

Report: 2021 Greenhills and Gardine Creek Aquatic Effects Monitoring Program (GGCAMP) Report

Overview: This report presents the 2021 results of Greenhills and Gardine Creeks aquatic monitoring program. The 2021 program was designed to monitor current aquatic health and collect information for assessing future changes that may result from rehabilitation activities planned within the watershed.

This report was prepared for Teck by Minnow Environmental Inc.

For More Information

If you have questions regarding this report, please:

- Phone toll-free to 1.855.806.6854
- Email feedbackteckcoal@teck.com

Future studies will be made available at teck.com/elkvalley.

2021 Greenhills and Gardine Creeks Aquatic Monitoring Program Report

Prepared for: **Teck Coal Limited** Sparwood, British Columbia

Prepared by: **Minnow Environmental Inc.** Saskatoon, Saskatchewan

June 2022

2021 Greenhills and Gardine Creeks Aquatic Monitoring Program Report

Prepared for:

Teck Coal Limited Sparwood, British Columbia

Prepared by:

Minnow Environmental Inc. Saskatoon, Saskatchewan

June 2022

2021 Greenhills and Gardine Creeks Aquatic Monitoring Program Report

Amy Wiebe, M.Sc., R.P.Bio. Project Manager

awith

Pierre Stecko, M.Sc., R.P.Bio., EP Senior Project Advisor

EXECUTIVE SUMMARY

0

This report presents the results of the 2021 Greenhills and Gardine Creeks Aquatic Monitoring Program (GGCAMP), which is intended to address the influences and mitigation projects that are expected to interact with Greenhills and Gardine creeks, as well as the Greenhills Creek Sedimentation Pond. Teck Coal Limited (Teck) is committed to improving the environmental conditions in Greenhills Creek through several mitigation projects and initiatives. Calcite management (i.e., antiscalant addition) began in Lower Greenhills Creek in 2017 and has proven successful at preventing further calcite deposition. Consequently, Teck intends to relocate the antiscalant addition facility to Upper Greenhills Creek in 2022. Other rehabilitation projects are also proposed within the watershed.

Data collected as part of the program are expected to address three key questions:

- 1. What is the current status of aquatic health in Greenhills and Gardine creeks, as evidenced by physical, chemical, and biological conditions?
- 2. Have physical, chemical, and/or biological conditions indicative of aquatic health in Greenhills and Gardine creeks changed over time and are the changes unexpected based on the activities and projects occurring in the watershed?
- 3. Can observed changes be linked to antiscalant addition in Lower Greenhills Creek, specifically?

This report summarizes the 2021 results for the GGCAMP. Sampling in 2021 consisted of a sixth year of monitoring on Upper Greenhills Creek, a third year of monitoring on Gardine Creek, a fourth year of sampling in Greenhills Creek Sedimentation Pond, and a fourth year of aquatic effects monitoring following initiation of antiscalant addition in Lower Greenhills Creek.

Question 1 (*"What is the current status of aquatic health in Greenhills and Gardine creeks, as evidenced by physical, chemical, and biological conditions*?") was addressed by characterizing existing conditions within Greenhills and Gardine creeks in 2021.

Aqueous concentrations of most mine-related constituents with Early Warning Triggers (EWTs) were below water quality guidelines, benchmarks, and screening values in 2021, except for total dissolved solids (TDS); nitrate; sulphate; total nickel, selenium, uranium, and dissolved cadmium.¹ Water quality was generally better in Gardine Creek than in Greenhills Creek and the Greenhills Creek Sedimentation Pond. Additionally, concentrations of

¹ Mine-related constituents with EWTs include TDS, nitrate, nitrite, sulphate, total antimony, total barium, total boron, total lithium, total manganese, total molybdenum, total nickel, total selenium, total uranium, total zinc, dissolved cadmium, and dissolved cobalt.

organoselenium species tended to increase with distance downstream in Greenhills Creek in 2021. Aqueous selenium species were consistently dominated by selenate.

In 2021, calcite was present throughout Greenhills Creek and in the section of Gardine Creek within and downstream from the seeps from the Greenhills Operations (GHO) east spoil. Of these areas, Lower Greenhills Creek had the lowest proportional calcite presence scores. Concretion and calcite indices generally decreased with increasing distance downstream in Greenhills Creek.

Sediment concentrations of arsenic and manganese were highest at upper Gardine Creek and concentrations of cadmium, nickel, selenium, and most polycyclic aromatic hydrocarbons (PAHs) were highest at Lower Greenhills Creek. Sediment Quality Indices (SQI) were generally indicative of poor sediment quality and the Greenhills Creek Sedimentation Pond had the lowest SQI in 2021, followed by Lower Greenhills Creek. Overall, exceedances of upper British Columbia Working Sediment Quality Guidelines (BC WSQG) or the alert concentration for selenium in 2021 were identified for nickel, selenium, silver, acenaphthene, acenaphthylene, benzo(a)anthracene, dibenz(a,h)anthracene, fluorene, 2-methylnaphthalene, naphthalene, chrysene, and phenanthrene. Concentrations of arsenic, cadmium, iron, manganese, zinc, benzo(a)pyrene, benzo(g,h,i)perylene, fluoranthene, and pyrene exceeded the lower, but not upper, BC WSQG in at least one sample. However, concentrations of arsenic, cadmium, and iron in sediments were within reference area normal ranges. As expected, calcium concentrations were consistently higher at areas with calcified substrates.

Sequential Extraction Analysis (SEA) indicated that the distribution of metals among the potentially mobile sediment fractions (i.e., fractions 1 to 4) and fraction 5 (residual metals) was fairly consistent among sediment sampling areas. Additionally, guideline exceedances based on the potentially mobile, and therefore potentially bioavailable², sediment fractions (fractions 1 to 4) were limited to cadmium, manganese, nickel, and selenium in 2021.

Benthic invertebrate abundances, densities, Lowest Practical Level (LPL) richness, and proportions (%) of Ephemeroptera and Plecoptera in 2021 were generally similar among the biological monitoring areas on Greenhills Creek. However, the significantly higher benthic invertebrate biomass on Lower Greenhills Creek suggests the availability of food for fish may have been better in Lower Greenhills Creek in 2021.

Benthic invertebrate densities were higher at lower Gardine Creek, relative to upper Gardine Creek, and biomass was similar between the two areas. The higher %Diptera in the samples

² The potentially mobile sediment fractions represent a highly conservative estimate of the bioavailable constituent concentrations, given that it would take highly unusual/aggressive reducing and oxidizing conditions, respectively, to mobilize fractions 3 and 4 and these conditions are not likely to occur in Greenhills and Gardine creeks.

from lower Gardine Creek, downstream from the seeps and within the area of heavily calcified substrates, likely reflects this taxonomic group's ability to tolerate a wider range of environmental conditions.

The highest selenium concentrations in composite-taxa benthic invertebrate tissues collected from the study area in 2021 were for Lower Greenhills Creek. The higher concentrations are likely due to enhanced generation of organoselenium species in the Greenhills Creek Sedimentation Pond and carry-over effects downstream. Mean selenium concentrations in February and September 2021 exceeded Elk Valley Water Quality Plan (EVWQP) Level 3 Benchmarks for effects to invertebrates and juvenile fish and birds. Additionally, selenium concentrations in each of the nine samples collected from Lower Greenhills Creek exceeded the biological trigger. Mean selenium concentrations in composite-taxa benthic invertebrate tissues from Upper Greenhills Creek and the Greenhills Creek Sedimentation Pond only occasionally exceeded the lowest benchmarks and concentrations in Upper Greenhills Creek did not exceed the biological trigger. Benthic invertebrate tissue samples collected from Gardine Creek had selenium concentrations that were within the reference area normal range and lower than applicable benchmarks.

In 2021, estimates of westslope cutthroat trout (WCT; *Oncorhynchus clarkii lewisi*) fish abundance, density, and biomass, were higher at lower Gardine Creek than at biological monitoring areas on Upper and Lower Greenhills Creek. Additionally, there was no indication that WCT densities within Upper Greenhills Creek increased with increasing distance downstream and proximity to the Greenhills Creek Sedimentation Pond.

Answering question 2 ("Have physical, chemical, and/or biological conditions indicative of aquatic health in Greenhills and Gardine creeks changed over time and are the changes unexpected based on the activities and projects occurring in the watershed?") required temporal evaluations of physical, chemical, and biological data to identify patterns that may be indicative unexpected changes over time.

Aqueous concentrations of most mine-related constituents with EWTs remained stable or decreased over time (i.e., nickel) on Greenhills and Gardine creeks. Decreases over time are attributed to stabilization of the GHO east spoil (post-2014 failure) and cessation of pumping from the Cougar Phase 3 Pit after 2018.

In Lower Greenhills Creek, an 89% decrease in calcite concretion relative to 2017 (pre-treatment) was observed in 2021. Concretion was also lower relative to all other treatment years (2018 to 2020). These results are consistent with expectations or desired outcomes of water treatment to prevent further calcite concretion.

0

In general, sediment texture and constituent concentrations in samples from Lower Greenhills Creek, Gardine Creek, and the Greenhills Creek Sedimentation Pond did not show consistent trends over time. Key exceptions include nickel and zinc, which generally showed increasing concentrations over time. Additionally, concentrations of manganese, selenium, and 12 PAHs in sediments from Lower Greenhills Creek were higher throughout the period of antiscalant addition (2018 to 2021) relative to before (2017). However, it remains unclear whether observed increases are attributable to water treatment or some (other) combination of factors. Results of the SEA have been consistent year after year, which highlights the need to reassess the utility of annual sampling for SEA.

Few notable temporal changes in benthic invertebrate community endpoints were identified. Subtle shifts from more sensitive (e.g., Ephemeroptera, Plecoptera, and Trichoptera [collectively referred to as EPT]) to more tolerant (e.g., Diptera) taxa at some areas on Upper Greenhills Creek are not surprising given the changes in calcite conditions. Apparent increases in %EPT and %Ephemeroptera at lower Gardine Creek 2021 were likely explained by delayed emergence and higher numbers of *Baetis* in some of the samples.

Selenium concentrations in benthic invertebrate tissues from Lower Greenhills Creek were consistently and substantially higher than those collected from Upper Greenhills and Gardine creeks. Additionally, tissue selenium concentrations for Lower Greenhills Creek were higher than expected, based on the lotic bioaccumulation model, throughout 2018 to 2021.

Densities, abundances, and biomass for WCT in Upper and Lower Greenhills Creek were generally lower in 2021 than in previous years. The fork lengths of WCT captured from Upper and Lower Greenhills and Gardine creeks in 2021 were consistent with previous years. However, condition (weight-at-length) of WCT captured from Upper Greenhills Creek (26% decrease relative to 2017) and upper Gardine Creek (14% decrease relative to 2019) was lower. These results may be attributable to some regional factor(s) that depressed fish condition within the isolated population in 2021. Additionally, higher fish densities in the isolated pools at upper Gardine Creek in 2021 versus 2019 may have contributed to the reduced fish condition observed in 2021. Fish condition in the Upper Fording River WCT population, which has access to habitats in Lower Greenhills Creek, was near (2019 and 2020) or above average (2021) in recent years.

Question 3 ("*Can observed changes be linked to antiscalant addition in Lower Greenhills Creek, specifically*?") was addressed by comparing the treated area on Lower Greenhills Creek to untreated areas before and after initiation of antiscalant addition in 2017.

Overall, antiscalant addition has had limited influence in water quality in Lower Greenhills Creek; differences in aqueous concentrations of mine-related constituents upstream and downstream of treatment in 2021 did not differ significantly from pre-treatment. Total and dissolved molybdenum

were the only exceptions, but molybdenum is a component of the antiscalant compound (i.e., these results are expected) and concentrations were still far lower than guidelines. Elevated concentrations of organoselenium species in water from Lower Greenhills Creek appear to be attributed to the influence of the Greenhills Creek Sedimentation Pond, rather than water treatment or processes within the creek itself.

The 89% decrease in calcite concretion in Lower Greenhills Creek from 2017 to 2021 is primarily attributed to successful water treatment. Overall, it appears water treatment has prevented further calcification of the stream bed.

Benthic invertebrate biomass and LPL and family richness have not changed significantly in Lower Greenhills Creek, relative to Upper Greenhills Creek, since the initiation of antiscalant addition in 2017. In 2021, differences in %Diptera between treated and untreated areas were larger relative to 2017, due to a decrease in %Diptera at the treated area in Lower Greenhills Creek.

The absence of change over time for selenium concentrations in benthic invertebrate tissues from Lower Greenhills Creek suggests that tissue selenium concentrations associated with that area are likely unrelated to antiscalant addition.

The WCT captured from Lower Greenhills Creek in 2021 were in good condition and good external health. Therefore, it is concluded that antiscalant addition was not negatively impacting these endpoints in 2021. The lower fry and juvenile densities, as well as lower estimates of abundance and biomass, on Lower Greenhills Creek in 2021 relative to previous years is also not likely attributed to antiscalant addition. Conditions of water quality, calcite concretion, and food availability have remained unchanged or improved relative to pre-treatment.

TABLE OF CONTENTS

0

€

EXECUTIVE SUMMARY	I
ACRONYMS AND ABBREVIATIONS	X
1 INTRODUCTION	1
1.1 Background	1
1.2 Key Questions	5
1.3 Objectives	7
1.4 Linkages to Adaptive Management	
2 METHODS	10
2.1 Design Overview	10
2.2 Water Quality	IS 13
2.2.1 Fleid Sampling	13
2.2.2 Eutoratory / marysis	17
2.3 Substrate Quality	21
2.3.1 Calcite	21
2.3.2 Sediment	24
2.4 Benthic Invertebrate Community	32
2.4.1 Field Sampling	32
2.4.2 Laboratory Analysis	35
2.4.3 Data Analysis	36
2.5 Benthic Invertebrate Lissue Chemistry	39
2.5.1 Field Sampling	
2.5.2 Laboratory Analysis	40 /1
2.6. Westslope Cutthroat Trout	
2.6.1 Field Sampling	43
2.6.2 Data Analysis	
3 RESULTS	51
3 1 Water Quality	51
3.2 Substrate Quality	54
3.2.1 Calcite	54
3.2.2 Sediment in Creeks	64
3.2.3 Sediment in Greenhills Creek Sedimentation Pond	79
3.3 Benthic Invertebrate Community	82
3.3.1 Greenhills and Gardine Creeks	82
3.3.2 Greenhills Creek Sedimentation Pond	116
3.3.3 Biological Triggers	125
3.4 Benthic Invertebrate Lissue Chemistry	125
3.4.2 Greenhills Creek Sedimentation Pond	120
3.4.3 Biological Triggers	132
3.5 Westslope Cutthroat Trout	1.34
3.5.1 Abundance, Density, Biomass, and Health	134
3.5.2 Tissue Chemistry	144
4 SUMMARY	145

APPENDIX A	DATA QUALITY REVIEW
APPENDIX B	RAW LABORATORY REPORTS
APPENDIX C	WATER QUALITY
APPENDIX D	SUBSTRATE QUALITY
APPENDIX E	BENTHIC INVERTEBRATE COMMUNITY
APPENDIX F	COMPARISON OF KICK SAMPLING METHODS
APPENDIX G	BIOLOGICAL TRIGGERS
APPENDIX H	BENTHIC INVERTEBRATE TISSUE CHEMISTRY
APPENDIX I	WESTSLOPE CUTTHROAT TROUT

LIST OF FIGURES

0)

<->

Figure 1.1	Teck's Coal Mines within the Elk River Watershed, Southeast British Columbia	2
Figure 2.1:	Water Quality Monitoring and Selenium Speciation Sampling Locations	.14
Figure 2.2:	Calcite Monitoring Locations	.22
Figure 2.3:	Creek Sediment Sampling Locations, September 2021	.25
Figure 2.4:	Sediment and Benthic Invertebrate Sampling Locations in Greenhills Creek Sedimentation Pond, September 2021	.26
Figure 2.5:	Creek Benthic Invertebrate Sampling Locations, February and September 2021	.33
Figure 2.6:	Closed-station Electrofishing Locations on Greenhills and Gardine Creeks, September 2021	.45
Figure 3.1:	Monthly Mean Concentrations of Analytes Showing Significant Differences Before and After Calcite Treatment for Stations Upstream (GH_GH1) and Downstream (GH_GH2) from the Water Treatment Facility. 2017 to 2021	.55
Figure 3.2:	Calcite Presence and Concretion Scores for Monitoring Areas on Greenhills Creek, 2017 to 2021	.60
Figure 3.3:	Calcite Proportion and Concretion Scores for Monitoring Areas on Gardine Creek, 2017 to 2021	.63
Figure 3.4:	Concentrations of Analytes that Exceeded Sediment Quality Guidelines or the Alert Concentration for Selenium, Greenhills Creek, Gardine Creek, and Greenhills Creek Sedimentation Pond, 2013 to 2021	66
Figure 3.5:	Comparisons of Metal Concentrations (Dry Weight Basis) in Sequentially Extracted Sediment Fractions to British Columbia Working Sediment Quality Guidelines, Lower Greenhills Creek (RG_GHBP), 2021	.75

 Figure 3.7: Comparisons of Metal Concentrations (Dry Weight Basis) in Sequentially Extracted Sediment Fractions to British Columbia Working Sediment Quality Guidelines, Lower Gardine Creek (RG_GANF), 2021 Figure 3.8: Comparisons of Metal Concentrations (Dry Weight Basis) in Sequentially Guidelines, Greenhills Creek Sedimentation Pond (RG_GHP), 2021. Figure 3.9: Benthic Invertebrate Community Endpoints for Area-based Kick Samples, Upper Greenhills and Gardine Creeks, September 2016 to 2021. Figure 3.10: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Upper Greenhills Creek, September 2016 to 2021. Figure 3.12: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Lower Greenhills Creek, September 2012 to 2021 Figure 3.13: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Lower Greenhills Creek, September 2012 to 2021 Figure 3.13: Benthic Invertebrate Endpoint Comparisons Before and After the Initiation of Antiscalant Treatment, Greenhills Creek, 2016 to 2021. Figure 3.14: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2017 to 2021. Figure 3.16: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion Scores, Greenhills Creek and Gardine Creek, 2021. Figure 3.17: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion Scores, Greenhills Creek and Gardine Creek, 2021. Figure 3.18: Benthic Invertebrate Community Endpoints for Greenhills Creeks. Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints an	Figure 3.6:	Comparisons of Metal Concentrations (Dry Weight Basis) in Sequentially Extracted Sediment Fractions to British Columbia Working Sediment Quality Guidelines, Upper Gardine Creek (RG_GAUT), 2021
 Figure 3.8: Comparisons of Metal Concentrations (Dry Weight Basis) in Sequentially Extracted Sediment Fractions to British Columbia Working Sediment Quality Guidelines, Greenhills Creek Sedimentation Pond (RG_GHP), 2021. Figure 3.9: Benthic Invertebrate Community Endpoints for Area-based Kick Samples, Upper Greenhills and Gardine Creeks, September 2016 to 2021. Figure 3.10: Benthic Invertebrate Community Endpoints for Area-based Kick Samples, Lower Greenhills Creek, September 2016 to 2021. Figure 3.11: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Upper Greenhills Creek, September 2012 to 2021. Figure 3.12: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Lower Greenhills Creek, September 2012 to 2021. Figure 3.13: Benthic Invertebrate Endpoint Comparisons Before and After the Initiation of Antiscalan Treatment, Greenhills Creek, 2016 to 2021. Figure 3.14: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2021. Figure 3.15: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2017 to 2021. Figure 3.16: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion Scores, Greenhills and Gardine Creeks, 2021. Figure 3.17: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion Scores, Greenhills and Gardine Creeks, 2017 to 2021. Figure 3.17: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Calcite Index and Co	Figure 3.7:	Comparisons of Metal Concentrations (Dry Weight Basis) in Sequentially Extracted Sediment Fractions to British Columbia Working Sediment Quality
 Figure 3.9: Benthic Invertebrate Community Endpoints for Area-based Kick Samples, Upper Greenhills and Gardine Creeks, September 2016 to 2021. Figure 3.10: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Upper Greenhills Creek, September 2012 to 2021. Figure 3.11: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Lower Greenhills Creek, September 2012 to 2021. Figure 3.12: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Lower Greenhills Creek, September 2012 to 2021. Figure 3.13: Benthic Invertebrate Endpoint Comparisons Before and After the Initiation of Antiscalant Treatment, Greenhills Creek, 2016 to 2021. Figure 3.14: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2017 to 2021	Figure 3.8:	Comparisons of Metal Concentrations (Dry Weight Basis) in Sequentially Extracted Sediment Fractions to British Columbia Working Sediment Quality Guidelines, Greenhills Creek Sedimentation Pond (RG, GHP), 2021
 Figure 3.10: Benthic Invertebrate Community Endpoints for Area-based Kick Samples, Lower Greenhills Creek, September 2016 to 2021. Figure 3.11: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Upper Greenhills Creek, September 2012 to 2021. Figure 3.12: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Lower Greenhills Creek, September 2012 to 2021. Figure 3.13: Benthic Invertebrate Endpoint Comparisons Before and After the Initiation of Antiscalant Treatment, Greenhills Creek, 2016 to 2021. Figure 3.14: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2017. Figure 3.15: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2017. Figure 3.16: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion Scores, Greenhills Creek and Gardine Creek, 2021. Figure 3.17: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion Scores, Greenhills and Gardine Creeks, 2017 to 2021. Figure 3.18: Benthic Invertebrate Community Endpoints and Calcite Index and Concretion Scores, Greenhills and Gardine Creeks, 2018 to 2021. Figure 3.19: Selenium Concentrations in Composite-taxa Benthic Invertebrate Tissue Samples from Greenhills and Gardine Creeks, 2018 to 2021. Figure 3.20: Comparisons of Selenium Concentrations, 2018 to 2021. Figure 3.21: Concentrations in Benthic Invertebrate Tissue Samples from Greenhills Creek Selenium Concentrations, 2018 to 2021. Figure 3.22: Selenium Concent	Figure 3.9:	Benthic Invertebrate Community Endpoints for Area-based Kick Samples, Upper Greenhills and Gardine Creeks, September 2016 to 2021
 Figure 3.11: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Upper Greenhills Creek, September 2012 to 2021. Figure 3.12: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Lower Greenhills Creek, September 2012 to 2021. Figure 3.13: Benthic Invertebrate Endpoint Comparisons Before and After the Initiation of Antiscalant Treatment, Greenhills Creek, 2016 to 2021. Figure 3.14: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2021. Figure 3.15: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2017 to 20211 Figure 3.16: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion Scores, Greenhills Creek and Gardine Creeks, 2021. Figure 3.17: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion Scores, Greenhills and Gardine Creeks, 2017 to 2021. Figure 3.18: Benthic Invertebrate Community Endpoints for Greenhills Creek Sedimentation Pond, 2018 to 2021. Figure 3.20: Comparisons of Selenium Concentrations in Composite-taxa Benthic Invertebrate Tissue Samples from Greenhills and Gardine Creeks, 2018 to 2021. Figure 3.21: Concentrations of Selenium Concentrations, 2018 to 2021. Figure 3.22: Selenium Concentrations in Benthic Invertebrate Tissues Relative to Predictions and Aqueous Selenium Concentrations, 2018 to 2021. Figure 3.23: Selenium Concentrations in Composite-taxa Benthic Invertebrate Tissue Samples from Greenhills Creek Sedimentation Pond, 2018 to 2021. <	Figure 3.10:	Benthic Invertebrate Community Endpoints for Area-based Kick Samples, Lower Greenhills Creek, September 2016 to 2021
 Figure 3.12: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Lower Greenhills Creek, September 2012 to 2021. Figure 3.13: Benthic Invertebrate Endpoint Comparisons Before and After the Initiation of Antiscalant Treatment, Greenhills Creek, 2016 to 2021. Figure 3.14: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2021. Figure 3.15: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2017 to 2021	Figure 3.11:	Benthic Invertebrate Community Endpoints for Timed Kick Samples on Upper Greenhills Creek, September 2012 to 2021
 Figure 3.13: Benthic Invertebrate Endpoint Comparisons Before and After the Initiation of Antiscalant Treatment, Greenhills Creek, 2016 to 2021	Figure 3.12:	Benthic Invertebrate Community Endpoints for Timed Kick Samples on Lower Greenhills Creek, September 2012 to 2021
 Figure 3.14: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2021	Figure 3.13:	Benthic Invertebrate Endpoint Comparisons Before and After the Initiation of Antiscalant Treatment, Greenhills Creek, 2016 to 2021
 Figure 3.15: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2017 to 20211 Figure 3.16: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion Scores, Greenhills Creek and Gardine Creek, 2021	Figure 3.14:	Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2021
 Figure 3.16: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion Scores, Greenhills Creek and Gardine Creek, 2021	Figure 3.15:	Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2017 to 2021
 Figure 3.17: Significant Spearman's Correlation Relationships (r ≤ -0.6 or r ≥ 0.6) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion Scores, Greenhills and Gardine Creeks, 2017 to 2021	Figure 3.16:	Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion
 Figure 3.18: Benthic Invertebrate Community Endpoints for Greenhills Creek Sedimentation Pond, 2018 to 2021	Figure 3.17:	Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion
 Figure 3.19: Selenium Concentrations in Composite-taxa Benthic Invertebrate Tissue Samples from Greenhills and Gardine Creeks, 2018 to 2021	Figure 3.18:	Benthic Invertebrate Community Endpoints for Greenhills Creek
 Figure 3.20: Comparisons of Selenium Concentrations in Composite-taxa Benthic Invertebrate Tissue Samples from Greenhills and Gardine Creeks, September 2018 to 2021	Figure 3.19:	Selenium Concentrations in Composite-taxa Benthic Invertebrate Tissue
 Figure 3.21: Concentrations of Selenium Species Measured in Water Samples Collected Concurrently with Benthic Invertebrate Tissue Samples, February (Squares) and September (Circles), 2021	Figure 3.20:	Comparisons of Selenium Concentrations in Composite-taxa Benthic Invertebrate Tissue Samples from Greenhills and Gardine Creeks, September 2018 to 2021
 Figure 3.22: Selenium Concentrations in Benthic Invertebrate Tissues Relative to Predictions and Aqueous Selenium Concentrations, 2018 to 2021	Figure 3.21:	Concentrations of Selenium Species Measured in Water Samples Collected Concurrently with Benthic Invertebrate Tissue Samples, February (Squares)
Figure 3.23: Selenium Concentrations in Composite-taxa Benthic Invertebrate Tissue Samples from Greenhills Creek Sedimentation Pond, 2018 to 2021	Figure 3.22:	and September (Circles), 2021
Figure 3.24: Comparisons of Length, Weight, and Weight-at-Length (Body Condition) for Westslope Cutthroat Trout Captured from Upper Greenhills Creek, 2017 to 2021	Figure 3.23:	Selenium Concentrations in Composite-taxa Benthic Invertebrate Tissue
2021	Figure 3.24:	Comparisons of Length, Weight, and Weight-at-Length (Body Condition) for Westslope Cutthroat Trout Captured from Upper Greenhills Creek, 2017 to
Westslope Cutthroat Trout Captured from Upper Gardine Creek, 2019 to 2021	Figure 3.25:	2021

LIST OF TABLES

Table 2.1:	Overview of the 2021 Greenhills and Gardine Creeks Aquatic Monitoring Program	11
Table 2.2:	Analytical Methods for Water Samples	15
Table 2.3:	British Columbia Water Quality Guidelines, Site-specific Elk Valley Water Quality Plan Benchmarks, and Screening Values Relevant to the Greenhills and Gardine Creeks Aquatic Monitoring Program, 2021	19
Table 2.4:	Selenium Benchmarks for Benthic Invertebrate Tissues, Elk River Watershed	
		44
Table 2.5:	Severity Assessment for External Anomalies in Fish	48
Table 3.1:	Calcite Indices (CI and CI') for Monitoring Locations on Greenhills and	
	Gardine Creeks, 2015 to 2021	57
Table 3.2:	Calcite Concretion Scores for Stations on Greenhills and Gardine Creeks,	
	2015 to 2021	51
Table 3.3:	Spearman Rank Correlations Between Benthic Invertebrate Endpoints and	
	Water Quality Analytes with Early Warning Triggers, 2021	13
Table 3.4:	Spearman Rank Correlations Between Benthic Invertebrate Endpoints and	
	Water Quality Analytes with Early Warning Triggers, 2017 to 2021	15
Table 3.5:	Spearman's Correlation Relationships between Benthic Invertebrate	10
Table 2 C.	Community Metrics and Calcile, Greennins and Gardine Creeks, 2021	19
Table 3.6.	Spearman's Correlation Relationships between Benthic Invertebrate	
		21
Table 0.7.	2021	<u> </u>
Table 3.7	westslope Culturoat Trout Electronshing Catch Results in Greenhills Creek	
	and Gardine Creek, September 2015 to 2021	35
1 able 3.8:	Summary of External Anomalies for Westslope Cutthroat Trout Captured	40
	from Upper Greennilis and Gardine Creeks, 2021	¥2

ACRONYMS AND ABBREVIATIONS

AB – Alberta

- **ADIT** Aquatic Data Integration Tool
- ALS ALS Environmental
- AMP Adaptive Management Plan
- ANOVA Analysis of Variance
- BACI Before-After-Control-Impact
- BC British Columbia
- BC WQG British Columbia Water Quality Guideline
- BC WSQG British Columbia Working Sediment Quality Guidelines
- BCMOECCS/ENV British Columbia Ministry of Environment and Climate Change Strategy
- **B-tool** Selenium Speciation Bioaccumulation Tool
- **CABIN** Canadian Aquatic Biomonitoring Network

CaCO₃ - Calcium Carbonate

CALA – Canadian Association for Laboratory Accreditation Inc.

 C_c – Calcite Concretion Score

- CCME Canadian Council of Ministers of the Environment
- CCMS Collision Cell Mass Spectrophotometry
- CI Calcite Index
- Cl' Calcite Index Prime
- CMm Coal Mountain Operation
- **COPC** Contaminant of Potential Concern
- Cordillera Cordillera Consulting
- C_p Calcite Presence Score
- **C**_p' Calcite Presence Score Prime
- **CRC-ICPMS** Collision Reaction Cell Inductively Coupled Plasma-Mass Spectrophotometry
- **CRM** Certified Reference Material
- CSSS Canadian Society of Soil Science
- CVAAS Cold Vapour Atomic Absorption Spectroscopy
- **DC** Direct Current
- DELT Deformities, Erosion, Lesion, and Tumor
- **DO** Dissolved Oxygen
- DQR Data Quality Review
- ECCC Environment and Climate Change Canada
- eDNA Environmental DNA

0

-

- **EMC** Environmental Monitoring Committee
- **EMM** Estimated Marginal Mean
- **EPA** United States Environmental Protection Agency
- **EPT** Ephemeroptera, Plecoptera, and Trichoptera
- **EVO** Elkview Operation
- EVWQP Elk Valley Water Quality Plan
- EWT Early Warning Triggers
- GC/MS Gas Chromatography with Mass Spectrometric Detection
- GGCAMP Greenhills and Gardine Creeks Aquatic Monitoring Program
- GHO Greenhills Operation
- **GPS** Global Positioning System
- HSD Honestly Significant Difference
- IC-ICP-CRC-MS Ion Chromatography Inductively Coupled Plasma Collision Reaction Cell Mass Spectrometry
- ISQG Interim Sediment Quality Guideline
- KNC Ktunaxa National Council
- KU Key Uncertainty
- LAEMP Local Aquatic Effects Monitoring Program
- LA-ICPMS Laser Ablation Inductively Coupled Plasma Mass Spectrometry
- **Lotic** Lotic Environmental Ltd.
- LPL Lowest Practical Level
- LRL Laboratory Reporting Limit
- MCT Measure of Central Tendency
- MEMPR Ministry of Energy, Mines, and Petroleum Resources
- MFLNRORD Ministry of Forests, Lands, Natural Resource Operations, and Rural Development
- Minnow Minnow Environmental Inc.
- **MOD** Magnitude of Difference
- MQ Management Question
- NELAP National Environmental Laboratory Accreditation Program
- **PAH –** Polycyclic Aromatic Hydrocarbon
- PIT Passive Integrated Transponder
- QA/QC Quality Assurance/ Quality Control
- QC Quality Control
- **RAEMP** Regional Aquatic Effects Monitoring Program
- SD Standard Deviation
- **SEA** Sequential Extraction Analysis

-

0

- **SPO** Site Performance Objective
- **SQI** Sediment Quality Indices
- **TDS –** Total Dissolved Solids
- Teck Teck Coal Limited
- **TOC** Total Organic Carbon
- Trich TrichAnalytics Inc.
- TSS Total Suspended Solids
- UTM Universal Transverse Mercator
- WCT Westslope Cutthroat Trout
- **ZEAS** Zeas Inc.

1 INTRODUCTION

0

1.1 Background

Teck Coal Limited (Teck) owns five open pit, metallurgical coal mines in the Elk River watershed in southeast British Columbia (BC; Figure 1.1). Calcite (calcium carbonate precipitate) has been observed in several creeks within the Elk River watershed downstream from Teck's mines and, to a lesser extent, in reference creeks unaffected by mining. In parts of some creeks, calcite precipitation completely covers portions of the creek bed, making the substrate largely immovable. The Elk Valley Water Quality Plan (EVWQP; Teck 2014) identified four priority creeks for calcite management: Greenhills Creek (Greenhills Operations [GHO]), Corbin Creek (Coal Mountain Mine [CMm]), Dry Creek (Elkview Operations [EVO]), and Erickson Creek (EVO). Permits 107517 (*Environmental Management Act*) and C-137 (*Mines Act*) required that Teck initiate calcite management in at least one priority creek by October 31, 2017. Greenhills Creek was selected as the first creek for calcite management.

Focused pre-treatment aquatic environmental studies were initiated in Greenhills Creek in 2016 to characterize the existing environment and support the evaluation of potential effects associated with the proposed calcite management. Application of antiscalant to Lower Greenhills Creek (i.e., the portion of the creek from immediately downstream of Greenhills Creek Sedimentation Pond to the Fording River) was initiated on October 23, 2017. In 2018, the Lower Greenhills Creek Aquatics Effect Monitoring Program was initiated and separate baseline monitoring continued on Upper Greenhills Creek. Gardine Creek, a tributary to Greenhills Creek, was identified as a priority stream for potential calcite management in July 2019 (Teck 2019a). Gardine Creek receives inputs from groundwater seeps originating from the GHO east spoil, downstream of which calcite has been documented. Focused studies were initiated upstream and downstream from the documented seeps in 2019 to characterize existing conditions and support decision-making around the implementation of calcite management/water treatment in Gardine Creek (Minnow 2020a,b, 2021a,b). The pre-treatment monitoring completed at Upper Greenhills and Gardine creeks and the aquatic effects monitoring completed at Lower Greenhills Creek in 2019 were combined into a single program and report (Minnow 2020a). Following completion of the 2020 monitoring and reporting cycle (i.e., effective in 2021), the program was renamed as the Greenhills and Gardine Creeks Aquatic Monitoring Program (GGCAMP).

Application of antiscalant to Lower Greenhills Creek has been successful at preventing further calcite deposition in the approximately 750 metre (m) section of creek downstream from the Greenhills Creek Sedimentation Pond to the Fording River confluence (Minnow 2019a). As such, Teck proposed implementing calcite management via antiscalant addition within Upper Greenhills

Document Path: C:\Users\capol\Trinity Consultants, Inc\Teck - 227202.0016 - 2022 GGCAMPID - GIS\2021 GGCAMP Report\22-16 Figure 1.1 Teck Coal Limited Operation.mxd

-

Creek in October 2019. The plan was to relocate the antiscalant addition facility from Lower Greenhills Creek to approximately 4.9 kilometres (km) upstream from the Greenhills Creek Sedimentation Pond. The intention was to prevent further calcite deposition throughout the full 5.65 km section of Greenhills Creek. In 2018, however, comparisons of projected water quality data to benchmarks/screening values for metal³ contaminants of potential concern (COPCs; i.e., cadmium, cobalt, manganese, nickel, selenium, and zinc) resulted in uncertainty in the conclusion that prevention could be safely carried out without the potential for adverse aquatic effects. Modelled predictions indicated prevention of calcite precipitation could eliminate a meaningful mechanism of metal sequestration, resulting in unacceptable higher aqueous metal concentrations (i.e., could result in seasonal exceedances for cadmium that would not be expected to occur without antiscalant addition, as well as an overall increase in nickel concentrations, which were already above the interim screening value that has not been proven to be protective of the aquatic environment). In 2020 and present day, modelling predicted water quality changes following antiscalant addition is conservatively executed based on the assumption that 100 percent (%) of the metal attenuation observed is due to calcite precipitation. Currently, there is no way to address the conservatism in this modelling method. Consequently, the Upper Greenhills Creek Calcite Management Project was suspended. In 2020, as part of the Upper Greenhills Creek Calcite Remediation Trial and Antiscalant Addition Project, Teck proposed to relocate the antiscalant addition facility from Lower Greenhills Creek 2.25 km upstream to a location 500 m upstream from the Greenhills Creek and Gardine Creek confluence. Projected changes to water quality within the approximately 3 km management area were conservatively predicted to be safe.

In 2021, the Calcite Remediation Trial and relocation of the antiscalant addition facility were deferred for a year to provide time for engagement with the Ktunaxa Nation Council (KNC), who had expressed concerns regarding the proposed remediation trial location. In 2022, the Calcite Remediation Trial component of the project was further deferred in response to inability to address KNC's opposition to completing calcite remediation in Greenhills Creek. Currently, under the *Mines Act* C-137 Permit and *Water Sustainability Act* Water License amendments received May 2022, Teck is completing the powerline construction required to support relocation of the antiscalant addition facility. Teck is also awaiting finalized *Environmental Management Act* Permit 107571 and Effluent Permit amendments and a *Fisheries Act Authorization* before complete site preparation and infrastructure installation within the riparian zone, infrastructure installation within the creek, and commissioning and operation of the facility. The antiscalant addition facility on

³ Throughout this report, metals, metalloids, and non-metals typically included in a multi-element scan are collectively referred to as "metals".

Upper Greenhills Creek is predicted to result in a safe, yet measurable change in aqueous concentrations of cadmium, cobalt, manganese, and zinc. It is anticipated that the water quality monitoring data collected to confirm the potential environmental effects predicted from the operation of this facility will provide a line of evidence to address the conservatism in the current modelling method.

As indicated previously, Gardine Creek, which flows into Upper Greenhills Creek, was also identified as a priority stream for potential calcite management in July 2019 (Teck 2019a). Initially, relocation of the antiscalant addition facility to support the Upper Greenhills Creek Calcite Remediation Trial and Antiscalant Addition Project was intended to manage both Gardine and Greenhills creeks. It was hoped that the benefits of antiscalant addition would be realized from the Gardine Creek/Upper Greenhills Creek confluence down to the Fording River. However, in the winter of 2019/2020 it was identified that flow within Gardine Creek is intermitted during low flow periods and it was ultimately decided that Teck would not proceed with antiscalant addition downstream from the seeps on Gardine Creek (Ferguson 2021, pers. comm.). However, because Gardine Creek is used by fish and influences water guality and other conditions in Greenhills Creek, Gardine Creek will continue to be monitored as part of the GGCAMP.

Teck is committed to improving the environmental conditions in Greenhills Creek. The Greenhills Creek Rehabilitation Program is a holistic management approach that integrates environmental management of water quality, aquatic habitat, and water usage throughout the Greenhills Creek watershed. There are several mitigation projects and regional initiatives currently planned or being implemented in the Greenhills Creek drainage to support the objectives of the EVWQP and compliance with *Environmental Management Act* Permit 107517, and the Environment and Climate Change Canada (ECCC) Directive. The intended output of the program would be a rehabilitation plan, including the establishment of a road map of mitigation projects to improve Greenhills Creek water quality, aquatic habitat, and fish connectivity with the Upper Fording River in a coordinated and logically sequenced manner. Work is progressing on this initiative in parallel to other projects and further engagement with external stakeholders is anticipated throughout late 2022 and into 2023. Current proposed rehabilitation projects in the Greenhills Creek watershed Rehabilitation Program include:

- the Calcite Remediation Trial;
- selenium treatment in Greenhills Creek;
- the Greenhills Creek water management project;
- a geosynthetic cover trial; and

• the Greenhills Creek reconnection project.

Until 2021, the scope of the GGCAMP focused on the collection of pre-treatment data from Upper Greenhills and Gardine creeks, as well as aquatic effects monitoring in Lower Greenhills Creek. However, starting in 2021, the scope of the monitoring program was updated to address the proposed mitigation projects within the watershed that are expected to interact with the aquatic environments in Greenhills and Gardine creeks. The updated scope of the GGCAMP is reflected in the Key Questions (Section 1.2), which were reviewed and revised for 2021.

The 2021 GGCAMP was administered by Teck based on advice from the Environmental Monitoring Committee (EMC). The EMC consists of representatives from Teck, British Columbia Ministry of Environment and Climate Change Strategy (BCMOECCS/ENV⁴), the Ministry of Energy, Mines, and Petroleum Resources (MEMPR), the KNC, Interior Health Authority, and an Independent Scientist.⁵ Components of the 2021 study design were presented to the EMC on May 5, 2021. Feedback received from the EMC during the meeting and in the form of written input and advice were integrated into the 2021 study design, which was finalized in July 2021. On May 27, 2022, results of the monitoring completed in 2021 were presented to the EMC, along with proposed plans for the 2022 monitoring program. The advice and input received from the EMC during and after the May 2022 meeting have been integrated into this monitoring program report and will be integrated in the 2022 study design, as appropriate.

This report is submitted to satisfy the requirement outlined in Appendix 5B section 5B3 of Permit 107517 (amended December 1, 2021):

The Greenhills Creek Aquatic Effects Assessment and Monitoring Program annual report must be reported on in accordance with generally accepted standards of good scientific practice in a written report and submitted to the Director of each year following the data collection calendar year by June 30.

1.2 Key Questions

(0))

-

Focused pre-treatment studies to support decision-making regarding antiscalant addition were conducted in 2016 and 2017 (Upper and Lower Greenhills Creek), 2018 (Upper Greenhills Creek), and 2019 to 2021 (Upper Greenhills and Gardine creeks). Sampling continued in Lower Greenhills Creek in 2018 to 2021 following the initiation of antiscalant addition in October 2017 to

⁴ The abbreviation "ENV" is commonly used to refer to representatives from BCMOECCS who participate in the EMC.

⁵ To date, ECCC has not been called on to participate in engagement with the EMC. However, ECCC has agreed to provide its perspectives on matters related to Permit 107517 and the EMC's activities on a case-by-case basis and when requested to do so by the EMC.

confirm the environmental effects predictions made for the Lower Greenhills Creek Calcite Management Project.

From 2016 to the end of 2020, the Key Questions for the GGCAMP focused on calcite management and were identified as follows:

- 1. Will the prevention of calcite by water treatment (e.g., antiscalant addition) cause adverse effects on aquatic health (based on specific metrics outlined below) in Upper Greenhills Creek and Gardine Creek?
- 2. Has addition of antiscalant prevented further calcification of substrate without causing adverse effects on aquatic health (based on specific metrics outlined below) in Lower Greenhills Creek?

Answering these Key Questions required the characterization of conditions at various locations throughout Greenhills and Gardine creeks. Characterization was based on a suite of monitoring components including water quality, selenium speciation, substrate conditions (i.e., calcite indices [CI], sediment characteristics, and sediment quality) and aquatic organism health (i.e., benthic invertebrate community structure, benthic invertebrate biomass, benthic invertebrate tissue chemistry, fish numbers, health, and tissue chemistry).⁶ These metrics were used to describe current conditions within Upper Greenhills and Gardine creeks, support comparisons of pre-treatment and post-treatment (i.e., after initiation of antiscalant addition) conditions in Lower Greenhills Creek, and identify potential temporal trends.

As indicated in Section 1.1, the Key Questions were revised by the study team in early 2021 to better reflect the aquatic monitoring needs for Greenhills and Gardine creeks, based on the activities that are ongoing or proposed in the watershed. Early versions of these revised Key Questions were presented to Teck's EMC on May 5, 2021 and were included in the 2021 study design for the GGCAMP (Minnow 2021b). The Key Questions for 2021 were as follows:

- 1. What is the current status of aquatic health in Greenhills and Gardine creeks, as evidenced by physical, chemical, and biological conditions?
- 2. Have physical, chemical, and/or biological conditions indicative of aquatic health in Greenhills and Gardine creeks changed over time and are the changes unexpected based on the activities and projects occurring in the watershed?

⁶ Selenium speciation sampling was not initiated until September 2020 (Minnow 2020b,c) and no westslope cutthroat trout (WCT; *Oncorhynchus clarkii lewisi*) population monitoring was completed in 2020 as a proactive response to the reported population decline in Management Unit 1 (Cope 2020).

3. Can observed changes be linked to antiscalant addition in Lower Greenhills Creek, specifically?

These Key Questions were addressed by characterizing existing conditions within Greenhills and Gardine creeks in 2021 and evaluating changes over time (i.e., since the initiation of focused monitoring in 2016) to identify any patterns that may be indicative of unexpected changes (i.e., relative to predictions or general expectations).⁷ Endpoints related to water quality, selenium speciation, substrate conditions (i.e., CI and calcite index prime [CI'], sediment characteristics, and sediment quality), and aquatic organism health (i.e., benthic invertebrate community structure, benthic invertebrate biomass, benthic invertebrate tissue chemistry, and fish numbers and health) were evaluated, as data allowed. Fish tissue chemistry sampling and fish tagging were not completed in 2021 to minimize fish handling stress and potential risks to westslope cutthroat trout (WCT; *Oncorhynchus clarkii lewisi*) (see Sections 2.6 and 3.5). Relevant data (e.g., flows and water temperatures, calcite indices) collected as part of other monitoring programs (e.g., the Regional Calcite Monitoring Program) were integrated into this 2021 report for the GGCAMP, as appropriate, to address the Key Questions.

1.3 Objectives

The broader objective of the GGCAMP is to monitor and evaluate site-specific indicators of aquatic ecosystem conditions within Greenhills and Gardine creeks (including Greenhills Creek Sedimentation Pond). However, the program is designed with a primary focus on monitoring aquatic health to support assessment of effects (e.g., of ongoing antiscalant addition in Lower Greenhills Creek) and provide benchmarks for assessing future changes that may result from activities planned within the watershed (e.g., relocation of the antiscalant addition facility, decommissioning of Greenhills Creek Sedimentation Pond). Additionally, the 2021 GGCAMP is expected to support the Regional Aquatic Effects Monitoring Program (RAEMP) and the Adaptive Management Plan (AMP) by assessing site-specific conditions on a more focused basis. This includes helping to answer questions around effective management of calcite and achievement of site performance objectives (SPOs), as well as broader questions around mine-related changes in aquatic ecosystem conditions.

1.4 Linkages to Adaptive Management

0

€.

As required in Permit 107517 Section 10, Teck has developed an AMP. The purpose of the AMP is to support implementation of the EVWQP through attainment of water quality and calcite

⁷ "General expectations" may include predictions that were presented in approved plans in a narrative or semi-quantitative form or biological characteristics that are considered to be consistent with expectations based on observed chemical concentrations or calcite conditions, for example.

0

targets, the protection of human health and the environment, and continuous improvement of water quality in the Elk Valley (Teck 2021a). Following an adaptive management framework, the AMP identifies six Management Questions (MQ) that are re-evaluated at regular intervals as part of AMP updates throughout EVWQP implementation. Data from the RAEMP (Minnow 2018a, 2020d, 2021c), Local Aquatic Effects Monitoring Programs (LAEMPs), and the GGCAMP feed into the adaptive management process. The data address the MQ that collectively address the environmental management objectives of the AMP (Teck 2021a) and the EVWQP (Teck 2014). The AMP also identifies Key Uncertainties (KU) that need to be reduced to fill gaps in current understanding of mine-related effects to the aquatic environment and support achievement of the EVWQP objectives.

The GGCAMP provides supportive information to help answer AMP MQ #4 ("*Is calcite being managed effectively to meet site SPOs and to protect the aquatic ecosystem?*"). Answering MQ #4 is accomplished by addressing KU 4.1 through 4.3 ("*Are the calcite SPOs protective of fish and aquatic life?*"; "*What are the most effective management methods for calcite?*"; and "*Are there interrelationships with calcite and select constituents of interest in surface water that need to be considered for calcite management?*"). These KU need to be reduced to fill gaps in current understanding and support the attainment of the EVWQP objectives. The MQ are re-evaluated and adjusted at regular intervals as part of AMP updates throughout EVWQP implementation and after relevant investigations.

Additionally, the 2021 GGCAMP will contribute to the RAEMP, which is designed to evaluate AMP MQ #5 ("Does monitoring indicate that mine-related changes in aquatic ecosystem conditions are consistent with expectations?"). During the development of the AMP, a number of uncertainties related to MQ #5 were identified that were summarized as KU 5.1 (i.e., "How will monitoring data be used to identify potentially important mine-related effects on the aquatic ecosystem?"). Teck is working with its consultants and the EMC to address KU 5.1 and its underlying uncertainties prior to submission of the next RAEMP report in 2023. Progress on reducing these uncertainties, and associated learnings, is described in Annual AMP Reports (e.g., Teck 2021b).

The evaluation of biological triggers for potential management action is a requirement of Permit 107517 and is incorporated as part of MQ #5 of the AMP (Teck 2021a). Biological triggers were developed in consultation with the EMC for a subset of the biological monitoring endpoints that are considered effective indicators of changes at the ecosystem level. Generally, the biological triggers are intended as a simple way to flag potentially unexpected monitoring results that may require management action. For the 2021 GGCAMP, comparisons to the biological triggers for proportions (expressed as %) of Ephemeroptera (mayflies), Plecoptera (stoneflies), and

Trichoptera (caddisflies) (collectively referred to as EPT) in benthic invertebrate community samples and selenium concentrations in benthic invertebrate tissues and WCT muscle were made. Comparisons included data collected from biological monitoring areas that have supporting water quality projections (Minnow 2021b,c; Teck 2021a).

The third annual AMP report was submitted on July 31, 2021 and included data from 2020 (Teck 2021b). This report indicated that selenium concentrations in fish tissues, selenium bioaccumulation, and fish habitat quality in Greenhills Creek were less favorable than previously expected, based on predictive tools and conceptual model assumptions for the Elk River watershed. Additionally, results of biological monitoring completed downstream of Greenhills Creek Sedimentation Pond were not as expected. Selenium concentrations in benthic invertebrate and fish tissues were higher than anticipated given the measured water concentrations. Actions associated with the AMP responses to these issues focused on further investigations and adjustments, as outlined in detail in the 2020 AMP report (Teck 2021b). Examples include initiation of a Greenhills Creek Rehabilitation Program, a sulphate removal pilot program, the Greenhills Creek Sediment Pond Bypass, continuation of permitting activities for the Greenhills Creek Calcite Remediation Field Trial and Antiscalant Addition Project, and the completion of additional pre-treatment monitoring in Upper Greenhills Creek.

For more information on the adaptive management framework, the MQ, the KU, the Response Framework⁸, Continuous Improvement, linkages between the AMP and other EVWQP programs, and AMP reporting, refer to the AMP update (Teck 2021a) and the 2020 annual AMP report (Teck 2021b).

⁸ A response framework was opened for Greenhills Creek based on the unexpected conditions for selenium concentrations in benthic invertebrate tissues.

2 METHODS

2.1 Design Overview

Aquatic monitoring completed in 2021 to support the GGCAMP included the following core technical components (Table 2.1):

- Water quality monitoring, including sampling for determination of selenium speciation, upstream and downstream from the existing antiscalant addition location on Lower Greenhills Creek, upstream and downstream of the future location of the antiscalant addition facility on Upper Greenhills Creek⁹, and in Greenhills Creek Sedimentation Pond;
- 2. Water quality monitoring, including selenium speciation sampling, in Gardine Creek upstream and downstream from the seeps from the GHO east spoil;
- 3. Calcite index measurements throughout Greenhills and Gardine creeks¹⁰;
- 4. Sediment quality monitoring in depositional areas in Lower Greenhills Creek and throughout Gardine Creek, as well as in Greenhills Creek Sedimentation Pond;
- 5. Benthic invertebrate community and biomass sampling (i.e., area-based kick and sweep sampling) at areas (six stations per area) throughout Greenhills and Gardine creeks;
- 6. Timed benthic invertebrate community sampling at one biological monitoring area (three stations) on Upper Greenhills Creek (i.e., three-minute kick and sweep)¹¹;
- 7. Benthic invertebrate community sampling at six depositional stations within Greenhills Creek Sedimentation Pond;
- 8. Benthic invertebrate tissue chemistry sampling at areas (three stations per area) throughout Greenhills and Gardine creeks and within Greenhills Creek Sedimentation Pond;
- 9. WCT fry and juvenile surveys to support assessments of fish presence, density, and biomass in Upper Greenhills and Gardine creeks; and

⋞.

⁹ The antiscalant addition facility was scheduled to be relocated from Lower Greenhills Creek to Upper Greenhills Creek in August to early October 2021, but this project has been postponed to 2022 (Hillman 2021a,b, pers. comm.).

¹⁰ Calcite index measurements were collected from lotic habitats where benthic invertebrate community samples were collected. This was in addition to the CI measurements completed in Greenhills and Gardine creeks as part of the Regional Calcite Monitoring Program.

¹¹ Benthic invertebrate community data for the timed kick sampling site on Lower Greenhills Creek (i.e., RG_GHCKD; Greenhills Creek downstream of the Greenhills Creek Sedimentation Pond), which is sampled as part of the RAEMP, was also included in the evaluation of biological triggers (see Section 2.4.3).

Table 2.1: Overview of the 2021 Greennills and Gardine Creeks Aquatic Monitoring Progra

								Febru	uary 2021					September 20	21			
Locatio	n Monitoring Area	Approximate UTMs (NAD 83, 11U)		River Kilometre	Area Description	Teck - Routine		Water Quality	1	Benthic Water Quality			Calaita Index Sodimont	Sediment	Benthic Invertebrates		Fish	
				(km) ^a		Water Quality	Chemistry	Selenium Speciation	In situ Quality	Composite-taxa Tissue Chemistry	Chemistry	Selenium Speciation	<i>In situ</i> Quality	Measurements	Quality	Community Structure	Composite-taxa Tissue Chemistry	Population
	RG_GHUT	654134	5549945	5.20	Biological Monitoring Area in Reach 10 of Upper Greenhills Creek Upstream from Proposed Antiscalant Addition Facility		1 (concurrent with tissue chemistry monitoring)	1 (concurrent with tissue chemistry monitoring)	3 (1 at each benthic invertebrate tissue chemistry station)	3 stations	1 (concurrent with biological monitoring)	1 (concurrent with biological monitoring)	6 (1 at each benthic invertebrate community station)	6 (1 at each benthic invertebrate community station)	-	6 stations	3 stations	3 closed stations
	GREE4-75	654152	5549910	5.20	Regional Calcite Monitoring Program Station in Reach 10 of Upper Greenhills Creek	-	-	-	-	-	-	-	-	1 as part of regional calcite monitoring	-	-	-	-
	GH_CTF	654165	5549540	4.86	Permitted Water Quality Station in Reach 10 of Upper Greenhills Creek	~	Teck - routine	-	Teck - routine	-	Teck - routine	-	Teck - routine	-	-	-	-	-
Upper Greenhills Creek	RG_GHNF	654367	5549052	4.26	Biological Monitoring Area in Reach 9 of Upper Greenhills Creek Downstream from Proposed Antiscalant Addition Facility	-	1 (concurrent with tissue chemistry monitoring)	1 (concurrent with tissue chemistry monitoring)	3 (1 at each benthic invertebrate tissue chemistry station)	3 stations	1 (concurrent with biological monitoring)	1 (concurrent with biological monitoring)	6 (1 at each benthic invertebrate community station)	6 (1 at each benthic invertebrate community station)	-	6 stations (area-based); 3 stations (CABIN)	3 stations	3 closed stations
	GREE4-50	654336	5549133	4.36	Regional Calcite Monitoring Program Station in Reach 9 of Upper Greenhills Creek	-	-	-	-	-	-	-	-	1 as part of regional calcite monitoring	-	-	-	-
	GREE4-25	654512	5548365	3.52	Regional Calcite Monitoring Program Station in Reach 8 of Upper Greenhills Creek	-	-	-	-	-	-	-	-	1 as part of regional calcite monitoring	-	-	-	-
	GH_HWGH_BRB	654435	5548079	3.18	Water Quality Station in Reach 7 of Upper Greenhills Creek	~	Teck - routine	-	Teck - routine	-	Teck - routine	-	Teck - routine	-	-	-	-	-
	GREE3-75	654172	5547243	2.51	Regional Calcite Monitoring Program Station in Reach 6 of Upper Greenhills Creek	-	-	-	-	-	-	-	-	1 as part of regional calcite monitoring	-	-	-	-
	RG_GHFF	654135	5547185	2.28	Biological Monitoring Area in Reach 6 of Upper Greenhills Creek Downstream from Gardine Creek	-	1 (concurrent with tissue chemistry monitoring)	1 (concurrent with tissue chemistry monitoring)	3 (1 at each benthic invertebrate tissue chemistry station)	3 stations	1 (concurrent with biological monitoring)	1 (concurrent with biological monitoring)	6 (1 at each benthic invertebrate community station)	6 (1 at each benthic invertebrate community station)	-	6 stations	3 stations	3 closed stations
	GREE3-50	653990	5546883	1.81	Regional Calcite Monitoring Program Station in Reach 6 of Upper Greenhills Creek	-	-	-	-	-	-	-	-	1 as part of regional calcite monitoring	-	-	-	-
	GREE3-25	653918	5546481	1.36	Regional Calcite Monitoring Program Station in Reach 5 of Upper Greenhills Creek	-	-	-	-	-	-	-	-	1 as part of regional calcite monitoring	-	-	-	-
	GH_GH1B	653740	5546142	0.95	Permitted Water Quality Station at the Inlet of Greenhills Sediment Pond	~	Teck - routine	-	Teck - routine	-	Teck - routine	-	Teck - routine	-	-	-	-	-
Greenhills Pond	RG_GHP	653445	5546033	-	Greenhills Sediment Pond - Depositional Area	-	-	-	-	-	1 or 2 (concurrent with biological monitoring) ^b	1 or 2 (concurrent with biological monitoring) ^b	6 (concurrent with biological monitoring) and a profile at the deepest area of the pond	-	6 stations	6 stations	3 stations	-

Notes: UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; km = kilometre; - = sampling not included in program design; CABIN = Canadian Aquatic Biomonitoring Network; GHO = Greenhills Operation; RAEMP = Regional Aquatic Effects Monitoring Program. ^a Distance from the confluence with the Upper Fording River (Greenhills Creek) or Greenhills Creek (Gardine Creek).

^b If no stratification was observed at the time of sampling, a single surface grab was collected from RG_GHP. If stratification was observed, then two water samples were collected (i.e., one above and one below the thermocline).

^c Monitoring area GH_DSAF (Downstream of Antiscalant Facility; see Figure 2.2) was excluded from the table because it was only sampled one year (2018) and for calcite indices only.

^d Data are collected from this location as part of the RAEMP and are used, as appropriate, to support the Greenhills and Gardine Creeks Aquatic Monitoring Program.

Table 2.1. Overview of the 2021 Greennins and Gardine Creeks Aquatic Monitoring Program	Table 2.1:	Overview of the 20	21 Greenhills and	I Gardine Creeks /	Aquatic Monitoring	Program
---	-------------------	--------------------	-------------------	--------------------	--------------------	---------

						- .		Febru	uary 2021					September 20	021			
Location	Monitoring Area	Approxir (NAD	nate UTMs 83, 11U)	River Kilometre	Area Description	Routine		Water Quality		Benthic Invertebrates		Water Quality		Calcite Index	Sediment	Benthic	Invertebrates	Fish
		Easting	Northing	(km) ^a		Quality	Chemistry	Selenium Speciation	In situ Quality	Composite-taxa Tissue Chemistry	Chemistry	Selenium Speciation	In situ Quality	Measurements	Quality	Community Structure	Composite-taxa Tissue Chemistry	Population
Lower Greenhills Creek ^c	GH_GH1	653577	5545871	0.62	Permitted Water Quality Station Downstream from Greenhills Sediment Pond and the Stilling Basin V-notch (Upstream of Antiscalant Addition)	~	Teck - routine	-	Teck - routine	-	Teck - routine	-	Teck - routine	-	-	-	-	-
	GREE1-75	653534	5545668	0.38	Regional Calcite Monitoring Program Station in Reach 2 of Lower Greenhills Creek	-	-	-	-	-	-	-	-	1 as part of regional calcite monitoring	-	-	-	-
	RG_GHCKD ^d	653537	5545602	0.38	Greenhills Creek Downstream from the Greenhills Creek Sedimentation Pond	-	-	-	-	-	1 (concurrent with biological monitoring)	1 (concurrent with biological monitoring)	1 (concurrent with biological monitoring)	1 (concurrent with biological monitoring)	-	1 station	1 station	-
	RG_GHBP	653521	5545623	0.33	Biological Monitoring Area in Reach 2 of Lower Greenhills Creek Downstream from the Fording Mine Road	-	1 (concurrent with tissue chemistry monitoring)	1 (concurrent with tissue chemistry monitoring)	3 (1 at each benthic invertebrate tissue chemistry station)	3 stations	1 (concurrent with biological monitoring)	1 (concurrent with biological monitoring)	6 (1 at each benthic invertebrate community station)	6 (1 at each benthic invertebrate community station)	5 stations	6 stations	3 stations	-
	GREE1-50	653494	5545590	0.27	Regional Calcite Monitoring Program Station in Reach 2 of Lower Greenhills Creek	-	-	-	-	-	-	-	-	1 as part of regional calcite monitoring	-	-	-	-
	GREE1-25	653386	5545504	0.12	Regional Calcite Monitoring Program Station in Reach 1 of Lower Greenhills Creek	-	-	-	-	-	-	-	-	1 as part of regional calcite monitoring	-	-	-	-
	GH_GH2	653325	5545481	0.05	Permitted Water Quality Station in Reach 1 of Lower Greenhills Creek Downstream from the Fording Mine Road	~	Teck - routine	-	Teck - routine	-	Teck - routine	-	Teck - routine	-	-	-	-	-
	GARD1-75	653316	5549076	1.85	Regional Calcite Monitoring Program Station in Reach 5 of Gardine Creek	-	-	-	-	-	-	-	-	1 as part of regional calcite monitoring	-	-	-	-
	RG_GAUT	653451	5548928	1.79	Biological Monitoring Area in Reach 4 of Gardine Creek Upstream from GHO East Spoil Seeps	-	1 (concurrent with tissue chemistry monitoring)	1 (concurrent with tissue chemistry monitoring)	3 (1 at each benthic invertebrate tissue chemistry station)	3 stations	1 (concurrent with biological monitoring)	1 (concurrent with biological monitoring)	6 (1 at each benthic invertebrate community station)	6 (1 at each benthic invertebrate community station)	5 stations	6 stations	3 stations	3 closed stations
reek	GARD1-50	653641	5548601	1.24	Regional Calcite Monitoring Program Station in Reach 2 of Gardine Creek	-	-	-	-	-	-	-	-	1 as part of regional calcite monitoring	-	-	-	-
ardine C	GARD1-25	653928	5548090	0.64	Regional Calcite Monitoring Program Station in Reach 1 of Gardine Creek	-	-	-	-	-	-	-	-	1 as part of regional calcite monitoring	-	-	-	-
Ga	RG_GANF	654277	5547746	0.15	Biological Monitoring Area in Reach 1 of Gardine Creek Upstream from the Confluence with Upper Greenhills Creek and Downstream from the GHO East Spoil Seeps	- 1	1 (concurrent with tissue chemistry monitoring)	1 (concurrent with tissue chemistry monitoring)	3 (1 at each benthic invertebrate tissue chemistry station)	3 stations	1 (concurrent with biological monitoring)	1 (concurrent with biological monitoring)	6 (1 at each benthic invertebrate community station)	6 (1 at each benthic invertebrate community station)	5 stations	6 stations	3 stations	3 closed stations
	GH_GC1	654271	5547734	0.06	Permitted Water Quality Station on Gardine Creek Upstream from the Confluence with Upper Greenhills Creek	~	Teck - routine	-	Teck - routine	-	Teck - routine	-	Teck - routine	-	-	-	-	-

Notes: UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; km = kilometre; - = sampling not included in program design; CABIN = Canadian Aquatic Biomonitoring Network; GHO = Greenhills Operation; RAEMP = Regional Aquatic Effects Monitoring Program. ^a Distance from the confluence with the Upper Fording River (Greenhills Creek) or Greenhills Creek).

^b If no stratification was observed at the time of sampling, a single surface grab was collected from RG_GHP. If stratification was observed, then two water samples were collected (i.e., one above and one below the thermocline).

^c Monitoring area GH_DSAF (Downstream of Antiscalant Facility; see Figure 2.2) was excluded from the table because it was only sampled one year (2018) and for calcite indices only.

^d Data are collected from this location as part of the RAEMP and are used, as appropriate, to support the Greenhills and Gardine Creeks Aquatic Monitoring Program.

10. A survey of external anomalies (e.g., tumors, fin erosion, parasites) on captured WCT, consistent with the RAEMP methods (Minnow 2021c).

The 2021 field programs were implemented according to the 2021 study design (Minnow 2021b) and sampling was completed in February and September 2021. Results from other projects and monitoring programs (e.g., the Regional Calcite Monitoring Program and the Upper Fording River WCT Population Monitoring Program) have been integrated into this report, where appropriate, to support interpretation of data collected as part of the GGCAMP.

2.2 Water Quality

2.2.1 Field Sampling

0

-

Data for water chemistry samples collected by Teck under Permit 107517 were used, as appropriate, to support interpretation of the GGCAMP data. Water quality is routinely monitored by Teck at three stations on Upper Greenhills Creek, two stations on Lower Greenhills Creek, and one station on Gardine Creek (Figure 2.1; Table 2.1). The stations in Reach 10 (GH_CTF) and Reach 7 (GH_HWGH_BRB) of Upper Greenhills Creek are approximately 4.86 and 3.18 km, respectively, upstream from where Greenhills Creek flows into the Upper Fording River (Figure 2.1; Table 2.1). The third Upper Greenhills Creek station is at the inlet to Greenhills Creek Sedimentation Pond (GH_GH1B) (i.e., 0.95 km from the Greenhills Creek mouth; Figure 2.1). The Lower Greenhills Creek stations are located downstream from Greenhills Creek Sedimentation Pond at the outfall for the Stilling Basin (GH_GH1; 0.62 km from the Greenhills Creek mouth) and close to the confluence with the Fording River (GH_GH2; Figure 2.1). Teck's routine water quality monitoring station on Gardine Creek (Figure 2.1; Table 2.1).

As required under Permit 107517, water samples are collected monthly at each of Teck's routine monitoring stations (and weekly for certain analytes at GH_GH1 from March 15 to July 31). Monthly samples are analyzed for total and dissolved metals, nutrients, major ions, and other conventional analytes (i.e., total suspended and dissolved solids, and total and dissolved organic carbon; Table 2.2). Additional weekly samples from GH_GH1 are analyzed for turbidity and total suspended solids (TSS) only. *In situ* water quality measurements including temperature, dissolved oxygen (DO), pH, specific conductance, and turbidity are also taken concurrent with each water sample.

In addition to the routine water sampling completed by Teck, water quality monitoring was completed in February and September 2021, concurrent with benthic invertebrate tissue chemistry and benthic invertebrate community sampling, respectively. In February 2021, RG_GHUT, RG_GHNF, and RG_GHFF on Upper Greenhills Creek, RG_GHBP on Lower

Document Path: C:Users\capol\Trinity Consultants, Inc\Teck - 227202.0016 - 2022 GGCAMPID - GIS\2021 GGCAMP Report\22-16 Figure 2.1 WQ Monitoring and Selenium Speciation Sampling.mxd

Analyte	Units	Method	Reference				
pH	pH units	pH electrode	APHA 4500 H-electrode				
Turbidity	NTU	Nephelometric	APHA 2130 B				
Hardness (as CaCO ₃)	mg/L	Calculation	APHA 2340B				
Total Suspended Solids	mg/L	Gravimetric	APHA 2540 D				
Total Dissolved Solids	mg/L	Gravimetric	APHA 2540 C				
Alkalinity	mg/L	Potentiometric Titration	APHA 2320 B				
Ammonia (as N)	mg/L	Fluorescence	Watson et al. 2005				
Bromide (Br)	mg/L	Ion Chromatography	EPA 300.1				
Chloride (CI)	mg/L	Ion Chromatography	EPA 300.1				
Fluoride (F)	mg/L	Ion Chromatography	EPA 300.1				
Total Kjeldahl Nitrogen	mg/L	Fluorescence	APHA 4500-NORG D.				
Nitrate (as N)	mg/L	Ion Chromatography	EPA 300.1				
Nitrite (as N)	mg/L	Ion Chromatography	EPA 300.1				
Phosphorus (P)-Total	mg/L	Colourimetrically	APHA 4500-P Phosphorous				
Orthophoophoto	ma/l	Colourimotrically	APHA 4500-P Phosphorous				
Onnophosphate	mg/∟	Colourimetrically	(filtered through a 0.45 μm filter)				
Sulphate (SO ₄)	mg/L	Ion Chromatography	EPA 300.1				
Disselved Organic Carbon	100 cr /l	Combustien	APHA 5310 B TOC				
Dissolved Organic Carbon	mg/L	Compusion	(filtered through a 0.45 μm filter)				
Total Organic Carbon	mg/L	Combustion	APHA 5310 TOC				
Total and Dissolved Metals	mg/L	CRC-ICPMS	APHA 3030 B/EPA 6020B, EPA 200.2/6020B (dissolved metals filtered through a 0.45 μm filter)				
Total and Dissolved Mercury	mg/L	CVAAS, CVAFS	APHA 3030B/EPA 1631E, EPA 1631E				

Notes: APHA = American Public Health Association; NTU = nephelometric turbidity units; CaCO₃ = calcium carbonate; mg/L = milligrams per litre; EPA = United States Environmental Protection Agency; μ m = micrometres; TOC = total organic carbon; CRC-ICPMS = collision reaction cell inductively coupled plasma-mass spectrophotometry; CVAAS = cold vapour atomic absorption spectroscopy; CVAFS = cold vapour atomic fluorescence spectroscopy.

-

⋞.

Greenhills Creek, and RG_GAUT and RG_GANF on Gardine Creek were targeted for water chemistry and selenium speciation sampling (Figure 2.1; Table 2.1). The same sampling areas were targeted for water chemistry and selenium speciation sampling again in September 2021, along with RG_GHP in Greenhills Creek Sedimentation Pond (Figure 2.1; Table 2.1).

Additional selenium speciation data from Greenhills Creek Sedimentation Pond and Lower Greenhills Creek were collected as part of Teck's Selenium Speciation Monitoring Program, which was implemented starting in 2021 (Golder 2021a; ADEPT 2022).¹² Sampling to support this program was completed by field personnel from Teck and Minnow Environmental Inc. (Minnow). Relevant information from the 2021 Selenium Speciation Monitoring Program annual report was included in the interpretation of the GGCAMP data, as appropriate, to address the KU (Section 1.2).

Chemistry and aqueous selenium speciation samples collected from lotic habitats consisted of grabs from just below the water surface. *In situ* water quality measurements including temperature, DO, pH, and specific conductance were taken concurrent with all water chemistry and selenium speciation samples collected from lotic habitats in February and September 2021. A calibrated YSI ProDSS (handheld multi-parameter meter equipped with Digital Sampling System sensors; YSI Inc., Yellow Springs, Ohio) was used to collect *in situ* water quality data.

The approach for collecting water chemistry and selenium speciation samples from RG GHP, which represents deeper, depositional locations within Greenhills Creek Sedimentation Pond, was dependent on conditions encountered in the pond at the time of sampling. First, a calibrated YSI ProDSS was used to take a water quality profile at the deepest part of the pond to confirm if stratification was present. Profile measurements (temperature, DO, pH, and specific conductance) were taken at 1 m intervals. A Van Dorn or beta bottle sampler was used to collect separate surface and bottom water samples from the deepest area of the pond if stratification was observed.¹³ If stratification was not present, then only a single grab sample from just below the water surface was required.

Quality assurance and quality control (QA/QC) measures included the collection of field duplicates, field blanks, and trip blanks for water chemistry and field duplicates for selenium speciation. Quality control (QC) samples comprised at least 10% of the total samples collected during each sampling event (see Appendix A).

¹² Aqueous selenium speciation data collected to directly support the GGCAMP in 2021 were included in the 2021 annual report for the Selenium Speciation Monitoring Program (ADEPT 2022).

¹³ I.e., if distinct "layers" of water with differing temperature (e.g., an upper, warmer layer over a deeper, colder layer), DO, pH, or specific conductance were evident from the profile measurements, then the water in Greenhills Creek Sedimentation Pond was considered "stratified".

2.2.2 Laboratory Analysis

Water chemistry samples were analyzed by ALS Environmental (ALS) in Calgary, Alberta (AB), which is a third-party analytical laboratory that is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA). The requested analyses were completed in accordance with procedures described in the most recent edition of the "British Columbia Environmental Laboratory Methods Manual" (Austin 2020) per Permit 107517 requirements (see also Table 2.2). Laboratory QA/QC included an assessment of the laboratory sensitivity (i.e., an evaluation of laboratory reporting limits [LRLs] and blank samples), accuracy (matrix spikes, laboratory control samples, and certified reference materials [CRM]), and precision (laboratory duplicates; see Appendices A and B).

Selenium speciation samples collected as part of the GGCAMP in February and September 2021 were submitted to Brooks Applied Labs in Bothell, Washington for analysis. Concentrations of total selenium, dissolved selenium, and selenium species (dimethylselenoxide, methylseleninic methaneselenonic acid, selenate. selenite. selenocyanate, selenomethionine, acid, selenosulphate, and unknown selenium species) were quantified using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Laboratory QA/QC included an assessment of laboratory sensitivity (i.e., an evaluation of LRLs and blank samples), accuracy (matrix spikes, blank spikes, and CRM) and precision (laboratory duplicates and matrix spike duplicates) (see Appendices A and B). Brooks Applied Labs are accredited by the National Environmental Laboratory Accreditation Program (NELAP).

A Data Quality Review (DQR) was completed following receipt of the water chemistry and selenium speciation data for samples collected in February and September 2021 (Appendix A). Data quality information associated with Teck's routine water sampling and other consultant reports are provided elsewhere (e.g., in annual reports for Permits 107517 and 6248).

2.2.3 Data Analysis

Concentrations of mine-related constituents were compared among Teck's routine water quality monitoring stations along Greenhills and Gardine creeks to address the following general questions:

- Q1: Do the concentrations of mine-related constituents differ among areas?
- Q2: Have the concentrations of mine-related constituents at the monitoring areas changed over time and are these changes unexpected based on the activities and projects occurring in the watershed?

Q3: Have concentrations of mine-related constituents in Lower Greenhills Creek changed relative to upstream following the application of antiscalant (i.e., can observed differences between Upper and Lower Greenhills Creek be attributed to antiscalant addition)?

Data analyses included comparisons to EVWQP benchmarks, interim screening values, and British Columbia Water Quality Guidelines (BC WQG; BCMOECCS 2021a,b) for constituents without site-specific benchmarks (Table 2.3). Constituents with Early Warning Triggers (EWTs; Azimuth 2018; Teck 2018, 2021a; i.e., total dissolved solids [TDS], nitrate, nitrite, sulphate, total antimony, total barium, total boron, total lithium, total manganese, total molybdenum, total nickel, total selenium, total uranium, total zinc, dissolved cadmium, and dissolved cobalt) were plotted with applicable benchmarks, screening values, and BC WQG to allow for qualitative comparisons among Teck's routine monitoring stations. The assessment of water chemistry data from Teck's routine monitoring station data collected from biological monitoring areas in February and September 2021 were screened relative to benchmarks, screening values, and BC WQG, as appropriate, but were not subject to statistical analyses due to limited sample sizes. As indicated in Section 2.2.1, selenium speciation data collected as part of the Selenium Speciation Monitoring Program were used, as appropriate, to support data interpretation.

Question 1 was addressed by comparing water chemistry data among Teck's routine monitoring stations on Greenhills and Gardine creeks to evaluate potential mine-related influences on water quality. Statistical analyses of the 2021 water chemistry data focused on the constituents for which EWTs have been established and comparisons among stations were completed using an Analysis of Variance (ANOVA). Interpretation focused on identifying spatial patterns, such as upstream-to-downstream differences in concentrations or dilution effects like those observed for some constituents in Greenhills Creek downstream of Gardine Creek (Minnow 2021a).

Question 2 was addressed by evaluating differences in concentrations of mine-related constituents among years for each one of Teck's routine monitoring stations. Data collected from 2016 to 2021 were used; however, the analysis was restricted to years with at least six months of data and stations with at least two years of data. This statistical analysis also focused on the constituents for which EWTs have been established.

The differences in monthly mean concentrations over the years for each station were tested using an approach similar to that of the most recent RAEMP report (Minnow 2020d). For each year, a percent magnitude of difference (MOD) relative to the base year (i.e., first year with at least six months of data) was calculated as:

 $\frac{Year_i - Base \, Year}{Base \, Year} \times 100 \, \%$

 Table 2.3:
 British Columbia Water Quality Guidelines, Site-specific Elk Valley Water Quality Plan Benchmarks, and Screening

 Values Relevant to the Greenhills and Gardine Creeks Aquatic Monitoring Program, 2021

Deremeter			Unite	British Columbia Water Quality Guidelines ^a				Site-specific	Relevant Screening
			Units	Long-term Average	Short-term Maximum	Year	Status	Benchmark ^b	Values ^b
		Total Alkalinity	mg/L	For dissolved calcium = <4mg/L, WQG = <10 For dissolved calcium = 4 to 8 mg/L, WQG = 10 to 20 For dissolved calcium = >8 mg/L,	-	2015	Working	-	-
		Ammonia	ma/l	nH and temperature-dependent	pH and temperature-dependent	2009	Approved	_	-
		Chloride	mg/L	150	600	2003	Approved	-	-
Non-Metals		Fluoride	mg/L	-	For hardness ≤10 mg/L, WQG = 0.4 For hardness >10 mg/L, WQG = [-51.73 + 92.57 × log ₁₀ (hardness)]×0.01 Maximum anplicable bardness = 385 mg/	2011	Approved	-	-
		Nitrate (as N)	mg/L	3	32.8	2009	Approved	10 ^{1.0003[log(hardness)]-} 1.52 Maximum applicable hardness = 500 mg/l	-
		Nitrite (as N) ^c	ma/l	0.020 to 0.20	0.060 to 0.60	2009	Approved		10 ^{0.829[log(chloride)]-1.49}
		Dissolved Oxygen	mg/L	For buried embryo/alevin life stages, WQG (water column) ≥11 WQG (interstitial) ≥8	For buried embryo/alevin life stages, WQG (water column) ≥9 WQG (interstitial) ≥6	1997	Approved	-	-
		nu d	nH unito	WQG (water column) ≥8	WQG (water column) ≥5	1001	Approved		
		гіч	Priunits	128 to 420		1991	, 'bbioved	-	-
		Sulphate ^e	mg/L	Maximum applicable hardness = 250 mg/L	-	2013	Approved	481	429
		Solids	mg/L	1,000 to 3,000	-	1987	Working	-	1,000
		Antimony (III)	mg/L	0.009	-	2015	Approved	-	-
		Barium	mg/L	- 1	-	2002	Working		-
		Bervllium	mg/L	0.00013		2015	Working		0.0053
		Boron	ma/L	1.2	-	2003	Approved	-	-
		Chromium ^f	mg/L	0.001	-	1999	Working	-	0.005
	Total	Cobalt	mg/L	0.004	0.11	2004	Approved	-	exp ^{0.414[In(hardness)]-0.99}
		Iron	mg/L	-	1	2008	Approved		-
Metals and Metalloids		Lead ^e	mg/L	For hardness ≤8 mg/L, none proposed For hardness 8 to 360 mg/L, WQG = 0.001×{3.31+ exp ^[1.273 × ln(hardness) - 4.704] } No more than 20% of samples in a 30-d period should be >1.5X the guideline. Maximum applicable hardness = 360 mg/L	For hardness ≤8 mg/L, WQG ≤0.003 For hardness 8 to 360 mg/L, WQG = 0.001×{exp ^[1.273 × in(hardness) - 1.460] } Maximum applicable hardness = 360 mg/L	1987	Approved	-	-
		Manganese ^e	mg/L	For hardness 37 to 450 mg/L, WQG ≤0.004 × hardness + 0.605 Maximum applicable hardness = 450 mg/L	For hardness 25 to 259 mg/L, WQG ≤0.01102 × hardness + 0.54 Maximum applicable hardness = 259 mg/L	2001	Approved	-	-
		Mercury ^g	mg/L	MeHg ≤0.5% of THg, WQG = 0.00002 Else, WQG = [0.0001/(MeHg/THg)] OR When MeHg = 0.5% of THg, WQG= 0.00002 When MeHg = 1.0% of THg, WQG = 0.00001 When MeHg = 8.0% of THg, WQG= 0.00000125	-	2001	Approved	-	-
		Molybdenum	mg/L	7.6	46	2021	Approved		
		Nickel ^{e,h}	mg/L	For hardness ≤60, WQG = 0.025 For hardness 60 to 180, WQG = exp ^{{0.76[in(hardness)]+1.06]} ×0.001 For hardness ≥180, WQG = 0.15	-	1987	Working	-	0.0053
		Selenium	mg/L	0.002	-	2014	Approved	0.070	-
		Silver ^e	mg/L	For hardness ≤100 mg/L, WQG = 0.00005 For hardness >100 mg/L, WQG = 0.0015	For hardness ≤100 mg/L, WQG = 0.0001 For hardness >100 mg/L, WQG = 0.003	1996	Approved	-	-
		Thallium	mg/L	0.0008	-	1997	Working	-	-
		Vanadium	mg/L	0.0085	-	2011	vvorking	-	-
	Dissolved	vanauium	iiig/L	- For hardness ≤90 mg/L_WΩG = 0.0075	- For hardness ≤90 mo/L_WOG = 0.033	-	-	-	0.12
		Zinc ^e	mg/L	For hardness 250 mg/L, WQG = 0.0070 For hardness 90 to 330 mg/L, WQG = [7.5 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 330 mg/L	For hardness 300 hg/L, wQC = 0.000 For hardness 90 to 500 mg/L, WQG = [33 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 500 mg/L	1999	Approved	-	-
		Aluminum	mg/L	When pH <6.5, When pH <6.5, WQG = exp ^[1.6 - 3.327(median pH)+ 0.402(median pH)^2]	When pH <6.5, wQG = 0.1 When pH <6.5, WQG = $exp^{[1.209 - 2.426(pH)+ 0.286 (pH)^2]}$	2001	Approved	-	-
		Cadmium ^e	mg/L	For hardness = 3.4 to 285 mg/L, WQG = {exp ^[0.736×In(hardness) - 4.943] ×0.001 Maximum applicable hardness = 285 mg/L	For hardness = 7 to 455 mg/L, WQG = {exp ^[1.03×In(hardness)-5.274] }×0.001 Maximum applicable hardness = 455 mg/L	2015	Approved	0.001×10 ^{0.83(log(hardn} ess))-2.53 Maximum applicable hardness = 285 mg/L	-
		Copper	ing/L	BIOLIC LIGANG MODEL		2019	Approved	-	-
		Iron	mg/L	-	0.35	2008	Approved	-	1.1

Notes: mg/L = milligrams per litre; < = less than; WQG = water quality guideline; > = greater than; - = no data/not applicable; \leq = less than or equal to; \geq = greater than or equal to; % = percent; 30-d = 30-day; MeHg = methylmercury; THg = total mercury; BC WQG = British Columbia Water Quality Guideline.

^a British Columbia Working (BCMOECCS 2021a) or Accepted (BCMOECCS 2021b) Water Quality Guidelines for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness), guidelines are screened using concurrent values.

^b Site-specific benchmarks or interim screening values are applied instead of BC WQG, as appropriate. The most conservative (i.e., lowest) relevant benchmark or screening value is listed in the table.

^c Dependent on concurrent chloride concentration.

^d Unrestricted change permitted within this pH range.

^e Hardness-based guidelines are calculated using concurrent hardness values. If hardness values exceed the maximum applicable hardness, then guidelines are determined using the maximum applicable hardness. If hardness values are lower than the minimum hardness, then guidelines are determined using the minimum hardness.

^f Chromium(VI) is the dominant and most toxic form of chromium in oxygenated environments; therefore, its guideline was applied.

 $^{\rm g}$ The most conservative guideline (0.00000125 mg/L) is applied.

^h Interim screening value.

with the annual concentrations represented by the estimated marginal means from the ANOVA model. The significant difference between the current study year (*Year*_i) and all other years was assessed.

Question 3 was addressed by comparing differences in concentrations of mine-related constituents observed downstream of the antiscalant addition location relative to upstream both before and after the introduction of antiscalant treatment (i.e., using a Before-After-Control-Impact [BACI] design). A two-way ANOVA with factors *Area* and *Year* was used to evaluate the difference between monthly mean values at GH_GH2 and GH_GH1, which are downstream and upstream of the antiscalant addition facility on Lower Greenhills Creek, respectively (Figure 2.1). Water chemistry data collected prior to initiation of calcite management on October 23, 2017, represent the "before" period and data collected thereafter represent the "after" period. Because sampling at GH_GH2 started in May 2017, an evaluation of seasonal differences between GH_GH1 and GH_GH2 in the absence of calcite management could not be completed. Instead, the analyses only included May to September means for 2017 through 2021.¹⁴

When the overall p-value from the ANOVA was significant, the *post hoc* Tukey's Honestly Significant Difference (HSD) Test was used to compare among years. For significant comparisons, a MOD was calculated as the relative difference between observed and predicted post-treatment concentrations at GH_GH2:

$$MOD = \frac{GH_GH2_{observed post-treatment} - GH_GH2_{predicted post-treatment}}{GH_GH2_{predicted post-treatment}} \times 100\%$$

where $GH_GH2_{observed post-treatment}$ is the geometric mean for monthly mean analyte concentrations calculated for GH_GH2 post-treatment, and $GH_GH2_{predicted post-treatment}$ is the predicted mean concentration for GH_GH2. This assumes that the ratio of concentration of GH_GH1 to GH_GH2 is the same as pre-treatment:

(0))

 $= 10^{[log_{10}(GH_GH2_{post-treatment}) + log_{10}(GH_GH2_{pre-treatment}))} - log_{10}(GH_GH1_{pre-treatment})]$

The significant difference between 2017 and each of the post-treatment years (i.e., 2018 to 2021) was assessed.

¹⁴ The antiscalant addition facility was not operating in September 2019; consequently, September 2019 data were excluded from the "after" data set, consistent with previous years of reporting (Minnow 2020a, 2021a). Additionally, based on a review of unpublished flow data and operational reports, it was determined that the antiscalant addition facility was not operating in May 2018 or May 2020 (Teck 2021c). Consequently, these data were also excluded from the "after" data set used for this report.
Data analyses were completed using R statistical software (R Core Team 2021). Water quality and aqueous selenium speciation data were used to interpret the results of substrate, benthic invertebrate community, benthic invertebrate tissue chemistry, and WCT data analyses, as appropriate (see Sections 3.2 to 3.5, below).

2.3 Substrate Quality

2.3.1 Calcite

2.3.1.1 Field Sampling

0

Calcite in Greenhills and Gardine creeks was monitored at the following locations in 2021 as part of the Regional Calcite Monitoring Program for Teck (Figure 2.2; Robinson et al. 2022):

- GREE3-25, GREE3-50, GREE3-75, GREE4-25, GREE4-50, and GREE4-75 on Upper Greenhills Creek;
- GREE1-25, GREE1-50, and GREE1-75 on Lower Greenhills Creek; and
- GARD1-25, GARD1-50, and GARD1-75 on Gardine Creek.

Calcite monitoring methods employed for the Regional Calcite Monitoring Program in 2021 were consistent with those described by Lotic Environmental Ltd. (Lotic 2021; Robinson et al. 2022). Historically (i.e., from 2015 to 2020), data collected from Gardine Creek as part of the Regional Calcite Monitoring Program were reported as an average of three stations. In 2022, data were reported individually for each of the three stations on Gardine Creek (i.e., GARD1-25, GARD1-50, and GARD1-75) (Robinson et al. 2022); this change is reflected in the data tables presented in Section 3.2.1.

As part of the September 2021 GGCAMP sampling, Minnow collected calcite data from the immediate vicinity of each area-based benthic invertebrate creek sampling station (i.e., RG_GHUT, RG_GHNF, RG_GHFF, RG_GHBP, RG_GAUT, and RG_GANF [six stations per biological monitoring area]) to allow for direct correlation of benthic invertebrate community endpoints with CI and Cl' values (Figure 2.2; Table 2.1). Calcite measurements were made on 50 randomly selected pebbles, rather than 100, at each benthic invertebrate community sampling station (i.e., for a total of 300 pebbles per biological monitoring area, which is consistent with the resolution applied for LAEMP and RAEMP areas).

Calcite index measurements at biological monitoring areas were made using updated methods that Teck is implementing on a trial basis; these methods are described in detail by Zathey et al. (2021). A summary of the methods used in 2021 are presented in Lotic (2021). First, the presence (C_p ; score = 1) or absence (score = 0) of calcite was recorded to estimate CI, consistent with previous years (Minnow 2021a,b). Second, the proportional presence score

Document Path: C:\Users\capol\Trinity Consultants, Inc\Teck - 227202.0016 - 2022 GGCAMP\D - GIS\2021 GGCAMP Report\22-16 Figure 2.2 Calcite Monitoring Locations.mxd

(i.e., calcite presence prime $[C_p]$) was recorded; C_p ' represents the proportion of a given particle's surface area that is covered in calcite (e.g., $C_p' = 0.2$ for a particle with 20% calcite coverage). If calcite is absent, $C_p' = 0$ and for full coverage, $C_p' = 1$ (Zathey et al. 2021). Next, the degree of concretion (C_c) was recorded based on the particle being removed with negligible resistance (not concreted; score = 0), removed with noticeable resistance, but removable (partially concreted; score = 1), or immovable (fully concreted; score = 2). If distinct particles were not visible due to heavy calcification, values of 1 (for presence) and 2 (for concretion) were recorded. If a thick layer (greater than [>] 1 centimetre [cm]) of fines was encountered and calcite presence could not be visually confirmed, fines were pinched between the thumb and fingers and evaluated for calcite presence. If fines contained calcified conglomerates in loose sediment, then values of 0 (for concretion) and 1 (for presence) were recorded (Lotic 2021). If conglomerates were not observed, then concretion and presence values were recorded as 0. Where moss was present on a particle, it was removed to determine if calcite was present. Where calcite was present, a value of 1 (for presence) and 0 (for concretion, when moss was easily removed) was recorded, and where the moss was removed with calcite-induced resistance a value of 1 (for concretion) was recorded. If the moss was fully encrusted and immovable, values of 1 (for presence) and 2 (for concretion) were recorded (Lotic 2021). If a rock was visible under fines, the rock was selected for calcite index measurements.

2.3.1.2 Data Analysis

Calcite indices for the 2021 GGCAMP were calculated in two ways, the first being consistent with methods used historically and in 2020 (Minnow 2021a; Teck 2016) and the second based on the trial methods and calculation steps described by Zathey et al. (2021) (see also Lotic 2021).

Calcite indices (CI and CI') calculated for each biological monitoring area were used to address the following general questions:

- Q1: Do calcite scores differ among areas?
- Q2: Have calcite scores changed at the monitoring areas over time and are these changes unexpected based on the activities and projects occurring in the watershed?
- Q3: Have calcite scores in Lower Greenhills Creek changed relative to upstream following the application of antiscalant?

These questions were addressed using methods consistent with those employed for the 2020 GGCAMP report (Minnow 2021a) and those laid out in the 2021 GGCAMP study design (Minnow 2021b). Statistical analyses were completed in R (R Core Team 2021). Calcite presence (C_p and C_p ') and concretion scores were also plotted by area to support visual (i.e., qualitative) comparisons among areas and over time within areas. Additionally, CI and CI'

were used to support interpretation of benthic invertebrate community data (i.e., by correlation analysis of benthic invertebrate community endpoints and calcite scores; see Section 2.4). Results from the 2021 Regional Calcite Monitoring Program Report (Robinson et al. 2022) were used, as appropriate, to support interpretation of calcite data collected as part of the GGCAMP.

2.3.2 Sediment

2.3.2.1 Field Sampling

Sediment chemistry samples (five replicates per area) were collected from Lower Greenhills Creek (RG GHBP) and Gardine Creek (RG GAUT and RG GANF) in September 2021 (Figure 2.3; Table 2.1). Sediment chemistry sampling was also completed at deeper, depositional habitats within Greenhills Creek Sedimentation Pond in September 2021 (RG GHP; Figure 2.4; Table 2.1). Consistent with previous years of sediment chemistry monitoring (e.g., Minnow 2020a, 2021a), no sediment chemistry sampling was completed in Upper Greenhills Creek. This is because during the September 2016 assessment of Greenhills Creek, only a few small (e.g., 1 to 2 square metres [m²]) sediment deposits were noted in Upper Greenhills Creek, most of which were likely ephemeral (i.e., would be washed downstream during a storm event or freshet) (Minnow 2017). Similar observations were noted by the field crew in 2020 and 2021. This is consistent with the relatively high gradient (i.e., 4 to 8%) of the creek (Minnow 2017). Thus, Greenhills Creek Sedimentation Pond represents the main deposition area for fine sediments originating from Upper Greenhills Creek.

Sampling in Lower Greenhills and Gardine creeks was completed by individuals on foot and sampling locations were approached in such a way as to avoid sediment disturbance To the extent possible, the same locations sampled for sediment in before sampling. previous years (i.e., 2017 to 2020; Figure 2.3) were sampled in 2021. A handheld Global Positioning System (GPS) was used to mark the Universal Transverse Mercator (UTM) coordinates of each sediment sampling location. A stainless-steel spoon was used to collect sediment samples from deposits of fines amongst the cobbles. Sediment was collected until sufficient volume was obtained for the required analyses. The sediment collected from a given sampling location was deposited into a clean plastic tub, homogenized, photographed, and divided between a 250 millilitre (mL) glass jar and a large, labelled Ziploc[®] bag provided by the analytical laboratory (i.e., ALS). Samples were placed in a cooler with ice following collection and transferred to a refrigerator until shipment to the analytical laboratory. Details pertaining to the samples (e.g., depth, substrate characteristics, colour, texture, and presence of aquatic vegetation) were recorded on field sheets. These included observations of calcite presence within the sediment samples (e.g., based on sample texture and colour). Field QA/QC

Document Path: C:\Users\capol\Trinity Consultants, Inc\Teck - 227202.0016 - 2022 GGCAMP\D - GIS\2021 GGCAMP Report\22-16 Figure 2.3 Sed Sampling Locations.mxd

measures included the collection of field duplicates at a minimum frequency of 10% of total samples collected during the sampling event (see Appendix A).

Sediment samples were collected from Greenhills Creek Sedimentation Pond by deploying a stainless-steel Petite Ponar grab sampler from a boat. A single sample, consisting of a composite of the top 2 cm of five to 10 grabs¹⁵, was collected at each of five of the six¹⁶ sediment sampling stations (i.e., RG_GHP-1, RG_GHP-3, RG_GHP-4, RG_GHP-5 and RG_GHP-6). Care was taken so that each grab captured the surface material and was full to each edge. Incomplete grabs were discarded. Grabs deemed to be of sufficient fullness and quality were deposited into a clean plastic tub, homogenized, photographed, and split between a 250 mL glass jar and a large, labelled Ziploc[®] bag provided by the analytical laboratory (i.e., ALS). Samples were placed in a cooler with ice following collection and transferred to a refrigerator until shipment to the analytical laboratory. Details pertaining to the samples (e.g., depth, substrate characteristics, colour, texture, and presence of aquatic vegetation and calcite particles) were recorded on field sheets. To the extent possible, the same locations sampled for sediment in previous years (2018 to 2020; Figure 2.4) were sampled in 2021. Field duplicates for QA/QC purposes were collected at a rate of at least 10% of total samples collected during the sampling event.

2.3.2.2 Laboratory Analysis

Sediment chemistry samples were sent to ALS, a CALA-certified laboratory, in Calgary, AB for analysis. The laboratory was instructed to thoroughly homogenize each sediment sample, as per standard laboratory protocols, so that sub-samples were representative and comparable. Separate sub-samples were taken from the samples submitted in Ziploc[®] bags for analysis of moisture content, particle size, total organic carbon (TOC), sequential extraction analysis (SEA), and metals. Samples submitted in glass jars were used for analysis of polycyclic aromatic hydrocarbons (PAHs).

Sediment chemistry samples were analyzed using the following methods:

 Metals by Collision Reaction Cell Inductively Coupled Plasma-Mass Spectrophotometry (CRC-ICPMS; United States Environmental Protection Agency [EPA] 200.2/6020A mod) and Collision Cell Mass Spectrophotometry (CCMS; Tessier Extraction 1979/EPA 6020A);

¹⁵ The study design for 2021 (Minnow 2021b) indicated that each sample would consist of the top 2 cm of three grabs. However, a decision was made in the field to collect five grabs instead of three (or 10 grabs in the case of a field duplicate) to ensure that target sample volumes for laboratory analyses (Section 2.3.2.2) would be achieved.

¹⁶ A total of n = 6 stations were targeted for sampling (Minnow 2021b). However, the field crew was unable to collect sediment from station RG_GHP-2, despite multiple attempts, due to the presence of dense aquatic vegetation at this location.

- Mercury by Cold Vapour Atomic Absorption Spectroscopy (CVAAS; EPA 200.2/1631E mod);
- TOC calculated from total and inorganic carbon (Canadian Society of Soil Science [CSSS] [2008] 21.2)¹⁷;
- Inorganic Carbon as a calcium carbonate (CaCO₃) equivalent calculation;
- PAHs by tumbler extraction using hexane/acetone (EPA 3570/8270) followed by capillary column gas chromatography with mass spectrometric detection (GC/MS);
- Particle size distribution by dry sieving (coarse particles), wet sieving (sand), and the pipette sedimentation method (fine particles);
- pH by 1:2 soil:water extraction (CSSS Chapter 16); and
- Moisture content by gravimetry (i.e., weighing the sample before and after drying at 105 degrees Celsius [°C]).

The SEA was performed by the ALS laboratory in Vancouver, BC in accordance with Tessier et al. (1979). Reagents used to analyze the first four sediment fractions typically assessed in SEA are weaker than those used for the analysis of "total" or "bulk" metal concentrations in sediments. The method involves five sequential extraction steps; each extraction step represents a different fraction of sediment-associated metals that could potentially be released under specific conditions. These include:

- 1. Fraction 1 (exchangeable and adsorbed metals fraction) potentially released due to changes in ionic strength;
- 2. Fraction 2 (carbonate fraction) potentially released due to changes in pH;
- 3. Fraction 3 (easily reducible metals and metals bound to iron and manganese oxides) potentially released under reducing conditions;
- 4. Fraction 4 (metals bound to organic matter) potentially released under oxidizing conditions; and
- 5. Fraction 5 (residual metals) metals resistant to the first four digestion steps (Tessier et al. 1979).

€.

¹⁷ Total carbon and inorganic carbon content are determined by combustion methods (CSSS [2008] 21.2) and reaction with acetic acid (CSSS [2008] P216-217), respectively.

Laboratory QA/QC included an assessment of sensitivity (i.e., evaluation of LRLs and blank samples), accuracy (laboratory control samples, internal reference materials, and CRM), and precision (laboratory duplicates) (see Appendices A and B).

2.3.2.3 Data Analysis

-

Metal and PAH concentrations in sediment samples from Lower Greenhills Creek, Gardine Creek, and Greenhills Creek Sedimentation Pond were tabulated and plotted to support comparisons to applicable BC Working Sediment Quality Guidelines¹⁸ (BC WSQG; BCMOECCS 2021a). Concentrations in "bulk" sediment and the sums of concentrations in sediment fractions 1 to 4 were included in the comparisons.¹⁹ The upper and lower BC WSQG were included in the evaluation, recognizing that the BC WSQG are based on co-occurrence analysis, rather than cause-effect studies (BCMOECCS 2021a). The lower BC WSQG that were used to screen the "bulk" and SEA results represent concentrations below which adverse biological effects would not be expected to occur under most circumstances and are considered comparable to the Canadian Council of Ministers of the Environment (CCME) Threshold Effects Levels or Interim Sediment Quality Guidelines (ISQG; BCMOECCS 2021a). In contrast, the upper BC WSQG are considered equivalent to the CCME's Probable Effects Levels (CCME 2001) and represent a concentration above which effects to aquatic biota may be more frequently observed (BCMOECCS 2021a).

Regional reference area normal ranges, which represent the 2.5th and 97.5th percentiles of the reference area data for a particular constituent, were also included in the plots of metal and PAH concentrations in sediments (Minnow 2020d,e). For lotic areas (i.e., RG_GHBP, RG_GAUT, and RG_GANF), regional reference area normal ranges calculated based on sediment chemistry data collected from creek habitats as part of the RAEMP (Minnow 2020d) were used.²⁰ Reference area normal ranges derived as part of the Lentic Area Supporting Study (Minnow 2020e) were applied to the Greenhills Creek Sedimentation Pond (RG_GHP; Figure 2.1; Table 2.1). Although Greenhills Creek Sedimentation Pond is not a natural or naturalized lentic area, this approach was used because the pond possesses a number of lentic characteristics (e.g., longer water retention time, areas of dense vegetation). It is also recognized that, in the Elk River watershed, the concentrations of many constituents in sediment from areas considered to be in reference condition (i.e., areas unexposed to mine-influence) are above the

¹⁸ Including the alert concentration for selenium (see BCMOE 2014 and BCMOECCS 2021b).

¹⁹ The comparisons of sediment fractions 1 to 4 to the BC WSQG are considered to be a conservative screening of the potentially mobile, and therefore potentially bioavailable, sediment constituents. It would take highly unusual/aggressive reducing and oxidizing conditions, respectively, to mobilize fractions 3 and 4 and these conditions are not likely to occur in Greenhills and Gardine creeks.

²⁰ The most up-to-date regional reference area normal ranges for lotic sediments were first reported in the 2020 GHO LAEMP report (Minnow 2021d).

lower BC WSQG (Minnow 2020d,e). Consequently, the upper limits of regional reference normal ranges for both lotic and lentic areas are greater than the respective lower BC WSQG for many constituents, including selenium (Minnow 2020e; Minnow 2021d).

Sediment chemistry ("bulk" chemistry and SEA data) were used to address the following general questions:

- Q1: Does sediment chemistry differ among areas?
- Q2: Have concentrations of mine-related constituents at the monitoring areas changed over time and are these changes unexpected based on the activities and projects occurring in the watershed?
- Q3: Has sediment chemistry downstream of the antiscalant addition facility changed relative to upstream after the introduction of water treatment?

Question 1 was addressed by comparing sediment chemistry ("bulk" and SEA) among biological monitoring areas to evaluate potential mine-related influences on sediment. A censored regression two-way ANOVA with factors *Area*, *Year*, and *Area x Year* was used to compare sediment chemistry among areas on Lower Greenhills Creek (RG_GHBP), Gardine Creek (RG_GAUT and RG_GANF), and Greenhills Creek Sedimentation Pond (RG_GHP). The censored regression allowed and accounted for censored data (i.e., values less than [<] the LRL); however, analytes that had >75% censored data were excluded from the analyses. Appropriate *post hoc* contrasts were completed when the main effects (*Area* or *Year*) or interaction terms were significant and p-values were corrected accordingly. When the *Area x Year* term was insignificant, the MOD was calculated as:

$$MOD = (EMM_{area 2} - EMM_{area 1}) / EMM_{area 1} \times 100\%$$

where EMM is the estimated marginal mean from the censored regression ANOVA model based on all years combined. When the *Area x Year* term was significant, the MOD was calculated using the same equation as above, but for comparisons within each year, rather than all years combined.

To address Question 2, temporal differences in metal and calcium²¹ concentrations in "bulk" sediments and SEA fractions 1 to 5 (individually and combined) were examined for RG_GHBP on Lower Greenhills Creek, RG_GAUT and RG_GANF on Gardine Creek, and Greenhills Creek Sedimentation Pond (RG_GHP). Again, a censored regression two-way ANOVA with factors

²¹ Calcium is a correlate for calcite (see Minnow 2021a).

Area, *Year*, and *Area x Year* was used. When the *Area x Year* term was insignificant, the MOD was calculated as:

$$MOD = (EMM_{year 2} - EMM_{year 1}) / EMM_{year 1} \times 100\%$$

where EMM is the estimated marginal mean from the censored regression ANOVA model based on all areas combined. When the *Area x Year* term was significant, the MOD was calculated using the same equation as above, but for comparisons within each area, rather than all areas combined.

The two-way ANOVAs were restricted to the years 2019 to 2021 to standardize the sizes of the "bulk" sediment chemistry and SEA data sets among areas and years. Within each two-way ANOVA, there is a test for interactions (i.e., between *Area* and *Year*). If interaction is not significant, then the temporal comparisons, as an example, would continue by combining data for all areas (RG_GHBP, RG_GAUT, RG_GANF, and RG_GHP) within a year to support the comparison among years (e.g., to compare 2021 to 2019). If a similar temporal comparison between the SEA results for 2021 and 2018 was completed, the results would not be very meaningful. This is because pooled data for RG_GHBP, RG_GAUT, RG_GANF, and RG_GHP (2021) would be compared to RG_GHBP only (i.e., no other areas were sampled for SEA that year).

Question 3 was addressed by comparing differences in concentrations of analytes in "bulk" sediment before (2017) and after (2018 to 2021) initiation of antiscalant addition. A censored regression ANOVA with a nested design with factors *BA*, which denotes before versus after treatment, and *Year*, which is nested within *BA*, was used, consistent with the approach described in the 2021 GGCAMP study design (Minnow 2021b). Within the nested design, the nested *Year* term represents differences among years in the "after" period. If significant, *post hoc* tests were completed to compare each "after" year (i.e., one of 2018 to 2021) to the "before" year (i.e., 2017). For significant differences, a MOD was calculated as:

$$MOD_{year} = (MCT_{after year} - MCT_{2017}) / MCT_{2017} \times 100\%$$

where the *MCT* is the measure of central tendency or, more specifically, the estimated marginal mean from the censored regression ANOVA model. If the *BA* term was significant in the absence of a year effect, the marginal means were estimated for the grouped "after" years and the MOD was calculated as:

$$MOD_{year} = (MCT_{after} - MCT_{before}) / MCT_{before} \times 100\%$$

All censored regressions were conducted in R (R Core Team 2021).

To support conclusions regarding overall sediment quality (i.e., all analytes considered together), Sediment Quality Indices (SQI) were calculated by year within each area, based on concentrations of metals and PAHs measured in "bulk" sediment samples. Calculations were completed in R (R Core Team 2021) following the approach of the CCME Sediment Quality Index 1.0 (CCME 2002, 2014; see also Minnow 2020e). The SQI integrate the following qualities of guideline exceedances:

- scope (i.e., percentage of analytes that did not meet their respective guidelines [number of analytes with failed samples/total number of analytes*100]);
- frequency (percentage of samples that did not meet guidelines [number of failed samples/total number of samples*100]); and
- amplitude (i.e., normalized sum of extent above guidelines, scaled between 0 and 100).

The lower BC WSQG were used, to be more conservative in the calculation of the SQI, along with the alert concentration for selenium (BCMOECCS 2021a,b).²² The SQI were reviewed to support identification of biological monitoring areas where overall sediment quality has changed over time, as well as differences among sampling areas.

2.4 Benthic Invertebrate Community

2.4.1 Field Sampling

2.4.1.1 Greenhills and Gardine Creeks

-

Benthic invertebrate community samples representative of lotic habitats were collected from the following biological monitoring areas in September 2021 (Figure 2.5; Table 2.1):

- RG_GHUT, RG_GHNF, and RG_GHFF on Upper Greenhills Creek;
- RG_GHBP on Lower Greenhills Creek; and
- RG_GAUT and RG_GANF on Gardine Creek.

Consistent with previous years, area-based kick sampling was completed at six stations per biological monitoring area to support detection of a two standard deviation change in the relative differences among the three areas on Upper Greenhills Creek over two sampling periods (one before and one after) using $\alpha = \beta = 0.1$. This sample size was estimated by assuming that an ANOVA on the paired area differences (after-before) will be conducted for the three areas.

²² The ISQG from the CCME (2002) and lower BC WSQG (BCMOECCS 2021a) are equivalent for most parameters, with the exception of iron, manganese, nickel, silver, benzo(g,h,i)perylene, benzo(k)fluoranthene, and indeno(1,2,3-c,d)pyrene, for which there are no CCME guidelines. Additionally, the selenium alert concentration is unique to the BC WSQG.

Document Path: C:\Users\capol\Trinity Consultants, Inc\Teck - 227202.0016 - 2022 GGCAMP\D - GIS\2021 GGCAMP Report\22-16 Figure 2.5 Creek BI Sampling Locations.mxd

Monitoring on Upper Greenhills Creek provided a sixth year of pre-treatment data and monitoring on Lower Greenhills Creek provided a fourth year of data following the activation of the antiscalant addition system. The year 2021 represented the third year of data collection on Gardine Creek.

Area-based benthic invertebrate samples were collected to support estimations of benthic invertebrate densities and productivity (biomass), which are considered general indicators of food availability for WCT. Each of the area-based benthic invertebrate community samples was collected by kick sampling an area of approximately $1/3 \text{ m}^2$ into a 400 micrometre (µm) mesh net with a triangular aperture measuring 36 cm per side. This is a modification of the Canadian Aquatic Biomonitoring Network (CABIN) technique wherein a defined area is sampled rather than sampling for a predetermined period of time. Other methods of area-based sampling, such as Hess or Surber sampling, cannot be completed effectively in Greenhills Creek (and parts of Gardine Creek) due to the calcification of the substrates. During sampling, the net was held immediately downstream of the sampler's feet so that all detritus and invertebrates disturbed from the substrate were passively collected in the kick-net by the stream current. After sampling, the kick-net was rinsed with water to move all debris and invertebrates into the collection cup at the bottom of the net. The collection cup was then removed, and the contents poured into a labelled plastic jar with both external and internal station identification labels. Samples were preserved to a level of 10% buffered formalin in ambient water.

In addition to the area-based kick sampling, three-minute CABIN kick (i.e., timed kick) sampling was completed at RG_GHNF (three stations) on Upper Greenhills Creek to support comparisons to reference area normal ranges and the assessment of biological triggers for %EPT (see Section 2.4.3).²³ The timed kick sampling on Upper Greenhills Creek was completed using methods consistent with CABIN protocols (Environment Canada 2012a) and the RAEMP (Minnow 2021c). However, the field crew noted that no true riffle habitat was present at RG_GHNF at the time of the 2021 sampling due to the presence of barrage tufa that blocked flow and formed cascades and calcite terraces. Regardless, travelling timed kicks were completed using a net with a triangular aperture of 36 cm per side and a 400 µm mesh. During sampling, the field crew member moved across the stream channel (from bank to bank, depending on the width and depth of the creek and the presence of hazards/calcite terraces) in an upstream direction. The net was held immediately downstream of the sampler's feet so that detritus and invertebrates were passively collected in the kick-net. After sampling, the kick-net was rinsed to move all debris and invertebrates into the collection cup at the bottom of the net. The collection cup was removed,

²³ For Lower Greenhills Creek, the assessment of biological triggers for %EPT relied on data collected from RG_GHCKD (Greenhills Creek downstream of sediment pond) as part of the annual RAEMP sampling (three stations; Minnow 2021b,c). This is consistent with the approach for Lower Greenhills Creek in 2020 (Minnow 2021a).

and the contents poured into a labelled plastic jar with both external and internal station identification labels. Samples were preserved to a level of 10% buffered formalin in ambient water.

Supporting habitat information consistent with CABIN sampling (e.g., water velocity and depth, *in situ* water quality [temperature, DO, pH, and specific conductance], canopy cover) was collected concurrent with, and at the same locations as, benthic invertebrate community samples. As described in Section 2.3.1, CI and CI' measurements were made on a total of 50 undisturbed pebbles in the immediate vicinity of each area-based benthic invertebrate community sampling station on Greenhills and Gardine creeks (i.e., for a total of 300 pebbles per biological monitoring area).

2.4.1.2 Greenhills Creek Sedimentation Pond

Benthic invertebrate community samples were collected from six locations in Greenhills Creek Sedimentation Pond in September 2021 (Figure 2.4; Table 2.1). The year 2021 represented the fourth year of benthic invertebrate community data collection in Greenhills Creek Sedimentation Pond.

Benthic invertebrate community samples were collected using a stainless-steel Petite Ponar grab sampler deployed from a boat. A single sample, consisting of a composite of five Petite Ponar grabs (i.e., a total sampling area of 0.116 m²), was collected at each station. Care was taken so that each grab captured the surface material and was full to each edge. Any incomplete grabs were discarded. Each acceptable grab was field-sieved using a 500 µm mesh bag. The material retained in the bag was transferred into one or more plastic sampling jar(s) containing both external and internal station identification labels. Benthic invertebrate community samples were preserved to a level of 10% buffered formalin in ambient water.

Supporting habitat information (e.g., water depth and *in situ* water quality [temperature, DO, pH, and specific conductance]) was collected concurrent with, and at the same locations as, each benthic invertebrate community sample.

2.4.2 Laboratory Analysis

0

Benthic invertebrate community samples collected using area-based kicks and Petite Ponar grabs were sent to ZEAS Inc. (ZEAS) in Nobleton, Ontario for analysis. At the laboratory, preserved organisms in each sample were sorted from the sample debris and identified to the lowest practical level (LPL) of taxonomy (typically genus or species) using methods described by Environment Canada (2014). Organisms were then grouped at the family level of taxonomy for weighing (i.e., preserved wet weight biomass). Each family group of organisms was gently placed onto a fine cloth or paper towel to drain excess surface moisture (preservative)

before being weighed to the nearest 0.1 milligram (mg). Total and family-level biomass and the density of each taxon was reported for each of the area-based samples. Laboratory QA/QC procedures included assessments of sub-sampling accuracy and precision and percent organism recovery (Appendices A and B).

Benthic invertebrate community samples collected using the timed kick method were sent to Cordillera Consulting (Cordillera) in Summerland, BC for sorting and taxonomic identification. Organisms were identified to the LPL of taxonomy (typically genus or species). At the beginning of the sorting process, each sample was examined and evaluated to estimate the total invertebrate number. If the total number was estimated to be >600, then the laboratory's subsampling protocol was followed; otherwise, the whole sample was sorted. Samples were sorted using methods consistent with those described by Environment Canada (2014) and CABIN requirements (i.e., a minimum of 5% of each sample was sorted and at least 300 organisms were counted in every sample). Sorting efficiency and sub-sampling accuracy and precision were quantified using methods specified by Environment Canada (2012b, 2014).

2.4.3 Data Analysis

0

Data for area-based samples collected from Upper Greenhills Creek, Lower Greenhills Creek, Gardine Creek, and Greenhills Creek Sedimentation Pond were summarized by calculating endpoints that are considered to be indicators of changes in benthic invertebrate community production and structure. Endpoints included:

- density (number of organisms per square metre [no./m²]);
- biomass (grams per square metre [g/m²]);
- LPL richness and family richness; and
- the proportions of major taxa (i.e., EPT combined, as well as Ephemeroptera, Plecoptera, Trichoptera, and Diptera).

Endpoints typically reported for the RAEMP (e.g., Minnow 2020d) were also calculated for timed kick samples. For RG_GHCKD (Greenhills Creek downstream of the Greenhills Creek Sedimentation Pond), results for these endpoints will be reported in the next RAEMP report. However, results for RG_GHCKD were used in this report to support comparisons to reference area normal ranges and the biological trigger evaluation for %EPT (see below).

Biological monitoring areas on Upper Greenhills Creek, Gardine Creek, and Greenhills Creek Sedimentation Pond are upstream of the antiscalant dosing module, which is scheduled to be relocated to Upper Greenhills Creek in 2022 (Hillman 2021a, pers. comm.). Therefore, data collected from these areas in 2021 were included with pre-treatment data collected from 2016 to 2020. Data collected from RG_GHBP on Lower Greenhills Creek represents a fourth year of monitoring post-antiscalant addition.

Benthic invertebrate community endpoints were summarized and used to address the following general questions:

- Q1: Do community endpoints differ among areas?
- Q2: Have community endpoints changed at the monitoring areas over time and are these changes unexpected based on the activities and projects occurring in the watershed?
- Q3: Have community endpoints in Lower Greenhills Creek changed relative to upstream following the application of antiscalant (i.e., can observed differences between Upper and Lower Greenhills Creek be attributed to antiscalant addition)?

Questions 1 and 2 were addressed together. Differences among areas and years for benthic community endpoints were compared using ANOVA with factors *Area* and *Year* and *Area x Year*. Methods were consistent with those outlined in the 2021 GGCAMP study design (Minnow 2021b). For significant *post hoc* comparisons among years, the MOD was calculated in standard deviations (SD) of the reference year as:

$$\frac{MCT_{year} - MCT_{2016}}{SD_{2016}}$$

where MCT_{year} is the measure of central tendency for a given year after 2016²⁴, MCT_{2016} is the MCT in 2016, and SD_{2016} is the standard deviation for 2016. Similarly, the MODs between areas with significant *post hoc* comparisons were calculated as:

$$\frac{MCT_{untreated} - MCT_{RG_GHBP}}{SD_{RG_GHBP}}$$

Question 3 was addressed by comparing differences in benthic community endpoints in relation to the addition of antiscalant based on a BACI design (Green 1979), where an ANOVA model is used to fit the data for each area from pre- and post-application of antiscalant (see Minnow 2021b). Potential BACI effects were assessed by testing the significance of the interaction terms containing the *BA* (fixed factor with two levels: before [2016 and 2017] and after [2018 to 2021] use of antiscalant) and *CI* (fixed factor for area type with two levels: use of antiscalant and no antiscalant) terms. A p-value of 0.1 was used to test the significance of the interaction terms. Interpretation of the ANOVA table was carried out following the approach described in detail in the 2021 GGCAMP study design (Minnow 2021b).

