrite (as |       | G Nitrogen<br>Total Nitrogen-N | Chloride | hâ<br>Fluoride               | a<br>Sulfate<br>T            | a Alkalinity, Bicarbonate<br>P (as CaCO3)<br>a Alkalinity, Carbonate<br>P (as CaCO3) |       | a Bicarbonate<br>7<br>a Carbonate | -        | T<br>B<br>Total Acidity | e<br>B<br>Acidity (pH 8.3) | Ortho-Phospt | ା Total Organic Carbon<br>ଅଧି Total Phosphorous as P<br>ଅ |
| Primary Screeni    | ing Criteria: CSR Aquatic Life (AW) <sup>a</sup>       | n             | /a n/a                          | n/a         | n/a                       | n/a n/a                                                 | n/a                                | n/a n/a                                                | n/a                             | n/a n/  | a n/a    | n/a               | n/a              | n/a n/a                     | a n/a  | 18.5                |             |                              | 400                 | n/a r | n/a n/                         | a 1,500  | 2,000-<br>3,000 <sup>d</sup> | 1,280-<br>4,290 <sup>d</sup> | n/a n/a                                                                              | n/a   | n/a n/                            | n/a n/a  | n/a                     | n/a                        | n/a r        | n/a n/a                                                   |
| Secondary Scre     | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> | n             | /a n/a                          | n/a         | n/a                       | n/a n/a                                                 | 10,000                             | ) n/a n/a                                              | n/a                             | n/a n/  | a n/a    | n/a               | n/a <sup>j</sup> | n/a n/a                     | a n/a  | n/a                 |             | ).389-<br>39.95 <sup>i</sup> | n/a                 | n/a r | n/a n/                         | a n/a    | n/a                          | 4,990                        | n/a n/a                                                                              | n/a   | n/a n/                            | n/a 78   | n/a                     | n/a                        | n/a r        | n/a n/a                                                   |
| S6 Study Area      |                                                        |               |                                 |             |                           |                                                         |                                    |                                                        |                                 |         |          |                   |                  |                             |        |                     |             |                              |                     |       |                                |          |                              |                              |                                                                                      |       | · · · · ·                         |          |                         |                            |              |                                                           |
| FR_09-01-A         | FR_09-01-A-121114                                      | 2012 11 14 8. | 01 859                          | 122         | 18                        | 17.4 1,420                                              | 1,240                              | 309 < 0.                                               | 5 470                           |         | -        | -                 | -                |                             | 266    | < 0.005             | 60.6 <      | < 0.01                       | - <                 | 0.05  |                                | 3.2      | < 200                        | 395                          | 266 < 1                                                                              | < 1   |                                   | - < 0.5  | 5 8.8                   | -                          | 0.0039 2     | 11 -                                                      |
|                    | FRO12_0104201307                                       | 2013 05 30 8  | .2 545                          | 1.89        | 11.1                      | 10.9 930                                                | 724                                | < 3.0 1.1                                              | 3 356                           | - 5     | 800.8    | -                 | 10.75            | 7.78 73.                    | 8 231  | < 0.0050            | 38.9 <      | 0.010                        | - <                 | 0.050 |                                | 1        | 360                          | 178                          | 231 < 1.0                                                                            | < 1.0 |                                   | - < 0.5  | - 0                     | 2.5                        | 0.0017 0     | 0.89 0.0054                                               |
|                    | FR_09-01-A_Q_01062013_N                                | 2013 08 29 8. | 12 704                          | 21.3        | 14.8                      | 14.2 1,230                                              | 965                                | 52.1 0.8                                               | 3 438                           | - 11    | .5 1,114 | -                 | 9.01             | 7.95 24.3                   | 3 253  | < 0.0050            | 50.8 <      | 0.010                        | - <                 | 0.050 |                                | 2.1      | 370                          | 290                          | 253 < 1.0                                                                            | < 1.0 |                                   | - < 0.5  | - 0                     | 4.5                        | 0.0016 0     | 0.86 0.153                                                |
|                    | FR_09-01-A_Q_01092013_N                                | 2013 10 31 8. | 08 909                          | 33.4        | 18.2                      | 18.4 1,490                                              | 1,290                              | 39.4 0.5                                               | 3 456                           | - 6.    | 2 1,393  | -                 | 13.16            | 7.46 57.                    | 8 243  | < 0.0050            | 68.6 <      | 0.010                        | - <                 | 0.050 |                                | 2.4      | < 200                        | 403                          | 243 < 2.0                                                                            | < 2.0 |                                   | - < 0.5  | - 0                     | 3.8                        | 0.0021 0     | 0.88 0.0663                                               |
|                    | FR_09-01-A_Q_01012014_N                                | 2014 03 13 8. | 15 631                          | 0.11        | 12.8                      | 12.8 1,050                                              | 782                                | < 1.0 0.5                                              | 7 412                           | - 3.    | 2 956    | -                 | 9.98             | 7.83 31.3                   | 3 245  | < 0.0050            | 14.6 <      | 0.010                        | - <                 | 0.050 |                                | 4.2      | 260                          | 320                          | 245 < 1.0                                                                            | < 1.0 |                                   | - < 0.5  | - 0                     | 2.5                        | 0.0016 0     | 0.80 < 0.0020                                             |
|                    | FR_09-01-A_Q_01042014_N                                | 2014 05 14 8. | 06 788                          | 0.3         | 16.1                      | 16 1,320                                                | 1,070                              | 1.1 < 0.                                               | 50 234                          | - 4.    | 6 1,128  | -                 | 8.76             | 7.63 -40.                   | .9 272 | < 0.0050            | 34.7 <      | 0.010                        | - <                 | 0.050 |                                | 4.7      | < 200                        | 389                          | 272 < 1.0                                                                            | < 1.0 |                                   | - < 0.5  | - 0                     | 4.9                        | 0.0020 <     | 0.50 0.0037                                               |
|                    | FR_09-01-A_QSW_02072014_N                              | 2014 08 25 8. | 14 659                          | < 0.10      | 13.7                      | 13.4 1,100                                              | 833                                | < 1.0 < 0.                                             | 50 375                          | - 10    | .5 1,018 | -                 | 7.39             | 6.95 3.9                    | 9 297  | < 0.0050            | 24.0 <      | 0.010                        | - <                 | 0.050 |                                | 2.9      | 320                          | 287                          | 297 < 1.0                                                                            | < 1.0 |                                   | - < 0.5  | - 0                     | 3.8                        | 0.0027 <     | 0.50 0.0049                                               |
|                    | FR_09-01-A_QSW_02102014_N                              | 2014 11 06 8. | 01 702                          | 0.22        | 14.1                      | 14.2 1,190                                              | 895                                | 1.4 < 0.                                               | 50 403                          | - 7.    | 5 1,100  | -                 | 8.56             | 7.83 -39.                   | .7 257 | < 0.0050            | 28.6 <      | 0.010                        | - <                 | 0.050 |                                | 3.3      | < 200                        | 327                          | 257 < 1.0                                                                            | < 1.0 |                                   | - < 0.5  | - 0                     | 6.0                        | 0.0025 0     | 0.52 0.021                                                |
|                    | FR_09-01-A_QSW_02012015_N                              | 2015 01 22 7. | 98 644                          | -           | -                         | - 1,130                                                 | 876                                | < 1.0 0.8                                              | 3 -                             | - 6     | 951      | -                 | -                | 7.49 -                      | 260    | < 0.0050            | 20.1 < 0    | 0.0050                       | - <                 | 0.050 |                                | 3.6      | 130                          | 336                          |                                                                                      | -     |                                   | - < 0.2  | .5 -                    | -                          | 0.0025 0     | 0.69 0.0030                                               |
|                    | FR_09-01-A_DUP                                         |               |                                 |             |                           |                                                         |                                    |                                                        |                                 |         |          |                   |                  |                             |        |                     |             |                              |                     |       |                                |          |                              |                              |                                                                                      |       |                                   |          |                         |                            |              |                                                           |
|                    | QA/QC RPD%                                             | 1             | 0 2                             | -           | -                         | - 0                                                     | 3                                  | * *                                                    | -                               |         | -        | -                 | -                |                             | 1      | *                   | 0           | *                            | -                   | *     |                                | 0        | 7                            | 0                            |                                                                                      | -     |                                   |          | -                       | - I                        | *            | * *                                                       |
|                    | FR_09-01-A_QSW_02042015_N                              |               | 34 735                          | -           | -                         | - 1,260                                                 |                                    | < 1.0 0.7                                              |                                 |         | -        | -                 | -                |                             | 273    | < 0.0050            | 25.1 < 0    | 0.0050                       |                     | 0.050 |                                | 4.5      | 140                          | 374                          |                                                                                      | -     |                                   | - < 0.2  |                         | -                          | 0.0023 0     | 0.56 0.0029                                               |
|                    | FR_09-01-A_QSW_02072015_N                              | 2015 07 02 7. | 99 601                          | -           | -                         | - 1,020                                                 | 903                                | 3 0.5                                                  | 2 -                             | - 12    | .3 -     | -                 | -                | 7.62 -                      | 247    | < 0.0050            | 33.1 < (    | 0.0050                       |                     | 0.050 |                                | 1.3      | 220                          | 219                          |                                                                                      | -     |                                   | - < 0.2  | - 55                    | -                          | 0.0029 < 0   | 0.50 0.0036                                               |
|                    | FR_09-01-A_QSW_02102015_N                              |               | 27 724                          | -           | -                         | - 1,250                                                 |                                    | 1.2 0.5                                                |                                 | - 9.    | 8 1,217  | -                 | -                | 7.42 -                      | 306    |                     |             | 0.0050                       | - <                 | 0.050 |                                | 3.7      | 120                          | 351                          |                                                                                      | -     |                                   | - < 0.2  |                         |                            |              | 0.50 0.0022                                               |
|                    | FR_09-01-A_QSW_04012016_N                              | 2016 01 25 7. | 77 763                          | -           | 14.8                      | 15.5 1,250                                              | 927                                | < 1.0 0.6                                              | 4 -                             |         | 1,097    | -                 | 8.27             | 8.69 150                    | .6 257 | < 0.0050            | 27.1 < 0    | 0.0050                       | - <                 | 0.050 |                                | 3.9      | 140                          | 366                          | 257 < 1.0                                                                            | < 1.0 |                                   | - < 0.2  | - 55                    | 10.7                       | 0.0024 0     | 0.80 0.0032                                               |
|                    | FD_QSW_04012016_001                                    |               |                                 |             |                           |                                                         |                                    |                                                        |                                 |         |          |                   |                  |                             |        |                     |             |                              |                     |       |                                |          |                              |                              |                                                                                      |       |                                   |          |                         |                            |              | '                                                         |
|                    | QA/QC RPD%                                             |               | 0 1                             | -           | *                         | * 1                                                     | 2                                  | * *                                                    | -                               |         | -        | -                 | -                |                             | 2      | *                   | 2           | *                            | -                   | *     |                                | 0        | 0                            | 2                            | 2 *                                                                                  | *     |                                   | - *      | -                       | 1                          | *            | * *                                                       |
|                    | FR_09-01-A-WG-201606141205                             |               | 08 583                          | -           | 12.1                      | ,                                                       |                                    |                                                        |                                 |         | 88.7     | -                 | 9.36             | 7.61 167                    |        | < 0.0050            |             |                              |                     | 0.050 |                                | 0.93     | 260                          | 226                          | 253 < 1.0                                                                            |       |                                   | - < 0.2  |                         |                            |              | 0.72 0.0027                                               |
|                    | FR_DC1-WG-201606141205                                 |               | .1 583                          | -           |                           | 11.8 1,020                                              | 783                                | 1.1 0.6                                                | 4 -                             |         | -        | -                 | -                |                             | 251    | < 0.0050            |             |                              |                     | 0.050 |                                | 0.9      | 270                          | 224                          | 251 < 1.0                                                                            |       |                                   | - < 0.2  |                         |                            |              | 0.67 0.0041                                               |
|                    | QA/QC RPD%                                             |               | 0 0                             | -           | *                         | * 1                                                     | 5                                  | * *                                                    | -                               |         | -        | -                 | -                |                             | 1      | *                   |             | *                            |                     | *     |                                |          | 4                            | 1                            | 1 *                                                                                  |       |                                   | - *      |                         | 12                         |              | * *                                                       |
|                    | FR_09-01-A_QSW_04072016_N                              |               | 19 696                          | -           | 13.3                      |                                                         |                                    | < 1.0 0.6                                              |                                 |         | 973      | -                 |                  |                             | .5 296 |                     |             | 0.0050                       |                     | 0.050 |                                |          | 180                          | 242                          | 296 < 1.0                                                                            |       |                                   | - < 0.2  |                         |                            |              | 0.52 0.0033                                               |
|                    | FR_09-01-A_QSW_03102016_N                              |               | 83 796                          | -           |                           | 16.1 1,450                                              | -                                  |                                                        |                                 |         | 1,379    | -                 | 9.46             |                             |        |                     |             | 0.0050                       |                     | .051  |                                |          | 140                          | 347                          | 295 < 1.0                                                                            |       |                                   | - < 0.2  |                         |                            |              | 0.50 0.0027                                               |
|                    | FR_09-01-A_QSW_02012017_N                              |               | 51 986                          | 0.15        | 19.6                      | 20 1,540                                                |                                    |                                                        |                                 | - 2.    | ,        | -                 |                  |                             |        | < 0.0050            |             |                              |                     | .165  |                                | -        | 120                          | 481                          | 305 < 1.0                                                                            |       |                                   | - < 0.2  |                         |                            |              | 0.50 0.0083                                               |
|                    | FR_09-01-A_QSW_03042017_N                              |               | 04 557                          |             |                           | 11.3 1,030                                              |                                    | < 1.0 0.5                                              |                                 |         |          | -                 |                  | 7.65 181                    |        |                     |             | 0.0050                       |                     | .486  |                                |          | 200                          | 208                          | 231 < 1.0                                                                            |       |                                   | - < 0.2  |                         | _                          |              | 0.76 0.0029                                               |
|                    | FR_09-01-A_QTR_2017-09-11_N                            |               | 08 738                          | 0.13        | 14.8                      | 15 1,170                                                |                                    | < 1.0 0.7                                              |                                 |         | ,        | -                 |                  | 7.34 226                    |        |                     |             |                              |                     | 0.050 |                                | -        | < 100                        | 347                          | 298 < 1.0                                                                            |       |                                   | - < 0.2  |                         | -                          |              | 0.63 0.0233                                               |
|                    | FR_09-01-A_QTR_2017-10-02_N                            |               | 79 1,050                        |             |                           |                                                         |                                    | < 1.0 < 0.                                             |                                 |         | ,        |                   |                  | 7.3 252                     |        |                     |             |                              |                     | .449  |                                |          | < 100                        | 486                          | 328 < 1.0                                                                            |       |                                   | - < 0.2  |                         |                            |              | 0.58 0.0039                                               |
|                    | FR_09-01-A_QTR_2018-04-02_N                            |               | 27 633                          |             | 12.6                      | 12.9 1,050                                              |                                    | 1.6 0.8                                                |                                 |         | ,        | -                 |                  | 7.31 219                    |        |                     |             | 0.0077                       |                     | 0.10  |                                | < 2.5    | 240                          | 239                          | 268 < 1.0                                                                            |       |                                   | - < 0.2  |                         | -                          |              | 0.72 0.0026                                               |
|                    | FR_09-01-A_QTR_2018-07-02_N                            |               | 18 565                          |             |                           |                                                         |                                    | < 1.0 2.3                                              |                                 | -5.9 7. |          | -                 |                  |                             |        | < 0.0050            |             | 0.0038                       |                     | 0.050 |                                | 0.87     | 144                          | 226                          | 324 < 1.0                                                                            |       |                                   | - < 0.05 |                         |                            |              | 0.53 0.0027                                               |
|                    | FR_09-01-A_QTR_2018-10-01_N                            | 2018 12 13 7. |                                 | -           | -                         |                                                         | -                                  | < 1.0 0.7                                              |                                 |         |          | -                 |                  |                             |        | 0.0620              |             |                              |                     | 0.413 |                                | 3.09     | 164                          |                              | 235 < 1.0                                                                            |       |                                   | - < 0.05 |                         |                            |              | 0.71 0.253                                                |
|                    | FR_09-01-A_QTR_2019-01-07_N                            | 2019 03 14 7. |                                 |             |                           |                                                         |                                    |                                                        |                                 |         |          |                   |                  |                             |        | 0.0388              |             |                              |                     | 0.050 |                                | 1.78     | 106                          |                              | 205 < 1.0                                                                            |       |                                   | - < 0.05 |                         | -                          |              | 0.68 0.0023                                               |
|                    | FR_09-01-A_QTR_2019-04-01_N                            | 2019 05 30 8. |                                 |             |                           |                                                         |                                    |                                                        |                                 |         |          | -                 |                  |                             |        | < 0.0050            |             |                              |                     | 0.050 |                                | < 2.5    | 220                          |                              | 250 < 1.0                                                                            |       |                                   | - < 0.2  |                         |                            |              | 0.50 0.0029<br>0.75 0.0027                                |
|                    | FR_09-01-A_QTR_2019-07-01_N                            | 2019 07 29 8. |                                 |             |                           |                                                         |                                    |                                                        |                                 |         |          | -                 |                  |                             |        | < 0.0050            |             |                              |                     | 0.050 |                                | < 2.5    |                              |                              | 322 < 1.0                                                                            |       |                                   | - < 0.2  |                         | _                          |              |                                                           |
|                    | FR_09-01-A_QTR_2019-10-07_N                            | 2019 11 01 8. |                                 |             |                           |                                                         |                                    |                                                        |                                 |         |          | -                 |                  |                             |        | 0.0235              |             |                              |                     | 0.050 |                                |          | 140                          |                              | 354 < 1.0                                                                            |       |                                   |          |                         |                            |              | 0.50 0.0027                                               |
| FR_09-01-B         | FR_09-01-A_QTR_2020-01-06_N<br>FR_09-01-B-121114       | 2020 02 13 7. |                                 |             |                           |                                                         |                                    |                                                        |                                 |         |          | -                 | 0.01             |                             |        | < 0.0050            |             |                              |                     | 0.050 |                                |          | 120                          |                              | 339 < 1.0                                                                            |       |                                   | - < 0.2  |                         |                            |              | 0.50 < 0.0020                                             |
| FK_09-01-D         | _                                                      | 2012 11 14 7. |                                 |             |                           |                                                         |                                    |                                                        |                                 |         | -        | -                 | -                |                             |        | < 0.005<br>< 0.0050 |             |                              |                     | 0.05  |                                |          | < 200                        |                              | 297 < 1                                                                              |       |                                   |          | 5 9.8                   |                            |              | 0.63 -                                                    |
|                    | FRO12_0101201308                                       | 2013 03 26 7. | 91 013                          | 0.74        | 14.3                      | 13.7 1,170                                              | 009                                | < 3.0 1.2                                              | 415                             | - 5.    | 1 1,047  | -                 | 0.5              | 1.03 159                    | .5 280 | < 0.0050            | 10.0 <      | 0.010                        | - 0                 | .052  |                                | 5.2      | 340                          | 304                          | 280 < 1.0                                                                            | < 1.U |                                   | · < 0.5  | - 00                    | 0.0                        | 0.0010 1     | .08 0.0080                                                |
|                    | FR012_0104201308                                       | 2013 08 29 8. | 01 674                          | 0.00        | 12.0                      | 126 1 100                                               | 000                                | 20 05                                                  | 2 460                           |         | 4 1,052  | _                 | 7 50             | 762 05                      | 0 050  | < 0.0050            | 11.2 -      | 0.010                        |                     | 0.050 |                                | 2.7      | 270                          | 074                          | 250 - 4 0                                                                            | - 1 0 |                                   |          | 0                       | 6.4                        | 0.0000       | E9 0.0004                                                 |
|                    | FR_09-01-B_Q_01062013_N                                | 2013 00 29 8. | 0/1                             | 0.29        | 13.9                      | 13.0 1,160                                              | 908                                | <u>&gt; 3.0</u> 0.5                                    | 400                             | - 8.    | 4 1,052  | -                 | 06.1             | 1.03 25.                    | 9 209  | < 0.0050            | 41.3 <      | 0.010                        | - <                 | 0.050 |                                | 2.7      | 310                          | 271                          | 259 < 1.0                                                                            | × 1.0 |                                   | · < 0.5  | - 0                     | 0.4                        | 0.0020 0     | 0.58 0.0024                                               |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L223699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L2250608, L2256457, L22567, L225754, L2 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

- All terms defined within the body of SNC-Lavalin's report.
- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference. \* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

<u>BOLD</u> Concentration greater than CSR Aquatic Life (AW) standard

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) <sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Standard varies with pH.

- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.

<sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.

<sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                       |                             |       |                               |                     |                                |                                    |                                  |                            |                |                           |        |                   |         |                           |                 | Dissolv   | ed Metals                | 5                   |             |              |                     |                            |                   |                     |                           |                |                |                |                 |         |                           |
|--------------------|-------------------------------------------------------|-----------------------------|-------|-------------------------------|---------------------|--------------------------------|------------------------------------|----------------------------------|----------------------------|----------------|---------------------------|--------|-------------------|---------|---------------------------|-----------------|-----------|--------------------------|---------------------|-------------|--------------|---------------------|----------------------------|-------------------|---------------------|---------------------------|----------------|----------------|----------------|-----------------|---------|---------------------------|
|                    |                                                       |                             |       |                               |                     |                                |                                    |                                  |                            |                |                           |        |                   |         |                           |                 |           |                          |                     |             |              |                     |                            |                   |                     |                           |                |                |                |                 |         |                           |
| Sample<br>Location | Sample<br>ID                                          | Sample Date<br>(yyyy mm dd) | _     | a<br>b Dissolved Calcium<br>□ | ط<br>Dissolved Iron | a<br>Dissolved Magnesium<br>T∕ | ର୍ଘ<br>T<br>ୁ<br>ଅନୁଥିବା<br>ଅନ୍ତର୍ | a<br>a Dissolved Potassium<br>T∕ | a<br>b<br>Dissolved Sodium | ta<br>Latimony | б <del>б</del><br>Arsenic | Т<br>Т | 6t<br>T∖Beryllium | hđ<br>đ | Sadmium<br>1√6π           | б<br>Т<br>Л     | Бћ<br>Т/б | Copper<br>Copper<br>Hg/L | Lead<br>Т           | T/Gh<br>T/D | Денсигу<br>Г | ta<br>T∑ Molybdenum | 6th<br>Nickel              | Aßth<br>Selenium  | hậh<br>Silver       | б <del>П</del> /Strontium | ft<br>Thallium | Е<br>Е<br>µg/L | bd<br>Titanium | бt<br>T Uranium | бт<br>Т | ba<br>Truc <sup>f</sup>   |
| Primary Screenin   | <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup> |                             | n/a   | n/a                           | n/a                 | n/a                            | n/a                                | n/a                              | n/a                        | 90             | 50                        | 10,000 | 1.5               | 12,000  | 0.5-4 <sup>d</sup>        | 10 <sup>e</sup> | 40        | 20-90 <sup>d</sup>       | 40-160 <sup>d</sup> | n/a         | 0.25         | 10,000              | 250-<br>1,500 <sup>d</sup> | 20                | 0.5-15 <sup>d</sup> | n/a                       | 3              | n/a            | 1,000          | 85              | n/a     | 75-<br>2,400 <sup>d</sup> |
| Secondary Scree    | ning Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             |       |                               |                     |                                |                                    |                                  |                            |                |                           |        |                   |         | 0.8-<br>10.4 <sup>i</sup> | 100 (Cr +6)     | n/a       | n/a                      | n/a                 | 2,530       | n/a          | n/a                 | 517-<br>2,972 <sup>i</sup> | 700               | n/a                 | n/a                       | n/a            | n/a            | n/a            | 3,520           | n/a     | n/a                       |
| S6 Study Area      |                                                       |                             |       |                               |                     |                                |                                    |                                  |                            |                |                           |        |                   |         |                           |                 |           |                          |                     |             | ·            |                     |                            |                   |                     |                           |                |                |                |                 | ÷       |                           |
| FR_09-01-A         | FR_09-01-A-121114                                     | 2012 11 14                  | 5     | 200                           | < 30                | 87.5                           | 0.724                              | 3.4                              | 2.4                        | 0.29           | < 0.1                     | 184    | < 0.1             | 22      | 0.078                     | < 0.1           | 0.11      | < 0.5                    | < 0.05              | 49.6        | < 0.01       | 0.731               | 0.57                       | <u>116</u>        | < 0.01              | 214                       | < 0.01         | < 0.1          | 11             | 4.08            | < 1     | < 3                       |
|                    | FRO12_0104201307                                      | 2013 05 30                  | < 3.0 | 126                           | < 30                | 56.1                           | 0.102                              | 2.6                              | < 2.0                      | 0.29           | < 0.10                    | 91.4   | < 0.10            | 16      | 0.021                     | 0.14            | < 0.10    | < 0.50                   | < 0.050             | 30.6        | < 0.010      |                     |                            | 85.5              | < 0.010             | 111                       | < 0.010        | < 0.10         | < 10           | 4.01            | < 1.0   | < 3.0                     |
| -                  | <br>FR_09-01-A_Q_01062013_N                           | 2013 08 29                  | 1.4   | 163                           | < 10                | 72.0                           | 0.399                              | 3.21                             | 1.80                       | 0.372          | < 0.10                    | ) 120  | < 0.050           | 20.9    | 0.033                     | 0.12            | < 0.050   | < 0.20                   | < 0.030             | 41.0        | < 0.010      | 1.89                | < 0.50                     |                   | < 0.010             | 146                       | < 0.010        | < 0.050        | < 1.0          | 5.03            | < 0.50  | < 1.0                     |
|                    | FR 09-01-A Q 01092013 N                               | 2013 10 31                  | < 3.0 | 209                           | < 30                | 93.8                           | 0.275                              | 3.41                             | 2.44                       | 0.28           | < 0.10                    | ) 149  | < 0.10            | 20      | 0.032                     | < 0.10          | < 0.10    | < 0.50                   | < 0.050             | 46.7        | < 0.010      | 0.762               | < 0.50                     |                   | < 0.010             | 199                       | < 0.010        | < 0.10         | 10             | 4.52            | < 1.0   | < 3.0                     |
|                    | FR 09-01-A Q 01012014 N                               | 2014 03 13                  |       |                               | < 10                |                                | < 0.050                            |                                  | 3.90                       |                |                           | 98.3   | < 0.10            | 15      | 0.058                     | < 0.10          | 0.25      |                          |                     |             | < 0.010      |                     | 1.01                       |                   | < 0.010             |                           |                | < 0.10         | 16             | 3.02            |         | < 3.0                     |
|                    | FR 09-01-A Q 01042014 N                               | 2014 05 14                  |       | 180                           | < 10                |                                | < 0.050                            | 3.02                             | 4.74                       | 0.18           | < 0.10                    |        | < 0.10            | 17      | 0.056                     | 0.11            | 0.24      |                          |                     |             |              | 0.478               | 0.93                       | 75                | < 0.010             |                           | < 0.010        |                | 15             | 3.63            | < 1.0   | 5.3                       |
| -                  | FR 09-01-A QSW 02072014 N                             | 2014 08 25                  | < 3.0 | 145                           | < 10                |                                | < 0.050                            |                                  | 2.65                       | 0.32           | < 0.10                    |        | < 0.10            | 20      | 0.044                     | 0.11            | 0.23      | < 0.50                   |                     | 50.4        | < 0.010      | 1.69                | 0.71                       | 62.7              | < 0.010             |                           |                | < 0.10         | < 10           | 5.06            | < 1.0   | < 3.0                     |
|                    | FR 09-01-A QSW 02102014 N                             |                             | < 3.0 |                               | < 10                |                                | < 0.050                            |                                  | 3.43                       | 0.30           |                           | ) 114  | < 0.10            | 25      | 0.045                     | < 0.10          | 0.26      |                          | < 0.050             |             | < 0.010      |                     | 0.91                       | 68                | < 0.010             |                           |                | < 0.10         | 17             | 4.42            | < 1.0   |                           |
|                    | FR_09-01-A_QSW_02012015_N                             | 2015 01 22                  | < 3.0 | 146                           | < 10                |                                | < 0.050                            | 3.07                             | 4.12                       | 0.23           | < 0.10                    |        | < 0.10            | 21      | 0.056                     | 0.14            | 0.31      | < 0.50                   |                     |             |              | 0.619               | 1.17                       | 49.3              | < 0.010             |                           | < 0.010        |                | 17             | 3.51            |         | < 3.0                     |
| =                  | FR 09-01-A DUP                                        | Duplicate                   | < 3.0 |                               | < 10                |                                | < 0.050                            |                                  |                            |                |                           | 0 108  |                   | 21      | 0.054                     | 0.13            | 0.31      |                          |                     |             | < 0.010      |                     | 1.18                       | <u>40.0</u><br>49 | < 0.010             |                           |                | < 0.10         | 16             | 3.61            | < 1.0   |                           |
|                    | QA/QC RPD%                                            | Bupilouto                   | .0.0  | 100                           | 10                  | 00.0                           | 0.000                              | 0.00                             | 1.10                       | 0.20           | 0.10                      | , 100  | 0.10              |         | 0.001                     | 0.10            | 0.01      | 0.00                     | 0.000               | 01.1        | 0.010        | 0.021               | 1.10                       | 40                | 0.010               | 100                       | 0.010          | 0.10           | 10             | 0.01            | 1.0     | . 0.0                     |
|                    | FR 09-01-A QSW 02042015 N                             | 2015 04 14                  | < 3.0 | 165                           | < 10                | 78.2                           | < 0.10                             | 3.09                             | 4.66                       | 0.19           | < 0.10                    | ) 120  | < 0.10            | 17      | 0.0517                    | < 0.10          | 0.37      | < 0.50                   | < 0.050             | 63.9        | < 0.0050     | 0.537               | 1.31                       | <u>64.5</u>       | < 0.010             | 178                       | < 0.010        | < 0.10         | 14             | 4.6             | < 0.50  | < 3.0                     |
| -                  | FR 09-01-A QSW 02072015 N                             | 2015 07 02                  | < 3.0 |                               | < 10                |                                | < 0.10                             |                                  | 1.71                       | 0.3            |                           | 89.3   | < 0.10            |         | 0.0217                    | < 0.10          | < 0.10    |                          |                     |             | < 0.0050     |                     |                            | 82.2              | < 0.010             |                           |                | < 0.10         |                |                 | < 0.50  |                           |
|                    | FR 09-01-A QSW 02102015 N                             |                             | < 3.0 |                               | < 10                |                                | < 0.10                             |                                  | 3.92                       | 0.26           |                           | ) 121  | < 0.10            | 28      | 0.0447                    | 0.17            | 0.32      | < 0.50                   |                     |             | < 0.0050     |                     | 1.18                       | 66.6              | < 0.010             |                           |                | < 0.10         |                |                 | < 0.50  |                           |
| -                  | FR 09-01-A QSW 04012016 N                             |                             | < 3.0 | 176                           | < 10                |                                | < 0.10                             |                                  | 4.11                       | 0.23           | < 0.10                    |        | < 0.10            | 21      | 0.0418                    | < 0.10          | 0.33      |                          |                     |             | < 0.0050     |                     | 1.32                       | 66.1              | < 0.010             |                           | < 0.010        |                | 14             | 4.36            | < 0.50  |                           |
| -                  | FD QSW 04012016 001                                   |                             | < 3.0 |                               |                     | 78.9                           | < 0.10                             |                                  |                            |                | -                         | ) 118  |                   |         | 0.0468                    | < 0.10          |           |                          | < 0.050             |             |              |                     |                            |                   |                     |                           |                |                |                | 4.33            |         |                           |
|                    | QA/QC RPD%                                            | Bupilouto                   | .0.0  | 100                           | 10                  | 10.0                           | 0.10                               | 0.00                             | 1.00                       | 0.21           | 0.10                      | , 110  | 0.10              | 20      | 0.0100                    | 0.10            | 0.00      | 0.00                     | 0.000               | ,           | 0.0000       | 0.010               | 1.20                       | 00.0              | 0.010               | 100                       | 0.010          | 0.10           |                | 1.00            | 0.00    | . 0.0                     |
| -                  | FR 09-01-A-WG-201606141205                            | 2016 06 14                  | < 3.0 | 134                           | < 10                | 60.2                           | < 0.10                             | 2.77                             | 1.97                       | 0.28           | < 0.10                    | 82.7   | < 0.020           | 15      | 0.0203                    | < 0.10          | < 0.10    | < 0.50                   | < 0.050             | 37.4        | < 0.0050     | 1.73                | < 0.50                     | <u>76.1</u>       | < 0.010             | 117                       | < 0.010        | < 0.10         | < 10           | 5.19            | < 0.50  | < 3.0                     |
| -                  | FR DC1-WG-201606141205                                | Duplicate                   | < 3.0 |                               | < 10                |                                | < 0.10                             |                                  | 1.77                       |                |                           | 85.4   |                   |         | 0.0250                    | < 0.10          |           |                          | < 0.050             |             |              |                     |                            |                   | < 0.010             |                           |                | < 0.10         |                | 5.14            |         |                           |
|                    | QA/QC RPD%                                            |                             |       |                               |                     |                                |                                    |                                  |                            |                |                           |        |                   |         |                           |                 |           |                          |                     |             |              |                     |                            |                   |                     |                           |                |                |                |                 |         |                           |
|                    | FR 09-01-A QSW 04072016 N                             | 2016 08 17                  | < 3.0 | 155                           | < 10                | 74.9                           | < 0.10                             | 3.52                             | 2.74                       | 0.32           | < 0.10                    | ) 105  | < 0.020           | 22      | 0.0348                    | < 0.10          | < 0.10    | < 0.50                   | < 0.050             | 53.3        | < 0.0050     | 1.35                | < 0.50                     | 85.7              | < 0.010             | 143                       | < 0.010        | < 0.10         | < 10           | 4.84            | < 0.50  | < 3.0                     |
|                    | FR 09-01-A QSW 03102016 N                             | 2016 11 24                  | < 3.0 |                               | < 10                | 86.3                           | < 0.10                             |                                  | 2.87                       |                |                           | ) 112  |                   | 17      | 0.0257                    | < 0.10          |           |                          |                     |             | < 0.0050     |                     | < 0.50                     |                   | < 0.010             |                           |                | < 0.10         |                | 5.71            | < 0.50  | < 3.0                     |
|                    | FR 09-01-A QSW 02012017 N                             |                             | < 1.0 |                               | < 10                |                                | < 0.10                             |                                  | 4.10                       | 0.19           | < 0.10                    |        | < 0.020           | 18      | 0.0571                    | < 0.10          | 0.31      |                          |                     |             | < 0.0050     |                     | 1.40                       |                   | < 0.010             |                           |                | < 0.10         | < 10           |                 | < 0.50  |                           |
| -                  | FR_09-01-A_QSW_03042017_N                             |                             | < 1.0 |                               | < 10                |                                | 0.15                               | 2.57                             | 2.52                       | 0.27           |                           | 0 70.0 |                   | 13      | 0.0269                    | < 0.10          | < 0.10    |                          |                     |             | < 0.0050     |                     | < 0.50                     |                   | < 0.010             |                           |                | < 0.10         | < 10           |                 | < 0.50  |                           |
|                    | FR 09-01-A QTR 2017-09-11 N                           | 2017 09 12                  |       |                               | < 10                |                                | < 0.10                             |                                  | 4.27                       | 0.34           |                           | 99.9   |                   | 27      | 0.0478                    | < 0.10          | 0.33      |                          |                     |             | < 0.0050     |                     | 1.37                       | 68.1              | < 0.010             |                           |                | < 0.10         |                |                 | < 0.50  |                           |
|                    | FR 09-01-A QTR 2017-10-02 N                           |                             | < 3.0 | 234                           | < 10                |                                | 0.71                               | 3.64                             | 4.10                       | 0.24           | < 0.10                    |        | < 0.020           | 23      | 0.0471                    | < 0.10          | 0.17      |                          |                     |             | < 0.0050     |                     | 0.74                       | 166               | < 0.010             |                           |                | < 0.10         | < 10           |                 |         |                           |
| -                  | FR 09-01-A QTR 2018-04-02 N                           | 2018 06 13                  |       |                               | < 10                |                                | < 0.10                             |                                  | 2.61                       | 0.33           |                           |        | < 0.020           | 16      | 0.0286                    | < 0.10          | < 0.10    |                          |                     |             | < 0.0050     |                     | 2.51                       | 106               | < 0.010             |                           |                | < 0.10         | < 10           |                 | < 0.50  | 3.8                       |
| -                  | FR 09-01-A QTR 2018-07-02 N                           | 2018 07 31                  |       | 125                           | < 10                |                                | < 0.10                             |                                  | 2.64                       | 0.28           |                           |        | < 0.020           | 18      | 0.0251                    | 0.27            | < 0.10    |                          |                     |             | < 0.0050     |                     | < 0.50                     |                   | < 0.010             |                           |                | < 0.10         |                |                 | < 0.50  |                           |
| -                  | FR_09-01-A_QTR_2018-10-01_N                           | 2018 12 13                  |       |                               |                     |                                |                                    |                                  |                            |                |                           |        | < 0.020           |         |                           |                 |           |                          | < 0.050             |             |              |                     |                            |                   |                     |                           |                | < 0.10         |                |                 |         |                           |
|                    | FR_09-01-A_QTR_2019-01-07_N                           | 2018 12 13                  |       |                               |                     |                                | < 0.10                             |                                  |                            |                |                           |        | < 0.020           |         |                           | < 0.14          |           |                          | < 0.050             |             |              |                     |                            |                   |                     |                           |                |                |                |                 |         |                           |
|                    | FR_09-01-A_QTR_2019-04-01_N                           | 2019 05 30                  |       |                               |                     |                                | < 0.10                             |                                  | 3.29                       |                |                           |        | < 0.020           |         | 0.0333                    | < 0.10          |           |                          | < 0.050             |             |              |                     |                            |                   |                     |                           |                | < 0.10         |                |                 |         |                           |
|                    | FR_09-01-A_QTR_2019-04-01_N                           | 2019 03 30                  |       |                               | -                   | 66.6                           | < 0.10                             |                                  | 2.53                       |                | _                         |        | < 0.020           |         | 0.0310                    | < 0.10          | 0.10      |                          | < 0.050             |             |              |                     |                            |                   | < 0.010             |                           |                | < 0.10         |                |                 |         |                           |
|                    |                                                       |                             |       |                               |                     | 89.8                           |                                    |                                  | 3.42                       |                |                           |        |                   |         |                           | < 0.10          | 0.11      |                          |                     |             |              |                     |                            |                   |                     |                           |                | < 0.10         |                |                 |         |                           |
|                    | FR_09-01-A_QTR_2019-10-07_N                           | 2019 11 01                  |       |                               |                     |                                | < 0.10                             |                                  |                            |                | -                         |        | < 0.020           | 20      | 0.0377                    |                 |           |                          | < 0.050             |             |              |                     |                            |                   |                     |                           |                |                |                |                 |         |                           |
|                    | FR_09-01-A_QTR_2020-01-06_N                           | 2020 02 13                  |       |                               | < 10                |                                | < 0.10                             |                                  | 4.26                       |                |                           | 93.5   |                   |         | 0.0612                    | 0.15            | 0.36      |                          | < 0.050             |             |              |                     |                            |                   | < 0.010             |                           |                | < 0.10         |                |                 | < 0.50  |                           |
| FR_09-01-B         | FR_09-01-B-121114                                     | 2012 11 14                  |       | 179                           | < 30                |                                | 0.074                              | 3.2                              | 3.3                        |                | -                         | 231    |                   | 23      | 0.041                     | 0.15            | 0.2       | < 0.5                    |                     |             |              |                     | 0.75                       |                   | < 0.01              |                           | < 0.01         |                | 11             | 4.18            | < 1     | < 3                       |
|                    | FRO12_0101201308                                      | 2013 03 26                  |       |                               |                     |                                | < 0.050                            |                                  | 4.6                        |                |                           |        | < 0.10            | 20      | 0.050                     | 0.12            | 0.43      |                          | < 0.050             |             |              |                     |                            |                   |                     |                           |                |                |                |                 |         |                           |
|                    | FRO12_0104201308                                      | 2013 05 30                  |       |                               |                     |                                | 0.061                              | 2.8                              | 2.8                        |                |                           | ) 155  |                   | 20      | 0.022                     | 0.17            |           |                          | < 0.050             |             |              |                     |                            |                   |                     |                           |                |                |                | 2.39            |         |                           |
|                    | FR_09-01-B_Q_01062013_N                               | 2013 08 29                  | < 1.0 | 155                           | < 10                | 68.7                           | < 0.050                            | 2.99                             | 2.36                       | 0.154          | < 0.10                    | 1/1    | < 0.050           | 19.2    | 0.025                     | 0.18            | 0.107     | < 0.20                   | < 0.030             | 38.5        | < 0.010      | 1.02                | < 0.50                     | <u>89</u>         | < 0.010             | 1/2                       | < 0.010        | < 0.050        | < 1.0          | 4.12            | < 0.50  | 2.3                       |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2236699, L224795, L2244162, L2245057, L2248235, L2248391, L2249360, L2256457, L225657, L2255657, L225557, L2255757, L225757, L2257577, L225757 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505. Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

<u>BOLD</u> Concentration greater than CSR Aquatic Life (AW) standard

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                            |                             |                 |                     |                     |               |                  |                  |               |                       |                |                       |        |                |                          |              |                 | Total       | Metals            |               |                  |                            |                       |                   |                 |                           |                |               |              |                                 |           |                  |                         |                  |                            |
|--------------------|------------------------------------------------------------|-----------------------------|-----------------|---------------------|---------------------|---------------|------------------|------------------|---------------|-----------------------|----------------|-----------------------|--------|----------------|--------------------------|--------------|-----------------|-------------|-------------------|---------------|------------------|----------------------------|-----------------------|-------------------|-----------------|---------------------------|----------------|---------------|--------------|---------------------------------|-----------|------------------|-------------------------|------------------|----------------------------|
| Sample<br>Location | Sample<br>ID                                               | Sample Date<br>(yyyy mm dd) | Ha/T<br>Muminum | ର୍ଜ<br>ଅନ୍ୟୁ<br>ଅନ୍ | б<br>Я Arsenic<br>Т | Barium<br>D/P | Б<br>Т/Beryllium | Bismuth<br>D/D   | цолов<br>µg/L | Cadmium<br>7/6t       | calcium<br>٦/٣ | Bh<br>Chromium<br>T/F | T/br   | ррег<br>Горрег | <u>Б</u><br><u>ц</u> у/L | ۲) لead<br>۲ | Lithium<br>T/6h | б<br>П<br>П | бт<br>Л Manganese | 64<br>Mercury | Molybdenum<br>57 | Л<br>Пickel                | 向<br>了<br>Phosphorous | Et Potassium<br>T | Д Selenium<br>T | Silicon<br>M <sup>6</sup> | hâ/r<br>Silver | minos<br>Halv | T/бп<br>T/бп | Hallium<br>Thallium<br>Thallium | Е<br>µg/L | hg/T<br>Titanium | 6th<br>Dranium<br>T/6th | бт<br>7 Vanadium | Бћ<br>Т/Szinc <sup>f</sup> |
| Primary Screening  | <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup>      |                             | n/a             | n/a                 | n/a                 | n/a           | n/a              | n/a              | n/a           | n/a                   | n/a            | n/a                   | n/a    | n/a            | n/a                      | n/a          | n/a             | n/a         | n/a               | n/a           | n/a              | n/a                        | n/a                   | n/a               | n/a             | n/a                       | n/a            | n/a           | n/a          | n/a                             | n/a       | n/a              | n/a                     | n/a              | n/a                        |
| Secondary Screer   | ning Criteria: Costa and de Bruyn (2021) <sup>h</sup>      |                             | n/a             | n/a                 | n/a                 | n/a           | n/a              | n/a              | n/a           | 0.8-10.4 <sup>i</sup> | n/a            | 100 (Cr +6            | ) n/a  | n/a            | n/a                      | n/a          | 2,530           | n/a         | n/a               | n/a           | n/a              | 517-<br>2,972 <sup>i</sup> | n/a                   | n/a               | 700             | n/a                       | n/a            | n/a           | n/a          | n/a                             | n/a       | n/a              | 3,520                   | n/a              | n/a                        |
| S6 Study Area      |                                                            |                             |                 |                     |                     |               |                  |                  |               |                       |                |                       |        |                |                          |              |                 |             |                   |               |                  | 2,012                      |                       |                   |                 |                           |                |               |              |                                 |           |                  |                         |                  |                            |
| FR_09-01-A         | FR 09-01-A-121114                                          | 2012 11 14                  | 2,640           | 0.41                | 1.83                | 238           | 0.17             | < 0.5            | 22            | 0.572                 | 223,000        | 6.05                  | 1.48   | 4.88           | 4,290                    | 2            | 41.6            | 89,700      | 210               | < 0.01        | 1.19             | 6.93                       | 179                   | 4,200             | 113             | 7,720                     | 0.069          | 2,300         | 207          | 0.08                            | 0.18      | 85               | 3.82                    | 11.8             | 26.3                       |
| _                  | FRO12_0104201307                                           | 2013 05 30                  |                 |                     |                     | 96.3          |                  | < 0.50           | 14            |                       | 129,000        | 0.12                  |        | < 0.50         |                          |              |                 | 58,100      | 1.24              | < 0.010       |                  | < 0.50                     |                       |                   | 88.0            |                           | < 0.010        |               |              |                                 |           |                  |                         | < 1.0            |                            |
|                    | <br>FR_09-01-A_Q_01062013_N                                | 2013 08 29                  | 106             | 0.408               | 0.22                | 124           | < 0.050          | -                | 24.3          | 0.073                 | 170,000        | 0.50                  | 0.283  | 0.67           | 238                      | 0.221        | 46.0            | 74,400      | 25.8              | < 0.010       | 1.84             | 0.83                       | -                     | 3,420             | 110             | 1,940                     | < 0.010        | 1,840         | 164          | < 0.010                         | < 0.050   | 2.3              | 5.29                    | 0.74             | 3.3                        |
|                    |                                                            |                             |                 |                     |                     |               |                  |                  |               |                       |                |                       |        |                |                          |              |                 |             |                   |               |                  |                            |                       |                   |                 |                           |                |               |              |                                 |           |                  |                         |                  |                            |
|                    |                                                            | 2014 08 25                  | < 2.0           | 0.25                | 0.14                | 110           | < 0.10           | < 0.50           | 01            | 0.046                 | 150,000        | 0.14                  | 0.02   | < 0.50         | < 10                     | < 0.050      | E1 0            | 74 600      | < 0.050           | < 0.010       | 1.01             | 0.74                       |                       | 2 100             | 66.0            | 1 700                     | < 0.010        | 0.070         | 150          | < 0.010                         | < 0.10    | < 10             | <u> </u>                | <10              | < 2.0                      |
|                    | FR_09-01-A_QSW_02072014_N                                  | 2014 08 25                  | < 3.0           |                     | 0.14                |               | _                | < 0.50           | 21            | 0.046                 | 150,000        | 0.14                  | 0.23   |                | < 10                     |              |                 |             |                   | < 0.010       |                  | 0.74                       |                       | 3,190             | 66.2            |                           | < 0.010        |               |              | < 0.010                         |           |                  |                         |                  | < 3.0                      |
|                    | FR_09-01-A_QSW_02102014_N<br>FR_09-01-A_QSW_02012015_N     | 2014 11 06<br>2015 01 22    | 3.9             | 0.30                | < 0.10              | ) 113<br>-    |                  | < 0.50<br>< 0.50 | 25            | 0.055                 | 162,000        | 0.12 0.13             | 0.28   | < 0.50         | < 10                     | < 0.050      | - 65.3          |             |                   | < 0.010       | 0.845            |                            |                       | 3,020<br>3,060    | 49.6            | 2,160                     | < 0.010        | 3,490         |              | < 0.010                         | < 0.10    | 18               | 4.48                    | < 1.0            | < 3.0                      |
|                    | FR 09-01-A DUP                                             | Duplicate                   | -               | -                   | -                   | -             | -                | < 0.50           | -             | 0.057                 | -              | 0.13                  | -      | -              | -                        | -            | -               | -           | -                 | -             | -                | -                          |                       | 3,060             | 49.0            | -                         | -              | -             | -            | -                               | -         | -                |                         | -                |                            |
|                    | QA/QC RPD%                                                 | Duplicate                   | -               | -                   | -                   | -             | -                | *                | -             | 7                     | -              | *                     | -      | -              | -                        | -            | -               | -           | -                 | -             | -                | -                          | -                     | 0,000             | 49.0            | -                         | -              | -             |              | -                               | -         | -                | -                       | -                | <u> </u>                   |
| -                  | FR 09-01-A QSW 02042015 N                                  | 2015 04 14                  | -               | -                   | -                   | -             | -                | < 0.050          | -             | 0.0522                | -              | 0.12                  | -      | -              | -                        | -            | -               | -           | -                 | -             | -                | -                          |                       | 3,160             | 63              | -                         | -              | -             | -            | -                               | -         | -                | <u> </u>                | -                | <u> </u>                   |
|                    | FR_09-01-A_QSW_02072015_N                                  | 2015 07 02                  | -               | -                   | -                   | -             | -                | < 0.050          |               | 0.0258                | -              | < 0.10                | -      | -              | -                        | -            | -               | -           | -                 | -             | -                | -                          |                       | 3,010             | 93.3            | -                         | -              | -             | -            | -                               | -         | -                | -                       | -                | -                          |
|                    | FR_09-01-A_QSW_02102015_N                                  | 2015 10 08                  | -               | -                   | -                   | -             | -                | < 0.050          | -             | 0.0455                | -              | 0.21                  | -      | -              | -                        | -            | -               | -           | -                 | -             | -                | -                          | -                     | 3,200             | 69.4            | -                         | -              | -             | -            | -                               | -         | -                | -                       | -                | -                          |
|                    | FR_09-01-A_QSW_04012016_N                                  | 2016 01 25                  | < 3.0           |                     |                     |               | < 0.10           |                  |               | 0.0488                | 162,000        | 0.10                  | 0.34   | < 0.50         | < 10                     | < 0.050      | 71.7            | 76,300      | < 0.10            | < 0.0050      | 0.596            | 1.44                       | -                     | 3,330             | 59.5            | 2,250                     | < 0.010        | 4,150         | 167          | < 0.010                         | < 0.10    | 13               | 4.36                    | < 0.50           | < 3.0                      |
|                    | FD_QSW_04012016_001                                        | Duplicate                   | < 3.0           | 0.23                | < 0.10              | ) 117         | < 0.10           | < 0.050          | 20            | 0.0532                | 161,000        | 0.11                  | 0.33   | < 0.50         | < 10                     | < 0.050      | 68.1            | 76,900      | < 0.10            | < 0.0050      | 0.586            | 1.40                       | -                     | 3,260             |                 |                           | < 0.010        | 4,100         | 164          | < 0.010                         | < 0.10    | 14               | 4.33                    | < 0.50           | < 3.0                      |
|                    | QA/QC RPD%                                                 |                             | *               | *                   | *                   | 2             | *                | *                | *             | 9                     | 1              | *                     | 3      | *              | *                        | *            | 5               | 1           | *                 | *             | 2                | *                          | -                     | 2                 | 2               | 0                         | *              | 1             | 2            | *                               | *         | 7                | 1                       | *                | *                          |
| -                  | FR_09-01-A-WG-201606141205                                 | 2016 06 14                  | < 3.0           | 0.32                | < 0.10              | 82.1          | < 0.020          | < 0.050          | 16            | 0.0234                | 135,000        | 0.10                  | < 0.10 | < 0.50         | < 10                     | < 0.050      | 39.4            | 61,500      | < 0.10            | < 0.0050      | 1.75             | < 0.50                     | -                     | 2,900             | 77.1            | 1,670                     | < 0.010        | 2,080         | 118          | < 0.010                         | < 0.10    | < 10             | 5.23                    | < 0.50           | < 3.0                      |
|                    | QA/QC RPD%                                                 |                             | *               | *                   | *                   | 6             | *                | *                | *             | *                     | 0              | *                     | *      | *              | *                        | *            | 1               | 1           | *                 | *             | 1                | *                          | -                     | 3                 | 1               | 0                         | *              | 9             | 1            | *                               | *         | *                | 1                       | *                | *                          |
|                    | FR_09-01-A_QSW_04072016_N                                  | 2016 08 17                  | < 3.0           | 0.34                | < 0.10              | 96.5          | < 0.020          | < 0.050          | 23            | 0.0326                | 145,000        | 0.21                  | < 0.10 | < 0.50         | < 10                     | < 0.050      | 50.1            | 69,500      | < 0.10            | < 0.0050      | 1.37             | < 0.50                     | -                     | 3,200             | 83.7            | 2,110                     | < 0.010        | 2,550         | 136          | < 0.010                         | < 0.10    | < 10             | 4.72                    | < 0.50           | < 3.0                      |
|                    | FR_09-01-A_QSW_03102016_N                                  | 2016 11 24                  | < 3.0           | 0.28                | 0.10                | 111           | < 0.020          | < 0.050          | 21            | 0.0283                | 178,000        | < 0.10                | < 0.10 | < 0.50         | < 10                     | < 0.050      | 58.0            | 89,100      | < 0.10            | < 0.0050      | 0.787            | < 0.50                     | -                     | 3,100             | 137             | 1,920                     | < 0.010        | 2,890         | 173          | < 0.010                         | < 0.10    | < 10             | 5.74                    | < 0.50           | < 3.0                      |
|                    | FR_09-01-A_QSW_02012017_N                                  | 2017 03 08                  | < 3.0           | 0.25                | < 0.10              | 153           | < 0.020          | < 0.050          | 21            | 0.0561                | 240,000        | < 0.10                | 0.36   | < 0.50         | < 10                     | < 0.050      | 82.9            | 117,000     | 0.13              | < 0.0050      | 0.737            | 1.70                       | -                     | 3,680             | 137             | 2,390                     | < 0.010        | 4,740         | 240          | < 0.010                         | < 0.10    | < 10             | 7.27                    | < 0.50           | < 3.0                      |
|                    | FR_09-01-A_QSW_03042017_N                                  | 2017 06 01                  | -               | -                   | -                   | -             | -                | -                | -             | -                     | -              | -                     | -      | -              | -                        | -            | -               | -           | -                 | -             | -                | -                          | -                     | -                 | -               | -                         | -              | -             | -            | -                               | -         | -                | -                       | -                | -                          |
|                    | FR_09-01-A_QTR_2017-09-11_N                                | 2017 09 12                  | -               | -                   | -                   | -             | -                | -                | -             | -                     | -              | -                     | -      | -              | -                        | -            | -               | -           | -                 | -             | -                | -                          | -                     | -                 | -               | -                         | -              | -             | -            | -                               | -         | -                | - '                     | -                | -                          |
|                    | FR_09-01-A_QTR_2017-10-02_N                                | 2017 11 22                  | -               | -                   | -                   | -             | -                | -                | -             | -                     | -              | -                     | -      | -              | -                        | -            | -               | -           | -                 | -             | -                | -                          | -                     | -                 | -               | -                         | -              | -             | -            | -                               | -         | -                | - '                     | -                | -                          |
| _                  | FR_09-01-A_QTR_2018-04-02_N                                | 2018 06 13                  | -               | -                   | -                   | -             | -                | -                | -             | -                     | -              | -                     | -      | -              | -                        | -            | -               | -           | -                 | -             | -                | -                          | -                     | -                 | -               | -                         | -              | -             | -            | -                               | -         | -                | -                       | -                |                            |
|                    | FR_09-01-A_QTR_2018-07-02_N                                | 2018 07 31<br>2018 12 13    | -               | -                   | -                   | -             | -                | -                | -             | -                     | -              | -                     | -      | -              | -                        | -            | -               | -           | -                 | -             | -                | -                          | -                     | -                 | -               | -                         | -              | -             | -            | -                               | -         | -                | - '                     | -                | -                          |
|                    | FR_09-01-A_QTR_2018-10-01_N<br>FR 09-01-A QTR 2019-01-07 N | 2018 12 13                  | -               | -                   | -                   | -             | -                | -                | -             | -                     | -              | -                     | -      | -              | -                        | -            | -               | -           | -                 | -             | -                | -                          | -                     | -                 | -               | -                         | -              | -             | -            | -                               | -         | -                | - )                     | -                | -                          |
|                    | FR 09-01-A QTR 2019-01-07_N                                | 2019 05 14                  | -               | -                   | -                   | -             | -                | -                | -             | -                     | -              | -                     | -      | -              | -                        | -            | -               | -           | -                 | -             | -                | -                          | -                     | -                 | -               | -                         | -              | -             | -            | -                               | -         | -                | -                       | -                |                            |
|                    | FR 09-01-A QTR 2019-07-01 N                                | 2019 03 30                  | -               | -                   | -                   | -             | -                | -                | -             | -                     | -              | _                     | -      | -              | -                        | _            | -               | -           | -                 | -             | -                | -                          | -                     | -                 |                 | _                         | _              | -             | -            | _                               | -         | -                | -                       |                  | -                          |
|                    | FR_09-01-A_QTR_2019-10-07_N                                | 2019 11 01                  | -               | -                   | -                   | -             | -                | -                | -             | -                     | -              | -                     | -      | -              | -                        | -            | -               | -           | -                 | -             | -                | -                          | -                     | -                 | -               | -                         | -              | -             | -            | -                               | -         | - 1              | -                       | -                | -                          |
|                    | FR_09-01-A_QTR_2020-01-06_N                                | 2020 02 13                  | -               | -                   | -                   | -             | -                | -                | -             | -                     | -              | -                     | -      | -              | -                        | -            | -               | -           | -                 | -             | -                | -                          | -                     | -                 | -               | -                         | -              | -             | -            | -                               | -         | -                | -                       | -                | -                          |
| FR_09-01-B         | FR_09-01-B-121114                                          | 2012 11 14                  | 71.8            | 0.17                | 0.14                | 242           | < 0.1            | < 0.5            | 21            | 0.158                 | 182,000        | 0.32                  | 0.26   | 0.92           | 89                       | 0.101        | 45              | 78,900      | 3.39              | < 0.01        | 0.923            | 1.01                       | 5.5                   | 3,300             | 66.2            | 2,370                     | < 0.01         | 3,400         | 196          | < 0.01                          | < 0.1     | 13               | 4.05                    | < 1              | < 3                        |
|                    | FRO12_0101201308                                           | 2013 03 26                  |                 |                     |                     | 184           | < 0.10           | < 0.50           |               | 0.061                 | 159,000        | 0.25                  | 0.46   |                | 81                       | 0.092        |                 |             |                   | < 0.010       |                  |                            |                       |                   |                 |                           | < 0.010        |               |              |                                 |           | < 10             | 3.36                    | < 1.0            | < 3.0                      |
|                    | FRO12_0104201308                                           | 2013 05 30                  | 17.7            | 0.13                | < 0.10              | 156           | < 0.10           | < 0.50           | 19            | 0.037                 | 144,000        | 0.13                  | < 0.10 | < 0.50         | < 30                     | < 0.050      | 47.7            | 63,000      | 0.857             | < 0.010       | 0.604            | < 0.50                     | -                     | 3,000             | 95.3            | 2,220                     | < 0.010        | 2,900         | 152          | < 0.010                         | < 0.10    | 11               | 2.43                    | < 1.0            | < 3.0                      |
|                    |                                                            |                             |                 |                     |                     |               |                  |                  |               |                       |                |                       |        |                |                          |              |                 |             |                   |               |                  |                            |                       |                   |                 |                           |                |               |              |                                 |           |                  | <u> </u>                |                  |                            |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2238699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L2250608, L2256457, L2275412, L2282357, L2283636, L2283637, L2289256, L2290261, L2292060, L2292416, L22316991, L2317812, L2249360, L2250457, L225057, L22507, L2257, L225 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

<u>BOLD</u> Concentration greater than CSR Aquatic Life (AW) standard

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) <sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Standard varies with pH.

<sup>c</sup> Standard varies with chloride.

<sup>d</sup> Standard varies with hardness.

<sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                       |                             |        |            |        | Р                    | hysical Para                                            | meters                           |                                  |                                      |                                                                   |        |       | Field P                 | arame          | ters              |                             |                            |                                  |                             |                              |                                    |                            |               |                                       | Dissolv                      | ed Inorg                     | anics                                      |                                                                  |       |                 |         |                                       |              |           | · · · · · · |
|--------------------|-------------------------------------------------------|-----------------------------|--------|------------|--------|----------------------|---------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------|-------------------------------------------------------------------|--------|-------|-------------------------|----------------|-------------------|-----------------------------|----------------------------|----------------------------------|-----------------------------|------------------------------|------------------------------------|----------------------------|---------------|---------------------------------------|------------------------------|------------------------------|--------------------------------------------|------------------------------------------------------------------|-------|-----------------|---------|---------------------------------------|--------------|-----------|-------------|
|                    |                                                       |                             |        |            |        |                      |                                                         |                                  |                                  | no                                   |                                                                   |        |       |                         |                |                   |                             |                            |                                  |                             |                              |                                    |                            |               |                                       |                              |                              |                                            |                                                                  |       |                 |         |                                       |              |           |             |
| Sample<br>Location | Sample<br>ID                                          | Sample Date<br>(yyyy mm dd) |        | 6 Hardness |        | bo Total Anions<br>T | គ្មី Total Cations<br>T<br>ភ្លា<br>ប្លា<br>Conductivity | u<br>B<br>Total Dissolved Solids | T<br>M<br>Total Suspended Solids | I otal Suspended<br>Dissolved Organi | <ul> <li>∃ Oxidation Reduction</li> <li>&lt; Potential</li> </ul> |        | Field | move Tield Conductivity | C ried runding |                   | 년 pH (field)<br>ጄ Field ORP | 료<br>호<br>고otal Alkalinity | ad<br>Ammonia, Total (as N)<br>T | a<br>⊠ Nitrate (as N)<br>⊤  | Mitrite (as N)               | a<br>bolitrate+Nitrite (as N)<br>T | ä Kjeldahl Nitrogen-N<br>T | a<br>Nitrogen | a Total Nitrogen-N<br>a Chloride<br>T | 54<br>T/F<br>Tuoride         | m<br>Sulfate                 | a Alkalinity, Bicarbonate<br>r⊃ (as CaCO3) | a Alkalinity, Carbonate<br>T (as CaCO3)<br>Alkalinity, Hydroxide |       | Garbonate<br>T∕ | mg/T    | б Total Acidity<br>В Асініти (ын в з) | Ortho-Phosph |           |             |
| Primary Screenin   | <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup> |                             | n/a r  | n/a        | n/a ı  | n/a                  | n/a n/a                                                 | n/a                              | n/                               | /a n/a                               | n/a                                                               | n/a r  | n/a i | n/a n                   | /a n/          | /a n              | n/a n/a                     | n/a                        | 1.31-<br>18.5 <sup>⊳</sup>       | 400                         | 0.2-2.0 <sup>c</sup>         | 400                                | n/a                        | n/a           | n/a 1,500                             | 2,000-<br>3,000 <sup>d</sup> | 1,280-<br>4,290 <sup>d</sup> | n/a                                        | n/a n/a                                                          | n/a   | n/a             | n/a i   | n/a n                                 | /a n/a       | 'a n/a    | n/a         |
| Secondary Scree    | ning Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a r  | n/a        | n/a ı  | n/a                  | n/a n/a                                                 | 10,00                            | 00 n/                            | /a n/a                               | n/a                                                               | n/a r  | n/a i | n/a n                   | /a n/          | /a <sup>j</sup> n | n/a n/a                     | n/a                        | n/a                              | 6.08-<br>223.8 <sup>i</sup> | 0.389-<br>39.95 <sup>j</sup> | n/a                                | n/a                        | n/a           | n/a n/a                               | n/a                          | 4,990                        | n/a                                        | n/a n/a                                                          | ı n/a | n/a             | 78 1    | n/a n                                 | /a n/a       | 'a n/a    | n/a         |
| S6 Study Area      |                                                       |                             |        |            |        |                      |                                                         |                                  |                                  |                                      |                                                                   |        |       |                         |                |                   |                             |                            |                                  | 220.0                       | 00.00                        |                                    |                            |               |                                       |                              |                              |                                            |                                                                  |       |                 |         |                                       |              |           |             |
| FR_09-01-B         | FR_09-01-B_Q_01092013_N                               | 2013 10 31                  | 8 11 8 | 21 3       | 3 97 1 | 16.3                 | 16.7 1,340                                              | 1 100                            | 0 5                              | 3 0.61                               | 457                                                               | - 7    | 7.2 1 | ,235                    | - 9            | 12 7              | 28 47 9                     | 282                        | < 0.0050                         | 418                         | < 0.010                      | _                                  | < 0.050                    | -             | - 4.4                                 | < 200                        | 364                          | 282                                        | < 2.0 < 2.                                                       | 0 -   |                 | < 0.50  | - 3                                   | 7 0.00       | 0.61      | 1 0.0085    |
|                    | FD Q 01092013 010                                     | 2010 10 01                  | 5.11   | `          |        |                      |                                                         | 1,100                            | - 0.                             |                                      |                                                                   |        |       | ,_00                    |                | /.                | 0 +1.0                      | 202                        |                                  |                             | . 0.010                      |                                    | 0.000                      |               | 7.7                                   | . 200                        |                              | 2.52                                       | 2.0 - 2.                                                         | -     |                 | 0.00    |                                       | . 0.00       |           | 0.0000      |
|                    | QA/QC RPD%                                            |                             | 0      | 0          | 38     | *                    | * 2                                                     | 1                                | 4                                | * *                                  | *                                                                 | -      | -     | -                       |                | -                 |                             | 3                          | *                                | 2                           | *                            | -                                  | *                          | -             | - 5                                   | *                            | 1                            | 3                                          | * *                                                              | -     | -               | *       | - '                                   | *            | *         | 13          |
|                    | FR_09-01-B_Q_01012014_N                               | 2014 03 13                  | 8.13 5 | 71 (       | 0.12 1 | 11.6                 | 11.6 960                                                | 721                              | < 1                              | 1.0 0.68                             | 421                                                               | - 4    | 1.9 8 | 362                     | - 9.9          | 92 7.             | .64 9.7                     | 224                        | < 0.0050                         | 14.3                        | < 0.010                      | -                                  | 0.089                      | -             | - 2.9                                 | 270                          | 288                          | 224                                        | < 1.0 < 1.                                                       | 0 -   |                 | < 0.50  | - 2                                   | .2 0.00      | 0.54      | 4 0.0030    |
|                    | FR_09-01-B_Q_01042014_N                               | 2014 05 14                  | 8.15 6 | i04 ·      | 1.67   | 12                   | 12.3 1,010                                              | 755                              | 6.                               | .2 < 0.50                            | 237                                                               | - 4    | 1.9 8 | 378                     | - 8.9          | 98 7.             | .64 -39                     | 233                        | < 0.0050                         | 13.5                        | < 0.010                      | -                                  | < 0.050                    | -             | - 4                                   | < 200                        | 302                          | 233                                        | < 1.0 < 1.                                                       | 0 -   |                 | < 0.50  | - 2                                   | .5 0.00      | 014 < 0.5 | 0.0048      |
|                    | FR_09-01-B_QSW_02072014_N                             | 2014 08 25                  | 8.08 6 | 601 (      | 0.22 1 | 12.3                 | 12.2 1,000                                              | 744                              | < 1                              | 1.0 < 0.50                           | 382                                                               | - 9    | 9.2 9 | 9.36                    | - 7.           | .6 7.             | .58 28.7                    | 283                        | < 0.0050                         | 14.0                        | < 0.010                      | -                                  | < 0.050                    | -             | - 3.3                                 | 290                          | 267                          | 283                                        | < 1.0 < 1.                                                       | 0 -   |                 | < 0.50  | - 4                                   | .6 0.00      | 019 < 0.5 | 0.0043      |
|                    | FR_09-01-B_QSW_02102014_N                             | 2014 11 06                  | 8.04 5 | 52 (       | 0.14 1 | 11.2                 | 11.3 944                                                | 689                              | < 1                              | 1.0 0.53                             | 401                                                               | - 7    | 7.9 8 | 374                     | - 7.9          | 92 8.             | 8.38 -32.1                  | 255                        | < 0.0050                         | 10.2                        | < 0.010                      | -                                  | < 0.050                    | -             | - 3.5                                 | < 200                        | 256                          | 255                                        | < 1.0 < 1.                                                       | 0 -   | - '             | < 0.50  | - 4                                   | .6 0.00      | 020 < 0.5 | 0 0.023     |
|                    | FR_09-01-B_QSW_02012015_N                             | 2015 01 22                  | 8.01 5 | 23         | -      | -                    | - 902                                                   | 691                              | < 1                              | 1.0 0.74                             | -                                                                 | - 6    | 6.6 7 | 51.5                    |                | - 7.              | .60 -                       | 225                        | < 0.0050                         | 11.4                        | < 0.0050                     | -                                  | < 0.050                    | -             | - 3                                   | 190                          | 261                          | -                                          |                                                                  | -     |                 | < 0.25  |                                       | - 0.00       | 0.78      | 3 0.0026    |
|                    | FR_09-01-B_QSW_02042015_N                             | 2015 04 14                  | 8.39 5 | 96         | -      | -                    | - 1,020                                                 | 756                              | 1.                               | .1 0.65                              | -                                                                 | -      | -     | -                       |                | -                 |                             | 246                        | < 0.0050                         | 11.3                        | < 0.0050                     | -                                  | < 0.050                    | -             | - 4                                   | 180                          | 300                          | -                                          |                                                                  | -     | - ·             | < 0.25  |                                       | - 0.00       | 0.53      | 3 < 0.0020  |
|                    | FR_09-01-B_QSW_02072015_N                             | 2015 07 02                  | 7.86 5 | 88         | -      | -                    | - 991                                                   | 838                              | < 1                              | 1.0 < 0.50                           | - (                                                               | - 9    | 9.3   | -                       |                | - 7.              | ′.48 -                      | 229                        | < 0.0050                         | 30.5                        | < 0.0020                     | -                                  | < 0.050                    | -             | - 1.6                                 | 166                          | 224                          | -                                          |                                                                  | -     | - ·             | < 0.10  |                                       | 0.00         | 018 < 0.5 | 0.0023      |
|                    | FD_QSW_02072015_010                                   |                             |        |            |        |                      |                                                         |                                  |                                  |                                      |                                                                   |        |       |                         |                |                   |                             |                            |                                  |                             |                              |                                    |                            |               |                                       |                              |                              |                                            |                                                                  |       |                 |         |                                       |              |           |             |
|                    | QA/QC RPD%                                            | 1                           | 0      |            | -      | -                    |                                                         | 1                                | 4                                | * *                                  | -                                                                 | -      | -     | -                       |                | -                 |                             | 1                          | *                                | 1                           | *                            | -                                  | *                          | -             | - *                                   | 1                            | 1                            | -                                          |                                                                  | -     | -               | *       |                                       | *            | *         |             |
|                    | FR_09-01-B_QSW_02102015_N                             |                             | 8.28 5 |            | -      | -                    | - 1,030                                                 |                                  |                                  | 1.0 < 0.50                           |                                                                   | - (    |       | 986                     |                |                   | '.46 -                      |                            | < 0.0050                         |                             | < 0.0050                     |                                    | 0.067                      | -             | - 4.2                                 | 190                          | 288                          | -                                          |                                                                  | -     |                 | < 0.25  |                                       |              |           | 50 0.0021   |
|                    | FR_09-01-B_QSW_04012016_N                             |                             | 7.74 6 |            |        | 12.2                 |                                                         |                                  |                                  | 1.0 < 0.50                           | - 1                                                               | -      |       | 935                     |                | 99 7.             |                             |                            | < 0.0050                         |                             | < 0.0050                     |                                    | 0.059                      | -             | - 3.2                                 | 170                          | 291                          |                                            | < 1.0 < 1.                                                       |       |                 | < 0.25  |                                       | 0.1 0.00     |           |             |
|                    | FR_09-01-B-WG-201606141245                            |                             | 7.94 5 |            |        |                      | 12 1,060                                                |                                  |                                  | 1.0 0.54                             | -                                                                 | -      |       | 920                     |                |                   | 7.54 174.3                  |                            | < 0.0050                         |                             |                              |                                    | < 0.050                    | -             | - 1.12                                | 200                          | 252                          |                                            | < 1.0 < 1.                                                       |       |                 | < 0.25  |                                       |              |           | 3 0.0043    |
| _                  | FR_09-01-B_QSW_04072016_N                             |                             | 7.73 7 |            |        |                      | 14.7 1,220                                              |                                  |                                  | 1.0 0.54                             | -                                                                 | -      |       | 990                     |                |                   | 7.66 156.7                  |                            | < 0.0050                         |                             | < 0.0050                     | -                                  | < 0.050                    | -             | - 3.2                                 | 190                          | 297                          |                                            | < 1.0 < 1.                                                       |       |                 | < 0.25  |                                       | 5.8 0.00     |           | 9 0.0031    |
| _                  | FR_09-01-B_QSW_03102016_N                             |                             |        | 87         |        | 16.6                 | 16 1,410                                                |                                  |                                  | 1.0 < 0.50                           |                                                                   | -      |       | ,342                    |                | 79 7              |                             |                            | < 0.0050                         | 39.4                        | < 0.0050                     | -                                  | 0.137                      | -             | - 2.42                                | 170                          | 351                          |                                            | < 1.0 < 1.                                                       |       |                 | < 0.25  |                                       |              |           | 0.0032      |
|                    | FR_09-01-B_QSW_02012017_N                             |                             | 7.45 8 |            |        | 16.6                 |                                                         | -                                | -                                | 6.4 < 0.50                           |                                                                   |        |       | ,231                    |                |                   | 7.45 77.9                   | -                          | < 0.0050                         |                             |                              | -                                  | 0.613                      | -             | - 4.1                                 | 120                          | 409                          |                                            | < 1.0 < 1.                                                       |       |                 | < 0.25  |                                       |              |           | 0.0154      |
|                    | FR_09-01-B_QSW_03042017_N                             |                             | 8.18 6 |            |        |                      | 12.9 1,160                                              |                                  |                                  | 1.0 < 0.50                           |                                                                   |        |       | ,102                    |                |                   | 7.32 181.4                  |                            | 0.0050                           | 43.9                        | < 0.0050                     |                                    | 0.457                      | -             | - < 2.5                               | 170                          | 267                          |                                            | < 1.0 < 1.                                                       |       |                 | < 0.25  |                                       |              |           | 4 0.0044    |
|                    | FR_09-01-B_QTR_2017-09-11_N                           |                             |        |            |        |                      | 12.5 987                                                | 738                              |                                  | 1.0 0.88                             | 293                                                               |        |       | ,012                    |                |                   | 23 230.5                    | -                          | < 0.0050                         |                             | < 0.0050                     | -                                  | < 0.050                    | -             | - 3                                   | 140                          | 296                          |                                            | < 1.0 < 1.                                                       |       |                 | < 0.25  |                                       |              |           | 3 0.0028    |
|                    | FR_09-01-B_QTR_2017-10-02_N                           |                             | 7.85 8 |            |        | 17.4                 |                                                         |                                  |                                  | .3 < 0.50                            |                                                                   |        |       | ,298                    |                |                   |                             |                            | < 0.0050                         |                             |                              | -                                  | 0.294 0.333                | -             | - 3.1                                 | 140                          | 407                          |                                            | < 1.0 < 1.                                                       |       |                 | < 0.25  |                                       |              |           | 0.0055      |
| _                  | FR_09-01-B_QTR_2018-01-01_N<br>WG 2018-01-01 003      | 2018 02 22                  | 1.01 1 | 10         | 1.05 1 | 17.4                 | 14.6 1,330                                              | 984                              | •                                | 1 0.7                                | 334                                                               | -8.7 6 | 0.0 I | ,216                    | - 7.0          | 09 7              | 1.2 101.2                   | 2 410                      | 0.0085                           | 17.0                        | < 0.0010                     | -                                  | 0.333                      | -             | - 4.08                                | 133                          | 378                          | 410                                        | < 1.0 < 1.                                                       | 0 -   | - <             | < 0.050 | - 9                                   | 2 0.00       | JIJ 0.04  | 4 0.0044    |
|                    | QA/QC RPD%                                            |                             | 1      | 3          | 8      | *                    | * 2                                                     | 3                                | t l                              | * *                                  | *                                                                 | *      |       |                         |                |                   |                             | 2                          | *                                | 0                           | *                            |                                    | 1                          |               | 0                                     | 5                            | 0                            | 2                                          | * *                                                              |       |                 | *       | - 2                                   | 6 *          | r *       | *           |
|                    | FR 09-01-B QTR 2018-04-02 N                           | 2018 06 13                  |        | -          | 0.19 1 | 11.1                 | 11.2 952                                                | 715                              | <                                | 1.0 0.81                             | 244                                                               | 0.6 5  | 5.6 9 | 928                     | - 10           | .03 7             | 7.09 223.8                  | 3 217                      | 0.0061                           | 29.3                        | 0.0056                       | _                                  | 0.13                       | -             | - < 2.5                               | 210                          | 222                          | 217                                        | < 1.0 < 1.                                                       | 0 -   |                 | < 0.25  |                                       | -            | 012 0.70  | 0.0017      |
|                    | FR 09-01-B QTR 2018-07-02 N                           |                             | 8.06 5 |            |        |                      | 11.9 1,010                                              |                                  |                                  | 1.0 0.79                             |                                                                   | -4.8 6 |       | 936                     |                |                   | .29 156.1                   |                            |                                  |                             | 0.0090                       |                                    | < 0.050                    | -             | - 2.7                                 | 210                          | 311                          |                                            | < 1.0 < 1.                                                       |       |                 | < 0.25  |                                       |              |           | 5 0.0013    |
|                    | FR 09-01-B QTR 2018-10-01 N                           |                             |        | .71 (      |        |                      | 9.57 845                                                | 648                              |                                  | 1.0 0.7                              |                                                                   | -3.4 6 |       | 777                     |                |                   | . <u></u>                   |                            |                                  | 12.8                        | < 0.0010                     |                                    | 0.275                      | -             | - 1.85                                | 216                          | 262                          |                                            | < 1.0 < 1.                                                       |       |                 | < 0.050 |                                       |              |           | 9 < 0.0020  |
|                    | FR_09-01-B_QTR_2019-01-07_N                           |                             | 7.85 5 |            |        |                      |                                                         | _                                |                                  | .1 < 0.50                            |                                                                   |        |       | 368                     |                |                   |                             |                            | 0.0287                           |                             |                              |                                    | < 0.050                    | -             | - 1.73                                | 104                          | 300                          |                                            | < 1.0 < 1.                                                       |       |                 | < 0.050 |                                       |              |           | 0.0028      |
|                    | FR_09-01-B_QTR_2019-04-01_N                           | 2019 05 30                  |        |            |        |                      |                                                         |                                  |                                  |                                      |                                                                   |        |       | 992                     |                |                   |                             |                            |                                  |                             | < 0.0010                     |                                    | < 0.050                    | -             | - 0.87                                |                              | 230                          |                                            | < 1.0 < 1.                                                       |       |                 |         |                                       |              |           | 0.0062      |
|                    | FR 09-01-B QTR 2019-07-01 N                           | 2019 07 29                  |        |            |        |                      |                                                         |                                  |                                  |                                      |                                                                   |        |       | 355                     |                |                   |                             |                            | 0.0169                           |                             |                              |                                    | < 0.050                    |               | - < 2.5                               |                              |                              |                                            | < 1.0 < 1.                                                       |       |                 |         |                                       |              |           | 6 0.0028    |
|                    | FR 09-01-B QTR 2019-10-07 N                           | 2019 11 01                  |        |            |        |                      |                                                         |                                  |                                  |                                      |                                                                   |        |       |                         |                |                   |                             |                            | < 0.0050                         |                             |                              |                                    | < 0.050                    |               | - 3.12                                |                              |                              |                                            | < 1.0 < 1.                                                       |       |                 | < 0.050 |                                       |              |           | 0.0040      |
|                    | FR 09-01-B QTR 2020-01-06 N                           | 2020 02 13                  |        |            |        |                      |                                                         |                                  |                                  |                                      |                                                                   |        |       | ,102                    |                |                   |                             |                            | < 0.0050                         |                             |                              |                                    | < 0.050                    |               | - 2.6                                 | 128                          |                              |                                            | < 1.0 < 1.                                                       |       |                 |         |                                       |              |           | 0.0022      |
| FR_09-02-A         |                                                       | 2012 11 14                  |        |            |        |                      |                                                         |                                  |                                  |                                      |                                                                   |        | -     | -                       |                |                   |                             |                            | < 0.0050                         |                             |                              |                                    | < 0.050                    |               | - 2.6                                 |                              |                              |                                            | < 1.0 < 1.                                                       |       |                 | < 0.50  |                                       |              |           | 3 0.159     |
|                    | FRO12_0101201309                                      | 2013 03 26                  |        |            |        |                      |                                                         |                                  |                                  |                                      |                                                                   |        | 2.7   | 792                     | - 9.0          |                   |                             |                            | 0.0063                           |                             |                              | -                                  | 0.147                      | -             | - 3.2                                 | < 200                        |                              |                                            | < 1.0 < 1.                                                       |       |                 | < 0.50  | - 3                                   | .5 0.00      | 023 10.1  | 1 0.718     |
|                    | FRO12_0104201309                                      | 2013 05 30                  |        |            |        |                      |                                                         |                                  |                                  |                                      |                                                                   |        | 5 8   | 325                     |                |                   |                             |                            | 0.0087                           |                             |                              | -                                  | < 0.050                    | -             | - 2.3                                 | 420                          |                              |                                            | < 1.0 < 1.                                                       |       |                 | < 0.50  | - 2                                   | .5 0.00      | 2.50      | 0.0917      |
|                    |                                                       | 2016 01 25                  |        |            |        |                      |                                                         |                                  |                                  |                                      | -                                                                 |        | 2.7 8 | 39.6                    | - 10           | ).4 7.            | .87 251.7                   | 7 193                      | < 0.0050                         | 20.7                        | < 0.0050                     |                                    | 0.058                      | -             | - 2.1                                 | 170                          |                              |                                            | < 1.0 < 1.                                                       |       |                 | < 0.25  |                                       |              |           | 6 0.0399    |
|                    | FR_09-02-A-WG-201606151125                            | 2016 06 15                  |        |            |        |                      |                                                         |                                  |                                  |                                      | -                                                                 |        | 7.3 8 | 382                     | - 10.          | .03 7.            | 7.72 75.4                   | 255                        | < 0.0050                         | 26.1                        | < 0.0050                     | -                                  | < 0.050                    | -             | - 1.28                                | 220                          | 218                          | 255                                        | < 1.0 < 1.                                                       | 0 -   |                 | < 0.25  | - 8                                   | .0 0.00      | 047 1.21  | 1 0.0419    |
|                    | FR_09-02-A_QSW_04072016_N                             | 2016 08 22                  |        |            |        |                      |                                                         |                                  |                                  |                                      |                                                                   |        | 3.2 6 | 76.4                    | - 7.1          | 16 8.             | 8.09 118.8                  | 3 213                      | < 0.0050                         | 7.74                        | < 0.0050                     | -                                  | 0.076                      | -             | -                                     | 200                          | 165                          | 213                                        | < 1.0 < 1.                                                       | 0 -   |                 | < 0.25  | - 3                                   | .6 0.00      | 0.69      | 9 0.0037    |
|                    | FR_09-02-A_QSW_03102016_N                             | 2016 12 08                  | 7.86 4 | .83 (      | 0.27 9 | 9.95                 | 9.83 842                                                | 573                              | < 1                              | 1.0 0.53                             | 337                                                               | -      | 7 7   | 09.6                    | - 7.3          | 37 7.             | .66 2.1                     | 219                        | 0.0081                           | 11.1                        | < 0.0010                     | -                                  | 1.52                       | -             | - 2.49                                | 182                          | 226                          | 219                                        | < 1.0 < 1.                                                       | 0 -   | - <             | < 0.050 | - 9                                   | 0 0.00       | 0.99      | 0.0038      |
|                    | FR_09-02-A_QSW_02012017_N                             | 2017 03 20                  |        |            |        |                      |                                                         |                                  |                                  |                                      | -                                                                 |        |       | 582                     | - 10.          | .72 7.            | 7.75 77.5                   | 197                        | < 0.0050                         | 19.8                        | < 0.0010                     | -                                  | 1.05                       |               | - 1.44                                |                              |                              |                                            | < 1.0 < 1.                                                       |       |                 | < 0.050 | - 4                                   | 5 0.00       | 029 0.85  | 5 0.0214    |
|                    | FR_09-02-A_QSW_03042017_N                             | 2017 06 01                  | 8.11 5 | 683 (      | 0.91 1 | 12.3                 | 11.8 1,070                                              | 850                              | < 1                              | 1.0 0.55                             | 472                                                               | -1.9 5 | 5.4 1 | ,016                    | - 10.          | .23 7.            | 7.56 179.3                  | 3 226                      | < 0.0050                         | 39.4                        | < 0.0050                     | -                                  | 0.502                      | -             | - < 2.5                               | 170                          | 236                          | 226                                        | < 1.0 < 1.                                                       | 0 -   |                 | < 0.25  | - 3                                   | 4 0.00       | 0.76      | 6 0.0044    |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2237609, L224795, L2248235, L2248391, L2249360, L2250608, L22506457, L2250608, L2250457, L2283637, L228367, L228367, L22837, L228 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505. Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.
- n/a Denotes no applicable standard/guideline.
- QA/QC RPD Denotes quality assurance/quality control relative percent difference.
- \* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

<u>BOLD</u> Concentration greater than CSR Aquatic Life (AW) standard

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>9</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15
- <sup>i</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.
- <sup>j</sup> Criteria in not considered applicable and has not been applied.

|                    |                                                              |                             |                                |                             |                        |                                 |                                 |                               |                  |               |                                                                                                       |           |                   |          |                           |                 | Dissolv         | ed Metals          | S                   |               |                      |                     |                            |                     |                     |                      |                  |                        |                  |                |                        |                           |
|--------------------|--------------------------------------------------------------|-----------------------------|--------------------------------|-----------------------------|------------------------|---------------------------------|---------------------------------|-------------------------------|------------------|---------------|-------------------------------------------------------------------------------------------------------|-----------|-------------------|----------|---------------------------|-----------------|-----------------|--------------------|---------------------|---------------|----------------------|---------------------|----------------------------|---------------------|---------------------|----------------------|------------------|------------------------|------------------|----------------|------------------------|---------------------------|
|                    |                                                              |                             |                                |                             |                        |                                 |                                 |                               |                  |               |                                                                                                       |           |                   |          |                           |                 |                 |                    |                     |               |                      |                     |                            |                     |                     |                      |                  |                        |                  |                |                        |                           |
| Sample<br>Location | Sample<br>ID                                                 | Sample Date<br>(yyyy mm dd) | 년<br>G Dissolved Aluminum<br>T | a<br>bissolved Calcium<br>⊤ | dd Dissolved Iron<br>了 | a<br>a Dissolved Magnesium<br>√ | ର୍ଘ<br>Dissolved Manganese<br>୮ | a<br>bissolved Potassium<br>T | bissolved Sodium | ta<br>T_<br>T | 岳<br>石<br>石<br>子<br>人<br>子<br>人<br>子<br>子<br>子<br>子<br>子<br>子<br>子<br>子<br>子<br>子<br>子<br>子<br>子<br>子 | бћ<br>Л/Г | Hadry IIium<br>A  | на<br>П  | 6t<br>T∖ Cadmium          | hgh<br>T/đđ     | Бrt<br>7/Cobalt | hgh<br>Copper      | Lead<br>T/6đ        | 6t<br>Lithium | Vercury<br>Д         | 6<br>Molybdenum<br> | dt<br>T∕Nickel             | Selenium<br>7/6H    | hð/r                | ta<br>Strontium<br>T | fthallium<br>٦/۵ | <u>с</u><br>Г–<br>µg/L | Titanium<br>7/6H | hāh<br>Uranium | tanadium<br>T∖Vanadium | tanc <sup>f</sup><br>T∕   |
| Primary Screenii   | <b>ng Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup>       |                             | n/a                            | n/a                         | n/a                    | n/a                             | n/a                             | n/a                           | n/a              | 90            | 50                                                                                                    | 10,000    | 1.5               | 12,000   | 0.5-4 <sup>d</sup>        | 10 <sup>e</sup> | 40              | 20-90 <sup>d</sup> | 40-160 <sup>d</sup> | n/a           | 0.25                 | 10,000              | 250-<br>1,500 <sup>d</sup> | 20                  | 0.5-15 <sup>d</sup> | n/a                  | 3                | n/a                    | 1,000            | 85             | n/a                    | 75-<br>2,400 <sup>d</sup> |
| Secondary Scree    | <b>ning Criteria:</b> Costa and de Bruyn (2021) <sup>h</sup> |                             |                                |                             |                        |                                 |                                 |                               |                  |               |                                                                                                       |           |                   |          | 0.8-<br>10.4 <sup>i</sup> | 100 (Cr +6)     | n/a             | n/a                | n/a                 | 2,530         | n/a                  | n/a                 | 517-<br>2,972 <sup>i</sup> | 700                 | n/a                 | n/a                  | n/a              | n/a                    | n/a              | 3,520          | n/a                    | n/a                       |
| S6 Study Area      |                                                              |                             |                                | 1                           | 1 1                    |                                 | 1                               |                               |                  | 1             |                                                                                                       | 1         | 1                 |          |                           |                 | 1               |                    | 1                   |               |                      |                     |                            |                     |                     | 1                    |                  |                        | 1 1              |                | 1 1                    |                           |
| FR_09-01-B         | FR_09-01-B_Q_01092013_N                                      | 2013 10 31                  | < 3.0                          | 192                         | < 30                   | 83.2                            | 0.091                           | 3.46                          | 3.98             | 0.16          | < 0.10                                                                                                | 169       | < 0.10            | 20       | 0.039                     | 0.13            | 0.23            | < 0.50             | < 0.050             | 47.9          | < 0.010              | 0.860               | 0.74                       | <u>79.9</u>         | < 0.010             | 201                  | < 0.010          | < 0.10                 | 10               | 4.27           | < 1.0                  | < 3.0                     |
| -                  | FD_Q_01092013_010                                            | Duplicate                   | < 3.0                          | 191                         | < 30                   | 82.6                            | 0.162                           | 3.57                          | 3.97             | 0.15          | < 0.10                                                                                                | 164       | < 0.10            | 21       | 0.035                     | 0.12            | 0.22            | < 0.50             | < 0.050             | 53.9          | < 0.010              | 0.855               | 0.80                       |                     | < 0.010             |                      |                  |                        |                  | 4.34           | < 1.0                  | < 3.0                     |
|                    | QA/QC RPD%                                                   |                             |                                |                             |                        |                                 |                                 |                               |                  |               |                                                                                                       |           |                   |          |                           |                 |                 |                    |                     |               |                      |                     |                            |                     |                     |                      |                  |                        |                  |                |                        |                           |
| _                  | FR_09-01-B_Q_01012014_N                                      | 2014 03 13                  | < 3.0                          |                             | < 10                   | 58.8                            | < 0.050                         | 2.34                          | 3.58             |               | < 0.10                                                                                                |           | < 0.10            | 15       | 0.038                     | < 0.10          | 0.18            | < 0.50             | < 0.050             | 47.3          | < 0.010              | 0.658               | 0.65                       |                     | < 0.010             | 135                  | < 0.010          | < 0.10                 | 15               | 2.56           | < 1.0                  | < 3.0                     |
|                    | FR_09-01-B_Q_01042014_N                                      | 2014 05 14                  | < 3.0                          |                             | < 10                   | 63.2                            | 0.088                           | 2.52                          | 3.48             |               | < 0.10                                                                                                |           | < 0.10            | 17       | 0.044                     | 0.11            | 0.19            | < 0.50             | < 0.050             | 51.5          | < 0.010              | 0.643               | 0.76                       | <u>39.5</u>         | < 0.010             |                      | < 0.010          | < 0.10                 | 14               | 2.89           | < 1.0                  | < 3.0                     |
|                    | FR_09-01-B_QSW_02072014_N                                    | 2014 08 25                  | < 3.0                          |                             | < 10                   | 65.6                            | < 0.050                         | 2.82                          | 2.74             |               | < 0.10                                                                                                |           | < 0.10            | 18       | 0.034                     | 0.12            | 0.24            |                    | < 0.050             |               | < 0.010              |                     | 0.74                       | <u>44</u>           | < 0.010             |                      |                  | < 0.10                 | < 10             | 4.06           | < 1.0                  | < 3.0                     |
| -                  | FR_09-01-B_QSW_02102014_N                                    | 2014 11 06                  | < 3.0                          |                             | < 10                   | 56.3                            | < 0.050                         | 2.81                          | 3.40             |               | < 0.10                                                                                                |           | < 0.10            | 23       | 0.029                     | 0.13            | 0.30            |                    | < 0.050             |               | < 0.010              |                     | 0.85                       | <u>29.7</u>         | < 0.010             |                      | < 0.010          |                        | 15               | 3.40           | < 1.0                  | < 3.0                     |
|                    | FR_09-01-B_QSW_02012015_N                                    | 2015 01 22                  | < 3.0                          |                             | < 10                   | 53.4                            | 0.057                           | 2.71                          | 3.49             |               | < 0.10                                                                                                |           | < 0.10            | 20       | 0.034                     | 0.15            | 0.25            |                    | < 0.050             |               | < 0.010              |                     | 0.78                       | <u>31.1</u>         | < 0.010             |                      | < 0.010          |                        | 14               | 2.68           | < 1.0                  | < 3.0                     |
| -                  | FR_09-01-B_QSW_02042015_N                                    | 2015 04 14                  | < 3.0                          |                             | < 10                   | 63                              | < 0.10                          | 2.62                          | 4.1              |               | < 0.10                                                                                                |           | < 0.10            | 16       | 0.039                     | 0.11            | 0.33            |                    | < 0.050             |               | < 0.0050             |                     | 0.94                       | <u>34.2</u>         | < 0.010             |                      | < 0.010          |                        | 12               | 3.23           | < 0.50                 |                           |
|                    | FR_09-01-B_QSW_02072015_N                                    | 2015 07 02                  | < 3.0                          |                             | < 10                   | 59.1                            | < 0.10                          | 2.80                          | 2.19             |               | < 0.10                                                                                                |           | < 0.10            |          | 0.0173                    | < 0.10          | < 0.10          |                    | < 0.050             |               | < 0.0050             |                     | < 0.50                     |                     | < 0.010             |                      |                  | < 0.10                 | _                | 3.45           | < 0.50                 |                           |
|                    | FD_QSW_02072015_010                                          | Duplicate                   | < 3.0                          | 139                         | < 10                   | 58.5                            | < 0.10                          | 2.79                          | 2.2              | 0.14          | < 0.10                                                                                                | 127       | < 0.10            | 18       | 0.0199                    | < 0.10          | < 0.10          | < 0.50             | < 0.050             | 44.9          | < 0.0050             | 0.789               | < 0.50                     | <u>71.8</u>         | < 0.010             | 150                  | < 0.010          | < 0.10                 | < 10             | 3.48           | < 0.50                 | < 3.0                     |
| -                  |                                                              | 0045 40.00                  | 100                            | 400                         | 1.10                   | 50.7                            | 10.10                           | 0.00                          | 2.00             | 0.14          | 10.40                                                                                                 | 111       | 10.40             | 00       | 0.004.4                   | 0.45            | 0.07            | 10.50              | 10.050              | <u> </u>      | 4.0.0050             | 0.040               | 4.00                       | 20.0                | 10.010              | 400                  | 10.040           | 10.10                  | 1.10             | 0.7            | 10.50                  | 12.0                      |
| -                  | FR_09-01-B_QSW_02102015_N                                    | 2015 10 08                  | < 3.0                          |                             | < 10                   | 58.7                            | < 0.10                          | 2.96                          | 3.86             |               | < 0.10                                                                                                |           | < 0.10            |          | 0.0314                    | 0.15            | 0.37            |                    | < 0.050             |               | < 0.0050             |                     |                            | <u>30.2</u>         | < 0.010             |                      | < 0.010          |                        |                  | 3.7            | < 0.50                 |                           |
| -                  | FR_09-01-B_QSW_04012016_N<br>FR_09-01-B-WG-201606141245      | 2016 01 25<br>2016 06 14    | < 3.0<br>< 3.0                 |                             | < 10                   | 64.0<br>61.9                    | < 0.10<br>< 0.10                | 3.66<br>2.67                  | 4.52<br>2.14     |               | < 0.10<br>< 0.10                                                                                      |           | < 0.10<br>< 0.020 | 20<br>15 | 0.0325                    | 0.11            | 0.32            |                    | < 0.050<br>< 0.050  |               | < 0.0050<br>< 0.0050 |                     | 1.13                       | <u>42.6</u><br>79.9 | < 0.010<br>< 0.010  |                      | < 0.010          |                        | 14<br>< 10       | 3.09<br>3.59   | < 0.50<br>< 0.50       | < 3.0<br>< 3.0            |
| -                  | FR 09-01-B QSW 04072016 N                                    | 2016 08 17                  |                                |                             | < 10                   | 78.2                            | < 0.10                          | 3.48                          | 3.82             |               | < 0.10                                                                                                |           | < 0.020           | 16       | 0.0194                    | < 0.10          | 0.25            |                    | < 0.050             |               | < 0.0050             |                     | 0.99                       | <u>79.9</u><br>58.9 | < 0.010             |                      | < 0.010          |                        | < 10             | 5.09           | < 0.50                 |                           |
| -                  | FR_09-01-B_QSW_03102016_N                                    | 2016 11 24                  | < 3.0                          |                             | < 10                   | 84.0                            | < 0.10                          | 3.48                          | 3.83             |               | < 0.10                                                                                                |           | < 0.020           | 19       | 0.0310                    | < 0.10          | 0.23            |                    | < 0.050             |               | < 0.0050             |                     | 0.99                       | <u> </u>            | < 0.010             |                      |                  | < 0.10                 |                  | 4.72           | < 0.50                 |                           |
| -                  | FR 09-01-B QSW 02012017 N                                    |                             | < 1.0                          |                             | < 10                   | 103                             | < 0.10                          | 3.79                          | 4.89             |               | < 0.10                                                                                                |           | < 0.020           |          | 0.0536                    | 0.13            | 0.52            |                    | < 0.050             |               | < 0.0050             |                     | 2.00                       | 71.8                | < 0.010             |                      | < 0.010          |                        |                  | 4.54           | < 0.50                 | 1.2                       |
| -                  | FR 09-01-B QSW 03042017 N                                    | 2017 05 05                  | < 1.0                          |                             | < 10                   | 71.2                            | < 0.10                          | 3.14                          | 3.63             |               | < 0.10                                                                                                |           | < 0.020           | 17       | 0.0209                    | < 0.10          | < 0.10          |                    | < 0.050             |               | < 0.0050             |                     |                            |                     | < 0.010             |                      | < 0.010          |                        | < 10             | 3.21           | < 0.50                 |                           |
| -                  | FR_09-01-B_QTR_2017-09-11_N                                  | 2017 00 01                  |                                |                             | < 10                   | 63.8                            | < 0.10                          | 3.08                          | 3.79             |               | < 0.10                                                                                                |           | < 0.020           | 16       | 0.0209                    | 0.11            | 0.32            |                    | < 0.050             |               | < 0.0050             |                     | 1.25                       | 44.2                | < 0.010             |                      |                  | < 0.10                 |                  | 4.79           | < 0.50                 |                           |
| -                  | FR 09-01-B QTR 2017-10-02 N                                  | 2017 11 22                  |                                |                             | < 10                   | 93.8                            | 0.42                            | 3.50                          | 4.84             |               | < 0.10                                                                                                |           | < 0.020           | 23       | 0.0402                    | < 0.10          | 0.42            |                    | < 0.050             |               | < 0.0050             |                     | 1.32                       | 91.5                | < 0.010             |                      | < 0.010          |                        |                  | 5.30           |                        |                           |
| -                  | FR 09-01-B QTR 2018-01-01 N                                  | 2018 02 22                  |                                |                             | < 10                   | 77.4                            | < 0.10                          | 3.59                          | 5.02             |               | < 0.10                                                                                                |           | < 0.020           | 23       | 0.0414                    | 0.16            | 0.47            |                    | < 0.050             |               | < 0.0050             |                     | 1.69                       | 53.5                | < 0.010             |                      | < 0.010          |                        |                  | 4.79           | < 0.50                 |                           |
| -                  | WG_2018-01-01_003                                            | Duplicate                   | < 3.0                          |                             | < 10                   |                                 | < 0.10                          | 3.64                          | 5.11             | 0.12          |                                                                                                       |           | < 0.020           |          | 0.0404                    | 0.11            | 0.48            |                    |                     |               | < 0.0050             |                     |                            |                     | < 0.010             |                      |                  |                        |                  | 4.89           | < 0.50                 |                           |
|                    | QA/QC RPD%                                                   | Bapiloato                   | 0.0                            |                             |                        |                                 | 0.10                            | 0.01                          | 0                | 0.12          | 0.10                                                                                                  |           | 0.020             |          | 0.0101                    | 0.11            | 0.10            | 0.00               | 0.000               | 0010          | 0.0000               | 0.010               |                            | <u>•</u>            | 0.010               |                      | 0.010            | 0.10                   |                  |                | 0.00                   | 0.0                       |
|                    | FR_09-01-B_QTR_2018-04-02_N                                  | 2018 06 13                  | < 3.0                          | 125                         | < 10                   | 57.9                            | < 0.10                          | 3.09                          | 2.77             | 0.12          | < 0.10                                                                                                | 103       | < 0.020           | 14       | 0.0177                    | < 0.10          | < 0.10          | < 0.50             | < 0.050             | 44.6          | < 0.0050             | 0.650               | < 0.50                     | <u>97.1</u>         | < 0.010             | 139                  | < 0.010          | < 0.10                 | < 10             | 3.30           | < 0.50                 | < 1.0                     |
|                    | FR_09-01-B_QTR_2018-07-02_N                                  | 2018 07 31                  | < 3.0                          | 130                         | < 10                   | 63.2                            | < 0.10                          | 3.16                          | 2.94             | 0.12          | < 0.10                                                                                                | 108       | < 0.020           | 16       | 0.0278                    | 0.13            | 0.12            | < 0.50             | < 0.050             | 50.9          | < 0.0050             | 0.779               | < 0.50                     | 79.4                | < 0.010             | 152                  | < 0.010          | < 0.10                 | < 10             | 4.72           | < 0.50                 | < 1.0                     |
| -                  | FR_09-01-B_QTR_2018-10-01_N                                  | 2018 12 13                  | < 3.0                          | 110                         | < 10                   | 48.0                            | < 0.10                          | 2.77                          | 2.00             | 0.12          | < 0.10                                                                                                | 84.9      | < 0.020           | 14       | 0.0289                    | 0.11            | 0.18            | < 0.50             | < 0.050             | 37.6          | < 0.0050             | 0.833               | 0.50                       | 41.8                | < 0.010             | 124                  | < 0.010          | < 0.10                 | < 10             | 2.66           | < 0.50                 | < 1.0                     |
| -                  | FR_09-01-B_QTR_2019-01-07_N                                  | 2019 03 14                  | < 3.0                          | 134                         | < 10                   | 61.2                            | < 0.10                          | 2.34                          | 2.46             | < 0.10        | < 0.10                                                                                                | 88.2      | < 0.020           | < 10     | 0.0351                    | 0.10            | 0.13            | < 0.50             | < 0.050             | 34.4          | < 0.0050             | 0.728               | 0.52                       | 52.2                | < 0.010             | 152                  | < 0.010          | < 0.10                 | < 10             | 3.21           | < 0.50                 | < 1.0                     |
| -                  | FR_09-01-B_QTR_2019-04-01_N                                  | 2019 05 30                  | < 3.0                          | 147                         | < 10                   | 66.1                            | < 0.10                          | 2.04                          | 2.51             | 0.21          | < 0.10                                                                                                | 135       | < 0.020           | 11       | 0.0280                    | < 0.10          | < 0.10          | < 0.50             | < 0.050             | 45.8          | < 0.0050             | 1.91                | < 0.50                     | <u>76</u>           | < 0.010             | 209                  | < 0.010          | < 0.10                 | < 10             | 4.09           | < 0.50                 | < 1.0                     |
|                    | FR_09-01-B_QTR_2019-07-01_N                                  | 2019 07 29                  | < 3.0                          | 130                         | < 10                   | 58.7                            | < 0.10                          | 2.74                          | 2.40             | 0.14          | < 0.10                                                                                                | 103       | < 0.020           | 13       | 0.0153                    | < 0.10          | 0.17            | < 0.50             | < 0.050             | 50.6          | < 0.0050             | 1.20                | < 0.50                     | <u>83.2</u>         | < 0.010             | 165                  | < 0.010          | < 0.10                 | < 10             | 5.08           | < 0.50                 | < 1.0                     |
|                    | FR_09-01-B_QTR_2019-10-07_N                                  | 2019 11 01                  | < 3.0                          | 164                         | < 10                   | 73.0                            | < 0.10                          | 3.19                          | 3.94             | 0.16          | < 0.10                                                                                                | 119       | < 0.020           | 16       | 0.0327                    | < 0.10          | 0.49            | < 0.20             | < 0.050             | 54.1          | < 0.0050             | 1.37                | 0.80                       | <u>70.7</u>         | < 0.010             | 218                  | < 0.010          | < 0.10                 | < 10             | 5.64           | < 0.50                 | 1.6                       |
|                    | FR_09-01-B_QTR_2020-01-06_N                                  | 2020 02 13                  | < 3.0                          | 157                         | < 10                   | 64.9                            | < 0.10                          | 2.92                          | 3.73             | 0.14          | < 0.10                                                                                                | 102       | < 0.020           | 18       | 0.0350                    | < 0.10          | 0.34            |                    |                     |               | < 0.0050             |                     |                            |                     | < 0.010             | 185                  | < 0.010          | < 0.10                 | < 10             | 4.03           | < 0.50                 | < 1.0                     |
| FR_09-02-A         | 09-02-A_L1237947                                             | 2012 11 14                  |                                |                             |                        |                                 | 0.463                           | 2.2                           | 2.1              |               |                                                                                                       | 140       | < 0.10            | 15       | 0.049                     | 0.16            | 0.12            |                    |                     |               | < 0.010              |                     |                            |                     | < 0.010             | 127                  | < 0.010          | < 0.10                 | < 10             | 2.09           | < 1.0                  | < 3.0                     |
|                    | FRO12_0101201309                                             | 2013 03 26                  |                                |                             |                        | 52.8                            | 1.68                            | < 2.0                         | 3.0              |               |                                                                                                       | 139       | < 0.10            | 10       | 0.068                     | 0.15            | 0.16            |                    |                     |               | < 0.010              |                     |                            |                     |                     |                      | < 0.010          |                        |                  | 2.64           | < 1.0                  |                           |
|                    | FRO12_0104201309                                             | 2013 05 30                  |                                |                             |                        | 55.8                            | 1.05                            | < 2.0                         | < 2.0            | 0.19          |                                                                                                       |           | < 0.10            | 13       | 0.027                     | 0.17            |                 |                    |                     |               | < 0.010              |                     |                            |                     | < 0.010             |                      |                  |                        |                  | 2.97           |                        | < 3.0                     |
|                    | FR_09-02-A_QSW_04012016_N                                    | 2016 01 25                  |                                |                             |                        | 52.9                            | 1.34                            | 1.93                          | 2.69             |               | < 0.10                                                                                                |           | < 0.10            |          |                           | 0.30            | 0.10            |                    |                     |               | < 0.0050             |                     |                            |                     | < 0.010             |                      |                  |                        |                  | 2.66           |                        | < 3.0                     |
|                    | FR_09-02-A-WG-201606151125                                   | 2016 06 15                  |                                |                             | < 10                   |                                 | < 0.10                          | 2.06                          | 2.13             | 0.18          |                                                                                                       |           | < 0.020           |          | 0.0253                    | < 0.10          |                 |                    |                     |               | < 0.0050             |                     | 0.51                       | <u>61.5</u>         |                     |                      | < 0.010          |                        |                  |                | < 0.50                 |                           |
|                    | FR_09-02-A_QSW_04072016_N                                    | 2016 08 22                  |                                |                             |                        |                                 | < 0.10                          | 2.16                          | 2.38             |               |                                                                                                       |           | < 0.020           |          | 0.0272                    | 0.11            | 0.16            |                    |                     |               | < 0.0050             |                     |                            | 20                  |                     |                      | < 0.010          |                        |                  |                |                        |                           |
|                    | FR_09-02-A_QSW_03102016_N                                    | 2016 12 08                  |                                |                             |                        |                                 | < 0.10                          | 2.32                          | 2.62             |               |                                                                                                       |           | < 0.020           |          | 0.0424                    | 0.12            | 0.24            |                    |                     |               | < 0.0050             |                     |                            |                     | < 0.010             |                      |                  |                        |                  |                | < 0.50                 |                           |
|                    | FR_09-02-A_QSW_02012017_N                                    | 2017 03 20                  |                                |                             |                        |                                 | < 0.10                          | 1.74                          | 2.33             |               |                                                                                                       |           | < 0.020           |          |                           | 0.19            |                 |                    |                     |               | < 0.0050             |                     |                            |                     | < 0.010             |                      |                  |                        |                  |                |                        |                           |
|                    | FR_09-02-A_QSW_03042017_N                                    | 2017 06 01                  | < 1.0                          | 132                         | < 10                   | 61.2                            | 0.13                            | 2.00                          | 2.70             | 0.17          | < 0.10                                                                                                | 151       | < 0.020           | < 10     | 0.0268                    | < 0.10          | < 0.10          | 0.31               | < 0.050             | 50.0          | < 0.0050             | 1.23                | < 0.50                     | <u>117</u>          | < 0.010             | 193                  | < 0.010          | < 0.10                 | < 10             | 3.39           | < 0.50                 | < 1.0                     |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2236699, L224795, L2248235, L2248391, L2249360, L2256457, L22567, L22567, L2257, L L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505. Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.
- n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard <u>BOLD</u>

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15
- <sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation. <sup>j</sup> Criteria in not considered applicable and has not been applied.

|                    |                                                        |                             |       |                  |                   |             |                      |                |              |                       |                |                                             |                |                          |             |              |                  | <b>-</b>       |                        |                     |                  |                            |                       |                    |                      |                 |                |       |                     |                              |           |                            |                |                 | <u> </u>            |
|--------------------|--------------------------------------------------------|-----------------------------|-------|------------------|-------------------|-------------|----------------------|----------------|--------------|-----------------------|----------------|---------------------------------------------|----------------|--------------------------|-------------|--------------|------------------|----------------|------------------------|---------------------|------------------|----------------------------|-----------------------|--------------------|----------------------|-----------------|----------------|-------|---------------------|------------------------------|-----------|----------------------------|----------------|-----------------|---------------------|
|                    |                                                        |                             |       |                  | 1                 |             | 1                    |                |              |                       |                |                                             |                | <u> </u>                 |             |              | 1                | lota           | I Metals               | 1                   |                  |                            |                       |                    |                      |                 |                | 1     | 1                   | 1                            |           | 1 1                        |                |                 |                     |
| Sample<br>Location | Sample<br>ID                                           | Sample Date<br>(yyyy mm dd) | -     | ର୍ଘ<br>ସି<br>ଅଧି | б<br>Arsenic<br>Г | Б<br>Т<br>П | Дб<br>Т<br>Вeryllium | Bismuth<br>T∕β | Багоп<br>Т/Г | Бћ<br>Сadmium         | Calcium<br>٦/ك | E<br>C H<br>L<br>J<br>J<br>J<br>J<br>J<br>L | бт<br>Г Cobalt | чаррег<br>Соррег<br>Пари | uo<br>Jug/L | геаd<br>Геаd | T/Gth<br>T/fhium | 년<br>Magnesium | ପ୍ର୍ୟ<br>ମୁମ୍ଭ<br>ଅନ୍ତ | Vuercury<br>Mercury | ta<br>Triangenum | 6t<br>Nickel               | б<br>Г<br>Рhosphorous | 66 Potassium<br>⊤∕ | ta<br>T∖<br>Selenium | Silicon<br>T/бћ | Дб<br>T/Silver | hg/L  | T/6t<br>T/6trontium | Halliu<br>Thalliu<br>Thalliu | Е<br>µg/L | б <del>1</del><br>Titanium | Лаnium<br>T/бт | ۲ Aanadium<br>۲ | 5 Zinc <sup>f</sup> |
| Primary Screeni    | ng Criteria: CSR Aquatic Life (AW) <sup>a</sup>        |                             | n/a   | n/a              | n/a               | n/a         | n/a                  | n/a            | n/a          | n/a                   | n/a            | n/a                                         | n/a            | n/a                      | n/a         | n/a          | n/a              | n/a            | n/a                    | n/a                 | n/a              | n/a                        | n/a                   | n/a                | n/a                  | n/a             | n/a            | n/a   | n/a                 | n/a                          | n/a       | n/a                        | n/a            | n/a             | n/a                 |
| Secondary Scree    | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a   | n/a              | n/a               | n/a         | n/a                  | n/a            | n/a          | 0.8-10.4 <sup>i</sup> | n/a            | 100 (Cr +6)                                 | n/a            | n/a                      | n/a         | n/a          | 2,530            | n/a            | n/a                    | n/a                 | n/a              | 517-<br>2,972 <sup>i</sup> | n/a                   | n/a                | 700                  | n/a             | n/a            | n/a   | n/a                 | n/a                          | n/a       | n/a                        | 3,520          | n/a             | n/a                 |
| S6 Study Area      |                                                        |                             |       |                  | 1                 |             |                      |                |              |                       |                |                                             |                |                          |             |              |                  |                |                        |                     |                  |                            |                       |                    |                      |                 |                |       |                     |                              |           | 1 1                        |                |                 |                     |
| FR_09-01-B         |                                                        |                             |       |                  |                   |             |                      |                |              |                       |                |                                             |                |                          |             |              |                  |                |                        |                     |                  |                            |                       |                    |                      |                 |                |       |                     |                              |           |                            |                |                 |                     |
|                    | FD_Q_01092013_010                                      | Duplicate                   | 75.3  | 0.19             | 0.13              | 201         | < 0.10               | < 0.50         | 25           | 0.052                 | 187,000        | 0.29                                        | 0.25           | < 0.50                   | 62          | < 0.050      | 58.5             | 85,200         | 2.99                   | < 0.010             | 0.865            | 0.77                       | -                     | 3,490              | 81.6                 | 2,570           | < 0.010        | 4,010 | 197                 | < 0.010                      | < 0.10    | 13                         | 4.55           | < 1.0           | < 3.0               |
| 1                  | QA/QC RPD%                                             |                             | 8     | *                | *                 | 19          | *                    | *              | *            | 10                    | 2              | *                                           | 15             | *                        | 61          | *            | 20               | 1              | 14                     | *                   | 1                | *                          | -                     | 0                  | 2                    | 2               | *              | 1     | 6                   | *                            | *         | 7                          | 3              | *               | *                   |
|                    |                                                        |                             |       |                  |                   |             |                      |                |              |                       |                |                                             |                |                          |             |              |                  |                |                        |                     |                  |                            |                       |                    |                      |                 |                |       |                     |                              |           |                            |                |                 |                     |
|                    |                                                        |                             |       |                  |                   |             |                      |                |              |                       |                |                                             |                |                          |             |              |                  |                |                        |                     |                  |                            |                       |                    |                      |                 |                |       |                     |                              |           |                            |                |                 |                     |
|                    | FR_09-01-B_QSW_02072014_N                              | 2014 08 25                  | < 3.0 | 0.15             | < 0.10            | ) 143       | < 0.10               | < 0.50         | 18           | 0.040                 | 136,000        | 0.15                                        | 0.26           | < 0.50                   | < 10        | < 0.050      | 50.2             | 66,700         | < 0.050                | < 0.010             | 0.972            | 0.70                       | -                     | 2,920              | 45.5                 | 2,130           | < 0.010        | 2,870 | 166                 | < 0.010                      | < 0.10    | < 10                       | 4.16           | < 1.0           | < 3.0               |
|                    | FR_09-01-B_QSW_02102014_N                              | 2014 11 06                  | < 3.0 | 0.18             | < 0.10            | 135         | < 0.10               | < 0.50         | 24           | 0.040                 | 128,000        | 0.15                                        | 0.30           | < 0.50                   | < 10        | < 0.050      | 63.1             | 57,100         | 0.098                  | < 0.010             | 0.864            | 0.81                       | -                     | 2,860              | 30                   | 2,310           | < 0.010        | 3,490 | 149                 | < 0.010                      | < 0.10    | 15                         | 3.53           | < 1.0           | < 3.0               |
|                    | FR_09-01-B_QSW_02012015_N                              | 2015 01 22                  | -     | -                | -                 | -           | -                    | < 0.50         | -            | 0.04                  | -              | 0.13                                        | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | 2,640              | 30.6                 | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FR_09-01-B_QSW_02042015_N                              | 2015 04 14                  | -     | -                | -                 | -           | -                    | < 0.050        | -            | 0.0427                | -              | 0.13                                        | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | 2,710              | 33                   | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FR_09-01-B_QSW_02072015_N                              | 2015 07 02                  | -     | -                | -                 | -           | -                    | < 0.050        | -            | 0.022                 | -              | 0.12                                        | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | 2,840              | 78.3                 | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FD_QSW_02072015_010                                    | Duplicate                   | -     | -                | -                 | -           | -                    | < 0.050        | -            | 0.0217                | -              | 0.11                                        | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | 2,830              | 78.5                 | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | QA/QC RPD%                                             | -                           | -     | -                | -                 | -           | -                    | *              | -            | *                     | -              | *                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | 0                  | 0                    | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FR_09-01-B_QSW_02102015_N                              | 2015 10 08                  | -     | -                | -                 | -           | -                    | < 0.050        | -            | 0.034                 | -              | 0.27                                        | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | 3,010              | 31                   | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FR_09-01-B_QSW_04012016_N                              | 2016 01 25                  | < 3.0 | 0.16             | < 0.10            | 145         | < 0.10               | < 0.050        | 21           | 0.113                 | 140,000        | 0.13                                        | 0.29           | < 0.50                   | < 10        | < 0.050      | 71.8             | 62,500         | < 0.10                 | < 0.0050            | 0.707            | 1.09                       | -                     | 3,130              | 37.8                 | 2,370           | < 0.010        | 3,940 | 160                 | < 0.010                      | < 0.10    | 13                         | 3.16           | < 0.50          | < 3.0               |
|                    | FR_09-01-B-WG-201606141245                             | 2016 06 14                  | < 3.0 | 0.17             | < 0.10            | 135         | < 0.020              | < 0.050        | 16           | 0.0216                | 136,000        | < 0.10                                      | < 0.10         | < 0.50                   | < 10        | < 0.050      | 45.0             | 62,200         | < 0.10                 | < 0.0050            | 0.711            | < 0.50                     | -                     | 2,840              | 80.5                 | 2,100           | < 0.010        | 2,290 | 151                 | < 0.010                      | < 0.10    | < 10                       | 3.58           | < 0.50          | < 3.0               |
|                    | FR_09-01-B_QSW_04072016_N                              | 2016 08 17                  | < 3.0 | 0.15             | < 0.10            | 143         | < 0.020              | < 0.050        | 18           | 0.0339                | 153,000        | 0.12                                        | 0.27           | < 0.50                   | < 10        | < 0.050      | 57.5             | 71,100         | < 0.10                 | < 0.0050            | 0.965            | 0.93                       | -                     | 3,050              | 60.2                 | 2,220           | < 0.010        | 3,470 | 169                 | < 0.010                      | < 0.10    | < 10                       | 4.97           | < 0.50          | < 3.0               |
|                    | FR_09-01-B_QSW_03102016_N                              | 2016 11 24                  | < 3.0 | 0.16             | 0.12              | 160         | < 0.020              | < 0.050        | 23           | 0.0279                | 180,000        | 0.11                                        | 0.17           | < 0.50                   | < 10        | < 0.050      | 64.6             | 83,400         | 0.11                   | < 0.0050            | 0.743            | 0.76                       | -                     | 3,400              | 106                  | 2,440           | < 0.010        | 3,760 | 200                 | < 0.010                      | < 0.10    | < 10                       | 4.82           | < 0.50          | 5.6                 |
|                    | FR_09-01-B_QSW_02012017_N                              | 2017 03 08                  | < 3.0 | 0.18             | < 0.10            | ) 147       | < 0.020              | < 0.050        | 24           | 0.0518                | 210,000        | 0.13                                        | 0.54           | < 0.50                   | < 10        | < 0.050      | 74.9             | 101,000        | 0.14                   | < 0.0050            | 0.757            | 2.20                       | -                     | 3,870              | 78.3                 | 2,810           | < 0.010        | 5,240 | 241                 | < 0.010                      | < 0.10    | < 10                       | 5.33           | < 0.50          | < 3.0               |
|                    | FR_09-01-B_QSW_03042017_N                              | 2017 06 01                  | -     | -                | -                 | -           | -                    | -              | -            | -                     | -              | -                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | -                  | -                    | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FR_09-01-B_QTR_2017-09-11_N                            | 2017 09 12                  | -     | -                | -                 | -           | -                    | -              | -            | -                     | -              | -                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | -                  | -                    | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FR_09-01-B_QTR_2017-10-02_N                            | 2017 11 22                  | -     | -                | -                 | -           | -                    | -              | -            | -                     | -              | -                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | -                  | -                    | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FR_09-01-B_QTR_2018-01-01_N                            | 2018 02 22                  | -     | -                | -                 | -           | -                    | -              | -            | -                     | -              | -                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | -                  | -                    | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | WG_2018-01-01_003                                      | Duplicate                   | -     | -                | -                 | -           | -                    | -              | -            | -                     | -              | -                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | -                  | -                    | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | QA/QC RPD%                                             | , ·                         | -     | -                | -                 | -           | -                    | -              | -            | -                     | -              | -                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | -                  | -                    | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FR_09-01-B_QTR_2018-04-02_N                            | 2018 06 13                  | -     | -                | -                 | -           | -                    | -              | -            | -                     | -              | -                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | -                  | -                    | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FR_09-01-B_QTR_2018-07-02_N                            | 2018 07 31                  | -     | -                | -                 | -           | -                    | -              | -            | -                     | -              | -                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | -                  | -                    | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FR_09-01-B_QTR_2018-10-01_N                            | 2018 12 13                  | -     | -                | -                 | -           | -                    | -              | •            | -                     | -              | -                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | -                  | -                    | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FR_09-01-B_QTR_2019-01-07_N                            | 2019 03 14                  | -     | -                | -                 | -           | -                    | -              | -            | -                     | -              | -                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | -                  | -                    | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FR_09-01-B_QTR_2019-04-01_N                            | 2019 05 30                  | -     | -                | -                 | -           | -                    | -              | -            | -                     | -              | -                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | -                  | -                    |                 | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FR_09-01-B_QTR_2019-07-01_N                            | 2019 07 29                  | -     | -                | -                 | -           | -                    | -              | -            | -                     | -              | -                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | -                  | -                    | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FR_09-01-B_QTR_2019-10-07_N                            | 2019 11 01                  | -     | -                | -                 | -           | -                    | -              | -            | -                     | -              | -                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | -                  | -                    | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
|                    | FR_09-01-B_QTR_2020-01-06_N                            | 2020 02 13                  | -     | -                | -                 | -           | -                    | -              | -            | -                     | -              | -                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | -                  | -                    | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
| FR_09-02-A         | 09-02-A_L1237947                                       | 2012 11 14                  |       | 0.34             | 1.18              | 170         | 0.11                 | < 0.50         | 17           | 0.279                 | 124,000        | 3.72                                        | 1.13           | 3.38                     | 2,660       | 1.30         | 25.8             | 48,100         | 104                    | < 0.010             | 1.23             | 4.12                       | -                     | 3,000              | 34.8                 | 5,790           | 0.070          | 2,200 | 139                 | 0.060                        | 0.16      | 60                         | 2.21           | 7.8             | 17.7                |
|                    |                                                        | 2013 03 26                  |       | 0.83             |                   |             |                      | < 0.50         | 24           |                       | 290,000        | 26.8                                        | 9.74           |                          |             |              |                  | 88,500         | 982                    | 0.054               |                  |                            | -                     | 8,100              |                      |                 | 0.546          |       |                     |                              | 0.28      |                            | 4.61           |                 | 156                 |
|                    | FRO12_0104201309                                       | 2013 05 30                  |       | 0.32             |                   |             | 0.11                 |                | 14           |                       | 144,000        | 3.36                                        | 0.93           |                          | 2,550       | 1.24         |                  | 58,200         | 91.0                   | < 0.010             |                  | 3.67                       | -                     | 2,600              |                      |                 | 0.051          |       |                     | 0.063                        | < 0.10    |                            | 3.17           |                 | 15.9                |
|                    | <br>FR_09-02-A_QSW_04012016_N                          | 2016 01 25                  |       | 0.19             |                   |             |                      | < 0.050        |              |                       | 132,000        | 0.98                                        | 0.27           | 0.75                     | 541         |              |                  | 53,200         |                        | < 0.0050            |                  |                            | -                     | 2,050              |                      |                 | 0.015          |       |                     |                              |           | 27                         |                |                 | 4.0                 |
| ļ į                | FR_09-02-A-WG-201606151125                             | 2016 06 15                  |       | 0.22             |                   |             |                      | < 0.050        |              |                       | 132,000        | 1.07                                        | 0.27           | 0.84                     | 528         | 0.283        |                  | 56,300         |                        | < 0.0050            |                  |                            | -                     |                    |                      |                 |                |       |                     | 0.014                        |           |                            |                |                 | 5.1                 |
|                    | FR_09-02-A_QSW_04072016_N                              | 2016 08 22                  |       |                  |                   |             |                      | < 0.050        |              |                       | 90,200         | 0.11                                        | 0.17           |                          |             |              |                  |                |                        | < 0.0050            |                  |                            | -                     |                    |                      |                 |                |       |                     |                              |           |                            |                | < 0.50          |                     |
|                    | FR_09-02-A_QSW_03102016_N                              | 2016 12 08                  |       | 0.19             |                   |             |                      | < 0.050        |              |                       | 114,000        | 0.14                                        | 0.23           |                          |             |              |                  |                |                        | < 0.0050            |                  |                            | -                     |                    |                      |                 | < 0.010        |       |                     |                              |           |                            |                | < 0.50          |                     |
|                    | <br>FR_09-02-A_QSW_02012017_N                          | 2017 03 20                  | 112   | 0.17             | 0.20              |             |                      | < 0.050        |              |                       |                | 0.41                                        | 0.22           | 1.65                     | 281         | 0.235        | 37.9             | 49,500         | 11.5                   | < 0.0050            | 1.08             | 0.95                       | -                     | 1,830              | 50.6                 | 2,000           | < 0.010        | 2,410 | 185                 | < 0.010                      | 0.26      | < 10                       | 2.68           | 0.78            | 4.4                 |
|                    | FR_09-02-A_QSW_03042017_N                              | 2017 06 01                  | -     | -                | -                 | -           | -                    | -              | -            | -                     | -              | -                                           | -              | -                        | -           | -            | -                | -              | -                      | -                   | -                | -                          | -                     | -                  | -                    | -               | -              | -     | -                   | -                            | -         | -                          | -              | -               | -                   |
| L                  |                                                        |                             | 1     | 1                | 1                 | 1           | 1                    | 1              |              | 1                     | 1              | I                                           |                | 1 1                      |             | 1            | 1                | 1              | 1                      | 1 1                 |                  |                            |                       |                    |                      |                 | 1              | 1     | 1                   | 1                            |           | 1 I                        |                |                 |                     |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1237666, L2237606, L2237606, L2237699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L22506457, L2250457, L2250426, L2283637, L2283636, L2283637, L22837, L L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505. Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.
- n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard <u>BOLD</u>

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                          |                                                        |                             |      |       |                  | Phy        | sical   | Paramet      | ers                           |                                                                |                    |        |                     | Fie                          | ld Para           | meters                     |                             |        |                                      |                          |                      |                                    |                              |       |                                        | Dissolv                      | ed Inor                      | ganics                                         |                                                                                    |                                   |                 |             |               |           |                                                 |                                               |
|--------------------------|--------------------------------------------------------|-----------------------------|------|-------|------------------|------------|---------|--------------|-------------------------------|----------------------------------------------------------------|--------------------|--------|---------------------|------------------------------|-------------------|----------------------------|-----------------------------|--------|--------------------------------------|--------------------------|----------------------|------------------------------------|------------------------------|-------|----------------------------------------|------------------------------|------------------------------|------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------|-----------------|-------------|---------------|-----------|-------------------------------------------------|-----------------------------------------------|
| Sample<br>Location       | Sample<br>ID                                           | Sample Date<br>(yyyy mm dd) | _    | _     | C Turbidity<br>a | The Anions |         | Conductivity | 료 Total Dissolved Solids<br>고 | ថ្មី Total Suspended Solids<br>ក<br>៨ Dissolved Organic Carbon | Oxidation Reductio |        | O Field Temperature | 서<br>Sheld Conductivity<br>B | Z Field Turbidity | a<br>bissolved Oxygen<br>T | 면 pH (field)<br>૩ Field ORP | Total  | a<br>B<br>Ammonia, Total (as N)<br>P | Gom<br>∏/ Nitrate (as N) | - mg/D               | a<br>G Nitrate+Nitrite (as N)<br>T | a<br>bookahl Nitrogen-N<br>r | Nitro | , Total Nitrogen-N<br>Ba<br>∏/Chloride | T/Å<br>Fluoride              | m<br>Sulfate                 | a Alkalinity, Bicarbonate<br>©<br>┣ (as CaCO3) | B Alkalinity, Carbonate<br>▷ (as CaCO3)<br>B Alkalinity, Hydroxide<br>ⓒ (as CaCO3) | 「「 (ao caooo)<br>園<br>Bicarbonate | Garbonate<br>T/ | mg/T<br>L   | Total Acidity | -         | ଣ୍ଡି Ortho-Phosphate<br>ସୁ Total Organic Carbon | Total Phosph                                  |
| Primary Screeni          | <b>ng Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup> |                             | n/a  | n/a ı | n/a              | n/a n      | /a      | n/a          | n/a                           | n/a n/a                                                        | a n/a              | n/a    | n/a                 | n/a                          | n/a               | n/a                        | n/a n/a                     | a n/a  | 1.31-<br>18.5 <sup>b</sup>           | 400                      | 0.2-2.0 <sup>c</sup> | 400                                | n/a                          | n/a   | n/a 1,500                              | 2,000-<br>3,000 <sup>d</sup> | 1,280-<br>4,290 <sup>d</sup> | n/a                                            | n/a n/a                                                                            | n/a                               | n/a             | n/a         | n/a           | n/a r     | n/a n/a                                         | a n/a                                         |
| Secondary Scree          | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a  | n/a i | n/a              | n/a n      | /a      | n/a 10       | 0,000                         | n/a n/a                                                        | a n/a              | n/a    | n/a                 | n/a                          | n/a               | n/a <sup>j</sup>           | n/a n/a                     | a n/a  | n/a                                  | 6.08-<br>223.8           |                      | n/a                                | n/a                          | n/a   | n/a n/a                                | n/a                          | 4,990                        | n/a                                            | n/a n/a                                                                            | n/a                               | n/a             | 78          | n/a           | n/a r     | n/a n/a                                         | a n/a                                         |
| S6 Study Area            |                                                        |                             |      |       |                  |            |         |              |                               |                                                                |                    | 1      |                     |                              |                   |                            |                             |        | 1                                    |                          |                      |                                    | 1                            | I     |                                        | 1                            |                              | 1                                              |                                                                                    |                                   | ·               |             |               |           | ·                                               |                                               |
| FR_09-02-A               | FR_09-02-A_QTR_2017-09-11_N                            | 2017 09 13                  | 8.12 | 420 5 | 5.18 8           | 3.53 8.    | 53      | 750          | 509                           | 11.2 0.5                                                       | 7 338              | 3 0    | 10.5                | 715                          | -                 | 6.56                       | 7.53 204                    | .7 176 | < 0.005                              | 50 11.3                  | < 0.0010             | ) –                                | 0.353                        | -     | - 1.09                                 | 185                          | 200                          | 176                                            | < 1.0 < 1.0                                                                        | 0 -                               | -               | < 0.050     | - <           | : 1.0 0./ | 0019 0.8                                        | 0.0192                                        |
|                          | <br>FR_09-02-A_QTR_2017-10-02_N                        | 2017 11 22                  | 7.97 | 532 5 | 5.94 1           | 10.2 10    | ).8     | 867          | 639                           | 3.3 0.5                                                        | 7 312              | 2 2.8  | 10                  | 829                          | -                 | 7.59                       | 7.55 25                     | 4 195  | < 0.005                              | 50 12.1                  | 0.0011               | -                                  | 0.213                        | -     | - 1.64                                 | 162                          | 259                          | 195                                            | < 1.0 < 1.0                                                                        | 0 -                               | -               | < 0.050     | -             | 3.2 0.0   | 0034 0.8                                        | 0.0138                                        |
|                          | FR_09-02-A_QTR_2018-01-01_N                            | 2018 02 22                  | 7.87 | 506 2 | 9.1 1            | 12.7 10    | ).3     | 989          | 733                           | 13.6 0.7                                                       | 7 334              | -11    | 4.1                 | 921                          | -                 | 11.29                      | 7.56 181                    | .2 276 | < 0.005                              | 50 15.7                  | < 0.0010             | ) –                                | 0.356                        | -     | - 1.77                                 | 140                          | 287                          | 276                                            | < 1.0 < 1.0                                                                        | 0 -                               | -               | < 0.050     | -             | 4.2 0.4   | 0016 1.0                                        | 0.0328                                        |
|                          | FR_09-02-A_QTR_2018-04-02_N                            | 2018 06 13                  | 8.12 | 633 0 | ).42 1           | 11.9 12    | 2.8     | 1,030        | 812                           | 1.2 0.8                                                        | 2 195              | 5 3.6  | 5.9                 | 1,012                        | -                 | 9.24                       | 7.23 212                    | .6 228 | < 0.005                              | 50 31.0                  | 0.0082               | -                                  | < 0.10                       | -     | - < 2.5                                | 210                          | 247                          | 228                                            | < 1.0 < 1.0                                                                        | 0 -                               | -               | < 0.25      | -             | 2.7 0./   | 0025 0.7                                        | 4 0.0037                                      |
|                          | WG_2018-04-02_008                                      | Duplicate                   | 8.1  | 634 0 | .38              | 12 12      | 2.8     | 1,020        | 778 ·                         | < 1.0 0.9                                                      | 5 193              | 3 3.4  | -                   | -                            | -                 | -                          |                             | 226    | < 0.005                              | 50 30.7                  | 0.0061               | -                                  | < 0.10                       | -     | - 2.6                                  | 230                          | 250                          | 226                                            | < 1.0 < 1.0                                                                        | 0 -                               | -               | < 0.25      | -             | 2.2 0.0   | 0029 0.90                                       | 0 0.0039                                      |
|                          | QA/QC RPD%                                             |                             | 0    | 0     | *                | * :        | *       | 1            | 4                             | * *                                                            | *                  | *      | -                   | -                            | -                 | -                          |                             | 1      | *                                    | 1                        | 29                   | -                                  | *                            | -     | - *                                    | 9                            | 1                            | 1                                              | * *                                                                                | -                                 | -               | *           | - 1           | *         | * *                                             | *                                             |
|                          | FR_09-02-A_QTR_2018-07-02_N                            | 2018 07 31                  | 8.26 | 361 1 | .37 8            | 3.09 7.    | 35      | 679          | 502                           | 1.7 0.9                                                        | 7 344              | -4.8   | 8.4                 | 591.6                        | -                 | 6.91                       | 7.61 174                    | .1 192 | 0.0055                               | 5 9.87                   | 0.0032               | -                                  | < 0.050                      | -     | - 1.14                                 | 189                          | 169                          | 192                                            | < 1.0 < 1.0                                                                        | 0 -                               | - •             | < 0.050     | - <           | 1.0 0.0   | 0041 1.0                                        | 06 0.0043                                     |
|                          | FR_09-02-A_QTR_2018-10-01_N                            | 2018 12 13                  | 8.12 | 528 1 | 4.6 1            | 11.1 10    | ).7     | 909          | 714                           | 32.4 0.8                                                       | 3 339              | 9 -1.9 | 1.4                 | 855.4                        | -                 | 11.31                      | 7.75 307                    | .6 197 | 0.0272                               | 2 15.5                   | < 0.0010             | - (                                | 0.588                        | -     | - 1.77                                 | 214                          | 288                          | 197                                            | < 1.0 < 1.0                                                                        | 0 -                               | - •             | < 0.050     | - '           | 2.8 0.0   | JO91 0.9                                        | 0.0510                                        |
|                          | FR_09-02-A_QTR_2019-01-07_N                            | 2019 03 14                  | 8.06 | 608 4 | .21 1            | 11.9 12    | 2.3     | 1,010        | 821                           | 5.3 0.5                                                        | 8 341              | 1.5    | 0.5                 | 875.3                        | -                 | 11.22                      | 7.83 279                    | .2 207 | 0.0467                               | 7 21.9                   | < 0.0010             | ) –                                | < 0.050                      | -     | - 1.72                                 | 133                          | 296                          | 207                                            | < 1.0 < 1.0                                                                        | 0 -                               | - '             | < 0.050     | -             | 4.1 0.0   | J031 0.5 <sup>-</sup>                           | 63 0.0184                                     |
|                          | FR_09-02-A_QTR_2019-04-01_N                            | 2019 05 30                  | 8.18 | 433 1 | .18 8            | 3.61 8     | .8      | 821          | 556                           | 1.8 < 0.                                                       | 50 258             | 3 1.1  | 5                   | 867                          | -                 | 8.53                       | 7.81 227                    | .2 173 | < 0.005                              | 50 13.3                  | < 0.0010             | ) –                                | < 0.050                      | -     | - 0.85                                 | 215                          | 200                          | 173                                            | < 1.0 < 1.0                                                                        | 0 -                               | - •             | < 0.050     | - <           | 1.0 < 0   | .0010 < 0./                                     | 50 0.0050                                     |
|                          | FR_09-02-A_QTR_2019-07-01_N                            | 2019 07 26                  | 8.25 | 435 2 | 2.19 9           | 9.18 8.    | 83      | 810          | 578                           | 3.8 0.7                                                        | 8 441              | -2     | 7.3                 | 694.3                        | -                 | 10.7                       | 7.79 104                    | .9 248 | < 0.005                              | 50 12.7                  | < 0.0010             | ) -                                | < 0.050                      | -     | - 0.77                                 | 250                          | 158                          | 248                                            | < 1.0 < 1.0                                                                        | - 0                               | - 1             | < 0.050     | -             | 4.7 0.0   | 0.9                                             | 0.0083                                        |
|                          | FR_DC1_QTR_2019-07-01_N                                | Duplicate                   | 8.28 | 437 2 | 2.15 9           | 9.09 8.    | 87      | 811          | 584                           | 4 0.6                                                          | 9 457              | 7 -1.2 | -                   | -                            | -                 | -                          |                             | 243    | 0.0096                               | 6 12.7                   | 0.0010               | -                                  | < 0.050                      | -     | - 0.86                                 | 247                          | 158                          | 243                                            | < 1.0 < 1.0                                                                        | - 0                               | - 1             | < 0.050     | -             | 4.8 0.0   | 0.7 0.7                                         | 1 0.0094                                      |
|                          | QA/QC RPD%                                             | -                           | 0    | 0     | 2                | * :        | k       | 0            | 1                             | * *                                                            | *                  | *      | -                   | -                            | -                 | -                          |                             | 2      | *                                    | 0                        | *                    | -                                  | *                            | -     | - *                                    | 1                            | 0                            | 2                                              | * *                                                                                | -                                 | -               | *           | _             | *         | * *                                             | 12                                            |
|                          | FR_09-02-A_QTR_2019-10-07_N                            | 2019 10 24                  | -    |       |                  | 9.06 9.    |         |              |                               | 4.7 < 0.                                                       |                    |        | 8.2                 | 820                          | -                 | 10.4                       | 7.69 13                     |        |                                      |                          |                      |                                    | < 2.5                        | -     | - 1.15                                 |                              | 219                          |                                                | < 1.0 < 1.0                                                                        |                                   | _               | < 0.050     |               |           |                                                 | 0.0069                                        |
|                          | FR_DC3_QTR_2019-10-07_N                                | Duplicate                   | 8.08 |       |                  | 9.05 9.    | 39      | 762          | 607                           | 20.9 0.8                                                       | 2 344              | 1.8    | -                   | -                            | -                 | -                          |                             | 186    | < 0.005                              | 50 10.3                  |                      | ) -                                | < 0.050                      |       | - 1.59                                 | 153                          | 218                          |                                                | < 1.0 < 1.0                                                                        | 0 -                               |                 | < 0.050     |               |           |                                                 | 0.0412                                        |
|                          | QA/QC RPD%                                             |                             | 1    |       | 149              | * *        | *       | 2            | 2                             | * *                                                            | *                  | *      | -                   | -                            | -                 |                            |                             | 0      | *                                    | 1                        | *                    | -                                  | *                            |       | - *                                    | 5                            | 0                            | 0                                              | * *                                                                                | -                                 | -               | *           |               | *         | * *                                             | 140                                           |
| -                        | FR_09-02-A_QTR_2020-01-06_N                            | 2020 02 13                  | -    |       |                  |            |         |              |                               | 28.2 < 0.                                                      |                    |        |                     | 1,135                        | -                 |                            | 8.11 241                    |        |                                      |                          |                      |                                    | < 0.050                      |       | - 1.85                                 |                              | 354                          |                                                | < 1.0 < 1.0                                                                        | -                                 | _               | < 0.050     |               |           | 0026 < 0.5                                      |                                               |
| <b>FR</b> 00 00 <b>R</b> | FR_09-02-B_QSW_03042017_N                              | 2017 06 01                  | -    |       |                  |            |         | · ·          |                               | 4.7 0.5                                                        |                    |        |                     | 1,067                        | -                 |                            | 7.52 192                    |        | < 0.005                              |                          |                      |                                    | < 0.050                      | -     | - < 2.5                                |                              | 253                          |                                                | < 1.0 < 1.0                                                                        |                                   | _               | < 0.25      |               | 5.0 0.0   |                                                 | 0 0.0044                                      |
| FR_09-02-B               | FR012_0101201310                                       | 2013 03 26                  | 8.06 |       |                  |            | 1       |              |                               | 9.1 0.6                                                        |                    |        | 2.7                 | 790.5                        | -                 | 9.71                       |                             |        |                                      |                          |                      |                                    | 0.06                         | -     | - 3.4                                  | 300                          | 288                          |                                                | < 1.0 < 1.0                                                                        |                                   | _               | < 0.50      |               | 4.0 0.0   |                                                 |                                               |
| -                        | FRO12_0104201310                                       | 2013 05 30                  | 8.13 |       |                  | 11.7 11    |         |              |                               | 18.9 1.1                                                       |                    |        | 3.2                 | 863                          | -                 |                            | 8.4 20.                     |        |                                      |                          |                      |                                    | < 0.050                      |       | - 1.7                                  | 330                          | 204                          |                                                | < 1.0 < 1.0                                                                        |                                   | _               | < 0.50      |               |           |                                                 | 0.0297                                        |
| -                        | FR_09-02-B_QSW_04012016_N                              |                             | 7.86 |       |                  |            |         |              |                               | 3.1 < 0.                                                       |                    |        | 5.4                 | 813                          | -                 |                            | 7.94 226                    |        |                                      |                          |                      |                                    | < 0.050                      |       | - 2.3                                  | 180                          | 265                          |                                                | < 1.0 < 1.0                                                                        | -                                 | _               | < 0.25      |               | 6.4 0.0   |                                                 | 0.0062                                        |
| -                        | FR_09-02-B-WG-201606151207                             | 2016 06 15                  | 8.03 |       |                  |            | 95      |              |                               | 28.6 0.5                                                       |                    |        | 4.8                 | 774.4                        | -                 | 9.43                       |                             |        |                                      |                          |                      |                                    | < 0.050                      | -     | - 1.76                                 | 170                          | 202                          |                                                | < 1.0 < 1.0                                                                        | _                                 |                 | < 0.25      |               | 4.6 0.0   |                                                 |                                               |
| -                        | FR_09-02-B_QSW_04072016_N                              | 2016 08 22                  | -    |       |                  | 8.56 8     |         |              |                               | < 1.0 0.6                                                      |                    |        | 6.6                 | 549.9                        | -                 | 6.57                       |                             |        |                                      | 50 8.15                  |                      |                                    | 0.08                         | -     | - 2.05                                 | 190                          | 171                          |                                                | < 1.0 < 1.0                                                                        |                                   |                 | < 0.25      |               |           |                                                 | 0.0034                                        |
| -                        | FR_09-02-B_QSW_03102016_N                              | 2016 11 28                  |      |       |                  |            |         |              |                               | < 1.0 0.5                                                      |                    |        | 7.4                 | 860                          | -                 |                            | 7.46 -24                    |        |                                      |                          |                      | ) -                                | 0.122                        | -     | - 3.96                                 | 170                          | 271                          |                                                | < 1.0 < 1.0                                                                        |                                   |                 | < 0.25      |               |           |                                                 | 6 0.0075                                      |
| -                        | FR_09-02-B_QSW_02012017_N                              | 2017 03 20                  | 7.79 | 498 2 | 2.9 1            | 11.2 10    | ).1     | 940          | 681                           | 3.2 < 0.                                                       | 50 348             | 3 -    | 4.3                 | 844                          | -                 | 8.6                        | 7.58 82.                    | .6 210 | < 0.005                              | 50 18.9                  | 0.0012               | -                                  | 1.29                         | -     | - 1.8                                  | 148                          | 267                          | 210                                            | < 1.0 < 1.0                                                                        | 0 -                               | - •             | < 0.050     | -             | 7.1 0.0   | 0029 < 0.5                                      | 50 0.0251                                     |
|                          | FD_QSW_02012017_028                                    |                             | _    | _     | 0.4              | * ,        | •       | 4            | -                             | * *                                                            | *                  |        |                     |                              |                   |                            |                             |        | *                                    |                          | *                    |                                    | 50                           |       | *                                      |                              |                              |                                                | * *                                                                                | _                                 | <b></b>         | *           |               | 10        | + +                                             |                                               |
|                          |                                                        | 2017 09 13                  | 0    |       | 34               | 2 6 4 9    | C.4     | 750          | 2                             | 10 10                                                          | 50 240             | -      | -                   | -                            | -                 | -                          |                             | 0      | 0.000                                | 0                        | < 0.0010             | -                                  | 50                           | -     | - *                                    | 8                            | 100                          | 0                                              |                                                                                    | -                                 | -               | < 0.050     |               | 16        | 0010 0.7                                        | 98                                            |
| -                        | FR_09-02-B_QTR_2017-09-11_N                            |                             |      |       |                  | 3.64 8.    |         |              |                               | < 1.0 < 0.                                                     |                    |        | 7.3                 | 714.6                        | -                 |                            | 7.53 176                    |        |                                      |                          |                      | -                                  | 0.337                        | -     | - 1.22<br>- 1.24                       |                              | 186                          | 201                                            | < 1.0 < 1.0                                                                        | -                                 | _               | < 0.050     |               |           |                                                 | '9         0.0043           62         0.0034 |
|                          | FR_DC1_QTR_2017-09-11_N<br>QA/QC RPD%                  | Duplicate                   | 8.24 |       | ).36 E           | 3.69 8.    | 50<br>* | 0            | 526                           | 2.6 < 0                                                        | .5 252             | 2 -0.7 |                     | -                            | -                 | -                          |                             | 201    |                                      | 5 10<br>1                | < 0.001              | -                                  | 12                           | -     | - 1.24                                 | 159                          | 186<br>0                     | 204                                            | <1 <1<br>* *                                                                       | -                                 | -               | < 0.05<br>* |               | *         | * *                                             |                                               |
|                          | FR_09-02-B_QTR_2017-10-02_N                            | 2017 11 22                  | -    |       | 11 1             | 10.4 11    | .1      | -            | 666                           | < 1.0 < 0.                                                     | 50 311             | 31     | - 0.3               | - 846                        | -                 |                            |                             |        |                                      |                          | < 0.0010             | -                                  | 0.232                        | -     | - 1.94                                 | 154                          |                              | 214                                            | < 1.0 < 1.0                                                                        | -                                 |                 | < 0.050     |               |           |                                                 | 5 0.0059                                      |
| -                        | FR 09-02-B QTR 2018-01-01 N                            | 2018 02 08                  |      |       | 0.46 1           |            |         |              |                               | < 1.0 0.7                                                      |                    |        |                     | 892                          | _                 |                            |                             |        |                                      |                          | < 0.0010             |                                    | 0.364                        | _     | - 2.13                                 |                              |                              |                                                | < 1.0 < 1.0                                                                        |                                   |                 | < 0.050     |               |           |                                                 | 2 0.0029                                      |
|                          | FR_09-02-B_QTR_2018-04-02_N                            | 2018 06 13                  |      |       |                  |            | 2.5     |              |                               | 1 0.9                                                          |                    |        |                     | 967                          | -                 |                            |                             |        |                                      |                          | 0.0060               | _                                  | < 0.10                       |       | - < 2.5                                |                              | 252                          |                                                | < 1.0 < 1.0                                                                        |                                   |                 | < 0.050     |               |           |                                                 | 0 0.0025                                      |
|                          | FR_09-02-B_QTR_2018-07-02_N                            | 2018 07 31                  |      |       |                  |            |         |              |                               |                                                                |                    |        |                     | 741.8                        | -                 |                            |                             |        |                                      |                          | 0.0018               | -                                  | < 0.050                      |       | - 1.82                                 |                              | 223                          |                                                | < 1.0 < 1.0                                                                        |                                   |                 | < 0.050     |               |           |                                                 | 1 0.0019                                      |
|                          | FR_09-02-B_QTR_2018-10-01_N                            | 2018 12 13                  |      |       |                  |            |         |              |                               | 1.2 0.9                                                        |                    |        | 4.4                 |                              | -                 |                            |                             |        |                                      |                          | < 0.0010             |                                    | 0.179                        |       | - 1.61                                 | 196                          | 274                          |                                                | < 1.0 < 1.0                                                                        |                                   |                 | < 0.050     |               |           |                                                 | 2 < 0.0020                                    |
|                          | FR_09-02-B_QTR_2019-01-07_N                            | 2019 03 14                  |      |       |                  |            |         |              |                               |                                                                |                    |        |                     | 864.7                        |                   |                            |                             |        |                                      |                          | < 0.0010             |                                    | < 0.050                      |       | - 1.67                                 | 173                          | 296                          |                                                | < 1.0 < 1.0                                                                        |                                   |                 | < 0.050     |               |           |                                                 | 6 0.0038                                      |
|                          | FR_09-02-B_QTR_2019-04-01_N                            | 2019 05 30                  |      |       |                  |            |         |              |                               | 1.6 < 0.                                                       |                    |        |                     |                              |                   |                            |                             |        |                                      |                          | < 0.0050             |                                    | < 0.050                      |       | - < 2.5                                |                              |                              |                                                | < 1.0 < 1.0                                                                        |                                   |                 | < 0.25      |               |           |                                                 | 50 0.0033                                     |
|                          | FR 09-02-B QTR 2019-07-01 N                            | 2019 03 30                  |      |       |                  |            |         |              |                               |                                                                |                    |        |                     |                              |                   |                            |                             |        |                                      |                          | < 0.0030             |                                    | < 0.050                      |       | - 0.81                                 | 257                          |                              |                                                | 4.2 < 1.0                                                                          |                                   | -               | < 0.050     |               |           |                                                 | 50 0.0035<br>50 0.0025                        |
|                          | FR_09-02-B_QTR_2019-07_N                               | 2019 07 20                  |      |       |                  |            |         |              |                               |                                                                |                    |        |                     | 755                          | -                 |                            |                             |        |                                      |                          | < 0.0010             |                                    | < 0.050                      |       | - 1.35                                 |                              |                              |                                                | < 1.0 < 1.0                                                                        |                                   |                 | < 0.050     |               |           |                                                 | 0.0025<br>0.0026                              |
|                          | FR_09-02-B_QTR_2020-01-06_N                            | 2013 10 24                  |      |       |                  |            |         |              |                               |                                                                |                    |        |                     |                              | -                 |                            |                             |        |                                      |                          | < 0.0010             |                                    | < 0.050                      |       | - 1.31                                 |                              |                              |                                                | < 1.0 < 1.0                                                                        |                                   | _               | < 0.050     |               |           |                                                 | 50 0.0118                                     |
| <u> </u>                 |                                                        | 2020 02 10                  | 1.01 | 552 0 |                  | IC         |         |              |                               | • 0.                                                           |                    |        | 0.0                 | 1,000                        | _                 | 10.01                      | 2.01 200                    | .5 213 | . 5.000                              | 10.0                     | 10.0010              |                                    | 10.000                       |       | 1.01                                   | 140                          | 201                          | 210                                            |                                                                                    | -                                 | <u> </u>        | 0.000       |               | 0.0       |                                                 |                                               |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2237609, L2242795, L2248235, L2248391, L2249360, L2250608, L22506457, L2250618, L22506457, L2282357, L2283637, L2283637, L2283637, L2282357, L2283637, L228367, L228367, L22837, L22837 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505. Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard BOLD

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

#### <sup>a</sup> Standard to protect freshwater aquatic life.

- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.

<sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                                                                                                                         |                                                                    |                                           |                             |                                      |                                      |                                              |                                      |                                      |                                  |                                                |                          |                                          |                  |                                                |                                        | Dissolv                                  | ed Metals                | s                                                 |                      |                                                          |                         |                                              |                                           |                                                     |                   |                                                     |                            |                      |                      |                                                |                           |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|-----------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|------------------------------------------------|--------------------------|------------------------------------------|------------------|------------------------------------------------|----------------------------------------|------------------------------------------|--------------------------|---------------------------------------------------|----------------------|----------------------------------------------------------|-------------------------|----------------------------------------------|-------------------------------------------|-----------------------------------------------------|-------------------|-----------------------------------------------------|----------------------------|----------------------|----------------------|------------------------------------------------|---------------------------|
| Sample<br>Location | Sample<br>ID                                                                                                                                            | Sample Date<br>(yyyy mm dd)                                        |                                           | a<br>b<br>Dissolved Calcium | b<br>Dissolved Iron                  | a<br>b Dissolved Magnesium<br>T      | 년<br>Dissolved Manganese<br>기                | 료 Dissolved Potassium<br>기           | b<br>Dissolved Sodium                | 년<br>T                           | бт<br>Sarsenic                                 | 6 <del>1</del><br>Barium | 6t<br>Beryllium<br>7                     | uoua<br>μg/L     | 6t<br>Cadmium<br>⊤\                            | Duromium<br>T/6th                      | Cobalt<br>7/6t                           | Copper<br>T/C            | Lead<br>h0/F                                      | 6t<br>Lithium        | en<br>Mercury                                            | ნ Molybdenum            | б<br>Г<br>Nickel                             | 6th<br>Selenium<br>T/                     | 6th<br>Silver                                       | ) Strontium       | GT Thallium                                         | Е<br>µg/L                  | 6t<br>Titanium       | Gt<br>T<br>T         | бт<br>Т                                        | Zinc <sup>f</sup><br>T/6h |
| Primary Screenin   | <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup>                                                                                                   |                                                                    | n/a                                       | n/a                         | n/a                                  | n/a                                  | n/a                                          | n/a                                  | n/a                                  | 90                               | 50                                             | 10,000                   | 1.5                                      | 12,000           | 0.5-4 <sup>d</sup>                             | 10 <sup>e</sup>                        | 40                                       | 20-90 <sup>d</sup>       | 40-160 <sup>d</sup>                               | n/a                  | 0.25                                                     | 10,000                  | 250-<br>1,500 <sup>d</sup>                   | 20                                        | 0.5-15 <sup>d</sup>                                 | n/a               | 3                                                   | n/a                        | 1,000                | 85                   | n/a                                            | 75-<br>2,400 <sup>d</sup> |
| Secondary Scree    | ning Criteria: Costa and de Bruyn (2021) <sup>h</sup>                                                                                                   |                                                                    |                                           |                             |                                      |                                      |                                              |                                      |                                      |                                  |                                                |                          |                                          |                  | 0.8-<br>10.4 <sup>i</sup>                      | 100 (Cr +6)                            | n/a                                      | n/a                      | n/a                                               | 2,530                | n/a                                                      | n/a                     | 517-<br>2,972 <sup>i</sup>                   | 700                                       | n/a                                                 | n/a               | n/a                                                 | n/a                        | n/a                  | 3,520                | n/a                                            | n/a                       |
| S6 Study Area      |                                                                                                                                                         |                                                                    | 1                                         |                             | 1 1                                  |                                      | 1                                            |                                      |                                      | 1                                |                                                |                          |                                          |                  | 1                                              |                                        |                                          |                          | 1                                                 |                      |                                                          |                         |                                              |                                           |                                                     |                   |                                                     |                            |                      |                      |                                                |                           |
| FR_09-02-A         | FR_09-02-A_QTR_2017-09-11_N<br>FR_09-02-A_QTR_2017-10-02_N<br>FR_09-02-A_QTR_2018-01-01_N<br>FR_09-02-A_QTR_2018-04-02_N                                | 2017 09 13<br>2017 11 22<br>2018 02 22<br>2018 06 13               | < 3.0<br>< 3.0                            | 128<br>117                  | < 10<br>< 10<br>< 10<br>< 10         | 37.1<br>51.5<br>51.9<br>63.3         | 0.48<br>< 0.10<br>< 0.10<br>< 0.10           | 2.29<br>2.26<br>1.81<br>2.47         | 1.77<br>2.44<br>2.63<br>2.63         | 0.20<br>0.13                     | < 0.10<br>< 0.10<br>< 0.10<br>< 0.10           | 153<br>145               | < 0.020<br>< 0.020<br>< 0.020<br>< 0.020 | 14<br>< 10       | 0.0337<br>0.0434<br>0.0528<br>0.0304           | < 0.10<br>< 0.10<br>0.16<br>< 0.10     | < 0.10<br>< 0.10<br>0.12<br>< 0.10       | < 0.50<br>< 0.50         | 0.071<br>< 0.050<br>< 0.050<br>< 0.050            | 39.5<br>30.1         | < 0.0050<br>< 0.0050<br>< 0.0050<br>< 0.0050             | 1.17<br>0.990           | < 0.50<br>< 0.50<br>0.52<br>< 0.50           | <u>47.9</u><br><u>52.8</u>                | < 0.010<br>< 0.010<br>< 0.010<br>< 0.010            | 169<br>188        | < 0.010<br>< 0.010<br>< 0.010<br>< 0.010            | < 0.10<br>< 0.10           | < 10                 | 2.50<br>2.87         | < 0.50<br>< 0.50<br>< 0.50<br>< 0.50           | < 3.0<br>< 3.0            |
|                    | WG_2018-04-02_008<br>QA/QC RPD%                                                                                                                         | Duplicate                                                          |                                           | 149                         |                                      |                                      |                                              | 2.46                                 | 2.59                                 | 0.22                             |                                                |                          | < 0.020                                  |                  | 0.0279                                         | < 0.10                                 |                                          |                          |                                                   |                      | < 0.0050                                                 |                         |                                              |                                           | < 0.010                                             |                   |                                                     |                            |                      |                      |                                                |                           |
|                    | FR_09-02-A_QTR_2018-07-02_N<br>FR_09-02-A_QTR_2018-10-01_N<br>FR_09-02-A_QTR_2019-01-07_N<br>FR_09-02-A_QTR_2019-04-01_N<br>FR_09-02-A_QTR_2019-07-01_N | 2018 07 31<br>2018 12 13<br>2019 03 14<br>2019 05 30<br>2019 07 26 | < 3.0<br>< 3.0<br>< 3.0<br>< 3.0<br>< 3.0 | 120<br>138<br>97.6          | < 10<br>< 10<br>< 10<br>< 10<br>< 10 | 37.0<br>55.5<br>63.7<br>46.0<br>46.9 | < 0.10<br>< 0.10<br>< 0.10<br>0.14<br>< 0.10 | 2.07<br>1.60<br>1.53<br>1.69<br>2.18 | 1.73<br>2.20<br>2.62<br>2.38<br>2.02 | 0.15<br>0.13                     | < 0.10<br>< 0.10<br>< 0.10<br>< 0.10<br>< 0.10 | 109<br>113<br>130        | < 0.020                                  | < 10<br>< 10     | 0.0257<br>0.0394<br>0.0414<br>0.0134<br>0.0201 | 0.12<br>0.12<br>< 0.10<br>0.11<br>0.14 | < 0.10<br>0.10<br>0.11<br>< 0.10<br>0.13 | < 0.50<br>< 0.50<br>0.74 | < 0.050<br>< 0.050<br>< 0.050<br>0.087<br>< 0.050 | 37.8<br>53.9<br>38.0 | < 0.0050<br>< 0.0050<br>< 0.0050<br>< 0.0050<br>< 0.0050 | 1.56<br>1.65<br>1.28    | < 0.50<br>< 0.50<br>0.51<br>< 0.50<br>< 0.50 | <u>49.2</u><br><u>50.4</u><br><u>52.9</u> | < 0.010<br>< 0.010<br>< 0.010<br>< 0.010<br>< 0.010 | 165<br>197<br>158 | < 0.010<br>< 0.010<br>< 0.010<br>< 0.010<br>< 0.010 | < 0.10<br>< 0.10<br>< 0.10 |                      | 3.42<br>3.82<br>2.98 | < 0.50<br>< 0.50<br>< 0.50<br>< 0.50<br>< 0.50 | < 1.0<br>< 1.0<br>3.1     |
|                    | FR_DC1_QTR_2019-07-01_N<br>QA/QC RPD%<br>FR_09-02-A_QTR_2019-10-07_N                                                                                    | Duplicate 2019 10 24                                               | < 3.0<br>< 3.0                            |                             | < 10<br>13                           | 46.1<br>47.8                         | < 0.10<br>0.25                               | 2.12                                 | 1.99<br>2.26                         |                                  | < 0.10<br>0.15                                 |                          | < 0.020                                  |                  | 0.0225                                         | < 0.10                                 | 0.13                                     |                          | < 0.050<br>0.065                                  |                      | < 0.0050<br>< 0.0050                                     |                         | < 0.50                                       | <u>49.5</u>                               | < 0.010<br>< 0.010                                  |                   |                                                     |                            |                      |                      | < 0.50<br>< 0.50                               |                           |
|                    | FR_DC3_QTR_2019-10-07_N<br>QA/QC RPD%                                                                                                                   | Duplicate                                                          | < 3.0                                     | 106                         | < 10                                 | 48.3                                 | < 0.10                                       | 2.26                                 | 1.80                                 | 0.23                             | < 0.10                                         | 119                      | < 0.020                                  | 13               | 0.0272                                         | 0.13                                   | < 0.10                                   | < 0.20                   | < 0.050                                           | 28.9                 | < 0.0050                                                 | 1.64                    | < 0.50                                       | <u>52.4</u>                               | < 0.010                                             | 151               | < 0.010                                             | < 0.10                     | < 10                 | 2.72                 | < 0.50                                         | < 1.0                     |
| FR 09-02-B         | FR_09-02-A_QTR_2020-01-06_N<br>FR_09-02-B_QSW_03042017_N                                                                                                | 2020 02 13<br>2017 06 01<br>2013 03 26                             | < 1.0                                     | 137                         | < 10<br>< 10<br>< 30                 | 68.8<br>63.1<br>54.5                 | 0.15<br>0.11<br>< 0.050                      | 1.87<br>2.06<br>< 2.0                | 2.33<br>2.99<br>3.1                  | 0.15<br>< 0.10<br>< 0.10         | < 0.10                                         | 183                      |                                          |                  | 0.0363<br>0.0205<br>0.045                      | < 0.10<br>< 0.10<br>< 0.10             | < 0.10<br>< 0.10                         | 0.33                     | < 0.050<br>< 0.050<br>< 0.050                     | 47.2                 | < 0.0050<br>< 0.0050                                     | 0.625                   | < 0.50<br>< 0.50<br>0.64                     | <u>117</u>                                | < 0.010<br>< 0.010<br>< 0.010                       | 200               | < 0.010<br>< 0.010<br>< 0.010                       | < 0.10                     | < 10                 |                      | < 0.50<br>< 0.50<br>< 1.0                      | 2.0                       |
| T K_09-02-D        | FRO12_0101201310<br>FRO12_0104201310<br>FR_09-02-B_QSW_04012016_N                                                                                       | 2013 05 20<br>2013 05 30<br>2016 01 25                             | < 3.0<br>126<br>17.1                      | 137<br>130                  | < 30<br>81<br>< 10                   | 57.5<br>51.5                         | < 0.050<br>4.02<br>< 0.10                    | < 2.0<br>< 2.0<br>1.93               | 2.7<br>2.44                          | < 0.10                           |                                                | 164                      | < 0.10<br>< 0.10                         | 13<br>12         | 0.035<br>0.0242                                | 0.34                                   | 0.19<br>0.11<br>0.12                     | < 0.50                   |                                                   | 35.3                 | < 0.010<br>< 0.010<br>< 0.0050                           | 0.708                   | < 0.50                                       |                                           | < 0.010<br>< 0.010<br>< 0.010                       | 173               | < 0.010<br>< 0.010<br>< 0.010                       | < 0.10                     | 15<br>15             | 2.31<br>2.34<br>1.86 |                                                | < 3.0                     |
| -                  | FR_09-02-B-WG-201606151207<br>FR_09-02-B_QSW_04072016_N<br>FR 09-02-B_QSW_03102016_N                                                                    | 2016 06 15<br>2016 08 22<br>2016 11 28                             | < 3.0<br>< 3.0<br>< 3.0                   | 93.1                        | < 10<br>< 10<br>< 10                 | 48.2<br>38.9<br>50.0                 | < 0.10<br>< 0.10<br>< 0.10                   | 1.77<br>1.80<br>2.34                 | 2.19<br>2.38<br>3.30                 |                                  | < 0.10<br>< 0.10<br>< 0.10                     | 125                      | < 0.020<br>< 0.020<br>< 0.020            | 12               | 0.0170<br>0.0211<br>0.0355                     | < 0.10<br>< 0.10<br>0.11               | 0.13<br>0.16<br>0.36                     | < 0.50                   | < 0.050<br>< 0.050<br>< 0.050                     | 39.0                 | < 0.0050<br>< 0.0050<br>< 0.0050                         | 0.840                   | 0.52<br>0.56<br>1.46                         | <u>42.4</u><br><u>21</u><br>26.4          | < 0.010<br>< 0.010<br>< 0.010                       | 139               | < 0.010<br>< 0.010<br>< 0.010                       | < 0.10                     | < 10<br>< 10<br>< 10 | 2.24                 | < 0.50<br>< 0.50<br>< 0.50                     | < 3.0                     |
|                    | FR_09-02-B_QSW_02012017_N<br>FD_QSW_02012017_028<br>QA/QC RPD%                                                                                          | 2017 03 20<br>Duplicate                                            | < 1.0<br>< 1.0                            | 119<br>119                  | < 10<br>< 10                         | 48.9<br>50.0                         | < 0.10<br>< 0.10                             | 1.98<br>2.06                         | 2.46<br>2.50                         | < 0.10<br>0.13                   | < 0.10                                         | 172<br>174               | < 0.020<br>< 0.020                       | 11<br>11         | 0.0335<br>0.0313                               | < 0.10<br>< 0.10                       | 0.13 0.15                                | < 0.20                   | < 0.050<br>< 0.050                                | 41.7<br>42.0         | < 0.0050<br>< 0.0050                                     | 0.670<br>0.658          | 0.58<br>0.55                                 | <u>43.8</u><br><u>43.5</u>                | < 0.010<br>< 0.010                                  | 183               | < 0.010<br>< 0.010                                  | < 0.10<br>< 0.10           | < 10<br>< 10         | 2.46<br>2.45         | < 0.50<br>< 0.50                               | 4.3<br>4.1                |
|                    | FR_09-02-B_QTR_2017-09-11_N<br>FR_DC1_QTR_2017-09-11_N<br>QA/QC RPD%                                                                                    | 2017 09 13<br>Duplicate                                            | < 3                                       | 101                         | < 10<br>< 10                         | 40.8                                 | < 0.10<br>< 0.1                              | 1.96<br>1.95                         | 2.60<br>2.61                         | 0.1                              | < 0.1                                          | 138<br>137               | < 0.020<br>< 0.02                        | 12               | 0.0230                                         | 0.10                                   | 0.13 0.12                                | < 0.5                    | < 0.05                                            | 42.4                 | < 0.0050<br>< 0.005                                      | 0.746                   | < 0.5                                        | <u>33.1</u>                               | < 0.01                                              | 143               | < 0.01                                              | < 0.1                      | < 10                 | 2.25                 | < 0.5                                          | < 3                       |
|                    | FR_09-02-B_QTR_2017-10-02_N<br>FR_09-02-B_QTR_2018-01-01_N<br>FR_09-02-B_QTR_2018-04-02_N<br>FR_09-02-B_QTR_2018-07-02_N                                | 2017 11 22<br>2018 02 08<br>2018 06 13<br>2018 07 31               | < 3.0<br>< 3.0<br>< 3.0                   | 131<br>145<br>107           | < 10<br>< 10                         | 61.4<br>46.0                         | < 0.10<br>< 0.10                             | 2.25<br>2.26<br>2.46<br>2.02         | 2.99<br>2.91<br>2.81<br>2.48         | < 0.10<br>0.13<br>< 0.10         | < 0.10<br>< 0.10                               | 184<br>181<br>139        | < 0.020<br>< 0.020<br>< 0.020<br>< 0.020 | 11<br>10<br>< 10 |                                                | < 0.10<br>0.45<br>< 0.10<br>< 0.10     | 0.13                                     | 0.97<br>< 0.50<br>< 0.50 | < 0.050<br>< 0.050                                | 41.6<br>45.9<br>36.2 | < 0.0050<br>< 0.0050<br>< 0.0050<br>< 0.0050             | 0.742<br>0.888<br>0.815 | < 0.50<br>< 0.50                             | <u>49.9</u><br><u>87.8</u><br><u>49</u>   | < 0.010<br>< 0.010                                  | 181<br>212<br>159 | < 0.010<br>< 0.010<br>< 0.010                       | < 0.10<br>< 0.10           | < 10<br>< 10<br>< 10 | 2.48<br>3.43<br>2.98 | < 0.50<br>< 0.50<br>< 0.50<br>< 0.50           | < 3.0<br>< 1.0<br>< 1.0   |
|                    | FR_09-02-B_QTR_2018-10-01_N<br>FR_09-02-B_QTR_2019-01-07_N<br>FR_09-02-B_QTR_2019-04-01_N<br>FR_09-02-B_QTR_2019-07-01_N                                | 2018 12 13<br>2019 03 14<br>2019 05 30<br>2019 07 26               | < 3.0<br>< 3.0                            | 138<br>142                  | < 10<br>< 10                         | 62.1<br>64.6                         | < 0.10<br>< 0.10                             | 2.05<br>1.74<br>2.48<br>1.92         | 2.13<br>2.67<br>2.70<br>1.84         | < 0.10<br>< 0.10<br>0.11<br>0.13 | < 0.10<br>< 0.10                               | 159<br>102               | < 0.020<br>< 0.020<br>< 0.020<br>< 0.020 | < 10<br>< 10     | 0.0334                                         | 0.11<br>< 0.10<br>< 0.10<br>0.13       | < 0.10<br>0.12<br>0.14<br>0.14           | < 0.50<br>< 0.50         | < 0.050<br>< 0.050                                | 43.6<br>40.6         | < 0.0050<br>< 0.0050<br>< 0.0050<br>< 0.0050             | 0.896<br>0.781          | 0.60<br>< 0.50                               | <u>51.8</u><br><u>111</u>                 | < 0.010<br>< 0.010<br>< 0.010<br>< 0.010            | 206<br>177        | < 0.010                                             | < 0.10<br>< 0.10           | < 10<br>< 10         | 3.35<br>3.79         | < 0.50<br>< 0.50                               | 1.2<br>< 1.0              |
|                    | FR_09-02-B_QTR_2019-10-07_N<br>FR_09-02-B_QTR_2020-01-06_N                                                                                              | 2019 10 24<br>2020 02 13                                           | < 3.0                                     | 96.7                        | < 10                                 | 44.2                                 | < 0.10                                       | 1.94                                 | 2.48                                 | 0.14                             | < 0.10                                         | 120                      | < 0.020<br>< 0.020                       | 14               | 0.0207                                         | 0.12<br>< 0.10                         | 0.12                                     | < 0.20                   | < 0.050                                           | 37.3                 | < 0.0050<br>< 0.0050                                     | 1.48                    | < 0.50                                       | <u>36.3</u>                               | < 0.010                                             | 152               | < 0.010                                             | < 0.10                     | < 10                 | 2.71                 | < 0.50                                         | 2.2                       |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2236699, L224795, L2248235, L2248391, L2249360, L2256457, L2256457, L2256457, L2256457, L2256457, L2283637, L228367, L228367, L22837, L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505. Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report. < Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes guality assurance/guality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

- BOLD Concentration greater than CSR Aquatic Life (AW) standard
- BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                         |                             |                |                 |              |          |                   |                 |                |                       |                  |                        |               |             |             |              |                | Total               | Metals    |           |             |                                       |       |                 |              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                    |                 |                    |                    |                                                  |
|--------------------|---------------------------------------------------------|-----------------------------|----------------|-----------------|--------------|----------|-------------------|-----------------|----------------|-----------------------|------------------|------------------------|---------------|-------------|-------------|--------------|----------------|---------------------|-----------|-----------|-------------|---------------------------------------|-------|-----------------|--------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|-----------------|--------------------|--------------------|--------------------------------------------------|
|                    |                                                         |                             |                |                 |              |          |                   |                 |                |                       |                  |                        |               |             |             |              |                |                     |           |           |             |                                       |       |                 |              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                    |                 |                    |                    |                                                  |
| Sample<br>Location | Sample<br>ID                                            | Sample Date<br>(yyyy mm dd) | Gt<br>Aluminum | 년<br>G Antimony | 번<br>Arsenic | D/Barium | 6t<br>T/Beryllium | Bismuth<br>T/6t | noron<br>Boron | Бт<br>7/6<br>Саdmium  | 6th<br>T/Calcium | hân<br>Chromium<br>T/F | 后<br>T/Cobalt | ларег<br>Пр | uou<br>µg/L | Eead<br>7/64 | 6th<br>Lithium | പ്പ്<br>മുവലം<br>പ് | бћ<br>T/ñ | A Mercury | а<br>П<br>Л | ថ្មី Nickel<br>T<br>ច្នុំ Phosohorous |       | 分<br>了/Selenium | b<br>Silicon | Б <sup>н</sup><br>Silver | main<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>Magin<br>M | 6th<br>Trontium | hālium<br>Thallium | u<br>IL<br>µg/L | hanium<br>Trtanium | Бt<br>T<br>Nranium | баћ 7, čanadium<br>1 zinc <sup>f</sup><br>7 zinc |
| Primary Screenin   | n <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup> |                             | n/a            | n/a             | n/a          | n/a      | n/a               | n/a             | n/a            | n/a                   | n/a              | n/a                    | n/a           | n/a         | n/a         | n/a          | n/a            | n/a                 | n/a       | n/a       | n/a         | n/a n/a                               | a n/a | n/a             | n/a          | n/a                      | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a             | n/a                | n/a             | n/a                | n/a                | n/a n/a                                          |
| Secondary Scree    | ning Criteria: Costa and de Bruyn (2021) <sup>h</sup>   |                             | n/a            | n/a             | n/a          | n/a      | n/a               | n/a             | n/a            | 0.8-10.4 <sup>i</sup> | n/a              | 100 (Cr +6)            | n/a           | n/a         | n/a         | n/a          | 2,530          | n/a                 | n/a       | n/a       | n/a         | 517-<br>2,972 <sup>i</sup> n/a        | a n/a | 700             | n/a          | n/a                      | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a             | n/a                | n/a             | n/a                | 3,520              | n/a n/a                                          |
| S6 Study Area      |                                                         |                             | 1              | 1               | 1            |          |                   | 1               |                |                       |                  |                        | 1 1           |             |             | 1            | 1              |                     | 1         |           | 1           |                                       |       |                 |              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1               |                    |                 | I                  |                    |                                                  |
| FR_09-02-A         | FR_09-02-A_QTR_2017-09-11_N                             | 2017 09 13                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
| -                  | FR_09-02-A_QTR_2017-10-02_N                             | 2017 11 22                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
| -                  | FR_09-02-A_QTR_2018-01-01_N                             | 2018 02 22                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
| -                  | FR_09-02-A_QTR_2018-04-02_N                             | 2018 06 13                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
| -                  | WG 2018-04-02 008                                       | Duplicate                   | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | QA/QC RPD%                                              |                             | -              |                 | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-A_QTR_2018-07-02_N                             | 2018 07 31                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-A_QTR_2018-10-01_N                             | 2018 12 13                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-A_QTR_2019-01-07_N                             | 2019 03 14                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-A_QTR_2019-04-01_N                             | 2019 05 30                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-A_QTR_2019-07-01_N                             | 2019 07 26                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_DC1_QTR_2019-07-01_N                                 | Duplicate                   | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | QA/QC RPD%                                              |                             | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-A_QTR_2019-10-07_N                             | 2019 10 24                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_DC3_QTR_2019-10-07_N                                 | Duplicate                   | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | QA/QC RPD%                                              |                             | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-A_QTR_2020-01-06_N                             | 2020 02 13                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-B_QSW_03042017_N                               | 2017 06 01                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
| FR_09-02-B         | FRO12_0101201310                                        | 2013 03 26                  | 95.7           | < 0.10          | < 0.10       | 168      | < 0.10            | < 0.50          | 12             | 0.061                 | 125,000          | 0.29                   | 0.25          | < 0.50      | 95          | 0.073        | 29.2           | 55,700              | 3.57      | < 0.010   | 0.739       | 0.77 -                                | < 2,0 | 00 41.6         | 1,960        | < 0.010                  | 3,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 186             | < 0.010            | < 0.10          | < 10               | 2.37               | < 1.0 < 3.0                                      |
|                    | FRO12_0104201310                                        | 2013 05 30                  | 135            | 0.11            | 0.16         | 171      | < 0.10            | < 0.50          | 12             | 0.036                 | 141,000          | 0.31                   | 0.15          | < 0.50      | 196         | 0.128        | 34.4           | 60,200              | 7.03      | < 0.010   | 0.745       | < 0.50 -                              | < 2,0 | 00 81.7         | 2,290        | < 0.010                  | 2,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 181             | < 0.010            | < 0.10          | 14                 | 2.47               | < 1.0 < 3.0                                      |
|                    | FR_09-02-B_QSW_04012016_N                               | 2016 01 25                  | 31.7           | 0.13            | < 0.10       | 159      | < 0.10            | < 0.050         | 12             | 0.0358                | 119,000          | 0.16                   | 0.13          | < 0.50      | 35          | < 0.050      | 46.1           | 50,600              | 1.34      | < 0.0050  | 0.778       | 0.59 -                                | 2,05  | 0 39            | 2,100        | < 0.010                  | 2,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 176             | < 0.010            | < 0.10          | 14                 | 2.22 <             | < 0.50 < 3.0                                     |
|                    | FR_09-02-B-WG-201606151207                              | 2016 06 15                  | 119            | 0.10            | 0.14         | 138      | < 0.020           | < 0.050         | 10             | 0.0297                | 118,000          | 0.32                   | 0.20          | < 0.50      | 144         | 0.104        | 39.1           | 49,700              | 4.86      | < 0.0050  | 0.895       | 0.71 -                                | 1,88  | 0 43.2          | 2,340        | < 0.010                  | 2,270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 166             | < 0.010            | < 0.10          | 11                 | 2.74               | 0.63 < 3.0                                       |
|                    | FR_09-02-B_QSW_04072016_N                               | 2016 08 22                  | 4.8            | 0.15            | < 0.10       | 125      | < 0.020           | < 0.050         | 12             | 0.0199                | 92,900           | 0.14                   | 0.16          | < 0.50      | < 10        | < 0.050      | 38.0           | 40,400              | 0.22      | < 0.0050  | 0.850       | 0.59 -                                | 1,84  | 0 21            | 2,040        | < 0.010                  | 2,460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 137             | < 0.010            | < 0.10          | < 10               | 2.24               | < 0.50 < 3.0                                     |
|                    | FR_09-02-B_QSW_03102016_N                               | 2016 11 28                  | 28.5           | 0.14            | < 0.10       | 203      | < 0.020           | < 0.050         | 15             | 0.0394                | 136,000          | 0.20                   | 0.42          | 0.88        | 50          | 0.120        | 50.5           | 52,200              | 2.47      | < 0.0050  | 0.903       | 1.59 -                                | 2,50  | 0 25.9          | 2,520        | < 0.010                  | 3,450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 210             | < 0.010            | 0.11            | < 10               | 3.10               | < 0.50 < 3.0                                     |
|                    | FR_09-02-B_QSW_02012017_N                               | 2017 03 20                  | 18.1           | < 0.10          | < 0.10       | 156      | < 0.020           | < 0.050         | 10             | 0.0365                | 113,000          | 0.15                   | 0.16          | < 0.50      | 34          | < 0.050      | 38.9           | 46,500              | 1.56      | < 0.0050  | 0.655       | 0.70 -                                | 1,91  | 0 40.2          | 2,040        | < 0.010                  | 2,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 176             | < 0.010            | < 0.10          | < 10               | 2.30               | < 0.50 < 3.0                                     |
|                    | FD_QSW_02012017_028                                     | Duplicate                   | 7.4            | 0.11            | < 0.10       | 173      | < 0.020           | < 0.050         | 12             | 0.0384                | 121,000          | 0.18                   | 0.15          | < 0.50      | 13          | < 0.050      | 43.5           | 51,900              | 0.78      | < 0.0050  | 0.734       | 0.65 -                                | 2,09  | 0 43.2          | 2,200        | < 0.010                  | 2,620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 193             | < 0.010            | < 0.10          | < 10               | 2.52 <             | < 0.50 < 3.0                                     |
|                    | QA/QC RPD%                                              | -                           | 84             | *               | *            | 10       | *                 | *               | *              | 5                     | 7                | *                      | *             | *           | *           | *            | 11             | 11                  | 67        | *         | 11          | * -                                   | 9     | 7               | 8            | *                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9               | *                  | *               | *                  | 9                  | * *                                              |
|                    | FR_09-02-B_QTR_2017-09-11_N                             | 2017 09 13                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_DC1_QTR_2017-09-11_N                                 | Duplicate                   | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | QA/QC RPD%                                              | T                           | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
| _                  | FR_09-02-B_QTR_2017-10-02_N                             | 2017 11 22                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-B_QTR_2018-01-01_N                             | 2018 02 08                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-B_QTR_2018-04-02_N                             | 2018 06 13                  | -              |                 | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-B_QTR_2018-07-02_N                             | 2018 07 31                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-B_QTR_2018-10-01_N                             | 2018 12 13                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-B_QTR_2019-01-07_N                             | 2019 03 14                  | -              |                 | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-B_QTR_2019-04-01_N                             | 2019 05 30                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-B_QTR_2019-07-01_N                             | 2019 07 26                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-B_QTR_2019-10-07_N                             | 2019 10 24                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
|                    | FR_09-02-B_QTR_2020-01-06_N                             | 2020 02 13                  | -              | -               | -            | -        | -                 | -               | -              | -                     | -                | -                      | -             | -           | -           | -            | -              | -                   | -         | -         | -           |                                       | -     | -               | -            | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                  | -               | -                  | -                  |                                                  |
| -                  |                                                         |                             |                |                 |              |          |                   |                 |                |                       |                  |                        |               |             |             |              |                |                     |           |           |             |                                       |       |                 |              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                    |                 |                    |                    |                                                  |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1237666, L2237606, L2237606, L2237699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L2256457, L225657, L225757, L225757 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

- RDL Denotes reported detection limit.
  - Concentration greater than CSR Aquatic Life (AW) standard BOLD
  - BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                       |                             |                  |               |             | Р                          | hysica                     | l Param                  | eters            |                |                                |                            |                        |       | Field F | Param       | eters                              |          |                            |                   |                             |                          |                                     |                                  |               |                                   | Dissol             | ved Inorg          | ganics                                    |                                                                                    |                    |                     |                  |          |                    |             |                  |
|--------------------|-------------------------------------------------------|-----------------------------|------------------|---------------|-------------|----------------------------|----------------------------|--------------------------|------------------|----------------|--------------------------------|----------------------------|------------------------|-------|---------|-------------|------------------------------------|----------|----------------------------|-------------------|-----------------------------|--------------------------|-------------------------------------|----------------------------------|---------------|-----------------------------------|--------------------|--------------------|-------------------------------------------|------------------------------------------------------------------------------------|--------------------|---------------------|------------------|----------|--------------------|-------------|------------------|
|                    |                                                       |                             |                  |               |             |                            |                            |                          |                  |                | ۲<br>۲                         |                            |                        |       |         |             |                                    |          |                            |                   |                             |                          |                                     |                                  |               |                                   |                    |                    |                                           |                                                                                    |                    |                     |                  |          |                    |             |                  |
| Sample<br>Location | Sample<br>ID                                          | Sample Date<br>(yyyy mm dd) |                  | ш<br>T/б<br>П | Z Turbidity | u<br>T<br>T<br>T<br>T<br>T | ង<br>Db Total Cations<br>T | ក<br>ភុ/<br>Gonductivity | 표<br>전<br>고<br>고 | 표<br>전<br>고    | 료 Dissolved Organic Carbo<br>기 | Oxidation Rec<br>Potential | % Cation Anion Balance |       |         | Field Turbi | 료 Dissolved Oxygen<br>구 ɒH (field) | Field C  | B<br>Total Alkalinity<br>T | ଞ୍ଚ<br>ଜୁ<br>୮    | a<br>So Nitrate (as N)<br>T | a<br>Mitrite (as N)<br>T | a<br>a Nitrate+Nitrite (as N)<br>T∕ | a<br>b Kjeldahl Nitrogen-N<br>r∕ | Mitrogen<br>T | Ba Total Nitrogen-N<br>⊐/Chloride | - μg/L             | a<br>Sulfate<br>T  | 표 Alkalinity, Bicarbonate<br>다 (as CaCO3) | a Alkalinity, Carbonate<br>거 (as CaCO3)<br>B Alkalinity, Hydroxide<br>더 (as CaCO3) | a<br>D/Bicarbonate | д<br>Сarbonate<br>Г | mg/T u           | Total Ac | C Acidity (pH 8.3) |             | Total Phosph     |
| Primary Screenin   | ng Criteria: CSR Aquatic Life (AW) <sup>a</sup>       |                             | n/a              | n/a           | n/a         | n/a                        | n/a                        | n/a                      | n/a              | n/a            | n/a                            | n/a                        | n/a n/                 | /a r  | n/a r   | n/a i       | n/a n/                             | /a n/a   | n/a                        | 1.31-             | 400                         | 0.2-2.0 <sup>c</sup>     | 400                                 | n/a                              | n/a           | n/a 1,50                          | 2,000-             | 1,280-             | n/a                                       | n/a n/a                                                                            | n/a                | n/a                 | n/a              | n/a n    | n/a n/             | n/a n/a     | n/a              |
|                    | · · · · ·                                             |                             |                  |               |             |                            |                            |                          |                  |                |                                |                            |                        |       |         |             |                                    |          |                            | 18.5 <sup>b</sup> | 6.08-                       | 0.389-                   |                                     | 11/4                             |               | ,                                 | 3,000 <sup>d</sup> | 4,290 <sup>d</sup> |                                           |                                                                                    |                    |                     |                  |          |                    |             |                  |
| Secondary Scree    | ning Criteria: Costa and de Bruyn (2021) <sup>n</sup> |                             | n/a              | n/a           | n/a         | n/a                        | n/a                        | n/a                      | 10,000           | n/a            | n/a                            | n/a                        | n/a n/                 | /a r  | n/a r   | n/a i       | n/a <sup>l</sup> n/                | /a n/a   | n/a                        | n/a               | 223.8 <sup>i</sup>          | 39.95 <sup>j</sup>       | n/a                                 | n/a                              | n/a           | n/a n/a                           | n/a                | 4,990              | n/a                                       | n/a n/a                                                                            | n/a                | n/a                 | 78               | n/a n    | n/a n/             | n/a n/a     | n/a              |
| S6 Study Area      |                                                       |                             |                  |               |             |                            |                            |                          |                  |                |                                |                            |                        |       |         |             |                                    |          |                            |                   |                             |                          |                                     |                                  |               |                                   |                    |                    |                                           |                                                                                    |                    |                     |                  |          |                    |             |                  |
| FR_GHHW            | FR_GHHW_810619                                        | 2011 12 06                  | -                | -             | -           | -                          | -                          | -                        | -                | -              | -                              | -                          |                        | -     | -       | -           |                                    |          | -                          | -                 | 42.3                        |                          | -                                   | -                                | -             | - < 5.0                           |                    | 224                | -                                         |                                                                                    | -                  |                     | < 0.50           |          |                    |             |                  |
|                    | FR_GHHW_810809                                        |                             | 8.18             |               | 0.27        |                            | 13.8                       | 1,180                    | 950              |                |                                | 366                        |                        | -     | -       | -           |                                    |          | 246                        | < 0.0050          |                             | 0.019                    | -                                   | -                                | -             | - 2.3                             |                    | 273                |                                           | < 1.0 < 1.0                                                                        | _                  |                     | < 0.50           |          | 5.1 0.0            |             |                  |
|                    | FR_GHHW_810788                                        |                             | 8.03             |               | 0.73        |                            | 14.9                       | 1,240                    | 983              | < 3.0          |                                |                            |                        | -     | -       | -           |                                    |          | 256                        | < 0.0050          |                             | < 0.010                  |                                     | 0.383                            | -             | - 2.5                             |                    | 302                | _                                         | < 1.0 < 1.0                                                                        |                    |                     | < 0.50           |          |                    | 0011 0.63   |                  |
|                    | FR_GHHW_810776                                        | 2012 03 05                  | 8.16             |               | 0.31        | 15.7                       | 15.4                       | 1,320                    | 1,050            | < 3.0          | 0.5                            | 477                        |                        | -     | -       | -           |                                    |          | 256                        | < 0.0050          |                             | < 0.010                  |                                     | < 0.050                          |               | - 2.8                             | < 200              | 322                | _                                         | < 1.0 < 1.0                                                                        | _                  |                     | < 0.50           |          |                    | 010 0.84    |                  |
|                    | FR_GHHW_810753                                        |                             | -                |               | 1.65        | 16.3                       | 16                         | 1,350                    | 1,020            |                | < 0.50                         |                            |                        | -     | -       | -           |                                    |          | 261                        | 0.0089            |                             | < 0.010                  |                                     | < 0.050                          | -             | - 2.7                             |                    | 336                |                                           | < 1.0 < 1.0                                                                        |                    |                     | < 0.50           |          |                    | 012 0.67    |                  |
|                    | FR_GHHW_811045                                        | 2012 04 02                  |                  |               | 0.75        |                            | 16.4                       | 1,390                    | 1,180            | < 3.0          |                                | 359                        |                        | -     | -       | -           |                                    |          | 265                        | < 0.0050          |                             | 0.017                    |                                     | 0.143                            | -             | - 2.7                             | < 200              | 344                |                                           | < 1.0 < 1.0                                                                        |                    |                     | < 0.50           |          |                    | 015 0.80    |                  |
| _                  | FR_GHHW_810962                                        | 2012 05 08                  |                  |               |             |                            | 6.28                       | 546                      | 344              |                |                                | 380                        |                        | -     | -       | -           |                                    |          | 192                        | < 0.0050          |                             | < 0.0010                 |                                     | < 0.050                          |               | - 7.7                             |                    | 66.7               |                                           | < 1.0 < 1.0                                                                        |                    |                     | < 0.050          |          |                    | 020 2.85    |                  |
| _                  | FR_GHHW_810887                                        | 2012 06 04                  | 8.24             |               | 0.37        |                            | 9.31                       | 820                      | 586              | < 3.0          | 1.71                           | 397                        |                        | -     | -       | -           |                                    |          | 198                        | < 0.0050          |                             | < 0.0050                 |                                     | < 0.050                          |               | - 2.7                             |                    | 147                | _                                         | < 1.0 < 1.0                                                                        | _                  |                     | < 0.25           |          |                    | 024 1.91    |                  |
| -                  | FR_GHHW_811529                                        |                             |                  |               | 0.14        |                            | 8.76                       | 749                      | 570              |                |                                | 365                        |                        | -     | -       | -           |                                    | • -      | 221                        | < 0.0050          |                             |                          |                                     | < 0.050                          |               | - 1.3                             |                    | 124                |                                           | < 1.0 < 1.0                                                                        |                    |                     | < 0.25           |          |                    | 0122 0.75   |                  |
| _                  | FR_GHHW040912M                                        | 2012 09 04                  | 8.1              |               | 1.86        |                            | 10.5                       | 869                      | 765              |                | 0.58                           | 343                        |                        | -     | -       | -           |                                    |          | 230                        | < 0.0050          |                             | < 0.010                  |                                     | < 0.050                          |               | - 1.2                             |                    | 170                |                                           | < 1.0 < 1.0                                                                        |                    |                     | < 0.50           |          |                    | 037 0.74    |                  |
| _                  | GH-HARD_L1220068                                      |                             | 8.2              |               | 0.29        |                            | 11.4                       | 970                      | 828              |                |                                | 512                        |                        | -     | -       | -           |                                    | · -      | 233                        | < 0.0050          |                             | < 0.010                  |                                     | < 0.050                          |               | - 1.4                             |                    | 207                |                                           | < 1.0 < 1.0                                                                        |                    |                     | < 0.50           |          |                    | 030 0.86    |                  |
| _                  | GHHARD_L1235448                                       | 2012 11 05                  |                  |               | 0.6         |                            | 13.1                       | 1,070                    | 849              | < 3.0          |                                |                            |                        | -     | -       | -           |                                    |          | 232                        | < 0.0050          |                             | < 0.010                  |                                     | < 0.050                          |               | - 1.6                             |                    | 235                |                                           | < 1.0 < 1.0                                                                        |                    |                     | < 0.50           |          |                    | 013 0.55    |                  |
| _                  | GH-HARD_L1245128                                      |                             |                  |               | 0.6         |                            | 13.3                       | 1,200                    | 1,000            | < 3.0          |                                | 522                        |                        | -     | -       | -           |                                    |          | 237                        | < 0.0050          |                             | < 0.010                  |                                     | < 0.050                          |               | - 1.7                             |                    | 278                | _                                         | < 1.0 < 1.0                                                                        | _                  |                     | < 0.50           |          |                    | 013 0.89    |                  |
| _                  | FR003_0101201301                                      |                             | 7.98             |               | 0.54        |                            | 16.1                       | 1,360                    | 1,200            |                |                                | 476                        |                        | -     | -       | -           |                                    | • -      | 239                        | < 0.0050          |                             | < 0.010                  |                                     | < 0.050                          |               | - 2.1                             |                    | 333                |                                           | < 1.0 < 1.0                                                                        |                    |                     | < 0.50           |          |                    | 010 0.71    |                  |
| _                  | FR003_010220131                                       |                             | 7.96             |               | 1.97        |                            | 17.6                       | 1,470                    |                  |                |                                |                            |                        | -     | -       | -           |                                    | · -      | 246                        | < 0.0050          |                             | < 0.020                  |                                     | < 0.050                          |               | - 2.3                             |                    | 373                | _                                         | < 1.0 < 1.0                                                                        | _                  |                     | < 1.0            |          |                    | 0010 0.56   |                  |
| -                  | FR003_010320131                                       | 2013 03 05                  |                  |               | 0.41        |                            | 18.4                       | 1,600                    | 1,280            |                | < 0.50                         |                            |                        | -     | -       | -           |                                    | · -      | 236                        | 0.0109            |                             | 0.013                    |                                     | < 0.050                          |               | - 2.6                             |                    | 419                |                                           | < 1.0 < 1.0                                                                        |                    |                     | < 0.50           |          |                    | 012 0.72    |                  |
| _                  | FR003_010420131                                       |                             |                  |               | 1.31        |                            | 13.6                       | 1,200                    | 898              | < 3.0          |                                |                            |                        | -     | -       | -           |                                    | · -      | 219                        | 0.0597            |                             | 0.043                    |                                     | < 0.050                          |               | - 2.4                             | 220                | 262                | _                                         | < 1.0 < 1.0                                                                        | _                  |                     | < 0.50           |          |                    | 0256 0.67   |                  |
| _                  | FR003_010520131                                       | 2013 05 07                  |                  |               | 1.11        |                            | 13.7                       | 1,210                    |                  |                | 0.59                           |                            |                        | -     | -       | -           |                                    |          | 219                        | 0.0064            |                             | 0.019                    |                                     | < 0.050                          |               | - 1.8                             | < 200              | 265                |                                           | < 1.0 < 1.0                                                                        |                    |                     | < 0.50           |          |                    | 0010 0.76   |                  |
| _                  | FR003_010620131                                       |                             | 8.05             |               | 1.04        |                            | 10.7                       | 903                      | 693              |                |                                | 384                        |                        | -     | -       | -           |                                    |          | 209                        | 0.0063            |                             | 0.012                    |                                     | < 0.050                          |               | - 2.4                             |                    | 181                | _                                         | < 1.0 < 1.0                                                                        | _                  |                     | < 0.50           |          |                    | 377 1.38    |                  |
| _                  | FR_GHHW_M_01072013_NP                                 |                             |                  |               |             |                            | 7.64                       | 672                      | 448              | < 3.0          |                                | 472                        |                        | •     | -       | -           |                                    |          | 186                        | 0.0075            |                             | 0.0138                   |                                     | < 0.050                          |               | - 2                               | 180                | 116                |                                           | < 1.0 < 1.0                                                                        |                    |                     | < 0.25           |          |                    | 019 1.37    |                  |
| _                  | FR_GHHW_M_01092013_NP                                 | 2013 09 03                  | 8.09             |               |             |                            | 8.77                       | 802                      | 634              | < 3.0          | 1.2                            | 456                        |                        |       | 804     | - 5         | 5.09 7.5                           | 57 66.4  |                            | < 0.0050          |                             | < 0.010                  |                                     | < 0.050                          |               | - 2.9                             |                    | 139                | _                                         | < 1.0 < 1.0                                                                        | _                  |                     | < 0.50           |          |                    | 024 1.11    |                  |
| _                  | FR_GHHW_M_01102013_NP                                 |                             | 8.25             |               | 0.68        |                            | 10.8                       | 927                      | 739              |                | 0.76                           | 451                        |                        |       | -       | -           |                                    | -        | 204                        | < 0.0050          |                             | < 0.010                  |                                     | < 0.050                          |               | - 2.9                             |                    | 174                | _                                         | < 1.0 < 1.0                                                                        | _                  |                     | < 0.50           |          |                    | 024 0.98    |                  |
| -                  | FR_GHHW_Q_01092013_N                                  | 2013 10 31                  | 8.27             |               | 0.4         |                            | 11.8                       | 1,030                    | 778              | 4.8            |                                | 377                        | - 11                   | .4 60 | 01.6    | - 7         | 7.44 7.2                           | 28 121.8 |                            | < 0.0050          |                             | < 0.010                  |                                     | < 0.050                          |               | - 2.5                             |                    | 209                | _                                         | < 2.0 < 2.0                                                                        | _                  |                     | < 0.50           |          |                    | 011 0.74    |                  |
| -                  | FR_GHHW_M_01122013_NP                                 |                             | 8.11             |               | 4.84        |                            | 12.8                       | 1,130                    | 779              |                | 0.74                           |                            |                        | -     | -       | -           |                                    |          | 208                        | < 0.0050          |                             | < 0.010                  |                                     | < 0.050                          |               | - 2.3                             |                    | 245                | _                                         | < 1.0 < 1.0                                                                        | _                  |                     | < 0.50           |          |                    | 021 0.79    |                  |
| _                  | FR_GHHW_M_01012014_NP                                 |                             | 7.99             |               | 2.16        |                            | 14.2                       | 1,220                    | 921              | < 1.0          |                                |                            |                        |       | -       |             |                                    |          | 215                        | < 0.0050          |                             | 0.023                    |                                     | < 0.050                          |               | - 2.3                             |                    | 282                |                                           | < 1.0 < 1.0                                                                        |                    |                     | < 0.50           |          |                    | 0010 0.78   |                  |
| _                  | FR_GHHW_M_01022014_NP                                 | 2014 02 03                  | 8.16             |               | 0.41        |                            | 14.3                       | 1,290                    | 957              |                |                                | 482                        |                        | -     | -       | -           |                                    |          | 202                        | 0.0064            |                             | < 0.010                  |                                     | < 0.050                          |               | - 2.8                             |                    | 308                |                                           | < 1.0 < 1.0                                                                        |                    |                     | < 0.50           |          |                    | 0010 < 0.50 |                  |
| -                  | FR_GHHW_M_01032014_NP                                 | 2014 03 04                  | 8.01             |               | 0.28        |                            | 15.4                       | 1,370                    | ,                |                |                                |                            |                        |       | -       | -           |                                    |          | 228                        | < 0.0050          |                             | < 0.010                  |                                     | < 0.050                          |               | - 2.7                             |                    | 328                |                                           | < 1.0 < 1.0                                                                        | -                  |                     | < 0.50           |          |                    | 231 < 0.50  |                  |
| -                  | FR_GHHW_Q_01012014_N                                  | 2014 03 13                  |                  |               | 0.76        |                            | 15.5                       |                          |                  | < 1.0          |                                |                            | - 9.                   | .3 1, | 220     | - 8         | 3.73 7.2                           | 28 -     | 223                        | 0.0090            |                             | 0.010                    |                                     | < 0.050                          |               | - 2.1                             |                    | 322                |                                           | < 1.0 < 1.0                                                                        |                    |                     | < 0.50           |          |                    | 025 0.89    |                  |
| -                  | FR_GHHW-WG-0704140830                                 | 2014 04 07                  | 8.05             | 802           | 0.63        | 1/                         | 16.2                       | 1,400                    | 1,160            | < 1.0          | 0.55                           | 401                        |                        | -     | -       | -           |                                    |          | 232                        | 0.0097            | 68.3                        | 0.021                    |                                     | < 0.050                          |               | - 2.5                             |                    |                    |                                           | < 1.0 < 1.0                                                                        |                    |                     |                  |          |                    | 0010 0.58   |                  |
|                    | FR_GHHW_Q_01042014_N                                  | 2014 05 14                  |                  |               |             |                            |                            |                          |                  |                |                                |                            |                        |       |         |             |                                    |          |                            |                   |                             | < 0.010                  |                                     | < 0.050                          |               |                                   |                    |                    |                                           |                                                                                    |                    |                     |                  |          |                    |             | 50 < 0.0020      |
|                    | FR_GHHW_QSW_02072014_N                                | 2014 08 25                  |                  |               |             |                            |                            |                          |                  |                |                                |                            |                        |       |         |             |                                    |          |                            |                   |                             | < 0.010                  | 1                                   | < 0.050                          |               | - 2.1                             |                    |                    |                                           |                                                                                    |                    |                     |                  |          |                    | 044 0.53    |                  |
|                    | FD_QSW_02072014_004                                   | Duplicate                   |                  |               |             |                            |                            |                          |                  |                |                                |                            |                        |       | -       |             |                                    |          |                            |                   |                             | < 0.010                  | -                                   | < 0.050                          |               | - 2                               |                    |                    |                                           | < 1.0 < 1.0                                                                        |                    |                     |                  |          |                    | 124 0.70    |                  |
|                    | QA/QC RPD%                                            | 2014 10 23                  |                  |               |             | *                          |                            |                          |                  |                |                                |                            |                        |       |         |             |                                    |          |                            |                   |                             | * < 0.010                | -                                   |                                  | -             |                                   |                    |                    |                                           |                                                                                    |                    |                     |                  |          |                    | * *         | 55<br>5 < 0.0020 |
|                    | FR_GHHW_QSW_02102014_N                                |                             |                  |               |             |                            |                            |                          |                  |                |                                |                            |                        |       |         |             |                                    |          |                            |                   |                             | < 0.0010                 |                                     | < 0.050                          |               | - 1.6<br>- 2.4                    |                    |                    |                                           |                                                                                    |                    |                     |                  |          |                    |             |                  |
|                    | FR_GHHW_QSW_02012015_N<br>FR_GHHW_QSW_02042015_N      | 2015 01 21<br>2015 04 14    |                  |               |             |                            |                            |                          |                  | < 1.0<br>< 1.0 |                                |                            |                        |       |         |             |                                    |          |                            |                   |                             | < 0.0050                 |                                     | < 0.050<br>< 0.050               |               |                                   |                    | 276<br>336         |                                           |                                                                                    |                    |                     | < 0.25<br>< 0.50 |          |                    |             | 8 < 0.0020       |
|                    | 3 FR DC1 02042015_N                                   | 2013/04/14                  | 0.44             | 140           | -           | -                          | -                          | 1,330                    | 1,020            | < 1.0          | 0.12                           | -                          |                        | -     | -       | -           |                                    |          | 239                        | ~ 0.0050          | 00.2                        | < 0.010                  | -                                   | ~ 0.050                          | -             | - 3                               | < 200              | 330                | -                                         |                                                                                    | + -                | -   *               | ~ 0.50           |          |                    | - 0.80      | 0.0062           |
|                    | <u>3_FR_DC1_020415</u><br>QA/QC RPD%                  |                             | 1                | 0             | -           | -                          | -                          | 1                        | 2                | *              | *                              |                            |                        | _     | -       | -           |                                    |          | 8                          | *                 | 2                           | *                        | -                                   | *                                | -             | - 10                              | *                  | 1                  |                                           |                                                                                    | -                  | _                   | *                | -        |                    | - *         | *                |
|                    | FR_GHHW_QSW_02072015_N                                | 2015 07 02                  |                  |               |             | -                          | -                          |                          |                  | 1.1            |                                |                            | - 21                   |       |         |             |                                    |          |                            |                   |                             | < 0.0050                 |                                     | < 0.050                          |               |                                   | < 100              | _                  |                                           |                                                                                    |                    |                     | < 0.25           |          |                    | - < 0.50    |                  |
|                    | FR GHHW NPQ 01102015 NP                               | 2015 11 05                  |                  |               |             | -                          | -                          | ,                        | -                |                | -                              |                            |                        |       |         |             |                                    |          | -                          |                   |                             | 0.0692                   |                                     |                                  |               | - 1.6                             |                    |                    | _                                         |                                                                                    | _                  |                     |                  |          |                    |             |                  |
|                    |                                                       | 2010 11 00                  | 1 <sup>-</sup> 1 | 502           | -           | -                          | -                          | -                        | -                |                | -                              | -                          |                        |       |         | -           |                                    |          | -                          | 0.213             | 01.0                        | 0.0032                   |                                     |                                  | - 1           | - 1.0                             | 100                | 200                | -                                         |                                                                                    |                    | -                   | -                |          |                    |             |                  |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2237699, L2242795, L2248235, L2248391, L2249360, L2250608, L2256457, L2256457, L2256457, L2283637, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2249360, L2256457, L225657, L225557, L2255757, L225757, L22575 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted. n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

BOLD Concentration greater than CSR Aquatic Life (AW) standard

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) <sup>a</sup> Standard to protect freshwater aquatic life.

- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.

<sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                        |                             |                          |                             |                    |                                |                                     |                               |                            |                        |                  |                |             |         |                           |                 | Dissolv        | ed Metals          | s                   |                   |               |                  |                            |                       |                     |            |                 |           |                |                |              |                           |
|--------------------|--------------------------------------------------------|-----------------------------|--------------------------|-----------------------------|--------------------|--------------------------------|-------------------------------------|-------------------------------|----------------------------|------------------------|------------------|----------------|-------------|---------|---------------------------|-----------------|----------------|--------------------|---------------------|-------------------|---------------|------------------|----------------------------|-----------------------|---------------------|------------|-----------------|-----------|----------------|----------------|--------------|---------------------------|
|                    |                                                        |                             |                          |                             |                    |                                |                                     |                               |                            |                        |                  |                |             |         |                           |                 |                |                    |                     |                   |               |                  |                            |                       |                     |            |                 |           |                |                |              |                           |
| Sample<br>Location | Sample<br>ID                                           | Sample Date<br>(yyyy mm dd) | لللله Dissolved Aluminum | a<br>bissolved Calcium<br>T | لال Dissolved Iron | a<br>bissolved Magnesium<br>⊤∕ | ର୍ଘ<br>T<br>ଅନୁ Dissolved Manganese | a<br>Dissolved Potassium<br>T | a<br>Dissolved Sodium<br>T | ର୍ଗ<br>T/S<br>Antimony | б<br>f<br>Г<br>Л | бћ<br>7/Ваrium | б<br>П<br>П | hđ<br>đ | 6th<br>Cadmium            | նե<br>T<br>T    | ର୍ଘ<br>T<br>ସ୍ | Copper<br>DA       | Lead<br>Л/П         | Б<br>П<br>Гithium | Mercury<br>64 | 65<br>Molybdenum | Nickel                     | 60<br>Selenium<br>T/F | hđ<br>Silver        | 5π<br>T/6π | hâh<br>Thallium | Е<br>µg/L | 6t<br>Titanium | hđh<br>Uranium | лб<br>П<br>Л | Z<br>Zinc <sup>f</sup>    |
| Primary Screenii   | ng Criteria: CSR Aquatic Life (AW) <sup>a</sup>        |                             | n/a                      | n/a                         | n/a                | n/a                            | n/a                                 | n/a                           | n/a                        | 90                     | 50               | 10,000         | 1.5         | 12,000  | 0.5-4 <sup>d</sup>        | 10 <sup>e</sup> | 40             | 20-90 <sup>d</sup> | 40-160 <sup>d</sup> | n/a               | 0.25          | 10,000           | 250-<br>1,500 <sup>d</sup> | 20                    | 0.5-15 <sup>d</sup> | n/a        | 3               | n/a       | 1,000          | 85             | n/a          | 75-<br>2,400 <sup>d</sup> |
| Secondary Scree    | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             |                          |                             |                    |                                |                                     |                               |                            |                        |                  |                |             |         | 0.8-<br>10.4 <sup>i</sup> | 100 (Cr +6)     | n/a            | n/a                | n/a                 | 2,530             | n/a           | n/a              | 517-<br>2,972 <sup>i</sup> | 700                   | n/a                 | n/a        | n/a             | n/a       | n/a            | 3,520          | n/a          | n/a                       |
| S6 Study Area      |                                                        |                             |                          |                             |                    |                                |                                     |                               |                            |                        |                  |                |             |         |                           |                 |                |                    | 1                   |                   |               |                  | 1                          |                       |                     |            |                 | 1         |                |                |              |                           |
| FR_GHHW            | FR_GHHW_810619                                         | 2011 12 06                  | -                        | -                           | -                  | -                              | -                                   | -                             | -                          | -                      | -                | -              | -           | -       | -                         | -               | -              | -                  | -                   | -                 | -             | -                | -                          | -                     | -                   | -          | -               | -         | -              | -              | -            | -                         |
|                    | FR_GHHW_810809                                         | 2012 01 09                  | < 3.0                    | 166                         | < 30               | 66.5                           | 0.842                               | 3.0                           | < 2.0                      | < 0.10                 | < 0.10           | 219            | < 0.10      | 20      | 0.040                     | 0.16            | < 0.10         | 4.85               | 0.091               | 28.9              | < 0.010       | 0.646            | < 0.50                     | 77.2                  | < 0.010             | 174        | < 0.010         | < 0.10    | 11             | 3.33           | < 1.0        | 143                       |
|                    | FR GHHW 810788                                         | 2012 02 07                  | < 3.0                    | 174                         | < 30               | 74.8                           | 1.24                                | 3.1                           | < 2.0                      | < 0.10                 | < 0.10           | 194            | < 0.10      | 19      | 0.039                     | < 0.10          | < 0.10         | 7.17               | 0.067               | 26.4              | < 0.010       | 0.715            | < 0.50                     | 81.0                  | < 0.010             | 185        | < 0.010         | < 0.10    | 10             | 4.02           | < 1.0        | 108                       |
|                    | FR GHHW 810776                                         | 2012 03 05                  | < 3.0                    | 181                         | < 30               | 76.5                           | 1.57                                | 3.1                           | < 2.0                      | < 0.10                 | < 0.10           |                | < 0.10      | 19      | 0.048                     | 0.14            | < 0.10         | 4.41               | < 0.050             | 26.2              | < 0.010       | 0.718            | 0.57                       | 89.4                  | < 0.010             | 207        | < 0.010         | < 0.10    | < 10           | 4.37           | < 1.0        | 148                       |
| -                  | FR GHHW 810753                                         | 2012 03 19                  | < 3.0                    |                             | < 30               | 77.8                           | 6.76                                | 3.2                           | < 2.0                      | < 0.10                 |                  |                | < 0.10      | 20      | 0.068                     | 0.10            | 0.12           | 3.30               | < 0.050             | 29.2              | < 0.010       |                  | 0.89                       | 91.4                  | < 0.010             | -          | < 0.010         |           | < 10           | 4.18           | < 1.0        | 197                       |
| -                  | FR GHHW 811045                                         | 2012 04 02                  | < 3.0                    |                             | < 30               | 80.5                           | 2.73                                | 3.0                           | < 2.0                      | < 0.10                 |                  | -              | < 0.10      | 19      | 0.149                     | 0.18            | 0.10           | 3.49               | 0.092               | 27.6              | < 0.010       | 0.718            | 0.84                       | 98.9                  | < 0.010             |            | < 0.010         |           | 15             | 4.44           | < 1.0        | 477                       |
|                    | FR GHHW 810962                                         | 2012 05 08                  | < 3.0                    |                             | < 30               | 31.2                           | 0.553                               | < 2.0                         |                            | < 0.10                 |                  |                | < 0.10      | 14      | 0.057                     | 0.12            | < 0.10         |                    | 0.191               | 14.8              | < 0.010       |                  | < 0.50                     |                       | < 0.010             |            | < 0.010         |           |                | 1.84           | < 1.0        | 171                       |
| -                  | FR_GHHW_810887                                         | 2012 06 04                  | < 3.0                    |                             | < 30               | 42.8                           | 0.895                               | 2.3                           | 3.6                        | < 0.10                 |                  |                | < 0.10      | 16      | 0.092                     | < 0.10          | < 0.10         |                    | 0.099               | 17.1              | < 0.010       | 0.747            | < 0.50                     | 55.0                  | < 0.010             | -          | < 0.010         |           | 16             | 2.63           | < 1.0        | 239                       |
| -                  | FR GHHW 811529                                         | 2012 08 07                  | < 3.0                    |                             | < 30               | 42.5                           | 0.379                               | 2.3                           | < 2.0                      | < 0.10                 |                  |                | < 0.10      | 17      | 0.033                     | 0.12            | < 0.10         |                    | < 0.050             | 19.8              | < 0.010       |                  | < 0.50                     |                       | < 0.010             |            | < 0.010         |           | < 10           | 2.37           | < 1.0        | 62.4                      |
| -                  | FR GHHW040912M                                         | 2012 09 04                  | < 3.0                    |                             | < 30               | 49.9                           | 0.826                               | 2.5                           | < 2.0                      | < 0.10                 |                  |                | < 0.10      | 19      | 0.052                     | 0.18            | < 0.10         | 4.45               | 0.098               | 24.2              | < 0.010       |                  | < 0.50                     |                       | < 0.010             | -          | < 0.010         |           | 15             | 2.98           | < 1.0        | 91                        |
| -                  | GH-HARD L1220068                                       | 2012 10 01                  | < 3.0                    |                             | < 30               | 58.1                           | 0.968                               | 2.6                           | < 2.0                      | < 0.10                 |                  |                | < 0.10      | 24      | 0.090                     | 0.25            | < 0.10         |                    | 0.121               | 29.3              | < 0.010       |                  | < 0.50                     | 75.5                  | < 0.010             |            | < 0.010         |           |                | 3.77           | < 1.0        | 207                       |
| -                  | GHHARD L1235448                                        | 2012 10 01                  | < 3.0                    |                             | < 30               | 64.1                           | 2.03                                | 3.0                           | < 2.0                      | < 0.10                 |                  |                | < 0.10      | 20      | 0.130                     | < 0.10          | < 0.10         |                    | < 0.050             | 27.7              | < 0.010       |                  | < 0.50                     |                       | < 0.010             |            | < 0.010         |           | 15             | 3.43           | < 1.0        | 351                       |
| -                  | GH-HARD_L1245128                                       | 2012 11 03                  | < 3.0                    |                             | < 30               | 67.0                           | 1.39                                | 3.0                           | < 2.0                      | < 0.10                 |                  |                | < 0.10      | 16      | 0.118                     | < 0.10          | < 0.10         | 4.64               | < 0.050             | 28.3              | < 0.010       |                  | < 0.50                     |                       | < 0.010             | -          | < 0.010         |           | 15             | 3.97           | < 1.0        | 271                       |
| -                  | FR003 0101201301                                       | 2012 12 00                  | < 3.0                    |                             | < 30               | 79.6                           | 1.44                                | 3.1                           | < 2.0                      | < 0.10                 |                  |                | < 0.10      | 19      | 0.055                     | < 0.10          | < 0.10         |                    | < 0.050             | 34.2              | < 0.010       |                  | < 0.50                     | 121                   | < 0.010             |            | < 0.010         | < 0.10    | 17             | 4.02           | < 1.0        | 54.5                      |
| -                  | FR003_0102201301                                       | 2013 01 08                  | < 3.0                    |                             | < 30               | 88.4                           | 1.44                                | 3.2                           | < 2.0                      | < 0.10                 |                  |                | < 0.10      | 17      | 0.033                     | < 0.10          | < 0.10         |                    | < 0.050             | 34.6              | < 0.010       |                  | < 0.50                     |                       | < 0.010             |            | < 0.010         |           | < 10           | 4.82           | < 1.0        | 28.9                      |
| -                  |                                                        |                             |                          |                             |                    |                                |                                     |                               |                            |                        |                  |                |             |         |                           |                 |                |                    |                     |                   |               |                  | -                          |                       |                     | -          |                 |           | -              |                | -            |                           |
| -                  | FR003_010320131                                        | 2013 03 05                  | < 3.0                    |                             | < 30               | 92.6                           | 1.14                                | 3.3                           | 2.0                        | < 0.10                 |                  |                | < 0.10      | 17      | 0.047                     | < 0.10          | < 0.10         |                    | < 0.050             | 31.5              | < 0.010       | 0.686            | < 0.50                     |                       | < 0.010             |            | < 0.010         |           | < 10           | 4.70           | < 1.0        | 137                       |
| -                  | FR003_010420131                                        | 2013 04 01                  | < 3.0                    |                             | < 30               | 58.2                           | 4.41                                | < 2.0                         | 2.1                        | < 0.10                 |                  | -              | < 0.10      | 12      | 0.041                     | < 0.10          | < 0.10         |                    | < 0.050             | 14.0              | < 0.010       |                  | < 0.50                     |                       | < 0.010             |            | < 0.010         |           |                | 1.85           | < 1.0        | 131                       |
| -                  | FR003_010520131                                        | 2013 05 07                  | < 3.0                    |                             | < 30               | 61.4                           | 2.14                                | < 2.0                         | 2.1                        | < 0.10                 |                  |                | < 0.10      | 13      | 0.045                     | < 0.10          | < 0.10         |                    | < 0.050             | 15.6              | < 0.010       |                  | < 0.50                     |                       | < 0.010             |            | < 0.010         |           | < 10           | 2.06           | < 1.0        | 89.4                      |
| -                  | FRO03_010620131                                        | 2013 06 03                  | < 3.0                    |                             | 38                 | 46.3                           | 2.71                                | < 2.0                         | 2.1                        | < 0.10                 |                  | -              | < 0.10      | 11      | 0.034                     | < 0.10          | < 0.10         |                    | 0.163               | 14.7              | < 0.010       | 0.463            | 0.50                       | <u>67.9</u>           | < 0.010             |            | < 0.010         |           | < 10           | 1.65           | < 1.0        | 79.4                      |
| _                  | FR_GHHW_M_01072013_NP                                  | 2013 07 02                  | < 3.0                    |                             | < 30               | 33.5                           | 1.63                                | < 2.0                         | < 2.0                      | < 0.10                 |                  |                | < 0.10      | 13      | 0.034                     | 0.14            | < 0.10         |                    | < 0.050             | 11.4              | < 0.010       | 0.337            | < 0.50                     |                       | < 0.010             |            | < 0.010         |           |                | 1.39           | < 1.0        | 90.7                      |
| _                  | FR_GHHW_M_01092013_NP                                  | 2013 09 03                  | < 3.0                    |                             | < 30               | 39.1                           | 0.936                               | < 2.0                         | < 2.0                      | < 0.10                 |                  |                | < 0.10      | 15      | 0.035                     | 0.17            | < 0.10         |                    | < 0.050             | 13.1              | < 0.010       | 0.335            | < 0.50                     | <u>58.1</u>           | < 0.010             |            | < 0.010         |           | < 10           | 1.50           | < 1.0        | 185                       |
| _                  | FR_GHHW_M_01102013_NP                                  | 2013 10 07                  | < 3.0                    | 133                         | < 30               | 48.8                           | 1.22                                | 0.923                         | 1.82                       | < 0.10                 | < 0.10           | 174            | < 0.10      | 11      | 0.048                     | < 0.10          | < 0.10         | 9.48               | 0.055               | 11.9              | < 0.010       | 0.342            | 0.54                       | <u>75.5</u>           | < 0.010             | 213        | < 0.010         | < 0.10    | 25             | 1.67           | < 1.0        | 380                       |
|                    | FR_GHHW_Q_01092013_N                                   | 2013 10 31                  | < 3.0                    | 151                         | < 30               | 50.3                           | 1.10                                | 0.956                         | 1.94                       | < 0.10                 | < 0.10           | 196            | < 0.10      | 10      | 0.045                     | < 0.10          | < 0.10         | 8.59               | 0.064               | 11.3              | < 0.010       | 0.312            | 0.53                       | <u>84.5</u>           | < 0.010             | 223        | < 0.010         | < 0.10    | < 10           | 1.72           | < 1.0        | 236                       |
|                    | FR_GHHW_M_01122013_NP                                  | 2013 12 02                  | < 3.0                    | 163                         | < 30               | 55.6                           | 1.55                                | 1.11                          | 2.19                       | < 0.10                 | < 0.10           | 196            | < 0.10      | 11      | 0.065                     | < 0.10          | < 0.10         | 10.9               | < 0.050             | 16.3              | < 0.010       | 0.322            | 1.52                       | <u>103</u>            | < 0.010             | 252        | < 0.010         | < 0.10    | 10             | 1.96           | < 1.0        | 253                       |
|                    | FR_GHHW_M_01012014_NP                                  | 2014 01 06                  | < 3.0                    | 179                         | < 30               | 62.9                           | 2.98                                | 1.12                          | 2.18                       | < 0.10                 | < 0.10           | 139            | < 0.10      | 13      | 0.054                     | < 0.10          | < 0.10         | 4.61               | < 0.050             | 14.1              | < 0.010       | 0.318            | < 0.50                     | <u>113</u>            | < 0.010             | 277        | < 0.010         | < 0.10    | < 10           | 2.06           | < 1.0        | 324                       |
|                    | FR_GHHW_M_01022014_NP                                  | 2014 02 03                  | < 3.0                    | 180                         | < 10               | 63.5                           | 1.77                                | 1.16                          | 2.31                       | < 0.10                 | < 0.10           | 133            | < 0.10      | 13      | 0.052                     | < 0.10          | < 0.10         | 3.37               | < 0.050             | 18.0              | < 0.010       | 0.330            | < 0.50                     | <u>121</u>            | < 0.010             | 288        | < 0.010         | < 0.10    | 11             | 2.28           | < 1.0        | 282                       |
|                    | FR_GHHW_M_01032014_NP                                  | 2014 03 04                  | < 3.0                    | 195                         | < 10               | 67.7                           | 0.598                               | 1.14                          | 2.17                       | < 0.10                 | < 0.10           | 146            | < 0.10      | 13      | 0.065                     | < 0.10          | < 0.10         | 39.2               | 0.203               | 16.3              | < 0.010       | 0.301            | 0.59                       | <u>126</u>            | < 0.010             | 280        | < 0.010         | < 0.10    | 16             | 2.24           | < 1.0        | 142                       |
|                    | FR_GHHW_Q_01012014_N                                   | 2014 03 13                  | < 3.0                    | 195                         | < 10               | 68.2                           | 1.77                                | 1.09                          | 2.35                       | < 0.10                 | < 0.10           | 129            | < 0.10      | 12      | 0.053                     | < 0.10          | < 0.10         | 4.05               | < 0.050             | 16.7              | < 0.010       | 0.287            | < 0.50                     | 127                   | < 0.010             | 268        | < 0.010         | < 0.10    | 17             | 2.20           | < 1.0        | 133                       |
|                    | FR_GHHW-WG-0704140830                                  | 2014 04 07                  | < 3.0                    | 201                         | < 10               | 73.1                           | 1.83                                | 1.14                          | 2.33                       | < 0.10                 | < 0.10           | 122            | < 0.10      | 15      | 0.054                     | < 0.10          | < 0.10         | 1.28               | < 0.050             | 17.6              | < 0.010       | 0.340            | < 0.50                     | 150                   | < 0.010             | 311        | < 0.010         | < 0.10    | 14             | 2.62           | < 1.0        | 75.2                      |
|                    |                                                        | 2014 05 14                  |                          |                             |                    |                                | 1.03                                | 1.26                          |                            |                        |                  | 116            |             | 13      | 0.059                     |                 | < 0.10         |                    | < 0.050             |                   |               |                  |                            |                       |                     |            |                 |           |                | 2.71           |              | 65.4                      |
|                    | FR_GHHW_QSW_02072014_N                                 | 2014 08 25                  |                          |                             | _                  |                                | 0.740                               | 1.09                          |                            |                        |                  |                | < 0.10      |         | 0.040                     |                 |                |                    | < 0.050             |                   |               |                  |                            |                       |                     |            | < 0.010         |           |                |                |              |                           |
|                    | FD QSW 02072014 004                                    |                             |                          | 130                         | 15                 |                                | 0.790                               | 1.08                          |                            |                        |                  |                | < 0.10      |         | 0.039                     |                 |                | 7.74               |                     |                   | < 0.010       |                  |                            |                       |                     |            |                 |           |                |                |              |                           |
|                    | QA/QC RPD%                                             |                             | *                        | 0                           | *                  | 1                              | 7                                   | 1                             | 1                          | *                      |                  | 1              | *           | *       | 3                         | *               | *              | 18                 | *                   | 2                 | *             | 0                | *                          | 0                     | *                   | 1          | *               | *         | *              | 1              | *            | 7                         |
|                    | FR_GHHW_QSW_02102014_N                                 | 2014 10 23                  | < 3.0                    | 152                         | < 10               | 55.3                           | 1.64                                | 1.10                          | 2.05                       | < 0.10                 | < 0.10           | 92.3           | < 0.10      | 12      | 0.045                     | < 0.10          | < 0.10         | 4.03               | < 0.050             | 17.2              | < 0.010       | 0.311            | < 0.50                     | <u>87</u>             | < 0.010             | 200        | < 0.010         | < 0.10    | 16             | 2.24           | < 1.0        | 172                       |
|                    | FR_GHHW_QSW_02012015_N                                 | 2015 01 21                  |                          |                             | < 10               |                                | 0.486                               | 1.15                          |                            |                        |                  |                | < 0.10      |         | 0.047                     |                 | < 0.10         |                    | < 0.050             |                   |               |                  |                            |                       | < 0.010             |            |                 | < 0.10    |                | 2.52           |              |                           |
|                    | FR_GHHW_QSW_02042015_N                                 | 2015 04 14                  |                          |                             |                    |                                | 1.37                                | 1.28                          |                            |                        |                  |                | < 0.10      |         | 0.0439                    |                 |                |                    | < 0.050             |                   |               |                  |                            |                       |                     |            |                 |           |                |                |              |                           |
|                    | 3 FR DC1 020415                                        |                             |                          | 187                         |                    |                                | 1.13                                | 1.30                          |                            |                        |                  |                | < 0.10      |         | 0.0441                    |                 |                |                    | < 0.050             |                   |               |                  |                            |                       |                     |            |                 |           |                | 3.08           |              |                           |
|                    | QA/QC RPD%                                             |                             | *                        | 0                           | *                  | 1                              | 19                                  | 2                             | 1                          | *                      |                  |                | *           | *       | 0                         | *               | *              | 17                 | *                   | 5                 | *             | 15               | *                          |                       | *                   | 2          | *               | *         | 0              | 3              | *            | 12                        |
|                    | FR_GHHW_QSW_02072015_N                                 | 2015 07 02                  | < 3.0                    | -                           | < 10               | 63.3                           | 0.53                                | 1.49                          | 2.65                       |                        |                  |                | < 0.10      | 13      |                           | < 0.10          | < 0.10         |                    | 0.111               |                   | < 0.0050      |                  | < 0.50                     |                       | < 0.010             |            | < 0.010         | < 0.10    |                | 2.63           |              |                           |
|                    | FR GHHW NPQ 01102015 NP                                | 2015 11 05                  |                          |                             |                    |                                | 2.2                                 | -                             |                            |                        |                  |                | < 0.10      |         |                           | _               |                |                    | < 0.050             |                   |               |                  |                            |                       |                     |            |                 |           |                |                |              |                           |
|                    |                                                        | 20.01100                    | 0.0                      |                             | 1 10               | 00.0                           |                                     |                               |                            | 5.10                   | 5.10             | 01.0           | 0.10        |         | 0.0121                    |                 | 0.10           | 0.02               | 0.000               |                   | 0.0000        | 0.720            | 0.71                       | <u></u>               | 0.010               | 1          | 0.010           | 0.10      |                | 0              | 0.00         |                           |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2237699, L2242795, L2248235, L2248235, L2248391, L2249360, L2250608, L2256457, L2256457, L2256457, L2282357, L2283636, L2283637, L2289256, L2290261, L2292060, L2292416, L22316991, L2317812, L2249360, L2249360, L2256457, L2249360, L2256457, L2249360, L2236457, L224647, L22467, L22467 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.
- n/a Denotes no applicable standard/guideline.
- QA/QC RPD Denotes quality assurance/quality control relative percent difference.
- \* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

- BOLD Concentration greater than CSR Aquatic Life (AW) standard
- BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15
- <sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.
- <sup>j</sup> Criteria in not considered applicable and has not been applied.

|                    |                                                        |                             |                |            |                |                       |         |                  |              |                       |                  |             |                  |               |                    |           |                 | Total         | Metals         |                           |                       |                            |                 |                |                       |                             |              |                |            |               |             |                                             |               |                       |
|--------------------|--------------------------------------------------------|-----------------------------|----------------|------------|----------------|-----------------------|---------|------------------|--------------|-----------------------|------------------|-------------|------------------|---------------|--------------------|-----------|-----------------|---------------|----------------|---------------------------|-----------------------|----------------------------|-----------------|----------------|-----------------------|-----------------------------|--------------|----------------|------------|---------------|-------------|---------------------------------------------|---------------|-----------------------|
|                    |                                                        |                             |                |            |                |                       |         |                  |              |                       |                  |             |                  |               |                    |           |                 |               |                |                           |                       |                            |                 |                |                       |                             |              |                |            |               |             |                                             |               |                       |
| Sample<br>Location | Sample<br>ID                                           | Sample Date<br>(yyyy mm dd) | ad<br>Aluminum | ର୍ଗ<br>T   | Ъ<br>Д Arsenic | Т/б <del>п</del><br>Т | Ω<br>Tj | ର୍ଷ Bismuth<br>୮ | boron<br>Т/б | 60<br>Cadmium<br>7/64 | Galcium<br>T∕6ft | hgh<br>Tj/F | T/б <del>П</del> | соррег<br>П/Г | Б <u>л</u><br>µg/L | Д<br>Геаd | J/bt<br>Lithium |               | on<br>D⊂<br>T∕ | Х-пола<br>щелсегий<br>щер | ta<br>T<br>Molybdenum | Я<br>Л/бғ                  | 齿<br>内osphorous | botassium<br>T | 5denium<br>T∕Selenium | б <del>л</del><br>T/Silicon | бt<br>Silver | muipos<br>hg/L | ର୍ଘ<br>T/ମ | €<br>Thallium | ц<br>Ц<br>Ц | бћ<br>Тitanium                              | Юл<br>Пranium | jenc.∱<br>Z<br>Zinc.∱ |
| Primary Screeni    | ng Criteria: CSR Aquatic Life (AW) <sup>a</sup>        |                             | n/a            | n/a        | n/a            | n/a                   | n/a     | n/a              | n/a          | n/a                   | n/a              | n/a         | n/a              | n/a           | n/a                | n/a       | n/a             | n/a           | n/a            | n/a                       | n/a                   | n/a                        | n/a             | n/a            | n/a                   | n/a                         | n/a          | n/a            | n/a        | n/a           | n/a         | n/a                                         | n/a           | n/a n/a               |
| Secondary Scree    | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a            | n/a        | n/a            | n/a                   | n/a     | n/a              | n/a          | 0.8-10.4 <sup>i</sup> | n/a              | 100 (Cr +6) | n/a              | n/a           | n/a                | n/a       | 2,53            | 0 n/a         | n/a            | n/a                       | n/a                   | 517-<br>2,972 <sup>i</sup> | n/a             | n/a            | 700                   | n/a                         | n/a          | n/a            | n/a        | n/a           | n/a         | n/a                                         | 3,520         | n/a n/a               |
| S6 Study Area      |                                                        |                             |                |            |                |                       | 1       |                  |              |                       | 1                |             | 1                |               | 1                  |           |                 |               | 1              | 1 1                       |                       |                            |                 |                |                       |                             |              |                |            |               |             | . <u> </u>                                  |               |                       |
| FR_GHHW            | FR_GHHW_810619                                         | 2011 12 06                  | < 3.0          | < 0.10     | < 0.10         | 199                   | < 0.10  | < 0.50           | 17           | 0.047                 | 140,000          | 0.13        | 0.17             | 20.1          | < 30               | 0.698     | 26.7            | 7 59,700      | 1.13           | < 0.010                   | 0.679                 | 0.61                       | -               | 2,800          | 65.3                  | 2,060                       | < 0.010      | < 2,000        | 171        | < 0.010       | < 0.10      | 11                                          | 3.15          | < 1.0 21              |
|                    | FR_GHHW_810809                                         | 2012 01 09                  | 3.4            | < 0.10     | < 0.10         | 218                   | < 0.10  | < 0.50           | 20           | 0.042                 | 168,000          | 0.24        | 0.12             | 6.05          | < 30               | 0.282     | 27.4            | 4 69,100      | 1.03           | < 0.010                   | 0.626                 | < 0.50                     | -               | 3,200          | 72.5                  | 2,170                       | < 0.010      | < 2,000        | 166        | < 0.010       | < 0.10      | 12                                          | 3.18          | < 1.0 14              |
|                    | FR_GHHW_810788                                         | 2012 02 07                  | < 3.0          | < 0.10     | < 0.10         | 194                   | < 0.10  | < 0.50           | 20           | 0.044                 | 170,000          | 0.16        | < 0.10           | 6.95          | 73                 | 0.606     | 27.5            | 5 73,700      | 1.50           | < 0.010                   | 0.726                 | < 0.50                     | -               | 3,000          | 80.0                  | 2,150                       | < 0.010      | < 2,000        | 187        | < 0.010       | < 0.10      | < 10                                        | 4.04          | < 1.0 10              |
|                    | FR_GHHW_810776                                         | 2012 03 05                  | < 3.0          | < 0.10     | < 0.10         | 179                   | < 0.10  | < 0.50           | 21           | 0.050                 | 185,000          | 0.18        | 0.10             | 4.62          | 51                 | 0.391     | 29.0            | 78,600        | 1.68           | < 0.010                   | 0.758                 | 0.53                       | -               | 3,200          | 89.5                  | 2,100                       | < 0.010      | < 2,000        | 215        | < 0.010       | < 0.10      | < 10                                        | 4.48          | < 1.0 14              |
|                    | FR_GHHW_810753                                         | 2012 03 19                  | 51.0           | < 0.10     | < 0.10         | 140                   | < 0.10  | < 0.50           | 20           | 0.053                 | 195,000          | 0.23        | 0.12             | 5.09          | 292                | 0.778     | 29.4            | 4 82,100      | 6.04           | < 0.010                   | 0.705                 | 0.95                       | -               | 3,400          | 94.1                  | 2,080                       | < 0.010      | 2,000          | 200        | < 0.010       | < 0.10      | < 10                                        | 4.20          | < 1.0 16              |
|                    | FR_GHHW_811045                                         | 2012 04 02                  | < 3.0          | < 0.10     | < 0.10         | 157                   | < 0.10  | < 0.50           | 17           | 0.158                 | 189,000          | 0.12        | < 0.10           | 4.17          | 115                | 1.78      | 27.6            | 5 79,200      | 3.85           | < 0.010                   | 0.735                 | 0.83                       | -               | 3,100          | 94.6                  | 2,020                       | < 0.010      | < 2,000        | 199        | < 0.010       | < 0.10      | 15                                          | 4.45          | < 1.0 47              |
|                    | FR_GHHW_810962                                         | 2012 05 08                  |                |            |                | 1                     | < 0.10  | < 0.50           | 15           | 0.055                 | 74,200           | 0.16        | < 0.10           | 2.60          | < 30               | 0.401     | 15.5            | 5 31,300      | 0.601          |                           |                       | < 0.50                     | -               | < 2,000        | 19.0                  | 1,810                       | < 0.010      | < 2,000        | 75.5       | < 0.010       | < 0.10      | < 10                                        | 1.86          | < 1.0 17              |
|                    | FR_GHHW_810887                                         | 2012 06 04                  |                | < 0.10     |                | 135                   |         |                  | 17           | 0.093                 | 112,000          | 0.17        |                  | 2.44          | < 30               |           |                 | 4 43,400      | 1.22           | < 0.010                   |                       | < 0.50                     | -               | 2,400          | 56.0                  | 1,990                       |              | 3,600          | _          | < 0.010       |             |                                             |               | < 1.0 23              |
|                    | FR_GHHW_811529                                         | 2012 08 07                  |                | < 0.10     | -              | 141                   |         | < 0.50           | 18           | 0.037                 | 108,000          | 0.15        |                  | 3.44          | < 30               | 0.203     |                 | 3 44,600      | 0.444          | < 0.010                   |                       | < 0.50                     | -               | 2,400          | 52.2                  | 2,130                       |              | < 2,000        |            | < 0.010       |             |                                             |               | < 1.0 67.             |
|                    | FR_GHHW040912M                                         | 2012 09 04                  | < 3.0          | < 0.10     | < 0.10         | 198                   |         | < 0.50           | 21           | 0.058                 | 129,000          | 0.21        | < 0.10           | 6             | 216                |           |                 | 9 51,200      | 2.24           | < 0.010                   | 0.846                 | 0.51                       | -               | 2,600          | 65                    | 2,180                       | < 0.010      | < 2,000        | 140        | < 0.010       | < 0.10      | 15                                          | 2.97          | < 1.0 11              |
|                    | GH-HARD_L1220068                                       | 2012 10 01                  |                | < 0.10     |                |                       |         | < 0.50           | 21           | 0.086                 | 132,000          | 0.26        |                  | 11.1          | 32                 | 0.572     |                 |               | 0.948          | < 0.010                   |                       | < 0.50                     | -               | 2,600          | 74.9                  | 2,090                       | -            | < 2,000        |            | < 0.010       |             |                                             |               | < 1.0 21              |
|                    | GHHARD_L1235448                                        | 2012 11 05                  |                | < 0.10     |                |                       |         | < 0.50           | 22           | 0.134                 | 157,000          | 0.28        |                  | 7.02          | 71                 |           |                 | 5 65,100      | 2.27           | < 0.010                   |                       | < 0.50                     | -               | 3,000          |                       | 2,100                       | -            | < 2,000        |            | < 0.010       |             |                                             |               | < 1.0 35              |
|                    | GH-HARD_L1245128                                       | 2012 12 03                  | < 3.0          | < 0.10     | < 0.10         | 202                   | < 0.10  | < 0.50           | 16           | 0.125                 | 160,000          | < 0.10      | < 0.10           | 7.59          | 99                 | 0.647     | 29.2            | 2 69,100      | 2.31           | < 0.010                   | 0.796                 | < 0.50                     | -               | 3,100          | 105                   | 2,020                       | < 0.010      | < 2,000        | 176        | < 0.010       | < 0.10      | 15                                          | 4.00          | < 1.0 28              |
| -                  | FRO03_0101201301                                       | 2013 01 08                  |                | < 0.10     |                |                       |         | < 0.50           | 17           | 0.061                 | 191,000          | 0.20        | < 0.10           |               | 102                | 0.338     |                 |               | 2.98           | < 0.010                   |                       | < 0.50                     | -               | 3,200          | 121                   | 2,030                       |              | < 2,000        |            | < 0.010       |             |                                             |               | < 1.0 78.             |
| -                  | FRO03_010220131                                        | 2013 02 04                  |                | < 0.10     |                |                       |         | < 0.50           | 19           |                       | 215,000          | 0.12        |                  | 2.43          | 83                 | 0.239     |                 | 5 94,200      | 1.44           | < 0.010                   |                       | < 0.50                     | -               | 3,500          | 145                   | 2,170                       |              | 2,000          |            | < 0.010       |             |                                             |               | < 1.0 31.             |
| -                  | FR003_010320131                                        | 2013 03 05                  |                | < 0.10     |                | 1                     | < 0.10  |                  | 17           | 0.051                 | 213,000          | 0.10        |                  | 6.48          | 44                 |           |                 | 5 93,900      | 1.25           | < 0.010                   |                       | 0.97                       | -               | 3,300          | 151                   |                             |              | 2,100          |            | < 0.010       |             |                                             |               | < 1.0 14              |
| -                  | FR003_010420131                                        | 2013 04 01                  |                | < 0.10     |                | 235                   |         | < 0.50           | 11           | 0.046                 | 175,000          | 0.12        |                  | 3.03          | 171                | 0.378     |                 | -             | 4.88           | < 0.010                   |                       | < 0.50                     | -               | < 2,000        | 98.9                  | 2,560                       |              | 2,200          | _          |               | < 0.10      |                                             |               | < 1.0 13              |
| -                  | FRO03_010520131                                        | 2013 05 07                  |                | < 0.10     |                |                       |         | < 0.50           | 14           | 0.051                 | 176,000          | 0.16        |                  | 2.91          | 118                | 0.293     |                 | 5 63,500      | 2.45           | < 0.010                   |                       | < 0.50                     | -               | < 2,000        | 106                   | 2,630                       |              | 2,200          |            | < 0.010       |             |                                             |               | < 1.0 91.             |
| -                  | FRO03_010620131                                        | 2013 06 03                  |                | < 0.10     |                |                       |         | < 0.50           | 13           | 0.041                 | 124,000          | 0.11        |                  | 7.34          | 99                 | 0.497     |                 |               | 3.10           | < 0.010                   |                       | 0.61                       | -               | < 2,000        | 60.3                  | 2,500                       | -            | < 2,000        |            | < 0.010       |             |                                             |               | < 1.0 13              |
| -                  | FR_GHHW_M_01072013_NP                                  | 2013 07 02                  |                |            | < 0.10         |                       |         | < 0.50           | 12           | 0.035                 | 98,900           | 0.11        | < 0.10           |               | 47                 | 0.244     |                 |               | 1.73           |                           | 0.364                 | < 0.50                     | -               | < 2,000        | 41.6                  | 2,460                       |              | < 2,000        |            | < 0.010       | < 0.10      |                                             |               | < 1.0 98.             |
| -                  | FR_GHHW_M_01092013_NP                                  | 2013 09 03                  |                | < 0.10     |                |                       |         | < 0.50           | 11           | 0.035                 | 114,000          | 0.12        | < 0.10           |               | 34                 | 0.253     |                 |               | 1.07           | < 0.010                   |                       | < 0.50                     | -               | < 2,000        |                       | 2,470                       | -            | < 2,000        |            | < 0.010       |             |                                             |               | < 1.0 18              |
| -                  | FR_GHHW_M_01102013_NP                                  | 2013 10 07                  |                | < 0.10     |                | 169                   |         | < 0.50           | 14           | 0.051                 | 133,000          | 0.20        |                  | 11.2          | 70                 | 0.823     |                 |               | 1.17           | < 0.010                   |                       | 0.52                       | -               | 914            | 75                    | 2,430                       | -            | 1,880          | _          | < 0.010       |             |                                             |               | < 1.0 37              |
| -                  | FR_GHHW_Q_01092013_N                                   | 2013 10 31                  |                | < 0.10     |                |                       |         | < 0.50           | 11           | 0.038                 | 150,000          | < 0.10      | < 0.10           |               | 33                 | 0.398     |                 |               | 1.46           |                           | 0.335                 | < 0.50                     | -               | 996            | 87                    | 2,610                       |              |                |            | < 0.010       |             |                                             |               | < 1.0 23              |
| -                  | FR_GHHW_M_01122013_NP                                  | 2013 12 02                  | -              | < 0.10     |                |                       |         | < 0.50           | 14           | 0.073                 | 168,000          | 0.12        |                  | 13.0          | 78                 | 0.517     |                 | -             | 1.85           | < 0.010                   |                       | 1.65                       | -               | 1,160          | 103                   |                             |              |                | -          | < 0.010       |             |                                             |               | < 1.0 27              |
| -                  | FR_GHHW_M_01012014_NP                                  | 2014 01 06                  |                | < 0.10     |                |                       |         | < 0.50           | 13           | 0.054                 | 179,000          | 0.17        |                  | 7.84          | 172                | 0.429     | -               |               | 4.15           |                           | 0.324                 | 0.57                       | -               | 1,140          | 118                   | 2,640                       |              | 2,240          |            | < 0.010       |             |                                             |               | < 1.0 38              |
| -                  | FR_GHHW_M_01022014_NP                                  | 2014 02 03                  |                | < 0.10     |                |                       | < 0.10  | < 0.50           | 15           | 0.055                 | 183,000          | 0.14        |                  | 4.60          | 45                 | 0.188     |                 | -             | 1.89           |                           | 0.370                 | < 0.50                     | -               | 1,160          | 122                   | 2,600                       |              | 2,370          | _          | < 0.010       |             |                                             |               | < 1.0 28              |
| -                  | FR_GHHW_M_01032014_NP                                  | 2014 03 04                  |                |            |                |                       | < 0.10  |                  | 14           |                       | 200,000          | 0.12        |                  | 24.8          | 27                 | 0.402     |                 |               | 0.678          |                           |                       |                            | -               | 1,220          | 134                   | 2,660                       |              | 2,290          |            | < 0.010       |             |                                             |               | < 1.0 14              |
| 55.01.000          | FR_GHHW_Q_01012014_N                                   | 2014 03 13                  |                |            |                |                       | < 0.10  |                  | 15           |                       | 200,000          | 0.11        |                  | 5.29          | 68                 |           |                 | 3 70,200      |                | < 0.010                   |                       | < 0.50                     | -               | 1,120          | 127                   |                             |              |                |            | < 0.010       |             |                                             |               | < 1.0 13              |
| FR_GHHW            | FR_GHHW-WG-0704140830                                  | 2014 04 07                  |                |            |                |                       | < 0.10  |                  |              | 0.056                 |                  |             |                  |               |                    |           |                 | 3 73,300      |                |                           |                       |                            |                 |                |                       |                             |              |                |            |               |             |                                             |               | < 1.0 88.             |
| -                  | FR_GHHW_Q_01042014_N                                   | 2014 05 14                  |                |            |                |                       | < 0.10  |                  |              |                       | 209,000          |             |                  |               |                    |           |                 | 5 76,300      |                |                           |                       |                            |                 |                |                       |                             |              |                |            |               |             |                                             |               | < 1.0 65.             |
| -                  | FR_GHHW_QSW_02072014_N                                 | 2014 08 25                  |                |            |                |                       | < 0.10  |                  |              | 0.042                 |                  |             |                  |               |                    |           |                 | 3 51,900      |                |                           |                       |                            |                 |                |                       |                             |              |                |            |               |             |                                             |               | < 1.0 73.             |
|                    | FD_QSW_02072014_004                                    | Duplicate                   |                |            |                |                       | < 0.10  |                  |              |                       | 133,000          | 0.14        | < 0.10           | 8.15          |                    |           | _               | 7 52,700      |                |                           |                       |                            |                 | 1,080          | 81.2<br>2             |                             | < 0.010      |                | 195        |               | 0.11<br>*   | < 10                                        |               | < 1.0 62.             |
| I I                | QA/QC RPD%<br>FR_GHHW_QSW_02102014_N                   | 2014 10 23                  |                | *          |                | -                     | *       | *                | *            | 2                     | 2<br>154,000     |             |                  | 7<br>6.83     | * 153              | *         |                 | 2<br>1 56,500 | 13             | * < 0.010                 | 7                     | *                          | -               |                |                       | 4                           |              | 2,150          |            | < 0.010       |             | 17                                          | 3<br>2.32     | * 15<br>< 1.0 15      |
|                    | FR_GHHW_QSW_02012015_N                                 | 2014 10 23                  | ~ 3.0          | ~ 0.10     |                | 95.5                  | -       | < 0.50           | 12           | 0.056                 | -                | 0.13        | - 0.10           | 0.03          |                    | 0.303     | -               |               | 1.09           | < 0.010                   | 0.420                 | 0.37                       | -               | 1,120          |                       | 2,300                       | ~ 0.010      | 2,100          | - 210      | × 0.010       | < 0.10      |                                             | 2.52          | - 1.0 15              |
|                    | FR GHHW QSW 02042015 N                                 | 2015 01 21                  | -              | -          | -              | -                     |         | < 0.050          | -            | 0.045                 | -                | < 0.10      | -                | -             | -                  | -         | -               |               | -              | -                         | -                     | -                          | -               | -              | 98.0<br>122           | -                           | -            | -              | -          | -             | -           | +-+                                         | -             |                       |
|                    | 3_FR_DC1_02042015_N                                    | Duplicate                   | -              | <u> </u>   | -              | -                     | -       | < 0.050          |              | 0.051                 | -                | < 0.10      | -                | -             | -                  | -         | -               | -             | -              |                           | -                     | -                          | -               |                | 122                   | -                           | -            | -              | -          | -             | -           | +-+                                         |               |                       |
|                    | QA/QC RPD%                                             | Dupiloute                   | -              | -          | -              | -                     | -       | *                | -            | 0.001                 | -                | *           | -                | -             | -                  | -         | -               | -             | -              | -                         | -                     | -                          | -               | 1              | 2                     | -                           | -            | -              | -          | -             | -           |                                             | -             |                       |
| l l                | FR GHHW QSW 02072015 N                                 | 2015 07 02                  | -              | -          | -              | -                     |         | < 0.050          |              | 0.0469                | -                | 0.15        | -                | -             | -                  | -         | -               |               | -              | -                         | -                     | -                          |                 | 1,310          | 108                   | -                           | -            | -              | -          | -             | -           | <b>-</b> +                                  | -             |                       |
|                    | FR GHHW NPQ 01102015 NP                                | 2015 11 05                  | -              | -          | -              | -                     | -       | -                | -            | 0.0597                | -                | -           | -                | -             | -                  | -         | -               | -             | -              | _                         | -                     | -                          | -               |                | 87.1                  |                             | -            | -              | -          | _             | -           | <u> </u>                                    |               |                       |
|                    |                                                        | 2010 11 00                  | 1              | . <u> </u> | 1              | 1                     | 1       |                  |              | 0.0007                | 1                | 1           | 1                | 1             | 1                  | I         | 1               | 1             | 1              | 1 1                       |                       | 1                          |                 |                | 2                     |                             | 1            | 1              | 1          |               |             | <u>ــــــــــــــــــــــــــــــــــــ</u> |               |                       |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2238699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L2250608, L2256457, L2256457, L2283636, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L22316991, L2317812, L2249360, L2256457, L225657, L225757, L22575 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

- BOLD Concentration greater than CSR Aquatic Life (AW) standard
- BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                 |                                                              |              |              |            |              |              | Physica       | al Param     | eters                  |                        |                                                 |       |               | Fie                | ld Para         | meters           | 6          |                               |                       |                    |                                |                        |                     |        |                              | Dissolv            | ved Inor           | ganics                                  |                                                                                |             |           |                    |               |                  |                      |           |                        |
|-----------------|--------------------------------------------------------------|--------------|--------------|------------|--------------|--------------|---------------|--------------|------------------------|------------------------|-------------------------------------------------|-------|---------------|--------------------|-----------------|------------------|------------|-------------------------------|-----------------------|--------------------|--------------------------------|------------------------|---------------------|--------|------------------------------|--------------------|--------------------|-----------------------------------------|--------------------------------------------------------------------------------|-------------|-----------|--------------------|---------------|------------------|----------------------|-----------|------------------------|
| Sample          | Sample                                                       | Sample Date  | _            | Hardness   | Turbidity    | Total Anions | Total Cations | Conductivity | Total Dissolved Solids | Total Suspended Solids | Dissolved Organic Carbon<br>Oxidation Reduction |       |               | Field Conductivity | Field Turbidity | Dissolved Oxygen | pH (field) | Field ORP<br>Total Alkalinity | Ammonia, Total (as N) | Nitrate (as N)     | Nitrite (as N)                 | Nitrate+Nitrite (as N) | Kjeldahl Nitrogen-N |        | Total Nitrogen-N<br>Chloride | Fluoride           | Sulfate            | Alkalinity, Bicarbonate<br>: (as CaCO3) | Alkalinity, Carbonate<br>i (as CaCO3)<br>Alkalinity, Hydroxide<br>i (as CaCO3) | Bicarbonate | Carbonate | Bromide            | Total Acidity | Acidity (pH 8.3) | Ortho-Phospt         |           | Total Phosphorous as P |
| Location        | ID                                                           | (yyyy mm dd) | рН           | mg/L       | NTU          | meq/L        | meq/L         | µS/cm        | mg/L                   | mg/L                   | mg/L m                                          | V %   | , C           | µS/cm              | NTU             | mg/L             | рН         | mV mg/                        | <u>mg/L</u><br>1.31-  | mg/L               | mg/L                           | mg/L                   | mg/L                | mg/L r | ng/L mg/L                    | μg/L<br>2,000-     | mg/L<br>1,280-     | mg/L                                    | mg/L mg/l                                                                      | _ mg/L      | mg/L      | mg/L i             | mg/L          | mg/L             | mg/L m               | g/L m     | ng/L                   |
| Primary Screeni | ng Criteria: CSR Aquatic Life (AW) <sup>a</sup>              |              | n/a          | n/a        | n/a          | n/a          | n/a           | n/a          | n/a                    | n/a                    | n/a n/                                          | a n/a | a n/a         | n/a                | n/a             | n/a              | n/a        | n/a n/a                       | 18.5 <sup>b</sup>     | 400<br>6.08-       | 0.2-2.0 <sup>c</sup><br>0.389- | 400                    | n/a                 | n/a    | n/a 1,500                    | 3,000 <sup>d</sup> | 4,290 <sup>d</sup> | n/a                                     | n/a n/a                                                                        | n/a         | n/a       | n/a                | n/a           | n/a              | n/a r                | ı/a r     | n/a                    |
| Secondary Scree | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup>       |              | n/a          | n/a        | n/a          | n/a          | n/a           | n/a          | 10,000                 | n/a                    | n/a n/                                          | a n/a | a n/a         | n/a                | n/a             | n/a <sup>j</sup> | n/a        | n/a n/a                       | n/a                   | 223.8 <sup>i</sup> | 39.95 <sup>j</sup>             | n/a                    | n/a                 | n/a    | n/a n/a                      | n/a                | 4,990              | n/a                                     | n/a n/a                                                                        | n/a         | n/a       | 78                 | n/a           | n/a              | n/a r                | ı/a n     | n/a                    |
| S6 Study Area   |                                                              |              |              |            |              |              |               |              |                        |                        |                                                 |       |               |                    |                 |                  |            |                               |                       |                    | 1                              |                        |                     |        |                              | 1                  |                    |                                         | LI                                                                             |             |           |                    |               |                  |                      |           |                        |
| FR_GHHW         | FR_GHHW_QSW_04012016_N                                       | 2016 01 25   | 7.84         | 862        | -            | 16.8         | 17.4          | 1,450        | 1,080                  | < 1.0                  | < 0.50 -                                        | -     | -             | 612.2              | -               | 8.97             | 7.52 1     | 60.4 272                      | < 0.0050              | 53.9               | < 0.0050                       |                        | 0.063               |        | - 2.2                        | 150                | 360                |                                         | < 1.0 < 1.0                                                                    |             | -         | < 0.25             | -             | 11.0 (           | 0.0012 0             | .57 0.0   | 028                    |
|                 | FR_GHHW_QSW_04042016_N                                       |              | 8.17         |            | -            | 19.5         | 19            | 1,620        | 1,360                  | < 1.0                  | < 0.50 -                                        | -     | -             | 1,507              | -               |                  |            | 47.7 272                      |                       |                    | < 0.010                        |                        | < 0.050             | -      | - 2.3                        | < 200              | 438                |                                         | < 1.0 < 1.0                                                                    |             | -         | < 0.50             | -             |                  | 0.0018 0             |           | 0054                   |
|                 | FR_GHHW_QSW_04072016_N                                       |              | 7.85         |            | -            | 13.4         | 13.3          | 1,220        | 833                    | 1.4                    | 0.54 -                                          | -     | -             | 983                | -               |                  |            | 48.8 278                      |                       | 36.3               | < 0.0050                       | ) -                    | 0.12                | -      | - 0.93                       |                    | 252                |                                         | < 1.0 < 1.0                                                                    |             |           | < 0.25             |               |                  | 0.0023 0             |           |                        |
| -               | FR_GHHW_QSW_02012017_N                                       |              | 7.58         | 689        | 0.3          | 14.6         | 13.9          | 1,230        |                        | < 1.0                  |                                                 |       | 7.9           | 1,082              | -               | 5.84             |            | 50.1 263                      |                       |                    | 0.0019                         | -                      | < 0.050             |        | - 1.52                       |                    | 287                |                                         | < 1.0 < 1.0                                                                    |             |           | < 0.050            | -             |                  | 0.0101 0             |           |                        |
| -               | FR_GHHW_QSW_03042017_N                                       |              | 8.09         |            | 0.88         | 13.1         | 12.1          | 1,090        | 844                    | < 1.0                  | 0.6 47                                          |       | 9 12.2        |                    | -               |                  | 7.34       |                               |                       |                    | < 0.0050                       | ) -                    | < 0.050             |        | - 2.9                        | < 100              | 248                |                                         | < 1.0 < 1.0                                                                    |             |           | < 0.25             | -             |                  | 0.0010 0             |           |                        |
|                 | FR_GHHW_QTR_2017-09-11_N                                     |              | 8.26         | 527        | 1.32         | 10.9         | 10.6          | 942          |                        | < 1.0                  |                                                 |       | 3 17.7        |                    | -               |                  |            | 11.4 242                      |                       |                    | <u>0.398</u>                   |                        | 99                  | -      | - 1.67                       |                    | 195                |                                         | < 1.0 < 1.0                                                                    |             |           | < 0.050            | -             |                  | 0.0010 2             |           |                        |
| FR_GH_WELL4     |                                                              |              | 8.35         | 590        | 0.38         | 12.5         | 11.9          | 1,050        |                        | < 1.0                  |                                                 |       | 4 8.7         | 976                | -               |                  | 7.48       |                               |                       |                    | 0.0191                         | -                      | 0.24                | -      | - < 2.5                      |                    | 243                |                                         | 10.2 < 1.0                                                                     |             | <u> </u>  | < 0.25             | -             |                  | 0.0010 0             |           |                        |
| -               | FR_GH_WELL4_QTR_2018-01-01_N                                 |              | 8.32         | 661        | 0.38         | 13.7         | 13.4          | 1,230        | 846                    |                        | 1.33 38                                         |       | 3 6.3         | 1,105              | -               |                  |            | 17.3 262                      |                       |                    | 0.0080                         | -                      | 0.224               | -      | - < 2.5                      |                    | 269                | 254                                     | 8.2 < 1.0                                                                      |             |           | < 0.25             | -             |                  | 0.0015 0             |           |                        |
| -               | FR_GH_WELL4_QTR_2018-04-02_N                                 |              | 8.41         | 567        | 0.23         | 11           | 11.5          | 968          | 724                    | < 1.0                  | 1.5 29                                          |       | 9 8.4         | 935                | -               |                  |            | 20.3 254                      |                       |                    | 0.0431                         | -                      | 0.47                | -      | - 1.31                       |                    | 207                | 248                                     | 6.6 < 1.0                                                                      |             |           | < 0.050            |               |                  | 0.0010 1             |           |                        |
| -               | FR_GH_WELL4_QTR_2018-07-02_N<br>FR_GH_WELL4_QTR_2018-10-01_N |              | 8.34<br>7.98 | 491<br>669 | 0.21<br>8.44 | 10.9<br>13.3 | 9.95<br>13.5  | 925<br>1,090 | 727<br>838             |                        | 1.22 40<br>0.8 41                               |       | 6 10.7<br>9.9 | 803<br>1,038       | -               |                  |            | 08.6 217                      |                       | 30.9<br>31.6       | 0.0320                         | -                      | < 0.050<br>0.075    |        | - 2.19<br>- 2.02             |                    | 207<br>271         | 213<br>266                              | 3.2 < 1.0 < 1.0                                                                |             |           | < 0.050<br>< 0.050 |               |                  | 0.0015 0<br>0.0117 0 |           |                        |
| -               | FR GH WELL4 QTR 2019-01-07 N                                 |              | 7.98         |            | 4.92         | 15.3         | 15.5          | 1,340        |                        | 4.0<br>< 1.0           |                                                 |       | -             | 1,030              | -               | 4.5              | 1.34 2     | - 280                         |                       | 37.7               | 0.0082<br>0.579                | -                      | < 0.075             |        | - < 2.02                     |                    | 342                |                                         | < 1.0 < 1.0                                                                    |             | -         | < 0.050            |               |                  | 0.0010 < 0           |           |                        |
| -               | FR GH WELL4 QTR 2019-04-01 N                                 |              | 8.23         | 818        | 0.6          | 17.3         | 16.5          | 1,400        |                        | < 1.0                  |                                                 |       | 3 6.9         | 1,262              | -               | - 6 78           | 7.32 8     |                               |                       | 43.1               | 0.0070                         | -                      | < 0.030             |        | - 5.2                        | 120                | 400                |                                         | < 1.0 < 1.0                                                                    |             |           | < 0.25             |               |                  | 0.0010 < 0           |           |                        |
| -               | FR GH WELL4 QTR 2019-07-01 N                                 |              |              |            | 0.26         | 15.5         | 14.5          | 1,280        | ,                      | < 1.0                  |                                                 |       | 2 7.4         |                    |                 |                  | 7.33       |                               |                       | -                  | < 0.0050                       | -                      | < 0.25              |        | - 3.4                        | 140                | 342                |                                         | < 1.0 < 1.0                                                                    |             | -         | < 0.25             | -             |                  | 0.0012 0             |           |                        |
| -               | FR DC3 QTR 2019-07-01 N                                      |              | 8.28         |            | 0.24         | 15.1         | 14.9          | 1,280        |                        |                        | 1.19 45                                         |       |               | -                  | -               | -                | -          | - 269                         |                       |                    | < 0.0050                       |                        | < 0.25              |        | - 3.1                        | 130                | 339                |                                         | < 1.0 < 1.0                                                                    |             | -         | < 0.25             | -             |                  | 0.0011 1             |           |                        |
|                 |                                                              | Duplicato    | 0.20         | 2          | *            | *            | *             | 0            | 6                      | *                      | * *                                             | *     | -             | -                  | -               | -                | -          | - 5                           | *                     | 0                  | *                              | -                      | *                   | -      | - 9                          | 7                  | 1                  | 5                                       | * *                                                                            | -           | -         | *                  | -             | 5                |                      | *         | *                      |
|                 | FR_GH_WELL4_QTR_2019-10-07_N                                 | 2019 11 01   | 8.25         | 697        | 0.17         | 12.2         | 14.1          | 907          | 837                    | < 1.0                  | < 0.50 37                                       | 2 7.  | 1 8.9         | 1,166              | -               | 5.65             | 7.4        | 115 207                       | 0.0262                | 31.9               | < 0.0050                       | ) -                    | < 0.050             | -      | - < 2.5                      | 130                | 278                | 207                                     | < 1.0 < 1.0                                                                    | ) -         | -         | < 0.25             | -             | < 1.0 <          | 0.0010 < 0           | 0.50 < 0. | .0020                  |
|                 | FR_GH_WELL4_QTR_2020-01-06_N                                 | 2020 02 07   | 7.86         | 814        | 0.53         | 15.2         | 16.5          | 1,280        | 1,010                  | < 1.0                  | < 0.50 32                                       | 5 4   | 6.6           | 1,274              | -               | 5.76             | 7.47       | 65 287                        | 0.0479                | 40.8               | < 0.0050                       | ) -                    | < 0.050             | -      | - < 2.5                      | 100                | 314                | 287                                     | < 1.0 < 1.0                                                                    | ) -         | -         | < 0.25             | -             | 16.4 <           | 0.0010 < 0           | 0.50 < 0. | .0020                  |
| FR_KB-1         | FR_KB-1_2019-02-28                                           | 2019 02 28   | 7.85         | 1,630      | 0.43         | 31.3         | 33            | 2,490        | 2,120                  | 3.3                    | 1.52 39                                         | 4 2.0 | 6 2.35        | 2,479.3            | ) 1.7           | 9.35             | 7.1 8      | 31.9 394                      | < 0.0050              | 97.5               | < 0.0050                       | ) -                    | < 0.050             | -      | - < 2.5                      | 160                | 790                | 394                                     | < 1.0 < 1.0                                                                    | ) -         | -         | < 0.25             | -             | 15.8 /           | 0.0023 1             | .31 0.0   | J050                   |
|                 | FR_KB-1_2019-04-10                                           | 2019 04 10   | 7.68         | 1,540      | 0.39         | 32.2         | 31.1          | 2,410        | 2,040                  | 1.2                    | 0.98 41                                         | 5 -1. | 7 3.89        | 2,631.5            | 0.44            | 8.21             | 7.3 0      | 67.8 410                      | 0.0158                | 98.3               | < 0.0050                       | ) -                    | < 0.050             | -      | - < 2.5                      | 160                | 813                | 410                                     | < 1.0 < 1.0                                                                    | ) -         | -         | < 0.25             | -             | 17.7 (           | 0.0023 0             | .80 0.0   | 024                    |
|                 | FR_KB-1-2019-06-11_NP                                        |              |              |            |              |              |               |              |                        |                        |                                                 |       |               |                    |                 |                  |            |                               |                       |                    |                                |                        |                     |        |                              |                    |                    |                                         |                                                                                |             |           |                    |               |                  |                      |           |                        |
|                 | FR_KB_1_2019-07-31                                           |              |              |            |              |              |               |              |                        |                        |                                                 |       |               |                    |                 |                  |            |                               |                       |                    |                                |                        |                     |        |                              |                    |                    |                                         |                                                                                |             |           |                    |               |                  |                      |           |                        |
|                 | FR_KB-1_2019-10-09                                           | 2019 10 09   | 8.05         | 983        | 0.36         | 20           | 19.9          | 1,470        | 1,260                  | 1.6                    | 0.57 46                                         | 6 -0. | 3 -           | -                  | -               | -                | -          | - 435                         | 0.0058                | 47.3               | < 0.0050                       | ) -                    | < 0.050             | -      | - < 2.5                      | 200                | 381                | 435                                     | < 1.0 < 1.0                                                                    | ) -         | -         | < 0.25             | -             | 10.6 (           | 0.0022 0             | .57 0.0   | 0022                   |
|                 | FR_KB-1-2019-11-27                                           | 2019 11 27   | 7.39         | 1,190      | 0.2          | 25.7         | 24.1          | 1,940        | 1,770                  | < 1.0                  | 0.56 42                                         | 9 -3. | 2 -           | -                  | -               | -                | -          | - 436                         | < 0.0050              | 65.1               | < 0.0050                       | ) -                    | < 0.050             | -      | - < 2.5                      | 130                | 592                | 436                                     | < 1.0 < 1.0                                                                    | ) -         | -         | < 0.25             |               |                  | 0.0027 1             |           | 0030                   |
| FR_KB-2         | FR_KB-2_2019-02-28                                           | 2019 02 28   | 7.64         | 1,550      | 983          | 30.7         | 31.3          | 2,420        | 2,100                  | 960                    | 0.83 42                                         | 1 1   | 2.8           | 2,412.3            | 679             | 9.06             | 7.07       | 73.2 418                      | 0.0149                | 95.2               | < 0.0050                       |                        | 1.97                | -      | - < 2.5                      | 150                | 745                | 418                                     | < 1.0 < 1.0                                                                    | ) -         | -         | < 0.25             | -             | 29.1 (           | 0.0020 2             | .37 1     | .47                    |
| -               | FR_KB-2_2019-04-10                                           |              |              |            | 2.15         | 32.7         | 31.6          | 2,470        | 2,110                  |                        | 0.77 45                                         |       | 7 3.88        | ,                  |                 |                  |            |                               |                       | -                  | < 0.0050                       |                        | < 0.050             |        | - < 2.5                      |                    | 819                |                                         | < 1.0 < 1.0                                                                    |             | -         | < 0.25             |               | 27.3 (           |                      | .98 0.0   |                        |
| -               | FR_KB-2_2019-06-10_NP                                        |              | 8.14         |            | 0.81         | 16.2         | 16.8          | 1,380        | 1,110                  |                        | 0.63 43                                         |       | 8 7.43        |                    |                 |                  | 7.36       |                               |                       | 42.9               | < 0.0050                       | ) -                    | < 0.050             |        | - < 2.5                      |                    | 346                |                                         | < 1.0 < 1.0                                                                    |             |           | < 0.25             |               |                  | 0.0010 0             |           | 0027                   |
| -               | FR_KB_2_2019-07-31                                           | 2019 07 31   | 8.1          | 702        | 7.85         | 13.8         | 14.2          | 1,160        | 912                    | 3.7                    | < 0.50 51                                       | 7 1.0 | 6 12.4        | 1,207              | 22.9            | 5.86             | 7 1        | 99.1 33 <sup>-</sup>          | < 0.0050              | 28.4               | 0.0158                         | -                      | < 0.25              | -      | - < 2.5                      | 210                | 246                | 331                                     | < 1.0 < 1.0                                                                    | ) -         | -         | < 0.25             | -             | 16.3 (           | 0.0014 < 0           | 0.50 0.0  | 015                    |
|                 | FR_DC1-2019-07-31<br>QA/QC RPD%                              |              | 0            | 1          | 25           | *            | *             | 2            | 2                      | *                      | * *                                             | *     | -             |                    |                 |                  |            | 6                             | *                     | 2                  | *                              |                        | *                   |        | *                            | F                  | 2                  | 6                                       | * *                                                                            |             | ┢──┥      | *                  | -             |                  | *                    | * 7       | 70                     |
|                 | FR KB-2 2019-10-21                                           |              | 0            | 1          | 30           |              |               | 3            | 2                      |                        |                                                 |       | -             | -                  | -               | -                | -          | - 6                           |                       | 2                  |                                | -                      |                     | -      | -                            | 5                  | 2                  | 6                                       |                                                                                | -           | <u> </u>  |                    | -             |                  |                      |           | 73                     |
| -               | FR DC4 2019-10-21                                            |              |              |            |              |              |               |              |                        |                        |                                                 |       |               |                    |                 |                  |            |                               |                       |                    |                                |                        |                     |        |                              |                    |                    |                                         |                                                                                |             | <u> </u>  |                    |               |                  |                      |           |                        |
|                 | QA/QC RPD%                                                   |              | 0            | 0          | *            | *            | *             | 0            | 2                      | *                      | * *                                             | *     | -             | -                  | -               | -                | -          | - 12                          | *                     | 1                  | *                              | -                      | *                   | -      | - *                          | 0                  | 1                  | 12                                      | * *                                                                            | -           | -         | *                  | -             | 12               | *                    | *         | *                      |
|                 | FR_KB-2-2019-12-10                                           | 2019 12 10   | 7.76         | 1,140      | 67           | 22.9         | 23            | 1,830        | 1,450                  | 31.9                   | 1.39 45                                         | 5 0.3 | 3 3.2         | 1,953              |                 |                  |            |                               |                       | 66.0               | < 0.0050                       | ) -                    | 0.196               | -      | - < 2.5                      | < 100              | 503                | 387                                     | < 1.0 < 1.0                                                                    | ) -         | -         | < 0.25             | -             | 23.1 (           | 0.0028 1             | .34 0.0   | 3727                   |
| FR_KB-3A        |                                                              | 2019 02 26   |              |            |              |              |               |              |                        |                        |                                                 |       |               |                    |                 |                  |            |                               |                       |                    |                                |                        | -                   | -      |                              |                    |                    |                                         | < 1.0 < 1.0                                                                    |             | -         | < 0.25             | -             | 16.5             | 0.0025 0             | .62 0.0   | J050                   |
|                 | FR_DC1_2019-02-26                                            |              |              |            |              |              |               |              |                        |                        |                                                 |       |               |                    |                 |                  |            |                               |                       |                    |                                |                        |                     |        |                              |                    |                    |                                         |                                                                                |             |           |                    |               |                  |                      |           |                        |
|                 | QA/QC RPD%                                                   |              |              | 2          |              |              | *             | •            | -                      |                        |                                                 |       | -             |                    |                 |                  |            | - 1                           |                       | 1                  | 17                             | -                      | -                   |        | - *                          | *                  | 1                  |                                         | * *                                                                            | -           | -         | *                  |               | 15               | *                    | *         | *                      |
|                 | FR_KB-3A_2019-03-25                                          | 2019 03 25   | 7.6          | 1,130      | 6.09         | 23.7         | 22.8          | 1,900        | 1,600                  | 10.5                   | 1.19 42                                         | 4 -1. | 8 4.04        | 1,934.4            | ) 15.4          | 4.33             | 7 (        | 68.9 383                      | 0.0228                | 64.7               | < 0.0050                       | ) -                    | < 0.050             | -      | - < 2.5                      | < 100              | 547                | 383                                     | < 1.0 < 1.0                                                                    | ) -         | -         | < 0.25             | -             | 16.3 (           | 0.0021 0             | .63 0.0   | )150                   |
|                 | FR_DC1_2019-03-25                                            |              |              |            |              |              |               |              |                        |                        |                                                 |       |               |                    |                 |                  |            |                               |                       |                    |                                |                        |                     |        |                              |                    |                    |                                         |                                                                                |             | $\square$ |                    |               |                  |                      |           |                        |
|                 | QA/QC RPD%                                                   |              | 1            | 1          | 24           | *            | *             | 1            | 3                      | 33                     | * *                                             | *     | -             | -                  | -               | -                | -          | - 10                          | *                     | 1                  | ×                              | -                      | ×                   | -      | - *                          | ×                  | 1                  | 10                                      | * *                                                                            | -           |           | *                  | -             | 22               | *                    | ^         | 9                      |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2237609, L2242795, L2248235, L2248391, L2249360, L2250608, L22506457, L2250618, L22506457, L2282357, L2283637, L2283637, L2283637, L2282357, L2283637, L228367, L228367, L22837, L22837 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505. Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report. < Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard BOLD

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) <sup>a</sup> Standard to protect freshwater aquatic life.

- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.

<sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                              |                             |                         |                             |                  |                                |                 |                               |                            |                 |                    |                  |                  |              |                           |                 | Dissolv        | ed Metals          | s                   |                |                        |                     |                            |                |                     |                 |                        |           |               |                     |               |                           |
|--------------------|--------------------------------------------------------------|-----------------------------|-------------------------|-----------------------------|------------------|--------------------------------|-----------------|-------------------------------|----------------------------|-----------------|--------------------|------------------|------------------|--------------|---------------------------|-----------------|----------------|--------------------|---------------------|----------------|------------------------|---------------------|----------------------------|----------------|---------------------|-----------------|------------------------|-----------|---------------|---------------------|---------------|---------------------------|
|                    |                                                              |                             |                         |                             |                  |                                |                 |                               |                            |                 |                    |                  |                  |              |                           |                 |                |                    |                     |                |                        |                     |                            |                |                     |                 |                        |           |               |                     |               |                           |
| Sample<br>Location | Sample<br>ID                                                 | Sample Date<br>(yyyy mm dd) | t<br>Dissolved Aluminum | a<br>Dissolved Calcium<br>T | G Dissolved Iron | a<br>Bissolved Magnesium<br>T∕ | banganese<br>ๅๅ | a<br>bissolved Potassium<br>√ | a<br>b<br>Dissolved Sodium | 년<br>G Antimony | da<br>Arsenic<br>T | h<br>barium<br>Γ | Bery Illum<br>Af | нолоп<br>П/Г | Gadmium<br>⊤\Gđ           | бћ<br>Т<br>Г    | Cobait<br>7/6# | Copper<br>Ngh      | Lead<br>T/64        | 6th<br>Lithium | And Mercury<br>Mercury | 6t Molybdenum<br>T∕ | Bh<br>Nickel               | 5d<br>Selenium | hð/r                | 6t<br>Strontium | fum<br>Thallium<br>T/F | Е<br>µg/L | Titanium<br>T | Лаhium<br>T/Dranium | Adnadium<br>۲ | ی<br>Sinc<br>Jan          |
| Primary Screenin   | <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup>        |                             | n/a                     | n/a                         | n/a              | n/a                            | n/a             | n/a                           | n/a                        | 90              | 50                 | 10,000           | 1.5              | 12,000       | 0.5-4 <sup>d</sup>        | 10 <sup>e</sup> | 40             | 20-90 <sup>d</sup> | 40-160 <sup>d</sup> | n/a            | 0.25                   | 10,000              | 250-<br>1,500 <sup>d</sup> | 20             | 0.5-15 <sup>d</sup> | n/a             | 3                      | n/a       | 1,000         | 85                  | n/a           | 75-<br>2,400 <sup>d</sup> |
| Secondary Scree    | <b>ning Criteria:</b> Costa and de Bruyn (2021) <sup>h</sup> |                             |                         |                             |                  |                                |                 |                               |                            |                 |                    |                  |                  |              | 0.8-<br>10.4 <sup>i</sup> | 100 (Cr +6)     | n/a            | n/a                | n/a                 | 2,530          | n/a                    | n/a                 | 517-<br>2,972 <sup>i</sup> | 700            | n/a                 | n/a             | n/a                    | n/a       | n/a           | 3,520               | n/a           | n/a                       |
| S6 Study Area      |                                                              |                             |                         |                             |                  |                                | 1               |                               |                            |                 | 1                  |                  |                  |              | 1                         |                 |                | I                  | 1                   |                |                        |                     |                            |                |                     |                 |                        |           |               |                     |               |                           |
| FR_GHHW            | FR GHHW QSW 04012016 N                                       | 2016 01 25                  | 4.3                     | 201                         | 20               | 87.7                           | 1.30            | 3.18                          | 2.42                       | < 0.10          | < 0.10             | 96.5             | < 0.10           | 16           | 0.0336                    | < 0.10          | < 0.10         | 2.85               | 0.067               | 55.5           | < 0.0050               | 0.691               | < 0.50                     | 137            | < 0.010             | 177             | < 0.010                | < 0.10    | 15            | 5.18                | < 0.50        | 76.4                      |
|                    | FR_GHHW_QSW_04042016_N                                       |                             | < 3.0                   |                             | < 10             | 97.4                           | 0.40            | 3.03                          | 2.55                       |                 | < 0.10             |                  | < 0.020          | 14           | 0.0353                    | < 0.10          | < 0.10         |                    | < 0.050             |                | < 0.0050               |                     | 0.53                       | 160            | < 0.010             |                 | < 0.010                |           | < 10          |                     | < 0.50        | 32.1                      |
|                    | FR_GHHW_QSW_04072016_N                                       | 2016 08 17                  |                         |                             | < 10             | -                              | 0.65            | 2.88                          | 2.30                       | _               |                    |                  | < 0.020          | 17           | 0.0305                    | < 0.10          | < 0.10         |                    | < 0.050             | 45.1           | < 0.0050               |                     | < 0.50                     |                | < 0.010             |                 |                        | < 0.10    | < 10          |                     | < 0.50        | 55.8                      |
|                    | FR GHHW QSW 02012017 N                                       |                             | < 1.0                   | 169                         | 91               | 64.7                           | 1.93            | 1.46                          | 2.61                       |                 | < 0.10             |                  | < 0.020          | 11           | 0.0515                    | < 0.10          | < 0.10         |                    | 0.080               | 24.8           | < 0.0050               |                     | < 0.50                     |                | < 0.010             |                 | < 0.010                |           | < 10          | 2.88                | < 0.50        | 67.4                      |
|                    | FR GHHW QSW 03042017 N                                       |                             | < 1.0                   |                             | 47               | 58.2                           | 5.93            | 1.27                          | 2.41                       |                 |                    | 90.6             | < 0.020          | 11           | 0.0408                    | < 0.10          | < 0.10         |                    | 0.070               |                | < 0.0050               |                     |                            | 93.5           | < 0.010             |                 |                        | < 0.10    | < 10          |                     | < 0.50        | 48.8                      |
|                    | FR GHHW QTR 2017-09-11 N                                     |                             | < 3.0                   | 132                         | 13               | 48.0                           | 1.03            | 1.18                          | 2.15                       |                 |                    | 82.3             | < 0.020          | < 10         | 0.0403                    | < 0.10          | < 0.10         |                    | 0.090               | 21.9           | < 0.0050               |                     | < 0.50                     |                | < 0.010             |                 | < 0.010                |           | < 10          | 2.35                | < 0.50        | 90.3                      |
| FR GH WELL4        | FR GH WELL4 QTR 2017-10-02 N                                 |                             | < 3.0                   | 143                         | 12               | 56.6                           | 1.08            | 1.19                          | 2.26                       |                 |                    | 83.1             | < 0.020          | < 10         | 0.0297                    | < 0.10          | < 0.10         |                    | 0.060               | 24.9           | < 0.0050               |                     | < 0.50                     |                | < 0.010             |                 | < 0.010                |           | < 10          | 2.50                | < 0.50        | 20.5                      |
|                    | FR GH WELL4 QTR 2018-01-01 N                                 |                             | < 3.0                   | 157                         | 14               | 65.4                           | 1.42            | 1.30                          | 2.78                       |                 |                    | 99.7             | < 0.020          | 10           | 0.0468                    | < 0.10          | < 0.10         |                    | 0.079               |                | < 0.0050               |                     | < 0.50                     |                | < 0.010             |                 |                        | < 0.10    | < 10          |                     | < 0.50        | 21.2                      |
|                    | FR GH WELL4 QTR 2018-04-02 N                                 |                             | < 3.0                   | 134                         | 24               | 56.4                           | 2.77            | 1.43                          | 2.53                       |                 |                    | 84.0             | < 0.020          | 11           | 0.0382                    | < 0.10          | < 0.10         |                    | 0.058               | 26.0           | < 0.0050               |                     | < 0.50                     |                | < 0.010             |                 | < 0.010                |           | < 10          | 2.78                | < 0.50        | 18.2                      |
|                    | FR GH WELL4 QTR 2018-07-02 N                                 |                             | < 3.0                   | 117                         | 11               | 48.2                           | 0.70            | 1.35                          | 2.31                       |                 |                    | ) 73.9           | < 0.020          | 11           | 0.0342                    | < 0.10          | < 0.10         |                    | 0.430               | 22.7           | < 0.0050               |                     | < 0.50                     |                | < 0.010             |                 | < 0.010                |           | < 10          | 2.43                | < 0.50        | 28.3                      |
| -                  | FR GH WELL4 QTR 2018-07-02_N                                 |                             | < 3.0                   | 163                         | 28               | 63.3                           | 2.25            | 1.47                          | 2.68                       |                 |                    | 90.0             | < 0.020          | 12           | 0.0342                    | < 0.10          | 0.10           | 2.22               | 0.430               | 28.9           | < 0.0050               |                     |                            | <u>99.2</u>    | < 0.010             |                 | < 0.010                |           |               | 3.11                | < 0.50        | 20.3<br>85.9              |
| -                  |                                                              |                             | < 3.0                   | 181                         | 71               | 76.5                           | 11.1            | 1.44                          | 2.00                       | _               |                    |                  |                  | 12           | 0.0500                    | < 0.10          | 0.10           | 1.09               |                     |                |                        |                     |                            |                | < 0.010             |                 |                        |           | < 10          |                     |               | 31.9                      |
| -                  | FR_GH_WELL4_QTR_2019-01-07_N                                 |                             |                         |                             | -                |                                |                 |                               |                            |                 |                    | ) 106            | < 0.020          |              |                           |                 |                |                    | 0.076               | 29.2           | < 0.0050               |                     | < 0.50                     |                |                     |                 | < 0.010                |           |               | 3.39                | < 0.50        |                           |
| _                  | FR_GH_WELL4_QTR_2019-04-01_N                                 |                             | < 3.0                   | 194                         | 15               | 81.0                           | 0.35            | 1.74                          | 2.99                       |                 | < 0.10             | -                | < 0.020          | 11           | 0.0529                    | 0.11            | 0.76           | 0.64               | < 0.050             |                | < 0.0050               |                     | < 0.50                     |                | < 0.010             |                 | < 0.010                |           | < 10          | 4.18                | < 0.50        | 13.9                      |
|                    | FR_GH_WELL4_QTR_2019-07-01_N                                 |                             | < 3.0                   |                             | 14               | 68.8                           | 0.90            | 1.49                          | 2.69                       |                 |                    | 92.5             | < 0.020          | 10           | 0.0562                    | 0.14            | 0.42           | 0.76               | < 0.050             | 31.7           | < 0.0050               |                     | < 0.50                     |                | < 0.010             |                 | < 0.010                |           |               |                     | < 0.50        |                           |
|                    | FR_DC3_QTR_2019-07-01_N                                      | Duplicate                   | < 3.0                   | 183                         | 14               | 68.3                           | 0.80            | 1.54                          | 2.83                       | < 0.10          | < 0.10             | 92.2             | < 0.020          | 11           | 0.0519                    | 0.11            | 0.44           | 0.78               | < 0.050             | 33.1           | < 0.0050               | 0.348               | < 0.50                     | <u>117</u>     | < 0.010             | 241             | < 0.010                | < 0.10    | < 10          | 3.99                | < 0.50        | 29.7                      |
| -                  | QA/QC RPD%                                                   | 0040 44 04                  |                         | 470                         | 45               | 00.4                           | 0.00            | 4.40                          | 0.00                       | 10.40           | 10.44              | 04.4             | . 0.000          |              | 0.0400                    | 10.40           | 0.00           | 4 70               | 10.050              | 00.0           | . 0. 0050              | 0.000               | . 0.50                     | 400            | . 0.040             | 000             | 10.040                 | 10.40     | . 10          | 0.00                | . 0.50        | 01.0                      |
| -                  | FR_GH_WELL4_QTR_2019-10-07_N                                 |                             | < 3.0                   |                             | 15               | 66.4                           | 0.92            | 1.49                          |                            |                 | -                  |                  | < 0.020          | 11           | 0.0463                    | < 0.10          | 0.22           | 1.70               |                     |                | < 0.0050               |                     | < 0.50                     |                | < 0.010             |                 |                        | < 0.10    |               |                     | < 0.50        |                           |
| 55.1(5.1           | FR_GH_WELL4_QTR_2020-01-06_N                                 |                             | < 3.0                   | 200                         | 15               | 76.7                           | 5.13            | 1.75                          | 3.35                       |                 | < 0.10             |                  | < 0.020          | 12           | 0.0514                    | 0.11            | 0.14           | 1.59               | < 0.050             |                | < 0.0050               |                     | < 0.50                     |                | < 0.010             |                 | < 0.010                |           | < 10          | 4.26                | < 0.50        | 33.4                      |
| FR_KB-1            | FR_KB-1_2019-02-28                                           |                             | < 1.0                   |                             | < 10             | 176                            | < 0.10          | 4.97                          | 4.59                       | 0.41            | 0.14               |                  | < 0.020          | 25           | 0.547                     | < 0.10          | 3.53           | < 0.20             | < 0.050             | 103            | < 0.0050               |                     | 20.0                       | <u>378</u>     | < 0.010             |                 | 0.016                  | < 0.10    | < 10          | 12.9                | < 0.50        | 10.0                      |
|                    | FR_KB-1_2019-04-10                                           |                             | < 5.0                   |                             | < 50             | 162                            | < 0.50          | 4.88                          | 4.33                       | _               |                    | ) 47.9           | < 0.10           | < 50         | 0.611                     | < 0.50          | 1.95           | < 1.0              | < 0.25              | 100            | < 0.0050               |                     | 24.2                       | <u>287</u>     | < 0.050             |                 | < 0.050                | < 0.50    | < 10          | 13.2                | < 2.5         | 12.3                      |
|                    | FR_KB-1-2019-06-11_NP                                        |                             | < 1.0                   | 158                         | < 10             | 85.1                           | < 0.10          | 4.12                          | 3.15                       | 0.44            | 0.10               |                  | < 0.020          | 28           | 0.476                     | < 0.10          | 2.08           | 0.22               | < 0.050             |                | < 0.0050               |                     | 14.8                       | <u>206</u>     | < 0.010             |                 | 0.015                  | < 0.10    | < 10          | 5.99                | < 0.50        | 9.7                       |
|                    | FR_KB_1_2019-07-31                                           | 2019 07 31                  | < 3.0                   | 158                         | < 10             | 75.4                           | < 0.10          | 3.51                          | 2.49                       | 0.57            | < 0.10             | 29.1             | < 0.020          | 27           | 0.392                     | < 0.10          | 0.23           | < 0.50             | < 0.050             | 55.7           | < 0.0050               | 1.89                | 12.1                       | <u>116</u>     | < 0.010             | 156             | 0.013                  | < 0.10    | < 10          | 6.04                | < 0.50        | 8.6                       |
|                    | FR_KB-1_2019-10-09                                           | 2019 10 09                  | < 3.0                   | 218                         | < 10             | 106                            | < 0.10          | 4.32                          | 3.13                       | 0.54            | < 0.10             | 39.5             | < 0.020          | 29           | 0.514                     | < 0.10          | 0.12           | 0.43               | < 0.050             | 74.4           | < 0.0050               | 1.87                | 16.8                       | <u>175</u>     | < 0.010             | 214             | 0.016                  | < 0.10    | < 10          | 8.49                | < 0.50        | 9.7                       |
|                    | FR_KB-1-2019-11-27                                           | 2019 11 27                  | < 3.0                   | 277                         | < 10             | 121                            | < 0.10          | 4.63                          | 3.88                       | 0.40            | < 0.10             | 54.0             | < 0.020          | 29           | 0.476                     | < 0.10          | 0.84           | 0.20               | < 0.050             | 83.2           | < 0.0050               | 1.20                | 12.0                       | <u>215</u>     | < 0.010             | 253             | 0.019                  | < 0.10    | < 10          | 9.83                | < 0.50        | 9.4                       |
| FR_KB-2            | FR_KB-2_2019-02-28                                           | 2019 02 28                  | 19.0                    | 349                         | < 50             | 165                            | < 0.50          | 4.99                          | 4.30                       | < 0.50          | < 0.50             | 48.6             | < 0.10           | 64           | 0.521                     | < 0.50          | 3.51           | < 1.0              | < 0.25              | 93.8           | < 0.0050               | 1.38                | 20.1                       | <u>273</u>     | < 0.050             | 296             | < 0.050                | < 0.50    | < 10          | 13.4                | < 2.5         | 12.9                      |
|                    | FR_KB-2_2019-04-10                                           | 2019 04 10                  | < 5.0                   | 367                         | < 50             | 158                            | 0.85            | 4.42                          | 4.26                       | < 0.50          | < 0.50             | 78.0             | < 0.10           | < 50         | 0.145                     | < 0.50          | < 0.50         | < 1.0              | < 0.25              | 98.2           | < 0.0050               | 1.10                | 5.2                        | <u>300</u>     | < 0.050             | 310             | < 0.050                | < 0.50    | < 10          | 12.2                | < 2.5         | < 5.0                     |
|                    | FR_KB-2_2019-06-10_NP                                        | 2019 06 10                  | < 3.0                   | 182                         | < 10             | 90.7                           | 1.40            | 3.55                          | 3.12                       | 0.29            | < 0.10             | 43.2             | < 0.020          | 22           | 0.0934                    | 0.14            | 0.31           | < 0.50             | < 0.050             | 66.0           | < 0.0050               | 0.875               | 3.30                       | <u>174</u>     | < 0.010             | 153             | < 0.010                | < 0.10    | < 10          | 5.73                | < 0.50        | 3.3                       |
|                    | FR_KB_2_2019-07-31                                           | 2019 07 31                  | < 3.0                   | 157                         | < 10             | 75.4                           | 0.86            | 3.35                          | 2.67                       | 0.35            | < 0.10             | 38.9             | < 0.020          | 25           | 0.0700                    | < 0.10          | < 0.10         | < 0.50             | < 0.050             | 56.4           | < 0.0050               | 1.21                | 2.60                       | <u>122</u>     | < 0.010             | 145             | < 0.010                | < 0.10    | < 10          | 5.99                | < 0.50        | 2.1                       |
|                    | FR_DC1-2019-07-31                                            | Duplicate                   | < 3.0                   | 156                         | < 10             | 73.8                           | 0.83            | 3.30                          | 2.65                       | 0.35            | < 0.10             | 39.2             | < 0.020          | 24           | 0.0708                    | < 0.10          | < 0.10         | < 0.50             | < 0.050             | 56.2           | < 0.0050               | 1.24                | 2.57                       | <u>121</u>     | < 0.010             | 147             | < 0.010                | < 0.10    | < 10          | 5.81                | < 0.50        | 2.4                       |
|                    | QA/QC RPD%                                                   |                             |                         |                             |                  |                                |                 |                               |                            |                 |                    |                  |                  |              |                           |                 |                |                    |                     |                |                        |                     |                            |                |                     |                 |                        |           |               |                     |               |                           |
|                    | FR_KB-2_2019-10-21                                           | 2019 10 21                  | 11.4                    |                             | 19               |                                |                 | 3.97                          |                            |                 |                    |                  | < 0.020          |              |                           |                 |                |                    |                     |                | < 0.0050               |                     |                            |                |                     |                 |                        |           |               |                     |               |                           |
|                    | FR_DC4_2019-10-21                                            | Duplicate                   | 9.2                     | 263                         | 19               | 110                            | 2.02            | 3.96                          | 3.03                       | 0.43            | 0.10               | 54.7             | < 0.020          | 27           | 0.131                     | < 0.10          |                |                    | < 0.050             | 69.8           | < 0.0050               | 1.29                | 4.10                       | <u>167</u>     | < 0.010             | 221             | < 0.010                | < 0.10    | < 10          | 8.80                | < 0.50        | 3.5                       |
|                    | QA/QC RPD%                                                   |                             | 21                      |                             | *                | 0                              | 1               | 0                             | 0                          | *               | *                  | 1                | *                | *            | 6                         | *               | *              | *                  | *                   | 0              | *                      | 3                   | 1                          | 2              | *                   | 0               | *                      | *         | *             | 0                   | *             | *                         |
|                    | FR_KB-2-2019-12-10                                           | 2019 12 10                  |                         |                             | < 50             |                                | 0.58            | 3.92                          |                            |                 |                    |                  |                  | < 50         |                           |                 |                |                    |                     |                | < 0.0050               |                     |                            |                | < 0.050             |                 |                        | < 0.50    |               |                     | < 2.5         |                           |
| FR_KB-3A           | FR_KB-3A_2019-02-26                                          | 2019 02 26                  |                         |                             | < 10             |                                | 2.34            | 2.18                          |                            |                 |                    |                  | < 0.020          | 17           | 0.0273                    | 0.17            | 2.57           |                    |                     |                | < 0.0050               |                     |                            |                |                     |                 |                        |           |               |                     |               |                           |
|                    | FR_DC1_2019-02-26                                            | Duplicate                   | < 1.0                   | 267                         | < 10             | 105                            | 2.32            | 2.24                          | 4.01                       | 0.11            | 0.11               | 61.5             | < 0.020          | 16           | 0.0296                    | 0.14            | 2.55           | < 0.20             | < 0.050             | 31.8           | < 0.0050               | 0.319               | < 0.50                     | <u>233</u>     | < 0.010             | 296             | 0.015                  | < 0.10    | < 10          | 4.99                | < 0.50        | < 1.0                     |
|                    | QA/QC RPD%                                                   |                             |                         |                             |                  |                                |                 |                               |                            |                 |                    |                  |                  |              |                           |                 |                |                    |                     |                |                        |                     |                            |                |                     |                 |                        |           |               |                     |               |                           |
|                    | FR_KB-3A_2019-03-25                                          | 2019 03 25                  |                         |                             | < 10             |                                | 5.37            | 2.08                          |                            |                 | -                  |                  | < 0.020          | 15           | 0.0275                    | 0.17            | 2.75           |                    |                     |                | < 0.0050               |                     |                            |                |                     |                 |                        | < 0.10    |               |                     |               |                           |
|                    | FR_DC1_2019-03-25                                            | Duplicate                   |                         | 268                         | < 10             | 109                            | 5.50            | 2.06                          |                            |                 |                    |                  | < 0.020          | 16           | 0.0316                    | 0.12            | 2.76           |                    |                     |                | < 0.0050               | 0.267               |                            |                |                     |                 | < 0.010                |           | < 10          | 5.71                | < 0.50        |                           |
|                    | QA/QC RPD%                                                   |                             | *                       | 0                           | *                | 3                              | 2               | 1                             | 2                          | *               | *                  | 2                | *                | *            | 14                        | *               | 0              | *                  | *                   | 3              | *                      | 2                   | *                          | 1              | *                   | 3               | *                      | *         | *             | 1                   | *             | 4                         |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2236699, L224795, L2248235, L2248391, L2249360, L2256457, L2256457, L2256457, L2256457, L2256457, L2283637, L228367, L228367, L22837, L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505. Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.
- n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes guality assurance/guality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

- RDL Denotes reported detection limit.
  - BOLD Concentration greater than CSR Aquatic Life (AW) standard
  - BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15
- <sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.
- <sup>j</sup> Criteria in not considered applicable and has not been applied.

|                    |                                                       |                             |                  |                 |                |          |                     |                         |            |                       |                  |                  |                |             |            |             |                 | ισιαι                | Metals                         |             |       |                                     |                             |                            |            |                      |             |                 |                 |                |                     |              |        |            |
|--------------------|-------------------------------------------------------|-----------------------------|------------------|-----------------|----------------|----------|---------------------|-------------------------|------------|-----------------------|------------------|------------------|----------------|-------------|------------|-------------|-----------------|----------------------|--------------------------------|-------------|-------|-------------------------------------|-----------------------------|----------------------------|------------|----------------------|-------------|-----------------|-----------------|----------------|---------------------|--------------|--------|------------|
|                    |                                                       |                             |                  |                 |                |          |                     |                         |            |                       |                  |                  |                |             |            |             |                 |                      |                                |             |       |                                     |                             |                            |            |                      |             |                 |                 |                |                     |              |        |            |
| Sample<br>Location | Sample<br>ID                                          | Sample Date<br>(yyyy mm dd) | 6t<br>T/Aluminum | ta<br>bantimony | 년<br>G Arsenic | D/Barium | A<br>A<br>Beryllium | bandh<br>Bismuth<br>Day | р<br>Богол | 6th<br>T∖Gadmium      | 6th<br>T∖Calcium | Chromium<br>T/bu | 6π<br>T∖Gobalt | t<br>Sopper | Бл<br>ру/L | hgh<br>Tead | Lithium<br>7/6t | ta<br>Aagnesium<br>⊤ | б <del>л</del><br>Л\ Manganese |             |       | T/G Nickel<br>6t<br>T/S Phosphorous | ъ<br>Б<br>П<br>Л/ Potassium | б <del>1</del><br>Selenium | hân<br>T/ř | bů<br>Silver<br>T/ôđ | unipos μg/L | 6t<br>Strontium | hð/T<br>Hallium | Ξ<br>F<br>μg/L | 6t<br>⊤<br>Titanium | bt<br>Л<br>Л |        | Ğr<br>Tric |
| Primary Screening  | ng Criteria: CSR Aquatic Life (AW) <sup>a</sup>       |                             | n/a              | n/a             | n/a            | n/a      | n/a                 | n/a                     | n/a        | n/a                   | n/a              | n/a              | n/a            | n/a         | n/a        | n/a         | n/a             | n/a                  | n/a                            | n/a r       |       | n/a n/a                             | n/a                         | n/a                        | n/a        | n/a                  | n/a         | n/a             | n/a             | n/a            | n/a                 | n/a          | n/a    | n/a        |
| Secondary Scree    | ning Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a              | n/a             | n/a            | n/a      | n/a                 | n/a                     | n/a        | 0.8-10.4 <sup>i</sup> | n/a              | 100 (Cr +6)      | n/a            | n/a         | n/a        | n/a         | 2,530           | n/a                  | n/a                            | n/a r       |       | 17-<br>972 <sup>i</sup> n/a         | n/a                         | 700                        | n/a        | n/a                  | n/a         | n/a             | n/a             | n/a            | n/a                 | 3,520        | n/a    | n/a        |
| S6 Study Area      |                                                       |                             |                  | 1               |                |          | 1                   | 1                       |            | 11                    |                  |                  | 1 1            |             | 1          |             |                 |                      |                                |             |       |                                     |                             |                            |            | 1                    |             | 1 1             |                 |                |                     | I            |        |            |
|                    | FR_GHHW_QSW_04012016_N                                | 2016 01 25                  | 9.6              | < 0.10          | 0 < 0.10       | 97.1     | < 0.10              | < 0.050                 | 17         | 0.0445                | 192,000          | 0.61             | < 0.10         | 5.96        | 87         | 0.241       | 54.8            | 87,100               | 2.01                           | < 0.0050 0. | 707 0 | .60 -                               | 3,240                       | 123                        | 2,170      | < 0.010              | 2,510       | 179             | < 0.010         | < 0.10         | 15                  | 5.23         | < 0.50 | 115        |
|                    | FR_GHHW_QSW_04042016_N                                | 2016 05 18                  | 9.8              | < 0.10          | 0 < 0.10       | 101      | < 0.020             | < 0.050                 | 15         | 0.0329                | 213,000          | 0.13             | < 0.10         | 4.49        | 46         | 0.326       | 43.9            | 96,500               |                                | < 0.0050 0. |       | 0.50 -                              | 3,000                       | 152                        | 2,100      | < 0.010              | 2,570       | 186             | < 0.010         | < 0.10         | < 10                | 5.25         | < 0.50 | 34.4       |
|                    | FR_GHHW_QSW_04072016_N                                | 2016 08 17                  | 9.8              | < 0.10          | 0 < 0.10       |          | < 0.020             | < 0.050                 |            | 0.0388                | 155,000          | 0.13             |                | 7.25        | 38         | 0.271       |                 | 68,800               | 0.71                           | < 0.0050 0. |       | 0.50 -                              | 2,910                       |                            |            | < 0.010              |             |                 | < 0.010         | < 0.10         | < 10                |              |        | 65.3       |
|                    | FR_GHHW_QSW_02012017_N                                | 2017 02 27                  | < 3.0            |                 |                |          |                     | < 0.050                 | 11         | 0.0612                | 169,000          | 0.10             | < 0.10         |             | 94         | 0.114       |                 | 63,400               |                                | < 0.0050 0. |       | 0.50 -                              | 1,520                       |                            | 2,870      | < 0.010              |             |                 |                 | < 0.10         | < 10                |              |        | 57.7       |
| -                  | FR_GHHW_QSW_03042017_N                                | 2017 06 01                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              |             |       |                                     | -                           | -                          | -,         | -                    | -           | -               | -               | -              | -                   | -            |        | -          |
|                    | FR_GHHW_QTR_2017-09-11_N                              | 2017 09 13                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               |                      | -                              | _           | -     |                                     |                             | -                          |            | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
| FR_GH_WELL4        | FR_GH_WELL4_QTR_2017-10-02_N                          | 2017 11 15                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              |             |       |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            |        | -          |
|                    | FR_GH_WELL4_QTR_2018-01-01_N                          | 2018 01 31                  | -                |                 | -              | -        | _                   | -                       | -          | -                     | -                | _                | -              | -           | -          | _           | -               | -                    | -                              |             |       |                                     | _                           | _                          | -          | -                    | -           | -               | -               | -              | _                   | -            |        | -          |
| -                  | FR_GH_WELL4_QTR_2018-04-02_N                          | 2018 01 31                  | -                | -               | -              |          | -                   | -                       | -          |                       | -                | -                | -              | -           | -          | -           | -               |                      |                                |             |       |                                     | -                           | -                          |            | -                    | -           | -               | -               | -              | -                   | -            |        | -          |
|                    |                                                       |                             | -                | -               |                | -        |                     |                         |            | -                     |                  |                  |                |             |            |             |                 | -                    | -                              |             |       |                                     | -                           |                            | -          |                      |             |                 |                 |                | -                   |              |        |            |
| -                  | FR_GH_WELL4_QTR_2018-07-02_N                          | 2018 07 31                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              |             |       |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            |        | -          |
|                    | FR_GH_WELL4_QTR_2018-10-01_N                          | 2018 12 13                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              |             |       |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            |        | -          |
| _                  | FR_GH_WELL4_QTR_2019-01-07_N                          | 2019 03 21                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              | -           | -     |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
| _                  | FR_GH_WELL4_QTR_2019-04-01_N                          | 2019 06 13                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              | -           | -     |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
|                    | FR_GH_WELL4_QTR_2019-07-01_N                          | 2019 07 30                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              | -           | -     |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
|                    | FR_DC3_QTR_2019-07-01_N                               | Duplicate                   | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              | -           | -     |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
|                    | QA/QC RPD%                                            |                             | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              | -           | -     |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
|                    | FR_GH_WELL4_QTR_2019-10-07_N                          | 2019 11 01                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              | -           | -     |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
|                    | FR_GH_WELL4_QTR_2020-01-06_N                          | 2020 02 07                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              |             | -     |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
| FR_KB-1            | FR_KB-1_2019-02-28                                    | 2019 02 28                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              | 0.0051      | -     |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
|                    | FR_KB-1_2019-04-10                                    | 2019 04 10                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              | < 0.0050    | -     |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
|                    | FR_KB-1-2019-06-11_NP                                 | 2019 06 11                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              | < 0.0050    | -     |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
|                    | FR_KB_1_2019-07-31                                    | 2019 07 31                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              | < 0.0050    | -     |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
|                    | FR_KB-1_2019-10-09                                    | 2019 10 09                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              | < 0.0050    | -     |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
|                    | FR_KB-1-2019-11-27                                    | 2019 11 27                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              | < 0.0050    | -     |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
| FR_KB-2            | FR_KB-2_2019-02-28                                    | 2019 02 28                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              |             | -     |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
|                    | FR_KB-2_2019-04-10                                    | 2019 04 10                  | -                | -               |                | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               |                      | -                              | < 0.0050    |       |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
| -                  | FR_KB-2_2019-06-10_NP                                 | 2019 06 10                  |                  | -               | -              | _        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               |                      | -                              | < 0.0050    |       |                                     |                             | -                          |            | -                    | -           | -               | -               | -              | _                   | -            |        | -          |
| -                  | FR_KB_2_2019-07-31                                    | 2019 07 31                  |                  |                 | -              | -        | _                   | -                       | -          | -                     | -                | _                | -              | -           |            | _           | _               | -                    | -                              | < 0.0050    |       |                                     |                             | _                          | -          | -                    | -           | -               | _               | -              |                     | -            |        | -          |
| -                  |                                                       |                             | -                | -               | -              |          |                     |                         |            |                       |                  |                  |                |             | -          |             |                 |                      |                                | 0.0050      |       |                                     | -                           |                            |            |                      |             |                 | -               |                | -                   |              |        | -          |
|                    | FR_DC1-2019-07-31<br>QA/QC RPD%                       | Duplicate                   | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              |             |       |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   |              | -      | -          |
| -                  | FR KB-2 2019-10-21                                    | 2019 10 21                  |                  | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    |                                |             |       |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            |        | -          |
| -                  |                                                       |                             |                  | -               | -              |          |                     |                         |            |                       |                  |                  |                |             |            |             |                 |                      |                                |             |       |                                     |                             | -                          |            |                      |             |                 |                 |                |                     |              |        | -          |
|                    | FR_DC4_2019-10-21<br>QA/QC RPD%                       | Duplicate                   |                  | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    |                                | 0.0000      |       |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | <u> </u>   |
|                    | FR KB-2-2019-12-10                                    | 2019 12 10                  | -                | -               |                | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              |             |       |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   |              | -      | -          |
| FR_KB-3A           | -                                                     |                             | -                |                 | -              |          |                     |                         |            |                       |                  |                  |                |             |            |             |                 |                      | -                              |             |       |                                     | -                           |                            |            |                      | -           |                 |                 |                | -                   |              | -      |            |
| FR_RD-JA           | FR_KB-3A_2019-02-26                                   | 2019 02 26                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              | 0.0051      |       |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   |              | -      | -          |
|                    | FR_DC1_2019-02-26                                     | Duplicate                   | -                |                 | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | •           | -          | -           | -               | -                    |                                |             |       |                                     | -                           | -                          | -          | -                    | •           | -               | -               | -              | -                   | -            |        | -          |
|                    |                                                       | 0040.00.05                  | -                |                 | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           |            | -           | -               | -                    | -                              |             |       |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
|                    | FR_KB-3A_2019-03-25                                   | 2019 03 25                  | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    |                                | 0.0000      |       |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            |        | -          |
|                    | FR_DC1_2019-03-25                                     | Duplicate                   | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    |                                | < 0.0050    |       |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |
|                    | QA/QC RPD%                                            |                             | -                | -               | -              | -        | -                   | -                       | -          | -                     | -                | -                | -              | -           | -          | -           | -               | -                    | -                              | *           | -     |                                     | -                           | -                          | -          | -                    | -           | -               | -               | -              | -                   | -            | -      | -          |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1237666, L2237606, L2237606, L2237699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L2256457, L225657, L225757, L225757 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard BOLD

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) <sup>a</sup> Standard to protect freshwater aquatic life.

- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                        |                             |              |          |              | F              | Physica                    | al Param               | eters                            |                                 |                |                            |                        |             | Field F    | Param        | eters              |                             |                                 |                   |                          |                       |              |                               |       |                                   | Dissolv            | ed Inor            | janics                         |                                                                                    |             |                     |                  |             |                              |                                                                         |              |
|--------------------|--------------------------------------------------------|-----------------------------|--------------|----------|--------------|----------------|----------------------------|------------------------|----------------------------------|---------------------------------|----------------|----------------------------|------------------------|-------------|------------|--------------|--------------------|-----------------------------|---------------------------------|-------------------|--------------------------|-----------------------|--------------|-------------------------------|-------|-----------------------------------|--------------------|--------------------|--------------------------------|------------------------------------------------------------------------------------|-------------|---------------------|------------------|-------------|------------------------------|-------------------------------------------------------------------------|--------------|
|                    |                                                        |                             |              |          |              |                | -                          |                        |                                  |                                 | ы              |                            |                        |             |            |              |                    |                             |                                 |                   |                          |                       |              |                               |       |                                   |                    |                    |                                |                                                                                    |             |                     |                  |             |                              |                                                                         |              |
| Sample<br>Location | Sample<br>ID                                           | Sample Date<br>(yyyy mm dd) | _            | ш<br>П   | Z Turbidity  | a<br>T/be<br>T | a<br>b Total Cations<br>r∖ | π<br>S<br>Conductivity | a<br>botal Dissolved Solids<br>□ | ଣ୍ଡ Total Suspended Solids<br>୮ | solved         | Oxidation Red<br>Potential | S Cation Anion Balance |             |            | Field Turbid | Dissol             | 뎦 pH (field)<br>로 Field ORP | a<br>b<br>Total Alkalinity<br>T | ⊠<br>B<br>P       | a<br>booting (as N)<br>∩ | a<br>S Nitrite (as N) | a<br>do<br>T | ä<br>Kjeldahl Nitrogen-N<br>T | Nitro | r Traal Nitrogen-N<br>Ba Chloride | Бт<br>T/f          | a<br>Sulfate<br>T  | Alkalinity, Bica<br>(as CaCO3) | B Alkalinity, Carbonate<br>庁 (as CaCO3)<br>B Alkalinity, Hydroxide<br>더 (as CaCO3) | Bicarbonate | a<br>Carbonate<br>⊤ | Bromide          | 료<br>전<br>고 | a<br>P Acidity (pH 8.3)<br>P | a Ortho-Phosphate<br>rj⊂ Total Organic Carbon<br>a Total Organic Carbon | Total Phosph |
| Brimary Screeni    | ing Criteria: CSR Aquatic Life (AW) <sup>a</sup>       |                             | n/a          | n/a      | n/a          | n/a            | n/a                        | n/a                    | n/a                              | n/a                             | n/a            | n/a                        | n/a n                  | /a n        | /a r       | n/a          | n/a r              | n/a n/a                     | n/a                             | 1.31-             | 400                      | 0.2-2.0 <sup>c</sup>  | 400          | n/a                           | n/a   | n/a 1,500                         | 2,000-             | 1,280-             | n/a                            | n/a n/a                                                                            | n/a         | n/a                 | n/a              | n/a         | n/a                          | n/a n/a                                                                 | /a n/a       |
| T Timury Ocreeni   |                                                        |                             |              |          |              |                |                            |                        |                                  |                                 |                |                            |                        |             |            |              |                    |                             |                                 | 18.5 <sup>b</sup> |                          |                       |              |                               |       | 1,000                             | 3,000 <sup>ª</sup> | 4,290 <sup>d</sup> |                                |                                                                                    |             |                     |                  |             |                              |                                                                         |              |
| Secondary Scre     | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a          | n/a      | n/a          | n/a            | n/a                        | n/a                    | 10,000                           | n/a                             | n/a            | n/a                        | n/a n                  | /a n        | /a r       | n/a i        | n/a <sup>j</sup> r | n/a n/a                     | n/a                             | n/a               | 6.08-<br>223.8           |                       | n/a          | n/a                           | n/a   | n/a n/a                           | n/a                | 4,990              | n/a                            | n/a n/a                                                                            | n/a         | n/a                 | 78               | n/a         | n/a                          | n/a n/a                                                                 | /a n/a       |
| S6 Study Area      |                                                        |                             |              |          |              |                |                            |                        |                                  |                                 |                |                            |                        |             |            |              |                    |                             |                                 |                   |                          |                       |              |                               |       |                                   |                    |                    |                                |                                                                                    | -           |                     |                  |             |                              |                                                                         |              |
| FR_KB-3A           | FR_KB-3A_2019-06-10_NP                                 |                             |              |          |              |                |                            |                        |                                  |                                 |                |                            |                        |             |            |              |                    |                             |                                 |                   |                          |                       |              |                               |       |                                   |                    |                    |                                |                                                                                    |             |                     |                  |             |                              |                                                                         |              |
|                    | FR_DC-4_2019-06-10_NP                                  |                             |              | -        |              |                |                            | -                      |                                  |                                 |                |                            |                        |             |            |              |                    |                             |                                 |                   |                          |                       |              |                               |       |                                   |                    |                    |                                |                                                                                    |             |                     |                  |             |                              |                                                                         |              |
|                    |                                                        | 0040 07 00                  | 0            | 2        | 17           | *              | *                          | 2                      | 4                                | 24                              | *              | 255                        | * .                    | -           | -          | -            | 7                  |                             | 1                               | * 0.005           | 1                        | *                     | -            | *                             | -     | - *                               | *                  | 1                  | 1                              | * *                                                                                | -           | -                   | *                | -           | 1                            | 0.0045                                                                  | 6            |
|                    | FR_KB_3A_2019-07-30<br>FR_KB-3A_2019-10-18             |                             | 8.09         |          | 1.14         | 23.8<br>23.1   | 23.1<br>26.3               | 1,950                  | 1,680                            |                                 | < 0.50         |                            | -1.6 16                | 5.3 1,95    | 92.80 3    | .97 5        | 5.48 7             | 7.18 77.8                   |                                 | < 0.005           |                          |                       | -            | < 0.050<br>< 0.25             | -     | - < 2.5<br>- < 2.5                |                    | 583<br>569         |                                | < 1.0 < 1.0                                                                        | _           | -                   | < 0.25<br>< 0.25 |             |                              | 0.0015 0.6                                                              |              |
|                    | FR_KB-3A-2019-10-16                                    |                             | 7.74<br>7.83 | ,        | 10.5<br>0.62 | 23.1           | 20.3                       | 1,660<br>1,730         | 1,490<br>1,390                   |                                 | < 0.50<br>2.11 |                            | 6.4<br>2.1 2           | -<br>7 1 \$ | -<br>333 4 | -<br>57 F    | -                  | 7.14 83.9                   | 338<br>335                      | 0.0074            |                          | 0.0293                | -            | < 0.25                        | -     | - < 2.5                           | < 100              | 493                |                                | < 1.0 < 1.0<br>< 1.0 < 1.0                                                         |             | -                   | < 0.25           |             |                              | 0.0012 1.0                                                              |              |
| FR KB-3B           | FR KB-3B 2019-02-25                                    |                             | 7.63         |          | 639          | 25.6           | 25.4                       | 1,890                  | 1,780                            |                                 | 2.14           |                            | -0.3 3.                |             |            |              |                    | 7.19 60.3                   |                                 | 0.0107            |                          | 0.206                 |              | -                             | _     | - < 2.5                           | 120                | 561                |                                | < 1.0 < 1.0                                                                        | _           | -                   | < 0.25           |             |                              | 0.0010 0.7                                                              |              |
| ITC_RD-0D          | FR KB-3B 2019-03-25                                    | 2019 02 25                  |              | -        | 26.1         | 20.0           |                            | 2,090                  | 1,760                            |                                 |                |                            |                        | 34 2,13     |            |              |                    | 7.29 60.8                   |                                 | 0.0266            |                          | 0.200                 |              | < 0.050                       | -     | - < 2.5                           |                    | 625                |                                | < 1.0 < 1.0                                                                        |             | -                   | < 0.25           |             |                              | 0.0021 0.7                                                              |              |
|                    | FR KB-3B 2019-06-10 NP                                 | 2019 06 10                  |              |          | 8.93         |                |                            | 1,950                  | 1,830                            |                                 |                |                            |                        |             |            |              |                    | 7.26 80.1                   |                                 | < 0.005           |                          |                       | -            | < 0.25                        | -     | - < 2.5                           |                    | 584                |                                | < 1.0 < 1.0                                                                        | _           | -                   | < 0.25           |             |                              | 0.0011 0.5                                                              |              |
|                    | FR KB 3B 2019-07-30                                    | 2010 00 10                  | 0            | .,200    | 0.00         | 20.1           | 20                         | .,                     | .,                               | •                               | 0.01           |                            | •                      | 2,01        |            |              |                    |                             | . 201                           | 0.000             |                          | 0.0111                |              | 0.20                          |       |                                   |                    |                    | 201                            |                                                                                    |             |                     | 0.20             |             |                              |                                                                         | - 0.02.10    |
|                    | FR_KB-3B_2019-10-18                                    |                             |              |          |              |                |                            |                        |                                  |                                 |                |                            |                        |             |            |              |                    |                             |                                 |                   |                          |                       |              |                               |       |                                   |                    |                    |                                |                                                                                    |             |                     |                  |             |                              |                                                                         |              |
|                    | FR_KB-3B-2019-12-11                                    | 2019 12 11                  | 7.78         | 1,030    | 1.82         | 19.1           | 20.8                       | 1,600                  | 1,280                            | 2.8                             | 1.23           | 331                        | 4.3 2                  | .3 1,7      | 714 4      | .66 7        | 7.63 7             | 7.18 82.9                   | 316                             | 0.0075            | 5 54.5                   | < 0.0050              | -            | < 0.050                       | -     | - < 2.5                           | < 100              | 426                | 316                            | < 1.0 < 1.0                                                                        | ) -         | -                   | < 0.25           | -           | 16.6 <                       | 0.0010 0.9                                                              | 34 0.0028    |
|                    | FR_DC4-2019-12-11                                      |                             |              |          |              |                |                            |                        |                                  |                                 |                |                            |                        |             |            |              |                    |                             |                                 |                   |                          |                       |              |                               |       |                                   |                    |                    |                                |                                                                                    |             |                     |                  |             |                              |                                                                         |              |
|                    | QA/QC RPD%                                             | T                           | 0            | 3        | 15           | *              | *                          | 1                      | 2                                | *                               | *              | *                          | * .                    | -           | -          | -            | -                  |                             | 0                               | *                 | 1                        | *                     | -            | *                             | -     | - *                               | *                  | 1                  | 0                              | * *                                                                                | -           | -                   | *                | -           | 1                            | * *                                                                     | *            |
| FR_MW-SK1A         | FR_MW_SK1-A_WG_Q1_2019_NP                              |                             | 7.79         |          | 0.58         | 22.9           | 24                         | 1,970                  | 1,630                            | < 1.0                           |                |                            | 2.3                    | -           | -          | -            | -                  |                             | 350                             |                   | 66.0                     |                       |              | < 0.050                       |       | - < 2.5                           |                    | 537                |                                | < 1.0 < 1.0                                                                        | _           | -                   | < 0.25           |             |                              | 0.0027 1.0                                                              |              |
|                    | FR_MW-SK1A_WG_2019-06-13_N_17                          |                             | 8.24         |          | 0.13         | 12.8           | 12.2                       | 1,050                  | 820                              | < 1.0                           |                |                            | -2.6 5                 |             | 70         |              |                    | 7.62 162.                   |                                 | 0.0134            |                          |                       |              | < 0.050                       | -     | - < 2.5                           | 210                | 254                |                                | < 1.0 < 1.0                                                                        |             | -                   | < 0.25           |             |                              | 0.0021 < 0.                                                             |              |
|                    | FR_MW-SK1A_QTR_2019-07-01_N                            |                             | 8.28         |          | 0.23         | 13.4           | 13.5                       | 1,200                  | 878                              |                                 | 0.52           |                            | 0.2 7                  | .6 1,0      | 009        | - 6          | 9.51 /             | 7.56 94.7                   |                                 | < 0.005           |                          | < 0.0050              |              | 0.166                         | -     | - < 2.5                           | 200                | 246                |                                | < 1.0 < 1.0                                                                        | _           | -                   | < 0.25           |             |                              | 0.0042 0.6                                                              |              |
|                    | FR_DC2_QTR_2019-07-01_N<br>QA/QC RPD%                  | Duplicate                   | 8.32         | 690      | 0.11         | 14.4           | 14                         | 1,210                  | 917                              | < 1.0<br>*                      | 0.75           | 430 ·                      | -1.4 ·                 | -           | -          | -            | -                  |                             | 338                             | < 0.005           | 50 28.7                  | < 0.0050              | -            | < 0.050                       |       | - < 2.5                           | 240<br>18          | 268                | 332                            | 6.2 < 1.0                                                                          | ) -         | -                   | < 0.25<br>*      | -           | < 1.0 0                      | 0.0040 0.7                                                              | 8 0.0034     |
|                    | FR_MW-SK1A_QTR_2019-10-07_N                            | 2019 10 24                  | 7.68         | 4<br>875 | 0.12         | 17.1           | 17.7                       | 1,320                  | 4                                | 2.4 <                           | < 0.50         | 530                        | 1.7 5                  | - 3 1/      | -<br>145   | -            | -<br>82 7          | 7.21 199.                   | 0 366                           | < 0.005           | i0 41.3                  | < 0.0050              | -            | < 0.050                       |       | - *                               | 110                | 330                |                                | < 1.0 < 1.0                                                                        |             | -                   | < 0.25           | -           |                              | 0.0036 0.9                                                              | 20 0.0031    |
| FR MW-SK1B         | FR MW SK1-B WG Q1 2019 NP                              |                             | 8.01         | 432      | 3.68         | 9.32           | 9.14                       | 664                    | 536                              |                                 | < 0.50         | 389                        | -1 .                   |             | -          |              | -                  |                             | 282                             | 0.0146            |                          |                       | 0.818        |                               | 1.05  | - 4.32                            | 146                | 168                |                                | < 1.0 < 1.0                                                                        |             |                     | < 0.25           |             |                              | <pre>0.0000 0.8 &lt;0.0010 &lt; 0.8</pre>                               |              |
|                    | FR_MW-SK1B_WG_2019-06-13_N_16                          |                             | 8.21         | 447      | 1.76         | 9.3            | 9.18                       | 766                    | 548                              |                                 | 0.94           |                            | -0.6 6                 | 3 72        | 0.7        | - 0          | 0.25 7             | 7.51 -13.                   |                                 | 0.0231            |                          |                       | -            | 0.274                         |       | - 5.04                            | 167                | 200                |                                | < 1.0 < 1.0                                                                        |             |                     | < 0.050          | -           |                              | < 0.0010 < 0.                                                           |              |
|                    | FR_MW-SK1B_QTR_2019-07-01_N                            |                             | 8.27         | 448      | 1.04         | 9.36           | 9.19                       | 852                    | 588                              | < 1.0                           | 0.95           |                            | -0.9 6                 | .8 70       | 3.7        | - 0          | 0.14 7             | 7.46 -34.                   |                                 | 0.0151            |                          |                       | -            | 0.064                         | -     | - 4.63                            | 145                | 198                |                                | < 1.0 < 1.0                                                                        |             | •                   | < 0.050          | -           |                              | 0.0010 1.1                                                              |              |
|                    | FR_MW-SK1B_20191024                                    | 2019 10 24                  | 7.82         |          | 2.7          | 10.3           | 10.6                       | 824                    | 604                              | 7.1                             | 0.64           |                            | 1.6                    |             | -          |              |                    |                             | 265                             | 0.0088            | 3 3.23                   |                       | -            | 0.073                         | -     | - 5                               | 140                | 222                | 265                            | < 1.0 < 1.0                                                                        |             | -                   | < 0.25           | -           |                              | 0.0013 0.8                                                              |              |
| S8 Study Area      | FR_MW-SK1B_QTR_2019-10-07_N                            | 2019 11 07                  | -            | -        | -            | -              | -                          | -                      | -                                | -                               | -              | -                          | - 5                    | .3 8        | 88         | - (          | ).41 /             | 7.39 26.4                   | 1 -                             | -                 | -                        | -                     | -            | -                             | -     |                                   | -                  | -                  | -                              |                                                                                    | -           | -                   | -                | -           | -                            |                                                                         |              |
| FR MW-1B           | FR MW-1B Q 01062013 N                                  | 2013 08 29                  | 8.14         | 323      | 2,050        | 6.56           | 6.53                       | 580                    | 376                              | 1,170                           | 1 02           | 395                        | _                      | 50          | 9.9        | - 6          | 5.34               | - 37                        | 176                             | < 0.005           | 50 7.30                  | < 0.0010              |              | 1.76                          | _     | - 1.6                             | 183                | 118                | 176                            | < 1.0 < 1.0                                                                        |             | -                   | < 0.050          | _           | 2.4 0                        | 0.0024 9.7                                                              | 72 1.93      |
|                    |                                                        |                             | 8.25         |          | < 0.10       | 6.97           | 7.02                       | 622                    | 431                              |                                 | 0.85           | 389                        | - 6                    |             | 9.6        |              | 1.14 7             |                             | 172                             | 0.0115            |                          | < 0.0010              |              | 3.47                          | -     | - 3.8                             | 172                | 135                |                                | < 2.0 < 2.0                                                                        |             |                     | < 0.050          |             | < 1.0 0                      |                                                                         |              |
|                    | FR_MW-1B_Q_01092013_N                                  |                             |              | -        |              |                |                            |                        |                                  |                                 |                |                            | - 0                    | .4 54       | 9.0        |              | 1.14 /             |                             |                                 |                   |                          |                       |              |                               | -     |                                   |                    |                    |                                | < 1.0 < 1.0                                                                        |             |                     |                  | -           |                              |                                                                         | -            |
|                    | FR_MW-1B_Q_01012014_N                                  | 2014 03 14                  |              | 399      | 12.2         |                | 8.08                       | 718                    | 454                              |                                 |                | 491                        |                        |             | -          | -            | -                  |                             |                                 |                   |                          |                       |              | < 0.050                       |       | - 1.5                             | 280                | 175                |                                |                                                                                    |             | -                   | < 0.25           | -           |                              | 0.0025 0.8                                                              |              |
|                    | FR_MW-1B_Q_01042014_N                                  | 2014 05 14                  |              |          |              |                |                            |                        |                                  | 2.5                             |                |                            |                        |             | 0.5        |              |                    |                             |                                 |                   |                          | < 0.0010              | -            | < 0.050                       |       | - 1.7                             | 159                | 142                |                                | < 1.0 < 1.0                                                                        |             |                     |                  |             |                              | 0.0016 1.1                                                              |              |
|                    | FR_MW-1B_QSW_02072014_N                                | 2014 08 25                  |              |          |              |                |                            |                        |                                  | 4.1                             |                |                            |                        |             | 4.5        |              |                    |                             |                                 |                   |                          | < 0.0010              | _            | < 0.050                       |       | - < 1.0                           |                    | 102                |                                | < 1.0 < 1.0                                                                        |             |                     | < 0.050          |             |                              | 0.0018 < 0.                                                             |              |
|                    | FR_MW-1B_QSW_02102014_N                                | 2014 11 06                  |              |          | 18.9         | 6.42           | 6.4                        |                        | 381                              | 18.9                            |                | 392                        | - 6                    |             | 9.3        |              |                    |                             |                                 |                   |                          | < 0.0010              |              | < 0.050                       |       | - 1.6                             | 180                | 119                | 165                            | 1.7 < 1.0                                                                          | ) -         |                     | < 0.050          | -           | 1.4 (                        | 0.0019 0.9                                                              |              |
|                    | FR_MW-1B_QSW_02012015_N                                | 2015 01 21                  | _            |          | -            | -              | -                          | 703                    | 480                              | 1.6                             | 0.59           | -                          | - 2                    | .3 69       | 2.2        | -            | - 7                | 7.89 -                      | 174                             | < 0.005           | 50 12.5                  | < 0.0020              | -            | < 0.050                       | -     | - 1.6                             | 146                | 162                | -                              |                                                                                    | -           | -                   | < 0.10           | -           | -                            | - 0.8                                                                   | 83 0.0045    |
|                    | FR_MW-1B_QSW_02042015_N                                | 2015 04 14                  |              |          | -            | -              | -                          | 685                    | 475                              | 2.2                             |                | -                          | - 4                    |             | 9.3        |              | - 7                |                             |                                 |                   |                          | < 0.0020              |              | < 0.050                       | -     | - 1.4                             | 163                | 159                | -                              |                                                                                    | -           |                     | < 0.10           | -           | -                            |                                                                         | 82 0.0047    |
|                    | FR_MW-1B_QSW_02072015_N                                | 2015 07 03                  | 8.08         | 250      | -            | -              | -                          | 441                    | 307                              | 2.5                             | 0.65           | -                          | - 9                    | .6 44       | 5.1        | -            | - 7                | 7.78 -                      | 152                             | < 0.005           | 60 4.89                  | < 0.0010              | -            | 0.106                         | -     | - 1.2                             | 184                | 71.8               | -                              |                                                                                    | -           | -                   | < 0.050          | -           | -                            | - 0.5                                                                   | 55 0.0076    |
|                    | FR_MW-1B_QSW_02102015_N                                | 2015 10 08                  | 8.27         | 329      | -            | -              | -                          | 610                    | 408                              | 1.5                             | < 0.50         | -                          | - 9                    | 9 65        | 1.6        | -            | - 7                | 7.64 -                      | 169                             | < 0.005           | 50 11.1                  | < 0.0010              | -            | < 0.050                       | -     | - 1.1                             | 180                | 120                | -                              |                                                                                    | T           | -                   | < 0.050          | -           | -                            | - < 0                                                                   | .50 0.0044   |
|                    | FR_MW-1B_QSW_04012016_N                                | 2016 02 23                  | 7.99         | 458      | 5.87         | 9.22           | 9.25                       | 851                    | 600                              | 2.8                             | < 0.50         | 312                        | - 2                    | .6 7        | 56         | - 9          | 9.53 8             | 3.07 214.                   | 2 168                           | < 0.005           | 24.2                     | < 0.0050              | -            | 0.067                         | -     | - < 1.0                           | 150                | 199                | 168                            | < 1.0 < 1.0                                                                        | ) -         | -                   | < 0.25           | -           | 3.9 (                        | 0.0025 0.5                                                              | 58 0.0084    |
|                    | FR_MW-1B_QSW_04042016_N                                | 2016 05 19                  | 8.32         | 258      | 4.55         | 5.02           | 5.22                       | 478                    | 325                              | 5.8                             | 0.71           | 330                        | - 3                    | .5 41       | 8.7        | - 7          | 7.39 7             | 7.76 150.                   | 9 146                           | < 0.005           | 6.61                     | < 0.0010              | -            | 0.105                         | -     | - 0.33                            | 176                | 77.4               | 146                            | < 1.0 < 1.0                                                                        | ) -         | -                   | < 0.050          | -           | < 1.0 (                      | 0.0021 0.8                                                              | 36 0.0092    |
|                    | FR_MW-1B_QSW_04072016_N                                | 2016 08 16                  | 8.19         | 270      | 15.2         | 5.78           | 5.48                       | 554                    | 340                              | 9.3                             | 0.74           | 309                        | - 7                    | .2 47       | 7.7        | - 6          | 6.78 8             | 3.05 158.                   | 7 164                           | < 0.005           | 8.08                     | < 0.0010              | -            | 0.102                         | -     | - 0.34                            | 193                | 91.4               | 164                            | < 1.0 < 1.0                                                                        | ) -         | -                   | < 0.050          | -           | 1.6 (                        | 0.0025 1.0                                                              | J3 0.0151    |
| L                  |                                                        |                             | 1            |          |              |                |                            | 1                      | I                                | · · · · · · ·                   |                |                            | 1                      |             | 1          | I            | 1                  | 1                           |                                 |                   |                          |                       | 1            | ı                             | ( I   |                                   |                    | ı                  | 1 1                            |                                                                                    | I           | ( I                 | 1                | ( I         |                              |                                                                         |              |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L223699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L22506457, L2250457, L2250412, L2282357, L2283636, L2283637, L2289256, L2290261, L2290261, L2292416, L22316991, L2217812, L2249360, L2250457, L2250457, L2250457, L2250457, L2250457, L2250457, L2249360, L2250457, L225057, L22507, L225 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value. - Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard BOLD

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.

<sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>i</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                              |                             |       |                          |                  |                       |                            |                            |                         |               |               |                   |                    |             |                           |                    | Dissolve     | ed Metals          | 5                   |                   |                |                 |                            |             |                     |                     |          |                  |           |             |                    |                           |
|--------------------|--------------------------------------------------------------|-----------------------------|-------|--------------------------|------------------|-----------------------|----------------------------|----------------------------|-------------------------|---------------|---------------|-------------------|--------------------|-------------|---------------------------|--------------------|--------------|--------------------|---------------------|-------------------|----------------|-----------------|----------------------------|-------------|---------------------|---------------------|----------|------------------|-----------|-------------|--------------------|---------------------------|
| Sample<br>Location | Sample<br>ID                                                 | Sample Date<br>(yyyy mm dd) | _     | d Dissolved Calcium<br>↑ | d Dissolved Iron | B Dissolved Magnesium | 년 Dissolved Manganese<br>기 | ط Dissolved Potassium<br>7 | B<br>B Dissolved Sodium | б<br>Аntimony | бt<br>Arsenic | С<br>Прагіит<br>П | D<br>T/Beryllium   | uou<br>μg/L | Cadmium<br>٦/۵            | ,<br>Сhromium<br>Т | 년<br>Cobalt  | Copper<br>T/bf     | Lead<br>Л/бћ        | 7/df<br>T/Lithium | Mercury<br>T/D | 년<br>Molybdenum | Nickel                     | T/Selenium  | hã/T<br>Silver      | T/6t<br>T/Strontium | Thallium | Е<br>µg/L        | Tritanium | б<br>Г<br>Л | б<br>Т<br>Хanadium | T/قار<br>T/فاسد           |
| Primary Screenir   | <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup>        |                             | n/a   | n/a                      | n/a              | n/a                   | n/a                        | n/a                        | n/a                     | 90            | 50            | 10,000            | 1.5                | 12,000      | 0.5-4 <sup>d</sup>        | 10 <sup>e</sup>    | 40           | 20-90 <sup>d</sup> | 40-160 <sup>d</sup> | n/a               | 0.25           | 10,000          | 250-<br>1,500 <sup>d</sup> | 20          | 0.5-15 <sup>d</sup> | n/a                 | 3        | n/a              | 1,000     | 85          | n/a                | 75-<br>2,400 <sup>d</sup> |
| Secondary Scree    | <b>ning Criteria:</b> Costa and de Bruyn (2021) <sup>h</sup> |                             |       |                          |                  |                       |                            |                            |                         |               |               |                   |                    |             | 0.8-<br>10.4 <sup>i</sup> | 100 (Cr +6)        | n/a          | n/a                | n/a                 | 2,530             | n/a            | n/a             | 517-<br>2,972 <sup>i</sup> | 700         | n/a                 | n/a                 | n/a      | n/a              | n/a       | 3,520       | n/a                | n/a                       |
| S6 Study Area      |                                                              |                             | II    |                          | 1                |                       |                            |                            |                         | 1             |               | 1                 | 1 1                |             |                           |                    |              |                    |                     |                   |                |                 |                            |             |                     | l                   |          | I                |           |             |                    |                           |
| FR_KB-3A           | FR_KB-3A_2019-06-10_NP                                       | 2019 06 10                  | < 3.0 | 289                      | < 20             | 122                   | 2.34                       | 2.17                       | 4.22                    | < 0.20        | < 0.20        | 65.9              | < 0.040            | < 20        | < 0.010                   | < 0.20             | 3.06         | < 0.50             | < 0.10              | 40.0              | < 0.0050       | 0.39            | 5.0                        | <u>216</u>  | < 0.020             | 319                 | < 0.020  | < 0.20           | < 10      | 5.58        | < 1.0              | 10.3                      |
| _                  | FR_DC-4_2019-06-10_NP                                        |                             | < 3.0 |                          | < 20             |                       | 2.51                       | 2.17                       |                         |               |               |                   | < 0.040            |             |                           | < 0.20             | 2.99         |                    | < 0.10              |                   |                |                 | 4.9                        |             | < 0.020             |                     |          |                  |           |             |                    |                           |
|                    | QA/QC RPD%                                                   |                             |       |                          |                  |                       |                            |                            |                         |               |               |                   |                    |             |                           |                    |              |                    |                     |                   |                |                 |                            |             |                     |                     |          |                  |           |             |                    |                           |
|                    | FR_KB_3A_2019-07-30                                          | 2019 07 30                  | < 3.0 | 282                      | < 10             | 107                   | 2.48                       | 1.87                       | 3.75                    | 0.20          | < 0.10        | 63.5              | < 0.020            | 17          | 0.0199                    | 0.14               | 2.81         | < 0.50             | < 0.050             | 39.1              | < 0.0050       | 1.26            | 0.84                       | 266         | < 0.010             | 318                 | < 0.010  | < 0.10           | < 10      | 5.63        | < 0.50             | 5.1                       |
|                    | FR_KB-3A_2019-10-18                                          | 2019 10 18                  | < 3.0 | 314                      | < 10             | 127                   | 9.13                       | 2.15                       | 3.99                    | 0.28          | < 0.10        | 61.7              | < 0.020            | 18          | 0.0317                    | 0.18               | 2.73         | 0.87               | < 0.050             | 39.4              | < 0.0050       | 0.949           | 2.47                       | <u>226</u>  | < 0.010             | 338                 | < 0.010  | 0.11             | < 10      | 5.50        | < 0.50             | 7.4                       |
|                    | FR_KB-3A-2019-12-11                                          | 2019 12 11                  | < 3.0 | 276                      | < 10             | 97.8                  | 1.20                       | 1.97                       | 3.62                    | 0.15          | < 0.10        | 55.2              | < 0.020            | 18          | 0.0210                    | 0.13               | 2.08         | 0.67               | < 0.050             | 39.6              | < 0.0050       | 0.367           | 0.77                       | <u>194</u>  | < 0.010             | 306                 | < 0.010  | 0.35             | < 10      | 5.34        | < 0.50             | 4.8                       |
| FR_KB-3B           | FR_KB-3B_2019-02-25                                          | 2019 02 25                  | 1.7   | 289                      | < 10             | 130                   | 15.5                       | 3.72                       | 4.90                    | 0.15          | 0.12          | 76.3              | < 0.020            | 20          | 0.0275                    | 0.13               | 1.20         | < 0.20             | < 0.050             | 58.3              | < 0.0050       | 0.700           | 0.55                       | <u>281</u>  | < 0.010             | 281                 | 0.014    | < 0.10           | < 10      | 7.25        | < 0.50             | < 1.0                     |
|                    | FR_KB-3B_2019-03-25                                          | 2019 03 25                  | < 3.0 | 294                      | < 10             | 131                   | 3.29                       | 3.17                       | 3.67                    | 0.12          | < 0.10        | 80.3              | < 0.020            | 18          | 0.0343                    | 0.13               | 0.89         | < 0.50             | < 0.050             | 61.6              | < 0.0050       | 0.443           | < 0.50                     | <u>297</u>  | < 0.010             | 277                 | < 0.010  | < 0.10           | < 10      | 8.86        | < 0.50             | 2.3                       |
|                    | FR_KB-3B_2019-06-10_NP                                       | 2019 06 10                  | < 3.0 | 278                      | < 10             | 130                   | 6.28                       | 3.24                       | 4.40                    | 0.12          | < 0.10        | 73.1              | < 0.020            | 18          | 0.0296                    | 0.12               | 0.56         | < 0.50             | < 0.050             | 59.9              | < 0.0050       | 0.505           | 0.57                       | <u>271</u>  | < 0.010             | 263                 | < 0.010  | < 0.10           | < 10      | 7.25        | < 0.50             | 1.6                       |
|                    | FR_KB_3B_2019-07-30                                          | 2019 07 30                  | < 3.0 | 207                      | < 10             | 90.0                  | 1.20                       | 2.49                       | 3.43                    | 0.12          | < 0.10        | 63.1              | < 0.020            | 19          | 0.0217                    | 0.10               | 0.39         | < 0.50             | < 0.050             | 52.1              | < 0.0050       | 0.526           | < 0.50                     | 200         | < 0.010             | 210                 | < 0.010  | < 0.10           | < 10      | 5.86        | < 0.50             | 1.4                       |
|                    | FR_KB-3B_2019-10-18                                          | 2019 10 18                  | 3.1   | 239                      | < 10             | 108                   | 1.03                       | 2.77                       | 2.93                    | 0.11          | < 0.10        | 61.3              | < 0.020            | 20          | 0.0209                    | 0.11               | 0.31         | 0.46               | < 0.050             | 52.5              | < 0.0050       | 0.517           | < 0.50                     | <u>188</u>  | < 0.010             | 222                 | < 0.010  | < 0.10           | < 10      | 6.18        | < 0.50             | < 1.0                     |
|                    | FR_KB-3B-2019-12-11                                          | 2019 12 11                  | < 3.0 | 253                      | < 10             | 96.8                  | 0.73                       | 2.73                       | 3.09                    | 0.12          | < 0.10        | 60.3              | < 0.020            | 21          | 0.0231                    | 0.13               | 0.22         | 0.45               | < 0.050             | 59.0              | < 0.0050       | 0.522           | < 0.50                     | <u>191</u>  | < 0.010             | 239                 | < 0.010  | < 0.10           | < 10      | 6.73        | < 0.50             | 2.6                       |
|                    | FR_DC4-2019-12-11                                            | Duplicate                   | < 3.0 | 242                      | < 10             | 96.6                  | 0.71                       | 2.73                       | 3.09                    | 0.13          | < 0.10        | 60.4              | < 0.020            | 21          | 0.0265                    | 0.12               | 0.23         | 0.40               | < 0.050             | 56.3              | < 0.0050       | 0.527           | < 0.50                     | <u>184</u>  | < 0.010             | 238                 | < 0.010  | < 0.10           | < 10      | 6.72        | < 0.50             | 2.4                       |
|                    | QA/QC RPD%                                                   |                             |       |                          |                  |                       |                            |                            |                         |               |               |                   |                    |             |                           |                    |              |                    |                     |                   |                |                 |                            |             |                     |                     |          |                  |           |             |                    |                           |
| FR_MW-SK1A         | FR_MW_SK1-A_WG_Q1_2019_NP                                    |                             | < 1.0 |                          | < 10             |                       | 0.40                       | 2.85                       |                         |               | -             |                   | < 0.020            | 16          | 0.0392                    | 0.44               | 0.42         |                    | < 0.050             |                   | < 0.0050       |                 |                            |             | < 0.010             |                     |          | < 0.10           |           |             | < 0.50             |                           |
|                    | FR_MW-SK1A_WG_2019-06-13_N_17                                | 2019 06 13                  |       |                          | < 10             |                       | < 0.10                     |                            | 2.74                    | 0.26          | _             |                   | < 0.020            | 13          | 0.0168                    |                    | < 0.10       |                    | < 0.050             |                   | < 0.0050       |                 | < 0.50                     |             | < 0.010             |                     |          | < 0.10           |           |             | < 0.50             |                           |
|                    | FR_MW-SK1A_QTR_2019-07-01_N                                  |                             | < 3.0 | 153                      | < 10             |                       | < 0.10                     | 3.03                       | 2.75                    | 0.35          |               |                   | < 0.020            | 20          | 0.0254                    | < 0.10             | 0.13         | 1.36               | 0.060               |                   | < 0.0050       |                 | < 0.50                     |             | < 0.010             |                     |          | < 0.10           |           |             | < 0.50             | 1.5                       |
|                    | FR_DC2_QTR_2019-07-01_N                                      | Duplicate                   | < 3.0 | 159                      | < 10             | 71.0                  | < 0.10                     | 3.10                       | 2.85                    | 0.33          | < 0.10        | 62.4              | < 0.020            | 19          | 0.0254                    | < 0.10             | 0.12         | < 0.50             | < 0.050             | 51.7              | < 0.0050       | 1.63            | < 0.50                     | <u>112</u>  | < 0.010             | 154                 | < 0.010  | < 0.10           | < 10      | 5.79        | < 0.50             | < 1.0                     |
| -                  |                                                              | 0040 40 04                  | 100   | 004                      | 1.40             | 00.0                  | 10.10                      | 0.00                       | 4.00                    | 0.45          | 10.40         | 70.4              | 10.000             | 40          | 0.0000                    | 0.40               | 0.45         | 10.00              | 4 0 0 5 0           | 40.0              | 4.0.0050       | 0.505           | 10.50                      | 474         | 10.010              | 004                 | 10.010   | 10.10            | 140       | 5.40        | 10.50              | 110                       |
| ED MM SK1D         | FR_MW-SK1A_QTR_2019-10-07_N<br>FR MW SK1-B WG Q1 2019 NP     | 2019 10 24<br>2019 03 28    |       |                          | < 10<br>231      |                       | < 0.10<br>282              | 2.60                       |                         |               | -             |                   | < 0.020<br>< 0.020 | 18<br>15    | 0.0336                    | 0.12               | 0.15<br>0.24 |                    | < 0.050<br>< 0.050  |                   | < 0.0050       |                 |                            |             | < 0.010             |                     |          | < 0.10<br>< 0.10 |           |             |                    |                           |
| FR_MW-SK1B         |                                                              | 2019 03 20                  | 1.1   | 116                      | 231              | 34.6                  | 202                        | 0.99                       | 5.02                    | < 0.10        | 0.37          | 01.0              | < 0.020            | 15          | 0.0094                    | < 0.10             | 0.24         | < 0.20             | < 0.050             | 10.9              | < 0.0050       | 0.021           | 0.07                       | 1.90        | < 0.010             | 240                 | < 0.010  | < 0.10           | < 0.30    | 1.41        | < 0.50             | < 1.0                     |
| -                  | FR MW-SK1B QTR 2019-07-01 N                                  | 2019 07 29                  | < 3.0 | 116                      | 97               | 38.3                  | 287                        | 1.03                       | 4.44                    | 0.15          | 0.21          | 54.4              | < 0.020            | 15          | 0.0135                    | < 0.10             | 0.31         | < 0.50             | < 0.050             | 10.3              | < 0.0050       | 0.539           | 1.19                       | 3.23        | < 0.010             | 239                 | 0.014    | < 0.10           | < 10      | 2.30        | < 0.50             | 1.4                       |
|                    | FR_MW-SK1B_20191024                                          | 2019 10 24                  | < 3.0 | 135                      | 25               | 44.3                  | 354                        | 1.08                       | 4.75                    | 0.24          | 0.16          | 46.0              | < 0.020            | 14          | 0.0210                    | < 0.10             | 0.46         | < 0.20             | < 0.050             |                   | < 0.0050       |                 | 1.62                       |             | < 0.010             | 244                 | 0.014    | < 0.10           | < 10      | 3.14        | < 0.50             | < 1.0                     |
|                    |                                                              |                             |       |                          |                  |                       |                            |                            |                         |               |               |                   |                    |             |                           |                    |              |                    |                     |                   |                |                 |                            |             |                     |                     |          |                  |           |             |                    |                           |
| S8 Study Area      |                                                              |                             |       |                          |                  |                       |                            |                            |                         |               |               |                   |                    |             |                           |                    |              |                    |                     |                   |                |                 |                            |             |                     |                     |          |                  |           |             |                    |                           |
| FR_MW-1B           | FR_MW-1B_Q_01062013_N                                        | 2013 08 29                  | 9.9   | 86.3                     | < 10             |                       | 0.430                      | 1.12                       | 1.23                    | 0.195         | < 0.10        | 0 105             | < 0.050            | 13.6        | 0.015                     | 0.13               | < 0.050      |                    | < 0.030             | 14.8              | < 0.010        |                 | < 0.50                     |             | < 0.010             |                     |          | < 0.050          |           |             | < 0.50             |                           |
|                    | FR_MW-1B_Q_01092013_N                                        | 2013 10 31                  | 16.2  | 90.8                     | < 30             | 29.2                  | < 0.10                     | 1.02                       | 1.22                    | < 0.20        | < 0.20        | ) 111             | < 0.20             | < 20        | < 0.020                   | < 0.20             | < 0.20       | < 0.50             | < 0.10              | 13.7              | < 0.010        | 0.88            | < 1.0                      | <u>31</u>   | < 0.020             | 148                 | < 0.020  | < 0.20           | < 10      | 1.26        | < 2.0              | < 3.0                     |
|                    | FR_MW-1B_Q_01012014_N                                        | 2014 03 14                  | 7.8   | 103                      | < 10             | 34.3                  | 0.461                      | 0.967                      | 2.02                    | 0.218         | < 0.10        | ) 120             | < 0.050            | 8.7         | 0.015                     | 0.12               | 0.120        | < 0.20             | < 0.030             | 24.5              | < 0.010        | 1.51            | < 0.50                     | <u>38.6</u> | < 0.010             | 170                 | < 0.010  | < 0.050          | < 1.0     | 1.66        | < 0.50             | < 1.0                     |
|                    | FR_MW-1B_Q_01042014_N                                        | 2014 05 14                  | < 3.0 | 94.4                     | < 10             | 32.1                  | < 0.050                    | 0.969                      | 1.58                    | 0.20          | < 0.10        | ) 111             | < 0.10             | < 10        | < 0.010                   | < 0.10             | < 0.10       | < 0.50             | < 0.050             | 21.0              | < 0.010        | 1.21            | < 0.50                     | <u>36.8</u> | < 0.010             | 145                 | < 0.010  | < 0.10           | 12        | 1.33        | < 1.0              | < 3.0                     |
|                    | FR_MW-1B_QSW_02072014_N                                      | 2014 08 25                  | < 3.0 | 75.9                     | < 10             | 23.9                  | 0.140                      | 1.16                       | 1.15                    | 0.21          | < 0.10        | 98.7              | < 0.10             | 12          | < 0.010                   | 0.13               | < 0.10       | < 0.50             | < 0.050             | 17.2              | < 0.010        | 1.11            | < 0.50                     | 21.4        | < 0.010             | 134                 | < 0.010  | < 0.10           | < 10      | 1.03        | < 1.0              | < 3.0                     |
|                    | FR_MW-1B_QSW_02102014_N                                      | 2014 11 06                  | 9.1   | 83.5                     | < 10             | 26.2                  | 0.252                      | 1.02                       | 1.19                    | 0.16          | < 0.10        | 98.1              | < 0.10             | < 10        | 0.011                     | < 0.10             | < 0.10       | < 0.50             | < 0.050             | 16.8              | < 0.010        |                 |                            |             |                     |                     | < 0.010  | < 0.10           | 12        | 1.14        | < 1.0              | < 3.0                     |
|                    | FR_MW-1B_QSW_02012015_N                                      | 2015 01 21                  |       |                          |                  | 33.1                  | 0.075                      |                            | 1.62                    |               | -             |                   | < 0.10             |             |                           |                    |              |                    | < 0.050             |                   |                |                 |                            |             |                     |                     |          | < 0.10           |           |             | < 1.0              |                           |
|                    | FR_MW-1B_QSW_02042015_N                                      | 2015 04 14                  |       |                          | -                | 33.1                  | < 0.10                     |                            | 1.94                    |               | _             | ) 111             | < 0.10             |             | 0.0099                    | 0.11               | < 0.10       |                    | < 0.050             |                   |                |                 |                            | 36.8        | < 0.010             |                     |          | < 0.10           | 10        |             | < 0.50             |                           |
|                    | FR_MW-1B_QSW_02072015_N                                      | 2015 07 03                  |       | 67.1                     | < 10             |                       |                            | 0.993                      | 1.09                    |               | -             |                   | < 0.10             | 11          | 0.0033                    |                    |              |                    |                     |                   | < 0.0050       |                 | < 0.50                     |             | < 0.010             |                     |          | < 0.10           | < 10      |             | < 0.50             |                           |
|                    | FR_MW-1B_QSW_02102015_N                                      |                             |       |                          |                  |                       |                            |                            |                         |               |               |                   |                    |             |                           |                    |              |                    |                     |                   |                |                 |                            |             |                     |                     |          |                  |           |             |                    |                           |
|                    |                                                              | 2015 10 08                  |       |                          |                  | 27.3                  |                            | 1.15                       | 1.49                    | 0.2           | _             | 108               | < 0.10             | 10          | 0.0112                    | 0.14               |              |                    | < 0.050             |                   |                |                 |                            | <u>23.5</u> | < 0.010             |                     |          | < 0.10           |           |             | < 0.50             |                           |
|                    | FR_MW-1B_QSW_04012016_N                                      | 2016 02 23                  |       |                          |                  | 39.4                  | < 0.10                     |                            | 1.63                    |               |               |                   |                    |             | 0.0123                    | 0.12               |              |                    | < 0.050             |                   |                |                 | < 0.50                     |             | < 0.010             |                     |          | < 0.10           |           |             | < 0.50             |                           |
|                    | FR_MW-1B_QSW_04042016_N                                      | 2016 05 19                  |       |                          |                  | 21.7                  |                            | 0.904                      | 1.03                    |               |               |                   | < 0.020            |             | 0.0078                    |                    |              |                    | < 0.050             |                   |                |                 | < 0.50                     |             | < 0.010             |                     |          | < 0.10           |           |             |                    |                           |
|                    | FR_MW-1B_QSW_04072016_N                                      | 2016 08 16                  | < 3.0 | 71.6                     | < 10             | 22.2                  | < 0.10                     | 1.04                       | 1.05                    | 0.17          | < 0.10        | 87.1              | < 0.020            | < 10        | 0.0118                    | < 0.10             | < 0.10       | < 0.50             | < 0.050             | 21.8              | < 0.0050       | 0.961           | < 0.50                     | 19.3        | < 0.010             | 123                 | < 0.010  | < 0.10           | < 10      | 1.16        | < 0.50             | < 3.0                     |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2236699, L224795, L2244162, L2245057, L2248235, L2248391, L2249360, L2256457, L225657, L22557, L22577, L225777, L225777, L225777, L225777, L225777, L225777, L225777, L225777, L225777, L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

- Concentration greater than CSR Aquatic Life (AW) standard BOLD
- BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                          |                             |        |                |             |                   |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                       |                   |                  |               |           |             |                   | Total       | Metals        |          |                      |                    |             |             |                    |             |         |          |         |                |           |                    |             |                                                      |
|--------------------|----------------------------------------------------------|-----------------------------|--------|----------------|-------------|-------------------|----------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-------------------|------------------|---------------|-----------|-------------|-------------------|-------------|---------------|----------|----------------------|--------------------|-------------|-------------|--------------------|-------------|---------|----------|---------|----------------|-----------|--------------------|-------------|------------------------------------------------------|
|                    |                                                          |                             |        |                |             |                   |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                       |                   |                  |               |           |             |                   |             |               |          |                      |                    |             |             |                    |             |         |          |         |                |           |                    |             |                                                      |
| Sample<br>Location | Sample<br>ID                                             | Sample Date<br>(yyyy mm dd) |        | Бт<br>Antimony | Б<br>П<br>Л | င်္ဂ Barium<br>ဂု | €<br>Beryllium | Л <sup>6</sup> H<br>T/б | на<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Пабита<br>Паби | Б<br>П<br>Сadmium     | Бт<br>Саlcium<br>Т/ба | 6thromium<br>T/قط | Т<br>Г<br>Сobalt | Copper<br>T/D | uou<br>4g | Lead<br>Л/Б | T/df<br>T/tithium | 년<br>전<br>고 | ⊡<br>T∕<br>T∕ | Ω<br>Tj  | 년<br>전<br>Molybdenum | бћ<br>Nickel       | б<br>T<br>T | б<br>T<br>T | б<br>Т<br>Selenium | б<br>П<br>Л | б<br>T  | тд<br>Тр | ත්<br>T | 6t<br>Thallium | Е<br>µg/L | b<br>T<br>Trtanium | Д<br>Т<br>Л | 지) 전<br>고<br>1.c <sup>4</sup><br>스 Zinc <sup>4</sup> |
| Primary Screening  | Criteria: CSR Aquatic Life (AW) <sup>a</sup>             |                             | n/a    | n/a            | n/a         | n/a               | n/a            | n/a                     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/a                   | n/a                   | n/a               | n/a              | n/a           | n/a       | n/a         | n/a               | n/a         | n/a           | n/a      | n/a                  | n/a                | n/a         | n/a         | n/a                | n/a         | n/a     | n/a      | n/a     | n/a            | n/a       | n/a                | n/a         | n/a n/a                                              |
|                    | ng Criteria: Costa and de Bruyn (2021) <sup>h</sup>      |                             | n/a    | n/a            | n/a         | n/a               | n/a            | n/a                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8-10.4 <sup>i</sup> |                       | 100 (Cr +6        |                  | n/a           | n/a       | n/a         | 2,530             | n/a         | n/a           | n/a      | n/a                  | 517-               | n/a         | n/a         | 700                | n/a         | n/a     | n/a      | n/a     | n/a            | n/a       | n/a                | 3,520       | n/a n/a                                              |
|                    |                                                          |                             |        |                |             |                   |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                       |                   |                  |               |           |             |                   |             |               |          |                      | 2,972 <sup>i</sup> |             |             |                    |             |         |          |         |                |           |                    |             |                                                      |
| S6 Study Area      |                                                          | 0040 00 45                  |        | 1              | ,           |                   |                |                         | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                       |                   | 1                |               | 1         |             |                   |             |               |          | 1                    |                    |             |             |                    |             | 1       |          | 1       |                |           | ,                  |             | <u> </u>                                             |
| FR_KB-3A           | FR_KB-3A_2019-06-10_NP                                   | 2019 06 10                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | < 0.010  | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_DC-4_2019-06-10_NP                                    | Duplicate                   | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | < 0.010  | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    |                                                          | 0040.07.00                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | * 0.0050 | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_KB_3A_2019-07-30                                      | 2019 07 30                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | < 0.0050 | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_KB-3A_2019-10-18                                      | 2019 10 18                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | < 0.0050 | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_KB-3A-2019-12-11<br>FR KB-3B 2019-02-25               | 2019 12 11                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | < 0.0050 | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
| FR_KB-3B           |                                                          | 2019 02 25                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | 0.0164   | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_KB-3B_2019-03-25                                      | 2019 03 25                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | < 0.0050 | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_KB-3B_2019-06-10_NP                                   | 2019 06 10                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | < 0.010  | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_KB_3B_2019-07-30                                      | 2019 07 30                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | < 0.0050 | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_KB-3B_2019-10-18                                      | 2019 10 18                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | < 0.0050 | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_KB-3B-2019-12-11                                      | 2019 12 11                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | < 0.0050 | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_DC4-2019-12-11                                        | Duplicate                   | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | •                 | -                | -             | -         | -           | -                 | -           | -             | < 0.0050 |                      | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | QA/QC RPD%<br>FR_MW_SK1-A_WG_Q1_2019_NP                  | 2010 02 29                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             |          | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    |                                                          | 2019 03 28                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | -        | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_MW-SK1A_WG_2019-06-13_N_17                            | 2019 06 13                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | -        | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_MW-SK1A_QTR_2019-07-01_N                              | 2019 07 29                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | -        | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_DC2_QTR_2019-07-01_N                                  | Duplicate                   | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | •                 | -                | -             | -         | -           | -                 | -           | -             | -        | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    |                                                          | 0040 40 04                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | -        | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_MW-SK1A_QTR_2019-10-07_N<br>FR_MW_SK1-B_WG_Q1_2019_NP | 2019 10 24<br>2019 03 28    | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | -        | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_MW_SK1B_WG_2019-06-13_N_16                            | 2019 03 28                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | -        | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_MW-SK1B_QTR_2019-07-01_N                              | 2019 07 29                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | -        | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_MW-SK1B_20191024                                      | 2019 10 24                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | -        | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_MW-SK1B_QTR_2019-10-07_N                              | 2019 11 07                  | -      | -              | -           | -                 | -              | -                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                     | -                     | -                 | -                | -             | -         | -           | -                 | -           | -             | -        | -                    | -                  | -           | -           | -                  | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
| S8 Study Area      |                                                          | 0040.00.00                  | 44 700 | 0.070          | 0.70        | 001               |                |                         | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.44                  | 400.000               | 07.0              | 0.15             | 00.0          | 04 500    | 40.4        | 20.0              | 40.000      | 4 000         | 0.400    | 0 70                 | 44-                |             | 0.040       | 00.4               | 45.000      | 0.000   | 4 400    | 0.17    | 0.055          | 0.000     | 07.0               | 0.47        | 50.4                                                 |
| FR_MW-1B           | FR_MW-1B_Q_01062013_N                                    | 2013 08 29                  |        | 0.679          |             | 381               | 1.14           | -                       | 32.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.11                  | 180,000               | 27.0              | 8.15             |               | 24,500    | 12.4        |                   | 42,300      | 1,280         | 0.130    | 2.78                 | 44.7               | -           | 6,040       |                    | 45,800      | 0.860   | 1,400    | 247     | 0.655          | 0.292     | 37.9               |             | 59.4 178                                             |
|                    | FR_MW-1B_Q_01092013_N                                    | 2013 10 31                  | 25,900 |                | 17.8        | 629               | 2.15           | < 1.0                   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.24                  | 359,000               | 49.8              | 17.8             | 58.2          | 47,700    | 28.3        |                   | 81,400      | 2,660         | 0.082    | 3.14                 | 91.0               | -           | 8,490       |                    | 40,100      | 1.43    | 1,610    | 382     | 1.15           | 0.29      | 112                | 4.38        | 100 348                                              |
|                    | FR_MW-1B_Q_01012014_N                                    | 2014 03 14                  | 343    | 0.237          | 0.18        | 122               | < 0.050        | -                       | 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.033                 | 105,000               | 0.69              | 0.217            | 0.51          | 294       | 0.161       |                   | 35,000      | 12.7          | < 0.010  | 1.55                 | 0.75               | -           | 1,140       | 38.4               |             | < 0.010 |          | 170     |                | < 0.050   |                    |             | 1.38 < 3.                                            |
|                    | FR_MW-1B_Q_01042014_N                                    | 2014 05 14                  | 41.7   | -              |             |                   | < 0.10         |                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.016                 |                       | 0.18              | < 0.10           |               |           |             | 21.6              |             | 2.48          | < 0.010  |                      | < 0.50             | -           | 962         |                    |             | < 0.010 |          |         |                | < 0.10    |                    |             | < 1.0 < 3.                                           |
|                    | FR_MW-1B_QSW_02072014_N                                  | 2014 08 25                  | 187    | 0.22           | 0.20        | 104               | < 0.10         | < 0.50                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.044                 | 78,800                | 0.43              | 0.17             | 0.61          | 248       | 0.253       | 17.2 2            | 24,700      | 14.6          |          |                      |                    | -           | 1,240       | 21.7               | 2,440       | < 0.010 | 1,170    | 136     | < 0.010        | < 0.10    | < 10               | 1.07        | 1.0 5.1                                              |
|                    | FR_MW-1B_QSW_02102014_N                                  | 2014 11 06                  | 397    | 0.21           | 0.23        | 101               | < 0.10         | < 0.50                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.049                 | 82,300                | 0.81              | 0.22             | 0.69          | 434       | 0.263       | 16.8 2            | 26,200      | 20.3          | < 0.010  | 1.02                 | 0.83               | -           | 1,140       | 23.9               | 2,680       | 0.018   | 1,190    | 138     | 0.013          | < 0.10    | 21                 | 1.17        | 1.5 3.9                                              |
|                    | FR_MW-1B_QSW_02012015_N                                  | 2015 01 21                  | -      | -              | -           | -                 | -              | < 0.50                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.014                 | -                     | 0.23              | -                | -             | -         | -           | -                 | -           | -             | -        | -                    | -                  | -           | 963         | 33.3               | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_MW-1B_QSW_02042015_N                                  | 2015 04 14                  | -      | -              | -           | -                 | -              | < 0.050                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0149                | -                     | 0.24              | -                | -             | -         | -           | -                 | -           | -             | -        | -                    | -                  | -           |             | 36.8               | -           | -       | -        | -       | -              | -         | _                  | -           |                                                      |
|                    | FR_MW-1B_QSW_02072015_N                                  | 2015 07 03                  | -      | -              | -           | -                 |                | < 0.050                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0143                | _                     | 0.24              | -                | -             | -         | -           |                   | -           | -             | -        | -                    | -                  | _           | 1,070       | 14.2               | -           | -       | -        | -       | -              | -         |                    | _           |                                                      |
|                    |                                                          |                             |        |                |             | -                 |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | -                     |                   | + -              | -             | -         | -           | -                 | -           | -             | -        |                      |                    | -           |             |                    | -           | -       | -        |         | -              |           | -                  | -           |                                                      |
|                    | FR_MW-1B_QSW_02102015_N                                  | 2015 10 08                  | -      | -              | -           | -                 |                | < 0.050                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0116                | -                     | 0.22              | -                | -             | -         | -           | -                 | -           | -             | -        | -                    | -                  | -           |             | 24.6               | -           | -       | -        | -       | -              | -         | -                  | -           |                                                      |
|                    | FR_MW-1B_QSW_04012016_N                                  | 2016 02 23                  | 150    | 0.15           |             |                   | < 0.10         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0205                |                       | 0.37              |                  | < 0.50        |           | 0.055       |                   | 40,800      | 3.88          | < 0.0050 |                      |                    | -           |             |                    |             | < 0.010 |          |         |                | < 0.10    |                    |             | 0.76 < 3.                                            |
|                    | FR_MW-1B_QSW_04042016_N                                  | 2016 05 19                  | 225    | 0.18           | 0.14        | 75.7              | 0.025          | < 0.050                 | < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0169                | 68,300                | 0.43              |                  | < 0.50        |           |             | 21.9 2            |             | 5.95          | < 0.0050 | 1.06                 | < 0.50             | -           | 1,020       | 15.9               | 2,480       | < 0.010 | 1,030    | 108     | < 0.010        | < 0.10    | 10                 | 1.04        | 0.89 < 3.                                            |
|                    | FR_MW-1B_QSW_04072016_N                                  | 2016 08 16                  | 196    | 0.22           | 0.15        | 90.4              | < 0.020        | < 0.050                 | < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0238                | 73,300                | 0.42              | 0.10             | < 0.50        | 208       | 0.123       | 22.5 2            | 22,700      | 8.53          | < 0.0050 | 1.00                 | 0.54               | -           | 1,130       | 18.9               | 2,570       | < 0.010 | 1,070    | 127     | < 0.010        | < 0.10    | < 10               | 1.21        | 0.85 < 3.                                            |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2238699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L2250608, L2256457, L2256457, L2283636, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L22316991, L2317812, L2249360, L2250457, L225057, L22507, L225 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard BOLD

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) <sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Standard varies with pH.

- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.

<sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>i</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                               |                             |            |        |                  | Pł                          | nysica                  | l Param                     | eters                              |                   |            |                                                             |                     | Fie                                                                        | ld Para           | meters             |                             |         |                                  |                             |                              |              |                             |       |                                             | Dissolv                      | ed Inorg                     | janics                         |                                                                                   |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                    |                                                  |              |
|--------------------|---------------------------------------------------------------|-----------------------------|------------|--------|------------------|-----------------------------|-------------------------|-----------------------------|------------------------------------|-------------------|------------|-------------------------------------------------------------|---------------------|----------------------------------------------------------------------------|-------------------|--------------------|-----------------------------|---------|----------------------------------|-----------------------------|------------------------------|--------------|-----------------------------|-------|---------------------------------------------|------------------------------|------------------------------|--------------------------------|-----------------------------------------------------------------------------------|-------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|--------------------------------------------------|--------------|
| Sample<br>Location | Sample<br>ID                                                  | Sample Date<br>(yyyy mm dd) | 로 pH (lab) |        | A Turbidity<br>a | อีอี Total Anions<br>T<br>ม | ស្តី Total Cations<br>T | ង<br>p<br>S<br>Conductivity | 표<br>선 Total Dissolved Solids<br>고 | Total Suspended S |            | <ul> <li>Potential</li> <li>Cation Anion Balance</li> </ul> | ර Field Temperature | ର୍ଜ<br>ଜୁମ<br>ଅନ୍ୟ<br>ଅନ୍ୟ<br>ଅନ୍ୟ<br>ଅନ୍ୟ<br>ଅନ୍ୟ<br>ଅନ୍ୟ<br>ଅନ୍ୟ<br>ଅନ୍ୟ | Z Field Turbidity | a Dissolved Oxygen | 면 pH (field)<br>린 Field ORP | Total   | ଞ୍ଚି Ammonia, Total (as N)<br>ମୁ | ≅<br>S Nitrate (as N)<br>T  | a<br>So Nitrite (as N)<br>T  | ä<br>D∫<br>T | ä Kjeldahl Nitrogen-N<br>T∕ | Nitro | ାସ Total Nitrogen-N<br>ଅଣ୍ଡି Chloride<br>୮/ | Huoride                      | a<br>Sulfate<br>T            | Alkalinity, Bica<br>(as CaCO3) | B Alkalinity, Carbonate<br>庁 (as CaCO3)<br>B Alkalinity, Hydroxide<br>더 as CaCO3) | Bicarbonate | a<br>S⊂arbonate | mg\r<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>waja<br>wajace<br>waja<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>wajace<br>waja<br>waja<br>waja<br>waja<br>waja<br>waja<br>waja<br>waj | Total Acidity | P Acidity (pH 8.3) | ର୍ଜ୍ଜ Ortho-Phosphate<br>ସୁ Total Organic Carbon | Total Phosph |
| Primary Screeni    | ing Criteria: CSR Aquatic Life (AW) <sup>a</sup>              |                             | n/a        | n/a    | n/a              | n/a                         | n/a                     | n/a                         | n/a                                | n/a r             | i/a r      | n/a n/a                                                     | n/a                 | n/a                                                                        | n/a               | n/a                | n/a n/a                     | a n/a   | 1.31-<br>18.5 <sup>b</sup>       | 400                         | 0.2-2.0 <sup>c</sup>         | 400          | n/a                         | n/a   | n/a 1,500                                   | 2,000-<br>3,000 <sup>d</sup> | 1,280-<br>4,290 <sup>d</sup> | n/a                            | n/a n/a                                                                           | n/a         | n/a             | n/a ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/a r         | n/a n              | n/a n/a                                          | n/a          |
| Secondary Scre     | <b>ening Criteria:</b> Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a        | n/a    | n/a              | n/a                         | n/a                     | n/a                         | 10,000                             | n/a r             | ı/a r      | n/a n/a                                                     | n/a                 | n/a                                                                        | n/a               | n/a <sup>j</sup>   | n/a n/a                     | a n/a   | n/a                              | 6.08-<br>223.8 <sup>i</sup> | 0.389-<br>39.95 <sup>j</sup> | n/a          | n/a                         | n/a   | n/a n/a                                     | n/a                          | 4,990                        | n/a                            | n/a n/a                                                                           | n/a         | n/a             | 78 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/a r         | n/a n              | n/a n/a                                          | n/a          |
| S8 Study Area      |                                                               |                             | 1 1        |        |                  | I                           |                         | I                           |                                    |                   |            |                                                             |                     | 1                                                                          | 1                 |                    |                             | I       |                                  | 1                           |                              | 1 1          |                             | 1 1   |                                             |                              | 1                            | 1 1                            |                                                                                   |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                    |                                                  |              |
| FR_MW-1B           | FR_MW-1B_QSW_03102016_N                                       | 2016 11 17                  | 8.18       | 327    | 1.86             | 7.32                        | 6.6                     | 662                         | 462                                | 1.4 0             | .58 3      | - 332                                                       | 5.9                 | 591.4                                                                      | -                 | 7.96               | 8.05 -80                    | .4 174  | < 0.005                          | 0 13.5                      | < 0.0010                     | -            | 0.072                       | -     | - 0.49                                      | 170                          | 137                          | 174                            | < 1.0 < 1.0                                                                       | ) -         | - <             | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - '           | 1.6 0.0            | 026 0.69                                         | 9 0.0054     |
|                    | FR_MW-1B_QSW_02012017_N                                       | 2017 02 23                  | 7.84       | 420 4  | 4.02             | 9 8                         | 8.49                    | 795                         | 534                                | 2.3 0             | .75 3      | 353 -                                                       | 3.1                 | 707.3                                                                      | -                 | 8.31               | 7.89 47                     | .7 177  | < 0.005                          | 0 20.8                      | < 0.0010                     | -            | < 0.050                     | -     | - 0.55                                      | 142                          | 191                          | 177                            | < 1.0 < 1.0                                                                       | ) -         | - <             | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 3           | 3.8 0.0            | 0016 0.99                                        | 0.0085       |
|                    | FR_MW-1B_QSW_03042017_N                                       | 2017 06 22                  | 8.44       | 188 3  | 3.58 4           | 4.12                        | 3.82                    | 417                         | 275                                | 1 1               | .96 3      | 314 -3.7                                                    | 4                   | 388.1                                                                      | -                 | 6.64               | 7.95 130                    | 0.6 122 | < 0.005                          | 0 4.87                      | < 0.0010                     | -            | 0.277                       | -     | - < 0.50                                    | 138                          | 64.2                         | 101                            | 20.8 < 1.0                                                                        | ) -         | - ·             | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - '           | 1.7 0.0            | 0016 1.37                                        | 0.0053       |
|                    | FR_MW-1B_QTR_2017-09-11_N                                     | 2017 09 19                  | 8.19       | 381 (  | 0.75             | 7.72                        | 7.7                     | 705                         | 531                                | < 1.0 0           | .52 2      | 283 -0.1                                                    | 7.5                 | 665.1                                                                      | -                 | 6.34               | 7.95 180                    | 0.5 147 | 0.0106                           | 6 14.7                      | < 0.0010                     | -            | < 0.050                     | -     | - < 0.50                                    | 139                          | 180                          | 147                            | < 1.0 < 1.0                                                                       | ) -         | - ·             | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 2           | 2.2 < 0.           | .0010 1.15                                       | j 0.0027     |
|                    | FR_MW-1B_QTR_2017-10-02                                       | 2017 11 21                  | 8.27       | 411 2  | 2.58 8           | 8.04                        | 8.3                     | 712                         | 499                                | 2 0               | .62 2      | 267 1.6                                                     | 6                   | 648.8                                                                      | -                 | 7.45               | 7.71 232                    | 2.1 185 | 0.0071                           | 11.8                        | < 0.0010                     | -            | 0.111                       | -     | - < 0.50                                    | 145                          | 168                          | 185                            | < 1.0 < 1.0                                                                       | ) -         | - •             | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - '           | 1.7 0.0            | 0031 0.57                                        | 7 0.0054     |
|                    | FR_MW-1B_QTR_2018-01-01_N                                     | 2018 02 14                  | 7.94       | 456 6  | 6.04 ´           | 11.3                        | 9.21                    | 872                         | 599                                | 3.8 0             | .67 2      | 224 -10                                                     | 2.8                 | 784.7                                                                      | -                 | 9.19               | 7.67 272                    | 2.8 277 | < 0.005                          | 0 17.5                      | < 0.0010                     | -            | < 0.050                     | -     | - < 0.50                                    | 132                          | 218                          | 277                            | < 1.0 < 1.0                                                                       | ) -         |                 | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 6           | 6.1 0.0            | 022 0.65                                         | 5 0.0050     |
|                    | FR_MW-1B_QTR_2018-04-02_N                                     | 2018 06 13                  | 8.37       | 261 2  | 2.35 5           | 5.09                        | 5.28                    | 470                         | 322                                | 1.6 0             | .75 2      | 219 1.9                                                     | 4.4                 | 453.1                                                                      | -                 | 8.12               | 7.63 223                    | 8.3 148 | < 0.005                          | 0 5.64                      | 0.0011                       | -            | < 0.10                      | -     | - < 0.50                                    | 193                          | 82.5                         | 142                            | 5.6 < 1.0                                                                         | ) -         |                 | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - <           | :1.0 0.0           | 021 0.93                                         | 3 0.0054     |
|                    | FR_MW-1B_QTR_2018-07-02_N                                     | 2018 08 01                  | 8.46       | 268 3  | 3.03 6           | 6.06                        | 5.43                    | 518                         | 381                                | 5.9 0             | .76 3      | 320 -5.5                                                    | 6.4                 | 481.9                                                                      | -                 | 6.72               | 7.89 147                    | '.1 166 | < 0.005                          | 0 6.65                      | < 0.0010                     | -            | 0.161                       | -     | - < 0.50                                    | 195                          | 109                          | 158                            | 7.6 < 1.0                                                                         | ) -         | - <             | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - <           | 1.0 0.0            | 0030 0.79                                        | ) 0.0061     |
|                    | WG_2018-07-02_014                                             |                             |            |        |                  |                             |                         |                             |                                    |                   |            |                                                             |                     |                                                                            |                   |                    |                             |         |                                  |                             |                              |              |                             |       |                                             |                              |                              |                                |                                                                                   |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                    |                                                  |              |
|                    | QA/QC RPD%                                                    | 1                           | 3          | 14     | 2                | *                           | *                       | 0                           | 3                                  | *                 | *          | * *                                                         | -                   | -                                                                          | -                 | -                  |                             | 3       | *                                | 0                           | *                            | -            | *                           | -     | - *                                         | 7                            | 1                            | 2                              | * *                                                                               | -           | -               | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -             | *                  | * *                                              | 5            |
|                    | FR_MW-1B_QTR_2018-10-01_N                                     | 2018 12 19                  | 8.31       | 419 5  | 5.47 9           | 9.47                        | 8.47                    | 759                         | 527                                | 4.4 <             | 0.50 3     | 358 -5.6                                                    | 6 4.6               | 702                                                                        | -                 | 9.38               | 7.67 249                    | 9.8 202 | 0.0195                           | 5 16.5                      | < 0.0010                     | -            | 0.219                       | -     | - 0.65                                      | 164                          | 203                          | 198                            | 4.2 < 1.0                                                                         | ) -         | - <             | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - <           | 1.0 0.0            | 0261 < 0.5                                       | 0 0.0069     |
|                    | WG_2018-10-01_021                                             |                             |            |        |                  |                             |                         |                             |                                    |                   |            | _                                                           |                     |                                                                            |                   |                    |                             |         |                                  |                             |                              |              |                             |       |                                             |                              |                              |                                |                                                                                   |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                    |                                                  |              |
|                    | QA/QC RPD%                                                    |                             | 0          |        | 24               | *                           | *                       | 0                           | 5                                  | *                 | *          | * *                                                         | -                   | -                                                                          | -                 | -                  |                             | 7       | *                                | 0                           | *                            | -            | *                           | -     | - 2                                         | 1                            | 0                            | 5                              | * *                                                                               | -           | -               | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -             |                    | 00 *                                             | 8            |
|                    | FR_MW-1B_QTR_2019-01-07_N                                     |                             |            |        |                  |                             | 8.81                    | 790                         | 566                                |                   |            | 45 -0.5                                                     | _                   | -                                                                          | -                 | -                  |                             | 172     |                                  |                             |                              |              | 0.402                       |       | - 0.73                                      | 168                          | 202                          |                                | < 1.0 < 1.0                                                                       |             |                 | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                    | 0029 0.95                                        |              |
|                    | FR_MW-1B_QTR_2019-04-01_N                                     |                             |            |        |                  |                             | 5.14                    | 520                         | 314                                |                   |            |                                                             | 3.8                 | 443.3                                                                      | -                 |                    | 7.89 198                    |         |                                  |                             | < 0.0010                     | -            | < 0.050                     | -     | - < 0.50                                    |                              | 95.9                         |                                | 5.4 < 1.0                                                                         |             |                 | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                    | .0010 < 0.5                                      |              |
|                    | FR_MW-1B_QTR_2019-07-01_N                                     |                             |            |        |                  | 5.26                        | 5                       | 488                         | 314                                | < 1.0 <           |            |                                                             |                     | 405.4                                                                      | -                 |                    | 7.87 13                     |         |                                  |                             | < 0.0010                     | -            | 0.073                       | -     | - < 0.50                                    |                              | 84.5                         |                                | 2.2 < 1.0                                                                         |             |                 | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                    | 0021 < 0.5                                       |              |
|                    | FR_MW-1B_QTR_2019-10-07_N                                     |                             |            |        |                  |                             | 8.01                    | 645                         | 516                                | 2.5 <             |            |                                                             | 5.5                 | 752.6                                                                      | -                 |                    | 7.89 97                     |         |                                  |                             | < 0.0010                     |              | < 0.050                     |       | - 0.56                                      | 131                          | 182                          |                                | < 1.0 < 1.0                                                                       |             |                 | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                    | 0048 < 0.5                                       |              |
|                    | FR_MW-1B_QTR_2020-01-06_N                                     |                             |            |        |                  |                             | 9.62                    | 883                         | 661                                |                   |            | 345 -1.7                                                    | -                   | 918                                                                        | -                 | 8.44               | 7.72 159                    |         |                                  |                             | < 0.0010                     |              | < 0.25                      | -     | - 0.73                                      | 133                          | 238                          |                                | 2.0 < 1.0                                                                         |             |                 | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 5.6 0.0            |                                                  | 8 < 0.0020   |
|                    | FR_DC2_QTR_2020-01-06_N                                       | Duplicate                   |            |        |                  | 9.99 9                      | 9.42                    | 873                         | 672                                | < 1.0 0           | .76 3      | 864 -2.9                                                    |                     | -                                                                          | -                 | -                  |                             | 176     | < 0.005                          |                             | < 0.0010                     | -            | < 0.25<br>*                 | -     | - 0.78                                      | 136                          | 239                          | 169                            | 6.8 < 1.0                                                                         | ) -         |                 | < 0.050<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 5.7 0.0            | 0024 0.71<br>* *                                 | 1 < 0.0020   |
|                    |                                                               | 0000.05.00                  | 0          | _      | 6                | - 70                        | ^<br>_ 00               | 1                           | 2                                  | ^<br>             | ^<br>      |                                                             | -                   | -                                                                          | -                 | -                  |                             |         | . 0.005                          | 3                           |                              | -            |                             | -     | - 7                                         | 2                            | 0                            | 4                              |                                                                                   | -           | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 2                  |                                                  | 1 0 00 40    |
| FR GCMW-1A         | FR_MW-1B_QTR_2020-04-06_N<br>GCMW-1A-170811                   | 2020 05 29<br>2017 08 11    |            |        | 2.16 §           | 5.72                        | 5.28                    | 500<br>714                  | 373<br>506                         | 4.1 1             | .33 4      | 31 -4                                                       | - 10.7              | -<br>593                                                                   | -                 | -                  | <br>8.22 67                 |         | < 0.005                          |                             | < 0.0010<br>0.0118           |              | < 0.050<br>1.21             |       | - < 0.50                                    |                              | 99.5                         | < 1.0<br>372                   | < 1.0 155                                                                         |             |                 | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - <           | 1.0 0.0            | 0025 1.34                                        |              |
| TIX_GOMM-TA        | FR_GCMW-1A_WG_201712151246                                    |                             | 8.29       |        |                  | -<br>10.6                   | -<br>7.54               | 714                         | 1,320                              | -<br>669 6        | -<br>.46 2 | 264 -17                                                     | 10.7                | 593                                                                        | -                 | 3.1Z               | 0.22 07                     | 446     |                                  |                             |                              | 0.159        | 3.5                         | -     | 1.37 20.2<br>- 10.7                         | 1,220<br>1,330               | 39.6<br>60.3                 |                                | < 1.0 < 1.0                                                                       |             | -               | - 0.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •             | -                  |                                                  | 0.639        |
|                    | FR GCMW-1A_WG_201712131246<br>FR GCMW-1A WG 201802261345 NP 3 |                             |            |        |                  |                             | 9.93                    | 853                         | 1,320                              | 1,090 5           |            | 270 0.1                                                     | -                   | -                                                                          | -                 | -                  |                             | 376     |                                  |                             | 0.0831                       | -            | 10                          | -     | - 10.7                                      | 1,330                        | 83.6                         |                                | < 1.0 < 1.0                                                                       |             |                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | × 1.0 0.0          |                                                  |              |
|                    | FR_GCMW-1A_WG_201802201343_NF_3                               | 2018 02 20                  |            |        | 2,000 3          | 5.52                        | 9.95                    | 695                         | 656                                |                   |            |                                                             | -                   | -                                                                          | -                 | -                  |                             | 339     |                                  |                             | 0.141                        | 2.70         | -                           | -     | - 13.5                                      |                              | 43.9                         | 570                            | - < 5.0                                                                           | _           |                 | 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 1.0 0.0            | - 12                                             |              |
|                    | FR_GCMW-1A_2019-03-27                                         | 2019 03 27                  |            |        | 21.2 7           | 7 29 .                      | -                       |                             |                                    | 9.7 2             |            |                                                             | -                   | _                                                                          | -                 | -                  |                             | 338     |                                  |                             | 5 < 0.0050                   | 2.70         | 0.53                        | _     | - 15.9                                      |                              | < 1.5                        | 329                            | 8.8 < 1.0                                                                         |             |                 | < 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - <           | -                  | 0488 2.87                                        |              |
|                    | FR_GCMW-1A_2019-08-13                                         | 2019 08 13                  |            |        |                  |                             |                         |                             | 406                                | 7.4 3             |            |                                                             |                     | _                                                                          | -                 | -                  |                             |         |                                  |                             | k < 0.0010                   | -            | 0.878                       | -     | - 18.8                                      |                              | 1.64                         |                                | 14.2 < 1.0                                                                        | _           |                 | 0.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                    | 0456 3.42                                        |              |
|                    | FR_GCMW-1A-2019-10-10                                         | 2019 10 10                  |            |        |                  |                             |                         |                             |                                    |                   |            |                                                             |                     | -                                                                          | -                 | -                  |                             | 351     |                                  |                             | 6 0.0022                     |              | 0.407                       | -     | - 17                                        | 1,780                        |                              |                                | 10.6 < 1.0                                                                        | _           |                 | 0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                    | 0535 2.15                                        |              |
|                    | FR_GCMW-1A-2019-12-09                                         | 2019 12 09                  |            |        |                  |                             |                         |                             |                                    |                   |            |                                                             |                     | -                                                                          | -                 | _                  |                             | 349     |                                  |                             | 0.0115                       |              | 0.534                       | _     | - 17.3                                      |                              |                              |                                | 15.8 < 1.0                                                                        | _           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                    | 0520 3.17                                        |              |
|                    | FR_GCMW-1A-2020-01-22                                         | 2010 12 00                  |            |        |                  |                             |                         |                             |                                    |                   |            |                                                             |                     | -                                                                          | -                 | -                  |                             |         |                                  |                             | 0.0515                       | _            | 0.62                        | _     | - 16.6                                      |                              |                              |                                | 16.2 < 1.0                                                                        | _           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                    | 0411 3.35                                        |              |
| FR_GCMW-1B         |                                                               |                             |            |        |                  |                             |                         |                             |                                    |                   |            |                                                             |                     |                                                                            | 1                 |                    |                             |         |                                  |                             |                              |              |                             |       | 3.57 18.7                                   |                              | 1                            | 1                              | < 1.0 < 1.0                                                                       |             |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | -                  |                                                  | 0.0282       |
| _                  | FR_GCMW-1B_WG_201712151330                                    | 2017 12 15                  | 8.29       | 41.2 1 | 1,190 8          | 8.99                        | 7.31                    | 727                         | 704                                | 758 4             | .75 2      | 243 -10                                                     | -                   | -                                                                          | -                 | -                  |                             | 364     | 0.246                            | 1.53                        | 0.111                        | -            | 1.7                         | -     | - 7.58                                      |                              | 63.3                         |                                | 5.0 < 1.0                                                                         |             |                 | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                    | 0087 43                                          |              |
|                    | FR_GCMW-1B_WG_201802261403_NP_4                               |                             |            |        |                  |                             |                         |                             |                                    |                   |            |                                                             |                     | 732.4                                                                      | -                 | 5                  | 8.14 107                    |         |                                  |                             | -                            | -            | 7.89                        | -     | - 8.93                                      |                              | 83.5                         |                                | < 1.0 < 1.0                                                                       | _           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                    | 0054 125                                         |              |
|                    | FR GCMW-1B WG 2018-11-09 NP                                   | 2018 11 09                  |            |        |                  |                             | -                       |                             |                                    | 1,400 6           |            |                                                             |                     | -                                                                          | -                 |                    |                             |         |                                  |                             |                              | 5.15         | -                           | -     | - 8.32                                      |                              | 78                           |                                | - < 5.0                                                                           |             |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    | - < 10                                           |              |
|                    | FR_GCMW-1B_QTR_2018-10-01_NP                                  | 2018 12 14                  |            |        |                  |                             |                         |                             |                                    |                   |            |                                                             | 5.7                 | 703.3                                                                      | -                 |                    | 8.04 285                    |         |                                  |                             |                              | -            | 1.12                        |       |                                             | 1,120                        |                              |                                | < 1.0 < 1.0                                                                       |             |                 | 0.183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - <           |                    | 0195 5.9                                         |              |
| L                  |                                                               | · · · · · ·                 |            |        |                  |                             | -                       |                             | -                                  |                   |            |                                                             | <u> </u>            |                                                                            |                   | <u> </u>           |                             | 1       |                                  | 1                           | 1                            | I            |                             | L     |                                             | 1                            | 1                            |                                |                                                                                   | 1 1         | L               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                                                  |              |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2237699, L2242795, L2248235, L2248391, L2249360, L2250608, L2256457, L2256457, L2250457, L2283637, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2249360, L2256457, L22567, L22567, L2257, L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099. Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard BOLD

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) <sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Standard varies with pH.

<sup>c</sup> Standard varies with chloride.

<sup>d</sup> Standard varies with hardness.

<sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.

<sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                        |                             |       |                        |                          |                       |                              |                                 |                       |                |                   |               |                   |            |                           |                 | Dissolve     | ed Metals          | s                    |                 |               |              |                            |                    |                     |                |                        |                |                |                     |              |                           |
|--------------------|--------------------------------------------------------|-----------------------------|-------|------------------------|--------------------------|-----------------------|------------------------------|---------------------------------|-----------------------|----------------|-------------------|---------------|-------------------|------------|---------------------------|-----------------|--------------|--------------------|----------------------|-----------------|---------------|--------------|----------------------------|--------------------|---------------------|----------------|------------------------|----------------|----------------|---------------------|--------------|---------------------------|
| Sample<br>Location | Sample<br>ID                                           | Sample Date<br>(yyyy mm dd) |       | a<br>Dissolved Calcium | 句<br>Dissolved Iron<br>了 | b Dissolved Magnesium | ର୍ଘ Dissolved Manganese<br>୮ | a<br>B Dissolved Potassium<br>T | b<br>Dissolved Sodium | 년<br>Gantimony | б<br>Arsenic<br>Г | Ваrium<br>Т/б | 6t<br>T/Seryllium | uou<br>Jgµ | ର୍ଜ<br>T<br>T             | ба<br>7<br>7    | ta<br>Gobait | Соррег<br>Л/Бौ     | read<br>Lead<br>hg/L | Бth<br>T/б<br>Г | Mercury<br>Ba | G Molybdenum | бt<br>Nickel               | a<br>T<br>Selenium | hđ<br>Tjver         | Strontium<br>기 | 6th<br>Thallium<br>T/F | Е<br>Б<br>µg/L | Бт<br>Titanium | Лаnium<br>T/Dranium | ът<br>Г<br>Л | T Zinc <sup>t</sup><br>T  |
| Primary Screening  | ng Criteria: CSR Aquatic Life (AW) <sup>a</sup>        |                             | n/a   | n/a                    | n/a                      | n/a                   | n/a                          | n/a                             | n/a                   | 90             | 50                | 10,000        | 1.5               | 12,000     | 0.5-4 <sup>d</sup>        | 10 <sup>e</sup> | 40           | 20-90 <sup>d</sup> | 40-160 <sup>d</sup>  | n/a             | 0.25          | 10,000       | 250-<br>1,500 <sup>d</sup> | 20                 | 0.5-15 <sup>d</sup> | n/a            | 3                      | n/a            | 1,000          | 85                  | n/a          | 75-<br>2,400 <sup>d</sup> |
| Secondary Scree    | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             |       |                        |                          |                       |                              |                                 |                       |                |                   |               |                   |            | 0.8-<br>10.4 <sup>i</sup> | 100 (Cr +6)     | n/a          | n/a                | n/a                  | 2,530           | n/a           | n/a          | 517-<br>2,972 <sup>i</sup> | 700                | n/a                 | n/a            | n/a                    | n/a            | n/a            | 3,520               | n/a          | n/a                       |
| S8 Study Area      |                                                        |                             |       |                        |                          |                       |                              |                                 |                       |                |                   |               |                   |            |                           |                 |              |                    |                      |                 | 11            |              | 1 1                        |                    | 1                   |                |                        |                |                |                     |              |                           |
| FR_MW-1B           | FR_MW-1B_QSW_03102016_N                                | 2016 11 17                  | < 3.0 | 84.9                   | < 10                     | 27.8                  | < 0.10                       | 1.05                            | 1.20                  | 0.13           | < 0.10            | 0 108         | < 0.020           | < 10       | 0.0110                    | 0.11            | < 0.10       | < 0.50             | < 0.050              | 21.7            | < 0.0050      | 0.789        | < 0.50                     | <u>31.7</u>        | < 0.010             | 143            | < 0.010                | < 0.10         | < 10           | 1.38                | < 0.50       | < 3.0                     |
|                    | FR_MW-1B_QSW_02012017_N                                | 2017 02 23                  | < 1.0 | 106                    | < 10                     | 37.7                  | 0.25                         | 1.12                            | 1.70                  | 0.14           | < 0.10            | 0 143         | < 0.020           | < 10       | 0.0157                    | 0.10            | < 0.10       | < 0.20             | < 0.050              | 38.1            | < 0.0050      | 1.02         | < 0.50                     | <u>50.2</u>        | < 0.010             | 184            | < 0.010                | < 0.10         | < 10           | 2.25                | < 0.50       | < 1.0                     |
| -                  | FR_MW-1B_QSW_03042017_N                                | 2017 06 22                  | 5.8   | 49.4                   | < 50                     | 15.8                  | < 0.50                       | 0.91                            | 0.82                  | < 0.50         | < 0.50            | 66.0          | < 0.10            | < 50       | < 0.025                   | < 0.50          | < 0.50       | < 1.0              | < 0.25               | 19.5            | < 0.0050      | 1.02         | < 2.5                      | 13                 | < 0.050             | 88.2           | < 0.050                | < 0.50         | < 10           | 0.860               | < 2.5        | < 5.0                     |
| -                  | FR_MW-1B_QTR_2017-09-11_N                              | 2017 09 19                  | 5.0   | 95.8                   | < 10                     | 34.4                  | < 0.10                       | 1.32                            | 1.37                  | 0.17           | < 0.10            | 0 131         | < 0.020           | < 10       | 0.0175                    | < 0.10          | < 0.10       | < 0.50             | < 0.050              | 28.7            | < 0.0050      | 0.968        | < 0.50                     | <u>47.1</u>        | < 0.010             | 166            | < 0.010                | < 0.10         | < 10           | 1.90                | < 0.50       | < 3.0                     |
| -                  | FR_MW-1B_QTR_2017-10-02                                | 2017 11 21                  | < 3.0 | 98.7                   | < 10                     | 39.9                  | < 0.10                       | 1.12                            | 1.43                  | 0.12           | < 0.10            | ) 126         | < 0.020           | < 10       | 0.0142                    | 0.12            | < 0.10       | 2.32               | 0.128                | 22.3            | < 0.0050      | 0.894        | < 0.50                     | <u>42</u>          | < 0.010             | 171            | < 0.010                | < 0.10         | < 10           | 1.76                | < 0.50       | < 3.0                     |
|                    | FR_MW-1B_QTR_2018-01-01_N                              | 2018 02 14                  | < 3.0 | 118                    | < 10                     | 39.5                  | < 0.10                       | 1.05                            | 1.47                  | 0.13           | < 0.10            | ) 129         | < 0.020           | < 10       | 0.0144                    | < 0.10          | < 0.10       | < 0.50             | < 0.050              | 29.2            | < 0.0050      | 1.04         | < 0.50                     | <u>57</u>          | < 0.010             | 184            | < 0.010                | < 0.10         | < 10           | 2.44                | < 0.50       | < 3.0                     |
| -                  | FR_MW-1B_QTR_2018-04-02_N                              | 2018 06 13                  | < 3.0 | 65.8                   | < 10                     | 23.4                  | 0.12                         | 1.02                            | 1.07                  | 0.16           | < 0.10            | 80.5          | < 0.020           | < 10       | 0.0120                    | < 0.10          | < 0.10       | < 0.50             | < 0.050              | 19.2            | < 0.0050      | 1.08         | < 0.50                     | 20.6               | < 0.010             | 108            | < 0.010                | < 0.10         | < 10           | 1.22                | < 0.50       | 11.8                      |
| -                  | FR_MW-1B_QTR_2018-07-02_N                              | 2018 08 01                  | < 3.0 | 70.8                   | < 10                     | 22.1                  | < 0.10                       | 1.06                            | 1.05                  | 0.15           | < 0.10            | 90.9          | < 0.020           | < 10       | 0.0137                    | 0.14            | < 0.10       | < 0.50             | < 0.050              | 19.1            | < 0.0050      | 0.980        | < 0.50                     | <u>24</u>          | < 0.010             | 110            | < 0.010                | < 0.10         | < 10           | 1.50                | < 0.50       | < 1.0                     |
|                    | WG_2018-07-02_014                                      | Duplicate                   | < 3.0 | 77.4                   | < 10                     | 27.8                  | < 0.10                       | 1.19                            | 1.13                  | 0.18           | < 0.10            | 97.7          | < 0.020           | < 10       | 0.0132                    | 0.15            | < 0.10       | < 0.50             | < 0.050              | 21.0            | < 0.0050      | 0.997        | < 0.50                     | <u>25.1</u>        | < 0.010             | 128            | < 0.010                | < 0.10         | < 10           | 1.50                | < 0.50       | < 1.0                     |
|                    | QA/QC RPD%                                             |                             |       |                        |                          |                       |                              |                                 |                       |                |                   |               |                   |            |                           |                 |              |                    |                      |                 |               |              |                            |                    |                     |                |                        |                |                |                     |              |                           |
|                    | FR_MW-1B_QTR_2018-10-01_N                              | 2018 12 19                  | < 3.0 | 106                    | < 10                     | 37.8                  | < 0.10                       | 1.08                            | 1.41                  | 0.14           | < 0.10            | ) 128         | < 0.020           | < 10       | 0.0130                    | 0.15            | < 0.10       | < 0.50             | < 0.050              | 26.3            | < 0.0050      | 1.03         | < 0.50                     | <u>47.6</u>        | < 0.010             | 170            | < 0.010                | < 0.10         | < 10           | 2.19                | < 0.50       | 1.3                       |
| -                  | WG_2018-10-01_021                                      | Duplicate                   | < 3.0 | 105                    | < 10                     | 36.7                  | < 0.10                       | 1.05                            | 1.40                  | 0.14           | < 0.10            | ) 128         | < 0.020           | < 10       | 0.0125                    | 0.15            | < 0.10       | < 0.50             | < 0.050              | 25.4            | < 0.0050      | 1.01         | < 0.50                     | <u>49.3</u>        | < 0.010             | 171            | < 0.010                | < 0.10         | < 10           | 2.22                | < 0.50       | < 1.0                     |
|                    | QA/QC RPD%                                             |                             |       |                        |                          |                       |                              |                                 |                       |                |                   |               |                   |            |                           |                 |              |                    |                      |                 |               |              |                            |                    |                     |                |                        |                |                |                     |              |                           |
|                    | FR_MW-1B_QTR_2019-01-07_N                              | 2019 03 22                  | < 3.0 | 105                    | < 10                     | 42.4                  | < 0.10                       | 1.17                            | 1.77                  | 0.17           | < 0.10            | 0 130         | < 0.020           | < 10       | 0.0158                    | 0.11            | < 0.10       | < 0.50             | < 0.050              | 36.7            | < 0.0050      | 1.01         | < 0.50                     | <u>44.6</u>        | < 0.010             | 171            | < 0.010                | < 0.10         | < 10           | 2.49                | < 0.50       | < 1.0                     |
|                    | FR_MW-1B_QTR_2019-04-01_N                              | 2019 05 30                  | 11.6  | 62.9                   | < 10                     | 23.6                  | 0.73                         | 0.966                           | 0.997                 | 0.18           | < 0.10            | 80.9          | < 0.020           | < 10       | 0.0105                    | 0.14            | < 0.10       | < 0.50             | < 0.050              | 20.5            | < 0.0050      | 1.09         | < 0.50                     | 19.8               | < 0.010             | 107            | < 0.010                | < 0.10         | < 10           | 1.27                | < 0.50       | < 1.0                     |
|                    | FR_MW-1B_QTR_2019-07-01_N                              | 2019 07 25                  | 11.4  | 62.8                   | < 10                     | 21.8                  | 0.25                         | 0.955                           | 0.956                 | 0.15           | < 0.10            | 70.6          | < 0.020           | < 10       | 0.0090                    | 0.20            | < 0.10       | < 0.50             | < 0.050              | 17.3            | < 0.0050      | 1.00         | < 0.50                     | 18.5               | < 0.010             | 106            | < 0.010                | < 0.10         | < 10           | 1.24                | < 0.50       | < 1.0                     |
| -                  | FR_MW-1B_QTR_2019-10-07_N                              | 2019 11 07                  | < 3.0 | 100                    | < 10                     | 35.4                  | < 0.10                       | 1.20                            | 1.29                  | 0.18           | < 0.10            | ) 125         | < 0.020           | < 10       | 0.0125                    | 0.14            | < 0.10       | < 0.20             | < 0.050              | 23.7            | < 0.0050      | 1.14         | < 0.50                     | <u>40.1</u>        | < 0.010             | 183            | < 0.010                | < 0.10         | < 10           | 1.97                | < 0.50       | < 1.0                     |
|                    | FR_MW-1B_QTR_2020-01-06_N                              | 2020 02 27                  | < 3.0 | 118                    | < 10                     | 44.3                  | < 0.10                       | 1.32                            | 1.72                  | 0.18           | < 0.10            | 0 138         | < 0.020           | < 10       | 0.0148                    | < 0.10          | < 0.10       | < 0.20             | < 0.050              | 42.4            | < 0.0050      | 1.23         | < 0.50                     | <u>51.1</u>        | < 0.010             | 189            | < 0.010                | < 0.10         | < 10           | 2.76                | < 0.50       | < 1.0                     |
|                    | FR_DC2_QTR_2020-01-06_N                                | Duplicate                   | < 3.0 | 115                    | < 10                     | 43.5                  | < 0.10                       | 1.31                            | 1.66                  | 0.17           | < 0.10            | 138           | < 0.020           | < 10       | 0.0134                    | < 0.10          | < 0.10       | 0.22               | < 0.050              | 40.0            | < 0.0050      | 1.20         | < 0.50                     | <u>49.1</u>        | < 0.010             | 181            | < 0.010                | < 0.10         | < 10           | 2.71                | < 0.50       | < 1.0                     |
|                    | QA/QC RPD%                                             |                             |       |                        |                          |                       |                              |                                 |                       |                |                   |               |                   |            |                           |                 |              |                    |                      |                 |               |              |                            |                    |                     |                |                        |                |                |                     |              |                           |
|                    | FR_MW-1B_QTR_2020-04-06_N                              | 2020 05 29                  | 11.9  | 63.3                   | 12                       | 24.8                  | 1.18                         | 1.09                            | 1.04                  | 0.21           | < 0.10            | 75.6          | < 0.020           | < 10       | 0.0123                    | 0.13            | < 0.10       | 0.32               | < 0.050              | 23.1            | < 0.0050      | 1.08         | < 0.50                     | <u>25.8</u>        | < 0.010             | 110            | < 0.010                | < 0.10         | < 10           | 1.36                | < 0.50       | 1.0                       |
| FR_GCMW-1A         | GCMW-1A-170811                                         | 2017 08 11                  | 69.9  | 16.5                   | 45                       | 3.03                  | 23.8                         | 2.56                            | 167                   | 1.15           | 0.68              | 63.8          | < 0.10            | 180        | 0.013                     | < 0.50          | 0.16         | 0.31               | < 0.10               | 218             | < 0.010       | 29.1         | 2.25                       | 1.05               | < 0.050             | 89.1           | 0.065                  | 0.85           | < 5.0          | 5.39                | 1.7          | < 4.0                     |
|                    | FR_GCMW-1A_WG_201712151246                             | 2017 12 15                  | 4.0   | 12.5                   | 11                       | 2.89                  | 49.7                         | 1.99                            | 152                   | 0.24           | 1.73              | 66.0          | < 0.020           | 114        | 0.0054                    | < 0.10          | 0.13         | < 0.50             | < 0.050              | 213             | < 0.0050      | 23.2         | 1.40                       | 3.31               | < 0.020             | 104            | < 0.010                | < 0.10         | < 10           | 4.19                | 0.76         | < 3.0                     |
|                    | FR_GCMW-1A_WG_201802261345_NP_3                        | 2018 02 26                  | 74.2  | 11.8                   | 132                      | 2.73                  | 60.7                         | 2.00                            | 208                   | 0.24           | 1.19              | 68.8          | < 0.020           | 204        | 0.0131                    | 0.13            | 0.16         | 2.09               | 0.123                | 269             | < 0.0050      | 18.3         | 1.94                       | 4.53               | < 0.010             | 118            | < 0.010                | < 0.10         | < 10           | 4.14                | 0.97         | 6.7                       |
|                    | FR_GCMW-1A_WG_2018-11-09_NP                            | 2018 11 09                  | 7.0   | 11.3                   | < 50                     | 3.23                  | 44.5                         | 1.41                            | 158                   | < 0.50         | 1.03              | 83.2          | < 0.50            | 142        | < 0.025                   | < 0.50          | < 0.50       | < 1.0              | < 0.25               | 234             | < 0.0050      | 28.9         | < 2.5                      | 7.31               | < 0.050             | -              | < 0.050                | < 0.50         | < 1.5          | 1.77                | < 2.5        | < 5.0                     |
|                    | FR_GCMW-1A_2019-03-27                                  | 2019 03 27                  | 4.3   | 6.67                   | 22                       | 2.02                  | 35.5                         | 1.32                            | 151                   | 0.12           | 2.08              | 61.7          | < 0.020           | 187        | 0.0139                    | < 0.10          | < 0.10       | < 0.20             | < 0.050              | 266             | < 0.0050      | 36.5         | 0.61                       | 0.32               | < 0.010             | 93.2           | < 0.010                | < 0.10         | < 10           | 0.560               | < 0.50       | < 1.0                     |
|                    | FR_GCMW-1A_2019-08-13                                  | 2019 08 13                  | 3.6   | 7.06                   | 19                       | 2.29                  | 70.1                         | 1.14                            | 169                   | < 0.10         | 2.39              | 77.0          | < 0.020           | 180        | 0.0314                    | < 0.10          | < 0.10       | < 0.50             | < 0.050              | 266             | < 0.0050      | 43.1         | < 0.50                     | 0.082              | < 0.010             | 139            | < 0.010                | < 0.10         | < 10           | 0.527               | < 0.50       | < 1.0                     |
|                    | FR_GCMW-1A-2019-10-10                                  | 2019 10 10                  | 3.8   | 7.14                   | 34                       | 2.20                  | 67.6                         | 1.18                            | 162                   | < 0.10         | 2.30              | 88.3          | < 0.020           | 194        | < 0.015                   | < 0.10          | < 0.10       | 0.27               | < 0.050              | 256             | < 0.0050      | 43.9         | 0.52                       | < 0.050            | < 0.010             | 128            | < 0.010                | < 0.10         | < 10           | 0.318               | < 0.50       | < 1.0                     |
|                    | FR_GCMW-1A-2019-12-09                                  | 2019 12 09                  | 4.1   | 10.2                   | 53                       | 4.10                  | 73.1                         | 1.30                            | 163                   | < 0.10         | 2.00              | 120           | < 0.020           | 174        | 0.0106                    | < 0.10          | < 0.10       | < 0.20             | < 0.050              | 244             | < 0.0050      | 41.6         | < 0.50                     | 1.2                | < 0.010             | 144            | < 0.010                | < 0.10         | < 10           | 0.318               | < 0.50       | 2.2                       |
|                    | FR_GCMW-1A-2020-01-22                                  | 2020 01 22                  | 3.5   | 11.1                   | 47                       | 4.08                  | 71.5                         | 1.32                            | 150                   | < 0.10         | 1.85              | 119           | < 0.020           | 173        | 0.0162                    | < 0.10          | < 0.10       | 0.22               | < 0.050              | 229             | < 0.0050      | 42.5         | 0.58                       | 1.21               | < 0.010             | 166            | < 0.010                | < 0.10         | < 10           | 0.533               | < 0.50       | < 1.0                     |
| FR_GCMW-1B         | GCMW-1B-170811                                         | 2017 08 11                  | 39.1  | 34.5                   | < 10                     | 9.37                  | 51.0                         | 3.47                            | 397                   | 1.06           | 0.81              | 138           | < 0.10            | 124        | < 0.010                   | < 0.50          | 0.18         | 1.14               | < 0.10               | 209             | < 0.010       | 21.4         | 1.44                       | <u>47.9</u>        | < 0.050             | 319            | 0.041                  | < 0.20         | < 5.0          | 9.46                | < 1.0        | 6.7                       |
|                    | FR_GCMW-1B_WG_201712151330                             | 2017 12 15                  | 5.2   | 11.5                   | < 10                     | 3.03                  | 37.4                         | 1.98                            | 148                   | 0.16           | 1.24              | 45.8          | < 0.020           | 93         | 0.0056                    | < 0.10          | 0.11         | < 0.50             | < 0.050              | 218             | < 0.0050      | 18.4         | 1.15                       | 6.39               | < 0.010             | 112            | < 0.010                | < 0.10         | < 10           | 3.70                | < 0.50       | < 3.0                     |
|                    | FR_GCMW-1B_WG_201802261403_NP_4                        | 2018 02 26                  | < 3.0 | 20.6                   | < 10                     | 5.35                  | 57.5                         | 2.30                            | 169                   | 0.24           | 0.63              | 66.8          | < 0.020           | 95         | 0.0055                    | < 0.10          | 0.10         | < 0.50             | < 0.050              | 215             | < 0.0050      | 19.8         | 1.04                       | 18.3               | < 0.010             | 200            | 0.010                  | < 0.10         | < 10           | 5.62                | 0.81         | < 3.0                     |
|                    | FR_GCMW-1B_WG_2018-11-09_NP                            | 2018 11 09                  | 7.4   | 22.3                   | < 50                     | 6.83                  | 78.3                         | 1.89                            | 141                   | < 0.50         | 0.63              | 83.9          | < 0.50            | 97         | < 0.025                   | < 0.50          | < 0.50       | < 1.0              | < 0.25               | 231             | < 0.0050      | 22.2         | < 2.5                      | 13.4               | < 0.050             | -              | < 0.050                | < 0.50         | < 1.5          | 2.76                | < 2.5        | < 5.0                     |
|                    | FR_GCMW-1B_QTR_2018-10-01_NP                           | 2018 12 14                  | 356   | 34.7                   | 525                      | 10.6                  | 120                          | 2.48                            | 129                   | 0.12           | 0.86              | 133           | 0.041             | 102        | 0.115                     | 0.92            | 0.32         | 1.00               | 0.593                | 253             | < 0.0050      | 21.7         | 1.69                       | 19.8               | 0.013               | 549            | 0.019                  | < 0.10         | < 10           | 2.91                | 1.89         | 5.2                       |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2236699, L224795, L2248235, L2248391, L2249360, L2250608, L2256457, L2256457, L2256457, L2256457, L2283637, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2249360, L2256457, L225657, L22567, L22567, L22567, L2257, L2257 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL. RDL Denotes reported detection limit.

BOLD Concentration greater than CSR Aquatic Life (AW) standard

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                        |                             |            |               |                |               |             |         |         |                       |                 |                |              |              |              |            |                | Total             | Metals            |          |              |                    |             |         |        |                             |          |             |            |        |               |              |            |                         |
|--------------------|--------------------------------------------------------|-----------------------------|------------|---------------|----------------|---------------|-------------|---------|---------|-----------------------|-----------------|----------------|--------------|--------------|--------------|------------|----------------|-------------------|-------------------|----------|--------------|--------------------|-------------|---------|--------|-----------------------------|----------|-------------|------------|--------|---------------|--------------|------------|-------------------------|
|                    |                                                        |                             |            |               |                |               |             |         |         |                       |                 |                |              |              |              |            |                | . otu             | linotalo          |          |              |                    |             |         |        |                             |          |             |            |        |               |              | i – – – –  |                         |
| Sample<br>Location | Sample<br>ID                                           | Sample Date<br>(yyyy mm dd) | T/aluminum | ⊑<br>Antimony | t<br>T∕Arsenic | arium<br>T/bπ | E Beryllium | Bismuth | E Boron | 5<br>Cadmium<br>T/D   | Calcium<br>7/bf | Dh<br>Chromium | Бћ<br>Гоbalt | Д/<br>Соррег | uo.r<br>ug/L | T/b<br>T/b | T/bft<br>T/bft | n<br>A/ Magnesium | π<br>T/ Manganese |          | E Molybdenum |                    | Dhosphorous |         | Sele   | р Silicon<br>раба<br>Silver | . Halr   | E Strontium | E Thallium | μα/L   | r<br>Titanium | E<br>Uranium | Adium<br>۲ | ⊑<br>rzinc <sup>f</sup> |
|                    | ng Criteria: CSR Aquatic Life (AW) <sup>a</sup>        | ())))                       | n/a        | n/a           | n/a            | n/a           | n/a         | n/a     | n/a     | n/a                   | n/a             | n/a            | n/a          | n/a          | n/a          | n/a        | n/a            | n/a               | n/a               | n/a      | n/a          |                    | n/a         |         |        | n/a n/a                     |          | n/a         | n/a        | n/a    | n/a           | n/a          |            | n/a                     |
|                    |                                                        |                             |            |               |                |               |             |         | -       |                       |                 |                |              |              |              |            |                |                   |                   |          |              | 517-               | -           |         |        |                             |          |             | -          |        |               |              |            |                         |
| Secondary Scree    | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a        | n/a           | n/a            | n/a           | n/a         | n/a     | n/a     | 0.8-10.4 <sup>i</sup> | n/a             | 100 (Cr +6     | ) n/a        | n/a          | n/a          | n/a        | 2,530          | n/a               | n/a               | n/a      |              | 2,972 <sup>i</sup> | n/a         | n/a 7   | 00 I   | n/a n/a                     | n/a      | n/a         | n/a        | n/a    | n/a           | 3,520        | n/a        | n/a                     |
| S8 Study Area      |                                                        |                             |            |               |                |               |             |         |         |                       |                 |                |              |              |              |            |                |                   |                   |          |              |                    |             |         |        |                             |          |             |            |        |               |              |            |                         |
| FR_MW-1B           | FR_MW-1B_QSW_03102016_N                                | 2016 11 17                  | 87.8       | 0.19          | 0.16           | 115           | < 0.020     | < 0.050 | < 10    | 0.0250                | 88,800          | 0.24           | < 0.10       | < 0.50       | 97           | 0.062      | 23.9           | 29,100            | 6.01              | < 0.0050 | 0.853        | < 0.50             | -           | 1,060 2 | 9.4 1, | ,990 < 0.0                  | 10 1,160 | ) 151       | < 0.010    | < 0.10 | < 10          | 1.47         | 0.70       | < 3.0                   |
|                    | FR_MW-1B_QSW_02012017_N                                | 2017 02 23                  | 80.3       | 0.23          | 0.17           | 139           | < 0.020     | < 0.050 | < 10    | 0.0239                | 103,000         | 0.26           | < 0.10       | < 0.50       | 131          | 0.076      | 36.5           | 36,400            | 6.20              | < 0.0050 | 0.954        | < 0.50             | -           | 1,180 4 | 3.9 1, | ,770 < 0.0                  | 1,690    | ) 177       | < 0.010    | < 0.10 | < 10          | 2.16         | 0.51       | < 3.0                   |
|                    | FR_MW-1B_QSW_03042017_N                                | 2017 06 22                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_MW-1B_QTR_2017-09-11_N                              | 2017 09 19                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_MW-1B_QTR_2017-10-02                                | 2017 11 21                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_MW-1B_QTR_2018-01-01_N                              | 2018 02 14                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_MW-1B_QTR_2018-04-02_N                              | 2018 06 13                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_MW-1B_QTR_2018-07-02_N                              | 2018 08 01                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | WG_2018-07-02_014                                      | Duplicate                   | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | QA/QC RPD%                                             |                             | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_MW-1B_QTR_2018-10-01_N                              | 2018 12 19                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             |              | -          | -                       |
|                    |                                                        | Duplicate                   | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | QA/QC RPD%                                             |                             | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_MW-1B_QTR_2019-01-07_N                              | 2019 03 22                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_MW-1B_QTR_2019-04-01_N                              | 2019 05 30                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_MW-1B_QTR_2019-07-01_N                              | 2019 07 25                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | _            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          |                         |
| -                  | FR_MW-1B_QTR_2019-10-07_N                              | 2019 11 07                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | _              | -            | _            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          |                         |
| -                  | FR_MW-1B_QTR_2020-01-06_N                              | 2020 02 27                  |            | _             | -              | -             | -           | _       | -       | -                     | -               | -              | -            | _            | -            | _          | -              | -                 | -                 | _        | _            | -                  | _           |         | -      |                             | -        | -           |            | -      | -             |              | -          |                         |
| -                  | FR_DC2_QTR_2020-01-06_N                                | Duplicate                   |            | -             | -              | -             | _           | -       | _       | -                     | -               | _              | _            | _            | _            | _          | -              | _                 | -                 | -        | -            | _                  | -           |         | -      |                             | -        | -           | _          | _      | _             | _            | _          |                         |
|                    | QA/QC RPD%                                             | Duplicate                   | -          | _             |                | -             | _           |         | -       | -                     | -               |                |              |              | _            | -          | -              | -                 |                   | -        | -            | -                  | -           |         | -      |                             | -        |             | -          | _      |               |              | -          | -                       |
|                    | FR_MW-1B_QTR_2020-04-06_N                              | 2020 05 29                  |            |               | -              |               | 1           | -       |         |                       |                 | -              | -            | -            |              |            |                |                   | -                 | -        |              |                    | -           |         |        |                             |          |             | -          |        | -             | -            |            |                         |
| FR_GCMW-1A         | GCMW-1A-170811                                         | 2020 05 29                  | -          | -             |                | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  |             |         | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    |                                                        |                             | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           |         |        |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_GCMW-1A_WG_201712151246                             | 2017 12 15                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           |         | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_GCMW-1A_WG_201802261345_NP_3                        | 2018 02 26                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           |         | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_GCMW-1A_WG_2018-11-09_NP                            | 2018 11 09                  | 3,510      |               |                | 214           | 0.53        | -       | 172     | 1.30                  | 36,600          | 8.96           | 3.51         |              | 8,030        | 6.90       | 213            |                   | 290               |          | 22.1         | 14.7               |             | -       |        | - 0.22                      |          |             | 0.251      |        | 16.0          |              | 25.1       | 80                      |
|                    | FR_GCMW-1A_2019-03-27                                  | 2019 03 27                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 |                   | < 0.0050 | -            | -                  | -           |         | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_GCMW-1A_2019-08-13                                  | 2019 08 13                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 |                   | < 0.0050 | -            | -                  | -           |         |        |                             | -        | -           |            | -      | -             | -            | -          | -                       |
| -                  | FR_GCMW-1A-2019-10-10                                  | 2019 10 10                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | < 0.0050 | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_GCMW-1A-2019-12-09                                  | 2019 12 09                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | < 0.0050 | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_GCMW-1A-2020-01-22                                  | 2020 01 22                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | < 0.0050 | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
| FR_GCMW-1B         | GCMW-1B-170811                                         | 2017 08 11                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_GCMW-1B_WG_201712151330                             | 2017 12 15                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_GCMW-1B_WG_201802261403_NP_4                        | 2018 02 26                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           |         | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    | FR_GCMW-1B_WG_2018-11-09_NP                            | 2018 11 09                  | 4,120      | 0.71          | 6.18           | 263           | 0.78        | -       | 122     | 2.52                  | 105,000         | 14.5           | 5.64         | 20.6         | 15,100       | 10.8       | 202            | 21,300            | 615               | < 0.050  | 15.7         | 23.5               | -           | 3,290 1 | 3.7    | - 0.29                      | 4 138,00 | - 00        | 0.293      | 0.77   | 20.8          | 5.11         | 31.2       | 137                     |
|                    | FR_GCMW-1B_QTR_2018-10-01_NP                           | 2018 12 14                  | -          | -             | -              | -             | -           | -       | -       | -                     | -               | -              | -            | -            | -            | -          | -              | -                 | -                 | -        | -            | -                  | -           | -       | -      |                             | -        | -           | -          | -      | -             | -            | -          | -                       |
|                    |                                                        |                             |            |               | •              |               | ·           |         |         |                       | •               | *              |              |              |              |            |                |                   |                   | . I.     |              |                    |             |         |        |                             |          |             |            | •      |               |              |            | -                       |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2238699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L2250608, L2256457, L2275412, L2282357, L2283636, L2283637, L2289256, L2290261, L2292060, L2292416, L22316991, L2317812, L2249360, L2250457, L22507, L L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.
- n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL. RDL Denotes reported detection limit.