²⁴ The first year of baseline for Greenhills Creek.

If significant differences were found, the MOD was calculated as:

$$\frac{((After Year_{treated} - After Year_{untreated}) - (Before Year_{treated} - Before Year_{untreated}))}{SD}$$

where:

- *After Year*_{treated} *After Year*_{untreated} = difference between treated and untreated areas in the after treatment time period;
- *Before Year*_{treated} *Before Year*_{untreated} = difference between treated and untreated areas in the before treatment time period; and
- *SD* = the standard deviation of the residuals in the ANOVA on the transformed scale, where appropriate.

If the interaction term between *BA* and *CI* was not significant, then it was concluded that there were no BA effects that could be attributed to treatment with antiscalant.

Additionally, potential relationships between benthic invertebrate community endpoints and calcite measurements (CI, CI', and concretion scores) and water chemistry data were examined by correlation analysis.²⁵ Benthic invertebrate community endpoints for area-based samples were correlated with paired calcite indices and concretion scores collected concurrently with the benthic community samples in 2021, and from 2017 to 2020. Specific endpoints included of density, biomass, LPL richness, family richness, %EPT, %Ephemeroptera, %Plecoptera, %Trichoptera, and %Diptera. Significant correlations were assessed at $\alpha = 0.05$, with Bonferroni corrections for the number of independent comparisons. Water quality data for analytes with EWTs were also included in the correlation analyses; concentrations measured in samples collected concurrent with area-based benthic invertebrate community sampling in September 2021 were used. Again, significance was assessed at $\alpha = 0.05$, with Bonferroni corrections for the number of comparisons. Statistical analyses were completed in R (R Core Team 2021).

Comparisons to regional reference area normal ranges from the RAEMP (Minnow 2020d) were completed for the timed kick samples collected from RG_GHNF and RG_GHCKD (RAEMP area) on Upper and Lower Greenhills Creek, respectively. Data from area-based kicks completed in 2021 were not compared to regional reference area normal ranges. This change relative to previous years (e.g., Minnow 2020a, 2021a) is based on the acknowledgement that the methods underlying the reference area normal ranges (i.e., timed kicks) and the area-based

²⁵ Predictive models for benthic invertebrate communities are being developed for use in adaptive management and biological monitoring. Once these models are available for implementation, they may be used in place of the correlation analyses described herein.

(1/3 m²) benthic invertebrate community kicks are not comparable or compatible.²⁶ For example, Minnow has found that, in general, LPL and family richness calculated for area-based kick samples tend to fall toward the lower end of or below regional reference area normal ranges calculated from timed kick samples. This is attributed to the greater likelihood that rarer taxa will be missed when sampling the smaller area (m²) and lower overall diversity of habitats associated with the area-based versus timed kicks (Minnow 2018b).

Comparisons to the %EPT biological triggers (Teck 2018, 2021a) were made for timed kick samples, specifically those from RG_GHNF on Upper Greenhills Creek (n = 3 replicates) and from RAEMP area RG_GHCKD on Lower Greenhills Creek (n = 3 replicates). Data for RG_GHCKD was used for Lower Greenhills Creek because, as indicated above, the sampling method for RG_GHCKD (i.e., timed kicks) is consistent with the methods on which the %EPT biological triggers are based, whereas the sampling method used for RG_GHBP (i.e., area-based kicks) is not. Biological monitoring areas RG_GHBP and RG_GHCKD are on the same reach in Lower Greenhills Creek.

2.5 Benthic Invertebrate Tissue Chemistry

2.5.1 Field Sampling

0

2.5.1.1 Greenhills and Gardine Creeks

Composite-taxa benthic invertebrate tissue chemistry samples were collected from biological monitoring areas on Greenhills and Gardine creeks in February and September 2021. Target sample sizes were one sample from each of the three replicate stations at biological monitoring areas on Upper Greenhills Creek (RG_GHUT, RG_GHNF, and RG_GHFF), Lower Greenhills Creek (RG_GHBP), and Gardine Creek (RG_GANF and RG_GAUT; Figure 2.5; Table 2.1).

Benthic invertebrate tissue chemistry samples were collected using the kick sampling method described in Section 2.4.1.1, except that sampling was not timed or limited to 1/3 m² (i.e., kicks were completed until the desired mass of benthic invertebrate tissue was obtained). Following each kick, the contents of the net were emptied into a white plastic tub and examined visually to document the presence of annelids, which can introduce variability in selenium chemistry results if included in the composite-taxa samples for tissue chemistry analyses (Golder 2021b; Luoma 2021). If annelids were present in a given sample, the field crew estimated the abundance (i.e., number) of annelids in the sample as well as the proportion (%) of total

²⁶ A comparison of benthic invertebrate community endpoints between co-located area-based and timed kick samples is provided in Appendix F and supports the shift away from comparing area-based kick data to regional reference area normal ranges based on timed kicks.

invertebrate biomass represented by annelids (Golder 2021b). If annelids represented less than or equal to (\leq) 5% of the total invertebrate biomass in the sample, annelids were excluded from the composite-taxa tissue chemistry sample. If annelids represented >5% of the invertebrate biomass in the sample, the protocol was to include them in the composite-taxa sub-sample for tissue chemistry analysis, such that the proportion of annelid biomass in the composite-taxa sub-sample was representative of annelid biomass in the parent kick sample (Golder 2021b). Additionally, separate "annelid-only" tissue chemistry samples were collected and labelled appropriately from any tissue chemistry kicks identified as containing annelids. For all samples, tweezers were used to carefully remove organisms until a target sample mass of 1 to 2 grams (g) was obtained. Each sample for tissue chemistry analysis was photographed. Samples were placed into labelled scintillation vials and stored in a cooler with ice until they could be transferred to a freezer later in the day.

2.5.1.2 Greenhills Creek Sedimentation Pond

Three composite-taxa benthic invertebrate tissue chemistry samples were collected from deeper, depositional areas within Greenhills Creek Sedimentation Pond (RG_GHP) in September 2021 (Figure 2.4; Table 2.1). Each of the three samples corresponded with one of the six benthic invertebrate community sampling locations (i.e., RG_GHBP-1, RG_GHP-3, and RG_GHBP-5) and were collected using the same methods described in Section 2.4.1.2. Each benthic invertebrate tissue chemistry sample was assessed visually for the presence of annelids. If annelids were identified in the sample, sub-sampling was completed as described in Section 2.5.1.1 (Golder 2021b). Each sample for tissue chemistry analysis was photographed, placed into a labelled scintillation vial, and stored in a cooler with ice until it could be transferred to a freezer later in the day.

Benthic invertebrate tissue chemistry sampling completed in September 2021 focused on the deeper, depositional areas of Greenhills Creek Sedimentation Pond. This is because selenium concentrations in the samples collected along the shoreline (RG_GHPS) and from deeper, depositional habitats (RG_GHP) in previous years (2018, 2019, and 2020) were identified as being statistically comparable (Minnow 2021b). Therefore the samples from RG_GHP are considered sufficiently representative of selenium concentrations in benthic invertebrate tissues from within Greenhills Creek Sedimentation Pond.

2.5.2 Laboratory Analysis

0))

Benthic invertebrate tissue samples were stored frozen until they could be shipped on ice to TrichAnalytics Inc. (Trich), which is a CALA-accredited laboratory, in Saanichton, BC. Following receipt of the samples by the analytical laboratory, the laboratory staff noted that

bivalves comprised part (RG_GHP_INV-3 and RG_GHP-5) or all (RG_GHP_INV-1) of the biomass in the samples from Greenhills Creek Sedimentation Pond. Because the high calcium content of the bivalves' shells could significantly impact the analytical results for multiple analytes (e.g., strontium, barium, lead, and possibly selenium), replicates RG_GHP_INV-3 and RG_GHP-5 were split into "bivalve-only" and "all other taxa" sub-samples prior to analysis (Christensen 2021, pers. comm.). Individual samples were desiccated and then analyzed for metal concentrations using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Results were reported on a dry weight basis. Laboratory QA/QC procedures employed by Trich included assessments of sensitivity (i.e., evaluation of LRLs), accuracy (i.e., CRM), and precision (laboratory duplicates) (see Appendices A and B).

2.5.3 Data Analysis

Benthic invertebrate tissue selenium concentrations were summarized for the sampling areas in Greenhills Creek, Gardine Creek, and Greenhills Creek Sedimentation Pond and were used to address the following general questions:

- Q1: Do tissue selenium concentrations differ among areas?
- Q2: Have selenium concentrations in benthic invertebrate tissues at the monitoring areas changed over time and are these changes attributable to activities and projects occurring in the watershed, including the addition of antiscalant to Lower Greenhills Creek?
- Q3: Are selenium concentrations in benthic invertebrate tissues from Upper and Lower Greenhills Creek and Gardine Creek as expected, based on water quality?

Questions 1 and 2 were addressed together. Differences among areas and years for benthic invertebrate tissue selenium concentrations reported for September samples were compared using ANOVA with factors *Area* and *Year* and *Area x Year* as described in Minnow (2021b). The MODs for comparisons over time and among areas were calculated as:

$$MOD = (MCT_{examined year} - MCT_{base year}) / MCT_{base year} \times 100\%$$

or

0))

$$MOD = (MCT_{area 2} - MCT_{area 1}) / MCT_{area 1} \times 100\%$$

respectively, where the MCT is the measure of central tendency (i.e., the back-transformed estimated marginal means).

A separate comparison of tissue selenium concentrations measured in composite-taxa samples from February and September was completed within each year (i.e., 2019 to 2021; no winter sampling was completed in 2018) to determine if tissue concentrations differed in fall (September)

0

€.

versus winter (February). An ANOVA with factors *Area*, *Year, Month*, and their interactions was used. If the main effect term was significant (p-value <0.05), and subsequent *post hoc* contrasts were also significant, the MODs were expressed as a percent difference from February of a given year. More specifically, the MODs for the comparisons were calculated as:

$$MOD = (MCT_{February} - MCT_{September}) / MCT_{February} \times 100\%$$

where the MCT is the measure of central tendency (i.e., the back-transformed estimated marginal means).

To address Question 3, concentrations of selenium in composite-taxa benthic invertebrate tissue chemistry samples from lotic habitats were compared to prediction intervals generated from the regional lotic bioaccumulation model (Golder 2020), consistent with the RAEMP (Minnow 2020d). If observed concentrations were higher than the upper prediction limit, tissue concentrations were be considered higher than expected.

Concentrations of selenium in benthic invertebrate tissues from Greenhills Creek Sedimentation Pond were not evaluated using the lotic or lentic bioaccumulation models developed for the Elk River watershed (Golder 2020). Greenhills Creek Sedimentation Pond possesses some characteristics of a lentic environment (e.g., longer residence time, finer substrates, and abundant vegetation). However, the lentic bioaccumulation model was developed based on data for natural and naturalized lentic areas (i.e., data for sedimentation ponds were not included). Therefore, there is too much uncertainty regarding the applicability of the lentic model to Greenhills Creek Sedimentation Pond to warrant comparisons to model predictions at this time.

Biological triggers developed for selenium concentrations in benthic invertebrate tissues as part of Teck's AMP (Teck 2018, 2021a) were applied to RG_GHNF on Upper Greenhills Creek and RG_GHBP on Lower Greenhills Creek as an additional means of addressing Question 3. Biological monitoring areas RG_GHNF and RG_GHBP are in proximity to routine water quality monitoring locations with water quality projections (i.e., GH_HWGH_BRB and GH_GH1, respectively; Figure 2.1). Biological monitoring area RG_GHBP was also included in the assessment of biological triggers for 2020 (Minnow 2021a). Interpretation of biological triggers for RG_GHBP was completed in consideration of the fact that GH_GH1 is upstream of the antiscalant addition facility and RG_GHBP is downstream from the facility.

Selenium concentrations in benthic invertebrate tissue samples collected in February and September 2021 were also interpreted in consideration of site-specific selenium speciation information (see Section 2.2) and compared to regional reference area normal ranges and EVWQP Benchmarks. Selenium concentrations in benthic invertebrate tissues collected from lotic habitats and the Greenhills Creek Sedimentation Pond were compared to predictions generated using the selenium speciation bioaccumulation tool (B-tool; de Bruyn and Luoma 2021). Comparisons to EVWQP Benchmarks included the Level 1, 2, and 3 Benchmarks for effects to growth, reproduction, and survival of benthic invertebrates and dietary effects to juvenile fish and birds (Table 2.4; Golder 2014).²⁷ Concentrations were also compared to the preliminary dietary benchmark (i.e., 45 milligrams per kilogram dry weight [μ g/g dw]) for maternal amphibian diet (Massé et al. 2015). Comparisons to the BCMOECCS interim guideline (i.e., 4 μ g/g dw) were not made because the EVWQP Benchmarks are considered more site-specific and therefore more relevant (BCMOE 2014; Golder 2014).

2.6 Westslope Cutthroat Trout

2.6.1 Field Sampling

0

€.

Fishing for WCT was completed at three biological monitoring areas on Upper Greenhills Creek and two areas on Gardine Creek in September 2021 (Ministry of Forests, Lands, Natural Resource Operations, and Rural Development [MFLNRORD] permit CB21-631191). In Upper Greenhills Creek, fishing was completed at RG_GHFF (Reach 6), RG_GHNF (Reach 9), and RG_GHUT (Reach 10; Figure 2.6; Table 2.1). In Gardine Creek, fishing was completed near RG_GANF (Reach 1) and RG_GAUT (Reach 3). Monitoring in Upper Greenhills Creek in 2021 represented a fourth year of pre-treatment data collection and monitoring in Gardine Creek provided a second year of WCT data collection.

The 2021 GGCAMP did not include fishing in Lower Greenhills Creek. Instead, data interpretation for Lower Greenhills Creek (see Section 3.5) relied on the results of Teck's 2021 Upper Fording River Population Monitoring Program (Thorley et al. 2022). This approach was taken primarily to minimize fish handling, and therefore potential risks to fish, in Lower Greenhills Creek. It is also recognized that the range of the WCT population in the mainstem of the Upper Fording River extends into Lower Greenhills Creek whereas the WCT in Upper Greenhills and Gardine creeks represent an isolated population. Detailed field sampling methods for WCT in Lower Greenhills Creek are provided in the 2021 Upper Fording River WCT Population Monitoring report (Thorley et al. 2022).

Methods for monitoring WCT in Upper Greenhills and Gardine creeks in September 2021 were consistent with those used from 2017 to 2019 (Minnow 2018b, 2019a,b, 2020a) and similar to the closed station electrofishing completed as part of the Upper Fording River Population Monitoring Program in 2021 (Thorley et al. 2022). Three closed stations (approximately 100 m² each)

 $^{^{27}}$ However, the site-specific EVWQP Level 1 Benchmark for dietary effects to growth of juvenile fish (i.e., 11 µg/g dw) is not applicable to juvenile WCT and WCT are the only fish species known to occur in Greenhills and Gardine Creeks (Table 2.4; Teck 2014).

Table 2.4: Selenium Benchmarks for Benthic Invertebrate	Tissues,	, Elk River	Watershed ^a
---	----------	-------------	------------------------

	Tissue Type			
Endpoint		Value (µg/g dw)	Description	Source
Benthic Invertebrates	Whole body	13	Level 1 (~10% effect) benchmark for growth, reproduction, and survival of invertebrates	Teck 2014
	Whole body	20	Level 2 (~20% effect) benchmark for growth, reproduction, and survival of invertebrates	Teck 2014
	Whole body	27	Level 3 (~50% effect) benchmark for growth, reproduction, and survival of invertebrates	Golder 2014
	Whole body	11 ^b	Level 1 (~10% effect) benchmark for dietary effects to juvenile fish (growth)	Teck 2014
	Whole body	18	Level 2 (~20% effect) benchmark for dietary effects to juvenile fish (growth)	Teck 2014
	Whole body	26	Level 3 (~50% effect) benchmark for dietary effects to juvenile fish (growth)	Golder 2014
	Whole body	15	Level 1 (~10% effect) benchmark for dietary effects to juvenile birds	Teck 2014
	Whole body	22	Level 2 (~20% effect) benchmark for dietary effects to juvenile birds	Teck 2014
	Whole body	41	Level 3 (~50% effect) benchmark for dietary effects to juvenile birds	Golder 2014
	Whole body	45	Level 1 (~10% effect) benchmark for maternal amphibian diet	Massé et al. 2015

Notes: μ g/g dw = micrograms per gram dry weight; ~ = approximate; % = percent.

^a The 4 µg/g dw British Columbia guideline (BCMOE 2014) was not used in the assessment of benthic invertebrate tissue selenium concentrations. The assessment was completed relative to site-specific benchmarks only.

^b Site-specific benchmark is not applicable to effects to juvenile westslope cutthroat trout because studies with Yellowstone cutthroat trout have reported no effects at the Level 1 Benchmark (see Teck [2014], Annex E, Appendix D [Elk Valley Water Quality Plan - Selenium Toxicity Literature Review]).

were backpack electrofished at four of the five biological monitoring areas targeted for fishing (i.e., at RG_GHUT, RG_GHNF, RG_GHFF, and RG_GANF). Stop nets were used to enclose each of the electrofishing stations. Care was taken to confirm that stream morphology and total sampling areas (m²) of each station were as similar as possible and stations were spaced at least 10 m apart. Efforts were made to include representative stream habitat types (e.g., riffle, run, and pool) within each of the approximately 100 m² closed stations. The length of each closed station was recorded. Wetted and bankfull widths were measured along five equally-spaced transects within each station and water depths were also measured at three points along each of these transects.

Due to low water levels, the presence of dry channel sections, and poor access at RG_GAUT in September 2021, three 100 m² closed stations could not be established, consistent with monitoring completed in 2019 (Minnow 2020a). Instead, electrofishing was completed in pools that were isolated by existing barriers (e.g., culverts, low water levels) and/or with stop nets. The two pools that were electrofished at RG_GAUT in 2019 (RG_GAUT-EF1 and RG_GAUT-EF2; Minnow 2020a) were fished again in 2021, along with a smaller, third pool that was identified by the field crew in September 2021 (RG_GAUT-EF3; Figure 2.6). The size (m²) and depth of each pool was recorded.

Supporting habitat data, including *in situ* water quality measurements (i.e., temperature, dissolved oxygen, pH, and specific conductance) were collected from each closed station or pool, concurrent with fishing activities in Upper Greenhills and Gardine creeks. The GPS coordinates of the upstream and downstream station boundaries (closed stations) or pools were recorded. Each station or pool was photographed and data pertaining to substrate characteristics, riparian vegetation types, and canopy cover were recorded.

To support density estimates for fry and juvenile WCT (i.e., fish with fork lengths <20 cm), each closed station on Upper Greenhills or Gardine creek was fished by a two-person crew using three-pass removal depletion methods (adapted from Ptolemy et al. 2006). A pulsed direct current (DC) backpack electrofishing unit (Smith Root LR24) was used to make three successive passes of declining catch. The anode operator worked closely with the netter to turn over rocks or move away overhanging vegetation to help recover stunned fish. Fishing was completed by certified and experienced crews. At each sampling area, electrofishing was initiated at the downstream net, and consisted of a thorough surprise/ambush search in an upstream direction, followed by a systematic sweep back towards the downstream net. Electrofishing seconds were monitored and recorded so that each successive depletion used similar effort.

Fish captured during electrofishing were processed according to the following methods to support assessments of fish condition (i.e., weight-at-length) and external health (i.e., anomalies²⁸, such as parasites, deformities, erosions [fin and gill], lesions, or tumors), in addition to estimates of fish density and biomass. Care was taken to minimize fish handling, to the extent reasonably possible. Fork lengths for WCT captured from Upper Greenhills and Gardine creeks were measured to the nearest millimetre (mm) using a measuring board. Fresh body weight of fish less than approximately 30 g was measured using a Scout Pro balance (to the nearest 0.001 g with plus or minus [±] 1% precision) and fresh body weight of fish >30 g was measured using Pesola™ spring scales (precision to the nearest 1% to 5% of total weight). External anomalies observed during processing were evaluated and recorded, consistent with the approach identified in the 2021 to 2023 RAEMP study design (Table 2.5; Minnow 2021c). Caudal fin length was measured to the nearest hundredth of a millimetre using digital calipers following the methods of Bosakowski and Wagner (1994) to assess fin erosion.²⁹ Fish larger than the minimum fork length for insertion of Passive Integrated Transponder (PIT) tags (i.e., 6.5 cm; Teck 2017) were scanned with a Biomark handheld PIT tag reader to support calculation of growth rates for recaptured fish. This approach was taken by the field crew to minimize handling and potential stress to smaller WCT, and because any previously-tagged WCT (i.e., fish that were tagged in 2019 or earlier) would logically have fork lengths greater than 6.5 cm in 2021. No PIT tagging (regardless of fish body size) or tissue chemistry sampling was completed in 2021 to minimize fish handling. Upon completion of external data collection, fish were released back to their capture areas. Capture, effort (area and electrofishing time for each pass), WCT body size (length and weight), and external health data were submitted to MFLNRORD within 90 days of permit expiration (as per the requirements of permit CB21-631191).³⁰

In addition to the late summer/fall monitoring described above, redd surveys, environmental DNA (eDNA) sampling, and opportunistic sampling of WCT tissues for chemistry analyses were completed within the Greenhills Creek watershed in 2021. Redd surveys were completed in Lower Greenhills Creek in 2021 as part of Teck's Upper Fording River Population Monitoring Program. Details for the survey methods used in 2021 are provided in the Upper Fording River WCT Population Monitoring 2021 report (Thorley et al. 2022). From June to August

²⁸ These external assessments were formerly referred to as "DELT" (deformities, erosion, lesion, and tumor) surveys, based on classifications by Sanders et al. (1999). The approach used for the 2021 GGCAMP is consistent with the revised approach used for the RAEMP (Minnow 2021b,c).

²⁹ Due to an equipment malfunction, the field crew was required to read the calipers manually (rather than relying on the digital read-out) for a sub-set of the WCT captured in 2021. Manual readings were completed to the nearest 1 mm.

³⁰ Typically, individual PIT tag identification data would also be submitted to MFLNRORD as part of the permit response package; however, as indicated in Section 3.5, no tagged fish were captured from Upper Greenhills or Gardine creeks in 2021.

Scale	Body Surface	Body Form	Lesions	Tumours	Fins	Lips/Jaws/ Snout	Eyes	Gills	Opercula	Infection (fungus, bacteria, virus)	Parasites
0	Normal; no aberrations	Normal	None	None	No active erosion	Normal, no lesions, swelling, tears etc.	No aberrations; good "clear" eye	Normal; No apparent aberrations	Normal; both opercula intact and complete	No observed infections	No observed parasites
1	Slight inflammation or reddening	Slight spinal curvature	Tears or wounds on caudal fins, pectoral or dorsal fins	Tumour present, but localized and with no signs of sloughing/ ulceration	Light active erosion	Swelling on or around lips, mouth or snout	Swollen or protruding eyes	Gills with light, discolored margin along tips of the lamellae	Slight shortening of one or both opercula, gills covered	Minor, spatially isolated infection	Few observed parasites
2	Moderate inflammation or reddening	One of lordosis, kyphosis or scoliosis	Lesions or wounds on side of body	More than one tumour or one large tumour with no/minor sloughing/ ulceration	Moderate active erosion with some hemorrhaging	Small punctures or lesions	Hemorrhaging eye(s) or blind in one or both eyes	Frayed; erosion of tips of gill lamellae resulting in "ragged" gills	Moderate shortening of one or both opercula, gills exposed	Moderate infection or more than one body surface affected	Moderate parasite infestation
3	Severe inflammation or reddening	Signs of lordosis and kyphosis and scoliosis	Many lesions, rips or tears on body and on fins, possibly on face as well	One or more large tumour that may impair breathing/ feeding/ swimming performance; signs of ulceration and/ or sloughing	Severe active erosion with hemorrhaging	Tears, hanging maxilla, missing lips	Missing eye(s)	Clubbed; swelling of the tips of the gill lamellae	One or both opercula substantially shortened or missing, gills completely exposed	Infection covering large spatial area (>25% of surface)	Numerous parasites

Table 2.5: Severity Assessment for External Anomalies in Fish^a

Notes: > = greater than; % = percent.

a This severity assessment replaces "DELT" (deformities, erosion, lesion, and tumor) surveys (Sanders et al. 1999) completed in previous years.

2021, eDNA samples were collected from five locations on Upper Greenhills Creek, as well as a negative control site on Rush Creek, which is to the west of GHO (Ecofish 2022). Tissue samples collected opportunistically by Teck and/or Teck's consultants from incidental WCT mortalities identified within the Greenhills Creek watershed in 2021 were analyzed by Trich for the same suite of parameters as the benthic invertebrate tissue samples described in Section 2.5.

2.6.2 Data Analysis

Estimates of fish abundance, densities, and biomass and health endpoint measurements were summarized for the sampling areas in Upper Greenhills and Gardine creeks and were used to address the following general questions:

- Q1: Do estimates of WCT abundance, densities, biomass, and health endpoints differ among areas?
- Q2: Have endpoints changed at the monitoring areas over time and are these changes unexpected based on the activities and projects occurring in the watershed, including the addition of antiscalant to Lower Greenhills Creek?

Estimates of WCT densities, abundance, and biomass at the closed electrofishing stations on Greenhills (RG_GHUT, RG_GHNF, RG_GHFF, and Reach 1) and lower Gardine (RG_GANF) creeks were calculated as described in the 2021 GGCAMP study design (Minnow 2021b).³¹ Densities, abundance, and biomass were not estimated for the isolated pools on upper Gardine Creek (RG_GAUT; Figure 2.6).

Estimates of abundance, densities, biomass, and fish meristics (lengths, weights, and condition [weight-at-length]) in 2021 were qualitatively compared among areas sampled in Upper Greenhills and Gardine creeks in 2021 and previous years. Results for the isolated population of WCT in Upper Greenhills and Gardine creeks were also qualitatively compared with fish captured from Lower Greenhills Creek as part of the Upper Fording River WCT Population Monitoring Program (Thorley et al. 2022). To support comparisons to Lower Greenhills Creek, a visual examination of length-frequency plots was completed to identify age-1 and age-2+ fish. Because no previously-tagged fish were captured from Greenhills or Gardine creeks in 2021 (see Section 3.5), no estimates of growth rates were completed as part of this report (see Minnow 2021b).

Statistical comparisons of fish health endpoints among years were completed in accordance with the study design (Minnow 2021b). Fish with fork lengths <6.5 cm were excluded from statistical analyses to minimize the influence of factors such as low capture efficiency and

³¹ Abundances were also estimated differently, using new methods, as part of the Upper Fording River WCT Population Monitoring Program; these new methods will be applied in the 2022 GGCAMP report.

density-dependence, consistent with the cut-off used in the analyses for Lower Greenhills Creek (Thorley et al. 2022). All statistical analyses were completed in R (R Core Team 2021).

Fish tissue sampling was not completed as part of the GGCAMP in 2021. However, biological triggers developed for selenium concentrations in WCT muscle as part of Teck's AMP (Teck 2018, 2021a) were applied to tissue samples that were collected opportunistically from incidental mortalities. Additionally, all tissue selenium data collected opportunistically from WCT in 2021 were compared to estimated effects thresholds and site-specific benchmarks (Nautilus Environmental and Interior Reforestation 2011; Teck 2014).

3 RESULTS

3.1 Water Quality

Water quality sampling at Teck's routine monitoring stations and at biological monitoring areas on Greenhills and Gardine creeks was completed as described in Section 2.2.1. However, due to unsafe access or the absence of flow, *in situ* measurements of water quality and water chemistry samples were not collected from RG_GHNF and RG_GHFF on Upper Greenhills Creek or RG_GAUT and RG_GANF on Gardine Creek in February 2021. Target sample/data types and numbers were achieved for RG_GHUT (Upper Greenhills Creek) and RG_GHBP (Lower Greenhills Creek) in February 2021 and at all biological monitoring areas targeted for sampling in September 2021 (see Table 2.1).

In Upper Greenhills Creek, concentrations of mine-related constituents with EWTs were below BC WQG, EVWQP Level 1 Benchmarks, and/or interim screening values in 2021, except for TDS, nitrate, sulphate, total nickel, total selenium, total uranium, and dissolved cadmium³² (Appendix Figures C.1 to C.16; Appendix Tables C.1 and C.2). Comparison of mine-related constituents measured at the routine monitoring station on Upper Greenhills Creek above the confluence with Gardine Creek (GH CTF and GH HWGH BRB) and the routine monitoring station above Greenhills Creek Sedimentation Pond (GH GH1B) generally showed similar seasonal patterns between 2017 and 2021 (i.e., lower concentrations in spring versus summer and fall). Additionally, concentrations of most constituents with EWTs were statistically similar among GH CTF, GH HWGH BRB, and GH GH1B in 2021 (Appendix Figure C.17). Exceptions included total antimony, nickel, and selenium, which had lower concentrations at GH GH1B, downstream from the Gardine Creek mouth, relative to upstream, and total manganese and uranium concentrations, which were the highest at GH CTF and lowest at GH GH1B (Figure 2.1; Appendix Figures C.1 to C.17). Concentrations of total barium decreased with increasing distance downstream Upper Greenhills Creek on (Appendix Figure C.17). The higher concentrations at GH CTF and GH HWGH BRB relative to further downstream at GH GH1B indicate that Gardine Creek acts as a source of dilution for some constituents with EWTs, with the exception of total barium. Station GH GC1 on Gardine Creek had the highest annual mean total barium concentration in 2021 and higher concentrations in Gardine Creek appear to have influenced concentrations at GH GH1B (Appendix Figure C.17; Appendix Table C.1).

³² The water chemistry samples collected from the furthest upstream biological monitoring area on Upper Greenhills Creek (i.e., RG_GHUT) in February and September were the only samples with dissolved cadmium concentrations in excess of the long-term average BC WQG in 2021 (Appendix Figure C.15; Appendix Tables C.1 and C.2).

0

-

In Lower Greenhills Creek, most mine-related constituents with EWTs were below BC WQG, EVWQP Level 1 Benchmarks, and/or interim screening values in 2021, except for TDS, nitrate, sulphate, and total nickel, selenium, and uranium (Appendix Figures C.1 to C.16; Appendix Tables C.1 and C.2). Mine-related constituents with EWTs that were measured at routine monitoring stations upstream (GH_GH1) and downstream (GH_GH2) of the antiscalant addition facility generally showed similar seasonal patterns (i.e., dips in concentrations during freshet; Figure 2.1; Appendix Figures C.1 to C.16). Concentrations of most mine-related constituents at GH_GH1 and GH_GH2 did not differ significantly from concentrations at GH_GH1B upstream from the Greenhills Creek Sedimentation Pond (Figure 2.1; Appendix Figure C.17). Specific exceptions include total manganese and molybdenum at GH_GH1B versus GH_GH2 (with the differences for total molybdenum being attributed to antiscalant addition; see below) (Appendix Figures C.1 to C.17; Appendix Table C.1).

Water quality in Gardine Creek in 2021 was generally of better quality than Greenhills Creek (despite the results noted for total barium, above); sulphate and selenium were the only constituents with EWTs that had concentrations greater than the long-term BC WQG (Appendix Figures C.1 to C.17; Appendix Tables C.1 and C.2). However, selenium concentrations were consistently below the Level 1 EVWQP Benchmark (Appendix Tables C.1 and C.2). Again, Gardine Creek appears to act as a source of dilution for some mine-related constituents in Greenhills Creek.

Water quality monitoring was also completed at Greenhills Creek Sedimentation Pond (RG_GHP) in September 2021 (Appendix Figures C.1 to C.16; Appendix Tables C.2 and C.3). Concentrations of most mine-related constituents with EWTs were below BC WQG, EVWQP Level 1 Benchmarks, and/or interim screening values in September 2021, except for TDS, nitrate, sulphate, and total nickel, selenium, and uranium. These results are similar to those for Lower Greenhills Creek, downstream from the pond.

Selenium speciation samples were collected from two biological monitoring areas in February 2021 (i.e., RG_GHUT and RG_GHBP) and from seven biological monitoring areas in September 2021 (i.e., RG_GHUT, RG_GHNF, RG_GHFF, RG_GHBP, RG_GAUT, RG_GANF, and RG_GHP; Figure 2.1; Appendix Table C.4). Samples were not collected from RG_GHNF and RG_GHFF on Upper Greenhills Creek or RG_GAUT and RG_GANF on Gardine Creek in February 2021 due to unsafe access or the absence of flow. Water sampling for selenium speciation was also completed upstream and downstream from the Greenhills Creek Sedimentation Pond in 2021 to support the Elk Valley Selenium Speciation Monitoring Program (Appendix Table C.4; ADEPT 2022). Aqueous selenium species were dominated by selenate for all areas and sampling events. However, concentrations of dimethylselenoxide and

methylseleninic samples collected from Upper Greenhills Creek acid in water (RG GHNF, RG GHFF, and GH GH1A), Lower Greenhills Creek (GH GH1SP DS1 and RG GHBP), and Greenhills Creek Sedimentation Pond (RG GHP) in 2021 were above the draft screening value (0.025 micrograms per litre [µg/L]) for enhanced bioaccumulation (ADEPT 2022). The highest combined concentrations of dimethylselenoxide and methylseleninic acid were observed in the Greenhills Creek Sedimentation Pond and downstream at RG GHBP. These results are attributed to enhanced formation of organoselenium species resulting from processes within the pond environment and carry-over effects to lotic habitats immediately downstream (i.e., RG GHBP) (Golder 2021a).

Overall, concentrations of mine-related constituents and organoselenium species tended to differ among areas, depending on whether they were upstream or downstream from Gardine Creek and/or the Greenhills Creek Sedimentation Pond. This was largely attributed to the comparatively good water quality in Gardine Creek having a dilution effect on constituent concentrations in Greenhills Creek downstream from the Gardine Creek mouth. Concentrations of organoselenium species tended to increase with increasing distance downstream in Greenhills Creek; the highest concentrations were observed within the Greenhills Creek Sedimentation Pond and Lower Greenhills Creek in September 2021.

Concentrations of most mine-related constituents with EWTs have remained relatively stable or have decreased over time at Teck's routine water quality monitoring stations on Greenhills and Gardine creeks (Appendix Table C.5). Concentrations of total nickel were significantly and substantially lower (i.e., 57 to 66%) at all stations in 2021 relative to the base year of sampling (i.e., 2016 or 2017) and 2018 (Appendix Figure C.11; Appendix Table C.5). Decreases in nickel concentrations may be associated with inter-annual variations in flow volumes (e.g., 2016 being a low flow year) and the declining influences of a 2014 spoil failure and Teck's pumping of water with elevated nickel concentrations from the Cougar Phase 3 Pit to Greenhills Creek for a short period in 2018 (Minnow 2021a). A spoil failure occurred in December 2014 and increased aqueous concentrations of nickel were identified downstream following the failure. It is considered likely that stabilization of the spoil and weathering of the exposed material since 2014 has contributed to the reduction in nickel concentrations over time (Jaeger 2020, pers. comm.). Additionally, the temporal decreases in nickel concentrations to current levels also appear to coincide with the period following cessation of pumping from the Cougar Phase 3 Pit in 2018, after which no additional pumping was completed. Total antimony concentrations at GH CTF on Upper Greenhills Creek significantly decreased year-over-year from 2017 to 2021 and concentrations at all stations were substantially lower (i.e., 41 to 52%) in 2021 relative to the base year of sampling (i.e., either 2016 or 2017; Appendix Figure C.5; Appendix Table C.5). It is

uncertain whether these results for total antimony are attributed to stabilization of the spoil, as indicated above for nickel, or some other factor(s).

Aqueous concentrations of total selenium were higher at GH_GH1, between the Greenhills Creek Sedimentation Pond outlet and the antiscalant addition facility, throughout 2017 to 2021, relative to 2016 (Appendix Figure C.12; Appendix Table C.5). These results could be attributed to 2016 being a low flow year. The timing of the shift in concentrations (i.e., in 2017) and the fact that GH_GH1 is upstream of the antiscalant addition facility suggest that the increasing concentrations are not related to initiation of treatment with antiscalant. No other significant changes in selenium concentrations over time were identified for Teck's routine monitoring stations on Greenhills or Gardine Creeks.

Preventative treatment for calcite in Lower Greenhills Creek commenced October 23rd, 2017. Thus, water quality samples collected after that date (including all samples collected in 2021) are considered representative of conditions associated with calcite management. In 2021, the ratios between upstream (GH GH1) and downstream (GH GH2) concentrations of mine-related constituents were not significantly different when compared to before treatment in 2017 (Appendix Table C.6). Total and dissolved molybdenum were the only exceptions; concentrations were 87% (p-value = 0.005) and 88% (p-value = 0.002) higher, respectively, downstream relative to upstream in 2021 versus 2017 (Appendix Table C.6). Similar results for molybdenum were also observed in 2019 (Figure 3.1). The higher concentrations of molybdenum associated with calcite treatment in 2019 and 2021 were still well below the BC WQG (Appendix Figure C.10) and were as expected, due to molybdenum being a component of the antiscalant compound (Teck 2019b). The lack of a difference in the ratio of concentrations between GH GH1 and GH GH2 in 2020 is likely attributed to a dip in molybdenum concentrations at GH GH2 in June of that year (Figure 3.1). This dip likely reflects reduced dosing at the start of June 2020, when flows in Lower Greenhills Creek were outside the allowable window that is used to maintain the correct dose of antiscalant within the creek (Teck 2021c). Regardless, it can be concluded that, overall, concentrations of mine-related constituents in Lower Greenhills Creek have not undergone unexpected changes relative to upstream following the application of antiscalant.

3.2 Substrate Quality

3.2.1 Calcite

In 2021, calcite measurements completed as part of the Regional Calcite Monitoring Program (Robinson et al. 2022) and the GGCAMP indicated that calcified substrates were present throughout Greenhills Creek (Table 3.1; Appendix Tables D.1 to D.4). No statistically significant differences in C_p were identified among areas on Upper and Lower Greenhills Creek in 2021,

Figure 3.1: Monthly Mean Concentrations of Analytes Showing Significant Differences Before and After Calcite Treatment for Stations Upstream (GH_GH1) and Downstream (GH_GH2) from the Water Treatment Facility, 2017 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Grey shading represents prevention-mode calcite treatment. Only analytes with significant overall p-values in the ANOVA table were included in the plots.

Figure 3.1: Monthly Mean Concentrations of Analytes Showing Significant Differences Before and After Calcite Treatment for Stations Upstream (GH_GH1) and Downstream (GH_GH2) from the Water Treatment Facility, 2017 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Grey shading represents prevention-mode calcite treatment. Only analytes with significant overall p-values in the ANOVA table were included in the plots.
Watercourse	Station ID	UTM Coordinates (NAD83, 11U)			Calcite Index Prime (CI')						
		Easting	Northing	2015	2016	2017	2018	2019	2020	2021	2021
	RG_GHUT-6	654138	5550027	-	-	2.2	2.8	2.9	2.2	1.9	1.8
	RG_GHUT-5	654127	5549988	-	-	1.7	2.5	2.6	2.5	1.7	1.7
	RG_GHUT-4	654134	5549945	-	-	1.1	2.3	2.9	2.6	2.3	2.2
	RG_GHUT-3	654123	5549927	-	-	2.7	2.8	3.0	2.5	1.6	1.5
	GREE4-75	654152	5549910	2.8	2.5	2.3	2.6	2.3	2.7	2.7	2.7
	RG_GHUT-2	654145	5549895	-	-	2.8	2.5	2.9	2.6	1.6	1.6
	RG_GHUT-1	654149	5549848	-	-	2.3	2.8	2.5	2.4	2.7	2.7
	RG_GH-CTF	654165	5549540	-	2.6	-	-	-	-	-	-
	GREE4-62.5	654195	5549512	2.7	-	-	-	-	-	-	-
	RG_GHNF-6	654336	5549159	-	-	2.8	2.6	3.0	2.9	2.2	2.2
	GREE4-50	654336	5549133	2.9	2.6	2.9	2.9	2.9	2.9	2.8	2.8
	RG_GHNF-5	654342	5549130	-	-	3.0	2.5	3.0	2.6	1.9	1.9
	RG_GHNF-4	654335	5549104	-	-	2.3	2.4	2.9	2.9	2.5	2.5
	RG_GHNF-3	654367	5549052	-	-	3.0	2.7	2.9	2.7	2.2	2.2
Upper	RG_GHNF-2	654375	5549036	-	-	2.9	2.7	3.0	2.5	1.9	1.9
Greenhills	RG_GHNF-1	654384	5549004	-	-	3.0	2.8	3.0	2.8	2.4	2.4
Creek	GREE4-37.5	654447	5548758	2.8	-	-	-	-	-	-	-
	GREE4-25	654512	5548365	2.8	2.7	2.8	2.8	1.8	2.9	2.6	2.6
	GRE-CA06	654451	5548079	-	2.6	-	-	-	-	-	-
	GREE4-12.5	654393	5547996	2.9	-	-	-	-	-	-	-
	RG_GHFF-6	654181	5547271	-	-	2.0	2.7	2.6	2.0	2.5	2.4
	RG_GHFF-5	654187	5547244	-	-	2.4	2.7	2.6	2.5	2.7	2.5
	GREE3-75	654172	5547243	2.5	2.4	2.7	2.5	1.6	2.6	2.7	2.7
	RG_GHFF-4	654161	5547200	-	-	2.2	2.5	2.8	2.5	2.6	2.6
	RG_GHFF-3	654135	5547185	-	-	1.8	2.6	2.8	2.5	2.3	2.2
-	RG_GHFF-2	654118	5547137	-	-	2.0	2.5	2.2	2.2	2.7	2.6
	RG_GHFF-1	654099	5547120	-	-	2.6	2.6	2.2	2.3	2.2	2.0
	GREE3-62.5	654048	5547076	2.7	-	-	-	-	-	-	-
	GREE3-50	653990	5546883	2.5	2.4	2.5	2.5	2.3	2.6	2.9	2.9
-	GREE3-37.5	653954	5546673	2.2	-	-	-	-	-	-	-
	GREE3-25	653918	5546481	2.6	1.7	2.4	2.4	1.8	2.5	2.4	2.4

Table 3.1: Calcite Indices (CI and CI') for Monitoring Locations on Greenhills and Gardine Creeks, 2015 to 2021

Calcite Ind

Calcite Index 1.51 to 2.00. Calcite Index 2.01 to 2.50.

.50. Calcite Index ≥ 2.51.

Notes: ID = identifier; UTM = Universal Transverse Mercator; NAD = North American Datum; - = no data; ≥ = greater than or equal to.

^a From 2015 to 2020, data for Reach 1 of Gardine Creek were reported as an average of three stations. In 2021, the data were reported for individual stations.

Watercourse	Station ID		UTM Coordinates (NAD83, 11U)			Calcite Index Prime (CI')						
			Easting	Northing	2015	2016	2017	2018	2019	2020	2021	2021
	GH_	DSAF	653543	5545805	-	-	-	1.5	-	-	-	-
	RG_GHBP-6		653547	5545677	-	2.4	2.4	2.1	2.0	1.9	1.2	1.0
	GH_GI	REE1-75	653534	5545668	1.4	2.1	2.1	1.4	1.2	1.3	1.2	1.2
Lower	RG_C	GHBP-5	653538	5545647	-	1.9	1.9	1.4	1.4	1.1	0.92	0.44
Croophillo	RG_GHBP-4		653538	5545628	-	0.72	0.72	1.6	0.76	0.50	0.90	0.42
Greening	RG GHBP-3		653521	5545623	-	0.68	0.68	0.24	0.62	0.42	0.90	0.45
Сгеек	RG GHBP-2		653513	5545618	-	0.52	0.52	0.40	0.54	0.64	0.90	0.47
	RG_C	GHBP-1	653501	5545593	-	0.30	0.30	0.32	0.72	0.30	0.86	0.36
	GH_GREE1-50		653494	5545590	0.88	0.90	0.90	0.26	0.54	0.11	1.0	0.26
	GH_GI	REE1-25	653386	5545504	0.30	0.23	0.23	0.23	0.21	0.47	1.1	0.86
	RG_GAUT-6		653321	5549045	-	-	-	-	0	0	0	0
	RG_GAUT-5		653346	5549023	-	-	-	-	0	0	0	0
	RG_GAUT-4		653379	5548991	-	-	-	-	0	0	0	0
	RG_GAUT-3		653392	5548984	-	-	-	-	0	0	0	0
	RG_GAUT-2		653431	5548953	-	-	-	-	0.08	0	0	0
	RG_C	GAUT-1	653451	5548928	-	-	-	-	0	0	0.14	0.04
		GARD1-75	653316	5549076							0	0
Gardine Creek	GARD1 ^a	GARD1-50	653641	5548601	0.32	0.14	0.60	0.64	0.50	0.60	0	0
		GARD1-25	653316	5549076							2.2	2.1
	RG (GANF-6	654125	5547829	-	-	-	-	1.8	1.9	2.0	1.9
	RG GANF-5		654186	5547833	-	-	-	-	1.5	2.4	2.1	2.0
	RG GANF-4		654204	5547822	-	-	-	-	2.2	2.3	1.3	1.1
	RG_GANF-3		654234	5547802	-	-	-	-	1.9	1.9	1.0	0.55
	RG_C	GANF-2	654247	5547794	-	-	-	-	2.2	2.6	1.0	0.50
	RG_C	GANF-1	654277	5547746	-	-	-	-	1.6	1.2	1.1	0.67

Table 3.1: Calcite Indices (CI and CI') for Monitoring Locations on Greenhills and Gardine Creeks, 2015 to 2021

Calcite Index 0 to 0.50.

Calcite Index 1.51 to 2.00.

Calcite Index 0.51 to 1.00. Calcite Index 1.00 to 1.50. Calcite Index 2.01 to 2.50.

Calcite Index ≥ 2.51.

Notes: ID = identifier; UTM = Universal Transverse Mercator; NAD = North American Datum; - = no data; ≥ = greater than or equal to.

^a From 2015 to 2020, data for Reach 1 of Gardine Creek were reported as an average of three stations. In 2021, the data were reported for individual stations.

whereas C_p was significantly lower for Lower Greenhills Creek relative to Upper Greenhills Creek during previous years of monitoring (i.e., 2017 to 2020; Appendix Table D.5). However, C_p' values for the areas on Upper Greenhills Creek were approximately double the values for Lower Greenhills Creek in 2021 (Figure 3.2; Appendix Tables D.1 to D.4). This suggests that although calcite was frequently encountered on Lower Greenhills Creek, the assessed particles were not fully covered in calcite, whereas particles from Upper Greenhills Creek were more often fully covered in calcite (hence higher C_p' values for Upper Greenhills Creek). Concretion scores (C_c) were also significantly higher in Upper Greenhills Creek relative to Lower Greenhills Creek throughout 2017 to 2021 (Figure 3.2; Appendix Table D.5). The greater incidence of full calcite coverage and concretion (Table 3.2) in Upper versus Lower Greenhills Creek is evident in the CI and Cl' values (Table 3.1). Within Lower Greenhills Creek specifically, CI showed little variability within increasing distance downstream (Table 3.1), but Cl' and C_c decreased with increasing distance downstream until GH_GREE1-25, which is 0.12 km from the Greenhills Creek mouth (Tables 3.1 and 3.2).

Calcite presence and concretion were low in Gardine Creek upstream from the seeps (RG_GAUT; Figures 2.2 and 3.3; Tables 3.1 and 3.2; Appendix Table D.6). An increase in C_p , C_p ', C_c , and overall CI and CI' values was observed downstream of where the seeps first enter Gardine Creek (i.e., at and downstream from regional monitoring location GARD1-25, which is 0.64 km from the Gardine Creek mouth; Figure 2.2; Tables 3.1 and 3.2; Appendix Table D.7), including at RG_GANF. Although there was some variability among individual sampling stations, C_c , and overall CI and CI' tended to decrease within increasing distance downstream from GARD1-25 (Tables 3.1 and 3.2).

Overall, calcified substrates were found throughout Greenhills Creek and in Gardine Creek within and downstream from the seeps from the GHO east spoil; calcified substrates were encountered infrequently upstream from the seeps on Gardine Creek. Concretion was highest in Upper Greenhills Creek and lowest in Lower Greenhills Creek and then Gardine Creek upstream from the seeps. The high level of calcite presence (C_p and C_p ') and concretion at areas on Upper Greenhills Creek was reflected in the higher CI and CI' scores relative to other areas on Lower Greenhills and Gardine Creeks.

No changes in C_p over time from 2017 to 2020 were identified for the biological monitoring areas on Upper Greenhills Creek, but changes to C_p , in addition to high-magnitude changes in C_c , were identified for Lower Greenhills Creek over the same period (Table 3.2; Appendix Table D.5). In 2021, C_p for Lower Greenhills Creek was 32% higher than in 2017 and was also higher than C_p values for 2018 to 2020 (i.e., the first three years of antiscalant addition). The field crew noted that, in September 2021, there were more particles with calcite present relative to previous years,

Figure 3.2: Calcite Presence and Concretion Scores for Monitoring Areas on Greenhills Creek, 2017 to 2021

Note: In 2021, calcite presence was measured using both presence/absence and proportional methods.

Watercourse	Station ID	UTM Coordinates		2015	2016	2017	2018	2019	2020	2021
		(NAD83, 11U)								
		Easting	Northing							
	RG_GHUT-6	654138	5550027	-	-	1.2	1.5	1.9	1.3	0.88
	RG_GHUT-5	654127	5549988	-	-	0.70	1.5	1.6	1.5	0.70
	RG_GHUT-4	654134	5549945	-	-	0.08	1.3	1.9	1.6	1.3
	RG_GHUT-3	654123	5549927	-	-	1.7	1.8	2.0	1.5	0.60
	GREE4-75	654152	5549910	1.8	1.5	1.4	1.6	1.3	1.8	1.7
	RG_GHUT-2	654145	5549895	-	-	1.8	1.5	1.9	1.6	0.64
	RG_GHUT-1	654149	5549848	-	-	1.3	1.8	1.5	1.4	1.7
	GREE4-62.5	654195	5549512	1.8	-	-	-	-	-	-
	RG_GHNF-6	654336	5549159	-	-	1.8	1.6	2.0	1.9	1.2
	GREE4-50	654336	5549133	1.9	1.7	1.9	1.9	1.9	1.9	1.8
	RG_GHNF-5	654342	5549130	-	-	2.0	1.5	2.0	1.6	0.88
	RG_GHNF-4	654335	5549104	-	-	1.3	1.4	1.9	1.9	1.5
	RG_GHNF-3	654367	5549052	-	-	2.0	1.7	1.9	1.7	1.2
Upper	RG_GHNF-2	654375	5549036	-	-	1.9	1.7	2.0	1.5	0.86
Greenhills	RG_GHNF-1	654384	5549004	-	-	2.0	1.8	2.0	1.8	1.4
Creek	GREE4-37.5	654447	5548758	1.8	-	-	-	-	-	-
	GREE4-25	654512	5548365	1.8	1.7	1.8	1.8	0.81	1.9	1.6
	GREE4-12.5	654393	5547996	1.9	-	-	-	-	-	-
	RG_GHFF-6	654181	5547271	-	-	0.96	1.7	1.6	0.98	1.5
	RG_GHFF-5	654187	5547244	-	-	1.4	1.7	1.6	1.5	1.7
	GREE3-75	654172	5547243	1.6	1.5	1.7	1.6	0.64	1.6	1.7
	RG_GHFF-4	654161	5547200	-	-	1.2	1.5	1.8	1.5	1.6
	RG_GHFF-3	654135	5547185	-	-	0.80	1.6	1.8	1.5	1.3
	RG_GHFF-2	654118	5547137	-	-	1.0	1.5	1.2	1.2	1.7
	RG_GHFF-1	654099	5547120	-	-	1.6	1.6	1.4	1.3	1.3
	GREE3-62.5	654048	5547076	1.7	-	-	-	-	1.5	-
	GREE3-50	653990	5546883	1.6	1.4	1.5	1.5	1.3	1.6	1.9
	GREE3-37.5	653954	5546673	1.3	-	-	-	-	1.6	-
	GREE3-25	653918	5546481	1.6	0.84	1.5	1.4	0.81	1.5	1.4

Table 3.2: Calcite Concretion Scores for Stations on Greenhills and Gardine Creeks, 2015 to 2021

Concretion Score 0 to 0.50.

Concretion Score 0.51 to 1.00.

Concretion Score 1.01 to 1.50.

Concretion Score 1.51 to 2.00.

Notes: ID = identifier; UTM = Universal Transverse Mercator; NAD = North American Datum; - = no data.

^a From 2015 to 2020, data for Reach 1 of Gardine Creek were reported as an average of three stations. In 2021, the data were reported for individual stations.

Watercourse	Station ID	UTM Coordinates (NAD83, 11U)		2015	2016	2017	2018	2019	2020	2021
		Easting	Northing							
	GH_DSAF	653543	5545805	-	-	-	0.70	-	-	-
	RG_GHBP-6	653547	5545677	-	-	1.4	1.1	1.0	1.1	0.24
	GH_GREE1-75	653534	5545668	0.10	0.61	1.1	0.57	0.28	0.39	0.18
	RG_GHBP-5	653538	5545647	-	-	0.90	0.44	0.50	0.30	0
Lower	RG_GHBP-4	653538	5545628	-	-	0	0.64	0.08	0.02	0
Creek	RG_GHBP-3	653521	5545623	-	-	0	0	0	0	0
Crook	RG_GHBP-2	653513	5545618	-	-	0	0.02	0	0.04	0
	RG_GHBP-1	653501	5545593	-	-	0	0	0	0	0
	GH_GREE1-50	653494	5545590	0.02	0.20	0.14	0.03	0	0	0
	GH_GREE1-25	653386	5545504	0	0	0.02	0	0	0	0.05
	RG_GAUT-6	653321	5549045	-	-	-	-	0	0	0
	RG_GAUT-5	653346	5549023	-	-	-	-	0	0	0
	RG_GAUT-4	653379	5548991	-	-	-	-	0	0	0
	RG_GAUT-3	653392	5548984	-	-	-	-	0	0	0
	RG_GAUT-2	653431	5548953	-	-	-	-	0	0	0
	RG_GAUT-1	653451	5548928	-	-	-	-	0	0	0
	GARD1-75	653316	5549076							0
Gardine Creek	GARD1 ^a GARD1-50	653641	5548601	0.06	0.02	0.28	0.29	0.01	0.22	0
	GARD1-25	653316	5549076							1.2
	RG_GANF-6	654125	5547829	-	-	-	-	0.78	0.90	0.98
	RG_GANF-5	654186	5547833	-	-	-	-	0.54	1.4	1.1
	RG_GANF-4	654204	5547822	-	-	-	-	1.2	1.3	0.42
	RG_GANF-3	654234	5547802	-	-	-	-	0.86	0.98	0.04
	RG_GANF-2	654247	5547794	-	-	-	-	1.2	1.6	0
	RG GANF-1	654277	5547746	-	-	-	-	0.70	0.38	0.12

Table 3.2: Calcite Concretion Scores for Stations on Greenhills and Gardine Creeks, 2015 to 2021

Concretion Score 0 to 0.50.

Concretion Score 0.51 to 1.00.

Concretion Score 1.01 to 1.50.

Concretion Score 1.51 to 2.00.

Notes: ID = identifier; UTM = Universal Transverse Mercator; NAD = North American Datum; - = no data.

^a From 2015 to 2020, data for Reach 1 of Gardine Creek were reported as an average of three stations. In 2021, the data were reported for individual stations.

Figure 3.3: Calcite Proportion and Concretion Scores for Monitoring Areas on Gardine Creek, 2017 to 2021

Note: In 2021, calcite presence was measured using both presence/absence and proportional methods.

but that calcite coverage was not complete and there was visibly less concretion. The latter observation aligns with the temporal contrasts for C_c , which indicate that concretion was 29%, 39%, and then 89% lower in Lower Greenhills Creek in 2019, 2020, and 2021, respectively, relative to the pre-treatment year (2017; Table 3.2; Appendix Table D.5). The observed decreases in concretion year-over-year in Lower Greenhills Creek are largely attributed to successful treatment with antiscalant. Also, the prevention of additional calcite precipitation following antiscalant addition may allow natural processes (e.g., high flows and forces on substrates during freshet) to support recovery of the natural substrates. It is uncertain whether the increase in C_p in 2021 is also attributed to antiscalant addition (on its own or in combination with natural factors) or other potential influences on Lower Greenhills Creek in 2018 to 2021 (relative to 2017) provides support that, overall, the calcite management facility has been operating effectively to prevent further calcification of the stream bed.

3.2.2 Sediment in Creeks

Particle sizes and TOC content differed among biological monitoring areas on Lower Greenhills and Gardine creeks in 2021 but were consistent over time within each area. Sediment samples collected from RG GHBP on Lower Greenhills Creek were primarily composed of silt with smaller proportions of clay (RG GHBP-1, RG GHBP-4, and RG GHBP-5) or a mix of sand and silt with smaller proportions of clay (Appendix Table D.8). Samples from the furthest upstream biological monitoring area on Gardine Creek (RG GAUT) were predominantly sand. However, the sample from RG GAUT-4 had higher proportions of silt and gravel relative to the other four samples collected from RG GAUT in 2021. Each of the five sediment chemistry samples collected from RG GANF on Gardine Creek downstream from the seeps were a mix of sand and silt (Appendix Table D.8). In addition to generally having more clay and less sand/gravel, the samples from RG GHBP had higher TOC content (i.e., mean = 15%) relative to RG GAUT (mean = 7.7%) and RG GANF (mean = 9.3%; n = 5 for each area; Appendix Tables D.8 and D.9). Overall, the sediment particle size and TOC data for each biological monitoring area in 2021 were consistent with findings from 2018 to 2020 (Minnow 2019b, 2020a), indicating little to no annual change in substrate texture at RG_GHBP, RG_GAUT, or RG_GANF. This conclusion was also largely supported by the results of the statistical tests for differences among years (Appendix Table D.10).

Concentrations of nickel, fluorene, 2-methylnaphthalene, naphthalene, and phenanthrene in at least four of the five "bulk" sediment samples collected from RG_GHBP on Lower Greenhills Creek in 2021 exceeded the upper BC WSQG; similarly, selenium concentrations were above the

alert concentration (Figure 3.4; Appendix Table D.8).³³ Concentrations of these constituents were also consistently elevated relative to their respective reference area normal ranges (Figure 3.4). In 2021, concentrations of cadmium, manganese, zinc, acenaphthylene, benzo(a)pyrene, benzo(g,h,i)perylene, chrysene, dibenz(a,h)anthracene, fluoranthene, and pyrene exceeded the lower, but not upper, BC WSQG in at least one sample from RG_GHBP (Figure 3.4; Appendix Table D.8). Concentrations of cadmium and zinc were within reference area normal ranges in 2021 (Figure 3.4).

Concentrations of selenium, acenaphthene, chrysene, fluorene, 2-methylnaphthalene, naphthalene, and phenanthrene in at least one "bulk" sediment sample collected from RG_GAUT on upper Gardine Creek in 2021 exceeded the upper BC WSQG or alert concentration (Figure 3.4; Appendix Table D.8). However, selenium concentrations in sediments were consistently within the reference area normal range in 2021 (Figure 3.4). Concentrations of arsenic, cadmium, iron, manganese, nickel, silver, acenaphthylene, benzo(a)anthracene, benzo(a)pyrene, benzo(g,h,i)perylene, dibenz(a,h)anthracene, fluoranthene, and pyrene exceeded the lower, but not upper, BC WSQG in at least one sample (Figure 3.4; Appendix Table D.8). However, concentrations of arsenic, cadmium, and iron were within reference area normal ranges (Figure 3.4).

Concentrations of selenium, acenaphthene, chrysene, fluorene, 2-methylnaphthalene, naphthalene, and phenanthrene in at least one "bulk" sediment sample collected from RG_GANF on lower Gardine Creek in 2021 exceeded the upper BC WSQG or alert concentration (Figure 3.4; Appendix Table D.8). Concentrations of each of these constituents were also consistently above the reference area normal ranges, except for selenium (within the reference area normal range) and acenaphthene (no applicable reference area normal range; Figure 3.4). Concentrations of cadmium, nickel, acenaphthylene, benzo(a)anthracene, benzo(a)pyrene, dibenz(a,h)anthracene, fluoranthene, and pyrene exceeded the lower, but not upper, BC WSQG in at least three out of five samples (Figure 3.4; Appendix Table D.8). Concentrations of cadmium and nickel were within the reference area normal ranges in 2021 (Figure 3.4).

Of the metals and PAHs with "bulk" concentrations above the lower or upper BC WSQG or the alert concentration for selenium, most had concentrations that were dissimilar among areas. Silver was the only exception, given that concentrations were similar among areas in 2021 (Appendix Table D.9). Throughout 2019 to 2021, concentrations of arsenic and manganese were

³³ The LRLs for acenaphthene (five of five samples), benz(a)anthracene (two of five samples), and chrysene (two of five samples) were also elevated relative to the upper BC WSQG (Appendix Table D.8).

Figure 3.4: Concentrations of Analytes that Exceeded Sediment Quality Guidelines or the Alert Concentration for Selenium, Greenhills Creek, Gardine Creek, and Greenhills Creek Sedimentation Pond, September 2013 to 2021

Notes: Concentrations below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Solid red line = lower BC WSQG; hashed red line = upper BC WSQG (or alert concentration in the case of selenium). Grey shading = the reference area normal range (2.5th and 97.5th percentiles of pooled reference area distribution after removal of outliers). The lotic normal ranges were applied to the creek sites and the reference area normal ranges for lentic areas were applied to Greenhills Creek Sedimentation Pond. Normal ranges were excluded when 75% of the data values were censored (i.e., <LRL).

June 2022 66

Figure 3.4: Concentrations of Analytes that Exceeded Sediment Quality Guidelines or the Alert Concentration for Selenium, Greenhills Creek, Gardine Creek, and Greenhills Creek Sedimentation Pond, September 2013 to 2021

Notes: Concentrations below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Solid red line = lower BC WSQG; hashed red line = upper BC WSQG (or alert concentration in the case of selenium). Grey shading = the reference area normal range (2.5th and 97.5th percentiles of pooled reference area distribution after removal of outliers). The lotic normal ranges were applied to the creek sites and the reference area normal ranges for lentic areas were applied to Greenhills Creek Sedimentation Pond. Normal ranges were excluded when

75% of the data values were censored (i.e., <LRL).

Figure 3.4: Concentrations of Analytes that Exceeded Sediment Quality Guidelines or the Alert Concentration for Selenium, Greenhills Creek, Gardine Creek, and Greenhills Creek Sedimentation Pond, September 2013 to 2021

Notes: Concentrations below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Solid red line = lower BC WSQG; hashed red line = upper BC WSQG (or alert concentration in the case of selenium). Grey shading = the reference area normal range (2.5th and 97.5th percentiles of pooled reference area distribution after removal of outliers). The lotic normal ranges were applied to the creek sites and the reference area normal ranges for lentic areas were applied to Greenhills Creek Sedimentation Pond. Normal ranges were excluded when

75% of the data values were censored (i.e., <LRL).

Figure 3.4: Concentrations of Analytes that Exceeded Sediment Quality Guidelines or the Alert Concentration for Selenium, Greenhills Creek, Gardine Creek, and Greenhills Creek Sedimentation Pond, September 2013 to 2021

Notes: Concentrations below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Solid red line = lower BC WSQG; hashed red line = upper BC WSQG (or alert concentration in the case of selenium). Grey shading = the reference area normal range (2.5th and 97.5th percentiles of pooled reference area distribution after removal of outliers). The lotic normal ranges were applied to the creek sites and the reference area normal ranges for lentic areas were applied to Greenhills Creek Sedimentation Pond. Normal ranges were excluded when 75% of the data values were censored (i.e., <LRL).

Figure 3.4: Concentrations of Analytes that Exceeded Sediment Quality Guidelines or the Alert Concentration for Selenium, Greenhills Creek, Gardine Creek, and Greenhills Creek Sedimentation Pond, September 2013 to 2021

Notes: Concentrations below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Solid red line = lower BC WSQG; hashed red line = upper BC WSQG (or alert concentration in the case of selenium). Grey shading = the reference area normal range (2.5th and 97.5th percentiles of pooled reference area distribution after removal of outliers). The lotic normal ranges were applied to the creek sites and the reference area normal ranges for lentic areas were applied to Greenhills Creek Sedimentation Pond. Normal ranges were excluded when 75% of the data values were censored (i.e., <LRL).

Figure 3.4: Concentrations of Analytes that Exceeded Sediment Quality Guidelines or the Alert Concentration for Selenium, Greenhills Creek, Gardine Creek, and Greenhills Creek Sedimentation Pond, September 2013 to 2021

Notes: Concentrations below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Solid red line = lower BC WSQG; hashed red line = upper BC WSQG (or alert concentration in the case of selenium). Grey shading = the reference area normal range (2.5th and 97.5th percentiles of pooled reference area distribution after removal of outliers). The lotic normal ranges were applied to the creek sites and the reference area normal ranges for lentic areas were applied to Greenhills Creek Sedimentation Pond. Normal ranges were excluded when 75% of the data values were censored (i.e., <LRL).

June 2022 71

Figure 3.4: Concentrations of Analytes that Exceeded Sediment Quality Guidelines or the Alert Concentration for Selenium, Greenhills Creek, Gardine Creek, and Greenhills Creek Sedimentation Pond, September 2013 to 2021

Notes: Concentrations below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Solid red line = lower BC WSQG; hashed red line = upper BC WSQG (or alert concentration in the case of selenium). Grey shading = the reference area normal range (2.5th and 97.5th percentiles of pooled reference area distribution after removal of outliers). The lotic normal ranges were applied to the creek sites and the reference area normal ranges for lentic areas were applied to Greenhills Creek Sedimentation Pond. Normal ranges were excluded when 75% of the data values were censored (i.e., <LRL).

significantly higher at RG_GAUT (upper Gardine Creek) relative to RG_GHBP (Lower Greenhills Creek) or RG_GANF (lower Gardine Creek). Cadmium, nickel, and selenium concentrations were consistently and significantly lower on Gardine Creek versus Lower Greenhills Creek during the same time period; the opposite was true for iron concentrations (Appendix Table D.9). Zinc concentrations were highest in the samples from upper Gardine and Lower Greenhills creeks. Despite some year-to-year variability, concentrations of most PAHs (e.g., 2-methylnaphthalene, naphthalene) were highest at RG_GHBP on Lower Greenhills Creek and lowest at RG_GAUT on upper Gardine Creek (Appendix Table D.9). Calcium concentrations, which are a correlate for calcite, were consistently highest at RG_GHBP and RG_GANF from 2019 to 2021, which is unsurprising given the greater calcification of the substrates at these locations relative to RG_GAUT (see Section 3.2.1).

As suggested within the comparisons among areas, above, concentrations of most sediment metals that exceeded guidelines, as well as concentrations of calcium, at creek sampling areas remained relatively constant over time. Exceptions include concentrations of arsenic, which were generally lower at all creek monitoring areas in 2021 relative to 2019 and 2020, and iron, which had lower concentrations overall in 2021 relative to 2019 (Appendix Table D.10). Additionally, "bulk" concentrations of nickel (all creek areas) and zinc (Gardine Creek) in sediments generally increased over time. For most PAHs that had "bulk" sediment concentrations greater than BC WSQG, concentrations were generally higher in 2021 relative to 2019 and, depending on area, 2020 (e.g., chrysene at RG_GAUT versus RG_GANF; Appendix Table D.10).

Sediment sampling for SEA has been completed annually on Lower Greenhills and Gardine creeks since 2018 and 2019, respectively (Minnow 2019c, 2020a, 2021a). According to Tessier et al. (1979), metals associated with sediment fractions 1 to 4 (i.e., exchangeable and adsorbed metals, metals bound to carbonates, reducible metals and iron oxides, and metals bound to organic material, respectively) are considered potentially mobile, depending on environmental conditions. As indicated in Section 2.3.2.3, it would take highly unusual/aggressive reducing and oxidizing conditions, respectively, to mobilize fractions 3 and 4 and these conditions are not likely to occur in Greenhills and Gardine creeks. Therefore, constituent concentrations in sediment fractions 1 to 4 are considered to be a highly conservative screening of the potentially bioavailable sediment constituents. Metals associated with fraction 5 (residual metals) are considered immobile and not bioavailable.

On Lower Greenhills Creek, concentrations of cadmium (two of five samples) and selenium (all five samples) in sediment fractions 1 to 4 exceeded the upper BC WSQG or alert

concentration, respectively, in 2021 (Figure 3.5³⁴; Appendix Tables D.11 to D.15). Exceedance of the BC WSQG for cadmium was consistently based on concentrations in sediment fractions 2 (bound to carbonates) and 3 (reducible and iron oxide associated). Concentrations of manganese and nickel in sediment fractions 1 to 4 exceeded the lower, but not upper, BC WSQG in two and five SEA samples, respectively (Figure 3.5; Appendix Tables D.11 to D.15).

Two SEA samples collected from upper Gardine Creek in 2021 had selenium concentrations in fractions 1 to 4 that exceeded the alert concentration (Figure 3.6; Appendix Tables D.16 to D.20). Concentrations of cadmium, manganese, and nickel in sediment fractions 1 to 4 exceeded the lower, but not upper, BC WSQG in at least two of the five SEA samples from 2021 (Figure 3.6; Appendix Tables D.16 to D.20).

Concentrations of selenium in four of the five SEA samples collected from lower Gardine Creek in 2021 exceeded the alert concentration and the majority of the selenium was associated with sediment fraction 4 (metals bound to organic matter; Figure 3.7; Appendix Tables D.21 to D.25). Concentrations of cadmium and nickel in at least four out of five SEA samples exceeded the lower, but not upper, BC WSQG in 2021 (Figure 3.7; Appendix Tables D.21 to D.25).

The spatial and temporal comparisons of the SEA data speak to the complexity of the sediment chemistry data set for the GGCAMP (Appendix Tables D.26 and D.27). Regardless, the distribution of constituent concentrations among sediment fractions 1 to 5 was generally consistent among areas and years (Figures 3.5 to 3.7; Minnow 2020a, 2021a). The largest proportions of recovered cadmium were consistently within sediment fractions 2 (carbonate) and 3 (easily reducible and iron and manganese oxides) (Figures 3.5 to 3.7). This consistent pattern was evident despite differences in "bulk" sediment constituent concentrations among areas and changes over time (e.g., increasing concentrations at RG_GHBP; Appendix Tables D.26 and D.27). Calcium was also predominantly within fractions 2 and 3 for areas with calcified substrates (Figures 3.5 to 3.7; Appendix Table D.26). This is somewhat unexpected, given that calcium in the sediments tested by Tessier et al. (1979) was predominantly in fraction 5 (residual metals), followed by fraction 2 (carbonate). At RG_GAUT, where calcite is nearly absent (see Section 3.2.1), higher proportions of calcium were consistently reported in fraction 1

³⁴ In 2021, concentrations of cadmium, calcium, cobalt, nickel, and selenium in "bulk" sediments and the sums of sediment fractions 1 to 5 were in generally poorer agreement (Figure 3.5) relative to results for upper and lower Gardine Creek and the Greenhills Creek Sedimentation Pond (Figures 3.6 to 3.8). To date, a root cause for the differences in the laboratory results for RG_GHBP on Lower Greenhills Creek has not been identified. However, similar discrepancies were occasionally observed for particular parameters and areas/stations in previous years of monitoring (e.g., most parameters in RG_GAUT-1 in 2019 and selenium in each of the five samples collected from RG_GAUT on upper Gardine Creek in 2020) (Minnow 2020a,2021a).

Figure 3.5: Comparisons of Metal Concentrations (Dry Weight Basis) in Sequentially Extracted Sediment Fractions to British Columbia Working Sediment Quality Guidelines, Lower Greenhills Creek (RG_GHBP), 2021

Figure 3.6: Comparisons of Metal Concentrations (Dry Weight Basis) in Sequentially Extracted Sediment Fractions to British Columbia Working Sediment Quality Guidelines, Upper Gardine Creek (RG_GAUT), 2021

Figure 3.7: Comparisons of Metal Concentrations (Dry Weight Basis) in Sequentially Extracted Sediment Fractions to British Columbia Working Sediment Quality Guidelines, Lower Gardine Creek (RG_GANF), 2021

0

(exchangeable and adsorbed). These results are in good agreement with a more recent study of lake sediments completed using a modified version of the Tessier et al. (1979) extraction process (He et al. 2015). The results of the study indicated that calcium was primarily found in fraction 1 (exchangeable and adsorbed), followed by fractions 2 (carbonate) and 3 (easily reducible and iron and manganese oxides) (He et al. 2015; see also Figure 3.6). Cobalt and manganese were typically more evenly distributed among the sediment fractions, except manganese was more often found in oxide form, rather than in the organic-bound fraction (Figures 3.5 to 3.7). Nickel was consistently predominantly associated with sediment fractions 3 to 5 (residual metals fraction), with lesser amounts in fraction 2. Overall, nickel concentrations in fractions 1 to 4 were typically highest at RG_GHBP, followed by RG_GAUT, then RG_GANF (Appendix Table D.26). Most sequentially-extracted selenium was in fraction 4 (organic bound), regardless of when or where sediments were sampled (Appendix Tables D.26 and D.27). Finally, zinc was primarily associated with fractions 3 (easily reducible and bound to iron and manganese oxides) and 5 (residual).

As described in Section 2.3.2.3, statistical tests were completed to answer the question of whether sediment chemistry downstream of the antiscalant addition facility has changed relative to upstream after the introduction of water treatment (see Appendix Table D.28). Overall, concentrations of manganese, selenium, and a variety of PAHs, including benzo(a)pvrene, benzo(b&i)fluoranthene, benzo(e)pyrene, benzo(g,h,i)perylene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, phenanthrene, and pyrene, in "bulk" sediments collected from RG GHBP were higher during the treatment period (2018 to 2021) relative to before (2017; Appendix Table D.28). Concentrations of boron, sodium, titanium, zinc, benz(a)anthracene, and dibenz(a,h)anthracene were also higher in one or two of the post-treatment years relative to 2017. Although some of the MODs for the "after" versus "before" treatment periods are relatively large (i.e., >100% for individual PAHs), there is still some uncertainty as to whether observed increases are attributable to water treatment or some combination of factors that may or may not include water treatment. For example, the sediments in the Greenhills Creek Sedimentation Pond have accumulated higher concentrations of PAHs relative to lotic habitats (Appendix Table D.28). Activities or events that disturb and resuspend sediments within the pond (e.g., dredging to remove sediments, overfilling of the pond, and heavy precipitation events) can lead to flushing of PAH-laden sediments to lotic environments downstream (Crane et al. 2010).

The SQI calculated for RG_GHBP on Lower Greenhills Creek and RG_GAUT and RG_GANF on Gardine Creek in 2021, as well as years prior, were indicative of poor sediment quality and were lower than SQI for most lotic sampling areas included in the 2017 to 2019 RAEMP report (Appendix Table D.29; Minnow 2020d). Within the Greenhills Creek watershed, SQI scores were,

on average, lower on Lower Greenhills Creek relative to Gardine Creek. In 2021, the scope and frequency of BC WSQG exceedances were higher for RG_GAUT (upper Gardine Creek) than RG_GANF (lower Gardine Creek), but the amplitude of exceedances was similar between the two areas.

The SQI also indicate that overall sediment quality was lower at RG_GHBP in 2020 and 2021 relative to previous years, and at RG_GAUT and RG_GANF in 2021 relative to previous years (Appendix Table D.29). In 2021, the frequency and amplitude of BC WSQG exceedances were greater than any other year at RG_GHBP on Lower Greenhills Creek. Similarly, 2021 represented the year with the greatest scope, frequency, and amplitude of BC WSQG exceedances at RG_GAUT and the greatest amplitude of exceedances at RG_GANF (Appendix Table D.29).

It is noteworthy that although elevated concentrations of sediment constituents were identified in Lower Greenhills and Gardine creeks, sediment in erosional, lotic systems is not generally considered to be a primary pathway for aquatic effects. Sediment and fines generally accumulate in small deposits near banks and pools in lotic systems. As such, changes in the bioavailability of constituents in the sediment in Lower Greenhills or Gardine creeks is not anticipated to have the same biological impact as would be expected from changes in water quality.

3.2.3 Sediment in Greenhills Creek Sedimentation Pond

As indicated in Section 2.3.2.1, sediment samples were collected from five of the six targeted sampling sites in Greenhills Creek Sedimentation Pond (RG_GHP) in 2021. Consistent with sampling in 2020 (Minnow 2021a), dense vegetation at RG_GHP-2 prevented successful collection of acceptable surface sediments, despite multiple sampling attempts. Sediment samples collected from the remaining stations in the pond were predominantly silt and clay and had TOC contents that ranged from 17% to 22% which is significantly higher relative to the creek sampling areas (Appendix Tables D.8 and D.9; Section 3.2.2).

Concentrations of selenium and some PAHs (i.e., fluorene, 2-methylnaphthalene, naphthalene, and phenanthrene) in sediments from Greenhills Creek Sedimentation Pond were consistently greater than the alert concentration and the upper BC WSQG, respectively, as well as applicable reference area normal ranges (Figure 3.4). Additionally, "bulk" concentrations of acenaphthylene and benz(a)anthracene in one sample were greater than the upper BC WSQG (Appendix Table D.8).³⁵ Concentrations of arsenic, cadmium, manganese, nickel, zinc, acenaphthylene, benzo(a)pyrene, dibenz(a,h)anthracene, fluoranthene, and pyrene exceeded

³⁵ The LRLs for acenaphthene, benz(a)anthracene, and chrysene were greater than the upper BC WSQG for at least two samples each (Appendix Table D.8). Additionally, the LRLs for acenaphthylene, dibenz(a)anthracene, fluoranthene, and pyrene were greater than the lower BC WSQG for at least one sample each.

the lower, but not upper, BC WSQG in at least two out of five samples (Figure 3.4; Appendix Table D.8). Concentrations of arsenic and cadmium were within reference area normal ranges in 2021, but two of the five samples had manganese concentrations above the reference area normal range (Figure 3.4). Nickel concentrations in sediments were consistently above the reference area normal range in 2021.

Constituents associated with exceedances of the BC WSQG or alert concentration for selenium in 2021 (Figure 3.4) were often found at higher concentrations in the pond relative to creek sampling areas on Gardine Creek, but not Lower Greenhills Creek (Appendix Table D.9). Iron, manganese, acenaphthylene, benzo(a)anthracene, benzo(g,h,i)perylene (2021 only), chrysene (2021 only), and dibenz(a,h)anthracene were the exceptions in that concentrations were typically higher, or at least comparable, in samples from Gardine Creek, relative to the pond (Appendix Table D.9).

Similar to the creek sampling areas (Section 3.2.2), concentrations of most sediment metals that exceeded guidelines, calcium, and most PAHs remained relatively constant over time in "bulk" sediments from Greenhills Creek Sedimentation Pond (Appendix Table D.10). Dibenz(a,h)anthracene, which had higher concentrations in the samples collected in 2020 relative to 2019, was the exception (Appendix Table D.10).

Sediment sampling for SEA has been completed annually at RG_GHP since 2019 (Minnow 2020a, 2021a). In 2021, concentrations of cadmium and nickel in sediment fractions 1 to 4 consistently exceeded the lower BC WSQG (Figure 3.8; Appendix Tables D.30 to D.34). Exceedance of the lower BC WSQG for cadmium was based on concentrations in sediment fractions 2 (carbonate-bound) and 3 (easily reducible and iron and manganese oxides; Appendix Tables D.30 to D.34). Concentrations of selenium in sediment fractions 1 to 4 consistently exceeded the alert concentration, whereas concentrations of arsenic, silver, and zinc in fractions 1 to 4 did not exceed any BC WSQG (Figure 3.8; Appendix Tables D.30 to D.34).

Overall, the distribution of constituent concentrations among sediment fractions 1 to 5 was generally consistent with the creek sampling areas and over time in the Greenhills Creek Sedimentation Pond (Figures 3.5 to 3.8; Minnow 2020a, 2021a). Cadmium was primarily within sediment fractions 2 (carbonate) and 3 (easily reducible and iron and manganese oxides) and concentrations in these fractions were stable over time (Figures 3.5 to 3.8; Appendix Table D.27). Calcium was predominantly in fractions 1 (exchangeable and adsorbed), 2, and/or 3, consistent with the findings of He et al. (2015). Cobalt and manganese were more evenly distributed among the sediment fractions, except for relatively low concentrations in fractions 1 and 4, respectively (Figures 3.5 to 3.8). From 2018 to 2021, nickel was predominantly associated with fractions 3 to 5 and concentrations in the potentially mobile fractions were stable and typically lower in the pond

Figure 3.8: Comparisons of Metal Concentrations (Dry Weight Basis) in Sequentially Extracted Sediment Fractions to British Columbia Working Sediment Quality Guidelines, Greenhills Creek Sedimentation Pond (RG_GHP), 2021

relative to Lower Greenhills Creek (except in 2021), but higher in the pond relative to Gardine Creek (Appendix Tables D.26 and D.27). Similar to the creek samples, most sequentially-extracted selenium was in fraction 4 (organic bound) from 2019 to 2021. Finally, zinc was primarily associated with fractions 3 (easily reducible and iron and manganese oxides) and 5 (residual metals), regardless of year. Again, the consistency among areas and years in terms of the distributions of concentrations among the sediment fractions emphasizes the need for the study team to re-evaluate the need for annual SEA.

The SQI calculated for the Greenhills Creek Sedimentation Pond in 2021, as well as years prior, were indicative of poor overall sediment quality and were lower than SQI derived for creeks (Section 3.2.2) and natural or naturalized lentic areas in the Elk River watershed (Appendix Table D.29; Minnow 2020e). Despite some year-to-year variability in scope, frequency, and amplitude of BC WSQG exceedances, the overall SQI for Greenhills Creek Sedimentation Pond have not showed a consistent increase or decrease over time (Appendix Table D.29).

3.3 Benthic Invertebrate Community

3.3.1 Greenhills and Gardine Creeks

0))

Results for the area-based kicks indicate that benthic invertebrate densities in 2021 were similar among RG_GHUT, RG_GHNF, and RG_GHBP, much like in 2020; however, unlike 2020, densities were lower at RG_GHFF relative to the other biological monitoring areas in 2021 (Figure 3.9 and 3.10; Appendix Table E.20; Minnow 2021a). Benthic invertebrate biomass was significantly lower throughout Upper Greenhills Creek, relative to Lower Greenhills Creek, in 2021. Together, the benthic invertebrate density and biomass results for Greenhills Creek indicate that the availability of food for fish was better in Lower Greenhills Creek, relative to Upper Greenhills Creek, in 2021.

Comparisons among areas for the remaining area-based community endpoints indicated that %Diptera was significantly lower at Lower Greenhills Creek versus all untreated sampling areas on Upper Greenhills Creek (Appendix Table E.20). These results are consistent with those for 2016 and 2018 through 2020 (Figures 3.9 and 3.10; Minnow 2021a) and indicate that organisms that are more tolerant of degraded conditions are more predominant in the community of Upper Greenhills versus Lower Greenhills Creek (Barbour et al. 1999; Minnow 2018c). There were no differences in LPL richness, %Ephemeroptera, or %Plecoptera among areas in 2021, but family richness and %Trichoptera were lowest at RG_GHNF and RG_GHFF on Upper Greenhills Creek (Appendix Table E.20). Overall, the comparisons of benthic invertebrate community endpoints appear to indicate that the Upper Greenhills Creek benthic invertebrate community is more impacted relative to Lower Greenhills Creek.

Figure 3.9: Benthic Invertebrate Community Endpoints for Area-based Kick Samples, Upper Greenhills and Gardine Creeks, September 2016 to 2021

Figure 3.9: Benthic Invertebrate Community Endpoints for Area-based Kick Samples, Upper Greenhills and Gardine Creeks, September 2016 to 2021

Figure 3.9: Benthic Invertebrate Community Endpoints for Area-based Kick Samples, Upper Greenhills and Gardine Creeks, September 2016 to 2021

Figure 3.10: Benthic Invertebrate Community Endpoints for Area-based Kick Samples, Lower Greenhills Creek, September 2016 to 2021

Figure 3.10: Benthic Invertebrate Community Endpoints for Area-based Kick Samples, Lower Greenhills Creek, September 2016 to 2021

Figure 3.10: Benthic Invertebrate Community Endpoints for Area-based Kick Samples, Lower Greenhills Creek, September 2016 to 2021

0

For the timed kick samples, qualitative comparisons among areas and to reference area normal ranges indicated that, despite some similarities among samples collected from RG GHNF (Upper Greenhills Creek) and RG GHCKD (Lower Greenhills Creek), there were some subtle differences between the two areas in 2021. Total benthic invertebrate abundances at both biological monitoring areas were within the reference area normal range (Figures 3.11 and 3.12). Plecopteran and dipteran abundances were above their respective reference area normal ranges and these taxa represented a large proportion of the organisms identified in the timed kick samples. However, similar to the area-based samples (above), Diptera were more dominant in the samples from RG GHNF on Upper Greenhills Creek relative to Lower Greenhills Creek (Appendix Table E.19). Proportions of Ephemeroptera and Trichoptera (i.e., two groups of EPT taxa) in the samples were higher at RG GHCKD than RG GHNF (Figures 3.11 and 3.12; Appendix Table E.19), consistent with the results for the area-based samples (Appendix Table E.18). In 2021, LPL and family richness were both below their respective reference area normal ranges at RG GHNF; however, family richness at RG GHCKD on Lower Greenhills Creek was higher, and within the regional reference area normal range (Figures 3.11 and 3.12). Overall, it appears that benthic invertebrate community endpoints for RG GHCKD on Lower Greenhills Creek may have reflected slightly better aquatic environmental conditions and a healthier benthic invertebrate community, relative to RG GHNF on Upper Greenhills Creek, in 2021.

On average, benthic invertebrate densities were higher at RG_GANF, the furthest downstream biological monitoring area on Gardine Creek, relative to upstream at RG_GAUT; however, biomass was comparable between the two areas (Figure 3.9; Appendix Table E.18). These results are likely attributed to chironomid (a dipteran family of organisms) larvae, which tend to have smaller body sizes relative to EPT taxa, being more abundant relative to Plecoptera and Trichoptera in the RG_GANF versus RG_GAUT samples. Again, RG_GAUT and RG_GANF are upstream and downstream, respectively, from the seeps from the GHO east spoil; therefore, the higher %Diptera in the samples from RG_GANF likely reflect this taxonomic group's ability to tolerate a wider range of environmental conditions.

Changes in benthic invertebrate community endpoints over time were evaluated for the area-based samples collected from Upper Greenhills Creek (RG_GHUT, RG_GHNF, and RG_GHFF), Lower Greenhills Creek (RG_GHBP), and Gardine Creek (RG_GAUT and RG_GANF). Few consistent increasing or decreasing trends over time were identified for the biological monitoring areas on Greenhills Creek (Figures 3.9 and 3.10; Appendix Table E.20). At RG_GHFF on Upper Greenhills Creek, %EPT was higher in 2017 to 2020 relative to 2016, but in 2021, %EPT was lower and more comparable to 2016 than 2017 to 2020. It appears this pattern was likely driven by opposing shifts in %Ephemeroptera and %Plecoptera

Figure 3.11: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Upper Greenhills Creek, September 2012 to 2021

Notes: Samples were collected using timed kicks, consistent with Canadian Aquatic Biomonitoring Network (CABIN) protocols. Normal ranges representing the 2.5th to 97.5th percentiles of reference area data (2012 to 2019) from the Regional Aquatic Environmental Monitoring Program (RAEMP) are shown as dashed horizontal lines (as available).

Figure 3.11: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Upper Greenhills Creek, September 2012 to 2021

Notes: Samples were collected using timed kicks, consistent with Canadian Aquatic Biomonitoring Network (CABIN) protocols. Normal ranges representing the 2.5th to 97.5th percentiles of reference area data (2012 to 2019) from the Regional Aquatic Environmental Monitoring Program (RAEMP) are shown as dashed horizontal lines (as available).

Figure 3.11: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Upper Greenhills Creek, September 2012 to 2021

Notes: Samples were collected using timed kicks, consistent with Canadian Aquatic Biomonitoring Network (CABIN) protocols. Normal ranges representing the 2.5th to 97.5th percentiles of reference area data (2012 to 2019) from the Regional Aquatic Environmental Monitoring Program (RAEMP) are shown as dashed horizontal lines (as available).

Figure 3.11: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Upper Greenhills Creek, September 2012 to 2021

■ RG_GHNF ◆ RG_GHCKU ● GH_GREE3-25 ■ GH_GREE3-75 ◎ GH_GREE4-25 ■ GH_GREE4-75

Figure 3.11: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Upper Greenhills Creek, September 2012 to 2021

Figure 3.12: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Lower Greenhills Creek, September 2012 to 2021

Figure 3.12: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Lower Greenhills Creek, September 2012 to 2021

Figure 3.12: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Lower Greenhills Creek, September 2012 to 2021

Figure 3.12: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Lower Greenhills Creek, September 2012 to 2021

Figure 3.12: Benthic Invertebrate Community Endpoints for Timed Kick Samples on Lower Greenhills Creek, September 2012 to 2021

versus %Diptera (Appendix Table E.20). Concomitant decreases in %Plecoptera and increases in %Diptera also occurred over time (from 2019 to 2021) at RG_GHUT, which is the furthest upstream station on Upper Greenhills Creek. At the furthest upstream station on Gardine Creek (RG_GAUT), benthic invertebrate densities and LPL richness were lower in 2021 relative to 2019 and 2020; biomass was also lower in 2021 than 2020 (Figure E.1; Appendix Table E.21). Unlike RG_GAUT, benthic invertebrate densities and LPL richness were unchanged over time (i.e., from 2019 to 2021) at RG_GANF in Reach 1 of Gardine Creek, downstream from the seeps (Figure E.2; Appendix Table E.21). There was an apparent increase in %EPT and %Ephemeroptera at RG_GANF in 2021 that was likely driven by higher numbers of *Baetis* in some of the samples (Figure E.2).

The higher abundances of *Baetis* in samples from RG GANF in 2021 may have been attributed to inter-annual differences in the timing of invertebrate development given that the timing of sampling was consistent among years (i.e., mid-September). For example, temperature, and to а lesser extent flow, are the environmental cues for metamorphosis (e.g., Harper and Peckarsky 2006). Cooler winter and summer temperatures can delay the development and emergence of *Baetis*, which are typically bivoltine (i.e., have two generations/emergence events per year; Bergman and Hilsenhoff 1978). It is therefore possible that the second emergence, which would be expected to occur in late summer, prior to sampling (Bergman and Hilsenhoff 1978), was delayed until after the September 2021 field program.

Comparisons of benthic invertebrate endpoints from before (2016 and 2017) and after (2018 to 2021) initiation of antiscalant addition showed that, overall, density, biomass, and LPL and family richness have not changed significantly in Lower Greenhills Creek, relative to Upper Greenhills Creek, since the initiation of treatment (Figure 3.13; Appendix Tables E.22 and E.23). However, there was a small number of differences among specific areas and years for these endpoints. For example, LPL richness at RG GHBP decreased relative to RG GHUT and specific comparisons RG GHNF based on to 2016 and 2017, respectively (Appendix Table E.23).³⁶ Larger overall differences in %Ephemeroptera between treated and untreated areas were identified for 2018, 2019, and 2020 relative to 2016 and in 2019 and 2020 relative to 2017, due to higher %Ephemeroptera in the treated area in 2018 to 2020 (Appendix Table E.22). These results are supported by the spatial and temporal comparisons described above for the area-based and timed kick samples.

³⁶ The samples that were collected from RG_GHBP on Lower Greenhills Creek prior to initiation of antiscalant addition (i.e., in 2016 or 2017) had greater numbers of different chironomid species than samples collected after treatment with antiscalant was initiated (i.e., from 2018 to 2021; Appendix Table E.24).

Figure 3.13: Benthic Invertebrate Endpoint Comparisons Before and After the Initiation of Antiscalant Treatment, Greenhills Creek, 2016 to 2021

Notes: Purple represents treated areas and orange represents untreated areas. Dashed or solid lines connect annual means of each area. When there was no Before–After–Control–Impact (BACI) area interaction in the Analysis of Variance (ANOVA) model (interaction p–value > 0.1), an annual mean for all untreated areas was calculated and displayed with a solid orange line.

Figure 3.13: Benthic Invertebrate Endpoint Comparisons Before and After the Initiation of Antiscalant Treatment, Greenhills Creek, 2016 to 2021

Notes: Purple represents treated areas and orange represents untreated areas. Dashed or solid lines connect annual means of each area. When there was no Before–After–Control–Impact (BACI) area interaction in the Analysis of Variance (ANOVA) model (interaction p–value > 0.1), an annual mean for all untreated areas was calculated and displayed with a solid orange line.

Figure 3.13: Benthic Invertebrate Endpoint Comparisons Before and After the Initiation of Antiscalant Treatment, Greenhills Creek, 2016 to 2021

Notes: Purple represents treated areas and orange represents untreated areas. Dashed or solid lines connect annual means of each area. When there was no Before–After–Control–Impact (BACI) area interaction in the Analysis of Variance (ANOVA) model (interaction p–value > 0.1), an annual mean for all untreated areas was calculated and displayed with a solid orange line.

Overall, some differences in benthic invertebrate community endpoints among areas and over time were identified for Greenhills and Gardine Creeks and observed differences between Upper and Lower Greenhills Creek are likely attributed to antiscalant addition. Invertebrate biomass was higher on Lower Greenhills Creek versus Upper Greenhills Creek, and benthic invertebrate densities were similar, if not higher. Multiple lines of evidence indicate that %Diptera, which are more tolerant of degraded environmental conditions, was lower on Lower Greenhills Creek versus untreated areas on Upper Greenhills Creek. Increases in %EPT and %Ephemeroptera at the treated area (RG_GHBP) relative to untreated areas during a number of post-treatment years (i.e., 2018, 2019, and 2020) may indicate a slight improvement in environmental conditions downstream of the treatment facility. Overall observed differences or changes in the benthic invertebrate communities are generally as expected.

In addition to evaluating benthic invertebrate community endpoints to address the general questions identified in Section 2.4.3, relationships between benthic invertebrate community endpoints and water quality analytes with EWTs (see Section 2.2.3) were evaluated. Data for the area-based kick samples were used. In 2021, strong significant ($r_s \leq -0.6$ or r_s greater than or equal to ≥ 0.6) relationships between density, biomass, %EPT, %Ephemeroptera, %Plecoptera, and %Diptera and a number of water quality analytes were identified (Figure 3.14; Table 3.3).³⁷ Strong positive relationships were observed between density and concentrations of TDS, nitrate, nitrite, sulphate, and total antimony, boron, molybdenum, nickel, selenium, uranium and zinc in 2021. Strong positive relationships were also identified between %Diptera and concentrations of TDS, nitrate, sulphate, and total nickel, selenium, and uranium (Figure 3.14; Table 3.3). Conversely, strong negative relationships were observed between %EPT, %Ephemeroptera, and %Plecoptera and these same analytes in 2021. Correlation analyses using data from 2017 to 2021 identified a strong significant negative relationship between %EPT and concentrations of total uranium and strong significant positive relationships between %Diptera and concentrations of sulphate and total nickel, selenium, and uranium (Figure 3.15; Table 3.4). No other significant positive or negative relationships that explained a sufficient (i.e., more than 60%) amount of variability in the observed benthic invertebrate endpoints were identified (Figure 3.15; Table 3.4).

Comparisons between key endpoints and calcite measures were completed for all area-based kick samples collected from biological monitoring areas on Greenhills and Gardine creeks. In 2021, %EPT and %Trichoptera were strongly ($r_s \le -0.6$) negatively correlated to CI, CI', and concretion and %Diptera was strongly ($r_s \ge 0.6$) positively correlated with CI, CI', and concretion

³⁷ Correlations (with water chemistry and calcite) were considered biologically meaningful when the correlation coefficients explained at least 60% of the variance in a given benthic invertebrate community endpoint (i.e., $r_s \le -0.6$ or $r_s \ge 0.6$ were considered indicative of strong, significant relationships).

Figure 3.14: Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2021

Figure 3.14: Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2021

Figure 3.14: Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2021

Figure 3.14: Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2021

Figure 3.14: Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2021

Figure 3.14: Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2021

Figure 3.14: Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2021

Figure 3.14: Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2021

Analyte	Density (No. org./m²)		Total Biomass (g/m²)		LPL Richness		Family Richness		%EPT		%Ephemeroptera		%Plecoptera		%Trichoptera		%Diptera	
	P-value	r _s	P-value	r _s	P-value	r _s	P-value	r _s	P-value	r _s	P-value	r _s	P-value	r _s	P-value	r _s	P-value	r _s
Antimony - Total (mg/L)	<0.001	0.766	<0.001	0.633	0.265	0.191	0.181	-0.228	<0.001	-0.623	<0.001	-0.755	<0.001	-0.598	0.151	-0.244	0.001	0.515
Barium - Total (mg/L)	<0.001	-0.830	<0.001	-0.642	0.070	-0.306	0.561	0.100	<0.001	0.648	<0.001	0.692	<0.001	0.614	0.062	0.315	<0.001	-0.597
Boron - Total (mg/L)	<0.001	0.671	0.002	0.491	0.005	0.460	1.00	0	0.220	-0.210	0.014	-0.405	0.276	-0.187	0.360	-0.157	0.085	0.291
Cadmium - Dissolved (mg/L)	0.212	0.213	0.141	0.251	0.993	-0.002	0.062	-0.314	0.489	-0.119	0.018	-0.394	0.367	-0.155	0.428	0.136	0.786	0.047
Cobalt - Total (mg/L)	<0.001	0.590	0.054	0.323	0.077	0.299	0.053	-0.326	0.046	-0.335	<0.001	-0.612	0.108	-0.272	0.067	-0.309	0.003	0.476
Lithium - Total (mg/L)	0.180	0.229	0.624	-0.085	0.018	0.392	0.651	0.078	0.899	-0.022	0.969	-0.007	0.744	0.056	0.035	-0.352	0.035	0.352
Manganese - Total (mg/L)	0.008	0.435	0.027	0.368	0.517	0.112	0.034	-0.354	0.159	-0.240	<0.001	-0.563	0.162	-0.238	0.860	-0.031	0.223	0.208
Molybdenum - Total (mg/L)	<0.001	0.712	<0.001	0.675	0.413	0.141	0.715	0.063	0.002	-0.506	0.002	-0.505	0.004	-0.470	0.164	-0.237	0.114	0.268
Nickel - Total (mg/L)	<0.001	0.676	0.007	0.440	0.511	0.113	0.027	-0.370	<0.001	-0.725	<0.001	-0.811	<0.001	-0.661	0.011	-0.420	<0.001	0.712
Nitrate as N (mg/L)	<0.001	0.741	0.006	0.449	0.181	0.228	0.155	-0.242	<0.001	-0.750	<0.001	-0.748	<0.001	-0.676	0.002	-0.491	<0.001	0.794
Nitrite as N (mg/L)	<0.001	0.621	<0.001	0.676	0.173	0.232	0.017	0.396	0.011	-0.417	0.240	-0.201	0.007	-0.440	0.747	-0.056	0.345	0.162
Selenium - Total (mg/L)	<0.001	0.741	0.006	0.449	0.181	0.228	0.155	-0.242	<0.001	-0.750	<0.001	-0.748	<0.001	-0.676	0.002	-0.491	<0.001	0.794
Sulphate (mg/L)	<0.001	0.753	0.008	0.438	0.170	0.234	0.095	-0.282	<0.001	-0.709	<0.001	-0.769	<0.001	-0.618	<0.001	-0.530	<0.001	0.770
Total Dissolved Solids (mg/L)	<0.001	0.741	0.006	0.449	0.181	0.228	0.155	-0.242	<0.001	-0.750	<0.001	-0.748	<0.001	-0.676	0.002	-0.491	<0.001	0.794
Uranium - Total (mg/L)	<0.001	0.741	0.006	0.449	0.181	0.228	0.155	-0.242	<0.001	-0.750	<0.001	-0.748	<0.001	-0.676	0.002	-0.491	<0.001	0.794
Zinc - Total (mg/L)	<0.001	0.626	<0.001	0.592	0.140	0.251	0.369	-0.154	0.104	-0.276	<0.001	-0.545	0.083	-0.293	0.940	0.013	0.293	0.180

Table 3.3: Spearman Rank Correlations Between Benthic Invertebrate Endpoints and Water Quality Analytes with Early Warning Triggers, 2021

P-value <0.05/n parameters = 0.05/16 = 0.00375.

r_s ≤ -0.6 or r_s ≥ 0.6.

Notes: No. org./m² = number of organisms per square metre; g/m^2 = grams per square metre; LPL = Lowest Practical Level; % = percent; EPT = Ephemeroptera, Plecoptera, and Trichoptera combined; rs = Spearman's correlation coefficient; mg/L = milligrams per litre; < = less than; < = less than or equal to; \geq = greater than or equal to.

Figure 3.15: Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Water Chemistry Analytes with Early Warning Triggers, Greenhills and Gardine Creeks, 2017 to 2021

Analyte	Density (No. org./m²)		Total Biomass (g/m²)		LPL Richness		Family Richness		%EPT		%Ephemeroptera		%Plecoptera		%Trichoptera		%Diptera	
	P-value	r _s	P-value	r _s	P-value	r _s	P-value	r _s	P-value	r _s	P-value	r _s	P-value	r _s	P-value	r _s	P-value	r _s
Antimony - Total (mg/L)	0.039	0.166	0.753	0.025	0.026	-0.178	<0.001	-0.380	<0.001	-0.447	0.002	-0.247	<0.001	-0.322	<0.001	-0.345	<0.001	0.485
Barium - Total (mg/L)	<0.001	-0.450	0.004	-0.231	0.005	0.224	<0.001	0.349	<0.001	0.483	<0.001	0.340	<0.001	0.491	0.047	0.159	<0.001	-0.459
Boron - Total (mg/L)	0.024	0.181	<0.001	0.271	<0.001	0.323	<0.001	0	<0.001	0.269	0.517	0.052	0.063	0.149	<0.001	0.339	<0.001	-0.327
Cadmium - Dissolved (mg/L)	0.108	0.129	0.159	0.113	0.430	0.064	0.329	-0.079	0.110	-0.128	0.897	-0.011	<0.001	-0.268	0.247	0.093	0.473	0.058
Cobalt - Total (mg/L)	0.020	0.186	0.018	0.189	0.113	0.127	0.078	-0.142	<0.001	-0.275	0.002	-0.244	0.023	-0.182	0.297	-0.084	<0.001	0.324
Lithium - Total (mg/L)	0.016	0.192	0.251	0.093	0.969	0.003	0.533	-0.050	0.016	-0.193	0.001	-0.261	0.369	-0.072	0.482	-0.057	0.002	0.244
Manganese - Total (mg/L)	0.007	0.215	0.051	0.157	0.999	0	0.003	-0.237	<0.001	-0.357	<0.001	-0.275	<0.001	-0.305	0.715	-0.029	<0.001	0.294
Molybdenum - Total (mg/L)	0.005	0.226	0.002	0.244	0.793	-0.021	0.268	0.089	0.009	-0.209	0.008	0.212	<0.001	-0.372	0.306	0.083	0.567	0.046
Nickel - Total (mg/L)	0.008	0.212	0.927	0.007	0.003	-0.235	<0.001	-0.485	<0.001	-0.543	<0.001	-0.401	<0.001	-0.364	<0.001	-0.447	<0.001	0.612
Nitrate as N (mg/L)	0.008	0.210	0.631	-0.039	<0.001	-0.305	<0.001	-0.527	<0.001	-0.516	<0.001	-0.445	<0.001	-0.314	<0.001	-0.516	<0.001	0.591
Nitrite as N (mg/L)	0.003	0.238	0.004	0.232	0.430	0.064	<0.001	0.274	0.047	-0.160	0.002	0.242	<0.001	-0.351	0.006	0.218	0.955	-0.005
Selenium - Total (mg/L)	<0.001	0.265	0.861	0.014	<0.001	-0.298	<0.001	-0.519	<0.001	-0.564	<0.001	-0.441	<0.001	-0.385	<0.001	-0.431	<0.001	0.626
Sulfate (mg/L)	0.002	0.241	0.993	0.001	<0.001	-0.302	<0.001	-0.531	<0.001	-0.527	<0.001	-0.528	<0.001	-0.310	<0.001	-0.492	<0.001	0.605
Total Dissolved Solids (mg/L)	0.002	0.246	0.898	0.010	0.002	-0.244	<0.001	-0.502	<0.001	-0.509	<0.001	-0.491	<0.001	-0.320	<0.001	-0.467	<0.001	0.598
Uranium - Total (mg/L)	<0.001	0.355	0.218	0.099	<0.001	-0.273	<0.001	-0.515	<0.001	-0.638	<0.001	-0.529	<0.001	-0.444	<0.001	-0.426	<0.001	0.695
Zinc - Total (mg/L)	<0.001	0.376	0.002	0.244	0.107	-0.130	<0.001	-0.320	<0.001	-0.395	<0.001	-0.399	<0.001	-0.327	0.628	-0.039	<0.001	0.309

Table 3.4: Spearman Rank Correlations Between Benthic Invertebrate Endpoints and Water Quality Analytes with Early Warning Triggers, 2017 to 2021

P-value <0.05/n parameters = 0.05/16 = 0.00375.

r_s≤ -0.6 or r_s ≥ 0.6. Notes: No. org./m² = number of organisms per square metre; g/m² = grams per square metre; LPL = Lowest Practical Level; % = percent; EPT = Ephemeroptera, and Trichoptera combined; rs = Spearman's correlation coefficient; mg/L = milligrams per litre; < = less than; < = less than or equal to; \geq = greater than or equal to.

(Figure 3.16; Table 3.5). This means that Diptera tended to make up a greater proportion of the samples collected from areas with greater calcification of the substrates and proportions of Trichoptera would be expected to be lower in these same samples in 2021. In considering data from 2017 to 2021, biomass, LPL and family richness, %EPT, and %Ephemeroptera each had moderately (i.e., r_s -0.3 to -0.6) negative relationships with Cl³⁸ and concretion scores, whereas %Trichoptera were strongly ($r_s \leq -0.6$) negatively correlated to Cl, and concretion (Figure 3.17; Table 3.6). Proportions of Diptera in the samples from 2017 to 2021 had a moderately positive (i.e., r_s 0.3 to 0.6) relationship with both Cl and concretion scores (Table 3.6).

Because benthic invertebrate community endpoints are correlated with multiple water quality analytes, calcite indices (CI and CI'), and concretion scores, it is challenging to identify causal relationships. However, a significant decrease in concretion scores was observed in Lower Greenhills Creek since initiation of antiscalant addition, and few significant changes in a concentrations of water quality analytes have been identified at that location over the same period. It is therefore considered likely that the observed changes in the benthic invertebrate community (namely, increases in %Ephemeroptera and %Plecoptera and decreases in %Diptera relative to untreated areas) in Lower Greenhills Creek are attributable to changes in concretion and, subsequently, successful application of antiscalant.

3.3.2 Greenhills Creek Sedimentation Pond

Data collected in 2021 represent the fourth year of pre-treatment benthic invertebrate community data for Greenhills Creek Sedimentation Pond (Appendix Tables E.25 to E.29). Results for each endpoint were generally comparable from 2018 to 2021 (Figure 3.18).³⁹ Similar to previous years, %Diptera was much higher than %EPT, which is not unexpected for a pond environment, and EPT taxa were dominated by Ephemeroptera (Figure 3.18; Appendix Table E.30). Bivalves were the predominant taxonomic group in each of the n = 6 samples from Greenhills Creek Sedimentation Pond (i.e., at 41 to 89% of organisms) and gastropods (snails) comprised 39% of the sample from RG_GHP-2 (Figure 3.18; Appendix Table E.30).

 $^{^{38}}$ Calcite index prime (Cl') was not included in the 2017 to 2021 comparisons because only one year of Cp' and Cl' data has been collected to date (i.e., in 2021; see Section 2.3.1).

³⁹ The apparent decrease in %Diptera over time from 2018 to 2021 might be considered "essentially" significant (*Year* term p-value = 0.1005); however, the only significant pairwise contrast at alpha = 0.1 was the 2021 to 2018 contrast (p-value = 0.077).

Figure 3.16: Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion Scores, Greenhills Creek and Gardine Creek, 2021

Figure 3.16: Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion Scores, Greenhills Creek and Gardine Creek, 2021

Table 3.5: Spearman's Correlation Relationships between Benthic Invertebrate Community Metrics and Calcite, Greenhills and Gardine Creeks, 2021

Endpoint	Calcite I	ndex (CI)	Proportion Index	nal Calcite (CI'I)	Concretion Score			
	r _s	P-value	r _s	P-value	r _s	P-value		
Density (No. organisms/m²)	0.414	0.012	0.426	0.010	0.342	0.041		
Total Biomass (g/m²)	-0.021	0.901	-0.009	0.960	-0.100	0.563		
LPL Richness	0.064	0.709	0.089	0.604	-0.008	0.962		
Family Richness	-0.258	0.128	-0.270	0.111	-0.344	0.040		
%EPT	-0.651	<0.001	-0.634	<0.001	-0.617	<0.001		
%Ephemeroptera	-0.493	0.002	-0.509	0.002	-0.497	0.002		
%Plecoptera	-0.523	0.001	-0.504	0.002	-0.467	0.004		
%Trichoptera	-0.714	<0.001	-0.726	<0.001	-0.739	<0.001		
%Diptera	0.823	<0.001	0.810	<0.001	0.795	<0.001		

P-value <0.025 (0.05/2 for Bonferroni correction).

r_s ≤-0.6 or r_s ≥0.6.

Notes: r_s = Spearman's correlation coefficient; No. organisms/m² = number of organisms per square metre; g/m² = grams per square metre; LPL = Lowest Practical Level; % = percent; EPT = Ephemeroptera, Plecoptera, and Trichoptera combined; < = less than; < = less than or equal to; > = greater than or equal to.

Figure 3.17: Significant Spearman's Correlation Relationships ($r \le -0.6$ or $r \ge 0.6$) Between Benthic Invertebrate Community Endpoints and Calcite Index and Concretion Scores, Greenhills and Gardine Creeks, 2017 to 2021 Table 3.6: Spearman's Correlation Relationships between BenthicInvertebrate Community Metrics and Calcite, Greenhills andGardine Creeks, 2017 to 2021

Endnoint	Calcite Ir	ndex (CI)	Concretion Score			
Endpoint	r _s	p-value	r _s	p-value		
Density (# organisms/m²)	-0.003	0.970	-0.023	0.781		
Total Biomass (g/m²)	-0.307	<0.001	-0.327	<0.001		
LPL Richness	-0.337	<0.001	-0.343	<0.001		
Family Richness	-0.502	<0.001	-0.524	<0.001		
%EPT	-0.449	<0.001	-0.432	<0.001		
%Ephemeroptera	-0.477	<0.001	-0.475	<0.001		
%Plecoptera	-0.221	0.00568	-0.200	0.0128		
%Trichoptera	-0.603	<0.001	-0.614	<0.001		
%Diptera	0.589	<0.001	0.586	<0.001		

P-value <0.025 (0.05/2 for Bonferroni correction). r_s ≤-0.6 or r_s ≥0.6.

Notes: r_s = Spearman's correlation coefficient; No. organisms/m² = number of organisms per square metre; g/m² = grams per square metre; < = less than; LPL = Lowest Practical Level; % = percent; EPT = Ephemeroptera, Plecoptera, and

Trichoptera combined; \leq = less than or equal to; \geq = greater than or equal to.

Figure 3.18: Benthic Invertebrate Community Endpoints for Greenhills Creek Sedimentation Pond, September 2018 to 2021

Figure 3.18: Benthic Invertebrate Community Endpoints for Greenhills Creek Sedimentation Pond, September 2018 to 2021

Figure 3.18: Benthic Invertebrate Community Endpoints for Greenhills Creek Sedimentation Pond, September 2018 to 2021

3.3.3 Biological Triggers

Proportions of EPT in the timed kick samples collected from RG_GHNF and RG_GHCKD on Greenhills Creek were compared to biological triggers for this endpoint (information pertaining to the determination of the biological trigger values can be found in Appendix G). Comparisons to biological triggers were completed based on available water quality predictions for routine water quality monitoring stations GH_HWGH_BRB (paired with RG_GHNF) and GH_GH1 (paired with RG_GHCKD). Although %EPT values for samples (n = 3 per area) collected from RG_GHNF and RG_GHCKD in 2021 were consistently below habitat-adjusted normal ranges, only one sample from RG_GHCKD exceeded the biological trigger based on the predicted Aquatic Data Integration Tool (ADIT) score for that location (Appendix G).

3.4 Benthic Invertebrate Tissue Chemistry

3.4.1 Greenhills and Gardine Creeks

0

-

No benthic invertebrate tissue chemistry samples were collected from RG_GHNF and RG_GNFF (Upper Greenhills Creek) or RG_GAUT and RG_GANF (Gardine Creek) in February 2021 due to unsafe access, an absence of flow, and/or the presence of anchor ice; however, samples were collected from each of the targeted areas in September 2021 (see Section 2.5.1; Appendix Table H.1).

Selenium concentrations in benthic invertebrate tissue samples collected from Upper Greenhills Creek did not differ significantly among areas in 2021, which was also the case in 2020 (Figure 3.19; Appendix Table H.2). Selenium concentrations in samples collected from the furthest upstream biological monitoring area (RG_GHUT) in February and September 2021 were generally within the reference area normal range and below the lowest EVWQP benchmarks (Figure 3.19; Appendix Table H.1). Only one sample (RG_GHUT-1) from February 2021 had selenium concentrations that exceeded the 97.5th percentile of the reference area normal range. Mean selenium concentrations at RG_GHNF and RG_GHFF were greater than the reference area normal range (Figure 3.19; Appendix Table H.1). One composite-taxa sample (RG_GHFF-1) and the annelid-only sample (RG_GHFF_LUM-1) from RG_GHFF had selenium concentrations greater than the Level 1 Benchmark for dietary effects to juvenile fish (Figure 3.19; Appendix Table H.1).⁴⁰

Selenium concentrations in benthic invertebrate tissues collected from Lower Greenhills Creek in September of each year were generally greater (by 46 to 77%) than those from Upper

⁴⁰ However, as noted in Table 2.4, the 11 μg/g dw benchmark for dietary effects to juvenile fish does not apply to WCT, which are the only fish species present in Greenhills and Gardine creeks (Teck 2014).

Figure 3.19: Selenium Concentrations in Composite-taxa Benthic Invertebrate Tissue Samples from Greenhills and Gardine Creeks, 2018 to 2021

Notes: Grey shading represents the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) reported in the Regional Aquatic Effects Monitoring Program (RAEMP). Solid line = Level 1 Benchmark, long hashed line = Level 2 benchmark, short hashed line = Level 3 benchmark. Annelid-only samples are included in the plot and are circled in black to differentiate them from the composite-taxa samples.

0

Greenhills Creek (Figures 3.19 and 3.20; Appendix Table H.2). All samples from RG_GHBP in February 2021 had selenium concentrations greater than the EVWQP Level 3 Benchmark for effects to benthic invertebrates (Figure 3.19; Appendix Table H.1) and the EVWQP Level 2 Benchmarks for effects to benthic invertebrates and dietary effects to juvenile fish in September 2021 (Golder 2014; Figure 3.19; Appendix Table H.1). Additionally, Level 3 Benchmarks for effects to benthic invertebrates and dietary effects juvenile fish and birds and Level 2 Benchmarks for effects to benthic invertebrates and dietary effects to fish and birds were exceeded in one sample each from RG_GHBP (Figure 3.19; Appendix Table H.1).

Each of the benthic invertebrate tissue samples collected from RG_GAUT and RG_GANF on Gardine Creek in September 2021 had selenium concentrations that were within the reference area normal range and less than applicable benchmarks (Figure 3.19; Appendix Tables H.1). Overall, selenium concentrations in tissue samples from Gardine Creek were significantly and consistently lower than those from Upper and Lower Greenhills Creek in 2021 (Figures 3.19 and 3.20; Appendix Table H.2). Concentrations did not differ significantly among areas on Gardine Creek in 2021. The results for Gardine Creek are supported by aqueous selenium speciation data, which indicate there were relatively low concentrations of selenite and no detectable organoselenium species in water samples from RG_GAUT and RG_GANF (Figure 3.21).

Although the ANOVA results indicate that there were some key differences among areas in terms of selenium concentrations in benthic invertebrate tissues (i.e., $Se_{Lower Greenhills} > Se_{Upper Greenhills} > Se_{Gardine}$; Question 1 from Section 2.5.3), few significant changes in concentrations over time were identified for any of the biological monitoring areas (Question 2 from Section 2.5.3; Figure 3.20; Appendix Table H.3). Selenium concentrations in benthic invertebrate tissues collected from RG_GHNF in September 2019 and 2021 were lower than those collected in September 2018 and 2020 (Appendix Table H.3). Concentrations in samples collected from RG_GAUT in 2020 (mean = 4.9 μ g/g dw) were higher, albeit only marginally, than in 2019 (mean = 3.2 μ g/g dw) and 2020 (mean = 3.2 μ g/g dw) but still well within the normal range and below benchmarks. The overall absence of change over time for RG_GHBP on Lower Greenhills Creek suggests that selenium concentrations in benthic invertebrate tissues at that location are likely unrelated to antiscalant addition (Appendix Table H.3). Rather, the observed concentrations are likely attributed to RG_GHBP being located downstream from Greenhills Creek Sedimentation Pond, as well as the greater prevalence of depositional habitat (and more sediment accumulation) relative to other areas on Greenhills and Gardine creeks.

Selenium concentrations in benthic invertebrate tissues were generally comparable within a given biological monitoring area and year, regardless of whether samples were collected in February or September (Appendix Table H.4). The only exceptions included RG_GHFF on Upper

Figure 3.20: Comparisons of Selenium Concentrations in Composite-taxa Benthic Invertebrate Tissue Samples from Greenhills and Gardine Creeks, September 2018 to 2021

Note: Solid lines connect the means for each area.
Greenhills Creek in 2019 (mean selenium concentrations were 35% lower in February versus September) and RG_GHBP on Lower Greenhills Creek in 2020 (mean selenium concentrations were 145% higher in February versus September) (Appendix Table H.4). The higher concentrations observed at RG_GHBP in 2020 were the driving force behind continuing to complete winter benthic invertebrate tissue chemistry sampling at Lower Greenhills Creek in 2022 (Minnow 2021b). The goal was to confirm whether the presence of annelids could have contributed to the higher selenium concentrations observed in the samples from February 2020. Although there is still uncertainty around the taxonomic composition of the samples collected in February 2020, the study team was able to confirm that the benthic invertebrate tissue chemistry samples collected from RG_GHBP from September 2020 to September 2021 did not contain annelids.

Selenium accumulation in aquatic food webs tends to be greater in lentic versus lotic systems with similar concentrations of selenium in water (EPA 2016; Deforest et al. 2017; Golder 2021b). This is because conditions within lentic areas are typically more conducive to formation of organoselenium species and enhanced cycling of selenium via microbially-mediated detrital pathways (Orr et al. 2006). Although Greenhills Creek Sedimentation Pond is not a natural or naturalized lentic area, it possesses some lentic characteristics (e.g., slower flow and abundant vegetation) and its effects on selenium speciation may carry over into lotic habitats immediately downstream (e.g., RG GHBP) (ADEPT 2022; Golder 2021a). Concentrations of more bioavailable forms of aqueous selenium were highest in Greenhills Creek Sedimentation Pond (see Section 3.4.2, below) and downstream in Lower Greenhills Creek in September 2021, where the highest selenium concentrations in benthic invertebrate tissues were also observed (Figure 3.21; see also Appendix Table C.4). Combined concentrations of dimethylselenoxide and methylseleninic acid in water samples from RG GHBP in 2021 were consistently greater than the draft screening value (0.025 µg/L) for potential incremental increases in selenium bioaccumulation, regardless of whether the samples were collected in February or August through December (Appendix Table C.4; ADEPT 2022).

Use of the regional one-step water-to-invertebrate lotic selenium bioaccumulation model (Golder 2020) and the B-tool (de Bruyn and Luoma 2021) provided some insight into relationships between aqueous selenium (total selenium and selenium speciation, respectively) and benthic invertebrate tissue selenium concentrations. Additionally, the observed results for Upper and Lower Greenhills Creek are supported by the assessment of biological triggers (Section 3.4.3, below). In 2021, selenium concentrations in benthic invertebrate tissues from Upper Greenhills and Gardine creeks were consistent with predictions based on the lotic bioaccumulation model (Figure 3.22; Appendix Table H.5). These results for 2021 are in good agreement with those for previous years (Appendix Table H.5). Although selenium concentrations

Figure 3.21: Concentrations of Selenium Species Measured in Water Samples Collected Concurrently with Benthic Invertebrate Tissue Samples, February (Squares) and September (Circles), 2021

Notes: Only species with detected values are shown and samples with concentrations at the laboratory reporting limit (LRL) are plotted with an open symbol at the LRL. All selenium concentrations in tissue are for composite-taxa samples (orange), except one annelid-only sample (green) and three clam-only samples (black).

Figure 3.22: Selenium Concentrations in Benthic Invertebrate Tissues Relative to Predictions and Aqueous Selenium Concentrations, 2018 to 2021

Notes: Mean benthic invertebrate selenium concentrations (solid black line) were estimated using a one-step water to benthic invertebrate selenium accumulation model: $\log_{10}[Se]_{benthic invertebrate} = 0.720 + 0.071 \times \log_{10}[Se]_{aq}$ (Golder 2020). The 95% prediction limits for a single value from the one-step water to benthic invertebrate selenium accumulation model are plotted as dashed red lines. Annelid-only samples are included in the plot and are circled in black to differentiate them from the composite-taxa samples.

in benthic invertebrate tissues collected from Upper Greenhills and Gardine creeks in September 2021 were marginally higher than B-tool predictions (Appendix Table H.6), the bioaccumulation model results clearly indicate selenium concentrations in benthic invertebrate tissues from Upper Greenhills and Gardine creeks are related to aqueous total selenium concentrations. Unlike Upper Greenhills and Gardine creeks, selenium concentrations in benthic invertebrate tissues collected from Lower Greenhills Creek in 2021 were higher than expected, based on the lotic bioaccumulation model (Figure 3.22; Appendix Table H.5). These results are similar to conditions previously observed for Lower Greenhills Creek. The B-tool did not consistently over or under-predict benthic invertebrate tissue selenium concentrations at RG_GHBP on Lower Greenhills Creek in 2021 (Appendix Table H.6). This suggests that although the higher than expected selenium concentrations at RG_GHBP are likely attributed, in part, to this location being downstream from the pond and factors related to enhanced generation of organoselenium species, there are potentially other factors influencing selenium bioaccumulation in Lower Greenhills Creek.

3.4.2 Greenhills Creek Sedimentation Pond

Benthic invertebrate tissue samples that were collected from the Greenhills Creek Sedimentation Pond (RG_GHP) and did not contain bivalves had selenium concentrations greater than EVWQP Level 1 Benchmarks for effects to benthic invertebrates and juvenile fish and birds (Figure 3.23; Appendix Table H.7). Selenium concentrations in one of the samples (20 µg/g dw) also exceeded the EVWQP Level 2 Benchmark for dietary effects to juvenile fish. The bivalve-only samples from RG_GHP-3 and RG_GHP-5 had lower selenium concentrations than any other sample collected from the pond in 2021 (i.e., concentrations were within the reference area normal range; Figure 3.23; Appendix Table H.7).

As indicated in Section 3.4.1, concentrations of selenium in benthic invertebrate tissues collected from Greenhills Creek Sedimentation Pond (and lotic habitats downstream) may have resulted, at least in part, from the presence of aqueous selenium in more bioavailable forms. Benthic invertebrate tissue selenium concentrations predicted using the B-tool were higher than concentrations measured in composite-taxa benthic invertebrate tissue samples collected from the pond in September 2021 (Appendix Table H.6). Concentrations of inorganic (selenite) and organic (dimethylselenoxide and methylseleninic acid) forms of selenium in water were higher in the Greenhills Creek Sediment Pond (RG_GHP) than all other upstream stations (Figure 3.21).

3.4.3 Biological Triggers

Selenium concentrations in benthic invertebrate tissues were also assessed relative to the biological triggers established for this endpoint (information pertaining to the evaluation of the

— EVWQP Fish Benchmark — EVWQP BI Benchmark — EVWQP Bird Benchmark — Preliminary Amphibian Benchmark

Figure 3.23: Selenium Concentrations in Composite-taxa Benthic Invertebrate Tissue Samples from Greenhills Creek Sedimentation Pond, 2018 to 2021

Notes: Grey shading represents the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) from the Regional Aquatic Effects Monitoring Program (RAEMP). Solid line = Level 1 Benchmark, long hashed line = Level 2 Benchmark, short hashed line = Level 3 Benchmark. All samples were collected in September. Tissue selenium concentrations are for composite-taxa samples (blue), except three samples that contained clams only (orange).

biological triggers can be found in Appendix G). This was completed for each replicate from biological monitoring areas RG GHNF (Upper Greenhills Creek) and RG GHCKD and RG GHBP (Lower Greenhills Creek). Water quality predictions for routine water quality monitoring stations GH HWGH BRB (Upper Greenhills Creek) GH GH1 and (Lower Greenhills Creek) were also used. None of the samples collected from RG GHNF on Upper Greenhills Creek in September 2021 (n = 3) exceeded the biological trigger for benthic invertebrate tissue selenium concentrations, but all of the samples from Lower Greenhills Creek (n = 3 at RG GHBP in February 2021 and n = 3 per area in September 2021) exceeded the biological trigger (Appendix G). The biological trigger exceedances for these monitoring locations are likely related to a combination of the factors discussed in Sections 3.4.1 and 3.4.2, including proximity to the Greenhills Creek Sedimentation Pond discharge, which could influence selenium speciation.

3.5 Westslope Cutthroat Trout

3.5.1 Abundance, Density, Biomass, and Health

In 2021, WCT were captured from RG GHNF and RG GHFF on Upper Greenhills Creek and RG GAUT and RG GANF on Gardine Creek (Figure 2.6; Table 3.7; Appendix Tables I.1 and I.2); WCT were also captured from Lower Greenhills Creek as part of the Upper Fording River WCT Population Monitoring Program (Table 3.7; Appendix Table I.3; Thorley et al. 2022). A fish habitat assessment completed in 2007 indicated that Greenhills Creek Sedimentation Pond and Upper Greenhills Creek, to approximately river kilometre 5.9, represented connected and accessible fish habitat (KNRC 2007).⁴¹ However, in 2021, no WCT were captured from the three closed electrofishing stations at the furthest upstream monitoring area on Upper Greenhills Creek (RG GHUT; river kilometre 5.2), consistent with results for 2018 and 2019 and the outcomes of the recent eDNA study (Ecofish 2022) (Figure 2.6; Table 3.7; Appendix Tables I.4 to I.6). Gardine Creek was identified in 2007 as providing approximately 1.8 km of fish habitat (KNRC 2007). In 2019 and 2020, field crews noted there were isolated pools and dry sections of channel in Reaches 3 and 4 (from approximately river km 1.4 to 1.8; Appendix Table I.7; Minnow 2020a). The WCT population in Upper Greenhills (including the pond) and Gardine creeks is isolated from Lower Greenhills Creek. A culvert at approximately river kilometre 0.54, between the Stilling Basin and Fording Mine Road, acts as a barrier between the two populations. Therefore, Lower Greenhills Creek represents about 0.54 km of the estimated 88 km of connected habitat that is accessible to the Upper Fording River population of WCT (Thorley et al. 2022).

⁴¹ A detailed description of the habitat types and conditions as they relate to use by WCT is also provided by Minnow (2018b).

Parameter	Station		2015	2017	2018	2019	2021	Combined Totals				
Falallielei	50	ation	2015	2017	2018	2019	2021	2015	2017	2018	2019	2021
	RG_	GHUT	-	1	0	0	0	-	1	0	0	0
	RG_	GHNF	-	3	7	6	6	-	3	7	6	6
	RG	GHFF	-	8	11	11	7	-	8	11	11	7
Number of Fish Caught	RG_	GHBP	-	110	111	41	-	-	110	111	41	-
r ion oaagin	Rea	ach 1 ^ª	7	105	-	18	4	7	105	-	18	4
	RG_	GAUT ^b	-	-	-	12	34	-	-	-	12	34
	RG_GANF		-	-	-	34	51	-	-	-	34	51
	RG_GHUT	GHUT-EF1	-	0	0	0	0		3.8			
		GHUT-EF2	-	3.8 ± 0	0	0	0	-		0	0	0
		GHUT-EF3	-	0	0	0	0					
	RG_GHNF	GHNF-EF1	-	2.3 ± 0	5.1 ± 0	1.6 ± 1.6	1.0 ± 2.3	-	7.1	14	7.2	6.6
		GHNF-EF2	-	2.5 ± 0	5.3 ± 0	1.9 ± 0	2.2 ± 0.84					
		GHNF-EF3	-	2.4 ± 2.4	4.1 ± 0.70	3.8 ± 0.70	2.3 ± 5.2					
E atima at a d	RG_GHFF	GHFF-EF1	-	1.6 ± 0	0	5.9 ± 5.8	2.1 ± 2.1		17	10	9.8	5.4
Estimated		GHFF-EF2	-	8.1 ± 2.2	5.8 ± 0.60	0.78 ± 0	1.7 ± 3.8	-				
FISH Density		GHFF-EF3	-	6.9 ± 1.2	4.5 ± 0.60	3.2 ± 0	1.6 ± 0.58					
$(n0./100 \text{ m} \pm 0.5\% \text{ CI})$ by		GHBP-EF1	-	197 ± 71	25 ± 1.2	16 ± 3.0	-					-
Station	RG_GHBP	GHBP-EF2	-	115 ± 25	36 ± 1.3	13 ± 3.8	-	-	391	190	47	
Otation		GHBP-EF3	-	78 ± 5.7	130 ± 7.6	18 ± 5.8	-					
		Reach 1-EF1	4.1 ± 0.70	55 ± 10	-	7.9 ± 0	2.0 ± 0					6.2
	Reach 1 ^a	Reach 1-EF2	2 ± 0	89 ± 43	-	12 ± 2.6	2.2 ± 0	11	189	-	29	
		Reach 1-EF3	4.3 ± 0	45 ± 8.0	-	8.7 ± 2.8	2.0 ± 2.0					
		GANF-EF1	-	-	-	28 ± 12	23 ± 0.50					
	RG_GANF	GANF-EF2	-	-	-	12 ± 2.2	2.5 ± 1.4	-	-	-	54	54
		GANF-EF3	-	-	-	14 ± 0	28 ± 16					

 Table 3.7: Westslope Cutthroat Trout Electrofishing Catch Results in Greenhills Creek and Gardine Creek, September 2015 to

 2021

Notes: - = no data for that year/not applicable; no./100 m² = number of fish per 100 square metres; % = percent; CI = Confidence Interval; g/100 m² = grams of fish biomass per 100 square metres; Minnow = Minnow Environmental Inc.

^a Fishing in "Reach 1" was completed by consultants other than Minnow and under separate scopes from the Greenhills and Gardine Creeks Aquatic Monitoring Program.

^b Spot sampling was completed; therefore, pass numbers were insufficient to support estimates of density and biomass.

Doromotor	Station		2015	2017	2017 2018	2019	2024	Combined Totals				
Farameter			2015	2017			2021	2015	2017	2018	2019	2021
		GHUT-EF1	-	0	0	0	0		377	0	0	0
	RG_GHUT	GHUT-EF2	-	377 ± 0	0	0	0	-				
		GHUT-EF3	-	0	0	0	0					
		GHNF-EF1	-	53 ± 0	272 ± 0	100 ± 100	100 ± 229			598	402	
	RG_GHNF	GHNF-EF2	-	24 ± 0	175 ± 0	96 ± 0	183 ± 31	-	300			375
		GHNF-EF3	-	222 ± 222	152 ± 26	205 ± 35	92 ± 210					
E a time a trad	RG_GHFF	GHFF-EF1	-	58 ± 0	0	87 ± 85	11 ± 10	-	503	618	201	47
Estimated		GHFF-EF2	-	127 ± 34	327 ± 34	38 ± 0	8.6 ± 20					
r_{1} r_{1} r_{1} r_{2} r_{2} r_{1} r_{2} r_{2} r_{2} r_{2} r_{1} r_{2} r_{2		GHFF-EF3	-	317 ± 55	291 ± 38	75 ± 0	28 ± 11					
(g/100 m ±	RG_GHBP	GHBP-EF1	-	1,547 ± 553	430 ± 20	452 ± 85	-		2,931	2,101	1,165	-
Station		GHBP-EF2	-	1,012 ± 223	472 ± 18	403 ± 77	-					
olation		GHBP-EF3	-	372 ± 27	1,199 ± 70	309 ± 122	-					
		Reach 1-EF1	17 ± 3	372 ± 70	-	100 ± 0	10 ± 0		1,107			73
	Reach 1 ^a	Reach 1-EF2	21 ± 0	369 ± 178	-	258 ± 56	31 ± 0	113		-	431	
		Reach 1-EF3	75 ± 0	366 ± 63	-	74 ± 24	31 ± 31					
		GANF-EF1	-	-	-	310 ± 130	282 ± 6.0			-		
	RG_GANF	GANF-EF2	-	-	-	147 ± 28	28 ± 15	-	-		727	758
		GANF-EF3	-	-	-	270 ± 0	448 ± 260					

Table 3.7: Westslope Cutthroat Trout Electrofishing Catch Results in Greenhills Creek and Gardine Creek, September 2015 to 2021

Notes: - = no data for that year/not applicable; no./100 m² = number of fish per 100 square metres; % = percent; CI = Confidence Interval; g/100 m² = grams of fish biomass per 100 square metres; Minnow = Minnow Environmental Inc.

^a Fishing in "Reach 1" was completed by consultants other than Minnow and under separate scopes from the Greenhills and Gardine Creeks Aquatic Monitoring Program.

^b Spot sampling was completed; therefore, pass numbers were insufficient to support estimates of density and biomass.

-

Historically, Lower Greenhills Creek was considered a core area for WCT spawning (Cope et al. 2016) and redd densities were considered high in 2021 (Thorley et al. 2022).

In 2021, fork lengths of WCT captured from Upper Greenhills and Gardine creeks ranged from 8.1 to 23 cm and 4.0 to 16 cm, respectively, which is consistent with the ranges of fork lengths observed in previous years (n = 13 and n = 85 WCT, respectively, in 2021; Appendix Tables I.8 to I.11). Fork lengths of WCT captured from Lower Greenhills Creek as part of the Upper Fording River WCT Population Monitoring Program in 2021 were between 7.2 and 13 cm (n = 4), which is within the range of fork lengths reported previously for Lower Greenhills Creek (Appendix Tables I.12 and I.13). Age-1 WCT in the isolated population above the pond were estimated to have fork lengths between 5.5 and 11 cm, based on length-frequency analysis (Appendix Figure I.1; Appendix Tables I.8 and I.9). Age-1 WCT from Lower Greenhills Creek had estimated fork lengths between 7.5 and 12 cm and were therefore larger, in general, relative to age-1 WCT from Upper Greenhills and creeks, as well as the other creeks sampled as part of the Upper Fording River WCT Population Monitoring Program (Thorley et al. 2022). Additionally, Thorley et al. (2022) reported that fork lengths for age-0 fish were greatest for Lower Greenhills Creek relative to other sampling areas in the Upper Fording River population area (i.e., 5.7 cm with a 95% credible interval of 5.1 to 6.3 cm). It appears that the Greenhills Creek Sedimentation Pond, or conditions downstream from the pond, have a warming effect on the water in Lower Greenhills Creek (see Appendix Tables C.1 and E.1 as examples, as well as Ecofish 2022). This may help explain the enhanced growth and larger body sizes reported for young WCT in Lower Greenhills Creek relative to areas upstream of the pond and in other tributaries to the Fording River (Thorley et al. 2022). Growth rates of WCT in Greenhills and Gardine creeks were not calculated because no previously PIT-tagged fish were captured in 2021 (Thorley 2022, pers. comm.; Appendix Tables I.8, I.9, and I.12).

Condition (weight-at-length) of fish captured from Upper Greenhills and Gardine creeks was lower in 2021 relative to previous years, whereas condition was similar among WCT captured from Upper Greenhills Creek from 2017 to 2019 (Figures 3.24 to 3.26; Appendix Tables I.14 to I.16). Contrary to Upper Greenhills and Gardine creeks, fish condition in the Upper Fording River WCT population, which has access to habitats in Lower Greenhills Creek, was near (2019 and 2020) or above average (2021) in recent years (Thorley et al. 2022). The largest decrease in fish condition in 2021 was observed for WCT from Upper Greenhills Creek (RG_GHNF and RG_GHFF), where condition decreased by 26% (outliers removed) in 2021 relative to 2017 (Appendix Table I.14). Condition of WCT captured from the isolated pools on upper Gardine Creek (RG_GAUT) in 2021 was about 14% lower in 2021, relative to the first year of fishing in 2019 (no fishing was completed in 2020; Appendix Table I.15). The WCT captured from lower Gardine Creek (RG_GANF) in 2021 were also in lower condition relative to 2019; however, the

Figure 3.24: Comparisons of Length, Weight, and Weight-at-Length (Body Condition) for Westslope Cutthroat Trout Captured from Upper Greenhills Creek, 2017 to 2021

Notes: Outliers are plotted with an 'x'. Fish with fork lengths <6.5 cm were excluded from the analysis.

Figure 3.25: Comparisons of Length, Weight, and Weight-at-Length (Body Condition) for Westslope Cutthroat Trout Captured from Upper Gardine Creek, 2019 to 2021

Notes: Outliers are plotted with an 'x'. Fish with fork lengths <6.5 cm were excluded from the analysis.

Figure 3.26: Comparisons of Length, Weight, and Weight-at-Length (Body Condition) for Westslope Cutthroat Trout Captured from Lower Gardine Creek, 2019 to 2021

Notes: Outliers are plotted with an 'x'. Fish with fork lengths <6.5 cm were excluded from the analysis.

change (i.e., a 6.1% decrease; outliers removed) was less than what might be considered annual biologically meaningful (i.e., could be attributed to natural, variability; Environment Canada 2012b). It is possible that some regional factor(s) may have depressed fish condition regionally within the isolated Upper Greenhills/Gardine creeks fish population in 2021. Additionally, the poorer water quality conditions and higher calcite concretion in Upper Greenhills Creek relative to upper and lower Gardine Creek may have contributed to the observed spatial patterns in reduced fish condition. The larger reduction in fish condition at upper versus lower Gardine Creek may be attributed to fish being isolated in pools and food resources being limited (i.e., increased competition and insufficient caloric intake). For example, n = 8 fish were captured from the isolated pool at RG GAUT-EF1 in 2019, whereas n = 28 fish were captured from the same isolated pool in 2021 (Appendix Tables I.2 and I.17). Based on observed habitat conditions, the pool was likely a similar size in both years. The presence of more fish in the pool in 2021 would be expected to put a greater strain on food resources, potentially leading to reduced fish condition.

Two (15%) of the n = 13 WCT captured from Upper Greenhills Creek, seven (8.2%) of the n = 85 WCT captured from Gardine Creek, and none of the n = 4 WCT captured from Lower Greenhills Creek in 2021 had external anomalies (Table 3.8; see also Table 2.5). Both anomalies observed on WCT from Upper Greenhills Creek were considered minor and consisted of a nodule on one fish's lip/jaw and another fish with light active fin erosion on its dorsal and caudal fins (Appendix Table 1.8). Anomalies on WCT from Gardine Creek included two incidences of minor/light active fin erosion, two incidences of deformed caudal fins, one caudal fin with a minor split in it, one severely shortened operculum, and one minor, obvious parasitic infestation (Appendix Table 1.9). One fish from Gardine Creek also had a caudal fin injury that was attributed to being bitten by another fish; this injury was excluded from the count of external anomalies.

The anomaly rates for Upper Greenhills and Gardine creeks in 2021 were higher than those reported for WCT collected from Lower Greenhills Creek and from other areas sampled as part of the RAEMP in 2021 (Minnow 2023, *in prep*). Of the 96 WCT collected throughout Management Units 1 to 5 as part of the September 2021 RAEMP program, only four (4.1%) individuals were identified as having anomalies, which included three incidences of light active fin erosion and one tumour that did not show signs of sloughing or ulceration. None of the WCT collected from reference areas on the Bull (n = 8) or Flathead (n = 8) rivers in 2021 had anomalies (Minnow, *in prep*). Additionally, n = 16 WCT were captured from the Upper Fording River in June 2021 to either support the RAEMP. Two of the fish had anomalies (i.e., one case of minor caudal fin erosion and another fish with substantially shortened/missing opercula; Minnow, *in prep*).

 Table 3.8:
 Summary of External Anomalies for Westslope Cutthroat Trout Captured

 from Upper Greenhills and Gardine Creeks, 2021

	2021					
Study A	rea	Upper Gree	nhills Creek	Gardine Creek		
Biological Monit	RG_GHNF	RG_GHFF	RG_GAUT	RG_GANF		
Total Samp	6	7	34	51		
Number of Fish wi	th Anomalies	1	1	4	3	
	0	83%	86%	88%	94%	
Severity of External	1	17%	14%	6%	4%	
Anomalies (% of Total	2	0%	0%	0%	0%	
Anomalies)	3	0%	0%	0%	2%	
	No rating ^a	0%	0%	6%	0%	
Total Proportion Anomalies	17%	14%	12%	6%		

Notes: % = percent. Severity of external anomalies: 0 = no anomalies, 1 = minor, 2 = moderate; 3 = severe. Only an external assessment of anomalies was completed on the sampled fish. This severity assessment replaces "DELT" (deformities, erosion, lesion, and tumor) surveys (Sanders et al. 1999) completed in previous years.

^a Two fish had fin deformities (one with a deformed caudal fin and one with a shortened lower caudal fin lobe). However, to date, a rating system has not been developed for this type of deformity (see Minnow 2021b,c).

-

Visual observations of fin erosion for WCT captured from Upper Greenhills and Gardine creeks were supported by measurements of relative caudal fin lengths. For Upper Greenhills Creek, relative caudal fin lengths for captured WCT were between 11 and 15% (mean = 13%; n = 13; Appendix Table I.8). These results are comparable to those for 2019, but lower relative to 2017 (Appendix Table I.10). Relative caudal fin lengths for WCT captured from upper and lower Gardine Creek in 2021 were between 13 and 18% (mean = 15%; n = 34) and between 11 and 16% (mean = 14%; n = 51), respectively (Appendix Table I.9). These results are considered comparable to those for WCT captured from Gardine Creek in 2019 (Appendix Table I.11). Overall, the mean relative caudal fin lengths for WCT captured from Upper Greenhills and Gardine creeks in 2021 were also similar to those reported for wild-caught cutthroat trout (*Oncorhynchus clarkii*) captured in Utah (Bosakowski and Wagner 1994).

In 2021, closed-station density estimates for fry and juvenile WCT, as well as estimates of WCT abundance and biomass, were higher at RG_GANF on lower Gardine Creek than at biological monitoring areas on Upper and Lower Greenhills Creek (Figure 2.6; Table 3.7; Appendix Tables I.1 to I.3). For example, multiple-pass-removal techniques employed at RG_GANF yielded density estimates between 2.5 and 28 fish/100 m² in 2021, whereas using the same methods at RG_GHNF and RG_GHFF yielded fry and juvenile density estimates between 1.0 and 2.3 fish/100 m² (Table 3.7; Appendix Tables I.1 and I.2). Fry and juvenile density estimates for Lower Greenhills Creek were between 2.0 and 2.2 fish/100 m² (Table 3.7; Appendix Tables I.3). In 2019, there was some indication that WCT densities within Upper Greenhills Creek increased with increasing distance downstream and proximity to the Greenhills Creek Sedimentation Pond (Minnow 2020a). Although no fish were captured at the furthest upstream monitoring area on Upper Greenhills Creek (RG_GHUT) in 2021, the data for the other two monitoring areas (RG_GHNF and RG_GHFF) were not suggestive of the same upstream-to-downstream pattern as 2019 (Table 3.7; Appendix Table I.1).

Overall, estimates of fry and juvenile densities, abundance, and biomass for lower Gardine Creek were comparable among years (i.e., in 2019 and 2021) but densities and abundances for Upper Greenhills Creek were generally lower than in previous years (Table 3.7; Appendix Tables I.1, I.2, I.4 to I.6, and I.17). Estimated WCT biomass at RG_GHFF on Upper Greenhills Creek was also lower than in previous years of monitoring; however, biomass estimates for RG_GHNF, which is further upstream, were generally comparable to previous years (Table 3.7; Appendix Tables I.1, I.2, I.4 to I.6, and I.17). Overall, it is difficult to identify the key factors and interactions driving the differences in fry and juvenile densities, abundance, and biomass over time. In lower Gardine Creek, calcite concretion scores were lower in 2021 relative to 2019, and benthic invertebrate densities and biomass, which are indicators of food availability for WCT, were similar between years (see Sections 3.2.1 and 3.3.1). Calcite concretion scores and invertebrate densities and

biomass at RG_GHNF and RG_GHFF in 2021 were also similar to or better than in previous years; however, as described above, WCT densities and abundance at these same locations were lower than in previous years.

3.5.2 Tissue Chemistry

A single muscle tissue sample was collected opportunistically from one incidental WCT mortality observed in Reach 1 of Lower Greenhills Creek in September 2021. The incidental mortality was a juvenile WCT (fork length = 5.7 cm; weight = 2 g) that was in good external health (see Table 2.5). The selenium concentration in the muscle sample (29 µg/g dw) was greater than the estimated effects threshold of $15.5 \mu g/g dw$ (Appendix Table I.19) and exceeded the biological trigger (Appendix G). It was also greater than muscle selenium concentrations reported for WCT (mean = $19 \mu g/g dw$; n = 8) that were sampled from the Greenhills Creek Sedimentation Pond in 2018 (Minnow 2020a). Based on an ovary:muscle ratio of 1.6:1.0 (Nautilus Environmental and Interior Reforestation 2011), the WCT that was sampled in 2021 had an estimated ovary selenium concentration of $46 \mu g/g dw$, which is higher than the WCT that were sampled from the single WCT analyzed in 2021 was also above the site-specific Level 3 Benchmark (33 µg/g dw; median effective concentration [EC₅₀] equivalent) for WCT ovaries and considered indicative of a potential for reproductive effects (Teck 2014).

4 SUMMARY

0

This report summarizes the 2021 results of the GGCAMP. Sampling in 2021 consisted of a sixth year of monitoring in Upper Greenhills Creek, the third year of monitoring in Gardine Creek, a fourth year of sampling in Greenhills Creek Sedimentation Pond, and a fourth year of aquatic effects monitoring following initiation of antiscalant addition in Lower Greenhills Creek. Furthermore, 2021 was the third year of winter benthic invertebrate tissue chemistry sampling.

Data collected to support the GGCAMP in 2021 were compiled and summarized along with data from previous years of monitoring and other relevant studies (e.g., the Regional Calcite Monitoring Program and RAEMP) to address three key questions:

- 1. What is the current status of aquatic health in Greenhills and Gardine creeks, as evidenced by physical, chemical, and biological conditions?
- 2. Have physical, chemical, and/or biological conditions indicative of aquatic health in Greenhills and Gardine creeks changed over time and are the changes unexpected based on the activities and projects occurring in the watershed?
- 3. Can observed changes be linked to antiscalant addition in Lower Greenhills Creek, specifically?

Question 1 (*"What is the current status of aquatic health in Greenhills and Gardine creeks, as evidenced by physical, chemical, and biological conditions*?") was addressed by characterizing existing conditions within Greenhills and Gardine creeks in 2021.

Overall, concentrations of most mine-related constituents with EWTs were below water quality guidelines, benchmarks, and screening values in 2021, except for TDS, nitrate, sulphate, total nickel, total selenium, total uranium, and dissolved cadmium. Water quality was generally better in Gardine Creek than in Greenhills Creek and the Greenhills Creek Sedimentation Pond. Upstream-to-downstream differences within Greenhills Creek were largely attributed to dilution effects downstream from Gardine Creek and components of the antiscalant compound being detected at higher concentrations in Lower Greenhills Creek (see below). Specifically, Gardine Creek appears to be a source of dilution for aqueous total antimony, nickel, and selenium.

Aqueous selenium species were dominated by selenate for all areas and sampling events in 2021. Concentrations of organoselenium species tended to increase with distance downstream in Greenhills Creek; the highest concentrations were observed within the Greenhills Creek Sedimentation Pond and Lower Greenhills Creek in September 2021. These results are attributed to enhanced formation of organoselenium species within the pond and carry-over effects immediately downstream. In 2021, calcite was present throughout Greenhills Creek and Gardine Creek within and downstream from the seeps from the GHO east spoil. The number of particles with calcite did not differ among areas on Greenhills Creek in 2021, but the proportion of calcite coverage on a given particle was lowest on Lower Greenhills Creek. Concretion was highest in Upper Greenhills Creek. Within Lower Greenhills Creek specifically, Cl' and C_c decreased with increasing distance downstream to GH GREE1-25, which is near the Greenhills Creek mouth.

Sediment particle sizes, TOC content and concentrations of metals and PAHs differed among biological monitoring areas in 2021. Sediments from Lower Greenhills, upper Gardine, and lower Gardine creeks and the Greenhills Creek Sedimentation Pond were primarily composed of silt/clay, sand, sand/silt, and silt/clay, respectively. The samples from the pond, followed by Lower Greenhills Creek, had the highest TOC content. Concentrations of cadmium, nickel, selenium, and PAHs in "bulk" sediments were generally highest in the pond and/or at Lower Greenhills Creek, which is not unexpected, given the propensity of these analytes to readily adsorb to fines and TOC. Calcium concentrations were consistently higher at areas with calcified substrates.

Exceedances of upper BC WSQG or the alert concentration for selenium in 2021 were identified for nickel, selenium, silver, acenaphthene, acenaphthylene, benzo(a)anthracene, chrysene, dibenz(a,h)anthracene, fluorene, 2-methylnaphthalene, naphthalene, and phenanthrene. Concentrations of arsenic, cadmium, iron, manganese, zinc, benzo(a)pyrene, benzo(g,h,i)perylene, fluoranthene, and pyrene exceeded the lower, but not upper, BC WSQG in at least one sample. However, concentrations of arsenic, cadmium, and iron in "bulk" sediments were within reference area normal ranges.

Overall, the distribution of metals among each of the potentially mobile sediment fractions (i.e., fractions 1 to 4) and fraction 5 (residual metals) was fairly consistent among sediment sampling areas. Additionally, guideline exceedances based on sediment fractions 1 to 4, which represent an overestimation of the bioavailable constituent concentrations in sediments, were limited to cadmium, manganese, nickel, and selenium in 2021, regardless of sampling location. Concentrations of selenium in sediment fractions 1 to 4 were elevated relative to the alert concentration at each sediment sampling location in 2021; most selenium was associated with fraction 4 (organic-bound). Cadmium concentrations in sediment fractions 1 to 4 were also elevated relative to the upper BC WSQG at Lower Greenhills Creek and relative to the lower BC WSQQG at Gardine Creek and in the Greenhills Creek Sedimentation Pond. Most cadmium was in fractions 2 (carbonate) and 3 (easily reducible and iron and manganese oxides). Concentrations of manganese (upper Gardine and Lower Greenhills creeks) and nickel (all sediment sampling areas) in sediment fractions 1 to 4 also exceeded the lower, but not upper, BC WSQG.

The SQI were generally indicative of poor sediment quality relative to most lotic RAEMP sampling areas and natural or naturalized lentic areas in the Elk River watershed. Of the biological monitoring areas within the Greenhills Creek watershed, the Greenhills Creek Sedimentation Pond had the lowest SQI in 2021, followed by Lower Greenhills Creek.

Benthic invertebrate abundances, densities, LPL richness, %Ephemeroptera, and %Plecoptera in 2021 were generally similar among the biological monitoring areas on Greenhills Creek. The higher biomass on Lower Greenhills Creek suggests the availability of food for fish may have been better there, relative to Upper Greenhills Creek, in 2021. It is also possible that the benthic invertebrate community in Lower Greenhills Creek was showing signs of recovery in the post-treatment period. Proportions of Diptera (tolerant taxa) were generally lower on Lower Greenhills Creek versus untreated areas on Upper Greenhills Creek. Increases in proportions of sensitive EPT taxa at the treated versus untreated areas during 2018 to 2020 were also observed. However, one of the three timed kick samples from Lower Greenhills Creek exceeded the biological trigger for %EPT, based on its predicted ADIT score, whereas each of the three timed kick samples from Upper Greenhills Creek had %EPT consistent with expectations.

Benthic invertebrate densities on Gardine Creek were highest at the furthest downstream monitoring area; however, biomass was similar between areas. The higher %Diptera in the samples from lower Gardine Creek, downstream from the seeps, likely reflects this taxonomic group's ability to tolerate a wider range of environmental conditions.

In 2021, strong, positive relationships were observed between benthic invertebrate density and aqueous concentrations of TDS, nitrate, nitrite, sulphate, and total antimony, boron, molybdenum, nickel, selenium, uranium and zinc. Other strong significant positive (%Diptera) or negative (%EPT, %Ephemeroptera, and %Plecoptera) relationships with TDS, nitrate, sulphate, and total nickel, selenium, and uranium were also observed. Additionally, %EPT and %Trichoptera were strongly negatively correlated to CI, CI', and concretion whereas %Diptera tended be higher in areas with more calcite. Overall, the results observed for the benthic invertebrate communities in Upper and Lower Greenhills and Gardine creeks are likely associated with the combined influences of water quality and calcite.

The benthic invertebrate community in the Greenhills Creek Sedimentation Pond differed from the creek sampling areas in 2021, which is unsurprising given the lentic-like characteristics of the pond. Bivalves were the predominant taxonomic group in the samples and gastropods were also relatively abundant. Proportions of Diptera were much higher than %EPT.

The highest selenium concentrations in composite-taxa benthic invertebrate tissues collected from creek habitats in 2021 were observed for Lower Greenhills Creek. Mean concentrations in samples collected from RG_GHBP in 2021 (range = 21 to $34 \mu g/g \, dw$) exceeded EVWQP Level

3 Benchmarks for effects to invertebrates and juvenile fish and birds. Additionally, selenium concentrations in each of the nine samples collected from Lower Greenhills Creek in 2021 exceeded the biological trigger (i.e., were higher than the reference area normal range and the 95% prediction interval from the lotic bioaccumulation model). Conversely, mean selenium concentrations in tissues from Upper Greenhills Creek varied from within the reference area normal range and less than benchmarks to above the normal range and the most conservative EVWQP Level 1 Benchmark in 2021. No exceedances of the biological trigger were identified for Upper Greenhills Creek. Additionally, each of the benthic invertebrate tissue samples collected from Gardine Creek in September 2021 had selenium concentrations that were within the reference area normal range and below applicable benchmarks. Selenium concentrations in benthic invertebrate tissues were higher than expected on Lower Greenhills Creek in 2021, and this was likely attributed, at least in part, to enhanced generation of organoselenium species in the Greenhills Creek Sedimentation Pond located immediately upstream. However, results of the B-tool analysis suggest that some factors other than selenium speciation could also be contributing to tissue selenium concentrations in Lower Greenhills Creek.

Composite-taxa benthic invertebrate tissue samples from Greenhills Creek Sedimentation Pond had selenium concentrations greater than the EVWQP Level 1 Benchmarks for effects benthic invertebrates and juvenile fish and birds, but lower than those predicted using the B-tool. Selenium concentrations in the bivalve-only samples from the pond were lower than benchmarks and within the reference area normal range.

In 2021, WCT were sampled from Upper Greenhills and Gardine creeks (GGCAMP) and Lower Greenhills Creek (Upper Fording River WCT Population Monitoring Program). Fish were successfully sampled from each targeted area, except at the furthest upstream biological monitoring area on Upper Greenhills Creek. The lack of fish observations or captures at this location is consistent with the results of an eDNA study completed in 2021.

In general, age-0 and age-1 WCT from Lower Greenhills Creek are expected to attain longer fork lengths than individuals from Upper Greenhills and Gardine creeks, as well as other creeks within the Upper Fording River population area. Growth rates of WCT in Greenhills and Gardine creeks were not calculated because no previously PIT-tagged fish were captured in 2021. Condition (weight-at-length) of fish captured from Upper Greenhills and Gardine creeks was lower in 2021 relative to previous years, whereas fish condition in the Upper Fording River WCT population, which can access Lower Greenhills Creek, was above average in 2021.

Fifteen percent of the 13 WCT captured from Upper Greenhills Creek, 8.2% of the 85 WCT captured from Gardine Creek, and none of the four WCT captured from Lower Greenhills Creek in 2021 had external anomalies (e.g., fin erosion, deformities, tumours). The anomaly rates for

Upper Greenhills and Gardine creeks were higher than those reported for WCT collected from other areas sampled as part of the RAEMP in 2021. Anomalies observed in Greenhills and Gardine creeks in 2021 were mostly minor and primarily classified as light active fin erosion or fin deformities. Overall, visual observations of fin erosion in 2021 were supported by measurements of relative caudal fin lengths and comparisons to mean relative caudal fin lengths reported for wild-caught cutthroat trout.

In 2021, estimates of fish abundance, density, and biomass, were highest at lower Gardine Creek. Additionally, there was no indication that WCT densities within Upper Greenhills Creek increased with increasing distance downstream and proximity to the Greenhills Creek Sedimentation Pond.

A single muscle tissue sample was collected opportunistically from one incidental WCT mortality observed in Lower Greenhills Creek in 2021. The selenium concentration in the muscle sample was greater than the estimated effects threshold, exceeded the biological trigger for WCT muscle, and was associated with an estimated ovary selenium concentration in excess of the site-specific Level 3 Benchmark for potential reproductive effects.

Answering question 2 ("Have physical, chemical, and/or biological conditions indicative of aquatic health in Greenhills and Gardine creeks changed over time and are the changes unexpected based on the activities and projects occurring in the watershed?") required temporal evaluations of physical, chemical, and biological data to identify patterns that may be indicative unexpected changes over time.

Concentrations of most mine-related constituents with EWTs have remained stable or have decreased over time at Teck's routine water quality monitoring stations on Greenhills and Gardine creeks. Additionally, concentrations generally showed similar seasonal patterns between 2017 and 2021. Total nickel concentrations were substantially lower in 2021 relative to 2016 to 2018; however, the decrease in concentrations is expected given the historical events (December 2014 spoil failure) and activities (pumping of water from Phase 3/4 to Greenhills Creek in 2018) in the watershed. Selenium concentrations were higher at GH_GH1, between the Greenhills Creek Sedimentation Pond outlet and the antiscalant addition facility, throughout 2017 to 2021 versus 2016. The increase in aqueous selenium concentrations at GH_GH1 could be attributed to 2016 being a low flow year; however, no other temporal increases in selenium concentrations were identified for the other stations.

High-magnitude changes in calcite characteristics over time were limited to Lower Greenhills Creek. An 89% decrease in C_c relative to the pre-treatment year (2017) was observed in 2021, and C_c was also lower relative to all other treatment years (2018 to 2020), consistent with expectations or desired outcomes of water treatment with antiscalant. The field crew also noted less concretion in 2021, but that there were more particles with calcite present relative to previous

-

years. This observation was supported by higher C_p scores on Lower Greenhills Creek relative to previous years. However, it is uncertain whether the increase in C_p in 2021 is attributed to antiscalant addition (on its own or in combination with natural factors) or other potential influences on Lower Greenhills Creek.

In general, particle sizes, TOC content, and constituent concentrations within sediment samples from Lower Greenhills Creek, Gardine Creek, and the Greenhills Creek Sedimentation Pond have remained relatively constant. Exceptions include decreasing concentrations of arsenic and iron (creeks) and increasing concentrations of nickel and zinc (creeks) and dibenz(a,h)anthracene (pond). Additionally, concentrations of manganese, selenium, and 12 PAHs in "bulk" sediments from Lower Greenhills Creek were higher throughout the period of antiscalant addition (2018 to 2021) relative to before (2017). It is unclear whether observed increases are attributable to water treatment or some combination of factors.

Sediment sampling for SEA has been completed annually at Lower Greenhills Creek since 2018 and at Gardine Creek and the Greenhills Creek Sedimentation Pond since 2019 and the results have been consistent year after year (i.e., the 2021 results are as expected). For example, most sequentially-extracted selenium was in fraction 4 (organic fraction) from 2018 to 2021, regardless of where the sediment samples were collected. Overall, the consistency among areas and years emphasizes the need to revisit the requirement to complete annual sediment sampling for SEA.

Year after year, SQIs were lowest for Greenhills Creek Sedimentation Pond followed by Lower Greenhills Creek. Sediment quality as a whole was lower at Lower Greenhills Creek in 2020 and 2021 and at Gardine Creek in 2021 relative to previous years.

Few notable temporal changes in benthic invertebrate community endpoints were identified. Specific exceptions included lower %EPT at RG_GHFF in 2021 relative to 2017 to 2020 and concomitant decreases in %Plecoptera and increases in %Diptera at RG_GHUT (both on Upper Greenhills Creek) from 2019 to 2021. At the furthest upstream station on Gardine Creek, benthic invertebrate densities were lower in 2021 relative to 2020 and 2019; densities were unchanged over time (i.e., from 2019 to 2021) downstream from the seeps. Apparent increases in %EPT and %Ephemeroptera at lower Gardine Creek 2021 were likely explained by delayed emergence and higher numbers of *Baetis* in some of the samples.

No significant temporal changes in selenium concentrations in benthic invertebrate tissues over time were identified and concentrations in tissues from Lower Greenhills Creek were consistently and substantially higher relative to Upper Greenhills and Gardine creeks. Additionally, tissue selenium concentrations on Lower Greenhills Creek were higher than expected based on the lotic bioaccumulation model, throughout 2018 to 2021. Results of the B-tool analysis indicate this is likely attributed to selenium speciation, but other factors may also contribute to the selenium

concentrations in benthic invertebrate tissues. Overall, the absence of changes over time is generally expected, based on patterns in water quality and selenium speciation.

The fork lengths of WCT captured in 2021 were consistent with previous years; however, condition (weight-at-length) of WCT captured from Upper Greenhills and Gardine creeks was lower than in 2017 to 2019 and 2019, respectively. The largest decrease was observed in Upper Greenhills Creek (26% decrease relative to 2017), followed by upper Gardine Creek (14% decrease relative to 2019). These results may be attributable to the population being isolated from the Upper Fording River population and potential environmental or regional factors (e.g., temperature) having a greater stress on fish condition. Additionally, higher fish densities in the isolated pools at upper Gardine Creek in 2021 versus 2019 may have also contributed to these results. Fish condition in the Upper Fording River WCT population, which has access to habitats in Lower Greenhills Creek, was above average in 2021.

Temporal comparisons of external anomalies on WCT were not completed due to a change in methods in 2021; however, relative caudal fin lengths measured in 2021 were comparable to those for 2019, but lower relative to 2017. Relative caudal fin lengths for WCT captured from Gardine Creek in 2021 were comparable to those for 2019. This suggests that there has been no change in fin health (erosion of the lower caudal fin lobes) of WCT over time since 2019.

Overall, estimates of fry and juvenile densities, abundance, and biomass for lower Gardine Creek were comparable in 2019 and 2021. However, densities and abundances in Greenhills Creek were generally lower in 2021 than in previous years. Estimated WCT biomass on Upper and Lower Greenhills Creek was also generally lower than previous years of monitoring.

The selenium concentration in a single muscle tissue sample collected opportunistically from one WCT mortality in Lower Greenhills Creek in 2021 was greater than muscle selenium concentrations reported for WCT sampled from the Greenhills Creek Sedimentation Pond in 2018. The WCT that was sampled in 2021 also had an estimated ovary selenium concentration that was higher than the WCT sampled from the pond in 2018. The 2021 results might be considered "unexpected" given that the WCT muscle concentration from 2021 exceeded the biological trigger.

Question 3 ("*Can observed changes be linked to antiscalant addition in Lower Greenhills Creek, specifically*?") was addressed by drawing comparisons among the treated area on Lower Greenhills Creek versus untreated areas before and after initiation of antiscalant addition in 2017.

Overall, antiscalant addition has had limited influence in water quality in Lower Greenhills Creek. Total and dissolved molybdenum were the only exceptions; however, molybdenum is a component of the antiscalant compound, so these results are not unexpected and observed concentrations were still well below guidelines. Additionally, concentrations of mine-related

constituents upstream and downstream from the antiscalant addition facility generally did not differ significantly from concentrations just upstream from the pond. Elevated concentrations of organoselenium species in water from Lower Greenhills Creek appear to be attributed to the influence of the Greenhills Creek Sedimentation Pond, rather than water treatment.

The 89% decrease in calcite concretion in Lower Greenhills Creek from 2017 to 2021 is attributed to successful treatment with antiscalant. Also, prevention of additional calcite precipitation may allow natural processes (e.g., bed movement) to support recovery of the natural substrates. It is notable that although calcite was frequently encountered on Lower Greenhills Creek, assessed particles were not fully covered in calcite (unlike Upper Greenhills Creek). Overall, it appears water treatment is having the desired effect.

Antiscalant addition has not influenced sediment texture in Lower Greenhills Creek and multiple years of data suggest that water treatment has no impact on the distribution of metals among sediment fractions 1 to 5. However, it remains unclear if observed increases in some metal and PAH concentrations in Lower Greenhills Creek sediments after 2017 are attributable to water treatment or other factors. Despite this uncertainty, it is noted that sediments in erosional, lotic systems generally accumulate in small deposits near banks and pools, and as such, sediment quality is not anticipated to have the same biological impact as would be expected from changes in water quality.

Benthic invertebrate biomass and LPL and family richness have not changed significantly in treated versus untreated areas since the initiation of antiscalant addition in 2017. However, the increase in %Ephemeroptera in the treated relative to untreated areas was larger in 2018, 2019, and 2020 relative to 2016 and in 2019 and 2020 relative to 2017. Additionally, lower %Diptera in the treated area in 2021 resulted in differences between treated and untreated areas that were larger in 2021 relative to 2017. These difference among areas before and after treatment are likely attributed to antiscalant addition. Subtle shifts in community composition from tolerant to more sensitive species are consistent with expectations, given that lower concretion scores are considered indicative of improved substrates, and therefore improved benthic invertebrate habitat, in Lower Greenhills Creek.

The absence of change over time for selenium concentrations in benthic invertebrate tissues from Lower Greenhills Creek suggests that selenium concentrations at that location are likely unrelated to antiscalant addition. Rather, the observed concentrations are likely attributed to RG_GHBP being downstream from the Greenhills Creek Sedimentation Pond, as well as the greater prevalence of depositional habitat than at other creek sampling areas.

In 2021, WCT captured from Lower Greenhills Creek were in good condition and good external health. It is therefore considered unlikely that antiscalant addition was negatively impacting these

endpoints in 2021. The lower fry and juvenile densities, as well as lower estimates of abundance and biomass, on Lower Greenhills Creek in 2021 is also not likely attributed to antiscalant addition. This is because conditions of water quality, calcite concretion, and food availability have remained unchanged or improved relative to pre-treatment. The selenium concentration in the single WCT muscle tissue sample collected from Lower Greenhills Creek in 2021 was greater than muscle selenium concentrations reported for WCT sampled from the Greenhills Creek Sedimentation Pond in 2018. These results for 2021 were higher than expected, based on model predictions, but are more likely attributed to factors related to selenium speciation than antiscalant addition.

The data collected and interpreted as part of the 2021 GGCAMP will ultimately support the advancement of the Greenhills Creek Watershed Rehabilitation Program. An updated summary for the Greenhills Creek Water Quality and Aquatic Health response framework is provided in the 2021 AMP Annual Report. The program characterizes existing conditions within Greenhills and Gardine creeks and evaluates changes over time to identify any patterns that may be indicative of unexpected changes. The 2022 study design for the GGCAMP is being prepared for submission and includes consideration of the current understanding of the proposed mitigation and rehabilitation projects within the watershed, advice and input received from the EMC, as well as integration of WCT monitoring within the regional framework for the Upper Fording River.

5 **REFERENCES**

- ADEPT (ADEPT Environmental Sciences Ltd.). 2022. Elk Valley Selenium Speciation Monitoring Program – 2021 Annual Report. Prepared for Teck Coal Limited, Sparwood, BC.
- Austin, J. (ed.). 2020. British Columbia Environmental Laboratory Manual. Analysis, Reporting, and Knowledge Services, Knowledge Management Branch, British Columbia Ministry of Environment and Climate Change Strategy, Victoria, BC.
- Azimuth (Azimuth Consulting Group Partnership). 2018. Proposed Water Quality Triggers for the Elk Valley Adaptive Management Plan. Prepared for Teck Resources Limited, Vancouver, BC. June 2018.
- Azimuth (Azimuth Consulting Group Inc). 2021. Development of biological triggers for the Elk Valley Adaptive Management Plan. Prepared for Teck Coal Limited, Sparwood, BC.
- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish. Second Edition. EPA 841-B-99-002. United States Environmental Protection Agency, Office of Water, Washington, District of Columbia.
- Bergman, E.A., and W.L. Hilsenhoff. 1978. *Baetis* (Ephemeroptera: *Baetidae*) of Wisconsin. The Great Lakes Entomologist 11(3): 125-135.
- Bosakowski, T., and E.J. Wagner. 1994. Assessment of Fin Erosion by Comparison of Relative Fin Length in Hatchery and Wild Trout in Utah. Canadian Journal of Fisheries and Aquatic Sciences 51: 636-641.
- BCMOE (British Columbia Ministry of Environment). 2014. Ambient Water Quality Guidelines for Selenium Technical Report (Update). Water Protection and Sustainability Branch. April 2014.
- BCMOECCS (British Columbia Ministry of Environment and Climate Change Strategy). 2021a. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife, and Agriculture (Feb 2021). Water Quality Guideline Series, WQG-08.
- BCMOECCS. 2021b. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife, and Agriculture – Guideline Summary. Water Quality Guideline Series, WQG-20.
- Carle, F.L., and M.R. Strub. 1978. A new method for estimating population size from removal data. Biometrics 34: 621-630.
- CCME (Canadian Council of Ministers of the Environment). 2001. Canadian sediment quality guidelines [online]. Available from: <u>http://ceqg-rcqe.ccme.ca/en/index.html#void</u> [Accessed May 10, 2022].
- CCME. 2002. Canadian sediment quality guidelines for the protection of aquatic life: Summary tables. Updated. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, MB.
- CCME. 2014. Resources [online]. Available from: https://ccme.ca/en/resources [accessed May 10, 2022].
- Christensen, J. 2021. Founder and Chief Executive Officer, TrichAnalytics Inc. Email correspondence with Amy Wiebe (Minnow). October 13, 2021.

-

- Cope, S. 2020. Upper Fording River Westslope Cutthroat Trout Population Monitoring Project: 2019. Prepared for Teck Coal Limited, Sparwood, BC. Prepared by Westslope Fisheries Ltd., Cranbrook, BC. 48 p. + 2 app.
- Cope, S., C.J. Schwarz, A. Prince, and J. Bisset. 2016. Upper Fording River Westslope Cutthroat Trout Population Assessment and Telemetry Project: Final Report. Report Prepared for Teck Coal Limited, Sparwood, BC. Report Prepared by Westslope Fisheries Ltd., Cranbrook, BC. 266 p.
- de Bruyn, A., and S.N. Luoma. 2021. Selenium Species Bioaccumulation Tool Draft Version 2.0. Prepared for Teck Coal Limited, Sparwood, BC. Project 19133414/MQ2 Task 4.
- DeForest, D.K., K.V. Brix, J.R. Elphick, C.J. Rickwood, A.M.H. de Bruyn, L.M. Tear, G. Gilron, S.A. Hughes, And W.J. Adams. 2017. Lentic, lotic, and sulphate-dependent waterborne selenium screening guidelines for freshwater systems. Environmental Toxicology and Chemistry 36(9): 2503-2513.
- Ecofish (Ecofish Research Ltd.). 2022. Greenhills Creek Water Management Project: Environmental Flow Needs and Fish and Fish Habitat Existing Conditions Report. _Draft Version 2. Prepared for Teck Coal Limited, Sparwood, BC.
- Environment Canada. 2012a. Field Manual: Wadeable Streams. Canadian Aquatic Biomonitoring Network (CABIN).
- Environment Canada. 2012b. Metal Mining Technical Guidance for Environmental Effects Monitoring.
- Environment Canada. 2014. Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. Canadian Aquatic Biomonitoring Network (CABIN). May 2014.
- EPA (United States Environmental Protection Agency). 2016. Aquatic Life Ambient Water Quality Criterion for Selenium – Freshwater. EPA 822-R-16-006. June.
- Ferguson, A. 2021. Regional Water Monitoring Lead, Teck Resources Limited. Phone conversation with Amy Wiebe (Minnow). June 29, 2021.
- Golder (Golder Associates). 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited, Sparwood, BC. July 2014.
- Golder. 2020. Updates to the Lotic and Lentic Bioaccumulation Models for Selenium in the Elk Valley. Prepared for Teck Coal Limited, Sparwood, BC.
- Golder. 2021a. Elk Valley Selenium Speciation Program 2021 Study Design. Prepared for Teck Coal Limited, Sparwood, BC.
- Golder. 2021b. Preliminary Annelid Bioaccumulation Analysis. Prepared for Teck Coal Limited, Sparwood, BC.
- Green, R. H. 1979. Sampling design and statistical methods for environmental biologists. Wiley Interscience, Chichester, England.
- Harper, M.P., and B.L. Peckarsky. 2006. Emergence cues of a mayfly in a high-altitude stream ecosystem: Potential responses to climate change. Ecological Applications 16(2): 612-621.
- He, J., G.L. Liu, D.W. Zhu, J.B. Cai, W.B. Zhou, and W.W. Guo. 2015. Sequential extraction of calcium in lake sediments for investigating the cycle of phosphorus in water environment. International Journal of Environmental Science and Technology 12: 1123-1136.

€.

- Hillman, E. 2021a. Calcite Program Lead, Teck Resources Limited. Email correspondence with Amy Wiebe (Minnow). June 9, 2021.
- Hillman, E. 2021b. Calcite Program Lead, Teck Resources Limited. Email correspondence with Amy Wiebe (Minnow). November 4, 2021.
- Jaeger, C. 2020. Regional Groundwater and Calcite Lead, Teck Resources Limited. Email correspondence with Heidi Currier (Minnow). April 22, 2020.
- KNRC (Kootenay Natural Resource Consulting). 2007. Fish Stream Identification, Greenhills Creek. Prepared for Elk Valley Coal Corporation. July 30, 2007.
- Lotic (Lotic Environmental Inc.). 2021. Teck Coal Ltd. Regional Calcite Monitoring Plan Field Manual. Prepared for Teck Coal Limited, Sparwood, BC.
- Luoma, S. 2021. Selenium Bioaccumulation in Annelids Collected from the Fording and Elk Rivers. Prepared for Teck Coal Limited, Sparwood, BC.
- Massé, A.J., J.R. Muscatello, and D.M. Janz. 2015. Dose-dependent early life stage toxicities in *Xenopus laevis* exposed in ovo to selenium. Environmental Science and Technology 49(22): 13658-13666.
- Minnow (Minnow Environmental Inc.). 2017. DRAFT Study Design for the Greenhills Creek Calcite Management Aquatic Biological Study. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 167202.0079.
- Minnow. 2018a. Study Design for the Regional Aquatic Effects Monitoring Program, 2018 to 2020. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 177202.0053.
- Minnow. 2018b. Upper Greenhills Creek Aquatic Baseline. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 177202.0032.
- Minnow. 2018c. Elk River Watershed Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2015-2016. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 2561.
- Minnow. 2019a. Greenhills Creek and Gardine Creek Monitoring Program Study Design 2019. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 197202.0005.
- Minnow. 2019b. Upper Greenhills Creek Aquatic Baseline 2018. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 187202.0027.
- Minnow. 2019c. Lower Greenhills Creek Aquatic Baseline 2018. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 187202.0028.
- Minnow. 2020a. Greenhills Creek Aquatic Monitoring Program 2019 Report. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 197202.0005.
- Minnow. 2020b. Greenhills Creek and Gardine Creek Monitoring Program Study Design 2020. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 207202.0014.
- Minnow. 2020c. Greenhills Selenium Speciation Monitoring and Stilling Basin Sampling. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 207202.0014.
- Minnow. 2020d. Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2017 to 2019. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 187202.0011.
- Minnow. 2020e. Lentic Area Supporting Study Report, 2018 to 2020. Report prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 207202.0016.

- Minnow. 2021a. Greenhills Creek and Gardine Creek Aquatic Monitoring Program Report 2020. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 207202.0014.
- Minnow. 2021b. Study Design for the 2021 Greenhills and Gardine Creeks Aquatic Monitoring Program. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 217202.0052.
- Minnow. 2021c. Study Design for the Regional Aquatic Effects Monitoring Program, 2021 to 2023. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 207202.0006.
- Minnow. 2021d. 2020 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Report. Report prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 207202.0022.
- Nautilus Environmental and Interior Reforestation. 2011. Evaluation of the Effects of Selenium on Early Life Stage Development of Westslope Cutthroat Trout from the Elk Valley, BC. Prepared for the Elk Valley Selenium Task Force. November 2011.
- Ogle D.H., P. Wheeler, and A. Dinno. 2020. FSA: Fisheries Stock Analysis. R package version 0.8.27.9000 [online]. Available from: <u>https://github.com/droglenc/FSA</u>.
- Orr, P.L., K.R. Guiguer, and C.K. Russell. 2006. Food chain transfer of selenium in lentic and lotic habitats of a western Canadian watershed. Ecotoxicology and Environmental Safety 63(2): 175-188.
- Ptolemy, R.A., M. Ramsay, D. Peard, and D. Sollit. 2006. Results of steelhead stock monitoring (1988-2006) in the Bella Coola River and implications for population recovery. Prepared for Ministry of Environment and Habitat Conservation Trust Fund, Victoria, BC. 63 p. + 6 app.
- R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org</u>.
- Robinson, M.D., S. Gordon, and M. Otto. 2022. Teck Coal Ltd. 2021 Calcite Monitoring Program Annual Report. Prepared for Teck Coal Limited, Sparwood, BC. Prepared by Lotic Environmental Ltd. 45 pp + appendices.
- Sanders, R.E., R.J. Miltner, C.O. Yoder, and E.T. Rankin. 1999. The Use of External Deformities, Erosion, Lesions, and Tumors (DELT anomalies) in Fish Assemblages for Characterizing Aquatic Resources: A case Study of Seven Ohio streams. In: T.P. Simon (Ed.), pp: 225-246, Assessing the Sustainability, and Biological Integrity of Water Resources Using Fish Communities. CRC Press, Boca Raton, FL.
- Teck (Teck Resources Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2016. Measurement of the Calcite Index. Standard Practices and Procedures TC-CI-01.
- Teck. 2017. DRAFT Passive Integrated Transponder (PIT) Tagging Guidance Document. July 10, 2017.
- Teck. 2018. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley. December 21, 2018.
- Teck. 2019a. Calcite Management Plan 2019 Update. July 30, 2019. 177 pp.

- 0

- L

- Teck. 2019b. Lower Greenhills Creek Calcite Management 2018 Operations Report. March 14, 2019.
- Teck. 2021a. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2021 Update. December 15, 2021.

- Teck. 2021b. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2020 Annual Report. July 31, 2021.
- Teck. 2021c. Permit 107517 Calcite Operations 2020 Annual Performance Report. March 31, 2021.
- Tessier, A., P.G.C. Campbell, and M. Bisson. 1979. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry 51(7): 844-846.
- Thorley, J.L. 2022. Senior Computational Biologist, Poisson Consulting Ltd. Email correspondence with Amy Wiebe (Minnow). June 8, 2022.
- Thorley, J.L., A.K. Kortello, J. Brooks, and M. Robinson. 2022. Upper Fording River Westslope Cutthroat Trout Population Monitoring 2021. Prepared for Teck Coal Limited, Sparwood, BC. Prepared by Poisson Consulting, Grylloblatta, and Lotic Environmental Inc.
- Watson, R.J., E.C.V. Butler, L.A. Clementson, and K.M. Berry. 2005. Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in sea water. Journal of Environmental Monitoring 7(1): 37-42.
- Zathey, N., S. Mitchell, and M.D. Robinson. 2021. Teck Coal Ltd. 2020 Calcite Monitoring Program Annual Report. Prepared for Teck Coal Limited, Sparwood, BC. Prepared by Lotic Environmental Ltd. 54 pp + appendices.

APPENDIX A DATA QUALITY REVIEW

0)

€

APPENDIX A DATA QUALITY REVIEW

A1 A1.1 A1.2 A1.3 A1.4	INTRODUCTION	1 2 2 3
A2 A2.1 A2.2 A2.3 A2 A2 A2.4 A2.4 A2.5	WATER CHEMISTRY. Image: Statement. Laboratory Reporting Limits. Image: Statement. Field and Laboratory Blanks Image: Statement. Data Precision Image: Statement.	5 5 5 6 6 7 7 7
A3 A3.1 A3.2 A3.3 A3. A3. A3.4 A3.5 A3.6	SELENIUM SPECIATION Image: Sector of the	B 8 8 8 8 9 9 9 0
A4 A4.1 A4.2 A4.3 A4 A4 A4.4 A4.4 A4.5	SEDIMENT CHEMISTRY1Laboratory Reporting Limits1Laboratory Blanks1Data Precision1.3.1 Field Duplicate Samples1.3.2 Laboratory Duplicate Samples1Data Accuracy1Data Quality Statement1	1 2 2 2 2 3
A5	BENTHIC INVERTEBRATE COMMUNITY14	4
A6 A6.1 A6.2 A6.3	BENTHIC INVERTEBRATE TISSUE CHEMISTRY 1 Laboratory Reporting Limits 1 Data Precision 1 Data Accuracy 1	5 5 5 5
A7	DATA QUALITY STATEMENT10	6
A 8	REFERENCES1	7

A1 INTRODUCTION

A1.1 Background

A variety of factors can influence the physical, chemical, and biological measurements made in an environmental study and thus affect the accuracy and/or precision of the data. Inconsistencies in sampling or laboratory methods, use of instruments that cannot measure to the desired level of accuracy or precision, and contamination of samples in the field or laboratory are among potential factors that can lead to the reporting of data that do not accurately reflect environmental conditions. Depending on their magnitude, inaccuracy or imprecision have the potential to affect the reliability of any conclusions made from the data. Therefore, it is important to confirm that monitoring programs incorporate appropriate steps to control the non-natural sources of data variability (i.e., minimize the variability that does not reflect natural spatial and temporal variability in the environment).

Data quality, as a concept, is meaningful only when it relates to the intended use of the data. That is, one must know the context in which the data will be interpreted to establish a relevant basis for judging whether the data set is adequate. A Data Quality Review (DQR) involves comparisons of field and laboratory measurement performance to Data Quality Objectives (DQOs) established for a particular study, such as evaluation of Laboratory Reporting Limits (LRLs), blank sample data, data precision (based on field and laboratory duplicate samples), and data accuracy (based on matrix spike [MS] recoveries and/or analysis of standards or certified reference materials [CRM]).

Chemistry analyses were completed by laboratories accredited by the Canadian Association for Laboratory Accreditation (CALA) or the National Environmental Laboratory Accreditation Program (NELAP). The DQOs for the project were set equal to the laboratory DQOs to reflect reasonable and achievable performance expectations (Appendix Table A.1). Programs involving many samples and analytes usually have some results that exceed the DQOs. This is particularly so for multi-parameter scans (e.g., scans for metals¹) because the analytical conditions are not necessarily optimal for every element included in the scan.

A DQR was completed for all laboratory data reported in support of the 2021 Greenhills and Gardine Creeks Aquatic Monitoring Program. The objective of the DQR was to define the overall quality of the data presented in the annual report, and, by extension, the confidence

⋞.

(0))

¹ For ease of presentation, metals, metalloids, and non-metals typically included in a multi-parameter scan are collectively referred to as "metals" throughout this DQR.

				Study Component			
Quality Control	QC Samp	le Type/Check	Water Chemistry	Selenium Speciation	Sediment Chemistry		
Measure	•	51	ALS	Brooks	ALS		
Analytical LRL	Comparison actual LRL versus target LRL Field or Laboratory Blank		LRL for each parameter should be at least as low as applicable guidelines, benchmarks, and/or screening values (ideally ≤1/10th of the value) ^a	LRL for each parameter should be at least as low as applicable guidelines, benchmarks, and screening values ^a	LRL for each parameter should be at least as low as applicable guidelines, benchmarks, and/or screening values (ideally ≤1/10th of the value) ^a		
Blank Analysis			Concentrations measured in blank samples should be <lrl <sup="">b</lrl>	Concentrations measured in blank samples should be <lrl <sup="">b</lrl>	Concentrations measured in blank samples should be <lrl <sup="">b</lrl>		
		Concentrations <2-times the LRL:	No DQO set				
	Laboratory Duplicates	Concentrations 2 to 4-times the LRL: Concentrations 4 to 10-times the LRL:	≤10% RPD (pH) ≤10% RPD (conductivity)	≤20% RPD (total selenium) ≤25% RPD (selenium species)	0.2 (pH) ≤5% RPD (sand, silt, clay) ≤20% RPD (moisture, total and inorganic carbon) ≤25% RPD (gravel) ≤30% RPD (metals)		
Laboratory Precision		Concentrations 10 to 20-times the LRL:	≤10% RPD (conductivity) ≤15% RPD (turbidity) ≤20% RPD (all remaining analytes)		≤50% RPD (PAHs)		
	Denestabil	Concentrations >20-times the LRL:					
	Repeatability of Reference Material Recoveries		-	-	-		
	Taxonomic Precision Organism Sub-Sampling Precision		-	-	-		
			-	-	-		
	Recovery of Blank Spike		-	75 to 125% recovery (methylseleninic acid, selenate, selenite, selenocyanate, selenomethionine, total selenium)	6.8 to 7.2 (pH) 50 to 130% (naphthalene) 60 to 130% (PAHs) 70 to 130% (leachable metals) 80 to 120% (bulk metals) 90 to 110% (moisture, total and inorganic carbon)		
	Recovery of Matrix Spike		70 to 130% (TKN, orthophosphate, phosphorus, DOC, TOC, total and dissolved metals) 75 to 125% (ammonia, Br, Cl, F, nitrate, nitrite, sulfate)	75 to 125% recovery (selenate, selenite, selenocyanate, selenomethionine, total selenium)	-		
	Matrix Spike Duplicate		-	75 to 125% recovery (selenate, selenite, selenocyanate, selenomethionine, total selenium) ≤20% RPD (total selenium) ≤25% RPD (selenate, selenite, selenocyanate, selenomethionine)	-		
Accuracy	Recovery of Certified Reference Material, QC Standards		80 to 120% (orthophosphate, phosphorus) 85 to 115% (turbidity, alkalinity) 90 to 110% (conductivity) 6.9 to 7.1 (pH)	75 to 125% (total selenium)	7.7 to 8.3 (pH) 8.4 to 18.4% (sand [0.125 to 0.063 mm]) 8.5 to 18.5% (sand [0.063 to 0.0312 mm]) 11.7 to 21.7% (sand [0.25 to 0.125 mm]) 15.1 to 25.1% (silt [0.0312 to 0.004 mm) 16.5 to 26.5% (clay [<4µm]) 80 to 12% (total and inorganic carbon) 0.15 to 0.55 mg/kg (Se) 0.16 to 0.36 mg/kg (Se) 0.16 to 0.36 mg/kg (Sg) 1 to 2 mg/kg (Sn) 1 to 2 mg/kg (W) 70 to 130% (remaining metals metals) ^c 50 to 130% (remaining PAHs)		

Table A.1: Data Quality Objectives for the Greenhills and Gardine Creeks Aquatic Monitoring Program, 2021

Organism Recovery	-	-	-
Organism Sub-Sampling Accuracy	-	-	-

Notes: QC = quality control; ALS = ALS Environmental; Brooks = Brooks Applied Laboratory; Trich = TrichAnalytics Inc.; Cordillera = Cordillera Consulting; ZEAS = ZEAS Inc.; LRL = Laboratory Reporting Limit; \leq = less than or equal to; - = not applicable; < = less than; > = greater than; % = percent; RPD = relative percent difference; PAHs = polycyclic aromatic hydrocarbons; DQO = data quality objective; TKN = total Kjeldahl nitrogen; DOC = dissolved organic carbon; TOC = total organic carbon; TSS = total suspended solids; TDS = total dissolved solids.

^a If no guideline, benchmark, or screening value exists for a substance, the LRL should be less than predictions

^b Only applies to QC samples at concentrations <LRL or >5-times the LRL. ^c However, for multi-element scans, <10% of analytes may exceed the quoted limit by <10% before the laboratory considers the results as having not met DQO

^d Only applies to QC samples at concentrations >20-times the LRL.

Quality			Study Component					
Control	QC Samp	le Type/Check	Benthic Invertebrate Chemistry	Benthic Inverteb	orate Community			
Measure			Trich	Cordillera	ZEAS			
Analytical LRL	Comparis versus	on actual LRL target LRL	LRL for each parameter should be at least as low as applicable guidelines, benchmarks, and screening values ^a	-	-			
Blank Analysis	Field or Laboratory Blank		-	-	-			
		Concentrations <2-times the LRL:	No DQO set					
		Concentrations 2 to 4-times the LRL:	No DQO set	-				
	Laboratory Duplicates	Concentrations 4 to 10-times the LRL:	No DQO set		-			
Laboratory Precision		Concentrations 10 to 20-times the LRL:	≤60% RPD (Ca, Sr) ≤40% RPD (all other analytes)					
		Concentrations >20-times the LRL:	≤60% RPD (Ca, Sr) ≤40% RPD (all other analytes)					
	Repeatability of Reference Material Recoveries		≤20% RPD	-	-			
	Taxonomic Precision		-	<5% (identification error rate, differences in enumeration and taxonomic disagreement)	-			
	Organism Sub-Sampling Precision		-	≤20% difference between sub-samples; minimum of 5% of each sample must be analyzed	≤20% difference between sub-samples; minimum of 5% of each sample must be analyzed			
	Recovery of Blank Spike		-		-			
	Recovery of Matrix Spike		-	-	-			
	Matrix Spike Duplicate		-	-	-			
Accuracy	Recovery of Certified Reference Material, QC Standards		60 to 140% (Sb, Ba, B, Ag, Sn, Ti) 90 to 110% (Se) 70 to 130% (all other analytes) ^d	-	-			

Table A.1: Data Quality Objectives for the Greenhills and Gardine Creeks Aquatic Monitoring Program, 2021

		Organism Recovery	-	≥95% recovery (CABIN)	≥90% recovery
		Organism Sub-Sampling		≤20% difference between density	≤20% difference between density
		Accuracy	-	estimates from sub-samples and actual	estimates from sub-samples and actual
		Acculacy		density in whole sample	density in whole sample

Notes: QC = quality control; ALS = ALS Environmental; Brooks = Brooks Applied Laboratory; Trich = TrichAnalytics Inc.; Cordillera = Cordillera Consulting; ZEAS = ZEAS Inc.; LRL = Laboratory Reporting Limit; \leq = less than or equal to; - = not applicable; < = less than; > = greater than; % = percent; RPD = relative percent difference; PAHs = polycyclic aromatic hydrocarbons; DQO = data quality objective; TKN = total Kjeldahl nitrogen; DOC = dissolved organic carbon; TOC = total organic carbon; TSS = total suspended solids; TDS = total dissolved solids.

^a If no guideline, benchmark, or screening value exists for a substance, the LRL should be less than predictions

^b Only applies to QC samples at concentrations <LRL or >5-times the LRL.

^c However, for multi-element scans, <10% of analytes may exceed the quoted limit by <10% before the laboratory considers the results as having not met DQO

^d Only applies to QC samples at concentrations >20-times the LRL.

with which that data can be used to derive conclusions. The intent of the DQR is not to reject measurements that did not meet the DQO, but to confirm that questionable data received more scrutiny to determine what effect, if any, were had on interpretation of results within the context of the monitoring program.

A1.2 Laboratory Reporting Limits

An LRL is the lowest concentration of an analyte that can be reported with a reasonable degree of accuracy and precision and is ideally synonymous with the lower limit of quantitation (LLOQ). The LLOQ is the lowest concentration of an analyte that can be reliably measured within specific limits of precision and accuracy during routine operating conditions, as opposed to being detected which, in most cases, is the lowest concentration on the calibration curve. The LRL is typically three to ten times the method detection limit (MDL); however, some guidelines are so low the LRL is equal to the MDL to report the guideline. Achieving satisfactory LRLs is important when comparing concentrations to guidelines for that medium. If the LRL is above the guideline, the data cannot be accurately interpreted. Consistency is also important for LRLs when taking consecutive samples. Changes in LRLs between laboratory reports can affect summary calculations and also introduce confounding factors when assessing trends. For the 2021 Greenhills and Gardine Creeks Aquatic Monitoring Program Report, LRLs were screened against guidelines from the British Columbia Ministry of Environment and Climate Change Strategy (BCMOECCS), Elk Valley Water Quality Plan (EVWQP) benchmarks, and site-specific screening values, as appropriate.

A1.3 Quality Control Samples

Typically, a DQR involves the examination of analytical results associated with several types of Quality Control (QC) samples that are collected (or prepared) in the field and laboratory. Quality control samples collected for the Greenhills and Gardine Creeks Aquatic Monitoring Program in 2021, and a description of each QC sample type, are as follows:

- **Blanks** are samples of de-ionized water and/or appropriate reagent(s) that are handled and analyzed in the same way as regular samples. These samples reflect contamination of samples occurring in the field (in the case of field or trip blanks) or in the laboratory (in the case of laboratory or method blanks). Concentrations of analytes should be less than the LRL or within a pre-determined range of values for parameters like pH, conductivity, and hardness.
- **Field Duplicates** are samples collected from a randomly selected field station that are homogenized to the extent possible, split, and analyzed separately in the laboratory. The duplicate samples are handled and analyzed in an identical manner in
the laboratory. These samples reflect variability introduced during the handling of field samples (e.g., during homogenization), both in the field and laboratory, and therefore provide a measure of field sampling and laboratory precision.

- Laboratory Duplicates are replicate sub-samples created in the laboratory from randomly selected field samples that are sub-sampled and then analyzed independently using identical analytical methods. The laboratory duplicate sample results reflect variability introduced during laboratory sample handling and analysis and thus provide a measure of laboratory precision.
- Spike Recovery Samples are created in the laboratory by adding a known amount/concentration of a given analyte (or mixture of analytes) to a randomly selected test sample previously divided to create two sub-samples. The spiked and regular sub-samples are then analyzed in an identical manner. The spike recovery represents the difference between the measured spike amount (total amount in spiked sample minus amount in original sample) relative to the known spike amount (as a percentage). Two types of spike recovery samples are commonly analyzed. Spiked blanks are created using laboratory control materials, whereas MS are created using field-collected samples. The analysis of spiked samples provides an indication of the accuracy of analytical results.
- **CRM** are commercially prepared (or commercially homogenized) samples containing known chemical concentrations that are processed and analyzed along with batches of environmental samples. The sample results are then compared to target results to provide a measure of analytical accuracy. The results are reported as the percent of the known concentration that was recovered in the analysis.

A1.4 Other Quality Control Checks

Three additional types of QC checks were completed for the benthic invertebrate community samples collected as part of the 2021 Greenhills and Gardine Creeks Aquatic Monitoring Program. These included:

 Sub-sampling Error is assessed for studies in which benthic invertebrate community samples require sub-sampling (due to excessive sample volume and/or invertebrate density). By comparing the numbers of benthic invertebrates recovered from at least two sub-samples, this measure provides an evaluation of how effective the sub-sampling method was in evenly dividing the original sample. Therefore, sub-sampling error provides a measure of analytical accuracy and precision.

- Organism Recovery Checks that involve the re-processing of previously sorted material from a randomly-selected benthic invertebrate community sample to determine the number of invertebrates that were not recovered during the original sample processing. The reprocessing is completed by an analyst who was not involved during the original processing to reduce bias. This check allows for the determination of accuracy through assessment of recovery efficiency.
- **Taxonomic Error** is assessed to provide an estimate of overall taxonomic precision. A minimum of 10 percent (%) of samples undergo re-identification and re-enumeration by someone other than the original taxonomist. This second taxonomist will document errors related to misidentification, incorrect enumeration, and/or questionable/insufficient taxonomic resolution and calculate an overall identification error rate.

A2 WATER CHEMISTRY

A2.1 Laboratory Reporting Limits

The analytical reports from ALS Environmental (ALS) for 2021 were examined to provide an inventory of analytes for which the sample results were equal to or less than the target LRL (Appendix Table A.2; see Appendix B for laboratory reports). The LRLs for these analytes were also assessed relative to the working and approved British Columbia Water Quality Guidelines (BC WQG) for the protection of freshwater aquatic life (BCMOECCS 2021a,b), EVWQP Level 1 Benchmarks for water quality (Teck 2014), and relevant site-specific benchmarks (Appendix Table A.2).

The LRLs achieved for water chemistry samples were lower than applicable BC WQG, EVWQP Level 1 benchmarks, and relevant screening values for all analytes (Appendix Table A.2). Multiple analytes were consistently (i.e., in 100% of samples) reported at concentrations below the LRL in 2021, including:

- bromide;
- total beryllium, bismuth, cobalt, lead, silver, tin, titanium, and vanadium; and
- dissolved beryllium, bismuth, cobalt, iron, lead, mercury, silver, tin, titanium, and vanadium (Appendix Table A.2).

Concentrations of sulphate and total selenium, which have long-term targets under the EVWQP (Teck 2014), were detectable in all samples (Appendix Table A.2). Concentrations of nitrate and dissolved cadmium, both of which also have long-term targets under the EVWQP, were not detected in one (13%) and two (25%) of the water chemistry samples, respectively, that were collected in September 2021. Total nickel was detectable in all samples from February and September 2021 (Appendix Table A.2). Overall, the achieved LRLs were appropriate for this study.

A2.2 Field and Laboratory Blanks

A total of two field blank samples and one trip blank sample were used to assess field sampling contamination in 2021 (Appendix Table A.3). The analytes measured in the blanks were not consistent among samples (e.g., in February 2021, only a subset of dissolved metals [calcium, magnesium, potassium, and sodium] were measured in the trip blank); these differences are reflected in Appendix Table A.3. The same DQOs that were used for laboratory blanks were used for field and trip blanks (Appendix Table A.1).

Table A.2: Laboratory Reporting Limit (LRL) Evaluation for Water Chemistry Analyses, 2021 ^a

Analyte	Units	BC WQ	G ^b	EVWQP Level 1 Benchmarks/	Range o	f LRLs ^d	No. Sample	Results <lrl <sup="">°</lrl>
, mary co	onno	Long-term Average	Short-term Maximum	Relevant Screening Values ^c	February	September	February	September
Physical Tests	1							
Specific Conductance	µS/cm	-	-	-	2.0	2.0	0	0
Hardness (as CaCO ₃)	mg/L	-	-	-	0.50	0.50	0	0
рН	рН	6.5 to 9	.0	-	0.10	0.10	0	0
Total Suspended Solids	mg/L	-	-	-	1	1	2 (67%)	0
Total Dissolved Solids	mg/L	1,000 to 3,000	-	1,000	20 to 40	20 to 40	0	0
Turbidity	NTU	-	-	-	0.10	0.10	0	0
Anions and Nutrients	1	ſ		I	L			
Alkalinity, Total (as CaCO ₃)	mg/L	-	-	-	1.0	1.0	0	0
Ammonia, Total (as N) ^f	mg/L	0.10 to 2.0	0.68 to 26	-	0.0050	0.0050	1 (33%)	4 (50%)
Bromide	mg/L	-	-	-	0.25	0.050 to 0.25	3 (100%)	8 (100%)
Chloride	mg/L	150	600	-	0.50	0.10 to 0.50	0	0
Fluoride ^g	mg/L	-	1.73 to 1.88	-	0.10	0.020 to 0.10	1 (33%)	2 (25%)
Nitrate (as N)	mg/L	3	32.8	6.8 to 15	0.025	0.0050 to 0.025	0	1 (13%)
Nitrite (as N) ^h	mg/L	0.02 to 0.20	0.06 to 0.60	0.015 to 0.050	0.0050	0.0010 to 0.0050	1 (33%)	4 (50%)
Total Kjeldahl Nitrogen	mg/L	0.02 10 0.20 0.00 10 0.00 0.00 10 0.000 0.0000 0.0000 - - - 0.0010 0.0010 - - - 0.0010 0.0020 429 - 429 1.5 - - 0.50 0.50		0.050	3 (100%)	0		
Orthophosphate-Dissolved (as P)	mg/L	-	-	-	0.0010	0.0010	0	4 (50%)
Total Phosphorus	mg/L	-	-	-	0.0020	0.0020	0	0
Sulphate (SO ₄) ^g	mg/L	429	-	429	1.5	0.30 to 1.5	0	0
Organic/Inorganic Carbon	F	1		1	I			
Total Organic Carbon	mg/L	-	-	-	0.50	0.50	0	0
Dissolved Organic Carbon	mg/L	-	-	-	0.50	0.50	0	0
Total Metals	T	1			1			
Aluminum (Al)	mg/L	-	-	-	0.0030 to 0.0060	0.0030 to 0.0060	2 (67%)	1 (13%)
Antimony (Sb)	mg/L	0.009	-	-	0.00010 to 0.00020	0.00010 to 0.00020	0	0
Arsenic (As)	mg/L	-	0.005	-	0.00010 to 0.00020	0.00010 to 0.00020	0	0
Barium (Ba)	mg/L	1	-	-	0.00010 to 0.00020	0.00010 to 0.00020	0	0
Beryllium (Be)	mg/L	0.00013	-	0.0053	0.000020 to 0.000040	0.000020 to 0.000040	3 (100%)	8 (100%)
Bismuth (Bi)	mg/L	-	-	-	0.000050 to 0.00010	0.000050 to 0.00010	3 (100%)	8 (100%)
Boron (B)	mg/L	1.2	-	-	0.010 to 0.020	0.010 to 0.020	1 (33%)	3 (38%)
Cadmium (Cd)	mg/L	-	-	-	0.0000050 to 0.000010	0.0000050 to 0.000010	0	1 (13%)
Calcium (Ca)	mg/L	-	-	-	0.050 to 0.10	0.050 to 0.10	0	0
Chromium (Cr) ⁱ	mg/L	0.001	-	0.005	0.00010 to 0.00020	0.00010 to 0.00020	1 (33%)	6 (75%)
Cobalt (Co)	mg/L	0.004	0.11	0.0038 to 0.0083	0.00010 to 0.00020	0.00010 to 0.00020	3 (100%)	8 (100%)
Copper (Cu)	mg/L	-	-	-	0.00050 to 0.0010	0.00050 to 0.0010	3 (100%)	7 (88%)
Iron (Fe)	mg/L	-	1	-	0.010 to 0.020	0.010 to 0.020	3 (100%)	4 (50%)
Lead (Pb) ^g	mg/L	0.012 to 0.020	0.23 to 0.42	-	0.000050 to 0.00010	0.000050 to 0.00010	3 (100%)	8 (100%)
Lithium (Li)	mg/L	-	-	-	0.0010 to 0.0020	0.0010 to 0.0020	0	0
Magnesium (Mg)	mg/L	-	-	-	0.10	0.0050 to 0.010	0	0
Manganese (Mn)	mg/L	1.6 to 2.6	3.0 to 3.4	-	0.00010 to 0.00020	0.00010 to 0.00020	0	0
Mercury (Hg)	mg/L	0.0000013	-	-	0.0000050	0.0000050	3 (100%)	5 (63%)
Molybdenum (Mo)	mg/L	7.6	46	-	0.000050 to 0.00010	0.000050 to 0.00010	0	0
Nickel (Ni) ^g	mg/L	-	-	0.0053	0.00050 to 0.0010	0.00050 to 0.0010	0	0
Potassium (K)	mg/L	-	-	-	0.050 to 0.10	0.050 to 0.10	0	0
Selenium (Se)	mg/L	0.002	-	0.070	0.000050 to 0.00010	0.000050 to 0.00010	0	0
Silicon (Si)	mg/L	-	-	-	0.10 to 0.20	0.10 to 0.20	0	0
Silver (Ag) ^g	mg/L	0.0015	0.0030	-	0.000010 to 0.000020	0.000010 to 0.000020	3 (100%)	8 (100%)
Sodium (Na)	mg/L	-	-	-	0.050 to 0.10	0.050 to 0.10	0	0
Strontium (Sr)	mg/L	-	-	-	0.00020 to 0.00040	0.00020 to 0.00040	0	0
Thallium (TI)	mg/L	0.0008	-	-	0.000010 to 0.000020	0.000010 to 0.000020	2 (67%)	7 (88%)
Tin (Sn)	mg/L	-	-	-	0.00010 to 0.00020	0.00010 to 0.00020	3 (100%)	8 (100%)
Titanium (Ti)	mg/L	-	-	-	0.010	0.00030 to 0.00090	3 (100%)	8 (100%)
Uranium (U)	mg/L	0.0085	-	-	0.000010 to 0.000020	0.000010 to 0.000020	0	0
Vanadium (V)	mg/L	-	-	0.12	0.00050 to 0.0010	0.00050 to 0.0010	3 (100%)	8 (100%)
Zinc (Zn) ^g	mg/L	0.11 to 0.19	0.13 to 0.34	-	0.0030 to 0.0060	0.0030 to 0.0060	2 (67%)	5 (63%)

Shading indicates an LRL greater than the lowest EVWQP Level 1 Benchmark (Teck 2014) or relevant, site-specific screening value.

Shading indicates an LRL greater than the lowest BC WQG for the protection of freshwater aquatic life (BCMOECCS 2021a,b).

Notes: BC WQG = British Columbia Water Quality Guidelines; EVWQP = Elk Valley Water Quality Plan; LRL = Laboratory Reporting Limit; < = less than; μ S/cm = microSiemens per centimetre; - = no data/not applicable; CaCO₃ = calcium carbonate; mg/L = milligrams per litre; % = percent; NTU = Nephelometric Turbidity Units; μ g/L = micrograms per litre.

^a The number of significant digits reported in the table is consistent with source material (e.g., BCMOECCS 2021a,b) and laboratory reports.

^b Working (BCMOECCS 2021a) or approved (BCMOECCS 2021b) BC WQG for the protection of freshwater aquatic life.

^c Where more than one EVWQP Level 1 Benchmark or screening value was applicable, the most conservative (lowest) value was used.

^d The LRLs for all analytes were consistently less than the applicable EVWQP Level 1 Benchmarks (Teck 2014) or screening values (Golder 2017; Teck 2020).

e The total number of samples in February 2021 was n = 3 (n = 2 water samples and n = 1 duplicate sample); in September 2021, the total number of samples was n = 8 (n = 7 water samples and n = 1

duplicate sample). Data for field and trip blanks are summarized in Appendix Table A.3.

- ^f Ammonia guidelines were calculated based on the temperature and pH of individual water samples.
- ⁹ Hardness-based guidelines, benchmarks, and/or screening values were calculated based on the hardness of individual water samples.
- ^h Nitrite guidelines and screening values were calculated based on chloride concentrations in individual water samples.
- ⁱ Guideline for chromium VI (0.001 mg/L) was selected because this is the principal species found in surface waters.
- ^j Dissolved aluminum guidelines were calculated based on the pH of individual water samples.
- ^k Dissolved copper guidelines were calculated based on the Biotic Ligand Model (BCMOECCS 2021b).

Table A.2: Laboratory Reporting Limit (LRL) Evaluation for Water Chemistry Analyses, 2021 ^a

Analyte	Units	BC WQG		EVWQP Level 1 Benchmarks/	Range o	f LRLs ^d	No. Sample Results <lrl <sup="">e</lrl>	
, and yes	enne	Long-term Average	Short-term Maximum	Relevant Screening Values ^c	February	September	February	September
Dissolved Metals								
Aluminum (Al) ^j	mg/L	0.05	0.1	-	0.0030	0.0010 to 0.0020	3 (100%)	5 (63%)
Antimony (Sb)	mg/L	-	-	-	0.00010 to 0.00020	0.00010 to 0.00020	0	0
Arsenic (As)	mg/L	-	-	-	0.00010 to 0.00020	0.00010 to 0.00020	0	0
Barium (Ba)	mg/L	-	-	-	0.00010 to 0.00020	0.00010 to 0.00020	0	0
Beryllium (Be)	mg/L	-	-	-	0.000020 to 0.000040	0.000020 to 0.000040	3 (100%)	8 (100%)
Bismuth (Bi)	mg/L	-	-	-	0.000050 to 0.00010	0.000050 to 0.00010	3 (100%)	8 (100%)
Boron (B)	mg/L	-	-	-	0.010 to 0.020	0.010 to 0.020	1 (33%)	3 (38%)
Cadmium (Cd) ^g	mg/L	0.00038 to 0.00046	0.0014 to 0.0028	0.00026 to 0.0016	0.0000050 to 0.000010	0.0000050 to 0.000010	0	2 (25%)
Calcium (Ca)	mg/L	-	-	-	0.050 to 0.10	0.050 to 0.10	0	0
Chromium (Cr)	mg/L	-	-	-	0.00010 to 0.00020 0.00010 to 0.000		2 (67%)	7 (88%)
Cobalt (Co)	mg/L	-	-	-	0.00010 to 0.00020 0.00010 to 0.0002		3 (100%)	8 (100%)
Copper (Cu) ^k	mg/L	0.00060 to 0.0047	0.0038 to 0.028	-	0.00020 to 0.00040 0.00020 to 0.00040		3 (100%)	0
Iron (Fe)	mg/L	-	0.35	1.1	0.010 to 0.020	0.010 to 0.020	3 (100%)	8 (100%)
Lead (Pb)	mg/L	-	-	-	0.000050 to 0.00010 0.000050 to 0.000		3 (100%)	8 (100%)
Lithium (Li)	mg/L	-	-	-	0.0010 to 0.0020	0.0010 to 0.0020	0	0
Magnesium (Mg)	mg/L	-	-	-	0.10	0.0050 to 0.010	0	0
Manganese (Mn)	mg/L	-	-	-	0.00010 to 0.00020	0.00010 to 0.00020	0	0
Mercury (Hg)	mg/L	-	-	-	0.0000050	0.0000050	3 (100%)	8 (100%)
Molybdenum (Mo)	mg/L	-	-	-	0.000050 to 0.00010	0.000050 to 0.00010	0	0
Nickel (Ni)	mg/L	-	-	-	0.00050 to 0.0010	0.00050 to 0.0010	0	0
Potassium (K)	mg/L	-	-	-	0.050 to 0.10	0.050 to 0.10	0	0
Selenium (Se)	mg/L	-	-	-	0.000050 to 0.00010	0.000050 to 0.00010	0	0
Silicon (Si)	mg/L	-	-	-	0.050 to 0.10	0.050 to 0.10	0	0
Silver (Ag)	mg/L	-	-	-	0.000010 to 0.000020	0.000010 to 0.000020	3 (100%)	8 (100%)
Sodium (Na)	mg/L	-	-	-	0.050 to 0.10	0.050 to 0.10	0	0
Strontium (Sr)	mg/L	-	-	-	0.00020 to 0.00040	0.00020 to 0.00040	0	0
Thallium (TI)	mg/L	-	-	-	0.000010 to 0.000020	0.000010 to 0.000020	3 (100%)	6 (75%)
Tin (Sn)	mg/L	-	-	-	0.00010 to 0.00020	0.00010 to 0.00020	3 (100%)	8 (100%)
Titanium (Ti)	mg/L	-	-	-	0.010	0.00030 to 0.00060	3 (100%)	8 (100%)
Uranium (U)	mg/L	-	-	-	0.000010 to 0.000020	0.000010 to 0.000020	0	0
Vanadium (V)	mg/L	-	-	-	0.00050 to 0.0010	0.00050 to 0.0010	3 (100%)	8 (100%)
Zinc (Zn)	mg/L	-	-	-	0.0010 to 0.0020	0.0010 to 0.0020	1 (33%)	3 (38%)

Shading indicates an LRL greater than the lowest EVWQP Level 1 Benchmark (Teck 2014) or relevant, site-specific screening value.

Shading indicates an LRL greater than the lowest BC WQG for the protection of freshwater aquatic life (BCMOECCS 2021a,b).

Notes: BC WQG = British Columbia Water Quality Guidelines; EVWQP = Elk Valley Water Quality Plan; LRL = Laboratory Reporting Limit; < = less than; μ S/cm = microSiemens per centimetre; - = no data/not applicable; CaCO₃ = calcium carbonate; mg/L = milligrams per litre; % = percent; NTU = Nephelometric Turbidity Units; μ g/L = micrograms per litre.

^a The number of significant digits reported in the table is consistent with source material (e.g., BCMOECCS 2021a,b) and laboratory reports.

^b Working (BCMOECCS 2021a) or approved (BCMOECCS 2021b) BC WQG for the protection of freshwater aquatic life.

^c Where more than one EVWQP Level 1 Benchmark or screening value was applicable, the most conservative (lowest) value was used.

^d The LRLs for all analytes were consistently less than the applicable EVWQP Level 1 Benchmarks (Teck 2014) or screening values (Golder 2017; Teck 2020).

^e The total number of samples in February 2021 was n = 3 (n = 2 water samples and n = 1 duplicate sample); in September 2021, the total number of samples was n = 8 (n = 7 water samples and n = 1 duplicate sample). Data for field and trip blanks are summarized in Appendix Table A.3.

^f Ammonia guidelines were calculated based on the temperature and pH of individual water samples.

⁹ Hardness-based guidelines, benchmarks, and/or screening values were calculated based on the hardness of individual water samples.

^h Nitrite guidelines and screening values were calculated based on chloride concentrations in individual water samples.

ⁱ Guideline for chromium VI (0.001 mg/L) was selected because this is the principal species found in surface waters.

^j Dissolved aluminum guidelines were calculated based on the pH of individual water samples.

^k Dissolved copper guidelines were calculated based on the Biotic Ligand Model (BCMOECCS 2021b).

Page 2 of 2

Table A.3: Field Blank and Trip Blank Evaluation for Water Chemistry Analyses, 2021^a

Analyte Unit		BC WQ	G ^b	EVWQP Level 1 Benchmarks/	Range o	of LRLs ^d	No. Sample Results <lrl <sup="">e</lrl>		
		Long-term Average	Short-term Maximum	Values ^c	February	September	February	September	
Physical Tests	<u> </u>		maximum						
Specific Conductance	µS/cm	-	-	-	2.0	2.0	2 (100%)	1 (100%)	
Hardness (as CaCO ₃)	mg/L	-	-	-	0.50	0.50	2 (100%)	1 (100%)	
pH	pH	6.5 to 9	9.0	-	0.10	0.10	0	0	
Total Suspended Solids	mg/L	-	-	-	1.0	1.0	2 (100%)	1 (100%)	
Total Dissolved Solids	mg/L	-	-	1,000	10	10	2 (100%)	1 (100%)	
Turbidity	NTU	-	-	-	0.10	0.10	2 (100%)	1 (100%)	
Anions and Nutrients	1					L			
Alkalinity, Total (as CaCO ₃)	mg/L	-	-	-	1.0	1.0	2 (100%)	1 (100%)	
Ammonia, Total (as N) ^f	mg/L	0.10 to 2.0	0.68 to 26	-	0.0050	0.0050	1 (50%)	1 (100%)	
Bromide	mg/L	-	-	-	0.050	0.050	2 (100%)	1 (100%)	
Chloride	mg/L	150	600	-	0.10	0.10	2 (100%)	1 (100%)	
Fluoride ^g	mg/L	-	1.73 to 1.88	-	0.020	0.020	2 (100%)	1 (100%)	
Nitrate (as N)	mg/L	3	32.8	6.8 to 15	0.0050	0.0050	2 (100%)	1 (100%)	
Nitrite (as N) ^h	mg/L	0.02 to 0.20	0.06 to 0.60	0.015 to 0.050	0.0010	0.0010	2 (100%)	1 (100%)	
Total Kjeldahl Nitrogen	mg/L	-	-	-	0.050	0.050	2 (100%)	1 (100%)	
Orthophosphate-Dissolved (as P)	mg/L	-	-	-	0.0010	0.0010	2 (100%)	1 (100%)	
Total Phosphorus	mg/L	-	-	-	0.0020	0.0020	2 (100%)	1 (100%)	
Sulphate (SO ₄) ^g	mg/L	429	-	429	0.030	0.030	2 (100%)	1 (100%)	
Organic/Inorganic Carbon				•			. ,		
Total Organic Carbon	mg/L	-	-	-	0.50	0.50	2 (100%)	1 (100%)	
Dissolved Organic Carbon	mg/L	-	-	-	0.50	0.50	2 (100%)	1 (100%)	
Total Metals							. ,		
Aluminum (Al)	mg/L	-	-	-	0.0030	0.0030	2 (100%)	1 (100%)	
Antimony (Sb)	mg/L	0.009	-	-	0.00010	0.00010	2 (100%)	1 (100%)	
Arsenic (As)	mg/L	-	0.005	-	0.00010	0.00010	2 (100%)	1 (100%)	
Barium (Ba)	mg/L	1	-	-	0.00010	0.00010	2 (100%)	1 (100%)	
Beryllium (Be)	mg/L	0.00013	-	0.0053	0.000020	0.000020	2 (100%)	1 (100%)	
Bismuth (Bi)	mg/L	-	-	-	0.000050	0.000050	2 (100%)	1 (100%)	
Boron (B)	mg/L	1.2	-	-	0.010	0.010	2 (100%)	1 (100%)	
Cadmium (Cd)	mg/L	-	-	-	0.0000050	0.0000050	2 (100%)	1 (100%)	
Calcium (Ca)	mg/L	-	-	-	0.050	0.050	2 (100%)	1 (100%)	
Chromium (Cr) ⁱ	mg/L	0.001	-	0.005	0.00010	0.00010	2 (100%)	1 (100%)	
Cobalt (Co)	mg/L	0.004	0.11	0.0038 to 0.0083	0.00010	0.00010	2 (100%)	1 (100%)	
Copper (Cu)	mg/L	-	-	-	0.00050	0.00050	2 (100%)	1 (100%)	
Iron (Fe)	mg/L	-	1	-	0.010	0.010	2 (100%)	1 (100%)	
Lead (Pb) ^g	mg/L	0.012 to 0.020	0.23 to 0.42	-	0.000050	0.000050	2 (100%)	1 (100%)	
Lithium (Li)	mg/L	-	-	-	0.0010	0.0010	2 (100%)	1 (100%)	
Magnesium (Mg)	mg/L	-	-	-	0.10	0.0050	2 (100%)	0	
Manganese (Mn)	mg/L	1.6 to 2.6	3.0 to 3.4	-	0.00010	0.00010	2 (100%)	1 (100%)	
Mercury (Hg)	mg/L	0.0000013	-	-	0.00000050	0.00000050	2 (100%)	1 (100%)	
Molybdenum (Mo)	mg/L	7.6	46	-	0.000050	0.000050	2 (100%)	1 (100%)	
Nickel (Ni) ^g	mg/L	-	-	0.0053	0.00050	0.00050	2 (100%)	1 (100%)	
Potassium (K)	mg/L	-	-	-	0.050	0.050	2 (100%)	1 (100%)	
Selenium (Se)	mg/L	0.002	-	0.070	0.000050	0.000050	2 (100%)	1 (100%)	
Silicon (Si)	mg/L	-	-	-	0.10	0.10	2 (100%)	1 (100%)	
Silver (Ag) ^g	mg/L	0.0015	0.0030	-	0.000010	0.000010	2 (100%)	1 (100%)	
Sodium (Na)	mg/L	-	-	-	0.050	0.050	2 (100%)	1 (100%)	
Strontium (Sr)	mg/L	-	-	-	0.00020	0.00020	2 (100%)	1 (100%)	
Thallium (TI)	mg/L	0.0008	-	-	0.000010	0.000010	2 (100%)	1 (100%)	
Tin (Sn)	mg/L	-	-	-	0.00010	0.00010	2 (100%)	1 (100%)	
Titanium (Ti)	mg/L	-	-	-	0.010	0.00030	2 (100%)	1 (100%)	
Uranium (U)	mg/L	0.0085	-	-	0.000010	0.000010	2 (100%)	1 (100%)	
Vanadium (V)	mg/L	-	-	0.12	0.00050	0.00050	2 (100%)	1 (100%)	
Zinc (Zn) ^g	mg/L	0.11 to 0.19	0.13 to 0.34	-	0.0030	0.0030	2 (100%)	1 (100%)	

Shading indicates blank concentrations at or greater than the LRL.

Shading indicates an LRL greater than the lowest EVWQP Level 1 Benchmark (Teck 2014) or relevant, site-specific screening value.

Shading indicates an LRL greater than the lowest BC WQG for the protection of freshwater aquatic life (BCMOECCS 2021a,b).

Notes: BC WQG = British Columbia Water Quality Guidelines; EVWQP = Elk Valley Water Quality Plan; LRL = Laboratory Reporting Limit; < = less than; μ S/cm = microSiemens per centimetre; - = no data/not applicable; CaCO₃ = calcium carbonate; mg/L = milligrams per litre; % = percent; NTU = Nephelometric Turbidity Units; μ g/L = micrograms per litre.

^a The number of significant digits reported in the table is consistent with source material (e.g., BCMOECCS 2021a,b) and laboratory reports.

^b Working (BCMOECCS 2021a) or approved (BCMOECCS 2021b) BC WQG for the protection of freshwater aquatic life.

^c Where more than one EVWQP Level 1 Benchmark or screening value was applicable, the most conservative (lowest) value was used.

^d The LRLs for all analytes were consistently less than the applicable EVWQP Level 1 Benchmarks (Teck 2014) or screening values (Golder 2017; Teck 2020).

^e The total number of samples in February 2021 was n = 2 (n = 1 trip blank and n = 1 field blank); in September 2021, the total number of samples was n = 1 field blank (i.e., no trip blanks were submitted for analysis in September 2021). Some parameters were not consistently analyzed and reported for the blank samples; differences in sample numbers are reflected in the table.

^f Ammonia guidelines were calculated based on the temperature and pH of individual water samples.

^g Hardness-based guidelines, benchmarks, and/or screening values were calculated based on the hardness of individual water samples.

^h Nitrite guidelines and screening values were calculated based on chloride concentrations in individual water samples.

ⁱ Guideline for chromium VI (0.001 mg/L) was selected because this is the principal species found in surface waters.

^j Dissolved aluminum guidelines were calculated based on the pH of individual water samples.

^k Dissolved copper guidelines were calculated based on the Biotic Ligand Model (BCMOECCS 2021b).

Table A.3: Field Blank and Trip Blank Evaluation for Water Chemistry Analyses, 2021^a

Analyte	Units	BC WQ	lG ^b	EVWQP Level 1 Benchmarks/	Range o	f LRLs ^d	No. Sample Results <lrl <sup="">e</lrl>		
, mary to	onito	Long-term Average	Short-term Maximum	Relevant Screening Values ^c	February	September	February	September	
Dissolved Metals									
Aluminum (Al) ^j	mg/L	0.05	0.1	-	0.0030	0.0010	1 (100%)	1 (100%)	
Antimony (Sb)	mg/L	-	-	-	0.00010	0.00010	1 (100%)	1 (100%)	
Arsenic (As)	mg/L	-	-	-	0.00010	0.00010	1 (100%)	1 (100%)	
Barium (Ba)	mg/L	-	-	-	0.00010	0.00010	1 (100%)	1 (100%)	
Beryllium (Be)	mg/L	-	-	-	0.000020	0.000020	1 (100%)	1 (100%)	
Bismuth (Bi)	mg/L	-	-	-	0.000050	0.000050	1 (100%)	1 (100%)	
Boron (B)	mg/L	-	-	-	0.010	0.010	1 (100%)	1 (100%)	
Cadmium (Cd) ^g	mg/L	0.00038 to 0.00046	0.0014 to 0.0028	0.00026 to 0.0016	0.0000050	0.0000050	1 (100%)	1 (100%)	
Calcium (Ca)	mg/L	-	-	-	0.050	0.050	2 (100%)	1 (100%)	
Chromium (Cr)	mg/L	-	-	-	0.00010	0.00010	1 (100%)	1 (100%)	
Cobalt (Co)	mg/L	-	-	-	0.00010	0.00010	1 (100%)	1 (100%)	
Copper (Cu) ^k	mg/L	0.00060 to 0.0047	0.0038 to 0.028	-	0.00020	0.00020	1 (100%)	1 (100%)	
Iron (Fe)	mg/L	-	0.35	1.1	0.010	0.010	1 (100%)	1 (100%)	
Lead (Pb)	mg/L	-	-	-	0.000050	0.000050	1 (100%)	1 (100%)	
Lithium (Li)	mg/L	-	-	-	0.0010	0.0010	1 (100%)	1 (100%)	
Magnesium (Mg)	mg/L	-	-	-	0.0050 to 0.10	0.0050	2 (100%)	1 (100%)	
Manganese (Mn)	mg/L	-	-	-	0.00010	0.00010	1 (100%)	1 (100%)	
Mercury (Hg)	mg/L	-	-	-	0.0000050	0.0000050	1 (100%)	1 (100%)	
Molybdenum (Mo)	mg/L	-	-	-	0.000050	0.000050	1 (100%)	1 (100%)	
Nickel (Ni)	mg/L	-	-	-	0.00050	0.00050	1 (100%)	1 (100%)	
Potassium (K)	mg/L	-	-	-	0.050	0.050	2 (100%)	1 (100%)	
Selenium (Se)	mg/L	-	-	-	0.000050	0.000050	1 (100%)	1 (100%)	
Silicon (Si)	mg/L	-	-	-	0.050	0.050	1 (100%)	1 (100%)	
Silver (Ag)	mg/L	-	-	-	0.000010	0.000010	1 (100%)	1 (100%)	
Sodium (Na)	mg/L	-	-	-	0.050	0.050	2 (100%)	1 (100%)	
Strontium (Sr)	mg/L	-	-	-	0.00020	0.00020	1 (100%)	1 (100%)	
Thallium (TI)	mg/L	-	-	-	0.000010	0.000010	1 (100%)	1 (100%)	
Tin (Sn)	mg/L	-	-	-	0.00010	0.00010	1 (100%)	1 (100%)	
Titanium (Ti)	mg/L	-	-	-	0.010	0.00030	1 (100%)	1 (100%)	
Uranium (U)	mg/L	-	-	-	0.000010	0.000010	1 (100%)	1 (100%)	
Vanadium (V)	mg/L	-	-	-	0.00050	0.00050	1 (100%)	1 (100%)	
Zinc (Zn)	mg/L	-	-	-	0.0010	0.0010	1 (100%)	1 (100%)	

Shading indicates blank concentrations at or greater than the LRL.

Shading indicates an LRL greater than the lowest EVWQP Level 1 Benchmark (Teck 2014) or relevant, site-specific screening value.

Shading indicates an LRL greater than the lowest BC WQG for the protection of freshwater aquatic life (BCMOECCS 2021a,b).

Notes: BC WQG = British Columbia Water Quality Guidelines; EVWQP = Elk Valley Water Quality Plan; LRL = Laboratory Reporting Limit; < = less than; µS/cm = microSiemens per centimetre; -= no data/not applicable; CaCO₃ = calcium carbonate; mg/L = milligrams per litre; % = percent; NTU = Nephelometric Turbidity Units; µg/L = micrograms per litre.

^a The number of significant digits reported in the table is consistent with source material (e.g., BCMOECCS 2021a,b) and laboratory reports.

^b Working (BCMOECCS 2021a) or approved (BCMOECCS 2021b) BC WQG for the protection of freshwater aquatic life.

^c Where more than one EVWQP Level 1 Benchmark or screening value was applicable, the most conservative (lowest) value was used.

^d The LRLs for all analytes were consistently less than the applicable EVWQP Level 1 Benchmarks (Teck 2014) or screening values (Golder 2017; Teck 2020).

e The total number of samples in February 2021 was n = 2 (n = 1 trip blank and n = 1 field blank); in September 2021, the total number of samples was n = 1 field blank (i.e., no trip blanks were submitted for analysis in September 2021). Some parameters were not consistently analyzed and reported for the blank samples; differences in sample numbers are reflected in the table. ^f Ammonia guidelines were calculated based on the temperature and pH of individual water samples.

⁹ Hardness-based guidelines, benchmarks, and/or screening values were calculated based on the hardness of individual water samples.

^h Nitrite guidelines and screening values were calculated based on chloride concentrations in individual water samples.

ⁱ Guideline for chromium VI (0.001 mg/L) was selected because this is the principal species found in surface waters.

^j Dissolved aluminum guidelines were calculated based on the pH of individual water samples.

^k Dissolved copper guidelines were calculated based on the Biotic Ligand Model (BCMOECCS 2021b).

Page 2 of 2

Of the results that were reported for field and trip blanks, only two were greater than the LRL: ammonia (as N) in one sample from February 2021 and total magnesium in one sample from September 2021 (Appendix Table A.3). However, detectable concentrations measured in blank samples are only considered reliable if they are greater than five-times the LRL (Appendix Table A.1), and this was not the case for the two instances of reported concentrations. The results for the field and trip blanks therefore indicate contamination of the samples in the field or during transport was unlikely.

A total of 576 method blank results were reported by ALS (see Appendix B for applicable laboratory reports) and all results were below the LRL. Therefore, the laboratory method blank results do not indicate any issues with the data that might affect data interpretability.

A2.3 Data Precision

A2.3.1 Field Duplicate Samples

-0

Two field duplicate samples were collected to assess field sampling precision: one in February and one in September 2021 (Appendix Table A.4). Samples were collected as split samples; however, the sample aliquots in the larger "general" bottles would not be considered true splits (i.e., the smaller sample bottles would have been filled from these containers, and then these containers would have been filled directly from the sampling area).

The analytes with long-term targets under the EVWQP (i.e., selenium, nitrate, sulphate, and dissolved cadmium; Teck 2014), had excellent field sampling precision, except for dissolved cadmium (Appendix Table A.4). Relative percent difference (RPDs) between paired results for selenium were less than or equal to (\leq) 7.3%; RPDs for nitrate and sulphate were \leq 0.68% and \leq 1.3%, respectively. For dissolved cadmium, RPDs between paired results were \leq 38%. The high cadmium RPD is likely attributed to both reported concentrations being within five-times the LRL.² Field sampling precision was good to excellent for total dissolved solids (TDS) and nickel, both of which have site-specific screening values. For TDS, RPDs between paired results were \leq 18. For total nickel, RPDs between paired concentrations were \leq 4.8% (Appendix Table A.4).

Field precision and reproducibility are considered good to excellent for most of the analytes with long term targets under the EVQWP (total selenium and nickel, nitrate, sulphate, dissolved cadmium, and TDS). Overall, the field sampling precision is considered acceptable for the purpose of this study.

² Greater RPDs between paired results for water chemistry analyses are considered more acceptable when concentrations are close to the LRL (e.g., within five-times the LRL; Austin 2020).

Table A.4: Field Duplicate Results for Water Chemistry Analyses, 2021

			RG_GHBP		RG_GHBP				
Analyta	Unito		February			September			
Analyte			eb-21		13-Se	ep-21			
		L255	9277	RFD (70)	CG21	04105	KFD (70)		
Physical Tests									
Specific Conductance	µS/cm	1,690	1,700	0.59	1,600	1,590	0.63		
Hardness (as CaCO ₃)	mg/L	1,180	1,170	0.85	989	993	0.40		
рН	рН	8.22	8.21	0.12	8.44	8.43	0.12		
Total Suspended Solids	mg/L	<1.0	<1.0	0	1,310	1,300	0.77		
Total Dissolved Solids	mg/L	1,540	1,560	1.3	2.4	2.0	18		
Turbidity	NTU	0.24	0.20	18	1.42	0.91	44		
Anions and Nutrients									
Alkalinity, Total (as CaCO ₃)	mg/L	294	293	0.34	230	256	11		
Ammonia, Total (as N)	mg/L	0.0227	0.0268	17	0.0108	0.0091	17		
Bromide	mg/L	<0.25	<0.25	0	<0.250	<0.250	0		
Chloride	mg/L	1.88	2.6	32	1.50	1.56	3.9		
Fluoride	mg/L	0.160	0.160	0	0.112	0.115	2.6		
Nitrate (as N)	mg/L	5.87	5.83	0.68	4.74	4.71	0.63		
Nitrite (as N)	mg/L	0.0064	0.0080	22	0.0064	0.0077	18		
Total Kieldahl Nitrogen	ma/L	< 0.25	< 0.050	0	0.678	0.563	19		
Orthophosphate-Dissolved (as P)	ma/L	0.0037	0.0045	20	<0.0010	<0.0010	0		
Total Phosphorus	ma/L	0.0034	0.0052	42	0.0065	0.0079	19		
Sulphate (SO4)	ma/l	910	898	1.3	787	783	0.51		
Organic/Inorganic Carbon		010	000			100	0.01		
Total Organic Carbon	ma/L	1.51	1.58	4.5	2.24	2.18	2.7		
Dissolved Organic Carbon	ma/L	1.43	1.58	10	2.35	2.05	14		
Total Metals	<u>9</u> , <u>–</u>								
Aluminum (Al)	ma/l	<0.0030	<0.0030	0	0.0110	0.0072	42		
Antimony (Sb)	mg/L	0.00047	0.00047	0	0.00053	0.00053	0		
Arsenic (As)	mg/L	0.00028	0.00031	10	0.00020	0.00020	0		
Barium (Ba)	mg/L	0.0525	0.0493	63	0.0363	0.0386	61		
Benyllium (Be)	mg/L	<0.0020	<0.000020	0:0	<0.0000	<0.000020	0.1		
Bismuth (Bi)	mg/L			0			0		
Boron (B)	mg/L	<0.000030	<0.000030 0.013	26	<0.000030	<0.000030 0.012	0		
Cadmium (Cd)	mg/L	0.010	0.013	1.0	0.012	0.012	50		
	mg/L	0.0000098	0.0000099	1.0	176	194	50		
	mg/L	224	231	3.1	170	104	4.4		
	mg/L	0.00010	0.00011	10	<0.00010	<0.00010	0		
	mg/L	<0.00010	<0.00010	0	<0.00010	<0.00010	0		
	mg/L	<0.00050	<0.00050	0	0.00051	<0.00050	0		
Iron (Fe)	mg/L	<0.010	<0.010	0	0.010	0.012	18		
	mg/L	<0.000050	<0.000050	0	<0.000050	<0.000050	0		
	mg/L	0.0166	0.0171	3.0	0.0186	0.0185	0.54		
Magnesium (Mg)	mg/L	175	176	0.57	139	152	8.9		
Manganese (Mn)	mg/L	0.00172	0.00180	4.5	0.00183	0.00206	12		
Mercury (Hg)	mg/L	<0.0000050	<0.0000050	0	0.00000051	<0.0000050	2.0		
Molybdenum (Mo)	mg/L	0.00403	0.00399	1.0	0.00394	0.00441	11		
Nickel (Ni)	mg/L	0.0106	0.0106	0	0.00747	0.00784	4.8		
Potassium (K)	mg/L	2.45	2.50	2.0	2.42	2.54	4.8		
Selenium (Se)	mg/L	0.177	0.180	1.7	0.145	0.156	7.3		
Silicon (Si)	mg/L	4.14	4.27	3.1	3.78	4.06	7.1		
Silver (Ag)	mg/L	<0.000010	<0.000010	0	<0.000010	<0.000010	0		
Sodium (Na)	mg/L	3.02	2.94	2.7	2.54	2.71	6.5		
Strontium (Sr)	mg/L	0.230	0.236	2.6	0.188	0.195	3.7		
Thallium (TI)	mg/L	<0.000010	<0.000010	0	<0.000010	<0.000010	0		
Tin (Sn)	mg/L	<0.00010	<0.00010	0	<0.00010	<0.00010	0		
Titanium (Ti)	mg/L	<0.010	<0.010	0	<0.00030	<0.00030	0		
Uranium (U)	mg/L	0.0092	0.0091	1.2	0.00890	0.00891	0.11		
Vanadium (V)	mg/L	<0.00050	<0.00050	0	<0.00050	<0.00050	0		
Zinc (Zn)	mg/L	<0.0030	<0.0030	0	0.0045	<0.0030	40		

Notes: The RPD was calculated using <LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were <LRL. RPD = relative percent difference; % = percent; μ S/cm = microSiemens per centimetre; CaCO ₃ = calcium carbonate; mg/L = milligrams per litre; < = less than; NTU = Nephelometric Turbidity Units; μ g/L = micrograms per litre; LRL = Laboratory Reporting Limit.