- Concentration greater than CSR Aquatic Life (AW) standard BOLD
- BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation. <sup>j</sup> Criteria in not considered applicable and has not been applied.

|                    |                                                         |                            |        |               |             | F               | Physical                                                                | Param           | eters                       |                          |                        |                                                            |                      |                     | Field F | Parame        | eters            |                             |       |                            |                  |                      |                          |                          |            |                                  | Disso              | lved Ino     | rganics                                   |                                                                  |                             |                      |         |                    |                            |                      |                      |                                                                                                  |
|--------------------|---------------------------------------------------------|----------------------------|--------|---------------|-------------|-----------------|-------------------------------------------------------------------------|-----------------|-----------------------------|--------------------------|------------------------|------------------------------------------------------------|----------------------|---------------------|---------|---------------|------------------|-----------------------------|-------|----------------------------|------------------|----------------------|--------------------------|--------------------------|------------|----------------------------------|--------------------|--------------|-------------------------------------------|------------------------------------------------------------------|-----------------------------|----------------------|---------|--------------------|----------------------------|----------------------|----------------------|--------------------------------------------------------------------------------------------------|
|                    |                                                         |                            |        |               |             |                 |                                                                         |                 |                             |                          | on                     |                                                            |                      |                     |         |               |                  |                             |       |                            |                  |                      |                          |                          |            |                                  |                    |              |                                           |                                                                  |                             |                      |         |                    |                            |                      |                      | _                                                                                                |
| Sample<br>Location | Sample                                                  | Sample Date<br>(yyyy mm dd | _      | d<br>T∕<br>T/ | A Turbidity | be Total Anions | a<br>T/D<br>T/D<br>T/D<br>T/D<br>T/D<br>T/D<br>T/D<br>T/D<br>T/D<br>T/D | ta<br>a⊃(S<br>a | ⊟<br>Total Dissolved Solids | T Total Suspended Solids | Dissolved Organic Carb | <ul> <li>Oxidation Reduction</li> <li>Potential</li> </ul> | Cation Anion Balance | C rield remperature |         | Field Turbidi | Dis              | 보 pH (field)<br>로 Field ORP | Total | B<br>Ammonia, Total (as N) | B Nitrate (as N) | <br>Mbritrite (as N) | a<br>booting (as N)<br>□ | ₿<br>Kjeldahl Nitrogen-N | B Nitrogen | a Total Nitrogen-N<br>Z Chloride | http://μα          | b<br>Sulfate | ∃ Alkalinity, Bicarbonate<br>6 (as CaCO3) | Alkalinity, Carbonate<br>더 (as CaCO3)<br>크 Alkalinity, Hydroxide | 년 (as CaCO3)<br>Bicarbonate | ⊐//<br>T/b Carbonate | ma/T    | ∃<br>Total Acidity | a<br>Acidity (pH 8.3)<br>┢ | b<br>Drtho-Phosphate | Total Organic Carbon | b<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T |
| Primary Screeni    | ing Criteria: CSR Aquatic Life (AW) <sup>a</sup>        |                            | n/a    | n/a           | n/a         | n/a             | n/a                                                                     | n/a             | n/a                         | n/a                      | n/a                    | n/a                                                        | n/a n                | /a n                | /a r    | n/a n         | n/a              | n/a n/a                     | n/a   | 1.31-                      | 400              | 0.2-2.0 <sup>c</sup> | 400                      | n/a                      | n/a        | n/a 1,50                         | 2,000-             | 1,280        | n/2                                       | n/a n                                                            | /a n/a                      | a n/a                | n/a     | n/a                | n/a                        | n/a                  | n/a                  | n/a                                                                                              |
|                    |                                                         |                            |        |               |             |                 |                                                                         |                 |                             |                          |                        |                                                            |                      | , <b>a</b>          |         |               |                  |                             |       | 18.5 <sup>b</sup>          |                  |                      |                          |                          |            | 1,0                              | 3,000 <sup>c</sup> | 4,290        | a                                         |                                                                  |                             |                      |         |                    |                            |                      |                      |                                                                                                  |
| Secondary Scre     | eening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                            | n/a    | n/a           | n/a         | n/a             | n/a                                                                     | n/a             | 10,000                      | n/a                      | n/a                    | n/a                                                        | n/a n                | /a n                | /a r    | n/a n         | n/a <sup>j</sup> | n/a n/a                     | n/a   | n/a                        | 6.08-<br>223.8   |                      | n/a                      | n/a                      | n/a        | n/a n/a                          | a n/a              | 4,990        | ) n/a                                     | n/a n                                                            | /a n/a                      | a n/a                | 78      | n/a                | n/a                        | n/a                  | n/a                  | n/a                                                                                              |
| S8 Study Area      |                                                         |                            |        |               |             |                 |                                                                         |                 |                             |                          |                        |                                                            |                      |                     |         |               |                  |                             |       |                            | 220.0            | 00.00                |                          |                          |            |                                  |                    |              |                                           |                                                                  |                             |                      |         |                    |                            |                      |                      |                                                                                                  |
| FR_GCMW-1B         | FR_GCMW-1B_2019-03-27                                   | 2019 03 27                 | 8.38 8 | 84.3          | 26.1        | 8.2             | 8.21                                                                    | 751             | 464                         | 23.4                     | 6.53                   | 358                                                        | 0.1 2.               | 61 75               | 3.2 3   | 7.2 0.        | .28 8            | 8.23 43.2                   | 2 361 | 0.157                      | < 0.02           | 25 0.130             | -                        | 0.483                    | -          | - 10.                            | 6 1,090            | 29.5         | 353                                       | 8.2 <                                                            | 1.0 -                       | -                    | < 0.25  | 5 -                | < 1.0                      | 0.0067               | 7.60                 | 0.0402                                                                                           |
| _                  | FR GCMW 1B 2019-05-31 NP                                | 2019 05 31                 |        | 90            |             | 7.99            | 8.94                                                                    | 759             | 448                         |                          |                        |                                                            | 5.6                  |                     |         | -             | -                |                             | 353   |                            |                  | 5( < 0.0010          | -                        | 0.385                    | -          | - 13.                            |                    | 23.6         |                                           | 25.2 <                                                           |                             | -                    | 0.143   |                    |                            | < 0.0010             |                      |                                                                                                  |
|                    | FR GCMW-1B QTR 2019-07-01 N                             | 2019 07 26                 |        |               |             | 8.76            | 8.02                                                                    | 754             | 489                         |                          |                        |                                                            | -4.4                 |                     | -       | -             | -                |                             | 398   |                            |                  | 2 < 0.0010           | -                        | 0.462                    | -          | - 14                             |                    | 16           |                                           | 17.4 <                                                           |                             | -                    | 0.122   |                    |                            | < 0.0010             |                      |                                                                                                  |
|                    | FR_GCMW-1B_2019-08-13                                   | 2019 08 13                 | 8.51 8 | 85.6          | 8.15        | 8.58            | 9.86                                                                    | 751             | 453                         | 1.9                      | 6.71                   | 451                                                        | 6.9 13               | 3.9 77              | 0.4 5   | .79 0.        | .29 8            | 8.12 -178                   | 3 384 | 0.0702                     | 0.033            | 8 < 0.0010           | -                        | 0.344                    | -          | - 16.                            | 4 1,980            | 15.9         | 368                                       | 16.4 <                                                           | 1.0 -                       | -                    | 0.144   |                    |                            |                      |                      | 0.0195                                                                                           |
|                    | <br>FR_GCMW-1B_QTR_2019-10-07_N                         | 2019 10 03                 |        | 82.3          |             | 8.45            | 8.32                                                                    | 728             | 442                         | 1.3                      | 7.02                   | 193                                                        | -0.8                 |                     | -       | -             | -                |                             | 390   | 0.0769                     | 0.008            | 1 < 0.0010           | -                        | 0.361                    | -          | - 13                             |                    | 9.91         |                                           |                                                                  |                             | -                    | 0.102   |                    |                            |                      |                      | 0.025                                                                                            |
|                    | FR GCMW-1B-2019-12-09                                   | 2019 12 09                 |        | 83.9          | 5.23        | 8.33            | 8.66                                                                    | 701             | 496                         | 6.9                      | 9.23                   | 239                                                        | 1.9 3                | .8 71               | 6.8     | 12 0.         | .52 8            | 8.26 -189                   | 9 391 | 0.127                      | < 0.005          | 50 < 0.0010          | -                        | 0.375                    | -          | - 11.                            | 7 1,690            | 5.25         | 391                                       | < 1.0 <                                                          | 1.0 -                       | -                    | 0.074   |                    |                            | 0.0071               |                      | 0.0184                                                                                           |
|                    | <br>FR_GCMW-1B-2020-01-22                               | 2020 01 22                 |        |               |             |                 | 8.12                                                                    | 706             | 475                         | 2.5                      | 9.3                    | 280                                                        | -3.9                 |                     | -       | -             | -                |                             | 411   | 0.0878                     | < 0.005          | 50 < 0.0010          | -                        | 0.416                    | -          | - 12.                            |                    | 6.58         | 398                                       | 13.0 <                                                           | 1.0 -                       | -                    | 0.088   | _                  |                            | 0.0111               |                      |                                                                                                  |
|                    | FR_GCMW-1B_2020-05-25                                   | 2020 05 25                 | 8.54 5 | 57.4          | 5.17        | 8.36            | 8.82                                                                    | 606             | 445                         | 2.9                      | 5.67                   | 273                                                        | 2.7                  |                     | -       | -             | -                |                             | 382   | 0.124                      | 0.005            | 1 < 0.0010           | -                        | 0.324                    | -          | - 16.                            | 9 1,560            | 7.82         | 363                                       | 19.0 <                                                           | 1.0 -                       | -                    | 0.081   | -                  | < 1.0                      | 0.0110               | 5.41                 | 0.0220                                                                                           |
| FR_GCMW-2          | GCMW-2-170811                                           | 2017 08 11                 | 8.12   | 849           | 0.8         | -               | -                                                                       | 1,370           | 1,130                       | -                        | -                      | -                                                          | - 9                  | .5 1,4              | 46      | - 4.          | .15 7            | 7.13 122.                   | 1 233 | < 0.020                    | 20.3             | 0.154                | 20.4                     | < 0.050                  | -          | 20.4 1.2                         | 3 180              | 432          | 233                                       | < 1.0 <                                                          | 1.0 -                       | -                    | -       | -                  | -                          | -                    | - <                  | < 0.0020                                                                                         |
|                    | FR_GCMW-2_WG_201712141310                               | 2017 12 14                 | 7.79   | 817           | 28.1        | 16.9            | 16.6                                                                    | 1,460           | 1,060                       | 27.7                     | 0.59                   | 334                                                        | -1                   |                     | -       | -             | -                |                             | 238   | 0.0090                     | 48.2             | 0.0034               | -                        | 0.272                    | -          | - 1.0                            | 2 128              | 416          | 238                                       | < 1.0 <                                                          | 1.0 -                       | -                    | < 0.050 | 0 -                | 5.3                        | 0.0088               | 1.47                 | 0.0241                                                                                           |
|                    | FR_GCMW-2_WG_201802141258_N_11                          | 2018 02 14                 | 7.85   | 923           | 1.27        | 19.9            | 18.7                                                                    | 1,670           | 1,320                       | 1.6                      | < 0.50                 | 239                                                        | -3.2 3               | .6 1,5              | 524     | - 3.          | .19 7            | 7.32 265.                   | 7 239 | < 0.005                    | 0 63.2           | 0.0052               | -                        | < 0.050                  | -          | - <2                             | .5 180             | 511          | 239                                       | < 1.0 < 1                                                        | 1.0 -                       | -                    | < 0.25  | 5 -                | 7.7                        | 0.0021               | < 0.50               | 0.0041                                                                                           |
|                    | FR_GCMW-2_QTR_2018-10-01_NP                             | 2018 12 14                 | 7.87   | 821           | 1.67        | 18.1            | 16.6                                                                    | 1,460           | 1,230                       | 3.2                      | 0.71                   | 286                                                        | -4.2 5               | 5 1,3               | 331     | - 3.          | .61 7            | 7.37 226.                   | 4 227 | 0.0319                     | 55.6             | 0.0041               | -                        | < 0.050                  | -          | - 1.3                            | 4 204              | 459          | 227                                       | < 1.0 < 1                                                        | 1.0 -                       | -                    | < 0.050 | 0 -                | 6.3                        | 0.0111               | 0.65                 | 0.0071                                                                                           |
|                    | FR_GCMW-2_QTR_2019-01-07_N                              | 2019 03 13                 | 7.72   | 947           | 1.73        | 22.3            | 19.2                                                                    | 1,760           | 1,470                       | 2.3                      | < 0.50                 | 469                                                        | -7.6 3               | .5 1,5              | 517     | - 3.          | .83 7            | 7.37 264.                   | 8 222 | 0.0597                     | 83.5             | < 0.0050             | -                        | < 0.050                  | -          | - <2                             | .5 130             | 574          | 222                                       | < 1.0 < 1                                                        | 1.0 -                       | -                    | < 0.25  | 5 -                | 9.5                        | 0.0020               | < 0.50               | 0.0039                                                                                           |
|                    | FR_GCMW-2_QTR_2019-04-01_N                              | 2019 06 14                 | 8.15   | 623           | 1.46        | 13.3            | 12.7                                                                    | 1,170           | 817                         | 1.6                      | 0.8                    | 433                                                        | -2.6                 | 6 1,0               | 96      | - 6.          | .38 7            | 7.42 181.                   | 3 198 | < 0.005                    | 0 35.7           | < 0.0050             | -                        | < 0.050                  | -          | - <2                             | .5 220             | 327          | 198                                       | < 1.0 < 1                                                        | 1.0 -                       | -                    | < 0.25  | 5 -                | 5.7                        | < 0.0010             | 0.67                 | 0.0022                                                                                           |
|                    | FR_GCMW-2_QTR_2019-07-01_N                              | 2019 07 26                 | 8.21   | 591           | 0.68        | 12.8            | 12.1                                                                    | 1,110           | 867                         | 1.8                      | 2.31                   | 483                                                        | -3.1 8               | 8 94                | 45      | -             | 4 7              | 7.41 54.3                   | 3 216 | 0.0080                     | 31.3             | < 0.0050             | -                        | < 0.050                  | -          | - <2                             | .5 260             | 300          | 216                                       | < 1.0 < 1                                                        | 1.0 -                       | -                    | < 0.25  | 5 -                | 8.8                        | 0.0020               | 2.54                 | 0.0044                                                                                           |
|                    | FR_GCMW-2_QTR_2019-10-07_N                              | 2019 11 07                 | 7.93   | 799           | 0.72        | 16.4            | 16.2                                                                    | 1,120           | 1,050                       | 2.8                      | < 0.50                 | 387                                                        | -0.5 6               | .4 1,3              | 888     | - 4.          | .61 7            | 7.32 164.                   | 3 243 | < 0.005                    | 0 42.7           | < 0.0050             | -                        | < 0.050                  | -          | - <2                             | .5 180             | 408          | 243                                       | < 1.0 <                                                          | 1.0 -                       | -                    | < 0.25  | 5 -                | 4.9                        | 0.0027               | < 0.50               | 0.0027                                                                                           |
|                    | FR_GCMW-2_QTR_2020-01-06_N                              | 2020 02 10                 | 8.05   | 971           | 0.77        | 19.6            | 19.7                                                                    | 1,600           | 1,300                       | < 1.0                    | 0.63                   | 309                                                        | 0.3 4                | .1 1,6              | 670     | - 5.          | .05 7            | 7.67 214.                   | 9 229 | < 0.005                    | 0 67.3           | < 0.0050             | -                        | < 0.050                  | -          | - <2                             | .5 150             | 489          | 229                                       | < 1.0 <                                                          | 1.0 -                       | -                    | < 0.25  | 5 -                | 8.4                        | 0.0052               | 2.93                 | 0.0724                                                                                           |
|                    | FR_GCMW-2_QTR_2020-04-06_N                              | 2020 06 04                 | 8.22   | 548           | 0.94        | 11.4            | 11.2                                                                    | 969             | 792                         | 1.6                      | 1.46                   | 422                                                        | -1.3 ·               |                     | -       | -             | -                |                             | 205   | 0.0086                     | 22.4             | 0.0016               | -                        | < 0.25                   | -          | - 0.6                            | 6 156              | 275          | 205                                       | < 1.0 < 1                                                        | 1.0 -                       | -                    | < 0.050 | 0 -                | 2.7                        | 0.0019               | 0.86                 | 0.0059                                                                                           |
| FR_CB-1A           | FR_CB-1A_WG_2019-11-05_NP <sup>9</sup>                  | 201                        |        |               |             |                 |                                                                         |                 |                             |                          |                        |                                                            |                      |                     |         |               |                  |                             |       |                            |                  |                      |                          |                          |            |                                  |                    |              |                                           |                                                                  |                             |                      |         |                    |                            |                      |                      |                                                                                                  |
|                    | FR_CB-1A_2019-04-05                                     | 2019 04 05                 | 7.89   | 265           | 21.1        | 7.16            | 6.26                                                                    | 600             | 315                         | 8.8                      | 2.13                   | 364                                                        | -6.7 ·               |                     | -       | -             | -                |                             | 310   | 0.938                      | 0.0094           | 4 0.0013             | -                        | 1.39                     | -          | - 32.                            | 5 218              | 1.19         | 310                                       | < 1.0 < 1                                                        | 1.0 -                       | -                    | < 0.050 | - 0                | 6.3                        | < 0.0010             | 3.02                 | 0.0215                                                                                           |
|                    | FR_DC4_2019-04-05                                       | Duplicate                  | 7.89   | 266           | 20.4        | 7.03            | 6.32                                                                    | 602             | 315                         | 10                       | 2.17                   | 419                                                        | -5.3                 |                     | -       | -             | -                |                             | 304   | 0.913                      | 0.007            | 6 0.0012             | -                        | 1.27                     | -          | - 32.                            | 5 340              | 1.06         | 304                                       | < 1.0 < 1                                                        | 1.0 -                       | -                    | < 0.050 | 0 -                | 6.0                        | < 0.0010             | 3.00                 | 0.0191                                                                                           |
|                    | QA/QC RPD%                                              |                            | 0      | 0             | 3           | *               | *                                                                       | 0               | 0                           | 13                       | *                      | *                                                          | * .                  |                     | -       | -             | -                |                             | 2     | 3                          | *                | *                    | -                        | 9                        | -          | - 0                              | 44                 | *            | 2                                         | * :                                                              | * -                         | -                    | *       | -                  | 5                          | *                    | 1                    | 12                                                                                               |
|                    | FR_CB_1A_2019-05-31_NP                                  | 2019 05 31                 | 8.27   | 304           | 17.9        | 6.11            | 7.14                                                                    | 579             | 315                         | 15                       | 1.4                    | 267                                                        | 7.8                  |                     | -       | -             | -                |                             | 256   | 1.21                       | 0.018            | 1 0.0030             | -                        | 1.84                     | -          | - 34.                            | 1 403              | 0.7          | 256                                       | < 1.0 < 1                                                        | 1.0 -                       | -                    | < 0.050 | 0 -                | 3.6                        | < 0.0010             | 2.36                 | 0.0746                                                                                           |
|                    | FR_CB_1A_2019-08-12                                     | 2019 08 12                 | 8.15   | 284           | 20.4        | 6.59            | 6.55                                                                    | 595             | 313                         | 1.9                      | 1.68                   | 382                                                        | -0.3 ·               |                     | -       | -             | -                |                             | 276   | 1.07                       | < 0.005          | 50 < 0.0010          | -                        | 1.06                     | -          | - 37.                            | 2 411              | 0.37         | 276                                       | < 1.0 < 1                                                        | 1.0 -                       | -                    | < 0.050 | 0 -                | 10.4                       | < 0.0010             | 1.81                 | 0.0096                                                                                           |
|                    | FR_CB-1A-2019-10-03                                     | 2019 10 03                 | 8.25   | 286           | 9.57        | 6.68            | 6.6                                                                     | 585             | 330                         | 3.2                      | 1.47                   | 69.6                                                       | -0.6                 |                     | -       | -             | -                |                             | 278   | 1.01                       | 0.010            | 5 < 0.0010           | -                        | 1.21                     | -          | - 38.                            | 3 413              | 0.97         | 278                                       | < 1.0 < 7                                                        | 1.0 -                       | -                    | < 0.050 | 0 -                | 6.5                        | < 0.0010             | 1.45                 | 0.015                                                                                            |
|                    | FR_CB-1A-2019-12-10                                     | 2019 12 10                 | 8.32   | 274           | 17.7        | 6.67            | 6.34                                                                    | 587             | 269                         | < 1.0                    | 2.45                   | 492                                                        | -2.6                 |                     | -       | -             | -                |                             | 278   | 0.966                      | < 0.005          | 50 < 0.0010          | -                        | 0.991                    | -          | - 39.                            | 1 400              | < 0.3        | 0 271                                     | 7.0 <                                                            | 1.0 -                       | -                    | < 0.050 | 0 -                | < 1.0                      | 0.0012               | 2.10                 | 0.0108                                                                                           |
|                    | FR_CB-1A -2020-01-23                                    |                            |        |               |             |                 |                                                                         |                 |                             |                          |                        |                                                            |                      |                     |         |               |                  |                             |       |                            |                  |                      |                          |                          |            |                                  |                    |              |                                           |                                                                  |                             |                      |         |                    |                            |                      |                      |                                                                                                  |
| FR_CB-1B           | FR_CB-1B_WG_2019-11-05_NP <sup>g</sup>                  | 201                        |        |               |             |                 |                                                                         |                 |                             |                          |                        |                                                            |                      |                     |         |               |                  |                             |       |                            |                  |                      |                          |                          |            |                                  |                    |              |                                           |                                                                  |                             |                      |         |                    |                            |                      |                      |                                                                                                  |
|                    | FR_CB-1B_2019-04-05                                     | 2019 04 05                 |        |               |             |                 |                                                                         |                 |                             | 9.5                      |                        |                                                            |                      | - ·                 | -       | -             | -                |                             |       |                            |                  | 50 < 0.0010          |                          | 1.25                     | -          | - 35.                            |                    |              |                                           | < 1.0 <                                                          |                             | -                    | < 0.050 |                    |                            | < 0.0010             |                      |                                                                                                  |
|                    | FR_CB-1B_2019-05-29                                     | 2019 05 29                 |        |               |             |                 |                                                                         |                 |                             | 15.6                     |                        |                                                            |                      |                     | -       | -             | -                |                             | 282   |                            |                  | 50 < 0.0010          |                          | 1.18                     | -          | - 36                             |                    |              |                                           | 6.4 <                                                            |                             | -                    | < 0.050 | 0 -                |                            | < 0.0010             |                      |                                                                                                  |
|                    | FR_CB_1B_2019-08-14                                     | 2019 08 14                 |        |               |             |                 |                                                                         |                 |                             | 2.9                      |                        |                                                            |                      |                     | -       | -             | -                |                             | 268   |                            |                  | 50 < 0.0010          |                          | 1                        | -          | - 39.                            |                    |              |                                           | < 1.0 <                                                          |                             |                      | < 0.050 |                    |                            | < 0.0010             |                      |                                                                                                  |
|                    | FR_CB-1B-2019-10-03                                     | 2019 10 03                 |        |               |             |                 |                                                                         |                 |                             |                          |                        |                                                            |                      | - ·                 | -       | -             | -                |                             | 267   |                            |                  | 50 < 0.0010          |                          | 1.13                     | -          | - 39.                            |                    |              |                                           | < 1.0 < 1                                                        |                             |                      | < 0.050 |                    |                            | < 0.0010             |                      |                                                                                                  |
|                    | FR_CB-1B-2019-12-10                                     | 2019 12 10                 |        |               |             |                 |                                                                         |                 |                             |                          |                        |                                                            |                      | - ·                 | -       | -             | -                |                             | 282   |                            |                  | 50 < 0.0010          |                          | 1.12                     | -          | - 40.                            |                    |              |                                           | 5.0 <                                                            |                             | -                    |         |                    |                            | 0.0010               |                      |                                                                                                  |
|                    | FR_CB-1B-2020-01-23                                     | 2020 01 23                 | 7.75   | 270           | 18.2        | 11.7            | 6.24                                                                    | 588             | 319                         | 8.5                      | 2.24                   | 426                                                        | -31 ·                |                     | -       | -             | -                |                             | 267   | 0.974                      | < 0.02           | 25 < 0.0050          | -                        | 1.11                     | -          | - 22                             | 4 1,980            | < 1.5        | 267                                       | < 1.0 < 1                                                        | 1.0 -                       | -                    | < 0.25  | 5 -                | 7.0                        | < 0.0010             | 2.39                 | 0.0125                                                                                           |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2237699, L2242795, L2248235, L2248391, L2249360, L2250608, L22506457, L2250457, L2250457, L2283637, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2249360, L2250608, L22508, L L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database. All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard <u>BOLD</u>

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) <sup>a</sup> Standard to protect freshwater aquatic life.

- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.

<sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.

<sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark.

e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                       |                             |                              |                        |                             |                            |                              |                            |                            |             |                |                |                     |                  |                           |                 | Dissolv        | ed Metal           | s                   |              |                |              |                            |                    |                     |                  |             |               |             |             |              |                           |
|--------------------|-------------------------------------------------------|-----------------------------|------------------------------|------------------------|-----------------------------|----------------------------|------------------------------|----------------------------|----------------------------|-------------|----------------|----------------|---------------------|------------------|---------------------------|-----------------|----------------|--------------------|---------------------|--------------|----------------|--------------|----------------------------|--------------------|---------------------|------------------|-------------|---------------|-------------|-------------|--------------|---------------------------|
|                    |                                                       |                             |                              |                        |                             |                            |                              |                            |                            |             |                |                |                     |                  |                           |                 |                |                    |                     |              |                |              |                            |                    |                     |                  |             |               |             |             |              |                           |
| Sample<br>Location | Sample<br>ID                                          | Sample Date<br>(yyyy mm dd) | 년<br>Dissolved Aluminum<br>기 | a<br>Dissolved Calcium | dd<br>了 Dissolved Iron<br>了 | a Dissolved Magnesium<br>T | ର୍ଘ Dissolved Manganese<br>୮ | 료 Dissolved Potassium<br>기 | a<br>Dissolved Sodium<br>T | б<br>T<br>Л | t<br>Г Arsenic | бћ<br>T/Barium | ର୍ସ୍ Beryllium<br>୮ | Батоп<br>Т/Вогоп | T/D<br>T/D                | Сhromium<br>T   | the cobait T/6 | лэddo<br>ДуСоррег  | Eead<br>T\D         | 6t<br>T∖bium | Wercury<br>Pg4 | 턴 Molybdenum | 년<br>기<br>기                | б<br>Selenium<br>T | 61<br>Silver        | 5trontium<br>T/ق | б<br>Т<br>Т | ц<br>ц<br>цал | tanium<br>T | б<br>Т<br>Г | ta<br>T<br>T | Zinc <sup>f</sup><br>T/6H |
| Primary Screenin   | <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup> |                             | n/a                          | n/a                    | n/a                         | n/a                        | n/a                          | n/a                        | n/a                        | 90          | 50             | 10,000         | 1.5                 | 12,000           | 0.5-4 <sup>d</sup>        | 10 <sup>e</sup> | 40             | 20-90 <sup>d</sup> | 40-160 <sup>d</sup> | n/a          | 0.25           | 10,000       | 250-<br>1,500 <sup>d</sup> | 20                 | 0.5-15 <sup>d</sup> | n/a              | 3           | n/a           | 1,000       | 85          | n/a          | 75-<br>2,400 <sup>d</sup> |
| Secondary Scree    | ning Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             |                              |                        |                             |                            |                              |                            |                            |             |                |                |                     |                  | 0.8-<br>10.4 <sup>i</sup> | 100 (Cr +6)     | n/a            | n/a                | n/a                 | 2,530        | n/a            | n/a          | 517-<br>2,972 <sup>i</sup> | 700                | n/a                 | n/a              | n/a         | n/a           | n/a         | 3,520       | n/a          | n/a                       |
| S8 Study Area      |                                                       |                             |                              |                        |                             |                            |                              |                            |                            |             |                |                |                     |                  |                           |                 |                |                    |                     |              |                |              |                            |                    |                     |                  |             |               |             |             |              |                           |
| FR_GCMW-1B         | FR_GCMW-1B_2019-03-27                                 | 2019 03 27                  | 25.6                         | 23.1                   | < 10                        | 6.47                       | 73.7                         | 1.94                       | 149                        | 0.22        | 1.06           | 101            | < 0.020             | 88               | 0.0119                    | 0.11            | 0.19           | 0.40               | < 0.050             | 158          | < 0.0050       | 27.3         | 2.61                       | 2.85               | < 0.010             | 220              | < 0.010     | < 0.10        | < 10        | 2.31        | < 0.50       | 2.0                       |
|                    | FR_GCMW_1B_2019-05-31_NP                              | 2019 05 31                  | 9.2                          | 24.1                   | 164                         | 7.27                       | 144                          | 1.78                       | 163                        | 0.23        | 2.04           | 94.5           | < 0.020             | 81               | < 0.025                   | < 0.10          | 0.25           | < 0.50             | < 0.050             | 126          | < 0.0050       | 31.0         | 2.68                       | 2                  | < 0.010             | 213              | < 0.010     | < 0.10        | < 10        | 2.14        | < 0.50       | 1.2                       |
|                    | FR_GCMW-1B_QTR_2019-07-01_N                           | 2019 07 26                  | 6.8                          | 21.9                   | 289                         | 6.22                       | 238                          | 1.56                       | 146                        | 0.14        | 2.53           | 96.0           | < 0.020             | 96               | < 0.010                   | < 0.10          | 0.29           | < 0.50             | < 0.050             | 111          | < 0.0050       | 35.8         | 2.62                       | 0.419              | < 0.010             | 175              | < 0.010     | < 0.10        | < 10        | 1.50        | < 0.50       | < 1.0                     |
|                    | FR_GCMW-1B_2019-08-13                                 | 2019 08 13                  | 9.0                          | 22.4                   | 154                         | 7.22                       | 296                          | 1.71                       | 186                        | 0.15        | 3.20           | 113            | < 0.020             | 98               | 0.0334                    | < 0.10          | 0.34           | < 0.50             | < 0.050             | 147          | < 0.0050       | 43.2         | 2.75                       | 0.113              | < 0.010             | 192              | < 0.010     | < 0.10        | < 10        | 1.33        | < 0.50       | < 1.0                     |
|                    | FR_GCMW-1B_QTR_2019-10-07_N                           | 2019 10 03                  | 10.8                         | 21.8                   | 162                         | 6.74                       | 286                          | 1.58                       | 152                        | < 0.10      | 2.92           | 101            | < 0.020             | 82               | < 0.0050                  | < 0.10          | 0.26           | < 0.20             | < 0.050             | 94.2         | < 0.0050       | 41.1         | 1.84                       | 0.14               | < 0.010             | 162              | < 0.010     | < 0.10        | < 10        | 0.822       | < 0.50       | < 1.0                     |
|                    | FR_GCMW-1B-2019-12-09                                 | 2019 12 09                  | 11.8                         | 22.6                   | 360                         | 6.66                       | 298                          | 1.59                       | 159                        | < 0.10      | 3.03           | 123            | < 0.020             | 63               | 0.0141                    | < 0.10          | 0.23           | < 0.20             | < 0.050             | 74.8         | < 0.0050       | 44.2         | 1.76                       | 0.182              | < 0.010             | 177              | < 0.010     | 0.18          | < 10        | 0.645       | < 0.50       | < 1.0                     |
|                    | FR_GCMW-1B-2020-01-22                                 | 2020 01 22                  | 10.1                         | 22.4                   | 239                         | 6.12                       | 292                          | 1.60                       | 148                        | < 0.10      | 2.22           | 119            | < 0.020             | 67               | 0.0090                    | < 0.10          | 0.21           | < 0.20             | < 0.050             | 76.4         | < 0.0050       | 43.7         | 1.72                       | 0.098              | < 0.010             | 169              | < 0.010     | 0.20          | < 10        | 0.527       | < 0.50       | < 1.0                     |
|                    | FR_GCMW-1B_2020-05-25                                 | 2020 05 25                  | 6.5                          | 16.4                   | 109                         | 3.99                       | 222                          | 1.41                       | 175                        | < 0.10      | 1.84           | 93.5           | < 0.020             | 122              | 0.0097                    | < 0.10          | 0.14           | < 0.20             | < 0.050             | 201          | < 0.0050       | 49.2         | < 0.50                     | < 0.050            | < 0.010             | 134              | < 0.010     | < 0.10        | < 10        | 0.285       | < 0.50       | 1.8                       |
| FR_GCMW-2          | GCMW-2-170811                                         | 2017 08 11                  | < 5.0                        | 190                    | < 10                        | 90.7                       | 19.6                         | 4.39                       | 4.96                       | 0.60        | < 0.50         | 93.7           | < 0.10              | 29.4             | 0.034                     | 0.59            | 0.11           | 0.44               | < 0.10              | 162          | < 0.010        | 2.65         | 4.46                       | <u>136</u>         | < 0.050             | 290              | 0.048       | < 0.20        | < 5.0       | 7.68        | < 1.0        | < 4.0                     |
|                    | FR_GCMW-2_WG_201712141310                             | 2017 12 14                  | < 3.0                        | 185                    | < 10                        | 86.3                       | 2.65                         | 3.63                       | 3.47                       | 0.46        | < 0.10         | 101            | < 0.020             | 16               | 0.0626                    | < 0.10          | < 0.10         | < 0.50             | < 0.050             | 148          | < 0.0050       | 1.98         | 3.42                       | <u>136</u>         | < 0.010             | 272              | < 0.010     | < 0.10        | < 10        | 7.34        | < 0.50       | < 3.0                     |
|                    | FR_GCMW-2_WG_201802141258_N_11                        | 2018 02 14                  | < 3.0                        | 217                    | < 10                        | 92.5                       | 4.28                         | 3.45                       | 3.92                       | 0.45        | < 0.10         | 90.1           | < 0.020             | 14               | 0.0536                    | 0.17            | < 0.10         | < 0.50             | < 0.050             | 150          | < 0.0050       | 2.02         | 3.40                       | <u>181</u>         | < 0.010             | 324              | < 0.010     | < 0.10        | < 10        | 7.95        | < 0.50       | < 3.0                     |
|                    | FR_GCMW-2_QTR_2018-10-01_NP                           | 2018 12 14                  | < 3.0                        | 188                    | < 10                        | 85.6                       | 1.92                         | 3.38                       | 3.50                       | 0.44        | < 0.10         | 73.5           | < 0.020             | 17               | 0.0535                    | < 0.10          | < 0.10         | < 0.50             | < 0.050             | 152          | < 0.0050       | 1.99         | 3.20                       | <u>129</u>         | < 0.010             | 277              | < 0.010     | < 0.10        | < 10        | 7.36        | < 0.50       | 1.6                       |
|                    | FR_GCMW-2_QTR_2019-01-07_N                            | 2019 03 13                  | < 3.0                        | 210                    | < 10                        | 103                        | 1.45                         | 3.44                       | 4.23                       | 0.42        | < 0.10         | 78.0           | < 0.020             | 14               | 0.0634                    | 0.12            | < 0.10         | < 0.50             | < 0.050             | 199          | < 0.0050       | 1.92         | 3.43                       | <u>121</u>         | < 0.010             | 337              | < 0.010     | < 0.10        | < 10        | 8.26        | < 0.50       | 2.5                       |
|                    | FR_GCMW-2_QTR_2019-04-01_N                            | 2019 06 14                  | < 3.0                        | 133                    | < 10                        | 70.5                       | 0.32                         | 3.19                       | 3.13                       | 0.47        | 0.12           | 62.1           | < 0.020             | 16               | 0.0471                    | 0.12            | < 0.10         | 1.73               | 0.076               | 130          | < 0.0050       | 1.88         | 2.22                       | <u>73.8</u>        | < 0.010             | 203              | < 0.010     | < 0.10        | < 10        | 5.92        | < 0.50       | 2.4                       |
|                    | FR_GCMW-2_QTR_2019-07-01_N                            | 2019 07 26                  | 3.3                          | 131                    | < 10                        | 64.2                       | 3.03                         | 3.25                       | 3.80                       | 0.41        | < 0.10         | 58.0           | < 0.020             | 18               | 0.0412                    | 0.18            | < 0.10         | < 0.50             | < 0.050             | 105          | < 0.0050       | 1.99         | 2.25                       | <u>80.6</u>        | < 0.010             | 206              | < 0.010     | < 0.10        | < 10        | 5.79        | < 0.50       | 1.8                       |
|                    | FR_GCMW-2_QTR_2019-10-07_N                            | 2019 11 07                  | < 3.0                        | 181                    | < 10                        | 84.4                       | 0.38                         | 3.87                       | 3.52                       | 0.49        | < 0.10         | 74.5           | < 0.020             | 17               | 0.0541                    | < 0.10          | < 0.10         | 0.21               | < 0.050             | 144          | < 0.0050       | 2.05         | 2.54                       | <u>97.9</u>        | < 0.010             | 287              | < 0.010     | < 0.10        | < 10        | 7.37        | < 0.50       | 2.4                       |
|                    | FR_GCMW-2_QTR_2020-01-06_N                            | 2020 02 10                  | < 3.0                        | 212                    | < 10                        | 107                        | 1.27                         | 3.98                       | 4.63                       | 0.37        | < 0.10         | 77.2           | < 0.020             | 16               | 0.0774                    | 0.12            | < 0.10         | 0.62               | 0.058               | 188          | < 0.0050       | 1.81         | 3.48                       | <u>134</u>         | < 0.010             | 305              | < 0.010     | 0.17          | < 10        | 8.11        | < 0.50       | 2.5                       |
|                    | FR_GCMW-2_QTR_2020-04-06_N                            | 2020 06 04                  | < 3.0                        | 122                    | < 10                        | 58.9                       | 0.14                         | 3.09                       | 3.04                       | 0.38        | < 0.10         | 56.0           | < 0.020             | 18               | 0.0344                    | 0.11            | < 0.10         | 0.28               | < 0.050             | 132          | < 0.0050       | 1.87         | 2.07                       | <u>70.4</u>        | < 0.010             | 188              | < 0.010     | < 0.10        | < 10        | 5.36        | < 0.50       | 2.6                       |
| FR_CB-1A           | FR_CB-1A_WG_2019-11-05_NP <sup>g</sup>                | 2018 11 05                  | 3.8                          | 64.7                   | < 10                        | 27.8                       | 96.9                         | 4.14                       | 29.9                       | 1.34        | 0.38           | 2,680          | < 0.10              | 32               | 0.0257                    | < 0.10          | 0.35           | 0.31               | < 0.050             | 247          | 0.0186         | 3.27         | 1.45                       | 0.218              | < 0.010             | -                | 0.013       | < 0.10        | 0.40        | 0.783       | < 0.50       | 3.7                       |
|                    | FR_CB-1A_2019-04-05                                   | 2019 04 05                  | 1.1                          | 62.8                   | 1,210                       | 26.2                       | 39.3                         | 3.73                       | 18.4                       | < 0.10      | 0.46           | 4,040          | < 0.020             | 30               | < 0.0050                  | < 0.10          | < 0.10         | < 0.20             | < 0.05              |              |                |              |                            |                    |                     |                  |             |               |             |             |              |                           |
|                    | FR_DC4_2019-04-05                                     | Duplicate                   | 1.8                          | 62.5                   | 1,260                       | 26.7                       | 40.6                         | 3.78                       | 19.4                       | < 0.10      | 0.47           | 4,130          | < 0.020             | 32               | < 0.0050                  | < 0.10          | < 0.10         | < 0.20             | < 0.05              |              |                |              |                            |                    |                     |                  |             |               |             |             |              |                           |
|                    | QA/QC RPD%                                            |                             | *                            | 0                      | 4                           | 2                          | 3                            | 1                          | 5                          | *           | *              | 2              | *                   | 6                | *                         | *               | *              | *                  | *                   | 0            | *              | 2            | 3                          | *                  | *                   | 3                | *           | *             | *           | 2           | *            | 0                         |
|                    | FR_CB_1A_2019-05-31_NP                                | 2019 05 31                  | < 3.0                        | 70.2                   | 871                         | 31.2                       | 33.9                         | 3.59                       | 19.4                       | < 0.10      | 0.21           | 4,830          | < 0.020             | 28               | 0.0079                    | < 0.10          | < 0.10         | < 0.50             | < 0.050             | 140          | < 0.0050       | 2.01         | 1.04                       | 0.08               | < 0.010             | 953              | < 0.010     | < 0.10        | < 10        | 0.067       | < 0.50       | 3.7                       |
|                    | FR_CB_1A_2019-08-12                                   | 2019 08 12                  | < 3.0                        | 69.1                   | 1,470                       | 27.2                       | 21.3                         | 3.28                       | 16.1                       | < 0.10      | 0.22           | 4,100          | < 0.020             | 30               | < 0.0050                  | < 0.10          | < 0.10         | < 0.50             | < 0.050             | 126          | < 0.0050       | 1.68         | < 0.50                     | < 0.050            | < 0.010             | 827              | < 0.010     | < 0.10        | < 10        | 0.050       | < 0.50       | 2.1                       |
|                    | FR_CB-1A-2019-10-03                                   | 2019 10 03                  | < 3.0                        | 66.2                   | 1,520                       | 29.4                       | 22.9                         | 3.52                       | 16.3                       | < 0.10      | 0.26           | 4,380          | < 0.020             | 31               | < 0.0050                  | < 0.10          | < 0.10         | < 0.20             | < 0.050             | 123          | < 0.0050       | 1.72         | < 0.50                     | < 0.050            | < 0.010             | 859              | < 0.010     | < 0.10        | < 10        | 0.039       | < 0.50       | 3.1                       |
|                    | FR_CB-1A-2019-12-10                                   | 2019 12 10                  |                              |                        |                             |                            | 18.5                         | 3.22                       | 14.5                       | < 0.10      | 0.20           | 4,410          | < 0.020             |                  | < 0.0050                  | < 0.10          | < 0.10         | < 0.20             | < 0.05              |              |                |              |                            |                    |                     |                  |             |               |             |             |              |                           |
|                    | FR_CB-1A -2020-01-23                                  | 2020 01 23                  |                              |                        |                             |                            | 19.6                         | 3.38                       | 15.1                       |             |                |                | < 0.020             |                  | < 0.0050                  | < 0.10          |                | < 0.20             |                     |              |                |              |                            |                    |                     |                  |             |               |             |             |              |                           |
| FR_CB-1B           | FR_CB-1B_WG_2019-11-05_NP <sup>9</sup>                | 2018 11 05                  |                              |                        |                             |                            |                              | 3.73                       | 18.0                       |             |                |                | < 0.10              |                  | 0.0207                    | < 0.10          | 0.27           |                    | < 0.050             | 180          | < 0.0050       | 2.82         | 1.06                       | 0.136              | < 0.010             | -                | < 0.010     | < 0.10        | < 0.30      | 0.420       | < 0.50       | 4.5                       |
|                    | FR_CB-1B_2019-04-05                                   | 2019 04 05                  |                              |                        | 1,330                       |                            | 17.6                         | 3.67                       | 16.2                       |             |                |                | < 0.020             |                  | < 0.0050                  | < 0.10          | < 0.10         |                    |                     |              |                |              |                            |                    |                     |                  |             |               |             |             |              |                           |
|                    | FR_CB-1B_2019-05-29                                   | 2019 05 29                  |                              |                        |                             |                            | 18.7                         | 3.69                       | 16.5                       |             |                |                | < 0.020             |                  | 0.0114                    | < 0.10          |                |                    |                     | 124          | < 0.0050       | 9.00         | < 0.50                     | < 0.050            | < 0.010             | 936              | < 0.010     | 0.11          | < 10        | 0.035       | < 0.50       | 3.1                       |
|                    | FR_CB_1B_2019-08-14                                   | 2019 08 14                  |                              |                        |                             |                            | 15.2                         | 3.36                       | 15.8                       |             |                |                | < 0.020             |                  | < 0.0050                  | < 0.10          |                | < 0.50             |                     |              |                |              |                            |                    |                     |                  |             |               |             |             |              |                           |
|                    | FR_CB-1B-2019-10-03                                   | 2019 10 03                  |                              |                        |                             |                            |                              | 3.49                       | 15.3                       |             |                |                |                     |                  | < 0.0050                  | < 0.10          | < 0.10         |                    |                     | 118          | < 0.0050       | 1.86         | < 0.50                     | < 0.050            | < 0.010             | 850              | < 0.010     | < 0.10        | < 10        | 0.045       | < 0.50       | 2.3                       |
|                    | FR_CB-1B-2019-12-10                                   | 2019 12 10                  |                              |                        | 1,180                       |                            | 26.2                         | 3.41                       | 15.4                       |             |                |                |                     |                  | < 0.0050                  | < 0.10          |                | < 0.20             |                     |              |                |              |                            |                    |                     |                  |             |               |             |             |              |                           |
|                    | FR_CB-1B-2020-01-23                                   | 2020 01 23                  | < 3.0                        | 63.5                   | 1,400                       | 27.1                       | 17.5                         | 3.29                       | 14.0                       | < 0.10      | 0.37           | 4,160          | < 0.020             | 27               | < 0.0050                  | < 0.10          | < 0.10         | < 0.20             | < 0.050             | 101          | < 0.0050       | 1.76         | 0.76                       | < 0.050            | < 0.010             | 783              | < 0.010     | < 0.10        | < 10        | 0.038       | < 0.50       | 3.9                       |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2236699, L224795, L2244162, L2245057, L2248235, L2248391, L2249360, L2256457, L225657, L22557, L22577, L225777, L225777, L225777, L225777, L225777, L225777, L225777, L225777, L225777, L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505. Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard BOLD

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15 For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark.

e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation. <sup>j</sup> Criteria in not considered applicable and has not been applied.

|                    |                                                              |                             |                 |               |                  |                            |                    |              |                      |                       |                       |                     |                          |                |                  |              |                 | Total       | Metals                    |               |                        |                            |                    |         |       |                |               |                  |                       |           |               |              |                  |                        |
|--------------------|--------------------------------------------------------------|-----------------------------|-----------------|---------------|------------------|----------------------------|--------------------|--------------|----------------------|-----------------------|-----------------------|---------------------|--------------------------|----------------|------------------|--------------|-----------------|-------------|---------------------------|---------------|------------------------|----------------------------|--------------------|---------|-------|----------------|---------------|------------------|-----------------------|-----------|---------------|--------------|------------------|------------------------|
|                    |                                                              |                             |                 |               |                  |                            |                    |              |                      |                       |                       |                     |                          |                |                  |              |                 |             |                           |               |                        |                            |                    |         |       |                |               |                  |                       |           |               |              |                  |                        |
| Sample<br>Location | Sample<br>ID                                                 | Sample Date<br>(yyyy mm dd) | aluminum<br>T/G | 년<br>Antimony | 6t<br>T/b<br>T/b | Barium<br>Darium<br>Darium | Dan Beryllium<br>7 | 5<br>Bismuth | иоло<br>В рого<br>ра | Cadmium<br>T/δπ       | od<br>br<br>T/Galcium | D, Chromium<br>Гран | D)<br>D<br>D<br>D<br>alt | Copper<br>Date | <u>Б</u><br>µg/L | Lead<br>T/BH | Lithium<br>T/6t | 년<br>전<br>기 | t<br>dr<br>T<br>Manganese | Mercury<br>T/ | ta<br>T<br>∩Molybdenum | Nickel<br>Γ/βμ             | Garage Phosphorous |         |       | n/bh<br>Silver | mipos<br>µg/L | Strontium<br>Т/б | hđ<br>Thallium<br>T/T | Е<br>µg/L | t<br>Тitanium | Dranium<br>D | hda<br>T/anadium | D<br>Tinc <sup>f</sup> |
| Primary Screenin   | <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup>        |                             | n/a             | n/a           | n/a              | n/a                        | n/a                | n/a          | n/a                  | n/a                   | n/a                   | n/a                 | n/a                      | n/a            | n/a              | n/a          | n/a             | n/a         | n/a                       | n/a           | n/a                    | n/a                        | n/a n/             | a n/    | a n/a | n/a            | n/a           | n/a              | n/a                   | n/a       | n/a           | n/a          | n/a              | n/a                    |
| Secondary Scree    | <b>ning Criteria:</b> Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a             | n/a           | n/a              | n/a                        | n/a                | n/a          | n/a                  | 0.8-10.4 <sup>i</sup> | n/a                   | 100 (Cr +6)         | ) n/a                    | n/a            | n/a              | n/a          | 2,530           | n/a         | n/a                       | n/a           |                        | 517-<br>2,972 <sup>i</sup> | n/a n/             | a 70    | 0 n/a | n/a            | n/a           | n/a              | n/a                   | n/a       | n/a           | 3,520        | n/a              | n/a                    |
| S8 Study Area      |                                                              |                             |                 |               |                  |                            |                    |              |                      |                       |                       |                     |                          |                |                  |              |                 |             |                           |               |                        |                            |                    |         |       |                |               |                  |                       |           |               |              |                  |                        |
| FR_GCMW-1B         | FR_GCMW-1B_2019-03-27                                        | 2019 03 27                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | < 0.0050      | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW_1B_2019-05-31_NP                                     | 2019 05 31                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | < 0.0050      | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW-1B_QTR_2019-07-01_N                                  | 2019 07 26                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | -             | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW-1B_2019-08-13                                        | 2019 08 13                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | < 0.0050      | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW-1B_QTR_2019-10-07_N                                  | 2019 10 03                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | < 0.0050      | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW-1B-2019-12-09                                        | 2019 12 09                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | < 0.0050      | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW-1B-2020-01-22                                        | 2020 01 22                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | < 0.0050      | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW-1B_2020-05-25                                        | 2020 05 25                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | < 0.0050      | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
| FR_GCMW-2          | GCMW-2-170811                                                | 2017 08 11                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | -             | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW-2_WG_201712141310                                    | 2017 12 14                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | -             | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW-2_WG_201802141258_N_11                               | 2018 02 14                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | -             | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW-2_QTR_2018-10-01_NP                                  | 2018 12 14                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | -             | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW-2_QTR_2019-01-07_N                                   | 2019 03 13                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | -             | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW-2_QTR_2019-04-01_N                                   | 2019 06 14                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | -             | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW-2_QTR_2019-07-01_N                                   | 2019 07 26                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | -             | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW-2_QTR_2019-10-07_N                                   | 2019 11 07                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | -             | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW-2_QTR_2020-01-06_N                                   | 2020 02 10                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | -             | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_GCMW-2_QTR_2020-04-06_N                                   | 2020 06 04                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | -             | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
| FR_CB-1A           | FR_CB-1A_WG_2019-11-05_NP <sup>g</sup>                       | 2018 11 05                  | 1,120           | 1.12          | 0.99             | 2,620                      | < 0.50             | -            | < 50                 | 0.184                 | 73,900                | 2.26                | 1.00                     | 4.1            | 2,020            | 1.34         | 206             | 28,300      | 142                       | 0.0106        | 3.58                   | 4.0                        | - 4,1              | 40 0.3  | 3 -   | 0.06           | 3 30,000      | ) -              | 0.052                 | < 0.50    | 5.6           | 1.07         | 5.1              | 16                     |
| -                  | FR_CB-1A_2019-04-05                                          | 2019 04 05                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | < 0.0050      | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
| -                  | <br>FR_DC4_2019-04-05                                        | Duplicate                   | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | < 0.0050      | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | QA/QC RPD%                                                   |                             | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | *             | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
|                    | FR_CB_1A_2019-05-31_NP                                       | 2019 05 31                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | < 0.0050      | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                |                        |
|                    | <br>FR_CB_1A_2019-08-12                                      | 2019 08 12                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | < 0.0050      | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                |                        |
| -                  | FR_CB-1A-2019-10-03                                          | 2019 10 03                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | < 0.0050      | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                | -                      |
| -                  | FR_CB-1A-2019-12-10                                          | 2019 12 10                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           | -                         | < 0.0050      | -                      | -                          |                    | -       | -     | -              | -             | -                | -                     | -         | -             | -            | -                |                        |
|                    | FR CB-1A -2020-01-23                                         | 2020 01 23                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           |                           | < 0.0050      |                        | -                          |                    |         |       | -              | -             | -                | -                     | -         | -             | -            | -                |                        |
| FR_CB-1B           | FR CB-1B WG 2019-11-05 NP <sup>g</sup>                       | 2018 11 05                  | 268             |               |                  | 3.820                      | < 0.50             |              | < 50                 | 0.084                 | 70,200                | 0.90                | 0.52                     | < 2.5          | 1,570            |              |                 | 26,900      |                           | < 0.0050      |                        | < 2.5                      |                    | 80 < 0. |       |                | 50 16,600     |                  | < 0.050               |           |               | 0.494        | < 2.5            | < 15                   |
|                    | FR_CB-1B_2019-04-05                                          | 2019 04 05                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           |                           | < 0.0050      | -                      | -                          |                    |         |       | -              | -             | -                | -                     | -         | -             | -            |                  | -                      |
|                    | FR CB-1B 2019-05-29                                          | 2019 05 29                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | -               | -           |                           | < 0.0050      |                        | -                          |                    |         |       | -              | -             | -                | -                     | -         | -             | -            |                  |                        |
|                    | FR_CB_1B_2019-08-14                                          | 2019 08 14                  | -               | -             | _                | -                          | -                  | -            | -                    | -                     | -                     | _                   | -                        | -              | -                | -            | _               | -           |                           | < 0.0050      |                        | -                          |                    | _       |       |                | -             | -                | -                     | -         | -             | -            | <u> </u>         |                        |
|                    | FR_CB-1B-2019-10-03                                          | 2019 10 03                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | -                   | -                        | -              | -                | -            | _               | -           | -                         | < 0.0050      |                        | -                          |                    |         |       | -              | -             | -                | -                     | -         | -             | -            | -                |                        |
|                    | FR CB-1B-2019-12-10                                          | 2019 10 00                  | -               | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | _                   | -                        | -              | -                | _            | -               | -           |                           | < 0.0050      | -                      | -                          |                    |         |       | -              | -             | -                | -                     | -         | -             | -            | _                | -                      |
|                    | FR_CB-1B-2020-01-23                                          | 2013 12 10                  |                 | -             | -                | -                          | -                  | -            | -                    | -                     | -                     | _                   | -                        | -              | -                | -            | -               | -           |                           | < 0.0050      |                        | -                          |                    |         |       | -              | -             | -                | -                     | -         | -             | -            | -                |                        |
|                    | T IN_0D-1D-2020-01-23                                        | 2020 01 23                  | -               | -             | -                | -                          | -                  | -            | 1 -                  | -                     | -                     | -                   | <u> </u>                 | -              | -                | -            | -               | -           | -                         | ~ 0.0030      | -                      | -                          |                    |         | -     | -              | -             | -                | -                     | -         | -             | '            |                  | -                      |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2238699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L2250608, L2256457, L2256457, L2283636, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L22316991, L2317812, L2249360, L2250457, L225057, L22507, L225 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099. Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard BOLD

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                        |                             |         |       |         | Phy     | sical Para                                  | ameter             | rs        |                                  |                               |         |                | Fiel                       | d Para           | meters           | ;                        |              |                             |                       |                                                 |                          |                       |                 |                             | Dissolv                      | ed Inor                      | ganics                           |                                                                      |                              |           |                    |       |                                |                                                                                                                                                                               |                       |
|--------------------|--------------------------------------------------------|-----------------------------|---------|-------|---------|---------|---------------------------------------------|--------------------|-----------|----------------------------------|-------------------------------|---------|----------------|----------------------------|------------------|------------------|--------------------------|--------------|-----------------------------|-----------------------|-------------------------------------------------|--------------------------|-----------------------|-----------------|-----------------------------|------------------------------|------------------------------|----------------------------------|----------------------------------------------------------------------|------------------------------|-----------|--------------------|-------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                    |                                                        |                             |         |       |         |         |                                             | od Solide          | ed Solids | ded Solids<br>ganic Carbon       | duction                       | Balance | ature          | ctivity                    | Ŀ.               | Oxygen           |                          | nity         | Total (as N)                |                       |                                                 | e (as N)                 | ogen-N                |                 | Z                           |                              |                              | carbonate                        | rbonate<br>droxide                                                   |                              |           |                    | ;     | 3)                             | nate<br>carbon                                                                                                                                                                | iorous as P           |
| Sample<br>Location | Sample<br>ID                                           | Sample Date<br>(yyyy mm dd) |         | _     | Turbi   | i 10    | Dial Callons<br>T<br>S<br>S<br>Conductivity | W<br>Hotal Discolv |           | Trial Suspende<br>Dissolved Orga | ∃ Oxidation Re<br>S Potential |         | O Field Temper | m⊃/Sfi<br>mo/Sfield Conduc | Z Field Turbidit | B Dissolved Ox   | 면 (field)<br>로 Field ORP | Total Alkali | m<br>Z<br>To<br>Ammonia, To | ∭<br>∭ Nitrate (as N) | Nitrite (as                                     | ⊒<br>D∕D Nitrate+Nitrite | ä<br>Kjeldahl Nitroge | J/B<br>Ditrogen | J/b<br>Trogen-N<br>Chloride | Б<br>П                       | ∏/bulfate                    | ∃ Alkalinity, Bi<br>P (as CaCO3) | B Alkalinity, Ca<br>→ (as CaCO3)<br>B Alkalinity, Hy<br>→ (as CaCO3) | T (as carood)<br>Bicarbonate | Zarbonate | mg/L r             |       | Acidity (pH 8<br>Acidity (pH 8 | Dortho-Phosph<br>7<br>3<br>3<br>5<br>4<br>1<br>5<br>7<br>0<br>1<br>5<br>7<br>0<br>1<br>0<br>1<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                       |
| Primary Screeni    | <b>ng Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup> |                             | n/a r   | n/a i | n/a i   | n/a r   | /a n/a                                      | ı n/               | ı/a       | n/a n/a                          | n/a                           | n/a     | n/a            | n/a                        | n/a              | n/a              | n/a n/                   | a n/a        | 1.31-<br>18.5 <sup>b</sup>  | 400                   | 0.2-2.0 <sup>c</sup>                            | 400                      | n/a                   | n/a             | n/a 1,500                   | 2,000-<br>3,000 <sup>d</sup> | 1,280-<br>4,290 <sup>d</sup> | n/a                              | n/a n/a                                                              | n/a                          | n/a       | n/a                | n/a r | n/a n                          | n/a n/a                                                                                                                                                                       | a n/a                 |
| Secondary Scree    | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a r   | n/a i | n/a i   | n/a r   | /a n/a                                      | 10,0               | ,000      | n/a n/a                          | n/a                           | n/a     | n/a            | n/a                        | n/a              | n/a <sup>j</sup> | n/a n/                   | a n/a        |                             | 6.08<br>223.8         |                                                 | n/a                      | n/a                   | n/a             | n/a n/a                     | n/a                          | 4,990                        | n/a                              | n/a n/a                                                              | n/a                          | n/a       | 78                 | n/a r | n/a n                          | n/a n/a                                                                                                                                                                       | a n/a                 |
| S8 Study Area      |                                                        |                             |         |       |         |         |                                             |                    |           |                                  |                               |         |                |                            |                  |                  |                          |              |                             | 220.0                 | 0 09.90                                         |                          |                       |                 |                             |                              |                              |                                  |                                                                      |                              | L         |                    |       |                                |                                                                                                                                                                               |                       |
| FR_CB-1C           | FR CB-1C WG 2018-11-05 NP <sup>9</sup>                 | 201                         |         |       |         |         |                                             |                    |           |                                  |                               |         |                |                            |                  |                  |                          |              |                             |                       |                                                 |                          |                       |                 |                             |                              |                              |                                  |                                                                      |                              |           |                    |       |                                |                                                                                                                                                                               |                       |
| -                  | FR CB-1C 2019-02-27                                    | 2019 02 27                  | 7.77 1, | 550 3 | 6.2 3   | 31.7 3  | 1.6 2.51                                    | 0 2,0              | 060       | 44.6 1.24                        | 376                           | -0.1    | -              | -                          | -                | -                |                          | 283          | 0.107                       | 7 142                 | 2 0.013                                         | -                        | < 0.050               | -               | - < 5.0                     | 310                          | 764                          | 283                              | < 1.0 < 1.                                                           | 0 - 0                        | -         | < 0.50             | - 1   | 1.5 0.0                        | 042 1.2                                                                                                                                                                       | 6 0.0450              |
|                    | FR_CB_1C_2019-03-28                                    | 2019 03 28                  |         |       |         |         | ,                                           |                    |           | 4.1 1.13                         |                               |         | -              | -                          | -                | -                |                          | 256          |                             |                       | 4 < 0.0050                                      |                          | < 0.050               |                 | - 3.4                       | 280                          | 528                          |                                  | < 1.0 < 1.                                                           | _                            | -         | < 0.25             |       |                                |                                                                                                                                                                               | 4 0.0187              |
| -                  | <br>FR_CB-1C_2019-05-29                                |                             |         |       |         |         | ,                                           |                    |           |                                  |                               |         |                |                            |                  |                  |                          |              |                             |                       |                                                 |                          |                       |                 |                             |                              |                              |                                  |                                                                      |                              |           |                    |       |                                |                                                                                                                                                                               | -                     |
| -                  | <br>FR_CB_1C_2019-08-12                                | 2019 08 12                  | 8.09 8  | 99 C  | .31 1   | 19.9 1  | 3.8 1,59                                    | 0 1,2              | 290       | < 1.0 1.16                       | 445                           | -2.8    | -              | -                          | -                | -                |                          | 306          | 0.181                       | 1 50.4                | 4 0.0319                                        | -                        | < 0.25                | -               | - 10.6                      | 410                          | 473                          | 306                              | < 1.0 < 1.                                                           | 0 -                          | -         | < 0.25             | - 1   | 5.4 0.0                        | 087 1.2;                                                                                                                                                                      | 3 0.0096              |
|                    | FR_CB-1C_2019_10_01                                    | 2019 10 01                  | 7.96 3  | 77 1  | .28 9   | 9.94 8  | 96 842                                      | 2 54               | 42        | < 1.0 1.03                       | 338                           | -5.2    | -              | -                          | -                | -                |                          | 293          | 0.239                       | 9 11.3                | 3 0.0073                                        | -                        | < 0.050               | -               | - 18.1                      | 437                          | 132                          | 293                              | < 1.0 < 1.                                                           | 0 -                          |           | < 0.050            | - 1   | 0.5 0.0                        | 111 1.0;                                                                                                                                                                      | 2 0.0145              |
|                    | FR_CB-1C -2020-01-24                                   | 2020 01 24                  | 7.9 1,  | 380 6 | .56     | 26 2    | 3.2 2,06                                    | 0 1,8              | 860       | 12.2 0.75                        | 441                           | 4.2     | -              | -                          | -                | -                |                          | 283          | 0.131                       | 1 91.9                | 9 < 0.0050                                      | -                        | < 0.050               | -               | - 9.7                       | 300                          | 646                          | 283                              | < 1.0 < 1.                                                           | 0 -                          | -         | < 0.25             | - 1   | 1.6 0.0                        | 057 1.04                                                                                                                                                                      | 4 0.0103              |
| FR_CB-2A           | FR_CB-2A_WG_2019-11-05_NP <sup>9</sup>                 | 201                         |         |       |         |         |                                             |                    |           |                                  |                               |         |                |                            |                  |                  |                          |              |                             |                       |                                                 |                          |                       |                 |                             |                              |                              |                                  |                                                                      |                              |           |                    |       |                                |                                                                                                                                                                               |                       |
|                    | FR_CB-2A_2019-02-27                                    | 2019 02 27                  | 8.57 1  | 8.4 < | 0.10 2  | 24.9 9  | 26 825                                      | 5 49               | 94        | 7,220 1.89                       | 272                           | -46     | -              | -                          | -                | -                |                          | 1,220        | 0.795                       | 5 < 0.02              | 25 0.174                                        | -                        | 18                    | -               | - 11.5                      | 1,410                        | 5.6                          | 1,190                            | 28.2 < 1.                                                            | 0 -                          | -         | < 0.25             | - <   | 1.0 0.0                        | 0244 1.80                                                                                                                                                                     | 0 10.7                |
|                    | FR_CB-2A_2019-04-11                                    | 2019 04 11                  | 8.7 1   | 7.6 < | 0.10    | 11 8    | 85 765                                      | 5 48               | 86 2      | 2,110 2.82                       | 321                           | -11     | -              | -                          | -                | -                |                          | 525          | 0.651                       | 1 < 0.02              | 25 < 0.0050                                     | -                        | 4.77                  | -               | - 13.7                      | 1,490                        | 3.8                          | 490                              | 35.4 < 1.                                                            | 0 -                          | -         | < 0.25             | - <   | 1.0 0.0                        | 0227 120                                                                                                                                                                      | 0 3.30                |
|                    | FR_CB_2A_2019-08-14                                    | 2019 08 14                  | 8.79 1  | 5.1 1 | 7.1 9   | 9.74 9  | 25 832                                      | 2 52               | 21        | 4.1 1.21                         | 236                           | -2.6    | -              | -                          | -                | -                |                          | 466          | 0.455                       | 5 < 0.00              | 050 < 0.0010                                    | -                        | 0.581                 | -               | - 12.6                      | 1,490                        | < 0.30                       | 429                              | 37.2 < 1.                                                            | 0 -                          | -         | 0.063              | - <   | 1.0 0.0                        | 154 1.28                                                                                                                                                                      | 8 0.0307              |
|                    | FR_CB-2A_2019_10_01                                    | 2019 10 01                  | 8.76 1  | 4.8   | 21 9    | 9.93 9  | 99 824                                      | 1 50               | 00        | 14.7 0.59                        | 294                           | 0.3     | -              | -                          | -                | -                |                          | 476          | 0.641                       | 1 < 0.00              | 050 < 0.0010                                    | -                        | 0.708                 | -               | - 12.6                      | 1,140                        | < 0.30                       | 434                              | 42.2 < 1.                                                            | 0 -                          | -         | 0.058              | - <   | 1.0 0.0                        | 171 1.20                                                                                                                                                                      | 0.0240                |
|                    | FR_DC1_2019_10_01                                      | Duplicate                   | 8.74 1  |       |         | 9.74 9  | .9 821                                      | I 50               | 01        | 13.8 < 0.50                      | 249                           | 0.8     | -              | -                          | -                | -                |                          | 467          | 0.632                       | 2 < 0.00              | 050 < 0.0010                                    | -                        | 0.651                 | -               | - 12.6                      | 1,130                        | 0.3                          | 427                              | 40.0 < 1.                                                            | 0 -                          | -         | 0.072              | - <   | 1.0 0.0                        | 182 1.06                                                                                                                                                                      | 6 0.0292              |
|                    | QA/QC RPD%                                             | T                           | 0       |       | 25      | *       | * 0                                         | (                  | •         | 6 *                              | *                             | *       | -              | -                          | -                | -                |                          | 2            | 1                           | *                     | *                                               | -                        | 8                     | -               | - 0                         | 1                            | *                            | 2                                | 5 *                                                                  | -                            | - /       | *                  | -     | *                              | ô *                                                                                                                                                                           | 20                    |
|                    | FR_CB-2A-2019-12-09                                    | 2019 12 09                  | 8.78 1  |       |         | 9.34 9  |                                             |                    | 54        | 1.8 1.08                         |                               | -0.1    | -              | -                          | -                | -                |                          | 445          |                             |                       | 050 < 0.0010                                    |                          | 0.6                   | -               | - 12.5                      |                              | < 0.30                       |                                  | 39.6 < 1.                                                            | -                            | -         | 0.057              |       |                                |                                                                                                                                                                               | 9 0.0219              |
|                    | FR_CB-2A-2020-01-22                                    | 2020 01 22                  |         | 3.6 8 |         | 9.86 8  |                                             |                    | 22        | 1.4 0.91                         |                               |         | -              | -                          | -                | -                |                          | 472          |                             |                       | 13 < 0.0010                                     |                          | 0.601                 | -               | - 12.6                      | ,                            | < 0.30                       |                                  | 46.4 < 1.                                                            |                              |           | 0.066              |       |                                |                                                                                                                                                                               | 5 0.0194              |
| FR_CB-4A           | FR_CB-4A_2019-12-04                                    |                             | 7.93 5  |       |         |         | 2 969                                       |                    |           | 222 5.69                         |                               | -0.2    | -              | -                          | -                | -                |                          | 307          |                             |                       | 5 < 0.0050                                      | -                        | 1.13                  | -               | - 13                        | 150                          | 252                          |                                  | < 1.0 < 1.                                                           | _                            |           | < 0.25             |       |                                | 0015 7.85                                                                                                                                                                     |                       |
| 55. 05. (B         | FR_CB-4A-2020-02-11                                    |                             |         |       |         | 12 '    |                                             |                    |           | 10.8 2.16                        |                               |         | -              | -                          | -                | -                |                          | 281          | 0.211                       |                       |                                                 | -                        | 0.492                 | -               | - 7.21                      | 324                          | 268                          |                                  | < 1.0 < 1.                                                           |                              |           | < 0.050            |       |                                | 0022 2.20                                                                                                                                                                     |                       |
| FR_CB-4B           | FR_CB-4B_2019-12-05                                    | 2019 05 12                  | 7.76 1, |       |         | 23.3 2  |                                             |                    | 490       | 129 2.87                         |                               |         | -              | -                          | -                | -                |                          | 324          |                             |                       |                                                 |                          | < 0.050               |                 | - 3.9                       | < 100                        | 631                          |                                  | < 1.0 < 1.                                                           |                              |           | < 0.25             |       |                                | .0010 4.43                                                                                                                                                                    |                       |
|                    | FR_CB-4B_2_2019-12-05                                  | Duplicate                   | 7.74 1, |       |         | 23.4 2  | 3.4 1,84                                    |                    |           | 129 3.33                         | 360                           | 0       | -              | -                          | -                | -                |                          | 327          |                             |                       | _                                               | -                        | < 0.050               | -               | - 3.9                       | < 100                        | 631                          | 327                              | < 1.0 < 1.                                                           | 0 -                          |           | < 0.25             |       |                                | .0010 3.25                                                                                                                                                                    |                       |
|                    | QA/QC RPD%                                             | 0000 11 00                  |         |       | 8       |         |                                             | 5                  | -         | 0 15                             | *                             |         | -              | -                          | -                | -                |                          | 1            | 14                          | 0                     |                                                 | -                        | *                     | -               | - *                         | *                            | 0                            | 1                                | *                                                                    | -                            | -         | *                  |       | 3                              | * 31                                                                                                                                                                          |                       |
| FR_CB-5A           | FR_CB-4B-2020-02-11                                    |                             | 7.39 1, |       |         |         | 9.5 2,14                                    |                    |           | 5.9 2.74                         |                               | -1.8    | -              | -                          | -                | -                |                          | 358          |                             |                       |                                                 |                          | < 0.050               | -               | - 4.2                       | 110                          | 838                          |                                  | < 1.0 < 1.                                                           |                              |           | < 0.25             |       |                                |                                                                                                                                                                               | 6 0.0117              |
| TR_OB-5A           | FR_CB-5A_2019-12-02                                    | 2019 02 12                  |         |       |         |         | .6 472                                      |                    |           | 97.9 1.54                        |                               | -2.5    | -              | -                          | -                | -                |                          | 283          |                             |                       | 73 < 0.0010                                     | -                        | 0.341                 | -               | - < 0.50                    |                              | 10.1                         |                                  | < 1.0 < 1.                                                           |                              |           | < 0.050            |       |                                | .0010 5.86                                                                                                                                                                    |                       |
| FR CB-5B           | FR_CB-5A-2020-02-05<br>FR_CB-5B_2019-12-03             | 2020 05 02<br>2019 03 12    | 8.32 2  |       |         | 5.84 5  |                                             |                    |           | 6.3 1.12<br>40.4 2.84            |                               | -0.3    | -              | -                          | -                | -                |                          | 283          |                             |                       | 050 < 0.0010<br>050 < 0.0010                    | -                        | 0.159                 | -               | - < 0.50<br>- 2.43          | 290<br>494                   | 8.51<br>37.9                 |                                  | 5.0 < 1.<br>< 1.0 < 1.                                               | _                            | -         | 0.061<br>< 0.050   |       |                                |                                                                                                                                                                               | 9 0.0297<br>9 0.0317  |
| 111_00-00          |                                                        | 2019 03 12 2020 05 02       |         |       |         |         |                                             |                    |           | 40.4 2.84<br>130 0.85            |                               |         | -              | -                          | -                | -                |                          |              |                             |                       |                                                 |                          |                       | -               |                             |                              |                              | _                                | < 1.0 < 1.<br>< 1.0 < 1.                                             |                              |           |                    |       |                                | 0010 5.48                                                                                                                                                                     |                       |
| FR_CB-6A           | FR_CB-5B-2020-02-05<br>FR_CB-6A_2019-12-03             | 2019 03 12                  |         |       |         |         |                                             |                    |           | 105 1.51                         |                               |         |                | -                          | -                | -                |                          |              |                             |                       | 050 < 0.0010<br>067 < 0.0010                    |                          | 0.287                 | -               | - 1.28<br>- 1.53            |                              | 10.8<br>25.4                 |                                  | < 1.0 < 1.<br>< 1.0 < 1.                                             |                              |           | < 0.050<br>< 0.050 |       |                                |                                                                                                                                                                               | 9 0.0882              |
| FR_CB-6B           | FR_CB-6B-2020-02-05                                    | 2019 03 12                  |         |       |         |         |                                             |                    |           | 5.1 1.3                          |                               |         | -              | -                          | -                | -                |                          |              |                             |                       | 07 < 0.0010<br>05( < 0.0010                     |                          | 0.248                 |                 | - 0.72                      |                              |                              |                                  | < 1.0 < 1.<br>< 1.0 < 1.                                             |                              |           | < 0.050            |       |                                |                                                                                                                                                                               | 1 0.0217              |
| S10 Study Area     | TN_00-00-2020-02-03                                    | 2020 05 02                  | 0.21 2  | 10 1  | .+0 0   | ס ופ.ע  | <del>34</del> 400                           | 5 30               | 00        | 5.1 1.3                          | 209                           | 0.2     | -              | -                          | -                | -                |                          | 210          | 0.110                       | - 0.00                | Jul = 0.0010                                    | -                        | 0.240                 | -               | - 0.72                      | 304                          | 14.1                         | 210                              | ~ 1.0   ~ 1.                                                         | -                            | <u> </u>  | ~ 0.000            | - 2   | + 0.0                          | 1.21                                                                                                                                                                          | 0.0217                |
| FR_HMW1D           | GA-HMW-1D_L1238132                                     | 2012 11 09                  | 79 2    | 390 5 | 14 1    | 172 1   | 32 322                                      | 0 30               | 260       | 14.2 1.23                        | 304                           | 1.1     | -              | _                          | -                | _                |                          | 432          | 0.968                       | 3 120                 | 0.041                                           | -                        | < 0.050               | _               | - 3.3                       | < 400                        | 1 4 1 0                      | 432                              | < 1.0 < 1.                                                           | -<br>n _                     | -         | < 1.0              | - 2   | 91 01                          | 1058 1.8                                                                                                                                                                      | 2 0.0148              |
|                    | FRO12 0101201301                                       | 2012 11 09                  | 1.3 2,  | 030 0 | - 1-7 4 | ri. 2 4 | 5.2 5,22                                    | .0 0,2             | 200       | 1-7.2 1.23                       | 594                           |         | -              | -                          | -                | -                |                          | 452          | 0.900                       | 129                   | 0.041                                           | + -                      | ~ 0.000               | -               | - 3.3                       | ~ 400                        | 1,410                        | 432                              | - 1.0 < 1.                                                           |                              |           | \$ 1.0             | - 2   | 5.1 0.0                        | 1.02                                                                                                                                                                          | - 0.0140              |
|                    | FRO12 0104201301                                       | 2013 05 28                  | 7 64 2  | 230 4 | .58 /   | 194     | 5 3 52                                      | 0 36               | 350       | 14 7 1 36                        | 4∩1                           | + - +   | 4.4            | 2,663                      | _                | 2 13             | 7.23 69                  | 6 413        | 0 856                       | 3 140                 | < 0.020                                         | -                        | < 0.050               | -               | - 3.8                       | < 400                        | 1 460                        | 413                              | < 1.0 < 1.                                                           | n _                          | -         | < 1.0              | - 3   | 62 00                          | 041 1 1/                                                                                                                                                                      | 0 0.0113              |
|                    | FR HMW1D-WG-201309251520                               | 2013 03 28                  |         |       |         |         |                                             |                    |           |                                  |                               |         |                |                            | -                |                  | 7.68 83                  |              |                             |                       | <ul><li>&lt; 0.020</li><li>&lt; 0.020</li></ul> |                          | < 0.050               |                 | - 3.4                       | < 400                        |                              |                                  | < 1.0 < 1.<br>< 1.0 < 1.                                             |                              |           |                    |       |                                |                                                                                                                                                                               | 0 0.00113<br>9 0.0058 |
|                    | WG-201309251525-FD-5                                   | 2013 09 23                  | 1.01 2, | 120 0 |         |         | 5.5 5,71                                    | 4,1                | 100       | 1.0 0.9                          | +12                           | + +     | 7.1            | 5,118                      | -                | 5.22             | 7.00 03                  | .0 401       | 0.001                       |                       | , , , 0.020                                     | + -                      | ~ 0.000               | -               | - 3.4                       | ~ 400                        | 1,000                        |                                  | - 1.0 - 1.                                                           | -                            |           | × 1.0              | -   1 | 1.4 0.0                        | 0.08                                                                                                                                                                          | 0.0000                |
|                    | QA/QC RPD%                                             |                             | 1       | 0     | 3       | *       | * 1                                         |                    | 1         | * *                              | *                             | -       | -              | -                          | -                | -                |                          | 2            | 0                           | 1                     | *                                               | -                        | *                     | -               | - 6                         | *                            | 1                            | 2                                | * *                                                                  | -                            | -         | *                  | -     | 1                              | * *                                                                                                                                                                           | 16                    |
|                    |                                                        |                             |         | ~     | 3       |         |                                             |                    | •         |                                  |                               |         |                |                            |                  |                  |                          | 2            | 0                           |                       |                                                 |                          |                       | _               | - 0                         |                              |                              | 2                                |                                                                      |                              |           |                    |       |                                |                                                                                                                                                                               |                       |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2237699, L2242795, L2248235, L2248391, L2249360, L2250608, L22506457, L2250457, L2250457, L2283637, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2249360, L2250608, L22508, L L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database. All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL. RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard BOLD

Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) BLUE

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Standard varies with pH.

<sup>c</sup> Standard varies with chloride.

<sup>d</sup> Standard varies with hardness.

<sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.

<sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>i</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                               |                             |                           |                             |                           |                                 |                               |                                 |                            |                       |               |                   |                       |          |                           |                 | Dissolv        | ed Metals          | 5                   |               |          |                     |                            |             |                     |                    |                |           |                |               |              |                           |
|--------------------|---------------------------------------------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|---------------------------------|-------------------------------|---------------------------------|----------------------------|-----------------------|---------------|-------------------|-----------------------|----------|---------------------------|-----------------|----------------|--------------------|---------------------|---------------|----------|---------------------|----------------------------|-------------|---------------------|--------------------|----------------|-----------|----------------|---------------|--------------|---------------------------|
|                    |                                                               |                             |                           |                             |                           |                                 |                               |                                 |                            |                       |               |                   |                       |          |                           |                 |                |                    |                     |               |          |                     |                            |             |                     |                    |                |           |                |               |              |                           |
| Sample<br>Location | Sample<br>ID                                                  | Sample Date<br>(yyyy mm dd) | 년<br>G Dissolved Aluminum | 표<br>Dissolved Calcium<br>고 | dd<br>Dissolved Iron<br>⊤ | a<br>a Dissolved Magnesium<br>⊤ | ත්<br>Dissolved Manganese<br> | a<br>a Dissolved Potassium<br>∩ | a<br>b<br>Dissolved Sodium | ର୍ଘ<br>ସି<br>Antimony | barsenic<br>T | Ъб<br>Т<br>Рarium | 6t<br>T∖<br>Beryllium | р<br>л/Г | 6th<br>T∖6th              | лб<br>Т<br>Т    | 6π<br>T∖Cobalt | Copper<br>T/6t     | Lead<br>T∖6t        | bt<br>Lithium | Д<br>Д   | ad<br>T∖ Molybdenum | Бћ<br>7/Л                  | 6th<br>D/D  | hð/r<br>Silver      | 6th<br>T/Strontium | 6t<br>Thallium | Ξ<br>μg/L | bh<br>Titanium | Бћ<br>Tranium | бt<br>7<br>Л | б<br>Т<br>Л               |
| Primary Screenin   | <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup>         |                             | n/a                       | n/a                         | n/a                       | n/a                             | n/a                           | n/a                             | n/a                        | 90                    | 50            | 10,000            | 1.5                   | 12,000   | 0.5-4 <sup>d</sup>        | 10 <sup>e</sup> | 40             | 20-90 <sup>d</sup> | 40-160 <sup>d</sup> | n/a           | 0.25     | 10,000              | 250-<br>1,500 <sup>d</sup> | 20          | 0.5-15 <sup>d</sup> | n/a                | 3              | n/a       | 1,000          | 85            | n/a          | 75-<br>2,400 <sup>d</sup> |
| Secondary Scree    | <b>ning Criteria</b> : Costa and de Bruyn (2021) <sup>h</sup> |                             |                           |                             |                           |                                 |                               |                                 |                            |                       |               |                   |                       |          | 0.8-<br>10.4 <sup>i</sup> | 100 (Cr +6)     | n/a            | n/a                | n/a                 | 2,530         | n/a      | n/a                 | 517-<br>2,972 <sup>i</sup> | 700         | n/a                 | n/a                | n/a            | n/a       | n/a            | 3,520         | n/a          | n/a                       |
| S8 Study Area      |                                                               |                             |                           |                             |                           |                                 |                               |                                 |                            |                       |               |                   | 1 1                   |          | 1                         |                 |                |                    |                     |               |          |                     |                            |             |                     |                    |                |           | 1              |               | . <u> </u>   |                           |
| FR_CB-1C           | FR_CB-1C_WG_2018-11-05_NP <sup>9</sup>                        | 2018 11 05                  | 12.1                      | 269                         | 25                        | 128                             | 379                           | 5.57                            | 12.1                       | 1.09                  | 0.56          | 119               | < 0.10                | 33       | 0.0994                    | < 0.10          | 0.92           | 0.47               | < 0.050             | 285           | < 0.0050 | 7.46                | 15.2                       | <u>233</u>  | < 0.010             | -                  | 0.012          | < 0.10    | 0.34           | 11.7          | < 0.50       | 6.8                       |
|                    | FR_CB-1C_2019-02-27                                           | 2019 02 27                  | < 5.0                     | 333                         | < 50                      | 174                             | 279                           | 5.98                            | 12.5                       | 0.97                  | < 0.50        | 0 132             | < 0.10                | < 50     | 0.244                     | < 0.50          | < 0.50         | < 1.0              | < 0.25              | 458           | < 0.0050 | 7.48                | 29.1                       | <u>195</u>  | < 0.050             | 539                | < 0.050        | < 0.50    | < 10           | 16.7          | < 2.5        | 9.2                       |
|                    | FR_CB_1C_2019-03-28                                           | 2019 03 28                  | < 1.0                     | 254                         | < 10                      | 140                             | 359                           | 5.09                            | 21.9                       | 0.60                  | 0.81          | 184               | < 0.020               | 32       | 0.0744                    | < 0.10          | 0.53           | < 0.20             | < 0.050             | 391           | < 0.0050 | 14.3                | 12.0                       | <u>158</u>  | < 0.010             | 541                | 0.018          | < 0.10    | < 10           | 11.7          | < 0.50       | 3.2                       |
|                    | FR_CB-1C_2019-05-29                                           | 2019 05 29                  | < 3.0                     | 175                         | 28                        | 96.0                            | 433                           | 3.65                            | 28.1                       | 0.42                  | 1.07          | 301               | < 0.020               | 33       | 0.0378                    | < 0.10          | 0.50           | 0.67               | < 0.050             | 358           | < 0.0050 | 17.0                | 5.77                       | <u>93.6</u> | < 0.010             | 503                | 0.017          | < 0.10    | < 10           | 8.49          | < 0.50       | 1.2                       |
|                    | FR_CB_1C_2019-08-12                                           | 2019 08 12                  | < 3.0                     | 191                         | 34                        | 102                             | 422                           | 3.68                            | 16.2                       | 0.63                  | 0.76          | 399               | < 0.020               | 31       | 0.0716                    | < 0.10          | 0.56           | < 0.50             | < 0.050             | 282           | < 0.0050 | 10.3                | 10.7                       | <u>141</u>  | < 0.010             | 549                | 0.025          | < 0.10    | < 10           | 10.6          | 0.66         | 1.5                       |
|                    | FR_CB-1C_2019_10_01                                           | 2019 10 01                  | < 3.0                     | 69.5                        | 101                       | 49.3                            | 281                           | 2.29                            | 30.8                       | 0.18                  | 1.84          | 333               | < 0.020               | 31       | < 0.0090                  | < 0.10          | 0.27           | < 0.20             | < 0.050             | 310           | < 0.0050 | 18.9                | 2.56                       | <u>30</u>   | < 0.010             | 379                | < 0.010        | 0.11      | < 10           | 3.38          | < 0.50       | < 1.0                     |
|                    | FR_CB-1C -2020-01-24                                          | 2020 01 24                  | < 5.0                     | 285                         | < 50                      | 161                             | 489                           | 4.98                            | 14.0                       | 0.77                  | < 0.50        | 300               | < 0.10                | < 50     | 0.066                     | < 0.50          | 0.73           | < 1.0              | < 0.25              | 371           | < 0.0050 | 7.10                | 22.6                       | <u>154</u>  | < 0.050             | 555                | < 0.050        | < 0.50    | < 10           | 14.5          | < 2.5        | < 5.0                     |
| FR_CB-2A           | FR_CB-2A_WG_2019-11-05_NP <sup>9</sup>                        | 2018 11 05                  | 11.9                      | 7.18                        | < 10                      | 2.17                            | 7.64                          | 1.84                            | 207                        | 0.83                  | 2.00          | 51.8              | < 0.10                | 357      | 0.0167                    | < 0.10          | 0.12           | 0.36               | < 0.050             | 783           | 0.0203   | 1.61                | 0.74                       | 2.85        | < 0.010             | -                  | 0.030          | < 0.10    | 0.32           | 1.04          | 4.80         | 1.2                       |
|                    | FR_CB-2A_2019-02-27                                           | 2019 02 27                  | 13.2                      | 4.30                        | < 50                      | 1.86                            | 27.4                          | 1.54                            | 202                        | 0.68                  | 1.82          | 96.7              | < 0.10                | 382      | < 0.025                   | < 0.50          | < 0.50         | < 1.0              | < 0.25              | 546           | < 0.0050 | 3.84                | < 2.5                      | 0.76        | < 0.050             | 165                | < 0.050        | < 0.50    | < 10           | 1.26          | 6.3          | < 5.0                     |
|                    | FR_CB-2A_2019-04-11                                           | 2019 04 11                  | 8.8                       | 3.94                        | < 10                      | 1.88                            | 18.7                          | 1.40                            | 195                        | 0.30                  | 1.25          | 148               | < 0.020               | 365      | < 0.0050                  | < 0.10          | < 0.10         | < 0.50             | < 0.050             | 534           | < 0.0050 | 2.54                | < 0.50                     | 0.087       | < 0.010             | 235                | < 0.010        | < 0.10    | < 10           | 0.796         | 3.05         | < 1.0                     |
|                    | FR_CB_2A_2019-08-14                                           | 2019 08 14                  | 7.0                       | 3.29                        | < 10                      | 1.67                            | 9.34                          | 1.08                            | 205                        | < 0.10                | 0.63          | 203               | < 0.020               | 412      | < 0.0050                  | < 0.10          | < 0.10         | 0.89               | < 0.050             | 582           | < 0.0050 | 0.650               | < 0.50                     | < 0.050     | < 0.010             | 267                | < 0.010        | < 0.10    | < 10           | 0.136         | 0.64         | < 1.0                     |
|                    | FR_CB-2A_2019_10_01                                           | 2019 10 01                  | 6.8                       | 3.13                        | < 10                      | 1.70                            | 8.30                          | 1.11                            | 221                        | < 0.10                | 0.73          | 232               | < 0.020               | 403      | < 0.0050                  | < 0.10          | < 0.10         | < 0.20             | < 0.050             | 572           | < 0.0050 | 0.462               | < 0.50                     | 0.063       | < 0.010             | 269                | < 0.010        | < 0.10    | < 10           | 0.102         | < 0.50       | < 1.0                     |
|                    | FR_DC1_2019_10_01                                             | Duplicate                   | 6.4                       | 3.07                        | < 10                      | 1.64                            | 8.22                          | 1.10                            | 219                        | < 0.10                | 0.69          | 234               | < 0.020               | 390      | < 0.0050                  | < 0.10          | < 0.10         | 0.21               | < 0.050             | 556           | < 0.0050 | 0.337               | < 0.50                     | 0.053       | < 0.010             | 275                | < 0.010        | < 0.10    | < 10           | 0.077         | < 0.50       | < 1.0                     |
|                    | QA/QC RPD%                                                    |                             | 6                         | 2                           | *                         | 4                               | 1                             | 1                               | 1                          | *                     | 6             | 1                 | *                     | 3        | *                         | *               | *              | *                  | *                   | 3             | *        | 31                  | *                          | *           | *                   | 2                  | *              | *         | *              | 28            | *            | *                         |
|                    | FR_CB-2A-2019-12-09                                           | 2019 12 09                  | 6.9                       | 3.01                        | < 10                      | 1.53                            | 8.24                          | 1.04                            | 206                        | < 0.10                | 0.56          | 237               | < 0.020               | 349      | < 0.0050                  | < 0.10          | < 0.10         | 0.27               | < 0.050             | 528           | < 0.0050 | 0.221               | < 0.50                     | < 0.050     | < 0.010             | 288                | < 0.010        | < 0.10    | < 10           | 0.055         | < 0.50       | < 1.0                     |
|                    | FR_CB-2A-2020-01-22                                           | 2020 01 22                  | 6.0                       | 3.12                        | < 10                      | 1.42                            | 7.45                          | 1.10                            | 197                        | < 0.10                | 0.54          | 235               | < 0.020               | 370      | < 0.0050                  | < 0.10          | < 0.10         | < 0.20             | < 0.050             | 511           | < 0.0050 | 0.248               | < 0.50                     | < 0.050     | < 0.010             | 291                | < 0.010        | < 0.10    | < 10           | 0.061         | < 0.50       | < 1.0                     |
| FR_CB-4A           | FR_CB-4A_2019-12-04                                           | 2019 04 12                  | 2.4                       | 145                         | < 10                      | 47.9                            | 102                           | 2.12                            | 19.0                       | 7.37                  | 0.51          | 289               | < 0.020               | 55       | 0.0527                    | < 0.10          | 0.50           | 2.45               | 0.067               | 48.0          | < 0.0050 | 20.5                | 4.84                       | <u>50.1</u> | 0.029               | 464                | < 0.010        | 0.26      | < 10           | 22.9          | 0.57         | 10.0                      |
|                    | FR_CB-4A-2020-02-11                                           | 2020 11 02                  | < 3.0                     | 111                         | 48                        | 47.9                            | 121                           | 1.72                            | 34.0                       | 0.63                  | 0.24          | 313               | < 0.020               | 104      | < 0.015                   | < 0.10          | 0.15           | 0.30               | < 0.050             | 92.5          | < 0.0050 | 4.68                | 1.26                       | 1.01        | < 0.010             | 495                | < 0.010        | 0.16      | < 10           | 4.38          | < 0.50       | 2.0                       |
| FR_CB-4B           | FR_CB-4B_2019-12-05                                           | 2019 05 12                  | 2.0                       | 268                         | 379                       | 119                             | 323                           | 3.17                            | 5.51                       | 0.29                  | 0.35          | 119               | < 0.020               | 15       | 0.0580                    | < 0.10          | 1.40           | 0.72               | < 0.050             | 116           | < 0.0050 | 3.08                | 6.63                       | <u>178</u>  | < 0.010             | 241                | 0.013          | 0.19      | < 10           | 7.92          | < 0.50       | 7.8                       |
|                    | FR_CB-4B_2_2019-12-05                                         | 2019 05 12                  | 1.3                       | 267                         | 388                       | 118                             | 317                           | 3.10                            | 5.55                       | 0.28                  | 0.29          | 115               | < 0.020               | 14       | 0.0544                    | < 0.10          | 1.44           | 0.53               | < 0.050             | 119           | < 0.0050 | 2.93                | 6.63                       | <u>183</u>  | < 0.010             | 247                | 0.011          | 0.10      | < 10           | 7.51          | < 0.50       | 6.9                       |
|                    | QA/QC RPD%                                                    |                             | *                         | 0                           | 2                         | 1                               | 2                             | 2                               | 1                          | *                     | *             | 3                 | *                     | *        | 6                         | *               | 3              | *                  | *                   | 3             | *        | 5                   | 0                          | 3           | *                   | 2                  | *              | *         | *              | 5             | *            | 12                        |
|                    | FR_CB-4B-2020-02-11                                           | 2020 11 02                  | < 3.0                     | 331                         | 93                        | 149                             | 1,090                         | 3.95                            | 13.7                       | 0.27                  | < 0.20        | 0 110             | < 0.040               | < 20     | 0.026                     | < 0.20          | 1.40           | < 0.40             | < 0.10              | 207           | < 0.0050 | 2.11                | 4.0                        | <u>117</u>  | < 0.020             | 363                | < 0.020        | < 0.20    | < 10           | 6.23          | < 1.0        | 8.2                       |
| FR_CB-5A           | FR_CB-5A_2019-12-02                                           | 2019 02 12                  | 2.9                       | 62.7                        | < 10                      | 26.1                            | 88.0                          | 1.70                            | 6.18                       | 1.14                  | 0.60          | 123               | < 0.020               | 28       | 0.0518                    | < 0.10          | 0.65           | 0.69               | < 0.050             | 18.0          | < 0.0050 | 4.05                | 2.38                       | 1.85        | < 0.010             | 247                | 0.017          | 0.18      | < 10           | 0.727         | < 0.50       | 4.5                       |
|                    | FR_CB-5A-2020-02-05                                           | 2020 05 02                  | < 3.0                     | 65.4                        | 115                       | 27.3                            | 116                           | 1.40                            | 5.86                       | 0.18                  | 0.58          | 157               | < 0.020               | 24       | 0.0165                    | < 0.10          | 0.49           | 0.22               | < 0.050             | 14.9          | < 0.0050 | 2.29                | 1.45                       | 0.26        | < 0.010             | 228                | < 0.010        | 0.19      | < 10           | 0.600         | < 0.50       | 2.9                       |
| FR_CB-5B           | FR_CB-5B_2019-12-03                                           | 2019 03 12                  | 4.7                       | 66.5                        | 12                        | 29.3                            | 112                           | 1.56                            | 4.74                       | 0.33                  | 0.83          | 112               | < 0.020               | 28       | 0.0235                    | 0.15            | 0.42           | 1.03               | 0.075               | 16.0          | < 0.0050 | 2.94                | 1.73                       | 0.355       | < 0.010             | 229                | 0.016          | 0.32      | < 10           | 1.47          | < 0.50       | 9.6                       |
|                    | FR_CB-5B-2020-02-05                                           | 2020 05 02                  |                           |                             | _                         |                                 | 144                           | 1.30                            | 4.80                       | < 0.10                |               |                   | < 0.020               | 25       | 0.0142                    | < 0.10          | 0.46           | 0.23               | < 0.050             | 13.1          | < 0.0050 | 2.45                | 1.32                       | 0.091       | < 0.010             | 228                | 0.010          | < 0.10    | < 10           | 1.25          | < 0.50       | 3.3                       |
| FR_CB-6A           | FR_CB-6A_2019-12-03                                           | 2019 03 12                  |                           |                             | < 10                      |                                 | 191                           | 2.71                            | 7.69                       |                       |               |                   | < 0.020               | 37       | 0.0216                    | < 0.10          | 0.94           | 1.48               | 0.591               |               | < 0.0050 |                     |                            | 0.497       |                     |                    | 0.028          |           |                |               | < 0.50       |                           |
| FR_CB-6B           | FR_CB-6B-2020-02-05                                           | 2020 05 02                  | < 3.0                     | 64.0                        | 116                       | 28.8                            | 277                           | 1.97                            | 6.95                       | < 0.10                | 0.72          | 191               | < 0.020               | 33       | < 0.0050                  | < 0.10          | 0.96           | < 0.20             | 0.057               | 15.2          | < 0.0050 | 2.69                | 1.63                       | < 0.050     | < 0.010             | 386                | 0.010          | < 0.10    | < 10           | 1.33          | < 0.50       | 6.5                       |
| S10 Study Area     |                                                               |                             |                           |                             |                           |                                 |                               |                                 |                            |                       | r             |                   |                       |          |                           |                 |                |                    |                     |               |          |                     |                            |             |                     | r                  |                |           |                |               |              |                           |
| FR_HMW1D           | GA-HMW-1D_L1238132                                            |                             | < 15                      |                             | < 30                      |                                 | 518                           | 9.7                             | 2.7                        |                       |               | 21.6              |                       | 54       | 0.054                     | < 0.50          | 4.59           | < 2.5              |                     | 80.1          | < 0.010  |                     | 28.9                       |             | < 0.050             |                    | < 0.050        |           | 19             | 9.96          | < 5.0        |                           |
|                    | FRO12_0101201301                                              |                             |                           | 517                         | _                         |                                 | 545                           | 9.1                             | 2.3                        |                       |               | 0 19.0            |                       | 52       | 0.043                     | < 0.20          | 5.11           |                    |                     |               | < 0.010  |                     | 31.7                       |             | < 0.020             |                    |                | < 0.20    |                | 10.6          | < 2.0        | 4.8                       |
|                    | FRO12_0104201301                                              |                             |                           | 480                         | < 30                      |                                 | 513                           | 8.8                             | 2.5                        |                       |               | 0 18.1            | < 0.20                | 50       | 0.051                     | < 0.20          | 4.76           |                    |                     |               |          |                     | 29.7                       |             | < 0.020             |                    | < 0.020        |           | < 10           | 10.3          | < 2.0        | 5.2                       |
|                    | FR_HMW1D-WG-201309251520                                      |                             |                           |                             |                           |                                 | 514                           | 9.28                            | 2.44                       |                       |               | 18.5              |                       | 53       | 0.055                     | < 0.20          | 4.19           |                    |                     |               | < 0.010  |                     | 35.5                       |             | < 0.020             |                    | < 0.020        |           | 24             | 11.4          | < 2.0        | 5.6                       |
|                    | WG-201309251525-FD-5                                          | Duplicate                   |                           |                             | < 30                      | 271                             | 515                           | 8.56                            | 2.38                       | 0.42                  | 0.24          | 17.9              | < 0.20                | 52       | 0.051                     | < 0.20          | 4.97           | < 0.50             | < 0.10              |               | < 0.010  | 0.77                | 34.2                       | <u>167</u>  | < 0.020             |                    | < 0.020        | < 0.20    | 26             | 10.9          | < 2.0        | 6.3                       |
|                    | QA/QC RPD%                                                    |                             | *                         | 0                           | *                         | 1                               | 0                             | 8                               | 2                          | *                     | *             | 3                 | *                     | 2        | 8                         | *               | 17             | *                  | *                   | 0             | *        | 5                   | 4                          | 1           | *                   | 4                  | *              | *         | 8              | 4             | *            | 12                        |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2237699, L2242795, L2248235, L2248391, L2249360, L2250608, L2256457, L2256457, L2256457, L2283637, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L22316991, L2317812, L2249360, L2256457, L22567, L22567, L2257, L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.
- n/a Denotes no applicable standard/guideline.
- QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

- Concentration greater than CSR Aquatic Life (AW) standard BOLD
- BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation. <sup>j</sup> Criteria in not considered applicable and has not been applied.

SNC-LAVALIN INC.

|                    |                                                        |                             |       |                 |               |               |                    |            |              |                             |                  |                   |                       |               |                |             |                 | Total        | Metals      |                     |               |                            |               |                  |                        |                |               |               |                     |                |                |             |             |             |                           |
|--------------------|--------------------------------------------------------|-----------------------------|-------|-----------------|---------------|---------------|--------------------|------------|--------------|-----------------------------|------------------|-------------------|-----------------------|---------------|----------------|-------------|-----------------|--------------|-------------|---------------------|---------------|----------------------------|---------------|------------------|------------------------|----------------|---------------|---------------|---------------------|----------------|----------------|-------------|-------------|-------------|---------------------------|
|                    |                                                        |                             |       |                 |               |               |                    |            |              |                             |                  |                   |                       |               |                |             |                 |              |             |                     |               |                            |               |                  |                        |                |               |               |                     |                |                |             |             |             |                           |
| Sample<br>Location | Sample<br>ID                                           | Sample Date<br>(yyyy mm dd) |       | 년<br>G Antimony | 6t<br>Arsenic | Barium<br>7/6 | 6th<br>T/Beryllium | 6t<br>T/6t | noron<br>Tag | б <del>л</del><br>Т/Сadmium | Galcium<br>7/6th | 6th<br>T/Ghromium | б <del>л</del><br>7/б | Соррег<br>7/С | Б <u>н</u> р/L | реад<br>Л/Г | Lithium<br>T/6đ | ба<br>П<br>Т | 년<br>영<br>지 | 6th<br>Mercury      | ର୍ଜ<br>T<br>ଅ | T/b<br>T/sickel            | 년 Phosphorous | 5 Potassium<br>T | balanium<br>T/Belenium | б<br>T/Silicon | Б<br>T/Silver | mipos<br>µg/L | a<br>Strontium<br>T | GT<br>Thallium | ц<br>Ц<br>µg/L | tanium<br>⊤ | tanium<br>T | б<br>Г<br>Г | Zinc <sup>f</sup><br>T/Gh |
| Primary Screenir   | ng Criteria: CSR Aquatic Life (AW) <sup>a</sup>        |                             | n/a   | n/a             | n/a           | n/a           | n/a                | n/a        | n/a          | n/a                         | n/a              | n/a               | n/a                   | n/a           | n/a            | n/a         | n/a             | n/a          | n/a         | n/a                 | n/a           | n/a                        | n/a           | n/a              | n/a                    | n/a            | n/a           | n/a           | n/a                 | n/a            | n/a            | n/a         | n/a         | n/a         | n/a                       |
| Secondary Scree    | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a   | n/a             | n/a           | n/a           | n/a                | n/a        | n/a          | 0.8-10.4 <sup>i</sup>       | n/a              | 100 (Cr +6)       | n/a                   | n/a           | n/a            | n/a         | 2,530           | n/a          | n/a         | n/a                 | n/a           | 517-<br>2,972 <sup>i</sup> | n/a           | n/a              | 700                    | n/a            | n/a           | n/a           | n/a                 | n/a            | n/a            | n/a         | 3,520       | n/a         | n/a                       |
| S8 Study Area      |                                                        |                             |       |                 |               |               |                    |            |              |                             |                  |                   |                       |               |                |             |                 |              |             |                     |               |                            |               |                  |                        |                |               |               |                     |                |                |             |             |             |                           |
| FR_CB-1C           | FR_CB-1C_WG_2018-11-05_NP <sup>9</sup>                 | 2018 11 05                  | 811   | 1.13            | 1.32          | 127           | < 0.10             | -          | 36           | 0.371                       | 302,000          | 2.02              | 1.76                  | 3.34          | 2,190          | 1.66        | 309             | 133,000      | 497         | 0.0171              | 8.29          | 21.2                       | - :           | 5,890            | 187                    | -              | 0.058         | 12,400        | -                   | 0.067          | 0.13           | 9.06        | 13.3        | 4.10        | 20.8                      |
|                    | FR_CB-1C_2019-02-27                                    | 2019 02 27                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | -                      | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
|                    | FR_CB_1C_2019-03-28                                    | 2019 03 28                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | -                      | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
|                    | FR_CB-1C_2019-05-29                                    | 2019 05 29                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | -                      | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
|                    | FR_CB_1C_2019-08-12                                    | 2019 08 12                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | -                      | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
|                    | FR_CB-1C_2019_10_01                                    | 2019 10 01                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | -                      | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
|                    | FR_CB-1C -2020-01-24                                   | 2020 01 24                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | -                      | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
| FR_CB-2A           | FR_CB-2A_WG_2019-11-05_NP <sup>g</sup>                 | 2018 11 05                  | 6,130 | 0.79            | 3.56          | 246           | 0.78               | -          | 384          | 1.20                        | 67,000           | 12.5              | 2.82                  | 21.9          | 6,610          | 7.34        | 619             | 8,300        | 290         | < 0.50 <sup>h</sup> | 1.86          | 13.0                       | - :           | 3,700            | 2.76                   | -              | 0.315         | 198,000       | -                   | 0.273          | < 0.50         | 21.7        | 2.17        | 30.1        | 81                        |
|                    | FR_CB-2A_2019-02-27                                    | 2019 02 27                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | -                      | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
|                    | FR_CB-2A_2019-04-11                                    | 2019 04 11                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.25              | -             | -                          | -             | -                | -                      | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
|                    | FR_CB_2A_2019-08-14                                    | 2019 08 14                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | -                      | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
|                    | FR_CB-2A_2019_10_01                                    | 2019 10 01                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | -                      | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
|                    | FR_DC1_2019_10_01                                      | Duplicate                   | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | -                      | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
|                    | QA/QC RPD%                                             | F                           | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | *                   | -             | -                          | -             | -                | -                      | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
|                    | FR_CB-2A-2019-12-09                                    | 2019 12 09                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | -                      | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
|                    | FR_CB-2A-2020-01-22                                    | 2020 01 22                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | -                      | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
| FR_CB-4A           | FR_CB-4A_2019-12-04                                    | 2019 04 12                  | 2,270 | 5.73            | 1.95          | 436           | 0.227              | < 0.050    | 54           | 0.431                       | 133,000          | 6.48              | 1.90                  | 11.9          | 3,970          | 5.74        | 41.3            | 54,300       | 206         | < 0.0050            | 17.5          | 11.9                       | - :           | 3,090            | 39.4                   | 5,930          | 0.115         | 23,200        | 441                 | 0.086          | 0.36           | 12          | 18.8        | 10.7        | 45.2                      |
|                    | FR_CB-4A-2020-02-11                                    | 2020 11 02                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | 1.11                   | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
| FR_CB-4B           | FR_CB-4B_2019-12-05                                    | 2019 05 12                  | 1,000 | 0.61            | 1.22          | 144           | 0.117              | < 0.050    | 16           | 0.336                       | 257,000          | 4.17              | 2.25                  | 5.99          | 2,910          | 4.86        | 119             | 120,000      | 408         | < 0.0050            | 3.19          | 10.8                       |               | 3,520            | 149                    | 4,870          | 0.043         | 6,810         | 253                 | 0.055          | 2.26           | < 10        | 7.57        | 4.85        | 29.0                      |
|                    | FR_CB-4B_2_2019-12-05                                  | 2019 05 12                  | 1,480 | 0.69            | 1.30          | 159           | < 0.10             | < 0.25     | < 50         | 0.381                       | 261,000          | 5.15              | 2.60                  | 6.8           | 2,980          | 5.73        | 115             | 139,000      | 442         | < 0.0050            | 3.65          | 12.7                       | - :           | 3,930            | 137                    | 5,680          | 0.054         | 7,400         | 276                 | 0.062          | 2.83           | 25          | 7.88        | 6.4         | 46                        |
|                    | QA/QC RPD%                                             | T                           | 39    | *               | 6             | 10            | *                  | *          | *            | 13                          | 2                | 21                | 14                    | 13            | 2              | 16          | 3               | 15           | 8           | *                   | 13            | 16                         | -             | 11               | 8                      | 15             | *             | 8             | 9                   | 12             | 22             | *           | 4           | 28          | 45                        |
|                    | FR_CB-4B-2020-02-11                                    | 2020 11 02                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | 112                    | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
| FR_CB-5A           | FR_CB-5A_2019-12-02                                    | 2019 02 12                  | 1,200 | 1.28            | 1.43          | 212           | 0.105              | < 0.050    | 28           | 0.232                       | 66,400           | 3.15              | 1.42                  | 5.71          | 2,300          | 2.80        | 16.6            | 30,300       | 142         | < 0.0050            | 3.52          | 5.48                       | - 1           | 2,190            |                        | 6,260          | 0.035         | 7,470         | 234                 | 0.061          | 0.58           | < 10        | 0.808       | 5.19        | 21.0                      |
|                    | FR_CB-5A-2020-02-05                                    | 2020 05 02                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | 0.314                  | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
| FR_CB-5B           | FR_CB-5B_2019-12-03                                    | 2019 03 12                  | 308   | 0.50            | 0.92          | 125           | 0.045              | < 0.050    | 29           | 0.0904                      | 68,300           | 2.58              | 0.63                  | 3.36          | 581            | 1.85        | 14.2            | 30,700       | 133         | < 0.0050            | 2.92          | 2.73                       |               | -                |                        | 5,510          | 0.010         | 5,600         | 239                 | 0.035          | 0.63           | < 10        | 1.52        | 1.68        | 14.6                      |
|                    | FR_CB-5B-2020-02-05                                    | 2020 05 02                  |       | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | 0.0075              | -             | -                          | -             |                  | 0.267                  | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
| FR_CB-6A           | FR_CB-6A_2019-12-03                                    | 2019 03 12                  | 1,150 | 0.66            | 1.10          | 180           | 0.077              | < 0.050    | 36           | 0.138                       | 82,700           | 7.06              | 1.48                  | 9.34          | 1,670          | 32.9        | 18.5            | 31,600       | 255         | < 0.0050            | 14.2          | 6.45                       | - ;           |                  |                        | 6,640          | 0.031         | 9,070         | 373                 | 0.054          | 0.78           | 22          | 2.30        | 4.90        | 74.6                      |
| FR_CB-6B           | FR_CB-6B-2020-02-05                                    | 2020 05 02                  | -     | -               | -             | -             | -                  | -          | -            | -                           | -                | -                 | -                     | -             | -              | -           | -               | -            | -           | < 0.0050            | -             | -                          | -             | -                | 0.129                  | -              | -             | -             | -                   | -              | -              | -           | -           | -           | -                         |
| S10 Study Area     |                                                        |                             |       | 1               | 1             | 1             | 1                  | ,          |              |                             | ,                |                   | 1                     |               | 1              | 1           | 1               |              | 1           | - <u> </u>          |               |                            |               |                  |                        |                |               | 1             |                     |                |                |             |             |             |                           |
| FR_HMW1D           | GA-HMW-1D_L1238132                                     | 2012 11 09                  | 61    |                 |               | 25.4          |                    | < 2.5      | 56           | 0.053                       | 524,000          | < 0.50            | 5.01                  | < 2.5         | 93             |             |                 | 250,000      |             |                     |               |                            | < 300         | -                |                        |                |               | 2,400         |                     |                |                |             |             | < 5.0       |                           |
|                    | FRO12_0101201301                                       | 2013 03 28                  | 7.1   |                 |               | 19.1          |                    | < 1.0      | 53           |                             | 522,000          | < 0.20            | 5.26                  | < 1.0         | < 30           |             |                 | 266,000      |             | < 0.010             |               |                            |               | -                |                        |                |               | 2,400         |                     |                |                |             |             | < 2.0       |                           |
|                    | FRO12_0104201301                                       | 2013 05 28                  | 83.0  |                 |               | 22.3          | < 0.20             |            | 52           | 0.051                       | 488,000          | < 0.20            | 4.99                  | < 1.0         | 113            |             |                 | 268,000      |             | < 0.010             |               |                            |               | -                |                        |                | < 0.020       |               |                     | < 0.020        |                |             |             | < 2.0       | 6.3                       |
|                    | FR_HMW1D-WG-201309251520                               | 2013 09 25                  |       | 0.47            |               |               |                    |            | 56           | 0.056                       | 535,000          | 0.25              | 5.52                  |               |                |             |                 | 285,000      |             | < 0.010             |               |                            |               | -                |                        |                |               | 2,460         |                     |                |                |             |             |             |                           |
|                    | WG-201309251525-FD-5                                   | Duplicate                   | 17.6  | 0.43            |               | 19.6          | < 0.20             | < 1.0      | 51           | 0.060                       | 529,000          | < 0.20            | 5.26                  | < 1.0         | < 30           | < 0.10      | 85.5            | 278,000      |             | < 0.010             |               |                            | - 8           |                  | 171                    | 2,370          | < 0.020       | 2,420         |                     | < 0.020        | < 0.20         |             |             |             |                           |
|                    | QA/QC RPD%                                             |                             | 1     | *               | *             | 2             | *                  | *          | 9            | 7                           | 1                | *                 | 5                     | *             | *              | *           | 7               | 2            | 3           | *                   | 12            | 4                          | -             | 3                | 1                      | 1              | *             | 2             | 8                   | *              | *              | 7           | 6           | *           | 7                         |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2238699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L2250608, L2256457, L2256457, L2283636, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L22316991, L2317812, L2249360, L2250457, L225057, L22507, L225 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value. - Denotes analysis not conducted.
- n/a Denotes no applicable standard/guideline.
- QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL. RDL Denotes reported detection limit.

- Concentration greater than CSR Aquatic Life (AW) standard BOLD
- Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) BLUE

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>i</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                       |                             |        |               |             | Ph     | sical Pa                           | rame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ters                                                    |                      |                                                            |          |                     | Field | Parar             | meters             |                             |       |                                      |                             |                              |                                    |                            |               |                                       | Dissol                       | ed Inor                      | ganics                        |                                                                                 |                                  |                     |        |               |                    |                      | i        |
|--------------------|-------------------------------------------------------|-----------------------------|--------|---------------|-------------|--------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------|------------------------------------------------------------|----------|---------------------|-------|-------------------|--------------------|-----------------------------|-------|--------------------------------------|-----------------------------|------------------------------|------------------------------------|----------------------------|---------------|---------------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------------------------------------------------------------|----------------------------------|---------------------|--------|---------------|--------------------|----------------------|----------|
|                    |                                                       |                             |        |               |             |        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | u                    |                                                            |          |                     |       |                   |                    |                             |       |                                      |                             |                              |                                    |                            |               |                                       |                              |                              |                               |                                                                                 |                                  |                     |        |               |                    |                      |          |
| Sample<br>Location | Sample<br>ID                                          | Sample Date<br>(yyyy mm dd) |        | udness<br>T/F | C Turbidity | Total  | Dial Cations<br>T<br>Sconductivity | conductive in the second secon | d Total Dissolved Solids<br>T<br>Total Suspended Solids | Dissolved Organic Ca | <ul> <li>Oxidation Reduction</li> <li>Potential</li> </ul> |          | o Field Temperature |       | Z Field Turbidity | Dissol             | 년 pH (field)<br>3 Field ORP |       | a<br>G<br>T<br>Ammonia, Total (as N) | a<br>b<br>Nitrate (as N)    | a<br>∏∕S Nitrite (as N)      | a<br>S Nitrate+Nitrite (as N)<br>T | ä Kjeldahl Nitrogen-N<br>T | B<br>Nitrogen | da Total Nitrogen-N<br>T<br>Schloride |                              | m<br>Sulfate<br>T            | Alkalinity, Bic<br>(as CaCO3) | a Alkalinity, Carbonate<br>P(as CaCO3)<br>a Alkalinity, Hydroxide<br>(as CaCO3) | T (as cacco)<br>Bicarbonate<br>T | a<br>barbonate<br>T | mg/L I | Total Acidity | G Acidity (pH 8.3) |                      | Total    |
| Primary Screenir   | ng Criteria: CSR Aquatic Life (AW) <sup>a</sup>       |                             | n/a    | n/a           | n/a         | n/a r  | n/a n/                             | /a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a n/                                                  | a n/a                | n/a                                                        | n/a      | n/a                 | n/a   | n/a               | n/a n              | n/a n/a                     | n/a   | 1.31-<br>18.5 <sup>b</sup>           | 400                         | 0.2-2.0 <sup>c</sup>         | 400                                | n/a                        | n/a           | n/a 1,500                             | 2,000-<br>3,000 <sup>d</sup> | 1,280-<br>4,290 <sup>d</sup> | n/a                           | n/a n/a                                                                         | n/a                              | n/a                 | n/a    | n/a r         | n/a n              | /a n/a               | n/a      |
| Secondary Scree    | ning Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a    | n/a           | n/a         | n/a r  | n/a n/                             | /a 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,000 n/                                                | a n/a                | n/a                                                        | n/a      | n/a                 | n/a   | n/a               | n/a <sup>j</sup> n | n/a n/a                     | n/a   | n/a                                  | 6.08-<br>223.8 <sup>i</sup> | 0.389-<br>39.95 <sup>j</sup> | n/a                                | n/a                        | n/a           | n/a n/a                               | n/a                          | 4,990                        | n/a                           | n/a n/a                                                                         | n/a                              | n/a                 | 78     | n/a r         | n/a n              | /a n/a               | n/a      |
| S10 Study Area     |                                                       |                             | 1 1    |               |             |        |                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                      |                                                            | 1 1      |                     |       |                   |                    |                             |       | I                                    | 1                           |                              | 1 1                                |                            |               |                                       |                              | 1                            | 1 1                           |                                                                                 |                                  |                     |        | 1             | 1                  |                      |          |
| FR_HMW1D           | FR_HMW1D_Q_01102013_N                                 | 2013 12 09                  | 7.65 2 | 2,560         | 4.04        | 57.2 5 | 1.6 3,9                            | 40 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,170 7.61                                              | 7.6 0.92             | 415                                                        | -        | 2.6                 | 3,518 | -                 | 5.54 7.            | '.41 -                      | 408   | 0.949                                | 203                         | 0.021                        | -                                  | < 0.050                    | -             | - 3.3                                 | < 400                        | 1,660                        | 408                           | < 1.0 < 1.                                                                      | 0 -                              | -                   | < 1.0  | - 1           | 4.1 0.0            | 037 1.45             | 0.0099   |
|                    | FR_HMW1D_Q_01012014_N                                 | 2014 03 12                  | 7.78 2 | 2,640         | 4.22        | 56.3 5 | 3.1 3,8                            | 390 <i>4</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4,030 23                                                | .1 1.09              | 438                                                        | -        | 3.7                 | 3,551 | -                 | 3.29 7.            | .04 14.5                    | 5 399 | 0.953                                | 197                         | < 0.020                      | -                                  | < 0.050                    | -             | - 3.6                                 | 690                          | 1,640                        | 399                           | < 1.0 < 1.                                                                      | 0 -                              | -                   | < 1.0  | - 2           | 5.0 0.0            | 036 4.39             | 0.0217   |
|                    | FR_HMW1D_Q_01042014_N                                 | 2014 05 13                  | 7.8 2  | 2,580         | 0.71        | 54.6   | 52 3,9                             | 920 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,220 5.                                                | 2 1.08               | 301                                                        | -        | 4.9                 | 3,719 | -                 | 2.27 7.            | .82 -33.                    | 5 389 | 1.04                                 | 181                         | < 0.020                      | -                                  | < 0.050                    | -             | - 4                                   | < 400                        | 1,620                        | 389                           | < 1.0 < 1.                                                                      | 0 -                              | -                   | < 1.0  | - 2           | 3.0 0.0            | 033 1.02             | 0.0039   |
|                    | FR_HMW1D_QSW_02072014_N                               | 2014 09 30                  | 7.85 2 | 2,490         | 0.22        | 56.1 5 | 0.3 3,7                            | '90 ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,860 < 1                                               | .0 1.21              | 389                                                        | -        | 7.3                 | 3,655 | -                 | 3.41 6.            | 6.88 38.3                   | 3 432 | 0.571                                | 161                         | < 0.020                      | -                                  | < 0.050                    | -             | - 10.8                                | < 400                        | 1,710                        | 432                           | < 1.0 < 1.                                                                      | 0 -                              | -                   | < 1.0  | - 3           | 1.9 < 0.           | 0010 1.16            | < 0.0020 |
|                    | FR_HMW1D_QSW_02102014_N                               | 2014 10 22                  | 7.9 2  | 2,550         | 0.73        | 55.6 5 | 1.4 3,8                            | 870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,150 4                                                 | 1.37                 | 383                                                        | -        | 4.2                 | 3,765 | -                 | 1.09 6.            | 6.89 178.                   | 9 331 | 0.547                                | 170                         | < 0.020                      | -                                  | < 0.050                    | -             | - 5.7                                 | < 400                        | 1,760                        | 331                           | < 1.0 < 1.                                                                      | 0 -                              | -                   | < 1.0  | - 3           | 4.6 < 0.           | 0010 1.59            | 0.0026   |
|                    | FR_HMW1D_QSW_02012015_N                               | 2015 01 19                  | 7.75 2 | 2,280         | -           | -      | - 3,8                              | 880 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,800 1.                                                | 3 1.38               | -                                                          | -        | 3.2                 | -     | -                 | - 7.               | .23 -                       | 407   | 0.572                                | 175                         | < 0.020                      | -                                  | < 0.050                    | -             | - 4.2                                 | < 400                        | 1,780                        | -                             |                                                                                 | -                                | -                   | < 1.0  | -             | -                  | - 1.16               | < 0.0020 |
|                    | FR HMW1D-WQ-201501191415                              | Duplicate                   | 7.76 2 | 2,500         | -           | -      | - 3,8                              | 370 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,830 1.                                                | 5 1.26               | -                                                          | -        | -                   | -     | -                 | -                  |                             | 400   | 0.603                                | 171                         | 0.023                        | -                                  | < 0.050                    | -             | - 4.4                                 | < 400                        | 1,740                        | -                             |                                                                                 | -                                | -                   | < 1.0  | -             | -                  | - 1.29               | < 0.0020 |
|                    | QA/QC RPD%                                            |                             |        | 9             | -           | -      | - (                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 *                                                     |                      | -                                                          | -        | -                   | -     | -                 | -                  |                             | 2     | 5                                    | 2                           | *                            | -                                  | *                          | -             | - 5                                   | *                            | 2                            | -                             |                                                                                 | -                                | -                   | *      | -             | -                  | *                    |          |
|                    | FR_HMW1D_QSW_02042015_N                               | 2015 04 14                  | 7.36 2 | 2.480         | -           | -      | - 3.8                              | 310 ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,860 1.                                                | 6 1.22               |                                                            | -        | 3.6                 | 3,530 | -                 | - 7.               | .07 -                       | 374   | 0.449                                | 169                         | < 0.020                      | -                                  | < 0.050                    | -             | - 3.6                                 | < 400                        | 1,650                        | -                             |                                                                                 | -                                | -                   | < 1.0  | -             | -                  | - 1.02               | 0.0027   |
| -                  | FR_HMW1D_QSW_02072015_N                               | 2015 07 03                  |        | -             | -           | -      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,440 1.                                                |                      |                                                            |          |                     | 3,683 | -                 |                    | .06 -                       | 401   | 0.471                                | 172                         | 0.023                        |                                    | < 0.050                    |               | - 4.3                                 |                              | 1,730                        |                               |                                                                                 | -                                |                     | < 1.0  | -             | -                  | - 0.87               |          |
|                    | FR HMW1D QSW 02102015 N                               | 2015 10 09                  | 7.53 2 | 2.490         | -           | -      | - 3.7                              | /80 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.110 4.                                                |                      | _                                                          | -        |                     | 3,803 | -                 | - 7.               | .26 -                       | 443   | 0.321                                | 157                         | 0.023                        | -                                  | 0.236                      | -             | - 3.7                                 | < 400                        | 1.710                        |                               |                                                                                 | -                                | -                   | < 1.0  | -             | -                  | - 1.10               | 0.0029   |
|                    | FR_HMW1D_QSW_04012016_N                               | 2016 02 22                  |        |               | 0.22        | 54.7 5 | 0.4 3,9                            | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.070 1.                                                | 7 1.12               | 325                                                        | -        |                     | 3,468 | -                 | 2.66 7.            | .01 195.                    | 8 409 | 0.399                                | 165                         | < 0.020                      | -                                  | 0.841                      | -             | - 3.4                                 | < 400                        | 1,660                        | 409                           | < 1.0 < 1.                                                                      | 0 -                              | -                   | < 1.0  | - 5           | 2.0 0.0            | 038 1.10             | 0.0035   |
| -                  | FR_HMW1D_QSW_04042016_N                               |                             | 7.82 2 |               |             |        | 1.6 3,9                            | 910 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,870 1.                                                |                      | _                                                          | -        |                     | 3,470 | -                 | 0.89 6.            |                             |       | 0.389                                | 157                         | < 0.020                      | -                                  | 0.568                      | -             | - 3.4                                 |                              | 1,600                        |                               | < 1.0 < 1.                                                                      |                                  |                     | < 1.0  |               | 8.5 0.0            |                      |          |
| -                  | FR_HMW1D_QSW_04072016_N                               |                             | 7.52 2 |               |             |        | 0.8 4,0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,970 1.                                                |                      | _                                                          | -        |                     | 3,567 | -                 | 2.67 7.            |                             |       | 0.315                                | 160                         | < 0.020                      | -                                  | 0.686                      | -             | - 3.9                                 |                              | 1,700                        |                               | < 1.0 < 1.                                                                      |                                  |                     | < 1.0  |               | 3.2 0.0            |                      |          |
|                    | FR_HMW1D_QSW_03102016_N                               |                             | 7.29 2 |               |             |        | 4.1 3,8                            | 370 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.090 1.                                                | 5 1.16               | 326                                                        |          |                     | 35.08 | -                 | 2.05 6.            |                             | 3 455 | 0.188                                | 156                         | < 0.020                      | -                                  | 0.721                      | -             | - 3.7                                 | < 400                        | 1,780                        | 455                           | < 1.0 < 1.                                                                      | 0 -                              |                     | < 1.0  |               | 6.2 0.0            |                      | 0.0027   |
| -                  | FR_HMW1D_QSW_02012017_N                               | 2017 02 27                  | 7.07 2 |               |             |        |                                    | 60 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,710 2.                                                |                      | _                                                          |          |                     | 3,367 | -                 |                    | .06 48.5                    |       | 0.317                                | 157                         | 0.0170                       | -                                  | 0.474                      | -             | - 2.5                                 | 190                          | 1,630                        |                               | < 1.0 < 1.                                                                      |                                  |                     | < 0.25 |               | 2.7 0.0            |                      |          |
| -                  | FR_HMW1D_QSW_03042017_N                               |                             | 7.65 2 |               |             |        | 47 3,7                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,550 1.                                                |                      |                                                            |          |                     | 3,638 | -                 |                    | 7.18 139.                   |       | 0.228                                | 155                         | 0.011                        | _                                  | < 0.25                     | -             | - < 5.0                               |                              | 1,730                        |                               | < 1.0 < 1.                                                                      |                                  |                     | < 0.50 |               | 4.1 0.0            |                      |          |
|                    | FR_HMW1D_QTR_2017-09-11_N                             | 2017 09 18                  |        |               | 0.48        |        | 3.4 3,6                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,650 < 1                                               |                      | _                                                          |          |                     | 3,542 | -                 |                    | 7.03 173.                   |       | 0.173                                | 155                         | 0.0123                       | -                                  | < 0.050                    | -             | - < 2.5                               |                              | 1,800                        |                               | < 1.0 < 1.                                                                      |                                  |                     | < 0.25 |               | 0.0 0.0            |                      |          |
| -                  | FR_HMW1D_QTR_2017-10-02_N                             | 2017 11 14                  |        |               |             |        | 5.4 3,6                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,340 1.                                                |                      |                                                            |          |                     | 3,627 | -                 |                    | 6.77 204.                   |       | 0.207                                | 151                         | 0.018                        |                                    | < 0.050                    |               | - < 5.0                               |                              | 1,840                        |                               | < 1.0 < 1.                                                                      |                                  |                     | < 0.50 |               | 6.3 0.0            |                      |          |
| -                  | WG_2017-10-02_002                                     |                             | 7.88 2 |               |             |        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,990 1                                                 |                      | 283                                                        | 2        | -                   | -     |                   |                    |                             |       | 0.208                                | 153                         | 0.020                        |                                    | < 0.050                    |               | - < 5.0                               |                              | 1,860                        |                               | < 1.0 < 1.                                                                      |                                  |                     | < 0.50 |               |                    | 034 1.27             |          |
|                    | QA/QC RPD%                                            | Bupilouto                   |        | 6             | 9           | *      | * 0,0                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 *                                                    | * *                  | *                                                          | *        | -                   | _     |                   |                    |                             | 2     | 0.200                                | 1                           | 11                           | _                                  | *                          | -             | - *                                   | *                            | 1,000                        | 2                             | * *                                                                             | -                                | -                   | *      |               | 8                  | * *                  | *        |
| -                  | FR_HMW1D_QTR_2018-01-01_N                             | 2018 01 24                  |        |               | -           | 55.2 5 | 3.6 4,0                            | 030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.970 2.                                                | 4 1.66               | 359                                                        | -1.5     | 3.2                 | 3,589 | -                 | 0.42 6.            |                             |       | 0.342                                | 152                         | < 0.010                      | _                                  | 0.329                      | -             | - < 5.0                               | ) < 200                      | 1,740                        |                               | < 1.0 < 1.                                                                      | 0 -                              |                     | < 0.10 |               | 7.9 0.0            | 033 1.61             | 0.0066   |
|                    | FR_HMW1D_QTR_2018-04-02_N                             | 2018 06 12                  | 7.85 2 |               |             |        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,150 1.                                                |                      | _                                                          | -2.3     |                     | 3,712 |                   |                    | 67 230.                     |       | 0.241                                | 148                         | 0.032                        | -                                  | < 0.020                    | _             | - < 5.0                               |                              | 1,830                        |                               | < 1.0 < 1.                                                                      |                                  |                     | < 0.50 |               | 9.0 0.0            |                      |          |
|                    | FR HMW1D QTR 2018-07-02 N                             |                             | 7.9 2  |               |             |        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,090 2.                                                |                      |                                                            |          |                     | 3,535 | _                 |                    | 5.82 142.                   |       | 0.174                                | 150                         | 0.002                        |                                    | < 0.050                    |               | - < 5.0                               |                              | 1,000                        |                               | < 1.0 < 1.                                                                      |                                  |                     | < 0.50 |               |                    | 011 1.13             |          |
|                    | FR HMW1D QTR 2018-10-01 N                             | 2018 12 11                  |        |               | -           |        | - / -                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | -                    |                                                            | -1.4     |                     | 3,265 | _                 |                    | 7.01 246.                   |       |                                      | 134                         | 0.010                        | -                                  | 0.537                      | _             | - < 5.0                               |                              | 1,850                        |                               | < 1.0 < 1.                                                                      |                                  |                     | < 0.50 |               |                    | 203 1.07             |          |
|                    | FR_HMW1D_QTR_2019-01-07_N                             | 2010 12 11                  |        | -             |             |        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                      |                                                            |          |                     | 3,383 | _                 |                    | .01 240.<br>5.91 243.       |       |                                      | 151                         | < 0.020                      | _                                  | < 0.050                    | _             | - < 5.0                               |                              |                              |                               | < 1.0 < 1.                                                                      | -                                |                     | < 0.50 |               |                    | 034 0.87             |          |
|                    | FR_HMW1D_QTR_2019-04-01_N                             | 2019 05 29                  |        |               |             |        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,840 4.                                                |                      |                                                            |          |                     | 3,484 | _                 | 0.16 6.            |                             |       |                                      | 133                         | 0.047                        |                                    | < 0.050                    |               | - < 5.0                               |                              | 1,950                        |                               | < 1.0 < 1.                                                                      |                                  |                     | < 0.50 |               |                    | 026 1.84             |          |
|                    | FR_HMW1D_QTR_2019-07-01_N                             | 2019 07 25                  |        |               |             |        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                      |                                                            |          |                     | 3,233 |                   |                    |                             |       | 0.121                                | 133                         | 0.019                        | -                                  | < 0.25                     |               | - < 5.0                               |                              |                              |                               | < 1.0 < 1.                                                                      |                                  |                     | < 0.50 |               |                    | 034 0.76             |          |
| -                  | FR_HMW1D_QTR_2019-10-07_N                             | 2019 07 23                  |        |               |             |        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                      |                                                            |          |                     | 3,820 |                   |                    |                             |       |                                      |                             | 0.013                        |                                    | < 0.25                     |               | - 2.6                                 |                              |                              |                               | < 1.0 < 1.                                                                      |                                  |                     | < 0.25 |               |                    | 034 0.70<br>048 1.02 |          |
|                    | FR_DC1_QTR_2019-10-07_N                               |                             |        |               |             |        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,970 4.                                                |                      |                                                            |          | -                   | -     |                   |                    |                             |       | 0.0737                               |                             |                              |                                    | < 0.050                    |               | - 2.5                                 |                              |                              |                               | < 1.0 < 1.                                                                      |                                  |                     | < 0.25 |               |                    | 046 0.78             |          |
|                    | QA/QC RPD%                                            | Dupiloate                   |        |               |             |        |                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                      | *                                                          | *        | -                   | -     | -                 | -                  |                             | 430   | 39                                   | 0                           | 13                           | _                                  | *                          | -             | - 4                                   | .0                           | 1,030                        |                               | * *                                                                             |                                  |                     | *      |               |                    | * *                  |          |
| - I - F            | HMW1D_QTR_2020-01-06_N                                | 2020 03 02                  |        |               |             |        |                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       |                      |                                                            |          |                     | 3,748 |                   |                    |                             |       | 0.0185                               |                             |                              | _                                  | < 0.050                    |               | - 2.5                                 | 160                          |                              |                               | < 1.0 < 1.                                                                      |                                  |                     | < 0.25 |               |                    | 035 1.29             |          |
|                    | FR HMW1D QTR 2020-04-06 N                             | 2020 05 02                  |        |               |             |        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                      |                                                            |          | -                   | 5,140 |                   | 2.0 1.             |                             |       |                                      |                             | 0.0275                       |                                    | < 0.050                    |               | - 2.8                                 |                              |                              |                               | < 1.0 < 1.                                                                      |                                  |                     | < 0.25 |               |                    | 033 1.29<br>018 0.90 |          |
| FR_HMW1S           | GA-HMW-1S_L1238132                                    | 2020 03 14                  | 1.3 2  | _,100         | 0.00        | -3.0 0 | 2,3                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,300 4.                                                 | 5 1.03               | 301                                                        | 0.0      | -                   | -     | -                 | -                  |                             | 209   | 0.0019                               | 115                         | 0.0213                       | -                                  | - 0.000                    | -             | - 2.0                                 | 220                          | 1,790                        | 203                           | - 1.0 - 1.                                                                      | -                                |                     | - 0.23 | - 1.          | 2.1 0.0            | 0.0                  | × 0.0020 |
|                    | FRO12_0101201302                                      |                             | +      |               |             |        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                      |                                                            | $\vdash$ |                     |       |                   |                    |                             |       |                                      |                             |                              |                                    |                            |               |                                       |                              |                              |                               |                                                                                 |                                  |                     |        |               |                    |                      | +        |
|                    | FR012_0104201302                                      |                             | +      |               |             |        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                      | +                                                          |          |                     |       |                   |                    |                             | _     |                                      | -                           |                              |                                    |                            |               |                                       |                              |                              | +                             |                                                                                 | +                                |                     |        |               |                    |                      | +        |
| <u> </u>           | 11012_0104201302                                      |                             |        |               |             |        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                      | 1                                                          |          |                     |       |                   |                    |                             |       |                                      | <u> </u>                    | 1                            |                                    |                            |               |                                       | 1                            | 1                            |                               |                                                                                 |                                  |                     |        |               |                    |                      |          |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L224795, L2244162, L2245057, L2248235, L2248391, L2249360, L2250608, L2256457, L2256457, L2256457, L2283637, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2249360, L2256457, L225657, L225557, L22557, L225757, L22575 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099. Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

BOLD Concentration greater than CSR Aquatic Life (AW) standard

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride. <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.

<sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>i</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                         |                             |                              | I                      | _                   |                          |                            |                                  |                       | T          | T           | T           | 1           |               | 1                         |                 | Dissolv          | ed Metal           | s                   | r                           |          | I             | 1                          |             | T                   |                    |                 | 1         |               |                |               |                           |
|--------------------|---------------------------------------------------------|-----------------------------|------------------------------|------------------------|---------------------|--------------------------|----------------------------|----------------------------------|-----------------------|------------|-------------|-------------|-------------|---------------|---------------------------|-----------------|------------------|--------------------|---------------------|-----------------------------|----------|---------------|----------------------------|-------------|---------------------|--------------------|-----------------|-----------|---------------|----------------|---------------|---------------------------|
| Sample<br>Location | Sample<br>ID                                            | Sample Date<br>(yyyy mm dd) | 년<br>Dissolved Aluminum<br>T | a<br>Dissolved Calcium | 년<br>Dissolved Iron | ⊟<br>Dissolved Magnesium | 년 Dissolved Manganese<br>기 | a<br>b Dissolved Potassium<br>T∕ | d<br>Dissolved Sodium | T∕antimony | Б<br>П<br>П | б<br>Т<br>П | T/Beryllium | uoron<br>hã/T | Б<br>Т/б<br>Т             | Chromium<br>/T  | T/б <del>п</del> | Copper<br>T/C      | Lead<br>T/BH        | T/6 <del>1</del><br>Lithium | Amercury | A/denum<br>۲/ | T/Dhickel                  | T/Selenium  | T/Silver            | П/б<br>П/Strontium | T/D<br>T/allium | Ξ<br>μg/L | Д<br>Тitanium | Dranium<br>T/D | д<br>Т/б<br>Т | T/ق<br>T/ق                |
| Primary Screenir   | n <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup> |                             | n/a                          | n/a                    | n/a                 | n/a                      | n/a                        | n/a                              | n/a                   | 90         | 50          | 10,000      | 1.5         | 12,000        | 0.5-4 <sup>d</sup>        | 10 <sup>e</sup> | 40               | 20-90 <sup>d</sup> | 40-160 <sup>d</sup> | n/a                         | 0.25     | 10,000        | 250-<br>1,500 <sup>d</sup> | 20          | 0.5-15 <sup>d</sup> | n/a                | 3               | n/a       | 1,000         | 85             | n/a           | 75-<br>2,400 <sup>d</sup> |
| Secondary Scree    | ning Criteria: Costa and de Bruyn (2021) <sup>h</sup>   |                             |                              |                        |                     |                          |                            |                                  |                       |            |             |             |             |               | 0.8-<br>10.4 <sup>i</sup> | 100 (Cr +6)     | n/a              | n/a                | n/a                 | 2,530                       | n/a      | n/a           | 517-<br>2,972 <sup>i</sup> | 700         | n/a                 | n/a                | n/a             | n/a       | n/a           | 3,520          | n/a           | n/a                       |
| S10 Study Area     |                                                         |                             |                              |                        |                     |                          |                            |                                  |                       |            |             |             |             |               |                           |                 |                  |                    |                     |                             |          |               | _,                         |             |                     |                    | <u> </u>        |           |               | ·              |               |                           |
| FR_HMW1D           | FR_HMW1D_Q_01102013_N                                   | 2013 12 09                  | 9.8                          | 555                    | < 30                | 286                      | 557                        | 10.2                             | 2.63                  | 0.45       | < 0.20      | 20.4        | < 0.20      | 46            | 0.070                     | < 0.20          | 3.99             | < 0.50             | < 0.10              | 74.8                        | < 0.010  | 0.82          | 40.6                       | <u>184</u>  | < 0.020             | 367                | < 0.020         | < 0.20    | 21            | 11.9           | < 2.0         | 6.1                       |
|                    | FR_HMW1D_Q_01012014_N                                   | 2014 03 12                  | < 3.0                        | 569                    | < 20                | 296                      | 433                        | 8.00                             | 2.11                  | 0.38       | < 0.20      | ) 14.9      | < 0.20      | 44            | 0.053                     | < 0.20          | 2.47             | < 0.50             | < 0.10              | 78.3                        | < 0.010  | 0.74          | 34.2                       |             | < 0.020             | 351                | < 0.020         | < 0.20    | 20            | 11.6           | < 2.0         | 5.6                       |
|                    | FR_HMW1D_Q_01042014_N                                   | 2014 05 13                  | < 5.0                        | 554                    | < 50                | 292                      | 544                        | 8.32                             | 2.20                  | < 0.50     | < 0.50      | ) 15.3      | < 0.50      | 53            | < 0.050                   | < 0.50          | 5.15             | < 1.0              | < 0.25              | 86.9                        | < 0.010  | 0.76          | 36.1                       | 23.8        | < 0.050             | 374                | < 0.050         | < 0.50    | 16            | 12.2           | < 5.0         | 5.7                       |
|                    | FR_HMW1D_QSW_02072014_N                                 | 2014 09 30                  | < 3.0                        | 533                    | < 20                | 280                      | 600                        | 8.21                             | 7.74                  | 0.62       | < 0.20      | ) 12.7      | < 0.20      | 56            | 0.103                     | 0.31            | 5.42             | < 0.50             | < 0.10              | 84.0                        | < 0.010  | 1.02          | 36.6                       | 110         | < 0.020             | 376                | 0.035           | < 0.20    | 27            | 12.4           | < 2.0         | 8.2                       |
|                    | FR_HMW1D_QSW_02102014_N                                 | 2014 10 22                  | < 5.0                        | 551                    | < 50                | 284                      | 612                        | 7.70                             | 5.97                  | < 0.50     | < 0.50      | ) 14.3      | < 0.50      | < 50          | 0.118                     | < 0.50          | 5.38             | 1.5                | < 0.25              | 81.4                        | < 0.010  | 0.88          | 36.0                       | 66.5        | < 0.050             | 357                | < 0.050         | < 0.50    | 29            | 11.8           | < 5.0         | 9.6                       |
|                    | FR_HMW1D_QSW_02012015_N                                 | 2015 01 19                  | < 3.0                        | 495                    | < 20                | 255                      | 588                        | 8.47                             | 3.76                  | 0.54       | < 0.20      | ) 14        | < 0.20      | 50            | 0.1                       | < 0.20          | 5.17             | < 0.50             | < 0.10              | 81.4                        | < 0.010  | 0.87          | 34.1                       | 103         | < 0.020             | 354                | 0.034           | < 0.20    | 27            | 12.4           | < 2.0         | 7.9                       |
|                    | FR_HMW1D-WQ-201501191415                                | Duplicate                   | 3.1                          | 520                    | < 20                | 292                      | 600                        | 8.64                             | 3.84                  | 0.51       | < 0.20      | 0 14.3      | < 0.20      | 50            | 0.107                     | < 0.20          | 5.23             | < 0.50             | < 0.10              | 80.4                        | < 0.010  | 0.81          | 34.6                       | 101         | < 0.020             | 353                | 0.027           | < 0.20    | 26            | 11.4           | < 2.0         | 8.6                       |
|                    | QA/QC RPD%                                              |                             | *                            | 5                      | *                   | 14                       | 2                          | 2                                | 2                     | 6          | *           | 2           | *           | 0             | 7                         | *               | 1                | *                  | *                   | 1                           | *        | 7             | 1                          | 2           | *                   | 0                  | *               | *         | 4             | 8              | *             | 8                         |
|                    | FR_HMW1D_QSW_02042015_N                                 | 2015 04 14                  | < 3.0                        | 529                    | < 20                | 281                      | 573                        | 7.90                             | 2.92                  | 0.44       | < 0.20      | ) 14.1      | < 0.20      | 45            | 0.085                     | < 0.20          | 4.95             | < 0.50             | < 0.10              | 73.8                        | < 0.0050 | 0.76          | 33.3                       | <u>20.5</u> | < 0.020             | 356                | 0.025           | < 0.20    | 18            | 12.5           | < 1.0         | 7.1                       |
|                    | FR_HMW1D_QSW_02072015_N                                 | 2015 07 03                  | < 3.0                        | 565                    | < 20                | 290                      | 574                        | 8.00                             | 2.75                  | 0.39       | < 0.20      | ) 13.8      | < 0.20      | 50            | 0.071                     | < 0.20          | 4.97             | < 0.50             | < 0.10              | 86.6                        | < 0.0050 | 0.78          | 33.6                       | <u>90.7</u> | < 0.020             | 353                | 0.023           | < 0.20    | < 10          | 12.1           | < 1.0         | 6.7                       |
|                    | FR_HMW1D_QSW_02102015_N                                 | 2015 10 09                  | < 3.0                        | 555                    | < 20                | 269                      | 677                        | 7.25                             | 2.67                  | 0.38       | < 0.20      | ) 13.9      | < 0.20      | 48            | 0.087                     | < 0.20          | 4.88             | 0.54               | < 0.10              | 73.7                        | < 0.0050 | 0.67          | 32.3                       | 5.17        | < 0.020             | 334                | < 0.020         | < 0.20    | < 10          | 10.9           | < 1.0         | 7.6                       |
|                    | FR_HMW1D_QSW_04012016_N                                 | 2016 02 22                  | < 3.0                        | 551                    | < 20                | 274                      | 583                        | 7.42                             | 2.41                  | 0.41       | < 0.20      | ) 13.5      | < 0.20      | 42            | 0.088                     | < 0.20          | 4.93             | < 0.50             | < 0.10              | 94.0                        | < 0.0050 | 0.75          | 34.0                       | <u>57.5</u> | < 0.020             | 357                | 0.023           | < 0.20    | 14            | 12.9           | < 1.0         | 7.0                       |
|                    | FR_HMW1D_QSW_04042016_N                                 | 2016 05 18                  | < 3.0                        | 550                    | < 20                | 289                      | 560                        | 7.97                             | 2.62                  | 0.43       | < 0.20      | 0 13.0      | < 0.040     | 47            | 0.080                     | < 0.20          | 4.23             | < 0.50             | < 0.10              | 97.1                        | < 0.0050 | 0.77          | 32.0                       | <u>44.8</u> | < 0.020             | 344                | < 0.020         | < 0.20    | < 10          | 11.8           | < 1.0         | 6.6                       |
|                    | FR_HMW1D_QSW_04072016_N                                 | 2016 08 15                  | < 3.0                        | 541                    | < 20                | 285                      | 576                        | 6.49                             | 2.29                  | 0.40       | < 0.20      | ) 12.1      | < 0.040     | 44            | 0.066                     | < 0.20          | 4.82             | < 0.50             | < 0.10              | 77.8                        | < 0.0050 | 0.70          | 33.0                       | 15          | < 0.020             | 333                | < 0.020         | < 0.20    | < 10          | 11.4           | < 1.0         | 6.3                       |
|                    | FR_HMW1D_QSW_03102016_N                                 | 2016 11 22                  | < 5.0                        | 591                    | < 50                | 295                      | 763                        | 7.45                             | 2.68                  | < 0.50     | < 0.50      | ) 14.9      | < 0.10      | < 50          | 0.071                     | < 0.50          | 5.82             | < 1.0              | < 0.25              | 86.7                        | < 0.0050 | 0.68          | 38.0                       | 9.55        | < 0.050             | 356                | < 0.050         | < 0.50    | < 10          | 12.5           | < 2.5         | 9.7                       |
|                    | FR_HMW1D_QSW_02012017_N                                 | 2017 02 27                  | < 1.0                        | 506                    | < 10                | 294                      | 588                        | 7.27                             | 2.62                  | 0.41       | 0.13        | 13.4        | < 0.020     | 48            | 0.0769                    | < 0.10          | 4.60             | 0.23               | < 0.050             | 87.1                        | < 0.0050 | 0.753         | 30.7                       | <u>61.5</u> | < 0.010             | 345                | 0.019           | < 0.10    | < 10          | 10.5           | < 0.50        | 8.9                       |
|                    | FR_HMW1D_QSW_03042017_N                                 | 2017 06 22                  | < 5.0                        | 522                    | < 50                | 251                      | 580                        | 6.92                             | 2.30                  | < 0.50     | < 0.50      | ) 12.2      | < 0.10      | < 50          | 0.079                     | < 0.50          | 4.62             | < 1.0              | < 0.25              | 91.0                        | < 0.0050 | 0.71          | 31.8                       | <u>34.3</u> | < 0.050             | 328                | < 0.050         | < 0.50    | < 10          | 9.94           | < 2.5         | 8.0                       |
|                    | FR_HMW1D_QTR_2017-09-11_N                               | 2017 09 18                  | < 3.0                        | 569                    | < 20                | 300                      | 623                        | 6.98                             | 2.44                  | 0.42       | < 0.20      | 0 12.0      | < 0.040     | 48            | 0.071                     | < 0.20          | 4.90             | < 0.50             | < 0.10              | 91.0                        | < 0.0050 | 0.71          | 32.6                       | <u>70.1</u> | < 0.020             | 346                | < 0.020         | < 0.20    | < 10          | 12.8           | < 1.0         | 7.0                       |
|                    | FR_HMW1D_QTR_2017-10-02_N                               | 2017 11 14                  | < 3.0                        | 585                    | < 20                | 314                      | 601                        | 7.45                             | 2.29                  | 0.38       | < 0.20      | ) 12.6      | < 0.040     | 56            | 0.081                     | < 0.20          | 4.69             | < 0.50             | < 0.10              | 87.3                        | < 0.0050 | 0.87          | 32.5                       | <u>94.3</u> | < 0.020             | 354                | < 0.020         | < 0.20    | < 10          | 11.2           | < 1.0         | < 7.0                     |
|                    | WG_2017-10-02_002                                       | Duplicate                   | < 3.0                        | 632                    | < 20                | 326                      | 695                        | 7.57                             | 2.49                  | 0.39       | < 0.20      | ) 12.2      | < 0.040     | 45            | 0.075                     | < 0.20          | 4.88             | < 0.50             | < 0.10              | 96.2                        | < 0.0050 | 0.76          | 33.3                       | <u>95.6</u> | < 0.020             | 346                | < 0.020         | < 0.20    | < 10          | 11.4           | < 1.0         | 6.8                       |
|                    | QA/QC RPD%                                              |                             |                              |                        |                     |                          |                            |                                  |                       |            |             |             |             |               |                           |                 |                  |                    |                     |                             |          |               |                            |             |                     |                    |                 |           |               |                |               |                           |
|                    | FR_HMW1D_QTR_2018-01-01_N                               | 2018 01 24                  | < 5.0                        | 564                    | < 50                | 305                      | 513                        | 8.03                             | 2.38                  | < 0.50     | < 0.50      | ) 13.5      | < 0.10      | < 50          | 0.084                     | < 0.50          | 4.63             | < 1.0              | < 0.25              | 86.5                        | < 0.0050 | 0.94          | 36.2                       | <u>118</u>  | < 0.050             | 337                | < 0.050         | < 0.50    | < 10          | 13.2           | < 2.5         | 7.7                       |
|                    | FR_HMW1D_QTR_2018-04-02_N                               | 2018 06 12                  | < 3.0                        | 561                    | < 20                | 325                      | 583                        | 7.06                             | 2.37                  | 0.36       | < 0.20      | ) 11.2      | < 0.040     | 51            | 0.085                     | < 0.20          | 4.80             | 1.12               | < 0.10              | 92.6                        | < 0.0050 | 0.72          | 35.3                       | 7.31        | < 0.020             | 327                | < 0.020         | < 0.20    | < 10          | 12.8           | < 1.0         | 6.8                       |
|                    | FR_HMW1D_QTR_2018-07-02_N                               | 2018 07 18                  | < 3.0                        | 570                    | < 20                | 316                      | 642                        | 6.56                             | 2.33                  | 0.41       | < 0.20      | 0 10.5      | < 0.040     | 48            | 0.082                     | < 0.20          | 4.86             | < 0.50             | < 0.10              | 84.5                        | < 0.0050 | 0.76          | 34.1                       | 13.7        | < 0.020             | 325                | < 0.020         | < 0.20    | < 10          | 12.6           | < 1.0         | 7.0                       |
|                    | FR_HMW1D_QTR_2018-10-01_N                               | 2018 12 11                  | < 3.0                        | 573                    | < 10                | 305                      | 700                        | 7.09                             | 2.46                  | 0.39       | < 0.10      | ) 11.8      | < 0.020     | 52            | 0.0934                    | < 0.10          | 4.87             | < 0.50             | < 0.050             | 86.9                        | < 0.0050 | 0.757         | 32.9                       | <u>61.7</u> | < 0.010             | 344                | 0.015           | < 0.10    | < 10          | 12.9           | < 0.50        | 7.3                       |
|                    | FR_HMW1D_QTR_2019-01-07_N                               | 2019 03 13                  | < 3.0                        | 533                    | < 20                | 308                      | 538                        | 6.92                             | 2.33                  | 0.38       | < 0.20      | ) 11.0      | < 0.040     | 44            | 0.080                     | < 0.20          | 4.54             | < 0.50             | < 0.10              | 82.7                        | < 0.0050 | 0.74          | 33.4                       | <u>119</u>  | < 0.020             | 343                | < 0.020         | < 0.20    | < 10          | 12.4           | < 1.0         | 6.1                       |
|                    | FR_HMW1D_QTR_2019-04-01_N                               | 2019 05 29                  | < 5.0                        | 575                    | < 50                | 328                      | 569                        | 6.84                             | 2.33                  | < 0.50     | < 0.50      | ) 11.0      | < 0.10      | < 50          | 0.059                     | < 0.50          | 4.85             | < 1.0              | < 0.25              | 88.7                        | < 0.0050 | 0.87          | 35.2                       | <u>55.4</u> | < 0.050             | 335                | < 0.050         | < 0.50    | < 10          | 12.7           | < 2.5         | 6.0                       |
|                    | FR_HMW1D_QTR_2019-07-01_N                               | 2019 07 25                  | < 3.0                        | 569                    | < 20                | 313                      | 582                        | 6.65                             | 2.26                  | 0.35       | < 0.20      | 0 10.9      | < 0.040     | 46            | 0.082                     | < 0.20          | 4.77             | < 0.50             | < 0.10              | 81.7                        | < 0.0050 | 0.77          | 34.5                       | <u>23.5</u> | < 0.020             | 326                | < 0.020         | < 0.20    | < 10          | 12.8           | < 1.0         | 6.8                       |
|                    | FR_HMW1D_QTR_2019-10-07_N                               | 2019 10 23                  | < 3.0                        | 548                    | < 20                | 293                      | 680                        | 6.20                             | 2.11                  | 0.38       | < 0.20      | ) 13.0      | < 0.040     | 47            | 0.104                     | < 0.20          | 4.48             | < 0.40             | < 0.10              | 78.2                        | < 0.0050 | 0.77          | 30.9                       | 5.89        | < 0.020             | 334                | < 0.020         | < 0.20    | < 10          | 11.1           | < 1.0         | 6.7                       |
|                    | FR_DC1_QTR_2019-10-07_N                                 | Duplicate                   | < 3.0                        | 534                    | < 20                | 282                      | 654                        | 5.84                             | 2.05                  | 0.39       | < 0.20      | 0 13.0      | < 0.040     | 50            | 0.075                     | < 0.20          | 4.30             | < 0.40             | < 0.10              | 80.8                        | < 0.0050 | 0.74          | 29.4                       | 5.91        | < 0.020             | 303                | < 0.020         | < 0.20    | < 10          | 10.9           | < 1.0         | 6.4                       |
|                    | QA/QC RPD%                                              |                             | *                            | 3                      | *                   | 4                        | 4                          | 6                                | 3                     | *          | *           | 0           | *           | 6             | 32                        | *               | 4                | *                  | *                   | 3                           | *        | 4             | 5                          | 0           | *                   | 10                 | *               | *         | *             | 2              | *             | 5                         |
|                    | HMW1D_QTR_2020-01-06_N                                  | 2020 03 02                  | < 3.0                        | 552                    | < 20                | 323                      | 743                        | 6.63                             | 2.37                  | 0.37       | < 0.20      | ) 11.9      | < 0.040     | 50            | 0.095                     | < 0.20          | 4.84             | 1.38               | < 0.10              | 85.3                        | < 0.0050 | 0.67          | 31.6                       | 14.5        | < 0.020             | 333                | < 0.020         |           | < 10          |                | < 1.0         | 8.3                       |
|                    | FR_HMW1D_QTR_2020-04-06_N                               | 2020 05 14                  | < 3.0                        | 608                    | < 20                | 301                      | 696                        | 6.47                             | 2.26                  | 0.39       | < 0.20      | 0 10.0      | < 0.040     | 48            | 0.105                     | < 0.20          | 5.00             | < 0.40             | < 0.10              | 81.7                        | < 0.0050 | 0.68          | 32.5                       | 17.1        | < 0.020             | 366                | < 0.020         | < 0.20    | < 10          | 12.0           | < 1.0         | 8.6                       |
| FR_HMW1S           | GA-HMW-1S_L1238132                                      | 2012 11 09                  | < 15                         | 500                    | < 30                | 231                      | 412                        | 9.2                              | 2.3                   | < 0.50     | < 0.50      | ) 13.6      | < 0.50      | 56            | 0.128                     | < 0.50          | 5.82             | < 2.5              | < 0.25              | 89.1                        | < 0.010  | 0.68          | 32.3                       | 9.51        | < 0.050             | 373                | 0.052           | < 0.50    | 18            | 8.83           | < 5.0         | < 15                      |
|                    | FRO12_0101201302                                        | 2013 03 28                  | < 3.0                        | 503                    | < 30                | 244                      | 513                        | 9.6                              | 2.2                   | 0.44       | < 0.20      | 14.3        | < 0.20      | 56            | 0.144                     | < 0.20          | 7.21             | 0.83               | < 0.10              | 114                         | < 0.010  | 0.76          | 36.0                       | 6.00        | < 0.020             | 406                | 0.059           | < 0.20    | < 10          | 8.78           | < 2.0         | 7.6                       |
|                    | FRO12_0104201302                                        | 2013 05 29                  | < 3.0                        | 502                    | < 30                | 243                      | 543                        | 8.8                              | 2.3                   | 0.41       | < 0.20      | 0 14.0      | < 0.20      | 57            | 0.213                     | < 0.20          | 8.21             | < 0.50             | < 0.10              | 97.9                        | < 0.010  | 0.72          | 40.4                       | 9.07        | < 0.020             | 383                | 0.042           | < 0.20    | 11            | 9.39           | < 2.0         | 14.0                      |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2237699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L2250608, L2256457, L2256457, L2256457, L2283637, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2249360, L2256457, L225657, L2256457, L225657, L22567, L22567, L2257, L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505. Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

- BOLD Concentration greater than CSR Aquatic Life (AW) standard
- BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                               |                             |                |                |                             |                |                     |                 |               |                           |                  |             |           |             |             |              |                 | Total                    | Metals                        |                    |               |                            |                                                                              |                 |                |         |         |               |           |                     |           |                               |                      |                  |                  |
|--------------------|---------------------------------------------------------------|-----------------------------|----------------|----------------|-----------------------------|----------------|---------------------|-----------------|---------------|---------------------------|------------------|-------------|-----------|-------------|-------------|--------------|-----------------|--------------------------|-------------------------------|--------------------|---------------|----------------------------|------------------------------------------------------------------------------|-----------------|----------------|---------|---------|---------------|-----------|---------------------|-----------|-------------------------------|----------------------|------------------|------------------|
|                    |                                                               |                             |                |                |                             |                |                     |                 |               |                           |                  |             |           |             |             |              |                 |                          |                               |                    |               |                            |                                                                              |                 |                |         |         |               |           |                     |           |                               |                      |                  |                  |
| Sample<br>Location | Sample<br>ID                                                  | Sample Date<br>(yyyy mm dd) | 6t<br>Aluminum | ត់<br>T/b<br>T | б <del>П</del><br>7/Arsenic | Баrium<br>Л/бћ | 6π<br>T∕Å Beryllium | Bismuth<br>T/6t | uoron<br>ħā/ſ | Б <del>П</del><br>Сadmium | Calcium<br>7/6ft | hðh<br>Л/ћ  | 6π<br>T∕r | Соррег<br>Л | uou<br>µg/L | реаd<br>hg/Г | Lithium<br>T/6t | 6th<br>Agnesium<br>7/6th | б <del>л</del><br>T/Manganese | Vincert<br>Wercury | ad Molybdenum | Nickel<br>Nickel           | らしていた。<br>日本のの<br>日本の<br>日本の<br>日本の<br>日本の<br>日本の<br>日本の<br>日本の<br>日本の<br>日本 | Бћ<br>Potassium | 6t<br>Selenium | Silicon | л)/D    | mipos<br>μg/L | T/6t<br>기 | Наllium<br>Тhallium | Ξ<br>μg/L | б <del>л</del><br>Г/ Titanium | Бћ<br>Uranium<br>7/Г | 6π<br>1 Vanadium | T/قتار<br>T/قتار |
| Primary Screenin   | <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup>         |                             | n/a            | n/a            | n/a                         | n/a            | n/a                 | n/a             | n/a           | n/a                       | n/a              | n/a         | n/a       | n/a         | n/a         | n/a          | n/a             | n/a                      | n/a                           | n/a                | n/a           | n/a                        | n/a                                                                          | n/a             | n/a            | n/a     | n/a     | n/a           | n/a       | n/a                 | n/a       | n/a                           | n/a                  | n/a              | n/a              |
| Secondary Scree    | <b>ning Criteria</b> : Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a            | n/a            | n/a                         | n/a            | n/a                 | n/a             | n/a           | 0.8-10.4 <sup>i</sup>     | n/a              | 100 (Cr +6) | n/a       | n/a         | n/a         | n/a          | 2,530           | n/a                      | n/a                           | n/a                | n/a           | 517-<br>2,972 <sup>i</sup> | n/a                                                                          | n/a             | 700            | n/a     | n/a     | n/a           | n/a       | n/a                 | n/a       | n/a                           | 3,520                | n/a              | n/a              |
| S10 Study Area     |                                                               |                             |                |                |                             |                |                     |                 |               |                           |                  |             |           |             |             |              |                 |                          |                               |                    |               | ,-                         |                                                                              |                 |                | 1       |         |               |           |                     | 1         |                               |                      |                  |                  |
| FR_HMW1D           | FR_HMW1D_Q_01102013_N                                         | 2013 12 09                  | 55.4           | 0.53           | < 0.20                      | 19.9           | < 0.20              | < 1.0           | 51            | 0.071                     | 566,000          | < 0.20      | 5.49      | < 1.0       | 78          | < 0.10       | 86.9            | 295,000                  | 534                           | < 0.010            | 0.87          | 37.1                       | -                                                                            | 9,220           | 185            | 2,470   | < 0.020 | 2,360         | 382       | < 0.020             | < 0.20    | 23                            | 12.5                 | < 2.0            | 6.4              |
|                    | FR_HMW1D_Q_01012014_N                                         | 2014 03 12                  | 52.5           |                | 0.22                        | 19.4           | < 0.20              | < 1.0           | 50            | 0.068                     | 584,000          | < 0.20      | 5.49      | < 1.0       | 195         | 0.15         |                 |                          | 543                           |                    | 0.86          | 39.1                       | -                                                                            | 9,200           | 146            | 2,410   |         | 2,400         |           | 0.020               | < 0.20    |                               | 13.2                 | < 2.0            | 6.8              |
|                    | FR_HMW1D_Q_01042014_N                                         | 2014 05 13                  |                |                | < 0.50                      |                | < 0.50              |                 | 56            |                           | 558,000          | < 0.50      | 5.47      | < 2.5       | < 50        | < 0.25       |                 |                          | 576                           | < 0.010            |               | 36.8                       | -                                                                            | 8,450           | 25.1           | 2,420   |         | 2,230         |           |                     | < 0.50    | _                             |                      | < 5.0            | < 15             |
|                    | FR_HMW1D_QSW_02072014_N                                       | 2014 09 30                  |                |                |                             |                | < 0.20              |                 | 54            |                           | 537,000          | < 0.20      | 5.68      | < 1.0       | < 20        |              |                 | 286,000                  | 625                           |                    | 1.08          | 37.5                       | -                                                                            | 8,420           | 113            | 2,390   |         | -             |           | 0.034               | < 0.20    |                               | 12.3                 | < 2.0            | 8.7              |
|                    | FR_HMW1D_QSW_02102014_N                                       | 2014 10 22                  | 22             |                |                             |                | < 0.50              |                 | < 50          | 0.161                     | 561,000          | < 0.50      | 5.56      | < 2.5       | < 50        |              |                 | 287,000                  | 627                           |                    | 0.85          | 37.2                       | -                                                                            | 7,730           | 67.8           |         |         | 6,240         | -         | < 0.050             |           |                               | 12.4                 | < 5.0            | < 15             |
|                    | <br>FR_HMW1D_QSW_02012015_N                                   | 2015 01 19                  | -              | -              | -                           | -              | -                   | < 1.0           | -             | 0.113                     | -                | < 0.20      | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | 8,570           | 103            | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D-WQ-201501191415                                      | Duplicate                   | -              | -              | -                           | -              | -                   | < 1.0           | -             | 0.094                     | -                | < 0.20      | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | 8,480           | 97.2           | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | QA/QC RPD%                                                    | •                           | -              | -              | -                           | -              | -                   | *               | -             | 18                        | -                | *           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | 1               | 6              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D_QSW_02042015_N                                       | 2015 04 14                  | -              | -              | -                           | -              | -                   | < 0.10          | -             | 0.092                     | -                | < 0.20      | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | 7,770           | 20.2           | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D_QSW_02072015_N                                       | 2015 07 03                  | -              | -              | -                           | -              | -                   | < 0.10          | -             | 0.077                     | -                | < 0.20      | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | 8,040           | 89             | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D_QSW_02102015_N                                       | 2015 10 09                  | -              | -              | -                           | -              | -                   | < 0.10          | -             | 0.082                     | -                | < 0.20      | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | 7,310           | 5.37           | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D_QSW_04012016_N                                       | 2016 02 22                  | < 6.0          | 0.42           | < 0.20                      | 13.9           | < 0.20              | < 0.10          | 44            | 0.085                     | 559,000          | < 0.20      | 5.23      | < 1.0       | < 20        | < 0.10       | 95.3            | 286,000                  | 620                           | < 0.0050           | 0.75          | 35.5                       | -                                                                            | 7,900           | 57.9           | 2,410   | < 0.020 | 2,620         | 360       | 0.025               | < 0.20    | 14                            | 13.1                 | < 1.0            | 7.3              |
|                    | FR_HMW1D_QSW_04042016_N                                       | 2016 05 18                  | < 6.0          | 0.45           | < 0.20                      | 11.9           | < 0.040             | < 0.10          | 52            | 0.071                     | 567,000          | < 0.20      | 4.33      | < 1.0       | < 20        | < 0.10       | 103             | 300,000                  | 518                           | < 0.0050           | 0.80          | 29.5                       | -                                                                            | 7,140           | 46.8           | 2,530   | < 0.020 | 2,400         | 358       | 0.021               | < 0.20    | < 10                          | 12.3                 | < 1.0            | 6.1              |
|                    | FR_HMW1D_QSW_04072016_N                                       | 2016 08 15                  | 8.4            | 0.46           | < 0.20                      | 13.5           | < 0.040             | < 0.10          | 51            | 0.086                     | 601,000          | < 0.20      | 5.59      | < 1.0       | < 20        | < 0.10       | 86.4            | 322,000                  | 650                           | < 0.0050           | 0.79          | 37.5                       | -                                                                            | 7,250           | 17             | 2,860   | < 0.020 | 2,570         | 370       | 0.020               | < 0.20    | < 10                          | 12.5                 | < 1.0            | 8.1              |
|                    | FR_HMW1D_QSW_03102016_N                                       | 2016 11 22                  | < 15           | 0.55           | < 0.50                      | 15.2           | < 0.10              | < 0.25          | 59            | 0.046                     | 650,000          | < 0.50      | 5.76      | < 2.5       | < 50        | < 0.25       | 101             | 321,000                  | 788                           | < 0.0050           | 0.82          | 39.0                       | -                                                                            | 7,250           | 10.7           | 2,900   | < 0.050 | 2,850         | 392       | < 0.050             | < 0.50    | < 10                          | 14.1                 | < 2.5            | < 15             |
|                    | FR_HMW1D_QSW_02012017_N                                       | 2017 02 27                  | 4.3            | 0.51           | 0.22                        | 14.1           | < 0.020             | < 0.050         | 49            | 0.0820                    | 523,000          | < 0.10      | 4.94      | < 0.50      | 12          | < 0.050      | 90.2            | 319,000                  | 643                           | < 0.0050           | 0.801         | 32.3                       | -                                                                            | 7,700           | 60.4           |         | < 0.010 |               | 360       | 0.020               | < 0.10    | < 10                          | 11.0                 | < 0.50           | 6.1              |
|                    | FR_HMW1D_QSW_03042017_N                                       | 2017 06 22                  | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D_QTR_2017-09-11_N                                     | 2017 09 18                  | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D_QTR_2017-10-02_N                                     | 2017 11 14                  | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | WG_2017-10-02_002                                             | Duplicate                   | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | QA/QC RPD%                                                    |                             | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D_QTR_2018-01-01_N                                     | 2018 01 24                  | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D_QTR_2018-04-02_N                                     | 2018 06 12                  | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D_QTR_2018-07-02_N                                     | 2018 07 18                  | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D_QTR_2018-10-01_N                                     | 2018 12 11                  | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D_QTR_2019-01-07_N                                     | 2019 03 13                  | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D_QTR_2019-04-01_N                                     | 2019 05 29                  | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D_QTR_2019-07-01_N                                     | 2019 07 25                  | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D_QTR_2019-10-07_N                                     | 2019 10 23                  | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_DC1_QTR_2019-10-07_N                                       | Duplicate                   | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | QA/QC RPD%                                                    |                             | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | HMW1D_QTR_2020-01-06_N                                        | 2020 03 02                  | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
|                    | FR_HMW1D_QTR_2020-04-06_N                                     | 2020 05 14                  | -              | -              | -                           | -              | -                   | -               | -             | -                         | -                | -           | -         | -           | -           | -            | -               | -                        | -                             | -                  | -             | -                          | -                                                                            | -               | -              | -       | -       | -             | -         | -                   | -         | -                             | -                    | -                | -                |
| FR_HMW1S           | GA-HMW-1S_L1238132                                            | 2012 11 09                  | < 15           | < 0.50         | < 0.50                      | 13.8           | < 0.50              | < 2.5           | 58            | 0.145                     | 499,000          | < 0.50      | 5.99      | < 2.5       | < 30        | < 0.25       | 92.0            | 230,000                  | 426                           | < 0.010            | 0.73          | 33.0                       | < 300                                                                        | 9,200           | 9.52           | 2,500   | < 0.050 | 2,300         | 370       | 0.067               | < 0.50    | 19                            | 9.10                 | < 5.0            | < 15             |
|                    | FRO12_0101201302                                              | 2013 03 28                  | < 6.0          | 0.45           | < 0.20                      | 13.9           | < 0.20              | < 1.0           | 55            | 0.148                     | 511,000          | < 0.20      | 7.40      | 1.4         | < 30        | < 0.10       | 116             | 253,000                  | 524                           | < 0.010            | 0.78          | 37.3                       | < 300                                                                        | 10,100          | 6.20           | 2,490   | < 0.020 | 2,400         | 424       | 0.053               | < 0.20    | < 10                          | 9.13                 | < 2.0            | 9.1              |
|                    | FRO12_0104201302                                              | 2013 05 29                  | < 6.0          | 0.47           | < 0.20                      | 14.2           | < 0.20              | < 1.0           | 61            | 0.218                     | 510,000          | < 0.20      | 8.52      | < 1.0       | < 30        | < 0.10       | 108             | 250,000                  | 558                           | < 0.010            | 0.71          | 40.1                       | -                                                                            | 9,300           | 11.2           | 2,450   | < 0.020 | 2,500         | 408       | 0.054               | < 0.20    | 11                            | 9.91                 | < 2.0            | 13.6             |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L223699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L2250608, L2250457, L2250412, L2282357, L2283636, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L22316991, L2217812, L2249360, L2250457, L2250457, L2250457, L2250457, L2250457, L2248360, L2250457, L2250457, L2250457, L225057, L2248360, L2250457, L225057, L2248360, L2250457, L225057, L22507, L22507, L2257, L225 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505. Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.
- n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

BOLD Concentration greater than CSR Aquatic Life (AW) standard

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15
- <sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark.
- e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                       |                             |      |              |             |                            | Physica                  | al Param            | eters                         |                                  |      |             |                             |       | Field P | aram       | eters               |                   |         |                                   |                             |                              |               |                                 |                 |                                          | Dissolv                      | ed Inorg                     | anics                                          |                                                                                    |             |                      |                 |             |                   |                                   |                                 |          |
|--------------------|-------------------------------------------------------|-----------------------------|------|--------------|-------------|----------------------------|--------------------------|---------------------|-------------------------------|----------------------------------|------|-------------|-----------------------------|-------|---------|------------|---------------------|-------------------|---------|-----------------------------------|-----------------------------|------------------------------|---------------|---------------------------------|-----------------|------------------------------------------|------------------------------|------------------------------|------------------------------------------------|------------------------------------------------------------------------------------|-------------|----------------------|-----------------|-------------|-------------------|-----------------------------------|---------------------------------|----------|
| Sample<br>Location | Sample<br>ID                                          | Sample Date<br>(yyyy mm dd) |      | u<br>Ardness | Z Turbidity | u<br>be Total Anions<br>T∕ | ba<br>Dotal Cations<br>∏ | त्र<br>Sonductivity | a Total Dissolved Solids<br>⊤ | a<br>G<br>Total Suspended Solids |      | A Potential | ation Anion<br>ield Tempera |       |         | Field Turb |                     | рн (пе<br>Field O | Total   | a<br>a Ammonia, Total (as N)<br>⊤ | g<br>S<br>Nitrate (as N)    | B<br>Mitrite (as N)          | ଞୁ<br>ଜୁ<br>୮ | a<br>G Kjeldahl Nitrogen-N<br>√ | a Nitrogen<br>z | T / Total Nitrogen-N<br>6<br>7/ Chloride | Бћ<br>T/β                    | b<br>b<br>Sulfate            | a Alkalinity, Bicarbonate<br>backas (as CaCO3) | B Alkalinity, Carbonate<br>▷ (as CaCO3)<br>B Alkalinity, Hydroxide<br>▷ (as CaCO3) | Bicarbonate | a<br>GCarbonate<br>T | mg/L<br>Bromide | a<br>b<br>T | a<br>b⊂<br>□<br>□ | 전 Ortho-Phosphate<br>전 고슈테 Crahon | I otal Urganic<br>Total Phosphi |          |
| Primary Screenin   | <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup> |                             | n/a  | n/a          | n/a         | n/a                        | n/a                      | n/a                 | n/a                           | n/a                              | n/a  | n/a n       | n/a n/                      | a n   | /a n    | n/a i      | n/a n/              | /a n/             | a n/a   | 1.31-<br>18.5 <sup>b</sup>        | 400                         | 0.2-2.0 <sup>c</sup>         | 400           | n/a                             | n/a             | n/a 1,500                                | 2,000-<br>3,000 <sup>d</sup> | 1,280-<br>4,290 <sup>d</sup> | n/a                                            | n/a n/a                                                                            | n/a         | n/a                  | n/a             | n/a         | n/a               | n/a n/                            | ı/a n/a                         |          |
| _                  | ning Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a  | n/a          | n/a         | n/a                        | n/a                      | n/a                 | 10,000                        | n/a                              | n/a  | n/a n       | n/a n/                      | a n   | /a n    | n/a ı      | n/a <sup>j</sup> n/ | /a n/             | a n/a   | n/a                               | 6.08-<br>223.8 <sup>i</sup> | 0.389-<br>39.95 <sup>j</sup> | n/a           | n/a                             | n/a             | n/a n/a                                  | n/a                          | 4,990                        | n/a                                            | n/a n/a                                                                            | n/a         | n/a                  | 78              | n/a         | n/a               | n/a n/                            | ı/a n/a                         |          |
| S10 Study Area     |                                                       |                             |      |              |             |                            |                          |                     |                               |                                  |      |             |                             |       |         |            |                     |                   |         |                                   |                             |                              |               |                                 |                 |                                          |                              |                              |                                                |                                                                                    |             |                      |                 |             |                   |                                   |                                 |          |
| FR_HMW1S           | FR_HMW1S-201309271230                                 | 2013 09 27                  | 7.69 | 2,320        | 0.37        | 49                         |                          | 3,410               | 3,400                         | < 1.0                            | 0.96 | 399         | - 4.                        |       | 342     |            | .66 7.              |                   |         | 1.30                              | 159                         | < 0.020                      | -             | < 0.050                         | -               | - 3.1                                    | < 400                        | 1,400                        | 420                                            | < 1.0 < 1.0                                                                        | ) -         | -                    | < 1.0           |             |                   |                                   | .99 < 0.002                     |          |
|                    | FR_HMW1S_Q_01102013_N                                 | 2013 12 09                  | 7.59 | 2,510        | 0.4         | 55.1                       | 50.5                     | 3,800               | 4,040                         | < 1.0                            | 0.84 | 414         | - 2.                        | 3 3,4 | 476     |            | .99 7.              |                   |         | 1.32                              | 212                         | < 0.020                      | -             | 0.801                           | -               | - 3.5                                    | < 400                        | 1,520                        | 414                                            | < 1.0 < 1.0                                                                        | ) -         | -                    | < 1.0           |             |                   |                                   | .84 < 0.002                     |          |
|                    | FR_HMW1S_Q_01012014_N                                 | 2014 03 12                  | 7.8  | 2,590        | 0.17        | 55.1                       | 52.2                     | 3,860               | 3,880                         | < 1.0                            | 1.02 | 475         | - 3.                        | 8 3,5 | 548     | - 3        | .75 7.              | 08 12             | .3 390  | 1.51                              | 227                         | < 0.020                      | -             | < 0.050                         | -               | - 3.8                                    | 560                          | 1,490                        | 390                                            | < 1.0 < 1.0                                                                        | ) -         | -                    | < 1.0           |             |                   |                                   | .96 < 0.002                     |          |
|                    | FR_HMW1S_Q_01042014_N                                 | 2014 05 13                  | 7.79 | 2,580        | 0.23        | 54.7                       | 52                       | 3,970               | 4,410                         | < 1.0                            | 0.94 | 287         | - 4.                        | 2 3,6 | 666     | - 6        | .24 7.              | 75 -8             | .4 407  | 1.73                              | 206                         | 0.027                        | -             | < 0.050                         | -               | - 4.4                                    | < 400                        | 1,520                        | 407                                            | < 1.0 < 1.0                                                                        | ) -         | -                    | < 1.0           | -           | 21.5 <            | 0.0010 0.                         | .96 < 0.002                     | 20       |
|                    | FD_Q_01042014_007                                     | Duplicate                   | 7.74 | 2,560        | 0.26        | 55.8                       | 51.6                     | 3,960               | 4,230                         | < 1.0                            | 1.04 | 295         |                             |       | -       | -          |                     |                   | 396     | 1.34                              | 211                         | < 0.020                      | -             | < 0.050                         | -               | - 4                                      | < 400                        | 1,570                        | 396                                            | < 1.0 < 1.0                                                                        | ) -         | -                    | < 1.0           | -           | 21.6 <            | 0.0010 1.                         | .07 < 0.002                     | 20       |
|                    | QA/QC RPD%                                            |                             | 1    | 1            | *           | *                          | *                        | 0                   | 4                             | *                                | *    | *           |                             |       | -       | -          |                     |                   | 3       | 25                                | 2                           | *                            | -             | *                               | -               | - 10                                     | *                            | 3                            | 3                                              | * *                                                                                | -           | - 1                  | *               | -           | 0                 | *                                 | * *                             |          |
|                    | FR_HMW1S_QSW_02072014_N                               | 2014 09 30                  | 7.84 | 2,480        | 0.13        | 55.5                       | 50                       | 3,810               | 3,790                         | 1.1                              | 1.16 | 411         | - 4                         | 3,6   | 683     | - 5        | .51 7.              | 09 30             | .9 405  | 1.15                              | 184                         | < 0.020                      | -             | 0.315                           | -               | - 3.4                                    | < 400                        | 1,640                        | 405                                            | < 1.0 < 1.0                                                                        | ) -         | -                    | < 1.0           | -           | 32.3 <            | 0.0010 1.                         | .11 < 0.002                     | 20       |
|                    | FR_HMW1S_QSW_02102014_N                               | 2014 10 22                  | 7.91 | 2,490        | 0.2         | 55.2                       | 50.3                     | 3,860               | 4,030                         | 1.2                              | 1.45 | 300         | - 4                         | 3,7   | 768     | - 1        | .11 6.8             | 88 17             | 6 376   | 1.23                              | 188                         | < 0.020                      | -             | < 0.050                         | -               | - 3.1                                    | < 400                        | 1,640                        | 376                                            | < 1.0 < 1.0                                                                        | ) -         | -                    | < 1.0           | -           | 34.0 <            | 0.0010 1.                         | .23 < 0.002                     | 20       |
|                    | FR_HMW1S_QSW_02012015_N                               | 2015 01 19                  | 7.78 | 2,400        | -           | -                          | -                        | 3,920               | 3,840                         | < 1.0                            | 1.13 | -           | - 3.                        | 3     | -       | -          | - 7.                | .1 -              | 400     | 1.25                              | 199                         | < 0.020                      | -             | < 0.050                         | -               | - 3.6                                    | < 400                        | 1,580                        | -                                              |                                                                                    | -           | -                    | < 1.0           | -           | -                 | - 0.                              | .83 0.0020                      | 0        |
|                    | FR HMW1S QSW 02042015 N                               | 2015 04 14                  | 7.38 | 2,460        | -           | -                          | -                        | 3,890               | 3,740                         | < 1.0                            | 1.16 | -           | - 3.                        | 5 3,5 | 583     | -          | - 7.                | - 09              | 390     | 1.14                              | 195                         | < 0.020                      | -             | < 0.050                         | -               | - 3.5                                    | < 400                        | 1,570                        | -                                              |                                                                                    | -           | -                    | < 1.0           | -           | -                 | - 1.                              | .14 < 0.002                     | 20       |
|                    | FD QSW 02042015 006                                   |                             |      | 2,440        | -           | -                          | -                        | 3,870               | 3,860                         | 1.8                              | 1.11 | -           |                             |       | -       | -          |                     |                   | 346     | 1.25                              | 199                         | < 0.020                      | -             | < 0.050                         | -               | - 3.8                                    | < 400                        | 1,610                        | -                                              |                                                                                    | -           | -                    | < 1.0           | -           | -                 | - 1.                              | .15 < 0.002                     | 20       |
|                    | QA/QC RPD%                                            |                             | 0    | 1            | -           | -                          | -                        | 1                   | 3                             | *                                | *    | -           |                             |       | -       | -          |                     |                   | 12      | 9                                 | 2                           | *                            | -             | *                               | -               | - 8                                      | *                            | 3                            | -                                              |                                                                                    | -           | - 1                  | *               | -           | - 1               | - 1                               | * *                             |          |
|                    | FR_HMW1S_QSW_02072015_N                               | 2015 07 03                  | 7.4  | 2,550        | -           | -                          | -                        | 3,840               | 4,260                         | 2.4                              | 0.86 | -           | - 4.                        | 6 3,7 | 719     | -          | - 6.9               | 93 -              | 393     | 1.1                               | 189                         | < 0.020                      | -             | 0.241                           | -               | - 3.3                                    | < 400                        | 1,660                        | -                                              |                                                                                    | -           | - 1                  | < 1.0           | -           |                   | - 0.                              | .82 < 0.002                     | 20       |
|                    | FR_HMW1S_QSW_02102015_N                               | 2015 10 09                  | 7.77 | 2,430        | -           | -                          | -                        | 3,780               | 4,060                         | < 1.0                            | 1    | -           | - 3.                        | 9 3,7 | 761     | -          | - 7                 | .30 -             | 409     | 1.16                              | 177                         | < 0.020                      | -             | 0.48                            | -               | - 3.6                                    | < 400                        | 1,640                        | -                                              |                                                                                    | -           | -                    | < 1.0           | -           | -                 | - 0,                              | .77 < 0.002                     | 20       |
| -                  |                                                       | Duplicate                   | 7.9  | 2,480        | -           | -                          | -                        | 3,790               | 3,980                         | 1.9                              | 1.1  | -           |                             |       | -       | -          |                     |                   | 412     | 1.18                              | 175                         | 0.032                        | -             | 1.24                            | -               | - 3.3                                    | < 400                        | 1,620                        | -                                              |                                                                                    | -           | -                    | < 1.0           | -           | -                 | - 0.                              | .85 < 0.002                     | 20       |
|                    | QA/QC RPD%                                            |                             | 2    | 2            | -           | -                          | -                        | 0                   | 2                             | *                                | *    | -           |                             |       | -       | -          |                     |                   | 1       | 2                                 | 1                           | *                            | -             | 88                              | -               | - 9                                      | *                            | 1                            | -                                              |                                                                                    | -           | - 1                  | *               | -           | - 7               | -                                 | * *                             |          |
|                    | FR_HMW1S_QSW_04012016_N                               | 2016 02 22                  | 7.36 | 2,500        | 0.15        | 57                         | 50.4                     | 4,030               | 3,970                         | 1.2                              | 0.85 | 324         | - 3.                        | 3 3,4 | 117     | - 3        | 2.7 7.              | 19 12             | 5 408   | 1.25                              | 212                         | < 0.020                      | -             | 1.8                             | -               | - 3.5                                    | < 400                        | 1,620                        | 408                                            | < 1.0 < 1.0                                                                        | ) -         | -                    | < 1.0           | -           | 50.0 <            | 0.0010 0.                         | .98 < 0.002                     | 20       |
|                    | FR DC1 04012016 004                                   | Duplicate                   | 7.36 | 2,500        | 0.15        | 56                         | 50.4                     | 4,010               | 3,960                         | < 1.0                            | 0.94 | 326         |                             |       | -       | -          |                     |                   | 410     | 1.24                              | 207                         | < 0.020                      | -             | 1.73                            | -               | - 3.3                                    | < 400                        | 1,580                        | 410                                            | < 1.0 < 1.0                                                                        | ) -         | -                    | < 1.0           | -           | 50.8 <            | 0.0010 0.                         | .90 < 0.002                     | 20       |
|                    | QA/QC RPD%                                            |                             | 0    | 0            | *           | *                          | *                        | 0                   | 0                             | *                                | *    | *           |                             |       | -       | -          |                     |                   | 0       | 1                                 | 2                           | *                            | -             | 4                               | -               | - 6                                      | *                            | 2                            | 0                                              | * *                                                                                | -           | - 1                  | *               | -           | 2                 | *                                 | * *                             |          |
| -                  | FR HMW1S QSW 04042016 N                               | 2016 05 18                  | 7.76 | 2,590        | 0.28        | 54.7                       | 52.2                     | 3,960               | 3.900                         | 6                                | 0.81 | 367         | - 5.                        | 3 3,4 | 456     | - 2        | .09 6.9             | 96 183            | 3.9 399 | 1.10                              | 185                         | < 0.020                      | -             | 1.68                            | -               | - 3.5                                    | < 400                        | 1,610                        | 399                                            | < 1.0 < 1.0                                                                        | ) -         | T                    | < 1.0           | -           | 30.8 <            | 0.0010 0.                         | .79 < 0.002                     | 20       |
| -                  | FR_HMW1S_QSW_04072016_N                               |                             |      |              |             | 55.3                       | 53.1                     | 4,030               | 4,010                         | < 1.0                            |      | 370         | - 4.                        | ,     |         |            |                     |                   | 0.4 425 | 1.11                              | 172                         | < 0.020                      | -             | 1.43                            | -               | - 3.8                                    | < 400                        | 1,650                        |                                                | < 1.0 < 1.0                                                                        |             |                      | < 1.0           |             |                   |                                   | 41 < 0.002                      |          |
| -                  | FR_HMW1S_QSW_03102016_N                               |                             |      |              |             | 54.7                       | 53.9                     | 3,810               |                               | < 1.0                            |      | 328         | - 3.                        |       | 505     |            |                     |                   | .5 423  | 0.965                             | 169                         | < 0.020                      | -             | 1.66                            | -               | - 3.4                                    | < 400                        | 1,640                        |                                                | < 1.0 < 1.0                                                                        |             |                      | < 1.0           |             |                   |                                   | .16 < 0.002                     |          |
| -                  | FR_HMW1S_QSW_02012017_N                               |                             |      | 2,450        |             | 52.5                       | 49.3                     | 3,730               |                               | < 1.0                            |      | 353         | - 4.                        |       |         |            |                     |                   | .8 414  | 1.18                              | 174                         | 0.0088                       | -             | 1.27                            | -               | - < 2.5                                  |                              | 1,530                        |                                                | < 1.0 < 1.0                                                                        | -           |                      | < 0.25          |             |                   |                                   | .22 0.0109                      |          |
| -                  | FR_HMW1S_QSW_03042017_N                               |                             |      | 2,360        |             | 51.7                       | 47.5                     | 3,680               |                               | < 1.0                            |      |             | 4.3 3.                      |       |         |            |                     |                   | 1.1 248 | 1.00                              | 163                         | < 0.010                      | -             | 0.844                           | -               | - < 5.0                                  |                              | 1,690                        |                                                | < 1.0 < 1.0                                                                        | -           |                      | < 0.50          |             |                   |                                   | .61 < 0.002                     |          |
| -                  | FD QSW 03042017 034                                   | Duplicate                   |      | 2,330        |             |                            |                          | ,                   |                               | 1                                |      | 483 -5      |                             |       | -       | -          |                     |                   | 363     | 1.02                              | 157                         | 0.010                        | -             | 1.05                            | -               | - < 5.0                                  |                              | 1,630                        |                                                | < 1.0 < 1.0                                                                        |             |                      | < 0.50          |             |                   |                                   | .91 < 0.002                     |          |
|                    | QA/QC RPD%                                            |                             |      | 1            | *           | *                          |                          |                     |                               | *                                |      |             | _                           |       | -       | -          |                     |                   | 38      | 2                                 | 4                           | *                            | -             | 22                              | -               | - *                                      | *                            | 4                            | 38                                             | * *                                                                                |             |                      | *               | -           |                   |                                   | * *                             | Ė.       |
| -                  | FR HWM1S QTR 2017-09-11 N                             | 2017 09 18                  |      |              | 0.28        | 54.8                       | 51.2                     | 3,580               |                               | < 1.0                            | 0.97 |             |                             |       |         |            |                     |                   | 1.7 350 |                                   | 158                         | < 0.0050                     | -             | 0.422                           |                 | - < 2.5                                  | 160                          |                              |                                                | < 1.0 < 1.0                                                                        |             |                      | 0.31            |             |                   | 0.0010 0.                         | .93 0.0022                      | 2        |
| -                  | FR_HWM1S_QTR_2017-10-02_N                             | 2017 11 14                  |      |              |             |                            |                          | 3,630               |                               |                                  |      |             | 2.9 3.                      |       |         |            |                     |                   | .8 342  |                                   | 156                         | < 0.010                      |               | < 0.050                         |                 | - < 5.0                                  |                              | 1,760                        |                                                | < 1.0 < 1.0                                                                        |             |                      | < 0.50          |             |                   |                                   | .99 0.0014                      |          |
| -                  | FR HMW1S QTR 2018-01-01 N                             | 2018 01 25                  |      |              |             |                            |                          |                     |                               | 1                                |      |             |                             |       |         |            |                     |                   | 9.8 403 |                                   | 150                         | 0.020                        |               | 0.342                           | -               |                                          | < 200                        |                              |                                                | < 1.0 < 1.0                                                                        |             |                      | 0.17            |             |                   |                                   | .40 0.0018                      |          |
|                    | FR_HMW1S_QTR_2018-04-02_N                             | 2018 06 12                  |      |              |             |                            |                          |                     |                               |                                  |      |             |                             |       |         |            |                     |                   | 5.8 429 | 0.87                              | 157                         | 0.024                        | -             | 2.47                            | -               | - < 5.0                                  | _                            | 1,810                        |                                                | < 1.0 < 1.0                                                                        |             |                      | < 0.50          |             |                   |                                   | .83 0.0011                      |          |
|                    | FR DC1 QTR 2018-04-02 NP                              |                             |      | 2,620        |             |                            |                          | 3,850               |                               |                                  |      |             |                             |       | -       | -          |                     |                   | 426     | 0.88                              | 155                         | 0.018                        | -             | < 0.050                         | -               | - < 5.0                                  |                              |                              |                                                | < 1.0 < 1.0                                                                        |             |                      | < 0.50          |             |                   |                                   | .88 0.0023                      |          |
|                    | QA/QC RPD%                                            |                             |      | 0            | *           |                            | *                        | 1                   | 1                             | *                                |      |             | * -                         |       | -       | -          |                     | _                 | 1       | 1                                 | 1                           | 29                           | -             | *                               |                 | - *                                      | 7                            | 2                            | 1                                              | * *                                                                                | -           | -                    | *               | -           | 5                 | * *                               |                                 | <u> </u> |
| l P                | FR_HMW1S_QTR_2018-07-02_N                             | 2018 07 18                  |      |              |             |                            |                          |                     | 3.830                         |                                  |      |             |                             |       |         |            |                     |                   | i.9 289 | 0.90                              | 149                         | < 0.010                      | -             | < 0.050                         |                 | - < 5.0                                  | 380                          | 1,790                        |                                                | < 1.0 < 1.0                                                                        | ) -         |                      | < 0.50          | -           |                   |                                   | .00 0.0027                      | 7        |
|                    | FR_HMW1S_QTR_2018-10-01_N                             | 2018 12 11                  |      | -            |             |                            |                          |                     |                               |                                  |      |             |                             |       |         |            |                     |                   | i0 349  |                                   | 127                         | < 0.010                      | -             | 0.96                            |                 | - < 5.0                                  |                              | 1,640                        |                                                | < 1.0 < 1.0                                                                        | _           |                      | < 0.50          |             |                   |                                   | .14 0.0099                      |          |
|                    | FR_HMW1S_QTR_2019-01-07_N                             | 2019 03 13                  |      |              |             |                            |                          |                     |                               |                                  |      |             |                             |       |         |            |                     |                   | i3 411  |                                   | 141                         | < 0.010                      | -             | 0.145                           |                 | - < 5.0                                  |                              | 1,940                        |                                                | < 1.0 < 1.0                                                                        | _           |                      | < 0.50          |             |                   |                                   | .06 < 0.0020                    |          |
|                    | FR_HMW1S_QTR_2019-04-01_N                             | 2019 05 29                  |      |              |             |                            |                          |                     |                               |                                  |      |             |                             |       |         |            |                     |                   | 9.7 369 |                                   | 120                         | 0.0053                       |               | 0.726                           |                 | - 2.7                                    | 240                          |                              |                                                | < 1.0 < 1.0                                                                        |             |                      | < 0.25          |             |                   |                                   | .41 < 0.002                     |          |
|                    |                                                       | 2010 00 23                  | 1.00 | 2,700        | 0.0         | 01.0                       | 00.2                     | 0,000               | 3,100                         | v. r                             |      |             | 0.                          | . 0,- |         |            | 0.                  | 20 210            | 000     | 0.100                             | 120                         | 0.0000                       |               | 0.120                           |                 | 2.1                                      | 270                          | 1,710                        | 000                                            | 1.0 - 1.0                                                                          | -           |                      | 0.20            |             |                   | 0.0010 1.                         |                                 |          |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2237609, L224795, L2248235, L2248391, L2249360, L2250608, L22506457, L2250608, L2250457, L2283637, L228367, L228367, L22837, L228 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value. - Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline

QA/QC RPD Denotes quality assurance/quality control relative percent difference. \* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard <u>BOLD</u>

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>b</sup> Standard varies with pH. <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard. <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>9</sup> Sample collected in 2018 but Teck sample ID reads 2019.

<sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>i</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                        |                             |       |                             |                       |                                  |                               |                               |                            |              |                  |              |                    |              |                           |                               | Dissolv        | ed Metal           | s                   |                         |               |                  |                            |                              |                     |                   |                      |                       |                |              |              |                           |
|--------------------|--------------------------------------------------------|-----------------------------|-------|-----------------------------|-----------------------|----------------------------------|-------------------------------|-------------------------------|----------------------------|--------------|------------------|--------------|--------------------|--------------|---------------------------|-------------------------------|----------------|--------------------|---------------------|-------------------------|---------------|------------------|----------------------------|------------------------------|---------------------|-------------------|----------------------|-----------------------|----------------|--------------|--------------|---------------------------|
|                    |                                                        |                             |       |                             |                       |                                  |                               |                               |                            |              |                  |              |                    |              |                           |                               |                |                    |                     |                         |               |                  |                            |                              |                     |                   |                      |                       |                |              |              |                           |
| Sample<br>Location | Sample<br>ID                                           | Sample Date<br>(yyyy mm dd) |       | a<br>b<br>Dissolved Calcium | 표<br>G Dissolved Iron | a<br>B Dissolved Magnesium<br>T∕ | ත්<br>Dissolved Manganese<br> | a<br>Bissolved Potassium<br>T | a<br>bissolved Sodium<br>⊤ | 6th<br>T/6th | б<br>Б<br>Г<br>Л | T/6t<br>T/6t | 6t<br>D) Beryllium | ц<br>Пл<br>П | 6th<br>T∖Cadmium          | лб <del>и</del><br>T/Chromium | t<br>T∖ Cobalt | бћ<br>Т/Г          | Lead<br>T/F         | D/6 <del>1</del><br>T/6 | бћ<br>Мегсury | Gđ<br>Molybdenum | hân<br>Nickel              | Б <del>1</del><br>7/Selenium | hâ/r<br>Silver      | 6t<br>T/Strontium | Thallium<br>Thallium | <u>с</u><br>Е<br>µg/L | 6t<br>Titanium | 6t<br>T<br>T | bt<br>T<br>T | hđt<br>Troc <sup>f</sup>  |
| Primary Screeni    | <b>ng Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup> |                             | n/a   | n/a                         | n/a                   | n/a                              | n/a                           | n/a                           | n/a                        | 90           | 50               | 10,000       | 1.5                | 12,000       | 0.5-4 <sup>d</sup>        | 10 <sup>e</sup>               | 40             | 20-90 <sup>d</sup> | 40-160 <sup>d</sup> | n/a                     | 0.25          | 10,000           | 250-<br>1,500 <sup>d</sup> | 20                           | 0.5-15 <sup>d</sup> | n/a               | 3                    | n/a                   | 1,000          | 85           | n/a          | 75-<br>2,400 <sup>d</sup> |
| Secondary Scree    | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             |       |                             |                       |                                  |                               |                               |                            |              |                  |              |                    |              | 0.8-<br>10.4 <sup>i</sup> | 100 (Cr +6)                   | n/a            | n/a                | n/a                 | 2,530                   | n/a           | n/a              | 517-<br>2,972 <sup>i</sup> | 700                          | n/a                 | n/a               | n/a                  | n/a                   | n/a            | 3,520        | n/a          | n/a                       |
| S10 Study Area     |                                                        |                             |       |                             |                       |                                  |                               |                               |                            |              |                  |              |                    |              | 1                         |                               |                |                    | 1                   | 1                       |               |                  |                            | 1                            |                     |                   |                      |                       | 1 1            |              |              |                           |
| FR_HMW1S           | FR_HMW1S-201309271230                                  | 2013 09 27                  |       |                             | < 30                  |                                  | 523                           | 8.97                          | 2.30                       |              |                  | 14.7         |                    | 52           | 0.235                     | < 0.20                        | 7.97           | < 0.50             |                     |                         | < 0.010       |                  | 39.9                       | <u>51.9</u>                  | < 0.020             |                   | 0.056                | < 0.20                | 11             | 9.78         | < 2.0        |                           |
|                    | FR_HMW1S_Q_01102013_N                                  | 2013 12 09                  | < 3.0 | 553                         | < 30                  | 274                              | 498                           | 9.73                          | 2.35                       | 0.45         | < 0.20           |              | < 0.20             | 48           | 0.192                     | < 0.20                        | 7.34           | < 0.50             |                     | 83.4                    | < 0.010       |                  | 39.6                       | <u>160</u>                   | < 0.020             |                   | 0.055                | < 0.20                | 21             | 10.5         | < 2.0        | 10.0                      |
|                    | FR_HMW1S_Q_01012014_N                                  | 2014 03 12                  | < 3.0 |                             | < 20                  | 283                              | 518                           | 9.68                          | 2.33                       | 0.48         | < 0.20           |              | < 0.20             | 51           | 0.203                     | < 0.20                        | 7.61           | < 0.50             |                     | 104                     | < 0.010       |                  | 40.4                       | <u>158</u>                   | < 0.020             |                   | 0.063                | < 0.20                | 20             | 10.6         | < 2.0        | 11.5                      |
| -                  | FR_HMW1S_Q_01042014_N                                  | 2014 05 13                  |       |                             | < 50                  | 289                              | 430                           | 8.88                          | 2.42                       |              |                  | 14.1         | < 0.50             | 60           | 0.135                     | < 0.50                        | 5.55           | < 1.0              |                     | 101                     | < 0.010       |                  | 40.8                       | <u>148</u>                   | < 0.050             |                   | < 0.050              |                       | 16             | 11.6         | < 5.0        | 7.1                       |
|                    | FD_Q_01042014_007                                      | Duplicate                   | < 5.0 |                             | < 50                  | 286                              | 433                           | 9.58                          | 2.17                       |              |                  | 13.3         | < 0.50             | 55           | 0.141                     | < 0.50                        | 5.62           | < 1.0              | < 0.25              | 97.2                    | < 0.010       |                  | 41.3                       | <u>149</u>                   | < 0.050             |                   | 0.051                | < 0.50                | 16             | 11.3         | < 5.0        | 7.7                       |
|                    | QA/QC RPD%                                             |                             | *     | 0                           | *                     | 1                                | 1                             | 8                             | 11                         | *            | *                | 6            | *                  | 9            | 4                         | *                             | 1              | *                  | *                   | 4                       | *             | 0                | 1                          | 1                            | *                   | 4                 | *                    | *                     | 0              | 3            | *            | 8                         |
| -                  | FR_HMW1S_QSW_02072014_N                                | 2014 09 30                  | < 3.0 |                             | < 20                  |                                  | 396                           | 8.53                          | 2.11                       |              |                  | 11.8         | < 0.20             | 46           | 0.121                     | < 0.20                        | 5.04           | < 0.50             |                     | 70.1                    | < 0.010       |                  | 40.0                       | <u>236</u>                   | < 0.020             |                   | 0.043                |                       | 27             | 11.1         | < 2.0        | 6.1                       |
| -                  | FR_HMW1S_QSW_02102014_N                                | 2014 10 22                  | < 5.0 |                             | < 50                  | 280                              | 395                           | 8.59                          | 2.14                       |              |                  | 12.8         | < 0.50             | < 50         | 0.128                     | < 0.50                        | 5.12           | 1.3                | < 0.25              | 88.6                    | < 0.010       |                  | 41.9                       | <u>215</u>                   | < 0.050             |                   | < 0.050              |                       | 32             | 11.2         | < 5.0        | 7.7                       |
| -                  | FR_HMW1S_QSW_02012015_N                                | 2015 01 19                  | < 3.0 |                             | < 20                  | 281                              | 421                           | 9.79                          | 2.26                       | 0.43         |                  | 13.3         | < 0.20             | 49           | 0.134                     | < 0.20                        | 5.11           | < 0.50             |                     | 92.9                    | < 0.010       |                  | 39                         | <u>202</u>                   | < 0.020             |                   | 0.044                | < 0.20                | 26             | 10.5         | < 2.0        | 7.2                       |
| -                  | FR_HMW1S_QSW_02042015_N                                | 2015 04 14                  | < 3.0 | 522                         | < 20                  | 282                              | 394                           | 9.32                          | 2.19                       | 0.38         | < 0.20           |              | < 0.20             | 43           | 0.118                     | < 0.20                        | 5.03           | < 0.50             | < 0.10              | 81.1                    | < 0.0050      |                  | 39.7                       | <u>199</u>                   | < 0.020             |                   | 0.043                | < 0.20                | 18             | 11.4         | < 1.0        | 6.7                       |
|                    | FD_QSW_02042015_006                                    | Duplicate                   | < 3.0 | 515                         | < 20                  |                                  | 410                           | 9.49                          | 2.22                       | 0.38         | < 0.20           | 12.4         | < 0.20             | 48           | 0.112                     | < 0.20                        | 5.1            | < 0.50             | < 0.10              |                         | < 0.0050      | 0.86             | 40.2                       | <u>195</u>                   | < 0.020             |                   | 0.042                | < 0.20                | 17             | 11.4         | < 1.0        | 6.3                       |
|                    | QA/QC RPD%                                             |                             | *     | 1                           | *                     | 0                                | 4                             | 2                             | 1                          | *            | *                | 1            | *                  | 11           | 5                         | *                             | 1              | *                  | *                   | 11                      | *             | 2                | 1                          | 2                            | *                   | 2                 | *                    | *                     | 6              | 0            | *            | 6                         |
| -                  | FR_HMW1S_QSW_02072015_N                                | 2015 07 03                  | < 3.0 |                             | < 20                  | 286                              | 398                           | 9.16                          | 2.23                       | 0.34         | < 0.20           |              | < 0.20             | 48           | 0.121                     | < 0.20                        | 5.02           | < 0.50             |                     |                         | < 0.0050      |                  | 41.2                       | <u>220</u>                   | < 0.020             |                   | 0.039                | < 0.20                |                | 11.2         | < 1.0        | 5.4                       |
| -                  | FR_HMW1S_QSW_02102015_N                                | 2015 10 09                  | < 3.0 |                             | < 20                  | 264                              | 395                           | 8.68                          | 2.22                       | 0.36         | < 0.20           |              | < 0.20             | 49           | 0.124                     | < 0.20                        | 4.97           | 0.65               | < 0.10              | 83.1                    | < 0.0050      |                  | 41.4                       | <u>161</u>                   | < 0.020             |                   | 0.04                 | < 0.20                | < 10           | 11.1         | < 1.0        | 6.1                       |
|                    | FD_QSW_02102015_014                                    | Duplicate                   | < 3.0 | 542                         | < 20                  | 274                              | 399                           | 8.71                          | 2.2                        | 0.32         | < 0.20           | -            | < 0.20             | 47           | 0.12                      | < 0.20                        | 5.09           | 0.7                | < 0.10              | 82.4                    | < 0.0050      |                  | 40.9                       | <u>159</u>                   | < 0.020             |                   | 0.039                | < 0.20                | < 10           | 10.7         | < 1.0        | 6.2                       |
|                    | QA/QC RPD%                                             |                             | *     | 1                           | *                     | 4                                | 1                             | 0                             | 1                          | *            | *                | 2            | *                  | 4            | 3                         | *                             | 2              | *                  | *                   | 1                       | *             | 0                | 1                          | 1                            | *                   | 2                 | *                    | *                     | *              | 4            | *            | 2                         |
| -                  | FR_HMW1S_QSW_04012016_N                                | 2016 02 22                  | < 3.0 |                             | < 20                  | 278                              | 402                           | 8.92                          | 2.21                       | 0.37         | < 0.20           |              | < 0.20             | 42           | 0.122                     | < 0.20                        | 5.02           | < 0.50             |                     | 112                     | < 0.0050      |                  | 41.2                       | <u>198</u>                   | < 0.020             |                   | 0.044                | < 0.20                | 14             | 11.0         | < 1.0        | 6.2                       |
|                    | FR_DC1_04012016_004                                    | Duplicate                   | < 3.0 |                             | < 20                  |                                  | 408                           | 8.93                          | 2.23                       | 0.36         | < 0.20           | 12.0         | < 0.20             | 44           | 0.118                     | < 0.20                        | 5.08           | < 0.50             | < 0.10              | 115                     | < 0.0050      | 0.80             | 41.2                       | <u>199</u>                   | < 0.020             |                   | 0.044                | < 0.20                | 15             | 11.0         | < 1.0        | 6.2                       |
|                    | QA/QC RPD%                                             |                             | *     | 0                           | *                     | 0                                | 1                             | 0                             | 1                          | *            | *                | 1            | *                  | 5            | 3                         | *                             | 1              | *                  | *                   | 3                       | *             | 0                | 0                          | 1                            | *                   | 0                 | *                    | *                     | 7              | 0            | *            | 0                         |
| -                  | FR_HMW1S_QSW_04042016_N                                |                             | < 3.0 |                             | < 20                  |                                  | 392                           | 9.29                          | 2.31                       | 0.39         |                  |              | < 0.040            | 47           | 0.113                     | < 0.20                        | 4.68           | < 0.50             |                     | 107                     | < 0.0050      |                  | 38.6                       | <u>178</u>                   | < 0.020             |                   | 0.041                | < 0.20                |                | 10.9         | < 1.0        | 6.2                       |
| -                  | FR_HMW1S_QSW_04072016_N                                | 2016 08 15                  | < 3.0 |                             | < 20                  | 299                              | 404                           | 8.67                          | 2.41                       | 0.30         |                  | 11.9         | < 0.040            | 52           | 0.120                     | < 0.20                        | 5.02           | < 0.50             |                     | 93.0                    | < 0.0050      |                  | 42.2                       | <u>197</u>                   | < 0.020             |                   | 0.036                | < 0.20                | < 10           | 11.1         | < 1.0        | 5.3                       |
| -                  | FR_HMW1S_QSW_03102016_N                                | 2016 11 22                  | < 3.0 |                             | < 20                  | 313                              | 454                           | 9.07                          | 2.47                       | 0.35         |                  |              | < 0.040            | 45           | 0.147                     | < 0.20                        | 5.72           | < 0.50             |                     |                         | < 0.0050      |                  | 48.2                       | <u>191</u>                   | < 0.020             |                   | 0.040                | < 0.20                | < 10           | 11.9         | < 1.0        | 7.2                       |
| -                  | FR_HMW1S_QSW_02012017_N                                | 2017 02 27                  | < 1.0 |                             | < 10                  | 276                              | 379                           | 8.52                          | 2.37                       | 0.33         | 0.10             |              | < 0.020            | 46           | 0.109                     | < 0.10                        | 4.08           | < 0.20             |                     | 101                     | < 0.0050      |                  | 38.7                       | <u>236</u>                   | < 0.010             |                   | 0.032                | < 0.10                | < 10           |              | < 0.50       | 7.8                       |
| -                  | FR_HMW1S_QSW_03042017_N                                | 2017 06 22                  | < 5.0 |                             | < 50                  | 258                              | 368                           | 8.43                          | 2.17                       | < 0.50       |                  |              | < 0.10             | < 50         | 0.120                     | < 0.50                        | 4.65           | < 1.0              | < 0.25              | 97.5                    | < 0.0050      |                  | 41.0                       | <u>239</u>                   | < 0.050             |                   | < 0.050              |                       | < 10           | 9.59         | < 2.5        | 5.9                       |
|                    | FD_QSW_03042017_034                                    | Duplicate                   | < 5.0 |                             | < 50                  | 256                              | 368                           | 8.38                          | 2.16                       | < 0.50       |                  | 11.8         | < 0.10             | < 50         | 0.121                     | < 0.50                        | 4.72           | < 1.0              | < 0.25              | 96.1                    | < 0.0050      |                  | 40.8                       | <u>231</u>                   | < 0.050             |                   | < 0.050              | < 0.50                | < 10           | 9.79         | < 2.5        | 5.3                       |
|                    | QA/QC RPD%                                             |                             | *     | 2                           | *                     | 1                                | 0                             | 1                             | 0                          | *            | *                | 2            | *                  | *            | 1                         | *                             | 1              | *                  | *                   | 1                       | *             | 7                | 0                          | 3                            | *                   | 2                 | *                    | *                     | *              | 2            | *            | 11                        |
| -                  | FR_HWM1S_QTR_2017-09-11_N                              | 2017 09 18                  |       |                             | < 20                  |                                  | 360                           | 8.25                          | 2.16                       |              |                  |              | < 0.040            | 42           | 0.109                     | < 0.20                        | 4.38           |                    |                     |                         | < 0.0050      |                  | 39.1                       | <u>262</u>                   | < 0.020             |                   |                      |                       |                |              |              |                           |
| -                  | FR_HWM1S_QTR_2017-10-02_N                              | 2017 11 14                  |       |                             | < 20                  |                                  | 374                           | 8.87                          | 2.38                       |              |                  |              | < 0.040            | 45           | 0.119                     | < 0.20                        | 4.63           | < 0.50             |                     |                         | < 0.0050      |                  | 40.7                       | <u>236</u>                   | < 0.020             |                   | 0.033                |                       |                |              | < 1.0        |                           |
|                    | FR_HMW1S_QTR_2018-01-01_N                              | 2018 01 25                  |       |                             | _                     |                                  | 395                           | 8.70                          |                            |              |                  |              | < 0.040            |              | 0.118                     | < 0.20                        | 4.75           |                    |                     |                         | < 0.0050      |                  |                            |                              | < 0.020             |                   |                      | < 0.20                |                |              |              |                           |
|                    | FR_HMW1S_QTR_2018-04-02_N                              | 2018 06 12                  |       |                             | -                     | 311                              | 366                           | 7.98                          | 2.24                       |              |                  |              | < 0.040            | 49           | 0.121                     | < 0.20                        | 4.77           |                    |                     |                         | < 0.0050      |                  | 42.9                       | <u>262</u>                   | < 0.020             |                   |                      |                       |                |              | < 1.0        | 5.4                       |
|                    | FR_DC1_QTR_2018-04-02_NP                               | Duplicate                   | 5.0   | 533                         | < 20                  |                                  | 361                           | 7.68                          | 2.26                       |              |                  |              | < 0.040            | 49           | 0.121                     | < 0.20                        | 4.72           | < 0.50             | < 0.10              |                         | < 0.0050      | 0.93             | 42.0                       |                              | < 0.020             | 320               | 0.035                | < 0.20                | < 10           |              | < 1.0        |                           |
| ļ                  | QA/QC RPD%                                             |                             | *     | 0                           | *                     | 0                                | 1                             | 4                             | 1                          | *            | *                | 0            | *                  | 0            | 0                         | *                             | 1              | *                  | *                   | 0                       | *             | 1                | 2                          | 3                            | *                   | 1                 | *                    | *                     | *              | 2            | *            | 2                         |
|                    | FR_HMW1S_QTR_2018-07-02_N                              | 2018 07 18                  |       |                             | < 20                  |                                  | 366                           | 7.63                          | 2.21                       |              |                  |              | < 0.040            | 46           | 0.114                     | < 0.20                        | 4.63           |                    |                     |                         | < 0.0050      |                  | 41.0                       |                              | < 0.020             |                   |                      | < 0.20                |                |              | < 1.0        |                           |
|                    | FR_HMW1S_QTR_2018-10-01_N                              | 2018 12 11                  |       |                             | < 20                  |                                  | 344                           | 7.28                          | 2.19                       |              |                  |              | < 0.040            | 47           | 0.117                     | < 0.20                        | 4.31           |                    |                     |                         | < 0.0050      |                  | 41.5                       |                              | < 0.020             |                   |                      |                       |                |              |              |                           |
|                    | FR_HMW1S_QTR_2019-01-07_N                              | 2019 03 13                  |       |                             |                       | 295                              | 335                           | 7.43                          | 2.14                       |              |                  |              | < 0.040            | 45           | 0.125                     | < 0.20                        | 4.12           |                    |                     |                         | < 0.0050      |                  | 40.1                       |                              | < 0.020             |                   |                      | < 0.20                |                |              |              |                           |
|                    | FR_HMW1S_QTR_2019-04-01_N                              | 2019 05 29                  | < 3.0 | 572                         | < 20                  | 320                              | 369                           | 7.89                          | 2.30                       | 0.34         | < 0.20           | 10.8         | < 0.040            | 48           | 0.103                     | < 0.20                        | 4.52           | < 0.50             | < 0.10              | 100                     | < 0.0050      | 0.92             | 42.6                       | <u>194</u>                   | < 0.020             | 328               | 0.030                | < 0.20                | < 10           | 12.5         | < 1.0        | 9.5                       |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2236699, L224795, L2248235, L2248391, L2249360, L2256457, L22567, L22567, L2257, L L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505. Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

- QA/QC RPD Denotes quality assurance/quality control relative percent difference.
- \* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

- Concentration greater than CSR Aquatic Life (AW) standard <u>BOLD</u>
- BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15
- <sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.
- <sup>j</sup> Criteria in not considered applicable and has not been applied.

|                    |                                                        |                             |       |                |           |           |                   |                |              |                       |                                                                           |                |                   |            |                    |             |                | Total               | Metals          |                |                        |                            |               |                   |             |               |              |         |                  |                |             |             |                  |                 |                           |
|--------------------|--------------------------------------------------------|-----------------------------|-------|----------------|-----------|-----------|-------------------|----------------|--------------|-----------------------|---------------------------------------------------------------------------|----------------|-------------------|------------|--------------------|-------------|----------------|---------------------|-----------------|----------------|------------------------|----------------------------|---------------|-------------------|-------------|---------------|--------------|---------|------------------|----------------|-------------|-------------|------------------|-----------------|---------------------------|
|                    |                                                        |                             |       |                |           |           |                   |                |              |                       |                                                                           |                |                   |            |                    |             |                |                     |                 |                |                        |                            |               |                   |             |               |              |         |                  |                |             |             |                  |                 |                           |
| Sample<br>Location | Sample<br>ID                                           | Sample Date<br>(yyyy mm dd) |       | ta<br>Datimony | T/G市<br>了 | T/قط<br>۲ | 5년<br>7/Beryllium | Bismuth<br>Day | uoug<br>µg/L | бт<br>Г               | ճեւ<br>Տեր<br>Տեր<br>Տեր<br>Տեր<br>Տեր<br>Տեր<br>Տեր<br>Տեր<br>Տեր<br>Տեր | 64<br>Chromium | 6th<br>T∖b Cobait | бл<br>Г/Г  | Б <u>л</u><br>µg/L | hgh<br>T/F  | T/D<br>Lithium | ы<br>Т<br>Мagnesium | banganese<br>⊤⊤ | 6th<br>Mercury | ta<br>T∖<br>Molybdenum | hân<br>Nickel              | 년 Phosphorous | 65 Potassium<br>⊤ | б<br>T<br>T | 6t<br>Silicon | Бћ<br>Silver | hg/T    | ដ<br>T/Strontium | 6t<br>Thallium | Е<br>µg/L   | tanium<br>ר | 6t<br>T∖ Uranium | т Vanadium<br>Т | Gt<br>T Zinc <sup>f</sup> |
| Primary Screenii   | ng Criteria: CSR Aquatic Life (AW) <sup>a</sup>        |                             | n/a   | n/a            | n/a       | n/a       | n/a               | n/a            | n/a          | n/a                   | n/a                                                                       | n/a            | n/a               | n/a        | n/a                | n/a         | n/a            | n/a                 | n/a             | n/a            | n/a                    | n/a                        | n/a           | n/a               | n/a         | n/a           | n/a          | n/a     | n/a              | n/a            | n/a         | n/a         | n/a              | n/a             | n/a                       |
| Secondary Scree    | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a   | n/a            | n/a       | n/a       | n/a               | n/a            | n/a          | 0.8-10.4 <sup>i</sup> | n/a                                                                       | 100 (Cr +6)    | n/a               | n/a        | n/a                | n/a         | 2,530          | n/a                 | n/a             | n/a            | n/a                    | 517-<br>2,972 <sup>i</sup> | n/a           | n/a               | 700         | n/a           | n/a          | n/a     | n/a              | n/a            | n/a         | n/a         | 3,520            | n/a             | n/a                       |
| S10 Study Area     |                                                        |                             |       | 1              |           |           | 1                 |                |              |                       |                                                                           |                |                   |            |                    |             | 1 1            |                     |                 | 1              |                        |                            |               |                   |             |               |              |         |                  |                | 1           | -           |                  |                 |                           |
| FR_HMW1S           |                                                        | 0040.40.00                  |       | 0.40           |           | 44.0      | 10.00             |                | <b>F</b> 4   | 0.000                 |                                                                           | 10.00          | 7.04              |            |                    | 10.10       | 015            | 000.000             | 540             | 10.010         | 0.77                   | 40.7                       |               | 10 100            | 404         | 0.000         | 10.000       | 0.400   | 410              | 0.000          | 10.00       |             | 40.0             |                 | 10.1                      |
|                    | FR_HMW1S_Q_01102013_N                                  | 2013 12 09                  | < 6.0 |                |           |           |                   |                | 51           |                       | 555,000                                                                   | < 0.20         | 7.61              | < 1.0      | < 30               |             | -              | 282,000             | 519             | < 0.010        |                        | 40.7                       | -             | 10,100            | 164         | -             |              | 2,430   | 410              | 0.060          | < 0.20      |             |                  |                 | 10.1                      |
|                    | FR_HMW1S_Q_01012014_N                                  | 2014 03 12                  | < 6.0 |                | < 0.20    |           | < 0.20            | < 1.0          | 54           |                       | 578,000                                                                   | < 0.20         | 7.84              | < 1.0      | < 20               | < 0.10      |                | 285,000             | 538             | < 0.010        |                        | 41.9                       | -             | 9,920             | 165         | 2,330         |              | 2,420   | 454              | 0.063          | < 0.20      | _           | 10.9             |                 | 11.7                      |
|                    | FR_HMW1S_Q_01042014_N                                  | 2014 05 13                  |       |                | 0 < 0.50  |           | -                 |                | 54           | 0.137                 | 547,000                                                                   | < 0.50         | 5.75              | < 2.5      | < 50               |             | 97.3           |                     | 441             | < 0.010        |                        | 41.6                       | -             | 9,640             | 150         |               |              | 2,160   |                  | < 0.050        |             | _           |                  |                 | < 15                      |
|                    | FD_Q_01042014_007                                      | Duplicate                   | < 15  | < 0.50         | 0 < 0.50  | 14.0      | < 0.50            | < 2.5          | 54           | 0.137                 | 558,000                                                                   | < 0.50<br>*    | 5.79              | < 2.5<br>* | < 50<br>*          | < 0.25<br>* |                | 296,000             | 441             | < 0.010        |                        | 41.4                       | -             | 9,280             | 152         | 2,260         | < 0.050      |         | 406              | < 0.050<br>*   | < 0.50<br>* |             |                  | < 5.0           | < 15<br>*                 |
|                    | QA/QC RPD%                                             | 0011.00.00                  |       |                |           |           |                   | ^<br>. 1 0     | 0            | 0                     | 2                                                                         |                | 1                 |            |                    |             | 0              | 2                   | 0               | . 0.040        | 4                      | 0                          | -             | 4                 | 1           | 1             |              | 0       |                  |                |             | 0           | 3                |                 |                           |
| -                  | FR_HMW1S_QSW_02072014_N                                | 2014 09 30                  |       |                | < 0.20    |           |                   |                | 48           | 0.137                 | 546,000                                                                   | < 0.20         | 5.52              | < 1.0      |                    |             | 80.1           |                     | 437             | < 0.010        |                        | 43.8                       | -             | 9,280             | 257         | -             |              | 2,310   | 382              | 0.042          |             |             | 11.7             |                 | 6.8                       |
| -                  | FR_HMW1S_QSW_02102014_N                                | 2014 10 22                  | < 15  | < 0.50         | 0 < 0.50  | 12.9      |                   |                | < 50         | 0.147                 | 546,000                                                                   | < 0.50         | 5.41              | < 2.5      | < 50               | < 0.25      | 89.1           | 292,000             | 401             | < 0.010        | 0.84                   | 42.4                       | -             | 8,830             | 219         | 2,230         | < 0.050      | 2,260   |                  | < 0.050        | < 0.50      | 32          | 11.3             | < 5.0           | < 15                      |
| -                  | FR_HMW1S_QSW_02012015_N                                | 2015 01 19                  | -     | -              | -         | -         | -                 | < 1.0          | -            | 0.137                 | -                                                                         | < 0.20         | -                 | -          | -                  | -           | -              | -                   | -               | -              | -                      | -                          | -             | 9,690             | 204         | -             | -            | -       | -                | -              | -           | -           | -                |                 | -                         |
| -                  | FR_HMW1S_QSW_02042015_N                                | 2015 04 14                  | -     | -              | -         | -         | -                 | < 0.10         | -            | 0.127                 | -                                                                         | < 0.20         | -                 | -          | -                  | -           | -              | -                   | -               | -              | -                      | -                          | -             | 9,320             | 205         | -             | -            | -       | -                | -              | -           | -           | -                | -               | -                         |
|                    | FD_QSW_02042015_006                                    | Duplicate                   | -     | -              | -         | -         | -                 | < 0.10         | •            | 0.13                  | -                                                                         | < 0.20<br>*    | -                 | -          | -                  | -           | -              | -                   | -               | -              | -                      | -                          | -             | 9,440             | 200         | •             | -            | -       | -                | -              | -           | -           | -                | -               | -                         |
|                    |                                                        | 0045 07 00                  | -     | -              | -         | -         | -                 | < 0.10         | -            | 2                     | -                                                                         |                | -                 | -          | -                  | -           | -              | -                   | -               | -              | -                      | -                          | -             | 1                 | 2<br>217    | -             | -            | -       | -                | -              | -           | -           | -                | -               | -                         |
| =                  | FR_HMW1S_QSW_02072015_N                                | 2015 07 03                  | -     | -              | -         | -         | -                 |                | -            | 0.117                 | -                                                                         | < 0.20         | -                 | -          | -                  | -           | -              | -                   | -               | -              | -                      | -                          | -             | 9,190             |             | -             | -            | -       | -                | -              | -           | -           | -                | -               |                           |
| =                  | FR_HMW1S_QSW_02102015_N                                | 2015 10 09                  | -     | -              | -         | -         | -                 | < 0.10         | -            | 0.135                 | -                                                                         | < 0.20         | -                 | -          | -                  | -           | -              | -                   | -               | -              | -                      | -                          | -             | 9,010             | 166         | -             | -            | -       | -                | -              | -           | -           | -                | -               | -                         |
|                    | FD_QSW_02102015_014<br>QA/QC RPD%                      | Duplicate                   | -     | -              | -         | -         | -                 | < 0.10         | -            | 0.126                 | -                                                                         | < 0.20<br>*    | -                 | -          | -                  | -           | -              | -                   | -               | -              | -                      | -                          | -             | 8,910             | 160<br>4    | -             | -            | -       | -                | -              | -           | -           | -                | -               | -                         |
|                    | FR_HMW1S_QSW_04012016_N                                | 2016 02 22                  | -     | - 0.36         | < 0.20    | 12.2      | < 0.20            | < 0.10         | - 44         | -                     | -<br>547,000                                                              | < 0.20         | - 5.20            | - < 1.0    | < 20               | < 0.10      | - 115 '        | -<br>283,000        | -<br>410        | < 0.0050       | - 0.81                 | -<br>42.4                  | -             | 9,200             | 208         | - 2,270       | -            | 2,260   | 392              | - 0.044        | < 0.20      | - 15        | - 11.0           | - < 1.0         | - 6.7                     |
| -                  | FR_DC1_04012016_004                                    |                             | < 6.0 |                | < 0.20    |           |                   |                | 44           |                       | 546,000                                                                   | < 0.20         | 5.40              | < 1.0      | < 20               | < 0.10      | -              | 291,000             |                 | < 0.0050       |                        | 43.8                       | -             | 9,200             | 200         |               | < 0.020      |         | 393              | 0.044          | < 0.20      |             |                  | < 1.0           | 6.5                       |
|                    | QA/QC RPD%                                             | Duplicate                   | *     | 0.59           | *         | 5         | * 0.20            | *              | 9            | 6                     | 0                                                                         | * 0.20         | 4                 | *          | *                  | *           | 3              | 3                   | 5               | *              | 4                      | 3                          | -             | 3,400             | 210         | 2,290         | * 0.020      | 5       | 0                | *              | * 0.20      | 7           | 2                | *               | 3                         |
|                    | FR_HMW1S_QSW_04042016_N                                | 2016 05 18                  | 9.2   | 0.30           | < 0.20    | -         | < 0.040           | < 0.10         | 48           |                       | 537,000                                                                   | < 0.20         | 4.71              | < 1.0      | 31                 | 0.40        | -              | 285,000             | -               | < 0.0050       | -                      | 38.8                       | -             | 9,130             | 179         | 2 240         | < 0.020      | 2,320   | 359              | 0.039          | < 0.20      | < 10        | _                | < 1.0           | 8.2                       |
| -                  | FR_HMW1S_QSW_04072016_N                                | 2016 03 15                  |       |                | < 0.20    |           |                   | < 0.10         | 50           |                       | 534,000                                                                   | < 0.20         | 4.71              | < 1.0      | < 20               |             | 88.9           |                     | 398             | < 0.0050       |                        | 41.6                       | -             | 8,520             | 192         |               |              | 2,320   | 345              | 0.039          |             | < 10        |                  |                 | 6.3                       |
| -                  | FR HMW1S QSW 03102016 N                                | 2016 11 22                  | < 6.0 |                | < 0.20    |           | < 0.040           |                | 50           | 0.151                 | 577,000                                                                   | < 0.20         | 6.07              | < 1.0      | < 20               | 0.10        | _              | 338,000             |                 | < 0.0050       |                        | 51.1                       | _             | 9,520             | 193         |               |              | 2,660   | 352              | 0.046          | < 0.20      |             |                  | < 1.0           | 9.4                       |
| -                  | FR_HMW1S_QSW_02012017_N                                | 2017 02 27                  | < 3.0 |                |           | 12.7      |                   | < 0.050        | 48           |                       | 516,000                                                                   | < 0.10         | 4.28              | < 0.50     |                    | < 0.050     |                | 270,000             | 389             | < 0.0050       |                        | 39.9                       | _             | 9,310             | 200         |               |              | 2,000   | 379              | 0.034          |             | < 10        |                  |                 | 5.0                       |
| -                  | FR_HMW1S_QSW_03042017_N                                | 2017 06 22                  | - 0.0 | 0.42           | -         | 12.1      |                   | - 0.000        |              | -                     | 010,000                                                                   | -              | -                 | - 0.00     | 10                 | + 0.000     | 100 1          | 210,000             |                 | • 0.0000       | -                      | -                          | _             | 5,010             | 200         | 2,000         | - 0.010      | - 2,400 | 010              | 0.004          | 4 0.10      | - 10        | 10.7             | - 0.00          | 0.0                       |
| -                  | FD_QSW_03042017_034                                    | Duplicate                   | -     | -              | -         |           | -                 |                |              | -                     | -                                                                         |                |                   |            | -                  | _           |                |                     |                 | _              |                        | _                          | -             |                   | -           |               |              | -       | -                | _              | -           | _           | _                |                 |                           |
|                    | QA/QC RPD%                                             | Duplicate                   | -     |                |           | -         | -                 | -              | -            | -                     | -                                                                         | -              | -                 | -          | -                  | -           | -              | -                   | -               |                | -                      | -                          | -             | -                 | -           | -             | -            | -       | -                | -              | -           | -           | -                | -               | _                         |
|                    | FR_HWM1S_QTR_2017-09-11_N                              | 2017 09 18                  |       | -              | -         | -         | -                 | _              |              | -                     | -                                                                         | -              | -                 | -          | -                  | -           | -              | -                   | -               | -              | -                      | _                          | _             | -                 | -           | -             | -            | -       | -                | -              | -           | -           | -                |                 |                           |
|                    | FR_HWM1S_QTR_2017-10-02_N                              | 2017 03 10                  | -     | -              | -         | -         | -                 | _              | -            | -                     | -                                                                         | -              | _                 | _          | -                  | -           | -              | -                   | -               | -              | -                      | -                          | -             |                   | -           |               | -            | -       | -                | -              | -           | _           | -                | -               |                           |
|                    | FR_HMW1S_QTR_2018-01-01_N                              | 2018 01 25                  | -     | -              |           | -         | -                 | -              | -            | -                     | -                                                                         | -              | -                 | -          | -                  | -           | -              | -                   | -               | -              | -                      | -                          | -             | -                 | -           | -             | -            | -       | -                | -              | -           | -           | -                | -               | -                         |
|                    | FR_HMW1S_QTR_2018-04-02_N                              | 2018 06 12                  | -     | -              | -         | -         | -                 | -              | -            | -                     | _                                                                         | -              | -                 | -          | -                  | -           | + _ +          | -                   | -               | -              | -                      | -                          | -             | -                 | -           | -             | -            | -       | -                | -              | -           | -           | -                |                 | -                         |
|                    | FR_DC1_QTR_2018-04-02_NP                               | Duplicate                   | -     | -              | -         | -         | -                 | -              | -            | -                     | -                                                                         | -              | -                 | -          | -                  | -           |                | -                   | -               | -              | -                      | -                          | -             | -                 | -           |               | -            | -       | -                | -              | -           | -           | -                |                 | -                         |
|                    | QA/QC RPD%                                             |                             | -     | -              | -         | -         | -                 | -              | -            | -                     | -                                                                         | -              | -                 | -          | -                  | -           | -              | -                   | -               | -              | -                      | -                          | -             | -                 | -           | -             | -            | -       | -                | -              | -           | -           | -                | -               | -                         |
|                    | FR_HMW1S_QTR_2018-07-02_N                              | 2018 07 18                  | -     | -              |           | -         | -                 | -              | -            | -                     | -                                                                         | -              | -                 | -          | -                  | -           | -              | -                   | -               | -              | -                      | -                          | -             | •                 |             |               | -            | -       | -                | -              | -           | -           | -                | -               | -                         |
|                    | FR_HMW1S_QTR_2018-10-01_N                              | 2018 12 11                  | -     | -              | -         | -         | -                 | -              | -            | -                     | -                                                                         | -              | -                 | -          | -                  | -           | -              | -                   | -               | -              | -                      | -                          | -             | -                 | -           | -             | -            | -       | -                | -              | -           | -           | -                | -               | -                         |
|                    | FR_HMW1S_QTR_2019-01-07_N                              | 2019 03 13                  | -     | -              | -         | -         | -                 | -              | -            | -                     | -                                                                         | -              | -                 | -          | -                  | -           | -              | -                   | -               | -              | -                      | -                          | -             | -                 | -           |               | -            | -       | -                | -              | -           | -           | -                | -               | -                         |
|                    | FR HMW1S QTR 2019-04-01 N                              | 2019 05 29                  | -     | -              |           | -         | -                 | -              |              | -                     | -                                                                         | -              | -                 | _          | -                  | -           | -              | -                   | -               | -              | -                      | -                          | -             | -                 | -           |               | -            | -       | -                | -              | -           | -           | -                | -               | -                         |
|                    |                                                        | 2010 00 20                  | -     | -              | -         | _         | -                 | -              | -            | -                     | -                                                                         | _              | -                 | _          | -                  | -           |                |                     | -               | -              | -                      | _                          | -             | -                 | -           | -             | _            | _       | _                | _              | _           | _           |                  |                 |                           |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1237666, L2237606, L2237606, L2237699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L22506457, L2250457, L2250426, L2283637, L2283636, L2283637, L22837, L L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099. Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

- QA/QC RPD Denotes quality assurance/quality control relative percent difference.
- \* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard <u>BOLD</u>

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.

<sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>i</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                 |                                                        |             |        |              |             |                       | Physica              | I Param           | eters       |             |                          |                                               |                        |                     | Fiel                                        | ld Para           | meters           | 6                           |        |                            |                             |                          |                                    |                          |            |                                  | Dissol                       | ved Inorg                    | ganics                                    |                                                                    |                                  |                |         |        |                    |           |              |
|-----------------|--------------------------------------------------------|-------------|--------|--------------|-------------|-----------------------|----------------------|-------------------|-------------|-------------|--------------------------|-----------------------------------------------|------------------------|---------------------|---------------------------------------------|-------------------|------------------|-----------------------------|--------|----------------------------|-----------------------------|--------------------------|------------------------------------|--------------------------|------------|----------------------------------|------------------------------|------------------------------|-------------------------------------------|--------------------------------------------------------------------|----------------------------------|----------------|---------|--------|--------------------|-----------|--------------|
| Sample          | Sample<br>ID                                           | Sample Date |        | and Hardness | A Turbidity | be Total Anions<br>T/ | a<br>■ Total Cations | a⊃(S<br>mortivity | 표<br>전<br>고 | 표<br>전<br>고 | Dissolved Organic Carbon | <pre>B Oxidation Reduction </pre> C Potential | s Cation Anion Balance | ୦ Field Temperature | 5<br>の<br>う<br>子<br>Field Conductivity<br>3 | Z Field Turbidity | Dissolved Oxygen | 못 pH (field)<br>킔 Field ORP | Total  | a<br>Ammonia, Total (as N) | g<br>Nitrate (as N)         | b<br>D<br>Nitrite (as N) | a<br>b Nitrate+Nitrite (as N)<br>T | д<br>Кjeldahl Nitrogen-N | B Nitrogen | L Total Nitrogen-N<br>C Chloride | Z Fluoride                   | B<br>Sulfate<br>T            | ∃ Alkalinity, Bicarbonate<br>A (as CaCO3) | B Alkalinity, Carbonate<br>P (as CaCO3)<br>B Alkalinity, Hydroxide | П (as cacoo)<br>В<br>Dicarbonate | B<br>Carbonate | Bromide | cidity | P Acidity (pH 8.3) |           | Total Phosph |
| Primary Screeni | ng Criteria: CSR Aquatic Life (AW) <sup>a</sup>        |             | n/a    | n/a          | n/a         | n/a                   | n/a                  | n/a               | n/a         | n/a         | n/a                      | n/a                                           | n/a                    | n/a                 | n/a                                         | n/a               | n/a              | n/a n/a                     | a n/a  | 1.31-<br>18.5 <sup>b</sup> | 400                         | 0.2-2.0 <sup>c</sup>     | 400                                | n/a                      | n/a        | n/a 1,50                         | 2,000-<br>3,000 <sup>d</sup> | 1,280-<br>4,290 <sup>d</sup> | n/a                                       | n/a n/a                                                            | a n/a                            | n/a            | n/a     | n/a n  | n/a n/a            | /a n/a    | n/a          |
| Secondary Scree | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |             | n/a    | n/a          | n/a         | n/a                   | n/a                  | n/a               | 10,000      | n/a         | n/a                      | n/a                                           | n/a                    | n/a                 | n/a                                         | n/a               | n/a <sup>j</sup> | n/a n/a                     | a n/a  | n/a                        | 6.08-<br>223.8 <sup>i</sup> |                          | n/a                                | n/a                      | n/a        | n/a n/a                          |                              | 4,990                        | n/a                                       | n/a n/a                                                            | a n/a                            | n/a            | 78      | n/a n  | n/a n/a            | /a n/a    | n/a          |
| S10 Study Area  |                                                        |             | 11     |              |             |                       |                      |                   |             |             |                          |                                               |                        | I                   |                                             |                   | 1                |                             |        |                            | I                           |                          | 1                                  |                          |            |                                  |                              |                              |                                           |                                                                    |                                  |                |         |        |                    |           |              |
| FR_HMW1S        | FR_HMW1S_QTR_2019-07-01_N                              | 2019 07 25  | 7.94   | 2,670        | 0.2         | 55.1                  | 53.7                 | 3,890             | 4,050       | 3.4         | 1.56                     | 399                                           | -1.3                   | 6.1                 | 3,237                                       | -                 | 4.49             | 7.02 187                    | .9 396 | 0.823                      | 135                         | < 0.010                  | -                                  | < 0.25                   | -          | - < 5.0                          | 310                          | 1,810                        | 396                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 0.50  | - 33   | 3.5 < 0.0          | 010 1.03  | 3 < 0.0020   |
|                 | FR_HMW1S_QTR_2019-10-07_N                              | 2019 10 23  | 7.94   | 2,460        | 0.38        | 53.1                  | 49.5                 | 3,140             | 3,700       | 3.2         | 0.76                     | 390                                           | -3.5                   | 3.5                 | 3,688                                       | -                 | 0.2              | 7.02 130                    | .2 416 | 0.807                      | 123                         | < 0.010                  | -                                  | < 0.050                  | -          | - < 5.0                          | 270                          | 1,730                        | 416                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 0.50  | - 21   | 1.5 < 0.0          | 0.80      | 0 < 0.0020   |
| _               | HMW1S_QTR_2020-01-06_N                                 | 2020 03 02  | 8.01   | 2,580        | 0.48        | 54                    | 51.9                 | 3,470             | 3,770       | 2.4         | 1.31                     | 342                                           | -1.9                   | 3.4                 | 3,613                                       | -                 | 0.99             | 7.59 141                    | .8 396 | 0.753                      | 110                         | < 0.0050                 | -                                  | < 0.050                  | -          | - 4                              | 180                          | 1,830                        | 396                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 0.25  | - 43   | 3.7 0.04           | 127 1.20  | 0 0.0056     |
|                 | FR_HMW1S_QTR_2020-04-06_N                              | 2020 05 14  | 7.93   | 2,580        | 0.24        | 48.3                  | 51.9                 | 2,440             | 3,710       | 4.5         | 0.95                     | 461                                           | 3.5                    | -                   | -                                           | -                 | -                |                             | 210    | 0.692                      | 116                         | < 0.0050                 | -                                  | < 0.050                  | -          | - < 2.5                          | 5 240                        | 1,720                        | 210                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 0.25  |        |                    |           | 3 < 0.0020   |
| FR_HMW2         | GA-HMW-2_L1238132                                      | 2012 11 09  | 7.86   | 2,400        | 31.1        | 48                    | 48.5                 | 3,490             | 3,490       | 51.7        | 1.17                     | 386                                           | -                      | -                   | -                                           | -                 | -                |                             | 393    | 0.0448                     | 236                         | 0.033                    | -                                  | < 0.050                  | -          | - 10.4                           | < 400                        | 1,100                        | 393                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 1.0   |        | 3.3 0.01           |           | 8 0.0533     |
|                 | FRO12_0101201303                                       | 2013 03 28  | 7.61   | 2,420        | 186         | 53                    | 49.3                 | 3,880             | 3,630       | 437         | 1.02                     | 420                                           | -                      | 5.9                 | 3,019                                       | -                 | 8.06             | 7.23 131                    | .6 407 | 0.0905                     | 259                         | 0.040                    | -                                  | 0.333                    | -          | - 10.3                           | < 400                        | 1,250                        | 407                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 1.0   | - 36   | J.1 0.00           | 054 4.03  | 3 0.142      |
|                 | FRO12_0101201316FD                                     | Duplicate   | 7.83   | 2,440        | 194         | 51.8                  | 49.6                 | 3,890             | 3,620       | 529         | 0.93                     | 234                                           | -                      | -                   | -                                           | -                 | -                |                             | 410    | 0.0935                     | 251                         | 0.027                    | -                                  | < 0.050                  | -          | - 10.3                           | < 400                        | 1,220                        | 410                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 1.0   | - 37   | /.6 0.00           | 079 7.02  | 2 0.329      |
|                 | QA/QC RPD%                                             | -           | 3      | 1            | 4           | *                     | *                    | 0                 | 0           | 19          | *                        | *                                             | -                      | -                   | -                                           | -                 | -                |                             | 1      | 3                          | 3                           | 39                       | -                                  | *                        | -          | - 0                              | *                            | 2                            | 1                                         | * *                                                                | -                                | -              | *       |        | 4 38               |           | 79           |
| _               | FRO12_0104201303                                       | 2013 05 29  | 7.77   | 2,440        | 545         | 50.4                  | 49.7                 | 3,770             | 4,040       | 1,100       | 1.23                     | 423                                           | -                      | 7.2                 | 3,305                                       | -                 | 9.5              | 7.42 71.                    | 3 419  | 0.0859                     | 221                         | 0.038                    | -                                  | < 0.10                   | -          | - 10.1                           | < 400                        | 1,250                        | 419                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 1.0   | - 24   | 4.8 0.00           | 061 9.7   | 0.263        |
|                 | FR_HMW2-201309301159                                   | 2013 09 30  | 7.85   | 2,570        | 32.8        | 56.5                  | 51.7                 | 4,020             | 3,950       | 54.4        | 0.77                     | 421                                           | -                      | -                   | -                                           | -                 | -                |                             | 384    | 0.312                      | 257                         | 0.288                    | -                                  | < 0.050                  | -          | - 8.4                            | < 400                        | 1,450                        | 384                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 1.0   | - 34   | 4.3 0.00           | 057 2.54  | 4 0.0419     |
|                 | FR_HMW2_67YUIKLO.,Q_01012014_N                         | 2014 03 12  | 7.62   | 2,470        | 591         | 53.8                  | 49.8                 | 3,770             | 3,910       | 576         | 0.88                     | 487                                           | -                      | 2.6                 | 3,493                                       | -                 | 6.2              | 7.12 14.                    | 9 396  | 0.0659                     | 216                         | 0.074                    | -                                  | < 0.050                  | -          | - 8                              | 790                          | 1,450                        | 396                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 1.0   | - 28   | 3.3 0.01           | 114 19.1  | 1 0.723      |
|                 | FR_HMW2_QSW_02072014_N                                 | 2014 08 25  | 7.73   | 2,570        | 1,080       | 56.7                  | 52.3                 | 3,930             | 3,940       | 1,240       | 0.67                     | 391                                           | -                      | 8.2                 | 3,425                                       | -                 | 5.32             | 6.93 109                    | .3 404 | 0.119                      | 224                         | 0.129                    | -                                  | < 0.050                  | -          | - 7.4                            | 480                          | 1,560                        | 404                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 1.0   | - 31   | 1.3 0.01           | 135 71.4  | 4 2.03       |
|                 | FR_HMW2_QSW_02102014_N                                 | 2014 10 23  | 7.91   | 2,660        | 947         | 54.6                  | 54.4                 | 3,930             | 4,130       | 962         | 1.48                     | 356                                           | -                      | 4                   | 3,806                                       | -                 | 5.63             | 6.91 219                    | .8 298 | 0.0321                     | 210                         | 0.024                    | -                                  | < 0.050                  | -          | - 6.2                            | < 400                        | 1,610                        | 298                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 1.0   | - 34   | 4.3 0.01           | 105 47.2  | 2 0.952      |
|                 | FR_HMW2_QSW_02042015_N                                 | 2015 04 14  | 7.33   | -            | -           | -                     | -                    | 3,800             | 3,820       | 4.8         | 0.72                     | -                                             | -                      | 2.5                 | 3,543                                       | -                 | -                | 6.99 -                      | 327    | 0.062                      | 179                         | < 0.020                  | -                                  | < 0.050                  | -          | - 4.4                            | < 400                        | 1,600                        | -                                         |                                                                    | -                                | -              | < 1.0   | -      |                    | - 1.05    | 5 0.0080     |
|                 | FR_HMW2_QSW_02072015_N                                 | 2015 07 03  | 7.27   | -            | -           | -                     | -                    | 3,770             | 4,400       | 303         | 0.65                     | -                                             | -                      | 4.1                 | -                                           | -                 | -                | 6.99 -                      | 384    | 0.0117                     | 172                         | < 0.020                  | -                                  | < 0.050                  | -          | - 4.8                            | < 400                        | 1,710                        | -                                         |                                                                    | -                                | -              | < 1.0   | -      |                    | - 6.98    | 8 0.295      |
|                 | FR_HMW2_QSW_02102015_N                                 | 2015 10 08  | 7.85   | 2,530        | -           | -                     | -                    | 3,840             | 4,090       | 253         | 0.63                     | -                                             | -                      | 4.4                 | 3,887                                       | -                 | -                | 7.09 -                      | 406    | < 0.0050                   | 186                         | < 0.020                  | -                                  | < 0.050                  | -          | - 4.7                            | < 400                        | 1,720                        | -                                         |                                                                    | -                                | -              | < 1.0   | -      |                    | - 7.82    | 2 0.170      |
|                 | FR_HMW2_QSW_04012016_N                                 | 2016 02 23  | 7.07 2 | 2,480        | 61.3        | 52.9                  | 49.9                 | 3,810             | 3,790       | 60.8        | < 0.50                   | 351                                           | -                      | 1.8                 | 3,473                                       | -                 |                  | 7.05 218                    | .5 409 | < 0.0050                   | 154                         | 0.021                    | -                                  | 0.671                    | -          | - 3.7                            | < 400                        | 1,610                        | 409                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 1.0   | - 65   | 5.0 0.01           | 103 4.14  | 4 0.0845     |
|                 | FR_HMW2_QSW_04042016_N                                 | 2016 05 18  | 7.2 2  | 2,560        | 320         | 53.4                  | 51.4                 | 3,830             | 3,860       | 382         | < 0.50                   | 364                                           | -                      | 4.3                 | 3,344                                       | -                 | 3.22             | 6.85 183                    | .1 410 | < 0.0050                   | 145                         | < 0.020                  | -                                  | 0.612                    | -          | - 3                              | < 400                        | 1,670                        | 410                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 1.0   | - 2    | 29 0.01            | 117 6.20  | 0 0.198      |
| _               | FR_HMW2_QSW_04072016_N                                 | 2016 08 15  | 7.35   | 2,660        | 86.6        | 55.7                  | 53.4                 | 4,000             | 4,060       | 85.5        | 0.61                     | 370                                           | -                      | 4.9                 | 3,491                                       | -                 | 4.81             | 7.1 153                     | .8 408 | < 0.0050                   | 151                         | < 0.020                  | -                                  | 0.436                    | -          | - 3.4                            | < 400                        | 1,760                        | 408                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 1.0   | - 47   | /.8 0.04           | 115 4.77  | 7 0.131      |
|                 | FR_HMW2_QSW_03102016_N                                 | 2016 11 22  | 7.27   | 2,710        | 656         | 56.5                  | 54.4                 | 3,740             | 3,990       | 854         | 0.76                     | 345                                           | -                      | 2.3                 | 3,473                                       | -                 | 4.1              | 6.97 -35                    | .4 401 | < 0.0050                   | 148                         | < 0.020                  | -                                  | 0.932                    | -          | - 2.9                            | < 400                        | 1,820                        | 401                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 1.0   | - 18   | 87 0.01            | 104 12.9  | 9 0.929      |
|                 | FR_HMW2_QSW_02012017_N                                 | 2017 02 27  | 7.06   | 2,410        | 696         | 51.6                  |                      | 3,570             | 3,480       | 663         | 0.9                      | 354                                           | -                      | 2.8                 | 3,149                                       | -                 | 2.81             | 7.03 55.                    |        | 0.0120                     | 116                         |                          | -                                  | 0.109                    | -          | - < 2.5                          | 5 130                        | 1,670                        | 432                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 0.25  |        | 8.8 0.02           |           | 1 1.00       |
|                 | FR_HMW2_QSW_03042017_N                                 | 2017 06 21  | 7.68   | 2,530        | 7.31        | 51.6                  | 50.9                 | 3,370             | 3,800       | 10.1        | 1.06                     | 357                                           | -0.7                   | 6                   | 3,440                                       | -                 | 2.24             | 6.97 65.                    | 3 416  | < 0.0050                   | 100                         | 0.0067                   | -                                  | 1.37                     | -          | - < 2.5                          | 5 100                        | 1,730                        | 416                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 0.25  | - 33   | 3.2 0.00           | 069 1.20  | 0 0.0124     |
|                 | FR_HMW2_QTR_2017-09-11_N                               | 2017 09 19  | 7.83   | 2,570        | 13.6        | 52.1                  | 51.7                 | 3,520             | 3,380       | 10.4        | 0.62                     | 335                                           | -0.4                   | 1.7                 | 3,352                                       | -                 | 8.04             | 7.18 182                    | .1 287 | 0.0121                     | 103                         | 0.0064                   | -                                  | < 0.050                  | -          | - < 2.5                          | 5 120                        | 1,880                        | 287                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 0.25  | - 24   | 4.2 0.00           | 065 1.33  | 3 0.0224     |
|                 | FR_HWM2_QTR_2017-10-02_N                               | 2017 11 14  | 7.8 2  | 2,770        | 4.57        | 53.1                  |                      | 3,510             |             | 5.2         | 0.65                     |                                               | -                      | 2                   | 3,435                                       | -                 | 0.67             | 6.59 210                    | .7 332 | 0.0072                     | 109                         |                          | -                                  | < 0.050                  | -          | - < 2.5                          |                              | 1,860                        |                                           | < 1.0 < 1.                                                         |                                  | -              | < 0.25  |        |                    | 082 1.16  |              |
|                 | FR_HMW2_QTR_2018-01-01_N                               |             | 7.84   | -            |             |                       |                      | 3,640             | -           |             |                          |                                               |                        |                     | 3,335                                       | -                 |                  | 6.9 175                     |        |                            |                             |                          | -                                  | 0.156                    | -          | - < 2.5                          |                              | 1,720                        |                                           | < 1.0 < 1.                                                         |                                  |                | < 0.25  |        |                    | 106 6.1   |              |
|                 | FR_HMW2_QTR_2018-04-02_N                               | 2018 06 06  | 8.02 2 | 2,350        | 0.27        | 50.7                  | 47.3                 | 3,350             | 3,340       | 1.3         | < 0.50                   | 292                                           | -3.5                   | 4.4                 | 3,246                                       | -                 | 5.05             | 6.76 228                    | .2 374 | 0.0074                     | 72.0                        | 0.0059                   | -                                  | 0.36                     | -          | - < 2.5                          | 5 230                        | 1,830                        | 374                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 0.25  | - 13   | 3.6 0.00           | )75 < 0.5 | 50 0.0095    |
| _               | FR_HMW2_QTR_2018-07-02_N                               | 2018 08 01  | 7.94   | 2,510        | 93.2        | 54.4                  | 50.5                 | 3,010             | 3,670       | 144         | 0.6                      | 347                                           | -3.7                   | 7.4                 | 3,125                                       | -                 | 6.25             | 7.03 209                    | .3 403 | 0.0066                     | 69.5                        | 0.0070                   | -                                  | < 0.050                  | -          | - < 2.5                          | 5 180                        | 1,990                        | 403                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 0.25  | - 5    | .9 0.00            | )87 0.82  | 2 0.125      |
|                 | FR_HMW2_QTR_2018-10-01_N                               | 2018 12 17  |        | ,            |             |                       |                      | ,                 | ,           |             |                          |                                               |                        |                     | 3,043                                       | -                 | 7.91             | 6.98 214                    | .9 403 | 0.0118                     | 66.5                        | 0.0071                   |                                    | < 0.050                  |            | - < 2.5                          | 5 170                        | 1,700                        | 403                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 0.25  | - 21   | 1.1 0.02           | 269 1.04  | 4 0.0257     |
|                 | FR_HMW2_QTR_2019-01-07_N                               |             |        |              |             |                       |                      | 3,350             |             |             |                          |                                               |                        |                     | 2,766                                       | -                 |                  | 6.88 224                    |        |                            |                             |                          |                                    | < 0.050                  |            | - < 2.5                          |                              | 1,690                        | 410                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 0.25  |        |                    |           | 3 0.0139     |
|                 | FR_HMW2_QTR_2019-04-01_N                               | 2019 05 29  | 7.89   | 2,370        | 18.5        | 49.1                  | 47.7                 | 3,380             | 3,200       | 29          | 0.87                     | 421                                           | -1.4                   | 4.9                 | 3,035                                       | -                 |                  | 6.96 262                    |        |                            |                             |                          |                                    | < 0.050                  |            | - < 2.5                          |                              | 1,730                        | 381                                       | < 1.0 < 1.                                                         | 0 -                              |                | < 0.25  | - 29   | ).3 0.00           | )94 2.12  | 2 0.0366     |
|                 | FR_HMW2_QTR_2019-07-01_N                               | 2019 07 25  |        |              |             |                       |                      |                   |             |             |                          |                                               |                        |                     | 2,655                                       | -                 |                  | 7.04 173                    |        |                            |                             |                          |                                    | < 0.050                  |            | - < 2.5                          |                              | 1,620                        | 398                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 0.25  | - 32   | 2.5 0.00           | )98 5.56  | 6 0.0702     |
|                 | FR_HMW2_QTR_2019-10-07_N                               | 2019 10 22  | 7.92   | 2,300        | 11.9        | 48                    | 46.2                 | 2,730             | 3,220       | 26.4        | 0.6                      | 346                                           | -1.9                   | 3.6                 | 3,427                                       | -                 | 9.93             | 6.97 57                     | 7 358  | < 0.0050                   | 57.5                        | < 0.0050                 | -                                  | < 0.050                  | -          | - < 2.5                          | 5 250                        | 1,760                        | 358                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 0.25  |        |                    |           | 2 0.0302     |
|                 | FR_HMW2_QTR_2020-01-06_N                               | 2020 03 03  |        |              |             |                       |                      |                   |             |             |                          |                                               |                        | -                   | -                                           | -                 | -                |                             |        |                            |                             | < 0.0050                 | -                                  | < 0.050                  |            | - 3.6                            |                              |                              |                                           | < 1.0 < 1.                                                         |                                  |                | < 0.25  |        |                    |           | 1 0.0329     |
|                 | FR_HMW2_QTR_2020-04-06_N                               | 2020 06 04  | 7.88   | 2,140        | 10.6        | 45                    | 43.1                 | 2,960             | 3,070       | 16          | 1.18                     | 502                                           | -2.1                   | -                   | -                                           | -                 | -                |                             | 359    | 0.0053                     | 48.9                        | 0.0052                   | -                                  | < 0.25                   | -          | - < 2.5                          | 5 130                        | 1,650                        | 359                                       | < 1.0 < 1.                                                         | 0 -                              | -              | < 0.25  | - 18   | 3.9 0.00           | )66 1.24  | 4 0.0189     |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2237699, L2242795, L2248235, L2248391, L2249360, L2250608, L2256457, L2256457, L2256457, L2283637, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2249360, L2256457, L225657, L2255657, L225657, L2255657, L2255657, L2255657, L225557, L22557, L2257, L22 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

<u>BOLD</u> Concentration greater than CSR Aquatic Life (AW) standard

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) <sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Standard varies with pH.

<sup>c</sup> Standard varies with chloride.

<sup>d</sup> Standard varies with hardness.

<sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

 $^{\rm f}$  There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.

<sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>i</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                        |                             |            |                               |                  |             |                       |                            |                    |                |                |                    |                |               |                           |                  | Dissolv        | ed Metal           | S                   |                |                    |                      |                            |                          |                     |            |                |                  |                    |                     |                 |                           |
|--------------------|--------------------------------------------------------|-----------------------------|------------|-------------------------------|------------------|-------------|-----------------------|----------------------------|--------------------|----------------|----------------|--------------------|----------------|---------------|---------------------------|------------------|----------------|--------------------|---------------------|----------------|--------------------|----------------------|----------------------------|--------------------------|---------------------|------------|----------------|------------------|--------------------|---------------------|-----------------|---------------------------|
|                    |                                                        |                             |            |                               |                  |             |                       |                            |                    |                |                |                    |                |               |                           |                  |                |                    |                     |                |                    |                      |                            |                          |                     |            |                |                  |                    |                     |                 |                           |
| Sample<br>Location | Sample<br>ID                                           | Sample Date<br>(yyyy mm dd) |            | a<br>B Dissolved Calcium<br>T | 턴 Dissolved Iron | a<br>⊐<br>T | 년 Dissolved Manganese | a Dissolved Potassium<br>7 | a Dissolved Sodium | 년<br>Rantimony | Д Arsenic<br>T | barium<br>기 Barium | G<br>Reryllium | uoroa<br>hali | ର୍ଜ<br>T<br>T             | Ab<br>T/Chromium | 6t<br>Cobalt   | bober<br>Δ/Γ       | Eead<br>T/64        | 6th<br>Lithium | Mercury<br>Ad      | ୟ<br>T<br>Molybdenum | бћ<br>1/ Nickel            | bd<br>Selenium<br>T      | hân<br>Silver       | 6trontium  | ර්<br>Thallium | βā<br>Tin        | Б<br>Тitanium<br>Т | h<br>T/b<br>Tranium | т<br>Г Vanadium | Zinc <sup>f</sup><br>T/Gt |
| Primary Screenir   | <b>ng Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup> |                             | n/a        | n/a                           | n/a              | n/a         | n/a                   | n/a                        | n/a                | 90             | 50             | 10,000             | 1.5            | 12,000        | 0.5-4 <sup>d</sup>        | 10 <sup>e</sup>  | 40             | 20-90 <sup>d</sup> | 40-160 <sup>d</sup> | n/a            | 0.25               | 10,000               | 250-<br>1,500 <sup>d</sup> | 20                       | 0.5-15 <sup>d</sup> | n/a        | 3              | n/a              | 1,000              | 85                  | n/a             | 75-<br>2,400 <sup>d</sup> |
| Secondary Scree    | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             |            |                               |                  |             |                       |                            |                    |                |                |                    |                |               | 0.8-<br>10.4 <sup>i</sup> | 100 (Cr +6)      | n/a            | n/a                | n/a                 | 2,530          | n/a                | n/a                  | 517-<br>2,972 <sup>i</sup> | 700                      | n/a                 | n/a        | n/a            | n/a              | n/a                | 3,520               | n/a             | n/a                       |
| S10 Study Area     |                                                        |                             | 1          |                               |                  |             |                       |                            |                    | · · ·          |                |                    |                |               |                           |                  |                |                    |                     |                | · · ·              |                      |                            |                          |                     | 1          |                |                  |                    |                     |                 |                           |
| FR_HMW1S           | FR_HMW1S_QTR_2019-07-01_N                              | 2019 07 25                  | < 3.0      |                               | < 20             | 310         | 353                   | 7.63                       | 2.20               | 0.34           |                | 9.83               | < 0.040        | 44            | 0.117                     | < 0.20           | 4.33           | < 0.50             |                     |                | < 0.0050           | 1.07                 | 43.0                       | <u>213</u>               | < 0.020             |            | 0.030          | < 0.20           | < 10               | 12.8                | < 1.0           | 6.0                       |
| -                  | FR_HMW1S_QTR_2019-10-07_N                              | 2019 10 23                  | < 3.0      | 523                           | < 20             | 281         | 370                   | 7.18                       | 2.03               |                |                |                    | < 0.040        | 45            | 0.119                     | < 0.20           | 4.50           | 0.47               | < 0.10              |                | < 0.0050           | 0.88                 | 40.7                       | <u>109</u>               | < 0.020             |            | 0.027          | < 0.20           | < 10               | 10.7                | < 1.0           | 5.1                       |
| -                  | HMW1S_QTR_2020-01-06_N                                 | 2020 03 02                  | 4.2        | 512                           | < 20             | 316         | 354                   | 7.70                       | 2.33               |                | < 0.20         | 10.4               | < 0.040        | 46            | 0.113                     | < 0.20           | 4.21           | 0.51               | < 0.10              |                | < 0.0050           | 0.90                 | 40.7                       | <u>218</u>               | < 0.020             |            | 0.031          | < 0.20           | < 10               | 12.4                | < 1.0           | 6.3                       |
|                    | FR_HMW1S_QTR_2020-04-06_N                              | 2020 05 14                  | < 3.0      |                               | < 20             | 287         | 328                   | 7.08                       | 2.04               | 0.32           |                | 9.06               | < 0.040        | 44            | 0.122                     | < 0.20           | 3.93           | < 0.40             |                     |                | < 0.0050           | 0.93                 | 39.6                       | <u>205</u>               | < 0.020             |            | 0.029          | < 0.20           | < 10               | 12.2                | < 1.0           | 5.3                       |
| FR_HMW2            | GA-HMW-2_L1238132                                      | 2012 11 09                  | < 15       |                               | < 30             | 222         | 315                   | 6.9                        | 6.4                | < 0.50         |                | 44.6               | < 0.50         | < 50          | 0.260                     | < 0.50           | 1.14           | < 2.5              | < 0.25              | 124            | < 0.010            | 1.07                 | 22.7                       | <u>184</u>               | < 0.050             |            | < 0.050        | < 0.50           | 19                 | 10.6                | < 5.0           | < 15                      |
|                    | FR012_0101201303                                       | 2013 03 28                  | 5.1        | 583                           | < 30             | 235         | 522                   | 6.5                        | 16.2               | < 0.20         |                | 26.6               | < 0.20         | 51            | 0.334                     | < 0.20           | 1.30           | 0.95               | < 0.10              |                | < 0.010            |                      | 24.7                       | <u>226</u>               | < 0.020             |            | 0.049          | < 0.20           | < 10               | 10.8                | < 2.0           | 8.3                       |
|                    | FR012_0101201316FD                                     | Duplicate                   | 1,200      | 588                           | 681              | 235         | 522                   | 6.3                        | 14.0               | 0.26           | 0.51           | 41.4               | < 0.20         | 49            | 0.338                     | 0.52             | 1.65           | 1.27               | 1.48                | 156            | < 0.010            | 1.08                 | 25.0                       | <u>222</u>               | < 0.020             | 382        | 0.057          | < 0.20           | 35                 | 11.3                | < 2.0           | 11.6                      |
| - I                | QA/QC RPD%<br>FRO12 0104201303                         | 2013 05 29                  | 6.5        | 591                           | < 30             | 234         | 575                   | 6.1                        | 19.2               | < 0.20         | 0.04           | 20.2               | < 0.20         | 50            | 0.202                     | < 0.20           | 1.93           | < 0.50             | 0.10                | 146            | < 0.010            | 1.15                 | 26.0                       | 224                      | < 0.020             | 430        | 0.020          | < 0.20           | 11                 | 11.7                | < 2.0           | 8.4                       |
| -                  | FR HMW2-201309301159                                   | 2013 05 29                  | 0.5<br>3.4 | 583                           | < 30             | 234         | 310                   | 6.1<br>7.58                | 3.60               |                | < 0.24         |                    | < 0.20         | 53<br>60      | 0.392                     | < 0.20           | 0.52           | < 0.50             |                     | 146            | < 0.010            | 1.15<br>0.56         | 26.0<br>30.0               | <u>224</u><br>516        | < 0.020<br>< 0.020  |            | 0.038          | < 0.20<br>< 0.20 | 30                 | 11.7                | < 2.0<br>< 2.0  | 0.4<br>8.7                |
| -                  | -                                                      | 2013 09 30                  | 4.7        | 561                           | < 20             |             | 143                   |                            | 5.82               | < 0.20         |                | 37.0               | < 0.20         | 57            | 0.460                     |                  |                |                    |                     | 138            |                    | 0.50                 | 22.8                       |                          | < 0.020             |            | 0.111          |                  | 20                 | 10.6                | < 2.0           | 4.6                       |
| -                  | FR_HMW2_67YUIKLO.,Q_01012014_N                         | 2014 03 12                  | 4.7        | 567                           | < 50             | 259<br>281  | 548                   | 7.73<br>6.71               | 15.8               | < 0.20         |                | 32.7               | < 0.20         | < 50          | 0.201                     | < 0.20<br>< 0.50 | < 0.20<br>0.61 | < 0.50<br>< 1.0    |                     | 130            | < 0.010<br>< 0.010 | 0.96                 | 22.0                       | <u>267</u>               | < 0.020             |            | 0.091          | < 0.20<br>< 0.50 | < 10               | 12.3                | < 5.0           | 7.0                       |
| -                  | FR_HMW2_QSW_02072014_N<br>FR_HMW2_QSW_02102014_N       | 2014 08 23                  |            |                               | 3,950            | 201         | 278                   | 9.50                       | 5.86               | < 0.50         |                | 148                | < 0.50         | < 50<br>59    | 0.300                     | 7.53             | 2.81           | 3.8                | 2.28                | 130            | < 0.010            | 1.97                 | 20.3                       | <u>329</u><br><u>385</u> | 0.066               | 420<br>394 | 0.095          | < 0.50           | 85                 | 12.3                | 12.6            | 25.3                      |
| -                  | FR_HMW2_QSW_02042015_N                                 | 2014 10 23                  | 3.1        | 543                           | < 20             | 261         | 235                   | 7.10                       | 2.57               | < 0.20         |                |                    | < 0.20         | 59            | 0.492                     | < 0.20           | 0.46           |                    | < 0.10              |                | < 0.0050           | 0.33                 | 26.1                       | <u>365</u><br>461        | < 0.020             |            | 0.195          | < 0.30           | 17                 | 11.1                | < 1.0           | 8.7                       |
| -                  | FR_HMW2_QSW_02072015_N                                 | 2015 07 03                  | 5.6        | 582                           | < 50             | 271         | 345                   | 6.71                       | 3.24               | < 0.50         |                | 33                 | < 0.20         | 57            | 0.327                     | < 0.20           | 0.56           | < 1.0              |                     | 138            | < 0.0050           | 0.59                 | 20.1                       | <u>401</u><br>430        | < 0.020             |            | 0.065          | < 0.20           | < 10               | 11.5                | < 2.5           | 6.6                       |
| -                  | FR_HMW2_QSW_02102015_N                                 | 2015 10 08                  | 3.9        | 576                           | < 20             | 265         | 69.2                  | 6.77                       | 2.32               | < 0.20         |                |                    | < 0.20         | 55            | 0.304                     | 0.24             | < 0.20         | 0.61               | < 0.20              | 127            | < 0.0050           | 0.53                 | 24.2                       | <u>430</u><br>530        | < 0.030             |            | 0.066          | < 0.20           | < 10               | 11.1                | < 1.0           | 5.5                       |
| -                  | FR_HMW2_QSW_04012016_N                                 | 2016 02 23                  | 6.2        | 547                           | < 20             | 203         | 16.7                  | 8.27                       | 2.10               |                | < 0.20         |                    | < 0.20         | 61            | 0.164                     | < 0.24           | < 0.20         |                    |                     | 144            | < 0.0050           | 0.37                 | 20.2                       | 434                      | < 0.020             |            | 0.065          | < 0.20           | 15                 | 10.5                | < 1.0           | 5.8                       |
| -                  | FR_HMW2_QSW_04042016_N                                 | 2016 05 18                  | 3.6        | 562                           | < 20             | 281         | 187                   | 7.29                       | 3.28               |                | < 0.20         |                    | < 0.040        | 53            | 0.295                     | < 0.20           | 0.24           | < 0.50             |                     |                | < 0.0050           | 0.57                 | 19.1                       | 451                      | < 0.020             |            | 0.065          | < 0.20           | < 10               | 11.4                | < 1.0           | 5.8                       |
| -                  | FR_HMW2_QSW_04072016_N                                 | 2016 08 15                  | 3.2        | 565                           | < 20             | 303         | 134                   | 7.99                       | 2.70               |                |                | 26.6               | < 0.040        | 59            | 0.230                     | < 0.20           | 0.24           | < 0.50             |                     | 133            | < 0.0050           | 0.59                 | 18.8                       | <u>465</u>               | < 0.020             |            | 0.005          | < 0.20           | < 10               | 11.4                | < 1.0           | 4.7                       |
| -                  | FR_HMW2_QSW_03102016_N                                 | 2016 11 22                  | 6.6        | 569                           | < 50             | 312         | 54.5                  | 8.27                       | 2.67               |                | < 0.20         |                    | < 0.10         | 51            | 0.220                     | < 0.20           | < 0.50         |                    |                     |                | < 0.0050           | 0.60                 | 19.0                       | <u>405</u><br>509        | < 0.020             |            | 0.083          | < 0.20           | < 10               | 11.9                | < 2.5           | 6.3                       |
| -                  | FR_HMW2_QSW_02012017_N                                 | 2017 02 27                  | 1.5        | 492                           | < 10             | 287         | 211                   | 7.27                       | 2.69               |                | 0.18           | 16.5               | < 0.020        | 54            | 0.125                     | < 0.10           | 0.42           | 0.21               | < 0.25              |                | < 0.0050           | 0.529                | 16.4                       | <u>505</u><br>547        | < 0.030             |            | 0.005          | < 0.10           | < 10               | 10.2                | < 0.50          | 8.2                       |
| -                  | FR_HMW2_QSW_03042017_N                                 | 2017 06 21                  | 2.0        | 516                           | < 10             | 302         | 305                   | 7.40                       | 2.45               | < 0.10         |                | 12.8               | < 0.020        | 50            | 0.339                     | < 0.10           | 0.57           |                    | < 0.050             |                | 0.0064             | 0.407                | 19.0                       | <u>574</u>               | < 0.010             |            | 0.052          | < 0.10           | < 10               | 10.2                | < 0.50          | 7.7                       |
| -                  | FR_HMW2_QTR_2017-09-11_N                               | 2017 09 19                  | < 3.0      | 537                           | < 20             | 300         | 35.0                  | 7.79                       | 1.96               | < 0.20         |                | 12.6               | < 0.040        | 48            | 0.205                     | < 0.20           | < 0.20         | < 0.50             |                     | 128            | < 0.0050           | 0.48                 | 17.4                       | <u>674</u>               | < 0.020             |            | 0.064          | < 0.20           | < 10               | 10.2                | < 1.0           | 6.6                       |
| -                  | FR_HWM2_QTR_2017-10-02_N                               | 2017 11 14                  | < 3.0      | 586                           | < 20             | 317         | 63.8                  | 8.12                       | 2.15               | < 0.20         |                | 12.2               | < 0.040        | 48            | 0.252                     | < 0.20           | 0.20           | < 0.50             |                     | 150            | < 0.0050           | 0.40                 | 17.6                       | 657                      | < 0.020             |            | 0.057          | < 0.20           | < 10               | 10.9                | < 1.0           | 6.7                       |
|                    | FR_HMW2_QTR_2018-01-01_N                               | 2018 01 30                  | < 3.0      |                               | < 20             | 296         | 85.1                  | 7.83                       | 2.08               | < 0.20         |                | 14.0               | < 0.040        | 51            | 0.254                     | < 0.20           | 0.23           | < 0.50             | < 0.10              | 129            | < 0.0050           | 0.55                 | 17.1                       | 650                      | < 0.020             |            | 0.058          | < 0.20           | < 10               | 10.7                | < 1.0           | 7.9                       |
|                    | FR_HMW2_QTR_2018-04-02_N                               | 2018 06 06                  |            |                               | < 20             | 284         | 85.3                  | 7.55                       | 1.94               |                |                |                    | < 0.040        | 46            | 0.254                     | < 0.20           | 0.31           | < 0.50             |                     |                | < 0.0050           |                      | 16.8                       | _                        | < 0.020             |            | 0.058          |                  | < 10               |                     |                 |                           |
|                    | FR_HMW2_QTR_2018-07-02_N                               | 2018 08 01                  |            |                               | < 20             | 291         | 62.5                  | 7.29                       | 1.97               |                | -              |                    | < 0.040        | 50            | 0.241                     | < 0.20           | 0.21           |                    | < 0.10              |                | < 0.0050           |                      | 14.8                       | 705                      | < 0.020             |            | 0.053          | < 0.20           | < 10               | 10.6                | < 1.0           |                           |
|                    | FR_HMW2_QTR_2018-10-01_N                               | 2018 12 17                  |            |                               | < 10             | 303         | 139                   | 7.90                       | 2.41               | < 0.10         |                |                    | < 0.020        | 52            | 0.287                     | < 0.10           | 0.26           |                    | < 0.050             |                | < 0.0050           |                      |                            |                          | < 0.010             |            |                | < 0.10           |                    |                     | < 0.50          |                           |
|                    | FR_HMW2_QTR_2019-01-07_N                               | 2019 03 11                  |            |                               | _                | 268         | 115                   | 7.07                       | 2.26               |                |                |                    | < 0.040        | 54            | 0.280                     | < 0.20           | 0.22           |                    | < 0.10              |                | < 0.0050           |                      | 16.0                       |                          | < 0.020             |            |                |                  |                    |                     |                 |                           |
|                    | FR_HMW2_QTR_2019-04-01_N                               | 2019 05 29                  |            |                               |                  | 278         | 193                   | 7.03                       | 2.20               |                |                |                    | < 0.040        |               | 0.360                     | < 0.20           | 0.24           |                    | < 0.10              |                | < 0.0050           |                      |                            |                          | < 0.020             |            |                | < 0.20           |                    |                     | < 1.0           |                           |
|                    | FR_HMW2_QTR_2019-07-01_N                               | 2019 07 25                  |            |                               |                  | 264         | 141                   | 7.16                       | 2.24               |                |                |                    | < 0.040        |               | 0.334                     | < 0.20           | 0.27           | 0.52               |                     |                | < 0.0050           |                      |                            | 407                      | < 0.020             |            | 0.054          | < 0.20           |                    |                     | < 1.0           | 8.7                       |
|                    | FR_HMW2_QTR_2019-10-07_N                               | 2019 10 22                  |            |                               | < 20             | 277         | 48.2                  | 7.48                       | 1.72               |                |                |                    | < 0.040        | 50            | 0.241                     | < 0.20           | 0.25           | 1.69               | < 0.10              |                | < 0.0050           |                      | 16.0                       | 745                      | < 0.020             |            |                | < 0.20           |                    |                     | < 1.0           | 10.6                      |
|                    | FR_HMW2_QTR_2020-01-06_N                               | 2020 03 03                  |            |                               | < 10             | 273         | 59.3                  | 7.43                       | 3.03               |                | -              |                    | < 0.020        | 50            | 0.239                     | < 0.10           | 0.15           |                    | < 0.050             |                | < 0.0050           |                      |                            |                          | < 0.010             |            |                | < 0.10           |                    |                     | < 0.50          |                           |
|                    | FR_HMW2_QTR_2020-04-06_N                               | 2020 06 04                  |            |                               |                  | 257         | 33.7                  | 7.56                       | 2.26               |                |                |                    | < 0.020        |               | 0.232                     | < 0.10           | 0.21           | 0.41               |                     |                | < 0.0050           |                      |                            |                          |                     |            | 0.037          |                  |                    |                     |                 |                           |
|                    |                                                        | 00 01                       |            |                               |                  |             |                       |                            |                    |                |                |                    |                |               |                           |                  |                |                    | 2.2                 |                |                    |                      |                            |                          | 2.0.0               |            |                |                  |                    |                     |                 |                           |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2237699, L2242795, L2248235, L2248235, L2248391, L2249360, L2250608, L2256457, L2256457, L2256457, L2282357, L2283636, L2283637, L2289256, L2290261, L2292060, L2292416, L22316991, L2317812, L2249360, L2249360, L2256457, L2249360, L2256457, L2249360, L2236457, L224647, L22467, L22467 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505. Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15
- <sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.
- <sup>j</sup> Criteria in not considered applicable and has not been applied.

<sup>&</sup>lt;u>BOLD</u> Concentration greater than CSR Aquatic Life (AW) standard

|                    |                                                              |                             |                |             |                     |                |            |                 |                        |                       |                 |                 |                |                    |             |              |                 | Total                   | Metals            |                    |               |                            |               |              |                  |                 |                 |                |                  |                   |           |                  |                    |                      |                        |
|--------------------|--------------------------------------------------------------|-----------------------------|----------------|-------------|---------------------|----------------|------------|-----------------|------------------------|-----------------------|-----------------|-----------------|----------------|--------------------|-------------|--------------|-----------------|-------------------------|-------------------|--------------------|---------------|----------------------------|---------------|--------------|------------------|-----------------|-----------------|----------------|------------------|-------------------|-----------|------------------|--------------------|----------------------|------------------------|
|                    |                                                              |                             |                |             |                     |                |            |                 |                        |                       |                 |                 |                |                    |             |              |                 |                         |                   |                    |               |                            |               |              |                  |                 |                 |                |                  |                   |           |                  |                    |                      |                        |
| Sample<br>Location | Sample<br>ID                                                 | Sample Date<br>(yyyy mm dd) | Aluminum<br>A  | 년<br>고<br>고 | <del>П</del><br>Л/Б | Ваrium<br>Л/бћ | бћ<br>T/бћ | Bismuth<br>T/6H | цогол<br>Посол<br>На/Г | Cadmium<br>7/6f       | Calcium<br>7/64 | ۲<br>بی<br>hg/L | Сobalt<br>Т/бћ | с<br>Оррег<br>Л/бћ | uou<br>µg/L | Pead<br>Lead | Lithium<br>7/64 | ba<br>Magnesium<br>T/bf | т<br>П/ Manganese | Mercury<br>Mercury | an Molybdenum |                            | G Phosphorous | 6t Potassium | 56lenium<br>T∕6π | бл<br>T/Silicon | л/б<br>Л/Silver | ndium<br>T/T   | 년<br>T/Gtrontium | T/GT<br>T/Aallium | Е<br>µg/L | Titanium<br>7/6H | Dranium<br>Dranium | Ъ<br>Vanadium<br>T/Л | Z<br>Zinc <sup>f</sup> |
| Primary Screenin   | <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup>        |                             | n/a            | n/a         | n/a                 | n/a            | n/a        | n/a             | n/a                    | n/a                   | n/a             | n/a             | n/a            | n/a                | n/a         | n/a          | n/a             | n/a                     | n/a               | n/a                | n/a           |                            | n/a           | n/a          | n/a              | n/a             | n/a             | n/a            | n/a              | n/a               | n/a       | n/a              | n/a                | n/a                  | n/a                    |
| Secondary Scree    | <b>ning Criteria:</b> Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a            | n/a         | n/a                 | n/a            | n/a        | n/a             | n/a                    | 0.8-10.4 <sup>i</sup> | n/a             | 100 (Cr +6)     | n/a            | n/a                | n/a         | n/a          | 2,530           | n/a                     | n/a               | n/a                |               | 517-<br>2,972 <sup>i</sup> | n/a           | n/a          | 700              | n/a             | n/a             | n/a            | n/a              | n/a               | n/a       | n/a              | 3,520              | n/a                  | n/a                    |
| S10 Study Area     |                                                              |                             | 1 1            |             |                     | r              | 1          |                 | 1                      |                       | T               |                 | 1 1            |                    |             | 1            |                 | 1                       |                   | 1                  |               |                            |               |              |                  |                 | 1               |                |                  |                   | r         | T                |                    |                      |                        |
| FR_HMW1S           | FR_HMW1S_QTR_2019-07-01_N                                    | 2019 07 25                  | -              | -           | -                   | -              | -          | -               | -                      | -                     | -               | -               | -              | -                  | -           | -            | -               | -                       | -                 | -                  | -             | -                          | -             | -            | -                | -               | -               | -              | -                | -                 | -         | -                | -                  | -                    | -                      |
| _                  | FR_HMW1S_QTR_2019-10-07_N                                    | 2019 10 23                  | -              | -           | -                   | -              | -          | -               | -                      | -                     | -               | -               | -              | -                  | -           | -            | -               | -                       | -                 | -                  | -             | -                          | -             | -            | -                | -               | -               | -              | -                | -                 | -         | -                | -                  | -                    | -                      |
| _                  | HMW1S_QTR_2020-01-06_N                                       | 2020 03 02                  | -              | -           | -                   | -              | -          | -               | -                      | -                     | -               | -               | -              | -                  | -           | -            | -               | -                       | -                 | -                  | -             | -                          | -             | -            | -                | -               | -               | -              | -                | -                 | -         | -                | -                  |                      | -                      |
|                    | FR_HMW1S_QTR_2020-04-06_N                                    | 2020 05 14                  | -              | -           | -                   | -              | -          | -               | -                      | -                     | -               | -               | -              | -                  | -           | -            | -               | -                       | -                 | -                  | -             | -                          | -             | -            | -                | -               | -               | -              | -                | -                 | -         | -                | -                  | -                    | -                      |
| FR_HMW2            | GA-HMW-2_L1238132                                            | 2012 11 09                  |                | < 0.50      |                     | 67.3           | < 0.50     | < 2.5           | 52                     | 0.313                 | 600,000         | 0.98            | 1.80           | < 2.5              | 1,050       | 1.19         |                 | 217,000                 | 363               |                    |               |                            |               | 7,100        |                  |                 | < 0.050         |                |                  | 0.063             | < 0.50    | 50               |                    |                      | < 15                   |
| -                  | FRO12_0101201303                                             | 2013 03 28                  | 10,700         |             | 3.76                | 193            | 0.92       | < 1.0           | 58                     | 0.621                 | 599,000         | 4.07            | 7.18           |                    | 7,710       | 15.5         | 161             | 244,000                 | 1,220             |                    |               |                            |               | 9,000        |                  | 23,300          | 0.105           | 16,000         |                  | 0.195             | 0.52      | 81               | 14.4               | 8.6                  | 48.8                   |
|                    | FRO12_0101201316FD                                           | Duplicate                   | 13,300         | 0.34        | 4.95                | 246            | 1.21       | < 1.0           | 59                     | 0.688                 | 579,000         | 4.48            | 8.25           |                    | 10,000      | 21.8         | 156             |                         | 1,380             | < 0.050            | 1.73          |                            |               | 9,400        |                  | 26,700          |                 | 14,500         |                  | 0.250             | 0.52      | 93               |                    |                      | 60.7                   |
| _                  | QA/QC RPD%                                                   | 0040.05.00                  | 22             | *           | 27                  | 24             | 27         | *               | 2                      | 10                    | 3               | 10              | 14             | 15                 | 26          | 34           | 3               | 4                       | 12                | *                  | 1             |                            | 33            | 4            | 2                | 14              | 10              | 10             | 2                | 25                | 0         | 14               | 5                  | 17                   | 22                     |
| -                  | FRO12_0104201303                                             | 2013 05 29                  | 14,100         |             | 4.36                | 245            | 1.42       | < 1.0           | 68                     | 0.787                 | 597,000         | 4.67            | 6.86           |                    | 9,130       | 21.2         |                 |                         | 999               |                    |               | 37.2                       |               |              |                  |                 | 0.126           |                |                  | 0.208             | 0.37      | 61               | 17.4               | 8.9                  | 70.5                   |
| -                  | FR_HMW2-201309301159                                         | 2013 09 30                  |                | < 0.20      |                     | 37.2           | < 0.20     | < 1.0           | 61                     | 0.481                 | 582,000         | 0.99            | 1.66           | 1.5                | 749         | 0.87         |                 | 268,000                 | 424               |                    |               | 30.4                       |               | 7,120        |                  |                 | < 0.020         |                | 351              | 0.129             | 0.42      | 42               | 10.9               |                      | 13.5                   |
| -                  | FR_HMW2_67YUIKLO.,Q_01012014_N                               | 2014 03 12                  | 7,530          | 0.49        | 4.76                | 398            | 0.45       | < 1.0           | 70                     | 1.19                  | 590,000         | 15.6            | 12.1           |                    | 12,200      | 6.55         | 155             |                         | 1,030             |                    |               | 45.3                       |               | 9,600        |                  | 17,200          | 0.186           | 6,270          |                  | 0.304             | 1.02      | 185              |                    |                      | 67.2                   |
| -                  | FR_HMW2_QSW_02072014_N                                       | 2014 08 25                  | 16,100         |             | 9.23                | 744            | 1.01       | < 2.5           | 67                     | 1.84                  | 610,000         | 33.4<br>27.1    | 20.7           |                    | 26,300      | 13.6         |                 |                         | 1,690             |                    |               | 66.3                       |               | 1,000        |                  |                 | 0.411           | 15,500         |                  | 0.563             | 0.72      | 195              |                    | 48.2                 | 141                    |
| -                  | FR_HMW2_QSW_02102014_N                                       | 2014 10 23                  | 13,300         | 0.69        | 8.28                | 586            | 0.86       | < 2.5           | 69                     | 1.48                  | 608,000         |                 | 14.6           | 22.2               | 22,800      | 12.3         | 149             |                         | 1,010             |                    |               | 59.0                       |               | 1,300        |                  | 10,300          | 0.345           | 6,450          | 440              | 0.501             | 0.52      | 133              | 13.8               | 38.2                 | 123                    |
| -                  | FR_HMW2_QSW_02042015_N                                       | 2015 04 14                  | -              | -           | -                   | -              | -          | < 0.10          | -                      | 0.346                 | -               | 0.66            | -              | -                  | -           | -            | -               | -                       | -                 | -                  | -             | -                          |               | 7,490        | 481              | -               | -               | -              | -                | -                 | -         | -                | -                  | -                    | -                      |
| -                  | FR_HMW2_QSW_02072015_N                                       | 2015 07 03                  | -              | -           | -                   | -              | -          | < 0.25          | -                      | 0.889                 | -               | 12.4            | -              | -                  | -           | -            | -               | -                       | -                 | -                  | -             | -                          |               | 3,330        | 402              | -               | -               | -              | -                | -                 | -         | -                | -                  | -                    | -                      |
| -                  | FR_HMW2_QSW_02102015_N                                       | 2015 10 08                  | -              | -           | -                   | -              | -          | < 0.10          | -<br>67                | 0.592                 | -               | 6.48            | -              | -                  | -           | -            | -<br>147        | -                       | -                 | -                  | -             | -                          |               | 7,540        | 525              | -               | -               | -              | -                | -                 | -         | -                | -                  | -                    | -                      |
| -                  | FR_HMW2_QSW_04012016_N                                       | 2016 02 23                  | 1,710<br>2,430 |             | 1.21<br>1.70        | 87.6           | < 0.20     | < 0.10          |                        | 0.297                 | 550,000         | 3.29            | 1.80<br>3.08   |                    | 2,560       | 1.33         |                 |                         | 146               |                    |               | 24.9<br>26.4               |               | 8,850        |                  | 5,660           | 0.039           | 2,170<br>2,940 |                  | 0.112             | 0.24      | 62               | 10.9               | 5.0                  | 18.9                   |
| -                  | FR_HMW2_QSW_04042016_N                                       | 2016 05 18                  |                | 0.26        |                     | 157            | 0.155      | < 0.10          | 56                     | 0.517                 | 548,000         | 4.44            |                |                    | 4,070       | 1.99         | 145             |                         | 416               |                    |               |                            |               | 7,780        |                  | 7,810           | 0.072           |                | 329              | 0.132             |           | 61               | 11.3               |                      | 26.6                   |
| -                  | FR_HMW2_QSW_04072016_N                                       | 2016 08 15                  | 1,760          | 0.21        | 1.10                | 101            | 0.115      | < 0.10          | 64                     | 0.314                 | 574,000         | 3.46            | 1.98           |                    | 2,460       | 1.11         | 139             |                         | 234               |                    |               | 22.5                       |               | 3,310        |                  | 5,280           | 0.034           | 2,670          |                  | 0.102             | < 0.20    | 37               | 11.7               |                      | 17.7                   |
| -                  | FR_HMW2_QSW_03102016_N                                       | 2016 11 22                  | 11,100         |             | 9.88                | 708            | 0.82       | < 0.25          | 63                     | 1.43                  | 625,000         | 26.4            | 26.2           |                    | 21,800      | 13.3         | 140             |                         | 1,870             |                    |               | 74.3                       |               | 0,700        |                  | 15,100          |                 | 2,970          | 385              | 0.451             | 0.53      | 63               |                    | 36.3                 | 151                    |
| -                  | FR_HMW2_QSW_02012017_N                                       | 2017 02 27                  |                | 0.74        | 6.80                | 766            | 0.633      | 0.166           | 70                     | 1.35                  | 529,000         | 17.5            | 11.7           | 19.8               | 20,000      | 9.94         |                 |                         | 926               |                    |               | 47.8                       |               | 9,360        |                  | 13,500          | 0.313           | 2,980          |                  | 0.410             | 0.57      | 44               |                    | 32.5                 | 109                    |
| -                  | FR_HMW2_QSW_03042017_N<br>FR_HMW2_QTR_2017-09-11_N           | 2017 06 21                  | -              | -           | -                   | -              | -          | -               | -                      | -                     | -               | -               | -              | -                  | -           | -            | -               | -                       | -                 | -                  | -             | -                          | -             | -            | -                | -               | -               | -              | -                | -                 | -         | -                | -                  | -                    | -                      |
| -                  |                                                              | 2017 09 19                  | -              | -           | -                   | -              | -          | -               | -                      | -                     | -               | -               | -              | -                  | -           | -            | -               | -                       | -                 | -                  | -             | -                          | -             | -            | -                | -               | -               | -              | -                | -                 | -         | -                | -                  | -                    | -                      |
| -                  | FR_HWM2_QTR_2017-10-02_N                                     | 2017 11 14                  | -              | -           | -                   | -              | -          | -               | -                      | -                     | -               | -               | -              | -                  | -           | -            | -               | -                       | -                 | -                  | -             | -                          | -             | -            | -                | -               | -               | -              | -                | -                 | -         | -                | -                  | -                    | -                      |
| -                  | FR_HMW2_QTR_2018-01-01_N                                     | 2018 01 30<br>2018 06 06    | -              | -           | -                   | -              | -          | -               | -                      | -                     | -               | -               | -              | -                  | -           | -            | -               | -                       | -                 | -                  | -             | -                          | -             | -            | -                | -               | -               | -              | -                | -                 | -         | -                | -                  | -                    | -                      |
| _                  | FR_HMW2_QTR_2018-04-02_N                                     |                             | -              | -           | -                   | -              | -          | -               | -                      | -                     | -               | -               | -              | -                  | -           | -            | -               | -                       | -                 | -                  | -             | -                          | -             | -            | -                | -               | -               | -              | -                | -                 | -         | -                |                    |                      |                        |
|                    | FR_HMW2_QTR_2018-07-02_N<br>FR_HMW2_QTR_2018-10-01_N         | 2018 08 01<br>2018 12 17    | -              | -           | -                   | -              | -          | -               | -                      | -                     | -               | -               | -              | -                  | -           | -            | -               | -                       | -                 | -                  | -             | -                          | -             | -            | -                | -               | -               | -              | -                | -                 | -         | -                | -                  | -+                   | -                      |
|                    | FR_HMW2_QTR_2018-10-01_N<br>FR_HMW2_QTR_2019-01-07_N         | 2018 12 17                  | -              | -           | -                   | -              | -          | -               | -                      | -                     | -               | -               | -              | -                  | -           | -            | -               | -                       | -                 | -                  | -             | -                          | -             | -            | -                | -               | -               | -              | -                | -                 | -         |                  | -                  | -+                   | -                      |
|                    | FR HMW2_QTR_2019-01-07_N<br>FR HMW2 QTR 2019-04-01 N         | 2019 03 11                  | -              | -           | -                   | -              | -          | -               | -                      | -                     | -               | -               | -              | -                  | -           | -            | -               | -                       | -                 | -                  | -             | -                          | -             | -            | -                | -               | -               | -              | -                |                   | -         | -                | -                  | -                    | -                      |
|                    | FR HMW2_QTR_2019-04-01_N                                     | 2019 05 29                  | -              | -           | -                   | -              | -          | -               | -                      | -                     | -               | -               |                | -                  | -           | -            | -               | -                       | -                 |                    | -             | -                          | -             | -            | -                | -               | -               | -              | -                | -                 | -         | -                | -                  | <u> </u>             |                        |
|                    | FR_HMW2_QTR_2019-07-01_N<br>FR_HMW2_QTR_2019-10-07_N         | 2019 07 25                  | -              | -           | -                   |                | -          | -               | -                      |                       | -               | -               |                | -                  |             |              | -               | -                       | -                 | -                  | -             |                            | -             | -            | -                | -               | -               | -              | -                |                   | -         | -                | -                  | <u> </u>             | -                      |
|                    | FR_HMW2_QTR_2019-10-07_N<br>FR_HMW2_QTR_2020-01-06_N         | 2019 10 22 2020 03 03       | -              | -           |                     | -              |            |                 |                        | -                     |                 |                 | -              | -                  | -           | -            |                 | -                       | -                 |                    | -             | -                          | -             | -            | -                | -               |                 |                |                  | -                 | -         |                  | -                  | -+                   | -                      |
|                    | FR_HMW2_QTR_2020-01-06_N                                     | 2020 03 03 2020 06 04       | -              | -           | -                   | -              | -          | -               | -                      | -                     | -               | -               | -              | -                  | -           |              | -               | -                       |                   | -                  | -             | -                          | -             | -            | -                | -               | -               | -              | -                | -                 | -         | -                | -                  | -                    |                        |
|                    | TT_TIMMVZ_QTTX_2020-04-00_N                                  | 2020 00 04                  | -              | -           | -                   | -              | -          | -               | -                      | <u> </u>              | -               | -               | -              | -                  | -           | -            | -               |                         | -                 | -                  | -             | -                          | -             | -            | -                | -               | -               | -              | -                | -                 | -         | <u> </u>         | -                  | <u> </u>             | -                      |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L223699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L2250608, L2250457, L2250412, L2282357, L2283636, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L22316991, L2217812, L2249360, L2250457, L2250457, L2250457, L2250457, L2250457, L2248360, L2250457, L2250457, L2250457, L225057, L2248360, L2250457, L225057, L2248360, L2250457, L225057, L22507, L22507, L2257, L225 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

BOLD Concentration greater than CSR Aquatic Life (AW) standard

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) <sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Standard varies with pH.

- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15
- <sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.
- <sup>j</sup> Criteria in not considered applicable and has not been applied.

|                    |                                                          |                             |                 |       |                                | Physic | al Para                              | meters                                |                                                      |                    |        |                     | Fiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d Para            | meters             | ;                           |         |                            |                             |                               |                                     |                             |       |                                      | Dissolv                      | ed Inorg                     | ganics                        |                                                                     |     |                     |               |                          |                         |              |                              |        |
|--------------------|----------------------------------------------------------|-----------------------------|-----------------|-------|--------------------------------|--------|--------------------------------------|---------------------------------------|------------------------------------------------------|--------------------|--------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|-----------------------------|---------|----------------------------|-----------------------------|-------------------------------|-------------------------------------|-----------------------------|-------|--------------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------------------------------------------------|-----|---------------------|---------------|--------------------------|-------------------------|--------------|------------------------------|--------|
| Sample<br>Location | Sample<br>ID                                             | Sample Date<br>(yyyy mm dd) | 뎦 pH (lab)<br>1 |       | 년 Turbidity<br>3. Total Anions | I/Dam  | r<br>sugγ&n<br>ugγβt<br>Conductivity | u<br>B<br>Total Dissolved Solids<br>T | Jo Total Suspended Solids<br>Discolved Oranic Carbon | Oxidation Reductic |        | O Field Temperature | ର<br>ସୁମୁ<br>ଅ<br>ଅ<br>ନାର୍ଯ୍ୟ<br>ଅ<br>ନାର୍ଯ୍ୟ<br>ଅ<br>ନାର୍ଯ୍ୟ<br>ଅ<br>ନାର୍ଯ୍ୟ<br>ଅ<br>ନାର୍ଯ୍ୟ<br>ଅ<br>ନାର୍ଯ୍ୟ<br>ଅ<br>ନାର୍ଯ୍ୟ<br>ଅ<br>ନାର୍ଯ୍ୟ<br>ଅ<br>ନାର୍ଯ୍ୟ<br>ଅ<br>ନାର୍ଯ୍ୟ<br>ଅ<br>ନାର୍ଯ୍ୟ<br>ଅ<br>ନାର<br>ଅ<br>ନାରୁ<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅ<br>ନାର<br>ଅନୁ<br>ଅ<br>ନାର<br>ଅନୁ<br>ଅ<br>ନାର<br>ଅନୁ<br>ଅ<br>ନାର<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ | Z Field Turbidity | d Dissolved Oxygen | 면 pH (field)<br>૩ Field ORP | Total   | ଞ୍ଚ<br>ଜୁ<br>୮             | ä<br>Solutrate (as N)<br>T  | Bantrite (as N)<br>T∕         | a<br>a Nitrate+Nitrite (as N)<br>T∕ | ଇୁ Kjeldahl Nitrogen-N<br>୮ | Nitro | Total Nitrogen-N<br>ba<br>T/Chloride | Н<br>Пoride                  | a<br>Sulfate<br>T            | Alkalinity, Bic<br>(as CaCO3) | a Alkalinity, Carbonate<br>P/ (as CaCO3)<br>a Alkalinity, Hydroxide | Bic | B<br>Carbonate<br>T | a<br>T∕S<br>T | a<br>Brotal Acidity<br>₽ | ğ Acidity (pH 8.3)<br>r | Ortho-Phosph | ස් Total Organic Carbon<br>උ |        |
| Primary Screenii   | n <b>g Criteria</b> : CSR Aquatic Life (AW) <sup>a</sup> |                             | n/a             | n/a   | n/a n/a                        | a n/a  | n/a                                  | n/a                                   | n/a n/                                               | a n/               | a n/a  | n/a                 | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/a               | n/a                | n/a n/a                     | a n/a   | 1.31-<br>18.5 <sup>b</sup> | 400                         | 0.2 <b>-</b> 2.0 <sup>c</sup> | 400                                 | n/a                         | n/a   | n/a 1,500                            | 2,000-<br>3,000 <sup>d</sup> | 1,280-<br>4,290 <sup>d</sup> | n/a                           | n/a n/a                                                             | n/a | n/a                 | n/a           | n/a                      | n/a                     | n/a          | n/a                          | n/a    |
| Secondary Scree    | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup>   |                             | n/a             | n/a   | n/a n/a                        | a n/a  | n/a                                  | 10,000                                | n/a n/                                               | a n/               | a n/a  | n/a                 | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/a               | n/a <sup>j</sup>   | n/a n/a                     | a n/a   | n/a                        | 6.08-<br>223.8 <sup>i</sup> | 0.389-<br>39.95 <sup>j</sup>  | n/a                                 | n/a                         | n/a   | n/a n/a                              | n/a                          | 4,990                        | n/a                           | n/a n/a                                                             | n/a | n/a                 | 78            | n/a                      | n/a                     | n/a          | n/a                          | n/a    |
| S10 Study Area     |                                                          |                             | II              |       |                                |        | 1                                    | 1                                     |                                                      |                    |        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1               |                    |                             |         |                            | 1                           |                               | 11                                  |                             |       | I                                    |                              |                              |                               | I                                                                   |     |                     |               |                          |                         | ,I           |                              |        |
| FR_HMW3            | GA-HMW-3_L1238132                                        | 2012 11 08                  | 7.95            | 665 3 | 30.7 13.                       | 4 13.5 | 1,030                                | 760                                   | 51.2 0.9                                             | 93 38              | 7 -    | -                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                 | -                  |                             | 389     | 0.320                      | 1.80                        | < 0.010                       | -                                   | 0.576                       | -     | - 2                                  | 270                          | 259                          | 389                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.50        | -                        | 11.8 (                  | 0.0038       | 6.70 0                       | ).0754 |
|                    | FRO12_0101201304                                         | 2013 03 27                  | 7.98            | 889 1 | 1.51 18.                       | 1 18   | 1,430                                | 1,120                                 | 6.5 0.9                                              | 93 43              | 0 -    | 5                   | 1,376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                 | 1.72               | 7.53 64                     | .3 330  | 0.161                      | 28.2                        | 0.016                         | -                                   | < 0.050                     | -     | - 1.9                                | 390                          | 452                          | 330                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.50        | -                        | 12.4 (                  | 0.0081       | 1.17 (                       | J.0041 |
|                    | FRO12_0104201304                                         | 2013 05 28                  | 7.81            | 775 8 | 3.32 16.                       | 3 15.6 | 1,340                                | 1,070                                 | 14.7 0.8                                             | 33 38              | 8 -    | 4.6                 | 1,156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                 | 1.61               | 7.55 61                     | .2 291  | 0.0732                     | 28.4                        | 0.017                         | -                                   | < 0.050                     | -     | - 2.2                                | 260                          | 405                          | 291                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.50        | -                        | 13.1 (                  | 0.0077 (     | 0.84 0                       | J.0180 |
|                    | FRO12_0104201315FD                                       |                             |                 |       |                                |        |                                      |                                       |                                                      |                    |        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                             |         |                            |                             |                               |                                     |                             |       |                                      |                              |                              |                               |                                                                     |     |                     |               |                          |                         |              |                              |        |
|                    | QA/QC RPD%                                               |                             | 0               | 1     | 43 *                           | *      | 0                                    | 1                                     | 21 '                                                 | *                  | -      | -                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                 | -                  |                             | 1       | 6                          | 0                           | 6                             | -                                   | *                           | -     | - 10                                 | 0                            | 0                            | 1                             | * *                                                                 | -   | -                   | *             | -                        | 21                      | 20           | *                            | 18     |
|                    | FR_HMW3_Q_01062013_N                                     | 2013 08 29                  | 8.02            | 601 7 | 7.23 12.                       | 2 12.2 | 1,020                                | ) 775                                 | 14.7 0.0                                             | 64 38              | 5 -    | 5.8                 | 938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                 | 0.83               | 7.46 39                     | .4 236  | < 0.0050                   | 18.8                        | 0.015                         | -                                   | < 0.050                     | -     | - 1.4                                | 440                          | 290                          | 236                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.50        | -                        | 5.9 (                   | 0.0058       | 2.26 0                       | ).0270 |
|                    | FD_Q_01062013_008                                        |                             |                 |       |                                |        |                                      |                                       |                                                      |                    |        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                             |         |                            |                             |                               |                                     |                             |       |                                      |                              |                              |                               |                                                                     |     |                     |               |                          |                         |              |                              |        |
|                    | QA/QC RPD%                                               |                             | 2               | 2     | 17 *                           | *      | 0                                    | 1                                     | 5 '                                                  | *                  | -      | -                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                 | -                  |                             | 1       | *                          | 1                           | 14                            | -                                   | *                           | -     | - 13                                 | 9                            | 1                            | 1                             | * *                                                                 | -   | -                   | *             | -                        | 28                      | 3            | *                            | 24     |
|                    | FR_HMW3-201309271258                                     | 2013 09 27                  | 7.98            | 596 2 | 2.13 12.                       | 1 11.7 | 989                                  | 689                                   | 4.6 0.7                                              | 74 39,5            | 500 -  | 4.8                 | 984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                 | 1.7                | 7.43 74                     | .7 238  | 0.0892                     | 18.6                        | 0.014                         | -                                   | < 0.050                     | -     | - 1.3                                | 310                          | 286                          | 238                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.50        | -                        | 1.1 (                   | 0.0050       | 1.34 0                       | J.0108 |
|                    | FR_HMW3_Q_01102013_N                                     | 2013 12 09                  | 7.88            | 552 3 | 3.58 11.                       | 5 11.2 | 953                                  | 711                                   | 8.58.5 < 0                                           | .50 40             | 1 -    | 4                   | 839.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                 | 8.11               | 7.87 -                      | 234     | 0.0813                     | 15.1                        | 0.028                         | -                                   | 0.217                       | -     | - 2.7                                | 310                          | 270                          | 234                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.50        | -                        | 2.8 (                   | 0.0041 (     | 0.80 0                       | J.0151 |
|                    | FR_HMW3_Q_01012014_N                                     | 2014 03 12                  | 8.08            | 555 0 | 0.58 10.                       | 9 11.2 | 919                                  | 678                                   | 1.1 0.8                                              | 32 41              | 5 -    | 2.7                 | 831.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                 | 2.61               | 7.38 20                     | .4 236  | 0.0789                     | 11.2                        | 0.064                         | -                                   | < 0.050                     | -     | - 1.8                                | 540                          | 255                          | 236                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.50        | -                        | 3.4 (                   | 0.0072 (     | 0.91 (                       | J.0096 |
|                    | FR_HMW3_Q_01042014_N                                     | 2014 05 13                  | 8.12            | 684 ( | 0.51 14                        | 13.8   | 1,160                                | 907                                   | 1.5 0.                                               | 73 27              | 3 -    | 5.4                 | 1,127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                 | 7.89               | 8.17 -39                    | .9 233  | 0.0979                     | 23.1                        | 0.039                         | -                                   | < 0.050                     | -     | - 1.7                                | 260                          | 368                          | 233                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.50        | -                        | 2.4 (                   | 0.0077 <     | < 0.50 (                     | J.0094 |
|                    | FR_HMW3_QSW_02072014_N                                   | 2014 08 25                  | 8.05            | 472 ( | 0.58 9.9                       | 8 9.72 | 839                                  | 505                                   | 1.9 < 0                                              | .50 36             | 9 -    | 7.9                 | 746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                 | 33.73              | 7.74 76                     | .1 217  | 0.104                      | 12.4                        | 0.027                         | -                                   | < 0.050                     | -     | - 3.6                                | 470                          | 223                          | 217                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.50        | -                        | 3.9 (                   | 0.0025 <     | < 0.50 C                     | ).0074 |
|                    | FD_QSW_02072014_001                                      | Duplicate                   | 7.93            | 470 0 | 0.25 10.                       | 2 9.67 | 832                                  | 549                                   | 1.6 0.                                               | 51 34              | 9 -    | -                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                 | -                  |                             | 218     | 0.103                      | 12.8                        | 0.025                         | -                                   | < 0.050                     | -     | - 3.8                                | 430                          | 229                          | 218                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.50        | -                        | 5.1 (                   | 0.0020       | 0.53 (                       | 0.0069 |
|                    | QA/QC RPD%                                               |                             | 2               | 0     | * *                            | *      | 1                                    | 8                                     | * *                                                  | *                  | -      | -                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                 | -                  |                             | 0       | 1                          | 3                           | 8                             | -                                   | *                           | -     | - 5                                  | 9                            | 3                            | 0                             | * *                                                                 | -   | -                   | *             | -                        | *                       | *            | *                            | 7      |
|                    | FR_HMW3_QSW_02102014_N                                   | 2014 10 22                  | 8.26            | 492 0 | 0.56 9.7                       | 5 10.1 | 871                                  | 623                                   | 2.8 1.0                                              | 09 34              | 6 -    | 4.7                 | 828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                 | 3.74               | 7.54 170                    | 0.3 218 | 0.107                      | 9.98                        | 0.056                         | -                                   | < 0.050                     | -     | - 3.3                                | 310                          | 220                          | 218                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.50        | -                        | 5.9 (                   | 0.0040       | 0.92 0                       | J.0069 |
|                    | FR_HMW3_QSW_02012015_N                                   | 2015 01 21                  | 7.96            | 506   |                                | -      | 928                                  | 694                                   | 5.8 0.9                                              | 92 -               | -      | -                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                 | -                  |                             | 223     | 0.164                      | 15.1                        | 0.0277                        | -                                   | < 0.050                     | -     | - 2.9                                | 290                          | 243                          | -                             |                                                                     | -   | -                   | < 0.25        | -                        | -                       | - *          | 3.17 (                       | J.0110 |
|                    | FR_HMW3_QSW_02042015_N                                   | 2015 04 14                  | 8.38            | 589   |                                | -      | 1,050                                | ) 777                                 | 3.8 0.                                               | 76 -               | -      | 3.5                 | 946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                 | -                  | 7.47 -                      | 252     | 0.109                      | 15.6                        | 0.0236                        | -                                   | < 0.050                     | -     | - 2.6                                | 290                          | 304                          | -                             |                                                                     | -   | -                   | < 0.25        | -                        | -                       | - /          | 0.97 0                       | 0.0071 |
|                    | FR_HMW3_QSW_02072015_N                                   | 2015 07 03                  | 7.86            | 487   |                                | -      | 808                                  | 636                                   | 2.3 0.                                               | 51 -               | -      | 4.1                 | 784.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                 | -                  | 7.65 -                      | 203     | 0.0732                     | 11.5                        | 0.0101                        | -                                   | 0.134                       | -     | - 1.9                                | 271                          | 204                          | -                             |                                                                     | -   | -                   | < 0.10        | -                        | -                       | - /          | 0.64 (                       | 0.0076 |
|                    | FR_HMW3_QSW_02102015_N                                   | 2015 10 08                  | 8.21            | 504   |                                | -      | 907                                  | 655                                   | 2.2 0.                                               | 56 -               | -      | 5.3                 | 875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                 | -                  | 7.48 -                      | 241     | 0.0686                     | 13                          | 0.036                         | -                                   | < 0.050                     | -     | - 1.8                                | 290                          | 231                          | -                             |                                                                     | -   | -                   | < 0.25        | -                        | -                       | - /          | 0.63 0                       | 0.0067 |
|                    | FR_HMW3_QSW_04012016_N                                   | 2016 02 22                  | 7.8             | 579 1 | 1.26 12                        | 2 11.8 | 1,040                                | ) 747                                 | 3.5 0.0                                              | 53 32              | 6 -    | 5.3                 | 946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                 | 2.89               | 7.42 68                     | .2 252  | 0.160                      | 12.0                        | 0.0519                        | -                                   | 0.318                       | -     | - 2.4                                | 310                          | 288                          | 252                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.25        | -                        | 11.8 (                  | ე.0027       | 1.17 (                       | J.0089 |
|                    | FR_HMW3_QSW_04042016_N                                   | 2016 05 19                  | 8.14            | 503 2 | 20.1 10                        | ) 10.2 | 893                                  | 663                                   | 58 0.                                                | 58 34              | 5 -    | 3.8                 | 795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                 | 2.67               | 7.5 155                     | 5.7 197 | 0.500                      | 14.8                        | 0.0080                        | -                                   | 0.948                       | -     | - 1.1                                | 290                          | 239                          | 197                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.25        | -                        | 2.8 (                   | 0.0046 8     | 8.97 (                       | J.0812 |
|                    | FD_QSW_04042016_005                                      |                             |                 |       |                                |        |                                      |                                       |                                                      |                    |        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                             |         |                            |                             |                               |                                     |                             |       |                                      |                              |                              |                               |                                                                     |     |                     |               |                          |                         |              |                              |        |
|                    | QA/QC RPD%                                               |                             | 1               | 2     | 23 *                           | *      | 1                                    | 5                                     | 13 '                                                 | *                  | -      | -                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                 | -                  |                             | 2       | 149                        | 6                           | 62                            | -                                   | 72                          | -     | - 1                                  | 0                            | 2                            | 2                             | * *                                                                 | -   | -                   | *             | -                        | *                       | *            | 75                           | 26     |
|                    | FR_HMW3_QSW_04072016_N                                   | 2016 08 15                  | 8.09            | 453 1 | 1.75 9.6                       | 3 9.2  | 857                                  | 643                                   | 2 0.0                                                | 67 34              | 3 -    | 5.3                 | 736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                 | 2.28               | 8.01 34                     | .3 221  | 0.102                      | 10.1                        | 0.0132                        | -                                   | < 0.050                     | -     | - 1.16                               | 330                          | 214                          | 221                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.25        | -                        | 3.7 (                   | 0.0026       | 0.75 0                       | ).0074 |
|                    | FR_DC1_04072016_016                                      |                             |                 |       |                                |        |                                      |                                       |                                                      |                    |        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                             |         |                            |                             |                               |                                     |                             |       |                                      |                              |                              |                               |                                                                     |     |                     |               |                          |                         |              |                              |        |
|                    | QA/QC RPD%                                               |                             | 0               | 1     | 1 *                            | *      | 0                                    | 5                                     | * *                                                  | *                  | -      | -                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                 | -                  |                             | 0       | 14                         | 2                           | 3                             | -                                   | *                           | -     | - 4                                  | 0                            | 2                            | 0                             | * *                                                                 | -   | -                   | *             | -                        | *                       | *            | *                            | 18     |
|                    | FR_HMW3_QSW_03102016_N                                   | 2016 11 17                  | 7.96            | 554 3 | 3.13 12.                       | 5 11.3 | 994                                  | 715                                   | 5.4 0.0                                              | 53 34              | 6 -    | 4.3                 | 899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                 | 1.08               | 7.28 -10                    | 9 378   | 0.159                      | 4.03                        | 0.0075                        | -                                   | 0.278                       | -     | - 2.16                               | 290                          | 219                          | 378                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.25        | -                        | 23.0 (                  | 0.0019 (     | 0.90 0                       | J.0114 |
|                    | FR_HMW3_QSW_02012017_N                                   | 2017 02 27                  | 7.31            | 736   | 1.71 15.                       | 4 14.9 | 1,250                                | 979                                   | 2.9 1.3                                              | 26 33              | 7 -    | 4.3                 | 1,105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                 | 0.91               | 7.36 47                     | .8 282  | 0.0521                     | 19.6                        | 0.0425                        | -                                   | < 0.050                     | -     | - 1                                  | 248                          | 402                          | 282                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.050       | -                        | 21.1 (                  | 0.0108       | 1.65 (                       | J.0197 |
|                    | FR_HMW3_QSW_03042017_N                                   | 2017 06 22                  | 8.24            | 355 ( | 0.82 7.8                       | 2 7.19 | 718                                  | 546                                   | 1 1.                                                 | 54 48              | 1 -4.2 | 3.5                 | 687.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                 | 2.84               | 7.53 174                    | .2 157  | 0.0188                     | 9.17                        | 0.0030                        | -                                   | 0.281                       | -     | - < 0.50                             | 210                          | 193                          | 157                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.050       | -                        | 4.3 (                   | 0.0047 (     | 0.93 (                       | J.0050 |
|                    | FR_HMW3_QTR_2017-09-11_N                                 | 2017 09 19                  | 8.25            | 414 2 | 2.12 8.4                       | 7 8.39 | 756                                  | 559                                   | 5.2 0.                                               | 58 27              | 4 -0.5 | 5.5                 | 703.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                 | 1.24               | 7.73 74                     | .9 180  | 0.0716                     | 7.60                        | 0.0120                        | -                                   | < 0.050                     | -     | - < 0.50                             | 259                          | 208                          | 180                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.050       | -                        | 3.3 (                   | 0.0015 (     | 0.85 0                       | J.0108 |
|                    | FR_HWM3_QTR_2017-10-02_N                                 | 2017 11 14                  | 8.4             | 489 1 | 1.04 9.5                       | 8 9.89 | 827                                  | 584                                   | 1 0                                                  | 5 29               | 9 1.6  | 5.3                 | 755.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                 | 2.01               | 7.35 -14                    | .4 201  | 0.0705                     | 8.70                        | 0.0059                        | -                                   | 0.303                       | -     | - 0.57                               | 240                          | 236                          | 190                           | 11.0 < 1.                                                           | 0 - | -                   | < 0.050       | -                        | 2.0 (                   | 0.0022       | 0.72 (                       | J.0059 |
|                    | FR_HMW3_QTR_2018-01-01_N                                 | 2018 01 25                  | 8.19            | 487 1 | 1.66 9.7                       | 6 9.85 | 881                                  | 617                                   | 1 1.                                                 | 04 33              | 3 0.4  | 3.2                 | 842.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                 | 2.23               | 7.35 25                     | .2 194  | 0.0873                     | 8.43                        | 0.0069                        | -                                   | 0.353                       | -     | - < 0.50                             | 228                          | 253                          | 194                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.050       | -                        | 2.8 (                   | 0.0010       | 0.99 0                       | ).0072 |
|                    | FR_HMW3_QTR_2018-04-02_N                                 | 2018 06 07                  | 7.99            | 451 ( | 0.53 10.                       | 6 9.11 | 907                                  | 680                                   | < 1.0 0.7                                            | 75 28              | 6 -7.6 | 3.3                 | 862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                 | 3.32               | 6.92 101                    | .2 203  | 0.0668                     | 14.7                        | 0.0049                        | -                                   | 0.439                       | -     | - 0.52                               | 292                          | 263                          | 203                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.050       | -                        | < 1.0 (                 | 0.0021 (     | 0.67 (                       | J.0062 |
|                    | FR_HMW3_QTR_2018-07-02_N                                 | 2018 07 18                  | 8               | 431 ( | 0.63 8.6                       | 6 8.72 | 787                                  | 572                                   | < 1.0 0.0                                            | 32 29              | 7 0.3  | 4.6                 | 709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                 | 2.19               | 7.31 33                     | .5 189  | 0.117                      | 8.92                        | 0.0072                        | -                                   | 0.226                       | -     | - < 0.50                             | 319                          | 203                          | 189                           | < 1.0 < 1.                                                          | 0 - | -                   | < 0.050       | -                        | 3.1 <                   | 0.0010       | 0.63                         | ).0050 |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2237609, L2242795, L2248235, L2248391, L2249360, L2250608, L22506457, L2250618, L22506457, L2282357, L2283637, L2283637, L2283637, L2282357, L2283637, L228367, L228367, L22837, L22837 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.
- n/a Denotes no applicable standard/guideline.
- QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL. RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard BOLD

Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) BLUE

#### <sup>a</sup> Standard to protect freshwater aquatic life.

- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                        |                             |       | 1                              |                          | 1            |                                 |                                 |                       | 1             | 1                 | -1          | T.       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                         |                 | Dissolv               | ed Metals          | 3                   |                         |              |                  |                            |             |                     |                     |            |                |                |                |                          |                           |
|--------------------|--------------------------------------------------------|-----------------------------|-------|--------------------------------|--------------------------|--------------|---------------------------------|---------------------------------|-----------------------|---------------|-------------------|-------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|-----------------------|--------------------|---------------------|-------------------------|--------------|------------------|----------------------------|-------------|---------------------|---------------------|------------|----------------|----------------|----------------|--------------------------|---------------------------|
| Sample<br>Location | Sample<br>ID                                           | Sample Date<br>(yyyy mm dd) |       | a<br>d⊂ Dissolved Calcium<br>T | 년<br>Dissolved Iron<br>기 | a<br>a<br>T∕ | ର୍ଘ<br>ସି<br>ଅssolved Manganese | a<br>a Dissolved Potassium<br>고 | a<br>Dissolved Sodium | б<br>Antimony | б<br>Arsenic<br>Г | Ъ<br>Вarium | р<br>Д/L | цогол<br>Набол<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Поради<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>Порадина<br>П | D/C<br>Zadmium            | Chromiu<br>T/ħ  | б <del>П</del><br>Т/Г | ц<br>Д/L           | Lead<br>Л/бћ        | П/б <del>и</del><br>Т/б | Mercury<br>D | 66<br>Molybdenum | 6t<br>Nickel               | 6th<br>D/D  | бt<br>T/Silver      | ର୍ସି Strontium<br>୮ | ft<br>T/đđ | Е<br>Н<br>µg/L | 6t<br>Titanium | hðh<br>Tranium | ta<br>Soluta<br>Lanadium | bt<br>Zinc <sup>f</sup>   |
| Primary Screenii   | ng Criteria: CSR Aquatic Life (AW) <sup>a</sup>        |                             | n/a   | n/a                            | n/a                      | n/a          | n/a                             | n/a                             | n/a                   | 90            | 50                | 10,000      | 1.5      | 12,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5-4 <sup>d</sup>        | 10 <sup>e</sup> | 40                    | 20-90 <sup>d</sup> | 40-160 <sup>d</sup> | n/a                     | 0.25         | 10,000           | 250-<br>1,500 <sup>d</sup> | 20          | 0.5-15 <sup>d</sup> | n/a                 | 3          | n/a            | 1,000          | 85             | n/a 2                    | 75-<br>2,400 <sup>d</sup> |
| Secondary Scree    | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             |       |                                |                          |              |                                 |                                 |                       |               |                   |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8-<br>10.4 <sup>i</sup> | 100 (Cr +6)     | n/a                   | n/a                | n/a                 | 2,530                   | n/a          | n/a              | 517-<br>2,972 <sup>i</sup> | 700         | n/a                 | n/a                 | n/a        | n/a            | n/a            | 3,520          | n/a                      | n/a                       |
| S10 Study Area     |                                                        |                             |       | 1                              |                          |              | 1                               |                                 |                       |               |                   |             |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                 |                       |                    | 1                   |                         | 1            |                  |                            |             |                     |                     |            | I              | 1 1            | I              |                          |                           |
| FR_HMW3            | GA-HMW-3_L1238132                                      | 2012 11 08                  | 5.7   | 168                            | < 30                     | 59.5         | 505                             | 4.0                             | 2.6                   | 0.23          | 0.17              | 69.9        | < 0.10   | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.097                     | 0.13            | 0.79                  | < 0.50             | < 0.050             | 77.0                    | < 0.010      | 1.27             | 5.38                       | 1.24        | < 0.010             | 141                 | 0.024      | < 0.10         | 14             | 4.18           | < 1.0                    | 7.3                       |
|                    | FRO12_0101201304                                       | 2013 03 27                  | < 3.0 | 218                            | < 30                     | 83.5         | 721                             | 4.3                             | 2.0                   | 0.21          | 0.11              | 74.4        | < 0.10   | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.128                     | < 0.10          | 0.93                  | < 0.50             | < 0.050             | 80.9                    | < 0.010      | 1.01             | 6.71                       | 0.97        | < 0.010             | 166                 | 0.023      | < 0.10         | < 10           | 4.14           | < 1.0                    | < 3.0                     |
|                    | FRO12_0104201304                                       | 2013 05 28                  | < 3.0 | 186                            | < 30                     | 75.4         | 610                             | 3.6                             | < 2.0                 | 0.24          | 0.11              | 57.1        | < 0.10   | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.111                     | < 0.10          | 0.80                  | < 0.50             | < 0.050             | 62.7                    | < 0.010      | 1.10             | 6.52                       | <u>33.1</u> | < 0.010             | 159                 | 0.026      | < 0.10         | < 10           | 4.03           | < 1.0                    | < 3.0                     |
|                    | FRO12_0104201315FD                                     | Duplicate                   | < 3.0 | 187                            | < 30                     | 77.6         | 581                             | 3.8                             | < 2.0                 | 0.28          | 0.13              | 60.8        | < 0.10   | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.117                     | < 0.10          | 0.74                  | < 0.50             | < 0.050             | 50.7                    | < 0.010      | 1.08             | 6.12                       | <u>33.7</u> | < 0.010             | 158                 | 0.025      | < 0.10         | < 10           | 3.96           | < 1.0                    | < 3.0                     |
|                    | QA/QC RPD%                                             |                             |       |                                |                          |              |                                 |                                 |                       |               |                   |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                 |                       |                    |                     |                         |              |                  |                            |             |                     |                     |            |                |                |                |                          |                           |
|                    | FR_HMW3_Q_01062013_N                                   | 2013 08 29                  | 9.3   | 147                            | < 10                     | 56.8         | 199                             | 3.26                            | 1.46                  | 0.458         | < 0.10            | 42.7        | < 0.050  | 31.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.057                     | 0.11            | 0.473                 | 0.47               | < 0.030             | 52.3                    | < 0.010      | 1.28             | 3.17                       | <u>60</u>   | < 0.010             | 122                 | 0.022      | < 0.050        | < 1.0          | 2.91           | < 0.50                   | 2.3                       |
|                    | FD_Q_01062013_008                                      | Duplicate                   | 6.3   | 143                            | < 10                     | 56.3         | 209                             | 3.31                            | 1.53                  | 0.459         | 0.12              | 43.7        | < 0.050  | 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.053                     | < 0.10          | 0.493                 | 0.42               | < 0.030             | 55.5                    | < 0.010      | 1.32             | 3.13                       | <u>59</u>   | < 0.010             | 128                 | 0.024      | < 0.050        | < 1.0          | 2.93           | < 0.50                   | 1.7                       |
|                    | QA/QC RPD%                                             |                             | 38    | 3                              | *                        | 1            | 5                               | 2                               | 5                     | *             | *                 | 2           | *        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                         | *               | 4                     | *                  | *                   | 6                       | *            | 3                | 1                          | 2           | *                   | 5                   | *          | *              | *              | 1              | *                        | *                         |
|                    | FR_HMW3-201309271258                                   | 2013 09 27                  | < 3.0 | 141                            | < 30                     | 56.0         | 66.5                            | 2.67                            | 1.07                  | 0.36          | < 0.10            | 35.2        | < 0.10   | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.048                     | < 0.10          | 0.13                  | < 0.50             | < 0.050             | 38.3                    | < 0.010      | 1.06             | 2.50                       | <u>56.2</u> | < 0.010             | 105                 | 0.016      | < 0.10         | < 10           | 2.52           | < 1.0                    | 3.2                       |
|                    | FR_HMW3_Q_01102013_N                                   | 2013 12 09                  | < 3.0 | 133                            | < 30                     | 53.3         | 22.7                            | 2.48                            | 2.15                  | 0.39          | < 0.10            | 31.2        | < 0.10   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.040                     | < 0.10          | < 0.10                | < 0.50             | < 0.050             | 35.4                    | < 0.010      | 1.28             | 2.35                       | <u>49.7</u> | < 0.010             | 120                 | 0.016      | < 0.10         | 16             | 2.71           | < 1.0                    | < 3.0                     |
|                    | FR_HMW3_Q_01012014_N                                   | 2014 03 12                  | < 3.0 | 136                            | < 10                     | 52.5         | 185                             | 2.46                            | 1.99                  | 0.27          | 0.12              | 32.0        | < 0.10   | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.057                     | < 0.10          | 0.20                  | < 0.50             | < 0.050             | 39.1                    | < 0.010      | 0.992            | 2.49                       | <u>45.7</u> | < 0.010             | 113                 | 0.014      | < 0.10         | 15             | 2.52           | < 1.0                    | < 3.0                     |
|                    | FR_HMW3_Q_01042014_N                                   | 2014 05 13                  | < 3.0 | 163                            | < 10                     | 67.3         | 276                             | 2.86                            | 1.60                  | 0.24          | 0.11              | 40.4        | < 0.10   | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.061                     | < 0.10          | 0.30                  | < 0.50             | < 0.050             | 41.5                    | < 0.010      | 0.990            | 2.94                       | <u>57.8</u> | < 0.010             | 150                 | 0.016      | < 0.10         | 15             | 3.13           | < 1.0                    | < 3.0                     |
|                    | FR_HMW3_QSW_02072014_N                                 | 2014 08 25                  | < 3.0 | 109                            | < 10                     | 48.3         | 26.6                            | 2.25                            | 5.18                  | 0.34          | < 0.10            | 25.3        | < 0.10   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.026                     | < 0.10          | < 0.10                | < 0.50             | < 0.050             | 30.9                    | < 0.010      | 1.27             | 1.68                       | <u>50.6</u> | < 0.010             | 106                 | 0.011      | < 0.10         | < 10           | 2.19           | < 1.0                    | 5.0                       |
|                    | FD_QSW_02072014_001                                    | Duplicate                   | < 3.0 | 108                            | < 10                     | 48.9         | 24.4                            | 2.21                            | 4.98                  | 0.33          | < 0.10            | 24.6        | < 0.10   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.026                     | < 0.10          | < 0.10                | < 0.50             | < 0.050             | 30.1                    | < 0.010      | 1.19             | 1.61                       | <u>51.8</u> | < 0.010             | 105                 | 0.011      | < 0.10         | < 10           | 2.16           | < 1.0                    | < 3.0                     |
|                    | QA/QC RPD%                                             | -                           |       |                                |                          |              |                                 |                                 |                       |               |                   |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                 |                       |                    |                     |                         |              |                  |                            |             |                     |                     |            |                |                |                |                          |                           |
|                    | FR_HMW3_QSW_02102014_N                                 | 2014 10 22                  | < 3.0 | 117                            | < 10                     | 48.2         | 84.2                            | 2.28                            | 4.77                  | 0.29          | 0.11              | 27.1        | < 0.10   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.041                     | < 0.10          | 0.15                  | < 0.50             | < 0.050             | 30.9                    | < 0.010      | 1.17             | 1.89                       | <u>38.5</u> | < 0.010             | 107                 | 0.011      | < 0.10         | 14             | 2.34           | < 1.0                    | < 3.0                     |
|                    | FR_HMW3_QSW_02012015_N                                 | 2015 01 21                  | < 3.0 | 123                            | < 10                     | 48.4         | 216                             | 2.44                            | 4.25                  | 0.28          | 0.11              | 30.2        | < 0.10   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.046                     | < 0.10          | 0.49                  | < 0.50             | < 0.050             | 34.7                    | < 0.010      | 1.12             | 2.28                       | <u>54.4</u> | < 0.010             | 112                 | 0.012      | < 0.10         | 15             | 2.38           | < 1.0                    | < 3.0                     |
|                    | FR_HMW3_QSW_02042015_N                                 | 2015 04 14                  | < 3.0 | 141                            | < 10                     | 57.5         | 243                             | 2.56                            | 3.69                  | 0.22          | 0.11              | 34.4        | < 0.10   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0615                    | < 0.10          | 0.33                  | < 0.50             | < 0.050             | 37                      | < 0.0050     | 1.06             | 2.43                       | <u>48.3</u> | < 0.010             | 131                 | 0.02       | < 0.10         | 12             | 3.12           | < 0.50                   | < 3.0                     |
|                    | FR_HMW3_QSW_02072015_N                                 | 2015 07 03                  | < 3.0 | 118                            | < 10                     | 46.9         | 192                             | 2.20                            | 2                     | 0.26          | 0.12              | 26.7        | < 0.10   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.032                     | < 0.10          | 0.27                  | < 0.50             | < 0.050             | 31.4                    | < 0.0050     | 1.13             | 1.79                       | <u>50.9</u> | < 0.010             | 95.6                | 0.011      | < 0.10         | < 10           | 2.04           | < 0.50                   | < 3.0                     |
|                    | FR_HMW3_QSW_02102015_N                                 | 2015 10 08                  | < 3.0 | 122                            | < 10                     | 48           | 194                             | 2.32                            | 1.77                  | 0.26          | 0.12              | 29.6        | < 0.10   | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0496                    | < 0.10          | 0.25                  | < 0.50             | < 0.050             | 32.6                    | < 0.0050     | 1.16             | 1.81                       | <u>48.9</u> | < 0.010             | 117                 | 0.02       | < 0.10         | < 10           | 2.48           | < 0.50                   | < 3.0                     |
|                    | FR_HMW3_QSW_04012016_N                                 | 2016 02 22                  | < 3.0 | 141                            | < 10                     | 54.8         | 395                             | 2.72                            | 2.68                  | 0.21          | 0.12              | 34.9        | < 0.10   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0592                    | < 0.10          | 0.52                  | < 0.50             | < 0.050             | 32.6                    | < 0.0050     | 1.04             | 2.50                       | <u>33.4</u> | < 0.010             | 123                 | 0.014      | < 0.10         | 11             | 2.85           | < 0.50                   | < 3.0                     |
|                    | FR_HMW3_QSW_04042016_N                                 | 2016 05 19                  | 4.0   | 118                            | < 10                     | 50.3         | 111                             | 2.23                            | 1.51                  | 0.28          | < 0.10            | 31.4        | < 0.020  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0321                    | < 0.10          | 0.14                  | < 0.50             | < 0.050             | 32.6                    | < 0.0050     | 1.06             | 1.84                       | <u>38.3</u> | < 0.010             | 102                 | 0.013      | < 0.10         | < 10           | 2.15           | < 0.50                   | < 3.0                     |
|                    | FD_QSW_04042016_005                                    | Duplicate                   | 3.2   | 123                            | < 10                     | 50.1         | 129                             | 2.22                            | 1.67                  | 0.28          | 0.11              | 31.4        | < 0.020  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0357                    | < 0.10          | 0.14                  | < 0.50             | < 0.050             | 33.8                    | < 0.0050     | 1.03             | 1.93                       | <u>34.7</u> | < 0.010             | 102                 | 0.012      | < 0.10         | < 10           | 2.12           | < 0.50                   | < 3.0                     |
|                    | QA/QC RPD%                                             | -                           |       |                                |                          |              |                                 |                                 |                       |               |                   |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                 |                       |                    |                     |                         |              |                  |                            |             |                     |                     |            |                |                |                |                          |                           |
| _                  | FR_HMW3_QSW_04072016_N                                 | 2016 08 15                  | < 3.0 | 109                            | < 10                     | 44.1         | 215                             | 2.31                            | 1.69                  | 0.28          | 0.11              | 30.3        | < 0.020  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0336                    | < 0.10          | 0.35                  | < 0.50             | < 0.050             | 31.9                    | < 0.0050     | 1.15             | 1.66                       | <u>44.4</u> | < 0.010             | 102                 | 0.014      | < 0.10         | < 10           | 2.16           | < 0.50                   | < 3.0                     |
|                    | FR_DC1_04072016_016                                    | Duplicate                   | < 3.0 | 106                            | < 10                     | 47.0         | 210                             | 2.40                            | 1.79                  | 0.26          | 0.11              | 29.8        | < 0.020  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0335                    | < 0.10          | 0.35                  | < 0.50             | < 0.050             | 31.3                    | < 0.0050     | 1.13             | 1.63                       | <u>43.5</u> | < 0.010             | 102                 | 0.012      | < 0.10         | < 10           | 2.02           | < 0.50                   | < 3.0                     |
|                    | QA/QC RPD%                                             |                             |       |                                |                          |              |                                 |                                 |                       |               |                   |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                 |                       |                    |                     |                         |              |                  |                            |             |                     |                     |            |                |                |                |                          |                           |
| _                  | FR_HMW3_QSW_03102016_N                                 | 2016 11 17                  | < 3.0 |                                |                          |              | 232                             | 2.82                            | 3.10                  |               | -                 |             | < 0.020  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0580                    | < 0.10          | 0.40                  | < 0.50             | < 0.050             | 57.2                    | < 0.0050     | 1.07             | 2.37                       |             |                     | 127                 | 0.019      |                |                |                | < 0.50                   | < 3.0                     |
|                    | FR_HMW3_QSW_02012017_N                                 | 2017 02 27                  |       |                                |                          | 71.3         | 247                             | 3.16                            | 2.24                  |               |                   |             | < 0.020  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0918                    | < 0.10          |                       |                    |                     |                         | < 0.0050     |                  | 3.32                       |             | < 0.010             | 178                 |            |                | < 10           |                |                          | 5.5                       |
|                    | FR_HMW3_QSW_03042017_N                                 | 2017 06 22                  |       |                                |                          | 34.8         | 50.1                            | 1.83                            |                       |               |                   |             | < 0.10   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.025                   |                 |                       |                    |                     |                         | < 0.0050     |                  |                            |             |                     |                     |            |                |                |                |                          |                           |
|                    | FR_HMW3_QTR_2017-09-11_N                               | 2017 09 19                  | -     |                                |                          |              | 106                             | 1.99                            | 1.32                  |               |                   |             | < 0.020  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0353                    | < 0.10          |                       |                    |                     |                         | < 0.0050     |                  |                            |             | < 0.010             |                     |            |                |                |                | < 0.50                   |                           |
|                    | FR_HWM3_QTR_2017-10-02_N                               | 2017 11 14                  | -     |                                | 81                       |              | 96.5                            | 1.78                            | 1.33                  |               |                   |             | < 0.020  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0377                    | 0.10            | 0.17                  |                    |                     |                         | < 0.0050     |                  | 1.43                       |             | < 0.010             | 122                 | 0.012      |                |                |                | < 0.50                   |                           |
|                    | FR_HMW3_QTR_2018-01-01_N                               | 2018 01 25                  |       |                                |                          |              | 116                             | 1.91                            | 1.42                  |               | -                 |             | < 0.020  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0295                    | < 0.10          |                       |                    |                     |                         | < 0.0050     |                  |                            |             | < 0.010             | 131                 | 0.017      |                |                |                | < 0.50                   |                           |
|                    | FR_HMW3_QTR_2018-04-02_N                               | 2018 06 07                  |       |                                |                          | 47.7         | 68.6                            | 1.83                            |                       | _             |                   |             | < 0.040  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | < 0.20          |                       | < 0.50             |                     |                         | < 0.0050     |                  | 1.4                        |             |                     |                     | < 0.020    |                |                |                |                          |                           |
|                    | FR_HMW3_QTR_2018-07-02_N                               | 2018 07 18                  | < 3.0 | 98.3                           | 41                       | 45.0         | 84.7                            | 1.95                            | 1.22                  | 0.19          | < 0.10            | 27.5        | < 0.020  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0250                    | < 0.10          | 0.17                  | < 0.50             | < 0.050             | 27.6                    | < 0.0050     | 1.02             | 1.24                       | <u>62.9</u> | < 0.010             | 101                 | 0.013      | < 0.10         | < 10           | 1.98           | < 0.50                   | 1.5                       |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2236699, L224795, L2248235, L2248391, L2249360, L2256457, L2256457, L2256457, L2256457, L2256457, L2283637, L228367, L228367, L22837, L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

- Concentration greater than CSR Aquatic Life (AW) standard BOLD
- Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) BLUE

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

| Sample         Sample Date         Sample Date <t< th=""><th><math>\mu g/L</math> <math>\mu g/L</math>         &lt;</th></t<> | $\mu g/L$ <                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary Screening Criteria: CSR Aquatic Life (AW) <sup>a</sup> n/a         n/a <th <="" th=""><th>/a         n/a         n/a</th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <th>/a         n/a         n/a</th> | /a         n/a         n/a |
| FR-HMW3         GA-HMW-3_L1238132         2012 1108         696         0.27         0.46         91.7         < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A         n/a         700         n/a           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Secondary Screening Criteria: Costa and de Brijn (2021)       In/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,200         1.30         3,510         0.022         2,500         142         0.047         < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| S10 Study Area           FR_HMW3         GA-HMW-3_L1238132         2012 11 08         696         0.27         0.46         91.7         < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 4,500 0.97 2,100 < 0.010 2,100 176 0.026 < 0.10 < 10 4.46 < 1.0 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3         GA-HMW-3_L1238132         2012 11 08         696         0.27         0.46         91.7         <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 4,500 0.97 2,100 < 0.010 2,100 176 0.026 < 0.10 < 10 4.46 < 1.0 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR012_0104201304       2013 05 28       161       0.25       0.17       57.5       < 0.10       < 0.50       40       0.126       189,000       0.42       0.80       < 1.0       168       0.148       62.8       79,100       581       < 0.010       1.13       6.87       <         FR012_0104201315FD       Duplicate       153       0.25       0.21       64.6       < 0.10       < 0.50       38       0.126       187,000       < 0.50       0.81       < 0.50       131       0.129       60.3       77,300       589       < 0.010       1.03       6.63          QA/QC RPD%       5       *       *       12       *       *       5       0       1       *       1       *       25       *       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR012_0104201315FD       Duplicate       153       0.25       0.21       64.6       < 0.10       < 0.50       38       0.126       187,00       < 0.50       0.81       < 0.50       131       0.129       60.3       77,300       589       < 0.010       1.09       66.3       <         QA/QC RPD%       5       *       *       12       *       *       5       0       1       *       1       *       25       *       4       2       1       *       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| QA/QC RPD%       5       *       *       12       *       *       5       0       1       *       1       *       25       *       4       2       1       *       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4 <t< td=""><td>-   4,100   31.5   2,470   0.029   &lt; 2,000   163   0.028   &lt; 0.10   14   4.11   &lt; 1.0   4.6</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -   4,100   31.5   2,470   0.029   < 2,000   163   0.028   < 0.10   14   4.11   < 1.0   4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_Q_01062013_N       2013 08 29       107       0.458       0.17       47.7       < 0.050       -       31.7       0.064       141,000       0.80       0.584       1.08       268       0.158       55.600       211       < 0.010       1.32       3.72       -         FD_Q01062013_008       Duplicate       217       0.482       0.21       51.1       < 0.050       -       32.2       0.068       145,000       1.17       0.625       2.85       294       0.427       53.2       56,900       224       < 0.010       1.43       4.08       -         QA/QC RPD%       68       *       *       7       *       -       2       6       3       38       7       90       9       92       5       2       6       *       8       9       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 4,000 31.9 2,360 < 0.010 < 2,000 157 0.025 < 0.10 12 3.88 < 1.0 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FD_Q_01062013_008       Duplicate       217       0.482       0.21       51.1       < 0.050       -       32.2       0.068       145,000       1.17       0.625       2.85       294       0.427       53.2       56,900       224       < 0.010       1.43       4.08       -         QA/QC RPD%       68       *       *       7       *       -       2       6       3       38       7       90       9       92       5       2       6       *       8       9       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 2 1 5 * * 4 * * 15 6 * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| QA/QC RPD% 68 * * 7 * - 2 6 3 38 7 90 9 92 5 2 6 * 8 9 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 3,230 59.8 2,090 < 0.010 1,450 126 0.024 < 0.050 2.1 2.80 < 0.50 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 3,350 61.9 2,240 0.025 1,520 131 0.036 < 0.050 6.4 3.06 0.81 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3-201309271258 2013 09 27 86.8 0.47 0.18 37.9 < 0.10 < 0.50 32 0.062 143,000 0.46 0.23 0.56 83 0.181 41.9 56,700 95.7 < 0.010 1.12 2.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 4 3 7 * 5 4 * * 101 9 * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 2,990 56.6 1,840 0.019 1,160 122 0.021 < 0.10 12 2.85 < 1.0 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_Q_01102013_N 2013 12 09 73.1 0.45 0.18 33.9 < 0.10 < 0.50 26 0.066 137,000 0.21 0.22 0.59 96 0.110 36.9 54,900 127 < 0.010 1.34 2.81 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 2,630 49.4 1,820 < 0.010 2,420 124 0.020 < 0.10 19 2.84 < 1.0 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_Q_01012014_N 2014 03 12 10.3 0.30 0.14 32.1 < 0.10 < 0.50 29 0.059 137,000 0.14 0.26 0.59 18 0.067 40.8 53,700 210 < 0.010 1.13 2.61 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 2,490 44.5 1,630 < 0.010 2,050 118 0.014 < 0.10 16 2.52 < 1.0 < 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_Q_01042014_N 2014 05 13 46.7 0.29 0.17 39.8 < 0.10 < 0.50 26 0.087 159,000 0.41 0.36 0.91 122 0.317 40.7 63,400 290 < 0.010 0.998 3.18 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 2,660 54.2 1,640 < 0.010 1,500 142 0.016 < 0.10 16 2.95 < 1.0 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_QSW_02072014_N 2014 08 25 10.8 0.36 0.12 25.1 < 0.10 < 0.50 25 0.032 110,000 0.11 < 0.10 < 0.50 16 < 0.050 30.5 50,200 26.2 < 0.010 1.24 1.70 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 2,270 53 1,460 < 0.010 5,170 108 0.012 < 0.10 < 10 2.26 < 1.0 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FD_QSW_02072014_001 Duplicate 19.4 0.38 0.11 25.5 < 0.10 < 0.50 24 0.035 111,000 0.14 < 0.10 < 0.50 22 < 0.050 30.6 50,200 27.7 < 0.010 1.27 1.73 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 2,270 53.1 1,490 < 0.010 5,290 108 0.012 < 0.10 < 10 2.25 < 1.0 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| QA/QC RPD% 57 * * 2 * * * 9 1 * * * * 0 0 6 * 2 * -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 0 0 2 * 2 0 * * * 0 * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_QSW_02102014_N 2014 10 22 12.3 0.35 0.13 27.1 < 0.10 < 0.50 27 0.044 117,000 < 0.10 0.15 < 0.50 21 < 0.050 36.7 48,300 84.3 < 0.010 1.18 1.85 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 2,410 38.1 1,560 < 0.010 4,670 107 0.014 < 0.10 15 2.34 < 1.0 < 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_QSW_02012015_N 2015 01 21 0.055 - 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 2,330 52.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_QSW_02042015_N 2015 04 14 0.0584 - 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 2,530 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_QSW_02072015_N 2015 07 03 0.0359 - 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 2,320 51.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_QSW_02102015_N 2015 10 08 0.0535 - 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 2,450 50.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_QSW_04012016_N 2016 02 22 22.4 0.22 0.22 34.8 < 0.10 < 0.050 23 0.0627 136,000 0.14 0.51 < 0.50 143 0.072 32.6 53,900 373 < 0.0050 1.03 2.34 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 2,620 33.3 1,690 < 0.010 2,560 121 0.015 < 0.10 12 2.74 < 0.50 < 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_QSW_04042016_N 2016 05 19 597 0.37 0.76 57.1 0.041 < 0.050 27 0.125 132,000 1.53 1.72 2.07 1,300 0.859 55.8 53,300 627 0.0068 1.31 4.47 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 3,060 26.8 2,670 0.207 4,390 117 0.042 0.16 14 2.58 2.52 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FD_QSW_04042016_005 Duplicate 526 0.39 0.43 43.7 0.037 < 0.050 21 0.103 124,000 1.17 1.08 7.56 847 0.809 34.5 51,300 268 0.0067 1.10 3.72 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 2,330 34.5 2,360 0.097 1,710 104 0.030 0.15 13 2.19 1.61 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| QA/QC RPD% 13 * * 27 * * 19 6 27 46 114 42 6 47 4 80 1 17 18 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 27 25 12 72 88 12 * * 7 16 * 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR HMW3 QSW 04072016 N 2016 08 15 22.3 0.31 0.20 31.1 < 0.020 < 0.050 20 0.0411 109,000 < 0.10 0.35 < 0.50 204 0.083 31.8 43,800 212 < 0.0050 1.21 1.72 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 2,300 45.2 1,620 < 0.010 1,670 105 0.015 < 0.10 < 10 2.20 < 0.50 < 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_DC1_04072016_016 Duplicate 16.0 0.29 0.18 29.9 < 0.020 < 0.050 22 0.0378 107,000 0.11 0.37 < 0.50 174 < 0.050 31.4 46,800 218 < 0.0050 1.14 1.72 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 2,410 44.6 1,580 < 0.010 1,760 104 0.013 < 0.10 < 10 2.07 < 0.50 < 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| QA/QC RPD% 33 * * 4 * * * 8 2 * 6 * 16 * 1 7 3 * 6 * 6 * -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 5 1 2 * 5 1 * * 6 * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_QSW_03102016_N 2016 11 17 23.8 0.28 0.22 42.2 < 0.020 < 0.050 32 0.0617 142,000 < 0.10 0.44 < 0.50 290 < 0.050 61.5 55,200 248 < 0.0050 1.16 2.57 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 2,850 7.33 2,260 < 0.010 3,280 136 0.019 < 0.10 < 10 3.57 < 0.50 < 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_QSW_02012017_N 2017 02 27 17.5 0.26 0.15 53.9 < 0.020 < 0.050 30 0.0959 177,000 0.12 0.31 < 0.50 45 0.054 53.9 69,000 259 < 0.0050 0.965 3.49 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 3,220 36.4 1,840 < 0.010 2,300 184 0.016 < 0.10 < 10 3.63 < 0.50 < 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_QSW_03042017_N 2017 06 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_QTR_2017-09-11_N 2017 09 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HWM3_QTR_2017-10-02_N 2017 11 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_QTR_2018-01-01_N 2018 01 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_QTR_2018-04-02_N 2018 06 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_HMW3_QTR_2018-07-02_N       2018 07 18       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1237666, L2237606, L2237606, L2237699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L2256457, L225657, L225757, L225757 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.
- n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL. RDL Denotes reported detection limit.

- Concentration greater than CSR Aquatic Life (AW) standard BOLD
- Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) BLUE

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                     |                                                       |                             |          |            |             | F                                                                       | Physica                 | I Param                      | eters       |                          |                          |                                                            |                        |                     | Fiel                                                                                                  | d Para            | meters             |              |                                   |                                      |                          |                              |                               |                          |                   |                                      | Disso                        | lved Ino           | rganics                                    |                            |                              |              |           |             |                            |                   |                                |
|---------------------|-------------------------------------------------------|-----------------------------|----------|------------|-------------|-------------------------------------------------------------------------|-------------------------|------------------------------|-------------|--------------------------|--------------------------|------------------------------------------------------------|------------------------|---------------------|-------------------------------------------------------------------------------------------------------|-------------------|--------------------|--------------|-----------------------------------|--------------------------------------|--------------------------|------------------------------|-------------------------------|--------------------------|-------------------|--------------------------------------|------------------------------|--------------------|--------------------------------------------|----------------------------|------------------------------|--------------|-----------|-------------|----------------------------|-------------------|--------------------------------|
| Sample<br>Location  | Sample<br>ID                                          | Sample Date<br>(yyyy mm dd) |          | u Hardness | Z Turbidity | a<br>T/D<br>T/D<br>T/D<br>T/D<br>T/D<br>T/D<br>T/D<br>T/D<br>T/D<br>T/D | ⊟<br>B<br>Total Cations | a⊃(S<br>a⊃(S<br>conductivity | ⊒<br>⊐<br>⊐ | b Total Suspended Solids | Dissolved Organic Carbon | <ul> <li>Oxidation Reduction</li> <li>Potential</li> </ul> | s Cation Anion Balance | ර Field Temperature | 년<br>영<br>3<br>3<br>3<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | Z Field Turbidity | B Dissolved Oxygen | 뎦 pH (field) | 로 Field ORP<br>B Total Alkalinity | a<br>B<br>Ammonia, Total (as N)<br>T | b<br>Nitrate (as N)<br>T | b<br>D<br>Nitrite (as N)     | ⊠<br>T∕Nitrate+Nitrite (as N) | B<br>Kjeldahl Nitrogen-N | a Nitrogen<br>⊿/Z | du Total Nitrogen-N<br>B<br>Chloride | T/5<br>Tuoride               | b<br>Sulfate<br>7/ | B Alkalinity, Bicarbonate<br>() (as CaCO3) | Alkali<br>(as Ca<br>Alkali | 77 (as CaCO3)<br>Bicarbonate | Du Carbonate | ma/T      | a<br>⊐<br>T | a<br>Acidity (pH 8.3)<br>⊤ | D Ortho-Phosphate | I otal Urganic<br>Total Phosph |
| Primary Screening   | <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup> | ,                           | n/a      | n/a        | n/a         | n/a                                                                     | n/a                     | n/a                          | n/a         | n/a                      | n/a                      | n/a                                                        | n/a                    | n/a                 | n/a                                                                                                   | n/a               | n/a                | n/a          | n/a n/a                           | 1.31-<br>18.5 <sup>b</sup>           | 400                      | 0.2-2.0 <sup>c</sup>         | 400                           | n/a                      | n/a               | n/a 1,50                             | 2,000-<br>3,000 <sup>6</sup> |                    |                                            | n/a n                      | /a n/a                       | a n/a        | n/a       | n/a         | n/a                        | n/a n/            | i/a n/a                        |
| Secondary Screer    | ning Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a      | n/a        | n/a         | n/a                                                                     | n/a                     | n/a                          | 10,000      | n/a                      | n/a                      | n/a                                                        | n/a                    | n/a                 | n/a                                                                                                   | n/a               | n/a <sup>j</sup>   | n/a          | n/a n/a                           | n/a                                  | 6.08-<br>223.8           | 0.389-<br>39.95 <sup>j</sup> | n/a                           | n/a                      | n/a               | n/a n/a                              |                              | 4,290              |                                            | n/a n                      | /a n/a                       | a n/a        | 78        | n/a         | n/a                        | n/a n/            | ı/a n/a                        |
| S10 Study Area      |                                                       |                             | 11       |            |             |                                                                         |                         |                              |             |                          | 11                       |                                                            |                        | 1 1                 |                                                                                                       |                   | 11                 |              |                                   |                                      |                          |                              | 11                            |                          |                   |                                      |                              |                    | 1                                          | 11                         |                              |              | 1         |             | <u> </u>                   |                   |                                |
| FR_HMW3             | FR_HMW3_QTR_2018-10-01_N                              | 2018 12 11                  | 8.33     | 471        | 6.06        | 9.66                                                                    | 9.54                    | 823                          | 634         | 10.6                     | < 0.50                   | 293                                                        | -0.6                   | 3.3                 | 749                                                                                                   | -                 | 4.75               | 7.39         | 94.5 186                          | 0.159                                | 9.90                     | < 0.0050                     | -                             | 0.35                     | -                 | - < 2.                               | 5 290                        | 251                | 181                                        | 4.4 <                      | 1.0 -                        | -            | < 0.25    | -           | 6.0                        | 0.0107 < 0        | .50 0.56                       |
|                     | WG_2018-10-01_020                                     | Duplicate                   | 8.03     | 458        | 4.44        | 9.57                                                                    | 9.28                    | 820                          | 653         | 4.7                      | < 0.50                   | 492                                                        | -1.6                   | -                   | -                                                                                                     | -                 | -                  | -            | - 186                             | 0.147                                | 9.69                     | < 0.0050                     | -                             | 0.381                    | -                 | - < 2.                               | 5 280                        | 247                | 186                                        | < 1.0 <                    | 1.0 -                        | -            | < 0.25    | -           | 6.4                        | 0.0073 < 0        | .50 0.44                       |
|                     | QA/QC RPD%                                            |                             | 4        | 3          | 31          | *                                                                       | *                       | 0                            | 3           | *                        | *                        | *                                                          | *                      | -                   | -                                                                                                     | -                 | -                  | -            | - 0                               | 8                                    | 2                        | *                            | -                             | 8                        | -                 | - *                                  | 4                            | 2                  | 3                                          | *                          | ' -                          | -            | *         | -           | 6                          | 38 *              | * 23                           |
|                     | FR_HMW3_QTR_2019-01-07_N                              | 2019 03 11                  | 7.7      | 482        | 3.61        | 10                                                                      | 9.76                    | 878                          | 630         | 1.6                      | < 0.50                   | 335                                                        | -1.3                   | 1.8                 | 722.3                                                                                                 | -                 | 6.45               | 7.46         | 32.4 186                          | 0.207                                | 9.13                     | 0.0073                       | -                             | 0.098                    | -                 | - 0.54                               | 290                          | 270                | 186                                        | < 1.0 <                    | 1.0 -                        | -            | < 0.050   | ) -         | 4.5                        | < 0.0010 < 0      | .50 0.00?                      |
|                     | FR_DC1_QTR_2019-01-07_N                               | Duplicate                   | 7.59     | 479        | 2.82        | 10.1                                                                    | 9.7                     | 890                          | 673         | 2.4                      | < 0.50                   | 358                                                        | -2                     | -                   | -                                                                                                     | -                 | -                  | -            | - 191                             | 0.186                                | 9.08                     | 0.0068                       | -                             | 0.28                     | -                 | - 0.54                               | 289                          | 270                | 191                                        | < 1.0 <                    | 1.0 -                        | -            | < 0.050   | ) -         | 3.3                        | 0.0010 < 0        | .50 0.00?                      |
|                     | QA/QC RPD%                                            |                             | 1        | 1          | 25          | *                                                                       | *                       | 1                            | 7           | *                        | *                        | *                                                          | *                      | -                   | -                                                                                                     | -                 | -                  | -            | - 3                               | 11                                   | 1                        | 7                            | -                             | *                        | -                 | - 0                                  | 0                            | 0                  | 3                                          | *                          |                              | -            | *         | -           | *                          | * *               | * *                            |
|                     | FR_HMW3_QTR_2019-04-01_N                              | 2019 05 16                  | 8.35     | 487        | 4.61        | 8.79                                                                    | 9.86                    | 800                          | 538         | 3.5                      | < 0.50                   | 315                                                        | 5.8                    | 2.5                 | 678.6                                                                                                 | -                 | 9.93               | 7.45         | -19.7 176                         | 0.0753                               | 9.36                     | 0.0024                       | -                             | 0.273                    | -                 | - < 0.5                              | 0 287                        | 220                | 173                                        | 2.6 <                      | 1.0 -                        | -            | < 0.050   | - C         | 4.6                        | < 0.0010 < 0      | J.50 0.00§                     |
|                     | FR_DC2_QTR_2019-04-01_N                               | Duplicate                   | 8.36     | 446        | 4.03        | 8.84                                                                    | 9.02                    | 807                          | 557         | 4.1                      | < 0.50                   | 348                                                        | 1                      | -                   | -                                                                                                     | -                 | -                  | -            | - 179                             | 0.0743                               | 9.38                     | 0.0023                       | -                             | < 0.050                  | -                 | - < 0.5                              | 0 288                        | 220                | 176                                        | 2.8 <                      | 1.0 -                        | -            | < 0.050   | - C         | 5.2                        | < 0.0010 < 0      | J.50 0.010                     |
|                     | QA/QC RPD%                                            |                             | 0        | 9          | 13          | *                                                                       | *                       | 1                            | 3           | *                        | *                        | *                                                          | *                      | -                   | -                                                                                                     | -                 | -                  | -            | - 2                               | 1                                    | 0                        | *                            | -                             | *                        | -                 | - *                                  | 0                            | 0                  | 2                                          | *                          | ' -                          | -            | *         | -           | *                          | * *               | * 14                           |
|                     | FR_HMW3_QTR_2019-07-01_N                              | 2019 07 24                  | 8.16     | 347        | 5.29        | 7.3                                                                     | 7.03                    | 677                          | 469         | 4.4                      | < 0.50                   | 412                                                        | -1.9                   | 3.8                 | 324.2                                                                                                 | -                 | 0.25               | 8.2          | -199 182                          | 0.134                                | 7.02                     | 0.0019                       | -                             | < 0.050                  | -                 | - < 0.5                              | 0 302                        | 151                | 182                                        | < 1.0 <                    | 1.0 -                        | -            | < 0.050   | ) -         | 4.2                        | < 0.0010 0.7      | 73 0.010                       |
|                     | FR_HMW3_QTR_2019-10-07_N                              | 2019 10 23                  | 8.2      | 466        | 6.97        | 9.49                                                                    | 9.43                    | 781                          | 608         | 6.4                      | 0.55                     | 302                                                        | -0.3                   | 5                   | 819                                                                                                   | -                 | 11.2               | 7.56         | -28.7 192                         | 0.113                                | 9.25                     | 0.0087                       | -                             | 0.155                    | -                 | - < 0.5                              | 0 275                        | 239                | 192                                        | < 1.0 <                    | 1.0 -                        | -            | < 0.050   | ) -         | 5.6                        | < 0.0010 0.5      | 59 0.008                       |
|                     | FR_DC2_QTR_2019-10-07_N                               | Duplicate                   | 8.16     | 462        | 7.57        | 9.6                                                                     | 9.34                    | 775                          | 606         | 8.2                      | < 0.50                   | 400                                                        | -1.4                   | -                   | -                                                                                                     | -                 | -                  | -            | - 197                             | 0.156                                | 9.33                     | 0.0080                       | -                             | 0.069                    | -                 | - < 0.5                              | 0 277                        | 240                | 197                                        | < 1.0 <                    | 1.0 -                        | -            | < 0.050   | ) -         | 5.9                        | < 0.0010 < 0      | .50 0.01 <sup>-</sup>          |
|                     | QA/QC RPD%                                            |                             | 0        | 1          | 8           | *                                                                       | *                       | 1                            | 0           | 25                       | *                        | *                                                          | *                      | -                   | -                                                                                                     | -                 | -                  | -            | - 3                               | 32                                   | 1                        | 8                            | -                             | *                        | -                 | - *                                  | 1                            | 0                  | 3                                          | *                          | ' -                          | -            | *         | -           | 5                          | * 1               | * 29                           |
|                     | FR_HMW3_QTR_2020-01-06_N                              | 2020 03 02                  | 8.07     | 502        | 6.55        | 10.8                                                                    | 10.2                    | 862                          | 716         | 6.7                      | 0.69                     | 475                                                        | -3.1                   | 2                   | 869.9                                                                                                 | -                 | 3.77               | 7.73         | 3.1 213                           | 0.136                                | 8.50                     | 0.0090                       | -                             | 0.179                    | -                 | - 0.6                                | 196                          | 285                | 213                                        | < 1.0 <                    | 1.0 -                        | -            | < 0.050   | ) -         | 10.2                       | < 0.0010 0.9      | 95 0.02                        |
|                     | FR_HMW3_QTR_2020-04-06_N                              | 2020 05 15                  | 8.22     | 552        | 2.83        | 10.9                                                                    | 11.1                    | 819                          | 758         | 4.5                      | < 0.50                   | 334                                                        | 1.1                    | -                   | -                                                                                                     | -                 | -                  | -            | - 195                             | 0.0543                               | 10.9                     | 0.0066                       | -                             | < 0.050                  | -                 | - < 0.5                              | 0 272                        | 298                | 195                                        | < 1.0 <                    | 1.0 -                        | -            | < 0.050   | - C         | 1.6                        | 0.0044 1.0        | 01 0.010                       |
| Blanks              |                                                       |                             |          |            |             |                                                                         |                         |                              |             |                          |                          |                                                            |                        |                     |                                                                                                       |                   |                    |              |                                   |                                      |                          |                              |                               |                          |                   | -                                    |                              |                    |                                            |                            |                              |              |           |             |                            |                   |                                |
| FR_HMW3             | WG_2018-07-02_013                                     | 2018 07 18                  |          |            | < 0.10      | < 0                                                                     | < 0                     |                              |             | < 1.0                    | < 0.50                   |                                                            | 0                      | -                   | -                                                                                                     | -                 | -                  | -            |                                   |                                      |                          | 50 < 0.0010                  |                               | < 0.050                  | -                 | - < 0.5                              |                              |                    |                                            | < 1.0 <                    |                              |              | < 0.050   |             |                            | < 0.0010 < 0      |                                |
| FR_09-01-B          | WG_2018-10-01_019                                     |                             |          |            | < 0.10      | < 0                                                                     | < 0                     | < 2.0                        |             | < 1.0                    |                          |                                                            | 0                      | -                   | -                                                                                                     | -                 | -                  | -            |                                   |                                      |                          | 50 < 0.0010                  | -                             | < 0.050                  | -                 | - < 0.5                              |                              |                    |                                            | < 1.0 <                    |                              |              | < 0.050   |             |                            | < 0.0010 < 0      |                                |
| FR_KB-3A            | FR_FLD_2019-02-26                                     |                             |          |            | < 0.10      | < 0                                                                     | < 0                     | < 2.0                        |             | < 1.0                    |                          |                                                            | 0                      | -                   | -                                                                                                     | -                 | -                  | -            |                                   |                                      |                          | 6 < 0.0010                   | -                             | -                        | -                 | - < 0.5                              |                              | < 0.30             |                                            | < 1.0 <                    |                              | -            | < 0.050   |             |                            | < 0.0010 < 0      |                                |
| FR_CB-2A<br>FR KB-2 | FR_FLD_2019_10_01                                     |                             |          |            | < 0.10      | < 0                                                                     |                         | < 2.0                        |             |                          | < 0.50                   |                                                            | 0                      | -                   | -                                                                                                     | -                 | -                  | -            |                                   |                                      |                          | 6 < 0.0010                   |                               | < 0.050                  | -                 | - < 0.5                              |                              |                    |                                            | < 1.0 <                    |                              | -            | < 0.050   |             |                            | < 0.0010 < 0      |                                |
| FR_KB-2<br>FR_CB-5B | FR_FLD4_2019-10-21                                    | 2019 10 21<br>2019 03 12    | 5.54 <   |            |             | < 0                                                                     | < 0                     | < 2.0                        | < 10        | -                        | < 0.50                   |                                                            | 0                      | -                   | -                                                                                                     | -                 | -                  | -            |                                   |                                      |                          | 50 < 0.0010<br>50 < 0.0010   |                               | < 0.050                  | -                 | - < 0.5                              |                              | < 0.30             |                                            | < 1.0 <                    | -                            | -            | < 0.050   |             |                            | < 0.0010 < 0      |                                |
| FR HMW3             | FR_CB-5B-S_2019-12-03<br>FR DC2 QTR 2019-04-01 FB-HG  | 2019 03 12 2019 05 16       | 5.52 <   | 0.50       | < 0.10      | < 0                                                                     | < 0                     | < 2.0                        | < 10        | < 1.0                    | < 0.50                   | 4/9                                                        | 0                      | -                   | -                                                                                                     | -                 | -                  | -            | - < 1.0                           | < 0.0050                             | - 0.005                  |                              | -                             | < 0.050                  | -                 | - < 0.5                              | 0 < 20                       | < 0.30             | J < 1.0                                    | < 1.0 <                    |                              | -            | < 0.050   | J -         | 1.5                        | < 0.0010 < 0      | ).50 < 0.00                    |
| FR HMW1S            | FR FLD QTR 2019-04-01_FB-HG                           | 2019 05 16                  | - 5 58 - | -          | -<br>< 0 10 | -                                                                       | < 0                     | - < 2.0                      | -<br>< 10   | -<br>< 1 0               |                          | -                                                          | - 0                    | -                   | -                                                                                                     | -                 |                    | -            |                                   | -                                    |                          | -                            | -                             | -<br>< 0.050             |                   |                                      | - 0 < 20                     | < 0.30             | -<br>1 < 1 0                               | - < 1.0 <                  |                              | -            | - < 0.050 | -<br>1 -    |                            | < 0.0010 < 0      |                                |
|                     | IN_FLD_QIR_2018-10-0/_N                               | 2019 10 23                  | 5.50 <   | 0.00       | < 0.10      | <b>\</b> U                                                              | <b>~</b> U              | ~ 2.0                        | × 10        | × 1.0                    | ~ 0.50                   | 400                                                        | U                      | -                   | -                                                                                                     | -                 | -                  | -            | 1.0                               | < 0.0050                             | 0.005                    | vq < 0.0010                  | -                             | ~ 0.050                  | -                 | - \0.5                               | v ~ 20                       | < 0.30             | 1.0                                        | < 1.0 <                    | 1.0 -                        | -            | ~ 0.050   | - 1         | 1.2                        | < 0.00 10 < 0     | .50 < 0.00                     |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L224795, L2244162, L2245057, L2248235, L2248391, L2249360, L2250608, L2256457, L2256457, L2256457, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2249360, L2256457, L225657, L225557, L225557, L225557, L22557, L2257, L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505. Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database. All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

Concentration greater than CSR Aquatic Life (AW) standard <u>BOLD</u>

BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.

<sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.

<sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                    |                                                             |                             |       |                                |                       |                                 |                         |                                 |                              |               |              |             |                  |        |                           |                 | Dissolv    | ed Metals          | s                   |               |                      |                        |                            |              |                     |                 |                |           |             |         |                         |                           |
|--------------------|-------------------------------------------------------------|-----------------------------|-------|--------------------------------|-----------------------|---------------------------------|-------------------------|---------------------------------|------------------------------|---------------|--------------|-------------|------------------|--------|---------------------------|-----------------|------------|--------------------|---------------------|---------------|----------------------|------------------------|----------------------------|--------------|---------------------|-----------------|----------------|-----------|-------------|---------|-------------------------|---------------------------|
| Sample<br>Location | Sample<br>ID                                                | Sample Date<br>(yyyy mm dd) | _     | a<br>de Dissolved Calcium<br>T | d Dissolved Iron<br>۲ | a<br>b Dissolved Magnesium<br>T | ର୍ଘ Dissolved Manganese | a<br>a Dissolved Potassium<br>r | a<br>b Dissolved Sodium<br>T | b<br>Antimony | b<br>Arsenic | Д/бћ<br>Т/б | t<br>S Beryllium | д<br>Д | É<br>T∫Cadmium            | Chromium<br>٦/۵ | Бт<br>T/бт | Д/Д                | Бт<br>Граd          | 6t<br>T∕Ahium | Хın Juercury<br>µg/L | te<br>Tr<br>Molybdenum | T/bh<br>Nickel             | Б<br>Т)<br>Т | đđ<br>Silver        | bf<br>Strontium | bð<br>Thallium | Пл<br>Тіп | б<br>Т<br>Т | бt<br>T | tanadium<br>T∖ Xanadium | Zinc <sup>f</sup><br>T/6đ |
| Primary Screening  | <b>g Criteria:</b> CSR Aquatic Life (AW) <sup>a</sup>       |                             | n/a   | n/a                            | n/a                   | n/a                             | n/a                     | n/a                             | n/a                          | 90            | 50           | 10,000      | 1.5              | 12,000 | 0.5-4 <sup>d</sup>        | 10 <sup>e</sup> | 40         | 20-90 <sup>d</sup> | 40-160 <sup>d</sup> | n/a           | 0.25                 | 10,000                 | 250-<br>1,500 <sup>d</sup> | 20           | 0.5-15 <sup>d</sup> | n/a             | 3              | n/a       | 1,000       | 85      | n/a                     | 75-<br>2,400 <sup>d</sup> |
| Secondary Screen   | <b>ing Criteria:</b> Costa and de Bruyn (2021) <sup>h</sup> |                             |       |                                |                       |                                 |                         |                                 |                              |               |              |             |                  |        | 0.8-<br>10.4 <sup>i</sup> | 100 (Cr +6)     | n/a        | n/a                | n/a                 | 2,530         | n/a                  | n/a                    | 517-<br>2,972 <sup>i</sup> | 700          | n/a                 | n/a             | n/a            | n/a       | n/a         | 3,520   | n/a                     | n/a                       |
| S10 Study Area     |                                                             | -                           |       |                                |                       |                                 |                         |                                 |                              |               |              |             |                  |        |                           |                 |            |                    |                     |               |                      |                        |                            |              |                     |                 |                |           |             |         |                         |                           |
| FR_HMW3            | FR_HMW3_QTR_2018-10-01_N                                    | 2018 12 11                  | < 3.0 |                                |                       | 45.5                            | 109                     | 2.02                            | 1.45                         | 0.18          | 0.14         | 35.7        | < 0.020          | 15     | 0.0225                    | < 0.10          | 0.23       | < 0.50             | < 0.050             | 25.7          | < 0.0050             | 1.09                   | 1.25                       | <u>62.9</u>  | < 0.010             | 132             | < 0.010        | < 0.10    | < 10        | 2.07    | < 0.50                  | < 1.0                     |
|                    | WG_2018-10-01_020                                           | Duplicate                   | < 3.0 | 110                            | 242                   | 44.5                            | 109                     | 1.87                            | 1.47                         | 0.17          | 0.15         | 30.8        | < 0.020          | 16     | 0.0263                    | < 0.10          | 0.24       | < 0.50             | < 0.050             | 27.9          | < 0.0050             | 1.03                   | 1.22                       | <u>62.1</u>  | < 0.010             | 122             | < 0.010        | < 0.10    | < 10        | 1.97    | < 0.50                  | < 1.0                     |
|                    | QA/QC RPD%                                                  |                             |       |                                |                       |                                 |                         |                                 |                              |               |              |             |                  |        |                           |                 |            |                    |                     |               |                      |                        |                            |              |                     |                 |                |           |             |         |                         |                           |
|                    | FR_HMW3_QTR_2019-01-07_N                                    | 2019 03 11                  | < 10  | 115                            | 270                   | 47.1                            | 116                     | 1.72                            | 1.61                         | < 1.0         | < 1.0        | 31.9        | < 0.20           | < 100  | 0.052                     | < 1.0           | < 1.0      | < 2.0              | < 0.50              | 27            | < 0.0050             | 0.94                   | < 5.0                      | <u>62.3</u>  | < 0.10              | 126             | < 0.10         | < 1.0     | < 10        | 2.01    | < 5.0                   | < 10                      |
|                    | FR_DC1_QTR_2019-01-07_N                                     | Duplicate                   | < 3.0 | 114                            | 268                   | 47.0                            | 116                     | 1.82                            | 1.50                         | 0.17          | 0.17         | 32.0        | < 0.020          | 17     | 0.0289                    | < 0.10          | 0.22       | < 0.50             | < 0.050             | 27.1          | < 0.0050             | 1.04                   | 1.33                       | <u>71.3</u>  | < 0.010             | 130             | 0.010          | < 0.10    | < 10        | 2.03    | < 0.50                  | 1.1                       |
|                    | QA/QC RPD%                                                  |                             |       |                                |                       |                                 |                         |                                 |                              |               |              |             |                  |        |                           |                 |            |                    |                     |               |                      |                        |                            |              |                     |                 |                |           |             |         |                         |                           |
|                    | FR_HMW3_QTR_2019-04-01_N                                    | 2019 05 16                  | < 3.0 | 115                            | 266                   | 48.7                            | 80.5                    | 1.87                            | 1.28                         | 0.17          | 0.14         | 28.5        | < 0.020          | 12     | 0.0189                    | 0.12            | 0.18       | < 0.50             | < 0.050             | 22.6          | 0.0132               | 1.08                   | 1.18                       | <u>55.5</u>  | < 0.010             | 125             | < 0.010        | < 0.10    | < 10        | 1.89    | < 0.50                  | 5.0                       |
|                    | FR_DC2_QTR_2019-04-01_N                                     | Duplicate                   | < 3.0 | 106                            | 227                   | 43.7                            | 76.3                    | 1.70                            | 1.24                         | 0.17          | 0.14         | 27.6        | < 0.020          | 13     | 0.0217                    | < 0.10          | 0.17       | < 0.50             | < 0.050             | 22.6          | < 0.0050             | 1.05                   | 1.13                       | <u>51.7</u>  | < 0.010             | 116             | < 0.010        | < 0.10    | < 10        | 1.71    | < 0.50                  | < 1.0                     |
|                    | QA/QC RPD%                                                  |                             |       |                                |                       |                                 |                         |                                 |                              |               |              |             |                  |        |                           |                 |            |                    |                     |               |                      |                        |                            |              |                     |                 |                |           |             |         |                         |                           |
|                    | FR_HMW3_QTR_2019-07-01_N                                    | 2019 07 24                  | 7.3   | 82.3                           | 308                   | 34.2                            | 60.8                    | 1.75                            | 1.05                         | 0.21          | 0.17         | 26.0        | < 0.020          | 13     | 0.0178                    | 0.13            | 0.16       | < 0.50             | < 0.050             | 21.5          | < 0.0050             | 1.12                   | 0.94                       | <u>42</u>    | < 0.010             | 94.3            | < 0.010        | < 0.10    | < 10        | 1.50    | < 0.50                  | 1.1                       |
|                    | FR_HMW3_QTR_2019-10-07_N                                    | 2019 10 23                  | 3.4   | 114                            | 254                   | 44.0                            | 76.2                    | 1.95                            | 1.07                         | 0.19          | 0.14         | 36.8        | < 0.020          | 14     | 0.0335                    | < 0.10          | 0.15       | < 0.20             | < 0.050             | 22.4          | < 0.0050             | 1.03                   | 1.32                       | <u>60.6</u>  | < 0.010             | 128             | 0.010          | < 0.10    | < 10        | 1.81    | < 0.50                  | 1.3                       |
|                    | FR_DC2_QTR_2019-10-07_N                                     | Duplicate                   | 4.2   | 112                            | 316                   | 44.1                            | 89.5                    | 1.97                            | 1.16                         | 0.19          | 0.20         | 38.4        | < 0.020          | 16     | 0.0281                    | < 0.10          | 0.17       | < 0.20             | < 0.050             | 24.5          | < 0.0050             | 1.03                   | 1.24                       |              | < 0.010             | 127             | 0.011          | < 0.10    | < 10        | 1.79    | < 0.50                  | 1.0                       |
|                    | QA/QC RPD%                                                  |                             |       |                                |                       |                                 |                         |                                 |                              |               |              |             |                  |        |                           |                 |            |                    |                     |               |                      |                        |                            |              |                     |                 |                |           |             |         |                         |                           |
|                    | FR_HMW3_QTR_2020-01-06_N                                    | 2020 03 02                  | 3.2   | 115                            | 392                   | 52.2                            | 114                     | 1.96                            | 1.43                         | 0.15          | 0.19         | 41.1        | < 0.020          | 15     | 0.0354                    | < 0.10          | 0.18       | 3.60               | 0.075               | 26.1          | < 0.0050             | 0.867                  | 1.35                       | 59.9         | < 0.010             | 124             | < 0.010        | 0.13      | < 10        | 2.03    | < 0.50                  | 2.8                       |
|                    | FR HMW3 QTR 2020-04-06 N                                    | 2020 05 15                  | 9.5   |                                | 74                    | 53.4                            | 83.3                    | 1.90                            | 1.17                         |               | 0.10         |             | < 0.020          |        | 0.0386                    | < 0.10          | 0.12       | < 0.20             |                     |               | < 0.0050             |                        |                            |              | < 0.010             |                 |                | < 0.10    |             |         |                         |                           |
| Blanks             |                                                             |                             |       |                                |                       |                                 |                         |                                 |                              |               |              |             |                  | 1      |                           |                 |            |                    |                     |               | 1                    |                        | 1                          |              | I                   |                 | I              |           | 1 1         |         | 1 1                     |                           |
| FR_HMW3            | WG_2018-07-02_013                                           | 2018 07 18                  | < 3.0 | < 0.050                        | ) < 10                | < 0.10                          | < 0.10                  | < 0.050                         | < 0.050                      | < 0.10        | < 0.10       | < 0.10      | < 0.020          | < 10   | < 0.0050                  | < 0.10          | < 0.10     | < 0.50             | < 0.050             | < 1.0         | < 0.0050             | < 0.050                | < 0.50                     | < 0.050      | < 0.010             | < 0.20          | < 0.010        | < 0.10    | < 10        | < 0.010 | < 0.50                  | < 1.0                     |
| FR_09-01-B         | WG_2018-10-01_019                                           |                             |       | < 0.050                        |                       |                                 |                         |                                 |                              |               |              |             | < 0.020          |        | < 0.0050                  |                 |            |                    |                     |               | < 0.0050             |                        |                            |              |                     |                 |                |           |             |         |                         |                           |
| FR_KB-3A           | FR_FLD_2019-02-26                                           |                             |       |                                | _                     |                                 |                         |                                 |                              |               |              |             | < 0.020          |        | < 0.0050                  |                 |            |                    |                     |               | < 0.0050             |                        |                            |              |                     |                 |                |           |             |         |                         |                           |
| FR_CB-2A           | FR_FLD_2019_10_01                                           |                             |       |                                |                       |                                 |                         |                                 |                              |               |              |             | < 0.020          |        | < 0.0050                  |                 |            |                    |                     |               | < 0.0050             |                        |                            |              |                     |                 |                |           |             |         |                         |                           |
| FR_KB-2            | FR_FLD4_2019-10-21                                          |                             |       |                                |                       | < 0.0050                        |                         |                                 |                              |               |              |             | < 0.020          |        | < 0.0050                  |                 |            | < 0.20             | < 0.050             |               | < 0.0050             |                        |                            |              |                     |                 |                |           |             |         |                         |                           |
| FR_CB-5B           | FR_CB-5B-S_2019-12-03                                       | 2019 03 12                  | < 1.0 | < 0.050                        | ) < 10                | < 0.0050                        | < 0.10                  | < 0.050                         | < 0.050                      | < 0.10        | < 0.10       | < 0.10      | < 0.020          | < 10   | < 0.0050                  | < 0.10          | < 0.10     | < 0.20             | < 0.050             | < 1.0         | < 0.0050             | < 0.050                | < 0.50                     | < 0.050      | < 0.010             | < 0.20          | < 0.010        | < 0.10    | < 10        | < 0.010 | < 0.50                  | < 1.0                     |
| FR_HMW3            | FR_DC2_QTR_2019-04-01_FB-HG                                 | 2019 05 16                  | -     | -                              | -                     | -                               | -                       | -                               | -                            | -             | -            | -           | -                | -      | -                         | -               | -          | -                  | -                   | -             | -                    | -                      | -                          | -            | -                   | -               | -              | -         | -           | -       | -                       | -                         |
| FR_HMW1S           | FR_FLD_QTR_2019-10-07_N                                     | 2019 10 23                  | < 3.0 | < 0.050                        | ) < 10                | < 0.10                          | < 0.10                  | < 0.050                         | < 0.050                      | < 0.10        | < 0.10       | < 0.10      | < 0.020          | < 10   | < 0.0050                  | < 0.10          | < 0.10     | < 0.20             | < 0.050             | < 1.0         | < 0.0050             | < 0.050                | < 0.50                     | < 0.050      | < 0.010             | < 0.20          | < 0.010        | < 0.10    | < 10        | < 0.010 | < 0.50                  | < 1.0                     |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2238699, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L2256457, L2256457, L2275412, L2282357, L2283636, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2283637, L228367, L228367, L228367, L228367, L228367, L22837, L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505. Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.
- n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

- <u>BOLD</u> Concentration greater than CSR Aquatic Life (AW) standard
- BLUE
- Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15
- <sup>i</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.
- <sup>j</sup> Criteria in not considered applicable and has not been applied.

|                     |                                                        |                             |          |                |         |               |              |           |              |                       |               |                 |          |          |              |           |           | Tota     | l Metals         |           |              |                            |               |             |              |            |         |                |             |          |                 |            |                   |            |          |
|---------------------|--------------------------------------------------------|-----------------------------|----------|----------------|---------|---------------|--------------|-----------|--------------|-----------------------|---------------|-----------------|----------|----------|--------------|-----------|-----------|----------|------------------|-----------|--------------|----------------------------|---------------|-------------|--------------|------------|---------|----------------|-------------|----------|-----------------|------------|-------------------|------------|----------|
| Sample<br>Location  | Sample<br>ID                                           | Sample Date<br>(yyyy mm dd) | Aluminum | E<br>∏Antimony | Arsenic | Barium<br>T/D | Beryllium    | Z/Bismuth | a/B<br>Boron | Cadmium<br>7/bfi      | T<br>T/b<br>T | Chromium<br>Tak | E Cobalt | Zopper   | uzi<br>Lugar | E Lead    | E Lithium | agnesium | A/D<br>Manganese | E Mercury | E Molybdenum | Nickel<br>Tickel           | E Phosphorous | E Potassium | Z/Selenium   | A/bf       | Silver  | adium<br>Maria | T/Strontium | Thallium | E<br>IL<br>ug/L | E Titanium | Uranium<br>Tanium | A Vanadium | Zinc,    |
|                     | ng Criteria: CSR Aquatic Life (AW) <sup>a</sup>        | ())))                       | n/a      | n/a            | n/a     | n/a           | n/a          | n/a       | n/a          | n/a                   | n/a           | n/a             | n/a      | n/a      | n/a          | n/a       | n/a       | n/a      | n/a              | n/a       | n/a          | n/a                        | n/a           | n/a         | n/a          | n/a        | n/a     | n/a            | n/a         | n/a      | n/a             | n/a        | n/a               | n/a        | n/a      |
| Secondary Scree     | ening Criteria: Costa and de Bruyn (2021) <sup>h</sup> |                             | n/a      | n/a            | n/a     | n/a           | n/a          | n/a       | n/a          | 0.8-10.4 <sup>i</sup> | n/a           | 100 (Cr +6      | ) n/a    | n/a      | n/a          | n/a       | 2,530     | ) n/a    | n/a              | n/a       | n/a          | 517-<br>2,972 <sup>i</sup> | n/a           | n/a         | 700          | n/a        | n/a     | n/a            | n/a         | n/a      | n/a             | n/a        | 3,520             | n/a        | n/a      |
| S10 Study Area      |                                                        |                             |          |                |         |               |              |           |              |                       |               |                 |          |          |              |           | 1         |          |                  |           |              |                            |               |             |              |            |         |                | 1 1         |          |                 | 1 1        |                   |            |          |
| FR_HMW3             | FR_HMW3_QTR_2018-10-01_N                               | 2018 12 11                  | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
|                     | WG_2018-10-01_020                                      | Duplicate                   | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
|                     | QA/QC RPD%                                             |                             | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
|                     | FR_HMW3_QTR_2019-01-07_N                               | 2019 03 11                  | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
|                     | FR_DC1_QTR_2019-01-07_N                                | Duplicate                   | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
|                     | QA/QC RPD%                                             |                             | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
|                     | FR_HMW3_QTR_2019-04-01_N                               | 2019 05 16                  | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
|                     | FR_DC2_QTR_2019-04-01_N                                | Duplicate                   | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
|                     | QA/QC RPD%                                             |                             | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
|                     | FR_HMW3_QTR_2019-07-01_N                               | 2019 07 24                  | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
|                     | FR_HMW3_QTR_2019-10-07_N                               | 2019 10 23                  | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
|                     | FR_DC2_QTR_2019-10-07_N                                | Duplicate                   | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
|                     | QA/QC RPD%                                             |                             | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
|                     | FR_HMW3_QTR_2020-01-06_N                               | 2020 03 02                  | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
|                     | FR_HMW3_QTR_2020-04-06_N                               | 2020 05 15                  | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
| Blanks              |                                                        | 1                           | 1        |                |         | 1             |              | 1         |              |                       |               | 1               |          |          |              | 1         |           |          |                  |           | 1            |                            |               |             |              |            |         | r              |             |          |                 |            | r                 |            |          |
| FR_HMW3             | WG_2018-07-02_013                                      | 2018 07 18                  | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
| FR_09-01-B          | WG_2018-10-01_019                                      | 2018 12 13                  | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | -         | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
| FR_KB-3A            | FR_FLD_2019-02-26                                      | 2019 02 26                  | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        |                  | < 0.0050  |              | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
| FR_CB-2A<br>FR_KB-2 | FR_FLD_2019_10_01                                      | 2019 10 01                  | -        | -              | -       | -             | -            | -         | -            | -                     | -             | -               | -        | -        | -            | -         | -         | -        | -                | < 0.0050  |              | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          | -                 | -          | -        |
| FR_KB-2<br>FR_CB-5B | FR_FLD4_2019-10-21                                     | 2019 10 21<br>2019 03 12    | -        | -              | -       | -             | -<br>< 0.020 | -         | -<br>< 10    | - < 0.0050            | -<br>< 50     | - < 0.10        | -        | - < 0.50 | -            | - < 0.050 | -         | - < 5.0  | -                | < 0.0050  |              | -                          | -             | - < 50      | -<br>< 0.050 | -          | -       | -<br>< 50      | -           | -        | -               | -          | -<br>< 0.010      | -          | -<br>9.4 |
| FR_HMW3             | FR_CB-5B-S_2019-12-03<br>FR_DC2_QTR_2019-04-01_FB-HG   | 2019 03 12                  | < 3.0    | < 0.10         | < 0.10  | < 0.10        | < 0.020      | ~ 0.050   | < 10         | < 0.0050              | < 50          | < 0.10          | < 0.10   | < 0.50   | < 10         | < 0.050   | < 1.0     | < 5.0    | < 0.10           | < 0.0050  |              | < 0.50                     | -             | < 50        | < 0.050      | < 100<br>- | ~ 0.010 | < 50           | < 0.20      | ~ 0.010  | < 0.10          | < 10       | < 0.010           | < 0.50     | 9.4      |
| FR HMW1S            | FR_FLD_QTR_2019-04-01_FB-HG                            | 2019 05 10                  | -        | -              | -       | -             | -            | -         | + -          |                       | -             | + -             | -        | -        | -            | -         |           | + -      | -                | - 0.0000  | -            | -                          |               |             | -            | -          | -       | -              |             | -        | -               |            |                   | <u> </u>   |          |
| 11.11               |                                                        | 2013 10 23                  | -        | -              | -       | -             |              | -         | -            | -                     |               | -               | -        | 1 -      | -            | -         | -         | -        | -                |           | -            | -                          | -             | -           | -            | -          | -       | -              | -           | -        | -               | -          |                   |            | -        |

Associated ALS file(s): L1237947, L1570051, L1570709, L1600339, L1636950, L2237606, L2237606, L2237606, L2242795, L2244162, L2245057, L2248235, L2248391, L2249360, L2250608, L2250608, L2256457, L2282357, L2283636, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2249360, L2250608, L2250608, L2250608, L2250608, L2250608, L2250608, L2283637, L2283636, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2249360, L2250608, L2250608, L2250608, L2250608, L2250608, L2250608, L2283637, L2283636, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2249360, L2250608, L2250608, L2250608, L2250608, L2250608, L2283637, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2249360, L2250608, L2250608, L2250608, L2250608, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2249360, L2250608, L2250608, L2250608, L2250608, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2249360, L2250608, L2250608, L2250608, L2250608, L2250608, L2283637, L2283637, L2289256, L2290261, L2292060, L2292416, L2316991, L2317812, L2 L2318940, L2320330, L2320494, L2321426, L2328940, L2363724, L2368293, L2369147, L2370485, L2371345, L2372101, L2376287, L2379531, L2394923, L2394416, L2395505.

Associated Caro file(s): 7081099.

Associated Historical Data file(s): Teck Coal database.

All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.
- n/a Denotes no applicable standard/guideline.

QA/QC RPD Denotes quality assurance/quality control relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

- BOLD
- Concentration greater than CSR Aquatic Life (AW) standard
- BLUE Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with chloride.
- <sup>d</sup> Standard varies with hardness.
- <sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>f</sup> There is no zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>g</sup> Sample collected in 2018 but Teck sample ID reads 2019.
- <sup>h</sup> Screening criteria have been multiplied by 10 in accordance with CSR TG15

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L Hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                                                              |                                          |                             |           |                           | Pł     | ysical P               | aramete            | rs                                    |                               |                                 |                                 |         |       | Field I                          | Parameter          | rs          |                                          |            |                                       |                            |                              |                                    |                                 |          | Dis                | solved l      | norgan                                    | ics                                            |                                             |                       |                                              |                        |                                   |          |                                                                      |
|--------------------------------------------------------------|------------------------------------------|-----------------------------|-----------|---------------------------|--------|------------------------|--------------------|---------------------------------------|-------------------------------|---------------------------------|---------------------------------|---------|-------|----------------------------------|--------------------|-------------|------------------------------------------|------------|---------------------------------------|----------------------------|------------------------------|------------------------------------|---------------------------------|----------|--------------------|---------------|-------------------------------------------|------------------------------------------------|---------------------------------------------|-----------------------|----------------------------------------------|------------------------|-----------------------------------|----------|----------------------------------------------------------------------|
|                                                              |                                          |                             |           |                           |        |                        |                    |                                       |                               |                                 |                                 |         |       |                                  |                    |             |                                          |            |                                       |                            |                              |                                    |                                 |          |                    |               |                                           |                                                |                                             |                       |                                              |                        |                                   |          |                                                                      |
| Sample<br>Location                                           | Sample<br>ID                             | Sample Date<br>(yyyy mm dd) |           | mg/L<br>T. T. Intrivition |        | ∏/L<br>b Total Cations | Π.<br>μογ6π<br>μογ | a<br>B<br>Total Dissolved Solids<br>T | 로 Total Suspended Solids<br>고 | a Dissolved Organic Carbon<br>T | ➡ Oxidation Reduction Potential | Field   |       | CI Field Turbidity<br>B Field DO |                    | A Field ORP | Ga Field TDS<br>T Field Salinity (Field) | Alkalinity | e<br>Ba<br>P<br>Romonia, Total (as N) | b<br>Mitrate (as N)<br>T   | Mgm<br>T                     | g<br>S<br>Nitrate+Nitrite Nitrogen | G<br>G<br>N Kjeldahl Nitrogen-N | Witrogen | band Chloride<br>T | ∏'<br>Sulfate | 거<br>정 Alkalinity, Bicarbonate (as CaCO3) | ୁ<br>ଅଧି Alkalinity, Carbonate (as CaCO3)<br>୮ | ୁର୍ଘ୍ Alkalinity, Hydroxide (as CaCO3)<br>ଅ | G<br>Bicarbonate<br>J | lőu Carbonate<br>7 Hydroxide<br>16 Hydroxide | apimor<br>Bromide<br>F | e<br>b<br>T<br>Acidity (as CaCO3) |          | ear Total Organic Carbon<br>Garden Carbon<br>Garden Phosphorous as P |
| Primary Screening Criteria<br>BCWQG Aquatic Life Long-term A | verage (AW) <sup>a</sup>                 |                             | 6.5-9.0   | 0 n/a n/                  | 'a n/  | a n/a                  | n/a                | n/a                                   | n/a                           | n/a                             | n/a                             | n/a     | n/a r | n/a n/a                          | a 6.5-9            | n/a         | n/a n/                                   | /a n/a     | 0.365-<br>1.97 <sup>c</sup>           | 3                          | 0.02-<br>0.06 <sup>d</sup>   | n/a                                | n/a                             | n/a      | 150 n/             | a 128-<br>429 | -<br>e n/a                                | n/a                                            | n/a                                         | n/a                   | n/a n/a                                      | n/a                    | n/a                               | n/a      | n/a n/a                                                              |
| BCWQG Aquatic Life Short-term N                              | laximum (AW) <sup>b</sup>                |                             | 6.5-9.0   | 0 n/a n/                  | 'a n/  | a n/a                  | n/a                | n/a                                   | n/a                           | n/a                             | n/a                             | n/a     | n/a r | n/a n/a                          | a 6.5-9            | n/a         | n/a n/                                   | /a n/a     | 1.9-<br>24.5 <sup>°</sup>             | 32.8                       | 0.06-<br>0.18 <sup>d</sup>   | n/a                                | n/a                             | n/a      | 600 45<br>1,87     | n/a           | n/a                                       | n/a                                            | n/a                                         | n/a                   | n/a n/a                                      | n/a                    | n/a                               | n/a      | n/a n/a                                                              |
| Secondary Screening Criteria: C                              | osta and de Bruyn (2021)                 |                             | n/a       | n/a n/                    | 'a n/  | a n/a                  | n/a                | 1,000                                 | n/a                           | n/a                             | n/a                             | n/a     | n/a r | n/a 6/                           | 9 <sup>i</sup> n/a | n/a         | n/a n/                                   | /a n/a     | n/a                                   | 18.8-<br>22.4 <sup>j</sup> | 0.047-<br>0.177 <sup>d</sup> | n/a                                | n/a                             | n/a      | n/a n/             | a 499         | n/a                                       | n/a                                            | n/a                                         | n/a                   | n/a n/a                                      | 7.8                    | n/a                               | n/a      | n/a n/a                                                              |
| Shallow Groundwater Locations                                |                                          |                             |           |                           |        |                        |                    |                                       |                               |                                 |                                 |         |       |                                  |                    |             |                                          |            |                                       | _                          |                              |                                    |                                 |          |                    |               |                                           |                                                |                                             |                       |                                              |                        |                                   |          |                                                                      |
| RG_FRDP2                                                     | RG_FRDP_2_WG_2019_12_04_NP               |                             | 8.11      |                           | 44 11  | .9 12.2                | 2 991              | 790                                   |                               |                                 |                                 | 2.7 1,  | 025 2 | 2.91 9.7                         | 7 7.17 2           | 236.3       |                                          |            | 0.0067                                |                            | < 0.0050                     |                                    |                                 |          |                    |               |                                           |                                                |                                             |                       |                                              |                        |                                   |          | < 0.50 0.0097                                                        |
|                                                              | RG_DP_A_WG_2019_12_04_NP                 | Duplicate                   | 8.15      | 598 0.3                   | 32 11  | .8 12.1                | 975                | 826                                   | 1.9                           | < 0.50                          | 425                             | -       | -     |                                  | -                  | -           |                                          | - 194      | 0.0070                                | <u>14.3</u>                | < 0.0050                     | 14.3                               | < 0.050                         | 14.3     | < 2.5 < 1          | 00 334        | 194                                       | < 1.0                                          | ) < 1.0                                     |                       | < 5.0 < 5.<br>* *                            | _                      |                                   | 0.0064   | < 0.50 0.011                                                         |
| RG_FRDP4                                                     | QA/QC RPD%<br>RG FRDP 4 WG 2019 12 04 NP | 2019 12 04                  | 0<br>8.19 | 564 0.                    | 14 10  | .7 11.4                | 922                | 771                                   | 11                            | < 0.50                          | 452                             | - 64 0  | -     | .68 6.9                          | -<br>2 7.44 1      | - 106.7     |                                          | · 2        | 0.0058                                | 12.4                       | 3<br>< 0.0010                | 0<br>12.4                          | < 0.050                         | 12.4     | 1.35 15            | 9 283         | 2 107                                     | < 1.0                                          | $\frac{1}{2}$                               | _                     |                                              |                        |                                   | 8        | < 0.50 0.0035                                                        |
| RG_FRDP5                                                     | RG FRDP 5 WG 2019 12 04 NP               | 2019 12 04                  | 8.03      |                           |        | .4 11.2                |                    |                                       |                               | 1.32                            |                                 |         |       |                                  | <b>3</b> 6.99      |             | _                                        | 235        |                                       |                            | 0.0017                       | 10.9                               | < 0.050                         |          |                    |               |                                           |                                                |                                             |                       |                                              |                        |                                   |          | 1.31 0.011                                                           |
| RG_FRDP8                                                     | RG_FRDP_8_WG_2019_12_04_NP               | 2019 12 04                  | 8.03      |                           |        | .8 11.1                |                    |                                       |                               | 3.27                            |                                 |         |       |                                  | <b>2</b> 7.09 -    |             |                                          |            |                                       |                            |                              | 3.46                               | 0.742                           |          | 3.09 5             |               |                                           |                                                |                                             |                       |                                              |                        |                                   |          | 3.48 0.017                                                           |
| RG_FRDP13                                                    | RG FRDP 13 WG 2019 12 04 NP              |                             | 8.08      |                           |        |                        |                    |                                       |                               |                                 |                                 |         |       |                                  | <b>5</b> 7.32      |             |                                          | - 289      |                                       |                            | < 0.0050                     |                                    |                                 |          |                    |               |                                           | _                                              |                                             |                       |                                              |                        |                                   |          | 3.36 0.880                                                           |
| Seep Locations                                               |                                          | 2010 12 01                  | 0.00      |                           |        |                        | .,200              | 1,010                                 | 00.0                          | 0.00                            |                                 |         | 2.0   |                                  |                    |             |                                          | 200        | 0.0002                                | 02.12                      | 0.0000                       | 02.2                               | 0.000                           | 02.2     | 2.0                | 00 0.2        |                                           |                                                | ,                                           | 002                   | 0.0 0.                                       | 0.20                   |                                   | 0.0000   | 0.000                                                                |
| RG_FRSP1                                                     | RG_FRSP1_WG_2019_12_03_NP                | 2019 12 03                  | 8.06      | 709 0.3                   | 20 15  | .2 14.4                | 1,190              | 948                                   | < 1.0                         | 0.64                            | 480                             | 4.4 1   | 268 0 | .49 8.5                          | 2 7.48 2           | 206.7       |                                          | - 312      | 0.0111                                | 34.0                       | < 0.0050                     | 34.0                               | < 0.050                         | 34.0     | < 2.5 10           | 0 314         | 312                                       | < 1.0                                          | ) < 1.0                                     | 380 <                 | < 5.0 < 5.                                   | 0 < 0.25               | 5 9.8                             | 0.0038   | 0.55 0.0034                                                          |
|                                                              | RG_FRSP1_WG_2020_02_27_NP                | 2020 02 27                  | 8.17      | 972 5.                    | 15 18  | .3 19.7                | 7 1,440            | 1,210                                 | 14.6                          | 0.95                            | 387                             | 3.11 1, | 120   | - 6.5                            | 4 7.71             | 183         | 1,251 0.9                                | 97 317     | 0.0267                                | 47.7                       | < 0.0050                     | 47.7                               | < 0.25                          | 47.7     | < 2.5 11           | 0 408         | 317                                       | < 1.0                                          | ) < 1.0                                     | 387 <                 | < 5.0 < 5.                                   | 0 < 0.25               | 5 16.0                            | 0.0038   | 2.30 0.026                                                           |
| RG_FRSP2                                                     |                                          |                             |           |                           |        |                        |                    |                                       |                               |                                 |                                 |         |       |                                  |                    |             |                                          |            | < 0.0050                              | 0 <u>35.7</u>              | < 0.0050                     | 35.7                               | < 0.050                         | 35.7     | < 2.5 13           | 0 317         | 326                                       | < 1.0                                          | ) < 1.0                                     | 397 <                 | < 5.0 < 5.                                   | 0 < 0.25               | 5 10.1                            | 0.0037   | 0.51 < 0.0020                                                        |
|                                                              | RG_FRSP2_WG_2020_02_27_NP                | 2020 02 27                  | 8.17      | 956 0.3                   | 37 18  | .6 19.3                | 3 1,470            | 1,220                                 | )                             | 8                               | 471 4                           | 4.82 1, | 250   | - 7.4                            | 6 7.64             | 183         | 1,322 1.0                                | 03 316     | 0.0133                                | <u>49.9</u>                | < 0.0050                     | 49.9                               | < 0.25                          | 49.9     | < 2.5 < 1          | 00 420        | 316                                       | < 1.0                                          | ) < 1.0                                     | 385 <                 | < 5.0 < 5.                                   | 0 < 0.25               | 5 17.4                            | 0.0037   | 0.77 0.0036                                                          |
| RG_FRSP3                                                     |                                          |                             |           |                           |        |                        |                    |                                       |                               |                                 |                                 |         |       |                                  |                    |             |                                          |            |                                       | 0 <u>36.1</u>              | < 0.0050                     | 36.1                               | < 0.050                         | 36.1     | < 2.5 < 1          | 00 318        | 330                                       | < 1.0                                          | ) < 1.0                                     | 403 <                 | < 5.0 < 5.                                   | 0 < 0.25               | 5 9.2                             | 0.0030   | 0.61 < 0.0020                                                        |
|                                                              | RG_FRSP3_WG_2020_02_27_NP                | 2020 02 27                  | 8.24      |                           |        |                        |                    |                                       |                               |                                 |                                 |         |       |                                  | 5 7.79 2           |             | 1,313 1.0                                |            |                                       |                            | < 0.0050                     |                                    |                                 |          |                    |               |                                           |                                                |                                             |                       |                                              |                        |                                   |          | 1.24 0.0090                                                          |
| RG_FRSP4                                                     | RG_FRSP4_WG_2019_12_03_NP                | 2019 12 03                  | 8.06      |                           |        | .2 15.1                |                    |                                       |                               |                                 |                                 |         |       |                                  | 7 7.45             |             |                                          |            | < 0.0050                              |                            | < 0.0050                     |                                    | < 0.050                         |          | < 2.5 14           |               |                                           | _                                              |                                             |                       |                                              |                        |                                   |          | 0.59 < 0.0020                                                        |
| 50 55055                                                     | RG_FRSP4_WG_2020_02_27_NP                | 2020 02 27                  | 8.18      | 983 0.1                   | 19 18  | .9 19.9                | 9 1,500            | 1,260                                 | < 1.0                         | 0.68                            | 418                             | 5.09 1, | 272   | - 8.6                            | 6 7.69 2           | 221.7       | 1,335 1.0                                | 05 327     |                                       |                            |                              |                                    |                                 |          |                    |               |                                           |                                                |                                             |                       |                                              |                        |                                   |          | 0.70 0.0030                                                          |
| RG_FRSP5                                                     |                                          |                             | 0.04      | 007 0                     |        | 0 10                   |                    | 4 4 0 0                               |                               | 0.70                            | 070                             |         | 0.40  | 0.5                              |                    | 040.5       |                                          |            |                                       | 0 <u>38.8</u>              |                              |                                    | < 0.050                         |          | < 2.5 < 1          |               |                                           |                                                |                                             |                       |                                              |                        |                                   |          | 0.60 < 0.0020                                                        |
| PC EPSP6                                                     | RG_FRSP5_WG_2020_02_27_NP                | 2020 02 27                  | 8.24      | 907 0.3                   | 27 18  | .2 18.4                | 1,460              | 1,180                                 | < 1.0                         | 0.73                            | 379 4                           | 4.92 1, | 243   | - 8.5                            | 6 7.69 2           | 216.5       | 1,310 1.0                                | 03 307     |                                       |                            |                              |                                    |                                 |          |                    |               |                                           |                                                |                                             |                       |                                              |                        |                                   |          | 0.79 0.0070                                                          |
| RG_FRSP6                                                     | RG_FRSP6_WG_2020_02_27_NP                | 2020 02 27                  | 9.21      | 002 < 0                   | 10 10  | 2 19 2                 | 1 4 2 0            | 1 150                                 |                               | 2                               | 412                             | 4.8 1.  | 210   | 9.4                              | 3 7.69 2           | 221.1       | 1 290 1 (                                | 01 227     |                                       | 0 <u>38.2</u>              | < 0.0050                     |                                    |                                 |          | < 2.5 13           |               |                                           |                                                |                                             |                       |                                              |                        |                                   |          | 0.66 < 0.0020<br>0.83 0.0034                                         |
| Fording Flow and Load Accretio                               |                                          | 2020 02 27                  | 0.21      | 902 < 0                   | .10 10 | .5 10.0                | 5 1,430            | 1,150                                 | ,<br>,                        | 2                               | 413                             | 4.0 1,  | 210   | - 0.4                            | 5 7.09 2           | 231.1       | 1,209 1.0                                | 521        | 0.0114                                | 45.0                       | < 0.0050                     | 49.0                               | < 0.25                          | 49.0     | 5.2 1              | 00 309        | 5 321                                     | < 1.0                                          | / < 1.0                                     | 399 -                 | \$ 5.0   \$ 5.                               | 0 < 0.20               | 5 10.9                            | 0.0041   | 0.03 0.0034                                                          |
| RG FORDING1                                                  | RG_FORDING1_WS_2019-10-24_NP             | 2019 10 24                  | 8.3       | 425 0.4                   | 42 8.6 | 8 8.67                 | 717                | 523                                   | 5.6                           | 0.85                            | 422                             | 1.9 77  | 4.45  |                                  | 10.15              |             |                                          | 9          | < 0.0050                              | 0 <u>10.5</u>              | 0.0034                       | 10.5                               | < 0.050                         | 10.5     | 3.41 16            | 2 185         | 5 197                                     | 2.4                                            | < 1.0                                       | 240 <                 | < 5.0 < 5.                                   | 0 < 0.05               | 0 < 1.0 <                         | < 0.0010 | 0.88 0.0024                                                          |
| RG_FORDING2                                                  | RG FORDING2 WS 2019-10-24 NP             |                             |           |                           |        |                        |                    |                                       |                               |                                 |                                 |         |       |                                  |                    | -           |                                          |            |                                       | <b>10.9</b>                |                              |                                    |                                 |          |                    |               |                                           |                                                |                                             |                       |                                              |                        |                                   |          | 1.40 0.0024                                                          |
| RG_FORDING3                                                  | <br>RG_FORDING3_WS_2019-10-24_NP         | 2019 10 24                  | 8.26      | 422 0.9                   | 93 8.6 | 1 8.55                 | 5 710              | 537                                   | 3.9                           | 0.62                            | 429                             | 1.4 9   | 917   |                                  | 8.30               | -           |                                          | - 201      | < 0.0050                              | <b>11.0</b>                | 0.0030                       | 11.0                               | < 0.050                         | 11.0     | 1.24 16            | 1 181         | 201                                       | < 1.0                                          | ) < 1.0                                     | 245 <                 | < 5.0 < 5.                                   | 0 < 0.05               | 0 2.2                             | 0.0011   | 0.79 0.0036                                                          |
| RG_FORDING4                                                  | RG_FORDING4_WS_2019-10-24_NP             | 2019 10 24                  | 8.29      | 502 0.                    | 18 10  | .4 10.2                | 830                | 668                                   | 1.7                           | < 0.50                          | 396                             | 1.8 1   | 065   |                                  | 8.36               | -           |                                          | - 219      | < 0.0050                              | 0 <u>15.1</u>              | < 0.0050                     | 15.1                               | < 0.050                         | 15.1     | < 2.5 16           | 0 238         | 219                                       | < 1.0                                          | ) < 1.0                                     | 267 <                 | < 5.0 < 5.                                   | 0 < 0.25               | 5 < 1.0 <                         | < 0.0010 | 0.58 < 0.0020                                                        |
| RG_FORDING5                                                  | RG_FORDING5_WS_2019-10-24_NP             |                             |           |                           |        |                        |                    | _                                     |                               |                                 |                                 |         |       |                                  | 8.30               | -           |                                          |            |                                       | 0 <u>15.4</u>              |                              |                                    |                                 |          | < 2.5 17           |               |                                           |                                                |                                             |                       |                                              |                        |                                   |          |                                                                      |
| RG_FORDING6                                                  | RG_FORDING6_WS_2019-10-24_NP             |                             |           |                           |        |                        |                    |                                       |                               |                                 |                                 |         |       |                                  | 8.17               | -           |                                          |            |                                       | <u>17.2</u>                |                              |                                    |                                 |          | < 2.5 17           |               |                                           | _                                              |                                             |                       |                                              |                        |                                   |          |                                                                      |
| RG_FORDING7                                                  | RG_FORDING7_WS_2019-10-24_NP             |                             |           |                           |        |                        |                    | _                                     |                               |                                 |                                 |         |       |                                  | 8.04               | -           |                                          |            |                                       | <u>18.3</u>                |                              |                                    |                                 |          |                    |               |                                           |                                                |                                             |                       |                                              |                        |                                   |          | 0.53 < 0.0020                                                        |
| RG_FORDING8                                                  | RG_FORDING8_WS_2019-10-25_NP             |                             |           |                           |        |                        |                    |                                       |                               |                                 |                                 |         |       |                                  | 8.05               | -           |                                          |            |                                       | <u>17.9</u>                |                              | 17.9                               |                                 |          |                    |               |                                           | _                                              |                                             |                       |                                              |                        |                                   |          | < 0.50 0.0020                                                        |
| RG_FORDING9                                                  | RG_FORDING9_WS_2019-10-25_NP             |                             |           |                           |        |                        |                    |                                       |                               |                                 |                                 | 5.1 9   | 943   |                                  | 8.04               | -           |                                          |            |                                       | 0 <u>17.8</u>              |                              | 17.8                               | -                               |          |                    |               |                                           | _                                              |                                             |                       |                                              |                        |                                   |          | < 0.50 < 0.0020                                                      |
|                                                              | RG_DC1_2019-10-25<br>QA/QC RPD%          | Duplicate                   | 8.1       | 574 0.                    |        | .8 11.6                |                    |                                       |                               |                                 | *                               | -       | -     |                                  | -                  | -           |                                          | - 237      | 0.0059                                | <u>17.8</u>                | 0.0027                       | 17.8                               | 0.056                           | δ.11     | 1.4 1/             |               |                                           | _                                              |                                             |                       | < 5.0 < 5.<br>* *                            |                        | v I./                             | *        | 0.56 < 0.0020                                                        |
| RG_FORDING10                                                 | RG FORDING10 WS 2019-10-25 NP            | 2019 10 25                  | 81        | 600 0.1                   |        |                        | •                  |                                       |                               |                                 |                                 |         |       |                                  | 8.10               | -           |                                          |            | -                                     | 0 <b>18.8</b>              | 0.0046                       | 18.8                               | -                               | 18.8     | ~                  | -             | -                                         | -                                              | _                                           | -                     |                                              |                        | 0 1 8                             | 0.0025   | < 0.50 0.0021                                                        |
| RG_FORDING11                                                 | RG_FORDING11_WS_2019-10-25_NP            |                             |           |                           |        |                        |                    |                                       |                               |                                 |                                 |         |       |                                  | 8.52               | -           | _   _                                    |            |                                       | 12.3                       |                              | 12.3                               |                                 |          |                    |               |                                           |                                                |                                             |                       |                                              |                        |                                   |          | 0.90 < 0.0021                                                        |
| RG_FORDING12                                                 | RG_FORDING12_WS_2019-10-25_NP            |                             | -         |                           |        |                        |                    |                                       |                               |                                 |                                 |         |       |                                  | 8.47               | -           |                                          |            |                                       | 12.4                       |                              | 12.4                               |                                 |          |                    |               |                                           |                                                |                                             |                       |                                              |                        |                                   |          | 0.78 0.0033                                                          |
| RG_FORDING13                                                 | RG_FORDING13_WS_2019-10-25_NP            |                             |           |                           |        |                        |                    | _                                     |                               |                                 |                                 |         | 916   |                                  | 8.39               | -           |                                          |            |                                       | 12.4                       |                              | 12.4                               | < 0.050                         |          |                    |               |                                           | -                                              |                                             |                       |                                              |                        |                                   |          | 1.06 0.0038                                                          |
| RG_FORDING14                                                 | RG_FORDING14_WS_2019-10-25_NP            |                             |           |                           |        |                        |                    |                                       |                               |                                 |                                 |         | 723   |                                  | 8.49               | -           | -   -                                    |            | 0.0099                                |                            | 0.0093                       | 10.9                               | 0.360                           |          |                    |               |                                           | _                                              |                                             |                       |                                              |                        |                                   |          | 0.58 < 0.0020                                                        |
|                                                              |                                          | Duplicate                   |           | 428 0.3                   |        |                        |                    |                                       |                               |                                 |                                 | -       | -     |                                  |                    | -           |                                          |            | 0.0090                                |                            | 0.0096                       | 10.9                               | -                               |          |                    |               |                                           | -                                              |                                             |                       |                                              |                        |                                   |          | 0.64 < 0.0020                                                        |
|                                                              | QA/QC RPD%                               |                             | 0         | 6 '                       | * *    | *                      | 1                  | 5                                     | *                             | *                               | *                               | -       | -     |                                  | -                  | -           |                                          | - 2        | *                                     | 0                          | 3                            | 0                                  | *                               | 4        | * 8                | 0             | 2                                         | *                                              | *                                           | 2                     | * *                                          | *                      | *                                 | *        | * *                                                                  |
|                                                              |                                          |                             |           |                           | -      |                        |                    | _                                     |                               |                                 |                                 |         |       |                                  |                    | _           |                                          |            | _                                     |                            |                              |                                    |                                 |          |                    |               | _                                         | _                                              |                                             |                       |                                              |                        |                                   |          |                                                                      |

Associated ALS file(s): L2371365, L2372312, L2372504, L2392199, L2392797, L2422351, L2422552. All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.
- n/a Denotes no applicable standard/guideline.
- \* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.



Concentration greater than BCWQG Aquatic Life Long-term Average (AW) guideline Concentration greater than BCWQG Aquatic Life Short-term Maximum (AW) guideline Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

<sup>a</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic").

- <sup>b</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute").
- $^{\rm c}\,$  Guideline is pH and temperature dependent.
- <sup>d</sup> Guideline is chloride dependent.
- <sup>e</sup> Guideline is hardness dependent.
- $^{\rm f}\,$  Guideline is temperature, pH, DOC and hardness dependent.
- <sup>g</sup> Guideline is pH dependent.
- <sup>h</sup> Total mercury guideline is based on the % of methylmercury present. WQG = 0.0001 / (MeHg/total Hg), where MeHg is mass (or concentration) of methyl mercury and THg. Guideline shown assumes MeHg<0.5% of Total Hg.
- <sup>1</sup> Criteria as minimum values. Criteria for early life stages is 9 mg/L and criteria for other life sates is 6 mg/L. Criteria for other life stages has been applied.
- <sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark.
- e.g. Nitrate equation valid up to 500 mg/L hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation. <sup>k</sup> Guideline applicable to total concentration, applied to dissolved concentration as a conservative comparison.

SNC-LAVALIN INC.

|                                 |                                                                |                             |           |             |              |                          |         |            |                    |         |             |           |           |       |                     |           | Tota      | al Metals          |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    |                      |
|---------------------------------|----------------------------------------------------------------|-----------------------------|-----------|-------------|--------------|--------------------------|---------|------------|--------------------|---------|-------------|-----------|-----------|-------|---------------------|-----------|-----------|--------------------|-------------------|-----------|------------------------------|-------------|-----------------|------------------|------------------------|-----------|-----------|-----------|---------|-----------|----------------------|--------------------|----------------------|
|                                 |                                                                |                             |           |             |              |                          |         |            |                    |         |             |           |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    |                      |
|                                 |                                                                |                             |           |             |              |                          |         |            |                    |         |             |           |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    |                      |
|                                 |                                                                |                             |           |             |              |                          |         |            |                    |         |             |           |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    |                      |
|                                 |                                                                |                             |           |             |              |                          |         |            |                    |         |             |           |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    |                      |
|                                 |                                                                |                             |           |             |              |                          |         |            |                    |         |             |           |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    |                      |
|                                 |                                                                |                             |           |             |              |                          |         |            |                    |         |             |           |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    |                      |
|                                 |                                                                |                             |           |             |              |                          |         |            |                    |         |             |           |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    |                      |
|                                 |                                                                |                             |           |             |              |                          |         |            |                    |         |             |           |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    |                      |
|                                 |                                                                |                             |           |             |              |                          |         |            |                    |         |             |           |           |       |                     |           | _         |                    |                   | ε         |                              | S           |                 |                  |                        |           |           |           |         |           |                      |                    |                      |
|                                 |                                                                |                             | Ξ         | ≥           |              | F                        | _       |            | E                  |         | ξ           |           |           |       |                     |           | E.        | ese                |                   | nue       |                              | oro         | Ę s             | :                |                        |           | ε         |           | _       |           | -                    | _ E                | ÷                    |
|                                 |                                                                |                             | inu       | nor         | i i          |                          | uth     | E          | niu                | E       | air<br>a    | Ħ         | ber       |       |                     | Ę         | les       | gan                | 'n                | pde       | -                            | bhe         | ssit            | 5                | L                      | E         | ntiu      | hur       | iun     |           | Titanium             | Uranium<br>Vanadiu | i                    |
| Samula                          | Sampla                                                         | Sample Data                 | Inn       | ntir        | rse          | Berylli                  | ism     | Boro       | adr                | alci    | Chro        | Coba      | Coppe     | Iron  | ead                 | Lithi     | Magı      | lang               | Merc              | loly      | ick                          | hos         | ota             | ilic             | Silve                  | odi       | troi      | dh        | hall    | Ë         | itan                 | Vanad              | i S                  |
| Sample<br>Location              | Sample<br>ID                                                   | Sample Date<br>(yyyy mm dd) | ≺<br>μg/L | ≺<br>μg/L μ | ≪ α<br>g/Lµg |                          | μg/L    | m⊥<br>µg/L | ο<br>μg/L          | μg/L    | μg/L        | ο<br>μg/L | ο<br>μg/L | μg/L  | ت<br>µg/L           | ⊥<br>µg/L | ≥<br>µg/L | ≥<br>µg/L          |                   | ≥<br>µg/L | z<br>µg/L                    | ∟<br>µg/L µ | ıg/L∣µg         | ) თ<br>/L μg/L   |                        | ν<br>μg/L | ν<br>μg/L | ν<br>μg/L | Ê       | ⊢<br>µg/L |                      | ⊃   ><br>g/L μg/   |                      |
| Primary Screening Criteria      | 10                                                             | (yyyy min dd)               | µ9/⊏      | P9/⊏ P      | 9,- 49       | /L P9/L                  | µg/⊏    | P9/-       | µg,∟               | µg/⊏    | µ9/⊏        | µg/⊏      | µg/⊏      | µg/⊏  | µg/⊏                | µg/⊏      | µg/⊏      | µg/⊏               | µg/⊏              | µg/⊏      | µg/⊏                         | P9/- 1      | <i>1</i> 9/⊏ µ9 | /L   µg/L        | - µg/⊏                 | µg/⊏      | µg/⊏      | µg/⊏      | µg/⊏    | µg/⊏      | P9/⊏ P               | 9, - 19,           | L 49/L               |
|                                 |                                                                |                             |           | 0           |              | 00 0.40                  |         | 4 000      |                    |         | 4 (0-(+0))  |           |           |       | 0.40.08             |           |           | 767-               | o ooh             | 4 000     | 5 4 5 0 <sup>0</sup>         |             |                 |                  | 0.05-                  |           |           |           | 0.0     |           |                      |                    | 7.5-                 |
| BCWQG Aquatic Life Long-term Av | verage (AW) <sup>a</sup>                                       |                             | n/a       | 9           | n/a 1,0      | 00 0.13                  | n/a     | 1,200      | n/a                | n/a     | 1 (Cr(+6))  | 4         | n/a       | n/a   | 3-19.6 <sup>e</sup> | n/a       | n/a       | 2,600 <sup>e</sup> | 0.02 <sup>h</sup> | 1,000 2   | 25-150°                      |             |                 |                  | 1.5 <sup>e</sup>       | n/a       | n/a       | n/a       | 0.8     | n/a       | n/a 8                | 8.5 n/a            | a 187.5 <sup>°</sup> |
| BCWQG Aquatic Life Short-term M | laximum (AW) <sup>b</sup>                                      |                             | n/a       | n/a         | 5 n/         | a n/a                    | n/a     | n/a        | n/a                | n/a     | n/a         | 110       | n/a       | 1,000 | 3-417 <sup>e</sup>  | n/a       | n/a       | 815-               | n/a               | 2,000     | n/a                          | n/a         | n/a n/          | a n/a            | 0.1-3 <sup>e</sup>     | n/a       | n/a       | n/a       | n/a     | n/a       | n/a i                | n/a n/a            | /a 33-               |
|                                 |                                                                |                             |           |             | - 14         |                          |         |            |                    |         |             |           |           | .,500 | 0 117               |           | u         | 3,390 <sup>e</sup> |                   |           |                              |             |                 |                  | 0.1-0                  | 170       |           |           | ,u      |           |                      |                    | a 340.5°             |
| Secondary Screening Criteria: C | osta and de Bruyn (2021)                                       |                             | n/a       | n/a         | n/a n/       | a n/a                    | n/a     | n/a        | 1.041 <sup>j</sup> | n/a     | 10 (Cr(+6)) | n/a       | n/a       | n/a   | n/a                 | 253       | n/a       | n/a                | n/a               |           | 136.9-<br>164.5 <sup>j</sup> | n/a         | n/a 7           | ) n/a            | n/a                    | n/a       | n/a       | n/a       | n/a     | n/a       | n/a 3                | 52 n/a             | /a n/a               |
| Shallow Groundwater Locations   | i                                                              |                             | 1         | I           |              | I                        | 1       | 1          | 1                  | 1       | 1           | 1 1       |           | L     | <u> </u>            | 1 1       |           |                    |                   |           | .01.0                        |             | I               |                  |                        |           |           | 1         | 1       | I         | <u> </u>             | I                  |                      |
| RG_FRDP2                        | RG_FRDP_2_WG_2019_12_04_NP                                     | 2019 12 04                  | -         | -           |              | -                        | -       | -          | -                  | -       | -           | -         | -         | -     | -                   | -         | -         | -                  | -                 | -         | -                            | -           |                 | -                | -                      | -         | -         | -         | -       | -         | -                    |                    | -                    |
|                                 | RG_DP_A_WG_2019_12_04_NP                                       | Duplicate                   | -         | -           |              | -                        | -       | -          | -                  | -       | -           | -         | -         | -     | -                   | -         | -         | -                  | -                 | -         | -                            | -           |                 | -                | -                      | -         | -         | -         | -       | -         | -                    |                    | -                    |
|                                 | QA/QC RPD%                                                     |                             | -         | -           |              | -                        | -       | -          | -                  | -       | -           | -         | -         | -     | -                   | -         | -         | -                  | -                 | -         | -                            | -           |                 | -                | -                      | -         | -         | -         | -       | -         | -                    |                    | -                    |
| RG_FRDP4                        | RG_FRDP_4_WG_2019_12_04_NP                                     | 2019 12 04                  | -         | -           |              | -                        | -       | -          | -                  | -       | -           | -         | -         | -     | -                   | -         | -         | -                  | -                 | -         | -                            | -           |                 | -                | -                      | -         | -         | -         | -       | -         | -                    |                    | -                    |
| RG_FRDP5<br>RG_FRDP8            | RG_FRDP_5_WG_2019_12_04_NP<br>RG_FRDP_8_WG_2019_12_04_NP       | 2019 12 04<br>2019 12 04    | -         |             |              | -                        | -       | -          | -                  | -       | -           | -         | -         | -     | -                   | -         | -         | -                  | -                 | -         | -                            | -           |                 | -                | -                      | -         | -         | -         | -       | -         | -                    |                    | -                    |
| RG_FRDP13                       | RG_FRDP_13_WG_2019_12_04_NP                                    | 2019 12 04                  | -         | -           |              | -                        | -       | -          |                    | _       |             |           |           | -     | -                   |           |           | -                  | -                 | -         | -                            | -           |                 | -                | -                      | -         | -         | -         | -       | -         | -                    |                    |                      |
| Seep Locations                  |                                                                | 2010 12 01                  | 1 1       |             |              |                          |         |            |                    |         |             |           |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    |                      |
| RG_FRSP1                        |                                                                |                             |           |             |              |                          |         |            |                    |         |             |           |           |       |                     |           |           |                    |                   |           |                              |             | 96              | .9 2,490         | 0 < 0.010              | 0 2,950   | 197       | 103,000   | < 0.010 | < 0.10    | < 0.30 4             | .10 < 0.           | .50 < 3.0            |
|                                 | RG_FRSP1_WG_2020_02_27_NP                                      | 2020 02 27                  | 55.6      | 0.29 0      | .15 11       | 3 < 0.020                | < 0.050 | 17         | 0.0704             | 207,000 | 0.27        | 0.17      | < 0.50    | 88    | 0.098               | 55.1      | 94,500    | 3.44 <             | 0.0050            | 0.487     | 0.59                         | < 50 2      | ,730 <b>14</b>  | 2 2,650          | 0 < 0.010              | 0 3,160   | 225       | 156,000   | < 0.010 | < 0.10    | 1.04 5               | .32 < 0.           | .50 3.6              |
| RG_FRSP2                        |                                                                |                             |           |             |              |                          |         |            |                    |         |             |           |           |       |                     |           |           |                    |                   |           |                              |             | <u>10</u>       | 2,530            | 0 < 0.010              | 0 2,890   | 198       | 107,000   | < 0.010 | 0.15      | < 0.30 4             | .44 < 0.           | .50 < 3.0            |
|                                 | RG_FRSP2_WG_2020_02_27_NP                                      | 2020 02 27                  | 20.7      | 0.20 0      | .13 13       | 2 < 0.020                | < 0.050 | 18         | 0.0761             | 212,000 | 0.20        | 0.16      | < 0.50    | 45    | < 0.050             | 55.8      | 102,000   | 0.90 <             | 0.0050            | 0.553     | < 0.50                       | < 50 3      | ,050 <u>15</u>  | -                | 0 < 0.010              |           |           |           |         |           | < 0.30 6             |                    |                      |
| RG_FRSP3                        |                                                                |                             |           |             |              |                          |         | 10         |                    |         |             |           |           |       |                     |           |           |                    |                   |           |                              |             | <u>10</u>       |                  | 0 < 0.010              |           |           | 107,000   |         |           | < 0.30 4             |                    |                      |
|                                 | RG_FRSP3_WG_2020_02_27_NP                                      | 2020 02 27                  | 47.5      | 0.16 0      | 0.14 12      | 4 < 0.020                | < 0.050 | 18         | 0.148              | 229,000 | 0.26        | 0.16      | < 0.50    | 66    | 0.066               | 55.3      | 102,000   | 2.01 <             | 0.0050            | 0.559     | 0.56                         | < 50 3      |                 |                  | 0 < 0.010              |           |           | 159,000   |         |           | 0.96 4               |                    |                      |
| RG_FRSP4                        | RC ERSP4 WC 2020 02 27 NR                                      | 2020 02 27                  | < 2.0     | 0.14        | 0 10 13      | 7 < 0.020                | < 0.050 | 10         | 0.0517             | 222.000 | 0.17        | 0.12      | < 0.50    | < 10  | < 0.050             | 56.0      | 103 000   | < 0.10             | 0.0050            | 0.611     | < 0.50                       | < 50 3      |                 |                  | 0 < 0.010<br>0 < 0.010 |           |           | 107,000   |         |           | < 0.30 4<br>< 0.30 6 |                    |                      |
| RG_FRSP5                        | RG_FRSP4_WG_2020_02_27_NP                                      | 2020 02 27                  | < 3.0     | 0.14 <      | 0.10 13      | 7 < 0.020                | < 0.050 | 10         | 0.0517             | 222,000 | 0.17        | 0.13      | < 0.50    | < 10  | < 0.050             | 50.0      | 103,000   | < 0.10             | 0.0050            | 0.011     | < 0.50                       | < 50 3      | 10 10           | _                | 0 < 0.010              |           |           | 108,000   |         |           | < 0.30 4             |                    |                      |
|                                 | RG_FRSP5_WG_2020_02_27_NP                                      | 2020 02 27                  | 18.6      | 0.13 0      | 13 15        | 4 < 0.020                | < 0.050 | 17         | 0.0566             | 212 000 | 0.21        | 0.12      | < 0.50    | 28    | < 0.050             | 52 5      | 100 000   | 1.01               | 0 0050            | 0 593     | < 0.50                       | < 50 3      |                 |                  | 0 < 0.010              |           |           |           |         |           | < 0.30 5             |                    |                      |
| RG_FRSP6                        |                                                                |                             |           |             |              |                          |         |            |                    |         |             |           |           |       |                     |           | ,         |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    | .50 < 3.0            |
| _                               | RG_FRSP6_WG_2020_02_27_NP                                      | 2020 02 27                  | 4.8       | 0.12 0      | .12 17       | 5 < 0.020                | < 0.050 | 16         | 0.0594             | 208,000 | 0.18        | 0.11      | < 0.50    | < 10  | < 0.050             | 50.2      | 103,000   | 0.21 <             | 0.0050            | 0.517     | < 0.50                       | < 50 3      |                 |                  |                        |           |           |           |         |           |                      |                    | .50 < 3.0            |
| Fording Flow and Load Accretion |                                                                |                             |           |             |              |                          |         |            |                    |         |             |           | _         |       |                     |           | -         |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    |                      |
| RG_FORDING1                     | RG_FORDING1_WS_2019-10-24_NP                                   | 2019 10 24                  | 5.4       | < 0.10 <    | 0.10 10      | 6 < 0.020                | < 0.050 | < 10       | 0.0208             | 103,000 | 0.12        | < 0.10    | < 0.50    | 11    | < 0.050             | 20.7      | 42,000    | 1.42               | 0.0050            | 0.845     | 0.74                         | < 50 1      | ,170 <u>44</u>  | <u>.4</u> 2,140  | 0 < 0.010              | 0 3,790   | 142       | 65,600    | < 0.010 | 0.10      | < 0.30 2             | .05 < 0.           | .50 < 3.0            |
| RG_FORDING2                     | RG_FORDING2_WS_2019-10-24_NP                                   |                             | 6.4       | < 0.10      | 0.13 10      | 4 < 0.020                | < 0.050 | < 10       | 0.0290             | 98,900  |             |           |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    | .50 < 3.0            |
| RG_FORDING3<br>RG_FORDING4      | RG_FORDING3_WS_2019-10-24_NP<br>RG_FORDING4_WS_2019-10-24_NP   |                             |           |             |              | 3 < 0.020                |         |            |                    |         |             |           |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    | .50 3.7<br>.50 < 3.0 |
| RG_FORDING5                     | RG_FORDING5_WS_2019-10-24_NP                                   | 2019 10 24<br>2019 10 24    |           |             |              | .6 < 0.020<br>.8 < 0.020 |         |            |                    |         | 0.11        | 0.11      |           |       |                     | 1         |           |                    |                   |           |                              |             |                 | _                |                        |           |           |           |         |           |                      |                    | .50 < 3.0            |
| RG FORDING6                     | RG_FORDING6_WS_2019-10-24_NP                                   | 2019 10 24                  |           |             |              | .0 < 0.020               |         |            |                    | 134,000 | 0.13        | 0.15      |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  | 0 < 0.010              |           |           |           |         |           |                      |                    | .50 < 3.0            |
| RG_FORDING7                     | RG FORDING7 WS 2019-10-24 NP                                   | 2019 10 24                  |           |             |              | .3 < 0.020               |         |            |                    | 137,000 | 3.58        | 0.19      |           |       |                     |           |           |                    |                   |           |                              |             |                 | _                | 0 < 0.010              |           |           |           |         |           |                      |                    | .50 < 3.0            |
| RG_FORDING8                     | RG_FORDING8_WS_2019-10-25_NP                                   | 2019 10 25                  |           |             |              | .8 < 0.020               |         |            |                    | 133,000 | 0.11        | 0.15      |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    | .50 < 3.0            |
| RG_FORDING9                     | RG_FORDING9_WS_2019-10-25_NP                                   | 2019 10 25                  | < 3.0     | 0.12 0      | .10 95       | .1 < 0.020               | < 0.050 | 12         | 0.0337             | 130,000 | 0.13        | 0.14      | < 0.50    | 13    | < 0.050             | 32.4      | 60,400    | 3.26               | 0.0050            | 0.788     | 1.02                         | < 50 1      | ,780 <u>73</u>  | . <u>6</u> 2,190 | 0 < 0.010              | 0 2,110   | 158       | 101,000   | < 0.010 | < 0.10    | < 0.30 3             | .14 < 0.           | .50 < 3.0            |
|                                 | RG_DC1_2019-10-25                                              | Duplicate                   |           |             |              | .8 < 0.020               |         |            |                    | 131,000 | 0.14        |           |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    | .50 < 3.0            |
|                                 |                                                                | 0040 40 05                  |           | *           | -            |                          | _       | -          |                    | 1       | *           | *         |           |       | *                   |           |           |                    |                   |           |                              |             |                 |                  | *                      |           |           |           |         |           | *                    |                    |                      |
| RG_FORDING10<br>RG_FORDING11    | RG_FORDING10_WS_2019-10-25_NP                                  |                             |           |             |              | 3 < 0.020                |         |            | 0.0440             |         | 0.15        |           |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           | < 0.30 3<br>< 0.30 3 |                    | .50 < 3.0            |
| RG FORDING12                    | RG_FORDING11_WS_2019-10-25_NP<br>RG_FORDING12_WS_2019-10-25_NP |                             |           |             |              | .0 < 0.020<br>.9 < 0.020 |         |            |                    | 129,000 | 0.12        | 0.10      |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  | 0 < 0.010              |           |           |           |         |           |                      |                    | .50 3.6<br>.50 < 3.0 |
| RG_FORDING13                    | RG FORDING13 WS 2019-10-25 NP                                  |                             |           |             |              | .9 < 0.020               |         |            |                    |         | 0.12        | 0.10      |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  | 0 < 0.010              |           |           |           |         |           |                      |                    | .50 < 3.0            |
| RG_FORDING14                    | RG FORDING14 WS 2019-10-25 NP                                  |                             |           |             |              | .6 < 0.020               |         |            |                    |         | 0.14        |           |           |       |                     | _         |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    | .50 < 3.0            |
|                                 | RG_DC1-5_2019-10-25                                            | Duplicate                   |           |             |              | .2 < 0.020               |         |            |                    |         |             |           |           |       |                     | 1         |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    | .50 < 3.0            |
|                                 | QA/QC RPD%                                                     | •                           |           | *           |              |                          |         |            |                    | 0       | *           |           |           |       |                     |           |           |                    |                   |           |                              |             | -               | -                | *                      |           |           |           |         |           |                      |                    | * *                  |
|                                 |                                                                |                             |           |             |              | -                        |         |            |                    |         |             |           |           |       |                     |           |           |                    |                   |           |                              |             |                 |                  |                        |           |           |           |         |           |                      |                    |                      |

Associated ALS file(s): L2392199, L2392797, L2422351, L2422552.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

| BOLD   |  |
|--------|--|
| SHADED |  |
| BLUE   |  |

Concentration greater than BCWQG Aquatic Life Long-term Average (AW) guideline Concentration greater than BCWQG Aquatic Life Short-term Maximum (AW) guideline Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) <sup>a</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic").

- <sup>b</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute").
- <sup>c</sup> Guideline is pH and temperature dependent.
- <sup>d</sup> Guideline is chloride dependent.
- <sup>e</sup> Guideline is hardness dependent.
- <sup>f</sup> Guideline is temperature, pH, DOC and hardness dependent.
- <sup>g</sup> Guideline is pH dependent.

h Total mercury guideline is based on the % of methylmercury present. WQG = 0.0001 / (MeHg/total Hg), where MeHg is mass (or concentration) of methyl mercury and THg. Guideline shown assumes MeHg<0.5% of Total Hg.

<sup>1</sup> Criteria as minimum values. Criteria for early life stages is 9 mg/L and criteria for other life sates is 6 mg/L. Criteria for other life stages has been applied.