Table A.4: Field Duplicate Results for Water Chemistry Analyses, 2021

			RG_GHFF			RG_GHBP			
Anchito	Unito		February			September			
Analyte	Units	18-Fe	eb-21		13-Se	ep-21			
		L250	3266	RFD (%)	CG21	04105	KPD (%)		
Dissolved Metals									
Aluminum (Al)	mg/L	<0.0030	<0.0030	0	<0.0010	<0.0010	0		
Antimony (Sb)	mg/L	0.00043	0.00045	4.5	0.00050	0.00048	4.1		
Arsenic (As)	mg/L	0.00019	0.00019	0	0.00019	0.00021	10		
Barium (Ba)	mg/L	0.0471	0.0477	1.3	0.0390	0.0377	3.4		
Beryllium (Be)	mg/L	<0.000020	<0.000020	0	<0.000020	<0.000020	0		
Bismuth (Bi)	mg/L	<0.000050	<0.000050	0	<0.000050	<0.000050	0		
Boron (B)	mg/L	0.010	<0.010	0	0.010	0.010	0		
Cadmium (Cd)	mg/L	0.000089	0.000089	0	0.0000076	0.0000052	38		
Calcium (Ca)	mg/L	202	203	0.49	170	170	0		
Chromium (Cr)	mg/L	0.00010	<0.00010	0	<0.00010	<0.00010	0		
Cobalt (Co)	mg/L	<0.00010	<0.00010	0	<0.00010	<0.00010	0		
Copper (Cu)	mg/L	<0.00020	<0.00020	0	0.00045	0.00027	50		
Iron (Fe)	mg/L	<0.010	<0.010	0	<0.010	<0.010	0		
Lead (Pb)	mg/L	<0.000050	<0.000050	0	<0.000050	<0.000050	0		
Lithium (Li)	mg/L	0.017	0.017	2.9	0.0179	0.0178	0.56		
Magnesium (Mg)	mg/L	164	161	1.8	137	138	0.73		
Manganese (Mn)	mg/L	0.00081	0.00084	3.6	0.00065	0.00047	32		
Mercury (Hg)	mg/L	<0.000050	<0.000050	0	<0.0000050	<0.000050	0		
Molybdenum (Mo)	mg/L	0.00386	0.00392	1.5	0.00380	0.00431	13		
Nickel (Ni)	mg/L	0.0099	0.0099	0.30	0.00724	0.00744	2.7		
Potassium (K)	mg/L	2.53	2.49	1.6	2.60	2.57	1.2		
Selenium (Se)	mg/L	0.167	0.180	7.5	0.145	0.142	2.1		
Silicon (Si)	mg/L	3.99	4.04	1.2	3.85	3.90	1.3		
Silver (Ag)	mg/L	<0.000010	<0.000010	0	<0.000010	<0.000010	0		
Sodium (Na)	mg/L	3.08	3.03	1.6	2.66	2.56	3.8		
Strontium (Sr)	mg/L	0.223	0.228	2.2	0.178	0.174	2.3		
Thallium (TI)	mg/L	<0.000010	<0.000010	0	<0.000010	<0.000010	0		
Tin (Sn)	mg/L	<0.00010	<0.00010	0	<0.00010	<0.00010	0		
Titanium (Ti)	mg/L	<0.010	<0.010	0	<0.00030	<0.00030	0		
Uranium (U)	mg/L	0.0079	0.0080	2.1	0.00831	0.00864	3.9		
Vanadium (V)	mg/L	<0.00050	<0.00050	0	<0.00050	<0.00050	0		
Zinc (Zn)	mg/L	<0.0010	0.0012	18	0.0053	<0.0010	137		

Notes: The RPD was calculated using <LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were <LRL. RPD = relative percent difference; % = percent; μ S/cm = microSiemens per centimetre; CaCO ₃ = calcium carbonate; mg/L = milligrams per litre; < = less than; NTU = Nephelometric Turbidity Units; μ g/L = micrograms per litre; LRL = Laboratory Reporting Limit.

Page 2 of 2

A2.3.2 Laboratory Duplicate Samples

A total of 490 duplicate results were used to evaluate analytical precision (see Appendix B for relevant laboratory reports). For all paired samples, comparisons were within the DQO set by the analytical laboratory (i.e., RPDs for pH and conductivity were $\leq 10\%$, RPDs for turbidity were $\leq 15\%$, and RPDs for all other analytes were $\leq 20\%$; Appendix Table A.1).³ The laboratory analytical precision can therefore be considered excellent.

A2.4 Data Accuracy

Data accuracy was evaluated based on results for CRM, Laboratory Control Samples (LCS), and MS samples. Specifically, 1 CRM result, 572 LCS results, and 435 MS results were reported by ALS in 2021 (see Appendix B for respective laboratory reports). Only two LCS results failed to meet the laboratory DQO (Appendix Table A.1). The recovery target (80 to 120%) for total antimony in one LCS sample from September 2021 was marginally exceeded (i.e., the recovery was 122%). Similarly, the recovery of total strontium (122%) marginally exceeded the target recovery range (i.e., 80 to 120%) in a single sample from September 2021. Eight of the 45 MS recoveries from February 2021 could not be accurately calculated due to high background concentrations of the spiked analytes in the parent field sample that was used as the basis for the MS sample. A single MS result for total Kjeldahl nitrogen failed to meet the laboratory's DQO due to interference from a high nitrate concentration in the sample, which biased the total Kjeldahl nitrogen results low. Overall, the CRM, LCS and MS results are considered indicative of excellent analytical precision.

A2.5 Data Quality Statement

Water quality data collected for this study are of acceptable quality as characterized by good to excellent detectability, negligible analyte concentrations in method blanks, excellent field and laboratory precision, and excellent laboratory accuracy. Therefore, the associated data can be used with a high level of confidence in the derivation of conclusions.

³ The DQO only apply to analyte concentrations greater than two-times the LRL.

A3 SELENIUM SPECIATION

A3.1 Laboratory Reporting Limits

The analytical reports from Brooks Applied Labs for aqueous selenium speciation analyses were examined to provide an inventory of analytes for which the sample results were less than or equal to the target LRL (Appendix Table A.5; see Appendix B for laboratory reports). The LRLs for these analytes were also assessed relative to the approved BCMOECCS selenium BC WQG for the protection of freshwater aquatic life (i.e., 2 micrograms per litre [μ g/L; BCMOECCS 2021b) and the relevant EVWQP Level 1 Benchmark for water quality (i.e., 70 μ g/L; Teck 2014; Appendix Table A.5).

Concentrations of dissolved selenium, selenate, and selenite were consistently (i.e., in 100% of samples) greater than their applicable LRLs in 2021 (Appendix Table A.5). Each of the three samples collected in February 2021 and seven of the eight samples collected in September 2021 had total selenium concentrations that were also greater than their applicable LRLs. The LRLs for all analytes were consistently lower than applicable BC WQG and EVWQP Level 1 Benchmarks for water quality (Teck 2014). Therefore, the achieved LRLs were appropriate for this study.

A3.2 Laboratory Blanks

In 2021, a total of 19 laboratory blank samples were analyzed for total selenium and 16 laboratory blank samples were analyzed for selenium species to produce a total of 123 individual analyte results. Laboratory blank results met the laboratory's DQO (Appendix Table A.1). Therefore, laboratory blanks indicated no inadvertent sample contamination during analyses.

A3.3 Data Precision

A3.3.1 Field Duplicate Samples

Two field duplicate samples were collected to assess field sampling precision: one in February and one in September 2021 (Appendix Table A.6). The RPDs between paired results were \leq 13%. Given that the field duplicates met the DQO for laboratory duplicate samples (i.e., \leq 20% for total selenium and \leq 20% for selenium species; Appendix Table A.1), field sampling precision and reproducibility are considered excellent.

Table A.5: Laboratory Reporting Limit (LRL) Evaluation for Selenium Speciation Analyses, 2021

		Febr	uary 2021	Septemb	oer 2021
Analyte	Units	LRLs ^a	No. Sample Results <lrl< th=""><th>LRLs ^a</th><th>No. Sample Results <lrl< th=""></lrl<></th></lrl<>	LRLs ^a	No. Sample Results <lrl< th=""></lrl<>
Selenium (Se)-Total	µg/L	0.132	0	0.165 and 0.825	1 (13%) ^b
Selenium (Se)-Dissolved	µg/L	0.132	0	0.165	0
Dimethylselenoxide-Dissolved	µg/L	0.010	1 (33%)	0.010	5 (63%)
MeSe(IV) - Methylseleninic Acid (CH ₃ SeO ₂ H)-Dissolved	µg/L	0.010	0	0.010	3 (38%)
MeSe(VI) - Methaneselenonic Acid (CH ₄ O ₃ Se)-Dissolved	µg/L	0.010	3 (100%)	0.010	8 (100%)
Se(VI) - Selenate (SeO ₄ ²⁻)-Dissolved	µg/L	0.010	0	0.010	0
Se(IV) - Selenite (SeO ₃ ²⁻)-Dissolved	µg/L	0.010	0	0.010	0
SeCN - Selenocyanate (SeCN ¹⁻)- Dissolved	µg/L	0.010	3 (100%)	0.010	8 (100%)
SeMe - Selenomethionine (CH $_3$ SeCH $_2$ CH $_2$ CH[NH $_2$]CO $_2$ H)-Dissolved	µg/L	0.010	3 (100%)	0.010	8 (100%)
Selenosulfate-Dissolved		0.010	3 (100%)	0.010	8 (100%)
Unknown Selenium Species-Dissolved	µg/L	0.010	3 (100%)	0.010	8 (100%)

Notes: LRL = Laboratory Reporting Limit; No. = number; < = less than; $\mu g/L$ = micrograms per litre; % = percent; BC WQG = British Columbia Water Quality Guideline; EVWQP = Elk Valley Water Quality Plan.

^a None of the LRLs exceeded the long-term selenium BC WQG for the protection of freshwater aquatic life (i.e., 2 μg/L; BCMOECCS 2019) or the EVWQP Level 1 Benchmark for aqueous selenium concentrations (70 μg/L; Teck 2014).

^b The LRL was raised for one of the samples collected in September 2021 due to insufficient sample volume.

Table A.6: Field Duplicate Results for Selenium Speciation Analyses, 2021

			RG_GHBP		RG_GHBP			
Analyta	Unito	F	ebruary 202	21	September 2021			
Allalyte	Units	18-F	eb-21		13-Se			
		210	3140	RPD (%)	2109	RPD (%)		
Selenium (Se)-Total		142	146	2.8	128.000	121	5.6	
Selenium (Se)-Dissolved	µg/L	148	149	0.67	122.000	129	5.6	
Dimethylselenoxide-Dissolved	µg/L	0.066	0.068	3.0	0.250	0.255	2.0	
MeSe(IV) - Methylseleninic Acid (CH ₃ SeO ₂ H)-Dissolved		0.032	0.034	6.1	0.099	0.113	13	
MeSe(VI) - Methaneselenonic Acid (CH ₄ O ₃ Se)-Dissolved	µg/L	<0.010	<0.010	0	<0.010	<0.010	0	
Se(VI) - Selenate (SeO ₄ ²⁻)-Dissolved	µg/L	120	131	8.8	132	131	0.76	
Se(IV) - Selenite (SeO ₃ ²⁻)-Dissolved	µg/L	1.46	1.64	12	4.23	4.06	4.1	
SeCN - Selenocyanate (SeCN ¹⁻)- Dissolved	µg/L	<0.010	<0.010	0	<0.010	<0.010	0	
SeMe - Selenomethionine (CH ₃ SeCH ₂ CH ₂ CH ₂ CH[NH ₂]CO ₂ H)-Dissolved		<0.010	<0.010	0	<0.010	<0.010	0	
Selenosulfate-Dissolved		<0.010	<0.010	0	<0.010	<0.010	0	
Unknown Selenium Species-Dissolved	µg/L	<0.010	<0.010	0	<0.010	<0.010	0	

Notes: The RPD was calculated using <LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were <LRL. RPD = relative percent difference; % = percent; µg/L = micrograms per litre; < = less than; LRL = Laboratory Reporting Limit.

A3.3.2 Laboratory Duplicate Samples

Analytical precision was evaluated by examining eight laboratory duplicate samples for a total of 40 reported duplicate pairs (Appendix B). All comparisons of paired duplicate concentrations were within the DQO set by the analytical laboratory. Therefore, laboratory analytical precision can be considered excellent.

The analytical laboratory also reported an estimate of precision for recoveries within six matrix spike duplicate (MSD) samples (Appendix B). Reported results were consistently within the DQO, which were set at a RPD \leq 20% for total selenium and a RPD \leq 25% for selenium species (Appendix Table A.1).

A3.4 Laboratory Accuracy

0)

€.

Laboratory accuracy for selenium speciation analyses was evaluated based on 17 blank spike (BS) samples, 16 CRM samples, six MS samples, and six MSD samples. Recoveries of all BS, CRM, MS, and MSD samples met the laboratory DQO (Appendix Table A.1). Therefore, the overall accuracy achieved by the laboratory was considered excellent.

A3.5 General Laboratory and Data Quality Flags

The analytical laboratory included general laboratory data quality flags related to digests completed for two of the three batches of samples collected in September 2021. In the first batch, one of the BS samples (B212656-SRM1; Appendix B) was mis-prepped by the analytical laboratory during the digest. The laboratory did not report results for this sample and assessed digest performance based on the other BS samples and CRM included in the sample batch. In the second batch, eight of the laboratory QC samples failed to achieve the target sample volume following the heating step of the trace metal digestion (Appendix B). Field-collected and BS samples achieved target sample volumes and recoveries of BS and CRM samples were within acceptable ranges. Therefore, digest performance was considered acceptable and no further corrective actions were taken.

The dissolved selenium result was greater than the total selenium result for each of the three samples collected in February and in one sample from September 2021 (Appendix B). Because there was no indication of mislabeled samples, the original results were reported as representative of the submitted sample containers. The analytical laboratory indicated that the results were likely due to routine laboratory error (e.g., random errors in preparation and dilution steps, matrix effects on analyses, small changes in instrument responses; Maute 2021, pers. comm.). Additionally, paired total and dissolved selenium concentrations that differ by less than approximately 5% are considered statistically equivalent

(Maute 2021, pers. comm.) and reported results for these four samples from 2021 were within ≤6.4% of each other.

Sample 2109307-05 (RG_GAUT_WS_GGCAMP_2021-09-16) had a limited sample volume upon receipt by the laboratory. The LRL was adjusted upward to account for the limited volume used in the analysis.

A3.6 Data Quality Statement

Selenium speciation data collected for this study were characterized by good detectability, concentrations less than LRLs in all laboratory blank samples, and good field and laboratory precision (as evaluated by field and laboratory duplicate samples) and accuracy. Therefore, the associated data are considered acceptable for this study.

A4 SEDIMENT CHEMISTRY

A4.1 Laboratory Reporting Limits

The analytical reports from ALS for sediment samples collected in September 2021 (see Appendix B) was examined to provide an inventory of analytes for which the sample results were less than the LRL (Appendix Table A.7). The LRLs were assessed relative to existing British Columbia Working Sediment Quality Guidelines (BC WSQG) and the alert concentration for selenium; BCMOECCS 2021a,b).

Sediment chemistry samples collected in September 2021 were analyzed using Sequential Extraction Analysis (SEA). Results were reported for bulk sediment samples as well as leachable metal fractions, specifically exchangeable and adsorbed metals, carbonate metals, easily-reducible metals and iron oxides, organic-bound metals, and residual metals. Concentrations of metals reported for bulk sediment chemistry samples were typically greater than the LRL (Appendix Table A.7). Exceptions included bismuth, boron, sulphur, tin, tungsten, and zirconium. For the leachable metal fractions, only barium, calcium, and manganese were consistently reported at detectable concentrations. Overall, none of the reported concentrations for bulk or extractable metals exceeded BC WSQG (Appendix Table A.7).

Unlike the case for metals, LRLs for polycyclic aromatic hydrocarbons (PAHs) occasionally exceeded BC WSQG (Appendix Table A.7). Analytes with LRLs that exceeded the lower BC WSQG (i.e., the concentrations below which adverse biological effects would not be expected to occur under most circumstances) included acenaphthene, acenaphthylene, benz(a)anthracene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, 2-methylnaphphalene, and naphthalene. The LRLs for acenaphthene (55% of samples), benz(a)anthracene (23% of samples), and chrysene (23% of samples) also exceeded the upper BC WSQG (i.e., the concentrations above which effects to aquatic biota may be more frequently observed). Typically, elevated (relative to BC WSQG) LRLs for these analytes are attributed to high moisture content and matrix interferences that necessitated raising the detection limits (Schvets 2020, pers. comm.).

Overall, the LRLs for most analytes measured in sediment samples were considered this study, appropriate for except those for acenaphthene, acenaphthylene, benz(a)anthracene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, 2-methylnaphphalene, and naphthalene.

Table A.7: Laboratory Reporting Limit (LRL) Evaluation for Sediment Chemistry Analyses, September 2021^a

Anolyte	Unito	BC WS	SQGs ^b	Bango of L BL o	No. LRLs >	No. LRLs >	No. Sample
Allalyte	Units	Lower	Upper	Range of LRLS	Lower Guideline	Upper Guideline	<lrl th="" °<=""></lrl>
Physical Tests							
% Moisture	% nH unite	-	-	0.25	-	-	0
Particle Size	priums	1 -	-	0.10	-	-	0
% Gravel (>2mm)	%	-	-	1.0	-	-	13 (59%)
% Sand (2.00mm - 1.00mm)	%	-	-	1.0	-	-	8 (36%)
% Sand (1.00mm - 0.50mm) % Sand (0.50mm - 0.25mm)	%	-	-	1.0	-	-	8 (36%) 7 (32%)
% Sand (0.25mm - 0.125mm)	%	-	-	1.0	-	-	6 (27%)
% Sand (0.125mm - 0.063mm)	%	-	-	1.0	-	-	3 (14%)
<u>% Silt (0.063mm - 0.0312mm)</u>	%	-	-	1.0	-	-	0
% Silt (0.0312mm - 0.004mm) % Clay (<4um)	%	-	-	1.0	-	-	0
Organic/Inorganic Carbon	,,,			1.0			
Total Organic Carbon	%	-	-	0.050	-	-	0
Bulk Metals	ma/ka	1		50			0
Antimony (Sb)	ma/ka	-	-	0.10	-	-	0
Arsenic (As)	mg/kg	5.9	17	0.10	0	0	0
Barium (Ba)	mg/kg	-	-	0.50	-	-	0
Beryllium (Be)	mg/kg	-	-	0.10	-	-	0
Boron (B)	mg/kg	-	-	5.0	-	-	8 (36%)
Cadmium (Cd)	mg/kg	0.6	3.5	0.020	0	0	0
Calcium (Ca)	mg/kg	-	-	50	-	-	0
Conromium (Cr) Cobalt (Co)	mg/kg mg/kg	37.3	- 90	0.50	-	-	0
Copper (Cu)	mg/kg	35.7	197	0.50	0	0	0
Iron (Fe)	mg/kg	21,200	43,766	50	0	0	0
Lead (Pb)	mg/kg	35	91.3	0.50	0	0	0
Lithium (Li) Magnesium (Mg)	mg/kg	-	-	2.0	-	-	0
Magnesiam (Mg) Manganese (Mn)	ma/ka	460	1.100	1.0	0	0	0
Mercury (Hg)	mg/kg	0.17	0.486	0.0050	0	0	0
Molybdenum (Mo)	mg/kg	25	23,000	0.10	0	0	0
Nickel (Ni) Phosphorus (P)	mg/kg	16	/5	0.50	0	0	0
Potassium (K)	mg/kg	-	-	100	-	-	0
Selenium (Se)	mg/kg	d	d	0.20	0	0	0
Silver (Ag)	mg/kg	0.5	-	0.10	0	-	0
Sodium (Na) Strontium (Sr)	mg/kg	-	-	50 0.50	-	-	0
Sulphur (S)	mg/kg	-	-	1,000	-	-	5 (23%)
Thallium (TI)	mg/kg	-	-	0.050	-	-	0
Tin (Sn)	mg/kg	-	-	2.0	-	-	22 (100%)
Tungsten (W)	mg/kg	-	-	0.50	-	-	22 (100%)
Uranium (U)	mg/kg	-	-	0.050	-	-	0
Vanadium (V)	mg/kg	-	-	0.20	-	-	0
Zinc (Zn) Ziroopium (Zr)	mg/kg	123	315	2.0	0	0	0
Exchangeable and Adsorbed Met	als	-	-	1.0	-	-	13 (59%)
Aluminum (Al)	mg/kg	-	-	50	-	-	22 (100%)
Antimony (Sb)	mg/kg	-	-	0.10	-	-	22 (100%)
Arsenic (As) Barium (Ba)	mg/kg	5.9	1/ -	0.050	-	U	13 (59%) 0
Beryllium (Be)	mg/ka	-	-	0.20	-	-	22 (100%)
Bismuth (Bi)	mg/kg	-	-	0.20	-	-	22 (100%)
Cadmium (Cd)	mg/kg	0.6	3.5	0.050	0	0	7 (32%)
Calcium (Ca) Chromium (Cr)	mg/kg mg/kg	- 37.3	- 90	50 0.50	- 0	- 0	U 22 (100%)
Cobalt (Co)	mg/kg	-	-	0.10	-	-	4 (18%)
Copper (Cu)	mg/kg	35.7	197	0.50	0	0	22 (100%)
Iron (Fe)	mg/kg	21,200	43,766	50	0	0	22 (100%)
Lead (Pb)	mg/kg	35	91.3	0.50	0	0	22 (100%)
Manganese (Mn)	mg/kg	460	1,100	1.0	0	0	0
Molybdenum (Mo)	mg/kg	25	23,000	0.50	0	0	22 (100%)
Nickel (Ni)	mg/kg	16	75	0.50	0	0	3 (14%)
Potassium (K)	ma/ka	-	-	50 100	-	-	∠∠ (100%) 7 (32%)
Selenium (Se)	mg/kg	d	d	0.20	0	0	14 (64%)
Silver (Ag)	mg/kg	0.5	-	0.10	0	-	22 (100%)
Sodium (Na)	mg/kg	-	-	100	-	-	22 (100%)
Thallium (TI)	mg/Kg	-	-	0.50	-	-	0 22 (100%)
Tin (Sn)	mg/kg	-	-	2.0	-	-	22 (100%)
Titanium (Ti)	mg/kg	-	-	1.0	-	-	22 (100%)
Uranium (U)	mg/kg	-		0.050	-	-	13 (59%)
Vanadium (V)	mg/kg	-	-	0.20	-	-	22 (100%)
Zinc (Zn)	mg/kg	123	315	1.0	0	0	22 (100%)

Shading indicates an LRL greater than the lower BC WSQG.

Shading indicates an LRL greater than the both the lower and upper BC WSQG.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; LRL = Laboratory Reporting Limit; No. = number; > = greater than; < = less than; % = percent; - = no data/not applicable; mm = millimetres; µm = micrometres; mg/kg = milligrams per kilogram; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy.

^a The number of significant digits reported in the table is consistent with source material (e.g., BCMOECCS 2019) and laboratory reports.

^b BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021).

^c The total number of samples in September 2021 was n = 22 (n = 20 sediment samples and n = 2 duplicate samples).

^d The 2 mg/kg alert concentration from BCMOECCS (2019) was applied; there is currently no BC WSQG for selenium.

Table A.7:	Laboratory	Reporting	Limit (LRL)	Evaluation	for Sediment	Chemistry	Analyses,	September 2021 ^a
------------	------------	-----------	-------------	------------	--------------	-----------	-----------	-----------------------------

		50.14					No. Sample
Analyte	Units	BCWS	SQGs ~	Range of LRLs	NO. LRLS >	NO. LKLS > Upper Guideline	Results
Oash ayada Matala		Lower	Upper			oppor on another	<lrl th="" °<=""></lrl>
Aluminum (Al)	ma/ka	-	_	50	-	-	22 (100%)
Antimony (Sb)	mg/kg	-	-	0.10	-	-	22 (100%)
Arsenic (As)	mg/kg	5.9	17	0.050	0	0	8 (36%)
Barium (Ba)	mg/kg	-	-	2.0	-	-	0
Beryllium (Be)	mg/kg	-	-	0.20	-	-	22 (100%)
Cadmium (Cd)	ma/ka	0.6	3.5	0.20	0	0	0
Calcium (Ca)	mg/kg	-	-	50	-	-	0
Chromium (Cr)	mg/kg	37.3	90	5.0	0	0	22 (100%)
Cobalt (Co)	mg/kg	-	-	0.10	-	-	0
Copper (Cu)	mg/kg	35.7	197	0.50	0	0	22 (100%)
Lead (Pb)	ma/ka	35	91.3	0.50	0	0	18 (82%)
Lithium (Li)	mg/kg	-	-	5.0	-	-	22 (100%)
Manganese (Mn)	mg/kg	460	1,100	5.0	0	0	0
Molybdenum (Mo)	mg/kg	25	23,000	0.50	0	0	22 (100%)
Nickel (Ni)	mg/kg	16	/5	2.0	0	0	0
Selenium (Se)	mg/kg	- d	- d	0.20	- 0	-	22 (100%)
Silver (Ag)	mg/kg	0.5	-	0.10	0	-	22 (100%)
Strontium (Sr)	mg/kg	-	-	5.0	-	-	1 (4.5%)
Thallium (TI)	mg/kg	-	-	0.050	-	-	22 (100%)
Tin (Sn)	mg/kg	-	-	2.0	-	-	22 (100%)
Hanium (11)	mg/kg	-	-	5.0	-	-	22 (100%)
Vanadium (V)	ma/ka	-	-	0.20	-	-	22 (100%)
Zinc (Zn)	mg/kg	123	315	1.0	0	0	0
Easily-reducible Metals and Iron	Oxides	-					
Aluminum (Al)	mg/kg	-	-	50	-	-	0
Antimony (Sb)	mg/kg	- 50	- 17	0.10	-	-	22 (100%)
Barium (Ba)	mg/kg	- 5.9	-	0.000	-	-	0
Beryllium (Be)	mg/kg	-	-	0.20			5 (23%)
Bismuth (Bi)	mg/kg	-	-	0.20	-	-	22 (100%)
Cadmium (Cd)	mg/kg	0.6	3.5	0.050	0	0	0
Calcium (Ca)	mg/kg	-	-	50	-	-	0
Chromium (Cr)	mg/kg	37.3	90	0.50	0	0	0
Copper (Cu)	ma/ka	35.7	197	0.10	0	0	15 (68%)
Iron (Fe)	mg/kg	21,200	43,766	50	0	0	0
Lead (Pb)	mg/kg	35	91.3	0.50	0	0	0
Lithium (Li)	mg/kg	-	-	5.0	-	-	22 (100%)
Manganese (Mn) Malybdenum (Ma)	mg/kg	460	1,100	1.0	0	0	U 22 (100%)
Nickel (Ni)	ma/ka	16	75	0.50	0	0	0
Phosphorus (P)	mg/kg	-	-	50	-	-	0
Selenium (Se)	mg/kg	d	d	0.20	0	0	3 (14%)
Silver (Ag)	mg/kg	0.5	-	0.10	0	-	17 (77%)
Strontium (Sr)	mg/kg	-	-	0.50	-	-	0
Tin (Sn)	ma/ka	-	-	2.0	-	-	22 (100%)
Titanium (Ti)	mg/kg	-	-	1.0	-	-	22 (100%)
Uranium (U)	mg/kg	-	-	0.050	-	-	0
Vanadium (V)	mg/kg	-	-	0.20	-	-	0
Zinc (Zn)	mg/kg	123	315	1.0	0	0	0
Organic-bound Metals	I .	t	I		T	1	-
Aluminum (Al)	mg/kg	-	-	50	-	-	0
Anumony (SD) Arsenic (As)	mg/kg	59	- 17	0.10	- 0	-	20 (91%) N
Barium (Ba)	mg/kg	-	-	0.50	-	-	0
Beryllium (Be)	mg/kg	-	-	0.20	-	-	22 (100%)
Bismuth (Bi)	mg/kg	-	-	0.20	-	-	22 (100%)
Cadmium (Cd)	mg/kg	0.6	3.5	0.050	0	0	2 (9.1%)
Calcium (Ca) Chromium (Cr)	mg/kg	- 37.3	- 90	0.50	- 0	- 0	0
Cobalt (Co)	ma/ka	-	-	0.10	-	-	0
Copper (Cu)	mg/kg	35.7	197	0.50	0	0	0
Iron (Fe)	mg/kg	21,200	43,766	50	0	0	0
Lead (Pb)	mg/kg	35	91.3	0.50	0	0	6 (27%)
LIINIUM (LI) Manganese (Mn)	mg/kg	- 460	- 1 100	5.0	- 0	-	22 (100%) 0
Molybdenum (Mo)	ma/ka	25	23.000	0.50	0	0	21 (95%)
Nickel (Ni)	mg/kg	16	75	0.50	0	0	0
Selenium (Se)	mg/kg	d	d	0.20	0	0	0
Silver (Ag)	mg/kg	0.5	-	0.10	0	-	22 (100%)
Strontium (Sr)	mg/kg	-	-	0.50	-	-	0
Tianum (T)	mg/Kg	-	-	0.050	-	-	22 (100%) 22 (100%)
Titanium (Ti)	ma/ka	-	-	1.0	-	-	3 (14%)
Uranium (U)	mg/kg	-	-	0.050	-	-	0
Vanadium (V)	mg/kg	-	-	0.20	-	-	0
Zinc (Zn)	mg/kg	123	315	1.0	0	0	0

Shading indicates an LRL greater than the lower BC WSQG.

Shading indicates an LRL greater than the both the lower and upper BC WSQG.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; LRL = Laboratory Reporting Limit; No. = number; > = greater than; < = less than; % = percent; - = no data/not applicable; mm = millimetres; µm = micrometres; mg/kg = milligrams per kilogram; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy.

^a The number of significant digits reported in the table is consistent with source material (e.g., BCMOECCS 2019) and laboratory reports.

^b BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021).

^c The total number of samples in September 2021 was n = 22 (n = 20 sediment samples and n = 2 duplicate samples).

^d The 2 mg/kg alert concentration from BCMOECCS (2019) was applied; there is currently no BC WSQG for selenium.

Table A.7:	Laboratory	Reporting	Limit (LR	L) Evaluatior	n for Sediment	Chemistry An	alyses, September 2021	a
------------	------------	-----------	-----------	---------------	----------------	---------------------	------------------------	---

		BC WSQGs ^b		_	No. LRLs >	No. LRLs >	No. Sample
Analyte	Units	Lower	Unner	Range of LRLs	Lower Guideline	Upper Guideline	<pre>Kesults <i <sup="" ri="">c</i></pre>
Residual Metals		Lowei	Opper		1		
Aluminum (Al)	mg/kg	-	-	50	-	-	0
Antimony (Sb)	mg/kg	-	-	0.10	-	-	0
Arsenic (As)	mg/kg	5.9	17	0.50	0	0	0
Barium (Ba)	mg/kg	-	-	2.0	-	-	0
Beryllium (Be)	mg/kg	-	-	0.20			0
Bismuth (Bi)	mg/kg	-	-	0.20	-	-	22 (100%)
Cadmium (Cd)	mg/kg	0.6	3.5	0.050	0	0	0
Calcium (Ca)	mg/kg	-	-	50	-	-	0
Chromium (Cr)	mg/kg	37.3	90	5.0	0	0	0
Cobalt (Co)	mg/kg	-	-	0.10	-	-	0
Copper (Cu)	mg/kg	35.7	197	0.50	0	0	0
Iron (Fe)	mg/kg	21,200	43,766	50	0	0	0
	mg/kg	35	91.3	0.50	0	0	0
	mg/kg	-	-	5.0	-	-	5 (23%)
Manganese (Mn)	mg/kg	460	1,100	5.0	0	0	0
Nickol (Ni)	mg/kg	25	23,000	0.50	0	0	0
Selenium (Se)	mg/kg	d	d 75	2.0	0	0	0
Silver (Ag)	mg/kg	0.5	_	0.20	0	0	5 (23%)
Strontium (Sr)	ma/ka	-	-	50	-	-	0
Thallium (TI)	ma/ka	-	-	0.050	-	-	0
Tin (Sn)	ma/ka	-	-	2.0	-	-	22 (100%)
Titanium (Ti)	ma/ka	-	-	5.0	-	-	0
Uranium (U)	mg/kg	-	-	0.050	-	-	0
Vanadium (V)	mg/kg	-	-	0.20	-	-	0
Zinc (Zn)	mg/kg	123	315	1.0	0	0	0
Polycyclic Aromatic Hydrocarbon	IS						
Acenaphthene	mg/kg	0.00671	0.0889	0.0050 to 0.665	14 (64%)	12 (55%)	12 (55%)
Acenaphthylene	mg/kg	0.00587	0.128	0.0050 to 0.055	10 (45%)	0	6 (27%)
Acridine	mg/kg	-	-	0.010 to 1.22	-	-	11 (50%)
Anthracene	mg/kg	0.0469	0.245	0.0040 to 0.035	0	0	15 (68%)
Benz(a)anthracene	ma/ka	0.0317	0.385	0.010 to 0.76	11 (50%)	5 (23%)	11 (50%)
Benzo(a)pyrene	ma/ka	0.0319	0.782	0.010 to 0.18	2 (9.1%)	0	1 (4.5%)
Benzo(b&i)fluoranthene	ma/ka	-	-	0.010 to 0.035	-	-	0
Benzo(b+i+k)fluoranthene	ma/ka	-	-	0.015 to 0.049	_	-	0
Benzo(e)nyrene	ma/ka			0.010 to 0.035			0
Benzo(g h i)per/lene	mg/kg	- 0.17	- 3.2	0.010 to 0.035	-	-	1 (1 5%)
Benzo(k)fluoranthene	ma/ka	0.17	13.4	0.010 to 0.13	0	0	3 (14%)
Chrysene	ma/ka	0.0571	0.862	0.010 to 1.45	10 (45%)	5 (23%)	10 (45%)
Dibenz(a h)anthracene	ma/ka	0.00622	0.135	0.0050 to 0.105	10 (45%)	0	5 (23%)
Fluoranthene	ma/ka	0.111	2 355	0.010 to 0.18	1 (4 5%)	0	1 (4 5%)
Fluorene	mg/kg	0.0212	0 144	0.010 to 0.10	4 (18%)	0	0
Indeped 1 2 3 e d)pyropo	mg/kg	0.0212	2.0	0.010 to 0.035	4 (1070)	0	2 (0, 1%)
	mg/kg	0.2	5.2	0.010 to 0.035	0	0	2 (9.1%)
	mg/kg	-	-	0.020 10 0.050	-	-	0
	mg/kg	0.0202	0.201	0.010 to 0.035	4 (18%)	U	0
	mg/kg	0.0346	0.391	0.010 to 0.035	2 (9.1%)	0	0
Perylene	mg/kg	-	-	0.010 to 0.035	-	-	12 (55%)
Phenanthrene	mg/kg	0.0419	0.515	0.010 to 0.035	0	0	0
Pyrene	mg/kg	0.053	0.875	0.010 to 0.035	0	0	1 (4.5%)
Quinoline	mg/kg	-	-	0.020 to 0.050	-	-	20 (91%)

Shading indicates an LRL greater than the lower BC WSQG.

Shading indicates an LRL greater than the both the lower and upper BC WSQG.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; LRL = Laboratory Reporting Limit; No. = number; > = greater than; < = less than; % = percent; - = no data/not applicable; mm = millimetres; µm = micrometres; mg/kg = milligrams per kilogram; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy.

^a The number of significant digits reported in the table is consistent with source material (e.g., BCMOECCS 2019) and laboratory reports.

^b BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021).

^c The total number of samples in September 2021 was n = 22 (n = 20 sediment samples and n = 2 duplicate samples).

^d The 2 mg/kg alert concentration from BCMOECCS (2019) was applied; there is currently no BC WSQG for selenium.

Page 3 of 3

A4.2 Laboratory Blanks

A total of 38 laboratory method blank samples were analyzed by ALS (see Appendix B for applicable laboratory reports). Each of the 916 reported method blank results met the laboratory DQO. Therefore, the results for this study indicated no inadvertent contamination of samples within the laboratory during analysis.

A4.3 Data Precision

A4.3.1 Field Duplicate Samples

Two pairs of field duplicate samples were collected to assess the precision of field sampling (Appendix Table A.8). Samples were collected as split samples (i.e., a larger sample was homogenized and split into two duplicate sub-samples), however, some variability is expected based on the heterogeneity of sediments. For selenium, RPDs between paired results for bulk sediment samples were 3.3 and 11%. In general, RPDs for most (i.e., 94%) paired concentrations, including all metals fractions and PAHs, were ≤20% (Appendix Table A.8). Overall, reported results appear to be accurate; however, there is some variability even at a sub-sampling scale that should be considered when interpreting the sediment chemistry results. For example, concentrations of acenaphthylene, exchangeable and adsorbed manganese, and organic-bound thallium in one set of duplicate samples differed by an order of magnitude. The same was also true for organic-bound zinc in the second set of field duplicates (Appendix Table A.8).⁴ However, the collection of replicate samples from each area is expected to reduce this type of variability and support the overall results and comparisons.

A4.3.2 Laboratory Duplicate Samples

A total of nine laboratory duplicate samples were used to evaluate laboratory precision (see Appendix B for the relevant laboratory reports). For almost all of the 442 comparisons that were reported, RPDs were within laboratory DQO (Appendix Table A.1). The exception was a single paired result for manganese in the exchangeable and adsorbed metals fraction; the RPD between paired results was 2.1% and the DQO was 2%. Therefore, laboratory analytical precision was excellent overall for the sediment chemistry samples collected in September 2021.

A4.4 Data Accuracy

⁴ The order-of-magnitude (i.e., approximately 10-times) difference between results for these parameters in paired samples was investigated by the analytical laboratory and the original results were confirmed (Shvets 2022, pers. comm.).

Table A.8: Field Duplicate Results for Sediment Chemistry Analyses, September 2021

			RG_GHP					
Analyte	Units	21-S	ep-21	RPD (%)	22-Sep-21		- RPD (%)	
Physical Tests		L204	+4215		L20	44215		
Moisture	%	57.8	57.3	0.87	59.6	60.4	1.3	
pH (1:2)	pH units	8.21	8.01	2.5	8.13	8.19	0.74	
Particle Size								
% Gravel (>2mm)	%	<1.0	<1.0	0	<1.0	<1.0	0	
% Sand (2.00mm - 1.00mm)	%	<1.0	<1.0	0	<1.0	<1.0	0	
% Sand (1.00mm - 0.50mm)	%	<1.0	<1.0	0	<1.0	<1.0	0	
% Sand (0.50mm - 0.25mm)	%	<1.0	<1.0	0	<1.0	<1.0	0	
% Sand (0.25mm - 0.125mm)	%	<1.0	<1.0	0	<1.0	<1.0	0	
% Sand (0.125mm - 0.063mm)	%	<1.0	<1.0	0	1.1	1.3	0	
% Silt (0.063mm - 0.0312mm)	%	14.7	14.7	0.26	15.5	9.6	47	
% Silt (0.0312mm - 0.004mm)	%	50.U 28.1	55.8 28.0	0.36	49.1	48.3	1.6	
[%] Clay (<4μΠ)	70	20.1	20.0	0.30	55.0	40.0	17	
Total Organic Carbon	%	17 1	17.8	4 0	22.3	21.2	5 1	
Bulk Metals								
Aluminum (Al)	mg/kg	8,210	10,200	22	8,520	9,200	7.7	
Antimony (Sb)	mg/kg	1.01	1.08	6.7	1.03	1.05	1.9	
Arsenic (As)	mg/kg	5.93	6.22	4.8	5.77	5.84	1.2	
Barium (Ba)	mg/kg	310	343	10	310	316	1.9	
Beryllium (Be)	mg/kg	0.74	0.88	17	0.78	0.71	9.4	
Bismuth (Bi)	mg/kg	<0.20	<0.20	0	<0.20	<0.20	0	
Boron	mg/kg	<5.0	7.2	36	<5.0	5.7	13	
Cadmium (Cd)	mg/kg	1.39	1.45	4.2	1.44	1.35	6.5	
Calcium (Ca)	mg/kg	43,200	44,800	3.6	60,900	62,700	2.9	
Chromium (Cr)	mg/kg	12.8	15.4	18	13.1	13.9	5.9	
Cobalt (Co)	mg/kg	11.10	11.70	5.3	9.97	10.1	1.3	
Copper (Cu)	mg/kg	25.6	27.2	6.1	26.1	26.6	1.9	
Iron (Fe)	mg/kg	14,500	15,500	6.7	13,200	13,600	3.0	
Lead (Pb)	mg/kg	12.2	12.8	4.8	12.3	12.5	1.6	
Lithium (Li)	mg/kg	8.9	10.4	16	8.0	8.7	8.4	
Magnesium (Mg)	mg/kg	5,020	5,240	4.3	4,630	4,750	2.6	
Manganese (Mn)	mg/kg	673	701	4.1	567	595	4.8	
Mercury (Hg)	mg/kg	0.13	0.12	8.0	0.108	0.118	8.8	
Molybdenum (Mo)	mg/kg	1.63	1.67	2.4	1.66	1.72	3.6	
Nickel (Ni)	mg/kg	64.5	67.9	5.1	64.5	67.8	5.0	
Phosphorus (P)	mg/kg	967	1,030	6.3	923	924	0.11	
Potassium (K)	mg/kg	1,870	2,440	26	2,070	2,260	8.8	
Selenium (Se)	mg/kg	8.38	9.40	11	8.7	9.0	3.3	
Silver (Ag)	mg/kg	0.38	0.40	5.1	0.36	0.38	5.4	
Sodium (Na)	mg/kg	77	79	2.6	71	78	9.4	
Strontium (Sr)	mg/kg	54.3	57.6	5.9	62.3	67.4	7.9	
Sulphur (S)	mg/kg	1,600	1,700	6.1	1,800	1,900	5.4	
Thailium (TI)	mg/kg	0.125	0.145	15	0.092	0.095	3.2	
Tin (Sn)	mg/kg	<2.0	<2.0	0	<2.0	<2.0	0	
	mg/kg	6.8	10.3	41	7.3	8.4	14	
lungsten (W)	mg/kg	<0.50	<0.50	0	<0.50	<0.50	0	
	mg/kg	21.1	1.20	0.0	1.09	35.6	6.4	
	mg/kg	137	130	1.4	135	137	1.5	
Ziroonium (Zr)	mg/kg	<1.0	<1.0	0	<1.0	<1.0	0	
Exchangeable and Adsorbed Metals	iiig/kg	41.0	\$1.0	0	\$1.0	\$1.0	0	
Aluminum (Al)	ma/ka	<50	<50	0	<50	<50	0	
Antimony (Sb)	mg/kg	<0.10	<0.10	0	<0.10	<0.10	0	
Arsenic (As)	mg/kg	< 0.050	<0.050	0	<0.050	<0.050	0	
Barium (Ba)	mg/kg	17.3	17.8	2.8	16.5	16.1	2.5	
Beryllium (Be)	mg/kg	<0.20	<0.20	0	<0.20	<0.20	0	
Bismuth (Bi)	mg/kg	<0.20	<0.20	0	<0.20	<0.20	0	
Cadmium (Cd)	mg/kg	0.266	0.258	3.1	0.161	0.166	3.1	
Calcium (Ca)	mg/kg	3,420	3,780	10	2,990	3,140	4.9	
Chromium (Cr)	mg/kg	<0.50	<0.50	0	<0.50	<0.50	0	
Cobalt (Co)	mg/kg	0.11	<0.10	0	0.12	<0.10	18	
Copper (Cu)	mg/kg	<0.50	<0.50	0	<0.50	<0.50	0	
Iron (Fe)	mg/kg	<50	<50	0	<50	<50	0	
Lead (Pb)	mg/kg	<0.50	<0.50	0	<0.50	<0.50	0	
Lithium (Li)	mg/kg	<5.0	<5.0	0	<5.0	<5.0	0	
Manganese (Mn)	mg/kg	69.8	7.3	162	60.2	50.4	18	
Molybdenum (Mo)	mg/kg	<0.50	<0.50	0	<0.50	<0.50	0	
Nickel (Ni)	mg/kg	1.88	1.40	29	1.98	2.22	11	
Phosphorus (P)	mg/kg	<50	<50	0	<50	<50	0	
Potassium (K)	mg/kg	<100	<100	0	<100	100	0	
Selenium (Se)	mg/kg	0.30	0.41	31	0.52	0.47	10	
Silver (Ag)	mg/kg	<0.10	<0.10	0	<0.10	<0.10	0	
Sodium (Na)	mg/kg	<100	<100	0	<100	<100	0	
Strontium (Sr)	mg/kg	4.79	5.09	6.1	4.24	4.39	3.5	
Thallium (TI)	mg/kg	<0.050	<0.050	0	<0.050	<0.050	0	
Tin (Sn)	mg/kg	<2.0	<2.0	0	<2.0	<2.0	0	
Titanium (Ti)	mg/kg	<1.0	<1.0	0	<1.0	<1.0	0	
Uranium (U)	mg/kg	0.074	0.086	15	0.087	0.090	3.4	
Vanadium (V)	mg/kg	<0.20	<0.20	0	<0.20	<0.20	0	
Zinc (Zn)	mg/kg	<1.0	<1.0	0	<1.0	<1.0	0	

Notes: The RPD was calculated using <LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were <LRL. RPD = relative percent difference; % = percent; > = greater than; mm = millimetres; < = less than; μ m = micrometres; mg/kg = milligrams per kilogram; LRL = Laboratory Reporting Limit.

Table A.8: Field Duplicate Results for Sediment Chemistry Analyses, September 2021

		RG_GHP			RG_GHP		
Analyte	Units	21-Sep-21 RPD (%)		22-Sep-21		RPD (%)	
		L264	4215	KFD (78)	L264	4215	RFD (78)
Carbonate Metals							
Aluminum (Al)	mg/kg	<50	<50	0	<50	<50	0
Antimony (Sb)	mg/kg	<0.10	<0.10	0	<0.10	<0.10	0
Arsenic (As)	mg/kg	0.056	<0.050	11	<0.050	<0.050	0
Barium (Ba)	mg/kg	47.9	47.9	0	52.9	46.4	13
Beryllium (Be)	mg/kg	<0.20	<0.20	0	<0.20	<0.20	0
Bismuth (Bi)	mg/kg	<0.20	<0.20	0	<0.20	<0.20	0
Cadmium (Cd)	mg/kg	0.501	0.543	8.0	0.537	0.507	5.7
Calcium (Ca)	mg/kg	32,000	32,800	2.5	49,400	45,000	9.3
Chromium (Cr)	mg/kg	<5.0	<5.0	0	<5.0	<5.0	0
Cobalt (Co)	ma/ka	0.36	0.13	94	0.40	0.31	25
Copper (Cu)	ma/ka	<0.50	<0.50	0	<0.50	<0.50	0
Iron (Fe)	ma/ka	<50	<50	0	<50	<50	0
Lead (Pb)	ma/ka	<0.50	<0.50	0	<0.50	<0.50	0
Lithium (Li)	mg/kg	<5.0	<5.0	0	<5.0	<5.0	0
Manganese (Mn)	mg/kg	126	90.4	33	109	-0.0 Q1	18
Molybdonum (Mo)	mg/kg	<0.50	-0.50	0	<0.50	-0 50	0
	mg/kg	<0.30 0.4	<0.00 8 0	16	11.2	<0.30 0.7	14
	mg/kg	9.4	6.0	10	11.2	9.7	14
Phosphorus (P)	mg/kg	<50	<50	0	<50	<50	0
	mg/kg	<0.20	<0.20	0	0.21	<0.20	4.9
Silver (Ag)	mg/kg	<0.10	<0.10	0	<0.10	<0.10	0
Strontium (Sr)	mg/kg	14.4	15.2	5.4	20.2	18.3	9.9
I nallium (TI)	mg/kg	<0.050	<0.050	0	<0.050	<0.050	0
Tin (Sn)	mg/kg	<2.0	<2.0	0	<2.0	<2.0	0
Titanium (Ti)	mg/kg	<5.0	<5.0	0	<5.0	<5.0	0
Uranium (U)	mg/kg	0.203	0.204	0.49	0.261	0.238	9.2
Vanadium (V)	mg/kg	<0.20	<0.20	0	<0.20	<0.20	0
Zinc (Zn)	mg/kg	16.2	16.4	1.2	15.6	13.4	15
Easily-reducible Metals and Iron Oxides			-				-
Aluminum (Al)	mg/kg	638	621	2.7	665	607	9.1
Antimony (Sb)	mg/kg	<0.10	<0.10	0	<0.10	<0.10	0
Arsenic (As)	mg/kg	0.487	0.486	0.21	0.47	0.40	16
Barium (Ba)	mg/kg	47.7	48.2	1.0	45.2	39.6	13
Beryllium (Be)	mg/kg	0.35	0.36	2.8	0.37	0.35	5.6
Bismuth (Bi)	mg/kg	<0.20	<0.20	0	<0.20	<0.20	0
Cadmium (Cd)	mg/kg	0.441	0.474	7.2	0.435	0.452	3.8
Calcium (Ca)	ma/ka	6.440	6.520	1.2	6.290	7.740	21
Chromium (Cr)	ma/ka	0.98	0.95	3.1	1.08	1.00	7.7
Cobalt (Co)	ma/ka	6 55	6.72	2.6	5 34	5 52	3.3
Copper (Cu)	ma/ka	0.57	0.55	36	0.60	0.63	4.9
Iron (Fe)	ma/ka	3 400	3 370	0.89	3 560	3 390	4.9
Lead (Pb)	mg/kg	3 47	3.65	5.00	3.07	4 12	3.7
Lithium (Li)	mg/kg	-5.0	5.05	0.1	5.97	4.12	0.7
Manganasa (Mn)	mg/kg	<pre><3.0</pre>	5.0 515	22	3.0 210	<3.0	0
Malubdanum (Ma)	mg/kg	410	515	23	-0 E0	549 <0.50	9.0
	mg/kg	<0.50	<0.50	0	<0.50	<0.50	0
	mg/kg	31.1	33.4	7.1	31.2	31.9	2.2
Phosphorus (P)	mg/kg	159	135	16	125	103	19
Selenium (Se)	mg/kg	0.83	0.81	2.4	0.86	0.77	11
Silver (Ag)	mg/kg	0.15	0.14	6.9	0.12	0.11	8.7
Strontium (Sr)	mg/kg	6.78	7.06	4.0	7.29	7.05	3.3
Thallium (TI)	mg/kg	<0.050	<0.050	0	<0.050	<0.050	0
Tin (Sn)	mg/kg	<2.0	<2.0	0	<2.0	<2.0	0
Titanium (Ti)	mg/kg	<1.0	<1.0	0	<1.0	<1.0	0
Uranium (U)	mg/kg	0.228	0.239	4.7	0.179	0.172	4.0
Vanadium (V)	mg/kg	3.27	3.24	0.92	3.84	3.65	5.1
Zinc (Zn)	mg/kg	48.6	48.5	0.21	49.3	50.3	2.0
Organic-bound Metals							
Aluminum (Al)	mg/kg	1,750	1,790	2.3	1,430	1,430	0
Antimony (Sb)	mg/kg	<0.10	<0.10	0	<0.10	<0.10	0
Arsenic (As)	mg/kg	0.453	0.456	0.66	0.382	0.388	1.6
Barium (Ba)	mg/kg	25.1	26.9	6.9	32.2	31.3	2.8
Beryllium (Be)	mg/kg	<0.20	<0.20	0	<0.20	<0.20	0
Bismuth (Bi)	mg/kg	<0.20	<0.20	0	<0.20	<0.20	0
Cadmium (Cd)	mg/kg	0.100	0.099	1.0	0.088	0.091	3.4
Calcium (Ca)	mg/kg	1,400	1,430	2.1	1,040	1,290	21
Chromium (Cr)	mg/ka	4.07	4.20	3.1	3.15	3.48	10
Cobalt (Co)	ma/ka	1.2	1.3	8.0	0.81	0.83	2.4
Copper (Cu)	ma/ka	9.76	9.75	0.10	7.78	7.84	0.77
Iron (Fe)	mg/kg	1 660	1 710	30	1 210	1 320	87
Lead (Pb)	ma/ka	1 59	1 55	2.5	1 52	1 42	6.8
Lithium (Li)	ma/ka	<5.0	<5.0	0	<5.0	<5.0	0
Manganese (Mn)	ma/ka	26.6	32.0	18	18.0	20.3	11
Molybdenum (Mo)	ma/ka	20.0	-0 E0	n	-10.2 <0.50	20.3 <0.50	0
Nickel (Ni)	mg/kg	11 0	10.00	4.0	<u> </u>	0.00	6.2
Solonium (So)	mg/kg	74	12.0	4.9	0.40	9.00	0.0
	mg/kg	1.1	1.34	2.δ	0.91	0.89	0.29
Strontium (Sr)	mg/Kg	<u>\0.10</u>	<u> </u>	0	<u>\U.1U</u>	NU. 1U	0
	mg/kg	4.80	4.91	1.0	3.04	4.15	13
Thailium (TI)	mg/kg	<0.050	<0.050	U	<0.050	<0.050	U
1 in (Sn)	mg/kg	<2.0	<2.0	U	<2.0	<2.0	0
Litanium (Ti)	mg/kg	10.9	1.1	163	8.7	4.8	58
Uranium (U)	mg/kg	0.379	0.386	1.8	0.27	0.28	2.6
Vanadium (V)	mg/kg	5.68	5.65	0.53	5.13	5.34	4.0
Zinc (Zn)	mg/kg	10.6	11.3	6.4	8.6	81.9	162

Notes: The RPD was calculated using <LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were <LRL. RPD = relative percent difference; % = percent; > = greater than; mm = millimetres; < = less than; µm = micrometres; mg/kg = milligrams per kilogram; LRL = Laboratory Reporting Limit.

Table A.8: Field Duplicate Results for Sediment Chemistry Analyses, September 2021

		RG_GHP			RG_GHP		
Analyte	Units	21-S	 ep-21		22-S	 ep-21	
		L264	4215	RPD (%)	L264	4215	RPD (%)
Residual Metals		•			•		
Aluminum (Al)	mg/kg	7,020	6,450	8.5	5,810	6,120	5.2
Antimony (Sb)	mg/kg	1.04	1.05	0.96	0.92	1.00	8.3
Arsenic (As)	mg/kg	5.28	5.02	5.0	4.53	4.68	3.3
Barium (Ba)	mg/kg	163	151	7.6	119	128	7.3
Beryllium (Be)	mg/kg	0.38	0.38	0	0.36	0.33	8.7
Bismuth (Bi)	mg/kg	<0.20	<0.20	0	<0.20	<0.20	0
Cadmium (Cd)	mg/kg	0.109	0.108	0.92	0.09	0.08	12
Calcium (Ca)	mg/kg	109	103	5.7	80	80	0
Chromium (Cr)	mg/kg	11.2	10.4	7.4	9.4	9.6	2.1
Cobalt (Co)	mg/kg	3.5	3.37	3.5	3.19	3.18	0.31
Copper (Cu)	mg/kg	19.2	18.3	4.8	19.6	19.4	1.0
Iron (Fe)	mg/kg	11,600	11,300	2.6	9,580	9,800	2.3
Lead (Pb)	mg/kg	9.30	9.13	1.8	7.96	7.96	0
Lithium (Li)	mg/kg	5.3	5.0	5.8	<5.0	<5.0	0
Manganese (Mn)	mg/kg	48	45	6.5	43.5	43	1.4
Molybdenum (Mo)	mg/kg	1.29	1.33	3.1	1.11	1.18	6.1
Nickel (Ni)	mg/kg	14.6	14.2	2.8	13.0	12.6	3.1
Selenium (Se)	mg/kg	2.05	2.15	4.8	1.84	1.76	4.4
Silver (Ag)	mg/kg	0.24	0.25	4.1	0.23	0.23	0
Strontium (Sr)	mg/kg	21.3	20.1	5.8	20.7	21.3	2.9
Thallium (TI)	mg/kg	0.166	0.155	6.9	0.099	0.128	26
Tin (Sn)	mg/kg	<2.0	<2.0	0	<2.0	<2.0	0
Titanium (Ti)	mg/kg	17.0	13.5	23	8.7	13.2	41
Uranium (U)	mg/kg	0.366	0.350	4.5	0.325	0.322	0.93
Vanadium (V)	mg/kg	29.6	27.5	7.4	25.3	26.3	3.9
Zinc (Zn)	mg/kg	81	77.2	4.4	71.0	72.5	2.1
Polycyclic Aromatic Hydrocarbons					•		
Acenaphthene	mg/kg	<0.44	<0.39	0	<0.67	<0.59	0
Acenaphthylene	mg/kg	0.0166	0.0084	66	0.0347	0.0429	21
Acridine	mg/kg	<0.80	<0.72	0	<1.1	<1.1	0
Anthracene	mg/kg	<0.0040	0.0059	38	0.0064	0.0041	44
Benz(a)anthracene	mg/kg	<0.22	<0.70	0	<0.76	<0.29	0
Benzo(a)pyrene	mg/kg	0.097	0.086	12	0.133	0.118	12
Benzo(b&j)fluoranthene	mg/kg	0.478	0.462	3.4	0.514	0.502	2.4
Benzo(b+j+k)fluoranthene	mg/kg	0.515	0.488	5.4	0.540	0.536	0.74
Benzo(e)pyrene	mg/kg	0.458	0.432	5.8	0.511	0.518	1.4
Benzo(g,h,i)perylene	mg/kg	0.12	0.115	4.3	0.142	0.133	6.5
Benzo(k)fluoranthene	mg/kg	0.037	0.026	35	0.026	0.034	27
Chrysene	mg/kg	<0.72	<0.68	0	<0.87	<0.92	0
Dibenz(a,h)anthracene	mg/kg	<0.080	0.0743	7.4	<0.080	0.0901	12
Fluoranthene	mg/kg	0.193	0.205	6.0	0.215	0.248	14
Fluorene	mg/kg	0.851	0.976	14	1.39	1.58	13
Indeno(1,2,3-c,d)pyrene	mg/kg	0.044	0.04	9.5	0.052	0.056	7.4
1-Methylnaphthalene	mg/kg	5.14	4.76	7.7	7.39	7.23	2.2
2-Methylnaphthalene	mg/kg	9.5	8.78	7.4	13.90	13.60	2.2
Naphthalene	mg/kg	2.92	2.72	7.1	4.68	4.64	0.86
Perylene	mg/kg	<0.010	<0.010	0	<0.010	<0.010	0
Phenanthrene	mg/kg	4.04	3.73	8.0	5.34	5.13	4.0
Pyrene	mg/kg	0.432	0.402	7.2	0.493	0.474	3.9
Quinoline	mg/kg	< 0.050	<0.050	0	<0.050	<0.050	0

Notes: The RPD was calculated using <LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were <LRL. RPD = relative percent difference; % = percent; > = greater than; mm = millimetres; < = less than; µm = micrometres; mg/kg = milligrams per kilogram; LRL = Laboratory Reporting Limit.

Page 3 of 3

Data accuracy was evaluated based on the analysis of CRM, LCS, and internal reference material (IRM). Specifically, three CRM samples, 40 LCS samples, and 34 IRM samples were analyzed to produce 99, 815, and 366 individual results, respectively (see Appendix B). All CRM, LCS, and IRM samples met the laboratory DQO. Overall, the accuracy achieved by the laboratory for this study can be considered excellent.

A4.5 Data Quality Statement

Sediment quality data collected for this study are of acceptable quality as characterized by good detectability, negligible analyte concentrations in method blanks, good field and laboratory precision, and excellent laboratory accuracy. Therefore, the associated data can be used with a high level of confidence in the derivation of conclusions.

A5 BENTHIC INVERTEBRATE COMMUNITY

The analysis of benthic invertebrate community samples involved a concurrent assessment of data quality, including sub-sampling accuracy and precision and percent recovery of organisms. The analytical laboratories (ZEAS Inc. for area-based sampling and Cordillera Consulting for timed kicks) provided laboratory data files and original QC reports for benthic invertebrate sample processing (see Appendix B).

Analysis of benthic invertebrate community sub-samples consistently met the DQO of \leq 20% for sub-sampling precision (i.e., estimated precision was within 18%; Appendix Table A.9). Organism densities were estimated for sub-sample fractions and compared to total densities to estimate sub-sampling accuracy. Results for the sub-samples were within 11% of actual densities; therefore, all sub-samples met the DQO of \leq 20% for sub-sampling accuracy. Sizes of sub-sampled fractions range from 5% of a sample to a whole sample (Appendix Table A.10).

To measure the effectiveness of the sorters, 10% of samples were selected at random for re-sorting analysis by a different sorter. An average recovery rate of 99% was achieved for the five samples that were evaluated by ZEAS Inc. and the recovery rate for the single sample re-sort completed by Cordillera Consulting was 97% (Appendix Table A.11). All samples achieved the DQO for sorting efficiency (i.e., \geq 90% recovery for area-based samples and \geq 95%⁵ for timed kick samples). Sorting efficiency (i.e., percent recovery) of benthic invertebrate samples was excellent.

Cordillera Consulting also completed blind checks on 10% of samples to assess rates of taxonomic misidentification, enumeration error, and errors due to questionable or insufficient taxonomic resolution. These checks are completed in accordance with Canadian Aquatic Biomonitoring Network (CABIN) protocols for assessing misidentification (Environment Canada 2012). The average total identification error rate, percent differences in enumeration and taxonomic disagreement, and Bray-Curtis Dissimilarity Index of checked samples were within DQO (i.e., $\leq 5\%$ or 0.5 for Bray-Curtis Dissimilarity Index; Appendix Tables A.1 and A.12).

⁵ Consistent with CABIN requirements (Environment Canada 2012).

Table A.9:	Calculation of B	Senthic Invertebrate (Community S	Sub-sampline	a Error, Sei	otember 2021 ^a
			oonnunity v	ous-sumpring	<u>, cnoi, oc</u>	

	Number of		Number of Number of		Number of Number of		Actual	Precision /		Αςςι	uracy	
Station	Organisms	Organisms in	Organisms in	Organisms in	Organisms in	Organisms in	Actual Density	% ra	ange	% ra	ange	
	organisins	Fraction 1	Fraction 2	Fraction 3	Fraction 4	Fraction 5	Density	Min	Max	Min	Max	
Area-based Samples (ZEAS Inc.) ^b												
RG_GANF-2	-	188	200	-	-	-	388	6.0	-	3.1	-	
RG_GANF-2	-	91	97	99	101	-	388	2.0	9.9	0	6.2	
RG_GANF-1	2	192	208	-	-	-	400	7.7	-	-	-	
RG_GHBP-1	-	210	249	-	-	-	459	15.7	-	-	-	
RG_GHP-6	-	315	324	353	383	-	1,375	2.8	18	2.7	11	
RG_GHP-6	-	677	698	-	-	-	1,375	3.0	-	1.5	-	
Timed Kick Sa	amples (Cor	dillera Consultii	ng)									
RG_GHNF-3	-	497	490	477	470	482	2,416	1.04	5.43	0.25	2.86	

Highlighted values did not meet the DQO of \leq 20%.

Notes: % = percent; min = minimum; max = maximum; - = no data/not applicable; DQO = data quality objective; ≤ = less than or equal to.

^a The number of significant digits reported in the table is consistent with the laboratory reports.

^b Whole large organisms were excluded from calculations.

Station	Fraction Sorted ^a	Station	Fraction Sorted ^a	Station	Fraction Sorted ^a						
Area-based Samples (ZEAS Inc.)											
RG_GHUT-1	1/8	RG_GHFF-3	1/2	RG_GHBP-5	1/4						
RG_GHUT-2	1/4	RG_GHFF-4	1/2	RG_GHBP-6	1/4						
RG_GHUT-3	1/8	RG_GHFF-5	1/4	RG_GAUT-1	1/4						
RG_GHUT-4	1/8	RG_GHFF-6	1/4	RG_GAUT-2	1/4						
RG_GHUT-5	1/8	RG_GHP-1	1/8	RG_GAUT-3	1/2						
RG_GHUT-6	1/8	RG_GHP-2	1/8	RG_GAUT-4	1/4						
RG_GHNF-1	1/8	RG_GHP-3	Whole	RG_GAUT-5	1/2						
RG_GHNF-2	1/16	RG_GHP-4	1/2	RG_GAUT-6	1/2						
RG_GHNF-3	1/16	RG_GHP-5	Whole	RG_GANF-1	1/2 ^b						
RG_GHNF-4	1/8	RG_GHP-6	Whole ^c	RG_GANF-2	Whole ^{c,d}						
RG_GHNF-5	1/4	RG_GHBP-1	1/4 ^e	RG_GANF-3	1/2						
RG_GHNF-6	1/8	RG_GHBP-2	1/2	RG_GANF-4	1/4						
RG_GHFF-1	1/4	RG_GHBP-3	1/4	RG_GANF-5	1/2						
RG_GHFF-2	Whole	RG_GHBP-4	1/4	RG_GANF-6	1/2						
Timed Kick Sa	mples (Cordillera C	onsulting)									
RG_GHNF-1	3/20	RG_GHNF-2	1/20	RG_GHNF-3	1/5						

 Table A.10:
 Benthic Invertebrate Community Sample Fractions Sorted, September 2021

Notes: µm = micrometre.

^a Mesh sizes were 400 μ m for all stations/samples except RG_GHP-1 through RG_GHP-6. These samples were collected from Greenhills Creek Sedimentation Pond and were sieved through a 500 μ m mesh.

^b Two quarters sorted for subsampling error calculations.

^c Four quarters sorted for subsampling error calculations.

^d Two halves sorted for subsampling error calculations.

^e Two eighths sorted for subsampling error calculations.

Station	Number of Organisms Recovered (initial sort)	Number of Organisms in Re-sort	Percent Recovery							
Area-based Samples (ZEAS Inc.)										
RG_GANF-1	398	402	99%							
RG_GAUT-3	193	196	98%							
RG_GHBP-4	469	482	97%							
RG_GHP-3	719	724	99%							
RG_GHUT-6	280	284	99%							
		Average % Recovery	99%							
Timed Kick Samples	Timed Kick Samples (Cordillera Consulting)									
QC Sample 1	392	403	97%							

Table A.11: Percent Recovery of Benthic Invertebrates, September 2021

Highlighted values did not meet the DQO of ≥90% (ZEAS Inc.) or ≥95% (Cordillera Consulting). Notes: % = percent; DQO = data quality objective; ≥ = greater than or equal to.

Table A.12: Calculation of Benthic Invertebrate Community Taxonomic Error,September 2021 a

Station	Taxa Identified	Error Rate (%)	Percent Difference in Enumeration (%)	Percent Taxonomic Disagreement (%)	Bray-Curtis Dissimilarity Index					
Timed Kick Samples (Cordillera Consulting)										
RG_GHNF-2	403	0	0	0.49627792	0.00496278					

Highlighted values did not meet the DQO of $\leq 5\%$ or 0.05 for the Bray-Curtis Dissimilarity Index. Notes: % = percent; DQO = data quality objective; \leq = less than or equal to.

^a The number of significant digits reported in the table is consistent with the laboratory report.

A6 BENTHIC INVERTEBRATE TISSUE CHEMISTRY

A6.1 Laboratory Reporting Limits

Benthic invertebrate tissue chemistry samples collected in February and September 2021 were analyzed by TrichAnalytics Inc. (Trich) in Saanichton, British Columbia. The analytical reports (Appendix B) were examined to provide an inventory of analytes for which the sample results were less than the LRL. Additionally, LRLs for selenium were assessed relative to the 4 microgram per gram dry weight (μ g/g dw) guideline for British Columbia (BCMOECCS 2021b) and the most conservative (i.e., lowest) EVWQP benchmark (i.e., the 11 μ g/g dw EVWQP Level 1 Benchmark for dietary effects to juvenile fish; Golder 2014).

Except for arsenic and mercury, all analytes (including selenium) were detected in all samples collected in February and September 2021 (Appendix Table A.13). Arsenic and mercury were not detected in one (i.e., 17%) of the six samples from February 2021 and four (17%) of the 24 benthic invertebrate tissue chemistry samples from September 2021 did not have a detectable concentration of arsenic. Additionally, LRLs for selenium were less than the BCMOECCS guideline and the lowest EVWQP Level 1 Benchmark (Appendix Table A.13). Therefore, the achieved LRLs were considered appropriate for the study.

A6.2 Data Precision

Laboratory duplicate samples and recoveries of CRM (i.e., DORM-4, NIST-1566b, and NIST-2976) were used to assess laboratory precision (Appendix Table A.1; Appendix B). Two and three laboratory duplicate samples were prepared and analyzed with the benthic invertebrate tissue chemistry samples collected in February and September 2021, respectively. All laboratory duplicate results met the DQO set by the analytical laboratory (Appendix Table A.1). The DQO for estimating precision of recoveries of CRM was set at a relative standard deviation (RSD) of ≤20%. Results, including those for selenium, were within the DQO (Appendix Table A.1). Therefore, laboratory precision for the benthic invertebrate tissue chemistry analyses completed by Trich are considered excellent and are of acceptable quality for this study.

A6.3 Data Accuracy

-

Data accuracy for the benthic invertebrate tissue chemistry samples was evaluated based on recoveries of CRM from four laboratory samples (i.e., one for February and three for September 2021; Appendix B). Each of the reported results for the four CRM samples met the DQO (Appendix Table A.1). Therefore, the accuracy achieved by analytical laboratory was considered excellent.

Table A.13: Laboratory Reporting Limit (LRL) Evaluation for Benthic Invertebrate Tissue Chemistry Analyses, 2021

Analuta	Unite	LRI	_S ^{a,b}	No. Sample R	No. Sample Results <lrl <sup="">c</lrl>		
Analyte	Units	February	September	February	September		
Aluminum (Al)	µg/g dw	0.031	0.058	0	0		
Antimony (Sb)	µg/g dw	0.004	0.004	0	0		
Arsenic (As)	µg/g dw	0.431	0.423	1 (17%)	4 (17%)		
Barium (Ba)	µg/g dw	0.001	0.001	0	0		
Boron (B)	µg/g dw	0.095	0.102	0	0		
Cadmium (Cd)	µg/g dw	0.041	0.044	0	0		
Calcium (Ca)	µg/g dw	5.4	17	0	0		
Chromium (Cr)	µg/g dw	0.140	0.184	0	0		
Cobalt (Co)	µg/g dw	0.002	0.010	0	0		
Copper (Cu)	µg/g dw	0.004	0.010	0	0		
Iron (Fe)	µg/g dw	0.575	0.906	0	0		
Lead (Pb)	µg/g dw	0.004	0.001	0	0		
Lithium (Li)	µg/g dw	0.004	0.009	0	0		
Magnesium (Mg)	µg/g dw	0.019	0.024	0	0		
Manganese (Mn)	µg/g dw	0.008	0.007	0	0		
Mercury (Hg)	µg/g dw	0.032	0.026	1 (17%)	0		
Molybdenum (Mo)	µg/g dw	0.001	0.001	0	0		
Nickel (Ni)	µg/g dw	0.001	0.047	0	0		
Phosphorus (P)	µg/g dw	51	32	0	0		
Potassium (K)	µg/g dw	0.638	2.0	0	0		
Selenium (Se)	µg/g dw	0.356	0.387	0	0		
Silver (Ag)	µg/g dw	0.001	0.001	0	0		
Sodium (Na)	µg/g dw	0.504	1.4	0	0		
Strontium (Sr)	µg/g dw	0.001	0.001	0	0		
Thallium (TI)	µg/g dw	0.001	0.001	0	0		
Tin (Sn)	µg/g dw	0.021	0.027	0	0		
Titanium (Ti)	µg/g dw	0.138	0.116	0	0		
Uranium (U)	µg/g dw	0.001	0.001	0	0		
Vanadium (V)	µg/g dw	0.042	0.072	0	0		
Zinc (Zn)	µg/g dw	0.461	0.227	0	0		

Shading indicates an LRL for selenium that is greater than the lowest applicable EVWQP Level 1 Benchmark (i.e., 11 µg/g dw) for dietary effects to juvenile fish (Golder 2014).

Shading indicates an LRL greater than the BCMOECCS interim selenium guideline for invertebrate tissue (4 µg/g dw; BCMOECCS 2019).

Notes: LRL = Laboratory Reporting Limit; < = less than; μ g/g dw = microgram per gram dry weight; % = percent; EVWQP = Elk Valley Water Quality Plan; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy.

^a The number of significant digits reported in the table is consistent with laboratory reports.

^b The LRLs for selenium were compared to the BCMOECCS interim guideline and EVWQP Level 1 Benchmark for dietary effects to juvenile fish (i.e., the most conservative benchmark); LRLs were consistently below guidelines/benchmarks. No other analytes had guidelines or EVWQP benchmarks for concentrations in benthic invertebrate tissues.

^c Total n = 6 samples in February 2021 and total n = 24 samples in September 2021.

A7 DATA QUALITY STATEMENT

Overall, the quality of the data collected for this study was considered acceptable for derivation of conclusions associated with the objectives of the 2021 Greenhills and Gardine Creeks Aquatic Monitoring Program.

A8 REFERENCES

- Austin, J. (ed.). 2020. British Columbia Environmental Laboratory Manual. Analysis, Reporting, and Knowledge Services, Knowledge Management Branch, British Columbia Ministry of Environment and Climate Change Strategy, Victoria, BC.
- BCMOECCS (British Columbia Ministry of Environment and Climate Change Strategy).
 2021a. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife, and Agriculture (Feb 2021). Water Protection and Sustainability Branch, Ministry of Environment and Climate Change Strategy. February 2021.
- BCMOECCS. 2021b. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife, and Agriculture – Guideline Summary. Water Quality Guideline Series, WQG-20.
- Environment Canada. 2012. Canadian Aquatic Biomonitoring Network (CABIN) Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. April 2012.
- Golder (Golder Associates). 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited, Sparwood, BC.
- Golder. 2017. Coal Mountain Operations: Aquatic Health Assessment. Prepared for Teck Coal Limited, Sparwood, BC.
- Maute, J. 2021. Senior Project Manager, Brooks Applied Labs. Email correspondence with Amy Wiebe (Minnow). November 29, 2021.
- Schvets, L. 2020. Senior Accounts Manager, Environmental, ALS Environmental. Email correspondence with Amy Wiebe (Minnow). October 14, 2020.
- Schvets, L. 2022. Senior Accounts Manager, Environmental, ALS Environmental. Email correspondence with Amy Wiebe (Minnow). March 9, 2022.
- Teck (Teck Resources Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2020. Elkview Operations Saturated Rock Fill Phase 2 Project Operations: Application for a Mines Act Permit and Environmental Management Act Amendment to Authorize the Commissioning and Operation Phase Activities. MMO ID: EVO-015-3. Rev 2 May 5, 2020. 349 pp + Appendices.

APPENDIX B RAW LABORATORY REPORTS **ALS - SEDIMENT**

Teck Coal Ltd. ATTN: Allie Ferguson 421 Pine Avenue Sparwood BC VOB 2G0 Date Received: 16-SEP-21 Report Date: 25-OCT-21 13:28 (MT) Version: FINAL

Client Phone: 250-425-8202

Certificate of Analysis

Lab Work Order #: L2641287

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: VPO00750546 REGIONAL EFFECTS PROGRAM September GGCAMP

Lyudmyla Shvets, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2641287 CONTD.... PAGE 2 of 9 25-OCT-21 13:28 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2641287-1 SE 13-SEP-21 16:00 RG_GHBP_SE- 1_2021-09- 13 1600	L2641287-2 SE 14-SEP-21 10:15 RG_GHBP_SE- 2_2021-09- 14 1015	L2641287-3 SE 14-SEP-21 12:00 RG_GHBP_SE- 3_2021-09- 14 1200	L2641287-4 SE 14-SEP-21 13:30 RG_GHBP_SE- 4_2021-09- 14 1330	L2641287-5 SE 14-SEP-21 14:30 RG_GHBP_SE- 5_2021-09- 14 1430
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	85.8	87.6	64.0	85.8	84.0
	pH (1:2 soil:water) (pH)	7.99	8.06	8.17	8.12	8.10
Particle Size	% Gravel (>2mm) (%)	<1.0	4.7	9.3	PSAL <1.0	PSAL <1.0
	% Sand (2.00mm - 1.00mm) (%)	2.5	19.9	12.0	PSAL <1.0	PSAL 5.2
	% Sand (1.00mm - 0.50mm) (%)	3.0	10.2	11.3	<1.0 PSAL	PSAL 8.3
	% Sand (0.50mm - 0.25mm) (%)	3.3	6.7	10.3	PSAL 2.1	PSAL 6.4
	% Sand (0.25mm - 0.125mm) (%)	5.7	5.4	8.5	PSAL 3.3	PSAL 4.7
	% Sand (0.125mm - 0.063mm) (%)	8.1	3.9	6.7	PSAL 4.5	PSAL 3.7
	% Silt (0.063mm - 0.0312mm) (%)	26.8	17.2	14.8	PSAL 28.8	22.5
	% Silt (0.0312mm - 0.004mm) (%)	37.4	23.7	19.8	PSAL 43.1	PSAL 36.7
	% Clay (<4um) (%)	12.3	8.3	7.3	PSAL 17.4	PSAL 12.5
	Texture	Silt loam	Sandy loam	Sandy loam	Silt loam	Silt loam
Organic / Inorganic Carbon	Total Organic Carbon (%)	17.9	10.9	5.87	22.3	20.3
Metals	Aluminum (Al) (mg/kg)	4590	4870	8200	4800	3900
	Antimony (Sb) (mg/kg)	0.63	0.64	0.76	0.69	0.59
	Arsenic (As) (mg/kg)	3.06	2.74	5.87	2.88	2.64
	Barium (Ba) (mg/kg)	176	176	267	180	177
	Beryllium (Be) (mg/kg)	0.44	0.41	0.67	0.42	0.36
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	<5.0	5.4	6.7	6.2	<5.0
	Cadmium (Cd) (mg/kg)	1.47	1.41	1.06	1.20	1.30
	Calcium (Ca) (mg/kg)	68500	82000	32200	64100	109000
	Chromium (Cr) (mg/kg)	7.51	7.60	15.2	8.10	6.36
	Cobalt (Co) (mg/kg)	6.56	7.27	7.63	6.51	6.13
	Copper (Cu) (mg/kg)	18.1	17.0	20.5	17.9	14.5
	Iron (Fe) (mg/kg)	9150	8200	17800	8900	7820
	Lead (Pb) (mg/kg)	8.22	7.43	11.5	7.74	6.63
	Lithium (Li) (mg/kg)	6.0	5.5	11.5	6.2	5.1
	Magnesium (Mg) (mg/kg)	5020	4920	6960	4750	4970
	Manganese (Mn) (mg/kg)	377	304	542	466	458
	Mercury (Hg) (mg/kg)	0.0717	0.0829	0.0760	0.0651	0.0632
	Molybdenum (Mo) (mg/kg)	1.05	0.93	1.38	0.95	0.94
	Nickel (Ni) (mg/kg)	118	116	68.1	117	99.9
	Phosphorus (P) (mg/kg)	778	727	1150	763	715
	Potassium (K) (mg/kg)	1060	1230	2030	1240	1100
	Selenium (Se) (mg/kg)	29.5	32.6	11.9	20.7	19.2
	Silver (Ag) (mg/kg)	0.24	0.22	0.28	0.22	0.18

L2641287 CONTD.... PAGE 3 of 9 25-OCT-21 13:28 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2641287-1 SE 13-SEP-21 16:00 RG_GHBP_SE- 1_2021-09- 13 1600	L2641287-2 SE 14-SEP-21 10:15 RG_GHBP_SE- 2_2021-09- 14 1015	L2641287-3 SE 14-SEP-21 12:00 RG_GHBP_SE- 3_2021-09- 14 1200	L2641287-4 SE 14-SEP-21 13:30 RG_GHBP_SE- 4_2021-09- 14 1330	L2641287-5 SE 14-SEP-21 14:30 RG_GHBP_SE- 5_2021-09- 14 1430
Grouping	Analyte					
SOIL						
Metals	Sodium (Na) (mg/kg)	64	69	72	69	70
	Strontium (Sr) (mg/kg)	51.2	53.9	44.1	50.9	65.9
	Sulfur (S) (mg/kg)	1900	2100	<1000	1900	2100
	Thallium (TI) (mg/kg)	0.124	0.121	0.208	0.107	0.106
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti) (mg/kg)	7.3	7.6	5.7	7.5	5.0
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	1.89	2.09	1.28	1.67	2.01
	Vanadium (V) (mg/kg)	16.0	16.5	30.0	17.2	14.6
	Zinc (Zn) (mg/kg)	147	150	137	141	129
	Zirconium (Zr) (mg/kg)	1.1	1.1	<1.0	<1.0	<1.0
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.43	<0.24	<0.19	<0.64	olci <0.60
	Acenaphthylene (mg/kg)	OLCI	DLCI <0.030	DLCI <0.025	DLHM 0.086	0.030
	Acridine (mg/kg)	<0.85	ollCi <0.54	0.379	DLCI <1.2	DLCI <1.2
	Anthracene (mg/kg)	0.017	DLHM <0.035	<0.0040	DLHM 0.020	DLHM <0.010
	Benz(a)anthracene (mg/kg)	<0.28	OLCI	DLCI <0.11	<0.39	OLCI
	Benzo(a)pyrene (mg/kg)	0.175	ollci <0.18	0.083	DLHM 0.194	0.222
	Benzo(b&j)fluoranthene (mg/kg)	0.511	0.434	0.207	DLHM 0.601	0.626
	Benzo(b+j+k)fluoranthene (mg/kg)	0.551	0.471	0.207	0.658	0.626
	Benzo(e)pyrene (mg/kg)	0.564	0.462	0.221	DLHM 0.711	0.699
	Benzo(g,h,i)perylene (mg/kg)	0.255	0.191	0.093	DLHM 0.328	0.308
	Benzo(k)fluoranthene (mg/kg)	0.040	0.037	<0.010	DLHM 0.057	DLHM <0.025
	Chrysene (mg/kg)	0.682	0.451	OLCI	DLCI <0.89	<1.5
	Dibenz(a,h)anthracene (mg/kg)	<0.11	<0.075	OLCI	0.128	0.142
	Fluoranthene (mg/kg)	0.214	0.143	0.078	0.229	0.268
	Fluorene (mg/kg)	1.06	0.761	0.457	DLHM 1.61	1.53 DLHM
	Indeno(1,2,3-c,d)pyrene (mg/kg)	0.064	<0.035	<0.010	0.048	0.054
	1-Methylnaphthalene (mg/kg)	5.22 DLHM	4.01	2.16	DLHM 7.85	7.36 DLHM
	2-Methylnaphthalene (mg/kg)	9.74	6.69 DLHM	4.06	DLHM 14.8	13.7 DLHM
	Naphthalene (mg/kg)	3.02 DLHM	2.15	1.26	dlhm 4.79	4.50 DLHM
	Perylene (mg/kg)	<0.035	<0.035	<0.010	DLHM <0.025	ol.025
	Phenanthrene (mg/kg)	4.00 DLHM	3.30 DLHM	1.65	DLHM 5.69	5.36 DLHM
	Pyrene (mg/kg)	0.364	0.273	0.143	0.477	0.450
	Quinoline (mg/kg)	<0.035	0.036	<0.050	DLHM <0.025	ol.025
	Surrogate: d10-Acenaphthene (%)	114.3	112.2	109.0	101.3	109.3
	Surrogate: d12-Chrysene (%)	116.2	118.3	113.8	100.6	107.2

L2641287 CONTD.... PAGE 4 of 9 25-OCT-21 13:28 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2641287-1 SE 13-SEP-21 16:00 RG_GHBP_SE- 1_2021-09- 13 1600	L2641287-2 SE 14-SEP-21 10:15 RG_GHBP_SE- 2_2021-09- 14 1015	L2641287-3 SE 14-SEP-21 12:00 RG_GHBP_SE- 3_2021-09- 14 1200	L2641287-4 SE 14-SEP-21 13:30 RG_0HBP_SE- 4_2021-09- 14 1330	L2641287-5 SE 14-SEP-21 14:30 RG_GHBP_SE- 5_2021-09- 14 1430
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Surrogate: d8-Naphthalene (%)	103.0	101.2	102.1	91.1	95.6
	Surrogate: d10-Phenanthrene (%)	109.8	110.8	108.2	97.6	102.5
	IACR:Coarse	0.163	0.145	0.057	0.203	0.177
	IACR:Fine	0.313	0.277	0.109	0.391	0.341
	B(a)P Total Potency Equivalent (mg/kg)	0.312	0.21	0.136	0.419	0.461
	IACR (CCME)	4.96	4.4	1.95	6.1	6.1
Exchangeable & Adsorbed Metals	Aluminum (Al)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Arsenic (As)-Leachable (mg/kg)	0.074	0.072	0.085	0.077	0.059
	Barium (Ba)-Leachable (mg/kg)	19.6	29.2	22.4	21.4	21.8
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Calcium (Ca)-Leachable (mg/kg)	3130	4030	3840	3120	2210
	Chromium (Cr)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Cobalt (Co)-Leachable (mg/kg)	0.18	0.24	0.18	0.20	0.20
	Copper (Cu)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Iron (Fe)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Lead (Pb)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	82.3	99.3	121	83.7	86.8
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nickel (Ni)-Leachable (mg/kg)	1.37	1.09	1.32	1.32	0.81
	Phosphorus (P)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Potassium (K)-Leachable (mg/kg)	120	<100	110	<100	<100
	Selenium (Se)-Leachable (mg/kg)	<0.20	0.28	<0.20	<0.20	<0.20
	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Sodium (Na)-Leachable (mg/kg)	<100	<100	<100	<100	<100
	Strontium (Sr)-Leachable (mg/kg)	5.46	7.55	7.77	6.12	6.78
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Uranium (U)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Vanadium (V)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Zinc (Zn)-Leachable (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
Carbonate Metals	Aluminum (AI)-Leachable (mg/kg)	<50	< 50	<50	<50	<50

L2641287 CONTD.... PAGE 5 of 9 25-OCT-21 13:28 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2641287-1 SE 13-SEP-21 16:00 RG_GHBP_SE- 1_2021-09- 13_1600	L2641287-2 SE 14-SEP-21 10:15 RG_GHBP_SE- 2_2021-09- 14_1015	L2641287-3 SE 14-SEP-21 12:00 RG_GHBP_SE- 3_2021-09- 14_1200	L2641287-4 SE 14-SEP-21 13:30 RG_GHBP_SE- 4_2021-09- 14_1330	L2641287-5 SE 14-SEP-21 14:30 RG_GHBP_SE- 5_2021-09- 14_1430
Grouping	Analyte					
SOIL						
Carbonate Metals	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Arsenic (As)-Leachable (mg/kg)	0.071	0.094	0.051	<0.050	0.094
	Barium (Ba)-Leachable (mg/kg)	47.7	48.1	46.6	47.2	33.3
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.382	0.161	0.229	0.593	0.482
	Calcium (Ca)-Leachable (mg/kg)	48100	44500	45200	48700	44500
	Chromium (Cr)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Cobalt (Co)-Leachable (mg/kg)	0.74	0.89	0.83	0.78	0.98
	Copper (Cu)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Iron (Fe)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Lead (Pb)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	0.51
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	120	117	148	139	168
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nickel (Ni)-Leachable (mg/kg)	4.8	6.3	6.3	5.6	5.1
	Phosphorus (P)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Selenium (Se)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Strontium (Sr)-Leachable (mg/kg)	22.3	23.2	22.5	19.8	34.4
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Uranium (U)-Leachable (mg/kg)	0.154	0.257	0.195	0.155	0.200
	Vanadium (V)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Zinc (Zn)-Leachable (mg/kg)	27.4	28.0	33.0	28.0	24.7
Easily Reducible Metals and Iron Oxides	Aluminum (Al)-Leachable (mg/kg)	265	278	274	260	270
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Arsenic (As)-Leachable (mg/kg)	0.394	0.521	0.491	0.420	0.459
	Barium (Ba)-Leachable (mg/kg)	39.6	29.5	38.8	57.2	23.2
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	1.68	3.56	3.46	1.59	1.28
	Calcium (Ca)-Leachable (mg/kg)	64700	42100	50100	88700	32200
	Chromium (Cr)-Leachable (mg/kg)	1.16	1.04	1.01	0.99	1.25
	Cobalt (Co)-Leachable (mg/kg)	1.25	1.22	1.38	1.19	1.33

L2641287 CONTD.... PAGE 6 of 9 25-OCT-21 13:28 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2641287-1 SE 13-SEP-21 16:00 RG_GHBP_SE- 1_2021-09- 13 1600	L2641287-2 SE 14-SEP-21 10:15 RG_GHBP_SE- 2_2021-09- 14 1015	L2641287-3 SE 14-SEP-21 12:00 RG_GHBP_SE- 3_2021-09- 14 1200	L2641287-4 SE 14-SEP-21 13:30 RG_GHBP_SE- 4_2021-09- 14 1330	L2641287-5 SE 14-SEP-21 14:30 RG_GHBP_SE- 5_2021-09- 14 1430
Grouping	Analyte					
SOIL						
Easily Reducible Metals and Iron Oxides	Copper (Cu)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Iron (Fe)-Leachable (mg/kg)	2700	2830	2690	2470	2770
	Lead (Pb)-Leachable (mg/kg)	3.22	3.08	3.11	3.05	2.97
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	221	207	237	213	222
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nickel (Ni)-Leachable (mg/kg)	8.85	11.2	12.8	10.3	7.31
	Phosphorus (P)-Leachable (mg/kg)	73	93	90	80	74
	Selenium (Se)-Leachable (mg/kg)	0.64	1.33	0.96	0.74	0.45
	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Strontium (Sr)-Leachable (mg/kg)	39.6	27.3	33.3	49.2	22.5
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	0.088
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Uranium (U)-Leachable (mg/kg)	0.216	0.288	0.291	0.259	0.214
	Vanadium (V)-Leachable (mg/kg)	2.98	2.90	2.79	2.73	3.04
	Zinc (Zn)-Leachable (mg/kg)	68.7	107	104	74.3	47.2
Organic Bound Metals	Aluminum (Al)-Leachable (mg/kg)	506	856	807	320	591
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Arsenic (As)-Leachable (mg/kg)	0.333	0.513	0.540	0.254	0.248
	Barium (Ba)-Leachable (mg/kg)	12.0	9.45	14.5	13.4	6.50
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.091	0.245	0.257	0.091	0.091
	Calcium (Ca)-Leachable (mg/kg)	2140	2000	2290	3140	1470
	Chromium (Cr)-Leachable (mg/kg)	1.91	2.92	3.07	1.84	2.04
	Cobalt (Co)-Leachable (mg/kg)	0.66	0.98	1.15	0.75	0.65
	Copper (Cu)-Leachable (mg/kg)	4.01	5.70	6.01	5.70	4.83
	Iron (Fe)-Leachable (mg/kg)	1160	1950	2020	957	1070
	Lead (Pb)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	9.7	10.8	12.9	11.9	10.3
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	0.60
	Nickel (Ni)-Leachable (mg/kg)	4.63	8.20	9.74	6.01	4.53
	Selenium (Se)-Leachable (mg/kg)	2.71	4.74	4.06	2.95	1.82
	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10

L2641287 CONTD.... PAGE 7 of 9 25-OCT-21 13:28 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2641287-1 SE 13-SEP-21 16:00 RG_GHBP_SE- 1_2021-09- 13_1600	L2641287-2 SE 14-SEP-21 10:15 RG_GHBP_SE- 2_2021-09- 14_1015	L2641287-3 SE 14-SEP-21 12:00 RG_GHBP_SE- 3_2021-09- 14_1200	L2641287-4 SE 14-SEP-21 13:30 RG_GHBP_SE- 4_2021-09- 14_1330	L2641287-5 SE 14-SEP-21 14:30 RG_GHBP_SE- 5_2021-09- 14_1430
Grouping	Analyte					
SOIL						
Organic Bound Metals	Strontium (Sr)-Leachable (mg/kg)	3.41	4.16	4.22	3.00	3.47
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	8.8	13.3	13.1	6.9	6.0
	Uranium (U)-Leachable (mg/kg)	0.113	0.211	0.195	0.089	0.147
	Vanadium (V)-Leachable (mg/kg)	2.21	3.23	3.27	2.08	2.84
	Zinc (Zn)-Leachable (mg/kg)	6.1	11.7	12.0	6.0	6.9
Residual Metals	Aluminum (Al)-Leachable (mg/kg)	5620	5560	5670	5000	5790
	Antimony (Sb)-Leachable (mg/kg)	0.37	0.42	0.43	0.34	0.52
	Arsenic (As)-Leachable (mg/kg)	3.14	2.92	2.98	2.86	5.07
	Barium (Ba)-Leachable (mg/kg)	103	96.9	100	84.1	82.7
	Beryllium (Be)-Leachable (mg/kg)	0.22	0.24	0.23	0.23	0.26
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.058	0.067	0.066	0.071	0.096
	Calcium (Ca)-Leachable (mg/kg)	1310	1040	964	1210	1550
	Chromium (Cr)-Leachable (mg/kg)	8.9	9.0	9.4	7.8	8.7
	Cobalt (Co)-Leachable (mg/kg)	1.46	1.46	1.50	1.42	1.60
	Copper (Cu)-Leachable (mg/kg)	5.82	6.48	6.37	5.47	10.4
	Iron (Fe)-Leachable (mg/kg)	7040	6560	6730	6600	9480
	Lead (Pb)-Leachable (mg/kg)	2.71	3.26	3.29	2.42	3.56
	Lithium (Li)-Leachable (mg/kg)	7.1	6.9	6.8	6.5	7.9
	Manganese (Mn)-Leachable (mg/kg)	33.0	31.0	33.6	30.1	37.9
	Molybdenum (Mo)-Leachable (mg/kg)	0.80	0.83	0.78	0.67	2.94
	Nickel (Ni)-Leachable (mg/kg)	7.1	6.9	7.1	6.3	8.8
	Selenium (Se)-Leachable (mg/kg)	0.41	0.66	0.48	0.49	0.54
	Silver (Ag)-Leachable (mg/kg)	<0.10	0.10	<0.10	0.10	<0.10
	Strontium (Sr)-Leachable (mg/kg)	17.9	17.8	17.9	16.2	17.6
	Thallium (TI)-Leachable (mg/kg)	0.138	0.153	0.148	0.129	0.286
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	32.0	23.7	24.5	26.5	25.9
	Uranium (U)-Leachable (mg/kg)	0.401	0.349	0.355	0.369	0.452
	Vanadium (V)-Leachable (mg/kg)	17.0	17.7	17.9	15.1	19.3
	Zinc (Zn)-Leachable (mg/kg)	37.3	38.6	38.2	33.5	53.7

Reference Information

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLCI	Detection Limit Raised: Chromatographic Interference due to co-elution.
DLHM	Detection Limit Adjusted: Sample has High Moisture Content
PSAL	Limited sample was available for Particle Size Analysis (100g minimum is standard). Measurement Uncertainty for PSA results may be higher than usual.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
C-TIC-PCT-SK	Soil	Total Inorganic Carbon in Soil	CSSS (2008) P216-217
A known quantity of ace	tic acid is con e relating pH t	sumed by reaction with carbonates in the soil. The o weight of carbonate.	pH of the resulting solution is measured and compared
C-TOC-CALC-SK	Soil	Total Organic Carbon Calculation	CSSS (2008) 21.2
Total Organic Carbon (T	OC) is calcula	ated by the difference between total carbon (TC) an	nd total inorganic carbon. (TIC)
C-TOT-LECO-SK	Soil	Total Carbon by combustion method	CSSS (2008) 21.2
The sample is ignited in	a combustion	analyzer where carbon in the reduced CO2 gas is	determined using a thermal conductivity detector.
HG-200.2-CVAA-CL	Soil	Mercury in Soil by CVAAS	EPA 200.2/1631E (mod)
Soil samples are digeste	ed with nitric a	nd hydrochloric acids, followed by analysis by CVA	AS.
IC-CACO3-CALC-SK	Soil	Inorganic Carbon as CaCO3 Equivalent	Calculation
MET-200.2-CCMS-CL Soil Metals in Soil by CRC ICPMS		Metals in Soil by CRC ICPMS	EPA 200.2/6020A (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including AI, Ba, Be, Cr, S, Sr, Ti, TI, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

MET-TESS-CM-CCMS-VA Soil METALS BY CCMS (TESSIER EXTRACTION #2) Tessier Extraction 1979/EPA 6020A

This analysis is modified from the extraction procedure outlined in the "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals" Analytical Chemistry, (A. Tessier, P.G.C. Campbell, and M. Bisson, June 1979). Initially, the sample is manually homogenized, dried at <60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed for extraction. In summary, the sample is sequentially extracted with 5 or 6 (if a pre-liminary water extraction is included) different extraction solutions. The extract is then centrifuged for 30 minutes and the supernatant is subsequently removed and analysed. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Note: For Extraction #2, the extraction solution is 1M Sodium Acetate adjusted to pH 5 and is intended to extract the "Carbonate" metals.

MET-TESS-EA-CCMS-VA Soil METALS BY CCMS (TESSIER EXTRACTION #1) Tessier Extraction 1979/EPA 6020A

This analysis is modified from the extraction procedure outlined in the "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals" Analytical Chemistry, (A. Tessier, P.G.C. Campbell, and M. Bisson, June 1979). Initially, the sample is manually homogenized, dried at <60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed for extraction. In summary, the sample is sequentially extracted with 5 or 6 (if a pre-liminary water extraction is included) different extraction solutions. The extract is then centrifuged for 30 minutes and the supernatant is subsequently removed and analysed. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Note: For Extraction #1, the extraction solution is 1M Magnesium Chloride and is intended to extract the "Exchangeable and Adsorbed" metals.

MET-TESS-FEO-CCMS-VA Soil METALS BY CCMS (TESSIER EXTRACTION #3) Tessier Extraction 1979/EPA 6020A

This analysis is modified from the extraction procedure outlined in the "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals" Analytical Chemistry, (A. Tessier, P.G.C. Campbell, and M. Bisson, June 1979). Initially, the sample is manually homogenized, dried at <60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed for extraction. In summary, the sample is sequentially extracted with 5 or 6 (if a pre-liminary water extraction is included) different extraction solutions. The extract is then centrifuged for 30 minutes and the supernatant is subsequently removed and analysed. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Note: For Extraction #3, the extraction solution is 0.1 M Hydroxylamine Hydro[,] Chloride in 25% v/v Acetic Acid and is intended to extract the Easily Reducible Metals and Iron Oxides .

MET-TESS-OB-CCMS-VA Soil METALS BY CCMS (TESSIER EXTRACTION #4) Tessier Extraction 1979/EPA 6020A

"This analysis is modified from the extraction procedure outlined in the "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals" Analytical Chemistry, (A. Tessier, P.G.C. Campbell, and M. Bisson, June 1979). Initially, the sample is manually homogenized, dried at <60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed for extraction. In summary, the sample is sequentially extracted with 5 or 6 (if a pre-liminary water extraction is included) different extraction solutions. The extract is then centrifuged for 30 minutes and the supernatant is subsequently removed and analysed. Instrumental analysis

Reference Information

of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Note: For Extraction #4, the extraction solution is 0.02 M Nitric Acid followed by 3.2M Ammonium Acetate and is intended to extract the Organic Bound metals.

MET-TESS-RM-CCMS-VA Soil METALS BY CCMS (TESSIER RM EXTRACTION) Tessier Extraction 1979/EPA 6020A

"This analysis is modified from the extraction procedure outlined in the "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals" Analytical Chemistry, (A. Tessier, P.G.C. Campbell, and M. Bisson, June 1979). Initially, the sample is manually homogenized, dried at <60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed for extraction. In summary, the sample is sequentially extracted with up to 6 different extraction solutions. The extract is then centrifuged for 30 minutes and the supernatant is subsequently removed and analysed. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Note: For the Tessier "RM" Extraction, the extraction solution is 50/50 mix of 1:1 Nitric Acid along with 1:1 Hydrochloric Acid, and is hot block digested as per the BC SALM procedure. This is intended to extract the Residual metals.

MOISTURE-CL Soil % Moisture

CCME PHC in Soil - Tier 1 (mod)

EPA 3570/8270-GC/MS

This analysis is carried out gravimetrically by drying the sample at 105 C

PAH-TMB-H/A-MS-CL Soil PAH Tumbler Extraction (Hexane/Acetone)

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3545 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PH-1:2-CL Soil pH in soil (1:2 Soil:Water Extraction)

Soil and de-ionized water (by volume) are mixed in a defined ratio. The slurry is allowed to stand, shaken, and then allowed to stand again prior to taking measurements. After equilibration, the pH of the liquid portion of the extract is measured by a pH meter. Field Measurement is recommended where accurate pH measurements are required, due to the 15 minute recommended hold time.

PSA-PIPET-DETAIL-SK Soil Particle size - Sieve and Pipette

SSIR-51 METHOD 3.2.1

CSSS Ch. 16

Particle size distribution is determined by a combination of techniques. Dry sieving is performed for coarse particles, wet sieving for sand particles and the pipette sedimentation method for clay particles.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

September GGCAMP

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

	Workorder:	L2641287	Report Date:	25-OCT-21	Pag	e 1 of 31
Client: Teck Coal L 421 Pine Av Sparwood E	.td. renue BC V0B 2G0					
		Desself			1 1 14	A
lest IV	Natrix Reference	Result	Qualifier Units	RPD	Limit	Analyzed
C-TIC-PCT-SK S	Soil					
Batch R5602036 WG3622541-4 IRM Inorganic Carbon	08-109_SOIL	104.2	%		80-120	27-SEP-21
WG3622541-2 LCS Inorganic Carbon	0.5	94.1	%		90-110	27-SEP-21
WG3622541-3 MB Inorganic Carbon		<0.050	%		0.05	27-SEP-21
Batch R5602037						
WG3622547-4 IRM Inorganic Carbon	08-109_SOIL	107.9	%		80-120	27-SEP-21
WG3622547-2 LCS Inorganic Carbon	0.5	94.7	%		90-110	27-SEP-21
WG3622547-3 MB Inorganic Carbon		<0.050	%		0.05	27-SEP-21
Batch R5626364						
WG3641172-4 IRM Inorganic Carbon	08-109_SOIL	98.3	%		80-120	21-OCT-21
WG3641172-2 LCS Inorganic Carbon	0.5	96.3	%		90-110	21-OCT-21
WG3641172-3 MB Inorganic Carbon		<0.050	%		0.05	21-OCT-21
C-TOT-LECO-SK S	Soil					
Batch R5599818						
WG3622204-2 IRM Total Carbon by Combustic	08-109_SOIL	99.3	%		80-120	22-SEP-21
WG3622204-4 LCS Total Carbon by Combustic	SULFADIAZIN	NE 106.0	%		90-110	22-SEP-21
WG3622204-3 MB Total Carbon by Combustic	on	<0.05	%		0.05	22-SEP-21
Batch R5605746						
WG3622203-2 IRM Total Carbon by Combustic	08-109_SOIL	101.0	%		80-120	24-SEP-21
WG3622203-4 LCS Total Carbon by Combustic	SULFADIAZIN	NE 102.9	%		90-110	24-SEP-21
WG3622203-3 MB Total Carbon by Combustic	on	<0.05	%		0.05	24-SFP-21

		Workorder:	L264128	7	Report Date: 2	5-OCT-21	Pa	ige 2 of 31
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-TOT-LECO-SK	Soil							
Batch R5615198								
WG3633519-3 IRM Total Carbon by Combu	stion	08-109_SOIL	106.7		%		80-120	09-OCT-21
WG3633519-6 LCS Total Carbon by Combus	stion	SULFADIAZI	NE 101.7		%		90-110	09-OCT-21
WG3633519-5 MB Total Carbon by Combus	stion		<0.05		%		0.05	09-OCT-21
HG-200.2-CVAA-CL	Soil							
Batch R5605501								
WG3627462-9 CRM		TILL-2						
Mercury (Hg)			101.0		%		70-130	30-SEP-21
WG3627462-8 LCS Mercury (Hg)			98.4		%		80-120	30-SEP-21
WG3627462-6 MB Mercury (Hg)			<0.0050		mg/kg		0.005	30-SEP-21
MET-200.2-CCMS-CL	Soil							
Batch R5605699								
WG3627462-9 CRM		TILL-2						
Aluminum (Al)			77.6		%		70-130	01-OCT-21
Antimony (Sb)			96.9		%		70-130	01-OCT-21
Arsenic (As)			92.2		%		70-130	01-OCT-21
Barium (Ba)			87.5		%		70-130	01-OCT-21
Beryllium (Be)			86.6		%		70-130	01-OCT-21
Bismuth (Bi)			94.4		%		70-130	01-OCT-21
Cadmium (Cd)			95.8		%		70-130	01-OCT-21
Calcium (Ca)			84.0		%		70-130	01-OCT-21
Chromium (Cr)			90.0		%		70-130	01-OCT-21
Cobalt (Co)			92.5		%		70-130	01-OCT-21
Copper (Cu)			93.5		%		70-130	01-OCT-21
Iron (Fe)			92.3		%		70-130	01-OCT-21
Lead (Pb)			93.3		%		70-130	01-OCT-21
Lithium (Li)			90.7		%		70-130	01-OCT-21
Magnesium (Mg)			85.8		%		70-130	01-OCT-21
Manganese (Mn)			87.8		%		70-130	01-OCT-21
Molybdenum (Mo)			86.4		%		70-130	01-OCT-21
Nickel (Ni)			95.0		%		70-130	01-OCT-21
Phosphorus (P)			93.0		%		70-130	01-OCT-21

		Workorder: L2641287		Report Date: 25-OCT-21		Page 3 of 31		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R56056	99							
WG3627462-9 CR	М	TILL-2						
Potassium (K)			83.1		%		70-130	01-OCT-21
Selenium (Se)			0.36		mg/kg		0.15-0.55	01-OCT-21
Silver (Ag)			0.24		mg/kg		0.16-0.36	01-OCT-21
Sodium (Na)			79.9		%		70-130	01-OCT-21
Strontium (Sr)			87.6		%		70-130	01-OCT-21
Thallium (TI)			92.0		%		70-130	01-OCT-21
Tin (Sn)			2.1		mg/kg		0.2-4.2	01-OCT-21
Titanium (Ti)			76.9		%		70-130	01-OCT-21
Tungsten (W)			1.30		mg/kg		1-2	01-OCT-21
Uranium (U)			91.1		%		70-130	01-OCT-21
Vanadium (V)			87.6		%		70-130	01-OCT-21
Zinc (Zn)			93.9		%		70-130	01-OCT-21
Zirconium (Zr)			90.3		%		70-130	01-OCT-21
WG3627462-8 LC	S							
Aluminum (Al)			89.4		%		80-120	01-OCT-21
Antimony (Sb)			96.2		%		80-120	01-OCT-21
Arsenic (As)			94.9		%		80-120	01-OCT-21
Barium (Ba)			93.9		%		80-120	01-OCT-21
Beryllium (Be)			94.8		%		80-120	01-OCT-21
Bismuth (Bi)			90.8		%		80-120	01-OCT-21
Boron (B)			87.7		%		80-120	01-OCT-21
Cadmium (Cd)			94.7		%		80-120	01-OCT-21
Calcium (Ca)			88.4		%		80-120	01-OCT-21
Chromium (Cr)			95.5		%		80-120	01-OCT-21
Cobalt (Co)			97.4		%		80-120	01-OCT-21
Copper (Cu)			93.6		%		80-120	01-OCT-21
Iron (Fe)			99.8		%		80-120	01-OCT-21
Lead (Pb)			91.7		%		80-120	01-OCT-21
Lithium (Li)			97.2		%		80-120	01-OCT-21
Magnesium (Mg)			94.1		%		80-120	01-OCT-21
Manganese (Mn)			96.7		%		80-120	01-OCT-21
Molybdenum (Mo)			91.6		%		80-120	01-OCT-21
Nickel (Ni)			98.5		%		80-120	01-OCT-21
Phosphorus (P)			97.4		%		80-120	01-OCT-21

		Workorder	: L264128	37	Report Date: 2	5-OCT-21	Page 4 of 31		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-200.2-CCMS-CL	Soil								
Batch R56056	99								
WG3627462-8 LC	S								
Potassium (K)			96.6		%		80-120	01-OCT-21	
Selenium (Se)			95.3		%		80-120	01-OCT-21	
Silver (Ag)			92.7		%		80-120	01-OCT-21	
Sodium (Na)			95.8		%		80-120	01-OCT-21	
Strontium (Sr)			92.9		%		80-120	01-OCT-21	
Sulfur (S)			82.2		%		80-120	01-OCT-21	
Thallium (TI)			88.9		%		80-120	01-OCT-21	
Tin (Sn)			92.9		%		80-120	01-OCT-21	
Titanium (Ti)			84.6		%		80-120	01-OCT-21	
Tungsten (W)			94.9		%		80-120	01-OCT-21	
Uranium (U)			93.9		%		80-120	01-OCT-21	
Vanadium (V)			95.7		%		80-120	01-OCT-21	
Zinc (Zn)			92.0		%		80-120	01-OCT-21	
Zirconium (Zr)			92.5		%		80-120	01-OCT-21	
WG3627462-6 MB									
Aluminum (Al)			<50		mg/kg		50	01-OCT-21	
Antimony (Sb)			<0.10		mg/kg		0.1	01-OCT-21	
Arsenic (As)			<0.10		mg/kg		0.1	01-OCT-21	
Barium (Ba)			<0.50		mg/kg		0.5	01-OCT-21	
Beryllium (Be)			<0.10		mg/kg		0.1	01-OCT-21	
Bismuth (Bi)			<0.20		mg/kg		0.2	01-OCT-21	
Boron (B)			<5.0		mg/kg		5	01-OCT-21	
Cadmium (Cd)			<0.020		mg/kg		0.02	01-OCT-21	
Calcium (Ca)			<50		mg/kg		50	01-OCT-21	
Chromium (Cr)			<0.50		mg/kg		0.5	01-OCT-21	
Cobalt (Co)			<0.10		mg/kg		0.1	01-OCT-21	
Copper (Cu)			<0.50		mg/kg		0.5	01-OCT-21	
Iron (Fe)			<50		mg/kg		50	01-OCT-21	
Lead (Pb)			<0.50		mg/kg		0.5	01-OCT-21	
Lithium (Li)			<2.0		mg/kg		2	01-OCT-21	
Magnesium (Mg)			<20		mg/kg		20	01-OCT-21	
Manganese (Mn)			<1.0		mg/kg		1	01-OCT-21	
Molybdenum (Mo)			<0.10		mg/kg		0.1	01-OCT-21	
Nickel (Ni)			<0.50		mg/kg		0.5	01-OCT-21	

		Workorder:	L264128	57 F	Report Date: 2	5-OCT-21	Page 5 of 31		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-200.2-CCMS-CL	Soil								
Batch R560569	9								
WG3627462-6 MB									
Phosphorus (P)			<50		mg/kg		50	01-OCT-21	
Potassium (K)			<100		mg/kg		100	01-OCT-21	
Selenium (Se)			<0.20		mg/kg		0.2	01-OCT-21	
Silver (Ag)			<0.10		mg/kg		0.1	01-OCT-21	
Sodium (Na)			<50		mg/kg		50	01-OCT-21	
Strontium (Sr)			<0.50		mg/kg		0.5	01-OCT-21	
Sulfur (S)			<1000		mg/kg		1000	01-OCT-21	
Thallium (TI)			<0.050		mg/kg		0.05	01-OCT-21	
Tin (Sn)			<2.0		mg/kg		2	01-OCT-21	
Titanium (Ti)			<1.0		mg/kg		1	01-OCT-21	
Tungsten (W)			<0.50		mg/kg		0.5	01-OCT-21	
Uranium (U)			<0.050		mg/kg		0.05	01-OCT-21	
Vanadium (V)			<0.20		mg/kg		0.2	01-OCT-21	
Zinc (Zn)			<2.0		mg/kg		2	01-OCT-21	
Zirconium (Zr)			<1.0		mg/kg		1	01-OCT-21	
MET-TESS-CM-CCMS-V	A Soil								
Batch R560711	6								
WG3627150-3 DUP		L2641287-2							
Aluminum (Al)-Leacha	able	<50	<50	RPD-NA	A mg/kg	N/A	30	04-OCT-21	
Antimony (Sb)-Leacha	able	<0.10	<0.10	RPD-NA	A mg/kg	N/A	30	04-OCT-21	
Arsenic (As)-Leachab	le	0.094	0.116		mg/kg	22	30	04-OCT-21	
Barium (Ba)-Leachabl	le	48.1	50.5		mg/kg	4.8	30	04-OCT-21	
Beryllium (Be)-Leacha	able	<0.20	<0.20	RPD-NA	A mg/kg	N/A	30	04-OCT-21	
Bismuth (Bi)-Leachab	le	<0.20	<0.20	RPD-NA	A mg/kg	N/A	30	04-OCT-21	
Cadmium (Cd)-Leach	able	0.161	0.177		mg/kg	10	30	04-OCT-21	
Calcium (Ca)-Leachal	ble	44500	46800		mg/kg	5.1	30	04-OCT-21	
Chromium (Cr)-Leach	able	<5.0	<5.0	RPD-NA	A mg/kg	N/A	30	04-OCT-21	
Cobalt (Co)-Leachable	е	0.89	0.92		mg/kg	4.2	30	04-OCT-21	
Copper (Cu)-Leachab	le	<0.50	<0.50	RPD-NA	\ mg/kg	N/A	30	04-OCT-21	
Iron (Fe)-Leachable		<50	<50	RPD-NA	\ mg/kg	N/A	30	04-OCT-21	
Lead (Pb)-Leachable		<0.50	<0.50	RPD-NA	a mg/kg	N/A	30	04-OCT-21	
Lithium (Li)-Leachable	9	<5.0	<5.0	RPD-NA	a mg/kg	N/A	30	04-OCT-21	
Manganese (Mn)-Lea	chable	117	122		mg/kg	4.5	30	04-OCT-21	
Molybdenum (Mo)-Lea	achable	<0.50	<0.50	RPD-NA	\ mg/kg	N/A	30	04-OCT-21	

Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-TESS-CM-CCMS-VA Soil Batch R5607116 Matrix Reference Result </th <th></th> <th>Workorder:</th> <th>L264128</th> <th>87 Re</th> <th>eport Date: 2</th> <th>25-OCT-21</th> <th>Pa</th> <th>age 6 of 31</th>		Workorder:	L264128	87 Re	eport Date: 2	25-OCT-21	Pa	age 6 of 31
Bach R5607116 WG3327153 DUP L2641287-2 WG327153 DUP L2641287-2 Phosphorus (P)-Leachable 6.3 6.8 mg/kg 8.4 30 04-OCT-21 Phosphorus (P)-Leachable -020 -020 RDP-NA mg/kg NA 30 04-OCT-21 Sileri (M)-Leachable -020 -020 RDP-NA mg/kg NA 30 04-OCT-21 Sileri (M)-Leachable -020 -020 RDP-NA mg/kg NA 30 04-OCT-21 Tini (S)-Leachable -0.050 RDP-NA mg/kg NA 30 04-OCT-21 Tini (S)-Leachable -0.050 RDP-NA mg/kg NA 30 04-OCT-21 Uranium (U)-Leachable -0.20 2.02 mg/kg NA 30 04-OCT-21 Vanadum (V)-Leachable -0.25 mg/kg NA 30 04-OCT-21 Armium (S)-Leachable -0.26 mg/kg NA 30 04-OCT-21 Armium (S)-Leachable	Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BatchR5607116L24L1287-2WG3627150-3DUP6.36.8mg/kg8.43004-OCT-21Nickel (N)-Leachable<50	MET-TESS-CM-CCMS-VA Soil							
Wickel (Ni)Leachable 6.6 mg/kg 8.4 9.0 0.40-0CT-21 Phosphorus (P)-Leachable -50 -50 RPD-NA mg/kg N/A 30 04-0CT-21 Selenium (Se)-Leachable -0.20 -0.20 RPD-NA mg/kg N/A 30 04-0CT-21 Silver (Ag)-Leachable -0.10 -0.10 RPD-NA mg/kg N/A 30 04-0CT-21 Silver (Ag)-Leachable -0.10 -0.050 RPD-NA mg/kg N/A 30 04-0CT-21 Tinn (Sn)-Leachable -0.050 -0.050 RPD-NA mg/kg N/A 30 04-0CT-21 Tinn (Sn)-Leachable -2.0 -2.0 RPD-NA mg/kg N/A 30 04-0CT-21 Uranium (U)-Leachable -2.02 -0.25 mg/kg N/A 30 04-0CT-21 Zinc (Zn)-Leachable -0.20 -0.25 mg/kg N/A 30 04-0CT-21 Antimony (Sh)-Leachable -0.20 RPD-NA mg/kg N/A 30 <td< td=""><td>Batch R5607116</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Batch R5607116							
Nicks (Ni)-Eachable 6.3 6.8 mg/kg 8.4 30 04-0CT-21 Phosphorus (P)-Laachable <50	WG3627150-3 DUP	L2641287-2						
Phosphorus (P)-Leachable <50 <50 RPD-NA mg/kg NA 30 04-OCT-21 Selenium (Se)-Leachable <0.20	Nickel (Ni)-Leachable	6.3	6.8		mg/kg	8.4	30	04-OCT-21
Selenium (Se)-Leachable <0.20 RPD-NA mg/kg NA 30 04-OCT-21 Silver (Ag)-Leachable <0.10	Phosphorus (P)-Leachable	<50	<50	RPD-NA	mg/kg	N/A	30	04-OCT-21
Sher (Ag)-Leachable c0.0 c0.0 RPD-NA mg/kg N/A 30 04-0CT-21 Strontium (Sr)-Leachable 23.2 24.7 mg/kg 6.1 30 04-0CT-21 Thallum (T)-Leachable <0.050	Selenium (Se)-Leachable	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	04-OCT-21
Strontium (Sr)-Leachable 23.2 24.7 mg/kg 6.1 30 04-0CT-21 Thallium (TI)-Leachable <0.050	Silver (Ag)-Leachable	<0.10	<0.10	RPD-NA	mg/kg	N/A	30	04-OCT-21
Thallium (TI)-Leachable <0.050 <0.050 RPD-NA mg/kg NA 30 04-OCT-21 Tin (Sn)-Leachable <2.0	Strontium (Sr)-Leachable	23.2	24.7		mg/kg	6.1	30	04-OCT-21
Tin (Sn)-Leachable <2.0 <2.0 RPD-NA mg/kg NA 30 04-OCT-21 Titanium (Ti)-Leachable 0.257 0.256 mg/kg NA 30 04-OCT-21 Vanadium (V)-Leachable 0.20 <0.20	Thallium (TI)-Leachable	<0.050	<0.050	RPD-NA	mg/kg	N/A	30	04-OCT-21
Titanium (Ti)-Leachable <5.0 <5.0 RPD-NA mg/kg N/A 30 04-OCT-21 Uranium (U)-Leachable 0.257 0.256 mg/kg 0.4 30 04-OCT-21 Vanadium (V)-Leachable 0.20 0.20 RPD-NA mg/kg N/A 30 04-OCT-21 Zinc (Zn)-Leachable 28.0 28.6 mg/kg 2.0 30 04-OCT-21 Muminum (Al)-Leachable 115.8 % 70-130 04-OCT-21 Artimony (Sb)-Leachable 108.3 % 70-130 04-OCT-21 Barium (Ba)-Leachable 107.9 % 70-130 04-OCT-21 Barium (Ba)-Leachable 107.9 % 70-130 04-OCT-21 Barium (Ba)-Leachable 102.6 % 70-130 04-OCT-21 Barium (Ca)-Leachable 102.6 % 70-130 04-OCT-21 Cadmium (Ca)-Leachable 102.7 % 70-130 04-OCT-21 Cadmium (Ca)-Leachable 102.7 % 70-130 04-OCT-21	Tin (Sn)-Leachable	<2.0	<2.0	RPD-NA	mg/kg	N/A	30	04-OCT-21
Uranium (U)-Leachable 0.257 0.256 mg/kg 0.4 30 04-OCT-21 Vanadium (V)-Leachable <0.20	Titanium (Ti)-Leachable	<5.0	<5.0	RPD-NA	mg/kg	N/A	30	04-OCT-21
Vanadium (V)-Leachable <0.20 RPD-NA mg/kg N/A 30 04-OCT-21 Zinc (2n)-Leachable 28.0 28.6 mg/kg 2.0 30 04-OCT-21 WG3627150-2 LCS 70-130 04-OCT-21 Aluminum (Al)-Leachable 108.3 % 70-130 04-OCT-21 Antimony (Sb)-Leachable 108.3 % 70-130 04-OCT-21 Barium (Ba)-Leachable 104.9 % 70-130 04-OCT-21 Barium (Ba)-Leachable 107.9 % 70-130 04-OCT-21 Barium (Ba)-Leachable 108.4 % 70-130 04-OCT-21 Barium (Ba)-Leachable 97.0 % 70-130 04-OCT-21 Calcium (Ca)-Leachable 102.6 % 70-130 04-OCT-21 Calcium (Ca)-Leachable 102.6 % 70-130 04-OCT-21 Cabrium (Ch)-Leachable 102.7 % 70-130 04-OCT-21 Cobait (Co)-Leachable 101.2 % 70-130 04-OCT-21	Uranium (U)-Leachable	0.257	0.256		mg/kg	0.4	30	04-OCT-21
Zinc (Zh)-Leachable 28.0 28.6 mg/kg 2.0 3.0 04-OCT-21 Mituminum (Al)-Leachable 115.8 % 70-130 04-OCT-21 Antimony (Sb)-Leachable 108.3 % 70-130 04-OCT-21 Barium (Ba)-Leachable 104.9 % 70-130 04-OCT-21 Barium (Ba)-Leachable 104.9 % 70-130 04-OCT-21 Barium (Ba)-Leachable 108.4 % 70-130 04-OCT-21 Barium (Ba)-Leachable 108.4 % 70-130 04-OCT-21 Bismuth (Bi)-Leachable 97.0 % 70-130 04-OCT-21 Cadmium (Cd)-Leachable 102.6 % 70-130 04-OCT-21 Cadium (Cd)-Leachable 102.6 % 70-130 04-OCT-21 Cabium (Ca)-Leachable 102.7 % 70-130 04-OCT-21 Cobalt (Co)-Leachable 102.5 % 70-130 04-OCT-21 Iron (Fe)-Leachable 103.2 % 70-130 04-OCT-21 Iron (Fe)-Leachable 107.3 % 70-130 04-OCT-21 Ma	Vanadium (V)-Leachable	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	04-OCT-21
WG3627150-2 LCS Aluminum (Al)-Leachable 115.8 % 70-130 04-0CT-21 Antimony (Sb)-Leachable 108.3 % 70-130 04-0CT-21 Arsenic (As)-Leachable 104.9 % 70-130 04-0CT-21 Barium (Ba)-Leachable 107.9 % 70-130 04-0CT-21 Barium (Ba)-Leachable 108.4 % 70-130 04-0CT-21 Bismuth (Bi)-Leachable 108.4 % 70-130 04-0CT-21 Cadmium (Cd)-Leachable 102.6 % 70-130 04-0CT-21 Cadmium (Cd)-Leachable 102.6 % 70-130 04-0CT-21 Cadium (Cd)-Leachable 102.7 % 70-130 04-0CT-21 Cobalt (Co)-Leachable 102.5 % 70-130 04-0CT-21 Cobalt (Co)-Leachable 101.9 % 70-130 04-0CT-21 Iron (Fe)-Leachable 103.2 % 70-130 04-0CT-21 Iron (Fe)-Leachable 107.3 % 70-130 04-0CT-21	Zinc (Zn)-Leachable	28.0	28.6		mg/kg	2.0	30	04-OCT-21
Antimony (Sb)-Leachable 108.3 % 70-130 04-OCT-21 Arsenic (As)-Leachable 104.9 % 70-130 04-OCT-21 Barium (Ba)-Leachable 107.9 % 70-130 04-OCT-21 Beryllium (Be)-Leachable 108.4 % 70-130 04-OCT-21 Bismuth (Bi)-Leachable 108.4 % 70-130 04-OCT-21 Cadmium (Cd)-Leachable 102.6 % 70-130 04-OCT-21 Calcium (Ca)-Leachable 102.6 % 70-130 04-OCT-21 Calcium (Ca)-Leachable 102.7 % 70-130 04-OCT-21 Cobalt (Co)-Leachable 102.5 % 70-130 04-OCT-21 Copper (Cu)-Leachable 101.9 % 70-130 04-OCT-21 Iron (Fe)-Leachable 103.2 % 70-130 04-OCT-21 Lead (Pb)-Leachable 103.2 % 70-130 04-OCT-21 Manganese (Mn)-Leachable 107.3 % 70-130 04-OCT-21 Molybdenum (Mo)-Leachable 107.2 % 70-130 04-OCT-21 Molybdenum (Mo)-Leachable <td>WG3627150-2 LCS Aluminum (Al)-Leachable</td> <td></td> <td>115.8</td> <td></td> <td>%</td> <td></td> <td>70-130</td> <td>04-OCT-21</td>	WG3627150-2 LCS Aluminum (Al)-Leachable		115.8		%		70-130	04-OCT-21
Arsenic (As)-Leachable 104.9 % 70-130 04-OCT-21 Barium (Ba)-Leachable 107.9 % 70-130 04-OCT-21 Beryllium (Be)-Leachable 108.4 % 70-130 04-OCT-21 Bismuth (Bi)-Leachable 97.0 % 70-130 04-OCT-21 Cadmium (Cd)-Leachable 102.6 % 70-130 04-OCT-21 Calcium (Ca)-Leachable 103.6 % 70-130 04-OCT-21 Calcium (Ca)-Leachable 102.7 % 70-130 04-OCT-21 Cobalt (Co)-Leachable 102.5 % 70-130 04-OCT-21 Cobalt (Co)-Leachable 101.9 % 70-130 04-OCT-21 Iron (Fe)-Leachable 103.2 % 70-130 04-OCT-21 Iron (Fe)-Leachable 103.2 % 70-130 04-OCT-21 Lead (Pb)-Leachable 103.2 % 70-130 04-OCT-21 Manganese (Mn)-Leachable 107.3 % 70-130 04-OCT-21 Molybdenum (Mo)-Leachable 107.2 % 70-130 04-OCT-21 Nickel (Ni)-Leachable	Antimony (Sb)-Leachable		108.3		%		70-130	04-OCT-21
Barium (Ba)-Leachable 107.9 % 70-130 04-OCT-21 Beryllium (Be)-Leachable 108.4 % 70-130 04-OCT-21 Bismuth (Bi)-Leachable 97.0 % 70-130 04-OCT-21 Cadmium (Cd)-Leachable 102.6 % 70-130 04-OCT-21 Calcium (Ca)-Leachable 102.6 % 70-130 04-OCT-21 Calcium (Ca)-Leachable 102.6 % 70-130 04-OCT-21 Calcium (Ca)-Leachable 102.7 % 70-130 04-OCT-21 Cobalt (Co)-Leachable 102.5 % 70-130 04-OCT-21 Cobalt (Co)-Leachable 101.9 % 70-130 04-OCT-21 Iron (Fe)-Leachable 103.2 % 70-130 04-OCT-21 Iron (Fe)-Leachable 103.2 % 70-130 04-OCT-21 Iron (Fe)-Leachable 103.2 % 70-130 04-OCT-21 Iron (Fe)-Leachable 107.3 % 70-130 04-OCT-21 Marganese (Mn)-Leachable 107.3	Arsenic (As)-Leachable		104.9		%		70-130	04-OCT-21
Beryllum (Be)-Leachable 108.4 % 70-130 04-OCT-21 Bismuth (Bi)-Leachable 97.0 % 70-130 04-OCT-21 Cadmium (Cd)-Leachable 102.6 % 70-130 04-OCT-21 Calcium (Ca)-Leachable 102.6 % 70-130 04-OCT-21 Calcium (Ca)-Leachable 103.6 % 70-130 04-OCT-21 Chromium (Cr)-Leachable 102.7 % 70-130 04-OCT-21 Cobalt (Co)-Leachable 102.5 % 70-130 04-OCT-21 Copper (Cu)-Leachable 101.9 % 70-130 04-OCT-21 Iron (Fe)-Leachable 103.2 % 70-130 04-OCT-21 Iron (Fe)-Leachable 103.2 % 70-130 04-OCT-21 Iron (Fe)-Leachable 103.2 % 70-130 04-OCT-21 Lead (Pb)-Leachable 107.3 % 70-130 04-OCT-21 Manganese (Mn)-Leachable 107.3 % 70-130 04-OCT-21 Molybdenum (Mo)-Leachable 107.2	Barium (Ba)-Leachable		107.9		%		70-130	04-OCT-21
Bismuth (Bi)-Leachable 97.0 % 70-130 04-0CT-21 Cadmium (Cd)-Leachable 102.6 % 70-130 04-0CT-21 Calcium (Ca)-Leachable 103.6 % 70-130 04-0CT-21 Chromium (Cr)-Leachable 102.7 % 70-130 04-0CT-21 Cobalt (Co)-Leachable 102.5 % 70-130 04-0CT-21 Cobalt (Co)-Leachable 102.5 % 70-130 04-0CT-21 Copper (Cu)-Leachable 101.9 % 70-130 04-0CT-21 Iron (Fe)-Leachable 103.2 % 70-130 04-0CT-21 Lead (Pb)-Leachable 103.2 % 70-130 04-0CT-21 Lead (Pb)-Leachable 103.2 % 70-130 04-0CT-21 Lead (Pb)-Leachable 107.3 % 70-130 04-0CT-21 Manganese (Mn)-Leachable 107.3 % 70-130 04-0CT-21 Molybdenum (Mo)-Leachable 107.2 % 70-130 04-0CT-21 Nickel (Ni)-Leachable 101.2	Beryllium (Be)-Leachable		108.4		%		70-130	04-OCT-21
Cadmium (Cd)-Leachable 102.6 % 70-130 04-OCT-21 Calcium (Ca)-Leachable 103.6 % 70-130 04-OCT-21 Chromium (Cr)-Leachable 102.7 % 70-130 04-OCT-21 Cobalt (Co)-Leachable 102.5 % 70-130 04-OCT-21 Cobalt (Co)-Leachable 102.5 % 70-130 04-OCT-21 Copper (Cu)-Leachable 101.9 % 70-130 04-OCT-21 Iron (Fe)-Leachable 103.2 % 70-130 04-OCT-21 Lead (Pb)-Leachable 103.2 % 70-130 04-OCT-21 Lead (Pb)-Leachable 103.2 % 70-130 04-OCT-21 Lead (Pb)-Leachable 107.3 % 70-130 04-OCT-21 Manganese (Mn)-Leachable 107.3 % 70-130 04-OCT-21 Molybdenum (Mo)-Leachable 107.2 % 70-130 04-OCT-21 Nickel (Ni)-Leachable 107.2 % 70-130 04-OCT-21 Nickel (Ni)-Leachable 107.2 % 70-130 04-OCT-21 Phosphorus (P)-Leachable <t< td=""><td>Bismuth (Bi)-Leachable</td><td></td><td>97.0</td><td></td><td>%</td><td></td><td>70-130</td><td>04-OCT-21</td></t<>	Bismuth (Bi)-Leachable		97.0		%		70-130	04-OCT-21
Calcium (Ca)-Leachable103.6%70-13004-OCT-21Chromium (Cr)-Leachable102.7%70-13004-OCT-21Cobat (Co)-Leachable102.5%70-13004-OCT-21Copper (Cu)-Leachable101.9%70-13004-OCT-21Iron (Fe)-Leachable103.2%70-13004-OCT-21Lead (Pb)-Leachable103.2%70-13004-OCT-21Lithium (Li)-Leachable107.3%70-13004-OCT-21Manganese (Mn)-Leachable107.3%70-13004-OCT-21Molybdenum (Mo)-Leachable107.2%70-13004-OCT-21Nickel (Ni)-Leachable105.2%70-13004-OCT-21Phosphorus (P)-Leachable105.2%70-13004-OCT-21Selenium (Se)-Leachable109.3%70-13004-OCT-21Silver (Ag)-Leachable103.3%70-13004-OCT-21	Cadmium (Cd)-Leachable		102.6		%		70-130	04-OCT-21
Chromium (Cr)-Leachable 102.7 % 70-130 04-OCT-21 Cobalt (Co)-Leachable 102.5 % 70-130 04-OCT-21 Copper (Cu)-Leachable 101.9 % 70-130 04-OCT-21 Iron (Fe)-Leachable 103.2 % 70-130 04-OCT-21 Lead (Pb)-Leachable 103.2 % 70-130 04-OCT-21 Lead (Pb)-Leachable 98.9 % 70-130 04-OCT-21 Lithium (Li)-Leachable 107.3 % 70-130 04-OCT-21 Manganese (Mn)-Leachable 107.3 % 70-130 04-OCT-21 Molybdenum (Mo)-Leachable 107.3 % 70-130 04-OCT-21 Nickel (Ni)-Leachable 107.2 % 70-130 04-OCT-21 Nickel (Ni)-Leachable 107.2 % 70-130 04-OCT-21 Nickel (Ni)-Leachable 101.2 % 70-130 04-OCT-21 Phosphorus (P)-Leachable 105.2 % 70-130 04-OCT-21 Selenium (Se)-Leachable 109.3	Calcium (Ca)-Leachable		103.6		%		70-130	04-OCT-21
Cobalt (Co)-Leachable 102.5 % 70-130 04-OCT-21 Copper (Cu)-Leachable 101.9 % 70-130 04-OCT-21 Iron (Fe)-Leachable 103.2 % 70-130 04-OCT-21 Lead (Pb)-Leachable 98.9 % 70-130 04-OCT-21 Lead (Pb)-Leachable 98.9 % 70-130 04-OCT-21 Lithium (Li)-Leachable 107.3 % 70-130 04-OCT-21 Manganese (Mn)-Leachable 107.3 % 70-130 04-OCT-21 Molybdenum (Mo)-Leachable 107.2 % 70-130 04-OCT-21 Nickel (Ni)-Leachable 107.2 % 70-130 04-OCT-21 Nickel (Ni)-Leachable 107.2 % 70-130 04-OCT-21 Nickel (Ni)-Leachable 101.2 % 70-130 04-OCT-21 Phosphorus (P)-Leachable 105.2 % 70-130 04-OCT-21 Selenium (Se)-Leachable 109.3 % 70-130 04-OCT-21 Silver (Ag)-Leachable 103.3	Chromium (Cr)-Leachable		102.7		%		70-130	04-OCT-21
Copper (Cu)-Leachable101.9%70-13004-OCT-21Iron (Fe)-Leachable103.2%70-13004-OCT-21Lead (Pb)-Leachable98.9%70-13004-OCT-21Lithium (Li)-Leachable107.3%70-13004-OCT-21Manganese (Mn)-Leachable107.3%70-13004-OCT-21Molybdenum (Mo)-Leachable107.2%70-13004-OCT-21Nickel (Ni)-Leachable101.2%70-13004-OCT-21Phosphorus (P)-Leachable105.2%70-13004-OCT-21Selenium (Se)-Leachable109.3%70-13004-OCT-21Silver (Ag)-Leachable103.3%70-13004-OCT-21	Cobalt (Co)-Leachable		102.5		%		70-130	04-OCT-21
Iron (Fe)-Leachable103.2%70-13004-OCT-21Lead (Pb)-Leachable98.9%70-13004-OCT-21Lithium (Li)-Leachable107.3%70-13004-OCT-21Manganese (Mn)-Leachable107.3%70-13004-OCT-21Molybdenum (Mo)-Leachable107.2%70-13004-OCT-21Nickel (Ni)-Leachable107.2%70-13004-OCT-21Phosphorus (P)-Leachable105.2%70-13004-OCT-21Selenium (Se)-Leachable109.3%70-13004-OCT-21Silver (Ag)-Leachable103.3%70-13004-OCT-21	Copper (Cu)-Leachable		101.9		%		70-130	04-OCT-21
Lead (Pb)-Leachable 98.9 % 70-130 04-OCT-21 Lithium (Li)-Leachable 107.3 % 70-130 04-OCT-21 Manganese (Mn)-Leachable 107.3 % 70-130 04-OCT-21 Molybdenum (Mo)-Leachable 107.3 % 70-130 04-OCT-21 Nickel (Ni)-Leachable 107.2 % 70-130 04-OCT-21 Nickel (Ni)-Leachable 107.2 % 70-130 04-OCT-21 Nickel (Ni)-Leachable 101.2 % 70-130 04-OCT-21 Phosphorus (P)-Leachable 105.2 % 70-130 04-OCT-21 Selenium (Se)-Leachable 109.3 % 70-130 04-OCT-21 Silver (Ag)-Leachable 103.3 % 70-130 04-OCT-21	Iron (Fe)-Leachable		103.2		%		70-130	04-OCT-21
Lithium (Li)-Leachable 107.3 % 70-130 04-OCT-21 Manganese (Mn)-Leachable 107.3 % 70-130 04-OCT-21 Molybdenum (Mo)-Leachable 107.2 % 70-130 04-OCT-21 Nickel (Ni)-Leachable 107.2 % 70-130 04-OCT-21 Nickel (Ni)-Leachable 101.2 % 70-130 04-OCT-21 Phosphorus (P)-Leachable 105.2 % 70-130 04-OCT-21 Selenium (Se)-Leachable 109.3 % 70-130 04-OCT-21 Silver (Ag)-Leachable 103.3 % 70-130 04-OCT-21	Lead (Pb)-Leachable		98.9		%		70-130	04-OCT-21
Manganese (Mn)-Leachable 107.3 % 70-130 04-OCT-21 Molybdenum (Mo)-Leachable 107.2 % 70-130 04-OCT-21 Nickel (Ni)-Leachable 107.2 % 70-130 04-OCT-21 Nickel (Ni)-Leachable 101.2 % 70-130 04-OCT-21 Phosphorus (P)-Leachable 105.2 % 70-130 04-OCT-21 Selenium (Se)-Leachable 109.3 % 70-130 04-OCT-21 Silver (Ag)-Leachable 103.3 % 70-130 04-OCT-21	Lithium (Li)-Leachable		107.3		%		70-130	04-OCT-21
Maliganese (m) Education 101.0 101.0 101.00 04-0CT-21 Molybdenum (Mo)-Leachable 101.2 % 70-130 04-0CT-21 Nickel (Ni)-Leachable 101.2 % 70-130 04-0CT-21 Phosphorus (P)-Leachable 105.2 % 70-130 04-0CT-21 Selenium (Se)-Leachable 109.3 % 70-130 04-0CT-21 Silver (Ag)-Leachable 103.3 % 70-130 04-0CT-21	Manganese (Mn)-l eachable		107.3		%		70-130	04-OCT-21
Nickel (Ni)-Leachable 101.2 % 70-130 04-OCT-21 Phosphorus (P)-Leachable 105.2 % 70-130 04-OCT-21 Selenium (Se)-Leachable 109.3 % 70-130 04-OCT-21 Silver (Ag)-Leachable 103.3 % 70-130 04-OCT-21	Molybdenum (Mo)-l eachable		107.2		%		70-130	04-OCT-21
Phosphorus (P)-Leachable 105.2 % 70-130 04-OCT-21 Selenium (Se)-Leachable 109.3 % 70-130 04-OCT-21 Silver (Ag)-Leachable 103.3 % 70-130 04-OCT-21	Nickel (Ni)-l eachable		101.2		%		70-130	04 OCT 21
Selenium (Se)-Leachable 109.3 % 70-130 04-0CT-21 Silver (Ag)-Leachable 103.3 % 70-130 04-0CT-21	Phosphorus (P)-I eachable		105.2		%		70-130	04-OCT-21
Silver (Ag)-Leachable 103.3 % 70-130 04-0CT-21	Selenium (Se)-l eachable		109.3		%		70-130	04-0CT-21
100.0 /0 10-130 04-0C1-21	Silver (Ag)-l eachable		103.3		%		70 120	04 007 21
Strontium (Sr)-Leachable 105.2 % 70.400 04.007.34	Strontium (Sr)-l eachable		105.2		%		70 130	04-001-21
Thallium (TI)-l eachable 98.5 % 70.130 04-001-21	Thallium (TI)-l eachable		98 5		%		70 120	04-001-21

Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-TESS-CM-CCMS-VA Soil Batch R6607116 WG3227156-2 CS Tin (5n)-Leachable 106.0 % 70-130 04-OCT-21 Utrainium (Ti)-Leachable 106.0 % 70-130 04-OCT-21 Vanadum (V)-Leachable 106.0 % 70-130 04-OCT-21 Vanadum (V)-Leachable 106.0 % 70-130 04-OCT-21 Zine (Zn)-Leachable 106.0 % 70-130 04-OCT-21 Animorn (Sb)-Leachable -50 mg/kg 0.5 04-OCT-21 Animorn (Sb)-Leachable -40.00 mg/kg 0.5 04-OCT-21 Barium (Ba)-Leachable -2.0 mg/kg 0.5 04-OCT-21 Barium (Ba)-Leachable -40.20 mg/kg 0.5 04-OCT-21 Barium (Bd)-Leachable -40.20 mg/kg 0.5 04-OCT-21 Birout (B)-Leachable -40.20 mg/kg 0.5			Workorder	: L264128	37	Report Date: 2	5-OCT-21	Page 7 of 31		
But:RiseriaSolitieBut:RiseriaNote:Tin (ch)-Leachable100.0%70.1300.40CT:21Tin (ch)-Leachable100.0%70.1300.40CT:21Tin (ch)-Leachable08.4%70.1300.40CT:21Vanadum (v)-Leachable08.0%70.1300.40CT:21Tin (ch)-Leachable08.0%70.1300.40CT:21Vanadum (v)-Leachable0.60.0mg/sq0.100.40CT:21Aluminum (Al)-Leachable-40.00mg/sq0.100.40CT:21Aluminum (Al)-Leachable-20.0mg/sq0.100.40CT:21Ansenic (As)-Leachable-20.0mg/sq0.200.40CT:21Barlum (B)-Leachable-20.0mg/sq0.200.40CT:21Barlum (B)-Leachable-20.0mg/sq0.200.40CT:21Cadium (Ca)-Leachable-20.0mg/sq0.200.40CT:21Cadium (Ca)-Leachable-20.0mg/sq0.500.40CT:21Cadium (Ca)-Leachable-20.0mg/sq0.500.40CT:21Cadium (Ca)-Leachable-20.0mg/sq0.500.40CT:21Cadium (Ca)-Leachable-20.0mg/sq0.500.40CT:21Cadium (Ca)-Leachable-20.0mg/sq0.500.40CT:21Cadium (Ca)-Leachable-20.0mg/sq0.500.40CT:21Lead (Ab)-Leachable-20.0mg/sq0.500.40CT:21Lead (Ca)-Leachable-20.0mg/sq0.500.40CT:21<	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
R5607116 YG3627150-2 LCS YG-130 04-OCT-21 Tin (Sn)-Laachable 105.0 % 7-13.0 04-OCT-21 Tin Ison)-Laachable 99.4 % 7-13.0 04-OCT-21 Uranium (U)-Leachable 99.4 % 70-13.0 04-OCT-21 Vanadim (V)-Leachable 106.0 % 70-13.0 04-OCT-21 Zinc (Zn)-Leachable 104.0 % 70-13.0 04-OCT-21 Marimum (M)-Leachable <50	MET-TESS-CM-CCMS-V	A Soil								
Wo3827169-2 LCS Tin (sh)-Leachable 105.0 % 70-13.0 04-0CT-21 Uranium (U)-Leachable 99.4 % 70-13.0 04-0CT-21 Vanadum (V)-Leachable 99.4 % 70-13.0 04-0CT-21 Vanadum (V)-Leachable 106.0 % 70-13.0 04-0CT-21 Zinc (Zn)-Leachable 104.0 % 70-13.0 04-0CT-21 Matuminum (A)-Leachable <50	Batch R560711	6								
Instruction 105.00 % 70-130 04-0CT-21 Tinanium (U)-Leachable 99.4 % 70-130 04-0CT-21 Vanadium (V)-Leachable 106.0 % 70-130 04-0CT-21 Zinc (Zr)-Leachable 106.0 % 70-130 04-0CT-21 W03627150-1 MB % 70-130 04-0CT-21 Muminum (A)-Leachable <50	WG3627150-2 LCS	i		405.0		0/				
International (in)-Leachable 100.1 7e (7)-130 04-0CT-21 Vanatium (V)-Leachable 106.0 % 70-130 04-0CT-21 Zinc (Zn)-Leachable 104.0 % 70-130 04-0CT-21 WG3227150-1 MB Aluminum (N)-Leachable <50	Tin (Sn)-Leachable			105.0		%		70-130	04-001-21	
Unabulant (U)-Leachable 39-4 % 70-130 04-0C1-21 Vanadium (V)-Leachable 104.0 % 70-130 04-0CT-21 Zinc (Zn)-Leachable 104.0 % 70-130 04-0CT-21 WG3627150-1 MB 50 04-0CT-21 Atuminum (A)-Leachable <0.10	Litanium (11)-Leachad	ne Ie		100.1		%		70-130	04-OC1-21	
Variabilin (V)-Leachable 106.0 % 70-130 04-OCT-21 Zinc (Zn)-Leachable 106.0 % 70-130 04-OCT-21 WG3627150-1 MB 50 mg/kg 50 04-OCT-21 Ahminum (A)-Leachable <0.00	Uranium (U)-Leachab	le		99.4		%		70-130	04-OCT-21	
Linc (21)-Leachable 160 % 7(-130) 04-OCT-21 WG3627150-1 MB Muminum (Al)-Leachable <0.00 mg/kg 50 04-OCT-21 Antimony (Sb)-Leachable <0.050 mg/kg 0.050 0.4-OCT-21 Barium (Ba)-Leachable <0.050 mg/kg 0.2 04-OCT-21 Barium (Ba)-Leachable <0.20 mg/kg 0.2 04-OCT-21 Barium (Ba)-Leachable <0.20 mg/kg 0.2 04-OCT-21 Cadmium (Cd)-Leachable <0.20 mg/kg 0.2 04-OCT-21 Cadmium (Cd)-Leachable <0.050 mg/kg 0.2 04-OCT-21 Cadmium (Cd)-Leachable <0.050 mg/kg 0.5 04-OCT-21 Cadmium (Cd)-Leachable <0.050 mg/kg 5 04-OCT-21 Cobatt (Co)-Leachable <0.50 mg/kg 5 04-OCT-21 Cobatt (Co)-Leachable <0.50 mg/kg 5 04-OCT-21 Lead (Pb)-Leachable <0.50 mg/kg 5 04-OCT-21 Itron (Fe)-Leac		IDIE		106.0		%		70-130	04-OCT-21	
WGS27150-1 MB Aluminum (A)L-Laschable <50				104.0		%		70-130	04-OCT-21	
Antimuta (b)-Leachable -0.10 mg/kg 0.1 0.4-OCT-21 Arsenic (As)-Leachable <0.050	MG3627150-1 MB Aluminum (Al)-Leacha	able		<50		ma/ka		50	04-OCT-21	
Arsenic (As)-Leachable -0.050 mg/kg 0.05 0.4-OCT-21 Barium (Ba)-Leachable -2.0 mg/kg 0.2 0.4-OCT-21 Bismuth (Bi)-Leachable -0.20 mg/kg 0.2 0.4-OCT-21 Bismuth (Bi)-Leachable -0.20 mg/kg 0.2 0.4-OCT-21 Cadmium (Cd)-Leachable -0.050 mg/kg 0.05 0.4-OCT-21 Cadmium (Cd)-Leachable -5.0 mg/kg 50 0.4-OCT-21 Cobalt (Co)-Leachable -5.0 mg/kg 50 0.4-OCT-21 Cobalt (Co)-Leachable -5.0 mg/kg 50 0.4-OCT-21 Cobalt (Co)-Leachable -0.50 mg/kg 0.5 0.4-OCT-21 Copper (Cu)-Leachable -0.50 mg/kg 0.5 0.4-OCT-21 Lead (Pb)-Leachable -0.50 mg/kg 0.5 0.4-OCT-21 Lead (Pb)-Leachable -0.50 mg/kg 0.5 0.4-OCT-21 Manganese (Mn)-Leachable -5.0 mg/kg 0.5 0.4-OCT-21 Molybdenum (Mo)-Leachable -5.0 mg/kg 0.5 0.4-OCT-21 Nickel (Ni	Antimony (Sb)-Leacha	able		<0.10		ma/ka		0.1	04-OCT-21	
Barium (Ba)-Leachable color color <thcolor< th=""> color color<!--</td--><td>Arsenic (As)-Leachab</td><td>le</td><td></td><td><0.050</td><td></td><td>ma/ka</td><td></td><td>0.05</td><td>04-OCT-21</td></thcolor<>	Arsenic (As)-Leachab	le		<0.050		ma/ka		0.05	04-OCT-21	
Lat. Lat. Marging L OrtOCT_21 Beryllium (Be)-Leachable <0.20	Barium (Ba)-Leachabl	le		<2.0		ma/ka		2	04-OCT-21	
Bismuth (B)-Leachable cl.2 mg/kg 0.2 0.4-OCT.21 Cadmium (Cd)-Leachable <0.050	Bervllium (Be)-Leacha	able		<0.20		ma/ka		-0.2	04-0CT-21	
Cadmin (Cd)-Leachable c0.050 mg/kg 0.05 04-0CT-21 Calcium (Ca)-Leachable <50	Bismuth (Bi)-Leachab	le		<0.20		ma/ka		0.2	04-OCT-21	
Calcium (Ca)-Leachable 50 mg/kg 50 0.4-0CT-21 Chromium (Cr)-Leachable <5.0	Cadmium (Cd)-Leach	able		<0.050		ma/ka		0.05	04-OCT-21	
Chromium (Cr)-Leachable </td <td>Calcium (Ca)-Leachal</td> <td>ble</td> <td></td> <td><50</td> <td></td> <td>mg/kg</td> <td></td> <td>50</td> <td>04-OCT-21</td>	Calcium (Ca)-Leachal	ble		<50		mg/kg		50	04-OCT-21	
Cobalt (Co)-Leachable <0.10 mg/kg 0.1 04-OCT-21 Copper (Cu)-Leachable <0.50	Chromium (Cr)-Leach	able		<5.0		mg/kg		5	04-OCT-21	
Copper (Cu)-Leachable <0.50 mg/kg 0.5 04-OCT-21 Iron (Fe)-Leachable <50	Cobalt (Co)-Leachable	e		<0.10		mg/kg		0.1	04-OCT-21	
Iron (Fe)-Leachable <50 mg/kg 50 04-OCT-21 Lead (Pb)-Leachable <0.50	Copper (Cu)-Leachab	le		<0.50		mg/kg		0.5	04-OCT-21	
Lead (Pb)-Leachable <0.50 mg/kg 0.5 04-OCT-21 Lithium (Li)-Leachable <5.0	Iron (Fe)-Leachable			<50		mg/kg		50	04-OCT-21	
Lithium (Li)-Leachable <5.0	Lead (Pb)-Leachable			<0.50		mg/kg		0.5	04-OCT-21	
Manganese (Mh)-Leachable <5.0 mg/kg 5 04-OCT-21 Molybdenum (Mo)-Leachable <0.50	Lithium (Li)-Leachable	9		<5.0		mg/kg		5	04-OCT-21	
Molybdenum (Mo)-Leachable <0.50 mg/kg 0.5 04-OCT-21 Nickel (Ni)-Leachable <2.0	Manganese (Mn)-Lea	chable		<5.0		mg/kg		5	04-OCT-21	
Nickel (Ni)-Leachable <2.0 mg/kg 2 04-OCT-21 Phosphorus (P)-Leachable <50	Molybdenum (Mo)-Lea	achable		<0.50		mg/kg		0.5	04-OCT-21	
Phosphorus (P)-Leachable <50 04-OCT-21 Selenium (Se)-Leachable <0.20	Nickel (Ni)-Leachable			<2.0		mg/kg		2	04-OCT-21	
Selenium (Se)-Leachable <0.20	Phosphorus (P)-Leach	nable		<50		mg/kg		50	04-OCT-21	
Silver (Ag)-Leachable <0.10	Selenium (Se)-Leacha	able		<0.20		mg/kg		0.2	04-OCT-21	
Strontium (Sr)-Leachable <5.0	Silver (Ag)-Leachable			<0.10		mg/kg		0.1	04-OCT-21	
Thallium (Tl)-Leachable <0.050 mg/kg 0.05 04-OCT-21 Tin (Sn)-Leachable <2.0	Strontium (Sr)-Leacha	able		<5.0		mg/kg		5	04-OCT-21	
Tin (Sn)-Leachable <2.0 mg/kg 2 04-OCT-21 Titanium (Ti)-Leachable <5.0	Thallium (TI)-Leachab	le		<0.050		mg/kg		0.05	04-OCT-21	
Titanium (Ti)-Leachable <5.0 mg/kg 5 04-OCT-21 Uranium (U)-Leachable <0.050	Tin (Sn)-Leachable			<2.0		mg/kg		2	04-OCT-21	
Uranium (U)-Leachable <0.050 mg/kg 0.05 04-OCT-21 Vanadium (V)-Leachable <0.20	Titanium (Ti)-Leachab	ble		<5.0		mg/kg		5	04-OCT-21	
Vanadium (V)-Leachable <0.20 mg/kg 0.2 04-OCT-21 Zinc (Zn)-Leachable <1.0	Uranium (U)-Leachab	le		<0.050		mg/kg		0.05	04-OCT-21	
Zinc (Zn)-Leachable<1.0mg/kg104-OCT-21	Vanadium (V)-Leacha	ble		<0.20		mg/kg		0.2	04-OCT-21	
	Zinc (Zn)-Leachable			<1.0		mg/kg		1	04-OCT-21	

MET-TESS-EA-CCMS-VA Soil

	Workorder:	L264128	87 Re	eport Date: 2	25-OCT-21	21 Page 8 of 3			
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
MET-TESS-EA-CCMS-VA Soil									
Batch R5607116									
WG3627150-3 DUP	L2641287-2	50							
	<50	<50	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Antimony (Sb)-Leachable	<0.10	<0.10	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Arsenic (As)-Leachable	0.072	0.067		mg/ĸg	7.1	30	04-OCT-21		
Barium (Ba)-Leachable	29.2	28.9		mg/kg	1.3	30	04-OCT-21		
Beryllium (Be)-Leachable	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Bismuth (Bi)-Leachable	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Cadmium (Cd)-Leachable	<0.050	<0.050	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Calcium (Ca)-Leachable	4030	3820		mg/kg	5.2	30	04-OCT-21		
Chromium (Cr)-Leachable	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Cobalt (Co)-Leachable	0.24	0.23		mg/kg	5.0	30	04-OCT-21		
Copper (Cu)-Leachable	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Iron (Fe)-Leachable	<50	<50	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Lead (Pb)-Leachable	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Lithium (Li)-Leachable	<5.0	<5.0	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Manganese (Mn)-Leachable	99.3	98.0		mg/kg	1.3	30	04-OCT-21		
Molybdenum (Mo)-Leachable	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Nickel (Ni)-Leachable	1.09	1.08		mg/kg	0.9	30	04-OCT-21		
Phosphorus (P)-Leachable	<50	<50	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Potassium (K)-Leachable	<100	<100	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Selenium (Se)-Leachable	0.28	0.21		mg/kg	27	30	04-OCT-21		
Silver (Ag)-Leachable	<0.10	<0.10	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Sodium (Na)-Leachable	<100	<100	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Strontium (Sr)-Leachable	7.55	7.34		mg/kg	2.9	30	04-OCT-21		
Thallium (TI)-Leachable	<0.050	<0.050	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Tin (Sn)-Leachable	<2.0	<2.0	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Titanium (Ti)-Leachable	<1.0	<1.0	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Uranium (U)-Leachable	<0.050	<0.050	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Vanadium (V)-Leachable	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	04-OCT-21		
Zinc (Zn)-Leachable	<1.0	<1.0	RPD-NA	mg/kg	N/A	30	04-OCT-21		
WG3627150-2 LCS		405.4		~ ~					
Aluminum (Al)-Leachable		105.1		%		70-130	04-OCT-21		
Antimony (Sb)-Leachable		105.6		%		70-130	04-OCT-21		
Arsenic (As)-Leachable		96.4		%		70-130	04-OCT-21		
Barium (Ba)-Leachable		100.2		%		70-130	04-OCT-21		

		Workorder	: L264128	37	Report Date: 2	25-OCT-21	Pa	age 9 of 31	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TESS-EA-CCMS-	VA Soil								
Batch R5607	116								
WG3627150-2 LC	CS		400.0		24				
Beryllium (Be)-Lead	chable		106.9		%		70-130	04-OCT-21	
Bismuth (Bi)-Leach	able		95.3		%		70-130	04-OCT-21	
Cadmium (Cd)-Lea	chable		94.9		%		70-130	04-OCT-21	
	nable		101.6		%		70-130	04-OCT-21	
Chromium (Cr)-Lea	chable		96.7		%		70-130	04-OCT-21	
Cobalt (Co)-Leacha	ible		93.8		%		70-130	04-OCT-21	
Copper (Cu)-Leach	able		93.0		%		70-130	04-OCT-21	
Iron (Fe)-Leachable	9		96.1		%		70-130	04-OCT-21	
Lead (Pb)-Leachab	le		96.5		%		70-130	04-OCT-21	
Lithium (Li)-Leacha	ble		107.5		%		70-130	04-OCT-21	
Manganese (Mn)-Lo	eachable		97.4		%		70-130	04-OCT-21	
Molybdenum (Mo)-I	_eachable		103.4		%		70-130	04-OCT-21	
Nickel (Ni)-Leachat	ble		93.5		%		70-130	04-OCT-21	
Phosphorus (P)-Lea	achable		97.6		%		70-130	04-OCT-21	
Potassium (K)-Lead	chable		98.6		%		70-130	04-OCT-21	
Selenium (Se)-Lead	chable		100.4		%		70-130	04-OCT-21	
Silver (Ag)-Leachat	ble		102.4		%		70-130	04-OCT-21	
Sodium (Na)-Leach	able		99.1		%		70-130	04-OCT-21	
Strontium (Sr)-Lead	hable		103.2		%		70-130	04-OCT-21	
Thallium (TI)-Leach	able		97.3		%		70-130	04-OCT-21	
Tin (Sn)-Leachable			100.3		%		70-130	04-OCT-21	
Titanium (Ti)-Leach	able		92.8		%		70-130	04-OCT-21	
Uranium (U)-Leach	able		95.5		%		70-130	04-OCT-21	
Vanadium (V)-Leac	hable		98.9		%		70-130	04-OCT-21	
Zinc (Zn)-Leachable	Э		94.1		%		70-130	04-OCT-21	
WG3627150-1 M	В								
Aluminum (Al)-Lead	chable		<50		mg/kg		50	04-OCT-21	
Antimony (Sb)-Lead	chable		<0.10		mg/kg		0.1	04-OCT-21	
Arsenic (As)-Leach	able		<0.050		mg/kg		0.05	04-OCT-21	
Barium (Ba)-Leacha	able		<0.50		mg/kg		0.5	04-OCT-21	
Beryllium (Be)-Lead	hable		<0.20		mg/kg		0.2	04-OCT-21	
Bismuth (Bi)-Leach	able		<0.20		mg/kg		0.2	04-OCT-21	
Cadmium (Cd)-Lea	chable		<0.050		mg/kg		0.05	04-OCT-21	
Calcium (Ca)-Leach	nable		<50		mg/kg		50	04-OCT-21	

		Workorder:	L264128	37	Report Date: 2	5-OCT-21	Р	age 10 of 31
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TESS-EA-CCMS-VA	Soil							
Batch R5607116								
WG3627150-1 MB								
Chromium (Cr)-Leachable	e		<0.50		mg/kg		0.5	04-OCT-21
Cobalt (Co)-Leachable			<0.10		mg/kg		0.1	04-OCT-21
Copper (Cu)-Leachable			<0.50		mg/kg		0.5	04-OCT-21
Iron (Fe)-Leachable			<50		mg/kg		50	04-OCT-21
Lead (Pb)-Leachable			<0.50		mg/kg		0.5	04-OCT-21
Lithium (Li)-Leachable			<5.0		mg/kg		5	04-OCT-21
Manganese (Mn)-Leacha	ble		<1.0		mg/kg		1	04-OCT-21
Molybdenum (Mo)-Leach	able		<0.50		mg/kg		0.5	04-OCT-21
Nickel (Ni)-Leachable			<0.50		mg/kg		0.5	04-OCT-21
Phosphorus (P)-Leachab	le		<50		mg/kg		50	04-OCT-21
Potassium (K)-Leachable	1		<100		mg/kg		100	04-OCT-21
Selenium (Se)-Leachable	•		<0.20		mg/kg		0.2	04-OCT-21
Silver (Ag)-Leachable			<0.10		mg/kg		0.1	04-OCT-21
Sodium (Na)-Leachable			<100		mg/kg		100	04-OCT-21
Strontium (Sr)-Leachable			<0.50		mg/kg		0.5	04-OCT-21
Thallium (TI)-Leachable			<0.050		mg/kg		0.05	04-OCT-21
Tin (Sn)-Leachable			<2.0		mg/kg		2	04-OCT-21
Titanium (Ti)-Leachable			<1.0		mg/kg		1	04-OCT-21
Uranium (U)-Leachable			<0.050		mg/kg		0.05	04-OCT-21
Vanadium (V)-Leachable			<0.20		mg/kg		0.2	04-OCT-21
Zinc (Zn)-Leachable			<1.0		mg/kg		1	04-OCT-21
MET-TESS-FEO-CCMS-VA	Soil							
Batch R5607116								
WG3627150-3 DUP		L2641287-2						
Aluminum (Al)-Leachable	1	278	285		mg/kg	2.6	30	04-OCT-21
Antimony (Sb)-Leachable	1	<0.10	<0.10	RPD-N	NA mg/kg	N/A	30	04-OCT-21
Arsenic (As)-Leachable		0.521	0.554		mg/kg	6.3	30	04-OCT-21
Barium (Ba)-Leachable		29.5	28.8		mg/kg	2.5	30	04-OCT-21
Beryllium (Be)-Leachable		<0.20	<0.20	RPD-N	NA mg/kg	N/A	30	04-OCT-21
Bismuth (Bi)-Leachable		<0.20	<0.20	RPD-N	NA mg/kg	N/A	30	04-OCT-21
Cadmium (Cd)-Leachable	e	3.56	3.50		mg/kg	1.7	30	04-OCT-21
Calcium (Ca)-Leachable		42100	39100		mg/kg	7.3	30	04-OCT-21
Chromium (Cr)-Leachable	е	1.04	1.00		mg/kg	3.9	30	04-OCT-21
Cobalt (Co)-Leachable		1.22	1.16		mg/kg	5.3	30	04-OCT-21

	Workorder	: L264128	57 Re	eport Date: 2	25-OCT-21	-21 Page 11 of 3		
Test Mat	trix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TESS-FEO-CCMS-VA So	il							
Batch R5607116								
WG3627150-3 DUP Copper (Cu)-Leachable	L2641287-2 <0.50	<0.50	RPD-NA	mg/kg	N/A	30	04-OCT-21	
Iron (Fe)-Leachable	2830	2900		mg/kg	2.4	30	04-OCT-21	
Lead (Pb)-Leachable	3.08	2.97		mg/kg	3.8	30	04-OCT-21	
Lithium (Li)-Leachable	<5.0	<5.0	RPD-NA	mg/kg	N/A	30	04-OCT-21	
Manganese (Mn)-Leachable	207	208		mg/kg	0.0	30	04-OCT-21	
Molybdenum (Mo)-Leachable	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	04-OCT-21	
Nickel (Ni)-Leachable	11.2	11.2		mg/kg	0.2	30	04-OCT-21	
Phosphorus (P)-Leachable	93	100		mg/kg	7.7	30	04-OCT-21	
Selenium (Se)-Leachable	1.33	1.35		mg/kg	1.7	30	04-OCT-21	
Silver (Ag)-Leachable	<0.10	<0.10	RPD-NA	mg/kg	N/A	30	04-OCT-21	
Strontium (Sr)-Leachable	27.3	25.7		mg/kg	5.8	30	04-OCT-21	
Thallium (TI)-Leachable	<0.050	<0.050	RPD-NA	mg/kg	N/A	30	04-OCT-21	
Tin (Sn)-Leachable	<2.0	<2.0	RPD-NA	mg/kg	N/A	30	04-OCT-21	
Titanium (Ti)-Leachable	<1.0	<1.0	RPD-NA	mg/kg	N/A	30	04-OCT-21	
Uranium (U)-Leachable	0.288	0.285		mg/kg	1.0	30	04-OCT-21	
Vanadium (V)-Leachable	2.90	2.90		mg/kg	0.1	30	04-OCT-21	
Zinc (Zn)-Leachable	107	106		mg/kg	0.2	30	04-OCT-21	
WG3627150-2 LCS								
Aluminum (Al)-Leachable		104.0		%		70-130	04-OCT-21	
Antimony (Sb)-Leachable		102.5		%		70-130	04-OCT-21	
Arsenic (As)-Leachable		103.8		%		70-130	04-OCT-21	
Barium (Ba)-Leachable		100.9		%		70-130	04-OCT-21	
Beryllium (Be)-Leachable		101.4		%		70-130	04-OCT-21	
Bismuth (Bi)-Leachable		99.7		%		70-130	04-OCT-21	
Cadmium (Cd)-Leachable		97.3		%		70-130	04-OCT-21	
Calcium (Ca)-Leachable		100.6		%		70-130	04-OCT-21	
Chromium (Cr)-Leachable		99.0		%		70-130	04-OCT-21	
Cobalt (Co)-Leachable		101.2		%		70-130	04-OCT-21	
Copper (Cu)-Leachable		99.1		%		70-130	04-OCT-21	
Iron (Fe)-Leachable		99.98		%		70-130	04-OCT-21	
Lead (Pb)-Leachable		98.7		%		70-130	04-OCT-21	
Lithium (Li)-Leachable		102.0		%		70-130	04-OCT-21	
Manganese (Mn)-Leachable		100.5		%		70-130	04-OCT-21	
Molybdenum (Mo)-Leachable	1	99.6		%		70-130	04-OCT-21	

		Workorder	: L264128	37	Report Date: 2	5-OCT-21	Pa	Page 12 of 31	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TESS-FEO-CCMS-	VA Soil								
Batch R56071	16								
WG3627150-2 LC	S								
Nickel (Ni)-Leachable	e 		100.3		%		70-130	04-OCT-21	
Phosphorus (P)-Lead	chable		98.1		%		70-130	04-OCT-21	
Selenium (Se)-Leach	nable		111.9		%		70-130	04-OCT-21	
Silver (Ag)-Leachable	e		100.6		%		70-130	04-OCT-21	
Strontium (Sr)-Leach	able		99.3		%		70-130	04-OCT-21	
Thallium (TI)-Leacha	ble		99.5		%		70-130	04-OCT-21	
Tin (Sn)-Leachable			98.5		%		70-130	04-OCT-21	
Titanium (Ti)-Leacha	ble		95.9		%		70-130	04-OCT-21	
Uranium (U)-Leachal	ble		96.5		%		70-130	04-OCT-21	
Vanadium (V)-Leach	able		99.2		%		70-130	04-OCT-21	
Zinc (Zn)-Leachable			101.6		%		70-130	04-OCT-21	
WG3627150-1 MB Aluminum (Al)-Leach	hable		<50		mg/kg		50	04-OCT-21	
Antimony (Sb)-Leach	nable		<0.10		mg/kg		0.1	04-OCT-21	
Arsenic (As)-Leachal	ble		<0.050		ma/ka		0.05	04-OCT-21	
Barium (Ba)-Leachat	ole		< 0.50		ma/ka		0.5	04-OCT-21	
Bervllium (Be)-Leach	able		<0.20		ma/ka		0.2	04-OCT-21	
Bismuth (Bi)-Leachal	ble		<0.20		ma/ka		0.2	04-OCT-21	
Cadmium (Cd)-Leach	hable		<0.050		ma/ka		0.05	04-OCT-21	
Calcium (Ca)-Leacha	able		<50		ma/ka		50	04-OCT-21	
Chromium (Cr)-Leac	hable		< 0.50		ma/ka		0.5	04-OCT-21	
Cobalt (Co)-l eachab	le		<0.10		mg/kg		0.0	04-OCT-21	
Copper (Cu)-Leachal	ble		<0.50		ma/ka		0.5	04-OCT-21	
Iron (Fe)-I eachable	210		<50		mg/kg		50	04-OCT-21	
Lead (Ph)-Leachable	2		<0.50		ma/ka		0.5	04-0CT-21	
Lithium (Li)-Leachabl	le		<5.0		ma/ka		5	04-0CT-21	
Manganese (Mn)-Lea	achable		<1.0		ma/ka		1	04-OCT-21	
Molybdenum (Mo)-Le	eachable		<0.50		mg/kg		0.5	04 OCT 21	
Nickel (Ni)-I eachable			<0.50		mg/kg		0.5	04 OCT 21	
Phosphorus (P)-Lead	chable		<50		mg/kg		0.5 50	04-OCT-21	
Selenium (Sa)-Leach	hable		<0.20		mg/kg		0.2	04-001-21	
Silver (Ag)-Leachable	2		<0.20		mg/kg		0.2	04-001-21	
Strontium (Sr)-Leachable	ahla		<0.10		mg/kg		U.1	04-001-21	
			<0.050		mg/kg		0.5	04-001-21	
Thailium (TI)-Leacha	bie		<0.050		mg/kg		0.05	04-OCT-21	

		Workorder	: L264128	7 Re	Report Date: 25-OCT-21			Page 13 of 31		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
MET-TESS-FEO-CCMS-	VA Soil									
Batch R56071	16									
WG3627150-1 MB										
Tin (Sn)-Leachable			<2.0		mg/kg		2	04-OCT-21		
Titanium (Ti)-Leacha	ble		<1.0		mg/kg		1	04-OCT-21		
Uranium (U)-Leachal	ble		<0.050		mg/kg		0.05	04-OCT-21		
Vanadium (V)-Leach	able		<0.20		mg/kg		0.2	04-OCT-21		
Zinc (Zn)-Leachable			<1.0		mg/kg		1	04-OCT-21		
MET-TESS-OB-CCMS-V	A Soil									
Batch R56140	45									
WG3627150-3 DU	Р.,	L2641287-2								
Aluminum (Al)-Leach	able	856	922		mg/kg	7.5	30	07-OCT-21		
Antimony (Sb)-Leach	able	<0.10	<0.10	RPD-NA	mg/kg	N/A	30	07-OCT-21		
Arsenic (As)-Leachal	ble	0.513	0.565		mg/kg	9.6	30	07-OCT-21		
Barium (Ba)-Leachat	ble	9.45	9.41		mg/kg	0.4	30	07-OCT-21		
Beryllium (Be)-Leach	able	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	07-OCT-21		
Bismuth (Bi)-Leachal	ble	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	07-OCT-21		
Cadmium (Cd)-Leach	hable	0.245	0.259		mg/kg	5.4	30	07-OCT-21		
Calcium (Ca)-Leacha	able	2000	1990		mg/kg	0.5	30	07-OCT-21		
Chromium (Cr)-Leac	hable	2.92	3.04		mg/kg	4.2	30	07-OCT-21		
Cobalt (Co)-Leachab	le	0.98	1.06		mg/kg	7.9	30	07-OCT-21		
Copper (Cu)-Leachal	ble	5.70	5.71		mg/kg	0.2	30	07-OCT-21		
Iron (Fe)-Leachable		1950	2060		mg/kg	5.5	30	07-OCT-21		
Lead (Pb)-Leachable	•	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	07-OCT-21		
Lithium (Li)-Leachabl	le	<5.0	<5.0	RPD-NA	mg/kg	N/A	30	07-OCT-21		
Manganese (Mn)-Lea	achable	10.8	11.1		mg/kg	2.7	30	07-OCT-21		
Molybdenum (Mo)-Le	eachable	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	07-OCT-21		
Nickel (Ni)-Leachable	Э	8.20	8.50		mg/kg	3.6	30	07-OCT-21		
Selenium (Se)-Leach	nable	4.74	5.25		mg/kg	10	30	07-OCT-21		
Silver (Ag)-Leachable	е	<0.10	<0.10	RPD-NA	mg/kg	N/A	30	07-OCT-21		
Strontium (Sr)-Leach	able	4.16	4.39		mg/kg	5.5	30	07-OCT-21		
Thallium (Tl)-Leacha	ble	<0.050	<0.050	RPD-NA	mg/kg	N/A	30	07-OCT-21		
Tin (Sn)-Leachable		<2.0	<2.0	RPD-NA	mg/kg	N/A	30	07-OCT-21		
Titanium (Ti)-Leacha	ble	13.3	14.2		mg/kg	6.8	30	07-OCT-21		
Uranium (U)-Leachal	ble	0.211	0.221		mg/kg	4.6	30	07-OCT-21		
Vanadium (V)-Leach	able	3.23	3.37		mg/kg	4.3	30	07-OCT-21		
Zinc (Zn)-Leachable		11.7	11.9		mg/kg	2.2	30	07-OCT-21		

		Workorder	: L264128	37	Report Date: 2	25-OCT-21	Pa	Page 14 of 31	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TESS-OB-CCMS	-VA Soil								
Batch R5614	045								
WG3627150-2 L	cs								
Aluminum (Al)-Lead			98.9		%		70-130	07-OCT-21	
Antimony (Sb)-Lead	chable		99.9		%		70-130	07-OCT-21	
Arsenic (As)-Leach	able		100.5		%		70-130	07-OCT-21	
Barium (Ba)-Leach	able		94.2		%		70-130	07-OCT-21	
Beryllium (Be)-Lead	chable		97.2		%		70-130	07-OCT-21	
Bismuth (Bi)-Leach	able		96.5		%		70-130	07-OCT-21	
Cadmium (Cd)-Lea	chable		99.95		%		70-130	07-OCT-21	
Calcium (Ca)-Leacl	hable		95.9		%		70-130	07-OCT-21	
Chromium (Cr)-Lea	achable		98.0		%		70-130	07-OCT-21	
Cobalt (Co)-Leacha	able		99.0		%		70-130	07-OCT-21	
Copper (Cu)-Leach	able		99.0		%		70-130	07-OCT-21	
Iron (Fe)-Leachable	e		97.6		%		70-130	07-OCT-21	
Lead (Pb)-Leachab	le		96.1		%		70-130	07-OCT-21	
Lithium (Li)-Leacha	ble		98.3		%		70-130	07-OCT-21	
Manganese (Mn)-L	eachable		99.6		%		70-130	07-OCT-21	
Molybdenum (Mo)-I	Leachable		96.1		%		70-130	07-OCT-21	
Nickel (Ni)-Leachat	ble		97.6		%		70-130	07-OCT-21	
Selenium (Se)-Lead	chable		102.9		%		70-130	07-OCT-21	
Silver (Ag)-Leachat	ole		98.2		%		70-130	07-OCT-21	
Strontium (Sr)-Lead	chable		99.1		%		70-130	07-OCT-21	
Thallium (TI)-Leach	nable		95.2		%		70-130	07-OCT-21	
Tin (Sn)-Leachable	1		96.9		%		70-130	07-OCT-21	
Titanium (Ti)-Leach	nable		89.0		%		70-130	07-OCT-21	
Uranium (U)-Leach	able		93.5		%		70-130	07-OCT-21	
Vanadium (V)-Lead	chable		97.9		%		70-130	07-OCT-21	
Zinc (Zn)-Leachable	e		105.5		%		70-130	07-OCT-21	
WG3627150-1 M	В								
Aluminum (Al)-Lead	chable		<50		mg/kg		50	07-OCT-21	
Antimony (Sb)-Lead	chable		<0.10		mg/kg		0.1	07-OCT-21	
Arsenic (As)-Leach	able		<0.050		mg/kg		0.05	07-OCT-21	
Barium (Ba)-Leacha	able		<0.50		mg/kg		0.5	07-OCT-21	
Beryllium (Be)-Lead	chable		<0.20		mg/kg		0.2	07-OCT-21	
Bismuth (Bi)-Leach	able		<0.20		mg/kg		0.2	07-OCT-21	
Cadmium (Cd)-Lea	chable		<0.050		mg/kg		0.05	07-OCT-21	

		Workorder:	L264128	37	Report Date: 2	5-OCT-21	Page 15 of 31		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TESS-OB-CCMS-VA	Soil								
Batch R5614045									
WG3627150-1 MB					_				
Calcium (Ca)-Leachable			<50		mg/kg		50	07-OCT-21	
Chromium (Cr)-Leachable	9		<0.50		mg/kg		0.5	07-OCT-21	
Cobalt (Co)-Leachable			<0.10		mg/kg		0.1	07-OCT-21	
Copper (Cu)-Leachable			<0.50		mg/kg		0.5	07-OCT-21	
Iron (Fe)-Leachable			<50		mg/kg		50	07-OCT-21	
Lead (Pb)-Leachable			<0.50		mg/kg		0.5	07-OCT-21	
Lithium (Li)-Leachable			<5.0		mg/kg		5	07-OCT-21	
Manganese (Mn)-Leachal	ble		<1.0		mg/kg		1	07-OCT-21	
Molybdenum (Mo)-Leacha	able		<0.50		mg/kg		0.5	07-OCT-21	
Nickel (Ni)-Leachable			<0.50		mg/kg		0.5	07-OCT-21	
Selenium (Se)-Leachable			<0.20		mg/kg		0.2	07-OCT-21	
Silver (Ag)-Leachable			<0.10		mg/kg		0.1	07-OCT-21	
Strontium (Sr)-Leachable			<0.50		mg/kg		0.5	07-OCT-21	
Thallium (TI)-Leachable			<0.050		mg/kg		0.05	07-OCT-21	
Tin (Sn)-Leachable			<2.0		mg/kg		2	07-OCT-21	
Titanium (Ti)-Leachable			<1.0		mg/kg		1	07-OCT-21	
Uranium (U)-Leachable			<0.050		mg/kg		0.05	07-OCT-21	
Vanadium (V)-Leachable			<0.20		mg/kg		0.2	07-OCT-21	
Zinc (Zn)-Leachable			<1.0		mg/kg		1	07-OCT-21	
MET-TESS-RM-CCMS-VA	Soil								
Batch R5614010									
WG3627150-3 DUP Aluminum (Al)-Leachable		L2641287-2 5560	5360		mg/kg	3.7	30	08-OCT-21	
Antimony (Sb)-Leachable		0.42	0.40		mg/kg	5.4	30	08-OCT-21	
Arsenic (As)-Leachable		2.92	2.73		mg/kg	6.8	30	08-OCT-21	
Barium (Ba)-Leachable		96.9	95.4		mg/kg	1.5	30	08-OCT-21	
Beryllium (Be)-Leachable		0.24	0.23		mg/kg	2.8	30	08-OCT-21	
Bismuth (Bi)-Leachable		<0.20	<0.20	RPD-N	NA mg/kg	N/A	30	08-OCT-21	
Cadmium (Cd)-Leachable	;	0.067	0.052		mg/kg	25	30	08-OCT-21	
Calcium (Ca)-Leachable		1040	792		mg/kg	27	30	08-OCT-21	
Chromium (Cr)-Leachable	e	9.0	8.8		mg/kg	1.7	30	08-OCT-21	
Cobalt (Co)-Leachable		1.46	1.50		mg/kg	2.5	30	08-OCT-21	
Copper (Cu)-Leachable		6.48	6.54		mg/kg	0.8	30	08-OCT-21	
Iron (Fe)-Leachable		6560	6460		mg/kg	1.6	30	08-OCT-21	

TestMatrixReferenceResultQualifierUnitsRPDLimitAnalyzedMET-TESS-RM-CCMS-VASoilBatchR5614010WG3627150-3DUPL2641287-2Lead (Pb)-Leachable3.263.15mg/kg3.33008-OCT-24Lithium (Li)-Leachable6.96.6mg/kg3.73008-OCT-24	31
MET-TESS-RM-CCMS-VA Soil Batch R5614010 WG3627150-3 DUP Lead (Pb)-Leachable 3.26 Lithium (Li)-Leachable 6.9 6.6 mg/kg 3.7 30 08-OCT-2*	
Batch R5614010 WG3627150-3 DUP L2641287-2 Lead (Pb)-Leachable 3.26 3.15 mg/kg 3.3 30 08-OCT-2* Lithium (Li)-Leachable 6.9 6.6 mg/kg 3.7 30 08-OCT-2*	
WG3627150-3 DUP L2641287-2 Lead (Pb)-Leachable 3.26 3.15 mg/kg 3.3 30 08-OCT-2* Lithium (Li)-Leachable 6.9 6.6 mg/kg 3.7 30 08-OCT-2*	
Lead (Pb)-Leachable 3.26 3.15 mg/kg 3.3 30 08-OCT-2 Lithium (Li)-Leachable 6.9 6.6 mg/kg 3.7 30 08-OCT-2	
Litnium (Li)-Leachable 6.9 6.6 mg/kg 3.7 30 08-OCT-2	i
	i
Manganese (Mn)-Leachable 31.0 30.2 mg/kg 2.5 30 08-OCT-2	i
Molybdenum (Mo)-Leachable 0.83 0.76 mg/kg 9.1 30 08-OCT-2	i
Nickel (Ni)-Leachable 6.9 6.7 mg/kg 2.3 30 08-OCT-2	i
Selenium (Se)-Leachable 0.66 0.64 mg/kg 2.4 30 08-OCT-2	i –
Silver (Ag)-Leachable 0.10 0.11 mg/kg 7.1 30 08-OCT-2	Í
Strontium (Sr)-Leachable 17.8 16.6 mg/kg 7.2 30 08-OCT-2	1
Thallium (TI)-Leachable 0.153 0.146 mg/kg 4.4 30 08-OCT-2	1
Tin (Sn)-Leachable <2.0 <2.0 RPD-NA mg/kg N/A 30 08-OCT-2	1
Titanium (Ti)-Leachable 23.7 23.5 mg/kg 0.8 30 08-OCT-22	1
Uranium (U)-Leachable 0.349 0.313 mg/kg 11 30 08-OCT-2	I
Vanadium (V)-Leachable 17.7 17.2 mg/kg 2.5 30 08-OCT-2	l
Zinc (Zn)-Leachable 38.6 37.6 mg/kg 2.7 30 08-OCT-2*	I
WG3627150-2 LCS Aluminum (Al)-Leachable 99.7 % 70-130 08-OCT-2	1
Antimony (Sb)-Leachable 101.9 % 70-130 08-OCT-2	1
Arsenic (As)-Leachable 102.8 % 70-130 08-OCT-2	1
Barium (Ba)-Leachable 101.7 % 70-130 08-OCT-2	1
Bervllium (Be)-Leachable 100.7 % 70-130 08-OCT-2	1
Bismuth (Bi)-Leachable 97.7 % 70-130 08-OCT-2	1
Cadmium (Cd)-Leachable 103.4 % 70-130 08-OCT-2	1
Calcium (Ca)-Leachable 98.0 % 70-130 08-OCT-2	1
Chromium (Cr)-Leachable 99.95 % 70-130 08-OCT-2	1
Cobalt (Co)-Leachable 101.9 % 70-130 08-OCT-2	1
Copper (Cu)-Leachable 102.0 % 70-130 08-OCT-2	1
Iron (Fe)-Leachable 99.8 % 70-130 08-OCT-2	1
Lead (Pb)-Leachable 98.7 % 70-130 08-OCT-2	1
Lithium (Li)-Leachable 103.0 % 70-130 08-0CT-2	1
Manganese (Mn)-Leachable 102.1 % 70-130 08-0CT-2	1
Molybdenum (Mo)-Leachable 96.3 % 70-130 08-0CT-2	1
Nickel (Ni)-l eachable 103.4 % 70.130 00.001.2	1
Selenium (Se)-Leachable 99.7 % 70.130 00.001.2	1
Silver (Ag)-Leachable 98.7 % 70-130 08-001-2	1

		Workorder: L2641287			Report Date: 25-OCT-21		Page 17 of 31	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TESS-RM-CCMS-VA	Soil							
Batch R5614010	D							
WG3627150-2 LCS					<u>.</u>			
Strontium (Sr)-Leachai	DIE		96.9		%		70-130	08-OCT-21
Thallium (TI)-Leachabl	e		97.2		%		70-130	08-OCT-21
Tin (Sn)-Leachable			99.0		%		70-130	08-OCT-21
Litanium (Li)-Leachabl	e		102.4		%		70-130	08-OCT-21
Uranium (U)-Leachable	e		98.3		%		70-130	08-OCT-21
Vanadium (V)-Leachat	ble		102.6		%		70-130	08-OCT-21
Zinc (Zn)-Leachable			104.0		%		70-130	08-OCT-21
WG3627150-1 MB Aluminum (Al)-Leacha	ble		<50		mg/kg		50	08-OCT-21
Antimony (Sb)-Leacha	ble		<0.10		mg/kg		0.1	08-OCT-21
Arsenic (As)-Leachable	е		<0.50		mg/kg		0.5	08-OCT-21
Barium (Ba)-Leachable	e		<2.0		mg/kg		2	08-OCT-21
Beryllium (Be)-Leachal	ble		<0.20		mg/kg		0.2	08-OCT-21
Bismuth (Bi)-Leachable	е		<0.20		mg/kg		0.2	08-OCT-21
Cadmium (Cd)-Leacha	able		<0.050		mg/kg		0.05	08-OCT-21
Calcium (Ca)-Leachab	le		<50		mg/kg		50	08-OCT-21
Chromium (Cr)-Leacha	able		<5.0		mg/kg		5	08-OCT-21
Cobalt (Co)-Leachable	•		<0.10		mg/kg		0.1	08-OCT-21
Copper (Cu)-Leachabl	e		<0.50		mg/kg		0.5	08-OCT-21
Iron (Fe)-Leachable			<50		mg/kg		50	08-OCT-21
Lead (Pb)-Leachable			<0.50		mg/kg		0.5	08-OCT-21
Lithium (Li)-Leachable			<5.0		mg/kg		5	08-OCT-21
Manganese (Mn)-Leac	hable		<5.0		mg/kg		5	08-OCT-21
Molybdenum (Mo)-Lea	chable		<0.50		mg/kg		0.5	08-OCT-21
Nickel (Ni)-Leachable			<2.0		mg/kg		2	08-OCT-21
Selenium (Se)-Leacha	ble		<0.20		mg/kg		0.2	08-OCT-21
Silver (Ag)-Leachable			<0.10		mg/kg		0.1	08-OCT-21
Strontium (Sr)-Leachal	ble		<5.0		mg/kg		5	08-OCT-21
Thallium (TI)-Leachabl	е		<0.050		mg/kg		0.05	08-OCT-21
Tin (Sn)-Leachable			<2.0		mg/kg		2	08-OCT-21
Titanium (Ti)-Leachabl	е		<5.0		mg/kg		5	08-OCT-21
Uranium (U)-Leachable	е		<0.050		mg/kg		0.05	08-OCT-21
Vanadium (V)-Leachat	ole		<0.20		mg/kg		0.2	08-OCT-21
Zinc (Zn)-Leachable			<1.0		mg/kg		1	08-OCT-21

Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MOISTURE-CL Soil Soil Analyzed MOISTURE-CL Soil Batch R5600298 <th></th> <th></th> <th colspan="2">Workorder: L2641287</th> <th colspan="2">Report Date: 25-OCT-21</th> <th colspan="2">Page 18 of 31</th>			Workorder: L2641287		Report Date: 25-OCT-21		Page 18 of 31		
MOISTURE-CL Soil Batch R5600296 W03825228-2 LCS Moisture 100.8 % 90-110 27-SEP-21 W03825228-1 MB 0.25 7-SEP-21 Batch R5600336 27-SEP-21 W03825226-1 LCS 0.25 27-SEP-21 Moisture 99.4 % 90-110 27-SEP-21 W03825226-1 LCS 0.25 27-SEP-21 Moisture 99.4 % 90-110 27-SEP-21 W03825226-1 MB 0.25 27-SEP-21 Moisture 99.4 % 0.25 27-SEP-21 PAH-TMB-H/A-MS-CL Soil 27-SEP-21 Batch R5600376 0.25 27-SEP-21 Acenaphthene 84.8 % 60-130 27-SEP-21 Acenaphthylene 101.9 % 60-130 27-SEP-21 <	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Bach R5600298 MG3025228-1 LCS MG3025228-1 LCS MG3025228-1 MB vG3025228-1 MB MG3025228-1 MB MG3025228-1 MB MG3025226-2 LCS MG3025226-1 MB MG30262733-4 MA MG30262733-4 MB MG30262733-4 MB	MOISTURE-CL	Soil							
Moissure 100.8 % 90.10 27.SEP.21 WG3825228-1 MB 0.25 % 0.25 27.SEP.21 Batch R5600336 90.40 % 90.10 27.SEP.21 WG3825226-2 LCS 0.25 % 0.25 27.SEP.21 WG3825226-2 LCS 0.25 % 0.25 27.SEP.21 WG3825226-1 MB 0.25 % 0.25 27.SEP.21 PMETMB-H/A-MS-CL Soil 27.SEP.21 27.SEP.21 PM-TMB-H/A-MS-CL Soil 27.SEP.21 27.SEP.21 PM-TMB-H/A-MS-CL Soil 27.SEP.21 27.SEP.21 Acenaphthylene 101.9 % 60.130 27.SEP.21 Acenaphthylene 101.9 % 60.130 27.SEP.21 Acenaphthylene 103.0 % 60.130 27.SEP.21 <td>Batch R5600298</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Batch R5600298								
Moisture 100.8 % 90-110 27-SEP-21 WG3625228-1 MB	WG3625228-2 LCS								
WG3625228-1 MB 0.25 % 0.25 27-SEP-21 Batch R5600336 99.4 % 90-110 27-SEP-21 WG3625226-2 LCS % 0.25 27-SEP-21 WG3625226-1 MB 0.25 27-SEP-21 PAH-TMB-H/A-MS-CL Soil 27-SEP-21 Batch R5603576 27-SEP-21 Acenaphthene 84.8 % 60-130 27-SEP-21 Acenaphthylene 101.9 % 60-130 27-SEP-21 Acenaphthylene 103.6 % 60-130 27-SEP-21 Benzo(a)privene 103.6 % 60-130 27-SEP-21 Benzo(b)jlluoranthene	Moisture			100.8		%		90-110	27-SEP-21
Batch R5600336 WG3625522-2 LCS Moistur 90.4 % 90.10 27-SEP-21 Moistur -0.25 % 0.25 27-SEP-21 Moistur Soil 27-SEP-21 20 % 0.25 27-SEP-21 PAH-TMB-H/A-MS-CL Soil Soil 50	WG3625228-1 MB Moisture			<0.25		%		0.25	27-SEP-21
WG3625226-2 LCS Moisture 99.4 % 90.110 27-SEP-21 MG3625226-1 MB <0.25	Batch R5600336								
Moisture 99.4 % 90.110 27-SEP-21 WG3625226-1 MB <0.25 % 0.25 27-SEP-21 PAH-TMB-H/A-MS-CL Soi Batch R5603578 MC Moisture ALS PAH RM2 Acenaphthene 84.8 % 60-130 27-SEP-21 Actridine 101.9 % 60-130 27-SEP-21 Benz(a)anthracene 98.0 % 60-130 27-SEP-21 Benzo(b)jfluoranthene 98.0 % 60-130 27-SEP-21 Benzo(b)jfluoranthene 90.6 % 60-130 27-SEP-21 Be	WG3625226-2 LCS								
WG3625226-1 MB Moisture <0.25	Moisture			99.4		%		90-110	27-SEP-21
Mosure R.23 % 0.23 27-SEP-21 PAH-TMB-H/A-MS-CL Soil Soil <td>WG3625226-1 MB</td> <td></td> <td></td> <td>-0.25</td> <td></td> <td>0/</td> <td></td> <td>0.05</td> <td></td>	WG3625226-1 MB			-0.25		0/		0.05	
PAH-TMB-H/A-MS-CL Soil Batch R5603578 WG3626733-4 IRM ALS PAH R02 Acenaphthene 84.8 % 60-130 27-SEP-21 Acenaphthene 101.9 % 60-130 27-SEP-21 Acenaphthene 101.9 % 60-130 27-SEP-21 Acenaphthene 101.9 % 60-130 27-SEP-21 Acenaphthene 107.6 % 60-130 27-SEP-21 Anthracene 103.0 % 60-130 27-SEP-21 Benz(a)anthracene 103.0 % 60-130 27-SEP-21 Benz(a)pyrene 103.6 % 60-130 27-SEP-21 Benzo(byrene 98.0 % 60-130 27-SEP-21 Benzo(byrene 99.7 % 60-130<	Woisture			<0.25		70		0.25	27-SEP-21
Batch R5603578 WG3626733 IRM ALS PAH RM2 Accenaphthene 84.8 % 60-130 27-SEP-21 Accenaphthylene 101.9 % 60-130 27-SEP-21 Active Accenaphthylene 107.6 % 60-130 27-SEP-21 Anthracene 107.6 % 60-130 27-SEP-21 Acridine 116.5 % 60-130 27-SEP-21 Benz(a)anthracene 103.0 % 60-130 27-SEP-21 Benzo(a)pyrene 103.6 % 60-130 27-SEP-21 Benzo(a)pyrene 103.6 % 60-130 27-SEP-21 Benzo(a)pyrene 104.0 % 60-130 27-SEP-21 Benzo(g),hi)perylene 94.4 % 60-130 27-SEP-21 Benzo(g,h,i)perylene 90.7 % 60-130 27-SEP-21 Chrysene 99.7 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 91.3 % 60-130 27-SEP-21	PAH-TMB-H/A-MS-CL	Soil							
MC3626/33-4 IRM ALS PAH RM2 Acenaphthene 84.8 % 60-130 27-SEP-21 Acenaphthylene 101.9 % 60-130 27-SEP-21 Anthracene 107.6 % 60-130 27-SEP-21 Acridine 116.5 % 60-130 27-SEP-21 Benz(a)anthracene 103.0 % 60-130 27-SEP-21 Benzo(a)pyrene 103.0 % 60-130 27-SEP-21 Benzo(a)pyrene 103.0 % 60-130 27-SEP-21 Benzo(a)pyrene 103.6 % 60-130 27-SEP-21 Benzo(b)fluoranthene 98.0 % 60-130 27-SEP-21 Benzo(b)pyrene 104.0 % 60-130 27-SEP-21 Benzo(k)fluoranthene 80.6 % 60-130 27-SEP-21 Benzo(k)fluoranthene 90.7 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 91.3 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 87.0	Batch R5603578								
Acenaphthylene 101.9 % 60-130 27-SEP-21 Anthracene 107.6 % 60-130 27-SEP-21 Acridine 116.5 % 60-130 27-SEP-21 Benz(a)anthracene 103.0 % 60-130 27-SEP-21 Benz(a)apyrene 103.0 % 60-130 27-SEP-21 Benzo(a)pyrene 103.6 % 60-130 27-SEP-21 Benzo(b&j)fluoranthene 98.0 % 60-130 27-SEP-21 Benzo(b,j)prene 104.0 % 60-130 27-SEP-21 Benzo(g, h, i)perylene 91.4 % 60-130 27-SEP-21 Benzo(k)fluoranthene 80.6 % 60-130 27-SEP-21 Dibenz(a, h)anthracene 99.7 % 60-130 27-SEP-21 Dibenz(a, h)anthracene 91.3 % 60-130 27-SEP-21 Fluoranthene 87.0 % 60-130 27-SEP-21 Fluoranthene 88.5 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 116.1 % 60-130 27-SEP-21	Acenaphthene		ALS PAH RM	2 84.8		%		60-130	27-SFP-21
Anthracene107.6%60-13027-SEP-21Acridine116.5%60-13027-SEP-21Benz(a)anthracene103.0%60-13027-SEP-21Benzo(a)pyrene103.6%60-13027-SEP-21Benzo(b&j)fluoranthene98.0%60-13027-SEP-21Benzo(b&j)fluoranthene98.0%60-13027-SEP-21Benzo(b&j)fluoranthene98.0%60-13027-SEP-21Benzo(b&j)fluoranthene98.0%60-13027-SEP-21Benzo(g,h,i)perylene91.4%60-13027-SEP-21Benzo(k)fluoranthene80.6%60-13027-SEP-21Chrysene99.7%60-13027-SEP-21Dibenz(a,h)anthracene91.3%60-13027-SEP-21Fluoranthene87.0%60-13027-SEP-21Fluorene88.5%60-13027-SEP-21Indeno(1,2,3-c,d)pyrene116.1%60-13027-SEP-21	Acenaphthylene			101.9		%		60-130	27-SEP-21
Acridine 116.5 % 60-130 27-SEP-21 Benz(a)anthracene 103.0 % 60-130 27-SEP-21 Benzo(a)pyrene 103.6 % 60-130 27-SEP-21 Benzo(båj)fluoranthene 98.0 % 60-130 27-SEP-21 Benzo(båj)fluoranthene 98.0 % 60-130 27-SEP-21 Benzo(e)pyrene 104.0 % 60-130 27-SEP-21 Benzo(g,h,i)perylene 91.4 % 60-130 27-SEP-21 Benzo(k)fluoranthene 80.6 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 99.7 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 91.3 % 60-130 27-SEP-21 Fluoranthene 87.0 % 60-130 27-SEP-21 Fluorene 88.5 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 116.1 % 60-130 27-SEP-21	Anthracene			107.6		%		60-130	27-SEP-21
Benz(a)anthracene 103.0 % 60-130 27-SEP-21 Benzo(a)pyrene 103.6 % 60-130 27-SEP-21 Benzo(b&j)fluoranthene 98.0 % 60-130 27-SEP-21 Benzo(e)pyrene 104.0 % 60-130 27-SEP-21 Benzo(g,h,i)perylene 91.4 % 60-130 27-SEP-21 Benzo(k)fluoranthene 80.6 % 60-130 27-SEP-21 Benzo(k)fluoranthene 99.7 % 60-130 27-SEP-21 Chrysene 99.7 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 91.3 % 60-130 27-SEP-21 Fluoranthene 87.0 % 60-130 27-SEP-21 Fluorene 88.5 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 116.1 % 60-130 27-SEP-21	Acridine			116.5		%		60-130	27-SEP-21
Benzo(a)pyrene 103.6 % 60-130 27-SEP-21 Benzo(b&j)fluoranthene 98.0 % 60-130 27-SEP-21 Benzo(e)pyrene 104.0 % 60-130 27-SEP-21 Benzo(g,h,i)perylene 91.4 % 60-130 27-SEP-21 Benzo(k)fluoranthene 80.6 % 60-130 27-SEP-21 Benzo(k)fluoranthene 80.6 % 60-130 27-SEP-21 Dibenz(k,h)anthracene 99.7 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 91.3 % 60-130 27-SEP-21 Fluoranthene 87.0 % 60-130 27-SEP-21 Fluorene 88.5 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 116.1 % 60-130 27-SEP-21	Benz(a)anthracene			103.0		%		60-130	27-SEP-21
Benzo(b&j)fluoranthene 98.0 % 60-130 27-SEP-21 Benzo(e)pyrene 104.0 % 60-130 27-SEP-21 Benzo(g,h,i)perylene 91.4 % 60-130 27-SEP-21 Benzo(k)fluoranthene 80.6 % 60-130 27-SEP-21 Chrysene 99.7 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 99.7 % 60-130 27-SEP-21 Fluoranthene 87.0 % 60-130 27-SEP-21 Fluorene 87.0 % 60-130 27-SEP-21 Fluorene 88.5 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 116.1 % 60-130 27-SEP-21	Benzo(a)pyrene			103.6		%		60-130	27-SEP-21
Benzo(e)pyrene 104.0 % 60-130 27-SEP-21 Benzo(g,h,i)perylene 91.4 % 60-130 27-SEP-21 Benzo(k)fluoranthene 80.6 % 60-130 27-SEP-21 Chrysene 99.7 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 99.7 % 60-130 27-SEP-21 Fluoranthene 87.0 % 60-130 27-SEP-21 Fluorene 88.5 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 116.1 % 60-130 27-SEP-21	Benzo(b&j)fluoranthene			98.0		%		60-130	27-SEP-21
Benzo(g,h,i)perylene 91.4 % 60-130 27-SEP-21 Benzo(k)fluoranthene 80.6 % 60-130 27-SEP-21 Chrysene 99.7 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 91.3 % 60-130 27-SEP-21 Fluoranthene 87.0 % 60-130 27-SEP-21 Fluorene 88.5 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 116.1 % 60-130 27-SEP-21	Benzo(e)pyrene			104.0		%		60-130	27-SEP-21
Benzo(k)fluoranthene 80.6 % 60-130 27-SEP-21 Chrysene 99.7 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 91.3 % 60-130 27-SEP-21 Fluoranthene 87.0 % 60-130 27-SEP-21 Fluorene 88.5 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 116.1 % 60-130 27-SEP-21	Benzo(g,h,i)perylene			91.4		%		60-130	27-SEP-21
Chrysene 99.7 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 91.3 % 60-130 27-SEP-21 Fluoranthene 87.0 % 60-130 27-SEP-21 Fluorene 88.5 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 116.1 % 60-130 27-SEP-21	Benzo(k)fluoranthene			80.6		%		60-130	27-SEP-21
Dibenz(a,h)anthracene 91.3 % 60-130 27-SEP-21 Fluoranthene 87.0 % 60-130 27-SEP-21 Fluorene 88.5 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 116.1 % 60-130 27-SEP-21	Chrysene			99.7		%		60-130	27-SEP-21
Fluoranthene 87.0 % 60-130 27-SEP-21 Fluorene 88.5 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 116.1 % 60-130 27-SEP-21	Dibenz(a,h)anthracene			91.3		%		60-130	27-SEP-21
Fluorene 88.5 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 116.1 % 60-130 27-SEP-21	Fluoranthene			87.0		%		60-130	27-SEP-21
Indeno(1,2,3-c,d)pyrene 116.1 % 60-130 27-SEP-21	Fluorene			88.5		%		60-130	27-SEP-21
	Indeno(1,2,3-c,d)pyrene)		116.1		%		60-130	27-SEP-21
2-Methylnaphthalene 83.4 % 60-130 27-SEP-21	2-Methylnaphthalene			83.4		%		60-130	27-SEP-21
Naphthalene 78.6 % 50-130 27-SEP-21	Naphthalene			78.6		%		50-130	27-SEP-21
Perylene 103.9 % 60-130 27-SEP-21	Perylene			103.9		%		60-130	27-SEP-21
Phenanthrene 89.7 % 60-130 27-SEP-21	Phenanthrene			89.7		%		60-130	27-SEP-21
Pyrene 90.3 % 60-130 27-SEP-21	Pyrene			90.3		%		60-130	27-SEP-21
1-Methylnaphthalene 82.5 % 60-130 27-SEP-21	1-Methylnaphthalene			82.5		%		60-130	27-SEP-21
WG3626733-6 IRM ALS PAH RM2 Acenaphthene 93.6 % 60.430 67.050.04	WG3626733-6 IRM		ALS PAH RM2	2 03.6		%		60 120	07 CED 04
Acenaphtiviene 107.4 % 60-130 27-SEP-21	Acenaphthylene			107.4		%		60-130	27-SEP-21

		Workorder: L2641287			Report Date: 25-OCT-21		Page 19 of 31	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5603578	3							
WG3626733-6 IRM		ALS PAH R	A2					
Anthracene			116.1		%		60-130	27-SEP-21
Acridine			111.2		%		60-130	27-SEP-21
Benz(a)anthracene			106.0		%		60-130	27-SEP-21
Benzo(a)pyrene			102.6		%		60-130	27-SEP-21
Benzo(b&j)fluoranthene	9		101.7		%		60-130	27-SEP-21
Benzo(e)pyrene			96.6		%		60-130	27-SEP-21
Benzo(g,h,i)perylene			95.0		%		60-130	27-SEP-21
Benzo(k)fluoranthene			87.8		%		60-130	27-SEP-21
Chrysene			102.8		%		60-130	27-SEP-21
Dibenz(a,h)anthracene			96.7		%		60-130	27-SEP-21
Fluoranthene			92.5		%		60-130	27-SEP-21
Fluorene			98.4		%		60-130	27-SEP-21
Indeno(1,2,3-c,d)pyren	e		69.6		%		60-130	27-SEP-21
2-Methylnaphthalene			92.5		%		60-130	27-SEP-21
Naphthalene			86.2		%		50-130	27-SEP-21
Perylene			84.2		%		60-130	27-SEP-21
Phenanthrene			97.9		%		60-130	27-SEP-21
Pyrene			95.5		%		60-130	27-SEP-21
1-Methylnaphthalene			91.3		%		60-130	27-SEP-21
WG3626733-9 IRM		ALS PAH R	/ 12					
Acenaphthene			87.0		%		60-130	28-SEP-21
Acenaphthylene			98.8		%		60-130	28-SEP-21
Anthracene			108.2		%		60-130	28-SEP-21
Acridine			106.5		%		60-130	28-SEP-21
Benz(a)anthracene			97.5		%		60-130	28-SEP-21
Benzo(a)pyrene			94.3		%		60-130	28-SEP-21
Benzo(b&j)fluoranthene	e		93.3		%		60-130	28-SEP-21
Benzo(e)pyrene			97.8		%		60-130	28-SEP-21
Benzo(g,h,i)perylene			87.6		%		60-130	28-SEP-21
Benzo(k)fluoranthene			89.4		%		60-130	28-SEP-21
Chrysene			93.8		%		60-130	28-SEP-21
Dibenz(a,h)anthracene			83.5		%		60-130	28-SEP-21
Fluoranthene			83.6		%		60-130	28-SEP-21
Fluorene			86.4		%		60-130	28-SEP-21

		Workorder	Workorder: L2641287		Report Date: 25-OCT-21		Page 20 of 31	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5603578								
WG3626733-9 IRM		ALS PAH RM	/ 12					
Indeno(1,2,3-c,d)pyrene	1		109.6		%		60-130	28-SEP-21
2-Methylnaphthalene			84.8		%		60-130	28-SEP-21
Naphthalene			82.3		%		50-130	28-SEP-21
Perylene			98.3		%		60-130	28-SEP-21
Phenanthrene			87.9		%		60-130	28-SEP-21
Pyrene			86.9		%		60-130	28-SEP-21
1-Methylnaphthalene			83.4		%		60-130	28-SEP-21
WG3626733-3 LCS			104.9		9/		CO 400	
Acenaphthelee			104.0		/0		60-130	27-SEP-21
Anthropono			101.0		/0		60-130	27-SEP-21
Antiliacene			01.6		70 97		60-130	27-SEP-21
Ronz(a)anthracana			91.0		/0		60-130	27-SEP-21
Bonzo(a)antinacene			105.5		70 9/		60-130	27-SEP-21
Benzo(a)pyrene			100.0		70		60-130	27-SEP-21
			140.4		/0		60-130	27-SEP-21
			09.5		/0		60-130	27-SEP-21
Benzo(g,11,1)perylene			90.0 102 7		70		60-130	27-SEP-21
Christopo			106.2		70 97		60-130	27-SEP-21
Dibonz(a b)anthracono			05.6		/0		60-130	27-SEP-21
Elucronthono			90.0		70		60-130	27-SEP-21
Fluorana			104.5		70 97		60-130	27-SEP-21
			100.0		/0		60-130	27-SEP-21
2 Mothylpaphthalopo			100.0		70 9/		60-130	27-SEP-21
Nanhthalene			107.0		70 9/		50 120	27-SEP-21
Pervlene			00.6		70 9/		50-130	27-SEP-21
Phononthrono			110.2		70 9/		60-130	27-SEP-21
Purono			105.5		70 97		60-130	27-SEP-21
1 Mothylpaphthalono			105.5		70 97		60-130	27-SEP-21
			107.9		/0		60-130	27-SEP-21
			00.7		70		60-130	27-SEP-21
Acenaphthene			107.5		%		60-130	27-SEP-21
Acenaphthylene			104.6		%		60-130	27-SEP-21
Anthracene			114.7		%		60-130	27-SEP-21
Acridine			112.8		%		60-130	27-SEP-21

		Workorder	Workorder: L2641287			5-OCT-21	Page 21 of 31		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-CL	Soil								
Batch R5603578									
WG3626733-5 LCS									
Benz(a)anthracene			119.5		%		60-130	27-SEP-21	
Benzo(a)pyrene			110.0		%		60-130	27-SEP-21	
Benzo(b&j)fluoranthene			111.3		%		60-130	27-SEP-21	
Benzo(e)pyrene			118.1		%		60-130	27-SEP-21	
Benzo(g,h,i)perylene			103.3		%		60-130	27-SEP-21	
Benzo(k)fluoranthene			110.3		%		60-130	27-SEP-21	
Chrysene			112.7		%		60-130	27-SEP-21	
Dibenz(a,h)anthracene			100.2		%		60-130	27-SEP-21	
Fluoranthene			108.9		%		60-130	27-SEP-21	
Fluorene			112.1		%		60-130	27-SEP-21	
Indeno(1,2,3-c,d)pyrene	9		80.6		%		60-130	27-SEP-21	
2-Methylnaphthalene			113.5		%		60-130	27-SEP-21	
Naphthalene			106.5		%		50-130	27-SEP-21	
Perylene			108.2		%		60-130	27-SEP-21	
Phenanthrene			115.4		%		60-130	27-SEP-21	
Pyrene			110.2		%		60-130	27-SEP-21	
1-Methylnaphthalene			110.8		%		60-130	27-SEP-21	
Quinoline			103.2		%		60-130	27-SEP-21	
WG3626733-1 MB			-0.0050		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.005		
Acenaphthelene			<0.0050		mg/kg		0.005	27-SEP-21	
Acenaphinylene			<0.0050		mg/kg		0.005	27-SEP-21	
Anthracene			<0.0040		mg/kg		0.004	27-SEP-21	
			<0.010		mg/kg		0.01	27-SEP-21	
Benz(a)anthracene			<0.010		mg/kg		0.01	27-SEP-21	
Benzo(a)pyrene			<0.010		mg/kg		0.01	27-SEP-21	
Benzo(b&j)nuorantnene			<0.010		mg/kg		0.01	27-SEP-21	
Benzo(e)pyrene			<0.010		mg/kg		0.01	27-SEP-21	
Benzo(g,h,ı)perylene			<0.010		mg/kg		0.01	27-SEP-21	
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	27-SEP-21	
Chrysene			<0.010		mg/kg		0.01	27-SEP-21	
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	27-SEP-21	
Fluoranthene			<0.010		mg/kg		0.01	27-SEP-21	
Fluorene			<0.010		mg/kg		0.01	27-SEP-21	
Indeno(1,2,3-c,d)pyrene	e		<0.010		mg/kg		0.01	27-SEP-21	

		Workorder	: L264128	7	Report Date: 2	5-OCT-21	Page 22 of 31		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-CL	Soil								
Batch R5603	578								
WG3626733-1 M	В								
2-Methylnaphthalen	e		<0.010		mg/kg		0.01	27-SEP-21	
Naphthalene			<0.010		mg/kg		0.01	27-SEP-21	
Perylene			<0.010		mg/kg		0.01	27-SEP-21	
Phenanthrene			<0.010		mg/kg		0.01	27-SEP-21	
Pyrene			<0.010		mg/kg		0.01	27-SEP-21	
1-Methylnaphthalen	e		<0.050		mg/kg		0.05	27-SEP-21	
Quinoline			<0.050		mg/kg		0.05	27-SEP-21	
Surrogate: d8-Naph	nthalene		84.6		%		50-130	27-SEP-21	
Surrogate: d10-Ace	naphthene		89.8		%		60-130	27-SEP-21	
Surrogate: d10-Phe	nanthrene		91.4		%		60-130	27-SEP-21	
Surrogate: d12-Chr	ysene		93.8		%		60-130	27-SEP-21	
WG3626733-10 M	В								
Acenaphthene			<0.0050		mg/kg		0.005	28-SEP-21	
Acenaphthylene			<0.0050		mg/kg		0.005	28-SEP-21	
Anthracene			<0.0040		mg/kg		0.004	28-SEP-21	
Acridine			<0.010		mg/kg		0.01	28-SEP-21	
Benz(a)anthracene			<0.010		mg/kg		0.01	28-SEP-21	
Benzo(a)pyrene			<0.010		mg/kg		0.01	28-SEP-21	
Benzo(b&j)fluoranth	nene		<0.010		mg/kg		0.01	28-SEP-21	
Benzo(e)pyrene			<0.010		mg/kg		0.01	28-SEP-21	
Benzo(g,h,i)perylen	e		<0.010		mg/kg		0.01	28-SEP-21	
Benzo(k)fluoranthei	ne		<0.010		mg/kg		0.01	28-SEP-21	
Chrysene			<0.010		mg/kg		0.01	28-SEP-21	
Dibenz(a,h)anthrace	ene		<0.0050		mg/kg		0.005	28-SEP-21	
Fluoranthene			<0.010		mg/kg		0.01	28-SEP-21	
Fluorene			<0.010		mg/kg		0.01	28-SEP-21	
Indeno(1,2,3-c,d)py	rene		<0.010		mg/kg		0.01	28-SEP-21	
2-Methylnaphthalen	e		<0.010		mg/kg		0.01	28-SEP-21	
Naphthalene			<0.010		mg/kg		0.01	28-SEP-21	
Perylene			<0.010		mg/kg		0.01	28-SEP-21	
Phenanthrene			<0.010		mg/kg		0.01	28-SEP-21	
Pyrene			<0.010		mg/kg		0.01	28-SEP-21	
1-Methylnaphthalen	e		<0.050		mg/kg		0.05	28-SEP-21	
Quinoline			<0.050		mg/kg		0.05	28-SEP-21	

		Workorder: L2641287			Report Date: 25-OCT-21		Page 23 of 31	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R560357	78							
WG3626733-10 MB								
Surrogate: d8-Naphth	alene		82.5		%		50-130	28-SEP-21
Surrogate: d10-Acena	aphthene		94.5		%		60-130	28-SEP-21
Surrogate: d10-Phena	anthrene		95.0		%		60-130	28-SEP-21
Surrogate: d12-Chrys	ene		99.1		%		60-130	28-SEP-21
WG3626733-7 MB Acenaphthene			<0.0050		ma/ka		0.005	27-SEP-21
Acenaphthylene			<0.0050		ma/ka		0.005	27-SEP-21
Anthracene			<0.0040		ma/ka		0.000	27-SEP-21
Acridine			<0.0010		mg/kg		0.004	27-SEP-21
Benz(a)anthracene			<0.010		ma/ka		0.01	27-SEP-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	27-SEP-21
Benzo(b&i)fluoranther	he		<0.010		mg/kg		0.01	27-SEP-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	27-SEP-21
Benzo(a,h,i)pervlene			<0.010		mg/kg		0.01	27-SEP-21
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	27-SEP-21
Chrvsene			<0.010		ma/ka		0.01	27-SEP-21
Dibenz(a.h)anthracen	e		<0.0050		ma/ka		0.005	27-SEP-21
Fluoranthene			<0.010		mg/kg		0.01	27-SEP-21
Fluorene			<0.010		mg/kg		0.01	27-SEP-21
Indeno(1,2,3-c,d)pyre	ne		<0.010		mg/kg		0.01	27-SEP-21
2-Methylnaphthalene			<0.010		mg/kg		0.01	27-SEP-21
Naphthalene			<0.010		mg/kg		0.01	27-SEP-21
Perylene			<0.010		mg/kg		0.01	27-SEP-21
Phenanthrene			<0.010		mg/kg		0.01	27-SEP-21
Pyrene			<0.010		mg/kg		0.01	27-SEP-21
1-Methylnaphthalene			<0.050		mg/kg		0.05	27-SEP-21
Quinoline			<0.050		mg/kg		0.05	27-SEP-21
Surrogate: d8-Naphth	alene		85.4		%		50-130	27-SEP-21
Surrogate: d10-Acena	phthene		94.6		%		60-130	27-SEP-21
Surrogate: d10-Phena	anthrene		98.6		%		60-130	27-SEP-21
Surrogate: d12-Chrys	ene		102.3		%		60-130	27-SEP-21
Batch R560462	23							
WG3627661-3 IRM		ALS PAH RM	M2					
Acenaphthene			93.4		%		60-130	29-SEP-21
Acenaphthylene			104.9		%		60-130	29-SEP-21

		Workorder: L2641287			Report Date: 25-OCT-21		Page 24 of 31	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5604623	3							
WG3627661-3 IRM		ALS PAH R	/ 12					
Anthracene			113.6		%		60-130	29-SEP-21
Acridine			117.1		%		60-130	29-SEP-21
Benz(a)anthracene			110.3		%		60-130	29-SEP-21
Benzo(a)pyrene			109.5		%		60-130	29-SEP-21
Benzo(b&j)fluoranthen	e		103.6		%		60-130	29-SEP-21
Benzo(e)pyrene			110.4		%		60-130	29-SEP-21
Benzo(g,h,i)perylene			95.7		%		60-130	29-SEP-21
Benzo(k)fluoranthene			93.2		%		60-130	29-SEP-21
Chrysene			105.7		%		60-130	29-SEP-21
Dibenz(a,h)anthracene)		92.9		%		60-130	29-SEP-21
Fluoranthene			93.7		%		60-130	29-SEP-21
Fluorene			95.6		%		60-130	29-SEP-21
Indeno(1,2,3-c,d)pyren	e		124.7		%		60-130	29-SEP-21
2-Methylnaphthalene			92.2		%		60-130	29-SEP-21
Naphthalene			86.7		%		50-130	29-SEP-21
Perylene			110.2		%		60-130	29-SEP-21
Phenanthrene			96.0		%		60-130	29-SEP-21
Pyrene			97.0		%		60-130	29-SEP-21
1-Methylnaphthalene			91.3		%		60-130	29-SEP-21
WG3627661-7 IRM		ALS PAH R	/ 12					
Acenaphthene			96.1		%		60-130	29-SEP-21
Acenaphthylene			102.2		%		60-130	29-SEP-21
Anthracene			116.7		%		60-130	29-SEP-21
Acridine			108.0		%		60-130	29-SEP-21
Benz(a)anthracene			102.2		%		60-130	29-SEP-21
Benzo(a)pyrene			98.4		%		60-130	29-SEP-21
Benzo(b&j)fluoranthen	e		97.4		%		60-130	29-SEP-21
Benzo(e)pyrene			98.9		%		60-130	29-SEP-21
Benzo(g,h,i)perylene			89.7		%		60-130	29-SEP-21
Benzo(k)fluoranthene			82.5		%		60-130	29-SEP-21
Chrysene			98.9		%		60-130	29-SEP-21
Dibenz(a,h)anthracene	;		87.5		%		60-130	29-SEP-21
Fluoranthene			92.2		%		60-130	29-SEP-21
Fluorene			100.9		%		60-130	29-SEP-21

		Workorder: L2641287		Report Date: 25-OCT-21		Page 25 of 31		
est Matr ² AH-TMB-H/A-MS-CL Soil Batch R5604623 WG3627661-7 IRM Indeno(1,2,3-c,d)pyrene 2-Methylnaphthalene Perylene Phenanthrene Pyrene 1-Methylnaphthalene WG3627661-2 LCS Acenaphthene Acenaphthylene Actine Benz(a)anthracene Benzo(a)pyrene Benzo(b&i)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5604623								
WG3627661-7 IRM		ALS PAH RM	/ 12					
Indeno(1,2,3-c,d)pyrene			118.9		%		60-130	29-SEP-21
2-Methylnaphthalene			95.9		%		60-130	29-SEP-21
Naphthalene			92.0		%		50-130	29-SEP-21
Perylene			104.2		%		60-130	29-SEP-21
Phenanthrene			97.6		%		60-130	29-SEP-21
Pyrene			95.2		%		60-130	29-SEP-21
1-Methylnaphthalene			94.7		%		60-130	29-SEP-21
WG3627661-2 LCS			101.0		0/		00.400	
Acenaphthene			104.6		%		60-130	29-SEP-21
Acenaphinylene			101.7		%		60-130	29-SEP-21
Anthracene			111.1		%		60-130	29-SEP-21
Acriaine			120.0		%		60-130	29-SEP-21
			118.0		%		60-130	29-SEP-21
Benzo(a)pyrene			113.5		%		60-130	29-SEP-21
Benzo(b&j)nuorantnene			115.3		%		60-130	29-SEP-21
Benzo(e)pyrene			118.5		%		60-130	29-SEP-21
Benzo(g,n,i)perviene			103.0		%		60-130	29-SEP-21
Benzo(k)fluorantnene			108.5		%		60-130	29-SEP-21
Chrysene			110.9		%		60-130	29-SEP-21
Dibenz(a,n)anthracene			101.5		%		60-130	29-SEP-21
Fluoranthene			106.1		%		60-130	29-SEP-21
Fluorene			108.0		%		60-130	29-SEP-21
Indeno(1,2,3-c,d)pyrene			112.4		%		60-130	29-SEP-21
2-Methylnaphthalene			111.0		%		60-130	29-SEP-21
Naphthalene			104.6		%		50-130	29-SEP-21
Perylene			106.4		%		60-130	29-SEP-21
Phenanthrene			111.5		%		60-130	29-SEP-21
Pyrene			110.4		%		60-130	29-SEP-21
1-Methylnaphthalene			108.1		%		60-130	29-SEP-21
Quinoline			89.5		%		60-130	29-SEP-21
WG3627661-6 LCS			100 5		0/		00 /00	
Acenaphthetese			100.5		<i>™</i>		60-130	29-SEP-21
Acenaphthylene			99.9		<i>™</i>		60-130	29-SEP-21
Anthracene			106.6		%		60-130	29-SEP-21
Acridine			104.5		%		60-130	29-SEP-21

		Workorder	: L264128	37	Report Date: 2	5-OCT-21	Page 26 of 31		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-CL	Soil								
Batch R5604623									
WG3627661-6 LCS									
Benz(a)anthracene			111.3		%		60-130	29-SEP-21	
Benzo(a)pyrene			110.0		%		60-130	29-SEP-21	
Benzo(b&j)fluoranthene	•		106.9		%		60-130	29-SEP-21	
Benzo(e)pyrene			110.3		%		60-130	29-SEP-21	
Benzo(g,h,i)perylene			98.4		%		60-130	29-SEP-21	
Benzo(k)fluoranthene			103.1		%		60-130	29-SEP-21	
Chrysene			103.7		%		60-130	29-SEP-21	
Dibenz(a,h)anthracene			97.4		%		60-130	29-SEP-21	
Fluoranthene			102.1		%		60-130	29-SEP-21	
Fluorene			102.6		%		60-130	29-SEP-21	
Indeno(1,2,3-c,d)pyrene	9		102.7		%		60-130	29-SEP-21	
2-Methylnaphthalene			104.4		%		60-130	29-SEP-21	
Naphthalene			101.2		%		50-130	29-SEP-21	
Perylene			105.1		%		60-130	29-SEP-21	
Phenanthrene			106.7		%		60-130	29-SEP-21	
Pyrene			103.4		%		60-130	29-SEP-21	
1-Methylnaphthalene			103.3		%		60-130	29-SEP-21	
Quinoline			98.3		%		60-130	29-SEP-21	
WG3627661-1 MB			~0.0050		ma/ka		0.005	29 SED 21	
Acenaphthylene			<0.0050		mg/kg		0.005	20-3EF-21	
Anthracene			<0.0030		mg/kg		0.005	20-3EF-21	
Acridine			<0.0040		mg/kg		0.004	20-3EF-21	
Benz(a)anthracene			<0.010		mg/kg		0.01	20-3EF-21	
Benzo(a)pyrene			<0.010		mg/kg		0.01	20-3EF-21	
Benzo(b&i)fluoranthene			<0.010		mg/kg		0.01	20-3EF-21	
Benzo(e)pyrepe	•		<0.010		mg/kg		0.01	20-SEP-21	
			<0.010		mg/kg		0.01	28-SEP-21	
Benzo(g,fl,i)perylene			<0.010		mg/kg		0.01	20-SEP-21	
			<0.010		mg/kg		0.01	28-SEP-21	
Dihonz(a h)anthracana					mg/kg		0.01	28-SEP-21	
			<0.000		mg/kg		0.005	28-SEP-21	
Fluoropo			<0.010		mg/kg		0.01	28-SEP-21	
			<0.010		mg/kg		0.01	28-SEP-21	
Indeno(1,2,3-c,d)pyrene	9		<0.010		mg/kg		0.01	28-SEP-21	

		Workorder	: L264128	7	Report Date: 2	5-OCT-21	Page 27 of 31		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-CL	Soil								
Batch R5604	4623								
WG3627661-1 M	IB								
2-Methylnaphthaler	ne		<0.010		mg/kg		0.01	28-SEP-21	
Naphthalene			<0.010		mg/kg		0.01	28-SEP-21	
Perylene			<0.010		mg/kg		0.01	28-SEP-21	
Phenanthrene			<0.010		mg/kg		0.01	28-SEP-21	
Pyrene			<0.010		mg/kg		0.01	28-SEP-21	
1-Methylnaphthaler	ne		<0.050		mg/kg		0.05	28-SEP-21	
Quinoline			<0.050		mg/kg		0.05	28-SEP-21	
Surrogate: d8-Napl	hthalene		91.9		%		50-130	28-SEP-21	
Surrogate: d10-Ace	enaphthene		100.4		%		60-130	28-SEP-21	
Surrogate: d10-Phe	enanthrene		102.5		%		60-130	28-SEP-21	
Surrogate: d12-Chr	rysene		107.9		%		60-130	28-SEP-21	
WG3627661-4 M	IB		-0.0050		malka		0.005		
Acenaphthene			<0.0050		mg/kg		0.005	29-SEP-21	
Acenaphinylene			<0.0050		mg/kg		0.005	29-SEP-21	
Anthracene			<0.0040		mg/kg		0.004	29-SEP-21	
			<0.010		mg/kg		0.01	29-SEP-21	
Benz(a)anthracene	•		<0.010		mg/kg		0.01	29-SEP-21	
Benzo(a)pyrene			<0.010		mg/kg		0.01	29-SEP-21	
Benzo(b&j)fluoranti	nene		<0.010		mg/kg		0.01	29-SEP-21	
Benzo(e)pyrene			<0.010		mg/kg		0.01	29-SEP-21	
Benzo(g,h,ı)peryler	ie		<0.010		mg/kg		0.01	29-SEP-21	
Benzo(k)fluoranthe	ne		<0.010		mg/kg		0.01	29-SEP-21	
Chrysene			<0.010		mg/kg		0.01	29-SEP-21	
Dibenz(a,h)anthrac	ene		<0.0050		mg/kg		0.005	29-SEP-21	
Fluoranthene			<0.010		mg/kg		0.01	29-SEP-21	
Fluorene			<0.010		mg/kg		0.01	29-SEP-21	
Indeno(1,2,3-c,d)py	/rene		<0.010		mg/kg		0.01	29-SEP-21	
2-Methylnaphthaler	ne		<0.010		mg/kg		0.01	29-SEP-21	
Naphthalene			<0.010		mg/kg		0.01	29-SEP-21	
Perylene			<0.010		mg/kg		0.01	29-SEP-21	
Phenanthrene			<0.010		mg/kg		0.01	29-SEP-21	
Pyrene			<0.010		mg/kg		0.01	29-SEP-21	
1-Methylnaphthaler	ne		<0.050		mg/kg		0.05	29-SEP-21	
Quinoline			<0.050		mg/kg		0.05	29-SEP-21	

		Workorder	: L264128	37 Re	eport Date: 2	25-OCT-21	Page 28 of 31			
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
PAH-TMB-H/A-MS-CL	Soil									
Batch R560	4623									
WG3627661-4 M	MB									
Surrogate: d8-Nap	ohthalene		90.9		%		50-130	29-SEP-21		
Surrogate: d10-Ac	enaphthene		93.3		%		60-130	29-SEP-21		
Surrogate: d10-Ph	enanthrene		100.0		%		60-130	29-SEP-21		
Surrogate: d12-Ch	nrysene		108.0		%		60-130	29-SEP-21		
PH-1:2-CL	Soil									
Batch R560	4712									
WG3627849-8 II	RM	SAL-STD11	7.00							
pH (1:2 soil:water))		7.96		рн		7.7-8.3	29-SEP-21		
WG3627849-7 L	LCS		7.00		nH		6972	20 SED 21		
pri (1.2 301. water)			7.00		рп		0.0-7.2	29-3EF-21		
PSA-PIPET-DETAIL-S	SK Soil									
Batch R560	1876	1 00 44 007 4								
% Gravel (>2mm)	JUP	L2641287-1 <1.0	1.8	RPD-NA	%	N/A	25	27-SEP-21		
% Sand (2.00mm -	- 1.00mm)	2.5	2.6	.1	%	0.1	5	27-SEP-21		
% Sand (1.00mm -	- 0.50mm)	3.0	3.1	J	%	0.1	5	27-SEP-21		
% Sand (0.50mm	- 0.25mm)	3.3	3.4	J	%	0.1	5	27-SEP-21		
% Sand (0.25mm	- 0.125mm)	5.7	5.8	J	%	0.1	5	27-SEP-21		
% Sand (0.125mm	n - 0.063mm)	8.1	8.8	J	%	0.7	5	27-SEP-21		
% Silt (0.063mm -	0.0312mm)	26.8	27.5	J	%	0.7	5	27-SEP-21		
% Silt (0.0312mm	- 0.004mm)	37.4	36.6	J	%	0.8	5	27-SEP-21		
% Clay (<4um)	,	12.3	10.5	J	%	1.8	5	27-SEP-21		
WG3622101-2	PM	2020-854 5		0	,,,	1.0	5	27-021-21		
% Sand (2.00mm	- 1.00mm)	2020-1 3A_3	2.6		%		0-7.2	27-SEP-21		
% Sand (1.00mm	- 0.50mm)		3.7		%		0-8.7	27-SEP-21		
% Sand (0.50mm	- 0.25mm)		8.1		%		4-14	27-SEP-21		
% Sand (0.25mm	- 0.125mm)		16.8		%		11.7-21.7	27-SEP-21		
% Sand (0.125mm	n - 0.063mm)		13.9		%		8.4-18.4	27-SEP-21		
% Silt (0.063mm -	0.0312mm)		12.0		%		8.5-18.5	27-SEP-21		
% Silt (0.0312mm	- 0.004mm)		22.7		%		15.1-25.1	27-SEP-21		
% Clay (<4um)			20.1		%		16.5-26.5	27-SEP-21		
Batch R562	6402									
WG3639743-2 II	RM	2020-PSA_S	OIL							
% Sand (2.00mm	- 1.00mm)		2.3		%		0-7.2	21-OCT-21		
% Sand (1.00mm -	- 0.50mm)		4.1		%		0-8.7	21-OCT-21		

		Workorder: L2641287			Report Date: 2	5-OCT-21	Page 29 of 31			
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
PSA-PIPET-DETAIL	-SK Soil									
Batch R56	526402	2020 054 50								
% Sand (0.50mm	n - 0.25mm)	2020-PSA_5C	9.1		%		4-14	21-OCT-21		
% Sand (0.25mn	n - 0.125mm)		16.2		%		11.7-21.7	21-OCT-21		
% Sand (0.125m	ım - 0.063mm)		14.1		%		8.4-18.4	21-OCT-21		
% Silt (0.063mm	- 0.0312mm)		12.3		%		8.5-18.5	21-OCT-21		
% Silt (0.0312mr	m - 0.004mm)		20.6		%		15.1-25.1	21-OCT-21		
% Clay (<4um)			21.3		%		16.5-26.5	21-OCT-21		

Workorder: L2641287

Report Date: 25-OCT-21

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2641287

Report Date: 25-OCT-21

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Organic / Inorganic Carbon							
Inorganic Carbon as CaCO	3 Equivalent						
-	4	14-SEP-21 13:30	21-OCT-21 17:40	28	37	days	EHT
Total Inorganic Carbon in S	Soil						
-	4	14-SEP-21 13:30	21-OCT-21 16:00	28	37	days	EHT
Legend & Qualifier Definition	ns:						

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry
EHT:	Exceeded ALS recommended hold time prior to analysis.
Rec. HT:	ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2641287 were received on 16-SEP-21 10:40.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

	T						Page	1 of 1												7
Teck			har CCC	14 B 1 D	2021		TURN	ROUN	D TIME:	<u> </u>					······	<u> </u>				-
	COC ID:	Septem	per GGG	AND	2021				LABOR	TORY	15		T		-	11		•		4
A CONTRACTOR	PROJECT/CLI	NT INFO					L	ab Name	ALS Calgary	/			1				Excel	PDF	EDD	4
Facility Name / Job	# REP						Lab	Contact	Lyudmyla Sl	hvets			1			et agen	r			1
Project Manage	r Allie Ferguson							Email	lyudmyla.sl	nvets@als	sglobal.com			.1	leckcoal@er	uisontre com			F.	1.
Emai	121 Dine Armen							Address	2559 29 Stro	et NE					barren Bartarre		z .	2	1	
Addres	s 421 rine Avenue																r /	<u>.</u>	1.11	
Cit		Sparwood			Province B0	2		City	Calgary		Province	AB	+		-	•,	2	k.	r	j
	<u>y</u>	VOB 2G0			Country Ca	nada	Pos	tal Code	TIY 785		Country	Canada								
Postal Cod	250-425-8202			· · · · · ·			Phone	Number	1 403 407 1	794]
Phone Mullide	ST 250 125 0202	MPLE DEFAILS				1000	10.00		1.11	, ANA	LYSIS RE	queste	D .			Filtered .	· Vield, L. La	.FLIFWIG &	Tab, Nº Num	
	4 <u></u>			1			1		1 .	N	N	N	N	N	18.5					1
								1.1	S				1 21					1.00		1
				(0)		-	1		NONE	NONE	NONE	NONE	NONE	NONE						and the second
1.264	1297 0050			V/s						1		K	1.5		1					1
L204	1207-00-0			× 1						13	,e	13	Q .	<						1
				ial						13		I	SW.	2				ļ		1 .
·	1			atci			1		5394.5	臣	ラ	DE DE	NA.	LIS					≥,	i -
				Σ					3 ¥	ME	RE	ET-	- E	SS						
				lous					S S	2	L L L	PIP	Ξ	E	1000					يتمير
		,	Field	zaro		Time	G=Grab	# Of	Õ	- E	OIS	Ti A-I	보물	Ë		· .				
	S	male Location	Matrix	Har	Date	(24hr)	C=Comp	Cont.	<u> </u>	<u> </u>	<u>v</u> ř	A a	PA	<u> </u>		ļ				
Sample ID	30	and cump	SE	No	9/13/2021	1600	G	2	x	x	x	x	x	x						
RG_GHBP_SE-1_2021-09-13_1600	1.10	KU_URBI			0/14/2021	1015			v	x	x	x	x	x		-		1		
RG_GHBP_SE-2_2021-09-14_1015	1.00.00.00	RG_GHBP	SE	No	9/14/2021	1013		2		- X	x	x	x	x						
RG_GHBP_SE-3_2021-09-14_1200		RG_GHBP	SE .	No	9/14/2021	1200		2		v v	Y	x	x	x			+			
RG_GHBP_SE-4_2021-09-14_1330		RG_GHBP	SE	No	9/14/2021	1330	G	- 2	$+\frac{2}{v}$	- î-	x x	x	x	x	1	<u> </u>	+	-		
RG_GHBP_SE-5_2021-09-14_1430	1000	RG_GHBP	<u>· SE</u>	NO	9/14/2021	1430		2	<u> </u>	<u></u>					1					
	10 A	and the second	<u> </u>	-					M	+			1				1			
			<u> </u>			<u>. </u>				+				<u> </u>						
							<u> </u>		S					+	· · · ·					
			<u> </u>	1.40		_						<u>+</u>	+							
]	DATE/TIM		10	CURTED	DX/ATE	1114710	N N	7	1			
ADDETTONAL COMMEN	TS/SPECIAL INSTRU	CTIONS (1			RELANDUS	ILU DI /AT	FILIATION		ON REAL FRAME	• <u> </u>					**			2 2		
														-	3.		21-	+	.9	A
					Jenni	er mgs/mm	1110₩		nininininini			_		17	7) —	6.		1-	- / 2	$V \sim$
ALS PU 750546									<u> </u>		<u> </u>				$+ \rightarrow$		+ +	0_	H	M
Ğr.]						·•		<u> </u>	/	\leq	Ý
NB OF BOTTLES RI	TURNED/DESCRIPT	ION THE PLAN	<u></u>		<u></u>		0	<u> </u>	<u> </u>					T						
		Regula	r (default) x		Sampler's N	ame		Var -	Jennifer In	gs		Mo	bile #		19	519-50	0-3444			
	Pr	iority (2-3 business days) - 50%	surcharge				- 1	x H	~> +	1	<u></u>			0.9	1	11	75540		80.363 P	
	Eme	rgency (1 Business Day) - 100%	surcharge		Sampler's Sigr	ature	Jun	~0 °		16.11		Date	/Time	1.0		septembe	r 15, 202	1		
	For Emergency <	I Day, ASAF OF WEEKEND - CC																	<u> </u>	
														3 6						

•																	$\overline{}$			
																	/			
									-							7	/			
															~					
· ,													•			l				

Teck Coal Ltd. ATTN: Allie Ferguson 421 Pine Avenue Sparwood BC VOB 2G0 Date Received:24-SEP-21Report Date:23-NOV-21 17:13 (MT)Version:FINAL REV. 2

Client Phone: 250-425-8202

Certificate of Analysis

Lab Work Order #: L2644215 Project P.O. #: VPO0075054 Job Reference: REGIONAL EF C of C Numbers: Legal Site Desc:

VPO00750546 REGIONAL EFFECTS PROGRAM

Comments: ADDITIONAL 13-OCT-21 06:47

23-NOV-2021 Additional analysis for METALS BY CCMS (TESSIER EXTRACTION.