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark.

e.g. Nitrate equation valid up to 500 mg/L hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                                           |                                                              |              |                       |                 |              |                   |                   |                   |                |        |                |              |           |                | Dissolve                | ed Metals                  |            |                      |                                                           |            |            |                    |                   |         |                    |                  |            |                  |                |
|-------------------------------------------|--------------------------------------------------------------|--------------|-----------------------|-----------------|--------------|-------------------|-------------------|-------------------|----------------|--------|----------------|--------------|-----------|----------------|-------------------------|----------------------------|------------|----------------------|-----------------------------------------------------------|------------|------------|--------------------|-------------------|---------|--------------------|------------------|------------|------------------|----------------|
|                                           |                                                              |              | ssolved Aluminum      | ssolved Calcium | ssolved Iron | ssolved Magnesium | ssolved Manganese | ssolved Potassium | ssolved Sodium | timony | Arsenic        | rium         | ryllium   | Boron          | Dissolve                | ed Metals<br>United States | Cobalt     | Copper               | Lead<br>Lithium                                           | srcury     | Molybdenum | Nickel             | Selenium          | Silver  | Thallium           | Titanium         | Uranium    | Vanadium         |                |
| Sample<br>Location                        | Sample<br>ID                                                 | Sample Date  | ă<br>ug/l             |                 | ڭ<br>µg/L    | ä<br>mg/L         | ä⊂<br>µg/L        | ä<br>mg/L         | ä<br>mg/L      | γg/L   | k<br>β<br>μg/L | μg/L         | ۲<br>µg/L | ⊔<br>≊<br>⊔g/L | υ<br>μg/L               | ບົ<br>µg/L                 | රි<br>µg/L | රි<br>µg/L           | ≓ ۳<br>µg/L µg/L                                          | μg/L       | ĭ<br>≚µg/L | Ξ<br>μg/L          | ගී<br>µg/L        |         | Ę<br>μg/L          | Έ<br>μg/L        | ີ່<br>µg/L | S″<br>µg/L       | iα<br>μg/L     |
| Primary Screening Criteria                |                                                              | (yyyy mm dd) | μg/L                  | mg/L            | µg/∟         | liig/∟            | µg/∟              | ilig/∟            | ilig/∟         | µg/∟   | µg/L           | µg/L         | µg/∟      | µy/L           | µg/L                    | µg/∟                       | µg/∟       | µg/∟                 | µy/∟ µy/ι                                                 | - µg/L     | µg/∟       | µg/∟               | µg/∟              | µg/∟    | µg/∟               | µg/∟             | µg/∟       | µy/∟             | µy/L           |
|                                           | (*******                                                     |              |                       |                 | ,            | ,                 | ,                 | ,                 | ,              | ,      | ,              | ,            | ,         | ,              |                         |                            | ,          | 0.0.1.=f             | , ,                                                       | ,          | ,          | ,                  | ak                | ,       | ,                  | ,                | ,          | ,                |                |
| BCWQG Aquatic Life Long-term A            | Average (AW) <sup>a</sup>                                    |              | 8.98-50 <sup>9</sup>  | n/a             | n/a          | n/a               | n/a               | n/a               | n/a            | n/a    | n/a            | n/a          | n/a       | n/a            | 0.0176-457 <sup>e</sup> | n/a                        | n/a        | 0.2-1.5 <sup>t</sup> | n/a n/a                                                   | n/a        | n/a        | n/a                | 2 <sup>k</sup>    | n/a     | n/a                | n/a              | n/a        | n/a              | n/a            |
| BCWQG Aquatic Life Short-term N           | Maximum (AW) <sup>b</sup>                                    |              | 27.4-100 <sup>g</sup> | n/a             | 350 (max)    | n/a               | n/a               | n/a               | n/a            | n/a    | n/a            | n/a          | n/a       | n/a            | 0.038-2.8 <sup>e</sup>  | n/a                        | n/a        | 0.9-10 <sup>f</sup>  | n/a n/a                                                   | n/a        | n/a        | n/a                | n/a               | n/a     | n/a                | n/a              | n/a        | n/a              | n/a            |
| Secondary Screening Criteria: C           | Costa and de Bruvn (2021)                                    |              | n/a                   | n/a             | n/a          | n/a               | n/a               | n/a               | n/a            | n/a    | n/a            | n/a          | n/a       | n/a            | 1.041 <sup>j</sup>      | 10 (Cr(+6))                | ) n/a      | n/a                  | n/a 253                                                   | n/a        | n/a        | 148.8-             | 70                | n/a     | n/a                | n/a              | 352        | n/a              | n/a            |
|                                           |                                                              |              |                       |                 |              |                   |                   |                   |                |        |                |              |           |                | 1.571                   |                            | ,          |                      | 200                                                       |            |            | 164.5 <sup>j</sup> |                   |         |                    |                  |            |                  |                |
| Shallow Groundwater Locations<br>RG_FRDP2 | RG_FRDP_2_WG_2019_12_04_NP                                   | 2019 12 04   | 1.4                   | 131             | < 10         | 67.6              | 0.27              | 1.90              | 2.01           | 0 14   | < 0.10         | 85.3         | < 0.020   | 10             | 0.0366                  | 0.15                       | < 0.10     | 0 25                 | < 0.050 34.4                                              | 1 < 0.0050 | 1 10       | < 0.50             | 105               | < 0.010 | < 0.010            | < 0.30           | 3.68       | < 0.50           | 1.9            |
|                                           | RG_DP_A_WG_2019_12_04_NP                                     | Duplicate    | 1.4                   | 129             | < 10         | 66.6              | 0.27              | 1.89              | 1.95           | 0.15   | < 0.10         |              | < 0.020   |                | 0.0388                  | 0.10                       | < 0.10     |                      | < 0.050 35.3                                              |            |            | < 0.50             |                   |         | < 0.010            |                  |            | < 0.50           | 6.2            |
|                                           | QA/QC RPD%                                                   | Dupilouto    | *                     | 2               | *            | 1                 | *                 | 1                 | 3              | *      | *              | 2            | *         | *              | 6                       | *                          | *          |                      | * 3                                                       |            | 0          | *                  | 3                 | *       | *                  | *                | 0          | *                | *              |
| RG_FRDP4                                  | RG_FRDP_4_WG_2019_12_04_NP                                   | 2019 12 04   | < 1.0                 | 124             | < 10         | 61.5              | < 0.10            | 2.09              | 2.06           | 0.12   | < 0.10         | 88.4         | < 0.020   | 13             | 0.0446                  | 0.14                       | < 0.10     | < 0.20               | < 0.050 43.8                                              | 3 < 0.0050 | 1.08       | < 0.50             | <u>83.7</u>       | < 0.010 | < 0.010            | < 0.30           | 3.29       | < 0.50           | < 1.0          |
| RG_FRDP5                                  | RG_FRDP_5_WG_2019_12_04_NP                                   | 2019 12 04   | < 1.0                 | 140             | 171          | 48.8              | 552               | 1.56              | 1.80           | 0.10   | 0.15           | 189          | < 0.020   | < 10           | 0.170                   | < 0.10                     | 0.48       | <u>0.36</u>          | 0.089 24.1                                                | 1 < 0.0050 | 0.367      | 2.41               | <u>67.0</u>       | < 0.010 | 0.011              | < 0.30           | 1.50       | < 0.50           | 2.0            |
| RG_FRDP8                                  | RG_FRDP_8_WG_2019_12_04_NP                                   | 2019 12 04   | 1.3                   | 141             | 5,890        | 43.4              | 2,300             | 1.14              | 1.82           | < 0.10 | 0.54           | 201          | < 0.020   | < 10           | 0.0532                  | < 0.10                     | 2.84       | < 0.20               | < 0.050 14.8                                              | 3 < 0.0050 | 0.839      | 5.66               | <u>25.0</u>       | < 0.010 | 0.024              | < 0.30           | 0.280      | < 0.50           | 4.7            |
| RG_FRDP13                                 | RG_FRDP_13_WG_2019_12_04_NP                                  | 2019 12 04   | < 1.0                 | 172             | < 10         | 78.1              | 6.01              | 2.48              | 3.06           | < 0.10 | 0.12           | 159          | < 0.020   | 15             | 0.0300                  | 0.14                       | 0.17       | < 0.20               | < 0.050 50.5                                              | 5 < 0.0050 | 0.422      | < 0.50             | <u>122</u>        | < 0.010 | < 0.010            | < 0.30           | 4.38       | < 0.50           | < 1.0          |
| Seep Locations                            |                                                              | 1            |                       | 1               | · · · · · ·  |                   | ,                 |                   |                | r      |                |              | r         | 1              |                         |                            | -          |                      | 1 1                                                       | -          | r          | 1                  | r                 | r       | r                  |                  |            |                  |                |
| RG_FRSP1                                  |                                                              |              |                       |                 |              |                   |                   |                   |                |        |                |              |           |                |                         |                            |            |                      |                                                           |            |            |                    | <u>131</u>        |         | < 0.010            |                  |            |                  |                |
|                                           |                                                              | 00404000     |                       | 405             | . 10         |                   |                   | 0.50              | 0.05           | 0.10   |                | 440          |           | 47             | 0.0500                  | 0.40                       | 0.45       |                      |                                                           |            | 0.507      |                    | <u>162</u>        |         | < 0.010            |                  |            | < 0.50           | 1.7            |
| RG_FRSP2                                  | RG_FRSP2_WG_2019_12_03_NP                                    | 2019 12 03   | < 1.0                 | 165             | < 10         | 77.9              | < 0.10            | 2.52              | 2.95           | < 0.10 | < 0.10         | 118          | < 0.020   | 17             | 0.0566                  | 0.16                       | 0.15       | <u>0.27</u>          | < 0.050 51.6                                              | 5 < 0.0050 | 0.507      | < 0.50             |                   |         | < 0.010            |                  |            |                  | < 1.0          |
| RG ERSP3                                  |                                                              |              |                       |                 |              |                   |                   |                   |                |        |                |              |           |                |                         |                            |            |                      |                                                           |            |            |                    | <u>204</u><br>137 |         | < 0.010<br>< 0.010 |                  |            |                  | < 1.0<br>< 1.0 |
| RG_FRSP3                                  |                                                              |              |                       |                 |              |                   |                   |                   |                |        |                |              |           |                |                         |                            |            |                      |                                                           |            |            |                    | <u>137</u><br>158 |         | < 0.010            | < 0.30<br>< 0.30 |            | < 0.50<br>< 0.50 | 2.1            |
| RG_FRSP4                                  |                                                              |              |                       |                 |              |                   |                   |                   |                |        |                |              |           |                |                         |                            |            |                      |                                                           |            |            |                    | 143               |         | < 0.010            |                  |            |                  | < 1.0          |
|                                           |                                                              |              |                       |                 |              |                   |                   |                   |                |        |                |              |           |                |                         |                            |            |                      |                                                           |            |            |                    | 170               |         | < 0.010            |                  |            |                  | < 1.0          |
| RG_FRSP5                                  |                                                              |              |                       |                 |              |                   |                   |                   |                |        |                |              |           |                |                         |                            |            |                      |                                                           |            |            |                    | 142               |         | < 0.010            |                  |            |                  | < 1.0          |
|                                           |                                                              |              |                       |                 |              |                   |                   |                   |                |        |                |              |           |                |                         |                            |            |                      |                                                           |            |            |                    | 191               |         | < 0.010            |                  |            | < 0.50           |                |
| RG_FRSP6                                  |                                                              |              |                       |                 |              |                   |                   |                   |                |        |                |              |           |                |                         |                            |            |                      |                                                           |            |            |                    | 142               |         | < 0.010            |                  |            | < 0.50           |                |
| _                                         |                                                              |              |                       |                 |              |                   |                   |                   |                |        |                |              |           |                |                         |                            |            |                      |                                                           |            |            |                    | 192               |         | < 0.010            |                  |            |                  |                |
| Fording Flow and Load Accretic            | on                                                           |              |                       | 1               |              |                   | · · · ·           |                   |                |        |                |              |           |                |                         |                            |            |                      |                                                           |            |            |                    |                   |         |                    |                  |            |                  |                |
| RG_FORDING1                               | RG_FORDING1_WS_2019-10-24_NP                                 |              | < 1.0                 | 102             | < 10         | 41.3              | 0.90              | 1.22              | 3.49           | 0.16   | < 0.10         |              | < 0.020   |                | 0.0209                  | 0.12                       | < 0.10     |                      | < 0.050 20.1                                              |            |            |                    |                   |         |                    |                  |            |                  |                |
| RG_FORDING2                               | RG_FORDING2_WS_2019-10-24_NP                                 |              | 1.3                   | 102             | < 10         | 39.9              | 1.00              | 1.24              | 1.94           | 0.10   | < 0.10         |              | < 0.020   |                | 0.0186                  | 0.12                       | < 0.10     |                      | < 0.050 20.7                                              |            |            |                    |                   |         |                    |                  |            |                  |                |
| RG_FORDING3                               | RG_FORDING3_WS_2019-10-24_NP                                 |              | < 1.0                 | 102             | < 10         | 40.5              | 1.19              | 1.22              | 1.91           |        | < 0.10         |              | < 0.020   |                | 0.0171                  | 0.13                       | < 0.10     |                      | < 0.050 21.0                                              |            |            |                    |                   |         |                    |                  |            |                  | 1.6            |
| RG_FORDING4                               | RG_FORDING4_WS_2019-10-24_NP                                 |              | 1.3                   | 119             | < 10         | 49.9              | 1.33              | 1.54              | 2.07           | 0.10   |                |              | < 0.020   |                | 0.0226                  | 0.31                       | 0.12       |                      |                                                           |            |            |                    |                   |         |                    |                  |            |                  | 1.1            |
| RG_FORDING5<br>RG_FORDING6                | RG_FORDING5_WS_2019-10-24_NP<br>RG_FORDING6_WS_2019-10-24_NP |              | < 1.0<br>< 1.0        | 123<br>130      | < 10<br>< 10 | 51.0<br>56.3      | 2.00<br>3.77      | 1.54<br>1.72      | 2.08<br>2.03   |        | < 0.10         | 100<br>96.3  | < 0.020   |                | 0.0246                  | 0.12                       | 0.12       |                      | <ul><li>&lt; 0.050 28.7</li><li>&lt; 0.050 32.8</li></ul> |            |            |                    |                   |         |                    |                  |            |                  | < 1.0          |
| RG FORDING                                | RG FORDING6_WS_2019-10-24_NP                                 |              | < 1.0                 | 130             | < 10<br>< 10 | 57.6              | 4.46              | 1.72              | 2.03           |        |                | 96.3<br>97.8 |           |                | 0.0299                  | 0.11                       | 0.14       |                      | < 0.050 32.8                                              |            |            |                    |                   |         |                    |                  |            |                  | 1.0            |
| RG_FORDING8                               | RG FORDING8 WS 2019-10-24_NP                                 |              | 1.3                   | 135             | 13           | 59.5              | 4.40              | 1.84              | 2.09           |        |                | 97.3         |           |                | 0.0290                  | 0.11                       |            |                      | < 0.050 36.4                                              |            |            | _                  | _                 |         |                    |                  |            |                  | 1.4            |
| RG_FORDING9                               | RG FORDING9 WS 2019-10-25 NP                                 |              | 1.7                   | 134             | < 10         | 59.4              | 3.18              | 1.88              | 2.05           |        |                | 97.8         |           |                | 0.0398                  | 0.12                       | 0.14       |                      | < 0.050 36.4                                              |            |            |                    |                   |         |                    |                  |            |                  |                |
| _                                         | RG_DC1_2019-10-25                                            | Duplicate    | 1.2                   | 131             | < 10         | 60.1              | 3.23              | 1.91              | 2.15           | 0.12   |                | 97.6         |           |                | 0.0385                  | 0.15                       | 0.15       |                      | < 0.050 34.5                                              |            |            |                    |                   |         |                    |                  |            |                  | 1.5            |
|                                           | QA/QC RPD%                                                   |              | *                     | 2               | *            | 1                 | 2                 | 2                 | 5              | *      | *              | 0            | *         | *              | 3                       | *                          | *          | *                    | * 5                                                       | *          | 7          | *                  | 3                 | *       | *                  | *                | 2          | *                | *              |
| RG_FORDING10                              | RG_FORDING10_WS_2019-10-25_NP                                |              | < 1.0                 | 135             | < 10         | 63.6              | 1.40              | 2.23              | 2.17           | 0.21   | < 0.10         |              | < 0.020   |                | 0.0447                  | 0.14                       | 0.13       |                      | < 0.050 40.8                                              |            |            |                    |                   |         |                    |                  |            | < 0.50           | 1.7            |
| RG_FORDING11                              | RG_FORDING11_WS_2019-10-25_NP                                |              | 1.1                   | 128             | 27           | 65.2              | 4.59              | 1.97              | 1.65           |        |                | 77.2         |           |                |                         | 0.11                       | 0.11       |                      | < 0.050 36.0                                              |            |            |                    |                   |         | < 0.010            |                  |            |                  | 2.4            |
| RG_FORDING12                              | RG_FORDING12_WS_2019-10-25_NP                                |              | 1.4                   | 122             | 18           | 65.5              | 5.76              | 2.00              | 1.56           | 0.31   | < 0.10         |              | < 0.020   |                | 0.0600                  | 0.10                       | < 0.10     |                      | < 0.050 34.2                                              |            | 1          |                    |                   | < 0.010 |                    | < 0.30           |            |                  | 2.2            |
| RG_FORDING13                              | RG_FORDING13_WS_2019-10-25_NP                                |              | 1.9                   | 128             | 20           | 65.5              | 7.30              | 1.99              | 1.63           | 0.36   | 0.10           |              | < 0.020   |                | 0.0694                  | < 0.10                     | 0.10       |                      | < 0.050 35.8                                              |            |            |                    |                   | < 0.010 |                    | < 0.30           |            |                  | 2.8            |
| RG_FORDING14                              | RG_FORDING14_WS_2019-10-25_NP                                |              | 1.4                   | 112             | 29           | 42.5              | 11.4              | 1.70              | 1.59           |        | < 0.10         |              | < 0.020   |                | 0.0671                  | < 0.10                     | 0.12       |                      | < 0.050 35.9                                              |            |            |                    |                   |         | < 0.010            |                  |            |                  | 1.8            |
|                                           | RG_DC1-5_2019-10-25<br>QA/QC RPD%                            | Duplicate    | 2.4                   | 102             | 27           | 42.2              | 11.2<br>2         | 1.69              | 1.58           | 0.26   | < 0.10         | 80.4         |           |                | 0.0605                  | < 0.10                     | 0.11       |                      | < 0.050 32.0                                              |            |            | 3.34               |                   |         | < 0.010<br>*       | < 0.30           |            | < 0.50<br>*      | 1.8            |
|                                           |                                                              |              |                       | 9               |              | 1                 | 2                 | 1                 | 1              |        |                | 2            |           |                | 10                      |                            |            |                      |                                                           |            | 13         |                    | 4                 |         |                    |                  | 3          |                  | _              |

Associated ALS file(s): L2392199, L2392797, L2422351, L2422552.

All terms defined within the body of SNC-Lavalin's report.

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.
- n/a Denotes no applicable standard/guideline.
- \* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.

| BOLD   |  |
|--------|--|
| SHADED |  |
| BLUE   |  |

Concentration greater than BCWQG Aquatic Life Long-term Average (AW) guideline Concentration greater than BCWQG Aquatic Life Short-term Maximum (AW) guideline Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) <sup>a</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic").

<sup>b</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute").

- <sup>c</sup> Guideline is pH and temperature dependent.
- <sup>d</sup> Guideline is chloride dependent.
- <sup>e</sup> Guideline is hardness dependent.
- <sup>f</sup> Guideline is temperature, pH, DOC and hardness dependent.
- <sup>g</sup> Guideline is pH dependent.

h Total mercury guideline is based on the % of methylmercury present. WQG = 0.0001 / (MeHg/total Hg), where MeHg is mass (or concentration) of methyl mercury and THg. Guideline shown assumes MeHg<0.5% of Total Hg.

- <sup>1</sup> Criteria as minimum values. Criteria for early life stages is 9 mg/L and criteria for other life sates is 6 mg/L. Criteria for other life stages has been applied.
- <sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark.

e.g. Nitrate equation valid up to 500 mg/L hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                                        |                                        |              |         |         | P           | hysical  | Paramet   | ters          |                |                   |                                    |                   | Fiel   | d Param               | neters        |           |                  |            |                             |                   |                              |                   |                |            |            | Dissol                     | ved Inc                  | organics               | ;                    |                                 |         |              |         |                       |         | -             |
|----------------------------------------|----------------------------------------|--------------|---------|---------|-------------|----------|-----------|---------------|----------------|-------------------|------------------------------------|-------------------|--------|-----------------------|---------------|-----------|------------------|------------|-----------------------------|-------------------|------------------------------|-------------------|----------------|------------|------------|----------------------------|--------------------------|------------------------|----------------------|---------------------------------|---------|--------------|---------|-----------------------|---------|---------------|
|                                        |                                        |              |         | 0       |             | S        |           | solved Solids | spended Solids | ed Organic Carbon | n Reduction Potential<br>mperature | nductivity        | bidity |                       |               | σ         | Salinity (Field) | Alkalinity | a, Total (as N)             | as N)             | (N s                         | +Nitrite Nitrogen | Nitrogen-N     |            |            |                            | ved Inc                  | Bicarbonate (as CaCO3) | Carbonate (as CaCO3) | y, hydroxide (as cacus)<br>nate | te      | 9            |         | as CaCO3)<br>noschate |         | ganic Carbon  |
| Sample                                 | Sample                                 | Sample Date  | _       | Hardnes | Turbi       | Total    | Conduct   | Total Dis     | Total Su       | Dissolve          | Socidation<br>C Field Tem          | mo/S⊓<br>Tield Co | Fie    | Field DO              | E pri (Tiela) | Field TDS | T/bu<br>T/bu     | Total      | Ammonia,                    | Nitrate (         | Nitrite (a                   | T/B<br>T/D        | B Kjeldahl Nit | Nitroger   | Chloride   | Eluoride                   | Sulfate                  |                        |                      | Bicarbonat                      | Carbona | Hydroxi      | Bron    | Acidity (as           |         | Total Organic |
| Location<br>Primary Screening Criteria | U U                                    | (yyyy mm dd) | рН      | mg/L    | NTU me      | eq/L me  | eq/L μ5/0 | in ng/i       | L mg/L         | mg/∟              |                                    | µ3/cm             |        | ng/L p                |               | / mg/L    | mg/∟             | mg/∟       | mg/L                        | mg/L              | mg/L                         | ing/∟             | mg/∟           | mg/L       | mg/L       | µg/∟                       | mg/L                     | mg/∟ n                 | ig/L in              | g/L mg/l                        | _ mg/∟  | ing/L        | ng/L II | ng/L mg               | J/∟   m | ng/L m        |
| BCWQG Aquatic Life Long-term Ave       | erage (AW) <sup>a</sup>                |              | 6.5-9.0 | n/a     | n/a r       | n/a n    | n/a n/a   | a n/a         | n/a            | n/a               | n/a n/a                            | n/a               | n/a    | n/a 6.5               | 5-9 n/a       | a n/a     | n/a              | n/a        | 0.365-<br>1.97 <sup>°</sup> |                   | 0.02-<br>0.06 <sup>d</sup>   | n/a               | n/a            | n/a        | 150        | n/a                        | 128-<br>429 <sup>e</sup> | n/a                    | n/a r                | /a n/a                          | n/a     | n/a          | n/a r   | n/a n/                | ′a n    | n/a r         |
| BCWQG Aquatic Life Short-term Ma       | aximum (AW) <sup>b</sup>               |              | 6.5-9.0 | n/a     | n/a r       | n/a n    | n/a n/a   | a n/a         | n/a            | n/a               | n/a n/a                            | n/a               | n/a    | n/a 6.5               | 5-9 n/a       | a n/a     | n/a              | n/a        | 1.9-<br>24.5°               | 32.8              | 0.06-<br>0.18 <sup>d</sup>   | n/a               | n/a            | n/a        | 600        | 450-<br>1,870 <sup>e</sup> | n/a                      | n/a                    | n/a r                | /a n/a                          | n/a     | n/a          | n/a r   | n/a n/                | ′a n    | n/a r         |
| Secondary Screening Criteria: Co       | sta and de Bruyn (2021)                |              | n/a     | n/a     | n/a r       | n/a n    | n/a n/a   | a 1,00        | 0 n/a          | n/a               | n/a n/a                            | n/a               | n/a    | 6 / 9 <sup>i</sup> n/ | /a n/a        | a n/a     | n/a              | n/a        |                             |                   | 0.047-<br>0.177 <sup>d</sup> | n/a               | n/a            | n/a        | n/a        | n/a                        | 499                      | n/a                    | n/a r                | /a n/a                          | n/a     | n/a          | 7.8 r   | n/a n/                | ′a n    | n/a r         |
| Greenhouse Side Channel                |                                        |              |         | 11      |             |          |           |               |                |                   |                                    | 1 1               |        |                       |               | 1         | 1 1              |            |                             | I                 |                              | 1                 |                |            |            |                            |                          |                        |                      | 1                               |         |              | I       |                       |         | I             |
| RG_FRSC1                               | RG_FRSC1_WS_2020_02_28_NP              |              | 7.92    | 792     |             | -        |           |               |                |                   | 397 4.18                           | 1,430             | - 9    | 9.48 7.1              | 79 166        | .5 1,543  |                  |            |                             |                   | < 0.0010                     |                   | < 0.25         |            | 2.67       |                            |                          |                        |                      |                                 |         |              |         | 9.0 0.00              |         |               |
|                                        | RG_DUP1_WS_2020_02_28_NP<br>QA/QC RPD% | Duplicate    | 7.97    | 802     | 0.14 1<br>* | *        | 6.2 1,27  | 1,03          | ×              | 0.61              | 490 -                              | -                 | -      | · ·                   |               | -         | -                | 287        | *                           | <u>49.7</u><br>28 | 3                            | 49.7<br>28        | < 0.25<br>*    | 49.7<br>28 | 3.68<br>32 | 150                        | 362                      | 287 <                  | *                    | 1.0 350                         | < 5.0   | < 5.0 <<br>* | *       | 8.5 0.00              | J23 0.  | .69 < 0.      |
| RG_FRSC2                               | RG_FRSC2_WS_2020_02_28_NP              | 2020 02 28   | 8.34    | 785     | 0.15 1      | 59 1     | 5.9 1,30  | 0 1 01        | 0              | 9                 | 306 4.32                           | - 1 249           | - 1    | 047 7                 | 78 203        | .4 1,342  | - 1.05           | 295        | 0.0128                      | -                 | -                            | -                 | < 0.25         | -          | 2.59       | 156                        | 347                      | 288                    | 74 <                 | 1.0 351                         | < 5.0   | < 5.0 <      | 0.050   | 9.1 0.00              | 123 0   | 66 < 0        |
| RG_FRSC3                               | RG_FRSC3_WS_2020_02_28_NP              |              |         |         | < 0.10 1    |          |           |               |                |                   | 429 4.66                           |                   |        |                       |               | .4 1,463  |                  |            |                             | 38.5              |                              | 38.5              | < 0.25         |            |            |                            |                          |                        |                      |                                 |         |              |         | 9.4 0.00              |         |               |
| RG_FRSC4                               | RG_FRSC4_WS_2020_02_28_NP              |              | 8.31    |         |             |          |           |               |                |                   | 337 4.5                            |                   |        |                       |               |           |                  |            | 0.0117                      |                   |                              | 41.4              |                | 42.5       |            |                            |                          |                        |                      |                                 |         |              |         | 8.5 0.00              |         |               |
| RG_FRSC5                               | RG_FRSC5_WS_2020_02_28_NP              |              | 8.25    |         | 0.31 1      |          | 7.6 1,44  |               |                |                   | 461 5.23                           |                   |        |                       |               | .8 1,531  |                  |            |                             | 49.7              |                              |                   | < 0.25         |            | 3.74       |                            |                          |                        |                      |                                 |         |              |         | 0.2 0.00              |         |               |
| RG_FRSC6                               | RG_FRSC6_WS_2020_02_28_NP              | 2020 02 28   |         |         |             |          |           |               |                |                   | 472 4.92                           |                   |        |                       |               | .4 1,731  |                  |            |                             |                   |                              |                   | < 0.25         |            |            |                            |                          |                        |                      |                                 |         |              |         | 0.9 0.00              |         |               |
| Field Bank                             |                                        | 1            |         | ı — I   | I           |          |           |               |                |                   | 1                                  |                   |        | 1                     |               | · ·       | ı                | 1          |                             |                   |                              |                   |                |            |            | . I                        |                          | ı — I —                |                      |                                 |         | I            |         | 1                     |         |               |
| RG_FRDP2_WG_2019_12 04 NP              | RG_DP_FIELD_WG_2019_12_04_NP           | 2019 12 04   | 5.44    |         | < 0.10      | -        | - < 2.    | .0 < 10       | 0 < 1.0        | -                 | 422 -                              | -                 | -      |                       |               | -         | -                | < 1.0 <    | < 0.0050 <                  | 0.0050 <          | < 0.0010 <                   | 0.0051            | < 0.050        | < 0.050    | < 0.50     | < 20                       | < 0.30                   | < 1.0 <                | 1.0 <                | 1.0 < 5.0                       | ) < 5.0 | < 5.0 <      | 0.050   | 1.7 < 0.0             | 010     |               |
| RG_FRSC5_WS_2020_02_28_NP              | RG_BLNK1_WS_2020_02_28_NP              | 2020 02 28   | 5.35    |         | < 0.10      | -        | - <2.     | .0 < 10       | 0 < 1.0        | -                 | 497 -                              | -                 | -      |                       |               | -         | -                | < 1.0      | 0.0098 <                    | 0.0050 <          | < 0.0010 <                   | 0.0051            | < 0.050        | < 0.050    | < 0.50     | < 20                       | < 0.30                   | < 1.0 <                | 1.0 <                | 1.0 < 5.0                       | ) < 5.0 | < 5.0 <      | 0.050   | 1.4 < 0.0             | 010     |               |
| Filter Blank                           | •                                      |              |         | • •     |             |          |           |               |                | •                 | ,                                  | • •               |        |                       | •             |           | • •              |            |                             |                   |                              |                   |                |            |            | • •                        |                          |                        |                      |                                 |         |              |         |                       | ,       |               |
| -<br>RG_FRDP2_WG_2019_12_04_NP         | RG_DP_FILTER_WG_2019_12_04_NP          | 2019 12 04   | -       | < 0.50  | -           | -        |           | -             | -              | < 0.50            |                                    | -                 | -      |                       |               | -         | -                | -          | -                           | -                 | -                            | -                 | -              | -          | -          | -                          | -                        | -                      | -                    |                                 | -       | -            | -       |                       |         | -             |
| Trip Bank                              |                                        |              |         |         |             | <u> </u> |           |               |                |                   |                                    |                   |        |                       | ·             |           |                  |            |                             |                   |                              |                   |                |            |            |                            |                          |                        |                      |                                 |         |              |         |                       |         | · · · ·       |
|                                        | RG_TRP_2019-10-25                      | 2019 10 25   |         |         |             |          | < 0 < 2.  | .0 < 10       | 0 < 1.0        | < 0.50            | 408 -                              | -                 | -      |                       |               | -         | -                | < 1.0 <    | : 0.0050 <                  | 0.0050 <          | < 0.0010 <                   | 0.0051            | < 0.050        | < 0.050    | < 0.50     | < 20                       | < 0.30                   | < 1.0 <                | 1.0 <                | 1.0 < 5.0                       | ) < 5.0 | < 5.0 <      | 0.050   | 1.6 < 0.0             | 010     |               |
|                                        | RG_TRP1_2019-10-23                     | 2019 10 23   |         |         |             |          | < 0 < 2.  | .0 < 10       | 0 < 1.0        | < 0.50            | 409 -                              | -                 | -      |                       |               | -         | -                | < 1.0 <    | : 0.0050 <                  | 0.0050 <          | < 0.0010 <                   | 0.0051            | < 0.050        | < 0.050    | < 0.50     | < 20                       | < 0.30                   | < 1.0 <                | 1.0 <                | 1.0 < 5.0                       | ) < 5.0 | < 5.0 <      | 0.050 2 | 2.1 < 0.0             | 010     |               |
|                                        | RG_DP_TRIP_WG_2019_12_04_NP            | 2019 12 04   |         |         |             |          |           |               |                |                   |                                    | -                 | -      |                       |               | -         |                  |            | < 0.0050 <                  |                   |                              |                   |                |            |            |                            |                          |                        |                      |                                 |         |              |         |                       |         |               |
|                                        | RG TRP1 2020 02 27                     | 2020 02 27   | 5.33    | 0.87    | < 0.10      | < 0 <    | < 0 < 2.  | .0 < 10       | 0 < 1.0        | < 0.50            | 417 -                              | -                 | -      |                       |               | -         | _                | < 10       | 0 0159 <                    | 0 0050 <          | < 0.0010 <                   | 0.0051            | < 0.050        | < 0.050    | < 0.50     | < 20                       | < 0.30                   | < 1.0 <                | 10 <                 | 10 < 50                         | < 5.0   | < 50 <       | 0.050   | 12 < 00               | 0010    |               |

Associated ALS file(s): L2371365, L2372312, L2372504, L2392199, L2392797, L2422351, L2422552. All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.



Concentration greater than BCWQG Aquatic Life Long-term Average (AW) guideline Concentration greater than BCWQG Aquatic Life Short-term Maximum (AW) guideline Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

<sup>a</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic").

 $^{\rm b}\,$  Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute").

<sup>c</sup> Guideline is pH and temperature dependent.

<sup>d</sup> Guideline is chloride dependent.

<sup>e</sup> Guideline is hardness dependent.

 $^{\rm f}\,$  Guideline is temperature, pH, DOC and hardness dependent.

<sup>g</sup> Guideline is pH dependent.

<sup>h</sup> Total mercury guideline is based on the % of methylmercury present. WQG = 0.0001 / (MeHg/total Hg), where MeHg is mass (or concentration) of methyl mercury and THg. Guideline shown assumes MeHg<0.5% of Total Hg.

<sup>1</sup> Criteria as minimum values. Criteria for early life stages is 9 mg/L and criteria for other life sates is 6 mg/L. Criteria for other life stages has been applied.

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                                                          | -          |         |          |          |            |         |       |                    |         |             |        |                     |       |                     |       |        | I Metals           |                      |           |                              |          |            |       |                    |        |         |          |         |        |        |        |                    |
|----------------------------------------------------------|------------|---------|----------|----------|------------|---------|-------|--------------------|---------|-------------|--------|---------------------|-------|---------------------|-------|--------|--------------------|----------------------|-----------|------------------------------|----------|------------|-------|--------------------|--------|---------|----------|---------|--------|--------|--------|--------------------|
|                                                          |            |         |          |          |            |         |       |                    |         |             |        |                     |       |                     |       |        |                    |                      |           |                              |          |            |       |                    |        |         |          |         |        |        |        |                    |
|                                                          |            |         |          |          |            |         |       |                    |         |             |        |                     |       |                     |       |        |                    |                      |           |                              |          |            |       |                    |        |         |          |         |        |        |        |                    |
|                                                          |            |         |          |          |            |         |       |                    |         |             |        |                     |       |                     |       |        |                    |                      |           |                              |          |            |       |                    |        |         |          |         |        |        |        |                    |
|                                                          |            |         |          |          |            |         |       |                    |         |             |        |                     |       |                     |       |        |                    |                      |           |                              |          |            |       |                    |        |         |          |         |        |        |        |                    |
|                                                          |            |         |          |          |            |         |       |                    |         |             |        |                     |       |                     |       |        |                    |                      |           |                              |          |            |       |                    |        |         |          |         |        |        |        |                    |
|                                                          |            |         |          |          |            |         |       |                    |         |             |        |                     |       |                     |       |        |                    |                      |           |                              |          |            |       |                    |        |         |          |         |        |        |        |                    |
|                                                          |            |         |          |          |            |         |       |                    |         |             |        |                     |       |                     |       |        |                    |                      |           |                              |          |            |       |                    |        |         |          |         |        |        |        |                    |
|                                                          |            |         |          |          |            |         |       |                    |         |             |        |                     |       |                     |       |        |                    |                      |           |                              |          |            |       |                    |        |         |          |         |        |        |        |                    |
|                                                          |            |         |          |          |            |         |       |                    |         |             |        |                     |       |                     |       |        |                    |                      |           |                              |          |            |       |                    |        |         |          |         |        |        |        |                    |
|                                                          |            |         | 1        |          |            |         |       |                    |         |             |        |                     |       |                     |       |        |                    |                      | ε         | S                            |          |            |       |                    |        |         |          |         |        |        |        |                    |
|                                                          |            | ε       | >        |          | 5          |         |       | E                  |         | Ε           |        |                     |       |                     |       | E I    | ese                |                      | 2         | lo lo                        | E        | -          |       |                    |        | F       |          | _       |        | _      |        | ε                  |
|                                                          |            | inu     | no i     | 2 E      | liur       | ft      | -     | iur                | Ę       | nic         | ÷      | er                  |       |                     | Ε     | esi    | ano                | Σ <sub>Γ</sub>       | g -       | - da                         | sir      | iun        | ç     |                    | Ξ      | tin     | 'n       | ш       |        | μn     | 5      | diu                |
|                                                          |            | E       | Antir    | riu ac   | rylli      | E S     | I.    | μ                  | lci     | ē           | ba     | Copp                | Ę     | ad                  | hit   | agn    | Bug                | ju j                 | <u>Š</u>  |                              | tas      | len        | ico   | vei                | dir    | Lon     | de la    | alli    | _      | an     | ani    | 2 Ju               |
|                                                          | ample Date |         |          |          | B          | ä       | B     | ပိ                 | ů       | ъ           | ပိ     |                     | lron  | Le                  | Ë     | Ň      | ž                  | ž :                  | ž i       | ž È                          | P        | s          | Si    | Si                 | Š      | 20<br>C | ร        | Ę       | Tin    | Tita   |        | S i⊒               |
|                                                          | yyy mm dd) | μg/L μ  | ιg/L μg  | /L µg/   | L µg/L     | μg/L    | μg/L  | µg/L               | µg/L    | µg/L        | µg/L   | µg/L                | µg/L  | µg/L                | µg/L  | µg/L   | µg/L               | μg/L μ               | g/L µç    | g/L µg/                      | /L µg/L  | μg/L       | µg/L  | µg/L               | µg/L µ | µg/L    | µg/L     | µg/L    | µg/L   | µg/L   | μg/L μ | ıg/L μg/L          |
| Primary Screening Criteria                               |            |         |          |          |            |         | 1     |                    |         |             |        |                     |       |                     |       |        | 707                |                      |           |                              |          |            |       |                    |        |         |          |         |        |        |        | '                  |
| BCWQG Aquatic Life Long-term Average (AW) <sup>a</sup>   |            | n/a     | 9 n      | /a 1,00  | 0 0.13     | n/a     | 1,200 | n/a                | n/a     | 1 (Cr(+6))  | 4      | n/a                 | n/a   | 3-19.6 <sup>e</sup> | n/a   | n/a    | 767-               | 0.02 <sup>h</sup> 1, | 000 25-   | 150 <sup>e</sup>             |          |            |       | 0.05-              | n/a    | n/a     | n/a      | 0.8     | n/a    | n/a    | 8.5 r  | n/a 7.5-           |
|                                                          |            |         |          |          |            |         |       |                    |         |             |        |                     |       |                     |       |        | 2,000              |                      |           |                              |          |            |       | 1.5 <sup>e</sup>   |        |         |          |         |        |        |        | 187.5 <sup>e</sup> |
| BCWQG Aquatic Life Short-term Maximum (AW) <sup>b</sup>  |            | n/a     | n/a ł    | 5 n/a    | n/a        | n/a     | n/a   | n/a                | n/a     | n/a         | 110    | n/a                 | 1,000 | 3-417°              | n/a   |        | 815-               | n/a 2,               | 000 n     | /a n/a                       | a n/a    | n/a        | n/a   | 0.1-3 <sup>e</sup> | n/a    | n/a     | n/a      | n/a     | n/a    | n/a    | n/a r  | n/a 33-            |
|                                                          |            |         |          |          |            |         |       |                    |         |             |        |                     |       |                     |       |        | 3,390 <sup>e</sup> |                      |           |                              |          |            |       |                    |        |         |          |         |        |        |        | 340.5 <sup>e</sup> |
| Secondary Screening Criteria: Costa and de Bruyn (2021)  |            | n/a     | n/a n    | /a n/a   | a n/a      | n/a     | n/a   | 1.041 <sup>j</sup> | n/a     | 10 (Cr(+6)) | n/a    | n/a                 | n/a   | n/a                 | 253   | n/a    | n/a                | n/a r                |           | 6.9-<br>4.5 <sup>j</sup> n/a | a n/a    | 70         | n/a   | n/a                | n/a    | n/a     | n/a      | n/a     | n/a    | n/a    | 352 r  | n/a n/a            |
| Greenhouse Side Channel                                  |            |         |          | 1        |            |         | 1     |                    |         |             |        |                     |       |                     |       |        |                    |                      | 10        | 1.0                          |          | 1          |       |                    |        |         |          |         |        |        |        |                    |
| RG_FRSC1 RG_FRSC1_WS_2020_02_28_NP 2                     | 2020 02 28 | 3.6 <   | 0.10 0.  | 13 126   | 6 < 0.020  | < 0.050 | 14    | 0.0452             | 190,000 | 0.16        | 0.15   | < 0.50              | < 10  | < 0.050             | 44.1  | 84,300 | 0.54 <             | 0.0050 0.            | 630 < 0   | 0.50 < 5                     | 0 2,300  | 115        | 2,530 | < 0.010            | 3,270  | 222 1:  | 36,000   | < 0.010 | < 0.10 | < 0.30 | 4.59 < | 0.50 < 3.0         |
|                                                          |            | < 3.0 < |          |          |            | < 0.050 |       |                    | 181,000 | 0.16        |        | < 0.50              | < 10  | < 0.050             |       | 81,500 |                    | 0.0050 0.            |           |                              | 0 2,280  |            |       | < 0.010            |        | 222 13  |          |         |        | < 0.30 |        |                    |
| QA/QC RPD%                                               | ·          | *       | * :      | 4        |            | *       | *     | 10                 | 5       | *           | *      | *                   | *     | *                   | 3     | 3      | 4                  | *                    | 0         | * *                          | 1        | 0          | 2     | *                  | 2      | 0       | 4        | *       | *      | *      | 1      | * *                |
| RG_FRSC2 RG_FRSC2_WS_2020_02_28_NP 2                     | 2020 02 28 | < 3.0 < | 0.10 0.  | 12 129   | 9 < 0.020  | < 0.050 | 15    | 0.0438             | 185,000 | 0.15        | 0.15   | < 0.50              | < 10  | < 0.050             | 45.1  | 83,500 | 0.31 <             | 0.0050 0.            | 641 < 0   | ).50 < 5                     | 0 2,320  | 116        | 2,540 | < 0.010            | 3,230  | 218 17  | 37,000   | < 0.010 | < 0.10 | < 0.30 | 4.71 < | 0.50 < 3.0         |
| RG_FRSC3 RG_FRSC3_WS_2020_02_28_NP 2                     | 2020 02 28 | < 3.0 < | 0.10 0.  | 13 13    | 0 < 0.020  | < 0.050 | 14    | 0.0511             | 185,000 | 0.20        | 0.15   | < 0.50              | 14    | < 0.050             | 46.0  | 84,300 | 0.19 <             | 0.0050 0.            | 661 < 0   | 0.50 < 5                     | 0 2,380  | <u>120</u> | 2,530 | < 0.010            | 3,240  | 220 13  | 37,000 · | < 0.010 | < 0.10 | < 0.30 | 4.74 0 | .52 48.1           |
| RG_FRSC4 RG_FRSC4_WS_2020_02_28_NP 2                     | 2020 02 28 | 4.0 <   | 0.10 0.  | 13 129   | 9 < 0.020  | < 0.050 | 13    | 0.0531             | 186,000 | 0.18        | 0.15   | < 0.50              | < 10  | < 0.050             | 48.4  | 87,100 | 0.31 <             | 0.0050 0.            | 661 < 0   | 0.50 < 5                     | 0 2,510  | <u>128</u> | 2,640 | < 0.010            | 3,400  | 220 1:  | 34,000   | < 0.010 | < 0.10 | < 0.30 | 5.08 0 | 0.50 < 3.0         |
| RG_FRSC5 RG_FRSC5_WS_2020_02_28_NP 2                     | 2020 02 28 | 6.7 <   | 0.10 0.  | 12 140   | 0 < 0.020  | < 0.050 | 13    | 0.0522             | 194,000 | 0.20        | 0.11   | < 0.50              | 12    | < 0.050             | 49.8  | 90,300 | 0.53 <             | 0.0050 0.            | 576 < 0   | 0.50 < 5                     | 50 2,610 | 145        | 2,460 | < 0.010            | 3,690  | 214 1:  | 34,000   | < 0.010 | < 0.10 | < 0.30 | 5.70 < | 0.50 < 3.0         |
| RG_FRSC6 RG_FRSC6_WS_2020_02_28_NP 2                     | 2020 02 28 | < 3.0 < | 0.10 0.  | 12 14    | 0 < 0.020  | < 0.050 | 13    | 0.0530             | 191,000 | 0.16        | 0.11   | < 0.50              | < 10  | < 0.050             | 50.0  | 89,000 | 0.22 <             | 0.0050 0.            | 602 < 0   | 0.50 < 5                     | 0 2,570  | <u>144</u> | 2,500 | < 0.010            | 3,740  | 212 1:  | 33,000   | < 0.010 | < 0.10 | < 0.30 | 5.69 < | 0.50 < 3.0         |
| Field Bank                                               | ·          | ·       |          |          |            |         |       |                    |         |             |        |                     |       |                     |       |        |                    |                      |           |                              | •        |            |       |                    |        |         |          |         |        |        |        |                    |
| RG_FRDP2_WG_2019_12_04_NP_RG_DP_FIELD_WG_2019_12_04_NP_2 | 2019 12 04 | -       | - ·      |          | -          | -       | -     | -                  | -       | -           | -      | -                   | -     | -                   | -     | -      | -                  | -                    | -         |                              | -        | -          | -     | -                  | -      | -       | -        | -       | -      | -      | -      | '                  |
| RG_FRSC5_WS_2020_02_28_NP RG_BLNK1_WS_2020_02_28_NP 2    | 2020 02 28 | < 3.0 < | 0.10 < 0 | .10 < 0. | 10 < 0.020 | < 0.050 | < 10  | < 0.0050           | < 50    | < 0.10      | < 0.10 | < 0.50 <sup>a</sup> | < 10  | < 0.050             | < 1.0 | < 5.0  | < 0.10 <           | 0.0050 < 0           | 0.050 < 0 | 0.50 < 5                     | 50 < 100 | < 0.050    | < 50  | < 0.010            | < 50 < | 0.20 •  | < 500    | < 0.010 | < 0.10 | < 0.30 | 0.01 < | 0.50 < 3.0         |
| Filter Blank                                             |            |         | ·        |          |            |         |       |                    |         |             |        |                     |       |                     | ·     |        |                    | ·                    | ·         | ·                            |          |            | ·     |                    |        |         |          |         |        |        | ·      |                    |
| - RG_EBLK_2019-10-25 2                                   | 2019 10 25 | -       | - ·      | · -      | -          | -       | -     | -                  | -       | -           | -      | -                   | -     | -                   | -     | -      | -                  | -                    | -         |                              | -        | -          | -     | -                  | -      | -       | -        | -       | -      | -      | -      |                    |
| RG_FRDP2_WG_2019_12_04_NP_RG_DP_FILTER_WG_2019_12_04_NP2 | 2019 12 04 | -       | -        |          | -          | -       | -     | -                  | -       | -           | -      | -                   | -     | -                   | -     | -      | -                  | -                    | -         |                              | -        | -          | -     | -                  | -      | -       | -        | -       | -      | -      | -      |                    |
| Trip Bank                                                |            |         |          |          | 1          |         |       |                    |         |             |        |                     |       |                     |       |        |                    |                      |           |                              |          |            |       |                    |        |         |          |         |        |        |        |                    |
|                                                          |            |         |          |          | 10 < 0.020 |         |       |                    |         | < 0.10      | < 0.10 | < 0.50              | < 10  | < 0.050             |       |        |                    |                      |           |                              | 60 < 100 |            |       |                    |        |         |          |         |        |        |        | 0.50 < 3.0         |
| RG_TRP1_2019-10-23 2                                     | 2019 10 23 | < 3.0 < | 0.10 < 0 | .10 < 0. | 10 < 0.020 | < 0.050 | < 10  | < 0.0050           | < 50    | < 0.10      | < 0.10 | < 0.50              | < 10  | < 0.050             | < 1.0 | < 5.0  | < 0.10 <           | 0.0050 < 0           | 0.050 < 0 | 0.50 < 5                     | 50 < 100 | < 0.050    | < 50  | < 0.010            | < 50 < | 0.20 <  | < 500    | < 0.010 | < 0.10 | < 0.30 | 0.01 < | 0.50 < 3.0         |
|                                                          | 2019 12 04 |         |          | · -      |            | -       | -     | -                  | -       | -           | -      | -                   | -     | -                   | -     | -      | -                  | -                    | -         |                              | -        | -          | -     | -                  | -      | -       | -        | -       | -      | -      | -      | '                  |
| RG_TRP1_2020_02_27 2                                     | 2020 02 27 | < 3.0 < | 0.10 < 0 | .10 < 0. | 10 < 0.020 | < 0.050 | < 10  | < 0.0050           | < 50    | < 0.10      | < 0.10 | < 0.50              | < 10  | < 0.050             | < 1.0 | < 5.0  | < 0.10 <           | 0.0050 < 0           | .050 < 0  | ).50 < 5                     | 60 < 100 | < 0.050    | < 50  | < 0.010            | < 50 < | 0.20    | < 500    | < 0.010 | < 0.10 | < 0.30 | 0.01 < | 0.50 < 3.0         |

Associated ALS file(s): L2392199, L2392797, L2422351, L2422552.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.



#### Concentration greater than BCWQG Aquatic Life Long-term Average (AW) guideline Concentration greater than BCWQG Aquatic Life Short-term Maximum (AW) guideline

Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021)

<sup>a</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic").

<sup>b</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute").

<sup>c</sup> Guideline is pH and temperature dependent.

<sup>d</sup> Guideline is chloride dependent.

<sup>e</sup> Guideline is hardness dependent.

 $^{\rm f}\,$  Guideline is temperature, pH, DOC and hardness dependent.

<sup>g</sup> Guideline is pH dependent.

<sup>h</sup> Total mercury guideline is based on the % of methylmercury present. WQG = 0.0001 / (MeHg/total Hg), where MeHg is mass (or concentration) of methyl mercury and THg. Guideline shown assumes MeHg<0.5% of Total Hg. <sup>1</sup> Criteria as minimum values. Criteria for early life stages is 9 mg/L and criteria for other life sates is 6 mg/L. Criteria for other life stages has been applied.

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark. e.g. Nitrate equation valid up to 500 mg/L hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

|                                  |                                                                  |                             | Dissolved Metals           |                   |                |                           |                               |                               |                    |                  |                         |             |                  |      |                         |                  |                  |                               |           |             |                   |            |                           |              |               |                  |              |                      |                |
|----------------------------------|------------------------------------------------------------------|-----------------------------|----------------------------|-------------------|----------------|---------------------------|-------------------------------|-------------------------------|--------------------|------------------|-------------------------|-------------|------------------|------|-------------------------|------------------|------------------|-------------------------------|-----------|-------------|-------------------|------------|---------------------------|--------------|---------------|------------------|--------------|----------------------|----------------|
|                                  |                                                                  |                             |                            |                   |                |                           |                               |                               |                    |                  |                         |             |                  |      |                         |                  |                  |                               |           |             |                   |            |                           |              |               |                  |              |                      |                |
| Sample<br>Location               | Sample<br>ID                                                     | Sample Date<br>(yyyy mm dd) | ba Dissolved Aluminum<br>T | Bissolved Calcium | Dissolved Iron | mg<br>Dissolved Magnesium | 여<br>bissolved Manganese<br>기 | B<br>Dissolved Potassium<br>T | B Dissolved Sodium | Ла́й<br>Лatimony | Лб <del>и</del><br>Л/би | hâh<br>T/âh | ) Beryllium<br>7 | Hgun | Сadmium<br>7/бћ         | Chromium<br>7/6t | Д<br>Соbait<br>Т | Copper<br>Ng/T                | hā\r hā   | /// Lunaria | iğh<br>Molybdenum |            |                           | hđy<br>River | Thallium<br>T | Titanium<br>7/бћ | Dranium<br>T | ш<br>Хапаdiu<br>На/Г | о<br>Л<br>ир/L |
| Primary Screening Criteria       |                                                                  |                             |                            | 1                 | 1              |                           |                               |                               |                    | 1                | 1                       |             |                  | 1    | 1                       |                  |                  |                               |           |             |                   |            |                           |              |               |                  |              | 1                    |                |
| BCWQG Aquatic Life Long-term Av  | verage (AW) <sup>a</sup>                                         |                             | 8.98-50 <sup>g</sup>       | n/a               | n/a            | n/a                       | n/a                           | n/a                           | n/a                | n/a              | n/a                     | n/a         | n/a              | n/a  | 0.0176-457 <sup>e</sup> | n/a              | n/a              | 0.2 <b>-</b> 1.5 <sup>f</sup> | n/a r     | /a n/a      | n/a               | a n/a      | a 2 <sup>k</sup>          | n/a          | n/a           | n/a              | n/a          | n/a                  | n/a            |
| BCWQG Aquatic Life Short-term Ma | laximum (AW) <sup>b</sup>                                        |                             | 27.4-100 <sup>g</sup>      | n/a               | 350 (max)      | n/a                       | n/a                           | n/a                           | n/a                | n/a              | n/a                     | n/a         | n/a              | n/a  | 0.038-2.8 <sup>e</sup>  | n/a              | n/a              | 0.9-10 <sup>f</sup>           | n/a r     | /a n/a      | n/a               | n/a        | a n/a                     | n/a          | n/a           | n/a              | n/a          | n/a                  | n/a            |
| Secondary Screening Criteria: Co | osta and de Bruyn (2021)                                         |                             | n/a                        | n/a               | n/a            | n/a                       | n/a                           | n/a                           | n/a                | n/a              | n/a                     | n/a         | n/a              | n/a  | 1.041 <sup>j</sup>      | 10 (Cr(+6))      | n/a              | n/a                           | n/a 2     | 53 n/a      | n/a               | 148<br>164 | .8-<br>.5 <sup>j</sup> 70 | n/a          | n/a           | n/a              | 352          | n/a                  | n/a            |
| Greenhouse Side Channel          |                                                                  |                             |                            |                   |                |                           |                               |                               |                    |                  |                         |             |                  |      |                         |                  |                  |                               |           |             |                   |            |                           |              |               |                  |              |                      |                |
| RG_FRSC1                         |                                                                  |                             |                            |                   |                |                           |                               |                               |                    |                  |                         |             |                  |      |                         |                  |                  |                               |           |             |                   |            |                           | < 0.010      |               |                  |              |                      |                |
|                                  | RG_DUP1_WS_2020_02_28_NP                                         | Duplicate                   | < 1.0                      | 185               | < 10           | 82.8                      | 0.44                          | 2.32                          | 3.16               |                  | < 0.10                  | 137         | < 0.020          |      | 0.0510                  | 0.16             |                  |                               | < 0.050 4 |             |                   |            | 50 <u>126</u>             |              |               |                  |              | < 0.50               |                |
|                                  | QA/QC RPD%                                                       |                             | *                          | 2                 | *              | 0                         | *                             | 1                             | 3                  | *                | *                       | 1           | *                | *    | 6                       | *                | *                | *                             | *         | 6 *         | 4                 | *          | 1                         | *            | *             | *                | •            | *                    | *              |
| RG_FRSC2                         |                                                                  |                             |                            |                   |                |                           |                               |                               |                    |                  |                         |             |                  |      |                         |                  |                  |                               |           |             |                   |            | <u>126</u>                |              | < 0.010       |                  |              |                      | < 1.0          |
| RG_FRSC3                         |                                                                  |                             |                            |                   |                |                           |                               |                               |                    |                  |                         |             |                  |      |                         |                  |                  |                               |           |             |                   |            | <u>137</u>                |              |               |                  |              |                      | < 1.0          |
| RG_FRSC4                         |                                                                  |                             |                            |                   |                |                           |                               |                               |                    |                  |                         |             |                  |      |                         |                  |                  |                               |           |             |                   |            | <u>147</u>                |              | < 0.010       |                  |              |                      | < 1.0          |
| RG_FRSC5                         |                                                                  |                             |                            |                   |                |                           |                               |                               |                    |                  |                         |             |                  |      |                         |                  |                  |                               |           |             |                   |            | <u>166</u>                |              | < 0.010       |                  |              |                      | < 1.0          |
| RG_FRSC6                         |                                                                  |                             |                            | 1                 |                |                           |                               |                               |                    |                  |                         |             |                  |      |                         |                  |                  |                               |           |             |                   |            | <u>160</u>                | < 0.010      | < 0.010       | < 0.30           | 5.51         | < 0.50               | 1.3            |
|                                  |                                                                  | 2019 12 04                  |                            | 1                 |                |                           |                               |                               |                    | 1                |                         |             |                  | 1    |                         |                  | 1                |                               |           |             |                   |            |                           |              |               |                  |              |                      |                |
|                                  | RG_DP_FIELD_WG_2019_12_04_NP           RG_BLNK1_WS_2020_02_28_NP | 2019 12 04                  | -                          | -                 | -              | -                         | -                             | -                             | -                  | -                | -                       | -           | -                | -    | -                       | -                | -                | -                             | -         |             | -                 | -          | -                         | -            | -             | -                | -            | -                    | -              |
| Filter Blank                     | NG_DLINN1_WS_2020_02_28_NP                                       | 2020 02 28                  | -                          | -                 | -              | -                         | -                             | -                             | -                  | -                | -                       | -           | -                | -    | -                       | -                | -                | -                             |           |             | -                 | -          | -                         |              | -             | -                | -            | -                    | -              |
|                                  | RG EBLK 2019-10-25                                               | 2019 10 25                  | < 1.0                      | < 0.050           | < 10           | < 0.0050                  | < 0.10                        | < 0.10                        | < 0.050            | < 0.10           | < 0.10                  | < 0.10      | < 0.020          | < 10 | < 0.0050                | < 0.10           | < 0.10           | 0.23                          | < 0.050 < | 10 < 0.00   | 50 < 0.0          | 50 < 0     | 50 < 0.05                 | 0 < 0.010    | < 0.010       | < 0.30           | < 0.010      | < 0.50               | < 1.0          |
| RG FRDP2 WG 2019 12 04 NF        | P RG DP FILTER WG 2019 12 04 NP                                  |                             | 1.4                        | < 0.050           |                | < 0.0050                  |                               | < 0.10                        |                    |                  |                         |             |                  |      |                         |                  |                  |                               | 0.060 <   |             |                   |            |                           |              |               |                  |              |                      | 1.0            |
| Trip Bank                        |                                                                  | 2010 12 04                  | 1.7                        | . 0.000           | - 10           |                           | 0.07                          | - 0.10                        | . 0.000            | - 0.10           | . 0.10                  | 0.10        | 0.020            | 10   | 10.0000                 | - 0.10           | . 0. 10          | 0.01                          | 0.000     |             | 00 - 0.0          | 55 - 10.   | 0.00                      | 0.010        | - 0.010       | - 0.00           | 1 0.010      |                      | 1.0            |
|                                  | RG_TRP_2019-10-25                                                | 2019 10 25                  | < 1.0                      | < 0.050           | < 10           | < 0.0050                  | < 0.10                        | < 0.10                        | < 0.050            | < 0.10           | < 0.10                  | < 0.10      | < 0.020          | < 10 | < 0.0050                | < 0.10           | < 0.10           | 0.52                          | < 0.050 < | 1.0 < 0.00  | 50 < 0.0          | 50 < 0.    | 50 < 0.05                 | 0 < 0.010    | < 0.010       | < 0.30           | < 0.010      | < 0.50               | < 1.0          |
|                                  | RG_TRP1_2019-10-23                                               | 2019 10 23                  | < 1.0                      | < 0.050           |                | < 0.0050                  |                               | < 0.10                        | < 0.050            |                  |                         | < 0.10      |                  |      |                         | < 0.10           |                  |                               | < 0.050 < |             |                   |            |                           |              |               |                  |              |                      |                |
|                                  | <br>RG_DP_TRIP_WG_2019_12_04_NP                                  | 2019 12 04                  | < 1.0                      | < 0.050           | < 10           | < 0.0050                  |                               | < 0.10                        | < 0.050            |                  |                         | < 0.10      |                  |      |                         |                  |                  |                               | < 0.050 < |             |                   |            |                           |              |               |                  |              |                      |                |
|                                  | RG_TRP1_2020_02_27                                               | 2020 02 27                  | < 1.0                      | 0.350             | < 10           | < 0.0050                  |                               | < 0.10                        |                    |                  |                         | < 0.10      |                  |      |                         |                  |                  |                               | < 0.050 < |             |                   |            |                           |              |               |                  |              |                      | 1.7            |
| ·                                | · ·                                                              |                             |                            |                   |                |                           |                               |                               |                    |                  |                         |             |                  |      |                         |                  |                  |                               | · · ·     |             |                   |            |                           |              |               |                  | ·            |                      |                |

Associated ALS file(s): L2392199, L2392797, L2422351, L2422552.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

RDL Denotes reported detection limit.



Concentration greater than BCWQG Aquatic Life Long-term Average (AW) guideline Concentration greater than BCWQG Aquatic Life Short-term Maximum (AW) guideline Concentration greater than Secondary Screening Criteria: Costa and de Bruyn (2021) <sup>a</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic").

<sup>b</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute").

<sup>c</sup> Guideline is pH and temperature dependent.

<sup>d</sup> Guideline is chloride dependent.

<sup>e</sup> Guideline is hardness dependent.

<sup>f</sup> Guideline is temperature, pH, DOC and hardness dependent.

<sup>g</sup> Guideline is pH dependent.

<sup>h</sup> Total mercury guideline is based on the % of methylmercury present. WQG = 0.0001 / (MeHg/total Hg), where MeHg is mass (or concentration) of methyl mercury and THg. Guideline shown assumes MeHg<0.5% of Total Hg.

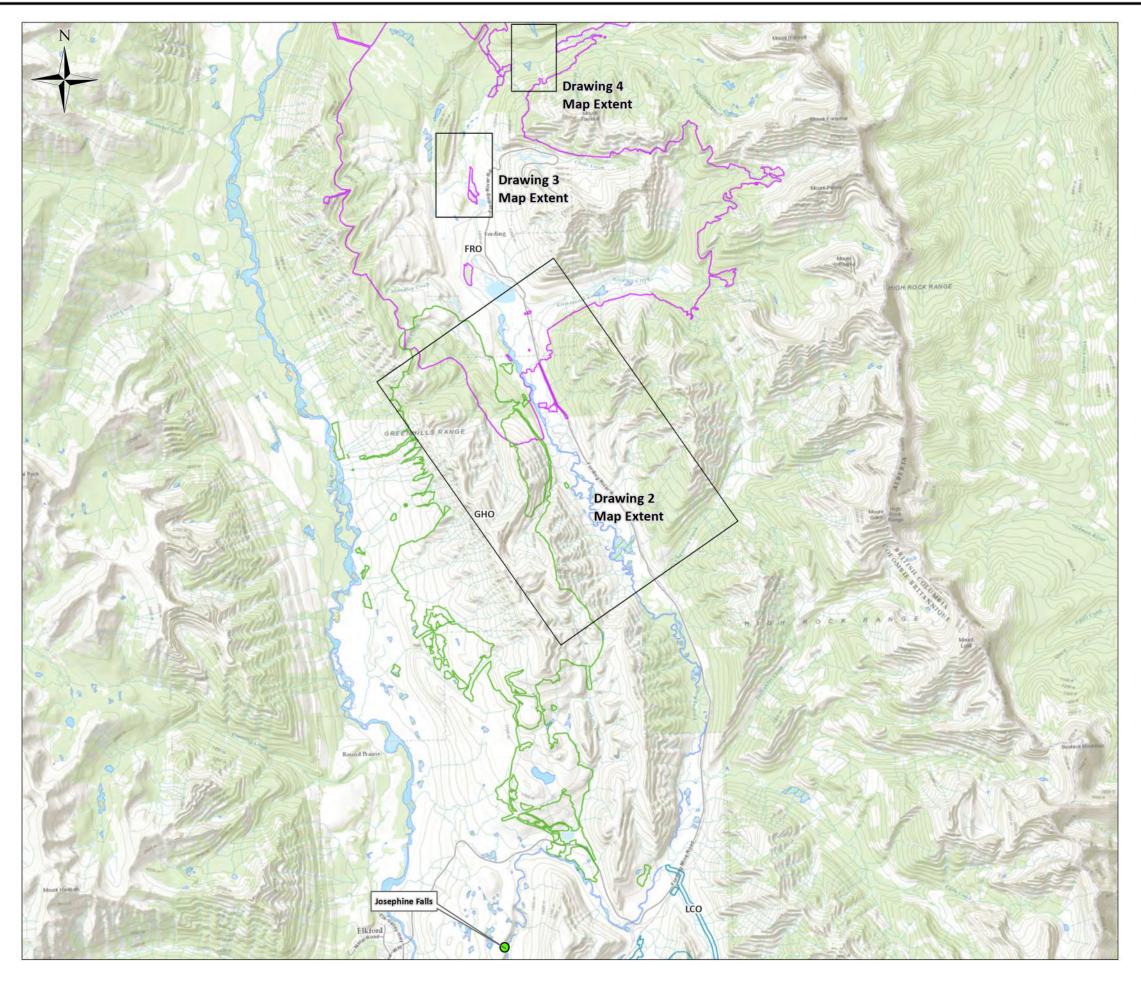
<sup>1</sup> Criteria as minimum values. Criteria for early life stages is 9 mg/L and criteria for other life sates is 6 mg/L. Criteria for other life stages has been applied.

<sup>1</sup> For calculated benchmarks in which the dependant parameter (hardness and/or pH, chloride, DOC) falls outside the prescript upper bound, the upper bound value has been used for calculating the benchmark.

e.g. Nitrate equation valid up to 500 mg/L hardness, where sample hardness value >500 mg/L, 500 mg/L used for calculation.

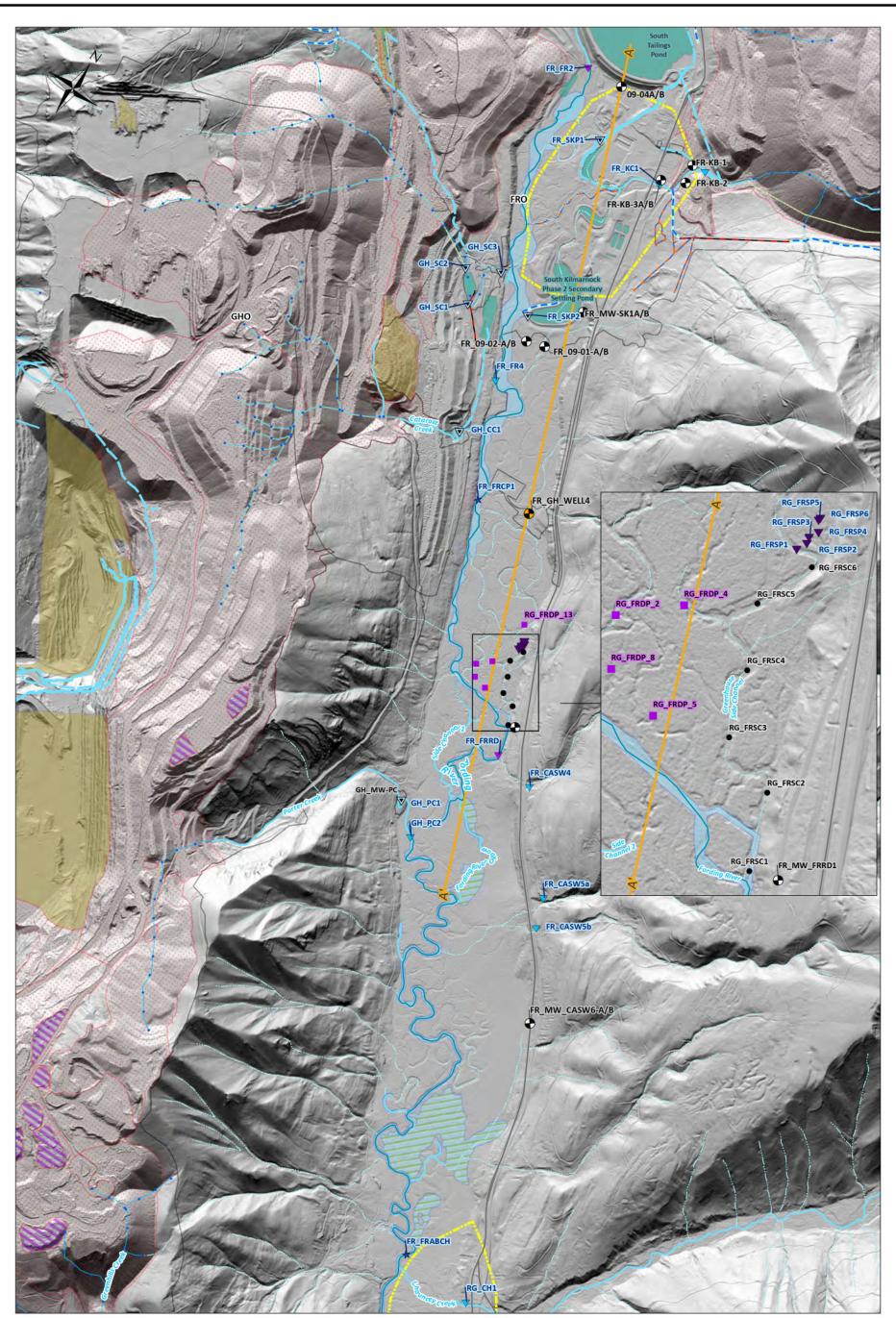
#### TABLE 3: Summary of Analytical Results for Groundwater - Speciated Selenium - Privileged and Confidential

|               |                                |                             |                                 |                              |                                | Spe                     | ciated              | Selen                            | nium                            |                                          |                              |                                            | · · · · ·                                        |
|---------------|--------------------------------|-----------------------------|---------------------------------|------------------------------|--------------------------------|-------------------------|---------------------|----------------------------------|---------------------------------|------------------------------------------|------------------------------|--------------------------------------------|--------------------------------------------------|
| Sample        | Sample ID                      | Sample Date<br>(yyyy mm dd) | لم<br>Thknown selenium species* | 턴 Se(IV) – selenite SeO3(-2) | 년 Selenium (Total Recoverable) | рб Selenium (Dissolved) | Dimethylseleneoxide | 년 Unknown parameter from Brooks. | d SeCN – selenocyanate SeCN(-1) | 石<br>石<br>子<br>子<br>Selenosulfate, SeSO3 | 년 Se(VI) – selenate SeO4(-2) | 편 MeSe(IV) – methylseleninic acid CH3SeO2H | 토 SeMe - selenomethionine CH3SeCH2CH2CH(NH2)CO2H |
| FR_09-01-A    | FR_09-01-A_QTR_2018-10-01_N    | 2018 12 13                  | 0                               | 0                            | 35.7                           | 33.6                    | 0                   | 0                                | 0                               | 0                                        | 20.5                         | 0                                          | 0                                                |
| FR_09-01-B    | FR_09-01-B_QTR_2018-10-01_N    | 2018 12 13                  | 0                               | 0                            | 42.1                           | 39.7                    | 0                   | 0                                | 0                               | 0                                        | 19                           | 0                                          | 0                                                |
| FR_09-02-A    | FR_09-02-A_QTR_2018-10-01_N    | 2018 12 13                  | 0                               | 0                            | 47.3                           | 48.2                    | 0                   | 0                                | 0                               | 0                                        | 4.19                         | 0                                          | 0                                                |
| FR_09-02-B    | FR_09-02-B_QTR_2018-10-01_N    | 2018 12 13                  | 0                               | 0                            | 45.1                           | 44.9                    | 0                   | 0                                | 0                               | 0                                        | 33.1                         | 0                                          | 0                                                |
| FR_MW_CH1-A   | FR_MW_CH1-A_WG_2020_03_02_NP   | 2020 03 02                  | 0                               | 0.015                        | 0.753                          | 0.753                   | 0                   | 0                                | 0                               | 0                                        | 0.677                        | 0                                          | 0                                                |
| FR_MW_FRRD1   | FR_MW_FRRD1_WG_2020_03_02_NP   | 2020 03 02                  | 0                               | 0.04                         | 0.483                          | 0.471                   | 0                   | 0                                | 0                               | 0                                        | 0.338                        | 0                                          | 0                                                |
| FR_MW_STPNW   | FR_MW_STPNW_WG_2020_03_03_NP   | 2020 03 03                  | 0                               | 0                            | 0.076                          | 0.066                   | 0                   | 0                                | 0                               | 0                                        | 0                            | 0                                          | 0                                                |
| FR_MW_STPSW-A | FR_MW_STPSW-A_WG_2020_03_03_NP | 2020 03 03                  | 0                               | 0.189                        | 12.2                           | 12.5                    | 0                   | 0                                | 0                               | 0                                        | 12.1                         | 0                                          | 0                                                |
| FR_MW_STPSW-B | FR_MW_STPSW-B_WG_2020_03_03_NP | 2020 03 03                  | 0                               | 0.07                         | 45.6                           | 45.5                    | 0                   | 0                                | 0                               | 0                                        | 48.2                         | 0                                          | 0                                                |
| RG_FRSP1      | RG_FRSP1_WG_2020_02_27_NP      | 2020 02 27                  | 0                               | 0.011                        | 138                            | 138                     | 0                   | 0                                | 0                               | 0                                        | 130                          | 0                                          | 0                                                |
| RG_FRSP2      | RG_FRSP2_WG_2020_02_27_NP      | 2020 02 27                  | 0                               | 0                            | 141                            | 141                     | 0                   | 0                                | 0                               | 0                                        | 138                          | 0                                          | 0                                                |
| RG_FRSP3      | RG_FRSP3_WG_2020_02_27_NP      | 2020 02 27                  | 0                               | 0.043                        | 141                            | 143                     | 0                   | 0                                | 0                               | 0                                        | 81.5                         | 0                                          | 0                                                |
| RG_FRSP4      | RG_FRSP4_WG_2020_02_27_NP      | 2020 02 27                  | 0                               | 0                            | 145                            | 144                     | 0                   | 0                                | 0                               | 0                                        | 139                          | 0                                          | 0                                                |
| RG_FRSP5      | RG_FRSP5_WG_2020_02_27_NP      | 2020 02 27                  | 0                               | 0                            | 141                            | 144                     | 0                   | 0                                | 0                               | 0                                        | 129                          | 0                                          | 0                                                |
| RG_FRSP6      | RG_FRSP6_WG_2020_02_27_NP      | 2020 02 27                  | 0                               | 0                            | 136                            | 134                     | 0                   | 0                                | 0                               | 0                                        | 128                          | 0                                          | 0                                                |


Associated Brooks File: 1904014, 2010047, 2011004.

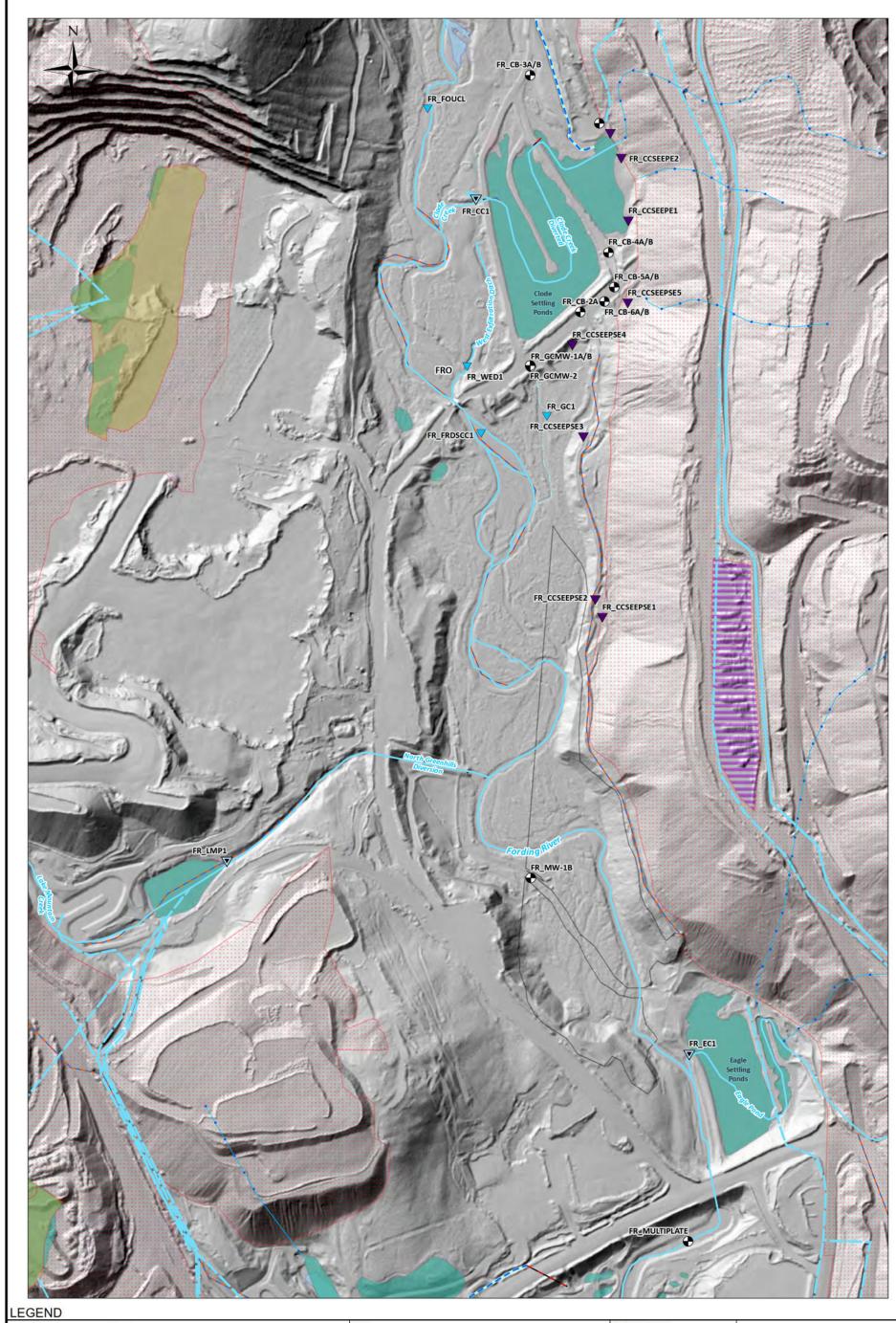
All terms defined within the body of SNC-Lavalin's report.

\* all other selenium species which elute from the applied chromatographic column and are not identified through retention time matching with known standards.

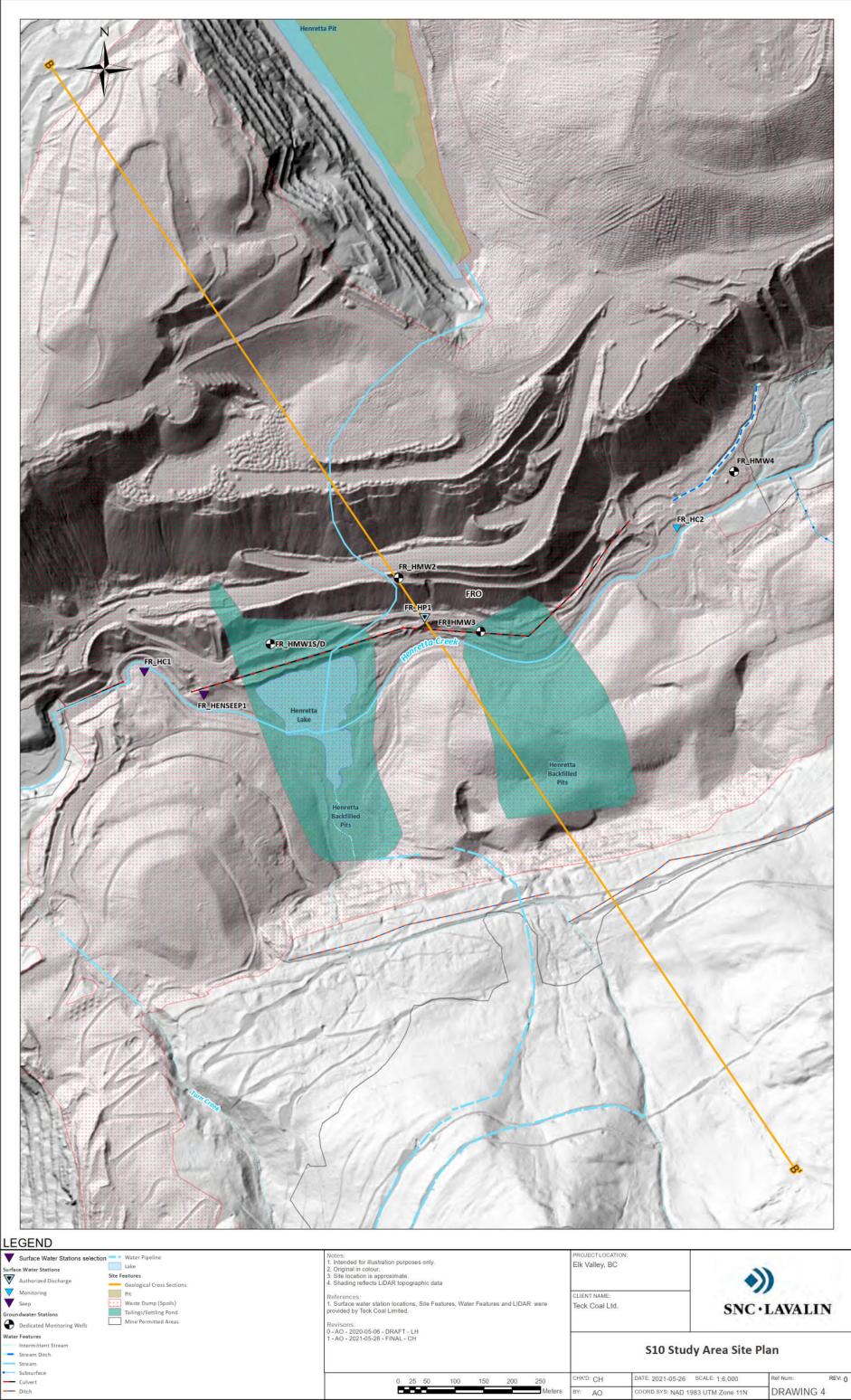

## Drawings

- 1. Location Plan
- 2. S6 Study Area Site Plan
- 3. S8 Study Area Site Plan
- 4. S10 Study Area Site Plan
- 5. Block Diagram Showing 3D Conceptual Hydrogeology and Transport Pathways S6 Study Area
- 6. Block Diagram Showing Dissolved Selenium Concentrations and Mine Influenced Waters S6
- 7. Bedrock Geology of the S6 Study Area
- 8. Surficial Geology of the S6 Study Area
- 9. Upper Fording River Study Area 6 Conceptual Geological Cross-Section A-A'
- 10. Study Area 6 Groundwater Levels and Inferred Contours, Q1 2019
- 11. Study Area 6 Groundwater Levels and Inferred Contours, July 2019
- 12. Study Area 6 October 2019 and February 2020 Flow Accretion Results
- 13. September 2018 Flow Accretion Study Results in the S6 Study Area and Kilmarnock Creek (from Teck Coal, 2019)
- 14. October 2018 Flow Accretion Study Results in the S6 Study Area and Kilmarnock Creek (from Teck Coal, 2019)
- 15. February 2019 Flow Accretion Study Results in Kilmarnock Creek (from Teck Coal, 2019)
- 16. April 2019 Flow Accretion Study Results in Kilmarnock Creek (from Teck Coal, 2019)
- 17. May 2019 Flow Accretion Study Results in Kilmarnock Creek (from Teck Coal, 2019)
- 18. Study Area 6 Inferred Source-Receptor Groundwater Transport Pathways
- 19. NO3--N/SO42--S ratios in Groundwater and Surface Water in the S6 Study Area
- 20. Clode Creek Watershed and Settling Ponds (from Golder, 2020b)
- 21. Current Topography of Clode Creek Watershed (from Golder, 2020b)
- 22. Mined-Out Topography of Clode Creek Watershed (from Golder, 2019b)
- 23. Surficial Geology and Conceptual Groundwater Flow of the Clode Creek Watershed (from Golder, 2020b)
- 24. Geomorphic Overview of the S8 Study Area (from Golder, 2014)
- 25. Cross-Section through the Clode Creek Settling Ponds Area (from Golder, 2020b)
- 26. Groundwater Levels and Inferred Contours in the Clode Creek Settling Ponds Area, December 2019 (from Golder, 2020b)
- 27. Flow Accretion Studies in the S8 Study Area in March, April, July, and September 2019 (from Golder, 2020b)
- 28. 2019 and Historical Total Selenium Concentrations in Groundwater and Surface Water (from Golder, 2020b)
- 29. Upper Fording River S10 Study Area Inferred Geological Cross Section B-B'
- 30. Study Area 10 Groundwater Levels and Inferred Contours, March 2019
- 31. Potable Wells Area
- 32. Pits and Points of Diversion



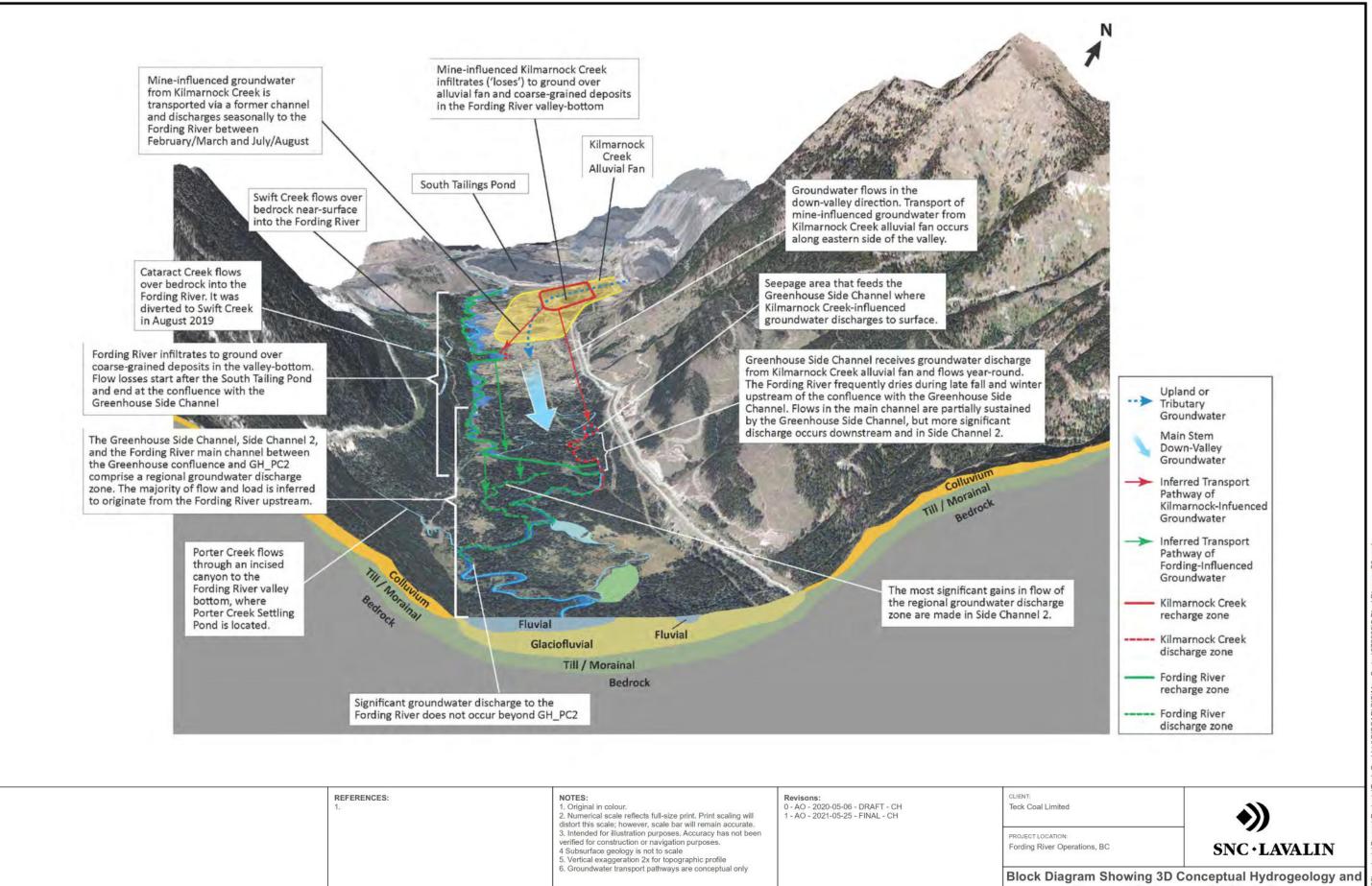

| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Par -                                    | A AND A                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ave T T                                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | adure to                              |
| a to at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          | Station 199                           |
| 2 million contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | All a sta                             |
| 27 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Study Area                               | Ach Str                               |
| 17-14-12-14-14-14-14-14-14-14-14-14-14-14-14-14-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-                                       | ~ 32 Bri 24                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                        | Medicine Hat                          |
| Kelowna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11h                                      | - whe chies                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | 110.00                                |
| A DOM NOT CONTRACT 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The state of the                         | Aren and and                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | 1 - XX - ALLER                        |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                       | 1 And                                 |
| VA SHINGTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                        | - A 15 15                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A Starts                                 | MONTAN                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | Helena                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                       |
| Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                       |
| Mine Permitted Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                       |
| Fording River Operations (Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                       |
| Greenhills Operations (GHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )                                        |                                       |
| Line Creek Operations (LCO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                       |
| NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                       |
| <ol> <li>Original in colour.</li> <li>Numerical scale reflects full-size print. Print scal</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ing will distort this sca                | le; however, scale bar will           |
| remain accurate.<br>3. Intended for illustration purposes. Accuracy has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | not been verified for c                  | onstruction or navigation             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                       |
| REFERENCES:<br>1. Service Layer Credits: Sources: Esri, HERE, Ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | armin, Intermap, increi                  | ment P Corp., GEBCO, USGS,            |
| FAO, NPS, NRCAN, GeoBase, IGN, Kadaster N<br>(Hong Kong), (c) OpenStreetMap contributors, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L, Ordnance Survey,<br>the GIS User Comm | Esri Japan, METI, Esri China<br>unity |
| National Geographic, Esri, Garmin, HERE, UNEP-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WCMC, USGS, NASA                         | , ESA, METI, NRCAN,                   |
| REVISIONS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                       |
| 0 - AO - 2020-07-08- DRAFT - CH<br>1 - AO - 2021-05-28 - FINAL - CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                       |
| CONTRACTOR SECOND CONSTRUCTOR CONTRACTOR AND CONTRACT<br>ANTE ANTE ANTE ANTE ANTE ANTE ANTE ANTE |                                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                       |
| 0 0.75 1.5 3 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                        | 7.5                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | Kilometers                            |
| CLIENT:<br>Teck Coal Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                       |
| ieck Coal Ltu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                       |
| PROJECT LOCATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ]                                        |                                       |
| Fording River Operations, BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SNC                                      | LAVALIN                               |
| -<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                        |                                       |
| Study Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Location Pla                             | n                                     |
| BY: AO SCALE: 1:24,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATE: 2021-05-26                          | REF No: REV: 0                        |
| CHK'D: CH Proj Coord Sys: NAD 1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | DRAWING 1                             |
| 0 Martin Constant (1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                       |

Project Path: P:\Current Projects\Teck Coal Ltd\SPO\672386 Confidential



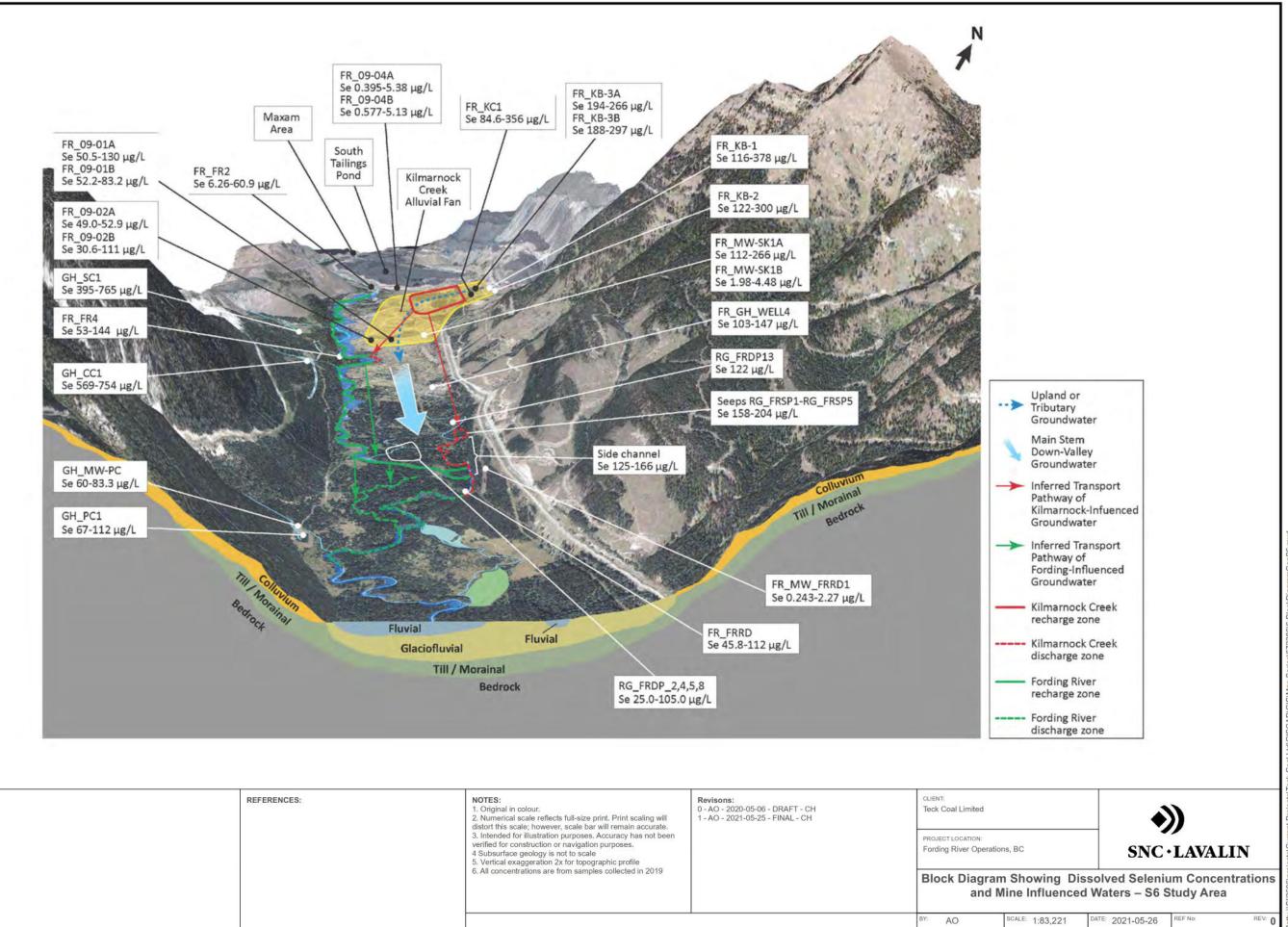

| Greenhouse Side Channel flow<br>accretion measurement/sampling<br>locations (February 2020)<br>Groundwater Stations<br>Monitoring Well<br>Surface Water Stations | Site Features<br>Secondary Road<br>Geological Cross Section<br>Alluvial Fans<br>Mine Permitted Areas<br>Pit<br>Stockpiles | Water Features<br>Intermittent Stream<br>Stream Ditch<br>Indefinite Stream<br>Stream<br>Subsurface<br>Culvert | <ol> <li>Site location is approximate.</li> <li>Shading reflects LIDAR topographic data<br/>References:</li> <li>Sturface water station locations, Site Features, Water Features and LIDAR were<br/>provided by Tock Coal Limited.</li> <li>Sources: Esri, HERE, Garmin, Intermap, Increment P Corp., GEBCO, USGS, FAO,<br/>NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri</li> </ol> | PROJECT LOCATION:<br>Elk Valley, BC<br>CLIENT NAME:<br>Teck Coal Ltd. | <b>SNC·LAVALIN</b>                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|
| <ul> <li>Seep</li> <li>Compliance Point</li> <li>Receiving Environment</li> <li>Authorized Discharge</li> </ul>                                                  | Waste Dump (Spolls)<br>Tailings/Settling Pond                                                                             | Ditch     Rock Drain     Water Pipeline     Lake                                                              | China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community<br>Revisons:<br>0 - AO - 2020-07-08- DRAFT - CH<br>1 - AO - 2021-05-25 - FINAL - CH                                                                                                                                                                                                                                                     | S6 Stu                                                                | dy Area Site Plan                                                  |
| <ul> <li>Monitoring</li> <li>Drive Point Sample Locations</li> </ul>                                                                                             |                                                                                                                           | River Bed                                                                                                     | 0 175 350 700 1,050 1,400 Meters                                                                                                                                                                                                                                                                                                                                                                                      |                                                                       | 0 SCALE: 1:24,000 Ref Num: REV: 0<br>D 1983 UTM Zone 11N DRAWING 2 |

I IXD Path: \\S\I2606\projects\Current Projects\Teck Coal Ltd\GISCAD\GIS\Map Series\672386\2-SttePlanS6.mx




| Surface Water - Subsurface<br>Authorized Discharge - Ditch<br>Monitoring - Water Pipeline | Notes:<br>1. Intended for illustration purposes only.<br>2. Original in colour.<br>3. Site location is approximate.<br>4. Shading reflects LIDAR topographic data                                                           | PROJECTLOCATION<br>Elk Valley, BC |                                  |                 |  |  |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|-----------------|--|--|
| Monitoring Well     Lake     Seep     Mine Permitted Areas     Pit     Stockpiles         | References:<br>1. Surface water station locations, Site Features, Water Features and LIDAR were<br>provided by Teck Coal Limited.<br>2.<br>Revisons:<br>0 - A0 - 2020-07-08- DRAFT - CH<br>1 - AO - 2021-05-28 - FINAL - CH | CLIENT NAME:<br>Teck Coal Ltd.    | SNC                              | SNC·LAVALIN     |  |  |
| Waste Dump (Spoils)<br>Tailings/Settling Pond<br>Water Features                           |                                                                                                                                                                                                                             | S8 Study Area Site Plan           |                                  |                 |  |  |
| Intermittent Stream     Stream Ditch                                                      | 0 40 80 160 240 320                                                                                                                                                                                                         | CHK,D: CH                         | DATE: 2021-05-26 SCALE: 1:0      | Ref Num: REV: 0 |  |  |
| Stream                                                                                    | Meters                                                                                                                                                                                                                      | BY: AO                            | COORD SYS: NAD 1983 UTM Zone 11N | DRAWING 3       |  |  |




MXD Path: \\S\12606\projects\Current Projects\Teck Coal Ltd\GISCAD\GIS\Map Series\672386\4-StitePlanS10\_1

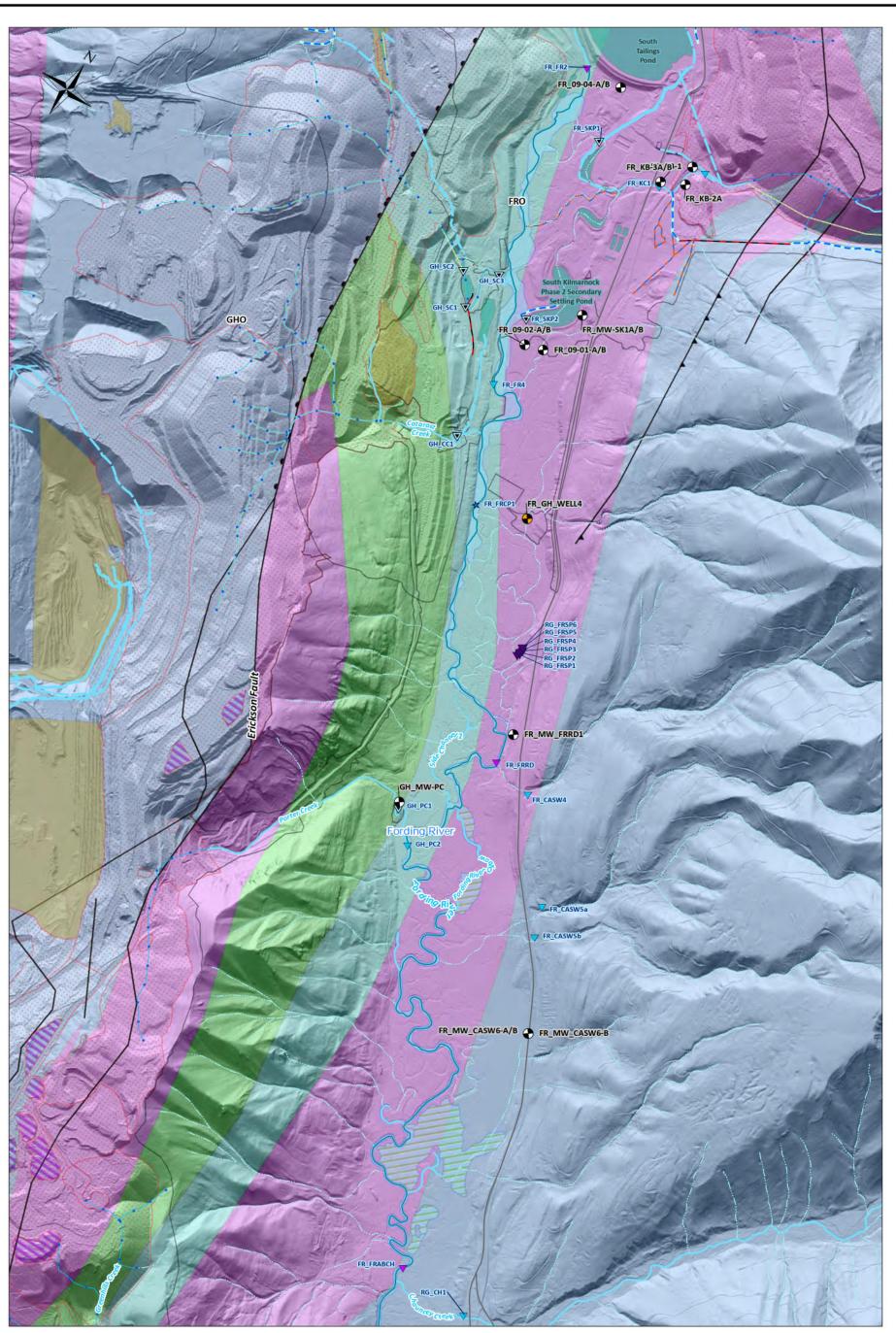
Project Path: P:\Current Projects\Teck Coal Ltd\SPO\672386 Confidential



| Teck Coal Limite                     | t                                |                  | (*)           |        |  |  |  |  |  |  |
|--------------------------------------|----------------------------------|------------------|---------------|--------|--|--|--|--|--|--|
| PROJECT LOCATION<br>Fording River Op |                                  | SNC              | SNC · LAVALIN |        |  |  |  |  |  |  |
| Block Dia                            | gram Showing 3<br>Transport Path |                  |               | y and  |  |  |  |  |  |  |
|                                      |                                  |                  |               |        |  |  |  |  |  |  |
| <sup>BY:</sup> AO                    | SCALE: 1:83,221                  | DATE: 2021-05-26 | REF No:       | REV: 0 |  |  |  |  |  |  |

Path: P:\Current Projects\Teck Coal Ltd\SPO\67238

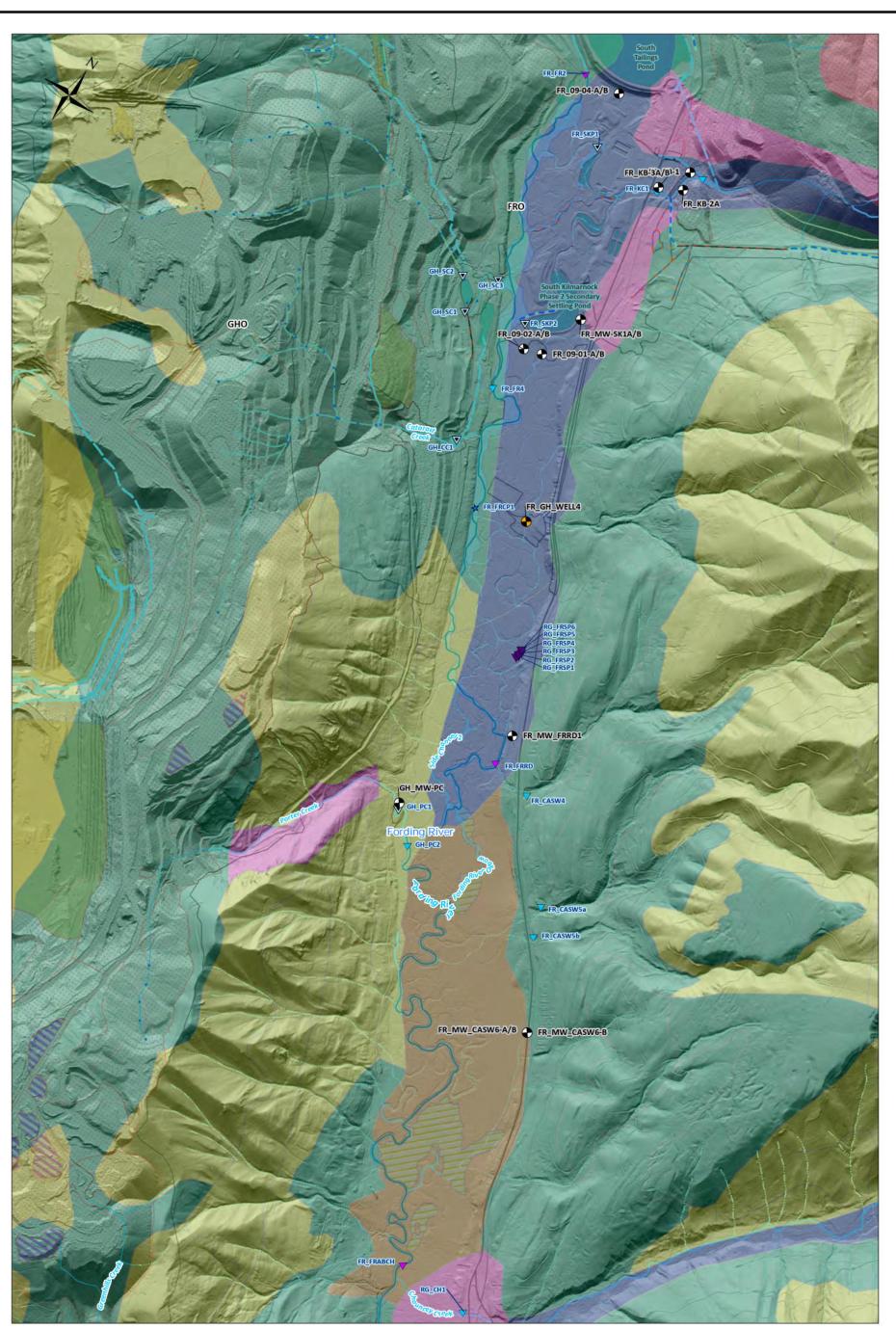



| REFERENCES: | NOTES:<br>1. Original in colour.<br>2. Numerical scale reflects full-size print. Print scaling will<br>distort this scale; however, scale bar will remain accurate.<br>3. Intended for illustration purposes. Accuracy has not been<br>verified for construction or navigation purposes.<br>4 Subsurface geology is not to scale<br>5. Vertical exaggeration 2x for topographic profile<br>6. All concentrations are from samples collected in 2019 | Revisons:<br>0 - AO - 2020-05-06 - DRAFT - CH<br>1 - AO - 2021-05-25 - FINAL - CH |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |

Project Path: P:\Current Projects\Teck Coal Ltd\SPO\672386 Confidential

oj Coord Sys: NAD 1983 UTM Zone 11N

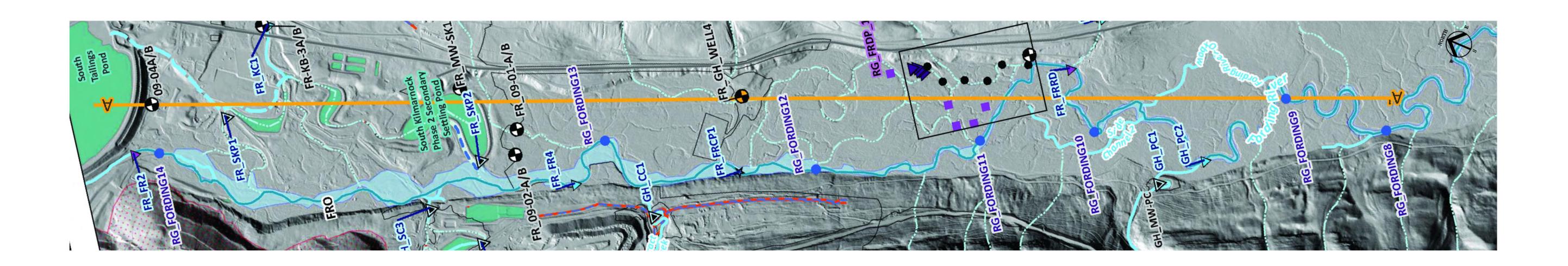
CHK'D: KM

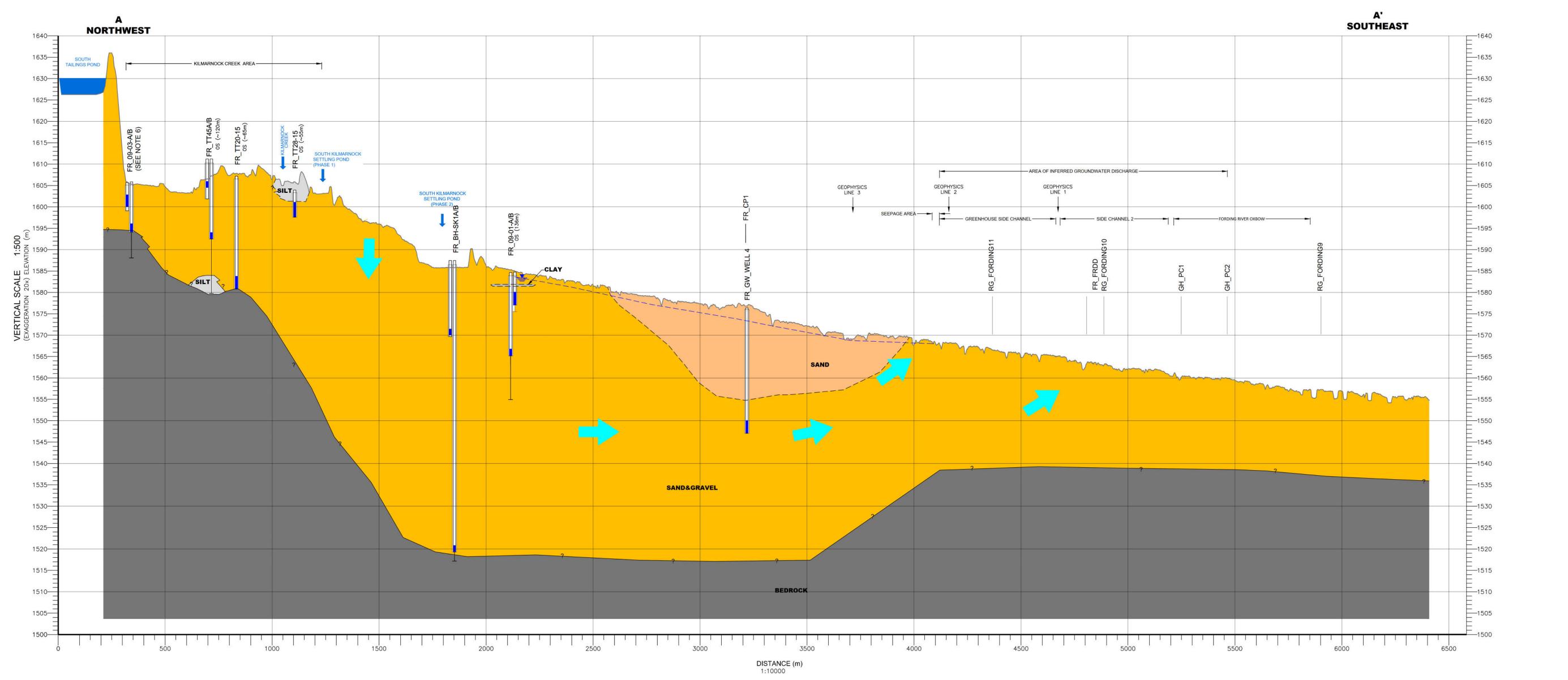

DRAWING 6

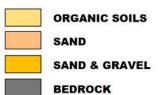


| Groundwater Stations<br>Monitoring Well<br>Supply Well          | <ul> <li>Indefinite Stream</li> <li>Stream</li> <li>Subsurface</li> <li>Culvert</li> </ul> |                                                                                                                                                                                                                                             | Notes:<br>1. Intended for illustration purposes o<br>2. Original in colour.<br>3. Site location is approximate.<br>4. Shading reflects LiDAR topographi | •                                              |                                | PROJECT LOCATION:<br>Elk Valley, BC |                                       | •))              |            | 0      |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------|-------------------------------------|---------------------------------------|------------------|------------|--------|
| Surface Water Stations                                          |                                                                                            | References:<br>1.1.George, H., W.A. Gorman, and D<br>geomorphology of the Elk Valley, sou<br>of Earth Science, 24, 741-751<br>2. Sources: Esri, HERE, Garmin, Inte<br>NPS, NRCAN, GeoBase, IGN, Kadas<br>China (Hong Kong), (c) OpenStreetM | theastern British Columbia. Canadi<br>rmap, increment P Corp., GEBCO,<br>ter NL, Ordnance Survey, Esri Jap                                              | ian Journal<br>, USGS, FAO,<br>ian, METI, Esri | CLIENT NAME:<br>Teck Coal Ltd. |                                     | SNC·L                                 | AVALIN           |            |        |
| Monitoring<br>Site Features<br>Secondary Road<br>Water Features | Stockpiles<br>Waste Dump (Spoils)<br>Tailings/Settling Pond                                |                                                                                                                                                                                                                                             | Revisons:<br>0 - AO - 2020-07-08- DRAFT - CH                                                                                                            | ap commontors, and the GIS user                | Community                      | в                                   | edrock Geolo                          | gy of the S6 Stu | dy Area    |        |
| Intermittent Stream Stream Ditch                                | River Bed                                                                                  |                                                                                                                                                                                                                                             | 0 175 350                                                                                                                                               | 700 1,050                                      | 1,400<br>Meters                | CHK'D: CH                           | DATE: 2021-05-26<br>COORD SYS: NAD 19 | 105/0275         | Ref Num: F | REV: 0 |

MXD Path: \\S\I2606\projects\Current Projects\Teck Coal Ltd\GISCAD\GIS\Map Series\672386\7-BedrockGeolog


Project Path: P:\Current Projects\Teck Coal Ltd\SPO\672386 Confidential

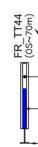




| Groundwater Stations     Till     Site Features       Monitoring Well     Organic Soil     Secondary Road       Supply Well     Water Features     Mine Permitted Areas       Surface Water Stations     Stream Ditch     Stockpiles       Compliance Point     Stream     Tailings/Settling Pond       Receiving Environment     Subsurface     Culvert |                                                  | Notes:<br>1. Intended for illustration<br>2. Original in colour.<br>3. Site location is approxim<br>4. Shading reflects LIDAR<br>References:<br>1. 1. George, H., WA. Gor<br>geomorphology of the Elk<br>of Earth Science, 24, 741-<br>2. Sources: Esri, HERE, C<br>NPS, NRCAN, GeoBase,<br>China (Hong Kong), (c) O | nate.<br>topographic data<br>man, and D.F. VanDin<br>Valley, southeastern f<br>751<br>armin, Intermap, incr<br>GN, Kadaster NL, Or | British Columbia. Ca<br>ement P Corp., GEB<br>dnance Survey, Esri | nadian Journal<br>CO, USGS, FAO,<br>Japan, METI, Esri | Elk Valley, BC  |                     |                                      | )<br>LAVALIN                        | AVALIN              |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------|-----------------|---------------------|--------------------------------------|-------------------------------------|---------------------|--------|
| Monitoring     Surficial Geology     Anthropogenic     Colluvium                                                                                                                                                                                                                                                                                         | Ditch     Rock Drain     Water Pipeline     Lake |                                                                                                                                                                                                                                                                                                                      | 0 - AO - 2020-07-08- DRA<br>1 - AO - 2021-05-25 - FIN                                                                              | FT - CH                                                           | ators, and the GIS O                                  | ser community   | Su                  | rficial Geolo                        | gy of the S6 St                     | udy Area            |        |
| Fluvial<br>Glaciofluvial                                                                                                                                                                                                                                                                                                                                 | River Bed<br>Wetland                             |                                                                                                                                                                                                                                                                                                                      | 0 175 350                                                                                                                          | 700                                                               | 1,050                                                 | 1,400<br>Meters | CHK'D: CH<br>BY: AO | DATE: 2021-05-26<br>COORD SYS: NAD 1 | SCALE: 1:24,000<br>983 UTM Zone 11N | Ref Num:<br>DRAWING | REV: 0 |

MXD Path: \\S\\I2606\projects\Current Projects\Teck Coal Ltd\ClSCAD\ClS\Map Series\672386\8-SurficialGeolog

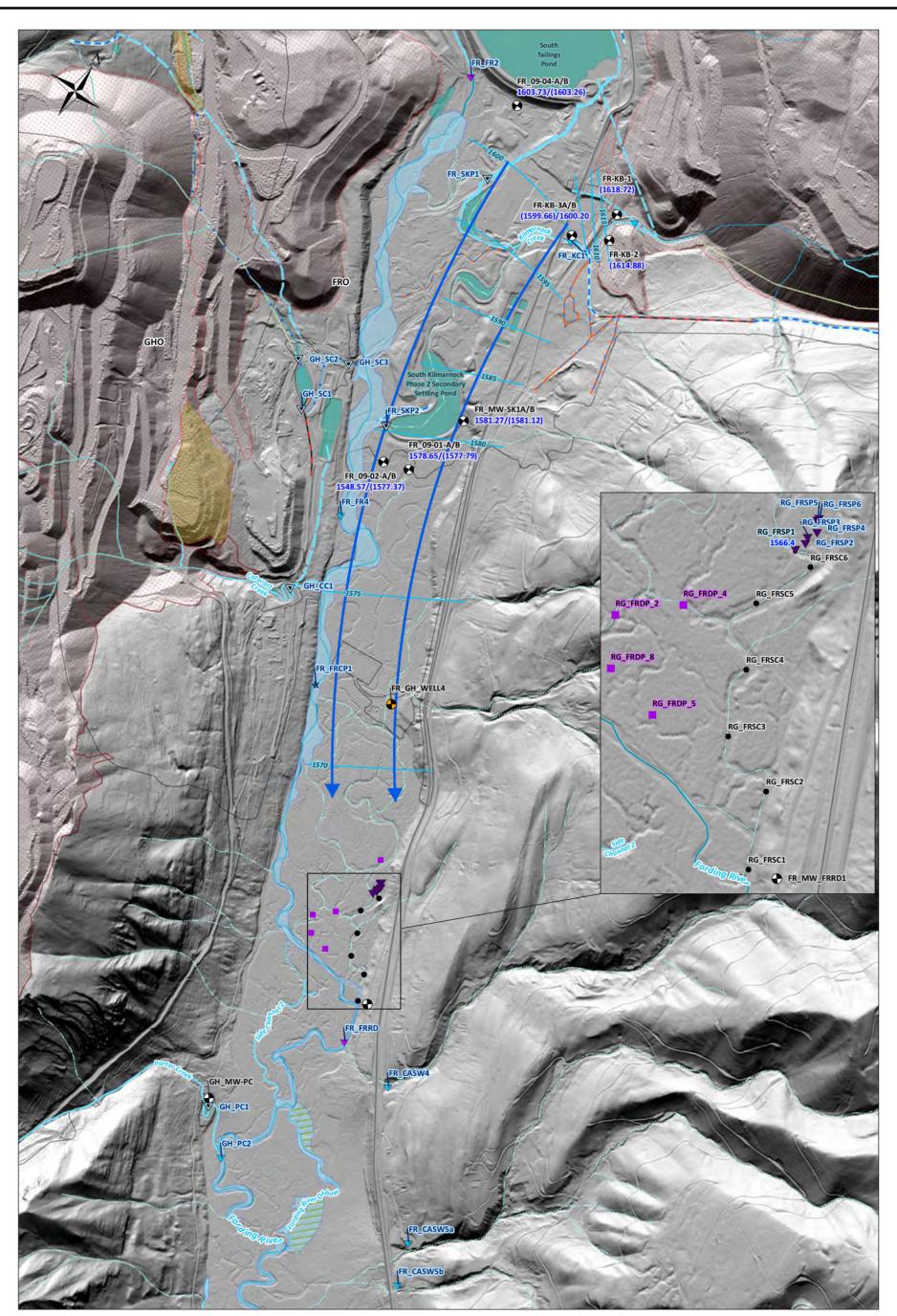
Project Path: P:\Current Projects\Teck Coal Ltd\SPO\672386 Confidential



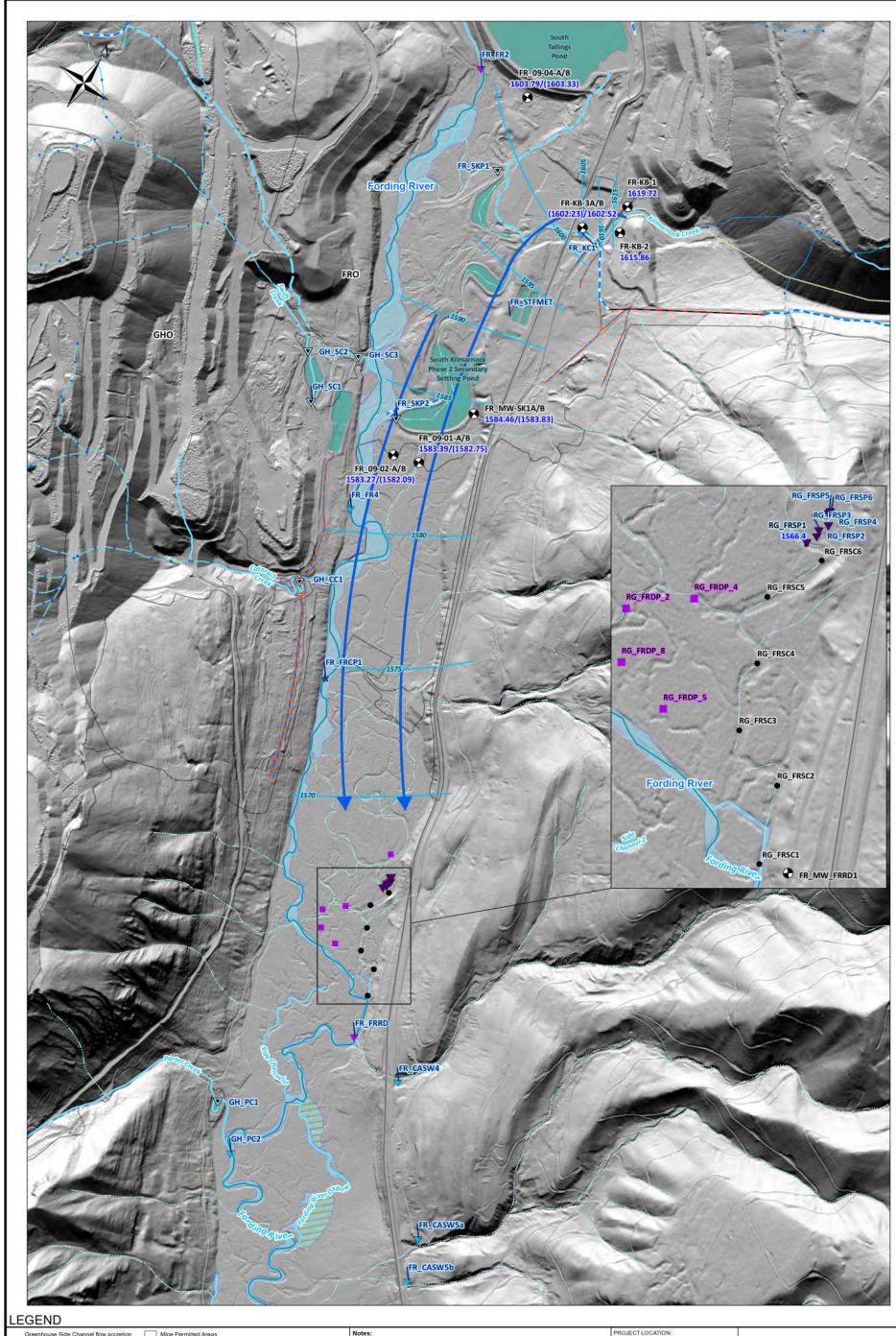





SAND & GRAVEL BEDROCK


GROUNDWATER ELEVATION (2019 Q4)

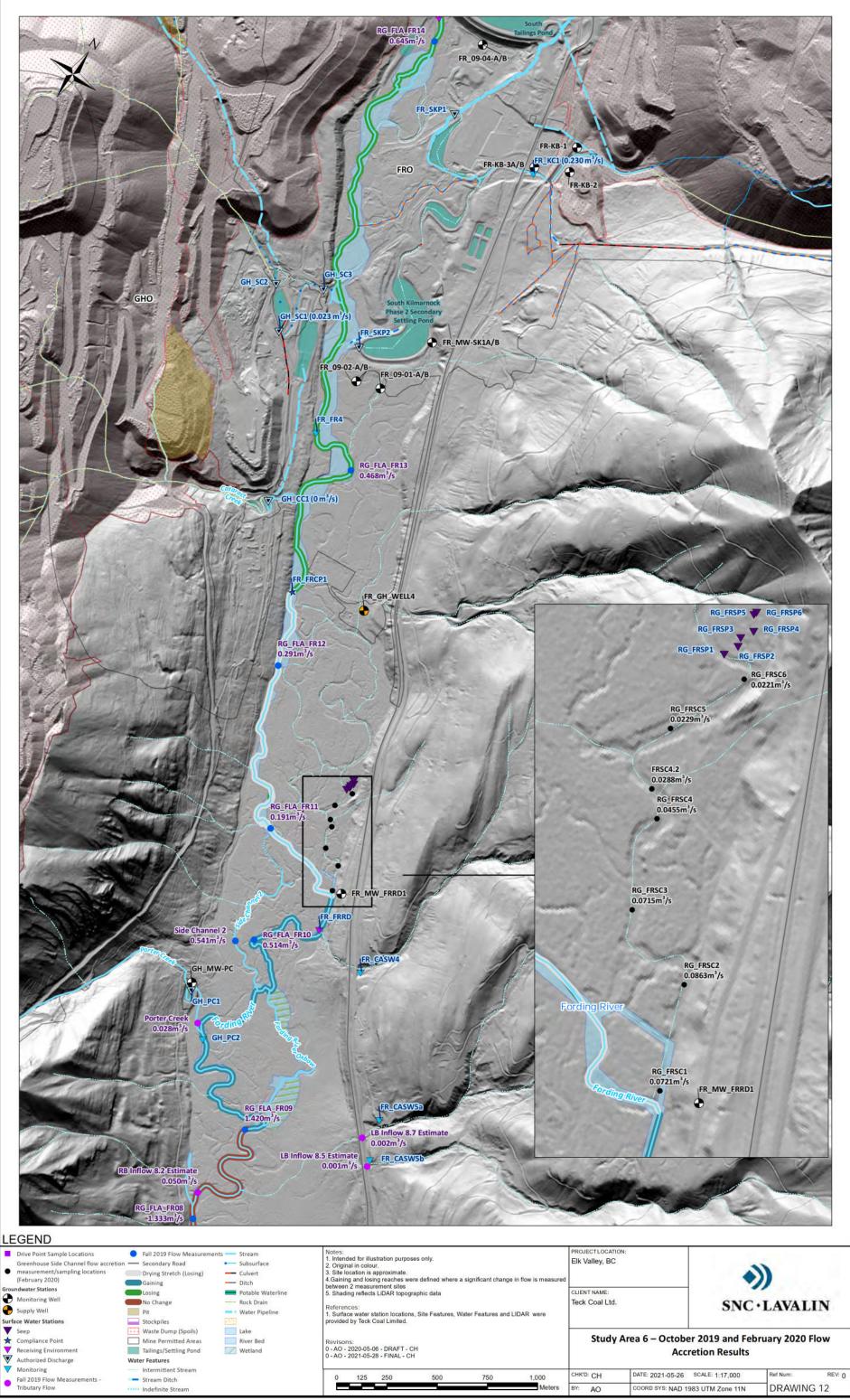
----- INFERRED STRATIGRAPHIC BOUNDARY




|                                                              | NOTES                                                                                                                                                                                                                                                                                                                                                                                     |     | REFEF | RENCE DRAWINGS |      |            | REVISIONS        |     |     | CLIENT NAME:                                           |                              |                   |                                        |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----------------|------|------------|------------------|-----|-----|--------------------------------------------------------|------------------------------|-------------------|----------------------------------------|--|
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                           |     |       |                |      |            |                  | _   |     | TECK COAL LIMITE<br>—                                  | D                            |                   |                                        |  |
| WELL OFFSET FROM<br>SECTION LINE<br>50 mm# SOLID PVC<br>PIPE | <ol> <li>THE CROSS SECTION DEPICTED IS BASED ON<br/>INTERPRETATION OF LIMITED GEOLOGICAL DATA. ACTUAL<br/>GEOLOGICAL CONDITIONS MAY BE DIFFERENT FROM THOSE<br/>INTERPRETED.</li> <li>INFORMATION PRESENTED IS WITHIN 25m OF SECTION LINE<br/>UNLESS INDICATED OTHERWISE ON DRAWING.</li> <li>ORIGINAL DRAWING IN COLOUR.</li> <li>FRO LOCAL DATUM USED (ELEVATIONS ARE +0.94m</li> </ol> |     |       |                |      |            |                  |     |     | PROJECT LOCATION:<br>FORDING RIVER O<br>ELK VALLEY, BC | PERATIONS                    | SNC ·             | LAVALIN                                |  |
| 50 mmø SLOTTED<br>PVC PIPE                                   | HIGHER THAN UTM NADB3).<br>5. 2019 Q4 GROUNDWATER ELEVATIONS WERE ONLY<br>AVAILABLE FOR SELECT WELLS AS SHOWN ON DRAWING.<br>6. MONITORING WELLS FR_09-03A/B ARE LOCATED<br>ADJACENT TO FR_09-04A/B. INSTALLATION DETAILS AND<br>BEDROCK CONTACT DEPICTED ON THE CROSS-SECTION<br>REPRESENT FR_09-03A/B.                                                                                  |     |       |                |      |            |                  |     |     | A 67 12 10 10 10 10 10 10 10 10 10 10 10 10 10         | R FORDING RIV<br>UAL GEOLOGI |                   | 0-017 0.0012 (2012) - 0.0007 - 0.00120 |  |
| L- END OF BOREHOLE                                           |                                                                                                                                                                                                                                                                                                                                                                                           | -   |       | -              | 0    | 2021-06-08 | ISSUED TO CLIENT | AJK | СН  | DWN BY: AJK                                            | SCALE: AS SHOWN              | DATE: 2020-05-14  | DWG No: REV.: 0                        |  |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                           | No. | DATE  | DESCRIPTION    | REV. | DATE       | DESCRIPTION      | BY  | CHK | снк'д: СН                                              | PLOT: 20210608.0930          | CADFILE:672386-R4 | <b>DRAWING 9</b>                       |  |

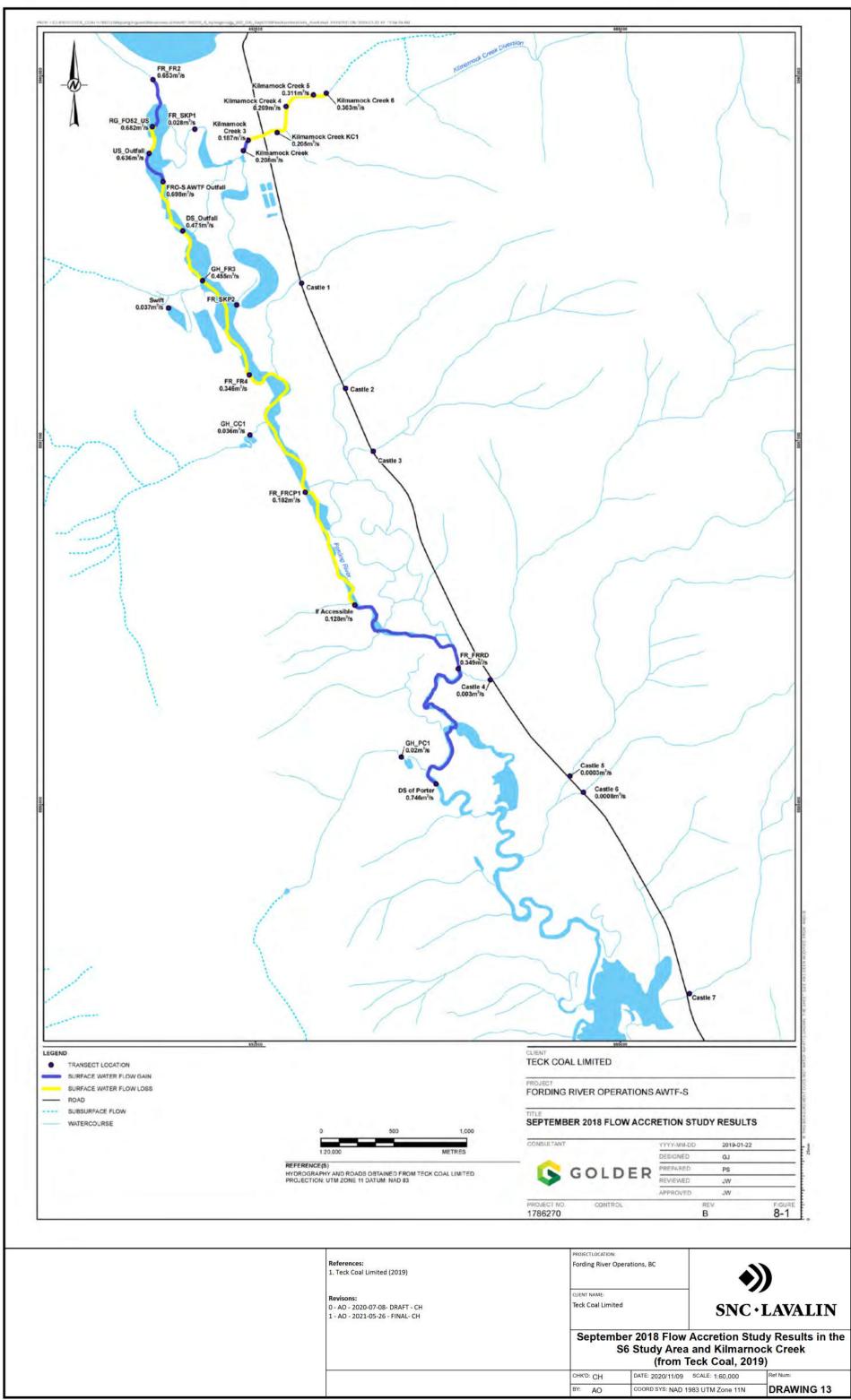
PATH: \\SLI2606\PROJECTS\CURRENT PROJECTS\TECK COAL LTD\SPO\672386 CONFIDENTIAL\40\_EXECUTION\45\_GIS\_DWGS\CAD\67238




| Legend     Site Features     Culvert       Greenhouse Side Channel flow     Site Features     Culvert       accretion measurement/sampling<br>locations (February 2020)     Secondary Road     Ditch       Drive Point Sample Locations     Stockpiles     Water Pipeline       Groundwater Stations     Waste Dump (Spoils)     Island       Monitoring Well     Mine Permitted Areas     Lake       Supply Well     Tailings/Settling Pond     River Bed       Water Flations     Water Features     Z Wetland |                                                                                                                              |                       |                                                                                  | 2. Origi<br>3. Site<br>4. Shao<br>Refere<br>1. Surfa<br>provide<br>2. Grou<br>3.Eleva | Notes:<br>1. Intended for illustration purposes only.<br>2. Original in colour.<br>3. Site location is approximate.<br>4. Shading reflects LIDAR topographic data<br>References:<br>1. Surface water station locations, Site Features, Water Features and LIDAR were<br>provided by Teck Coal Limited.<br>2. Groundwater elevations at RG_FRSP1 is equal to topographic elevation.<br>3.Elevations at FR_KB1 and FR_KB2 obtained from logger data March 25th.<br>4. All other measurements observed Fe 13, and March 14. 25 and 26th, 2019 |                                  |     |     |                 |                     | N:                                 | SNC                                  | <b>SNC·LAVALIN</b>  |                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----|-----|-----------------|---------------------|------------------------------------|--------------------------------------|---------------------|-------------------|--|
| <ul> <li>Seep</li> <li>Compliance Point</li> <li>Receiving Environment</li> <li>Authorized Discharge</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Intermittent Stream</li> <li>Stream Ditch</li> <li>Indefinite Stream</li> <li>Stream</li> <li>Subsurface</li> </ul> | 2019<br>Inferred Flow | ndwater Contours Q1<br>Direction<br>Groundwater Elevation<br>used for Contouring |                                                                                       | 2020-05-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 - DRAFT - CH<br>8 - FINAL - CH | ł   |     |                 | Study Area          | 6 – Groundwa                       | ter Levels and Ir<br>2019            | nferred Contou      | ırs, Q1           |  |
| V Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · Subsuriate                                                                                                                 |                       | Conversion Claussian                                                             | 0                                                                                     | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 250                              | 500 | 750 | 1,000<br>Meters | CHK'D: CH<br>BY: AO | DATE: 2021-05-26<br>COORD SYS: NAD | SCALE: 1:17,000<br>1983 UTM Zone 11N | Ref Num:<br>DRAWING | <sup>REV: 0</sup> |  |



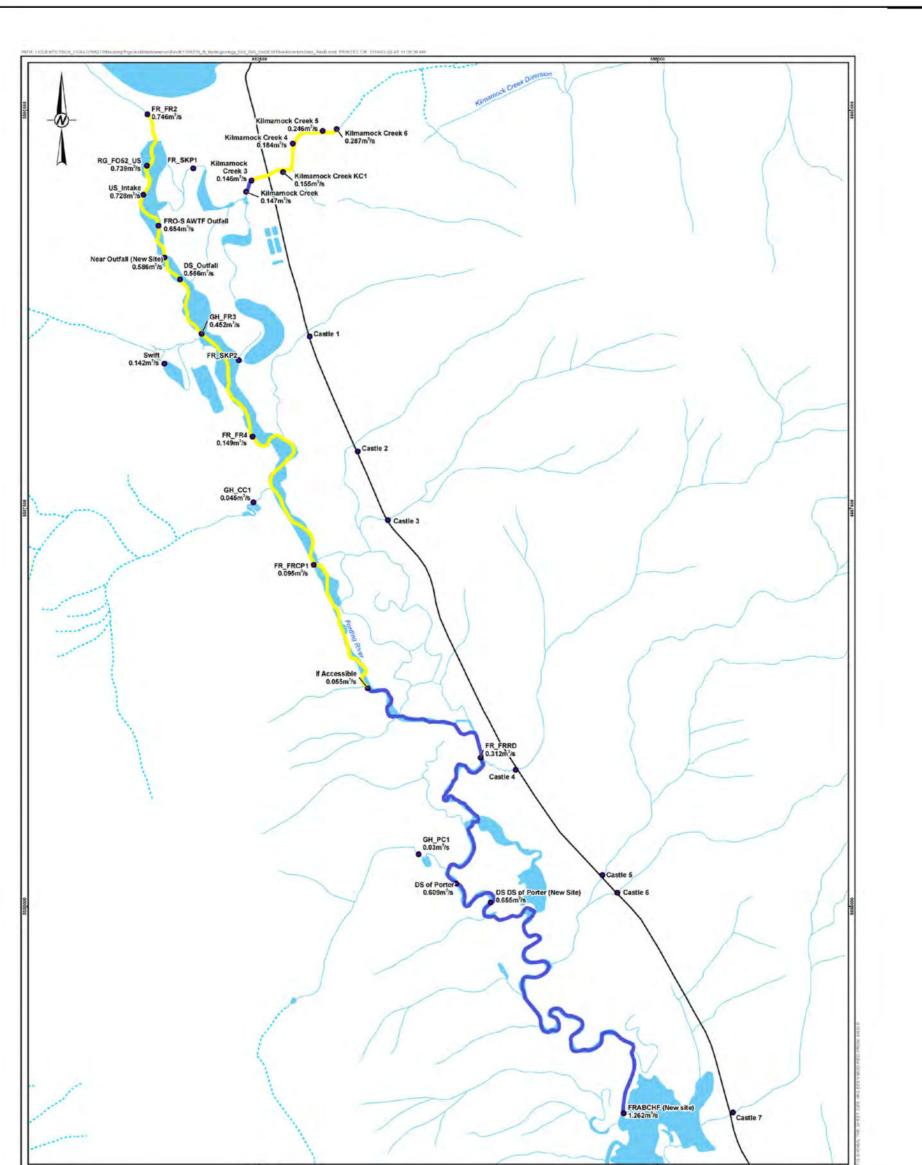
I


| Greenhouse Side Channel flow accretion<br>measurement/sampling locations (February<br>2020)<br>Drive Point Sample Locations<br>Groundwater Stations | Mine Permitted Areas Tailings/Settling Pond Water Features Intermittent Stream Stream Ditch |                                   |                                                  | 2. Orig<br>3. Site<br>4. Sha<br>Refere | nded for ill<br>inal in colo<br>location is<br>ding reflec<br>ences: | approximate.<br>ts LiDAR topog                                                                                                                                                                                                             | raphic data |     |                 | PROJECT LOCATIO<br>Elk Valley, BC | N:                                   |                                     |                     |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|-----------------|-----------------------------------|--------------------------------------|-------------------------------------|---------------------|--------|
| Monitoring Well<br>Supply Well<br>Surface Water Stations<br>Seep                                                                                    | Ditch                                                                                       | m<br>urface Groundwater Elevation |                                                  |                                        |                                                                      | Surface water station locations, Site Features, Water Features and LIDAR were<br>provided by Teck Coal Limited.     Groundwater elevations at RG_FRSP1 is equal to topographic elevation.     All wells monitored between Jul 26-31, 2019. |             |     |                 |                                   |                                      | SNC · LAVALIN                       |                     |        |
| Compliance Point<br>Receiving Environment<br>Authorized Discharge<br>Monitoring                                                                     | Rock Drain Water Pipeline Lake River Bed Wetland                                            | 1602.261                          | Groundwater Elevation<br>not used for Contouring |                                        | - 2020-05                                                            | 06 - DRAFT - (<br>5-26- FINAL- CI                                                                                                                                                                                                          |             |     |                 | Study Are                         | ea 6 – Groundw                       | vater Levels and<br>July 2019       | Inferred Cont       | tours, |
| Teck Coal Limited Surface Water Stations     Site Features     Secondary Road                                                                       | Inferred Groundwater Co                                                                     | ntours Q3 20                      | 19                                               | 0                                      | 125                                                                  | 250                                                                                                                                                                                                                                        | 500         | 750 | 1,000<br>Meters | CHK'D: CH                         | DATE: 2020/11/12<br>COORD SYS: NAD 1 | SCALE: 1:17,000<br>983 UTM Zone 11N | Ref Num:<br>DRAWING | REV: 0 |

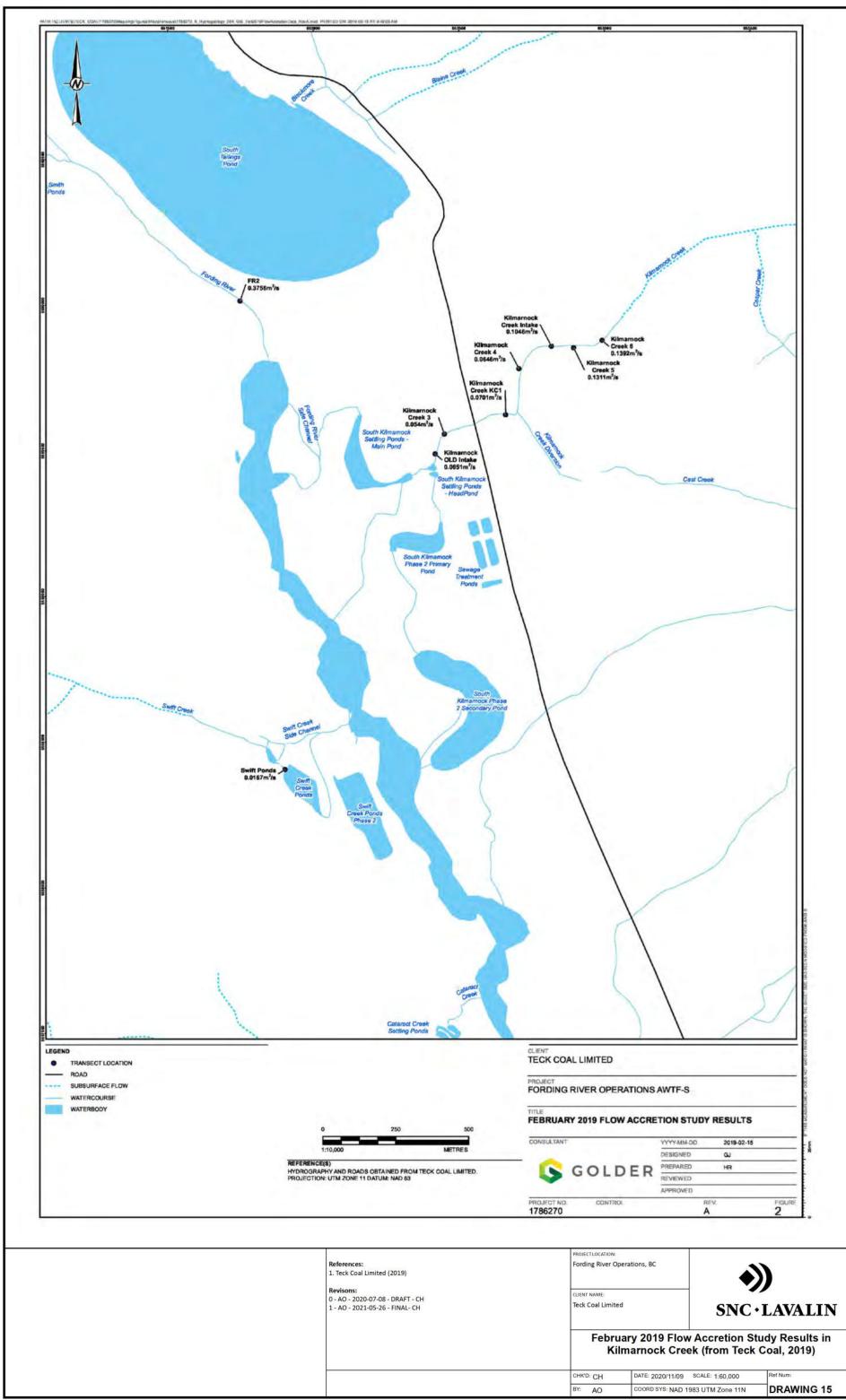
Project Path: P:\Current Projects\Teck Coal Ltd\GISCAD\GIS\Map Series\672386

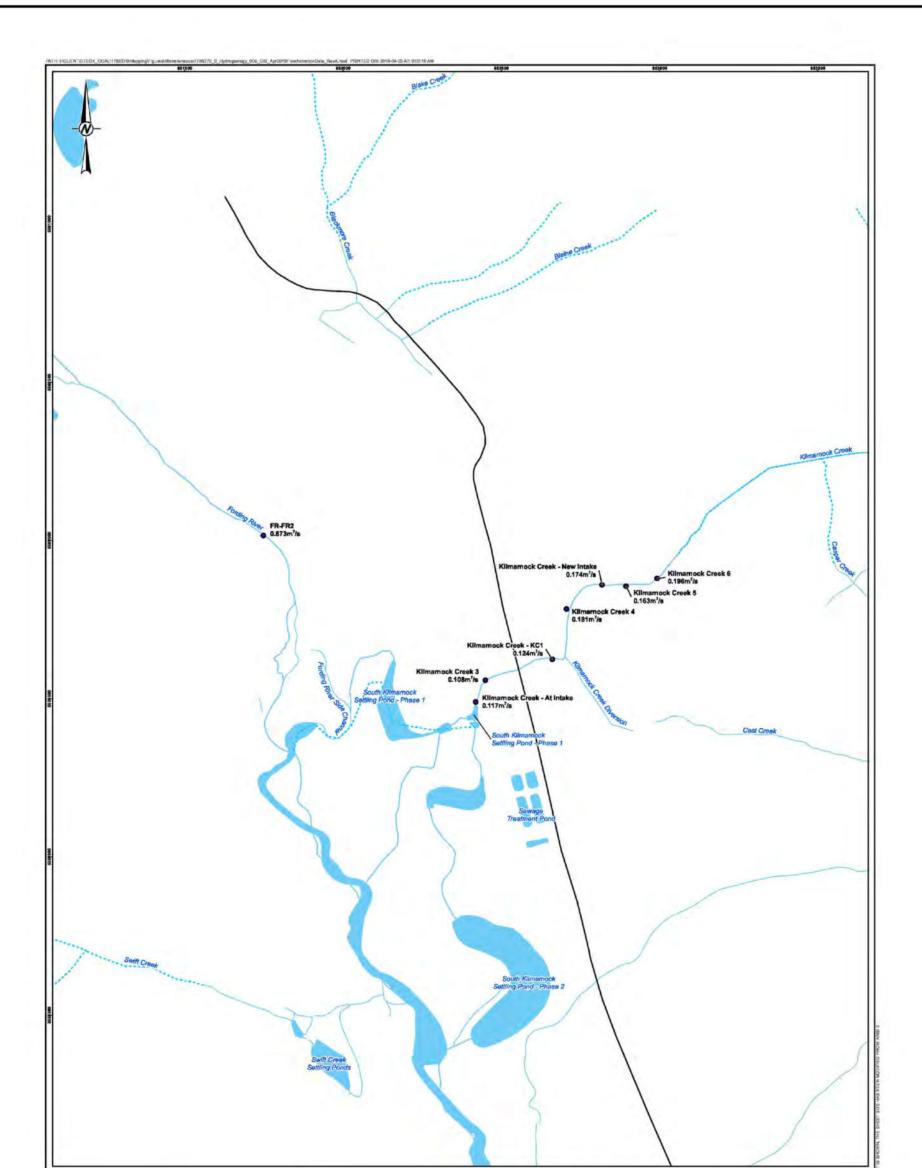


.