Lyudmyla Shvets, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2644215 CONTD.... PAGE 2 of 15 23-NOV-21 17:13 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644215-1 SE 22-SEP-21 09:00 RG_GHP_SE- 1_2021-09- 22.0900	L2644215-2 SE 22-SEP-21 10:00 RG_GHP_SE- 6_2021-09- 22 1000	L2644215-3 SE 21-SEP-21 11:15 RG_GHP_SE- 3_2021-09- 21 1115	L2644215-4 SE 21-SEP-21 10:00 RG_GHP_SE- 4_2021-09- 21 1000	L2644215-5 SE 23-SEP-21 10:00 RG_GHP_SE- 5_2021-09- 23 1000
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	60.5	59.6	57.8	61.7	61.1
	pH (1:2 soil:water) (pH)	8.02	8.13	8.21	8.31	8.07
Particle Size	% Gravel (>2mm) (%)	<1.0	<1.0	<1.0	<1.0	<1.0
	% Sand (2.00mm - 1.00mm) (%)	<1.0	<1.0	<1.0	<1.0	<1.0
	% Sand (1.00mm - 0.50mm) (%)	<1.0	<1.0	<1.0	<1.0	<1.0
	% Sand (0.50mm - 0.25mm) (%)	<1.0	<1.0	<1.0	<1.0	<1.0
	% Sand (0.25mm - 0.125mm) (%)	<1.0	<1.0	<1.0	1.1	<1.0
	% Sand (0.125mm - 0.063mm) (%)	1.2	1.1	<1.0	2.7	<1.0
	% Silt (0.063mm - 0.0312mm) (%)	19.0	15.5	14.7	15.1	4.7
	% Silt (0.0312mm - 0.004mm) (%)	53.5	49.1	56.0	51.7	52.7
	% Clay (<4um) (%)	25.0	33.6	28.1	28.9	42.1
	Texture	Silt loam	Silt loam / Silty clay loam	Silt loam	Silt loam	Silty clay loam
Organic / Inorganic Carbon	Total Organic Carbon (%)	16.6	22.3	17.1	21.3	18.2
Metals	Aluminum (Al) (mg/kg)	7930	8520	8210	8620	11100
	Antimony (Sb) (mg/kg)	1.03	1.03	1.01	0.79	1.12
	Arsenic (As) (mg/kg)	5.70	5.77	5.93	5.01	6.51
	Barium (Ba) (mg/kg)	365	310	310	308	361
	Beryllium (Be) (mg/kg)	0.84	0.78	0.74	0.75	0.93
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	0.20
	Boron (B) (mg/kg)	<5.0	<5.0	<5.0	6.0	7.8
	Cadmium (Cd) (mg/kg)	1.48	1.44	1.39	1.15	1.54
	Calcium (Ca) (mg/kg)	54300	60900	43200	60500	53200
	Chromium (Cr) (mg/kg)	12.6	13.1	12.8	13.1	16.8
	Cobalt (Co) (mg/kg)	9.99	9.97	11.1	8.77	12.1
	Copper (Cu) (mg/kg)	24.9	26.1	25.6	22.4	30.5
	Iron (Fe) (mg/kg)	13700	13200	14500	12200	16400
	Lead (Pb) (mg/kg)	11.8	12.3	12.2	10.8	14.1
	Lithium (Li) (mg/kg)	9.1	8.0	8.9	8.3	10.6
	Magnesium (Mg) (mg/kg)	5390	4630	5020	4730	5150
	Manganese (Mn) (mg/kg)	195	567	673	308	688
	Mercury (Hg) (mg/kg)	0.103	0.108	0.130	0.0971	0.135
	Molybdenum (Mo) (mg/kg)	1.36	1.66	1.63	1.32	1.75
	Nickel (Ni) (mg/kg)	65.7	64.5	64.5	56.3	72.8
	Phosphorus (P) (mg/kg)	957	923	967	919	1020
	Potassium (K) (mg/kg)	1780	2070	1870	2150	2790
	Selenium (Se) (mg/kg)	46.4	8.70	8.38	13.8	16.0

L2644215 CONTD.... PAGE 3 of 15 23-NOV-21 17:13 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644215-6 SE 21-SEP-21 11:15 RG_RIVER_SE- 1_2021-09- 21_1115	L2644215-7 SE 22-SEP-21 10:00 RG_RIVER_SE- 2_2021-09- 22_1000		
Grouping	Analyte				
SOIL					
Physical Tests	Moisture (%)	57.3	60.4		
	pH (1:2 soil:water) (pH)	8.01	8.19		
Particle Size	% Gravel (>2mm) (%)	<1.0	<1.0		
	% Sand (2.00mm - 1.00mm) (%)	<1.0	<1.0		
	% Sand (1.00mm - 0.50mm) (%)	<1.0	<1.0		
	% Sand (0.50mm - 0.25mm) (%)	<1.0	<1.0		
	% Sand (0.25mm - 0.125mm) (%)	<1.0	<1.0		
	% Sand (0.125mm - 0.063mm) (%)	<1.0	1.3		
	% Silt (0.063mm - 0.0312mm) (%)	14.7	9.6		
	% Silt (0.0312mm - 0.004mm) (%)	55.8	48.3		
	% Clay (<4um) (%)	28.0	40.0		
	Texture	Silt loam	Silty clay loam		
Organic / Inorganic Carbon	Total Organic Carbon (%)	17.8	21.2		
Metals	Aluminum (Al) (mg/kg)	10200	9200		
	Antimony (Sb) (mg/kg)	1.08	1.05		
	Arsenic (As) (mg/kg)	6.22	5.84		
	Barium (Ba) (mg/kg)	343	316		
	Beryllium (Be) (mg/kg)	0.88	0.71		
	Bismuth (Bi) (mg/kg)	<0.20	<0.20		
	Boron (B) (mg/kg)	7.2	5.7		
	Cadmium (Cd) (mg/kg)	1.45	1.35		
	Calcium (Ca) (mg/kg)	44800	62700		
	Chromium (Cr) (mg/kg)	15.4	13.9		
	Cobalt (Co) (mg/kg)	11.7	10.1		
	Copper (Cu) (mg/kg)	27.2	26.6		
	Iron (Fe) (mg/kg)	15500	13600		
	Lead (Pb) (mg/kg)	12.8	12.5		
	Lithium (Li) (mg/kg)	10.4	8.7		
	Magnesium (Mg) (mg/kg)	5240	4750		
	Manganese (Mn) (mg/kg)	701	595		
	Mercury (Hg) (mg/kg)	0.120	0.118		
	Molybdenum (Mo) (mg/kg)	1.67	1.72		
	Nickel (Ni) (mg/kg)	67.9	67.8		
	Phosphorus (P) (mg/kg)	1030	924		
	Potassium (K) (mg/kg)	2440	2260		
	Selenium (Se) (mg/kg)	9.40	8.99		

L2644215 CONTD.... PAGE 4 of 15 23-NOV-21 17:13 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644215-1 SE 22-SEP-21 09:00 RG_GHP_SE- 1_2021-09- 22.0900	L2644215-2 SE 22-SEP-21 10:00 RG_GHP_SE- 6_2021-09- 22 1000	L2644215-3 SE 21-SEP-21 11:15 RG_GHP_SE- 3_2021-09- 21 1115	L2644215-4 SE 21-SEP-21 10:00 RG_GHP_SE- 4_2021-09- 21 1000	L2644215-5 SE 23-SEP-21 10:00 RG_GHP_SE- 5_2021-09- 23 1000
Grouping	Analyte	0000	22_1000	21_1113	21_1000	23_1000
SOIL						
Metals	Silver (Ag) (mg/kg)	0.37	0.36	0.38	0.34	0 47
	Sodium (Na) (mg/kg)	73	71	77	82	83
	Strontium (Sr) (mg/kg)	59.0	62.3	54.3	62.1	67.7
	Sulfur (S) (mg/kg)	2400	1800	1600	2000	1700
	Thallium (TI) (mg/kg)	0.139	0.092	0.125	0.111	0.122
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti) (mg/kg)	5.0	7.3	6.8	6.9	10.2
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	1.76	1.09	1.13	1.14	1.22
	Vanadium (V) (mg/kg)	30.5	33.4	31.1	32.3	41.2
	Zinc (Zn) (mg/kg)	138	135	137	117	156
	Zirconium (Zr) (mg/kg)	1.1	<1.0	<1.0	<1.0	<1.0
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.32	ol.67	<0.44	<0.53	<0.46
	Acenaphthylene (mg/kg)	0.426	0.0347	0.0166	DLCI <0.020	DLCI <0.030
	Acridine (mg/kg)	DLCI <0.59	DLCI <1.1	DLCI <0.80	DLCI <1.0	DLCI <0.82
	Anthracene (mg/kg)	<0.0040	0.0064	<0.0040	0.0074	<0.0040
	Benz(a)anthracene (mg/kg)	0.483	ollCi	<0.22	olci <0.27	<0.56
	Benzo(a)pyrene (mg/kg)	0.077	0.133	0.097	0.137	0.089
	Benzo(b&j)fluoranthene (mg/kg)	0.386	0.514	0.478	0.496	0.475
	Benzo(b+j+k)fluoranthene (mg/kg)	0.408	0.540	0.515	0.536	0.508
	Benzo(e)pyrene (mg/kg)	0.364	0.511	0.458	0.480	0.452
	Benzo(g,h,i)perylene (mg/kg)	0.101	0.142	0.120	ollci <0.13	0.122
	Benzo(k)fluoranthene (mg/kg)	0.022	0.026	0.037	0.039	0.033
	Chrysene (mg/kg)	<0.62	OLCI	<0.72	ollci <0.96	<0.59
	Dibenz(a,h)anthracene (mg/kg)	0.0655	<0.080	DLCI <0.080	0.0879	0.0818
	Fluoranthene (mg/kg)	<0.18	0.215	0.193	0.239	0.220
	Fluorene (mg/kg)	0.807	1.39	0.851	1.47	1.15
	Indeno(1,2,3-c,d)pyrene (mg/kg)	0.038	0.052	0.044	0.049	0.047
	1-Methylnaphthalene (mg/kg)	3.84	7.39	5.14	6.81	5.23
	2-Methylnaphthalene (mg/kg)	7.09	13.9	9.45	13.1	9.70
	Naphthalene (mg/kg)	2.18	4.68	2.92	4.61	3.02
	Perylene (mg/kg)	<0.010	<0.010	<0.010	<0.010	0.015
	Phenanthrene (mg/kg)	3.13	5.34	4.04	4.84	4.04
	Pyrene (mg/kg)	<0.35	0.493	0.432	0.459	0.437
	Quinoline (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: d10-Acenaphthene (%)	76.4	95.8	92.6	88.0	86.0

L2644215 CONTD.... PAGE 5 of 15 23-NOV-21 17:13 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644215-6 SE 21-SEP-21 11:15 RG_RIVER_SE- 1_2021-09- 21_1115	L2644215-7 SE 22-SEP-21 10:00 RG_RIVER_SE- 2_2021-09- 22_1000		
Grouping	Analyte				
SOIL					
Metals	Silver (Ag) (mg/kg)	0.40	0.38		
	Sodium (Na) (mg/kg)	79	78		
	Strontium (Sr) (mg/kg)	57.6	67.4		
	Sulfur (S) (mg/kg)	1700	1900		
	Thallium (TI) (mg/kg)	0.145	0.095		
	Tin (Sn) (mg/kg)	<2.0	<2.0		
	Titanium (Ti) (mg/kg)	10.3	8.4		
	Tungsten (W) (mg/kg)	<0.50	<0.50		
	Uranium (U) (mg/kg)	1.20	1.11		
	Vanadium (V) (mg/kg)	38.0	35.6		
	Zinc (Zn) (mg/kg)	139	137		
	Zirconium (Zr) (mg/kg)	<1.0	<1.0		
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.39	<0.59		
	Acenaphthylene (mg/kg)	0.0084	0.0429		
	Acridine (mg/kg)	<0.72	<1.1		
	Anthracene (mg/kg)	0.0059	0.0041		
	Benz(a)anthracene (mg/kg)	<0.70	<0.29		
	Benzo(a)pyrene (mg/kg)	0.086	0.118		
	Benzo(b&j)fluoranthene (mg/kg)	0.462	0.502		
	Benzo(b+j+k)fluoranthene (mg/kg)	0.488	0.536		
	Benzo(e)pyrene (mg/kg)	0.432	0.518		
	Benzo(g,h,i)perylene (mg/kg)	0.115	0.133		
	Benzo(k)fluoranthene (mg/kg)	0.026	0.034		
	Chrysene (mg/kg)	<0.68	<0.92		
	Dibenz(a,h)anthracene (mg/kg)	0.0743	0.0901		
	Fluoranthene (mg/kg)	0.205	0.248		
	Fluorene (mg/kg)	0.976	1.58		
	Indeno(1,2,3-c,d)pyrene (mg/kg)	0.040	0.056		
	1-Methylnaphthalene (mg/kg)	4.76	7.23		
	2-Methylnaphthalene (mg/kg)	8.78	13.6		
	Naphthalene (mg/kg)	2.72	4.64		
	Perylene (mg/kg)	<0.010	<0.010		
	Phenanthrene (mg/kg)	3.73	5.13		
	Pyrene (mg/kg)	0.402	0.474		
	Quinoline (mg/kg)	<0.050	<0.050		
	Surrogate: d10-Acenaphthene (%)	92.2	91.4		

L2644215 CONTD.... PAGE 6 of 15 23-NOV-21 17:13 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644215-1 SE 22-SEP-21 09:00 RG_GHP_SE- 1_2021-09- 22_0900	L2644215-2 SE 22-SEP-21 10:00 RG_GHP_SE- 6_2021-09- 22_1000	L2644215-3 SE 21-SEP-21 11:15 RG_GHP_SE- 3_2021-09- 21_1115	L2644215-4 SE 21-SEP-21 10:00 RG_GHP_SE- 4_2021-09- 21_1000	L2644215-5 SE 23-SEP-21 10:00 RG_GHP_SE- 5_2021-09- 23_1000
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Surrogate: d12-Chrysene (%)	64.0	66.3	73.0	66.2	65.3
	Surrogate: d8-Naphthalene (%)	67.8	72.5	75.6	68.7	72.8
	Surrogate: d10-Phenanthrene (%)	70.2	72.6	78.1	72.3	71.5
	IACR:Coarse	0.143	0.162	0.139	0.157	0.153
	IACR:Fine	0.274	0.312	0.268	0.301	0.294
	B(a)P Total Potency Equivalent (mg/kg)	0.240	0.276	0.209	0.302	0.259
	IACR (CCME)	4.68	5.3	4.19	4.77	4.8
Exchangeable & Adsorbed Metals	Aluminum (Al)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Arsenic (As)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Barium (Ba)-Leachable (mg/kg)	18.1	16.5	17.3	21.4	17.2
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.109	0.161	0.266	0.113	0.235
	Calcium (Ca)-Leachable (mg/kg)	3780	2990	3420	3170	3710
	Chromium (Cr)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Cobalt (Co)-Leachable (mg/kg)	0.42	0.12	0.11	0.37	0.19
	Copper (Cu)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Iron (Fe)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Lead (Pb)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	23.4	60.2	69.8	81.8	103
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nickel (Ni)-Leachable (mg/kg)	2.34	1.98	1.88	2.18	2.40
	Phosphorus (P)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Potassium (K)-Leachable (mg/kg)	<100	<100	<100	110	120
	Selenium (Se)-Leachable (mg/kg)	2.62	0.52	0.30	0.85	0.69
	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Sodium (Na)-Leachable (mg/kg)	<100	<100	<100	<100	<100
	Strontium (Sr)-Leachable (mg/kg)	5.04	4.24	4.79	4.63	5.48
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Uranium (U)-Leachable (mg/kg)	0.271	0.087	0.074	0.107	0.114
	Vanadium (V)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Zinc (Zn)-Leachable (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0

L2644215 CONTD.... PAGE 7 of 15 23-NOV-21 17:13 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644215-6 SE 21-SEP-21 11:15 RG_RIVER_SE- 1_2021-09- 21 1115	L2644215-7 SE 22-SEP-21 10:00 RG_RIVER_SE- 2_2021-09- 22 1000		
Grouping	Analyte				
SOIL					
Polycyclic Aromatic Hydrocarbons	Surrogate: d12-Chrysene (%)	73.3	64.3		
	Surrogate: d8-Naphthalene (%)	75.2	67.6		
	Surrogate: d10-Phenanthrene (%)	77.2	71.0		
	IACR:Coarse	0.151	0.153		
	IACR:Fine	0.289	0.294		
	B(a)P Total Potency Equivalent (mg/kg)	0.253	0.288		
	IACR (CCME)	4.9	4.76		
Exchangeable & Adsorbed Metals	Aluminum (Al)-Leachable (mg/kg)	<50	<50		
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10		
	Arsenic (As)-Leachable (mg/kg)	<0.050	<0.050		
	Barium (Ba)-Leachable (mg/kg)	17.8	16.1		
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20		
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20		
	Cadmium (Cd)-Leachable (mg/kg)	0.258	0.166		
	Calcium (Ca)-Leachable (mg/kg)	3780	3140		
	Chromium (Cr)-Leachable (mg/kg)	<0.50	<0.50		
	Cobalt (Co)-Leachable (mg/kg)	<0.10	<0.10		
	Copper (Cu)-Leachable (mg/kg)	<0.50	<0.50		
	Iron (Fe)-Leachable (mg/kg)	<50	<50		
	Lead (Pb)-Leachable (mg/kg)	<0.50	<0.50		
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0		
	Manganese (Mn)-Leachable (mg/kg)	7.3	50.4		
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50		
	Nickel (Ni)-Leachable (mg/kg)	1.40	2.22		
	Phosphorus (P)-Leachable (mg/kg)	<50	<50		
	Potassium (K)-Leachable (mg/kg)	<100	100		
	Selenium (Se)-Leachable (mg/kg)	0.41	0.47		
	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10		
	Sodium (Na)-Leachable (mg/kg)	<100	<100		
	Strontium (Sr)-Leachable (mg/kg)	5.09	4.39		
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050		
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0		
	Titanium (Ti)-Leachable (mg/kg)	<1.0	<1.0		
	Uranium (U)-Leachable (mg/kg)	0.086	0.090		
	Vanadium (V)-Leachable (mg/kg)	<0.20	<0.20		
	Zinc (Zn)-Leachable (mg/kg)	<10	<10		

L2644215 CONTD.... PAGE 8 of 15 23-NOV-21 17:13 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644215-1 SE 22-SEP-21 09:00 RG_GHP_SE- 1_2021-09- 22_0900	L2644215-2 SE 22-SEP-21 10:00 RG_GHP_SE- 6_2021-09- 22_1000	L2644215-3 SE 21-SEP-21 11:15 RG_GHP_SE- 3_2021:09- 21_1115	L2644215-4 SE 21-SEP-21 10:00 RG_GHP_SE- 4_2021-09- 21_1000	L2644215-5 SE 23-SEP-21 10:00 RG_GHP_SE- 5_2021-09- 23_1000
Grouping	Analyte					
SOIL						
Carbonate Metals	Aluminum (Al)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Arsenic (As)-Leachable (mg/kg)	0.100	<0.050	0.056	0.096	<0.050
	Barium (Ba)-Leachable (mg/kg)	55.0	52.9	47.9	51.9	50.0
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.559	0.537	0.501	0.481	0.588
	Calcium (Ca)-Leachable (mg/kg)	41400	49400	32000	45600	39900
	Chromium (Cr)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Cobalt (Co)-Leachable (mg/kg)	1.44	0.40	0.36	1.11	0.56
	Copper (Cu)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Iron (Fe)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Lead (Pb)-Leachable (mg/kg)	1.05	<0.50	<0.50	0.85	0.51
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	55.6	109	126	91.5	153
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nickel (Ni)-Leachable (mg/kg)	11.8	11.2	9.4	10.4	11.4
	Phosphorus (P)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Selenium (Se)-Leachable (mg/kg)	0.82	0.21	<0.20	<0.20	<0.20
	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Strontium (Sr)-Leachable (mg/kg)	18.9	20.2	14.4	18.6	19.1
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Uranium (U)-Leachable (mg/kg)	0.516	0.261	0.203	0.327	0.225
	Vanadium (V)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Zinc (Zn)-Leachable (mg/kg)	24.9	15.6	16.2	15.3	16.4
Easily Reducible Metals and Iron Oxides	Aluminum (Al)-Leachable (mg/kg)	631	665	638	592	642
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Arsenic (As)-Leachable (mg/kg)	0.816	0.473	0.487	0.622	0.468
	Barium (Ba)-Leachable (mg/kg)	49.6	45.2	47.7	37.2	48.3
	Beryllium (Be)-Leachable (mg/kg)	0.33	0.37	0.35	0.33	0.37
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.626	0.435	0.441	0.416	0.471
	Calcium (Ca)-Leachable (mg/kg)	7850	6290	6440	8810	5990
	Chromium (Cr)-Leachable (mg/kg)	0.99	1.08	0.98	0.92	1.01

L2644215 CONTD.... PAGE 9 of 15 23-NOV-21 17:13 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644215-6 SE 21-SEP-21 11:15 RG_RIVER_SE- 1_2021-09- 21_1115	L2644215-7 SE 22-SEP-21 10:00 RG_RIVER_SE- 2_2021-09- 22_1000		
Grouping	Analyte				
SOIL					
Carbonate Metals	Aluminum (Al)-Leachable (mg/kg)	<50	<50		
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10		
	Arsenic (As)-Leachable (mg/kg)	<0.050	<0.050		
	Barium (Ba)-Leachable (mg/kg)	47.9	46.4		
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20		
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20		
	Cadmium (Cd)-Leachable (mg/kg)	0.543	0.507		
	Calcium (Ca)-Leachable (mg/kg)	32800	45000		
	Chromium (Cr)-Leachable (mg/kg)	<5.0	<5.0		
	Cobalt (Co)-Leachable (mg/kg)	0.13	0.31		
	Copper (Cu)-Leachable (mg/kg)	<0.50	<0.50		
	Iron (Fe)-Leachable (mg/kg)	<50	<50		
	Lead (Pb)-Leachable (mg/kg)	<0.50	<0.50		
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0		
	Manganese (Mn)-Leachable (mg/kg)	90.4	91.3		
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50		
	Nickel (Ni)-Leachable (mg/kg)	8.0	9.7		
	Phosphorus (P)-Leachable (mg/kg)	<50	<50		
	Selenium (Se)-Leachable (mg/kg)	<0.20	<0.20		
	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10		
	Strontium (Sr)-Leachable (mg/kg)	15.2	18.3		
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050		
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0		
	Titanium (Ti)-Leachable (mg/kg)	<5.0	<5.0		
	Uranium (U)-Leachable (mg/kg)	0.204	0.238		
	Vanadium (V)-Leachable (mg/kg)	<0.20	<0.20		
	Zinc (Zn)-Leachable (mg/kg)	16.4	13.4		
Easily Reducible Metals and Iron Oxides	Aluminum (Al)-Leachable (mg/kg)	621	607		
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10		
	Arsenic (As)-Leachable (mg/kg)	0.486	0.404		
	Barium (Ba)-Leachable (mg/kg)	48.2	39.6		
	Beryllium (Be)-Leachable (mg/kg)	0.36	0.35		
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20		
	Cadmium (Cd)-Leachable (mg/kg)	0.474	0.452		
	Calcium (Ca)-Leachable (mg/kg)	6520	7740		
	Chromium (Cr)-Leachable (mg/kg)	0.95	1.00		

L2644215 CONTD.... PAGE 10 of 15 23-NOV-21 17:13 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644215-1 SE 22-SEP-21 09:00 RG_GHP_SE- 1_2021-09- 22 0900	L2644215-2 SE 22-SEP-21 10:00 RG_GHP_SE- 6_2021-09- 22 1000	L2644215-3 SE 21-SEP-21 11:15 RG_GHP_SE- 3_2021-09- 21 1115	L2644215-4 SE 21-SEP-21 10:00 RG_GHP_SE- 4_2021-09- 21 1000	L2644215-5 SE 23-SEP-21 10:00 RG_GHP_SE- 5_2021-09- 23 1000
Grouping	Analyte				_	_
SOIL						
Easily Reducible Metals and Iron Oxides	Cobalt (Co)-Leachable (mg/kg)	4.09	5.34	6.55	3.81	6.04
	Copper (Cu)-Leachable (mg/kg)	0.57	0.60	0.57	<0.50	0.71
	Iron (Fe)-Leachable (mg/kg)	3680	3560	3400	3160	3520
	Lead (Pb)-Leachable (mg/kg)	3.36	3.97	3.47	3.49	3.90
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	59.8	319	410	88.1	351
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nickel (Ni)-Leachable (mg/kg)	30.6	31.2	31.1	27.9	33.8
	Phosphorus (P)-Leachable (mg/kg)	111	125	159	143	134
	Selenium (Se)-Leachable (mg/kg)	2.81	0.86	0.83	0.99	1.16
	Silver (Ag)-Leachable (mg/kg)	<0.10	0.12	0.15	<0.10	0.13
	Strontium (Sr)-Leachable (mg/kg)	8.34	7.29	6.78	8.56	6.67
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Uranium (U)-Leachable (mg/kg)	0.320	0.179	0.228	0.192	0.197
	Vanadium (V)-Leachable (mg/kg)	3.59	3.84	3.27	3.19	3.57
	Zinc (Zn)-Leachable (mg/kg)	51.1	49.3	48.6	42.0	53.5
Organic Bound Metals	Aluminum (Al)-Leachable (mg/kg)	1670	1430	1750	1440	1770
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Arsenic (As)-Leachable (mg/kg)	0.480	0.382	0.453	0.379	0.410
	Barium (Ba)-Leachable (mg/kg)	26.6	32.2	25.1	25.8	29.8
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.108	0.088	0.100	0.094	0.102
	Calcium (Ca)-Leachable (mg/kg)	1500	1040	1400	1360	1410
	Chromium (Cr)-Leachable (mg/kg)	4.16	3.15	4.07	3.40	3.96
	Cobalt (Co)-Leachable (mg/kg)	1.15	0.81	1.20	0.83	1.15
	Copper (Cu)-Leachable (mg/kg)	10.5	7.78	9.76	8.21	10.6
	Iron (Fe)-Leachable (mg/kg)	1780	1210	1660	1380	1540
	Lead (Pb)-Leachable (mg/kg)	1.51	1.52	1.59	1.33	1.63
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	8.2	18.2	26.6	9.1	26.3
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nickel (Ni)-Leachable (mg/kg)	12.2	8.45	11.9	9.70	11.5
	Selenium (Se)-Leachable (mg/kg)	34.4	6.91	7 14	10.6	12.3

L2644215 CONTD.... PAGE 11 of 15 23-NOV-21 17:13 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644215-6 SE 21-SEP-21 11:15 RG_RIVER_SE- 1_2021-09- 21 1115	L2644215-7 SE 22-SEP-21 10:00 RG_RIVER_SE- 2_2021-09- 22 1000		
Grouping	Analyte				
SOIL					
Easily Reducible Metals and Iron Oxides	Cobalt (Co)-Leachable (mg/kg)	6.72	5.52		
	Copper (Cu)-Leachable (mg/kg)	0.55	0.63		
	Iron (Fe)-Leachable (mg/kg)	3370	3390		
	Lead (Pb)-Leachable (mg/kg)	3.65	4.12		
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0		
	Manganese (Mn)-Leachable (mg/kg)	515	349		
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50		
	Nickel (Ni)-Leachable (mg/kg)	33.4	31.9		
	Phosphorus (P)-Leachable (mg/kg)	135	103		
	Selenium (Se)-Leachable (mg/kg)	0.81	0.77		
	Silver (Ag)-Leachable (mg/kg)	0.14	0.11		
	Strontium (Sr)-Leachable (mg/kg)	7.06	7.05		
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050		
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0		
	Titanium (Ti)-Leachable (mg/kg)	<1.0	<1.0		
	Uranium (U)-Leachable (mg/kg)	0.239	0.172		
	Vanadium (V)-Leachable (mg/kg)	3.24	3.65		
	Zinc (Zn)-Leachable (mg/kg)	48.5	50.3		
Organic Bound Metals	Aluminum (Al)-Leachable (mg/kg)	1790	1430		
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10		
	Arsenic (As)-Leachable (mg/kg)	0.456	0.388		
	Barium (Ba)-Leachable (mg/kg)	26.9	31.3		
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20		
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20		
	Cadmium (Cd)-Leachable (mg/kg)	0.099	0.091		
	Calcium (Ca)-Leachable (mg/kg)	1430	1290		
	Chromium (Cr)-Leachable (mg/kg)	4.20	3.48		
	Cobalt (Co)-Leachable (mg/kg)	1.30	0.83		
	Copper (Cu)-Leachable (mg/kg)	9.75	7.84		
	Iron (Fe)-Leachable (mg/kg)	1710	1320		
	Lead (Pb)-Leachable (mg/kg)	1.55	1.42		
	Lithíum (Li)-Leachable (mg/kg)	<5.0	<5.0		
	Manganese (Mn)-Leachable (mg/kg)	32.0	20.3		
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50		
	Nickel (Ni)-Leachable (mg/kg)	12.5	9.00		
	Selenium (Se)-Leachable (mg/kg)	7 34	6 89		

L2644215 CONTD.... PAGE 12 of 15 23-NOV-21 17:13 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644215-1 SE 22-SEP-21 09:00 RG_GHP_SE- 1_2021-09- 22_0900	L2644215-2 SE 22-SEP-21 10:00 RG_GHP_SE- 6_2021-09- 22_1000	L2644215-3 SE 21-SEP-21 11:15 RG_GHP_SE- 3_202109- 21_1115	L2644215-4 SE 21-SEP-21 10:00 RG_GHP_SE- 4_2021-09- 21_1000	L2644215-5 SE 23-SEP-21 10:00 RG_GHP_SE- 5_2021-09- 23_1000
Grouping	Analyte					
SOIL						
Organic Bound Metals	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Strontium (Sr)-Leachable (mg/kg)	5.33	3.64	4.86	4.37	4.71
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	14.6	8.7	10.9	13.9	<1.0
	Uranium (U)-Leachable (mg/kg)	0.426	0.270	0.379	0.285	0.357
	Vanadium (V)-Leachable (mg/kg)	5.66	5.13	5.68	5.30	5.78
	Zinc (Zn)-Leachable (mg/kg)	9.7	8.6	10.6	8.7	11.4
Residual Metals	Aluminum (Al)-Leachable (mg/kg)	6100	5810	7020	5900	7610
	Antimony (Sb)-Leachable (mg/kg)	0.88	0.92	1.04	0.85	1.11
	Arsenic (As)-Leachable (mg/kg)	3.86	4.53	5.28	4.20	5.61
	Barium (Ba)-Leachable (mg/kg)	190	119	163	144	166
	Beryllium (Be)-Leachable (mg/kg)	0.34	0.36	0.38	0.35	0.42
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.074	0.090	0.109	0.082	0.103
	Calcium (Ca)-Leachable (mg/kg)	115	80	109	99	110
	Chromium (Cr)-Leachable (mg/kg)	9.6	9.4	11.2	9.4	12.0
	Cobalt (Co)-Leachable (mg/kg)	2.83	3.19	3.49	3.05	3.72
	Copper (Cu)-Leachable (mg/kg)	15.5	19.6	19.2	17.2	22.0
	Iron (Fe)-Leachable (mg/kg)	9080	9580	11600	9620	12000
	Lead (Pb)-Leachable (mg/kg)	7.58	7.96	9.30	7.31	9.79
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	5.3	<5.0	5.3
	Manganese (Mn)-Leachable (mg/kg)	36.6	43.5	48.0	41.6	51.2
	Molybdenum (Mo)-Leachable (mg/kg)	0.91	1.11	1.29	1.01	1.51
	Nickel (Ni)-Leachable (mg/kg)	11.5	13.0	14.6	12.3	15.8
	Selenium (Se)-Leachable (mg/kg)	10.2	1.84	2.05	3.65	3.54
	Silver (Ag)-Leachable (mg/kg)	0.32	0.23	0.24	0.28	0.31
	Strontium (Sr)-Leachable (mg/kg)	19.3	20.7	21.3	20.2	23.4
	Thallium (TI)-Leachable (mg/kg)	0.154	0.099	0.166	0.109	0.144
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	13.2	8.7	17.0	13.1	12.4
	Uranium (U)-Leachable (mg/kg)	0.325	0.325	0.366	0.310	0.404
	Vanadium (V)-Leachable (mg/kg)	25.3	25.3	29.6	25.4	31.4
	Zinc (Zn)-Leachable (mg/kg)	62.2	71.0	80.7	69.4	85.2

L2644215 CONTD.... PAGE 13 of 15 23-NOV-21 17:13 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644215-6 SE 21-SEP-21 11:15 RG_RIVER_SE- 1_2021-09- 21_1115	L2644215-7 SE 22-SEP-21 10:00 RG_RIVER_SE- 2_2021-09- 22_1000		
Grouping	Analyte				
SOIL					
Organic Bound Metals	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10		
	Strontium (Sr)-Leachable (mg/kg)	4.91	4.15		
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050		
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0		
	Titanium (Ti)-Leachable (mg/kg)	1.1	4.8		
	Uranium (U)-Leachable (mg/kg)	0.386	0.277		
	Vanadium (V)-Leachable (mg/kg)	5.65	5.34		
	Zinc (Zn)-Leachable (mg/kg)	11.3	81.9		
Residual Metals	Aluminum (Al)-Leachable (mg/kg)	6450	6120		
	Antimony (Sb)-Leachable (mg/kg)	1.05	1.00		
	Arsenic (As)-Leachable (mg/kg)	5.02	4.68		
	Barium (Ba)-Leachable (mg/kg)	151	128		
	Beryllium (Be)-Leachable (mg/kg)	0.38	0.33		
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20		
	Cadmium (Cd)-Leachable (mg/kg)	0.108	0.080		
	Calcium (Ca)-Leachable (mg/kg)	103	80		
	Chromium (Cr)-Leachable (mg/kg)	10.4	9.6		
	Cobalt (Co)-Leachable (mg/kg)	3.37	3.18		
	Copper (Cu)-Leachable (mg/kg)	18.3	19.4		
	Iron (Fe)-Leachable (mg/kg)	11300	9800		
	Lead (Pb)-Leachable (mg/kg)	9.13	7.96		
	Lithium (Li)-Leachable (mg/kg)	5.0	<5.0		
	Manganese (Mn)-Leachable (mg/kg)	45.0	42.9		
	Molybdenum (Mo)-Leachable (mg/kg)	1.33	1.18		
	Nickel (Ni)-Leachable (mg/kg)	14.2	12.6		
	Selenium (Se)-Leachable (mg/kg)	2.15	1.76		
	Silver (Ag)-Leachable (mg/kg)	0.25	0.23		
	Strontium (Sr)-Leachable (mg/kg)	20.1	21.3		
	Thallium (TI)-Leachable (mg/kg)	0.155	0.128		
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0		
	I Itanium (1)-Leachable (mg/kg)	13.5	13.2		
	Uranium (U)-Leachable (mg/kg)	0.350	0.322		
	vanadium (V)-Leachable (mg/kg)	27.5	26.3		
	∠inc (∠n)-Leachable (mg/kg)	77.2	72.5		

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Descri	ption	Parameter	Qualifier	Applies to Sample Number(s)
Qualifiers for l	ndividual Parameters	Listed:		
Qualifier	Description			
DLCI	Detection Limit Raise	d: Chromatographic Interference due to co	o-elution.	
est Method Re	eferences:			
ALS Test Code	Matrix	Test Description		Method Reference**
C-TIC-PCT-SK	Soil	Total Inorganic Carbon in Soil		CSSS (2008) P216-217
A known quanti against a standa	ty of acetic acid is cons ard curve relating pH to	sumed by reaction with carbonates in the so weight of carbonate.	soil. The pH of	f the resulting solution is measured and compared
C-TOC-CALC-SP	K Soil	Total Organic Carbon Calculation		CSSS (2008) 21.2
Total Organic C	arbon (TOC) is calcula	ted by the difference between total carbor	n (TC) and tota	al inorganic carbon. (TIC)
C-TOT-LECO-SK	K Soil	Total Carbon by combustion method		CSSS (2008) 21.2
The sample is ig	gnited in a combustion	analyzer where carbon in the reduced CO	2 gas is deter	mined using a thermal conductivity detector.
HG-200.2-CVAA-	-CL Soil	Mercury in Soil by CVAAS		EPA 200.2/1631E (mod)
Soil samples ar	e digested with nitric ar	nd hydrochloric acids, followed by analysis	s by CVAAS.	
C-CACO3-CALC	Soil	Inorganic Carbon as CaCO3 Equivalen	ıt	Calculation
MET-200.2-CCM	S-CL Soil	Metals in Soil by CRC ICPMS		EPA 200.2/6020A (mod)
Soil/sediment is nitric and hydror	dried, disaggregated, chloric acids. Instrume	and sieved (2 mm). Strong Acid Leachab ntal analysis is by Collision / Reaction Cell	le Metals in th I ICPMS.	e <2mm fraction are solubilized by heated digestion wi

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including Al, Ba, Be, Cr, S, Sr, Ti, TI, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

MET-TESS-CM-CCMS-VA Soil METALS BY CCMS (TESSIER EXTRACTION #2) Tessier Extraction 1979/EPA 6020A

This analysis is modified from the extraction procedure outlined in the "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals" Analytical Chemistry, (A. Tessier, P.G.C. Campbell, and M. Bisson, June 1979). Initially, the sample is manually homogenized, dried at <60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed for extraction. In summary, the sample is sequentially extracted with 5 or 6 (if a pre-liminary water extraction is included) different extraction solutions. The extract is then centrifuged for 30 minutes and the supernatant is subsequently removed and analysed. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Note: For Extraction #2, the extraction solution is 1M Sodium Acetate adjusted to pH 5 and is intended to extract the "Carbonate" metals.

MET-TESS-EA-CCMS-VA Soil METALS BY CCMS (TESSIER EXTRACTION #1) Tessier Extraction 1979/EPA 6020A

This analysis is modified from the extraction procedure outlined in the "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals" Analytical Chemistry, (A. Tessier, P.G.C. Campbell, and M. Bisson, June 1979). Initially, the sample is manually homogenized, dried at <60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed for extraction. In summary, the sample is sequentially extracted with 5 or 6 (if a pre-liminary water extraction is included) different extraction solutions. The extract is then centrifuged for 30 minutes and the supernatant is subsequently removed and analysed. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Note: For Extraction #1, the extraction solution is 1M Magnesium Chloride and is intended to extract the "Exchangeable and Adsorbed" metals.

MET-TESS-FEO-CCMS-VA Soil METALS BY CCMS (TESSIER EXTRACTION #3) Tessier Extraction 1979/EPA 6020A

This analysis is modified from the extraction procedure outlined in the "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals" Analytical Chemistry, (A. Tessier, P.G.C. Campbell, and M. Bisson, June 1979). Initially, the sample is manually homogenized, dried at <60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed for extraction. In summary, the sample is sequentially extracted with 5 or 6 (if a pre-liminary water extraction is included) different extraction solutions. The extract is then centrifuged for 30 minutes and the supernatant is subsequently removed and analysed. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Note: For Extraction #3, the extraction solution is 0.1 M Hydroxylamine Hydro[,] Chloride in 25% v/v Acetic Acid and is intended to extract the Easily Reducible Metals and Iron Oxides .

MET-TESS-OB-CCMS-VA Soil METALS BY CCMS (TESSIER EXTRACTION #4) Tessier Extraction 1979/EPA 6020A

"This analysis is modified from the extraction procedure outlined in the "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals" Analytical Chemistry, (A. Tessier, P.G.C. Campbell, and M. Bisson, June 1979). Initially, the sample is manually homogenized, dried at <60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed for extraction. In summary, the sample is sequentially extracted with 5 or 6 (if a pre-liminary water extraction is included) different extraction solutions. The extract is then centrifuged for 30 minutes and the supernatant is subsequently removed and analysed. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Reference Information

Note: For Extraction #4, the extraction solution is 0.02 M Nitric Acid followed by 3.2M Ammonium Acetate and is intended to extract the Organic Bound metals.

MET-TESS-RM-CCMS-VA Soil METALS BY CCMS (TESSIER RM EXTRACTION) Tessier Extraction 1979/EPA 6020A

"This analysis is modified from the extraction procedure outlined in the "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals" Analytical Chemistry, (A. Tessier, P.G.C. Campbell, and M. Bisson, June 1979). Initially, the sample is manually homogenized, dried at <60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed for extraction. In summary, the sample is sequentially extracted with up to 6 different extraction solutions. The extract is then centrifuged for 30 minutes and the supernatant is subsequently removed and analysed. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Note: For the Tessier "RM" Extraction, the extraction solution is 50/50 mix of 1:1 Nitric Acid along with 1:1 Hydrochloric Acid, and is hot block digested as per the BC SALM procedure. This is intended to extract the Residual metals.

MOISTURE-CL Soil % Moisture

CCME PHC in Soil - Tier 1 (mod)

This analysis is carried out gravimetrically by drying the sample at 105 C

PAH-TMB-H/A-MS-CL Soil PAH Tumbler Extraction (Hexane/Acetone)

EPA 3570/8270-GC/MS

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3545 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PH-1:2-CL Soil pH in soil (1:2 Soil:Water Extraction)

CSSS Ch. 16

Soil and de-ionized water (by volume) are mixed in a defined ratio. The slurry is allowed to stand, shaken, and then allowed to stand again prior to taking measurements. After equilibration, the pH of the liquid portion of the extract is measured by a pH meter. Field Measurement is recommended where accurate pH measurements are required, due to the 15 minute recommended hold time.

PSA-PIPET-DETAIL-SK Soil Particle size - Sieve and Pipette

SSIR-51 METHOD 3.2.1

Particle size distribution is determined by a combination of techniques. Dry sieving is performed for coarse particles, wet sieving for sand particles and the pipette sedimentation method for clay particles.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L264421	5	Report Date:	23-NOV-21	Pa	ge 1 of 22
Client:	Teck Coal Ltd. 421 Pine Avenue Sparwood BC V0B 2G0 Allie Ferguson							-
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-TIC-PCT-SK	Soil							-
Batch	5011 R5612136							
WG3630724-1 Inorganic Car	DUP bon	L2644215-4 1.79	1.78		%	0.7	20	06-OCT-21
WG3630724-4 Inorganic Car	IRM bon	08-109_SOIL	94.1		%		80-120	06-OCT-21
WG3630724-2 Inorganic Car	2 LCS bon	0.5	94.5		%		90-110	06-OCT-21
WG3630724-3 Inorganic Car	B MB bon		<0.050		%		0.05	06-OCT-21
C-TOT-LECO-SK	Soil							
Batch I	R5610919							
WG3628019-1 Total Carbon	I DUP by Combustion	L2644215-4 23.1	23.7		%	2.8	20	05-OCT-21
WG3628019-2 Total Carbon	2 IRM by Combustion	08-109_SOIL	102.4		%		80-120	05-OCT-21
WG3628019-4 Total Carbon	LCS by Combustion	SULFADIAZIN	E 99.8		%		90-110	05-OCT-21
WG3628019-3 Total Carbon	B MB by Combustion		<0.05		%		0.05	05-OCT-21
HG-200.2-CVAA-	CL Soil							
Batch	R5611541							
WG3632545-4 Mercury (Hg)	4 CRM	TILL-2	110.1		%		70-130	06-OCT-21
WG3632545-2 Mercury (Hg)	2 LCS		101.0		%		80-120	06-OCT-21
WG3632545-1 Mercury (Hg)	I MB		<0.0050		mg/kg		0.005	06-OCT-21
MET-200.2-CCM	S-CL Soil							
Batch I	R5612016							
WG3632545-4 Aluminum (Al	CRM	TILL-2	97.7		%		70-130	06-OCT-21
Antimony (Sb)		102.1		%		70-130	06-OCT-21
Arsenic (As)			104.6		%		70-130	06-OCT-21
Barium (Ba)			113.8		%		70-130	06-OCT-21
Beryllium (Be)		90.9		%		70-130	06-OCT-21
Bismuth (Bi)			95.2		%		70-130	06-OCT-21
Cadmium (Co	(b		105.2		%		70-130	06-OCT-21
Calcium (Ca)			99.4		%		70-130	06-OCT-21

		Workorder: L2644215		Report Date: 23-NOV-21		Page 2 of 22		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R56120	16							
WG3632545-4 CRI	Μ	TILL-2						
			100.6		%		70-130	06-OCT-21
Cobalt (Co)			104.0		%		70-130	06-OCT-21
Copper (Cu)			102.4		%		70-130	06-OCT-21
Iron (Fe)			100.7		%		70-130	06-OCT-21
Lead (Pb)			101.4		%		70-130	06-OCT-21
Lithium (Li)			100.4		%		70-130	06-OCT-21
Magnesium (Mg)			103.0		%		70-130	06-OCT-21
Manganese (Mn)			106.1		%		70-130	06-OCT-21
Molybdenum (Mo)			92.8		%		70-130	06-OCT-21
Nickel (Ni)			102.4		%		70-130	06-OCT-21
Phosphorus (P)			97.3		%		70-130	06-OCT-21
Potassium (K)			93.3		%		70-130	06-OCT-21
Selenium (Se)			0.41		mg/kg		0.15-0.55	06-OCT-21
Silver (Ag)			0.25		mg/kg		0.16-0.36	06-OCT-21
Sodium (Na)			90.9		%		70-130	06-OCT-21
Strontium (Sr)			99.8		%		70-130	06-OCT-21
Thallium (Tl)			109.0		%		70-130	06-OCT-21
Tin (Sn)			2.2		mg/kg		0.2-4.2	06-OCT-21
Titanium (Ti)			92.8		%		70-130	06-OCT-21
Tungsten (W)			1.47		mg/kg		1-2	06-OCT-21
Uranium (U)			93.0		%		70-130	06-OCT-21
Vanadium (V)			101.3		%		70-130	06-OCT-21
Zinc (Zn)			95.2		%		70-130	06-OCT-21
Zirconium (Zr)			91.6		%		70-130	06-OCT-21
WG3632545-2 LCS	3							
Aluminum (Al)			105.8		%		80-120	06-OCT-21
Antimony (Sb)			102.3		%		80-120	06-OCT-21
Arsenic (As)			106.0		%		80-120	06-OCT-21
Barium (Ba)			109.6		%		80-120	06-OCT-21
Beryllium (Be)			99.6		%		80-120	06-OCT-21
Bismuth (Bi)			100.5		%		80-120	06-OCT-21
Boron (B)			101.1		%		80-120	06-OCT-21
Cadmium (Cd)			102.1		%		80-120	06-OCT-21
Calcium (Ca)			104.9		%		80-120	06-OCT-21

		Workorder: L2644215		Report Date: 23-NOV-21		Page 3 of 22		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R56120	16							
WG3632545-2 LC	S							
Chromium (Cr)			104.2		%		80-120	06-OCT-21
Cobalt (Co)			104.4		%		80-120	06-OCT-21
Copper (Cu)			101.1		%		80-120	06-OCT-21
Iron (Fe)			109.1		%		80-120	06-OCT-21
Lead (Pb)			102.1		%		80-120	06-OCT-21
Lithium (Li)			107.0		%		80-120	06-OCT-21
Magnesium (Mg)			106.3		%		80-120	06-OCT-21
Manganese (Mn)			106.8		%		80-120	06-OCT-21
Molybdenum (Mo)			100.2		%		80-120	06-OCT-21
Nickel (Ni)			104.8		%		80-120	06-OCT-21
Phosphorus (P)			107.4		%		80-120	06-OCT-21
Potassium (K)			104.5		%		80-120	06-OCT-21
Selenium (Se)			109.3		%		80-120	06-OCT-21
Silver (Ag)			100.2		%		80-120	06-OCT-21
Sodium (Na)			105.3		%		80-120	06-OCT-21
Strontium (Sr)			105.0		%		80-120	06-OCT-21
Sulfur (S)			116.8		%		80-120	06-OCT-21
Thallium (TI)			100.2		%		80-120	06-OCT-21
Tin (Sn)			102.3		%		80-120	06-OCT-21
Titanium (Ti)			101.1		%		80-120	06-OCT-21
Tungsten (W)			104.2		%		80-120	06-OCT-21
Uranium (U)			94.9		%		80-120	06-OCT-21
Vanadium (V)			106.8		%		80-120	06-OCT-21
Zinc (Zn)			96.1		%		80-120	06-OCT-21
Zirconium (Zr)			96.3		%		80-120	06-OCT-21
WG3632545-1 MB								
Aluminum (Al)			<50		mg/kg		50	06-OCT-21
Antimony (Sb)			<0.10		mg/kg		0.1	06-OCT-21
Arsenic (As)			<0.10		mg/kg		0.1	06-OCT-21
Barium (Ba)			<0.50		mg/kg		0.5	06-OCT-21
Beryllium (Be)			<0.10		mg/kg		0.1	06-OCT-21
Bismuth (Bi)			<0.20		mg/kg		0.2	06-OCT-21
Boron (B)			<5.0		mg/kg		5	06-OCT-21
Cadmium (Cd)			<0.020		mg/kg		0.02	06-OCT-21

		Workorder: L2644215			Report Date: 2	3-NOV-21	Page 4 of 22		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-200.2-CCMS-CL	Soil								
Batch R5612016									
WG3632545-1 MB									
Calcium (Ca)			<50		mg/kg		50	06-OCT-21	
Chromium (Cr)			<0.50		mg/kg		0.5	06-OCT-21	
Cobalt (Co)			<0.10		mg/kg		0.1	06-OCT-21	
Copper (Cu)			<0.50		mg/kg		0.5	06-OCT-21	
Iron (Fe)			<50		mg/kg		50	06-OCT-21	
Lead (Pb)			<0.50		mg/kg		0.5	06-OCT-21	
Lithium (Li)			<2.0		mg/kg		2	06-OCT-21	
Magnesium (Mg)			<20		mg/kg		20	06-OCT-21	
Manganese (Mn)			<1.0		mg/kg		1	06-OCT-21	
Molybdenum (Mo)			<0.10		mg/kg		0.1	06-OCT-21	
Nickel (Ni)			<0.50		mg/kg		0.5	06-OCT-21	
Phosphorus (P)			<50		mg/kg		50	06-OCT-21	
Potassium (K)			<100		mg/kg		100	06-OCT-21	
Selenium (Se)			<0.20		mg/kg		0.2	06-OCT-21	
Silver (Ag)			<0.10		mg/kg		0.1	06-OCT-21	
Sodium (Na)			<50		mg/kg		50	06-OCT-21	
Strontium (Sr)			<0.50		mg/kg		0.5	06-OCT-21	
Sulfur (S)			<1000		mg/kg		1000	06-OCT-21	
Thallium (TI)			<0.050		mg/kg		0.05	06-OCT-21	
Tin (Sn)			<2.0		mg/kg		2	06-OCT-21	
Titanium (Ti)			<1.0		mg/kg		1	06-OCT-21	
Tungsten (W)			<0.50		mg/kg		0.5	06-OCT-21	
Uranium (U)			<0.050		mg/kg		0.05	06-OCT-21	
Vanadium (V)			<0.20		mg/kg		0.2	06-OCT-21	
Zinc (Zn)			<2.0		mg/kg		2	06-OCT-21	
Zirconium (Zr)			<1.0		mg/kg		1	06-OCT-21	
MET-TESS-CM-CCMS-VA	Soil								
Batch R5644964									
WG3645358-3 DUP		L2644215-3			• • • • • • • • •				
Aluminum (Al)-Leachabl	e	<50	<50	RPD-N	IA mg/kg	N/A	30	12-NOV-21	
Antimony (Sb)-Leachabl	e	<0.10	<0.10	RPD-N	IA mg/kg	N/A	30	12-NOV-21	
Arsenic (As)-Leachable		0.056	<0.050	RPD-N	A mg/kg	N/A	30	12-NOV-21	
Barium (Ba)-Leachable		47.9	46.5		mg/kg	3.1	30	12-NOV-21	
Beryllium (Be)-Leachabl	е	<0.20	<0.20	RPD-N	IA mg/kg	N/A	30	12-NOV-21	

Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-TESS-CM-CCMS-VA Soil Batch R564964 VICA Soil Soil <th></th> <th>Workorder</th> <th>L264421</th> <th>5 Re</th> <th>eport Date: 2</th> <th>23-NOV-21</th> <th>Pa</th> <th colspan="2">Page 5 of 22</th>		Workorder	L264421	5 Re	eport Date: 2	23-NOV-21	Pa	Page 5 of 22	
Bedree Récense de la caracter de la ca	Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
BasenR5648964 W3663585.3L264215.3Bismuk (B)Leschable<.0.20	MET-TESS-CM-CCMS-VA Soil								
WG845363 DUP L264/2153 Bismut (R0)-Leachable <0.20	Batch R5644964								
Cardinium (C)-Leachable O.501 O.502 mg/kg O.2 30 12/NOV-21 Calcium (Ca)-Leachable 32000 32400 mg/kg 1.2 30 12/NOV-21 Calcium (Ca)-Leachable 32000 32400 mg/kg 1.2 30 12/NOV-21 Cobati (Co)-Leachable 0.36 0.34 mg/kg N/A 30 12/NOV-21 Corper (Ca)-Leachable 0.50 <450	WG3645358-3 DUP Bismuth (Bi)-Leachable	L2644215-3	~0.20		ma/ka	NI/A	30	12 NOV 21	
Calcian (co) isolation Book Boo	Cadmium (Cd)-l eachable	0.501	0.502		ma/ka	0.2	30	12-NOV-21	
Chronium (Cr)-Leachable c.5.0 c.5.0 RPD-M mg/kg N.A 30 12-NOV-21 Cobatt (Co)-Leachable 0.36 0.34 mg/kg S.3 30 12-NOV-21 Cobatt (Co)-Leachable 0.36 0.34 mg/kg N/A 30 12-NOV-21 Iron (Fe)-Leachable <0.50	Calcium (Ca)-Leachable	32000	32400		ma/ka	1.2	30	12-NOV-21	
Cabalt (Co)-Leachable 0.36 0.34 mg/kg 5.3 30 12 NOV-21 Copper (Cu)-Leachable <0.50	Chromium (Cr)-Leachable	<5.0	<5.0	RPD-NA	ma/ka	N/A	30	12-NOV-21	
Copper (Cu)-Leachable -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 RPD-NA mg/kg N/A 30 12:NOV-21 Iron (Fe)-Leachable <50	Cobalt (Co)-Leachable	0.36	0.34		ma/ka	5.3	30	12-NOV-21	
Iron (Fe)-Leachable <50	Copper (Cu)-Leachable	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Lead (Pb)-Leachable -0.50 <0.50 RPD-NA mg/kg NA 30 12-NOV-21 Lithium (Li)-Leachable <5.0	Iron (Fe)-Leachable	<50	<50	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Lithium (Li)-Leachable <5.0 <5.0 RPD-NA mg/kg NA 3.0 12-NOV-21 Manganese (Mn)-Leachable 126 124 mg/kg 1.7 3.0 12-NOV-21 Molybdenum (Mo)-Leachable <0.50	Lead (Pb)-Leachable	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Manganese (Mn)-Leachable 126 124 mg/kg 1.7 30 12-NOV-21 Molybdenum (Mo)-Leachable <0.50	Lithium (Li)-Leachable	<5.0	<5.0	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Molybdenum (Mo)-Leachable <0.50 <0.50 RPD-NA mg/kg N/A 30 12-NOV-21 Nickel (Ni)-Leachable 9.4 9.3 mg/kg 1.7 30 12-NOV-21 Phosphorus (P)-Leachable <50	Manganese (Mn)-Leachable	126	124		mg/kg	1.7	30	12-NOV-21	
Nickel (Ni)-Leachable 9.4 9.3 mg/kg 1.7 30 12-NOV-21 Phosphorus (P)-Leachable <50	Molybdenum (Mo)-Leachable	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Phosphorus (P)-Leachable <50 <750 RPD-NA mg/kg N/A 30 12-NOV-21 Selenium (Se)-Leachable <0.20	Nickel (Ni)-Leachable	9.4	9.3		mg/kg	1.7	30	12-NOV-21	
Selenium (Se)-Leachable <0.20 <0.20 RPD-NA mg/kg N/A 30 12-NOV-21 Silver (Ag)-Leachable <0.10	Phosphorus (P)-Leachable	<50	<50	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Silver (Ag)-Leachable < < N/A 30 12-NOV-21 Strontium (Sr)-Leachable 14.4 15.3 mg/kg 5.6 30 12-NOV-21 Thallium (TI)-Leachable <0.050	Selenium (Se)-Leachable	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Strontium (Sr)-Leachable 14.4 15.3 mg/kg 5.6 30 12-NOV-21 Thallium (TI)-Leachable <0.050	Silver (Ag)-Leachable	<0.10	<0.10	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Thallium (TI)-Leachable <0.050 <0.050 RPD-NA mg/kg N/A 30 12-NOV-21 Tin (Sn)-Leachable <2.0	Strontium (Sr)-Leachable	14.4	15.3		mg/kg	5.6	30	12-NOV-21	
Tin (Sn)-Leachable <2.0 <2.0 RPD-NA mg/kg N/A 30 12-NOV-21 Titanium (Ti)-Leachable <5.0	Thallium (TI)-Leachable	<0.050	<0.050	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Titanium (Ti)-Leachable <5.0 RPD-NA mg/kg N/A 30 12-NOV-21 Uranium (U)-Leachable 0.203 0.199 mg/kg 2.1 30 12-NOV-21 Vanadium (V)-Leachable <0.20	Tin (Sn)-Leachable	<2.0	<2.0	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Uranium (U)-Leachable 0.203 0.199 mg/kg 2.1 30 12-NOV-21 Vanadium (V)-Leachable <0.20	Titanium (Ti)-Leachable	<5.0	<5.0	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Vanadium (V)-Leachable <0.20 RPD-NA mg/kg N/A 30 12-NOV-21 Zinc (Zn)-Leachable 16.2 15.5 mg/kg 4.3 30 12-NOV-21 WG3645358-2 LCS Aluminum (Al)-Leachable 102.3 % 70-130 12-NOV-21 Antimony (Sb)-Leachable 105.3 % 70-130 12-NOV-21 Arsenic (As)-Leachable 99.1 % 70-130 12-NOV-21 Barium (Ba)-Leachable 99.1 % 70-130 12-NOV-21 Beryllium (Be)-Leachable 99.2 % 70-130 12-NOV-21 Beryllium (Be)-Leachable 99.2 % 70-130 12-NOV-21 Bismuth (Bi)-Leachable 99.7 % 70-130 12-NOV-21 Cadmium (Cd)-Leachable 99.7 % 70-130 12-NOV-21 Calcium (Ca)-Leachable 99.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.7 %	Uranium (U)-Leachable	0.203	0.199		mg/kg	2.1	30	12-NOV-21	
Zinc (Zn)-Leachable 16.2 15.5 mg/kg 4.3 30 12-NOV-21 WG3645358-2 LCS 102.3 % 70-130 12-NOV-21 Ahtimony (Al)-Leachable 105.3 % 70-130 12-NOV-21 Arsenic (As)-Leachable 99.1 % 70-130 12-NOV-21 Barium (Ba)-Leachable 98.0 % 70-130 12-NOV-21 Beryllium (Be)-Leachable 99.2 % 70-130 12-NOV-21 Beryllium (Cd)-Leachable 99.7 % 70-130 12-NOV-21 Cadmium (Cd)-Leachable 99.7 % 70-130 12-NOV-21 Chromium (Cr)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.4 % 70-130 12-NOV-21 Output 97.4 % 70-130 12-NOV-21 Output 97.4 % 70-130 12-NOV-21 Output 97.	Vanadium (V)-Leachable	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	12-NOV-21	
WG36453358-2 LCS Aluminum (Al)-Leachable 102.3 % 70-130 12-NOV-21 Antimony (Sb)-Leachable 105.3 % 70-130 12-NOV-21 Arsenic (As)-Leachable 99.1 % 70-130 12-NOV-21 Barium (Ba)-Leachable 98.0 % 70-130 12-NOV-21 Beryllium (Be)-Leachable 99.2 % 70-130 12-NOV-21 Bismuth (Bi)-Leachable 99.2 % 70-130 12-NOV-21 Cadmium (Cd)-Leachable 99.7 % 70-130 12-NOV-21 Cadmium (Cd)-Leachable 99.7 % 70-130 12-NOV-21 Calcium (Ca)-Leachable 99.7 % 70-130 12-NOV-21 Chromium (Cr)-Leachable 99.7 % 70-130 12-NOV-21 Chromium (Cr)-Leachable 97.7 % 70-130 12-NOV-21 Chromium (Cr)-Leachable 97.4 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.4 % 70-130 12-NOV-21 <td>Zinc (Zn)-Leachable</td> <td>16.2</td> <td>15.5</td> <td></td> <td>mg/kg</td> <td>4.3</td> <td>30</td> <td>12-NOV-21</td>	Zinc (Zn)-Leachable	16.2	15.5		mg/kg	4.3	30	12-NOV-21	
Aluminum (Al)-Leachable 102.3 % 70-130 12-NOV-21 Antimony (Sb)-Leachable 105.3 % 70-130 12-NOV-21 Arsenic (As)-Leachable 99.1 % 70-130 12-NOV-21 Barium (Ba)-Leachable 98.0 % 70-130 12-NOV-21 Beryllium (Be)-Leachable 99.2 % 70-130 12-NOV-21 Bismuth (Bi)-Leachable 99.2 % 70-130 12-NOV-21 Cadmium (Cd)-Leachable 99.7 % 70-130 12-NOV-21 Calcium (Ca)-Leachable 99.7 % 70-130 12-NOV-21 Chromium (Cr)-Leachable 99.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.4 % 70-130 12-NOV-21 Output (On blachable 97.4 % 70-130 12-NOV-21	WG3645358-2 LCS								
Antimony (Sb)-Leachable 105.3 % 70-130 12-NOV-21 Arsenic (As)-Leachable 99.1 % 70-130 12-NOV-21 Barium (Ba)-Leachable 98.0 % 70-130 12-NOV-21 Beryllium (Be)-Leachable 99.2 % 70-130 12-NOV-21 Bismuth (Bi)-Leachable 99.2 % 70-130 12-NOV-21 Cadmium (Cd)-Leachable 99.7 % 70-130 12-NOV-21 Calcium (Ca)-Leachable 99.7 % 70-130 12-NOV-21 Chromium (Cr)-Leachable 99.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.4 % 70-130 12-NOV-21	Aluminum (Al)-Leachable		102.3		%		70-130	12-NOV-21	
Arsenic (As)-Leachable 99.1 % 70-130 12-NOV-21 Barium (Ba)-Leachable 98.0 % 70-130 12-NOV-21 Beryllium (Be)-Leachable 99.2 % 70-130 12-NOV-21 Bismuth (Bi)-Leachable 88.6 % 70-130 12-NOV-21 Cadmium (Cd)-Leachable 97.7 % 70-130 12-NOV-21 Calcium (Ca)-Leachable 97.7 % 70-130 12-NOV-21 Chromium (Cr)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.4 % 70-130 12-NOV-21	Antimony (Sb)-Leachable		105.3		%		70-130	12-NOV-21	
Barrum (Ba)-Leachable 98.0 % 70-130 12-NOV-21 Beryllium (Be)-Leachable 99.2 % 70-130 12-NOV-21 Bismuth (Bi)-Leachable 88.6 % 70-130 12-NOV-21 Cadmium (Cd)-Leachable 97.7 % 70-130 12-NOV-21 Calcium (Ca)-Leachable 99.7 % 70-130 12-NOV-21 Chromium (Cr)-Leachable 99.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.7 % 70-130 12-NOV-21 Output (Ca)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.4 % 70-130 12-NOV-21	Arsenic (As)-Leachable		99.1		%		70-130	12-NOV-21	
Beryllium (Be)-Leachable 99.2 % 70-130 12-NOV-21 Bismuth (Bi)-Leachable 88.6 % 70-130 12-NOV-21 Cadmium (Cd)-Leachable 97.7 % 70-130 12-NOV-21 Calcium (Ca)-Leachable 99.7 % 70-130 12-NOV-21 Chromium (Cr)-Leachable 99.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.7 % 70-130 12-NOV-21 Opponent (Co)-Leachable 97.4 % 70-130 12-NOV-21	Barium (Ba)-Leachable		98.0		%		70-130	12-NOV-21	
Bismun (B)-Leachable 88.6 % 70-130 12-NOV-21 Cadmium (Cd)-Leachable 97.7 % 70-130 12-NOV-21 Calcium (Ca)-Leachable 99.7 % 70-130 12-NOV-21 Chromium (Cr)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.4 % 70-130 12-NOV-21	Beryllium (Be)-Leachable		99.2		%		70-130	12-NOV-21	
Cadmium (Cd)-Leachable 97.7 % 70-130 12-NOV-21 Calcium (Ca)-Leachable 99.7 % 70-130 12-NOV-21 Chromium (Cr)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.4 % 70-130 12-NOV-21 Operating (Q_1)-Leachable 97.4 % 70-130 12-NOV-21	Bismuth (BI)-Leachable		88.6		%		70-130	12-NOV-21	
Calcium (Ca)-Leachable 99.7 % 70-130 12-NOV-21 Chromium (Cr)-Leachable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.4 % 70-130 12-NOV-21 Operator (Op)-Leachable 97.4 % 70-130 12-NOV-21			97.7		%		70-130	12-NOV-21	
Chromium (Cr)-Leacnable 97.7 % 70-130 12-NOV-21 Cobalt (Co)-Leachable 97.4 % 70-130 12-NOV-21	Calcium (Ca)-Leachable		99.7		%		70-130	12-NOV-21	
Cobail (Co)-Leachable 97.4 % 70-130 12-NOV-21 Operate (Op)-Leachable 01.4 01			97.7		<i>%</i>		70-130	12-NOV-21	
			97.4		% 0/		70-130	12-NOV-21	

		Workorder	Workorder: L2644215			Report Date: 23-NOV-21		Page 6 of 22	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TESS-CM-CCMS-	/A Soil								
Batch R56449	64								
WG3645358-2 LC	S								
Iron (Fe)-Leachable			96.2		%		70-130	12-NOV-21	
Lead (Pb)-Leachable			94.8		%		70-130	12-NOV-21	
Lithium (Li)-Leachab	le 		98.6		%		70-130	12-NOV-21	
Manganese (Mn)-Le	achable		96.2		%		70-130	12-NOV-21	
Molybdenum (Mo)-Le	eachable		101.8		%		70-130	12-NOV-21	
Nickel (Ni)-Leachabl	e		96.2		%		70-130	12-NOV-21	
Phosphorus (P)-Lea	chable		105.0		%		70-130	12-NOV-21	
Selenium (Se)-Leach	nable		99.6		%		70-130	12-NOV-21	
Silver (Ag)-Leachabl	e		94.7		%		70-130	12-NOV-21	
Strontium (Sr)-Leach	nable		97.6		%		70-130	12-NOV-21	
Thallium (TI)-Leacha	ble		90.5		%		70-130	12-NOV-21	
Tin (Sn)-Leachable			102.7		%		70-130	12-NOV-21	
Titanium (Ti)-Leacha	ıble		99.3		%		70-130	12-NOV-21	
Uranium (U)-Leacha	ble		94.5		%		70-130	12-NOV-21	
Vanadium (V)-Leach	able		103.2		%		70-130	12-NOV-21	
Zinc (Zn)-Leachable			99.5		%		70-130	12-NOV-21	
WG3645358-1 MB	3								
Aluminum (Al)-Leach	nable		<50		mg/kg		50	12-NOV-21	
Antimony (Sb)-Leach	nable		<0.10		mg/kg		0.1	12-NOV-21	
Arsenic (As)-Leacha	ble		<0.050		mg/kg		0.05	12-NOV-21	
Barium (Ba)-Leachal	ble		<2.0		mg/kg		2	12-NOV-21	
Beryllium (Be)-Leach	nable		<0.20		mg/kg		0.2	12-NOV-21	
Bismuth (Bi)-Leacha	ble		<0.20		mg/kg		0.2	12-NOV-21	
Cadmium (Cd)-Leac	hable		<0.050		mg/kg		0.05	12-NOV-21	
Calcium (Ca)-Leacha	able		<50		mg/kg		50	12-NOV-21	
Chromium (Cr)-Lead	hable		<5.0		mg/kg		5	12-NOV-21	
Cobalt (Co)-Leachab	ole		<0.10		mg/kg		0.1	12-NOV-21	
Copper (Cu)-Leacha	ble		<0.50		mg/kg		0.5	12-NOV-21	
Iron (Fe)-Leachable			<50		mg/kg		50	12-NOV-21	
Lead (Pb)-Leachable	9		<0.50		mg/kg		0.5	12-NOV-21	
Lithium (Li)-Leachab	le		<5.0		mg/kg		5	12-NOV-21	
Manganese (Mn)-Le	achable		<5.0		mg/kg		5	12-NOV-21	
Molybdenum (Mo)-Le	eachable		<0.50		mg/kg		0.5	12-NOV-21	
Nickel (Ni)-Leachabl	е		<2.0		mg/kg		2	12-NOV-21	

		Workorder: L2644215			eport Date: 2	23-NOV-21	Page 7 of 22		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TESS-CM-CCMS-VA	a Soil								
Batch R5644964	4								
WG3645358-1 MB									
Phosphorus (P)-Leach	lable		<50		mg/kg		50	12-NOV-21	
Selenium (Se)-Leacha	ble		<0.20		mg/kg		0.2	12-NOV-21	
Silver (Ag)-Leachable			<0.10		mg/kg		0.1	12-NOV-21	
Strontium (Sr)-Leacha	ble		<5.0		mg/kg		5	12-NOV-21	
Thallium (TI)-Leachabl	e		<0.050		mg/kg		0.05	12-NOV-21	
Tin (Sn)-Leachable			<2.0		mg/kg		2	12-NOV-21	
Titanium (Ti)-Leachab	le		<5.0		mg/kg		5	12-NOV-21	
Uranium (U)-Leachabl	e		<0.050		mg/kg		0.05	12-NOV-21	
Vanadium (V)-Leachal	ble		<0.20		mg/kg		0.2	12-NOV-21	
Zinc (Zn)-Leachable			<1.0		mg/kg		1	12-NOV-21	
MET-TESS-EA-CCMS-VA	Soil								
Batch R564451	6								
WG3645358-3 DUP	blo	L2644215-3	-50		malka	N1/A	20		
Antimony (Sh) Leacha	blo	<0.10	<0.10	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Anumony (SD)-Leacha		<0.10	<0.10	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Arsenic (As)-Leachabl		<0.050	<0.050	RPD-NA	mg/kg	N/A	30	12-NOV-21	
		17.3	10.1		mg/kg	4.6	30	12-NOV-21	
Beryllium (Be)-Leacha	DIE	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Bismuth (BI)-Leachabi	e	<0.20	<0.20	RPD-NA	mg/ĸg	N/A	30	12-NOV-21	
Cadmium (Cd)-Leacha	able	0.266	0.276		mg/kg	3.5	30	12-NOV-21	
Calcium (Ca)-Leachab	le 	3420	3770		mg/kg	9.6	30	12-NOV-21	
Chromium (Cr)-Leacha	able	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Cobalt (Co)-Leachable	9	0.11	0.13		mg/kg	17	30	12-NOV-21	
Copper (Cu)-Leachabl	е	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Iron (Fe)-Leachable		<50	<50	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Lead (Pb)-Leachable		<0.50	<0.50	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Lithium (Li)-Leachable		<5.0	<5.0	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Manganese (Mn)-Lead	chable	69.8	70.6		mg/kg	1.2	30	12-NOV-21	
Molybdenum (Mo)-Lea	chable	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Nickel (Ni)-Leachable		1.88	2.00		mg/kg	6.1	30	12-NOV-21	
Phosphorus (P)-Leach	able	<50	<50	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Potassium (K)-Leacha	ble	<100	<100	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Selenium (Se)-Leacha	ble	0.30	0.36		mg/kg	16	30	12-NOV-21	
Silver (Ag)-Leachable		<0.10	<0.10	RPD-NA	mg/kg	N/A	30	12-NOV-21	

		Workorder:	L264421	5 Re	eport Date: 2	23-NOV-21	Page 8 of 22		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TESS-EA-CCMS-V	A Soil								
Batch R56445	16								
WG3645358-3 DUF	D	L2644215-3							
Sodium (Na)-Leachai	ole	<100	<100	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Strontium (Sr)-Leach	able	4.79	5.03		mg/kg	4.9	30	12-NOV-21	
Thallium (TI)-Leachat	ble	<0.050	<0.050	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Tin (Sn)-Leachable		<2.0	<2.0	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Titanium (Ti)-Leachal	ble	<1.0	<1.0	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Uranium (U)-Leachat	ble	0.074	0.082		mg/kg	10	30	12-NOV-21	
Vanadium (V)-Leacha	able	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	12-NOV-21	
Zinc (Zn)-Leachable		<1.0	<1.0	RPD-NA	mg/kg	N/A	30	12-NOV-21	
WG3645358-2 LCS Aluminum (Al)-Leach	3 able		96.7		%		70-130	12-NOV-21	
Antimony (Sb)-Leach	able		104.3		%		70-130	12-NOV-21	
Arsenic (As)-Leachat	ble		93.5		%		70-130	12-NOV-21	
Barium (Ba)-Leachab	le		96.1		%		70-130	12-NOV-21	
Beryllium (Be)-Leach	able		99.7		%		70-130	12-NOV-21	
Bismuth (Bi)-Leachat	ble		87.8		%		70-130	12-NOV-21	
Cadmium (Cd)-Leach	nable		96.0		%		70-130	12-NOV-21	
Calcium (Ca)-Leacha	ble		97.0		%		70-130	12-NOV-21	
Chromium (Cr)-Leach	nable		97.4		%		70-130	12-NOV-21	
Cobalt (Co)-Leachabl	le		94.2		%		70-130	12-NOV-21	
Copper (Cu)-Leachat	ble		92.4		%		70-130	12-NOV-21	
Iron (Fe)-Leachable			96.4		%		70-130	12-NOV-21	
Lead (Pb)-Leachable			89.8		%		70-130	12-NOV-21	
Lithium (Li)-Leachabl	e		104.9		%		70-130	12-NOV-21	
Manganese (Mn)-Lea	chable		102.9		%		70-130	12-NOV-21	
Molybdenum (Mo)-Le	achable		99.9		%		70-130	12-NOV-21	
Nickel (Ni)-Leachable)		93.2		%		70-130	12-NOV-21	
Phosphorus (P)-Leac	hable		96.5		%		70-130	12-NOV-21	
Potassium (K)-Leach	able		97.5		%		70-130	12-NOV-21	
Selenium (Se)-Leach	able		93.2		%		70-130	12-NOV-21	
Silver (Ag)-Leachable)		95.8		%		70-130	12-NOV-21	
Sodium (Na)-Leachal	ble		99.1		%		70-130	12-NOV-21	
Strontium (Sr)-Leach	able		98.1		%		70-130	12-NOV-21	
Thallium (Tl)-Leachal	ole		87.6		%		70-130	12-NOV-21	
Tin (Sn)-Leachable			98.4		%		70-130	12-NOV-21	

		Workorder	Workorder: L2644215			Report Date: 23-NOV-21		Page 9 of 22	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TESS-EA-CCMS-\	/A Soil								
Batch R56445	516								
WG3645358-2 LC	S		400.0						
	able		100.9		%		70-130	12-NOV-21	
Uranium (U)-Leacha	able		92.4		%		70-130	12-NOV-21	
Vanadium (V)-Leach	nable		99.0		%		70-130	12-NOV-21	
Zinc (Zn)-Leachable			92.3		%		70-130	12-NOV-21	
WG3645358-1 ME Aluminum (Al)-Leacl	3 hable		<50		mg/kg		50	12-NOV-21	
Antimony (Sb)-Leacl	hable		<0.10		ma/ka		0.1	12-NOV-21	
Arsenic (As)-Leacha	able		<0.050		ma/ka		0.05	12-NOV-21	
Barium (Ba)-Leacha	ble		< 0.50		ma/ka		0.5	12-NOV-21	
Beryllium (Be)-Leach	hable		<0.20		ma/ka		0.2	12-NOV-21	
Bismuth (Bi)-Leacha	able		<0.20		mg/kg		0.2	12-NOV-21	
Cadmium (Cd)-Lead	hable		<0.050		mg/kg		0.05	12-NOV-21	
Calcium (Ca)-Leach	able		<50		mg/kg		50	12-NOV-21	
Chromium (Cr)-Lead	chable		<0.50		mg/kg		0.5	12-NOV-21	
Cobalt (Co)-Leachat	ble		<0.10		mg/kg		0.1	12-NOV-21	
Copper (Cu)-Leacha	able		<0.50		mg/kg		0.5	12-NOV-21	
Iron (Fe)-Leachable			<50		mg/kg		50	12-NOV-21	
Lead (Pb)-Leachable	e		<0.50		mg/kg		0.5	12-NOV-21	
Lithium (Li)-Leachab	ble		<5.0		mg/kg		5	12-NOV-21	
Manganese (Mn)-Le	achable		<1.0		mg/kg		1	12-NOV-21	
Molybdenum (Mo)-L	eachable		<0.50		mg/kg		0.5	12-NOV-21	
Nickel (Ni)-Leachabl	le		<0.50		mg/kg		0.5	12-NOV-21	
Phosphorus (P)-Lea	chable		<50		mg/kg		50	12-NOV-21	
Potassium (K)-Leacl	hable		<100		mg/kg		100	12-NOV-21	
Selenium (Se)-Leac	hable		<0.20		mg/kg		0.2	12-NOV-21	
Silver (Ag)-Leachabl	le		<0.10		mg/kg		0.1	12-NOV-21	
Sodium (Na)-Leacha	able		<100		mg/kg		100	12-NOV-21	
Strontium (Sr)-Leach	hable		<0.50		mg/kg		0.5	12-NOV-21	
Thallium (TI)-Leacha	able		<0.050		mg/kg		0.05	12-NOV-21	
Tin (Sn)-Leachable			<2.0		mg/kg		2	12-NOV-21	
Titanium (Ti)-Leacha	able		<1.0		mg/kg		1	12-NOV-21	
Uranium (U)-Leacha	able		<0.050		mg/kg		0.05	12-NOV-21	
Vanadium (V)-Leach	nable		<0.20		mg/kg		0.2	12-NOV-21	
Zinc (Zn)-Leachable			<1.0		mg/kg		1	12-NOV-21	

			L264421	5 Re	eport Date: 2	23-NOV-21	Page 10 of 22		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TESS-FEO-CCMS-	VA Soil								
Batch R56494	78								
WG3645358-3 DUI Aluminum (Al)-Leach	> able	L2644215-3 638	681		mg/kg	6.4	30	16-NOV-21	
Antimony (Sb)-Leach	able	<0.10	<0.10	RPD-NA	mg/kg	N/A	30	16-NOV-21	
Arsenic (As)-Leachat	ble	0.487	0.544		mg/kg	11	30	16-NOV-21	
Barium (Ba)-Leachab	le	47.7	50.5		mg/kg	5.7	30	16-NOV-21	
Beryllium (Be)-Leach	able	0.35	0.38		mg/kg	5.5	30	16-NOV-21	
Bismuth (Bi)-Leachat	ble	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	16-NOV-21	
Cadmium (Cd)-Leach	able	0.441	0.499		mg/kg	12	30	16-NOV-21	
Calcium (Ca)-Leacha	ble	6440	6800		mg/kg	5.4	30	16-NOV-21	
Chromium (Cr)-Leach	nable	0.98	1.05		mg/kg	7.6	30	16-NOV-21	
Cobalt (Co)-Leachab	е	6.55	6.99		mg/kg	6.5	30	16-NOV-21	
Copper (Cu)-Leachat	ble	0.57	0.60		mg/kg	5.6	30	16-NOV-21	
Iron (Fe)-Leachable		3400	3560		mg/kg	4.7	30	16-NOV-21	
Lead (Pb)-Leachable		3.47	3.64		mg/kg	4.9	30	16-NOV-21	
Lithium (Li)-Leachabl	е	<5.0	<5.0	RPD-NA	mg/kg	N/A	30	16-NOV-21	
Manganese (Mn)-Lea	chable	410	444		mg/kg	7.9	30	16-NOV-21	
Molybdenum (Mo)-Le	achable	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	16-NOV-21	
Nickel (Ni)-Leachable)	31.1	33.8		mg/kg	8.4	30	16-NOV-21	
Phosphorus (P)-Leac	hable	159	138		mg/kg	14	30	16-NOV-21	
Selenium (Se)-Leach	able	0.83	0.89		mg/kg	6.6	30	16-NOV-21	
Silver (Ag)-Leachable)	0.15	0.16		mg/kg	4.3	30	16-NOV-21	
Strontium (Sr)-Leach	able	6.78	7.46		mg/kg	9.6	30	16-NOV-21	
Thallium (TI)-Leachal	ble	<0.050	<0.050	RPD-NA	mg/kg	N/A	30	16-NOV-21	
Tin (Sn)-Leachable		<2.0	<2.0	RPD-NA	mg/kg	N/A	30	16-NOV-21	
Titanium (Ti)-Leachal	ble	<1.0	<1.0	RPD-NA	mg/kg	N/A	30	16-NOV-21	
Uranium (U)-Leachat	ble	0.228	0.247		mg/kg	8.1	30	16-NOV-21	
Vanadium (V)-Leacha	able	3.27	3.52		mg/kg	7.5	30	16-NOV-21	
Zinc (Zn)-Leachable		48.6	51.8		mg/kg	6.2	30	16-NOV-21	
WG3645358-2 LCS Aluminum (Al)-Leach	s able		89.5		%		70-130	16-NOV-21	
Antimony (Sb)-Leach	able		99.2		%		70-130	16-NOV-21	
Arsenic (As)-Leachat	ble		107.5		%		70-130	16-NOV-21	
Barium (Ba)-Leachab	le		94.3		%		70-130	16-NOV-21	
Beryllium (Be)-Leach	able		95.8		%		70-130	16-NOV-21	
Bismuth (Bi)-Leachat	ble		95.7		%		70-130	16-NOV-21	

			: L264421	5	Report Date: 23-NOV-21		Page 11 of 22	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TESS-FEO-CCN	IS-VA Soil							
Batch R564	9478							
WG3645358-2 L	LCS							
Cadmium (Cd)-Le	achable		97.7		%		70-130	16-NOV-21
Calcium (Ca)-Lea	chable		95.3		%		70-130	16-NOV-21
Chromium (Cr)-Le	eachable		95.7		%		70-130	16-NOV-21
Cobalt (Co)-Leach			93.5		%		70-130	16-NOV-21
Copper (Cu)-Leac	hable		103.3		%		70-130	16-NOV-21
Iron (Fe)-Leachab	le		95.0		%		70-130	16-NOV-21
Lead (Pb)-Leacha	ible		96.3		%		70-130	16-NOV-21
Lithium (Li)-Leach	able		97.0		%		70-130	16-NOV-21
Manganese (Mn)-	Leachable		93.2		%		70-130	16-NOV-21
Molybdenum (Mo)	-Leachable		95.2		%		70-130	16-NOV-21
Nickel (Ni)-Leacha	able		96.5		%		70-130	16-NOV-21
Phosphorus (P)-Le	eachable		98.2		%		70-130	16-NOV-21
Selenium (Se)-Lea	achable		123.2		%		70-130	16-NOV-21
Silver (Ag)-Leacha	able		95.3		%		70-130	16-NOV-21
Strontium (Sr)-Lea	achable		98.7		%		70-130	16-NOV-21
Thallium (TI)-Lead	chable		97.1		%		70-130	16-NOV-21
Tin (Sn)-Leachabl	e		96.8		%		70-130	16-NOV-21
Titanium (Ti)-Lead	chable		95.5		%		70-130	16-NOV-21
Uranium (U)-Leac	hable		93.3		%		70-130	16-NOV-21
Vanadium (V)-Lea	achable		95.1		%		70-130	16-NOV-21
Zinc (Zn)-Leachab	ble		96.8		%		70-130	16-NOV-21
WG3645358-1	MB achable		~50		ma/ka		50	16 NOV 21
Antimony (Sh)-Lea	achable		<0.10		mg/kg		0.1	16 NOV 21
Arsenic (As)-Leac	hable		<0.10		mg/kg		0.1	16 NOV 21
Barium (Ba)-Lead	hable		<0.000		mg/kg		0.05	16 NOV 21
Bendlium (Be)-Lea			<0.00		mg/kg		0.5	16 NOV 21
Bismuth (Bi)-Lea	bable		<0.20		mg/kg		0.2	16 NOV 21
Cadmium (Cd)-Leac			<0.20		mg/kg		0.2	16-NOV-21
Calcium (Ca)-Le	chable		<50		mg/kg		0.05	16-NOV-21
			<0.50		mg/kg		5U	16-NOV-21
			<0.10		mg/kg		0.5	16-NOV-21
			<0.10		mg/kg		0.1	16-NOV-21
			<0.50		mg/kg		0.5	16-NOV-21
iron (⊢e)-Leachab	ne		<50		mg/kg		50	16-NOV-21

	Workorder	Workorder: L2644215			3-NOV-21	Page 12 of 22		
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TESS-FEO-CCMS-VA Soil								
Batch R5649478								
WG3645358-1 MB								
Lead (Pb)-Leachable		<0.50		mg/kg		0.5	16-NOV-21	
Lithium (Li)-Leachable		<5.0		mg/kg		5	16-NOV-21	
Manganese (Mn)-Leachable		<1.0		mg/kg		1	16-NOV-21	
Molybdenum (Mo)-Leachable		<0.50		mg/kg		0.5	16-NOV-21	
Nickel (Ni)-Leachable		<0.50		mg/kg		0.5	16-NOV-21	
Phosphorus (P)-Leachable		<50		mg/kg		50	16-NOV-21	
Selenium (Se)-Leachable		<0.20		mg/kg		0.2	16-NOV-21	
Silver (Ag)-Leachable		<0.10		mg/kg		0.1	16-NOV-21	
Strontium (Sr)-Leachable		<0.50		mg/kg		0.5	16-NOV-21	
Thallium (TI)-Leachable		<0.050		mg/kg		0.05	16-NOV-21	
Tin (Sn)-Leachable		<2.0		mg/kg		2	16-NOV-21	
Titanium (Ti)-Leachable		<1.0		mg/kg		1	16-NOV-21	
Uranium (U)-Leachable		<0.050		mg/kg		0.05	16-NOV-21	
Vanadium (V)-Leachable		<0.20		mg/kg		0.2	16-NOV-21	
Zinc (Zn)-Leachable		<1.0		mg/kg		1	16-NOV-21	
MET-TESS-OB-CCMS-VA Soil								
Batch R5652722								
WG3645358-3 DUP	L2644215-3	4700						
Autimum (Al)-Leachable	1750	1790		mg/kg	2.3	30	17-NOV-21	
Antimony (Sb)-Leachable	<0.10	<0.10	RPD-N	A mg/kg	N/A	30	17-NOV-21	
Arsenic (As)-Leachable	0.453	0.468		mg/kg	3.1	30	17-NOV-21	
Barium (Ba)-Leachable	25.1	26.2		mg/kg	4.3	30	17-NOV-21	
Beryllium (Be)-Leachable	<0.20	<0.20	RPD-N	A mg/kg	N/A	30	17-NOV-21	
Bismuth (Bi)-Leachable	<0.20	<0.20	RPD-N	A mg/kg	N/A	30	17-NOV-21	
Cadmium (Cd)-Leachable	0.100	0.098		mg/kg	1.6	30	17-NOV-21	
Calcium (Ca)-Leachable	1400	1460		mg/kg	4.2	30	17-NOV-21	
Chromium (Cr)-Leachable	4.07	4.10		mg/kg	0.7	30	17-NOV-21	
Cobalt (Co)-Leachable	1.20	1.28		mg/kg	6.1	30	17-NOV-21	
Copper (Cu)-Leachable	9.76	9.79		mg/kg	0.3	30	17-NOV-21	
Iron (Fe)-Leachable	1660	1630		mg/kg	1.8	30	17-NOV-21	
Lead (Pb)-Leachable	1.59	1.63		mg/kg	2.4	30	17-NOV-21	
Lithium (Li)-Leachable	<5.0	<5.0	RPD-N	A mg/kg	N/A	30	17-NOV-21	
Manganese (Mn)-Leachable	26.6	27.3		mg/kg	2.6	30	17-NOV-21	
Molybdenum (Mo)-Leachable	<0.50	<0.50	RPD-N	A mg/kg	N/A	30	17-NOV-21	

Test Matrix Reference Result Qualifier Units RPD Limit Analyz MET-TESS-OB-CCMS-VA Soil Batch R5652722	rd '-21 '-21
MET-TESS-OB-CCMS-VA Soil Batch R5652722	'-21 '-21
Batch R5652722	'-21 '-21
	′-21 ′-21
WG3645358-3 DUP L2644215-3	/-21 '-21
Nickei (Ni)-Leachable 11.9 12.1 mg/kg 1.7 30 17-NO	′-21
Selenium (Se)-Leachable 7.14 6.85 mg/kg 4.1 30 17-NO	
Silver (Ag)-Leachable <0.10 <0.10 RPD-NA mg/kg N/A 30 17-NO	-21
Strontium (Sr)-Leachable 4.86 5.00 mg/kg 3.0 30 17-NO	-21
Thallium (TI)-Leachable <0.050 <0.050 RPD-NA mg/kg N/A 30 17-NO	-21
Tin (Sn)-Leachable <2.0 <2.0 RPD-NA mg/kg N/A 30 17-NO	-21
Titanium (Ti)-Leachable 10.9 8.5 mg/kg 25 30 17-NO	-21
Uranium (U)-Leachable 0.379 0.400 mg/kg 5.6 30 17-NO	'-21
Vanadium (V)-Leachable 5.68 5.85 mg/kg 2.9 30 17-NO	'-21
Zinc (Zn)-Leachable 10.6 10.5 mg/kg 0.2 30 17-NO	'-21
WG3645358-2 LCS Aluminum (Al)-Leachable 100.5 % 70-130 17-NO	/-21
Antimony (Sb)-Leachable 103.6 % 70-130 17-NO	/-21
Arsenic (As)-Leachable 100.1 % 70.130 17-NO	/_21
Barium (Ba)-Leachable 100.4 % 70-130 17-NO	/-21
Beryllium (Be)-Leachable 100.4 % 70-130 17-NO	 /-21
Bismuth (Bi)-Leachable 100.0 % 70-130 17-NO	/-21
Cadmium (Cd)-Leachable 96.6 % 70-130 17-NO	/-21
Calcium (Ca)-Leachable 98.5 % 70-130 17-NO	 /-21
Chromium (Cr)-Leachable 99.4 % 70-130 17-NO	/-21
Cobalt (Co)-Leachable 99.7 % 70-130 17-NO	/-21
Copper (Cu)-Leachable 101.0 % 70-130 17-NO	/-21
Iron (Fe)-Leachable 98.8 % 70-130 17-NO	/-21
Lead (Pb)-Leachable 101.3 % 70-130 17-NO	/-21
Lithium (Li)-Leachable 102.0 % 70-130 17-NO	/-21
Manganese (Mn)-Leachable 99.5 % 70-130 17-NO	 /-21
Molvbdenum (Mo)-Leachable 99.7 % 70-130 17-NO	/-21
Nickel (Ni)-Leachable 101.3 % 70-130 17-NO	/-21
Selenium (Se)-Leachable 103.4 % 70-130 17-NO	/_21
Silver (Ag)-Leachable 104.4 % 70-130 17-NO	/_21
Strontium (Sr)-Leachable 99.5 % 70-130 17-NO	∠ ' /-21
Thallium (TI)-l eachable 99.4 % 70.130 17.100	∠ ı /_21
Tin (Sn)-Leachable 96.2 % 70-150 17-NO	- <u>-</u> 21 / 01
Titanium (Ti)-Leachable 98.6 % 70-130 17-NO	∠ ' /-21

		Workorder: L2644215			Report Date: 2	3-NOV-21	Page 14 of 22	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TESS-OB-CCMS-V	'A Soil							
Batch R565272	22							
WG3645358-2 LCS	S							
Uranium (U)-Leachar	ble		98.0		%		70-130	17-NOV-21
Vanadium (V)-Leacha	able		98.0		%		70-130	17-NOV-21
Zinc (Zn)-Leachable			101.8		%		70-130	17-NOV-21
WG3645358-1 MB Aluminum (Al)-Leach	able		<50		mg/kg		50	17-NOV-21
Antimony (Sb)-Leach	able		<0.10		mg/kg		0.1	17-NOV-21
Arsenic (As)-Leachat	ble		<0.050		mg/kg		0.05	17-NOV-21
Barium (Ba)-Leachab	ble		<0.50		mg/kg		0.5	17-NOV-21
Beryllium (Be)-Leach	able		<0.20		mg/kg		0.2	17-NOV-21
Bismuth (Bi)-Leachat	ole		<0.20		mg/kg		0.2	17-NOV-21
Cadmium (Cd)-Leach	nable		<0.050		mg/kg		0.05	17-NOV-21
Calcium (Ca)-Leacha	able		<50		mg/kg		50	17-NOV-21
Chromium (Cr)-Leach	hable		<0.50		mg/kg		0.5	17-NOV-21
Cobalt (Co)-Leachab	le		<0.10		mg/kg		0.1	17-NOV-21
Copper (Cu)-Leachat	ole		<0.50		mg/kg		0.5	17-NOV-21
Iron (Fe)-Leachable			<50		mg/kg		50	17-NOV-21
Lead (Pb)-Leachable			<0.50		mg/kg		0.5	17-NOV-21
Lithium (Li)-Leachabl	е		<5.0		mg/kg		5	17-NOV-21
Manganese (Mn)-Lea	achable		<1.0		mg/kg		1	17-NOV-21
Molybdenum (Mo)-Le	eachable		<0.50		mg/kg		0.5	17-NOV-21
Nickel (Ni)-Leachable	9		<0.50		mg/kg		0.5	17-NOV-21
Selenium (Se)-Leach	able		<0.20		mg/kg		0.2	17-NOV-21
Silver (Ag)-Leachable	e		<0.10		mg/kg		0.1	17-NOV-21
Strontium (Sr)-Leach	able		<0.50		mg/kg		0.5	17-NOV-21
Thallium (TI)-Leachal	ble		<0.050		mg/kg		0.05	17-NOV-21
Tin (Sn)-Leachable			<2.0		mg/kg		2	17-NOV-21
Titanium (Ti)-Leachal	ble		<1.0		mg/kg		1	17-NOV-21
Uranium (U)-Leachat	ole		<0.050		mg/kg		0.05	17-NOV-21
Vanadium (V)-Leacha	able		<0.20		mg/kg		0.2	17-NOV-21
Zinc (Zn)-Leachable			<1.0		mg/kg		1	17-NOV-21
MET-TESS-RM-CCMS-V	/A Soil							
Batch R56552	74							
WG3645358-3 DUI Aluminum (Al)-Leach	P able	L2644215-3 7020	6430		mg/kg	8.7	30	21-NOV-21

	Workorder	: L264421	15 Re	eport Date: 2	23-NOV-21	Page 15 of 22	
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TESS-RM-CCMS-VA Soil							
Batch R5655274							
WG3645358-3 DUP	L2644215-3						
Antimony (Sb)-Leachable	1.04	0.97		mg/kg	7.6	30	21-NOV-21
Arsenic (As)-Leachable	5.28	5.17		mg/kg	2.3	30	21-NOV-21
Barium (Ba)-Leachable	163	159		mg/kg	2.5	30	21-NOV-21
Beryllium (Be)-Leachable	0.38	0.38		mg/kg	1.1	30	21-NOV-21
Bismuth (Bi)-Leachable	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	21-NOV-21
Cadmium (Cd)-Leachable	0.109	0.105		mg/kg	3.8	30	21-NOV-21
Calcium (Ca)-Leachable	109	108		mg/kg	0.7	30	21-NOV-21
Chromium (Cr)-Leachable	11.2	10.2		mg/kg	9.3	30	21-NOV-21
Cobalt (Co)-Leachable	3.49	3.53		mg/kg	1.3	30	21-NOV-21
Copper (Cu)-Leachable	19.2	19.1		mg/kg	0.5	30	21-NOV-21
Iron (Fe)-Leachable	11600	11600		mg/kg	0.8	30	21-NOV-21
Lead (Pb)-Leachable	9.30	9.33		mg/kg	0.3	30	21-NOV-21
Lithium (Li)-Leachable	5.3	<5.0	RPD-NA	mg/kg	N/A	30	21-NOV-21
Manganese (Mn)-Leachable	48.0	48.0		mg/kg	0.1	30	21-NOV-21
Molybdenum (Mo)-Leachable	1.29	1.32		mg/kg	2.1	30	21-NOV-21
Nickel (Ni)-Leachable	14.6	14.3		mg/kg	2.2	30	21-NOV-21
Selenium (Se)-Leachable	2.05	2.14		mg/kg	4.2	30	21-NOV-21
Silver (Ag)-Leachable	0.24	0.24		mg/kg	3.6	30	21-NOV-21
Strontium (Sr)-Leachable	21.3	19.9		mg/kg	7.0	30	21-NOV-21
Thallium (TI)-Leachable	0.166	0.146		mg/kg	13	30	21-NOV-21
Tin (Sn)-Leachable	<2.0	<2.0	RPD-NA	mg/kg	N/A	30	21-NOV-21
Titanium (Ti)-Leachable	17.0	12.7		mg/kg	29	30	21-NOV-21
Uranium (U)-Leachable	0.366	0.357		mg/kg	2.5	30	21-NOV-21
Vanadium (V)-Leachable	29.6	27.5		mg/kg	7.2	30	21-NOV-21
Zinc (Zn)-Leachable	80.7	81.0		mg/kg	0.4	30	21-NOV-21
WG3645358-2 LCS							
Aluminum (Al)-Leachable		96.8		%		70-130	21-NOV-21
Antimony (Sb)-Leachable		105.4		%		70-130	21-NOV-21
Arsenic (As)-Leachable		98.1		%		70-130	21-NOV-21
Barium (Ba)-Leachable		100.9		%		70-130	21-NOV-21
Beryllium (Be)-Leachable		98.8		%		70-130	21-NOV-21
Bismuth (Bi)-Leachable		100.6		%		70-130	21-NOV-21
Cadmium (Cd)-Leachable		103.3		%		70-130	21-NOV-21
Calcium (Ca)-Leachable		99.9		%		70-130	21-NOV-21

		Workorder: L2644215			Report Date: 23-NOV-21		Page 16 of 22	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TESS-RM-CCMS-	-VA Soil							
Batch R5655	274							
WG3645358-2 LC	CS							
Chromium (Cr)-Leachable			101.6		%		70-130	21-NOV-21
Cobalt (Co)-Leachable			102.4		%		70-130	21-NOV-21
Copper (Cu)-Leachable			100.4		%		70-130	21-NOV-21
Iron (Fe)-Leachable)		101.1		%		70-130	21-NOV-21
Lead (Pb)-Leachable			102.0		%		70-130	21-NOV-21
Lithium (Li)-Leachable			104.1		%		70-130	21-NOV-21
Manganese (Mn)-Leachable			102.6		%		70-130	21-NOV-21
Molybdenum (Mo)-Leachable			102.0		%		70-130	21-NOV-21
Nickel (Ni)-Leachable			100.9		%		70-130	21-NOV-21
Selenium (Se)-Leachable			104.5		%		70-130	21-NOV-21
Silver (Ag)-Leachable			103.0		%		70-130	21-NOV-21
Strontium (Sr)-Leachable			99.0		%		70-130	21-NOV-21
Thallium (TI)-Leachable			100.1		%		70-130	21-NOV-21
Tin (Sn)-Leachable			102.8		%		70-130	21-NOV-21
Titanium (Ti)-Leachable			94.1		%		70-130	21-NOV-21
Uranium (U)-Leachable			97.2		%		70-130	21-NOV-21
Vanadium (V)-Leachable			102.2		%		70-130	21-NOV-21
Zinc (Zn)-Leachable			100.9		%		70-130	21-NOV-21
WG3645358-1 M	В							
Aluminum (Al)-Leachable			<50		mg/kg		50	21-NOV-21
Antimony (Sb)-Leachable			<0.10		mg/kg		0.1	21-NOV-21
Arsenic (As)-Leachable			<0.50		mg/kg		0.5	21-NOV-21
Barium (Ba)-Leachable			<2.0		mg/kg		2	21-NOV-21
Beryllium (Be)-Leachable			<0.20		mg/kg		0.2	21-NOV-21
Bismuth (Bi)-Leachable			<0.20		mg/kg		0.2	21-NOV-21
Cadmium (Cd)-Leachable			<0.050		mg/kg		0.05	21-NOV-21
Calcium (Ca)-Leachable			<50		mg/kg		50	21-NOV-21
Chromium (Cr)-Leachable			<5.0		mg/kg		5	21-NOV-21
Cobalt (Co)-Leachable			<0.10		mg/kg		0.1	21-NOV-21
Copper (Cu)-Leachable			<0.50		mg/kg		0.5	21-NOV-21
Iron (Fe)-Leachable			<50		mg/kg		50	21-NOV-21
Lead (Pb)-Leachable			<0.50		mg/kg		0.5	21-NOV-21
Lithium (Li)-Leachable			<5.0		mg/kg		5	21-NOV-21
Manganese (Mn)-Leachable			<5.0		mg/kg		5	21-NOV-21

		Workorder:	L264421	5	Report Date: 2	3-NOV-21	Page 17 of 22			
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
MET-TESS-RM-CCMS-VA	Soil									
Batch R5655274										
WG3645358-1 MB					_					
Molybdenum (Mo)-Leach	nable		<0.50		mg/kg		0.5	21-NOV-21		
Nickel (Ni)-Leachable			<2.0		mg/kg		2	21-NOV-21		
Selenium (Se)-Leachable	e		<0.20		mg/kg		0.2	21-NOV-21		
Silver (Ag)-Leachable			<0.10		mg/kg		0.1	21-NOV-21		
Strontium (Sr)-Leachable	9		<5.0		mg/kg		5	21-NOV-21		
Thallium (TI)-Leachable			<0.050		mg/kg		0.05	21-NOV-21		
Tin (Sn)-Leachable			<2.0		mg/kg		2	21-NOV-21		
Titanium (Ti)-Leachable			<5.0		mg/kg		5	21-NOV-21		
Uranium (U)-Leachable			<0.050		mg/kg		0.05	21-NOV-21		
Vanadium (V)-Leachable	9		<0.20		mg/kg		0.2	21-NOV-21		
Zinc (Zn)-Leachable			<1.0		mg/kg		1	21-NOV-21		
MOISTURE-CL	Soil									
Batch R5607066										
WG3630257-2 LCS										
Moisture			99.5		%		90-110	04-OCT-21		
WG3630257-1 MB Moisture			<0.25		%		0.25	04-OCT-21		
	Soil						0.20	04 001 21		
Batch B5600957	5011									
WG3631673-3 IRM		ALS PAH RM	12							
Acenaphthene			79.4		%		60-130	04-OCT-21		
Acenaphthylene			88.4		%		60-130	04-OCT-21		
Anthracene			90.2		%		60-130	04-OCT-21		
Acridine			94.8		%		60-130	04-OCT-21		
Benz(a)anthracene			82.5		%		60-130	04-OCT-21		
Benzo(a)pyrene			77.6		%		60-130	04-OCT-21		
Benzo(b&j)fluoranthene			74.7		%		60-130	04-OCT-21		
Benzo(e)pyrene			81.5		%		60-130	04-OCT-21		
Benzo(g,h,i)perylene			73.4		%		60-130	04-OCT-21		
Benzo(k)fluoranthene			84.9		%		60-130	04-OCT-21		
Chrysene			83.1		%		60-130	04-OCT-21		
Dibenz(a,h)anthracene			76.0		%		60-130	04-OCT-21		
Fluoranthene			78.5		%		60-130	04-007-21		
Fluorene			79.3		%		60-130	04-001-21		
Indeno(1.2.3-c.d)pvrene			110.3		%		60-130	04-OCT-21		

		Workorder	Workorder: L2644215			23-NOV-21	Page 18 of 22		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-CL	Soil								
Batch R5609857									
WG3631673-3 IRM		ALS PAH RM	A2						
2-Methylnaphthalene			77.6		%		60-130	04-OCT-21	
Naphthalene			73.5		%		50-130	04-OCT-21	
Perylene			77.1		%		60-130	04-OCT-21	
Phenanthrene			80.3		%		60-130	04-OCT-21	
Pyrene			80.3		%		60-130	04-OCT-21	
1-Methylnaphthalene			76.4		%		60-130	04-OCT-21	
WG3631673-5 IRM		ALS PAH RM	A2		0/				
Acenaphthelene			87.9		%		60-130	05-OCT-21	
Acenaphthylene			98.3		%		60-130	05-OCT-21	
Anthracene			102.2		%		60-130	05-OCT-21	
Acridine			104.6		%		60-130	05-OCT-21	
Benz(a)anthracene			95.3		%		60-130	05-OCT-21	
Benzo(a)pyrene			103.7		%		60-130	05-OCT-21	
Benzo(b&j)fluoranthene			91.7		%		60-130	05-OCT-21	
Benzo(e)pyrene			99.0		%		60-130	05-OCT-21	
Benzo(g,h,i)perylene			89.3		%		60-130	05-OCT-21	
Benzo(k)fluoranthene			75.9		%		60-130	05-OCT-21	
Chrysene			93.9		%		60-130	05-OCT-21	
Dibenz(a,h)anthracene			80.5		%		60-130	05-OCT-21	
Fluoranthene			87.0		%		60-130	05-OCT-21	
Fluorene			88.9		%		60-130	05-OCT-21	
Indeno(1,2,3-c,d)pyrene	1		122.4		%		60-130	05-OCT-21	
2-Methylnaphthalene			82.0		%		60-130	05-OCT-21	
Naphthalene			76.1		%		50-130	05-OCT-21	
Perylene			104.4		%		60-130	05-OCT-21	
Phenanthrene			86.7		%		60-130	05-OCT-21	
Pyrene			89.0		%		60-130	05-OCT-21	
1-Methylnaphthalene			81.6		%		60-130	05-OCT-21	
WG3631673-2 LCS									
Acenaphthene			121.1		%		60-130	04-OCT-21	
Acenaphthylene			114.3		%		60-130	04-OCT-21	
Anthracene			113.8		%		60-130	04-OCT-21	
Acridine			99.6		%		60-130	04-OCT-21	
Benz(a)anthracene			113.2		%		60-130	04-OCT-21	
Benzo(a)pyrene			95.7		%		60-130	04-OCT-21	

		Workorder	rder: L2644215		Report Date: 2	3-NOV-21	Page 19 of 22		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-CL	Soil								
Batch R5609857									
WG3631673-2 LCS									
Benzo(b&j)fluoranthene			104.4		%		60-130	04-OCT-21	
Benzo(e)pyrene			111.9		%		60-130	04-OCT-21	
Benzo(g,h,i)perylene			111.5		%		60-130	04-OCT-21	
Benzo(k)fluoranthene			108.8		%		60-130	04-OCT-21	
Chrysene			118.7		%		60-130	04-OCT-21	
Dibenz(a,h)anthracene			110.6		%		60-130	04-OCT-21	
Fluoranthene			118.0		%		60-130	04-OCT-21	
Fluorene			115.6		%		60-130	04-OCT-21	
Indeno(1,2,3-c,d)pyrene	ł		106.0		%		60-130	04-OCT-21	
2-Methylnaphthalene			124.7		%		60-130	04-OCT-21	
Naphthalene			114.5		%		50-130	04-OCT-21	
Perylene			102.2		%		60-130	04-OCT-21	
Phenanthrene			120.5		%		60-130	04-OCT-21	
Pyrene			117.4		%		60-130	04-OCT-21	
1-Methylnaphthalene			126.2		%		60-130	04-OCT-21	
Quinoline			103.7		%		60-130	04-OCT-21	
WG3631673-1 MB									
Acenaphthene			<0.0050		mg/kg		0.005	04-OCT-21	
Acenaphthylene			<0.0050		mg/kg		0.005	04-OCT-21	
Anthracene			<0.0040		mg/kg		0.004	04-OCT-21	
Acridine			<0.010		mg/kg		0.01	04-OCT-21	
Benz(a)anthracene			<0.010		mg/kg		0.01	04-OCT-21	
Benzo(a)pyrene			<0.010		mg/kg		0.01	04-OCT-21	
Benzo(b&j)fluoranthene			<0.010		mg/kg		0.01	04-OCT-21	
Benzo(e)pyrene			<0.010		mg/kg		0.01	04-OCT-21	
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	04-OCT-21	
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	04-OCT-21	
Chrysene			<0.010		mg/kg		0.01	04-OCT-21	
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	04-OCT-21	
Fluoranthene			<0.010		mg/kg		0.01	04-OCT-21	
Fluorene			<0.010		mg/kg		0.01	04-OCT-21	
Indeno(1,2,3-c,d)pyrene	1		<0.010		mg/kg		0.01	04-OCT-21	
2-Methylnaphthalene			<0.010		mg/kg		0.01	04-OCT-21	
Naphthalene			<0.010		mg/kg		0.01	04-OCT-21	

		Workorder	: L264421	5	Report Date: 2	3-NOV-21	Page 20 of 22		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-CL	Soil								
Batch R5609	857								
WG3631673-1 M	В								
Perylene			<0.010		mg/kg		0.01	04-OCT-21	
Phenanthrene			<0.010		mg/kg		0.01	04-OCT-21	
Pyrene			<0.010		mg/kg		0.01	04-OCT-21	
1-Methylnaphthaler	ne		<0.050		mg/kg		0.05	04-OCT-21	
Quinoline			<0.050		mg/kg		0.05	04-OCT-21	
Surrogate: d8-Naph	nthalene		66.8		%		50-130	04-OCT-21	
Surrogate: d10-Ace	enaphthene		67.8		%		60-130	04-OCT-21	
Surrogate: d10-Phe	enanthrene		74.5		%		60-130	04-OCT-21	
Surrogate: d12-Chr	ysene		79.6		%		60-130	04-OCT-21	
WG3631673-6 M	В								
Acenaphthene			<0.0050		mg/kg		0.005	05-OCT-21	
Acenaphthylene			<0.0050		mg/kg		0.005	05-OCT-21	
Anthracene			<0.0040		mg/kg		0.004	05-OCT-21	
Acridine			<0.010		mg/kg		0.01	05-OCT-21	
Benz(a)anthracene			<0.010		mg/kg		0.01	05-OCT-21	
Benzo(a)pyrene			<0.010		mg/kg		0.01	05-OCT-21	
Benzo(b&j)fluoranth	nene		<0.010		mg/kg		0.01	05-OCT-21	
Benzo(e)pyrene			<0.010		mg/kg		0.01	05-OCT-21	
Benzo(g,h,i)perylen	ie		<0.010		mg/kg		0.01	05-OCT-21	
Benzo(k)fluoranthe	ne		<0.010		mg/kg		0.01	05-OCT-21	
Chrysene			<0.010		mg/kg		0.01	05-OCT-21	
Dibenz(a,h)anthrac	ene		<0.0050		mg/kg		0.005	05-OCT-21	
Fluoranthene			<0.010		mg/kg		0.01	05-OCT-21	
Fluorene			<0.010		mg/kg		0.01	05-OCT-21	
Indeno(1,2,3-c,d)py	/rene		<0.010		mg/kg		0.01	05-OCT-21	
2-Methylnaphthaler	ne		<0.010		mg/kg		0.01	05-OCT-21	
Naphthalene			<0.010		mg/kg		0.01	05-OCT-21	
Perylene			<0.010		mg/kg		0.01	05-OCT-21	
Phenanthrene			<0.010		mg/kg		0.01	05-OCT-21	
Pyrene			<0.010		mg/kg		0.01	05-OCT-21	
1-Methylnaphthaler	ne		<0.050		mg/kg		0.05	05-OCT-21	
Quinoline			<0.050		mg/kg		0.05	05-OCT-21	
Surrogate: d8-Naph	nthalene		87.4		%		50-130	05-OCT-21	
Surrogate: d10-Ace	enaphthene		84.7		%		60-130	05-OCT-21	

	Workorder: L2644215			Report Date: 2	23-NOV-21	Page 21 of 22			
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
PAH-TMB-H/A-MS-CL Soil									
Batch R5609857									
WG3631673-6 MB									
Surrogate: d10-Phenanthrene		95.8		%		60-130	05-OCT-21		
Surrogate: d12-Chrysene		104.2		%		60-130	05-OCT-21		
PH-1:2-CL Soil									
Batch R5613931									
WG3633633-6 DUP	L2644215-7								
pH (1:2 soil:water)	8.19	8.14	J	рН	0.05	0.2	07-OCT-21		
WG3633633-2 IRM	SAL-STD11								
pH (1:2 soil:water)		8.02		рН		7.7-8.3	07-OCT-21		
WG3633633-5 IRM	SAL-STD11	7.00							
		7.99		рп		7.7-8.3	07-001-21		
WG3633633-1 LCS pH (1:2 soil:water)		7 02		нα		68-72	07 OCT 21		
WC2622622.4 LCS		1.02		p. i		0.0-7.2	07-001-21		
pH (1:2 soil:water)		7.01		pН		6.8-7.2	07-OCT-21		
PSA-PIPET-DETAIL-SK Soil									
Batch R5610002									
WG3627466-2 IRM	2020-PSA S	DIL							
% Sand (2.00mm - 1.00mm)		2.3		%		0-7.2	05-OCT-21		
% Sand (1.00mm - 0.50mm)		3.6		%		0-8.7	05-OCT-21		
% Sand (0.50mm - 0.25mm)		9.0		%		4-14	05-OCT-21		
% Sand (0.25mm - 0.125mm)		16.6		%		11.7-21.7	05-OCT-21		
% Sand (0.125mm - 0.063mm)		14.1		%		8.4-18.4	05-OCT-21		
% Silt (0.063mm - 0.0312mm)		12.0		%		8.5-18.5	05-OCT-21		
% Silt (0.0312mm - 0.004mm)		20.6		%		15.1-25.1	05-OCT-21		
% Clay (<4um)		21.8		%		16.5-26.5	05-OCT-21		

Workorder: L2644215

Report Date: 23-NOV-21

Legend:

L	imit	ALS Control Limit (Data Quality Objectives)
Ľ	DUP	Duplicate
F	RPD	Relative Percent Difference
Ν	√A/I	Not Available
L	CS	Laboratory Control Sample
S	SRM	Standard Reference Material
Ν	٨S	Matrix Spike
Ν	ИSD	Matrix Spike Duplicate
A	١DE	Average Desorption Efficiency
Ν	ИΒ	Method Blank
	RM	Internal Reference Material
C	CRM	Certified Reference Material
C	CCV	Continuing Calibration Verification
C	CVS	Calibration Verification Standard
L	CSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Tock							Pagi	e kofi											
JECK	COC ID:	Septemb	er GG	CAMP	2021		TURN	AROUNI	D TIME:	1							<u> </u>		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PROJECTICO	TENTINED IN THE	<u>. 163</u>	11110	1. 102	*	tet i	ah Nama	LABOR	ATORY	18 L	- L s.		275	411 19	4: 1			
Facility Name / Job# I	Allie Fermion						Lat	Contact	Lvudmvla S	y hvets						.	Excel	PDr F	<u></u>
Froject Manager /	Advertised and a							Email	lyudmyla.s	hvets@a	sglobal.com				And a proof was	4996.	<u> </u>	A A A	
Address	421 Pine Avenue			~~				Address	2559 29 Sta	eet NE					Roomer and		2		
																	z	x	
City		Sparwood			Province B	с		City	Calgary		Province	AB				•	r	s. 1	64. j.
Postal Code		V0B 2G0			Country Ca	anada	Pos	stal Code	TIY 785		Country	Canada							
- Phone Number	250-425-8202			for a			Phone	Number	1 403 407 1	/94	a voin pr	ourcter							
	State State	AMPLE DETAILS	<u> </u>	, 1 1			per la	<u>به المراجع</u>	<u>, 10</u>	<u>ļi AN</u>	AL VSIS KE	ULESIE	lie:	<u></u>	<u>م الب</u>	Filternd - 2:	Full, La Lab.	Flafwie & La	9, N: News
				14					π. Έ	N	N	N	N	N		É la			
		·								13.464				<u> </u>	<u></u>	<u> </u>	<u> </u>		<u>, 1966</u>
									-	NONE	NONE	NONE	NONE	NONE					h.
				9															<u> </u>
				es/								¥		-	<u>†</u>				<u></u>
L2644215-COFC		9		ι λ						9		1 <u>-</u>	ក្ម			1	1		1
		I		oria								TA	WS			. I	'		I
<u> </u>				Aate					SHAC	E	្រក្	DE	-V/C	STI		1 - 1	!		I
				l sn					X X	ME	RE	ET.	8	SS-		1			
				rdo					ပို	l S	STU	PIP	ΨL.	E I		1		1	
	0		Field	laza		Time	G=Grab	#Of	-10	ET	101	SA- Brti	AH.					i I	
Sample ID PC_CHP_SE_1 2021_09-22 0900	Sa	ample Location	Matrix	<u> </u>	Date	(24hr)	C=Comp	Cont.	<u> </u>	<u>×</u>	22	<u> </u>	<u> </u>					r	
	<u>A. 11.</u>	RG_GHP	SE	No .	9/22/2021	900	G	2	<u>x</u>	x	X	X		X				└── ┤	
RG_GHP_SE-6_2021-09-22_1000		RG_GHP	SE	No	9/22/2021	1000	G	2	x	x	x	x	x	x				<u> </u>	
- RG_GHP_SE-3_2021-09-21_1115	(***)	RG_GHP	SE	Nò	9/21/2021	1115	G	2	x	x	x	X	<u>x</u>	x]		⊢	
RG_GHP_SE-4_2021-09-21_1000	<u></u>	RG_GHP	SE	No	9/21/2021	1000	G	2	X	x	x	x	X	x				Ľ.	
RG_GHP_SE-5_2021-09-23_1000		RG_GHP	SE	No	9/23/2021	1000	G	2	<u>x</u>	x	x	x	X	x				⊢	
RG_RIVER_SE-1_2021-09-21_1115	112.122	RG_RIVER	SE	No	9/21/2021	1115	G	2	<u>x</u>	X	x	x	X	X	ļ		· · ·		
RG_RIVER_SE-2_2021-09-22_1000		RG_RIVER	SE	No	9/22/2021	1000	G	2	x x	<u> </u>	X	X	X	X	\vdash				
	<u></u>	And the second	SE	No			G	2	<u>X</u>	<u>x</u>	X	X	<u>x</u>	X					
	<u> </u>	Contraction of the second s	- <u>SE</u>	INO.:			G	2	X	$\frac{\lambda}{v}$	X				┝━━──┤				
ADDITIONAL COMMENTS	SPECIAL INSTRU	CTIONS	312	INO TO	RELINQUISH	LED BY/AFF	LIATION	2	ATE/TIM	L Â	ÂC	EPTED B	N/AFEI	auîno	N.	<u> ()</u>	4		
				1									کی	۶T			1	/	
					Jennif	er Ings/Minr	10w			****			- A		/		On 1	71	11
.S PO 750546			•		-								-#	N			111	2.	X
· · ·													_ v _					¥	
NB OF BOTTLES RETU	RNED/DESCRIPT	ION	4	£1 (11	(1.11)	1 - 2 1 (1	. \$H.	111					-1111	114.		2	
	· · · ·	Regular (d	lefault) x		Sampler's Na	me			ennifer la	es	1.128	Mahi	ile#			519-500	3444		
	Pri	iority (2-3 business days) - 50% sur	charge				L	1 12 -	~ <u>~</u>	<u> </u>						515-500		2 80808800	*****
	For Emergency <	gency (1 Business Day) - 100% sur 1 Day ASAP or Weekend - Contac	charge	1 8	Sampler's Signa	ature	Jer	17 11 1	'	. 18		Date/1	ſime		S	eptember	23, 2021	(
	Tor Emergency <	T Day, Morth of Weekene Contac		L					Base	<u></u>	<u>(,),())))))</u> ,(),()	1	ki	<u> </u>	<u></u>	<u> </u>	<u></u>	<u></u>	<u> </u>
-			-		•	•	•												
														,			٠.		
		•																	
		:									•								
																		• .	
					•													• ,	
					•								•					•	
				N							•		•					•	;
						. •					•		•					•	
				.	•		-				•						•	•	
													• • •				•	•	
			- 		•		• • •				•			•			•	•	- - - -
			÷		· · · · · · · · · · · · · · · · · · ·	•					•		•	•					

Teck Coal Ltd. ATTN: Allie Ferguson 421 Pine Avenue Sparwood BC VOB 2G0 Date Received: 21-SEP-21 Report Date: 07-JAN-22 13:59 (MT) Version: FINAL REV. 2

Client Phone: 250-425-8202

Certificate of Analysis

Lab Work Order #: L2644275 Project P.O. #: VPO0075054

Job Reference: C of C Numbers: Legal Site Desc: VPO00750546 REGIONAL EFFECTS PROGRAM September GGCAMP

Comments: Mercury in soil by CVAAS expired on L2644275-1 to -10 due to capacity.

Lyudmyla Shvets, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2644275 CONTD.... PAGE 2 of 16 07-JAN-22 13:59 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644275-1 SE 16-SEP-21 08:45 RG_GANF_SE- 4_2021-09- 16 0845	L2644275-2 SE 16-SEP-21 09:30 RG_GANF_SE- 5_2021-09- 16 0930	L2644275-3 SE 16-SEP-21 12:00 RG_GAUT_SE- 1_2021-09- 16 1200	L2644275-4 SE 16-SEP-21 12:50 RG_GAUT_SE- 2_2021-09- 16 1250	L2644275-5 SE 16-SEP-21 13:30 RG_GAUT_SE- 3_2021-09- 16 1330
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	82.8	71.3	31.7	44.5	91.6
	pH (1:2 soil:water) (pH)	7.46	7.42	7.53	7.54	7.38
Particle Size	% Gravel (>2mm) (%)	5.9	2.7	5.5	4.0	2.3
	% Sand (2.00mm - 1.00mm) (%)	5.5	8.9	13.7	11.4	12.2
	% Sand (1.00mm - 0.50mm) (%)	8.7	10.6	16.8	13.8	20.1
	% Sand (0.50mm - 0.25mm) (%)	14.6	13.0	15.9	19.9	15.9
	% Sand (0.25mm - 0.125mm) (%)	17.5	14.5	12.2	15.2	10.4
	% Sand (0.125mm - 0.063mm) (%)	10.1	10.9	8.1	7.5	6.3
	% Silt (0.063mm - 0.0312mm) (%)	13.8	14.2	9.2	8.2	10.5
	% Silt (0.0312mm - 0.004mm) (%)	17.4	19.0	12.0	12.2	15.5
	% Clay (<4um) (%)	6.6	6.2	6.5	7.7	6.9
	Texture	Sandy loam				
Organic / Inorganic Carbon	Total Organic Carbon (%)	8.75	9.41	5.44	6.47	8.44
Metals	Aluminum (Al) (mg/kg)	5300	5300	8590	8340	8550
	Antimony (Sb) (mg/kg)	0.81	0.84	0.87	1.01	2.02
	Arsenic (As) (mg/kg)	3.98	3.29	6.71	5.31	5.11
	Barium (Ba) (mg/kg)	223	195	223	219	303
	Beryllium (Be) (mg/kg)	0.63	0.48	0.75	0.73	0.83
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	<5.0	5.6	7.0	7.4	8.4
	Cadmium (Cd) (mg/kg)	0.710	0.566	0.638	0.636	1.29
	Calcium (Ca) (mg/kg)	91500	104000	9380	8750	16000
	Chromium (Cr) (mg/kg)	8.67	7.98	12.1	12.2	12.8
	Cobalt (Co) (mg/kg)	6.49	5.29	10.9	10.2	11.6
	Copper (Cu) (mg/kg)	12.9	11.7	14.9	14.9	23.2
	Iron (Fe) (mg/kg)	11900	9710	22400	17700	14900
	Lead (Pb) (mg/kg)	8.95	7.26	13.0	10.8	12.3
	Lithium (Li) (mg/kg)	9.1	8.4	15.1	12.9	11.9
	Magnesium (Mg) (mg/kg)	3860	3860	3240	2920	3130
	Manganese (Mn) (mg/kg)	389	330	579	440	767
	Mercury (Hg) (mg/kg)	0.0660	0.0690	0.0492	0.0577	0.126
	Molybdenum (Mo) (mg/kg)	0.81	0.70	1.15	1.09	1.10
	Nickel (Ni) (mg/kg)	23.7	20.4	35.0	33.7	47.7
	Phosphorus (P) (mg/kg)	963	749	1270	1090	1030
	Potassium (K) (mg/kg)	1090	1210	1770	1810	1650
	Selenium (Se) (mg/kg)	1.96	1.35	0.87	1.09	2.86

L2644275 CONTD.... PAGE 3 of 16 07-JAN-22 13:59 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644275-6 SE 16-SEP-21 14:30 RG_GAUT_SE- 4_2021-09- 16_1430	L2644275-7 SE 16-SEP-21 15:00 RG_GAUT_SE- 5_2021-09- 16_1500	L2644275-8 SE 15-SEP-21 13:30 RG_GANF-SE- 1_2021-09- 15_1330	L2644275-9 SE 15-SEP-21 14:20 RG_GANF-SE- 2_2021-09- 15_1420	L2644275-10 SE 15-SEP-21 15:15 RG_GANF-SE- 2_2021-09- 15_1420
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	55.5	67.7	78.4	59.8	67.9
	pH (1:2 soil:water) (pH)	7.46	7.53	7.62	7.41	7.69
Particle Size	% Gravel (>2mm) (%)	15.9	6.5	<1.0	<1.0	<1.0
	% Sand (2.00mm - 1.00mm) (%)	4.3	9.4	5.9	4.6	3.1
	% Sand (1.00mm - 0.50mm) (%)	6.2	12.8	9.6	6.2	4.6
	% Sand (0.50mm - 0.25mm) (%)	9.3	16.8	14.3	13.8	12.6
	% Sand (0.25mm - 0.125mm) (%)	10.5	15.0	17.2	19.0	19.7
	% Sand (0.125mm - 0.063mm) (%)	8.2	8.0	11.4	12.4	12.4
	% Silt (0.063mm - 0.0312mm) (%)	16.8	10.2	14.4	16.1	16.5
	% Silt (0.0312mm - 0.004mm) (%)	21.4	14.4	19.6	20.3	22.2
	% Clay (<4um) (%)	7.4	6.9	7.7	7.7	8.9
	Texture	Loam / Sandy Ioam	Sandy loam	Sandy loam	Sandy loam	Sandy loam
Organic / Inorganic Carbon	Total Organic Carbon (%)	11.1	7.24	9.72	8.66	9.93
Metals	Aluminum (Al) (mg/kg)	7710	8210	5270	5590	6280
	Antimony (Sb) (mg/kg)	1.17	1.50	1.03	0.84	0.91
	Arsenic (As) (mg/kg)	5.43	5.33	3.71	4.13	3.85
	Barium (Ba) (mg/kg)	239	253	228	200	225
	Beryllium (Be) (mg/kg)	0.73	0.81	0.61	0.64	0.65
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	7.0	8.9	<5.0	<5.0	6.5
	Cadmium (Cd) (mg/kg)	0.755	0.850	0.757	0.651	0.635
	Calcium (Ca) (mg/kg)	10100	11500	85700	76300	92300
	Chromium (Cr) (mg/kg)	11.8	12.3	8.46	8.78	9.58
	Cobalt (Co) (mg/kg)	10.9	10.7	6.32	6.90	6.30
	Copper (Cu) (mg/kg)	16.6	17.4	13.7	12.7	12.7
	Iron (Fe) (mg/kg)	16700	16000	10900	12600	11900
	Lead (Pb) (mg/kg)	11.3	11.9	8.40	9.00	8.62
	Lithium (Li) (mg/kg)	11.7	12.9	8.2	9.1	9.6
	Magnesium (Mg) (mg/kg)	2860	2800	3950	3760	4090
	Manganese (Mn) (mg/kg)	669	492	365	409	371
	Mercury (Hg) (mg/kg)	0.0770	0.0823	0.0721	0.0696	0.0809
	Molybdenum (Mo) (mg/kg)	1.08	1.03	0.81	0.83	0.89
	Nickel (Ni) (mg/kg)	35.1	37.7	25.5	24.4	23.2
	Phosphorus (P) (mg/kg)	1070	1020	894	969	974
	Potassium (K) (mg/kg)	1640	1720	1090	1190	1420
	Selenium (Se) (mg/kg)	1.32	1.65	2.56	1.56	2.05

L2644275 CONTD.... PAGE 4 of 16 07-JAN-22 13:59 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644275-1 SE 16-SEP-21 08:45 RG_GANF_SE- 4_2021-09- 16 0845	L2644275-2 SE 16-SEP-21 09:30 RG_GANF_SE- 5_2021-09- 16 0930	L2644275-3 SE 16-SEP-21 12:00 RG_GAUT_SE- 1_2021-09- 16 1200	L2644275-4 SE 16-SEP-21 12:50 RG_GAUT_SE- 2_2021-09- 16 1250	L2644275-5 SE 16-SEP-21 13:30 RG_GAUT_SE- 3_2021-09- 16 1330
Grouping	Analyte					
SOIL						
Metals	Silver (Ag) (mg/kg)	0.25	0.22	0.19	0.23	0.51
	Sodium (Na) (mg/kg)	72	73	60	60	68
	Strontium (Sr) (mg/kg)	78.6	81.7	42.8	42.0	66.0
	Sulfur (S) (mg/kg)	1800	1900	<1000	<1000	1200
	Thallium (TI) (mg/kg)	0.159	0.127	0.162	0.153	0.211
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti) (mg/kg)	11.9	14.0	12.2	16.5	14.1
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	0.915	0.728	0.667	0.618	0.911
	Vanadium (V) (mg/kg)	16.7	16.9	26.8	26.1	26.6
	Zinc (Zn) (mg/kg)	75.3	59.0	104	93.9	99.9
	Zirconium (Zr) (mg/kg)	1.2	<1.0	1.0	<1.0	1.4
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	DLHM 0.291	0.223	0.0423	0.105	0.586
	Acenaphthylene (mg/kg)	DLHM 0.042	0.0358	<0.0050	0.0195	0.103
	Acridine (mg/kg)	0.556	0.375	0.074	0.176	0.867
	Anthracene (mg/kg)	DLHM <0.0080	<0.0040	<0.0040	<0.0040	0.0192
	Benz(a)anthracene (mg/kg)	0.168	0.125	0.026	0.056	0.319
	Benzo(a)pyrene (mg/kg)	DLHM 0.087	0.071	0.012	0.032	0.151
	Benzo(b&j)fluoranthene (mg/kg)	0.434	0.300	0.076	0.147	0.752
	Benzo(b+j+k)fluoranthene (mg/kg)	0.459	0.314	0.076	0.158	0.789
	Benzo(e)pyrene (mg/kg)	0.405	0.294	0.072	0.141	0.747
	Benzo(g,h,i)perylene (mg/kg)	0.147	0.103	0.027	0.052	0.319
	Benzo(k)fluoranthene (mg/kg)	0.025	0.014	<0.010	0.012	0.037
	Chrysene (mg/kg)	0.903	0.670	0.144	0.340	1.71
	Dibenz(a,h)anthracene (mg/kg)	0.069	0.0469	0.0178	0.0274	0.128
	Fluoranthene (mg/kg)	0.154	0.119	0.034	0.059	0.263
	Fluorene (mg/kg)	0.750	0.515	0.091	0.234	1.26
	Indeno(1,2,3-c,d)pyrene (mg/kg)	0.045	0.015	0.010	0.015	0.050
	1-Methylnaphthalene (mg/kg)	3.84	2.70	0.480	1.27	6.68
	2-Methylnaphthalene (mg/kg)	7.27 DLHM	5.20	0.891	2.40	12.7
	Naphthalene (mg/kg)	2.15	1.55	0.252	0.695	3.66
	Perylene (mg/kg)	0.044	0.020	<0.010	0.011	0.050
	Phenanthrene (mg/kg)	3.32 DLHM	2.34	0.414	1.08	5.66
	Pyrene (mg/kg)	0.379	0.270	0.067	0.150	0.717
	Quinoline (mg/kg)	oli -0.020	<0.050	<0.050	<0.050	<0.050
	Surrogate: d10-Acenaphthene (%)	107.2	100.9	80.3	90.9	102.7

L2644275 CONTD.... PAGE 5 of 16 07-JAN-22 13:59 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644275-6 SE 16-SEP-21 14:30 RG_GAUT_SE- 4_2021-09- 16_1430	L2644275-7 SE 16-SEP-21 15:00 RG_GAUT_SE- 5_2021-09- 16_1500	L2644275-8 SE 15-SEP-21 13:30 RG_GANF-SE- 1_2021-09- 15_1330	L2644275-9 SE 15-SEP-21 14:20 RG_GANF-SE- 2_2021-09- 15_1420	L2644275-10 SE 15-SEP-21 15:15 RG_GANF-SE- 2_2021-09- 15_1420
Grouping	Analyte					_
SOIL						
Metals	Silver (Ag) (mg/kg)	0.27	0.30	0.27	0.22	0.23
	Sodium (Na) (mg/kg)	55	59	70	65	75
	Strontium (Sr) (mg/kg)	47.5	53.4	76.5	67.2	79.4
	Sulfur (S) (mg/kg)	<1000	<1000	2000	1400	1700
	Thallium (TI) (mg/kg)	0.156	0.172	0.147	0.144	0.181
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti) (mg/kg)	14.7	17.9	9.0	10.7	13.2
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	0.753	0.725	0.852	0.742	0.851
	Vanadium (V) (mg/kg)	25.6	25.9	16.8	17.7	20.1
	Zinc (Zn) (mg/kg)	94.5	94.8	74.8	78.1	74.7
	Zirconium (Zr) (mg/kg)	1.0	1.1	1.1	<1.0	<1.0
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	0.191	0.206	0.285	0.136	0.155
	Acenaphthylene (mg/kg)	0.0330	DLHM 0.033	DLHM 0.044	0.0231	0.0283
	Acridine (mg/kg)	0.352	DLHM 0.322	DLHM 0.512	0.201	0.248
	Anthracene (mg/kg)	<0.0040	DLHM <0.0080	DLHM <0.0080	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	0.119	0.118	0.166	0.065	0.082
	Benzo(a)pyrene (mg/kg)	0.065	DLHM 0.067	DLHM 0.102	0.031	0.046
	Benzo(b&j)fluoranthene (mg/kg)	0.303	0.301	DLHM 0.363	0.145	0.193
	Benzo(b+j+k)fluoranthene (mg/kg)	0.329	0.325	DLHM 0.403	0.159	0.209
	Benzo(e)pyrene (mg/kg)	0.302	DLHM 0.296	DLHM 0.386	0.145	0.191
	Benzo(g,h,i)perylene (mg/kg)	0.112	DLHM 0.126	DLHM 0.153	0.055	0.080
	Benzo(k)fluoranthene (mg/kg)	0.026	0.023	DLHM 0.040	0.014	0.016
	Chrysene (mg/kg)	0.655	0.663	DLHM 0.854	0.340	0.435
	Dibenz(a,h)anthracene (mg/kg)	0.0544	0.045	0.066	0.0208	0.0351
	Fluoranthene (mg/kg)	0.101	0.105	0.133	0.060	0.074
	Fluorene (mg/kg)	0.428	0.437	0.651	0.301	0.349
	Indeno(1,2,3-c,d)pyrene (mg/kg)	0.029	0.030	0.031	0.015	0.024
	1-Methylnaphthalene (mg/kg)	2.09	2.38 DLHM	3.58	1.66	1.82
	2-Methylnaphthalene (mg/kg)	3.89	4.43	6.70	3.16	3.42
	Naphthalene (mg/kg)	1.09	1.34 DLHM	2.05	0.999	1.02
	Perylene (mg/kg)	0.010	0.024	0.029	0.014	0.017
	Phenanthrene (mg/kg)	1.98	2.14 DLHM	2.87	1.36	1.51
	Pyrene (mg/kg)	0.245	0.282	0.336	0.153	0.188
	Quinoline (mg/kg)	<0.050	0.022	ollhm </th <th><0.050</th> <th><0.050</th>	<0.050	<0.050
	Surrogate: d10-Acenaphthene (%)	82.3	85.4	84.1	77.4	84.7

L2644275 CONTD.... PAGE 6 of 16 07-JAN-22 13:59 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644275-1 SE 16-SEP-21 08:45 RG_GANF_SE- 4_2021-09- 16_0845	L2644275-2 SE 16-SEP-21 09:30 RG_GANF_SE- 5_2021-09- 16_0930	L2644275-3 SE 16-SEP-21 12:00 RG_GAUT_SE- 1_2021-09- 16_1200	L2644275-4 SE 16-SEP-21 12:50 RG_GAUT_SE- 2_2021-09- 16_1250	L2644275-5 SE 16-SEP-21 13:30 RG_GAUT_SE- 3_2021-09- 16_1330
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Surrogate: d12-Chrysene (%)	124.6	117.1	97.3	99.9	115.7
	Surrogate: d8-Naphthalene (%)	102.4	96.1	79.9	87.0	99.3
	Surrogate: d10-Phenanthrene (%)	118.2	110.0	91.4	96.8	110.9
	IACR:Coarse	0.137	0.093	<0.050	<0.050	0.237
	IACR:Fine	0.263	0.180	<0.050	0.096	0.456
	B(a)P Total Potency Equivalent (mg/kg)	0.234	0.171	0.043	0.086	0.415
	IACR (CCME)	4.38	3.07	0.77	1.54	7.74
Exchangeable & Adsorbed Metals	Aluminum (Al)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Arsenic (As)-Leachable (mg/kg)	0.051	<0.050	<0.050	<0.050	0.052
	Barium (Ba)-Leachable (mg/kg)	29.5	17.6	36.0	41.0	69.9
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.055	<0.050	0.129	0.151	0.156
	Calcium (Ca)-Leachable (mg/kg)	5080	3150	2510	3230	8260
	Chromium (Cr)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Cobalt (Co)-Leachable (mg/kg)	0.23	0.19	<0.10	<0.10	0.59
	Copper (Cu)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Iron (Fe)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Lead (Pb)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	106	72.5	4.8	7.7	227
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nickel (Ni)-Leachable (mg/kg)	0.51	<0.50	<0.50	0.52	1.17
	Phosphorus (P)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Potassium (K)-Leachable (mg/kg)	150	150	140	140	170
	Selenium (Se)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Sodium (Na)-Leachable (mg/kg)	<100	<100	<100	<100	<100
	Strontium (Sr)-Leachable (mg/kg)	10.9	7.53	10.5	12.6	30.0
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Uranium (U)-Leachable (mg/kg)	0.051	<0.050	<0.050	<0.050	<0.050
	Vanadium (V)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Zinc (Zn)-Leachable (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0

L2644275 CONTD.... PAGE 7 of 16 07-JAN-22 13:59 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644275-6 SE 16-SEP-21 14:30 RG_GAUT_SE- 4_2021-09- 16_1430	L2644275-7 SE 16-SEP-21 15:00 RG_GAUT_SE- 5_2021-09- 16.1500	L2644275-8 SE 15-SEP-21 13:30 RG_GANF-SE- 1_2021-09- 15 1330	L2644275-9 SE 15-SEP-21 14:20 RG_GANF-SE- 2_2021-09- 15_1420	L2644275-10 SE 15-SEP-21 15:15 RG_GANF-SE- 2_2021-09- 15:1420
Grouping	Analyte	. 10_1400	10_1000	10_1000	15_1420	13_1420
SOIL						
Polycyclic Aromatic Hydrocarbons	Surrogate: d12-Chrysene (%)	89.2	92.5	86.0	86.0	91.3
	Surrogate: d8-Naphthalene (%)	77.1	81.5	79.4	76.7	80.5
	Surrogate: d10-Phenanthrene (%)	85.3	89.7	84.3	82.1	88.1
	IACR:Coarse	0.104	0.101	0.137	0.052	0.067
	IACR:Fine	0.199	0.193	0.262	0.099	0.128
	B(a)P Total Potency Equivalent (mg/kg)	0.174	0.167	0.237	0.080	0.117
	IACR (CCME)	3.16	3.11	4.02	1.54	2.06
Exchangeable & Adsorbed Metals	Aluminum (Al)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Arsenic (As)-Leachable (mg/kg)	<0.050	<0.050	0.053	<0.050	0.055
	Barium (Ba)-Leachable (mg/kg)	53.8	57.7	28.7	23.0	27.5
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.150	0.194	0.054	<0.050	0.061
	Calcium (Ca)-Leachable (mg/kg)	4600	6650	4530	3680	4870
	Chromium (Cr)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Cobalt (Co)-Leachable (mg/kg)	0.49	0.33	0.27	0.23	0.28
	Copper (Cu)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Iron (Fe)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Lead (Pb)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	211	61.5	85.8	86.9	112
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nickel (Ni)-Leachable (mg/kg)	0.90	0.86	0.56	<0.50	0.51
	Phosphorus (P)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Potassium (K)-Leachable (mg/kg)	150	150	170	150	160
	Selenium (Se)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Sodium (Na)-Leachable (mg/kg)	<100	<100	<100	<100	<100
	Strontium (Sr)-Leachable (mg/kg)	18.4	23.9	9.72	7.72	10.5
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Uranium (U)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	0.050
	Vanadium (V)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Zinc (Zn)-Leachable (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0

L2644275 CONTD.... PAGE 8 of 16 07-JAN-22 13:59 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644275-1 SE 16-SEP-21 08:45 RG_GANF_SE- 4_2021-09- 16 0845	L2644275-2 SE 16-SEP-21 09:30 RG_GANF_SE- 5_2021-09- 16 0930	L2644275-3 SE 16-SEP-21 12:00 RG_GAUT_SE- 1_2021-09- 16 1200	L2644275-4 SE 16-SEP-21 12:50 RG_GAUT_SE- 2_2021-09- 16 1250	L2644275-5 SE 16-SEP-21 13:30 RG_GAUT_SE- 3_2021-09- 16 1330
Grouping	Analyte					
SOIL						
Carbonate Metals	Aluminum (Al)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Arsenic (As)-Leachable (mg/kg)	0.108	0.060	<0.050	<0.050	0.138
	Barium (Ba)-Leachable (mg/kg)	55.0	50.1	36.9	37.4	37.9
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.216	0.179	0.117	0.144	0.279
	Calcium (Ca)-Leachable (mg/kg)	47100	50400	1940	2470	3400
	Chromium (Cr)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Cobalt (Co)-Leachable (mg/kg)	0.79	0.67	0.41	0.50	1.44
	Copper (Cu)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Iron (Fe)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Lead (Pb)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	129	122	65.7	87.4	239
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nickel (Ni)-Leachable (mg/kg)	2.3	2.3	2.3	2.5	3.5
	Phosphorus (P)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Selenium (Se)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Strontium (Sr)-Leachable (mg/kg)	27.7	28.5	<5.0	6.5	7.5
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Uranium (U)-Leachable (mg/kg)	0.235	0.139	<0.050	<0.050	0.087
	Vanadium (V)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Zinc (Zn)-Leachable (mg/kg)	6.5	5.6	5.1	6.0	9.1
Easily Reducible Metals and Iron Oxides	Aluminum (Al)-Leachable (mg/kg)	408	374	645	656	658
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Arsenic (As)-Leachable (mg/kg)	0.377	0.417	0.368	0.395	0.644
	Barium (Ba)-Leachable (mg/kg)	45.0	66.8	41.0	44.6	69.8
	Beryllium (Be)-Leachable (mg/kg)	0.34	0.22	0.26	0.25	0.33
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.327	0.313	0.218	0.232	0.638
	Calcium (Ca)-Leachable (mg/kg)	29900	71700	2200	2270	3300
	Chromium (Cr)-Leachable (mg/kg)	0.63	0.62	1.09	0.82	0.59

L2644275 CONTD.... PAGE 9 of 16 07-JAN-22 13:59 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644275-6 SE 16-SEP-21 14:30 RG_GAUT_SE- 4_2021-09- 16_1430	L2644275-7 SE 16-SEP-21 15:00 RG_GAUT_SE- 5_2021-09- 16_1500	L2644275-8 SE 15-SEP-21 13:30 RG_GANF-SE- 1_2021-09- 15_1330	L2644275-9 SE 15-SEP-21 14:20 RG_GANF-SE- 2_2021-09- 15_1420	L2644275-10 SE 15-SEP-21 15:15 RG_GANF-SE- 2_2021-09- 15_1420
Grouping	Analyte					
SOIL						
Carbonate Metals	Aluminum (Al)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Arsenic (As)-Leachable (mg/kg)	0.064	<0.050	0.073	0.051	0.104
	Barium (Ba)-Leachable (mg/kg)	36.8	38.3	57.7	55.3	57.6
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.171	0.194	0.244	0.233	0.218
	Calcium (Ca)-Leachable (mg/kg)	2510	2970	46900	48500	50000
	Chromium (Cr)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Cobalt (Co)-Leachable (mg/kg)	1.04	1.06	0.91	0.78	0.90
	Copper (Cu)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Iron (Fe)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Lead (Pb)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	187	162	148	134	135
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nickel (Ni)-Leachable (mg/kg)	2.6	2.7	2.8	2.5	2.3
	Phosphorus (P)-Leachable (mg/kg)	<50	<50	<50	<50	<50
	Selenium (Se)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Strontium (Sr)-Leachable (mg/kg)	5.7	6.5	26.8	27.1	28.2
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Uranium (U)-Leachable (mg/kg)	0.062	0.058	0.188	0.147	0.230
	Vanadium (V)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Zinc (Zn)-Leachable (mg/kg)	6.1	7.4	7.6	6.5	7.1
Easily Reducible Metals and Iron Oxides	Aluminum (Al)-Leachable (mg/kg)	685	687	404	425	392
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Arsenic (As)-Leachable (mg/kg)	0.512	0.520	0.406	0.281	0.421
	Barium (Ba)-Leachable (mg/kg)	56.7	66.5	50.7	40.4	47.3
	Beryllium (Be)-Leachable (mg/kg)	0.32	0.33	0.27	0.26	0.30
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.397	0.452	0.358	0.287	0.325
	Calcium (Ca)-Leachable (mg/kg)	2970	3030	37500	24600	33100
	Chromium (Cr)-Leachable (mg/kg)	0.70	0.61	0.57	0.66	0.54

L2644275 CONTD.... PAGE 10 of 16 07-JAN-22 13:59 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644275-1 SE 16-SEP-21 08:45 RG_GANF_SE- 4_2021-09- 16 0845	L2644275-2 SE 16-SEP-21 09:30 RG_GANF_SE- 5_2021-09- 16 0930	L2644275-3 SE 16-SEP-21 12:00 RG_GAUT_SE- 1_2021-09- 16 1200	L2644275-4 SE 16-SEP-21 12:50 RG_GAUT_SE- 2_2021-09- 16 1250	L2644275-5 SE 16-SEP-21 13:30 RG_GAUT_SE- 3_2021-09- 16 1330
Grouping	Analyte					
SOIL						
Easily Reducible Metals and Iron Oxides	Cobalt (Co)-Leachable (mg/kg)	2.43	2.77	6.65	7.01	5.07
	Copper (Cu)-Leachable (mg/kg)	<0.50	<0.50	0.51	<0.50	<0.50
	Iron (Fe)-Leachable (mg/kg)	2380	2230	3990	3960	4480
	Lead (Pb)-Leachable (mg/kg)	2.65	3.36	3.29	2.96	1.92
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	111	148	326	301	224
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nickel (Ni)-Leachable (mg/kg)	7.86	7.89	13.7	13.8	17.4
	Phosphorus (P)-Leachable (mg/kg)	83	66	129	125	107
	Selenium (Se)-Leachable (mg/kg)	0.37	0.26	<0.20	<0.20	0.36
	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Strontium (Sr)-Leachable (mg/kg)	18.1	39.9	4.91	5.45	7.78
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Uranium (U)-Leachable (mg/kg)	0.256	0.233	0.107	0.103	0.188
	Vanadium (V)-Leachable (mg/kg)	1.66	1.76	2.73	2.66	2.41
	Zinc (Zn)-Leachable (mg/kg)	25.3	22.5	25.7	27.1	38.6
Organic Bound Metals	Aluminum (Al)-Leachable (mg/kg)	1740	1160	1270	1530	3150
	Antimony (Sb)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	0.30
	Arsenic (As)-Leachable (mg/kg)	0.599	0.323	0.155	0.248	1.36
	Barium (Ba)-Leachable (mg/kg)	22.6	20.4	15.8	18.1	39.4
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.074	0.057	<0.050	<0.050	0.137
	Calcium (Ca)-Leachable (mg/kg)	2640	2470	898	935	1550
	Chromium (Cr)-Leachable (mg/kg)	4.22	2.31	2.04	2.62	5.66
	Cobalt (Co)-Leachable (mg/kg)	1.41	0.90	0.95	1.18	2.76
	Copper (Cu)-Leachable (mg/kg)	7.30	4.75	1.99	3.10	14.4
	Iron (Fe)-Leachable (mg/kg)	2900	1800	1090	1500	5440
	Lead (Pb)-Leachable (mg/kg)	1.38	<0.50	0.77	0.96	3.89
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	12.3	8.6	23.9	24.1	33.8
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nickel (Ni)-Leachable (mg/kg)	9.67	5.70	4.60	5.59	19.3
	Selenium (Se)-Leachable (mg/kg)	2.52	1.00	0.45	0.61	2.50

L2644275 CONTD.... PAGE 11 of 16 07-JAN-22 13:59 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644275-6 SE 16-SEP-21 14:30 RG_GAUT_SE- 4_2021-09- 16 1430	L2644275-7 SE 16-SEP-21 15:00 RG_GAUT_SE- 5_2021-09- 16 1500	L2644275-8 SE 15-SEP-21 13:30 RG_GANF-SE- 1_2021-09- 15 1330	L2644275-9 SE 15-SEP-21 14:20 RG_GANF-SE- 2_2021-09- 15_1420	L2644275-10 SE 15-SEP-21 15:15 RG_GANF-SE- 2_2021-09- 15 1420
Grouping	Analyte					
SOIL						
Easily Reducible Metals and Iron Oxides	Cobalt (Co)-Leachable (mg/kg)	5.68	6.14	2.51	2.91	2.17
	Copper (Cu)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Iron (Fe)-Leachable (mg/kg)	4280	4320	2480	2640	2320
	Lead (Pb)-Leachable (mg/kg)	2.62	2.28	2.99	2.97	2.77
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	286	292	132	169	98.1
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nickel (Ni)-Leachable (mg/kg)	14.8	17.2	8.73	8.48	7.46
	Phosphorus (P)-Leachable (mg/kg)	127	129	63	58	52
	Selenium (Se)-Leachable (mg/kg)	<0.20	0.21	0.40	0.21	0.36
	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Strontium (Sr)-Leachable (mg/kg)	6.47	7.34	21.7	15.2	20.1
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Uranium (U)-Leachable (mg/kg)	0.141	0.174	0.209	0.160	0.247
	Vanadium (V)-Leachable (mg/kg)	2.58	2.43	1.84	1.82	1.68
	Zinc (Zn)-Leachable (mg/kg)	32.1	34.0	27.7	25.3	24.4
Organic Bound Metals	Aluminum (Al)-Leachable (mg/kg)	2030	2570	1570	1410	1700
	Antimony (Sb)-Leachable (mg/kg)	<0.10	0.10	<0.10	<0.10	<0.10
	Arsenic (As)-Leachable (mg/kg)	0.573	0.855	0.498	0.407	0.556
	Barium (Ba)-Leachable (mg/kg)	24.2	32.7	21.6	21.0	22.4
	Beryllium (Be)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.065	0.087	0.071	0.061	0.074
	Calcium (Ca)-Leachable (mg/kg)	1230	1260	2620	2060	2730
	Chromium (Cr)-Leachable (mg/kg)	3.73	4.59	3.30	2.95	4.11
	Cobalt (Co)-Leachable (mg/kg)	1.49	2.21	1.34	1.06	1.31
	Copper (Cu)-Leachable (mg/kg)	6.79	9.77	6.65	4.80	7.36
	Iron (Fe)-Leachable (mg/kg)	2560	3750	2630	2060	2860
	Lead (Pb)-Leachable (mg/kg)	1.55	2.51	0.95	0.76	1.16
	Lithium (Li)-Leachable (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Manganese (Mn)-Leachable (mg/kg)	25.7	32.0	11.9	12.2	10.9
	Molybdenum (Mo)-Leachable (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nickel (Ni)-Leachable (mg/kg)	8.59	13.5	8.58	6.53	9.11
	Selenium (Se)-Leachable (mg/kg)	1.09	1 66	2 10	1 43	2 35

L2644275 CONTD.... PAGE 12 of 16 07-JAN-22 13:59 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644275-1 SE 16-SEP-21 08:45 RG_GANF_SE- 4_2021-09- 16_0845	L2644275-2 SE 16-SEP-21 09:30 RG_GANF_SE- 5_2021-09- 16_0930	L2644275-3 SE 16-SEP-21 12:00 RG_GAUT_SE- 1_2021-09- 16_1200	L2644275-4 SE 16-SEP-21 12:50 RG_GAUT_SE- 2_2021-09- 16_1250	L2644275-5 SE 16-SEP-21 13:30 RG_GAUT_SE- 3_2021-09- 16_1330
Grouping	Analyte					
SOIL						
Organic Bound Metals	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Strontium (Sr)-Leachable (mg/kg)	6.05	5.07	4.37	4.35	6.28
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	25.4	17.6	<1.0	1.2	1.3
	Uranium (U)-Leachable (mg/kg)	0.273	0.163	0.175	0.206	0.457
	Vanadium (V)-Leachable (mg/kg)	4.44	3.05	2.27	3.34	7.85
	Zinc (Zn)-Leachable (mg/kg)	7.5	4.5	4.7	5.6	23.8
Residual Metals	Aluminum (Al)-Leachable (mg/kg)	5960	5530	8250	8660	7140
	Antimony (Sb)-Leachable (mg/kg)	0.92	0.73	0.71	0.95	1.76
	Arsenic (As)-Leachable (mg/kg)	3.24	3.23	5.71	5.62	3.23
	Barium (Ba)-Leachable (mg/kg)	113	93.0	118	128	127
	Beryllium (Be)-Leachable (mg/kg)	0.25	0.23	0.36	0.35	0.30
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.061	0.057	0.096	0.086	0.069
	Calcium (Ca)-Leachable (mg/kg)	436	589	1010	812	149
	Chromium (Cr)-Leachable (mg/kg)	8.1	7.6	11.4	11.1	9.6
	Cobalt (Co)-Leachable (mg/kg)	2.06	2.11	3.49	3.37	1.95
	Copper (Cu)-Leachable (mg/kg)	8.93	8.77	12.9	13.0	11.1
	Iron (Fe)-Leachable (mg/kg)	7670	8740	16400	14700	6510
	Lead (Pb)-Leachable (mg/kg)	5.21	4.21	7.90	8.27	6.40
	Lithium (Li)-Leachable (mg/kg)	5.2	5.2	8.6	8.2	6.0
	Manganese (Mn)-Leachable (mg/kg)	28.6	33.4	61.9	55.4	24.7
	Molybdenum (Mo)-Leachable (mg/kg)	0.62	0.52	1.02	0.97	0.77
	Nickel (Ni)-Leachable (mg/kg)	7.8	8.0	13.9	13.3	8.1
	Selenium (Se)-Leachable (mg/kg)	0.51	0.34	0.39	0.39	0.50
	Silver (Ag)-Leachable (mg/kg)	0.25	0.14	<0.10	<0.10	0.43
	Strontium (Sr)-Leachable (mg/kg)	15.1	13.8	18.4	18.5	18.2
	Thallium (TI)-Leachable (mg/kg)	0.143	0.106	0.138	0.152	0.163
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	13.2	11.0	13.8	17.1	22.4
	Uranium (U)-Leachable (mg/kg)	0.212	0.214	0.355	0.335	0.226
	Vanadium (V)-Leachable (mg/kg)	19.1	16.8	25.4	26.1	23.3
	Zinc (Zn)-Leachable (mg/kg)	46.0	45.0	72.1	72.1	41.5

L2644275 CONTD.... PAGE 13 of 16 07-JAN-22 13:59 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2644275-6 SE 16-SEP-21 14:30 RG_GAUT_SE- 4_2021-09- 16_1430	L2644275-7 SE 16-SEP-21 15:00 RG_GAUT_SE- 5_2021-09- 16_1500	L2644275-8 SE 15-SEP-21 13:30 RG_GANF-SE- 1_2021-09- 15_1330	L2644275-9 SE 15-SEP-21 14:20 RG_GANF-SE- 2_2021-09- 15_1420	L2644275-10 SE 15-SEP-21 15:15 RG_GANF-SE- 2_2021-09- 15_1420
Grouping	Analyte					
SOIL						
Organic Bound Metals	Silver (Ag)-Leachable (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Strontium (Sr)-Leachable (mg/kg)	5.30	5.48	5.84	5.45	6.07
	Thallium (TI)-Leachable (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	1.5	<1.0	23.1	17.1	27.0
	Uranium (U)-Leachable (mg/kg)	0.324	0.376	0.226	0.211	0.267
	Vanadium (V)-Leachable (mg/kg)	4.61	6.17	4.04	3.73	4.26
	Zinc (Zn)-Leachable (mg/kg)	9.4	13.5	7.1	5.7	7.5
Residual Metals	Aluminum (Al)-Leachable (mg/kg)	7600	7630	7190	6510	5380
	Antimony (Sb)-Leachable (mg/kg)	1.17	1.64	1.05	0.93	0.89
	Arsenic (As)-Leachable (mg/kg)	5.13	4.60	3.49	4.24	2.91
	Barium (Ba)-Leachable (mg/kg)	122	122	118	114	107
	Beryllium (Be)-Leachable (mg/kg)	0.31	0.35	0.31	0.31	0.26
	Bismuth (Bi)-Leachable (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Leachable (mg/kg)	0.096	0.078	0.070	0.080	0.057
	Calcium (Ca)-Leachable (mg/kg)	506	293	547	703	463
	Chromium (Cr)-Leachable (mg/kg)	10.3	10.4	9.8	8.8	7.4
	Cobalt (Co)-Leachable (mg/kg)	3.09	2.72	2.33	2.59	1.94
	Copper (Cu)-Leachable (mg/kg)	13.2	12.6	9.87	10.7	8.55
	Iron (Fe)-Leachable (mg/kg)	11800	10500	9010	10400	7180
	Lead (Pb)-Leachable (mg/kg)	8.08	7.78	5.40	5.87	4.72
	Lithium (Li)-Leachable (mg/kg)	6.5	6.5	6.2	6.2	<5.0
	Manganese (Mn)-Leachable (mg/kg)	46.6	38.6	34.5	38.3	26.3
	Molybdenum (Mo)-Leachable (mg/kg)	0.93	0.95	0.62	0.66	0.58
	Nickel (Ni)-Leachable (mg/kg)	12.2	10.9	8.9	9.7	7.5
	Selenium (Se)-Leachable (mg/kg)	0.44	0.47	0.54	0.46	0.49
	Silver (Ag)-Leachable (mg/kg)	0.20	0.31	0.25	0.15	0.26
	Strontium (Sr)-Leachable (mg/kg)	17.9	17.7	16.2	16.0	15.7
	Thallium (TI)-Leachable (mg/kg)	0.147	0.155	0.153	0.137	0.132
	Tin (Sn)-Leachable (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti)-Leachable (mg/kg)	19.4	19.2	15.5	13.7	11.4
	Uranium (U)-Leachable (mg/kg)	0.304	0.261	0.243	0.274	0.215
	Vanadium (V)-Leachable (mg/kg)	24.9	24.7	22.2	19.9	16.9
	Zinc (Zn)-Leachable (mg/kg)	67.6	59.7	52.0	54.8	43.6

Reference Information

Additional Comments for Sample Listed:

Samplenum	Matrix	Report Remarks	Sample Comment:
L2644275-10	Soil	Note: Watery Sample	
L2644275-2	Soil	Note: Watery sample	
L2644275-3	Soil	Note: Watery sample	
L2644275-6	Soil	Note: Watery sample	
L2644275-9	Soil	Note: Watery Sample	
		-1-	

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Method Blank	Copper (Cu)-Leachable	В	L2644275-1, -10, -2, -3, -4, -5, -6, -7, -8, -9
Duplicate	Manganese (Mn)-Leachable	DUP-H	L2644275-1, -10, -2, -3, -4, -5, -6, -7, -8, -9
Duplicate	Dibenz(a,h)anthracene	DUP-H	L2644275-10, -4, -5, -6, -7, -8, -9
Duplicate	Pyrene	DUP-H,J	L2644275-10, -4, -5, -6, -7, -8, -9

Qualifiers for Individual Parameters Listed:

Qualifier	Description
В	Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.
DLHM	Detection Limit Adjusted: Sample has High Moisture Content
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.
DUP-H,J	Duplicate results outside ALS DQO, due to sample heterogeneity. Duplicate results and limits are expressed in terms of absolute difference.
RRV	Reported Result Verified By Repeat Analysis

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
C-TIC-PCT-SK	Soil	Total Inorganic Carbon in Soil	CSSS (2008) P216-217
A known quantity of acet against a standard curve	tic acid is cor e relating pH	nsumed by reaction with carbonates in the soil. The to weight of carbonate.	pH of the resulting solution is measured and compared
C-TOC-CALC-SK	Soil	Total Organic Carbon Calculation	CSSS (2008) 21.2
Total Organic Carbon (T	OC) is calcu	lated by the difference between total carbon (TC) a	nd total inorganic carbon. (TIC)
C-TOT-LECO-SK	Soil	Total Carbon by combustion method	CSSS (2008) 21.2
The sample is ignited in	a combustio	n analyzer where carbon in the reduced CO2 gas is	determined using a thermal conductivity detector.
HG-200.2-CVAA-CL	Soil	Mercury in Soil by CVAAS	EPA 200.2/1631E (mod)
Soil samples are digeste	ed with nitric	and hydrochloric acids, followed by analysis by CVA	AAS.
IC-CACO3-CALC-SK	Soil	Inorganic Carbon as CaCO3 Equivalent	Calculation
MET-200.2-CCMS-CL	Soil	Metals in Soil by CRC ICPMS	EPA 200.2/6020A (mod)
Soil/sediment is dried, di nitric and hydrochloric ad	isaggregated cids. Instrum	l, and sieved (2 mm). Strong Acid Leachable Metal ental analysis is by Collision / Reaction Cell ICPMS	Is in the <2mm fraction are solubilized by heated digestion wi

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including AI, Ba, Be, Cr, S, Sr, Ti, TI, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

MET-TESS-CM-CCMS-VA Soil METALS BY CCMS (TESSIER EXTRACTION #2) Tessier Extraction 1979/EPA 6020A

This analysis is modified from the extraction procedure outlined in the "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals" Analytical Chemistry, (A. Tessier, P.G.C. Campbell, and M. Bisson, June 1979). Initially, the sample is manually homogenized, dried at <60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed for extraction. In summary, the sample is sequentially extracted with 5 or 6 (if a pre-liminary water extraction is included) different extraction solutions. The extract is then centrifuged for 30 minutes and the supernatant is subsequently removed and analysed. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Note: For Extraction #2, the extraction solution is 1M Sodium Acetate adjusted to pH 5 and is intended to extract the "Carbonate" metals.

MET-TESS-EA-CCMS-VA Soil METALS BY CCMS (TESSIER EXTRACTION #1) Tessier Extraction 1979/EPA 6020A

This analysis is modified from the extraction procedure outlined in the "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals" Analytical Chemistry, (A. Tessier, P.G.C. Campbell, and M. Bisson, June 1979). Initially, the sample is manually homogenized, dried at <60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed for extraction. In summary, the sample is sequentially extracted with 5 or 6 (if a pre-liminary water extraction is included) different

Reference Information

extraction solutions. The extract is then centrifuged for 30 minutes and the supernatant is subsequently removed and analysed. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Note: For Extraction #1, the extraction solution is 1M Magnesium Chloride and is intended to extract the "Exchangeable and Adsorbed" metals.

METALS BY CCMS (TESSIER EXTRACTION #3) MET-TESS-FEO-CCMS-VA Soil Tessier Extraction 1979/EPA 6020A

This analysis is modified from the extraction procedure outlined in the "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals" Analytical Chemistry, (A. Tessier, P.G.C. Campbell, and M. Bisson, June 1979). Initially, the sample is manually homogenized, dried at <60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed for extraction. In summary, the sample is sequentially extracted with 5 or 6 (if a pre-liminary water extraction is included) different extraction solutions. The extract is then centrifuged for 30 minutes and the supernatant is subsequently removed and analysed. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Note: For Extraction #3, the extraction solution is 0.1 M Hydroxylamine Hydro> Chloride in 25% v/v Acetic Acid and is intended to extract the Easily Reducible Metals and Iron Oxides .

MET-TESS-OB-CCMS-VA METALS BY CCMS (TESSIER EXTRACTION #4) Tessier Extraction 1979/EPA 6020A Soil

"This analysis is modified from the extraction procedure outlined in the "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals" Analytical Chemistry, (A. Tessier, P.G.C. Campbell, and M. Bisson, June 1979). Initially, the sample is manually homogenized, dried at <60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed for extraction. In summary, the sample is sequentially extracted with 5 or 6 (if a pre-liminary water extraction is included) different extraction solutions. The extract is then centrifuged for 30 minutes and the supernatant is subsequently removed and analysed. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Note: For Extraction #4, the extraction solution is 0.02 M Nitric Acid followed by 3.2M Ammonium Acetate and is intended to extract the Organic Bound metals.

MET-TESS-RM-CCMS-VA Soil METALS BY CCMS (TESSIER RM EXTRACTION) Tessier Extraction 1979/EPA 6020A

"This analysis is modified from the extraction procedure outlined in the "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals" Analytical Chemistry, (A. Tessier, P.G.C. Campbell, and M. Bisson, June 1979). Initially, the sample is manually homogenized, dried at <60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed for extraction. In summary, the sample is sequentially extracted with up to 6 different extraction solutions. The extract is then centrifuged for 30 minutes and the supernatant is subsequently removed and analysed. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Note: For the Tessier "RM" Extraction, the extraction solution is 50/50 mix of 1:1 Nitric Acid along with 1:1 Hydrochloric Acid, and is hot block digested as per the BC SALM procedure. This is intended to extract the Residual metals.

MOISTURE-CL Soil % Moisture

This analysis is carried out gravimetrically by drying the sample at 105 C

PAH-TMB-H/A-MS-CL Soil PAH Tumbler Extraction (Hexane/Acetone)

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3545 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PH-1:2-CL

pH in soil (1:2 Soil:Water Extraction)

Soil and de-ionized water (by volume) are mixed in a defined ratio. The slurry is allowed to stand, shaken, and then allowed to stand again prior to taking measurements. After equilibration, the pH of the liquid portion of the extract is measured by a pH meter. Field Measurement is recommended where accurate pH measurements are required, due to the 15 minute recommended hold time.

PSA-PIPET-DETAIL-SK Soil Particle size - Sieve and Pipette

Soil

SSIR-51 METHOD 3.2.1

CSSS Ch. 16

Particle size distribution is determined by a combination of techniques. Dry sieving is performed for coarse particles, wet sieving for sand particles and the pipette sedimentation method for clay particles.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

EPA 3570/8270-GC/MS

CCME PHC in Soil - Tier 1 (mod)

Reference Information

September GGCAMP

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. *mg/kg* - *milligrams per kilogram based on dry weight of sample*.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Client: Teck Coal Ltd. 421 Pine Avenue Sparwood BC V0B 2G0 Commend BC V0B 2G0 <th></th> <th>Workorder:</th> <th>L2644275</th> <th>5 F</th> <th>Report Date: 0</th> <th>7-JAN-22</th> <th>Pa</th> <th>ge 1 of 38</th>		Workorder:	L2644275	5 F	Report Date: 0	7-JAN-22	Pa	ge 1 of 38
Contact.MatrixReferenceResultQualifierUnitsRPDLimitAnalyzedTestMatrixReferenceResultQualifierUnitsRPDLimitAnalyzedC-TIC-PCT-SKSoilSoilE2644275-60.332%4.92008-OCT-21WG3630730-1DUPL2644275-60.3160.332%4.92008-OCT-21WG3630730-4IRM08-109_SOIL94.5%80-12008-OCT-21WG3630730-2LCS0.595.5%90-11008-OCT-21WG3630730-3MB0.595.5%0.0508-OCT-21WG3627089-2IRM08-109_SOIL106.7%80-12004-OCT-21WG3627089-4LCSSUI EADIA2INE500-500%0.0504-OCT-21	Client: Teck Coal Ltd. 421 Pine Avenue Sparwood BC V0B 2GC)						-
C-TIC-PCT-SK Soil Batch R5614542 WG3630730-1 DUP L2644275-6 Inorganic Carbon 0.316 0.316 0.332 % 4.9 20 08-OCT-21 WG3630730-4 IRM Inorganic Carbon 94.5 % 80-120 WG3630730-2 LCS 0.5 95.5 Inorganic Carbon 95.5 % 90-110 WG3630730-3 MB Inorganic Carbon 95.5 % 0.05 % 0.05 WG3630730-3 MB Inorganic Carbon <0.050 % 0.05 % 0.05 % 0.05 WG3627089-2 IRM WG3627089-2 IRM WG3627089-2 IRM WG3627089-2 IRM WG3627089-4 ICS SULEADIAZINE 04-OCT-21	Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Batch R5614542 WG3630730-1 DUP L2644275-6 Inorganic Carbon 0.316 0.332 % 4.9 20 08-OCT-21 WG3630730-4 IRM 08-109_SOIL 80-120 08-OCT-21 Inorganic Carbon 94.5 % 80-120 08-OCT-21 WG3630730-2 LCS 0.5 90-110 08-OCT-21 WG3630730-3 MB 95.5 % 90-110 08-OCT-21 WG3630730-3 MB <0.050 % 0.05 08-OCT-21 WG3630730-3 MB <0.050 % 0.05 08-OCT-21 WG3630730-3 MB <0.050 % 0.05 08-OCT-21 WG36207089-2 IRM <0.050 % 0.05 08-OCT-21 WG3627089-2 IRM 08-109_SOIL 0.05 08-0CT-21 WG3627089-2 IRM 08-109_SOIL 04-OCT-21 WG3627089-4 ICS SUI EADIA7INE 80-120 04-O								
WG3630730-1 DUP L2644275-6 0.316 0.332 % 4.9 20 08-OCT-21 WG3630730-4 IRM 08-109_SOIL 94.5 % 80-120 08-OCT-21 WG3630730-2 LCS 0.5 95.5 % 90-110 08-OCT-21 WG3630730-3 MB 95.5 % 90.100 08-OCT-21 WG3630730-3 MB 95.5 % 90.100 08-OCT-21 WG3630730-3 MB 95.5 % 90.100 0.05 0.80-OCT-21 WG3627089-2 IRM 08-109_SOIL 90.50 90.100 0.05 0.40-OCT-21 WG3627089-4 I.CS SUI EADIATINE 80-120 04-OCT-21	C-IIC-PCI-SK 5011 Batch P5614542							
WG3630730-4 IRM 08-109_SOIL 94.5 % 80-120 08-0CT-21 WG3630730-2 LCS 0.5 95.5 % 90-110 08-0CT-21 WG3630730-3 MB <0.50	WG3630730-1 DUP Inorganic Carbon	L2644275-6 0.316	0.332		%	4.9	20	08-OCT-21
WG3630730-2 LCS 0.5 95.5 % 90-110 08-OCT-21 WG3630730-3 MB <0.050 % 0.05 08-OCT-21 WG3630730-3 MB <0.050 % 0.05 08-OCT-21 WG3630730-3 MB <0.050 % 0.05 08-OCT-21 WG3627089-2 IRM 08-109_SOIL 106.7 % 80-120 04-OCT-21 WG3627089-4 LCS SUL EADIATINE SUL EADIATINE 106.7 % 80-120 04-OCT-21	WG3630730-4 IRM Inorganic Carbon	08-109_SOIL	94.5		%		80-120	08-OCT-21
WG3630730-3 MB 0.05 08-OCT-21 Inorganic Carbon Soil <	WG3630730-2 LCS Inorganic Carbon	0.5	95.5		%		90-110	08-OCT-21
C-TOT-LECO-SK Soil Batch R5608937 WG3627089-2 IRM 08-109_SOIL Total Carbon by Combustion 106.7 % 80-120 04-OCT-21	WG3630730-3 MB Inorganic Carbon		<0.050		%		0.05	08-OCT-21
Batch R5608937 WG3627089-2 IRM 08-109_SOIL Total Carbon by Combustion 106.7 % 80-120 04-OCT-21 WG3627089-4 LCS SULEADIAZINE 5 5 5 5 5 5 6	C-TOT-LECO-SK Soil							
WG3627089-2 IRM 08-109_SOIL Total Carbon by Combustion 106.7 % 80-120 04-OCT-21 WG3627089-4 LCS SUIL EADIAZINE 80-120 04-OCT-21	Batch R5608937							
	WG3627089-2 IRM Total Carbon by Combustion	08-109_SOIL	106.7		%		80-120	04-OCT-21
Total Carbon by Combustion103.7%90-11004-OCT-21	WG3627089-4 LCS Total Carbon by Combustion	SULFADIAZIN	E 103.7		%		90-110	04-OCT-21
WG3627089-3 MB Total Carbon by Combustion <0.05	WG3627089-3 MB Total Carbon by Combustion		<0.05		%		0.05	04-OCT-21
Batch R5614538	Batch R5614538							
WG3631664-3 IRM 08-109_SOIL Total Carbon by Combustion 95.3 % 80-120 06-OCT-21	WG3631664-3 IRM Total Carbon by Combustion	08-109_SOIL	95.3		%		80-120	06-OCT-21
WG3631664-5 LCS SULFADIAZINE Total Carbon by Combustion 99.2 % 90-110 06-OCT-21	WG3631664-5 LCS Total Carbon by Combustion	SULFADIAZIN	E 99.2		%		90-110	06-OCT-21
WG3631664-4 MB Total Carbon by Combustion <0.05	WG3631664-4 MB Total Carbon by Combustion		<0.05		%		0.05	06-OCT-21
HG-200.2-CVAA-CL Soil	HG-200.2-CVAA-CL Soil							
Batch R5621116	Batch R5621116							
WG3639920-4 CRM TILL-2 Mercury (Hg) 105.8 % 70-130 16-OCT-21	WG3639020-4 CRM Mercury (Hg)	TILL-2	105.8		%		70-130	16-OCT-21
WG3639920-3 LCS Mercury (Hg) 97.5 % 80-120 16-OCT-21	WG3639020-3 LCS Mercury (Hg)		97.5		%		80-120	16-OCT-21
WG3639920-2 MB Mercury (Hg) <0.0050	WG3639020-2 MB Mercury (Hg)		<0.0050		mg/kg		0.005	16-OCT-21
MET-200.2-CCMS-CL Soil	MET-200.2-CCMS-CL Soil							
Batch R5621400	Batch R5621400							
WG3639020-4 CRM TILL-2 Aluminum (Al) 84.7 % 70.420 46.007.24	WG3639020-4 CRM	TILL-2	84 7		%		70 120	16 OCT 24
Antimony (Sb) 93.3 % 70.130 16-0CT-21	Antimony (Sb)		93.3		%		70-130	16-001-21
Arsenic (As) 96.3 % 70-130 16-0CT-21	Arsenic (As)		96.3		%		70-130	16-0CT-21

		Workorder: L2644275			Report Date: 0	7-JAN-22	Page 2 of 38		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-200.2-CCMS-CL	Soil								
Batch R5621400)								
WG3639020-4 CRM		TILL-2							
Barium (Ba)			92.3		%		70-130	16-OCT-21	
Beryllium (Be)			95.4		%		70-130	16-OCT-21	
Bismuth (Bi)			98.3		%		70-130	16-OCT-21	
Cadmium (Cd)			93.5		%		70-130	16-OCT-21	
Calcium (Ca)			88.4		%		70-130	16-OCT-21	
Chromium (Cr)			98.6		%		70-130	16-OCT-21	
Cobalt (Co)			93.6		%		70-130	16-OCT-21	
Copper (Cu)			94.6		%		70-130	16-OCT-21	
Iron (Fe)			95.6		%		70-130	16-OCT-21	
Lead (Pb)			98.1		%		70-130	16-OCT-21	
Lithium (Li)			95.0		%		70-130	16-OCT-21	
Magnesium (Mg)			89.6		%		70-130	16-OCT-21	
Manganese (Mn)			88.7		%		70-130	16-OCT-21	
Molybdenum (Mo)			93.3		%		70-130	16-OCT-21	
Nickel (Ni)			96.9		%		70-130	16-OCT-21	
Phosphorus (P)			95.7		%		70-130	16-OCT-21	
Potassium (K)			89.7		%		70-130	16-OCT-21	
Selenium (Se)			0.29		mg/kg		0.15-0.55	16-OCT-21	
Silver (Ag)			0.26		mg/kg		0.16-0.36	16-OCT-21	
Sodium (Na)			106.5		%		70-130	16-OCT-21	
Strontium (Sr)			92.5		%		70-130	16-OCT-21	
Thallium (Tl)			98.1		%		70-130	16-OCT-21	
Tin (Sn)			2.1		mg/kg		0.2-4.2	16-OCT-21	
Titanium (Ti)			89.8		%		70-130	16-OCT-21	
Tungsten (W)			1.35		mg/kg		1-2	16-OCT-21	
Uranium (U)			93.3		%		70-130	16-OCT-21	
Vanadium (V)			94.3		%		70-130	16-OCT-21	
Zinc (Zn)			93.4		%		70-130	16-OCT-21	
Zirconium (Zr)			100.1		%		70-130	16-OCT-21	
WG3639020-3 LCS									
Aluminum (Al)			100.9		%		80-120	16-OCT-21	
Antimony (Sb)			87.8		%		80-120	16-OCT-21	
Arsenic (As)			107.1		%		80-120	16-OCT-21	
Barium (Ba)			106.7		%		80-120	16-OCT-21	

		Workorder	Workorder: L2644275			7-JAN-22	Page 3 of 38	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R562140	00							
WG3639020-3 LCS	6							
Beryllium (Be)			106.9		%		80-120	16-OCT-21
Bismuth (Bi)			107.9		%		80-120	16-OCT-21
Boron (B)			112.6		%		80-120	16-OCT-21
Cadmium (Cd)			108.7		%		80-120	16-OCT-21
Calcium (Ca)			97.2		%		80-120	16-OCT-21
Chromium (Cr)			108.9		%		80-120	16-OCT-21
Cobalt (Co)			108.5		%		80-120	16-OCT-21
Copper (Cu)			105.1		%		80-120	16-OCT-21
Iron (Fe)			108.1		%		80-120	16-OCT-21
Lead (Pb)			106.4		%		80-120	16-OCT-21
Lithium (Li)			110.7		%		80-120	16-OCT-21
Magnesium (Mg)			101.3		%		80-120	16-OCT-21
Manganese (Mn)			105.3		%		80-120	16-OCT-21
Molybdenum (Mo)			107.9		%		80-120	16-OCT-21
Nickel (Ni)			106.1		%		80-120	16-OCT-21
Potassium (K)			105.7		%		80-120	16-OCT-21
Selenium (Se)			103.5		%		80-120	16-OCT-21
Silver (Ag)			113.5		%		80-120	16-OCT-21
Sodium (Na)			102.9		%		80-120	16-OCT-21
Strontium (Sr)			103.3		%		80-120	16-OCT-21
Sulfur (S)			110.1		%		80-120	16-OCT-21
Thallium (TI)			108.1		%		80-120	16-OCT-21
Tin (Sn)			107.6		%		80-120	16-OCT-21
Titanium (Ti)			106.0		%		80-120	16-OCT-21
Tungsten (W)			111.5		%		80-120	16-OCT-21
Uranium (U)			108.7		%		80-120	16-OCT-21
Vanadium (V)			107.5		%		80-120	16-OCT-21
Zinc (Zn)			103.5		%		80-120	16-OCT-21
Zirconium (Zr)			113.2		%		80-120	16-OCT-21
WG3639020-2 MB								
Aluminum (Al)			<50		mg/kg		50	16-OCT-21
Antimony (Sb)			<0.10		mg/kg		0.1	16-OCT-21
Arsenic (As)			<0.10		mg/kg		0.1	16-OCT-21
Barium (Ba)			<0.50		mg/kg		0.5	16-OCT-21

			Workorder: L2644275			7-JAN-22	Page 4 of 38		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-200.2-CCMS-CL	Soil								
Batch R5621400	I								
WG3639020-2 MB									
Beryllium (Be)			<0.10		mg/kg		0.1	16-OCT-21	
Bismuth (Bi)			<0.20		mg/kg		0.2	16-OCT-21	
Boron (B)			<5.0		mg/kg		5	16-OCT-21	
Cadmium (Cd)			<0.020		mg/kg		0.02	16-OCT-21	
Calcium (Ca)			<50		mg/kg		50	16-OCT-21	
Chromium (Cr)			<0.50		mg/kg		0.5	16-OCT-21	
Cobalt (Co)			<0.10		mg/kg		0.1	16-OCT-21	
Copper (Cu)			<0.50		mg/kg		0.5	16-OCT-21	
Iron (Fe)			<50		mg/kg		50	16-OCT-21	
Lead (Pb)			<0.50		mg/kg		0.5	16-OCT-21	
Lithium (Li)			<2.0		mg/kg		2	16-OCT-21	
Magnesium (Mg)			<20		mg/kg		20	16-OCT-21	
Manganese (Mn)			<1.0		mg/kg		1	16-OCT-21	
Molybdenum (Mo)			<0.10		mg/kg		0.1	16-OCT-21	
Nickel (Ni)			<0.50		mg/kg		0.5	16-OCT-21	
Phosphorus (P)			<50		mg/kg		50	16-OCT-21	
Potassium (K)			<100		mg/kg		100	16-OCT-21	
Selenium (Se)			<0.20		mg/kg		0.2	16-OCT-21	
Silver (Ag)			<0.10		mg/kg		0.1	16-OCT-21	
Sodium (Na)			<50		mg/kg		50	16-OCT-21	
Strontium (Sr)			<0.50		mg/kg		0.5	16-OCT-21	
Sulfur (S)			<1000		mg/kg		1000	16-OCT-21	
Thallium (TI)			<0.050		mg/kg		0.05	16-OCT-21	
Tin (Sn)			<2.0		mg/kg		2	16-OCT-21	
Titanium (Ti)			<1.0		mg/kg		1	16-OCT-21	
Tungsten (W)			<0.50		mg/kg		0.5	16-OCT-21	
Uranium (U)			<0.050		mg/kg		0.05	16-OCT-21	
Vanadium (V)			<0.20		mg/kg		0.2	16-OCT-21	
Zinc (Zn)			<2.0		mg/kg		2	16-OCT-21	
Zirconium (Zr)			<1.0		mg/kg		1	16-OCT-21	

MET-TESS-CM-CCMS-VA Soil

Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-TESS-CM-CCMS-VA Soil
MET-TESS-CM-CCMS-VA Soil Batch R5620077 WG3629665-3 DUP Aluminum (Al)-Leachable <50 <0.10 RPD-NA mg/kg Antimony (Sb)-Leachable <0.10 RPD-NA mg/kg Arsenic (As)-Leachable <0.050 <0.050 RPD-NA mg/kg Barium (Ba)-Leachable <0.050 <0.050 RPD-NA mg/kg N/A 30 28-OCT-21 Barium (Ba)-Leachable <0.050 <0.050 RPD-NA mg/kg N/A 30 28-OCT-21 Barium (Ba)-Leachable <0.050 <0.050 RPD-NA mg/kg N/A 30 28-OCT-21 Beryllium (Be)-Leachable <0.20 <0.20 RPD-NA mg/kg N/A 30 28-OCT-21 Bismuth (Bi)-Leachable <0.20 <0.20 RPD-NA mg/kg N/A 30 28-OCT-21 Cadmium (Cd)-Leachable <0.20 <0.20 RPD-NA mg/kg N/A 30 28-OCT-21 Bismuth (Bi)-Leachable
Batch R5620077 WG3629665-3 DUP L264275-3 Aluminum (Al)-Leachable <50
WG3629665-3 DUP L2644275-3 Aluminum (Al)-Leachable <50
Atuminum (A)-Leachable <50
Antimony (Sb)-Leachable <0.10
Arsenic (As)-Leachable <0.050 RPD-NA mg/kg N/A 30 28-OCT-21 Barium (Ba)-Leachable 36.9 38.5 mg/kg 4.4 30 28-OCT-21 Beryllium (Be)-Leachable <0.20
Barluin (Ba)-Leachable 36.9 38.5 mg/kg 4.4 30 28-OCT-21 Beryllium (Be)-Leachable <0.20
Beryllium (Be)-Leachable <0.20 <0.20 RPD-NA mg/kg N/A 30 28-OCT-21 Bismuth (Bi)-Leachable <0.20
Bismuth (Bi)-Leachable <0.20 <0.20 RPD-NA mg/kg N/A 30 28-OCT-21 Cadmium (Cd)-Leachable 0.117 0.110 mg/kg 6.5 30 28-OCT-21
Cadmium (Cd)-Leachable 0.117 0.110 mg/kg 6.5 30 28-OCT-21
Calcium (Ca)-Leachable 1940 1810 mg/kg 7.4 30 28-OCT-21
Chromium (Cr)-Leachable <5.0 <5.0 RPD-NA mg/kg N/A 30 28-OCT-21
Cobalt (Co)-Leachable 0.41 0.45 mg/kg 10 30 28-OCT-21
Copper (Cu)-Leachable <0.50 <0.50 RPD-NA mg/kg N/A 30 28-OCT-21
Iron (Fe)-Leachable <50 <50 RPD-NA mg/kg N/A 30 28-OCT-21
Lead (Pb)-Leachable <0.50 <0.50 RPD-NA mg/kg N/A 30 28-OCT-21
Lithium (Li)-Leachable <5.0 <5.0 RPD-NA mg/kg N/A 30 28-OCT-21
Manganese (Mn)-Leachable 65.7 67.6 mg/kg 2.8 30 28-OCT-21
Molybdenum (Mo)-Leachable <0.50 <0.50 RPD-NA mg/kg N/A 30 28-OCT-21
Nickel (Ni)-Leachable 2.3 2.5 mg/kg 6.6 30 28-OCT-21
Phosphorus (P)-Leachable <50 <50 RPD-NA mg/kg N/A 30 28-OCT-21
Selenium (Se)-Leachable <0.20 <0.20 RPD-NA mg/kg N/A 30 28-OCT-21
Silver (Ag)-Leachable <0.10 <0.10 RPD-NA mg/kg N/A 30 28-OCT-21
Strontium (Sr)-Leachable <5.0 <5.0 RPD-NA mg/kg N/A 30 28-OCT-21
Thallium (TI)-Leachable <0.050 <0.050 RPD-NA mg/kg N/A 30 28-OCT-21
Tin (Sn)-Leachable <2.0 <2.0 RPD-NA mg/kg N/A 30 28-OCT-21
Titanium (Ti)-Leachable <5.0 <5.0 RPD-NA mg/kg N/A 30 28-OCT-21
Uranium (U)-Leachable <0.050 <0.050 RPD-NA mg/kg N/A 30 28-OCT-21
Vanadium (V)-Leachable <0.20 <0.20 RPD-NA mg/kg N/A 30 28-OCT-21
Zinc (Zn)-Leachable 5.1 5.2 mg/kg 2.9 30 28-OCT-21
WG3629665-2 LCS Aluminum (Al)-Leachable 100.1 % 70-130 28-OCT-21
Antimony (Sb)-I eachable 101.4 % 70-130 28-0CT-21
Arsenic (As)-Leachable 100.5 % 70.130 28-001-21
Barium (Ba)-l eachable 100.8 % 70.130 20-001-21
Bervilium (Be)-Leachable 99.8 % 70.130 28-001-21
Bismuth (Bi)-l eachable 90.7 % 70.130 28-001-21

		Workorder: L2644275			Report Date: ()7-JAN-22	Page 6 of 38		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TESS-CM-CCMS	-VA Soil								
Batch R5620	0077								
WG3629665-2 L	CS				24				
Cadmium (Cd)-Lea	ichable		96.9		%		70-130	28-OCT-21	
Calcium (Ca)-Leac	hable		100.5		%		70-130	28-OCT-21	
	achable		97.7		%		70-130	28-OCT-21	
Cobalt (Co)-Leacha	able		97.1		%		70-130	28-OCT-21	
Copper (Cu)-Leach	able		94.1		%		70-130	28-OCT-21	
Iron (Fe)-Leachable	e		96.1		%		70-130	28-OCT-21	
Lead (Pb)-Leachab	ble		92.0		%		70-130	28-OCT-21	
Lithium (Li)-Leacha	ble		99.4		%		70-130	28-OCT-21	
Manganese (Mn)-L	eachable		95.3		%		70-130	28-OCT-21	
Molybdenum (Mo)-	Leachable		101.8		%		70-130	28-OCT-21	
Nickel (Ni)-Leachat	ble		93.8		%		70-130	28-OCT-21	
Phosphorus (P)-Le	achable		104.6		%		70-130	28-OCT-21	
Selenium (Se)-Lea	chable		99.3		%		70-130	28-OCT-21	
Silver (Ag)-Leachat	ble		97.9		%		70-130	28-OCT-21	
Strontium (Sr)-Lead	chable		104.5		%		70-130	28-OCT-21	
Thallium (TI)-Leach	nable		91.8		%		70-130	28-OCT-21	
Tin (Sn)-Leachable	•		99.95		%		70-130	28-OCT-21	
Titanium (Ti)-Leach	nable		99.5		%		70-130	28-OCT-21	
Uranium (U)-Leach	able		93.8		%		70-130	28-OCT-21	
Vanadium (V)-Lead	chable		98.7		%		70-130	28-OCT-21	
Zinc (Zn)-Leachabl	e		100.4		%		70-130	28-OCT-21	
WG3629665-1 M	В								
Aluminum (Al)-Lead	chable		<50		mg/kg		50	28-OCT-21	
Antimony (Sb)-Lead	chable		<0.10		mg/kg		0.1	28-OCT-21	
Arsenic (As)-Leach	able		<0.050		mg/kg		0.05	28-OCT-21	
Barium (Ba)-Leach	able		<2.0		mg/kg		2	28-OCT-21	
Beryllium (Be)-Lead	chable		<0.20		mg/kg		0.2	28-OCT-21	
Bismuth (Bi)-Leach	able		<0.20		mg/kg		0.2	28-OCT-21	
Cadmium (Cd)-Lea	ichable		<0.050		mg/kg		0.05	28-OCT-21	
Calcium (Ca)-Leacl	hable		<50		mg/kg		50	28-OCT-21	
Chromium (Cr)-Lea	achable		<5.0		mg/kg		5	28-OCT-21	
Cobalt (Co)-Leacha	able		<0.10		mg/kg		0.1	28-OCT-21	
Copper (Cu)-Leach	able		<0.50		mg/kg		0.5	28-OCT-21	
Iron (Fe)-Leachable	е		<50		mg/kg		50	28-OCT-21	

		Workorder:	L264427	75	Report Date: 0	7-JAN-22	Р	age 7 of 38
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TESS-CM-CCMS-V	A Soil							
Batch R562007	7							
WG3629665-1 MB								
Lead (Pb)-Leachable			<0.50		mg/kg		0.5	28-OCT-21
Lithium (Li)-Leachable	9		<5.0		mg/kg		5	28-OCT-21
Manganese (Mn)-Lea	chable		<5.0		mg/kg		5	28-OCT-21
Molybdenum (Mo)-Lea	achable		<0.50		mg/kg		0.5	28-OCT-21
Nickel (Ni)-Leachable			<2.0		mg/kg		2	28-OCT-21
Phosphorus (P)-Leacl	hable		<50		mg/kg		50	28-OCT-21
Selenium (Se)-Leacha	able		<0.20		mg/kg		0.2	28-OCT-21
Silver (Ag)-Leachable			<0.10		mg/kg		0.1	28-OCT-21
Strontium (Sr)-Leacha	able		<5.0		mg/kg		5	28-OCT-21
Thallium (TI)-Leachab	ble		<0.050		mg/kg		0.05	28-OCT-21
Tin (Sn)-Leachable			<2.0		mg/kg		2	28-OCT-21
Titanium (Ti)-Leachab	ble		<5.0		mg/kg		5	28-OCT-21
Uranium (U)-Leachab	le		<0.050		mg/kg		0.05	28-OCT-21
Vanadium (V)-Leacha	ble		<0.20		mg/kg		0.2	28-OCT-21
Zinc (Zn)-Leachable			<1.0		mg/kg		1	28-OCT-21
MET-TESS-EA-CCMS-VA	A Soil							
Batch R561679	8							
WG3629665-3 DUP) ahla	L2644275-3	~50		A ma/ka	NI/A	20	40 OCT 04
Antimony (Sh) Looch		<0.10	<0.10	א ססס	A mg/kg	IN/A	30	12-001-21
Anumony (SD)-Leacha		<0.10	<0.10	RPD-N	A mg/kg	N/A	30	12-001-21
Arsenic (As)-Leachab		<0.050	<0.050	RPD-N	A mg/kg	N/A	30	12-001-21
Barium (Ba)-Leachab	le	36.0	36.8		mg/kg	2.3	30	12-OCT-21
Beryllium (Be)-Leacha	able	<0.20	<0.20	RPD-N	A mg/kg	N/A	30	12-OCT-21
Bismuth (Bi)-Leachab	le	<0.20	<0.20	RPD-N	A mg/kg	N/A	30	12-OCT-21
Cadmium (Cd)-Leach	able	0.129	0.120		mg/kg	7.1	30	12-OCT-21
Calcium (Ca)-Leachal	ble	2510	2510		mg/kg	0.0	30	12-OCT-21
Chromium (Cr)-Leach	able	<0.50	<0.50	RPD-N	A mg/kg	N/A	30	12-OCT-21
Cobalt (Co)-Leachable	e	<0.10	<0.10	RPD-N	A mg/kg	N/A	30	12-OCT-21
Iron (Fe)-Leachable		<50	<50	RPD-N	A mg/kg	N/A	30	12-OCT-21
Lead (Pb)-Leachable		<0.50	<0.50	RPD-N	A mg/kg	N/A	30	12-OCT-21
Lithium (Li)-Leachable	e	<5.0	<5.0	RPD-N	A mg/kg	N/A	30	12-OCT-21
Manganese (Mn)-Lea	chable	4.8	6.8	DUP-H	mg/kg	2.1	2	12-OCT-21
Molybdenum (Mo)-Lea	achable	<0.50	<0.50	RPD-N	A mg/kg	N/A	30	12-OCT-21
Nickel (Ni)-Leachable		<0.50	0.50	RPD-N	A mg/kg	N/A	30	12-OCT-21

		Workorder: L2644275 Re			eport Date: C)7-JAN-22	Page 8 of 38	
Test Ma	atrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TESS-EA-CCMS-VA S	oil							
Batch R5616798								
WG3629665-3 DUP Phosphorus (P)-Leachable		L2644275-3 <50	<50	RPD-NA	mg/kg	N/A	30	12-OCT-21
Potassium (K)-Leachable		140	150		mg/kg	6.8	30	12-OCT-21
Selenium (Se)-Leachable		<0.20	<0.20	RPD-NA	mg/kg	N/A	30	12-OCT-21
Silver (Ag)-Leachable		<0.10	<0.10	RPD-NA	mg/kg	N/A	30	12-OCT-21
Sodium (Na)-Leachable		<100	<100	RPD-NA	mg/kg	N/A	30	12-OCT-21
Strontium (Sr)-Leachable		10.5	10.4		mg/kg	0.0	30	12-OCT-21
Thallium (TI)-Leachable		<0.050	<0.050	RPD-NA	mg/kg	N/A	30	12-OCT-21
Tin (Sn)-Leachable		<2.0	<2.0	RPD-NA	mg/kg	N/A	30	12-OCT-21
Titanium (Ti)-Leachable		<1.0	<1.0	RPD-NA	mg/kg	N/A	30	12-OCT-21
Uranium (U)-Leachable		<0.050	<0.050	RPD-NA	mg/kg	N/A	30	12-OCT-21
Vanadium (V)-Leachable		<0.20	<0.20	RPD-NA	mg/kg	N/A	30	12-OCT-21
Zinc (Zn)-Leachable		<1.0	<1.0	RPD-NA	mg/kg	N/A	30	12-OCT-21
WG3629665-2 LCS Aluminum (Al)-Leachable			105.4		%		70-130	12-0CT-21
Antimony (Sb)-Leachable			103.3		%		70-130	12-OCT-21
Arsenic (As)-Leachable			100.9		%		70-130	12-OCT-21
Barium (Ba)-Leachable			100.7		%		70-130	12-OCT-21
Beryllium (Be)-Leachable			101.0		%		70-130	12-OCT-21
Bismuth (Bi)-Leachable			93.7		%		70-130	12-OCT-21
Cadmium (Cd)-Leachable			101.5		%		70-130	12-OCT-21
Calcium (Ca)-Leachable			100.9		%		70-130	12-OCT-21
Chromium (Cr)-Leachable			99.3		%		70-130	12-OCT-21
Cobalt (Co)-Leachable			98.2		%		70-130	12-OCT-21
Copper (Cu)-Leachable			95.2		%		70-130	12-OCT-21
Iron (Fe)-Leachable			99.2		%		70-130	12-OCT-21
Lead (Pb)-Leachable			95.4		%		70-130	12-OCT-21
Lithium (Li)-Leachable			111.8		%		70-130	12-OCT-21
Manganese (Mn)-Leachable	9		98.0		%		70-130	12-OCT-21
Molybdenum (Mo)-Leachabl	le		101.9		%		70-130	12-OCT-21
Nickel (Ni)-Leachable			94.5		%		70-130	12-OCT-21
Phosphorus (P)-Leachable			104.1		%		70-130	12-OCT-21
Potassium (K)-Leachable			98.2		%		70-130	12-OCT-21
Selenium (Se)-Leachable			97.4		%		70-130	12-OCT-21
Silver (Ag)-Leachable			99.8		%		70-130	12-OCT-21

Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-TESS-EA-CCMS-VA Soil Batch R5616798 VG3629665-2 LCS Sodium (Na)-Leachable 105.5 % 70-130 12-OCT-21 Strontium (Sr)-Leachable 100.6 % 70-130 12-OCT-21 Thallium (TI)-Leachable 93.6 % 70-130 12-OCT-21 Tin (Sn)-Leachable 101.2 % 70-130 12-OCT-21 Titanium (TI)-Leachable 98.8 % 70-130 12-OCT-21 Uranium (U)-Leachable 98.8 % 70-130 12-OCT-21 Vanadium (V)-Leachable 96.1 % 70-130 12-OCT-21 Vanadium (V)-Leachable 96.1 % 70-130 12-OCT-21 Vanadium (V)-Leachable 96.1 % 70-130 12-OCT-21 WG3629665-1 MB MB Aluminum (Al)-Leachable 50 12-OCT-21 MG3629665-1 MB Aluminum (Al)-Leachable <50		Workorder: L2644275			Report Date: 0	7-JAN-22	Page 9 of 38		
MET-TESS-EA-CCMS-VA Soil Batch R5616798 WG3629665-2 LCS Sodium (Na)-Leachable 105.5 Strontium (St)-Leachable 100.6 Thallium (Tl)-Leachable 93.6 Tin (Sn)-Leachable 101.2 Tin (Sn)-Leachable 101.1 Vanadium (V)-Leachable 98.8 Vanadium (V)-Leachable 102.5 Vanadium (V)-Leachable 102.5 Vanadium (V)-Leachable 102.5 Vanadium (V)-Leachable 96.1 Vanadium (A)-Leachable 96.1 WG3629665-1 MB Aluminum (A)-Leachable <50 Antimony (Sb)-Leachable <50 Antimony (Sb)-Leachable <0.10 VO 0.1 Arsenic (As)-Leachable <0.050	Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
Bath R5616798 WG3629665-2 LCS Sodium (Na)-Leachable 105.5 Strontium (Sr)-Leachable 100.6 Thallium (Ti)-Leachable 93.6 Tin (Sn)-Leachable 101.2 Titanium (Ti)-Leachable 101.1 Vanadium (V)-Leachable 98.8 Vanadium (V)-Leachable 96.1 Vanadium (A)-Leachable 50 Atuminum (A)-Leachable 50 Atuminum (A)-Leachable 60.0 Vanimum (A)-Leachable 60.0 Vanimum (A)-Leachable 60.0 Vanimum (A)-Leachable 6.00.0	MET-TESS-EA-CCMS-VA Soil								
WG3629665-2 LCS Sodium (Na)-Leachable 105.5 % 70-130 12-OCT-21 Strontium (Sr)-Leachable 100.6 % 70-130 12-OCT-21 Thallium (Tl)-Leachable 93.6 % 70-130 12-OCT-21 Tin (Sn)-Leachable 101.2 % 70-130 12-OCT-21 Titanium (Ti)-Leachable 101.1 % 70-130 12-OCT-21 Uranium (U)-Leachable 98.8 % 70-130 12-OCT-21 Vanadium (V)-Leachable 102.5 % 70-130 12-OCT-21 Vanadium (V)-Leachable 96.1 % 70-130 12-OCT-21 Zinc (Zn)-Leachable 96.1 % 70-130 12-OCT-21 MG3629665-1 MB 12-OCT-21 12-OCT-21 12-OCT-21 Aluminum (Al)-Leachable <0.1	Batch R5616798								
Sodium (Na)-Leachable105.5%70-13012-OCT-21Strontium (Sr)-Leachable100.6%70-13012-OCT-21Thallium (Tl)-Leachable93.6%70-13012-OCT-21Tin (Sn)-Leachable101.2%70-13012-OCT-21Titanium (Ti)-Leachable101.1%70-13012-OCT-21Uranium (U)-Leachable98.8%70-13012-OCT-21Vanadium (V)-Leachable102.5%70-13012-OCT-21Zinc (Zn)-Leachable96.1%70-13012-OCT-21WG3629665-1MB5012-OCT-21Aluminum (Al)-Leachable<50	WG3629665-2 LCS								
Strontum (Sr)-Leachable100.6%70-13012-OCT-21Thallium (Tl)-Leachable93.6%70-13012-OCT-21Tin (Sn)-Leachable101.2%70-13012-OCT-21Titanium (Ti)-Leachable101.1%70-13012-OCT-21Uranium (U)-Leachable98.8%70-13012-OCT-21Vanadium (V)-Leachable102.5%70-13012-OCT-21Zinc (Zn)-Leachable96.1%70-13012-OCT-21WG3629665-1MB70-13012-OCT-21Aluminum (Al)-Leachable<50	Sodium (Na)-Leachable		105.5		%		70-130	12-OCT-21	
Thallium (TI)-Leachable93.6%70-13012-OCT-21Tin (Sn)-Leachable101.2%70-13012-OCT-21Titanium (Ti)-Leachable101.1%70-13012-OCT-21Uranium (U)-Leachable98.8%70-13012-OCT-21Vanadium (V)-Leachable102.5%70-13012-OCT-21Zinc (Zn)-Leachable96.1%70-13012-OCT-21WG3629665-1MB70-13012-OCT-21Aluminum (Al)-Leachable<50	Strontium (Sr)-Leachable		100.6		%		70-130	12-OCT-21	
Tin (Sn)-Leachable101.2%70-13012-OCT-21Titanium (Ti)-Leachable101.1%70-13012-OCT-21Uranium (U)-Leachable98.8%70-13012-OCT-21Vanadium (V)-Leachable102.5%70-13012-OCT-21Zinc (Zn)-Leachable96.1%70-13012-OCT-21WG3629665-1MB70-13012-OCT-21Aluminum (Al)-Leachable<50	Thallium (TI)-Leachable		93.6		%		70-130	12-OCT-21	
Titanium (Ti)-Leachable101.1%70-13012-OCT-21Uranium (U)-Leachable98.8%70-13012-OCT-21Vanadium (V)-Leachable102.5%70-13012-OCT-21Zinc (Zn)-Leachable96.1%70-13012-OCT-21WG3629665-1MB70-13012-OCT-21Aluminum (Al)-Leachable<50	Tin (Sn)-Leachable		101.2		%		70-130	12-OCT-21	
Uranium (U)-Leachable 98.8 % 70-130 12-OCT-21 Vanadium (V)-Leachable 102.5 % 70-130 12-OCT-21 Zinc (Zn)-Leachable 96.1 % 70-130 12-OCT-21 WG3629665-1 MB 70-130 12-OCT-21 Aluminum (Al)-Leachable <50	Titanium (Ti)-Leachable		101.1		%		70-130	12-OCT-21	
Vanadium (V)-Leachable 102.5 % 70-130 12-OCT-21 Zinc (Zn)-Leachable 96.1 % 70-130 12-OCT-21 WG3629665-1 MB 12-OCT-21 Aluminum (Al)-Leachable <50	Uranium (U)-Leachable		98.8		%		70-130	12-OCT-21	
Zinc (Zn)-Leachable 96.1 % 70-130 12-OCT-21 WG3629665-1 MB Aluminum (Al)-Leachable <50	Vanadium (V)-Leachable		102.5		%		70-130	12-OCT-21	
WG3629665-1 MB Aluminum (Al)-Leachable <50	Zinc (Zn)-Leachable		96.1		%		70-130	12-OCT-21	
Antimony (Sb)-Leachable <0.10 mg/kg 0.1 12-OCT-21 Arsenic (As)-Leachable <0.050	WG3629665-1 MB Aluminum (Al)-Leachable		<50		mg/kg		50	12-OCT-21	
Arsenic (As)-Leachable <0.050 mg/kg 0.05 12-OCT-21	Antimony (Sb)-Leachable		<0.10		mg/kg		0.1	12-OCT-21	
	Arsenic (As)-Leachable		<0.050		mg/kg		0.05	12-0CT-21	
Barium (Ba)-Leachable <0.50 mg/kg 0.5 12-OCT-21	Barium (Ba)-Leachable		<0.50		ma/ka		0.5	12-0CT-21	
Bervllium (Be)-Leachable <0.20 mg/kg 0.2 12-OCT-21	Beryllium (Be)-Leachable		<0.20		mg/kg		0.2	12-OCT-21	
Bismuth (Bi)-Leachable <0.20 mg/kg 0.2 12-OCT-21	Bismuth (Bi)-Leachable		<0.20		mg/kg		0.2	12-OCT-21	
Cadmium (Cd)-Leachable <0.050 mg/kg 0.05 12-OCT-21	Cadmium (Cd)-Leachable		<0.050		mg/kg		0.05	12-0CT-21	
Calcium (Ca)-Leachable <50 mg/kg 50 12-OCT-21	Calcium (Ca)-Leachable		<50		mg/kg		50	12-OCT-21	
Chromium (Cr)-Leachable <0.50 mg/kg 0.5 12-OCT-21	Chromium (Cr)-Leachable		<0.50		mg/kg		0.5	12-OCT-21	
Cobalt (Co)-Leachable <0.10 mg/kg 0.1 12-OCT-21	Cobalt (Co)-Leachable		<0.10		mg/kg		0.1	12-0CT-21	
Iron (Fe)-Leachable <50 mg/kg 50 12-OCT-21	Iron (Fe)-Leachable		<50		ma/ka		50	12-0CT-21	
Lead (Pb)-Leachable <0.50 mg/kg 0.5 12-OCT-21	Lead (Pb)-Leachable		<0.50		ma/ka		0.5	12-0CT-21	
Lithium (Li)-Leachable <5.0 mg/kg 5 12-OCT-21	Lithium (Li)-Leachable		<5.0		ma/ka		5	12-0CT-21	
Manganese (Mn)-Leachable <1.0 mg/kg 1 12-OCT-21	Manganese (Mn)-Leachable		<1.0		ma/ka		1	12-0CT-21	
Molvbdenum (Mo)-Leachable <0.50 mg/kg 0.5 12-OCT-21	Molvbdenum (Mo)-Leachable		<0.50		ma/ka		0.5	12-0CT-21	
Nickel (Ni)-Leachable <0.50 mg/kg 0.5 12-OCT-21	Nickel (Ni)-Leachable		<0.50		mg/kg		0.5	12-OCT-21	
Phosphorus (P)-Leachable <50 mg/kg 50 12-OCT-21	Phosphorus (P)-Leachable		<50		mg/kg		50	12-0CT-21	
Potassium (K)-Leachable <100 mg/kg 100 12-OCT-21	Potassium (K)-Leachable		<100		ma/ka		100	12-0CT-21	
Selenium (Se)-Leachable <0.20 mg/kg 0.2 12-OCT-21	Selenium (Se)-Leachable		<0.20		ma/ka		0.2	12-0CT-21	
Silver (Ag)-Leachable <0.10 mg/kg 0.1 12-0CT-21	Silver (Ag)-Leachable		<0.10		ma/ka		0.1	12-0CT-21	
Sodium (Na)-Leachable <100 mg/kg 100 12-OCT-21	Sodium (Na)-Leachable		<100		ma/ka		100	12-0CT-21	
Strontium (Sr)-Leachable <0.50 mg/kg 0.5 12-OCT-21	Strontium (Sr)-Leachable		<0.50		ma/ka		0.5	12-0CT-21	
Thallium (TI)-Leachable <0.050 mg/kg 0.05 12-001-21	Thallium (TI)-Leachable		<0.050		ma/ka		0.05	12-0CT-21	
Tin (Sn)-Leachable <2.0 mg/kg 2 12-OCT-21	Tin (Sn)-Leachable		<2.0		ma/ka		2	12-0CT-21	
Titanium (Ti)-Leachable <1.0 mg/kg 1 12-OCT-21	Titanium (Ti)-Leachable		<1.0		mg/kg		1	12-OCT-21	

		Workorder:	L264427	75 Re	eport Date: 0	7-JAN-22	P	age 10 of 38
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TESS-EA-CCMS-VA	Soil							
Batch R5616798	3							
WG3629665-1 MB								
Uranium (U)-Leachable	e		<0.050		mg/kg		0.05	12-OCT-21
Vanadium (V)-Leachat	ble		<0.20		mg/kg		0.2	12-OCT-21
Zinc (Zn)-Leachable			<1.0		mg/kg		1	12-OCT-21
Batch R5620077	7							
WG3629665-1 MB	0		1 1 9	P	ma/ka		0.5	40 OOT 04
	6		1.10	В	пужу		0.5	12-001-21
Batch R5620406	6							
WG3629665-3 DUP		L2644275-3						
Copper (Cu)-Leachable	e	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	15-OCT-21
MET-TESS-FEO-CCMS-V	A Soil							
Batch R5622597	7							
WG3629665-3 DUP		L2644275-3						
Aluminum (Al)-Leachal	ble	645	604		mg/kg	6.5	30	18-OCT-21
Antimony (Sb)-Leachal	ble	<0.10	<0.10	RPD-NA	mg/kg	N/A	30	18-OCT-21
Arsenic (As)-Leachable	e	0.368	0.351		mg/kg	4.6	30	18-OCT-21
Barium (Ba)-Leachable	9	41.0	39.9		mg/kg	2.7	30	18-OCT-21
Beryllium (Be)-Leachal	ble	0.26	0.25		mg/kg	5.9	30	18-OCT-21
Bismuth (Bi)-Leachable	9	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	18-OCT-21
Cadmium (Cd)-Leacha	ble	0.218	0.208		mg/kg	4.7	30	18-OCT-21
Calcium (Ca)-Leachab	le	2200	1940		mg/kg	12	30	18-OCT-21
Chromium (Cr)-Leacha	able	1.09	0.96		mg/kg	12	30	18-OCT-21
Cobalt (Co)-Leachable	l	6.65	6.47		mg/kg	2.7	30	18-OCT-21
Copper (Cu)-Leachable	е	0.51	0.53		mg/kg	4.5	30	18-OCT-21
Iron (Fe)-Leachable		3990	3950		mg/kg	1.0	30	18-OCT-21
Lead (Pb)-Leachable		3.29	3.30		mg/kg	0.4	30	18-OCT-21
Lithium (Li)-Leachable		<5.0	<5.0	RPD-NA	mg/kg	N/A	30	18-OCT-21
Manganese (Mn)-Leac	hable	326	321		mg/kg	1.4	30	18-OCT-21
Molybdenum (Mo)-Lea	chable	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	18-OCT-21
Nickel (Ni)-Leachable		13.7	13.2		mg/kg	3.6	30	18-OCT-21
Phosphorus (P)-Leach	able	129	126		mg/kg	2.5	30	18-OCT-21
Selenium (Se)-Leacha	ble	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	18-OCT-21
Silver (Ag)-Leachable		<0.10	<0.10	RPD-NA	mg/kg	N/A	30	18-OCT-21
Strontium (Sr)-Leachal	ble	4.91	4.69		mg/kg	4.7	30	18-OCT-21

		Workorder: L2644275			Report Date: 07-JAN-22			Page 11 of 38	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TESS-FEO-CCMS	-VA Soil								
Batch R56225	97								
WG3629665-3 DU	P	L2644275-3							
I hallium (II)-Leacha	able	<0.050	<0.050	RPD-NA	mg/kg	N/A	30	18-OCT-21	
Tin (Sn)-Leachable		<2.0	<2.0	RPD-NA	mg/kg	N/A	30	18-OCT-21	
Titanium (Ti)-Leacha	able	<1.0	<1.0	RPD-NA	mg/kg	N/A	30	18-OCT-21	
Uranium (U)-Leacha	ble	0.107	0.094		mg/kg	13	30	18-OCT-21	
Vanadium (V)-Leach	able	2.73	2.60		mg/kg	4.8	30	18-OCT-21	
Zinc (Zn)-Leachable		25.7	24.9		mg/kg	3.2	30	18-OCT-21	
WG3629665-2 LC Aluminum (Al)-Leach	S nable		101.3		%		70-130	18-OCT-21	
Antimony (Sb)-Leach	nable		102.7		%		70-130	18-OCT-21	
Arsenic (As)-Leacha	ble		103.6		%		70-130	18-0CT-21	
Barium (Ba)-Leacha	ble		100.8		%		70-130	18-0CT-21	
Beryllium (Be)-Leach	nable		101.8		%		70-130	18-OCT-21	
Bismuth (Bi)-Leacha	ble		99.7		%		70-130	18-OCT-21	
Cadmium (Cd)-Leac	hable		104.3		%		70-130	18-OCT-21	
Calcium (Ca)-Leach	able		100.4		%		70-130	18-OCT-21	
Chromium (Cr)-Lead	hable		102.1		%		70-130	18-OCT-21	
Cobalt (Co)-Leachat	ble		100.1		%		70-130	18-OCT-21	
Copper (Cu)-Leacha	ble		99.7		%		70-130	18-OCT-21	
Iron (Fe)-Leachable			99.4		%		70-130	18-OCT-21	
Lead (Pb)-Leachable	e		100.3		%		70-130	18-OCT-21	
Lithium (Li)-Leachab	le		102.3		%		70-130	18-OCT-21	
Manganese (Mn)-Le	achable		98.4		%		70-130	18-OCT-21	
Molybdenum (Mo)-Lo	eachable		100.2		%		70-130	18-OCT-21	
Nickel (Ni)-Leachabl	e		100.5		%		70-130	18-OCT-21	
Phosphorus (P)-Lea	chable		106.9		%		70-130	18-OCT-21	
Selenium (Se)-Leach	nable		119.3		%		70-130	18-OCT-21	
Silver (Ag)-Leachabl	e		100.5		%		70-130	18-OCT-21	
Strontium (Sr)-Leach	nable		99.1		%		70-130	18-OCT-21	
Thallium (TI)-Leacha	able		102.5		%		70-130	18-OCT-21	
Tin (Sn)-Leachable			100.9		%		70-130	18-OCT-21	
Titanium (Ti)-Leacha	able		96.1		%		70-130	18-OCT-21	
Uranium (U)-Leacha	ble		101.4		%		70-130	18-OCT-21	
Vanadium (V)-Leach	able		100.8		%		70-130	18-OCT-21	
Zinc (Zn)-Leachable			101.3		%		70-130	18-OCT-21	
WG3629665-1 ME	3								

Test M		Workorder: L2644275			Report Date: 07-JAN-22		Page 12 of 38	
	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TESS-FEO-CCMS-VA	Soil							
Batch R5622597								
WG3629665-1 MB								
Aluminum (Al)-Leachabl	e		<50		mg/kg		50	18-OCT-21
Antimony (Sb)-Leachabl	e		<0.10		mg/kg		0.1	18-OCT-21
Arsenic (As)-Leachable			<0.050		mg/kg		0.05	18-OCT-21
Barium (Ba)-Leachable			<0.50		mg/kg		0.5	18-OCT-21
Beryllium (Be)-Leachabl	e		<0.20		mg/kg		0.2	18-OCT-21
Bismuth (Bi)-Leachable			<0.20		mg/kg		0.2	18-OCT-21
Cadmium (Cd)-Leachab	le		<0.050		mg/kg		0.05	18-OCT-21
Calcium (Ca)-Leachable			<50		mg/kg		50	18-OCT-21
Chromium (Cr)-Leachab	le		<0.50		mg/kg		0.5	18-OCT-21
Cobalt (Co)-Leachable			<0.10		mg/kg		0.1	18-OCT-21
Copper (Cu)-Leachable			<0.50		mg/kg		0.5	18-OCT-21
Iron (Fe)-Leachable			<50		mg/kg		50	18-OCT-21
Lead (Pb)-Leachable			<0.50		mg/kg		0.5	18-OCT-21
Lithium (Li)-Leachable			<5.0		mg/kg		5	18-OCT-21
Manganese (Mn)-Leach	able		<1.0		mg/kg		1	18-OCT-21
Molybdenum (Mo)-Leach	nable		<0.50		mg/kg		0.5	18-OCT-21
Nickel (Ni)-Leachable			<0.50		mg/kg		0.5	18-OCT-21
Phosphorus (P)-Leachal	ole		<50		mg/kg		50	18-OCT-21
Selenium (Se)-Leachabl	e		<0.20		mg/kg		0.2	18-OCT-21
Silver (Ag)-Leachable			<0.10		mg/kg		0.1	18-OCT-21
Strontium (Sr)-Leachable	е		<0.50		mg/kg		0.5	18-OCT-21
Thallium (TI)-Leachable			<0.050		mg/kg		0.05	18-OCT-21
Tin (Sn)-Leachable			<2.0		mg/kg		2	18-OCT-21
Titanium (Ti)-Leachable			<1.0		mg/kg		1	18-OCT-21
Uranium (U)-Leachable			<0.050		mg/kg		0.05	18-OCT-21
Vanadium (V)-Leachable	e		<0.20		mg/kg		0.2	18-OCT-21
Zinc (Zn)-Leachable			<1.0		mg/kg		1	18-OCT-21
MET-TESS-OB-CCMS-VA	Soil							
Batch R5630004								
WG3629665-3 DUP Aluminum (Al)-Leachabl	е	L2644275-3 1270	1210		mg/kg	4.5	30	26-OCT-21
Antimony (Sb)-Leachabl	e	<0.10	<0.10	RPD-N	IA mg/kg	N/A	30	26-OCT-21
Arsenic (As)-Leachable		0.155	0.132		mg/kg	16	30	26-OCT-21
Barium (Ba)-Leachable		15.8	16.8		mg/kg	5.9	30	26-OCT-21

	Workorder:	orkorder: L2644275		Report Date: 07-JAN-22		Page 13 of 38	
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TESS-OB-CCMS-VA Soil							
Batch R5630004							
WG3629665-3 DUP	L2644275-3	-0.20		~~~//~~	N1/A	00	
Bismuth (Bi) Leachable	<0.20	<0.20		mg/kg	N/A	30	26-0CT-21
Cadmium (Cd) Leachable	<0.20	<0.20		mg/kg	N/A	30	26-001-21
	<0.050	<0.050	RPD-NA	mg/kg	N/A	30	26-001-21
	090	1 90		mg/kg	1.2	30	26-001-21
	2.04	1.09		mg/kg	7.3	30	26-001-21
	0.95	1.00		mg/kg	5.8	30	26-001-21
	1.99	1.04		mg/kg	7.9	30	26-001-21
	0.77	0.84		mg/kg	3.0	30	26-001-21
	0.77	0.04		mg/kg	9.1	30	26-001-21
	< 5.0	<0.0	RPD-NA	mg/kg	N/A	30	26-001-21
Mahdanum (Ma) Lasababla	23.9	20.5		mg/kg	11	30	26-001-21
	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	26-001-21
	4.60	4.53		mg/kg	1.6	30	26-001-21
	0.45	0.37		mg/kg	21	30	26-001-21
Sliver (Ag)-Leachable	<0.10	<0.10	RPD-NA	mg/кg ma/ka	N/A	30	26-OCT-21
Strontium (Sr)-Leachable	4.37	4.27		mg/кg ma/ka	2.4	30	26-OCT-21
	<0.050	<0.050	RPD-NA	mg/kg	N/A	30	26-OCT-21
	<2.0	<2.0	RPD-NA	mg/kg	N/A	30	26-OCT-21
l itanium (1i)-Leachable	<1.0	<1.0	RPD-NA	mg/kg	N/A	30	26-OCT-21
Uranium (U)-Leachable	0.175	0.165		mg/kg	6.1	30	26-OCT-21
	2.27	2.03		mg/kg	11	30	26-OCT-21
Zinc (Zn)-Leachable	4.7	4.7		mg/kg	0.5	30	26-OCT-21
WG3629665-2 LCS Aluminum (Al)-l eachable		105.2		%		70-130	26-OCT-21
Antimony (Sb)-Leachable		98.0		%		70-130	26-OCT-21
Arsenic (As)-Leachable		97 7		%		70-130	26-0CT-21
Barium (Ba)-l eachable		101.4		%		70-130	26-0CT-21
Beryllium (Be)-l eachable		107.1		%		70-130	26-0CT-21
Bismuth (Bi)-I eachable		105.4		%		70-130	26-0CT-21
Cadmium (Cd)-Leachable		98.0		%		70-130	26-0CT-21
Calcium (Ca)-l eachable		106.4		70 %		70-130	26-0CT-21
Chromium (Cr)-Leachable		102.4		%		70 130	20-001-21
Cobalt (Co)-Leachable		102.2		%		70-130	20-001-21
Copper (Cu)-l eschable		101.0		%		70-130	20-001-21

		Workorder	: L264427	'5	Report Date: 0	7-JAN-22	Pa	age 14 of 38	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TESS-OB-CCMS-	VA Soil								
Batch R56300	004								
WG3629665-2 LC	S								
Iron (Fe)-Leachable			99.0		%		70-130	26-OCT-21	
Lead (Pb)-Leachable	9		108.7		%		70-130	26-OCT-21	
Lithium (Li)-Leachab	ble		110.7		%		70-130	26-OCT-21	
Manganese (Mn)-Le	achable		104.2		%		70-130	26-OCT-21	
Molybdenum (Mo)-L	eachable		104.9		%		70-130	26-OCT-21	
Nickel (Ni)-Leachabl	е		101.5		%		70-130	26-OCT-21	
Selenium (Se)-Leac	hable		95.7		%		70-130	26-OCT-21	
Silver (Ag)-Leachabl	le		104.7		%		70-130	26-OCT-21	
Strontium (Sr)-Leach	hable		110.6		%		70-130	26-OCT-21	
Thallium (TI)-Leacha	able		104.3		%		70-130	26-OCT-21	
Tin (Sn)-Leachable			98.3		%		70-130	26-OCT-21	
Titanium (Ti)-Leacha	able		102.8		%		70-130	26-OCT-21	
Uranium (U)-Leacha	ıble		106.4		%		70-130	26-OCT-21	
Vanadium (V)-Leach	nable		103.0		%		70-130	26-OCT-21	
Zinc (Zn)-Leachable			103.1		%		70-130	26-OCT-21	
WG3629665-1 ME	3								
Aluminum (Al)-Leacl	hable		<50		mg/kg		50	26-OCT-21	
Antimony (Sb)-Leac	hable		<0.10		mg/kg		0.1	26-OCT-21	
Arsenic (As)-Leacha	ible		<0.050		mg/kg		0.05	26-OCT-21	
Barium (Ba)-Leacha	ble		<0.50		mg/kg		0.5	26-OCT-21	
Beryllium (Be)-Leach	hable		<0.20		mg/kg		0.2	26-OCT-21	
Bismuth (Bi)-Leacha	ıble		<0.20		mg/kg		0.2	26-OCT-21	
Cadmium (Cd)-Lead	hable		<0.050		mg/kg		0.05	26-OCT-21	
Calcium (Ca)-Leach	able		<50		mg/kg		50	26-OCT-21	
Chromium (Cr)-Lead	chable		<0.50		mg/kg		0.5	26-OCT-21	
Cobalt (Co)-Leachat	ole		<0.10		mg/kg		0.1	26-OCT-21	
Copper (Cu)-Leacha	able		<0.50		mg/kg		0.5	26-OCT-21	
Iron (Fe)-Leachable			<50		mg/kg		50	26-OCT-21	
Lead (Pb)-Leachable	е		<0.50		mg/kg		0.5	26-OCT-21	
Lithium (Li)-Leachab	ble		<5.0		mg/kg		5	26-OCT-21	
Manganese (Mn)-Le	achable		<1.0		mg/kg		1	26-OCT-21	
Molybdenum (Mo)-L	eachable		<0.50		mg/kg		0.5	26-OCT-21	
Nickel (Ni)-Leachabl	e		<0.50		mg/kg		0.5	26-OCT-21	
Selenium (Se)-Leac	hable		<0.20		mg/kg		0.2	26-OCT-21	

		Workorder	L264427	5 R	Report Date: 0	7-JAN-22	Page 15 of 38	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TESS-OB-CCMS-V/	A Soil							
Batch R563000)4							
WG3629665-1 MB								
Silver (Ag)-Leachable			<0.10		mg/kg		0.1	26-OCT-21
Strontium (Sr)-Leacha	able		<0.50		mg/kg		0.5	26-OCT-21
Thallium (TI)-Leachab	ble		<0.050		mg/kg		0.05	26-OCT-21
Tin (Sn)-Leachable			<2.0		mg/kg		2	26-OCT-21
Titanium (Ti)-Leachab	ble		<1.0		mg/kg		1	26-OCT-21
Uranium (U)-Leachab	le		<0.050		mg/kg		0.05	26-OCT-21
Vanadium (V)-Leacha	able		<0.20		mg/kg		0.2	26-OCT-21
Zinc (Zn)-Leachable			<1.0		mg/kg		1	26-OCT-21
MET-TESS-RM-CCMS-V	A Soil							
Batch R562636	8							
WG3629665-3 DUP)	L2644275-3						
Aluminum (Al)-Leacha	able	8250	9840		mg/kg	18	30	21-OCT-21
Antimony (Sb)-Leacha	able	0.71	0.69		mg/kg	2.6	30	21-OCT-21
Arsenic (As)-Leachab	le	5.71	6.37		mg/kg	11	30	21-OCT-21
Barium (Ba)-Leachabl	le	118	134		mg/kg	12	30	21-OCT-21
Beryllium (Be)-Leacha	able	0.36	0.38		mg/kg	6.6	30	21-OCT-21
Bismuth (Bi)-Leachab	le	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	21-OCT-21
Cadmium (Cd)-Leach	able	0.096	0.115		mg/kg	18	30	21-OCT-21
Calcium (Ca)-Leachal	ble	1010	1110		mg/kg	9.5	30	21-OCT-21
Chromium (Cr)-Leach	able	11.4	13.0		mg/kg	13	30	21-OCT-21
Cobalt (Co)-Leachable	e	3.49	3.85		mg/kg	9.9	30	21-OCT-21
Copper (Cu)-Leachab	le	12.9	14.3		mg/kg	10	30	21-OCT-21
Iron (Fe)-Leachable		16400	20000		mg/kg	20	30	21-OCT-21
Lead (Pb)-Leachable		7.90	8.29		mg/kg	4.8	30	21-OCT-21
Lithium (Li)-Leachable	Ð	8.6	11.0		mg/kg	25	30	21-OCT-21
Manganese (Mn)-Lea	chable	61.9	71.7		mg/kg	15	30	21-OCT-21
Molybdenum (Mo)-Lea	achable	1.02	1.08		mg/kg	5.4	30	21-OCT-21
Nickel (Ni)-Leachable		13.9	15.4		mg/kg	10	30	21-OCT-21
Selenium (Se)-Leacha	able	0.39	0.57	J	mg/kg	0.19	0.4	21-OCT-21
Silver (Ag)-Leachable		<0.10	<0.10	RPD-NA	mg/kg	N/A	30	21-OCT-21
Strontium (Sr)-Leacha	able	18.4	18.4		mg/kg	0.3	30	21-OCT-21
Thallium (TI)-Leachab	ble	0.138	0.150		mg/kg	8.6	30	21-OCT-21
Tin (Sn)-Leachable		<2.0	<2.0	RPD-NA	mg/kg	N/A	30	21-OCT-21
Titanium (Ti)-Leachab	ble	13.8	15.2		mg/kg	9.3	30	21-OCT-21

			L264427	75	Report Date: 0	7-JAN-22	Pa	age 16 of 38	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TESS-RM-CCMS-V	/A Soil								
Batch R56263	68								
WG3629665-3 DUI	P	L2644275-3							
Uranium (U)-Leachat	ole	0.355	0.362		mg/kg	2.0	30	21-OCT-21	
Vanadium (V)-Leach	able	25.4	29.9		mg/kg	16	30	21-OCT-21	
Zinc (Zn)-Leachable		72.1	80.8		mg/kg	11	30	21-OCT-21	
WG3629665-2 LCS Aluminum (Al)-Leach	S lable		107.8		%		70-130	22-OCT-21	
Antimony (Sb)-Leach	able		104.7		%		70-130	22-OCT-21	
Arsenic (As)-Leachat	ole		106.7		%		70-130	22-OCT-21	
Barium (Ba)-Leachab	ble		112.3		%		70-130	22-OCT-21	
Beryllium (Be)-Leach	able		105.2		%		70-130	22-OCT-21	
Bismuth (Bi)-Leachat	ole		94.9		%		70-130	22-OCT-21	
Cadmium (Cd)-Leach	nable		110.9		%		70-130	22-OCT-21	
Calcium (Ca)-Leacha	able		100.8		%		70-130	22-OCT-21	
Chromium (Cr)-Leacl	hable		110.8		%		70-130	22-OCT-21	
Cobalt (Co)-Leachab	le		106.8		%		70-130	22-OCT-21	
Copper (Cu)-Leachal	ble		106.9		%		70-130	22-OCT-21	
Iron (Fe)-Leachable			105.1		%		70-130	22-OCT-21	
Lead (Pb)-Leachable			105.0		%		70-130	22-OCT-21	
Lithium (Li)-Leachabl	e		105.6		%		70-130	22-OCT-21	
Manganese (Mn)-Lea	achable		110.9		%		70-130	22-OCT-21	
Molybdenum (Mo)-Le	eachable		102.0		%		70-130	22-OCT-21	
Nickel (Ni)-Leachable	e		107.6		%		70-130	22-OCT-21	
Selenium (Se)-Leach	able		111.2		%		70-130	22-OCT-21	
Silver (Ag)-Leachable	e		106.5		%		70-130	22-OCT-21	
Strontium (Sr)-Leach	able		103.2		%		70-130	22-OCT-21	
Thallium (TI)-Leachal	ble		103.1		%		70-130	22-OCT-21	
Tin (Sn)-Leachable			104.2		%		70-130	22-OCT-21	
Titanium (Ti)-Leacha	ble		109.9		%		70-130	22-OCT-21	
Uranium (U)-Leachat	ble		105.5		%		70-130	22-OCT-21	
Vanadium (V)-Leacha	able		106.4		%		70-130	22-OCT-21	
Zinc (Zn)-Leachable			110.7		%		70-130	22-OCT-21	
WG3629665-1 MB Aluminum (Al)-Leach	able		<50		mg/kg		50	21-OCT-21	
Antimony (Sb)-Leach	able		<0.10		mg/kg		0.1	21-OCT-21	
Arsenic (As)-Leachat	ole		<0.50		mg/kg		0.5	21-OCT-21	
Barium (Ba)-Leachab	ble		<2.0		mg/kg		2	21-OCT-21	