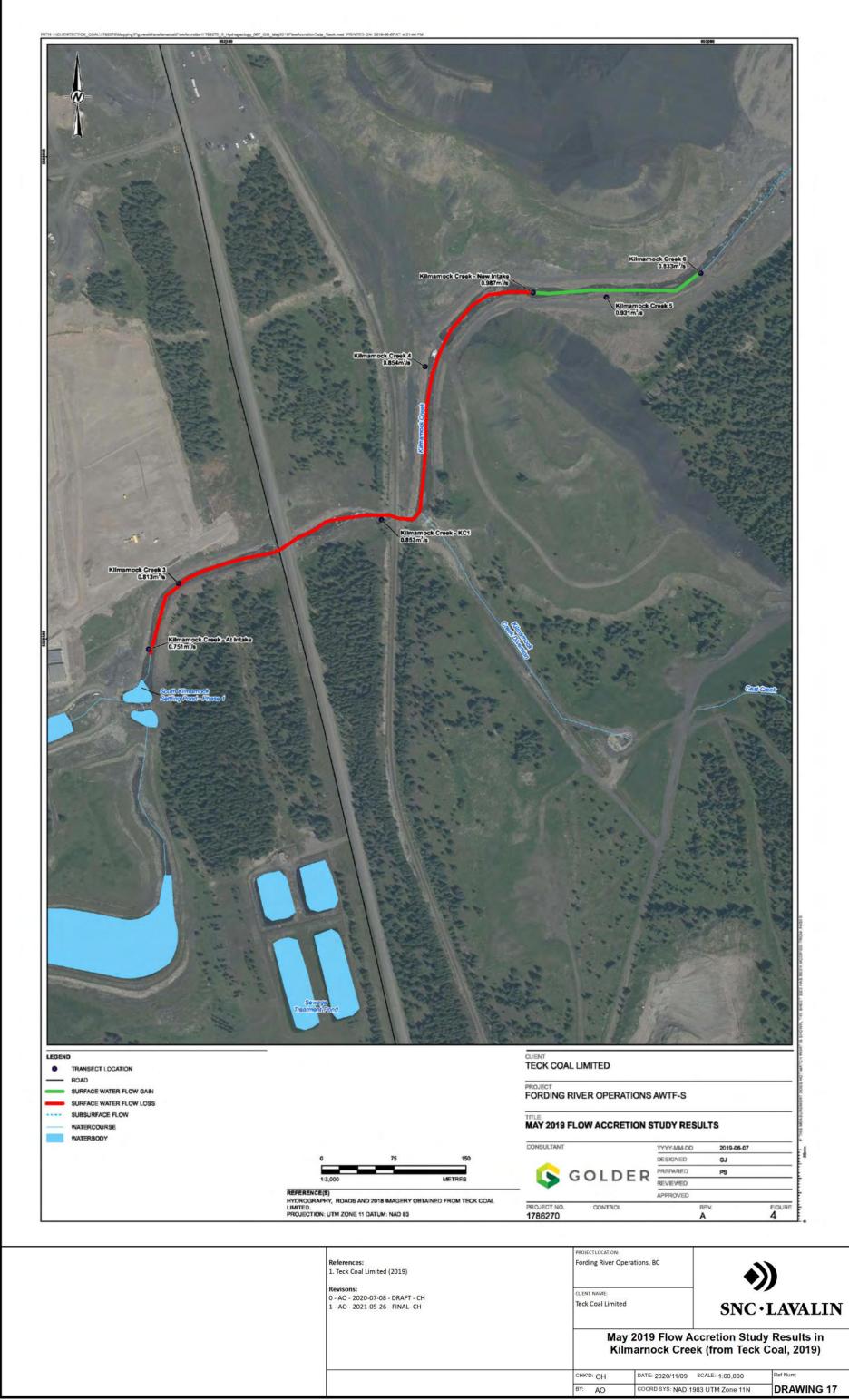

es\672386\12- GWSWIr Coal Ltd/GISCAD/GIS/Map cts/Teck Pro \\SIi2606\pre MXD Path:



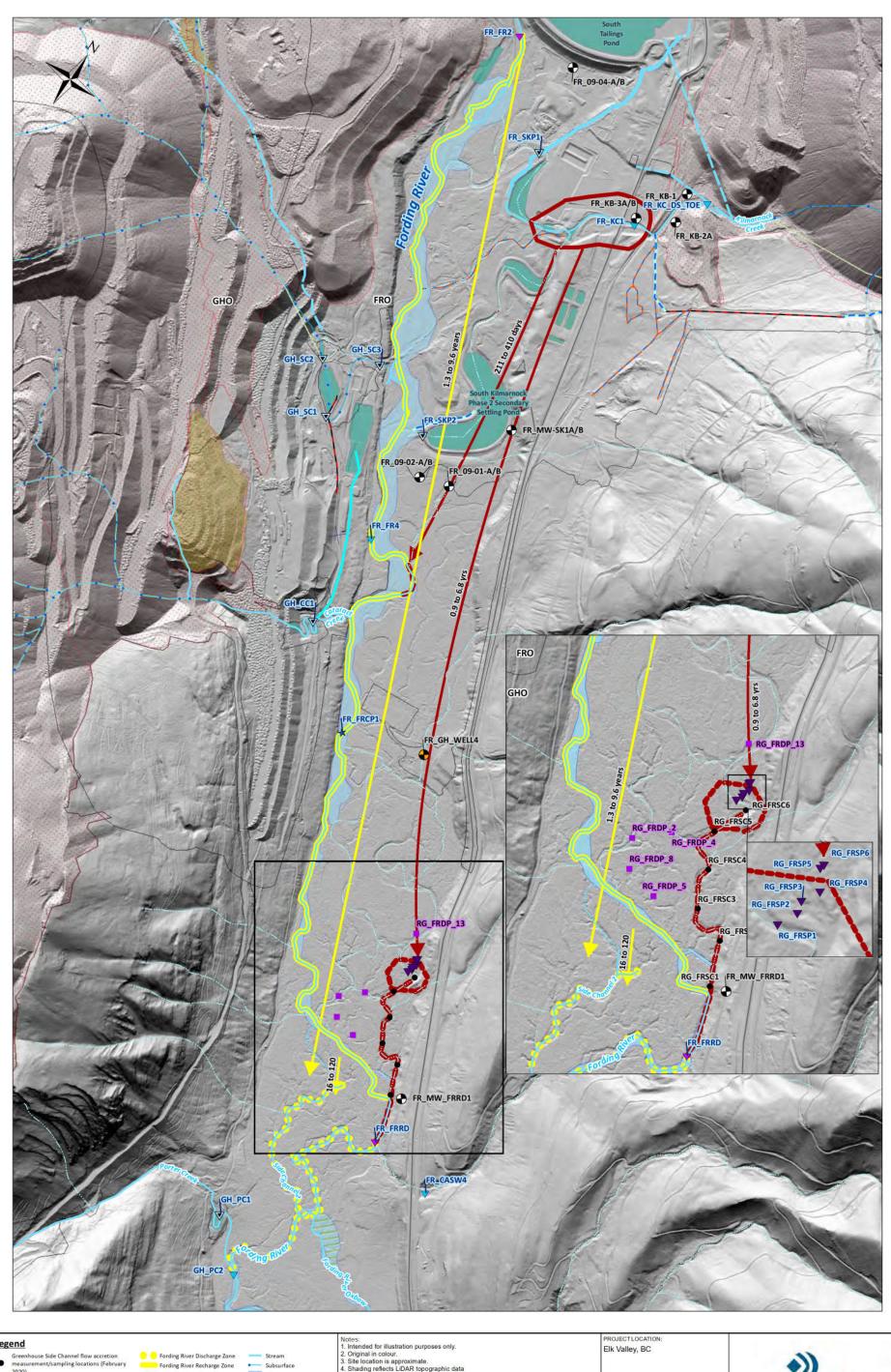

terFlow\_Sept.mx


Teck Coal Ltd/GISCAD/GIS/Map Series/672386/13-Gro

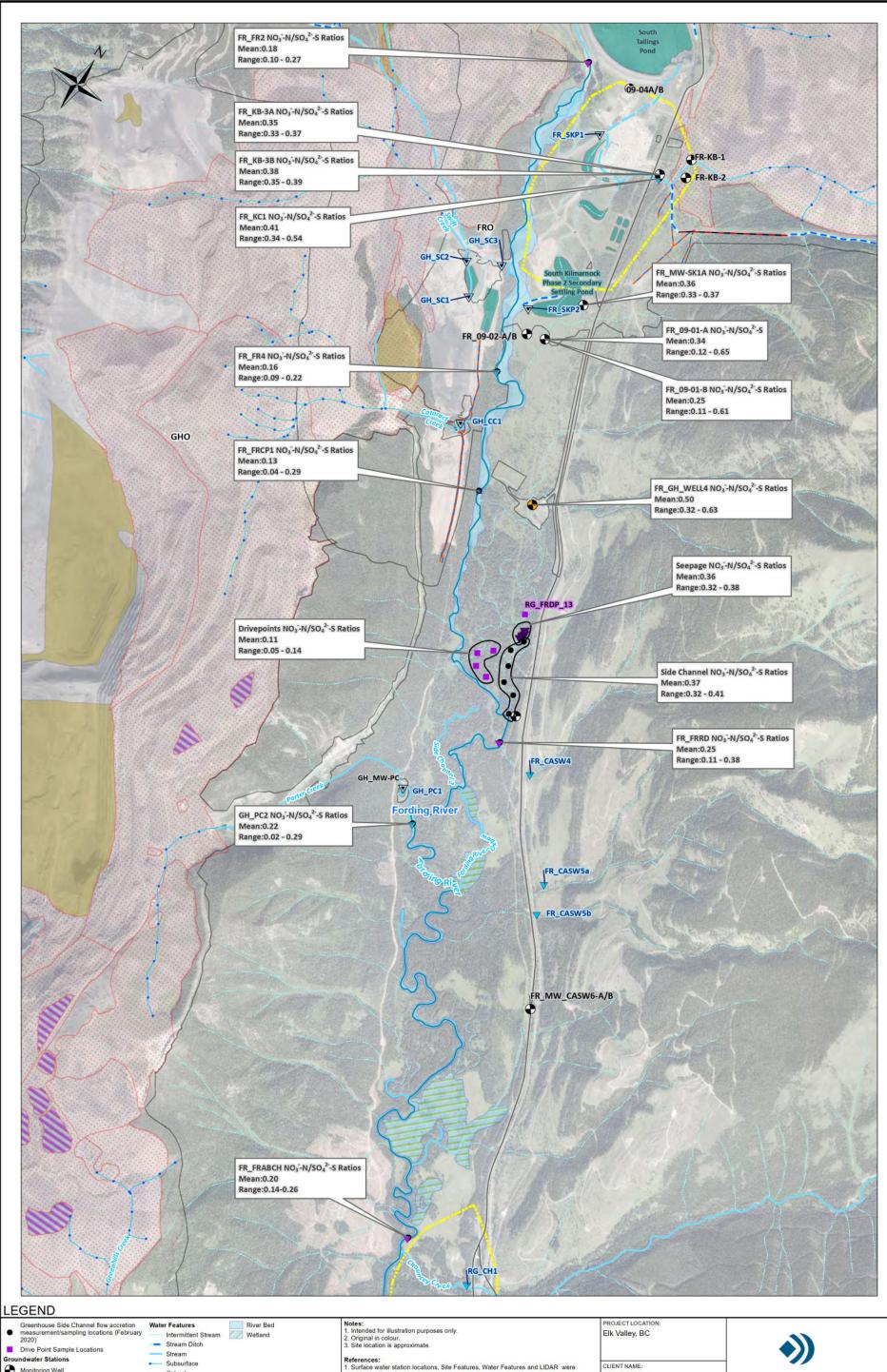
MXD Path: P:\Current




| Torrest Marcel          |        |                                      |                                                |                  |                        |                                                                                                     |                                            |                                     |                                                   |                |
|-------------------------|--------|--------------------------------------|------------------------------------------------|------------------|------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------|---------------------------------------------------|----------------|
| LEGEND                  |        |                                      |                                                |                  | CLIENT                 | AL LIMITED                                                                                          |                                            |                                     |                                                   | ICH V          |
| TRANSECT LOCATION       |        |                                      |                                                |                  | TECK CO                | ALLIWITED                                                                                           |                                            |                                     |                                                   | 01 MM          |
| SURFACE WATER FLOW GAIN |        |                                      |                                                |                  | PROJECT                | Second Contractor                                                                                   | Second Second                              |                                     |                                                   | 049.0          |
| SURFACE WATER FLOW LOSS |        |                                      |                                                |                  | FORDING                | RIVER OPERATIONS                                                                                    | AWTF-S                                     |                                     |                                                   | 010            |
| ROAD<br>SUBSURFACE FLOW |        |                                      |                                                |                  |                        |                                                                                                     |                                            |                                     | -                                                 | CIERTA         |
| WATERCOURSE             |        |                                      |                                                |                  | OCTOBER                | R 2018 FLOW ACCRET                                                                                  | TION STUDY                                 | RESULTS                             |                                                   | MAD            |
| THE COUNTER             |        | 0                                    | 500                                            | 1,000            |                        |                                                                                                     |                                            |                                     |                                                   | 1111           |
|                         |        |                                      |                                                |                  | CONSULTANT             |                                                                                                     | YYYY-MM-DD                                 | 2019-01-22                          |                                                   | - 1            |
|                         |        | 1:20.000                             | -                                              | METRES           |                        |                                                                                                     | DESIGNED                                   | GJ                                  |                                                   | En             |
|                         | REFERE | RAPHY AND ROADS                      | OBTAINED FROM TE                               | ECK COAL LIMITED |                        | GOLDER                                                                                              | PREPARED                                   | PS                                  |                                                   | E              |
|                         |        | TION. UTM ZONE 11 D                  |                                                |                  |                        | GOLDER                                                                                              | REVIEWED                                   | JW                                  |                                                   | F              |
|                         |        |                                      |                                                |                  |                        |                                                                                                     | APPROVED                                   | JW                                  |                                                   | Ē              |
|                         |        |                                      |                                                |                  |                        |                                                                                                     |                                            |                                     |                                                   |                |
|                         |        |                                      |                                                |                  | PROJECT NO.<br>1786270 | CONTROL                                                                                             |                                            | REV<br>B                            | 8-2                                               |                |
|                         |        |                                      |                                                |                  |                        |                                                                                                     |                                            |                                     | 8-2                                               |                |
|                         |        |                                      |                                                |                  |                        | PROJECT LOCATION:                                                                                   |                                            |                                     | FIGURE<br>8-2                                     |                |
|                         |        |                                      | oal Limited (2019)                             |                  |                        |                                                                                                     |                                            |                                     | 8-2                                               | È.             |
|                         |        | 1. Teck Co<br>Revisons               | coal Limited (2019)<br>s:                      |                  |                        | PROJECT LOCATION:                                                                                   |                                            |                                     | 8-2                                               |                |
|                         |        | 1. Teck Co<br>Revisons<br>0 - AO - 2 | oal Limited (2019)                             |                  |                        | PROJECTLOCATION:<br>Fording River Operation                                                         |                                            | B                                   | 8-2                                               | L.<br>AVALIN   |
|                         |        | 1. Teck Co<br>Revisons<br>0 - AO - 2 | oal Limited (2019)<br>s:<br>2020-07-08 - DRAFT |                  |                        | PROJECTLOCATION:<br>Fording River Operation<br>CLIENT NAME:<br>Teck Coal Limited                    | ons, BC                                    | B<br>SN<br>ccretion St              | 8-2<br>NC·L                                       | sults in the S |
|                         |        | 1. Teck Co<br>Revisons<br>0 - AO - 2 | oal Limited (2019)<br>s:<br>2020-07-08 - DRAFT |                  |                        | PROJECTLOCATION:<br>Fording River Operation<br>CLIENT NAME:<br>Teck Coal Limited                    | ons, BC<br>18 Flow Ad                      | SN                                  | 8-2<br>NC · L.<br>tudy Re-<br>tudy Re-            | sults in the S |
|                         |        | 1. Teck Co<br>Revisons<br>0 - AO - 2 | oal Limited (2019)<br>s:<br>2020-07-08 - DRAFT |                  |                        | PROJECTLOCATION:<br>Fording River Operatin<br>CUENT NAME:<br>Teck Coal Limited<br>October 201<br>St | ons, BC<br>18 Flow Ad<br>udy Area<br>(from | B<br>SN<br>ccretion St<br>and Kilma | 8-2<br>NC · L.<br>tudy Re-<br>trnock C<br>, 2019) | sults in the S |



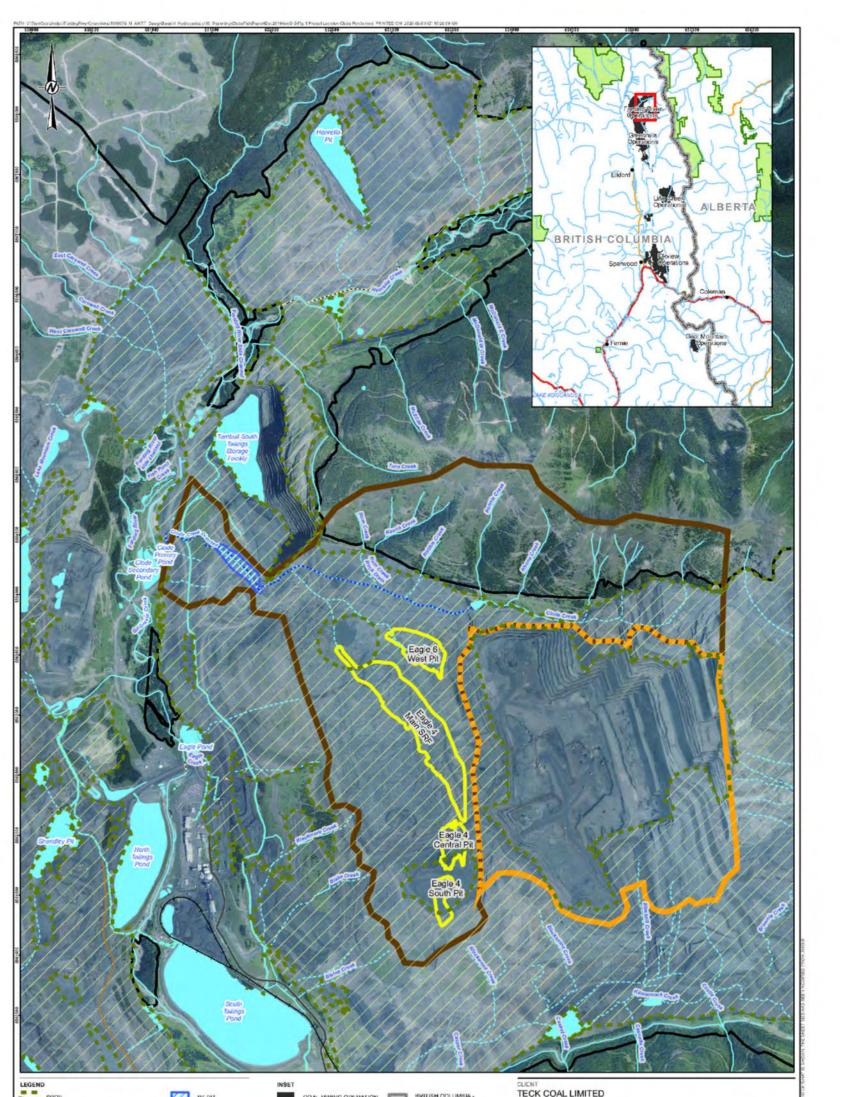




|                                        |                                                                                                                                              |                                                                                                    |                                           |                                       | 2                           |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|-----------------------------|
| TRANSECT LOCATION                      |                                                                                                                                              | TECK COAL LIMITED                                                                                  |                                           |                                       | MATCH W                     |
| ROAD<br>SUBSURFACE FLOW<br>WATERCOURSE |                                                                                                                                              | PROJECT<br>FORDING RIVER OPERAT                                                                    | TIONS AWTF-S                              |                                       | WEN' DOES NO.               |
| WATERBODY                              | 0 250 500                                                                                                                                    | TITLE<br>APRIL 2019 FLOW ACCRI                                                                     | ETION STUDY RE                            | SULTS                                 | Defensive state             |
|                                        |                                                                                                                                              | CONSULTANT                                                                                         | YYYY-MM-DD                                | 2019-04-25                            | - Fi                        |
|                                        | 1:10,000 METRES                                                                                                                              |                                                                                                    | DESIGNED                                  | GJ                                    |                             |
|                                        | REFERENCE(S)<br>HYDROGRAPHY AND ROADS OBTAINED FROM TECK COAL LIMITED.                                                                       | S GOLDI                                                                                            | FR PREPARED                               | AB                                    |                             |
|                                        | PROJECTION: UTM ZONE 11 DATUM: NAD 83                                                                                                        | V                                                                                                  | REVIEWED                                  |                                       |                             |
|                                        |                                                                                                                                              | PROJECT NO. CONTROL                                                                                | APPROVED                                  | REV.                                  | FIGURE                      |
|                                        |                                                                                                                                              |                                                                                                    |                                           | HEV.                                  | PRAURE F                    |
|                                        |                                                                                                                                              | 1786270                                                                                            |                                           | A                                     | 3 .                         |
|                                        | <b>References:</b><br>1. Teck Coal Limited (2019)<br><b>Revisons:</b><br>0 - AO - 2020-07-08 - DRAFT - CH<br>1 - AO - 2021-05-26 - FINAL- CH | PROJECT LOCATION:<br>Fording River Operation<br>CLIENT NAME:<br>Teck Coal Limited                  | ions, BC                                  | •)                                    |                             |
|                                        | 1. Teck Coal Limited (2019)<br><b>Revisons:</b><br>0 - AO - 2020-07-08 - DRAFT - CH                                                          | PROJECTLOCATION:<br>Fording River Operati<br>CLIENT NAME:<br>Teck Coal Limited<br>April 2          | ions, BC<br>2019 Flow Acc<br>arnock Creek | SNC •                                 | )<br>LAVALI<br>y Results in |
|                                        | 1. Teck Coal Limited (2019)<br><b>Revisons:</b><br>0 - AO - 2020-07-08 - DRAFT - CH                                                          | PROJECTLOCATION:<br>Fording River Operati<br>CLIENT NAME:<br>Teck Coal Limited<br>April 2<br>Kilma | 2019 Flow Acc                             | SNC •<br>sretion Stud<br>(from Teck ( | )<br>LAVALI<br>y Results in |

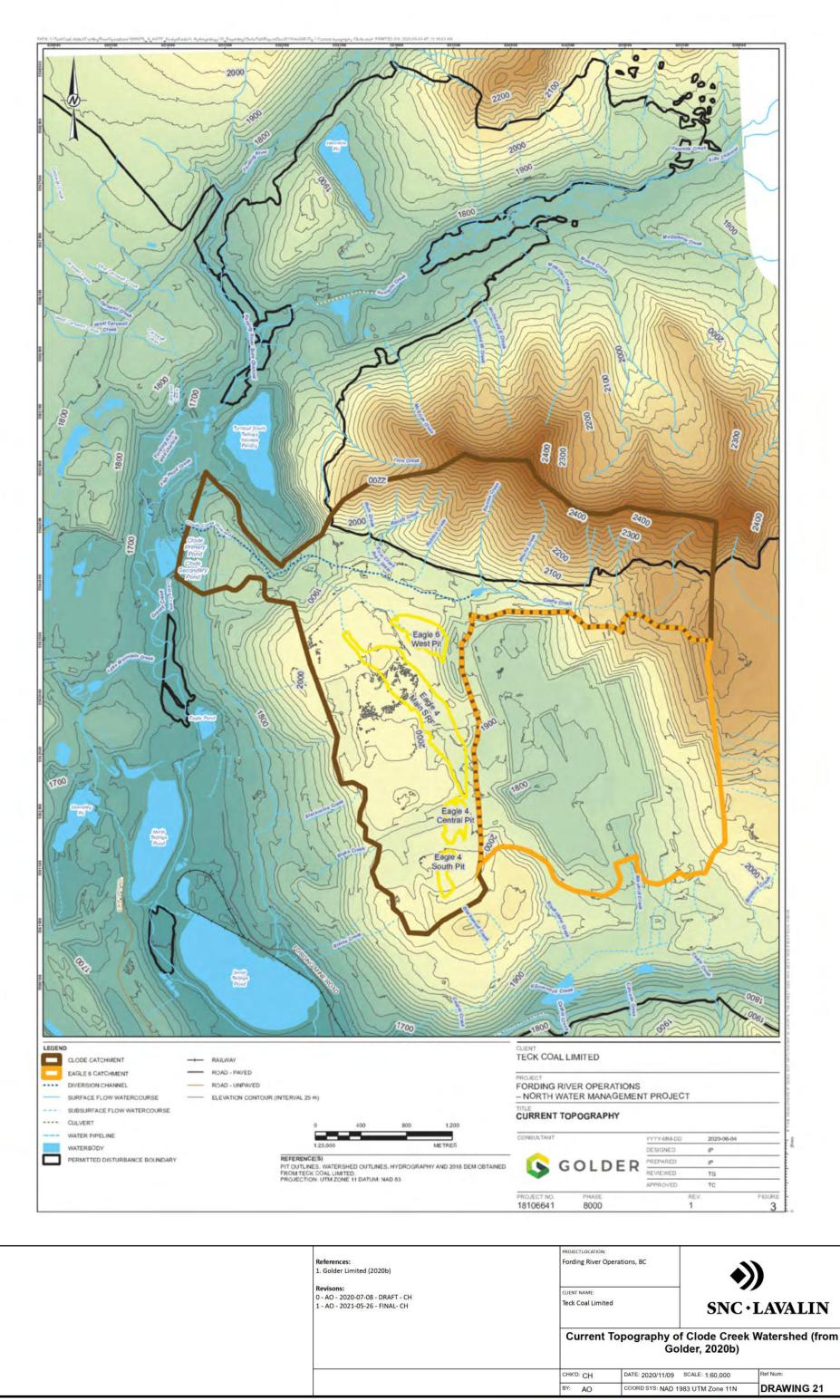


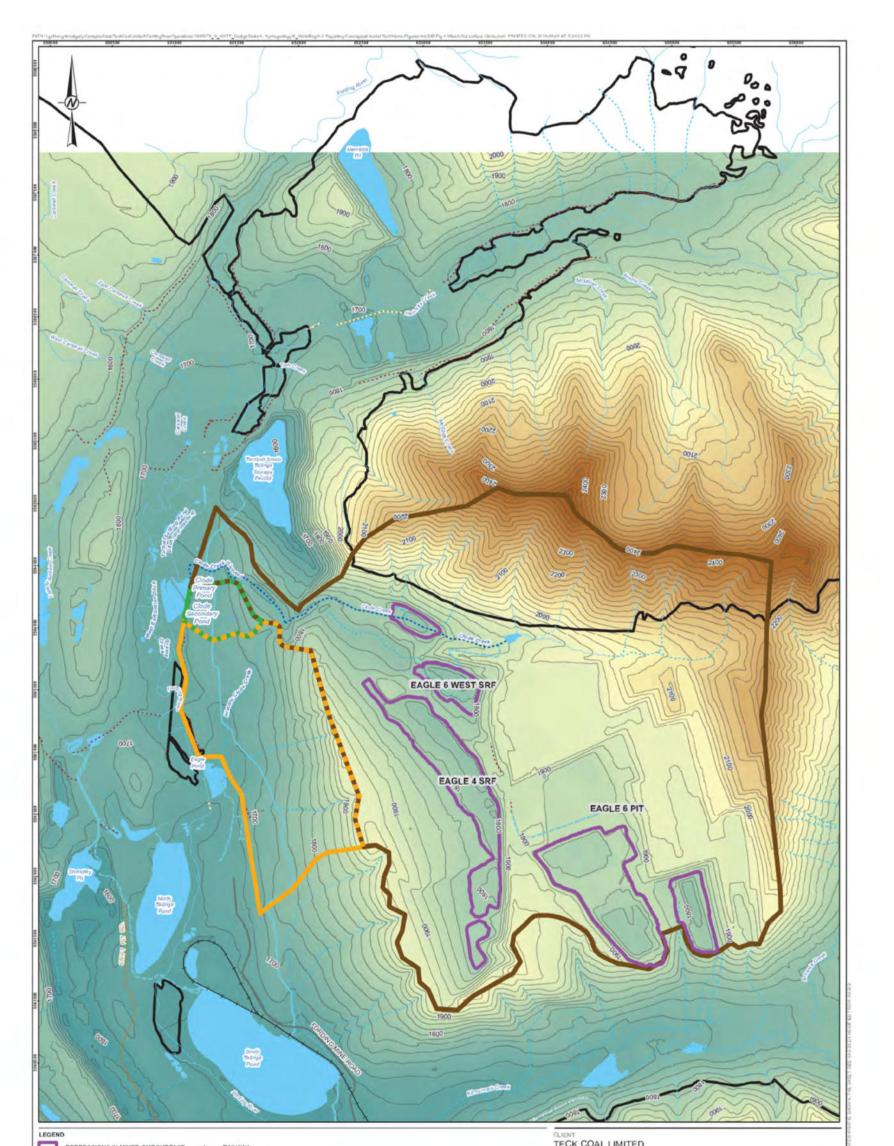
MXD Path: P:/Current Projects/Teck Coal Ltd/GISCAD/GISIMap Series/672366/17-May/mxd



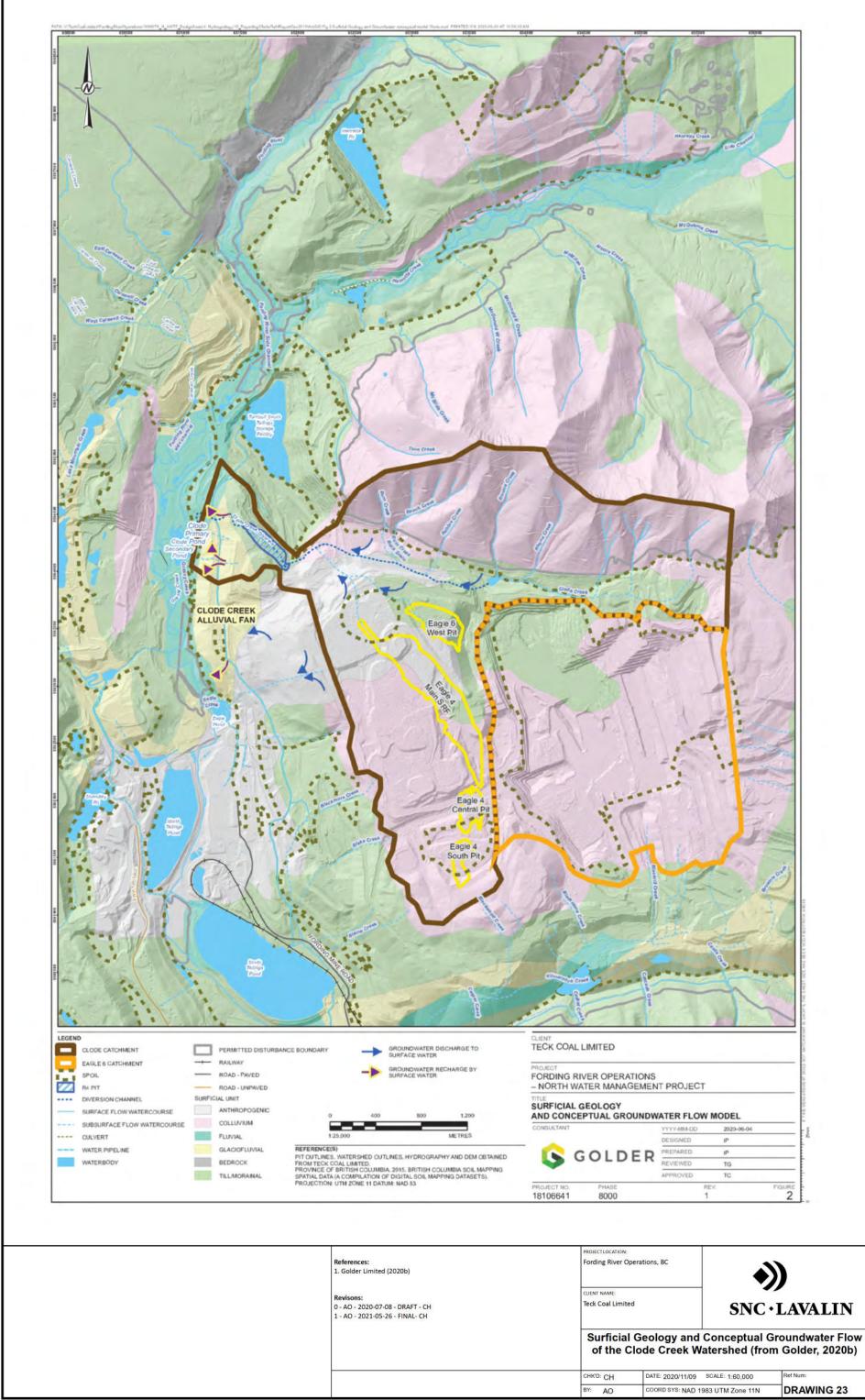

| Greenhouse Side Channel flow accretion<br>measurement/sampling locations (February<br>2020) Drive Point Sample Locations Monitoring Well Monitoring Well Supply Well Pit Mine Permitted Areas Ditch Pit Bit Bit Pit Bit Bit Pit Bit Bit Bit Pit Bit |                                                                 | 3. Site locati<br>4. Shading n<br>5. Groundwa<br>References<br>1. Surface w<br>provided by<br>2.<br>Revisons: | Coriginal in colour.     Stel coation is approximate.     Shading reflects LIDAR topographic data     Groundwater transport pathways are conceptual only     References:     Surface water station locations, Site Features, Water Features and LIDAR were     provided by Teck Coal Limited.     Z.     Revisions:     0 - AO - 2020-05-06 - DRAFT - CH     1 - AO - 2021-05-25 - FINAL - CH |     |     |     | Elk Valley, BC<br>CLIENT NAME:<br>Teck Coal Ltd. | SNC           | ))<br>• LAVALIN     |                                  |                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|--------------------------------------------------|---------------|---------------------|----------------------------------|-------------------------------|
| Surface Water Stations<br>Seep<br>Compliance Point<br>Receiving Environment                                                                                                                                                                                                                                                                                                                                                             | Waste Dump (Spoils)<br>Tailings/Settling Pond<br>Water Features | Rock Drain<br>Water Pipeline                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                               |     |     |     |                                                  |               | Study               | d Source-Recep<br>sport Pathways | tor Groundwater               |
| Authorized Discharge<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                      | Stream Ditch                                                    |                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                             | 100 | 200 | 400 | 600                                              | 800<br>Meters | CHK'D: CH<br>BY: AO | SCALE: 1:0<br>983 UTM Zone 11N   | Ref Num: REV: 0<br>DRAWING 18 |

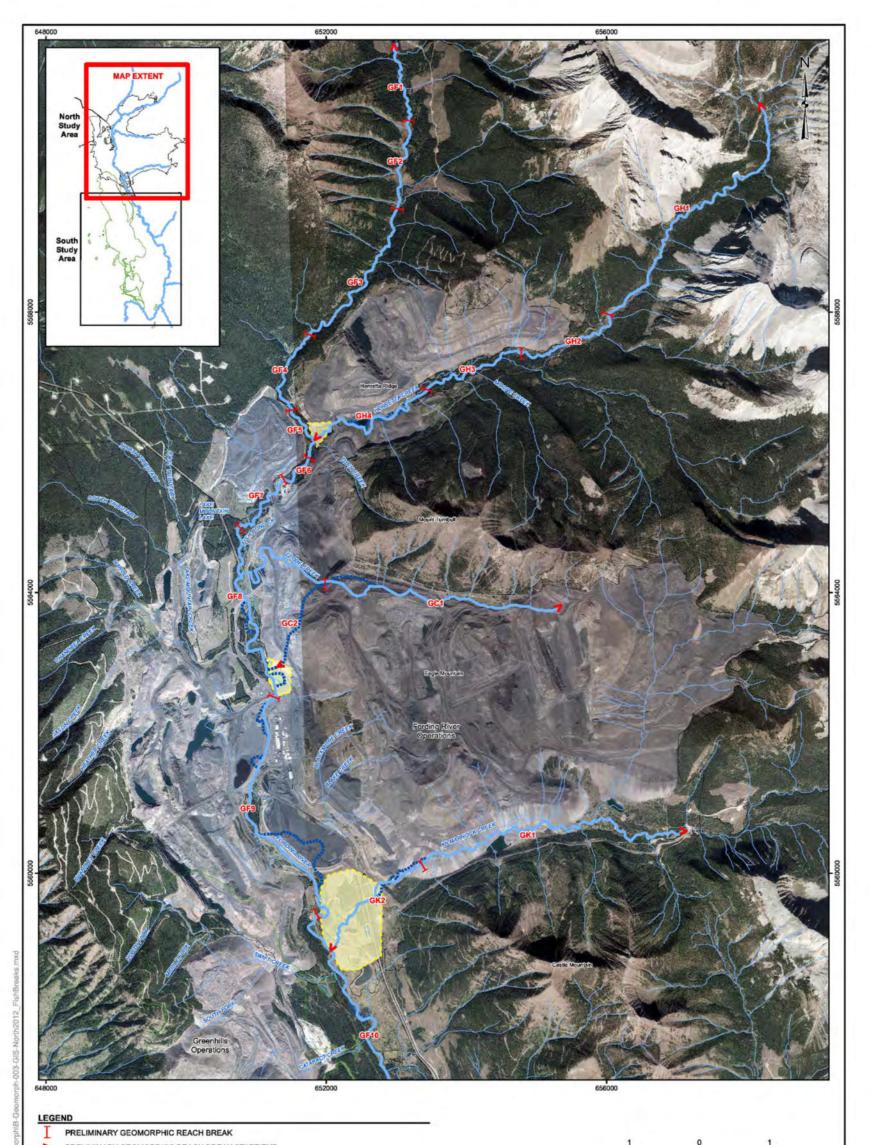



References: 1. Surface water station locations, Site Features, Water Features and LIDAR were provided by Teck Coal Limited. Subsurface
 Culvert Monitoring Well Teck Coal Ltd. **SNC · LAVALIN** Supply Well - Ditch 2. Revisons: 0 - AO - 2020-07-08- DRAFT - CH 1 - AO - 2021-05-26 - FINAL- CH Rock Drain Surface Water Stations Water Pipeline Seep NO<sub>3</sub><sup>-</sup>-N/SO<sub>4</sub><sup>2-</sup>-S ratios in Groundwater and Surface Alluvial Fans \* Compliance Point Mine Permitted Areas **Receiving Environment** Water in the S6 Study Area Pit Authorized Discharge Stockpiles V Monitoring Waste Dump (Spoils) Tailings/Settling Pond CHK'D: CH DATE: 2020/11/12 SCALE: 1:24,000 1,400 Ref Num 175 350 700 1,050 Site Features Meter - Secondary Road COORD SYS: NAD 1983 UTM Zone 11N DRAWING 19 BY: AO Lake

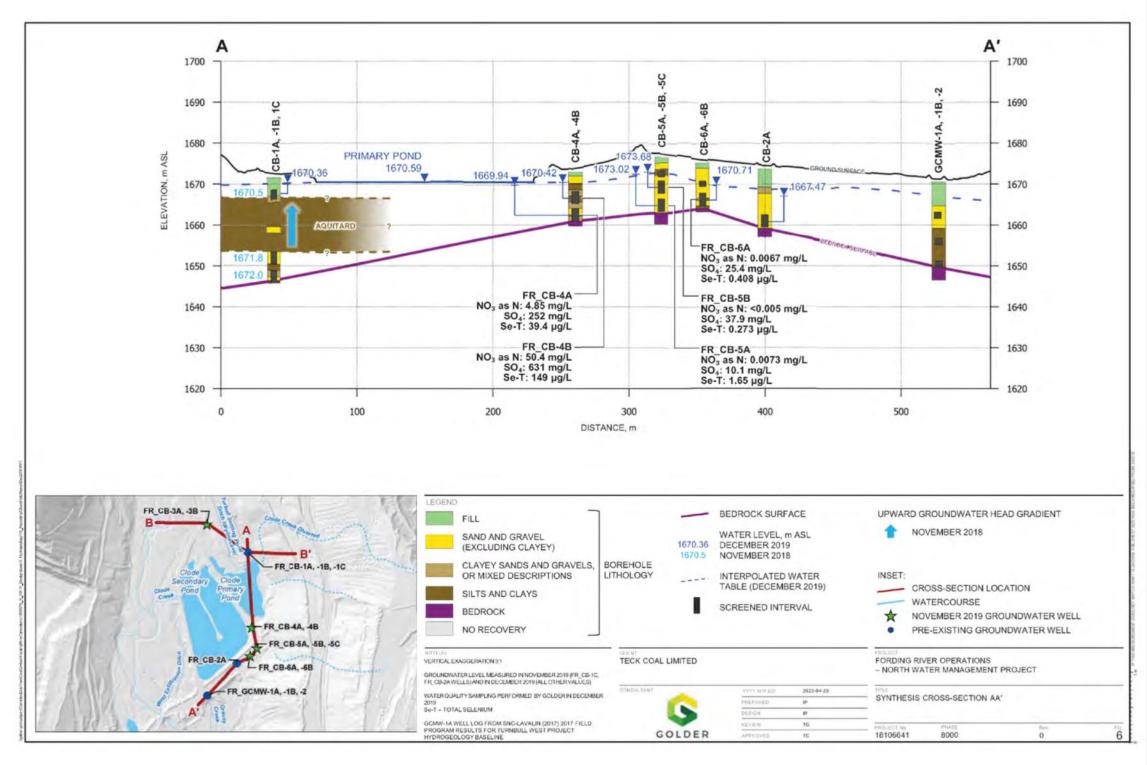

V

Project Path: P:\Current Projects\Teck Coal Ltd\GISCAD\GIS\Map Series\672386





| SPOIL<br>CLODE CATCHMENT<br>EAGLE 6 CATCHMENT<br>EAGLE 6 CATCHMENT<br>SUBSURFACE FLOW WATERCOURSE<br>DIVERSION CHANNEL<br>CULVERT<br>WATER PIPELINE<br>WATER PIPELINE<br>WATERBODY<br>PERMITTED DISTURBANCE BOXINDARY | R4 P11<br>RAILWAY<br>R0AD - PAVED<br>R0AD - UNPAVED | COAL MINING OPERATION<br>PRIMARY HIGHVAY<br>SECONDARY HIGHVAY<br>0 400 800 1,200<br>125,000 MCTRES<br>REFERENCE(S)<br>PHOLECK COAL UNITED.<br>PHOLECKION: UTM ZONE 11 DATUME NAD 83 | TECK COAL LIMITED PROJECT FORDING RIVER OPERATIONS - NORTH WATER MANAGEMEN TITLE PROJECT LOCATION: CLODE PONDS AND CLODE CF CORSULTANT GOORSULTANT GOOD CLODE CF | IT PROJECT  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                                                                                                                       |                                                     |                                                                                                                                                                                     | PROJECT NO. PHASE<br>18106641 8000                                                                                                                               | REV. FIGURE |
|                                                                                                                                                                                                                       |                                                     |                                                                                                                                                                                     |                                                                                                                                                                  |             |
|                                                                                                                                                                                                                       |                                                     | References:<br>1. Golder Limited (2020b)                                                                                                                                            | PROJECTLOCATION:<br>Fording River Operations, BC                                                                                                                 |             |
|                                                                                                                                                                                                                       |                                                     |                                                                                                                                                                                     | the second s                                                   | SNC · LAVAI |
|                                                                                                                                                                                                                       |                                                     | 1. Golder Limited (2020b)<br>Revisons:<br>0 - AO - 2020-07-08 - DRAFT - CH                                                                                                          | Fording River Operations, BC<br>CLIENT NAME:<br>Teck Coal Limited<br>Clode Creek V                                                                               | <b>•))</b>  |






| ved RM<br>ved JW<br>Rev. Figure<br>0 4 | VED JW<br>REV. FIGURE | VED JW<br>REV. FIGURE                                                                                           | REV. FIGURE                                                                                                     | NED JW REV. FIGURE                                | NED JW<br>REV. PIGURE<br>0 4                      | REV. PROVINCE<br>0 4 .                                                                                                                                  | REV. 0<br>REV. 0<br>PIGURE<br>0<br>4<br>PIGURE<br>0<br>CONC • LAVALII<br>raphy of Clode Creek Watersho<br>pm Golder, 2019b)                                          |
|----------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | PROJECT NO. PHASE R   | PROJECT NO. PHASE R<br>18106641 2000 0                                                                          | PROJECT NO. PHASE R<br>18106641 2000 0                                                                          | PROJECT NO. PHASE R<br>18106641 2000 0            | PROJECT NO. PHASE R<br>18106641 2000 0            | PROJECT NO. PHASE R<br>18106641 2000 0<br>PROJECTLOCATION:<br>Fording River Operations, BC<br>CLIENT NAME:<br>Teck Coal Limited<br>Mined-Out Topography | PROJECT NO. PHASE R<br>18106641 2000 0<br>PROJECT LOCATION:<br>Fording River Operations, BC<br>CLIENT NAME:<br>Teck Coal Limited<br>Mined-Out Topography<br>(from Ge |
| 000 0 4                                | 18106641 2000 0 4     | PROJECT LOCATION:                                                                                               | PROJECT LOCATION:                                                                                               | PROJECT LOCATION:<br>Fording River Operations, BC | PROJECT LOCATION:<br>Fording River Operations, BC | PROJECT LOCATION:<br>Fording River Operations, BC                                                                                                       | PROJECT LOCATION:<br>Fording River Operations, BC                                                                                                                    |
|                                        |                       | The second se | Concerning and the second s | Fording River Operations, BC                      | Fording River Operations, BC                      | Fording River Operations, BC                                                                                                                            | Fording River Operations, BC                                                                                                                                         |





| LEGEND<br>PRELIMINARY GEOMORPHIC REACH BREAK               |                                                                                                        |                                                                                                                             |                                                                                                                                                                                                    |                               |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
| PRELIMINARY GEOMORPHIC REACH BREAK \$                      | START/END                                                                                              | 1                                                                                                                           | 0 1                                                                                                                                                                                                |                               |  |
| ASSESSED CHANNEL IN 2012                                   |                                                                                                        | SCALE 1:45,000 KILOMETRES                                                                                                   |                                                                                                                                                                                                    |                               |  |
| 1952 CHANNEL LOCATION                                      |                                                                                                        | SCALE 1:4                                                                                                                   | 5,000 RILOMETRES                                                                                                                                                                                   |                               |  |
| WATERCOURSE                                                |                                                                                                        | PROJECT                                                                                                                     | 17                                                                                                                                                                                                 |                               |  |
| ALLUVIAL FAN                                               |                                                                                                        |                                                                                                                             | RIVER OPERATIONS                                                                                                                                                                                   |                               |  |
| FRO C-3 PERMIT BOUNDARY                                    |                                                                                                        | SW                                                                                                                          | IFT PROJECT                                                                                                                                                                                        |                               |  |
| GHO C-137 PERMIT BOUNDARY<br>GEOMORPHIC REACH BREAK NUMBER |                                                                                                        | TITLE                                                                                                                       |                                                                                                                                                                                                    |                               |  |
|                                                            |                                                                                                        | GEOMORPHIC OVERVIEW<br>NORTH STUDY AREA - 2012                                                                              |                                                                                                                                                                                                    |                               |  |
|                                                            |                                                                                                        |                                                                                                                             | PROJECT No. 09-1345-1007 SCALE AS SH                                                                                                                                                               | and and                       |  |
| REFERENCE                                                  |                                                                                                        |                                                                                                                             | DESIGN JS 20 May 2014                                                                                                                                                                              | HOWN REV. 0                   |  |
|                                                            |                                                                                                        |                                                                                                                             |                                                                                                                                                                                                    |                               |  |
| Hydrography obtained from Teck Coal Limited. Imagery of    | btained from PHB Group.                                                                                | Golder                                                                                                                      | GIS DR 02 Oct 2014 EIC                                                                                                                                                                             | URE: 3                        |  |
|                                                            | btained from PHB Group.                                                                                | Golder                                                                                                                      |                                                                                                                                                                                                    | URE: 3                        |  |
| Hydrography obtained from Teck Coal Limited. Imagery of    | References:<br>1. Golder Limited (2014)                                                                | Golder                                                                                                                      | GIS DR 22 Oct 2014<br>CHECK MH 06 Nov. 2014<br>REVIEW RA 06 Nov. 2014                                                                                                                              | URE: 3                        |  |
| Hydrography obtained from Teck Coal Limited. Imagery of    | References:<br>1. Golder Limited (2014)<br>Revisons:                                                   | PROJECT LOCATION:                                                                                                           | GIS DR 22 Oct 2014<br>CHECK MH 06 Nov. 2014<br>REVIEW RA 06 Nov. 2014                                                                                                                              | URE: 3                        |  |
| Hydrography obtained from Teck Coal Limited. Imagery of    | References:<br>1. Golder Limited (2014)                                                                | PROJECT LOCATION:<br>Fording River Operations, BC                                                                           | GIS         DR.         02 Oct. 2014         FIG           CHECK         MH         06 Nov. 2014         FIG           REVIEW         RA         06 Nov. 2014         FIG                          | )                             |  |
| Hydrography obtained from Teck Coal Limited. Imagery of    | <b>References:</b><br>1. Golder Limited (2014)<br><b>Revisons:</b><br>0 - AO - 2020-07-08 - DRAFT - CH | PROJECT LOCATION:<br>Fording River Operations, BC<br>CLIENT NAME:<br>Teck Coal Limited                                      | GIS         DR.         02 Oct. 2014         FIG           CHECK         MH         06 Nov. 2014         FIG           REVIEW         RA         06 Nov. 2014         FIG                          |                               |  |
| Hydrography obtained from Teck Coal Limited. Imagery of    | <b>References:</b><br>1. Golder Limited (2014)<br><b>Revisons:</b><br>0 - AO - 2020-07-08 - DRAFT - CH | PROJECT LOCATION:<br>Fording River Operations, BC<br>CLIENT NAME:<br>Teck Coal Limited<br>Geomorphic C                      | GIS         DR         22 Oct. 2014           CHECK         MH         08 Nov. 2014           EEVIEW         RA         06 Nov. 2014           SNC           Overview of the S8 S                  |                               |  |
| Hydrography obtained from Teck Coal Limited. Imagery of    | <b>References:</b><br>1. Golder Limited (2014)<br><b>Revisons:</b><br>0 - AO - 2020-07-08 - DRAFT - CH | PROJECT LOCATION:<br>Fording River Operations, BC<br>CLIENT NAME:<br>Teck Coal Limited<br>Geomorphic C<br>CHK'D: CH DATE: 2 | GIS         DR         22 Oct. 2014           CHECK         MH         08 Nov. 2014           EEVIEW         RA         06 Nov. 2014           SNC           Overview of the S8 S<br>Golder, 2014) | )<br>LAVALI<br>tudy Area (fro |  |

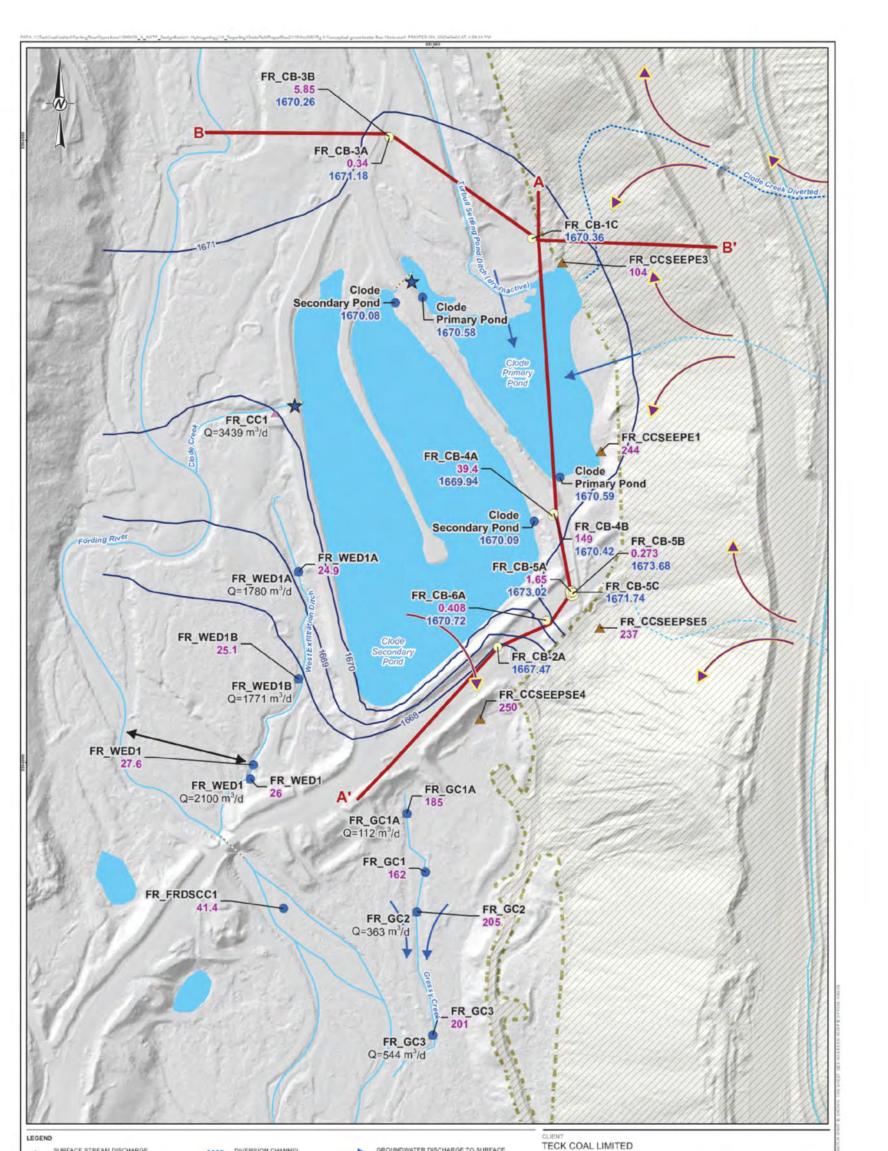


## Legend

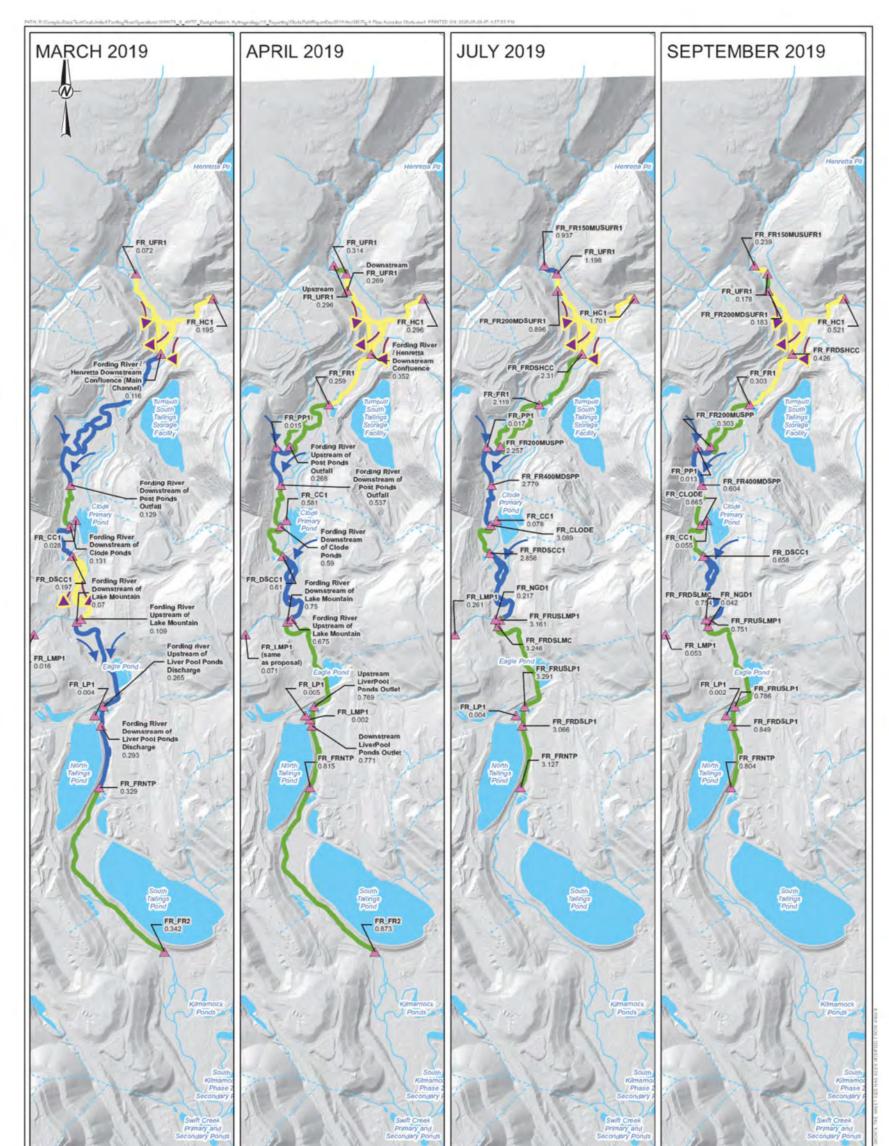
#### NOTES:

1. Original in colour.

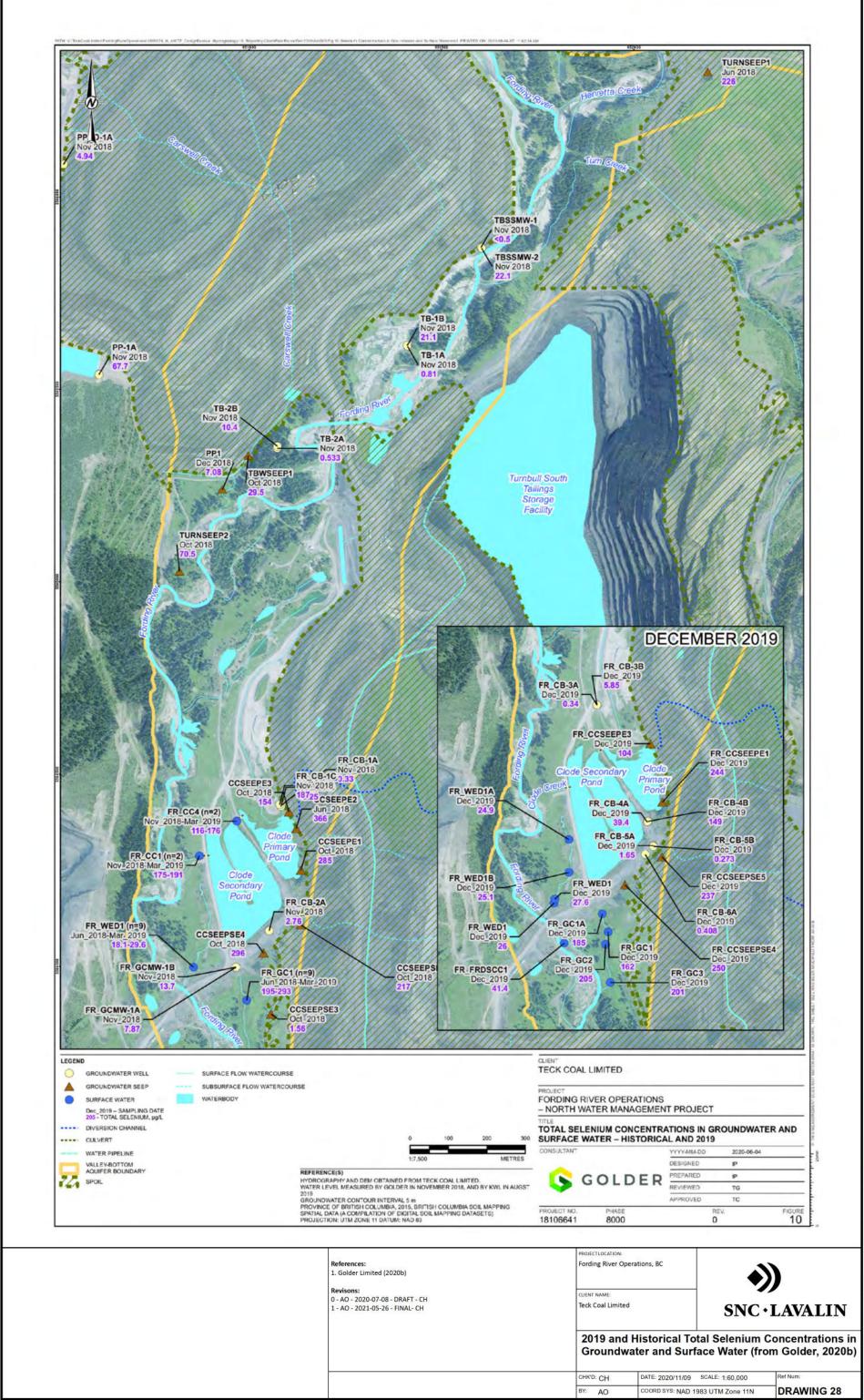
Numerical scale reflects full-size print. Print scaling will distort this scale; however, scale bar will remain accurate.
 Intended for illustration purposes. Accuracy has not been verified for construction or navigation

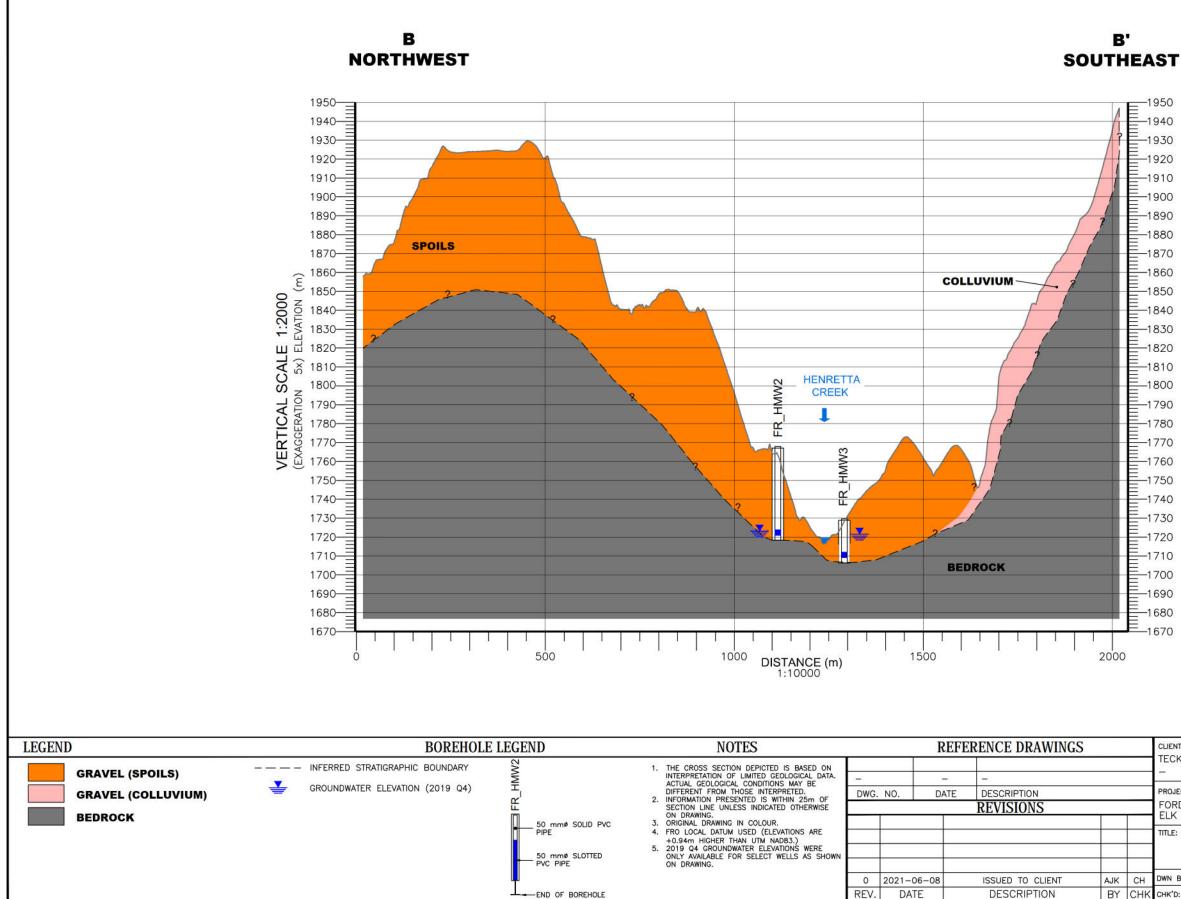

**REFERENCES:** 

 BCGOV ILMB Crown Registry and Geographic Base Branch (CRGB) (data accessed through www.GeoBC.gov.bc.ca)
 GPS Data Collected using an eTrex. Accuracy expected to be approximately +/- 3.5m.


#### REVISIONS:

0 - AO - 2020-07-08 - DRAFT - CH 1 - AO - 2021-05-26 - FINAL- CH

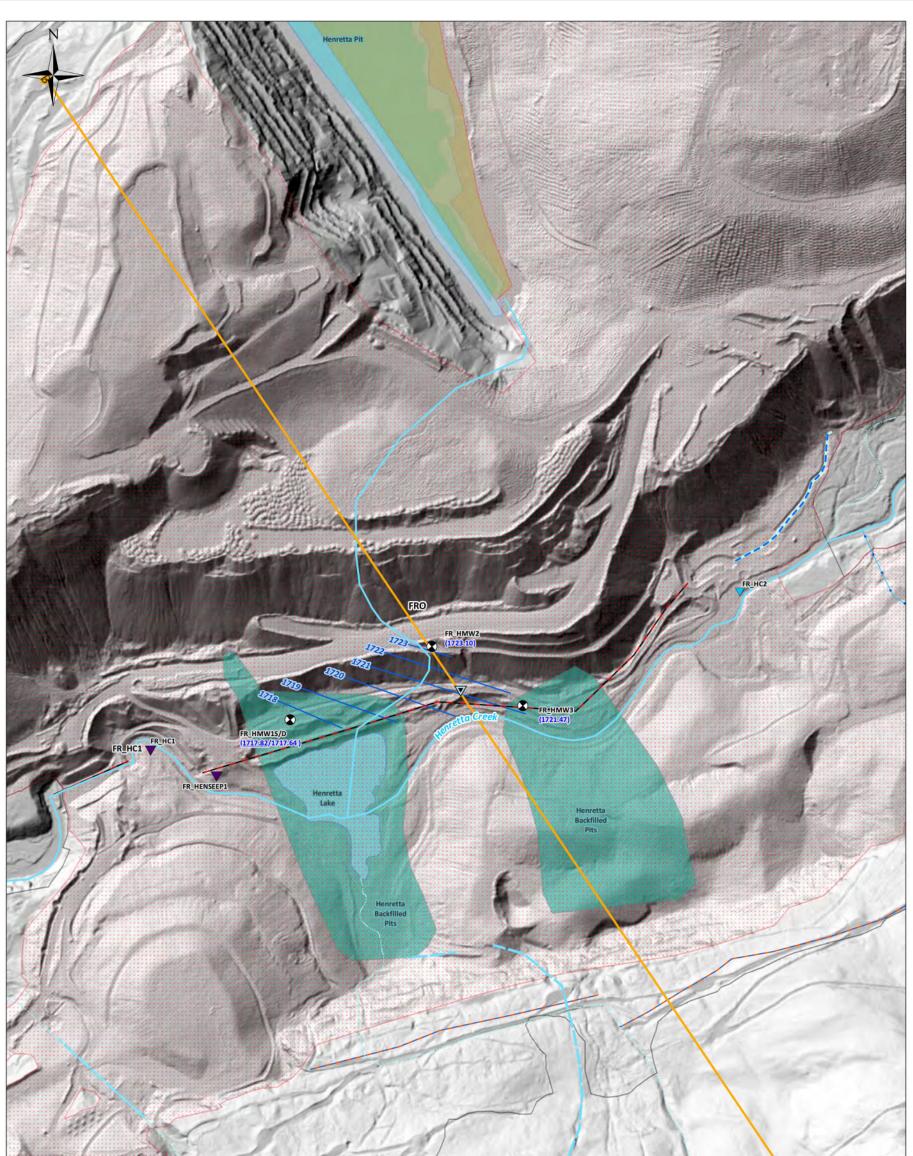

| CLIENT:<br>Teck Coal Limited         | 1                            | •                             | ))             |
|--------------------------------------|------------------------------|-------------------------------|----------------|
| PROJECT LOCATION<br>Fording River Op |                              | SNC                           | ·LAVALIN       |
| Cross                                | -Section throug<br>Ponds Are | gh the Clode<br>a (Golder, 20 |                |
| BY: AO                               | SCALE: 1:112,205             | DATE: 2020/07/08              | REF No: REV: 0 |
| снк'р: КМ                            | Proj Coord Sys: NAD 19       | 983 UTM Zone 11N              | DRAWING 25     |



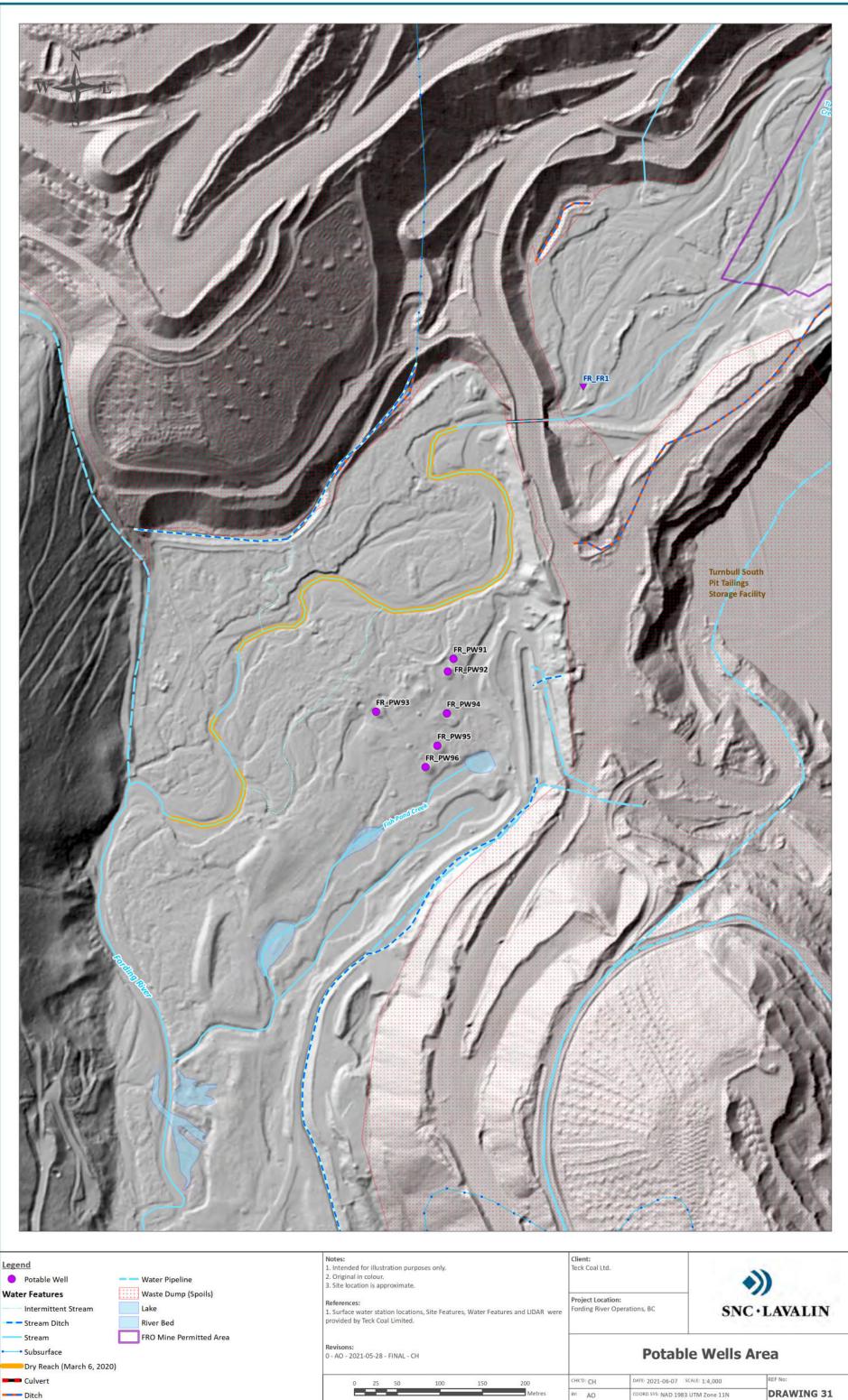

| LEGEND | <b>)</b>                                                          |   |                           |                                             |                                                           |        | TEOU OO              | LI LILLITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                       |                                    | 5                      |
|--------|-------------------------------------------------------------------|---|---------------------------|---------------------------------------------|-----------------------------------------------------------|--------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------|------------------------------------|------------------------|
|        | SURFACE STREAM DISCHARGE<br>MEASUREMENT POINT (DEC 2019)          |   | DIVERSION CHANNEL         | -                                           | GROUNDWATER DISCHARGE TO S<br>WATER                       | URFACE | TECK CO/             | AL LIMITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                       |                                    | or se                  |
| WATER  | QUALITY SAMPLING POINT (DEC 2019)                                 |   | CULVERT                   | -                                           | GROUNDWATER RECHARGE BY S                                 | IRFACE | PROJECT              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                       |                                    | 110                    |
| 0      | GROUNDWATER WELL                                                  |   | WATER PIPELINE            |                                             | WATER                                                     |        |                      | RIVER OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | _                                     |                                    | 0.67 D                 |
|        | GROUNDWATER SEEP                                                  | _ | SURFACE FLOW WATERCOURSE  | -                                           | SURFACE WATER - GROUNDWATE                                | R      |                      | WATER MANAGEME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ENT PROJEC  | T                                     |                                    | 2) (0                  |
|        | SURFACE WATER                                                     |   | SUBSURFACE FLOW WATERCOUR | ISE                                         |                                                           |        | GROUND               | WATER TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                       |                                    | t refer                |
|        | 5-85 - TOTAL SELENIUM, µg/L<br>1670 - WATER LEVEL, m ASL          |   |                           |                                             | 0 50                                                      | 100    | CLODE C              | REEK PONDS (DEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EMBER 2019  | )                                     |                                    | 111 A                  |
|        | 1670 - WATER LEVEL, IN ASL<br>GROUNDWATER TABLE ELEVATION CONTOUR |   |                           |                                             | 1:2.500                                                   | METRES | CONSULTANT           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | YYYY-MM-DD  | 2020-06-0                             | 2                                  | -1                     |
|        |                                                                   |   |                           |                                             | 1.2,500                                                   | MEIRES |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DESIGNED    | IP                                    |                                    | - n                    |
| ×      | POND DECANT POINT                                                 |   | REFERENCE(S)              |                                             |                                                           |        |                      | GOLDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PREPARED    | IP                                    |                                    |                        |
| 12     | SPOIL                                                             |   | HYDROGRAPHY A             | AND DEM O                                   | BTAINED FROM TECK COAL LIMITED                            |        |                      | OOLDEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REVIEWED    | TG                                    |                                    |                        |
|        |                                                                   |   | PROJECTION: UTI           | M ZONE 11                                   | DATUM: NAD 63                                             |        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | APPROVED    | TC                                    |                                    | 1                      |
|        |                                                                   |   |                           |                                             |                                                           |        | PROJECT NO. 18106641 | PHASE<br>8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | REV                                   | FIGURE 8                           | E.                     |
|        |                                                                   |   |                           |                                             |                                                           |        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                       | -                                  | £                      |
|        |                                                                   |   |                           |                                             |                                                           |        | 5 8-00<br>1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                       |                                    | L .                    |
|        |                                                                   |   |                           |                                             |                                                           |        |                      | PROJECTLOCATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.00       |                                       |                                    | 1.                     |
|        |                                                                   |   |                           | e <b>rences:</b><br>iolder Limi             | ited (2020b)                                              |        |                      | PROJECTLOCATION:<br>Fording River Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ns, BC      |                                       | <b>((</b>                          | 1.                     |
|        |                                                                   |   | 1. G<br>Rev               | iolder Limi<br>isons:                       |                                                           |        |                      | and the second se | ns, BC      |                                       | •))                                |                        |
|        |                                                                   |   | 1. G<br>Revi<br>0 - A     | iolder Limi<br><b>isons:</b><br>AO - 2020-1 | ited (2020b)<br>-07-08 - DRAFT - CH<br>-05-26 - FINAL- CH |        |                      | Fording River Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ns, BC      | SN                                    | •))<br>IC·LAY                      | VALII                  |
|        |                                                                   |   | 1. G<br>Revi<br>0 - A     | iolder Limi<br><b>isons:</b><br>AO - 2020-1 | 07-08 - DRAFT - CH                                        |        |                      | Fording River Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iter Levels | and Infe<br>Ponds A                   | rred Conto<br>rea, Dece            | ours in th             |
|        |                                                                   |   | 1. G<br>Revi<br>0 - A     | iolder Limi<br><b>isons:</b><br>AO - 2020-1 | 07-08 - DRAFT - CH                                        |        |                      | CLIENT NAME:<br>Teck Coal Limited<br>Groundwa<br>Clode Cree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iter Levels | s and Infer<br>g Ponds A<br>Golder, 2 | rred Conto<br>Area, Dece<br>2020b) | ours in th<br>mber 201 |



| SURFACE STREAM DISCHARGE MEASUREMENT POINT     0.804 - DISCHARGE, m/s |                                                                                                | TECK COAL L                                                               | IMITED                                                  |                          |                         |                         |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|--------------------------|-------------------------|-------------------------|
| FLOW ACCRETION RESULTS                                                |                                                                                                | PROJECT                                                                   |                                                         |                          |                         |                         |
| GAINING REACH (INFLOW >10% OF UPSTREAM DISCHARGE)                     |                                                                                                |                                                                           | /ER OPERATIONS                                          |                          |                         |                         |
| NEUTRAL REACH (CHANGE < 10% OF UPSTREAM DISCHARGE)                    |                                                                                                |                                                                           | TER MANAGEMEN                                           | T PROJECT                |                         |                         |
| LOSING REACH (OUTFLOW >10% OF UPSTREAM DISCHARGE)                     |                                                                                                | FLOW ACCRE                                                                | ETION STUDIES AT                                        |                          | RIVER NOR               | тн                      |
| GROUNDWATER DISCHARGE TO SURFACE WATER                                | 0 400 800 1,200                                                                                |                                                                           | IL, JULY, SEPTEM                                        |                          |                         |                         |
| - GROUNDWATER RECHARGE BY SURFACE WATER                               |                                                                                                | CONSULTANT                                                                |                                                         | YYYY-MM-DD               | 2020-05-26              | Q                       |
|                                                                       | 1:32,000 METRES                                                                                |                                                                           |                                                         | DESIGNED                 | IP                      |                         |
|                                                                       | NOTE(S) AND REFERENCE(S)<br>FOR POINTS WITH MORE THAN ONE DISCHARGE MEASUREMENT LABELS IDICATE | C C                                                                       | OLDER                                                   | PREPARED                 | IP                      |                         |
|                                                                       | MEAN MEASURED VALUE                                                                            | - <b>&gt;</b> •                                                           | OLDER                                                   | REVIEWED                 | TG                      |                         |
|                                                                       | HYDROGRAPHY AND DEM OBTAINED FROM TECK COAL LIMITED.<br>PROJECTION: UTM ZONE 11 DATUM: NAD 83  |                                                                           |                                                         | APPROVED                 | TC                      |                         |
|                                                                       | PROJECTION: UTM ZONE 11 DATUM: NAD 83                                                          | PROJECT NO,                                                               | PHASE                                                   | R                        | EV.                     | FIG                     |
|                                                                       |                                                                                                | 18106641                                                                  | 8000                                                    | 1                        |                         | 9                       |
|                                                                       | References:<br>1.Golder Limited (2020b)                                                        | PROJECTLOCATI                                                             |                                                         | 1                        | <b>((</b>               | 9                       |
|                                                                       | 1.Golder Limited (2020b) Revisons:                                                             | PROJECTLOCATI                                                             | ION:                                                    | 1                        | •))                     | 9                       |
|                                                                       | 1.Golder Limited (2020b)                                                                       | PROJECT LOCAT                                                             | 10N:<br>er Operations, BC                               | SI                       | )<br>NC · LA            |                         |
|                                                                       | 1.Golder Limited (2020b)<br><b>Revisons:</b><br>0 - AO - 2020-07-08 - DRAFT - CH               | PROJECT LOCATI<br>Fording Rive<br>CLIENT NAME:<br>Teck Coal Lin<br>Flow A | 10N:<br>er Operations, BC                               | es in the S              | 88 Study                | <b>AVA</b> ]<br>Area ir |
|                                                                       | 1.Golder Limited (2020b)<br><b>Revisons:</b><br>0 - AO - 2020-07-08 - DRAFT - CH               | PROJECT LOCATI<br>Fording Rive<br>CLIENT NAME:<br>Teck Coal Lin<br>Flow A | ion:<br>er Operations, BC<br>imited<br>Accretion Studio | es in the S<br>ember 201 | 88 Study /<br>9 (from G | <b>WAI</b><br>Area in   |

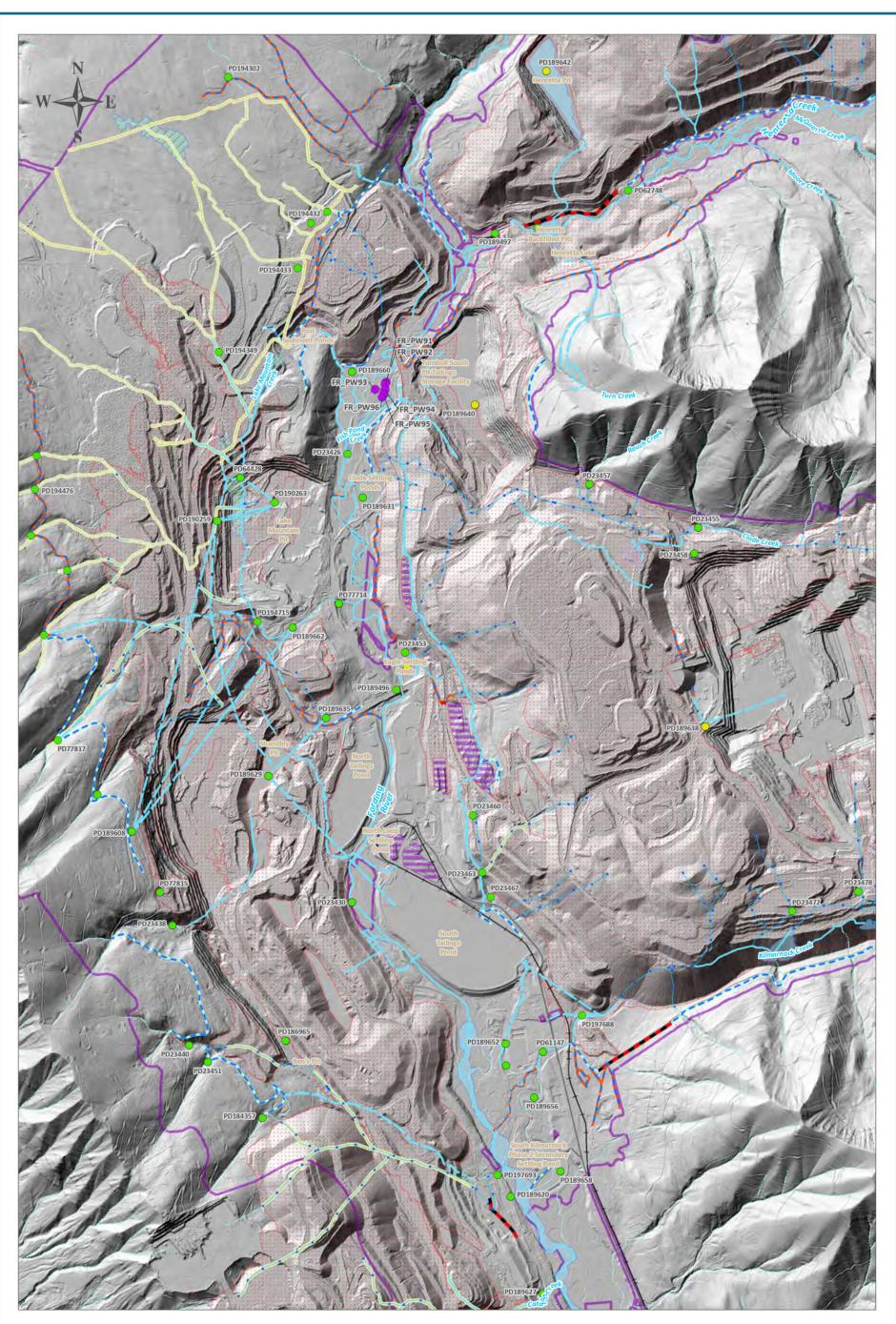






\_\_\_\_1950 -1940 -1930 -1920 -1910 -1900 -1890 -1880 -1860 -1850 -1840 -1830 -1820 -1810 1800 -1790 1780 1760 -1740 -1700 <u></u>=−1690 1680

|   | CLIENT NAME:<br>TECK COAL LIN<br>-                  | NITED                          | •)                | )                 |
|---|-----------------------------------------------------|--------------------------------|-------------------|-------------------|
|   | PROJECT LOCATION:<br>FORDING RIVER<br>ELK VALLEY, E |                                | SNC               | LAVALIN           |
|   |                                                     | ER FORDING RI<br>RRED GEOLOGIC |                   |                   |
|   | DWN BY: AJK                                         | SCALE: AS SHOWN                | DATE: 2020-02-10  | DWG No: REV.: 0   |
| ĸ | снк'р: КМ                                           | PLOT: 20210608.0930            | CADFILE:672386-R4 | <b>DRAWING 29</b> |

ROJECTS\TECK COAL LTD\SPO\672386 CONFIDENTIAL\40\_EXECUTION\45\_GIS\_DWGS\CAD\672386-R4.DW

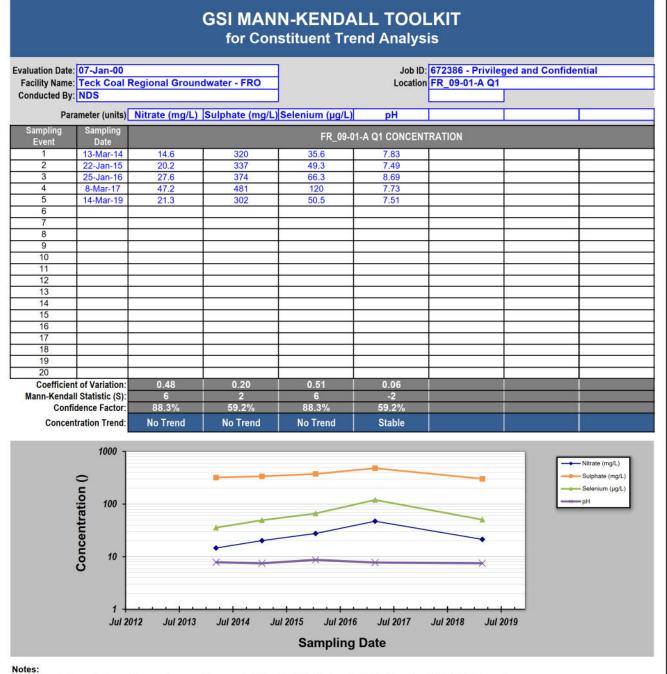



|                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                        | 8                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------|
| LEGEND                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             |                                                                        |                    |
| Groundwater Stations Mine Permitted Areas 🔀 Island Tallings/Settling Pond 📃 Lake                                                                                                                                                                                                                                                               | Notes:<br>1. Intended for illustration purposes only.<br>2. Original in colour.<br>3. Site location is approximate.                                                                                                                                                                         | PROJECTLOCATION:<br>Elk Valley, BC                                     |                    |
| Groundwater Stations       Mine Permitted Areas       Island         Monitoring Well       Tailings/Settling Pond       Lake         Supply Well       Intermittent Stream       Wetland         urface Water Stations       Stream Ditch       Inferred Potentiometric Contours (masl)         Authorized Discharge       Stream       Stream | Intended for illustration purposes only.     Zoriginal in colour.     Site location is approximate.     Shading reflects LiDAR topographic data     References:     Surface water station locations, Site Features, Water Features and LIDAR were     provided by Teck Coal Limited.     Z. |                                                                        | <b>SNC·LAVALIN</b> |
| Groundwater Stations     Mine Permitted Areas     Island       Monitoring Well     Tailings/Settling Pond     Lake       Supply Well     Intermittent Stream     Wetland       Surface Water Stations     Stream Ditch     Inferred Potentiometric Contours (masl)       Authorized Discharge     Indefinite Stream                            | Intended for illustration purposes only.     Original in colour.     Site location is approximate.     Shading reflects LiDAR topographic data     References:     Surface water station locations, Site Features, Water Features and LIDAR were                                            | Elk Valley, BC<br>CLIENT NAME:<br>Teck Coal Ltd.<br>Study Area 10 – Gr | SNC · LAVALIN      |



XD Path: \\SII2606\projects\Current Projects\Teck Coal Ltd\GISCAD\GIS\Map Series\672386\31-Potable Wells Area.mx

Project Path: \\Sli2606\projects\Current Projects\Teck Coal Ltd\SPO\672386 Confidential\40\_Execution\45\_GIS\_Dwgs\Exports

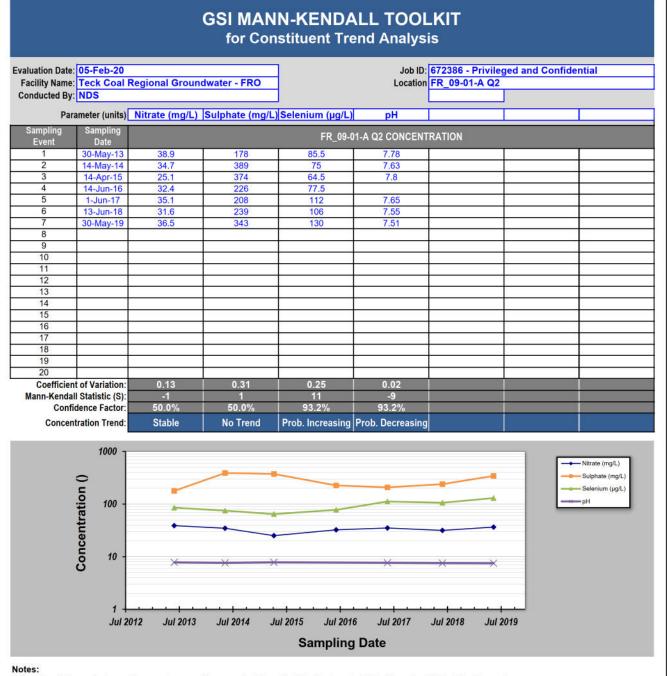



| Legend Water Rights Licences - Active Rock Drain Water Rights Licences - No Minimum IFR Water Pipeline                          | Notes:<br>1. Intended for illustration purposes only.<br>2. Original in colour.<br>3. Site location is approximate.               | Client:<br>Teck Coal Ltd.                         |                         |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------|
| Potable Well     Secondary Road     Water Features     Intermittent Stream     River Bed                                        | References:<br>1. Surface water station locations, Site Features, Water Features and LIDAR were<br>provided by Teck Coal Limited. | Project Location:<br>Fording River Operations, BC | SNC·LAVALIN             |
| Stream Ditch     Stream     Aver Be     Wetland     Stream     Aver Be     Wetland     Stream     Subsurface     Secondary Road | <b>Revisons:</b><br>0 - AO - 2021-05-28 - FINAL - CH                                                                              | Pits and P                                        | oints of Diversion      |
| Culvert FRO Mine Permitted Area                                                                                                 | 0 190 380 760 1,140 1,520                                                                                                         | CHK'D: CH DATE: 2021-06-07                        | SCALE: 1:30,000 REF No: |
| Ditch                                                                                                                           | Metres                                                                                                                            | BY: AO COORD SYS: NAD 198                         | DRAWING 32              |

Project Path: \\Sli2606\projects\Current Projects\Teck Coal Ltd\SPO\672386 Confidential\40\_Execution\45\_GIS\_Dwgs\Exports

# Appendix I

# Mann-Kendall Trend Analyses



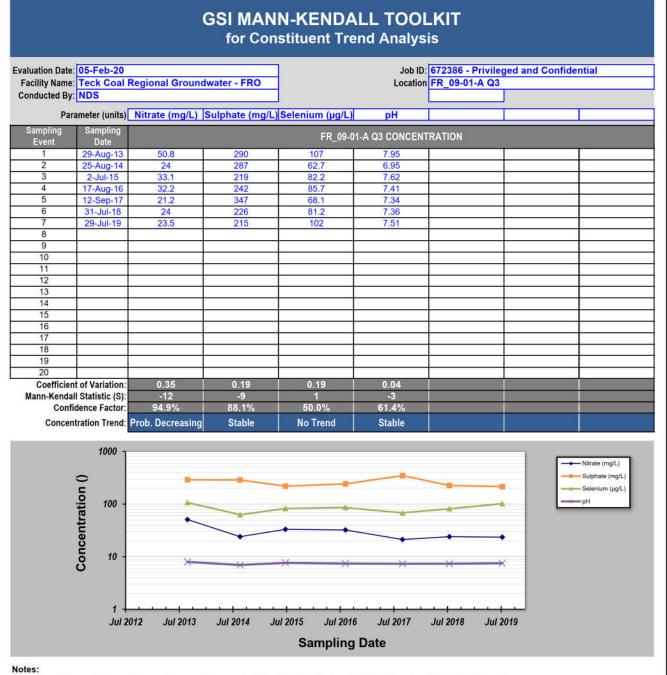

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

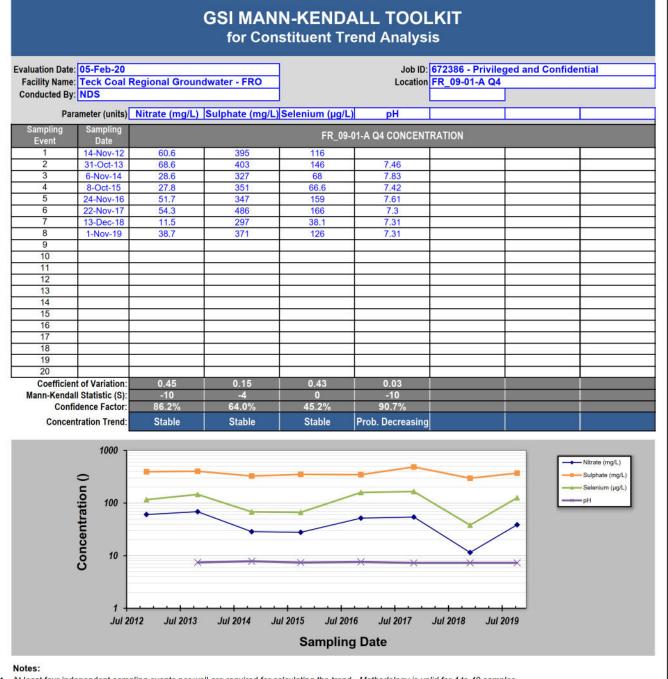



1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

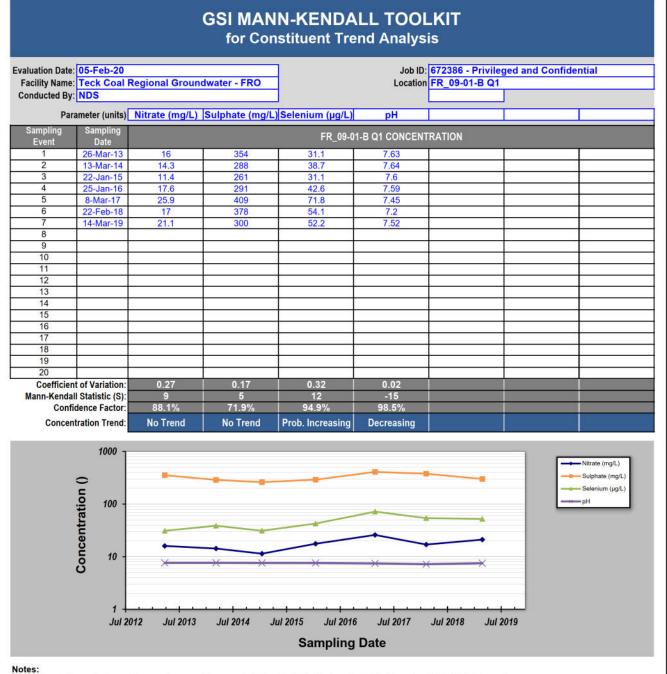
≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

Ground Water, 41(3):355-367, 2003.


DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

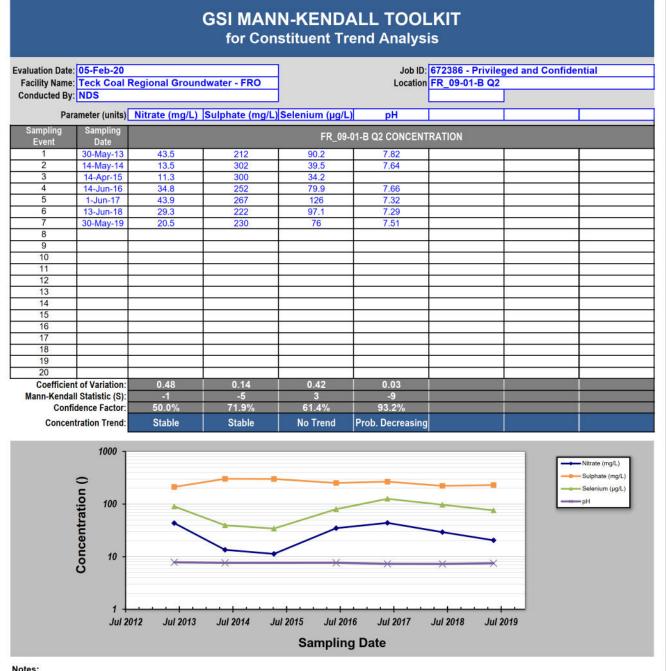


2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;


≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

Ground Water, 41(3):355-367, 2003.



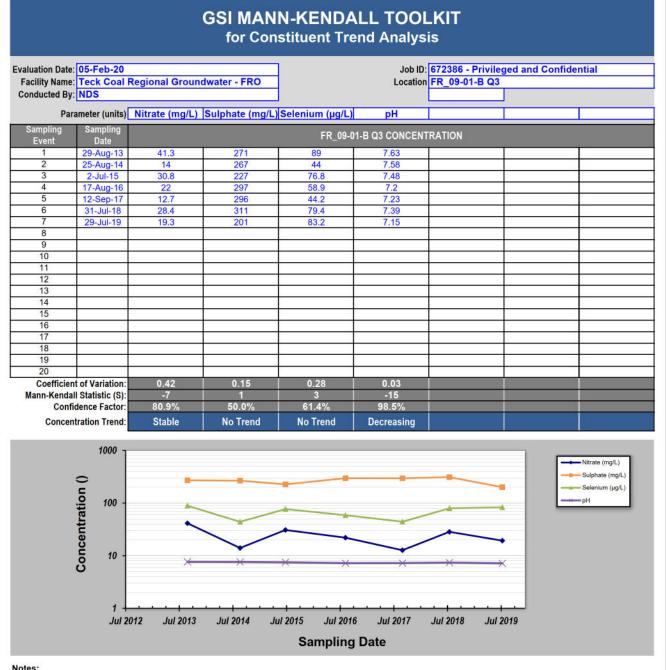

 Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.</li>

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.



2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

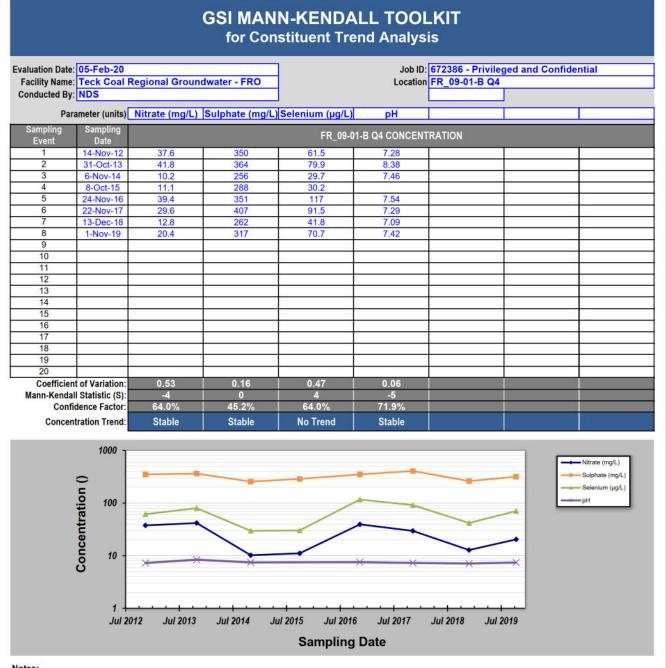



1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

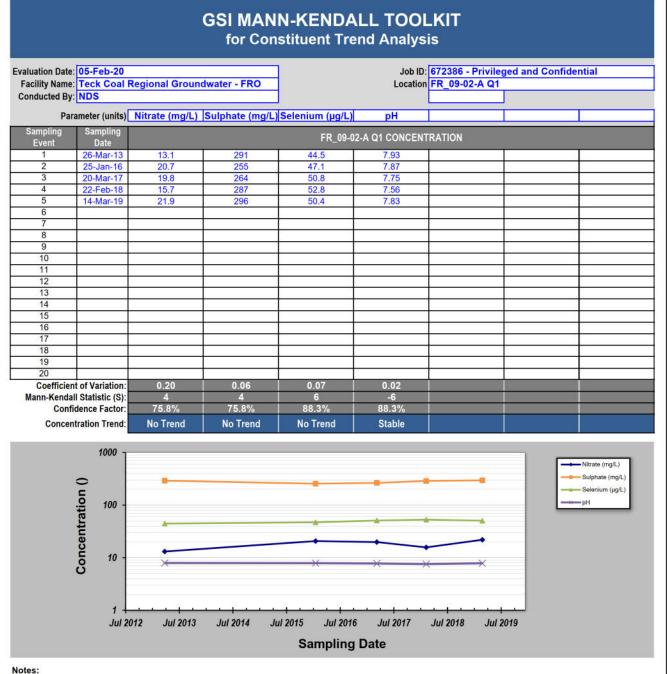



1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

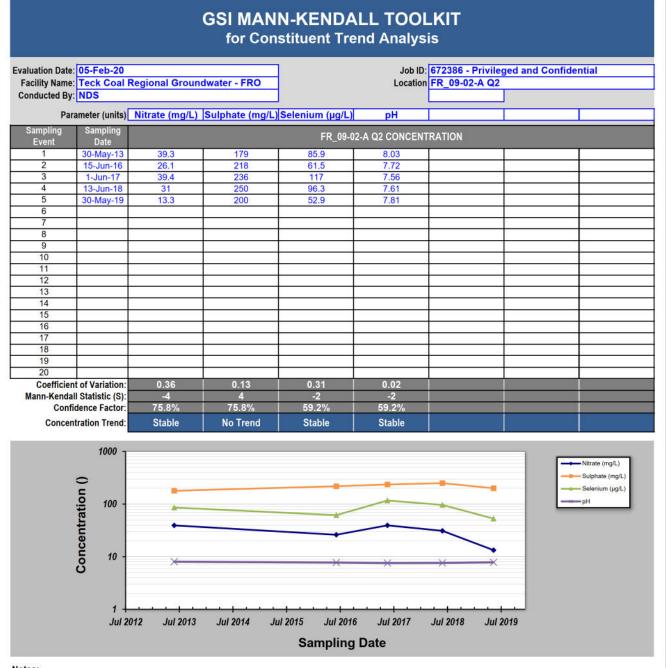
3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.




1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

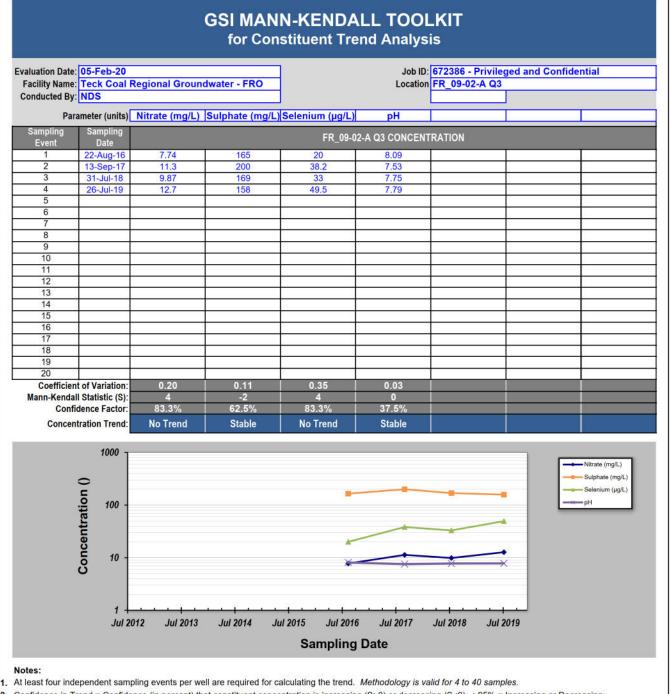

Ground Water, 41(3):355-367, 2003.



2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

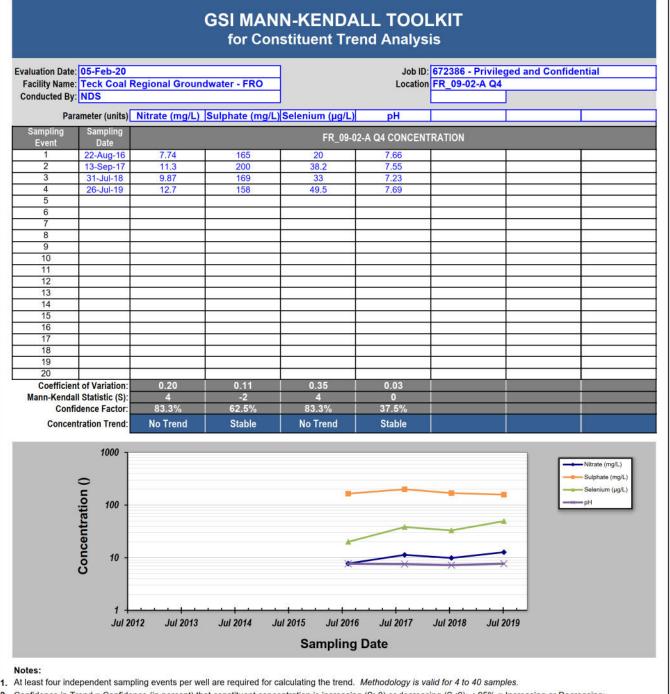
Ground Water, 41(3):355-367, 2003.




1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

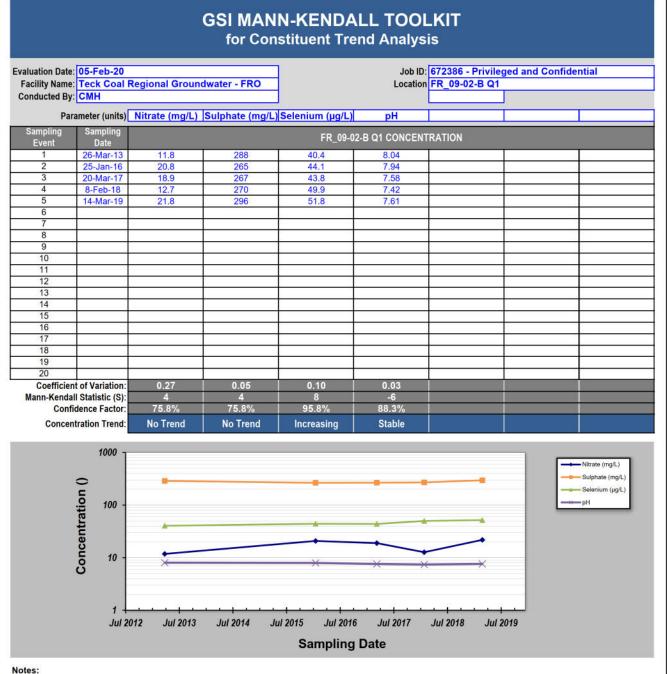
≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,


Ground Water, 41(3):355-367, 2003.



2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

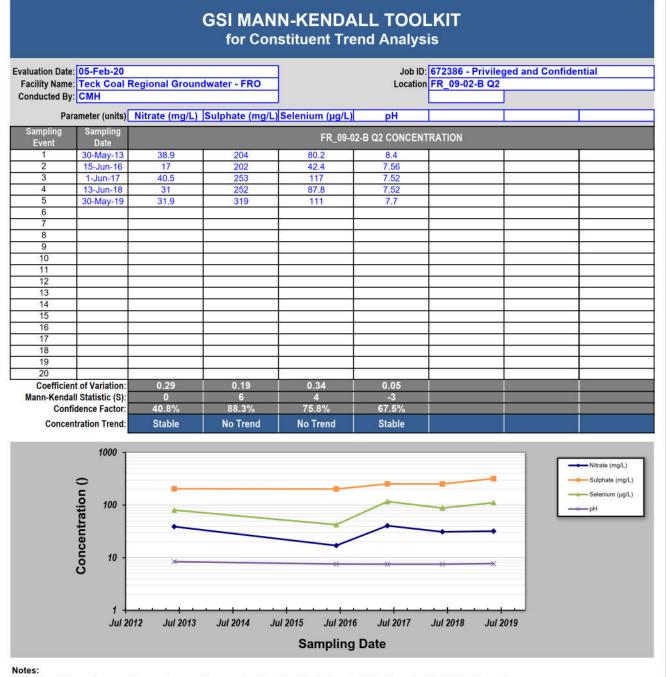
≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,


Ground Water, 41(3):355-367, 2003.



2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

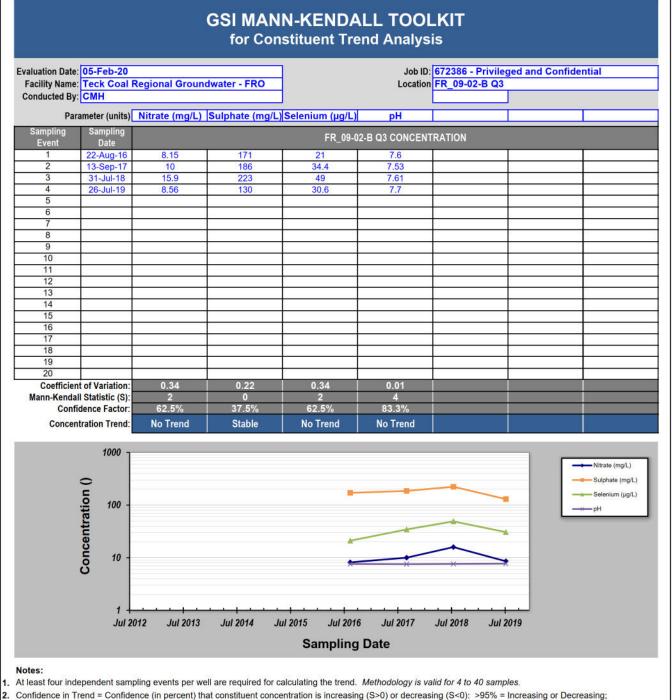
≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,


Ground Water, 41(3):355-367, 2003.

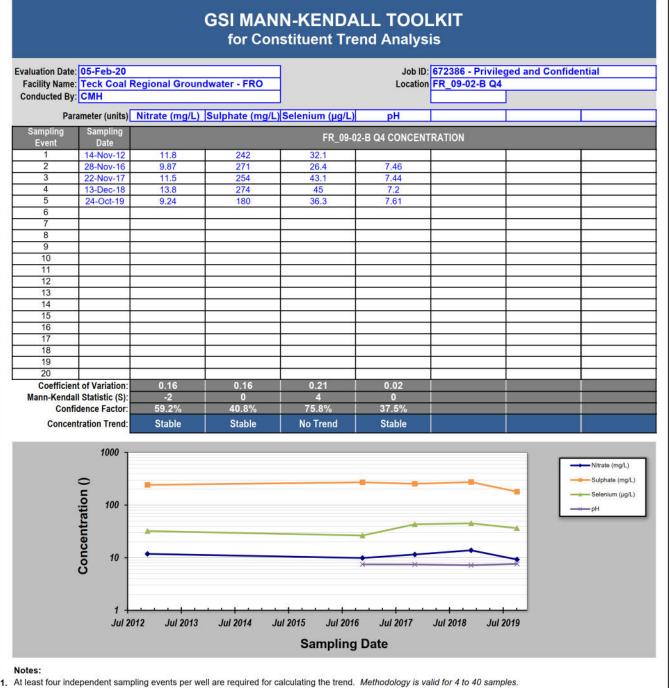


2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

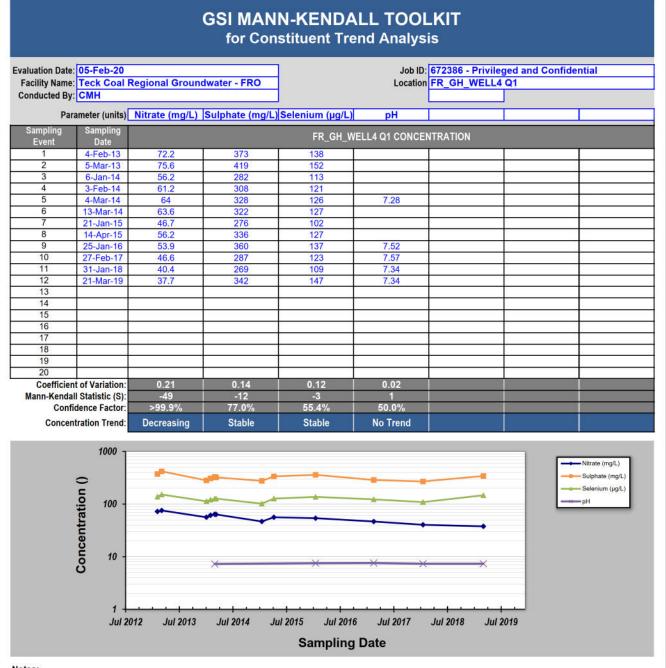

Ground Water, 41(3):355-367, 2003.




2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

Ground Water, 41(3):355-367, 2003.

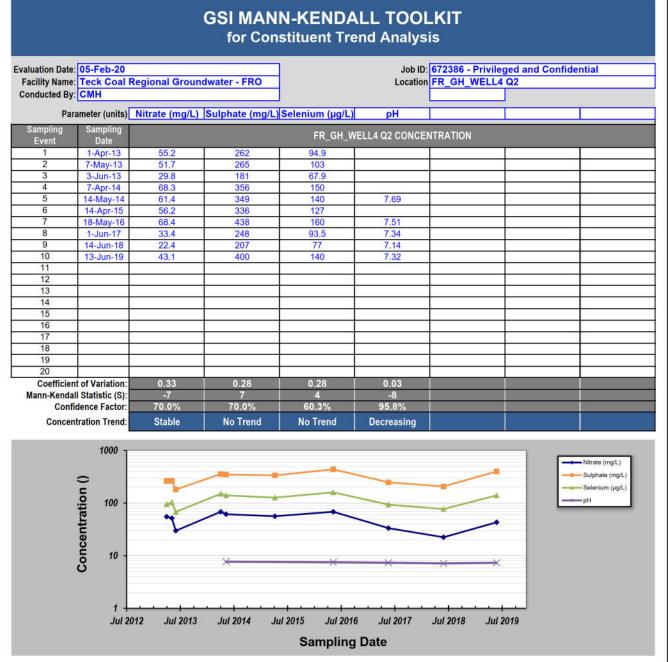



≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.



2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

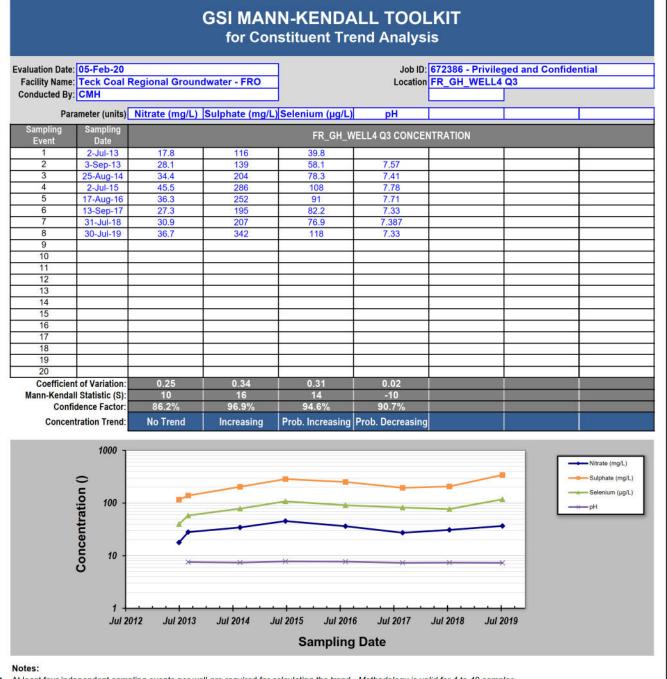



1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

 $\geq$  90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV  $\geq$  1 = No Trend; < 90% and COV < 1 = Stable.

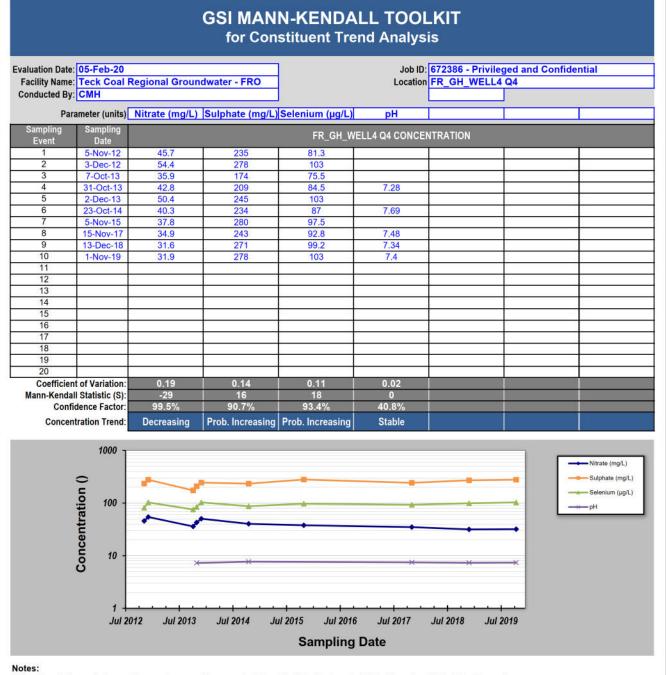
3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.




1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

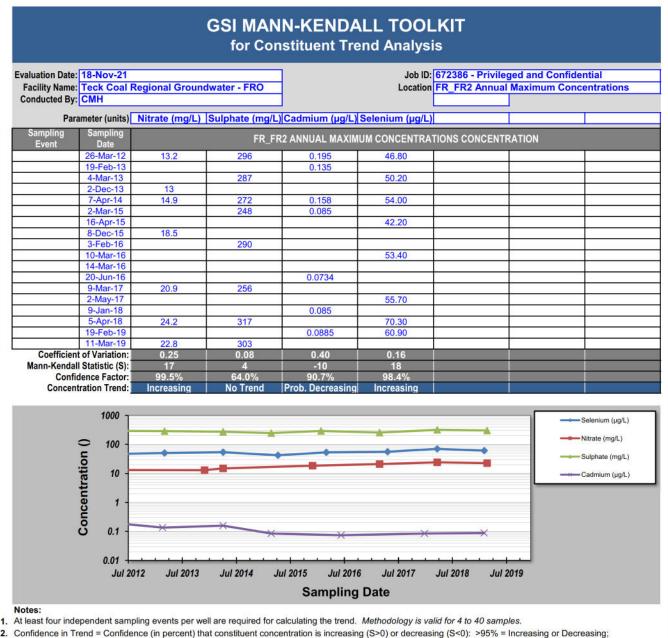
≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.


 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

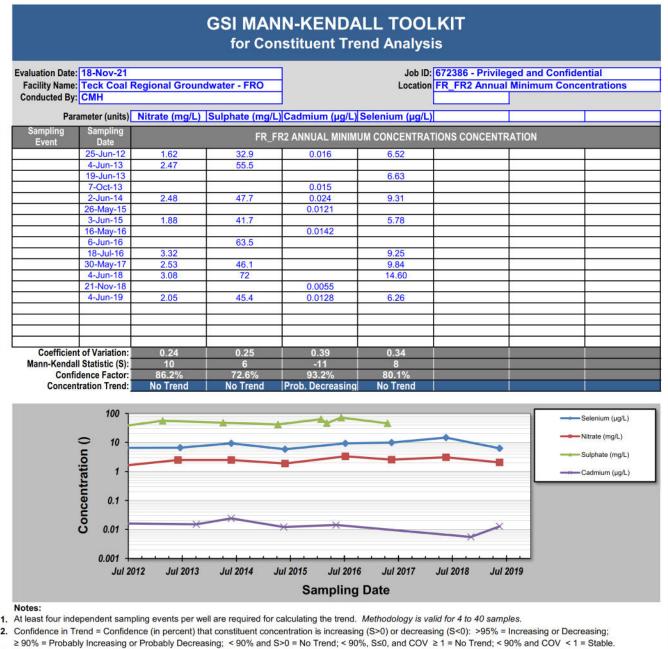


2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.</li>
 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,


Ground Water, 41(3):355-367, 2003.

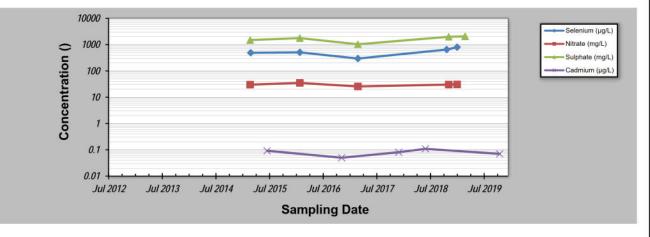



2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

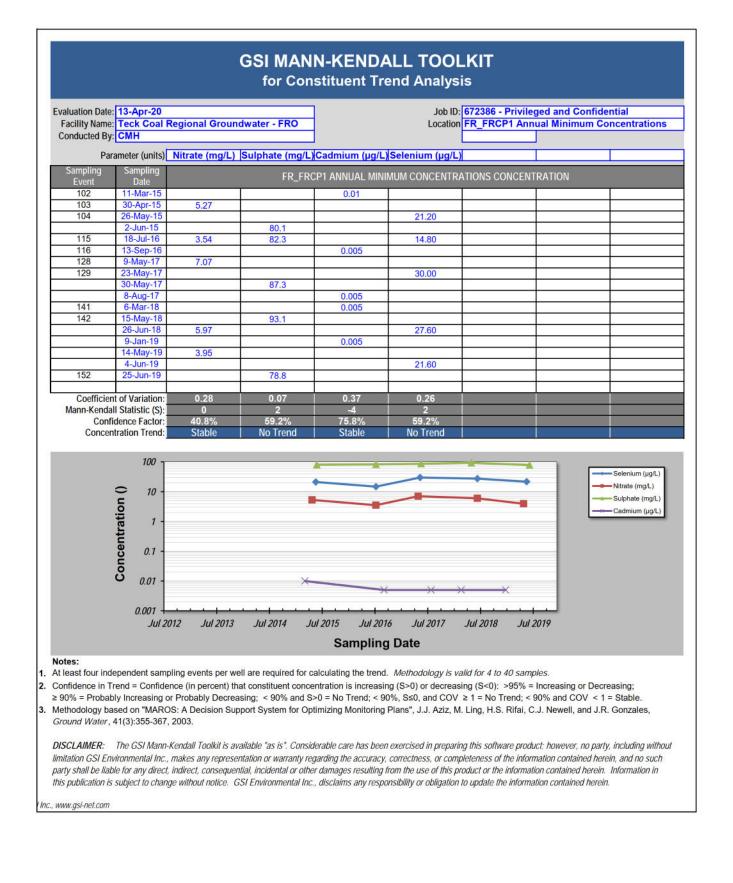
Ground Water, 41(3):355-367, 2003.




Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 >90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.</li>
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

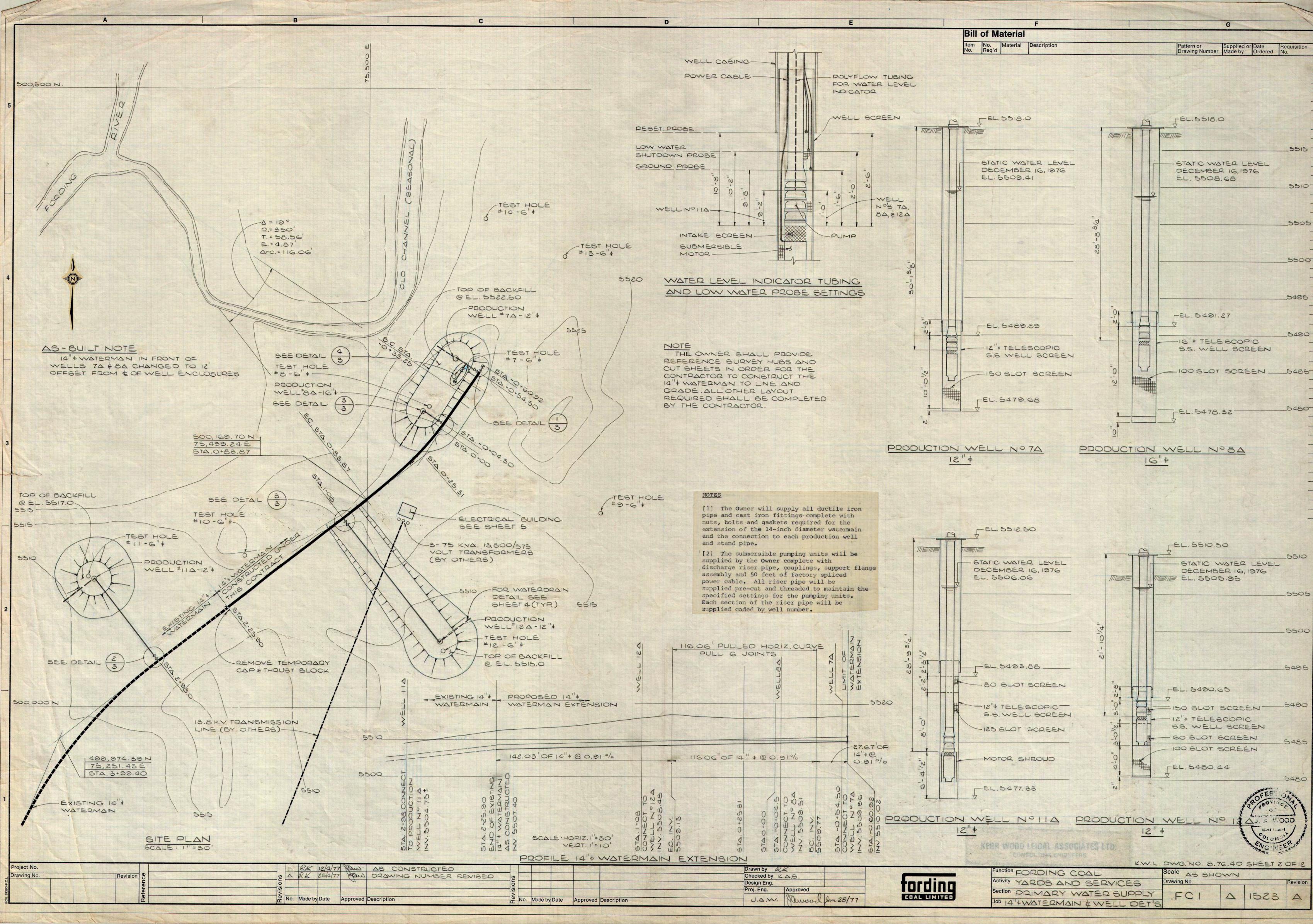


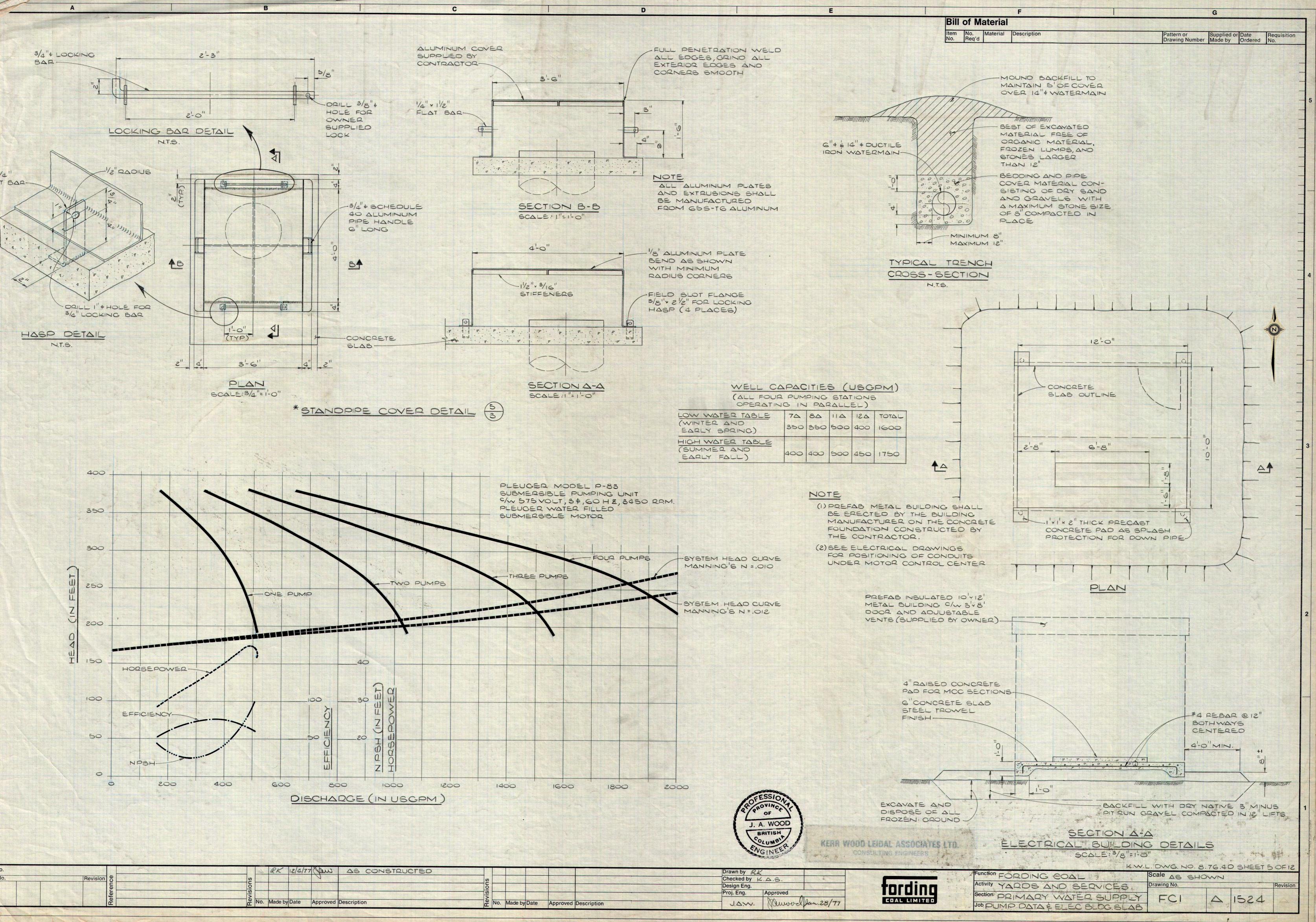
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.


| Second Analysis         Second Analysis         Second Analysis         Second Analysis         Job ID:         672386 - Privileged and Confidential<br>Location         Facility Name:         Teck Coal Regional Groundwater - FRO<br>Conducted By:         CMH |                  |                                                      |                 |               |                 |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------|-----------------|---------------|-----------------|--|--|--|--|--|--|--|
| Par                                                                                                                                                                                                                                                               | ameter (units)   | Nitrate (mg/L)                                       | Sulphate (mg/L) | Cadmium (µg/L | Selenium (µg/L) |  |  |  |  |  |  |  |
| Sampling<br>Event                                                                                                                                                                                                                                                 | Sampling<br>Date | FR_FRCP1 ANNUAL MAXIMUM CONCENTRATIONS CONCENTRATION |                 |               |                 |  |  |  |  |  |  |  |
| 102                                                                                                                                                                                                                                                               | 26-Feb-15        | 30.1                                                 | 1490            |               |                 |  |  |  |  |  |  |  |
| 103                                                                                                                                                                                                                                                               | 2-Mar-15         |                                                      |                 |               | 490.00          |  |  |  |  |  |  |  |
| 104                                                                                                                                                                                                                                                               | 22-Jun-15        |                                                      |                 | 0.0919        |                 |  |  |  |  |  |  |  |
| 115                                                                                                                                                                                                                                                               | 2-Feb-16         | 35                                                   | 1770            |               | 508.00          |  |  |  |  |  |  |  |
| 116                                                                                                                                                                                                                                                               | 15-Nov-16        |                                                      |                 | 0.0501        |                 |  |  |  |  |  |  |  |
| 128                                                                                                                                                                                                                                                               | 7-Mar-17         | 25.7                                                 | 1030            |               | 295.00          |  |  |  |  |  |  |  |
| 129                                                                                                                                                                                                                                                               | 12-Dec-17        |                                                      |                 | 0.0809        |                 |  |  |  |  |  |  |  |
| 141                                                                                                                                                                                                                                                               | 13-Jun-18        |                                                      |                 | 0.109         |                 |  |  |  |  |  |  |  |
| 142                                                                                                                                                                                                                                                               | 6-Nov-18         |                                                      |                 |               | 649.00          |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                   | 20-Nov-18        | 30.3                                                 | 1990            |               |                 |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                   | 16-Jan-19        | 30.6                                                 |                 |               | 798.00          |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                   | 12-Mar-19        |                                                      | 2070            |               |                 |  |  |  |  |  |  |  |
| 152                                                                                                                                                                                                                                                               | 4-Nov-19         |                                                      |                 | 0.0701        |                 |  |  |  |  |  |  |  |
| Coefficient of Variation:                                                                                                                                                                                                                                         |                  | 0.11                                                 | 0.25            | 0.28          | 0.34            |  |  |  |  |  |  |  |
| Mann-Kendall Statistic (S):                                                                                                                                                                                                                                       |                  | 2                                                    | 6               | 0             | 6               |  |  |  |  |  |  |  |
| Confidence Factor:                                                                                                                                                                                                                                                |                  | 59.2%                                                | 88.3%           | 40.8%         | 88.3%           |  |  |  |  |  |  |  |
| Concentration Trend:                                                                                                                                                                                                                                              |                  | No Trend                                             | No Trend        | Stable        | No Trend        |  |  |  |  |  |  |  |

**GSI MANN-KENDALL TOOLKIT** 




## Notes:


- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
- ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.</li>
   3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.



## Appendix II

## Potable Well As-Built Drawings





|                  |     |             | 44 | RK      | 12/2/77   | Jew      | AS CONSTRUCTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|------------------|-----|-------------|----|---------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Revision         | Ce  | Ω<br>Ω      |    |         |           | 7        | the state of the s |  |
|                  | en  | io          |    |         |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| the state of the | fer | <pre></pre> |    | C.      | STATES OF |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  | Re  | e<br>E      |    | Made by | Date      | Approved | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |



SNC-Lavalin Inc. 8648 Commerce Court Burnaby, British Columbia, Canada V5A 4N6 & 604.515.5151 🖨 604.515.5150 www.snclavalin.com