			: L264427	' 5	Report Date: 0	7-JAN-22	Page 17 of 38	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TESS-RM-CCMS-V	'A Soil							
Batch R56263	68							
WG3629665-1 MB								
Beryllium (Be)-Leach	able		<0.20		mg/kg		0.2	21-OCT-21
Bismuth (Bi)-Leachat	ble		<0.20		mg/kg		0.2	21-OCT-21
Cadmium (Cd)-Leach	nable		<0.050		mg/kg		0.05	21-OCT-21
Calcium (Ca)-Leacha	ible		<50		mg/kg		50	21-OCT-21
Chromium (Cr)-Leach	nable		<5.0		mg/kg		5	21-OCT-21
Cobalt (Co)-Leachab	le		<0.10		mg/kg		0.1	21-OCT-21
Copper (Cu)-Leachat	ble		<0.50		mg/kg		0.5	21-OCT-21
Iron (Fe)-Leachable			<50		mg/kg		50	21-OCT-21
Lead (Pb)-Leachable			<0.50		mg/kg		0.5	21-OCT-21
Lithium (Li)-Leachabl	е		<5.0		mg/kg		5	21-OCT-21
Manganese (Mn)-Lea	achable		<5.0		mg/kg		5	21-OCT-21
Molybdenum (Mo)-Le	eachable		<0.50		mg/kg		0.5	21-OCT-21
Nickel (Ni)-Leachable	9		<2.0		mg/kg		2	21-OCT-21
Selenium (Se)-Leach	able		<0.20		mg/kg		0.2	21-OCT-21
Silver (Ag)-Leachable	9		<0.10		mg/kg		0.1	21-OCT-21
Strontium (Sr)-Leach	able		<5.0		mg/kg		5	21-OCT-21
Thallium (TI)-Leachal	ble		<0.050		mg/kg		0.05	21-OCT-21
Tin (Sn)-Leachable			<2.0		mg/kg		2	21-OCT-21
Titanium (Ti)-Leachal	ble		<5.0		mg/kg		5	21-OCT-21
Uranium (U)-Leachat	ble		<0.050		mg/kg		0.05	21-OCT-21
Vanadium (V)-Leacha	able		<0.20		mg/kg		0.2	21-OCT-21
Zinc (Zn)-Leachable			<1.0		mg/kg		1	21-OCT-21
MOISTURE-CL	Soil							
Batch R56041	60							
WG3626758-2 LCS Moisture	6		95.0		%		90-110	29-SEP-21
WG3626758-1 MB Moisture			<0.25		%		0.25	29-SEP-21
Batch R56058	72							
WG3628719-2 LCS Moisture	6		100.5		%		90-110	01-OCT-21
WG3628719-1 MB Moisture			<0.25		%		0.25	01-OCT-21

		Workorder:	L264427	Workorder: L2644275 Report Date: 07				ge 18 of 38
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-CL	Soil							
Batch R560588	0							
WG3628730-3 DUP		L2644275-4	10.0		<i></i>			
Moisture		44.5	43.2		%	3.0	20	01-OCT-21
WG3628730-2 LCS Moisture			99.8		%		90-110	01-OCT-21
WG3628730-1 MB Moisture			<0.25		%		0.25	01-OCT-21
PAH-TMB-H/A-MS-CL	Soil							
Batch R560609	8							
WG3629474-16 DUP		L2644275-4						
Acenaphthene		0.105	0.120		mg/kg	13	50	01-OCT-21
Acenaphthylene		0.0195	0.0208		mg/kg	6.5	50	01-OCT-21
Anthracene		<0.0040	<0.0040	RPD-NA	mg/kg	N/A	50	01-OCT-21
Acridine		0.176	0.203		mg/kg	14	50	01-OCT-21
Benz(a)anthracene		0.056	0.064		mg/kg	14	50	01-OCT-21
Benzo(a)pyrene		0.032	0.037		mg/kg	14	50	01-OCT-21
Benzo(b&j)fluoranther	ie	0.147	0.178		mg/kg	19	50	01-OCT-21
Benzo(e)pyrene		0.141	0.178		mg/kg	23	50	01-OCT-21
Benzo(g,h,i)perylene		0.052	0.067		mg/kg	24	50	01-OCT-21
Benzo(k)fluoranthene		0.012	0.017		mg/kg	34	50	01-OCT-21
Chrysene		0.340	0.362		mg/kg	6.4	50	01-OCT-21
Dibenz(a,h)anthracen	9	0.0274	0.0306		mg/kg	11	50	01-OCT-21
Fluoranthene		0.059	0.059		mg/kg	1.0	50	01-OCT-21
Fluorene		0.234	0.265		mg/kg	13	50	01-OCT-21
Indeno(1,2,3-c,d)pyrei	ne	0.015	0.020		mg/kg	27	50	01-OCT-21
2-Methylnaphthalene		2.40	2.63		mg/kg	9.2	50	01-OCT-21
Naphthalene		0.695	0.771		mg/kg	10	50	01-OCT-21
Perylene		0.011	<0.010	RPD-NA	mg/kg	N/A	50	01-OCT-21
Phenanthrene		1.08	1.18		mg/kg	8.9	50	01-OCT-21
Pyrene		0.150	0.160		mg/kg	6.8	50	01-OCT-21
1-Methylnaphthalene		1.27	1.40		mg/kg	9.4	50	01-OCT-21
Quinoline		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	01-OCT-21
WG3629474-10 IRM Acenaphthene		ALS PAH RM	2 89.7		%		60-130	01-OCT-21
Acenaphthylene			98.2		%		60-130	01-OCT-21
Anthracene			101.9		%		60-130	01-OCT-21
Acridine			88.5		%		60-130	01-OCT-21

		Workorder	: L264427	75	Report Date: ()7-JAN-22	Page 19 of 38	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R560609	8							
WG3629474-10 IRM		ALS PAH R	/ 12					
Benz(a)anthracene			92.7		%		60-130	01-OCT-21
Benzo(a)pyrene			85.1		%		60-130	01-OCT-21
Benzo(b&j)fluoranthen	le		85.0		%		60-130	01-OCT-21
Benzo(e)pyrene			94.7		%		60-130	01-OCT-21
Benzo(g,h,i)perylene			89.0		%		60-130	01-OCT-21
Benzo(k)fluoranthene			73.9		%		60-130	01-OCT-21
Chrysene			91.0		%		60-130	01-OCT-21
Dibenz(a,h)anthracene	9		88.3		%		60-130	01-OCT-21
Fluoranthene			86.8		%		60-130	01-OCT-21
Fluorene			91.2		%		60-130	01-OCT-21
Indeno(1,2,3-c,d)pyrer	ne		112.3		%		60-130	01-OCT-21
2-Methylnaphthalene			84.1		%		60-130	01-OCT-21
Naphthalene			78.9		%		50-130	01-OCT-21
Perylene			90.4		%		60-130	01-OCT-21
Phenanthrene			88.5		%		60-130	01-OCT-21
Pyrene			88.8		%		60-130	01-OCT-21
1-Methylnaphthalene			85.4		%		60-130	01-OCT-21
WG3629474-14 IRM		ALS PAH R	/ 12					
Acenaphthene			76.8		%		60-130	01-OCT-21
Acenaphthylene			83.8		%		60-130	01-OCT-21
Anthracene			90.7		%		60-130	01-OCT-21
Acridine			86.7		%		60-130	01-OCT-21
Benz(a)anthracene			80.8		%		60-130	01-OCT-21
Benzo(a)pyrene			79.2		%		60-130	01-OCT-21
Benzo(b&j)fluoranthen	ie		74.7		%		60-130	01-OCT-21
Benzo(e)pyrene			80.6		%		60-130	01-OCT-21
Benzo(g,h,i)perylene			75.2		%		60-130	01-OCT-21
Benzo(k)fluoranthene			64.2		%		60-130	01-OCT-21
Chrysene			78.5		%		60-130	01-OCT-21
Dibenz(a,h)anthracene	e		70.1		%		60-130	01-OCT-21
Fluoranthene			74.6		%		60-130	01-OCT-21
Fluorene			78.3		%		60-130	01-OCT-21
Indeno(1,2,3-c,d)pyrer	ne		93.0		%		60-130	01-OCT-21
2-Methylnaphthalene			75.9		%		60-130	01-OCT-21

	Workorder	: L264427	75	Report Date: ()7-JAN-22	Page 20 of 38		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5606098								
WG3629474-14 IRM		ALS PAH R	M2					
Naphthalene			68.9		%		50-130	01-OCT-21
Perylene			83.6		%		60-130	01-OCT-21
Phenanthrene			77.6		%		60-130	01-OCT-21
Pyrene			77.3		%		60-130	01-OCT-21
1-Methylnaphthalene			72.8		%		60-130	01-OCT-21
WG3629474-18 IRM Acenaphthene		ALS PAH RI	M2 101.0		%		60-130	02-OCT-21
Acenaphthylene			99.6		%		60-130	02-OCT-21
Anthracene			112.9		%		60-130	02-OCT-21
Acridine			99.7		%		60-130	02-OCT-21
Benz(a)anthracene			98.0		%		60-130	02-OCT-21
Benzo(a)pyrene			85.8		%		60-130	02-OCT-21
Benzo(b&j)fluoranthene	9		91.2		%		60-130	02-OCT-21
Benzo(e)pyrene			98.3		%		60-130	02-OCT-21
Benzo(g,h,i)perylene			96.4		%		60-130	02-OCT-21
Benzo(k)fluoranthene			76.5		%		60-130	02-OCT-21
Chrysene			95.1		%		60-130	02-OCT-21
Dibenz(a,h)anthracene			87.7		%		60-130	02-OCT-21
Fluoranthene			92.1		%		60-130	02-OCT-21
Fluorene			101.0		%		60-130	02-OCT-21
Indeno(1,2,3-c,d)pyrene	Э		105.8		%		60-130	02-OCT-21
2-Methylnaphthalene			95.8		%		60-130	02-OCT-21
Naphthalene			89.5		%		50-130	02-OCT-21
Perylene			91.8		%		60-130	02-OCT-21
Phenanthrene			97.6		%		60-130	02-OCT-21
Pyrene			94.9		%		60-130	02-OCT-21
1-Methylnaphthalene			93.4		%		60-130	02-OCT-21
WG3629474-3 IRM		ALS PAH RI	M 2					
Acenaphthene			77.6		%		60-130	30-SEP-21
Acenaphthylene			86.8		%		60-130	30-SEP-21
Anthracene			92.5		%		60-130	30-SEP-21
Acridine			91.4		%		60-130	30-SEP-21
Benz(a)anthracene			86.0		%		60-130	30-SEP-21
Benzo(a)pyrene			82.8		%		60-130	30-SEP-21
Benzo(b&j)fluoranthene	9		82.9		%		60-130	30-SEP-21

		Workorder	: L264427	75	Report Date: ()7-JAN-22	Page 21 of 38	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5606098								
WG3629474-3 IRM		ALS PAH R	A2					
Benzo(e)pyrene			87.5		%		60-130	30-SEP-21
Benzo(g,h,ı)perylene			77.9		%		60-130	30-SEP-21
Benzo(k)fluoranthene			63.5		%		60-130	30-SEP-21
Chrysene			84.1		%		60-130	30-SEP-21
Dibenz(a,h)anthracene			76.5		%		60-130	30-SEP-21
Fluoranthene			77.8		%		60-130	30-SEP-21
Fluorene			81.0		%		60-130	30-SEP-21
Indeno(1,2,3-c,d)pyrene)		116.5		%		60-130	30-SEP-21
2-Methylnaphthalene			79.0		%		60-130	30-SEP-21
Naphthalene			76.2		%		50-130	30-SEP-21
Perylene			85.9		%		60-130	30-SEP-21
Phenanthrene			80.9		%		60-130	30-SEP-21
Pyrene			80.3		%		60-130	30-SEP-21
1-Methylnaphthalene			77.4		%		60-130	30-SEP-21
WG3629474-6 IRM		ALS PAH RI	/12					
Acenaphthene			88.0		%		60-130	01-OCT-21
Acenaphthylene			89.4		%		60-130	01-OCT-21
Anthracene			98.4		%		60-130	01-OCT-21
Acridine			80.9		%		60-130	01-OCT-21
Benz(a)anthracene			86.4		%		60-130	01-OCT-21
Benzo(a)pyrene			80.4		%		60-130	01-OCT-21
Benzo(b&j)fluoranthene			78.9		%		60-130	01-OCT-21
Benzo(e)pyrene			84.8		%		60-130	01-OCT-21
Benzo(g,h,i)perylene			78.5		%		60-130	01-OCT-21
Benzo(k)fluoranthene			68.1		%		60-130	01-OCT-21
Chrysene			85.6		%		60-130	01-OCT-21
Dibenz(a,h)anthracene			75.4		%		60-130	01-OCT-21
Fluoranthene			81.8		%		60-130	01-OCT-21
Fluorene			90.2		%		60-130	01-OCT-21
Indeno(1,2,3-c,d)pyrene)		110.5		%		60-130	01-OCT-21
2-Methylnaphthalene			81.7		%		60-130	01-OCT-21
Naphthalene			75.2		%		50-130	01-OCT-21
Perylene			68.0		%		60-130	01-OCT-21
Phenanthrene			85.5		%		60-130	01-OCT-21

		Workorder	: L264427	75	Report Date: ()7-JAN-22	Page 22 of 38	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5606098								
WG3629474-6 IRM		ALS PAH R	M2					
Pyrene			84.4		%		60-130	01-OCT-21
1-Methylnaphthalene			81.5		%		60-130	01-OCT-21
WG3629474-13 LCS Acenaphthene			88.2		%		60-130	01-OCT-21
Acenaphthylene			86.5		%		60-130	01-OCT-21
Anthracene			92.3		%		60-130	01-OCT-21
Acridine			89.4		%		60-130	01-OCT-21
Benz(a)anthracene			91.8		%		60-130	01-OCT-21
Benzo(a)pyrene			84.1		%		60-130	01-OCT-21
Benzo(b&j)fluoranthene			85.9		%		60-130	01-OCT-21
Benzo(e)pyrene			90.2		%		60-130	01-OCT-21
Benzo(g,h,i)perylene			85.5		%		60-130	01-OCT-21
Benzo(k)fluoranthene			86.8		%		60-130	01-OCT-21
Chrysene			87.6		%		60-130	01-OCT-21
Dibenz(a,h)anthracene			81.2		%		60-130	01-OCT-21
Fluoranthene			86.1		%		60-130	01-OCT-21
Fluorene			91.0		%		60-130	01-OCT-21
Indeno(1,2,3-c,d)pyrene	9		81.5		%		60-130	01-OCT-21
2-Methylnaphthalene			91.3		%		60-130	01-OCT-21
Naphthalene			90.1		%		50-130	01-OCT-21
Perylene			83.9		%		60-130	01-OCT-21
Phenanthrene			93.3		%		60-130	01-OCT-21
Pyrene			88.3		%		60-130	01-OCT-21
1-Methylnaphthalene			90.1		%		60-130	01-OCT-21
Quinoline			82.6		%		60-130	01-OCT-21
WG3629474-17 LCS								
Acenaphthene			102.3		%		60-130	02-OCT-21
Acenaphthylene			98.2		%		60-130	02-OCT-21
Anthracene			102.3		%		60-130	02-OCT-21
Acridine			96.5		%		60-130	02-OCT-21
Benz(a)anthracene			101.9		%		60-130	02-OCT-21
Benzo(a)pyrene			90.0		%		60-130	02-OCT-21
Benzo(b&j)fluoranthene			96.3		%		60-130	02-OCT-21
Benzo(e)pyrene			99.9		%		60-130	02-OCT-21
Benzo(g,h,i)perylene			100.5		%		60-130	02-OCT-21

		Workorder	: L264427	75	Report Date: ()7-JAN-22	Page 23 of 38	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R56060	98							
WG3629474-17 LC	S							
Benzo(k)fluoranthen	e		91.4		%		60-130	02-OCT-21
Chrysene			99.0		%		60-130	02-OCT-21
Dibenz(a,h)anthrace	ene		91.3		%		60-130	02-OCT-21
Fluoranthene			100.6		%		60-130	02-OCT-21
Fluorene			100.3		%		60-130	02-OCT-21
Indeno(1,2,3-c,d)pyr	ene		82.0		%		60-130	02-OCT-21
2-Methylnaphthalene	9		101.4		%		60-130	02-OCT-21
Naphthalene			100.7		%		50-130	02-OCT-21
Perylene			92.7		%		60-130	02-OCT-21
Phenanthrene			103.0		%		60-130	02-OCT-21
Pyrene			101.9		%		60-130	02-OCT-21
1-Methylnaphthalene	e		100.7		%		60-130	02-OCT-21
Quinoline			91.8		%		60-130	02-OCT-21
COMMENTS: W WG3629474-2 LC Acenaphthene	atery Sample S		106 1		%		60 120	20 SEP 21
Acenaphthylene			102.8		%		60 120	30-SEP-21
Anthracene			102.0		%		60 120	30-SEF-21
Acridine			103.4		%		60 120	30-SEF-21
Ronz(a)anthracana			112.1		70 0/		00-130	30-SEP-21
Benzo(a)pyrene			105.6		70 9/		60 130	30-SEP-21
Benzo(b&i)fluoranth	ene		107.8		%		60 120	30-SEF-21
Benzo(e)pyrene	ene		111 7		70 0/_		60 120	30-SEP-21
Benzo(a h i)pervlene	x		104.6		70 9/		60 130	30-SEP-21
Benzo(k)fluoranthen	, 		104.0		70 0/_		60 120	30-3EF-21
Chrysene			106.4		70 0/		00-130	30-SEP-21
Dibonz(a b)anthraca			00.4		70 9/		60-130	30-SEP-21
Elucronthono	ine -		104.2		/0		60-130	30-SEP-21
Fluorantinene			104.5		70		60-130	30-SEP-21
			105.2		70		60-130	30-SEP-21
Indeno(1,2,3-c,d)pyr	ene		105.8		%		60-130	30-SEP-21
	9		106.2		%		60-130	30-SEP-21
Naphthalene			104.1		%		50-130	30-SEP-21
Perylene			103.6		%		60-130	30-SEP-21
Phenanthrene			109.9		%		60-130	30-SEP-21
Pyrene			107.9		%		60-130	30-SEP-21

	Workorder	: L264427	75	Report Date: 07-JAN-22		Pa	Page 24 of 38	
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-CL Soil								
Batch R5606098								
WG3629474-2 LCS								
1-Methylnaphthalene		104.3		%		60-130	30-SEP-21	
Quinoline		97.2		%		60-130	30-SEP-21	
WG3629474-5 LCS		00.4		0/		CO 400	04 OCT 04	
		96.9		70 9/		60 130	01-001-21	
Anthracono		00.0		70 97		60-130	01-001-21	
Antinacene		91.2		/0		60-130	01-001-21	
Actidite Ronz(a)onthropping		00.0		70		60-130	01-001-21	
		92.4		70		60-130	01-001-21	
		00.0		70		60-130	01-001-21	
		07.4		70		60-130	01-001-21	
		92.7		70		60-130	01-001-21	
Benzo(k)fluorenthene		00.3		70		60-130	01-001-21	
		07.5 00.4		%		60-130	01-001-21	
		90.4		70		60-130	01-001-21	
Elucrophono		G.10		%		60-130	01-001-21	
		00.9		70		60-130	01-001-21	
		09.0		%		60-130	01-001-21	
A Methylapaphthelene		91.1		%		60-130	01-001-21	
2-methylnaphthalene		89.1		%		60-130	01-001-21	
Dendene		90.1		%		50-130	01-001-21	
		0.00		%		60-130	01-001-21	
Prienantrirene		91.9		%		60-130	01-001-21	
		89.6		%		60-130	01-001-21	
		87.4		%		60-130	01-001-21	
		79.0		%		60-130	01-001-21	
WG3629474-9 LCS Acenaphthene		102.9		%		60-130	01-OCT-21	
Acenaphthylene		99.8		%		60-130	01-00T-21	
Anthracene		106.0		%		60-130	01-OCT-21	
Acridine		99.6		%		60-130	01-OCT-21	
Benz(a)anthracene		101 2		%		60-130	01-OCT-21	
Benzo(a)pyrene		94.2		%		60 120	01-001-21	
Benzo(b&i)fluoranthene		95.9		%		60-130	01-001-21	
Benzo(e)pyrene		101 4		%		60-130	01-001-21	
Benzo(g.h.i)pervlene		100.0		%		60-130	01-OCT-21	

		Workorder: L2644275			Report Date: 0	7-JAN-22	Pa	ige 25 of 38
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5606098								
WG3629474-9 LCS								
Benzo(k)fluoranthene			99.6		%		60-130	01-OCT-21
Chrysene			102.0		%		60-130	01-OCT-21
Dibenz(a,h)anthracene			88.8		%		60-130	01-OCT-21
Fluoranthene			101.9		%		60-130	01-OCT-21
Fluorene			104.5		%		60-130	01-OCT-21
Indeno(1,2,3-c,d)pyrene	9		104.6		%		60-130	01-OCT-21
2-Methylnaphthalene			103.4		%		60-130	01-OCT-21
Naphthalene			101.8		%		50-130	01-OCT-21
Perylene			93.7		%		60-130	01-OCT-21
Phenanthrene			107.6		%		60-130	01-OCT-21
Pyrene			103.0		%		60-130	01-OCT-21
1-Methylnaphthalene			99.0		%		60-130	01-OCT-21
Quinoline			91.2		%		60-130	01-OCT-21
WG3629474-1 MB								
Acenaphthene			<0.0050		mg/kg		0.005	30-SEP-21
Acenaphthylene			<0.0050		mg/kg		0.005	30-SEP-21
Anthracene			<0.0040		mg/kg		0.004	30-SEP-21
Acridine			<0.010		mg/kg		0.01	30-SEP-21
Benz(a)anthracene			<0.010		mg/kg		0.01	30-SEP-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	30-SEP-21
Benzo(b&j)fluoranthene	ł		<0.010		mg/kg		0.01	30-SEP-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	30-SEP-21
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	30-SEP-21
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	30-SEP-21
Chrysene			<0.010		mg/kg		0.01	30-SEP-21
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	30-SEP-21
Fluoranthene			<0.010		mg/kg		0.01	30-SEP-21
Fluorene			<0.010		mg/kg		0.01	30-SEP-21
Indeno(1,2,3-c,d)pyrene	9		<0.010		mg/kg		0.01	30-SEP-21
2-Methylnaphthalene			<0.010		mg/kg		0.01	30-SEP-21
Naphthalene			<0.010		mg/kg		0.01	30-SEP-21
Perylene			<0.010		mg/kg		0.01	30-SEP-21
Phenanthrene			<0.010		mg/kg		0.01	30-SEP-21
Pyrene			<0.010		mg/kg		0.01	30-SEP-21

		Workorder: L2644275		Report Date: 07-JAN-22		Page 26 of 38		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5606	098							
WG3629474-1 MI	В							
1-Methylnaphthalen	e		<0.050		mg/kg		0.05	30-SEP-21
Quinoline			<0.050		mg/kg		0.05	30-SEP-21
Surrogate: d8-Naph	thalene		80.6		%		50-130	30-SEP-21
Surrogate: d10-Ace	naphthene		80.3		%		60-130	30-SEP-21
Surrogate: d10-Phe	nanthrene		87.6		%		60-130	30-SEP-21
Surrogate: d12-Chry	ysene		88.5		%		60-130	30-SEP-21
WG3629474-11 MI	В		-0.0050		malka		0.005	
Acenaphthulana			<0.0050		mg/kg		0.005	01-001-21
Acenaphiniyiene			<0.0050		mg/kg		0.005	01-001-21
Anunacene			<0.0040		mg/kg		0.004	01-001-21
Activitie Ronz(a)anthrocono			<0.010		mg/kg		0.01	01-001-21
Benze(a)anunacene			<0.010		mg/kg		0.01	01-001-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	01-001-21
Benzo(b&j)nuoranin	lene		<0.010		mg/kg		0.01	01-001-21
Benzo(e)pyrene	2		<0.010		mg/kg		0.01	01-001-21
Benzo(g,n,i)perylen			<0.010		mg/kg		0.01	01-001-21
Christian	le		<0.010		mg/kg		0.01	01-001-21
			<0.010		mg/kg		0.01	01-001-21
Elucronthono	ene		<0.0050		mg/kg		0.005	01-001-21
Fluoraninene			<0.010		mg/kg		0.01	01-001-21
	****		<0.010		mg/kg		0.01	01-001-21
2 Mathulaanhthalaa	rene		<0.010		mg/kg		0.01	01-001-21
2-ivietryinaphthalen	e		<0.010		mg/kg		0.01	01-001-21
Naphthalene			<0.010		mg/kg		0.01	01-001-21
Perylene			<0.010		mg/kg		0.01	01-001-21
Phenanuniene			<0.010		mg/kg		0.01	01-001-21
Pyrene	_		<0.010		mg/kg		0.01	01-001-21
	e		<0.050		mg/kg		0.05	01-001-21
	de a la cala		<0.050		mg/kg		0.05	01-OCT-21
Surrogate: d8-Naph	Inalene		76.4		%		50-130	01-OCT-21
Surrogate: d10-Ace	naphthene		78.0		%		60-130	01-OCT-21
Surrogate: d10-Phe	nanthrene		83.7		%		60-130	01-OCT-21
Surrogate: d12-Chry	ysene		82.1		%		60-130	01-OCT-21
WG3629474-15 MI Acenaphthene	В		<0.0050		mg/kg		0.005	01-OCT-21

		Workorder: L2644275		Report Date: 07-JAN-22		Page 27 of 38		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R56060	098							
WG3629474-15 ME	3							
Acenaphthylene			<0.0050		mg/kg		0.005	01-OCT-21
Anthracene			<0.0040		mg/kg		0.004	01-OCT-21
Acridine			<0.010		mg/kg		0.01	01-OCT-21
Benz(a)anthracene			<0.010		mg/kg		0.01	01-OCT-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	01-OCT-21
Benzo(b&j)fluoranthe	ene		<0.010		mg/kg		0.01	01-OCT-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	01-OCT-21
Benzo(g,h,i)perylene	e		<0.010		mg/kg		0.01	01-OCT-21
Benzo(k)fluoranthen	IE		<0.010		mg/kg		0.01	01-OCT-21
Chrysene			<0.010		mg/kg		0.01	01-OCT-21
Dibenz(a,h)anthrace	ene		<0.0050		mg/kg		0.005	01-OCT-21
Fluoranthene			<0.010		mg/kg		0.01	01-OCT-21
Fluorene			<0.010		mg/kg		0.01	01-OCT-21
Indeno(1,2,3-c,d)pyr	ene		<0.010		mg/kg		0.01	01-OCT-21
2-Methylnaphthalene	e		<0.010		mg/kg		0.01	01-OCT-21
Naphthalene			<0.010		mg/kg		0.01	01-OCT-21
Perylene			<0.010		mg/kg		0.01	01-OCT-21
Phenanthrene			<0.010		mg/kg		0.01	01-OCT-21
Pyrene			<0.010		mg/kg		0.01	01-OCT-21
1-Methylnaphthalene	е		<0.050		mg/kg		0.05	01-OCT-21
Quinoline			<0.050		mg/kg		0.05	01-OCT-21
Surrogate: d8-Napht	thalene		81.0		%		50-130	01-OCT-21
Surrogate: d10-Acer	naphthene		84.4		%		60-130	01-OCT-21
Surrogate: d10-Pher	nanthrene		93.3		%		60-130	01-OCT-21
Surrogate: d12-Chry	vsene		96.2		%		60-130	01-OCT-21
WG3629474-7 ME	3							
Acenaphthene			<0.0050		mg/kg		0.005	01-OCT-21
Acenaphthylene			<0.0050		mg/kg		0.005	01-OCT-21
Anthracene			<0.0040		mg/kg		0.004	01-OCT-21
Acridine			<0.010		mg/kg		0.01	01-OCT-21
Benz(a)anthracene			<0.010		mg/kg		0.01	01-OCT-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	01-OCT-21
Benzo(b&j)fluoranthe	ene		<0.010		mg/kg		0.01	01-OCT-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	01-OCT-21

Workorder:		: L264427	75	Report Date: 07-JAN-22		Page 28 of 38		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5606	098							
WG3629474-7 M	В							
Benzo(g,h,i)perylen	e		<0.010		mg/kg		0.01	01-OCT-21
Benzo(k)fluoranthei	ne		<0.010		mg/kg		0.01	01-OCT-21
Chrysene			<0.010		mg/kg		0.01	01-OCT-21
Dibenz(a,h)anthrace	ene		<0.0050		mg/kg		0.005	01-OCT-21
Fluoranthene			<0.010		mg/kg		0.01	01-OCT-21
Fluorene			<0.010		mg/kg		0.01	01-OCT-21
Indeno(1,2,3-c,d)py	rene		<0.010		mg/kg		0.01	01-OCT-21
2-Methylnaphthalen	e		<0.010		mg/kg		0.01	01-OCT-21
Naphthalene			<0.010		mg/kg		0.01	01-OCT-21
Perylene			<0.010		mg/kg		0.01	01-OCT-21
Phenanthrene			<0.010		mg/kg		0.01	01-OCT-21
Pyrene			<0.010		mg/kg		0.01	01-OCT-21
1-Methylnaphthalen	e		<0.050		mg/kg		0.05	01-OCT-21
Quinoline			<0.050		mg/kg		0.05	01-OCT-21
Surrogate: d8-Naph	nthalene		76.0		%		50-130	01-OCT-21
Surrogate: d10-Ace	naphthene		82.9		%		60-130	01-OCT-21
Surrogate: d10-Phe	enanthrene		93.2		%		60-130	01-OCT-21
Surrogate: d12-Chr	ysene		96.2		%		60-130	01-OCT-21
Batch R5607	287							
WG3630689-10 IR	М	ALS PAH RM	/12					
Acenaphthene			94.9		%		60-130	03-OCT-21
Acenaphthylene			95.8		%		60-130	03-OCT-21
Anthracene			105.3		%		60-130	03-OCT-21
Acridine			87.1		%		60-130	03-OCT-21
Benz(a)anthracene			92.1		%		60-130	03-OCT-21
Benzo(a)pyrene			87.5		%		60-130	03-OCT-21
Benzo(b&j)fluoranth	nene		85.7		%		60-130	03-OCT-21
Benzo(e)pyrene			91.6		%		60-130	03-OCT-21
Benzo(g,h,i)perylen	e		86.4		%		60-130	03-OCT-21
Benzo(k)fluoranthei	ne		83.5		%		60-130	03-OCT-21
Chrysene			89.3		%		60-130	03-OCT-21
Dibenz(a,h)anthrace	ene		81.8		%		60-130	03-OCT-21
Fluoranthene			86.9		%		60-130	03-OCT-21
Fluorene			96.6		%		60-130	03-OCT-21

		Workorder	Workorder: L2644275			Report Date: 07-JAN-22		Page 29 of 38	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-CL	Soil								
Batch R5607287									
WG3630689-10 IRM		ALS PAH RM	/12						
Indeno(1,2,3-c,d)pyrene	1		103.9		%		60-130	03-OCT-21	
2-Methylnaphthalene			90.4		%		60-130	03-OCT-21	
Naphthalene			88.8		%		50-130	03-OCT-21	
Perylene			94.7		%		60-130	03-OCT-21	
Phenanthrene			92.3		%		60-130	03-OCT-21	
Pyrene			89.1		%		60-130	03-OCT-21	
1-Methylnaphthalene			90.3		%		60-130	03-OCT-21	
WG3630689-14 IRM		ALS PAH RM	/ 12						
Acenaphthene			86.6		%		60-130	04-OCT-21	
Acenaphthylene			90.7		%		60-130	04-OCT-21	
Anthracene			98.1		%		60-130	04-OCT-21	
Acridine			91.2		%		60-130	04-OCT-21	
Benz(a)anthracene			85.0		%		60-130	04-OCT-21	
Benzo(a)pyrene			77.5		%		60-130	04-OCT-21	
Benzo(b&j)fluoranthene			79.7		%		60-130	04-OCT-21	
Benzo(e)pyrene			87.2		%		60-130	04-OCT-21	
Benzo(g,h,i)perylene			79.3		%		60-130	04-OCT-21	
Benzo(k)fluoranthene			67.3		%		60-130	04-OCT-21	
Chrysene			80.7		%		60-130	04-OCT-21	
Dibenz(a,h)anthracene			74.4		%		60-130	04-OCT-21	
Fluoranthene			80.2		%		60-130	04-OCT-21	
Fluorene			87.8		%		60-130	04-OCT-21	
Indeno(1,2,3-c,d)pyrene	ł		90.1		%		60-130	04-OCT-21	
2-Methylnaphthalene			83.9		%		60-130	04-OCT-21	
Naphthalene			81.4		%		50-130	04-OCT-21	
Perylene			80.6		%		60-130	04-OCT-21	
Phenanthrene			85.6		%		60-130	04-OCT-21	
Pyrene			82.0		%		60-130	04-OCT-21	
1-Methylnaphthalene			84.1		%		60-130	04-OCT-21	
WG3630689-4 IRM		ALS PAH RM	/ 12						
Acenaphthene			79.2		%		60-130	02-OCT-21	
Acenaphthylene			85.0		%		60-130	02-OCT-21	
Anthracene			90.6		%		60-130	02-OCT-21	
Acridine			87.4		%		60-130	02-OCT-21	
Benz(a)anthracene			83.7		%		60-130	02-OCT-21	

	Workorder: L2644275		Report Date: 07-JAN-22		Page 30 of 38			
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5607287								
WG3630689-4 IRM		ALS PAH R	M2					
Benzo(a)pyrene			81.3		%		60-130	02-OCT-21
Benzo(b&j)fluoranthene			76.5		%		60-130	02-OCT-21
Benzo(e)pyrene			82.9		%		60-130	02-OCT-21
Benzo(g,h,i)perylene			72.2		%		60-130	02-OCT-21
Benzo(k)fluoranthene			63.6		%		60-130	02-OCT-21
Chrysene			82.4		%		60-130	02-OCT-21
Dibenz(a,h)anthracene			72.5		%		60-130	02-OCT-21
Fluoranthene			75.9		%		60-130	02-OCT-21
Fluorene			82.2		%		60-130	02-OCT-21
Indeno(1,2,3-c,d)pyrene	•		96.0		%		60-130	02-OCT-21
2-Methylnaphthalene			77.2		%		60-130	02-OCT-21
Naphthalene			73.2		%		50-130	02-OCT-21
Perylene			80.2		%		60-130	02-OCT-21
Phenanthrene			80.6		%		60-130	02-OCT-21
Pyrene			78.5		%		60-130	02-OCT-21
1-Methylnaphthalene			76.1		%		60-130	02-OCT-21
WG3630689-11 LCS								
Acenaphthene			124.3		%		60-130	03-OCT-21
Acenaphthylene			120.9		%		60-130	03-OCT-21
Anthracene			122.7		%		60-130	03-OCT-21
Acridine			125.5		%		60-130	03-OCT-21
Benz(a)anthracene			119.7		%		60-130	03-OCT-21
Benzo(a)pyrene			118.4		%		60-130	03-OCT-21
Benzo(b&j)fluoranthene			107.5		%		60-130	03-OCT-21
Benzo(e)pyrene			119.9		%		60-130	03-OCT-21
Benzo(g,h,i)perylene			120.7		%		60-130	03-OCT-21
Benzo(k)fluoranthene			125.4		%		60-130	03-OCT-21
Chrysene			125.9		%		60-130	03-OCT-21
Dibenz(a,h)anthracene			118.9		%		60-130	03-OCT-21
Fluoranthene			126.5		%		60-130	03-OCT-21
Fluorene			121.6		%		60-130	03-OCT-21
Indeno(1,2,3-c,d)pyrene	•		116.4		%		60-130	03-OCT-21
2-Methylnaphthalene			126.1		%		60-130	03-OCT-21
Naphthalene			122.3		%		50-130	03-OCT-21

Test Matrix Reference Result Qualifier Units RPD Limit Analyzed PAH-TMB-H/A-MS-CL Soil Soil Batch R5607287 WC333088511 LCS 03.0CT-21 Prevanthrene 125.3 % 60-130 03.0CT-21 Phenanthrene 125.3 % 60-130 03.0CT-21 Hethykaphthalene 125.8 % 60-130 03.0CT-21 Quinoline 122.0 % 60-130 03.0CT-21 Matrix physical 125.0 % 60-130 04.0CT-21 Acenaphthene 120.1 % 60-130 04.0CT-21 Actionaphthylene 120.1 % 60-130 04.0CT-21 Anthracene 121.7 % 60-130 04.0CT-21 Benzo(k)pyrene 120.6 % 60-130 04.0CT-21 Benzo(k)pyrene 118.9 % 60-130 04.0CT-21 Benzo(k)pyrene 118.9 % 60-130 04.0CT-21 Benzo(Workorder: L2644275		Report Date: 07-JAN-22		Page 31 of 38		
PH-TMB-H/A-MS-CL Solt Batch R5607237 W03350368911 LCS 03-OCT-21 Penylene 124.8 % 60-130 03-OCT-21 Phenanthrene 125.3 % 60-130 03-OCT-21 Phenanthrene 125.3 % 60-130 03-OCT-21 Unionline 122.0 % 60-130 03-OCT-21 Quinolline 122.0 % 60-130 03-OCT-21 Quinolline 122.0 % 60-130 03-OCT-21 Quinolline 122.0 % 60-130 04-OCT-21 Acenaphthylene 120.1 % 60-130 04-OCT-21 Acenaphthylene 121.7 % 60-130 04-OCT-21 Actidne 116.9 % 60-130 04-OCT-21 Benzo(s)prene 122.2 % 60-130 04-OCT-21 Benzo(s)prene 120.8 % 60-130 04-OCT-21 Benzo(s)prene 122.8 % 60-130 04-OCT-21 </th <th>Test</th> <th>Matrix</th> <th>Reference</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RPD</th> <th>Limit</th> <th>Analyzed</th>	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
R560787 WG350069-11 LCS Control Contro Control Control <	PAH-TMB-H/A-MS-CL	Soil							
Wassandss-11 LCS Perylene 124.8 % 60-130 03-0CT-21 Pyrene 122.0 % 60-130 03-0CT-21 I-Methylnaphthalene 125.8 % 60-130 03-0CT-21 Quinoline 121.1 % 60-130 03-0CT-21 Massandss-15 LCS 03-0CT-21 Acenaphthene 120.1 % 60-130 04-0CT-21 Acenaphthylene 121.7 % 60-130 04-0CT-21 Anthracene 122.2 % 60-130 04-0CT-21 Benz(a)anthracene 120.6 % 60-130 04-0CT-21 Benz(a)anthracene 107.0 % 60-130 04-0CT-21 Benzo(b)prene 118.9 60-130 04-0CT-21 Benzo(b)prene 122.2 % 60-130 04-0CT-21 Benzo(b)prene 120.6 % 60-130 04-0CT-21 Benzo(b)prene 128.9 60-130 04-0CT-21 Dibe	Batch R5607287								
Perspine 124.8 % 60-130 03-0CT-21 Phenanthrene 125.3 % 60-130 03-0CT-21 I-Methylaphthalene 125.8 % 60-130 03-0CT-21 Quinoline 112.1 % 60-130 03-0CT-21 W0350368-15 LCS 60-130 04-0CT-21 Acenaphthene 125.0 % 60-130 04-0CT-21 Acenaphthene 121.7 % 60-130 04-0CT-21 Anthracene 122.2 % 60-130 04-0CT-21 Benzo(a)pyrene 128.9 % 60-130 04-0CT-21 Benzo(a)pyrene 128.9 % 60-130 04-0CT-21 Benzo(a)pyrene 118.9 % 60-130 04-0CT-21 Benzo(b)pyrene 118.9 % 60-130 04-0CT-21 Benzo(b)pyrene 128.4 % 60-130 04-0CT-21 Diborc(a),h)nerylene 116.2 % 60-130 04-0CT-21 Diborc	WG3630689-11 LCS								
Phenanthrene 125.3 % 60-130 03-0CT-21 Pyrene 122.0 % 60-130 03-0CT-21 Quinoline 122.0 % 60-130 03-0CT-21 Quinoline 112.1 % 60-130 03-0CT-21 WG3830689-15 LCS 60-130 04-0CT-21 Acenaphthrene 120.1 % 60-130 04-0CT-21 Acenaphthrene 120.7 % 60-130 04-0CT-21 Antriacene 120.7 % 60-130 04-0CT-21 Benzo(alphytene 120.6 % 60-130 04-0CT-21 Benzo(alphytene 120.6 % 60-130 04-0CT-21 Benzo(alphytene 116.2 % 60-130 04-0CT-21 Benzo(b)furoranthene 116.2 % 60-130 04-0CT-21 Benzo(b)furoranthene 116.2 % 60-130 04-0CT-21 Benzo(b)furoranthene 116.2 % 60-130 04-0CT-21 Dibenz(a)haintrac	Perylene			124.8		%		60-130	03-OCT-21
Pyrne 12.0 % 60-130 03-0CT-21 1-Methylnaphtalene 125.8 % 60-130 03-0CT-21 Quinoline 112.1 % 60-130 04-0CT-21 MG3630689-15 LCS 60-130 04-0CT-21 Acenaphthylene 120.1 % 60-130 04-0CT-21 Acenaphthylene 121.7 % 60-130 04-0CT-21 Anthracene 122.2 % 60-130 04-0CT-21 Benzo(a)pyrene 120.6 % 60-130 04-0CT-21 Benzo(b)pyrene 120.6 % 60-130 04-0CT-21 Benzo(b)pyrene 118.9 % 60-130 04-0CT-21 Benzo(b)pyrene 118.9 % 60-130 04-0CT-21 Benzo(b)pyrene 118.9 % 60-130 04-0CT-21 Benzo(b,linoranthene 107.0 % 60-130 04-0CT-21 Benzo(b,linoranthene 106.1 % 60-130 04-0CT-21 <	Phenanthrene			125.3		%		60-130	03-OCT-21
1-Methylnaphthalene 125.8 % 60-130 03-0CT-21 Quinoline 112.1 % 60-130 03-0CT-21 WG3330689-15 LCS 60-130 04-0CT-21 Acenaphthene 120.1 % 60-130 04-0CT-21 Acenaphthene 121.7 % 60-130 04-0CT-21 Anthracene 121.7 % 60-130 04-0CT-21 Acridine 116.9 % 60-130 04-0CT-21 Benzo(a)pyrene 120.6 % 60-130 04-0CT-21 Benzo(a)pyrene 118.9 % 60-130 04-0CT-21 Benzo(a)pyrene 118.2 % 60-130 04-0CT-21 Benzo(a)pyrene 118.2 % 60-130 04-0CT-21 Benzo(a)pyrene 118.1 % 60-130 04-0CT-21 Benzo(a)pyrene 122.8 % 60-130 04-0CT-21 Benzo(a)pyrene 123.9 % 60-130 04-0CT-21 Fluoranthene 123.9	Pyrene			122.0		%		60-130	03-OCT-21
Quinoline 11.1 % 60-130 03-OCT-21 WG3830689-15 LCS 60-130 04-OCT-21 Acenaphthylene 120.1 % 60-130 04-OCT-21 Antracene 121.7 % 60-130 04-OCT-21 Arridine 116.9 % 60-130 04-OCT-21 Benz(a)antriacene 122.2 % 60-130 04-OCT-21 Benz(a)antriacene 122.2 % 60-130 04-OCT-21 Benz(a)antriacene 120.6 % 60-130 04-OCT-21 Benzo(a)pyrene 120.6 % 60-130 04-OCT-21 Benzo(a),lipuranthene 107.0 % 60-130 04-OCT-21 Benzo(a),lipuranthene 118.2 % 60-130 04-OCT-21 Benzo(a),lipuranthene 119.1 % 60-130 04-OCT-21 Benzo(a),lipuranthene 123.9 % 60-130 04-OCT-21 Dibenz(a, h) anthracene 106.0 % 60-130 04-OCT-21 </td <td>1-Methylnaphthalene</td> <td></td> <td></td> <td>125.8</td> <td></td> <td>%</td> <td></td> <td>60-130</td> <td>03-OCT-21</td>	1-Methylnaphthalene			125.8		%		60-130	03-OCT-21
WG3630689-15 LCS Acenaphthylene 125.0 % 60-130 04-0CT-21 Anthracene 121.7 % 60-130 04-0CT-21 Artifracene 121.7 % 60-130 04-0CT-21 Acridine 116.9 % 60-130 04-0CT-21 Benz(a)anthracene 122.2 % 60-130 04-0CT-21 Benz(a)gryrene 100.0 % 60-130 04-0CT-21 Benzo(b3)fluoranthene 107.0 % 60-130 04-0CT-21 Benzo(b3)fluoranthene 118.9 % 60-130 04-0CT-21 Benzo(b4)fluoranthene 119.1 % 60-130 04-0CT-21 Benzo(b4)fluoranthene 119.1 % 60-130 04-0CT-21 Benzo(b4)fluoranthene 117.2 % 60-130 04-0CT-21 Indeno(12,3-c,d)pyrene 123.9 % 60-130 04-0CT-21 Fluoranthene 122.8 % 60-130 04-0CT-21 Indeno(12,3-c,d)pyrene 1055.0 <td>Quinoline</td> <td></td> <td></td> <td>112.1</td> <td></td> <td>%</td> <td></td> <td>60-130</td> <td>03-OCT-21</td>	Quinoline			112.1		%		60-130	03-OCT-21
Acenaphthylene 120.1 % 60-130 04-OCT-21 Anthracene 121.7 % 60-130 04-OCT-21 Artifine 116.9 % 60-130 04-OCT-21 Benz(a)anthracene 122.2 % 60-130 04-OCT-21 Benzo(a)pyrene 120.6 % 60-130 04-OCT-21 Benzo(a)pyrene 120.6 % 60-130 04-OCT-21 Benzo(a)jyrene 118.9 % 60-130 04-OCT-21 Benzo(a)jyrene 118.9 % 60-130 04-OCT-21 Benzo(a)jyrene 118.9 % 60-130 04-OCT-21 Benzo(a)jyrene 124.1 % 60-130 04-OCT-21 Benzo(a)hilocranthene 123.9 % 60-130 04-OCT-21 Dibenz(a,h)anthracene 122.8 % 60-130 04-OCT-21 Fluoranthene 122.8 % 60-130 04-OCT-21 Priorene 122.8 % 60-130 04-OCT-21 Indeno(1	WG3630689-15 LCS Acenaphthene			125.0		%		60-130	04-OCT-21
Anthracene 121.7 % 60-130 04-OCT-21 Acridine 116.9 % 60-130 04-OCT-21 Benz(a)anthracene 122.2 % 60-130 04-OCT-21 Benzo(a)pyrene 120.6 % 60-130 04-OCT-21 Benzo(b8)lfluoranthene 107.0 % 60-130 04-OCT-21 Benzo(bpyrene 118.2 % 60-130 04-OCT-21 Benzo(bpyrene 118.2 % 60-130 04-OCT-21 Benzo(s)hilperylene 118.2 % 60-130 04-OCT-21 Benzo(s)hilperylene 118.2 % 60-130 04-OCT-21 Benzo(s)hilperylene 118.2 % 60-130 04-OCT-21 Dibenz(s,hilperylene 128.2 % 60-130 04-OCT-21 Dibenz(s,hilperylene 129.3 % 60-130 04-OCT-21 Fluoranthene 127.2 % 60-130 04-OCT-21 Fluoranthene 128.3 % 60-130 04-OCT-21 Indeno(1,2,3-c,d)pyrene 105.0 % 60-130 04-OCT-21	Acenaphthylene			120.1		%		60-130	04-OCT-21
Acridine 116.9 % 60-130 04-OCT-21 Benz(a)anthracene 122.2 % 60-130 04-OCT-21 Benzo(a)pyrene 120.6 % 60-130 04-OCT-21 Benzo(b) lucranthene 107.0 % 60-130 04-OCT-21 Benzo(b,) lucranthene 118.9 % 60-130 04-OCT-21 Benzo(b,)pyrene 118.9 % 60-130 04-OCT-21 Benzo(k,)lucranthene 119.1 % 60-130 04-OCT-21 Benzo(k,)lucranthene 119.1 % 60-130 04-OCT-21 Dibenz(k,)lanthracene 117.2 % 60-130 04-OCT-21 Fluoranthene 123.9 % 60-130 04-OCT-21 Fluoranthene 122.8 % 60-130 04-OCT-21 Indenc(1,2,3-c,d)pyrene 105.0 % 60-130 04-OCT-21 Indenc(1,2,3-c,d)pyrene 122.8 % 60-130 04-OCT-21 Pyrene 120.9 % 60-130 04-OCT-21 Pyrene 120.8 % 60-130 04-OCT-21 </td <td>Anthracene</td> <td></td> <td></td> <td>121.7</td> <td></td> <td>%</td> <td></td> <td>60-130</td> <td>04-OCT-21</td>	Anthracene			121.7		%		60-130	04-OCT-21
Benz(a)anthracene 122.2 % 60-130 04-OCT-21 Benzo(a)pyrene 120.6 % 60-130 04-OCT-21 Benzo(b3)fluoranthene 107.0 % 60-130 04-OCT-21 Benzo(b3)fluoranthene 118.9 % 60-130 04-OCT-21 Benzo(g,h,i)perylene 116.2 % 60-130 04-OCT-21 Benzo(k)fluoranthene 119.1 % 60-130 04-OCT-21 Dibenz(a,h)anthracene 117.2 % 60-130 04-OCT-21 Fluoranthene 123.9 % 60-130 04-OCT-21 Fluoranthene 122.8 % 60-130 04-OCT-21 Indeno(1,2,3-c,d)pyrene 105.0 % 60-130 04-OCT-21 Indeno(1,2,3-c,d)pyrene 122.8 % 60-130 04-OCT-21 Papthhalene 122.8 % 60-130 04-OCT-21 Naphthalene 120.9 % 60-130 04-OCT-21 Naphthalene 120.8 % 60-130 04-OCT-21 <td>Acridine</td> <td></td> <td></td> <td>116.9</td> <td></td> <td>%</td> <td></td> <td>60-130</td> <td>04-OCT-21</td>	Acridine			116.9		%		60-130	04-OCT-21
Benzo(a)pyrene 120.6 % 60-130 04-OCT-21 Benzo(b&)jfluoranthene 107.0 % 60-130 04-OCT-21 Benzo(a)pyrene 118.9 % 60-130 04-OCT-21 Benzo(a),hiperylene 116.2 % 60-130 04-OCT-21 Benzo(a),hiperylene 116.2 % 60-130 04-OCT-21 Benzo(a),hiperylene 119.1 % 60-130 04-OCT-21 Chrysene 124.1 % 60-130 04-OCT-21 Dibenz(a,h)anthracene 123.9 % 60-130 04-OCT-21 Fluoranthene 122.8 % 60-130 04-OCT-21 Indeno(1,2,3-c,d)pyrene 105.0 % 60-130 04-OCT-21 Indeno(1,2,3-c,d)pyrene 122.8 % 60-130 04-OCT-21 Naphthalene 122.8 % 60-130 04-OCT-21 Perylene 120.9 % 60-130 04-OCT-21 Naphthalene 121.9 % 60-130 04-OCT-21	Benz(a)anthracene			122.2		%		60-130	04-OCT-21
Benzo(b&)i/luoranthene 107.0 % 60.130 04-OCT-21 Benzo(e)pyrene 118.9 % 60.130 04-OCT-21 Benzo(g,h,i)perylene 116.2 % 60.130 04-OCT-21 Benzo(k)fluoranthene 119.1 % 60.130 04-OCT-21 Chrysene 124.1 % 60.130 04-OCT-21 Dibenz(a,h)anthracene 117.2 % 60.130 04-OCT-21 Fluoranthene 123.9 % 60.130 04-OCT-21 Indeno(1,2,3-c.,d)pyrene 122.8 % 60.130 04-OCT-21 Indeno(1,2,3-c.,d)pyrene 122.8 % 60.130 04-OCT-21 Puorene 122.8 % 60.130 04-OCT-21 Indeno(1,2,3-c.,d)pyrene 122.8 % 60.130 04-OCT-21 Provene 122.8 % 60.130 04-OCT-21 Naphthalene 121.9 % 60.130 04-OCT-21 Provene 120.8 % 60.130 04-OCT-21	Benzo(a)pyrene			120.6		%		60-130	04-OCT-21
Benzo(e)pyrene 118.9 % 60.130 04-OCT-21 Benzo(g,h,i)perylene 116.2 % 60.130 04-OCT-21 Benzo(k)fluoranthene 119.1 % 60.130 04-OCT-21 Chrysene 124.1 % 60.130 04-OCT-21 Dibenz(a,h)anthracene 117.2 % 60.130 04-OCT-21 Fluoranthene 123.9 % 60.130 04-OCT-21 Indeno(1,2,3-c,d)pyrene 105.0 % 60.130 04-OCT-21 Indeno(1,2,3-c,d)pyrene 105.0 % 60.130 04-OCT-21 Naphthalene 122.8 % 60.130 04-OCT-21 Perylene 120.9 % 60.130 04-OCT-21 Naphthalene 121.9 % 60.130 04-OCT-21 Perylene 120.8 % 60.130 04-OCT-21 Naphthalene 121.9 % 60.130 04-OCT-21 Perylene 120.8 % 60.130 04-OCT-21 Quino	Benzo(b&j)fluoranthene			107.0		%		60-130	04-OCT-21
Benzo(g,h,i)perylene 116.2 % 60-130 04-0CT-21 Benzo(k)lluoranthene 119.1 % 60-130 04-0CT-21 Chrysene 124.1 % 60-130 04-0CT-21 Dibenz(a,h)anthracene 117.2 % 60-130 04-0CT-21 Fluoranthene 123.9 % 60-130 04-0CT-21 Fluorene 122.8 % 60-130 04-0CT-21 Indeno(1,2,3-c,d)pyrene 105.0 % 60-130 04-0CT-21 Puorene 122.8 % 60-130 04-0CT-21 Indeno(1,2,3-c,d)pyrene 105.0 % 60-130 04-0CT-21 Puorene 122.8 % 60-130 04-0CT-21 Puorene 120.9 % 60-130 04-0CT-21 Pyrene 120.9 % 60-130 04-0CT-21 Pyrene 19.3 % 60-130 04-0CT-21 Pyrene 19.3 % 60-130 04-0CT-21 Quinoline 98.2	Benzo(e)pyrene			118.9		%		60-130	04-OCT-21
Benzo(k)fluoranthene 119.1 % 60-130 04-OCT-21 Chrysene 124.1 % 60-130 04-OCT-21 Dibenz(a,h)anthracene 117.2 % 60-130 04-OCT-21 Fluoranthene 123.9 % 60-130 04-OCT-21 Fluoranthene 122.8 % 60-130 04-OCT-21 Indeno(1,2,3-c,d)pyrene 105.0 % 60-130 04-OCT-21 Andeno(1,2,3-c,d)pyrene 105.0 % 60-130 04-OCT-21 Naphthalene 122.8 % 60-130 04-OCT-21 Naphthalene 122.8 % 60-130 04-OCT-21 Naphthalene 121.9 % 60-130 04-OCT-21 Perylene 120.8 % 60-130 04-OCT-21 Pyrene 19.3 % 60-130 04-OCT-21 Quinoline 98.2 % 60-130 04-OCT-21 WG3630689-3 LCS 60-130 02-OCT-21 Acenaphthene	Benzo(g,h,i)perylene			116.2		%		60-130	04-OCT-21
Chrysene 124.1 % 60.130 04-OCT-21 Dibenz(a,h)anthracene 117.2 % 60.130 04-OCT-21 Fluoranthene 123.9 % 60.130 04-OCT-21 Fluoranthene 122.8 % 60.130 04-OCT-21 Indeno(1,2,3-c,d)pyrene 105.0 % 60.130 04-OCT-21 2-Methylnaphthalene 122.8 % 60.130 04-OCT-21 Naphthalene 120.9 % 60.130 04-OCT-21 Naphthalene 120.9 % 60.130 04-OCT-21 Perylene 120.8 % 60.130 04-OCT-21 Phenanthrene 120.8 % 60.130 04-OCT-21 Pyrene 19.3 % 60.130 04-OCT-21 Quinoline 98.2 % 60.130 04-OCT-21 WC3630689-3 LCS 60.130 02-OCT-21 Acenaphthene 81.6 % 60.130 02-OCT-21 Acenaphthylene 86	Benzo(k)fluoranthene			119.1		%		60-130	04-OCT-21
Dibenz(a,h)anthracene 117.2 % 60-130 04-OCT-21 Fluoranthene 123.9 % 60-130 04-OCT-21 Fluorene 122.8 % 60-130 04-OCT-21 Indeno(1,2,3-c,d)pyrene 105.0 % 60-130 04-OCT-21 2-Methylnaphthalene 122.8 % 60-130 04-OCT-21 Naphthalene 121.9 % 60-130 04-OCT-21 Naphthalene 120.9 % 60-130 04-OCT-21 Perylene 120.8 % 60-130 04-OCT-21 Phenanthrene 120.8 % 60-130 04-OCT-21 Pyrene 19.3 % 60-130 04-OCT-21 Quinoline 98.2 % 60-130 04-OCT-21 WG3630689-3 LCS % 60-130 04-OCT-21 Acenaphthene 81.6 % 60-130 02-OCT-21 Acenaphthene 81.6 % 60-130 02-OCT-21 Actriane 86.5 <td>Chrysene</td> <td></td> <td></td> <td>124.1</td> <td></td> <td>%</td> <td></td> <td>60-130</td> <td>04-OCT-21</td>	Chrysene			124.1		%		60-130	04-OCT-21
Fluoranthene 123.9 % 60-130 04-OCT-21 Fluorene 122.8 % 60-130 04-OCT-21 Indeno(1,2,3-c,d)pyrene 105.0 % 60-130 04-OCT-21 2-Methylnaphthalene 122.8 % 60-130 04-OCT-21 Naphthalene 121.9 % 60-130 04-OCT-21 Naphthalene 120.9 % 60-130 04-OCT-21 Perylene 120.8 % 60-130 04-OCT-21 Pyrene 120.8 % 60-130 04-OCT-21 Quinoline 120.8 % 60-130 04-OCT-21 Quinoline 19.3 % 60-130 04-OCT-21 Acenaphthalene 124.3 % 60-130 04-OCT-21 Acenaphthalene 81.6 % 60-130 02-OCT-21 Acenaphthalene 81.6 % 60-130 02-OCT-21 Acenaphthylene 81.1 % 60-130 02-OCT-21 Actriane 86.5	Dibenz(a,h)anthracene			117.2		%		60-130	04-OCT-21
Fluorene 122.8 % 60-130 04-0CT-21 Indeno(1,2,3-c,d)pyrene 105.0 % 60-130 04-0CT-21 2-Methylnaphthalene 122.8 % 60-130 04-0CT-21 Naphthalene 121.9 % 50-130 04-0CT-21 Perylene 120.9 % 60-130 04-0CT-21 Phenanthrene 120.8 % 60-130 04-0CT-21 Pyrene 19.3 % 60-130 04-0CT-21 I-Methylnaphthalene 120.8 % 60-130 04-0CT-21 Quinoline 98.2 % 60-130 04-0CT-21 Quinoline 98.2 % 60-130 04-0CT-21 VG3630689-3 <lcs< td=""> LCS % 60-130 02-0CT-21 Acenaphthene 81.6 % 60-130 02-0CT-21 Actidine 81.1 % 60-130 02-0CT-21 Actidine 72.54 % 60-130 02-0CT-21 Benz(a)anthracene 88.9 % 60-130 02-0CT-21 </lcs<>	Fluoranthene			123.9		%		60-130	04-OCT-21
Indeno(1,2,3-c,d)pyrene 105.0 % 60-130 04-OCT-21 2-Methylnaphthalene 122.8 % 60-130 04-OCT-21 Naphthalene 121.9 % 60-130 04-OCT-21 Perylene 120.9 % 60-130 04-OCT-21 Phenanthrene 120.8 % 60-130 04-OCT-21 Pyrene 120.8 % 60-130 04-OCT-21 Pyrene 120.8 % 60-130 04-OCT-21 Pyrene 120.8 % 60-130 04-OCT-21 Quinoline 19.3 % 60-130 04-OCT-21 Quinoline 98.2 % 60-130 04-OCT-21 WG3630689-3 LCS 60-130 04-OCT-21 Acenaphthene 81.6 % 60-130 02-OCT-21 Acenaphthylene 81.1 % 60-130 02-OCT-21 Acridine 72.54 % 60-130 02-OCT-21 Benz(a)anthracene 88.9 % 60-130 02-OCT-21	Fluorene			122.8		%		60-130	04-OCT-21
2-Methylnaphthalene 122.8 % 60-130 04-OCT-21 Naphthalene 121.9 % 50-130 04-OCT-21 Perylene 120.9 % 60-130 04-OCT-21 Phenanthrene 120.8 % 60-130 04-OCT-21 Pyrene 120.8 % 60-130 04-OCT-21 Pyrene 120.8 % 60-130 04-OCT-21 Quinoline 19.3 % 60-130 04-OCT-21 Quinoline 124.3 % 60-130 04-OCT-21 WG3630689-3 LCS % 60-130 04-OCT-21 Acenaphthene 124.3 % 60-130 04-OCT-21 Acenaphthene 124.3 % 60-130 02-OCT-21 Acenaphthene 81.6 % 60-130 02-OCT-21 Acenaphthylene 81.1 % 60-130 02-OCT-21 Actridine 72.54 % 60-130 02-OCT-21 Benz(a)anthracene 88.9 % 60-130 02-OCT-21	Indeno(1,2,3-c,d)pyrene			105.0		%		60-130	04-OCT-21
Naphthalene 121.9 % 50-130 04-OCT-21 Perylene 120.9 % 60-130 04-OCT-21 Phenanthrene 120.8 % 60-130 04-OCT-21 Pyrene 119.3 % 60-130 04-OCT-21 I-Methylnaphthalene 124.3 % 60-130 04-OCT-21 Quinoline 98.2 % 60-130 04-OCT-21 MG3630689-3 LCS % 60-130 02-OCT-21 Acenaphthene 81.6 % 60-130 02-OCT-21 Acenaphthylene 81.1 % 60-130 02-OCT-21 Anthracene 86.5 % 60-130 02-OCT-21 Benz(a)anthracene 88.9 % 60-130 02-OCT-21	2-Methylnaphthalene			122.8		%		60-130	04-OCT-21
Perylene 120.9 % 60-130 04-OCT-21 Phenanthrene 120.8 % 60-130 04-OCT-21 Pyrene 119.3 % 60-130 04-OCT-21 1-Methylnaphthalene 124.3 % 60-130 04-OCT-21 Quinoline 98.2 % 60-130 04-OCT-21 MG3630689-3 LCS 60-130 04-OCT-21 Acenaphthene 81.6 % 60-130 02-OCT-21 Acenaphthylene 81.1 % 60-130 02-OCT-21 Anthracene 86.5 % 60-130 02-OCT-21 Acridine 72.54 % 60-130 02-OCT-21 Benz(a)anthracene 88.9 % 60-130 02-OCT-21	Naphthalene			121.9		%		50-130	04-OCT-21
Phenanthrene 120.8 % 60-130 04-OCT-21 Pyrene 119.3 % 60-130 04-OCT-21 1-Methylnaphthalene 124.3 % 60-130 04-OCT-21 Quinoline 98.2 % 60-130 04-OCT-21 WG3630689-3 LCS 60-130 04-OCT-21 Acenaphthene 81.6 % 60-130 02-OCT-21 Acenaphthylene 81.1 % 60-130 02-OCT-21 Anthracene 86.5 % 60-130 02-OCT-21 Acridine 72.54 % 60-130 02-OCT-21 Benz(a)anthracene 88.9 % 60-130 02-OCT-21	Perylene			120.9		%		60-130	04-OCT-21
Pyrene 119.3 % 60-130 04-OCT-21 1-Methylnaphthalene 124.3 % 60-130 04-OCT-21 Quinoline 98.2 % 60-130 04-OCT-21 WG3630689-3 LCS Acenaphthene 81.6 % 60-130 02-OCT-21 Acenaphthylene 81.1 % 60-130 02-OCT-21 Anthracene 86.5 % 60-130 02-OCT-21 Acridine 72.54 % 60-130 02-OCT-21 Benz(a)anthracene 88.9 % 60-130 02-OCT-21 Benz(a)anthracene 84.9 % 60-130 02-OCT-21 Benz(a)anthracene 84.9 % 60-130 02-OCT-21	Phenanthrene			120.8		%		60-130	04-OCT-21
1-Methylnaphthalene 124.3 % 60-130 04-OCT-21 Quinoline 98.2 % 60-130 04-OCT-21 WG3630689-3 LCS Acenaphthene 81.6 % 60-130 02-OCT-21 Acenaphthylene 81.1 % 60-130 02-OCT-21 Anthracene 86.5 % 60-130 02-OCT-21 Acridine 72.54 % 60-130 02-OCT-21 Benz(a)anthracene 88.9 % 60-130 02-OCT-21	Pyrene			119.3		%		60-130	04-OCT-21
Quinoline 98.2 % 60-130 04-OCT-21 WG3630689-3 LCS Acenaphthene 81.6 % 60-130 02-OCT-21 Acenaphthylene 81.1 % 60-130 02-OCT-21 Anthracene 86.5 % 60-130 02-OCT-21 Acridine 72.54 % 60-130 02-OCT-21 Benz(a)anthracene 88.9 % 60-130 02-OCT-21 Benz(a)anthracene 88.9 % 60-130 02-OCT-21	1-Methylnaphthalene			124.3		%		60-130	04-OCT-21
WG3630689-3 LCS Acenaphthene 81.6 % 60-130 02-OCT-21 Acenaphthylene 81.1 % 60-130 02-OCT-21 Anthracene 86.5 % 60-130 02-OCT-21 Acridine 72.54 % 60-130 02-OCT-21 Benz(a)anthracene 88.9 % 60-130 02-OCT-21	Quinoline			98.2		%		60-130	04-OCT-21
Acenaphthylene 81.1 % 60-130 02-OCT-21 Anthracene 86.5 % 60-130 02-OCT-21 Acridine 72.54 % 60-130 02-OCT-21 Benz(a)anthracene 88.9 % 60-130 02-OCT-21	WG3630689-3 LCS			81.6		%		60 130	02 OCT 21
Anthracene 86.5 % 60-130 02-OCT-21 Acridine 72.54 % 60-130 02-OCT-21 Benz(a)anthracene 88.9 % 60-130 02-OCT-21	Acenaphthylene			81.1		%		60 120	02-001-21
Acridine 72.54 % 60-130 02-OCT-21 Benz(a)anthracene 88.9 % 60-130 02-OCT-21	Anthracene			86.5		%		60 120	02-001-21
Benz(a)anthracene 88.9 % 60-130 02-OCT-21 Benz(a)anthracene 84.9 % 60-130 02-OCT-21				72 54		70 9/2		60 420	02-001-21
	Renz(a)anthracene			88 0		%		60 120	02-001-21
Benzolalovrene 84.2 % 60.430 00.000 04	Benzo(a)nvrene			84.2		%		60 120	02-001-21

		Workorder	Workorder: L2644275			Report Date: 07-JAN-22		Page 32 of 38	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-CL	Soil								
Batch R5607287									
WG3630689-3 LCS									
Benzo(b&j)fluoranthene			86.1		%		60-130	02-OCT-21	
Benzo(e)pyrene			88.1		%		60-130	02-OCT-21	
Benzo(g,h,i)perylene			77.5		%		60-130	02-OCT-21	
Benzo(k)fluoranthene			81.6		%		60-130	02-OCT-21	
Chrysene			85.1		%		60-130	02-OCT-21	
Dibenz(a,h)anthracene			76.8		%		60-130	02-OCT-21	
Fluoranthene			82.7		%		60-130	02-OCT-21	
Fluorene			83.9		%		60-130	02-OCT-21	
Indeno(1,2,3-c,d)pyrene)		84.9		%		60-130	02-OCT-21	
2-Methylnaphthalene			84.6		%		60-130	02-OCT-21	
Naphthalene			81.4		%		50-130	02-OCT-21	
Perylene			81.3		%		60-130	02-OCT-21	
Phenanthrene			87.9		%		60-130	02-OCT-21	
Pyrene			83.9		%		60-130	02-OCT-21	
1-Methylnaphthalene			84.4		%		60-130	02-OCT-21	
Quinoline			68.8		%		60-130	02-OCT-21	
WG3630689-1 MB			0 0050						
Acenaphthene			<0.0050		mg/kg		0.005	02-OCT-21	
Acenaphthylene			<0.0050		mg/kg		0.005	02-OCT-21	
Anthracene			<0.0040		mg/kg		0.004	02-OCT-21	
Acridine			<0.010		mg/kg		0.01	02-OCT-21	
Benz(a)anthracene			<0.010		mg/kg		0.01	02-OCT-21	
Benzo(a)pyrene			<0.010		mg/kg		0.01	02-OCT-21	
Benzo(b&j)fluoranthene			<0.010		mg/kg		0.01	02-OCT-21	
Benzo(e)pyrene			<0.010		mg/kg		0.01	02-OCT-21	
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	02-OCT-21	
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	02-OCT-21	
Chrysene			<0.010		mg/kg		0.01	02-OCT-21	
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	02-OCT-21	
Fluoranthene			<0.010		mg/kg		0.01	02-OCT-21	
Fluorene			<0.010		mg/kg		0.01	02-OCT-21	
Indeno(1,2,3-c,d)pyrene)		<0.010		mg/kg		0.01	02-OCT-21	
2-Methylnaphthalene			<0.010		mg/kg		0.01	02-OCT-21	
Naphthalene			<0.010		mg/kg		0.01	02-OCT-21	

		Workorder: L2644275		Report Date: 07-JAN-22		Page 33 of 38		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R56072	287							
WG3630689-1 ME	3							
Perylene			<0.010		mg/kg		0.01	02-OCT-21
Phenanthrene			<0.010		mg/kg		0.01	02-OCT-21
Pyrene			<0.010		mg/kg		0.01	02-OCT-21
1-Methylnaphthalene	9		<0.050		mg/kg		0.05	02-OCT-21
Quinoline			<0.050		mg/kg		0.05	02-OCT-21
Surrogate: d8-Napht	halene		80.3		%		50-130	02-OCT-21
Surrogate: d10-Acer	naphthene		84.9		%		60-130	02-OCT-21
Surrogate: d10-Pher	nanthrene		94.2		%		60-130	02-OCT-21
Surrogate: d12-Chry	sene		99.4		%		60-130	02-OCT-21
WG3630689-12 ME	3							
Acenaphthene			<0.0050		mg/kg		0.005	03-OCT-21
Acenaphthylene			<0.0050		mg/kg		0.005	03-OCT-21
Anthracene			<0.0040		mg/kg		0.004	03-OCT-21
Acridine			<0.010		mg/kg		0.01	03-OCT-21
Benz(a)anthracene			<0.010		mg/kg		0.01	03-OCT-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	03-OCT-21
Benzo(b&j)fluoranthe	ene		<0.010		mg/kg		0.01	03-OCT-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	03-OCT-21
Benzo(g,h,i)perylene	•		<0.010		mg/kg		0.01	03-OCT-21
Benzo(k)fluoranthen	e		<0.010		mg/kg		0.01	03-OCT-21
Chrysene			<0.010		mg/kg		0.01	03-OCT-21
Dibenz(a,h)anthrace	ne		<0.0050		mg/kg		0.005	03-OCT-21
Fluoranthene			<0.010		mg/kg		0.01	03-OCT-21
Fluorene			<0.010		mg/kg		0.01	03-OCT-21
Indeno(1,2,3-c,d)pyr	ene		<0.010		mg/kg		0.01	03-OCT-21
2-Methylnaphthalene	e		<0.010		mg/kg		0.01	03-OCT-21
Naphthalene			<0.010		mg/kg		0.01	03-OCT-21
Perylene			<0.010		mg/kg		0.01	03-OCT-21
Phenanthrene			<0.010		mg/kg		0.01	03-OCT-21
Pyrene			<0.010		mg/kg		0.01	03-OCT-21
1-Methylnaphthalene	9		<0.050		mg/kg		0.05	03-OCT-21
Quinoline			<0.050		mg/kg		0.05	03-OCT-21
Surrogate: d8-Napht	halene		68.9		%		50-130	03-OCT-21
Surrogate: d10-Acer	aphthene		75.1		%		60-130	03-OCT-21

		Workorder: L2644275		Report Date: 07-JAN-22		Page 34 of 38		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R56072	287							
WG3630689-12 ME	3							
Surrogate: d10-Pher	nanthrene		81.3		%		60-130	03-OCT-21
Surrogate: d12-Chry	sene		86.1		%		60-130	03-OCT-21
WG3630689-5 ME	3		~0 0050		ma/ka		0.005	02 007 21
Acenaphthylene			<0.0000		mg/kg		0.005	02-OCT-21
Anthracene			<0.0030		mg/kg		0.005	02-OCT-21
Acridine			<0.0040		mg/kg		0.004	02-OCT-21
Renz(a)anthracene			<0.010		mg/kg		0.01	02-OCT-21
Benzo(a)pyrene			<0.010		ma/ka		0.01	02-0CT-21
Benzo(b&i)fluoranthe	ene		<0.010		ma/ka		0.01	02-0CT-21
Benzo(e)pyrene			< 0.010		ma/ka		0.01	02-0CT-21
Benzo(a,h,i)pervlene	•		< 0.010		ma/ka		0.01	02-OCT-21
Benzo(k)fluoranthen	e		<0.010		ma/ka		0.01	02-OCT-21
Chrysene			<0.010		mg/kg		0.01	02-OCT-21
Dibenz(a,h)anthrace	ne		<0.0050		mg/kg		0.005	02-OCT-21
Fluoranthene			<0.010		mg/kg		0.01	02-OCT-21
Fluorene			<0.010		mg/kg		0.01	02-OCT-21
Indeno(1,2,3-c,d)pyr	ene		<0.010		mg/kg		0.01	02-OCT-21
2-Methylnaphthalene	e		<0.010		mg/kg		0.01	02-OCT-21
Naphthalene			<0.010		mg/kg		0.01	02-OCT-21
Perylene			<0.010		mg/kg		0.01	02-OCT-21
Phenanthrene			<0.010		mg/kg		0.01	02-OCT-21
Pyrene			<0.010		mg/kg		0.01	02-OCT-21
1-Methylnaphthalene	e		<0.050		mg/kg		0.05	02-OCT-21
Quinoline			<0.050		mg/kg		0.05	02-OCT-21
Surrogate: d8-Napht	halene		77.1		%		50-130	02-OCT-21
Surrogate: d10-Acer	naphthene		80.9		%		60-130	02-OCT-21
Surrogate: d10-Pher	nanthrene		88.7		%		60-130	02-OCT-21
Surrogate: d12-Chry	sene		90.5		%		60-130	02-OCT-21
WG3630689-8 ME	3							
Acenaphthene			<0.0050		mg/kg		0.005	03-OCT-21
Acenaphthylene			<0.0050		mg/kg		0.005	03-OCT-21
Anthracene			<0.0040		mg/kg		0.004	03-OCT-21
Acridine			<0.010		mg/kg		0.01	03-OCT-21
Benz(a)anthracene			<0.010		mg/kg		0.01	03-OCT-21

		Workorder:	L264427	5	Report Date: 0	7-JAN-22	Pa	age 35 of 38
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R56072	87							
WG3630689-8 MB								
Benzo(a)pyrene			<0.010		mg/kg		0.01	03-OCT-21
Benzo(b&j)fluoranthe	ene		<0.010		mg/kg		0.01	03-OCT-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	03-OCT-21
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	03-OCT-21
Benzo(k)fluoranthene	e		<0.010		mg/kg		0.01	03-OCT-21
Chrysene			<0.010		mg/kg		0.01	03-OCT-21
Dibenz(a,h)anthracer	ne		<0.0050		mg/kg		0.005	03-OCT-21
Fluoranthene			<0.010		mg/kg		0.01	03-OCT-21
Fluorene			<0.010		mg/kg		0.01	03-OCT-21
Indeno(1,2,3-c,d)pyre	ene		<0.010		mg/kg		0.01	03-OCT-21
2-Methylnaphthalene			<0.010		mg/kg		0.01	03-OCT-21
Naphthalene			<0.010		mg/kg		0.01	03-OCT-21
Perylene			<0.010		mg/kg		0.01	03-OCT-21
Phenanthrene			<0.010		mg/kg		0.01	03-OCT-21
Pyrene			<0.010		mg/kg		0.01	03-OCT-21
1-Methylnaphthalene			<0.050		mg/kg		0.05	03-OCT-21
Quinoline			<0.050		mg/kg		0.05	03-OCT-21
Surrogate: d8-Naphth	nalene		81.5		%		50-130	03-OCT-21
Surrogate: d10-Acena	aphthene		84.0		%		60-130	03-OCT-21
Surrogate: d10-Phen	anthrene		88.8		%		60-130	03-OCT-21
Surrogate: d12-Chrys	sene		90.1		%		60-130	03-OCT-21
PH-1:2-CL	Soil							
Batch R56235	00							
WG3640067-3 DUI	Р	L2644275-10						
pH (1:2 soil:water)		7.69	7.74	J	рН	0.05	0.2	18-OCT-21
WG3640067-2 IRM	1	SAL-STD11						
pH (1:2 soil:water)			7.95		рН		7.7-8.3	18-OCT-21
WG3640067-1 LCS	S		7.00					
pH (1:2 soll:water)			7.03		рн		6.8-7.2	18-OCT-21
PSA-PIPET-DETAIL-SK	Soil							
Batch R56100	17							
WG3627494-2 IRM	1 00	2020-PSA_SO	IL		0/			
% Sand (2.00mm - 1.	.00mm)		2.9		<i></i> %		0-7.2	05-OCT-21
% Sand (1.00mm - 0.	.50mm)		3.6		%		0-8.7	05-OCT-21
% Sand (0.50mm - 0.	.25mm)		8.4		%		4-14	05-OCT-21

	Workorder: L2644	275 Report Date	Report Date: 07-JAN-22		Page 36 of 38		
Test Matrix	Reference Result	Qualifier Units	RPD	Limit	Analyzed		
PSA-PIPET-DETAIL-SK Soil							
Batch R5610017							
WG3627494-2 IRM	2020-PSA_SOIL						
% Sand (0.25mm - 0.125mm)	16.3	%		11.7-21.7	05-OCT-21		
% Sand (0.125mm - 0.063mm)	14.0	%		8.4-18.4	05-OCT-21		
% Silt (0.063mm - 0.0312mm)	12.2	%		8.5-18.5	05-OCT-21		
% Silt (0.0312mm - 0.004mm)	21.0	%		15.1-25.1	05-OCT-21		
% Clay (<4um)	21.5	%		16.5-26.5	05-OCT-21		

Workorder: L2644275

Report Date: 07-JAN-22

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Description
Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.
Duplicate results outside ALS DQO, due to sample heterogeneity.
Duplicate results and limits are expressed in terms of absolute difference.
Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2644275

Report Date: 07-JAN-22

Page 38 of 38

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Metals							
Mercury in Soil by CVAAS							
	1	16-SEP-21 08:45	16-OCT-21 09:43	28	30	davs	EHT
	2	16-SEP-21 09:30	16-OCT-21 09:43	28	30	davs	EHT
	3	16-SEP-21 12:00	16-OCT-21 09:43	28	30	davs	EHT
	4	16-SEP-21 12:50	16-OCT-21 09:43	28	30	days	EHT
	5	16-SEP-21 13:30	16-OCT-21 09:43	28	30	davs	EHT
	6	16-SEP-21 14:30	16-OCT-21 09:43	28	30	davs	EHT
	7	16-SEP-21 15:00	16-OCT-21 09:43	28	30	davs	EHT
	8	15-SEP-21 13:30	16-OCT-21 09:43	28	31	davs	EHT
	9	15-SEP-21 14:20	16-OCT-21 09:43	28	31	days	EHT
	10	15-SEP-21 15:15	16-OCT-21 09:43	28	31	days	EHT

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR: Exceeded ALS recommended hold time prior to sample receipt.
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT: Exceeded ALS recommended hold time prior to analysis.
Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2644275 were received on 21-SEP-21 08:50.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

	Teck							Pag	e tofi											
		COC ID:	Septem	ber GG(CAMP	2021		TURN	AROUN	D TIME:	ME:									
•	1	PROJECT/CLIENT INFO	1 · · · ·	19 <u>(</u> 9	ŤŇ.	2.181	1 .	1	***	- CLABOR	ATORY	fr " \$20	19	N.	4Y 3	\$ 7	1.744	*\$ 1		
	Facility Name / Job/	# REP						L	ab Name	ALS Calgar	y huutta					14. C. 7 19 19 19		Excel	PDF EI	DD
	Project Manage	Allie Ferguson							Email	lyudmyla s	hvets@al					de laportes	lytom	r.	<u> </u>	
÷ .	Emai	421 Pine Avenue							Address	2559 29 Str	eet NE					www.cagen	nacionale com	2		
			-										······				AUA	r	s :	1.5
1	Cit	/	Sparwood	•		Province	BC		City	Calgary		Province	AB				•			
	Postal Code		V0B 2G0			Country	Canada	Po	stal Code	T1Y 7B5		Country	Canada							
	- Phone Numbe	r 250-425-8202					-	Phone	Number	1 403 407 1	794									5 *
		SAMPLE DI	TAILS (Land 1)	<u>)))), j</u>	11''11						AN-	LYSIS RE	QUESTE	D I		pital (*	Found - V	Field, L. Lab.	L. Fuel & Lab.	Nose
		:								₫ N	N	N	N	N	N		1.00			
										<u> </u>	1				1	1	÷			
										NONE	NONE	NONE	NONE	NONE	NONE				100	
			· · · · · · · · · · · · · · · · · · ·		- 2					2										<u> </u>
			and the second second		cs/}			l .			د		X	4						
	1 2644275-C	OFC			I (Y						3	*	Ë	Ū,	<					
				ł	cria					<i></i>	In .	- -	T	W	2					
			1 A		Mat				.'	19.17	1.5	Ū,	Ĩ.	DIA	ST			• .	•	
· · · .			· ·		us]			· · ·		SK VS	CW	URE	Size	a i	ESS					
					Irdo				ي أ	, ž	ğ	TT int	PIF	LT.	E.,			•		
	Sample ID	Sample Loca	tion .	Matrix	Hazi	Date	(24hr)	C=Comp	Cont	DI-	MET	MOI	PSA	HVA	ME	· 、				
\sim	C/ CL RG GANF SE-1/2021-09-16 0845	RG GAN	F	SE	No	9/16/2021	845	: G	2	x	x .	X	x	x	x					
18	AC BC CANE SE-20021-09-16 0930	T RG GAN	F	SF	No	9/16/2021	930	G		Y	x		x	x	x		•			
<u> </u>	RG GAUT SE-1 2021-09-16 1200	RG GAU	T	SE	No	9/16/2021	1200	G	2	x	x	<u>x</u>	x	x	x		•			
- 1, -	RG_GAUT_SE-2_2021-09-16_1250	RG GAU	T.,	SE "	No	9/16/2021	1250	G	2	x	x	х	x	x	x		-			
	RG_GAUT_SE_122021-09-16_1330	RG_GAU	Ť j	SE	No	9/16/2021	1330	. G	2	`x	x	x	x	·X	x					
	RG_GAUT_SE-4_2021-09-16_1430	RG_GAU	T',	SE	No 1	9/16/2021	1430	G	2	X	X	X .	x	X	X					
	RG_GAUT_SE-5_2021-09-16_1500	RG_GAU	Τ	SE	No	9/16/2021	1500	G	.2	X ·	X	x	x	x	x			•		
	RG_GANF-SE-1_2021_09_15_1330	RG_GAN	F	SE ·	No	9/15/2021	1330	G	2	X	x	<u>x</u>	x	X	́х		· · · · ·			
-	RG_GANF-SE-2_2021_09_15_1420	RG_GAN	F .	SE	No	9/1 5/2021	1420	G	2	x	X	x	X	X	X				<u> </u>	
	RG_GANF-SE-3_2021_09_15_1515	RG GAN	F	SE	No	9/15/2021	1515	G	2	X	X	X			X	v		1.044		7
· 8	CESADOLIDIAL COMMENT.					REALINGTON	STALED BARRAN	LEACH ON	شيو. 1				LEVI LEVIS	N	/		· · · ·	7/	E	2
						Јепл	ifer Ings/Ming	10W		****	****			1/10	L			t/s/	05	FE
	ALS PO 750546		· · · ·									•					- 1	1.27	00	
													. 6'		· · · · · ·	.			. <u> </u>	
	NB OF BOTTLES RET	URNED/DESCRIPTION	11 S S S S			1.(1) : 44	11.1						111		٤;	480		•	· •	
			Regular (default) x		Samplar's B	Jamo			loonifor !-	ne	1	- M-1	-ile #		• •	510 FA	0.3444		
· · [Priority (2-3 b	usiness days) - 50% su	rcharge		sampler's r		(1993) Alian (1997) Alian (1997)			50 []	<u></u>	10101	011 C #		State of the second	317-30	0-3444	<u></u>	
.	* ····································	Emergency (1 Bu	siness Day) - 100% su	rcharge	s	ampler's Sig	nature	from	-7 th	~~ K			Date	/Time		S	eptémbe	r 20, 2023	91.5	3
L		To Emergency <1 Day, ASA	r or weekend - Conta	u ALS							<u></u>	<u>• • • • • • • • • •</u>	3 		K.X.Š	A. & MINISTON	<u></u>	1986-113 H. 2 A	<u></u>	<u></u>

,

276

Ą

ALS - WATER CHEMISTRY

CERTIFICATE OF ANALYSIS

Work Order	: CG2104017	Page	: 1 of 7
Amendment	: 1		
Client	: Teck Coal Limited	Laboratory	: Calgary - Environmental
Contact	: Allie Ferguson	Account Manager	: Lyudmyla Shvets
Address	: 421 Pine Avenue	Address	2559 29th Street NE
Telephone	Sparwood BC Canada V0B 2G0	Telephone	Calgary AB Canada T1Y 7B5 : +1 403 407 1800
Project	: REGIONAL EFFECTS PROGRAM	Date Samples Received	: 11-Sep-2021 10:15
PO	: VPO00750546	Date Analysis Commenced	: 13-Sep-2021
C-O-C number	: September GGCAMP 2021	Issue Date	: 30-Sep-2021 17:05
Sampler	: Jennifer Ings		
Site	:		
Quote number	: Teck Coal Master Quote		
No. of samples received	: 2		
No. of samples analysed	: 2		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Dion Chan	Lab Assistant	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Woochan Song	Lab Analyst	Metals, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLA	Detection Limit adjusted for required dilution.
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

Sub-Matrix: Water			Cl	ient sample ID	RG_GHFF_WS_	RG_GHNF_WS_	 	
(Matrix: Water)					GGCAMP_2021-	GGCAMP_2021-		
					09-09_NP	09-10_NP	 	
		Client sampling date / time			09-Sep-2021	10-Sep-2021	 	
					11:36	10:45		
Analyte	CAS Number	Method	LOR	Unit	CG2104017-001	CG2104017-002	 	
					Result	Result	 	
Physical Tests								
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	8.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	256	366	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	15.2	<1.0	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	271	366	 	
conductivity		E100	2.0	µS/cm	1810	2190	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	1200	1550	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	481	414	 	
рН		E108	0.10	pH units	8.36	8.23	 	
solids, total dissolved [TDS]		E162	10	mg/L	1600	1910	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.9	1.4	 	
turbidity		E121	0.10	NTU	0.24	0.63	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	312	446	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	9.1	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.250 DLDS	<0.250 DLDS	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	2.08	1.46	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.148	<0.100 DLDS	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.354 TKNI	0.282 TKNI	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	7.67	8.96 HTD	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0050 DLDS	0.0050 HTD	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0012	<0.0010	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0029	0.0022	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	1040	1120	 	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.29	2.46	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	1.86	2.44	 	

Sub-Matrix: Water			Cl	ient sample ID	RG_GHFF_WS_	RG_GHNF_WS_	 	
(Matrix: Water)					GGCAMP_2021- 09-09_NP	GGCAMP_2021- 09-10_NP		
			Client samp	ling date / time	09-Sep-2021 11:36	10-Sep-2021 10:45	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104017-001	CG2104017-002	 	
					Result	Result	 	
Ion Balance		50101	0.10		07.7	01.0		
anion sum		EC101	0.10	meq/L	27.7	31.3	 	
cation sum		EC101	0.10	meq/L	24.2	31.2	 	
ion balance (cations/anions ratio)		EC101	0.010	%	87.4	99.7	 	
ion balance (cation-anion difference)		EC101	0.010	%	6.74	0.160	 	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0077	<0.0060 DLA	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00050	0.00071	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00022	0.00024	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0434	0.0324	 	
beryllium, total	7440-41-7	E420	0.020	µg/L	<0.020	<0.040 DLA	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000100 DLA	 	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.020 DLA	 	
cadmium, total	7440-43-9	E420	0.0050	µg/L	0.0229	0.0116	 	
calcium, total	7440-70-2	E420	0.050	mg/L	186	273	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00012	<0.00020 DLA	 	
cobalt, total	7440-48-4	E420	0.10	µg/L	<0.10	<0.20 DLA	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00100 DLA	 	
iron, total	7439-89-6	E420	0.010	mg/L	0.011	<0.020 DLA	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000100 DLA	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0187	0.0204	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	173	216	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00104	0.00832	 	
mercury, total	7439-97-6	E508-L	0.00050	µg/L	<0.00050	<0.00050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00175	0.00200	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.0121	0.0237	 	
potassium, total	7440-09-7	E420	0.050	mg/L	2.67	2.96	 	
selenium, total	7782-49-2	E420	0.050	μg/L	180	242	 	
silicon, total	7440-21-3	E420	0.10	mg/L	3.66	3.31	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000020 DLA	 	
sodium, total	17341-25-2	E420	0.050	mg/L	2.42	1.90	 	
				3		1		

Sub-Matrix: Water			Cl	ient sample ID	RG_GHFF_WS_	RG_GHNF_WS_	 	
(Matrix: Water)					GGCAMP_2021- 09-09_NP	GGCAMP_2021- 09-10_NP		
			Client samp	ling date / time	09-Sep-2021 11:36	10-Sep-2021 10:45	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104017-001	CG2104017-002	 	
					Result	Result	 	
Total Metals	7440.04.0	E420	0.00020	ma m //	0.199	0.176		
strontium, total	7440-24-6	E420	0.00020	mg/L	0.100	0.176	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	303	364	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000020	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00020 DLA	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00060	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.0100	0.0138	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00100 DLA	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0060 DLA	 	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00052	0.00070	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00016	0.00018	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0485	0.0351	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	 	
cadmium, dissolved	7440-43-9	E421	0.0050	µg/L	0.0064	0.0092	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	200	275	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00022	0.00045	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0194	0.0197	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	171	210	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00047	0.00849	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	ma/L	0.00174	0.00192	 	
nickel, dissolved	7440-02-0	E421	0.00050	ma/L	0.0118	0.0230	 	
potassium, dissolved	7440-00-7	F421	0.050	ma/l	2.98	3 41	 	
	1440-03-1	L 12 1	0.000		2.00	0.71		

Sub-Matrix: Water			Cl	lient sample ID	RG_GHFF_WS_	RG_GHNF_WS_	 	
(Matrix: Water)					GGCAMP_2021-	GGCAMP_2021-		
					09-09_NP	09-10_NP	 	
			Client samp	oling date / time	09-Sep-2021 11:36	10-Sep-2021 10:45	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104017-001	CG2104017-002	 	
					Result	Result	 	
Dissolved Metals								
selenium, dissolved	7782-49-2	E421	0.050	µg/L	200	290	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	3.72	3.32	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	2.65	2.18	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.198	0.182	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	326	393	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	0.000013	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00914	0.0126	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	0.0021	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	CG2104017	Page	. 1 of 16			
Work Order	: 662104017	Fage				
Amendment	: 1					
Client	: Teck Coal Limited	Laboratory	: Calgary - Environmental			
Contact	: Allie Ferguson	Account Manager	: Lyudmyla Shvets			
Address	: 421 Pine Avenue	Address	2559 29th Street NE			
	Sparwood BC Canada V0B 2G0		Calgary, Alberta Canada T1Y 7B5			
Telephone	:	Telephone	: +1 403 407 1800			
Project	REGIONAL EFFECTS PROGRAM	Date Samples Received	: 11-Sep-2021 10:15			
PO	: VPO00750546	Issue Date	: 30-Sep-2021 17:05			
C-O-C number	: September GGCAMP 2021					
Sampler	: Jennifer Ings					
Site	:					
Quote number	: Teck Coal Master Quote					
No. of samples received	: 2					
No. of samples analysed	· 2					

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- Matrix Spike outliers occur please see following pages for full details.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• <u>No</u> Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Outliers : Quality Control Samples Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Matrix Spike (MS) Recoveries								
Anions and Nutrients	Anonymous	Anonymous	Kjeldahl nitrogen, total		E318	36.0 % ^{MSTN}	70.0-130%	Recovery less than lower
			[TKN]					data quality objective
Result Qualifiers								
Qualifier	Description							
MSTN	TKN Matrix Spike recovery wa TKN	is low due to interference	e from high nitrate, which cau	ises negative bias on				

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E	/aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_GHNF_WS_GGCAMP_2021-09-10_NP	E298	10-Sep-2021	23-Sep-2021				23-Sep-2021	28 days	13 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_GHFF_WS_GGCAMP_2021-09-09_NP	E298	09-Sep-2021	23-Sep-2021				23-Sep-2021	28 days	14 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_GHFF_WS_GGCAMP_2021-09-09_NP	E235.Br-L	09-Sep-2021					13-Sep-2021	28 days	4 days	1
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_GHNF_WS_GGCAMP_2021-09-10_NP	E235.Br-L	10-Sep-2021					17-Sep-2021	28 days	7 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
RG_GHFF_WS_GGCAMP_2021-09-09_NP	E235.CI-L	09-Sep-2021					13-Sep-2021	28 days	4 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
RG_GHNF_WS_GGCAMP_2021-09-10_NP	E235.CI-L	10-Sep-2021					17-Sep-2021	28 days	7 days	1
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)									
HDPE										
RG_GHNF_WS_GGCAMP_2021-09-10_NP	E378-U	10-Sep-2021					13-Sep-2021	3 days	3 days	✓

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	,
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel)									
HDPE RG_GHFF_WS_GGCAMP_2021-09-09_NP	E378-U	09-Sep-2021					13-Sep-2021	3 days	4 days	× EHT
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_GHFF_WS_GGCAMP_2021-09-09_NP	E235.F	09-Sep-2021					13-Sep-2021	28 days	4 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_GHNF_WS_GGCAMP_2021-09-10_NP	E235.F	10-Sep-2021					17-Sep-2021	28 days	7 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_GHFF_WS_GGCAMP_2021-09-09_NP	E235.NO3-L	09-Sep-2021					13-Sep-2021	3 days	4 days	× EHT
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_GHNF_WS_GGCAMP_2021-09-10_NP	E235.NO3-L	10-Sep-2021					17-Sep-2021	3 days	7 days	× EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_GHFF_WS_GGCAMP_2021-09-09_NP	E235.NO2-L	09-Sep-2021					13-Sep-2021	3 days	4 days	× EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_GHNF_WS_GGCAMP_2021-09-10_NP	E235.NO2-L	10-Sep-2021					17-Sep-2021	3 days	7 days	¥ EHT
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_GHFF_WS_GGCAMP_2021-09-09_NP	E235.SO4	09-Sep-2021					13-Sep-2021	28 days	4 days	√
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_GHNF_WS_GGCAMP_2021-09-10_NP	E235.SO4	10-Sep-2021					17-Sep-2021	28 days	7 days	✓

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_GHNF_WS_GGCAMP_2021-09-10_NP	E318	10-Sep-2021	16-Sep-2021				20-Sep-2021	28 days	10 days	1
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_GHFF_WS_GGCAMP_2021-09-09_NP	E318	09-Sep-2021	16-Sep-2021				20-Sep-2021	28 days	11 days	~
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) RG_GHNF_WS_GGCAMP_2021-09-10_NP	E372-U	10-Sep-2021	15-Sep-2021				15-Sep-2021	28 days	5 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) RG_GHFF_WS_GGCAMP_2021-09-09_NP	E372-U	09-Sep-2021	15-Sep-2021				15-Sep-2021	28 days	6 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)									I I	
HDPE dissolved (nitric acid) RG_GHNF_WS_GGCAMP_2021-09-10_NP	E421.Cr-L	10-Sep-2021	15-Sep-2021				15-Sep-2021	180 days	5 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)									II	
HDPE dissolved (nitric acid) RG_GHFF_WS_GGCAMP_2021-09-09_NP	E421.Cr-L	09-Sep-2021	15-Sep-2021				15-Sep-2021	180 days	6 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_GHNF_WS_GGCAMP_2021-09-10_NP	E509	10-Sep-2021	16-Sep-2021				16-Sep-2021	28 days	6 days	√
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_GHFF_WS_GGCAMP_2021-09-09_NP	E509	09-Sep-2021	16-Sep-2021				16-Sep-2021	28 days	7 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS									· · · · · ·	
HDPE dissolved (nitric acid) RG_GHNF_WS_GGCAMP_2021-09-10_NP	E421	10-Sep-2021	15-Sep-2021				15-Sep-2021	180 days	5 days	✓

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_GHFF_WS_GGCAMP_2021-09-09_NP	E421	09-Sep-2021	15-Sep-2021				15-Sep-2021	180 days	6 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid) RG_GHNF_WS_GGCAMP_2021-09-10_NP	E358-L	10-Sep-2021	20-Sep-2021				20-Sep-2021	28 days	10 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid) RG_GHFF_WS_GGCAMP_2021-09-09_NP	E358-L	09-Sep-2021	20-Sep-2021				23-Sep-2021	28 days	13 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	on (Low Level)									
Amber glass total (sulfuric acid) RG_GHNF_WS_GGCAMP_2021-09-10_NP	E355-L	10-Sep-2021	20-Sep-2021				20-Sep-2021	28 days	10 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	n (Low Level)									
Amber glass total (sulfuric acid) RG_GHFF_WS_GGCAMP_2021-09-09_NP	E355-L	09-Sep-2021	20-Sep-2021				23-Sep-2021	28 days	13 days	✓
Physical Tests : Acidity by Titration										
HDPE RG_GHNF_WS_GGCAMP_2021-09-10_NP	E283	10-Sep-2021					20-Sep-2021	14 days	10 days	✓
Physical Tests : Acidity by Titration										
HDPE RG_GHFF_WS_GGCAMP_2021-09-09_NP	E283	09-Sep-2021					20-Sep-2021	14 days	11 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE RG_GHNF_WS_GGCAMP_2021-09-10_NP	E290	10-Sep-2021					21-Sep-2021	14 days	11 days	~
Physical Tests : Alkalinity Species by Titration										
HDPE RG_GHFF_WS_GGCAMP_2021-09-09_NP	E290	09-Sep-2021					21-Sep-2021	14 days	12 days	1

Matrix: Water	Evaluation: ★ = Holding time exceedance ; ✓ = Within Holding Time									
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual		Eval	Analysis Date	Holding Times Rec Actual		Eval
Physical Tests : Conductivity in Water										
HDPE RG_GHNF_WS_GGCAMP_2021-09-10_NP	E100	10-Sep-2021					21-Sep-2021	28 days	11 days	4
Physical Tests : Conductivity in Water										
HDPE RG_GHFF_WS_GGCAMP_2021-09-09_NP	E100	09-Sep-2021					21-Sep-2021	28 days	12 days	✓
Physical Tests : ORP by Electrode										
HDPE RG_GHNF_WS_GGCAMP_2021-09-10_NP	E125	10-Sep-2021					20-Sep-2021	0.34 hrs	241 hrs	¥ EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_GHFF_WS_GGCAMP_2021-09-09_NP	E125	09-Sep-2021					20-Sep-2021	0.34 hrs	264 hrs	≭ EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_GHNF_WS_GGCAMP_2021-09-10_NP	E108	10-Sep-2021					21-Sep-2021	0.25 hrs	264 hrs	¥ EHTR-FM
Physical Tests : pH by Meter									1	
HDPE RG_GHFF_WS_GGCAMP_2021-09-09_NP	E108	09-Sep-2021					21-Sep-2021	0.25 hrs	287 hrs	¥ EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE RG_GHFF_WS_GGCAMP_2021-09-09_NP	E162	09-Sep-2021					14-Sep-2021	7 days	5 days	~
Physical Tests : TDS by Gravimetry										
HDPE RG_GHNF_WS_GGCAMP_2021-09-10_NP	E162	10-Sep-2021					16-Sep-2021	7 days	6 days	~
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB] RG_GHFF_WS_GGCAMP_2021-09-09_NP	E160-L	09-Sep-2021					14-Sep-2021	7 days	5 days	4

Matrix: Water					E١	aluation: × =	Holding time exce	edance ; 🔹	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	, Times	Eval
			Date	Rec Actual				Rec	Actual	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
RG_GHNF_WS_GGCAMP_2021-09-10_NP	E160-L	10-Sep-2021					16-Sep-2021	7 days	6 days	4
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_GHNF_WS_GGCAMP_2021-09-10_NP	E121	10-Sep-2021					13-Sep-2021	3 days	3 days	1
Physical Tests : Turbidity by Nephelometry										
HDPE	E 101						40.0.0004			
RG_GHFF_WS_GGCAMP_2021-09-09_NP	E121	09-Sep-2021					13-Sep-2021	3 days	4 days	× FUT
										EUI
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)							1			
HDPE total (nitric acid)	E 400 Cr. I	00 San 2021					16 San 2021	400	7 dava	
RG_GHFF_WS_GGCAMP_2021-09-09_NP	E420.Cr-L	09-Sep-2021					16-Sep-2021	180	7 days	•
								uays		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
RC CHNE WS CCCAMP 2021-09-10 NP	E420 Cr-I	10-Sep-2021					16-Sep-2021	190	7 davs	1
	E 120.01 E	10 000 2021					10-000-2021	davs	7 days	
Total Matale - Total Moreury in Water by CVAES (Low Lovel LOB = 0.5 ppt)								uujo		
Pre-cleaned amber glass - total (lab preserved)										
RG GHNF WS GGCAMP 2021-09-10 NP	E508-L	10-Sep-2021					18-Sep-2021	28 days	8 days	✓
		·					· ·	-	-	
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)										
RG_GHFF_WS_GGCAMP_2021-09-09_NP	E508-L	09-Sep-2021					18-Sep-2021	28 days	9 days	✓
Total Metals : Total Metals in Water by CRC ICPMS				1						
HDPE total (nitric acid)										
RG_GHFF_WS_GGCAMP_2021-09-09_NP	E420	09-Sep-2021					16-Sep-2021	180	7 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_GHNF_WS_GGCAMP_2021-09-10_NP	E420	10-Sep-2021					16-Sep-2021	180	7 days	✓
								days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: \star = QC frequency outside specification; \star = QC frequency within specification.								
Quality Control Sample Type			Co	unt		Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)									
Acidity by Titration	E283	297438	1	20	5.0	5.0	✓		
Alkalinity Species by Titration	E290	298096	1	20	5.0	5.0	✓		
Ammonia by Fluorescence	E298	300319	1	20	5.0	5.0	✓		
Bromide in Water by IC (Low Level)	E235.Br-L	290681	1	2	50.0	5.0	✓		
Chloride in Water by IC (Low Level)	E235.CI-L	290682	1	2	50.0	5.0	✓		
Conductivity in Water	E100	298095	1	20	5.0	5.0	✓		
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	292385	1	20	5.0	5.0	✓		
Dissolved Mercury in Water by CVAAS	E509	294342	1	18	5.5	5.0	✓		
Dissolved Metals in Water by CRC ICPMS	E421	292384	2	20	10.0	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	297482	1	19	5.2	5.0	✓		
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	290452	1	2	50.0	5.0	✓		
Fluoride in Water by IC	E235.F	290679	1	2	50.0	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	290683	1	2	50.0	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	290684	1	2	50.0	5.0	✓		
ORP by Electrode	E125	296880	1	20	5.0	5.0	✓		
pH by Meter	E108	298094	1	20	5.0	5.0	✓		
Sulfate in Water by IC	E235.SO4	290680	1	2	50.0	5.0	✓		
TDS by Gravimetry	E162	291257	2	40	5.0	5.0	✓		
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	292724	1	8	12.5	5.0	✓		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	294397	1	16	6.2	5.0	✓		
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	296198	1	9	11.1	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	292723	1	19	5.2	5.0	✓		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	297485	1	9	11.1	5.0	✓		
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	291325	1	20	5.0	5.0	✓		
Turbidity by Nephelometry	E121	290421	2	14	14.2	5.0	✓		
Laboratory Control Samples (LCS)									
Acidity by Titration	E283	297438	1	20	5.0	5.0	1		
Alkalinity Species by Titration	E290	298096	1	20	5.0	5.0	✓		
Ammonia by Fluorescence	E298	300319	1	20	5.0	5.0	✓		
Bromide in Water by IC (Low Level)	E235.Br-L	290681	1	2	50.0	5.0	✓		
Chloride in Water by IC (Low Level)	E235.CI-L	290682	1	2	50.0	5.0	✓		
Conductivity in Water	E100	298095	1	20	5.0	5.0	✓		
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	292385	1	20	5.0	5.0	✓		
Dissolved Mercury in Water by CVAAS	E509	294342	1	18	5.5	5.0	✓		
Dissolved Metals in Water by CRC ICPMS	E421	292384	1	20	5.0	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	297482	1	19	5.2	5.0	✓		
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	290452	1	2	50.0	5.0	✓		

Matrix: Water	Evaluation: \star = QC frequency outside specification; \checkmark = QC frequency within specificatio							
Quality Control Sample Type			Co	ount		Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued								
Fluoride in Water by IC	E235.F	290679	1	2	50.0	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	290683	1	2	50.0	5.0	\checkmark	
Nitrite in Water by IC (Low Level)	E235.NO2-L	290684	1	2	50.0	5.0	✓	
ORP by Electrode	E125	296880	1	20	5.0	5.0	✓	
pH by Meter	E108	298094	1	20	5.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	290680	1	2	50.0	5.0	✓	
TDS by Gravimetry	E162	291257	2	40	5.0	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	292724	1	8	12.5	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	294397	1	16	6.2	5.0	✓	
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	296198	1	9	11.1	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	292723	1	19	5.2	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	297485	1	9	11.1	5.0	✓	
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	291325	1	20	5.0	5.0	✓	
TSS by Gravimetry (Low Level)	E160-L	291251	2	33	6.0	5.0	✓	
Turbidity by Nephelometry	E121	290421	2	14	14.2	5.0	✓	
Method Blanks (MB)						· · · · ·		
Acidity by Titration	E283	297438	1	20	5.0	5.0	✓	
Alkalinity Species by Titration	E290	298096	1	20	5.0	5.0	✓	
Ammonia by Fluorescence	E298	300319	1	20	5.0	5.0	✓	
Bromide in Water by IC (Low Level)	E235.Br-L	290681	1	2	50.0	5.0	✓	
Chloride in Water by IC (Low Level)	E235.CI-L	290682	1	2	50.0	5.0	✓	
Conductivity in Water	E100	298095	1	20	5.0	5.0	✓	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	292385	1	20	5.0	5.0	1	
Dissolved Mercury in Water by CVAAS	E509	294342	1	18	5.5	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	292384	2	20	10.0	5.0	\checkmark	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	297482	1	19	5.2	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	290452	1	2	50.0	5.0	\checkmark	
Fluoride in Water by IC	E235.F	290679	1	2	50.0	5.0	~	
Nitrate in Water by IC (Low Level)	E235.NO3-L	290683	1	2	50.0	5.0	~	
Nitrite in Water by IC (Low Level)	E235.NO2-L	290684	1	2	50.0	5.0	\checkmark	
Sulfate in Water by IC	E235.SO4	290680	1	2	50.0	5.0	✓	
TDS by Gravimetry	E162	291257	2	40	5.0	5.0	\checkmark	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	292724	1	8	12.5	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	294397	1	16	6.2	5.0	~	
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	296198	1	9	11.1	5.0	~	
Total Metals in Water by CRC ICPMS	E420	292723	2	19	10.5	5.0	~	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	297485	1	9	11.1	5.0	~	
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	291325	1	20	5.0	5.0	~	
TSS by Gravimetry (Low Level)	E160-L	291251	2	33	6.0	5.0	✓	
Turbidity by Nephelometry	E121	290421	2	14	14.2	5.0	\checkmark	

Natrix: Water Evaluation: \star = QC frequency outside specification; \star = QC frequency within specification.									
Quality Control Sample Type		· · · · · · · · · · · · · · · · · · ·	Co	ount		Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Matrix Spikes (MS)									
Ammonia by Fluorescence	E298	300319	1	20	5.0	5.0	✓		
Bromide in Water by IC (Low Level)	E235.Br-L	290681	1	2	50.0	5.0	✓		
Chloride in Water by IC (Low Level)	E235.CI-L	290682	1	2	50.0	5.0	✓		
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	292385	1	20	5.0	5.0	✓		
Dissolved Mercury in Water by CVAAS	E509	294342	1	18	5.5	5.0	✓		
Dissolved Metals in Water by CRC ICPMS	E421	292384	2	20	10.0	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	297482	1	19	5.2	5.0	✓		
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	290452	1	2	50.0	5.0	✓		
Fluoride in Water by IC	E235.F	290679	1	2	50.0	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	290683	1	2	50.0	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	290684	1	2	50.0	5.0	✓		
Sulfate in Water by IC	E235.SO4	290680	1	2	50.0	5.0	✓		
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	292724	1	8	12.5	5.0	✓		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	294397	1	16	6.2	5.0	✓		
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	296198	1	9	11.1	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	292723	1	19	5.2	5.0	✓		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	297485	1	9	11.1	5.0	✓		
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	291325	1	20	5.0	5.0	✓		

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Calgary - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH about the potential is the field within the recommended 15 minute held time.
Turbidity by Nephelometry		Water	APHA 2130 B (mod)	Turbidity is measured by the peoplementia method by measuring the intensity of light
	Calgary - Environmental	Water		scatter under defined conditions.
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test results it is recommended that this analysis be conducted in the field
TSS by Gravimetry (Low Level)	E160-L Calgary - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Calgary - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at $180 \pm 2^{\circ}$ C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Chloride in Water by IC (Low Level)	E235.CI-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Fluoride in Water by IC	E235.F Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	E235.SO4 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Acidity by Titration	E283 Calgary - Environmental	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
	Vancouver -			
	Environmental			
Total Mercury in Water by CVAFS (Low	E508-L	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction
Level, LOR = 0.5 ppt)				with stannous chloride, and analyzed by CVAFS.
	Vancouver -			
	Environmental			
Dissolved Mercury in Water by CVAAS	E509	Water	APHA 3030B/EPA	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation
			1631E (mod)	using bromine monochloride prior to reduction with stannous chloride, and analyzed by
	Vancouver -			CVAAS.
	Environmental			
Dissolved Hardness (Calculated)	EC100	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and
				Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	Vancouver -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Environmental			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA
				Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are
	Calgary - Environmental			used where available. Minor ions are included where data is present.
				Ion Balance cannot be calculated accurately for waters with very low electrical
				conductivity (EC).

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.

Page	: 16 of 16
Work Order	: CG2104017 Amendment 1
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order	CG2104017	Page	: 1 of 19
Amendment	:1		
Client	: Teck Coal Limited	Laboratory	: Calgary - Environmental
Contact	: Allie Ferguson	Account Manager	: Lyudmyla Shvets
Address	: 421 Pine Avenue	Address	2559 29th Street NE
Telephone	Sparwood BC Canada V0B 2G0	Telephone	Calgary, Alberta Canada T1Y 7B5 :+1 403 407 1800
Project	REGIONAL EFFECTS PROGRAM	Date Samples Received	: 11-Sep-2021 10:15
PO	: VPO00750546	Date Analysis Commenced	13-Sep-2021
C-O-C number	: September GGCAMP 2021	Issue Date	: 30-Sep-2021 17:05
Sampler	: Jennifer Ings		
Site	:		
Quote number	: Teck Coal Master Quote		
No. of samples received	: 2		
No. of samples analysed	:2		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Dion Chan	Lab Assistant	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta

Woochan Song

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 290421)										
CG2104004-005	Anonymous	turbidity		E121	0.10	NTU	0.58	0.56	0.02	Diff <2x LOR	
Physical Tests (QC	Lot: 290541)										
CG2104017-001	RG_GHFF_WS_GGCAMP _2021-09-09_NP	turbidity		E121	0.10	NTU	0.24	0.26	0.01	Diff <2x LOR	
Physical Tests (QC	Lot: 291257)										
CG2104004-002	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	327	323	1.23%	20%	
Physical Tests (QC	Lot: 292794)										
CG2104004-008	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	280	265	5.69%	20%	
Physical Tests (QC	Lot: 296880)										
CG2104006-003	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	480	491	2.29%	15%	
Physical Tests (QC	Lot: 297438)										
CG2104005-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 298094)										
CG2104004-010	Anonymous	pH		E108	0.10	pH units	5.01	5.03	0.398%	4%	
Physical Tests (QC	Lot: 298095)									1	
CG2104004-010	Anonymous	conductivity		E100	2.0	μS/cm	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 298096)									1	
CG2104004-010	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 290452)										
CG2104017-001	RG_GHFF_WS_GGCAMP _2021-09-09_NP	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0012	0.0014	0.0002	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 290679)										
CG2104017-001	RG_GHFF_WS_GGCAMP _2021-09-09_NP	fluoride	16984-48-8	E235.F	0.100	mg/L	0.148	0.139	0.009	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 290680)										
CG2104017-001	RG_GHFF_WS_GGCAMP _2021-09-09_NP	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	1040	992	5.14%	20%	
Anions and Nutrien	ts (QC Lot: 290681)										
CG2104017-001	RG_GHFF_WS_GGCAMP _2021-09-09_NP	bromide	24959-67-9	E235.Br-L	0.250	mg/L	<0.250	<0.250	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 290682)										

Page	: 5 of 19
Work Order	: CG2104017 Amendment 1
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	s (QC Lot: 290682) - co	ntinued									
CG2104017-001	RG_GHFF_WS_GGCAMP _2021-09-09_NP	chloride	16887-00-6	E235.CI-L	0.50	mg/L	2.08	1.89	0.19	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 290683)										
CG2104017-001	RG_GHFF_WS_GGCAMP _2021-09-09_NP	nitrate (as N)	14797-55-8	E235.NO3-L	0.0250	mg/L	7.67	7.28	5.24%	20%	
Anions and Nutrient	s (QC Lot: 290684)										
CG2104017-001	RG_GHFF_WS_GGCAMP _2021-09-09_NP	nitrite (as N)	14797-65-0	E235.NO2-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 291325)										
CG2104005-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0048	0.0050	0.0003	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 294397)										
CG2104001-003	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	TKND
Anions and Nutrient	s (QC Lot: 300319)										
CG2104007-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 297482	2)									
CG2104007-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	2.28	2.14	0.14	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 297485	i)									
CG2104006-002	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	1.36	1.39	0.02	Diff <2x LOR	
Total Metals (QC Lo	ot: 292723)										
CG2103999-001	Anonymous	aluminum, total	7429-90-5	E420	0.0060	mg/L	<0.0060	<0.0060	0	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00020	mg/L	0.00230	0.00214	6.83%	20%	
		arsenic, total	7440-38-2	E420	0.00020	mg/L	0.00024	0.00022	0.00002	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00020	mg/L	0.0167	0.0172	2.75%	20%	
		beryllium, total	7440-41-7	E420	0.040	mg/L	<0.040 µg/L	<0.000040	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.020	mg/L	0.108	0.105	0.003	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0100	mg/L	2.62 µg/L	0.00275	4.86%	20%	
		calcium, total	7440-70-2	E420	0.100	mg/L	623	606	2.88%	20%	
		cobalt, total	7440-48-4	E420	0.20	mg/L	87.6 µg/L	0.0899	2.55%	20%	
		copper, total	7440-50-8	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.020	mg/L	0.144	0.145	0.002	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000100	mg/L	0.000177	0.000163	0.000014	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0020	mg/L	0.938	0.894	4.74%	20%	
		magnesium, total	7439-95-4	E420	0.0100	mg/L	292	293	0.383%	20%	
		manganese, total	7439-96-5	E420	0.00020	mg/L	0.751	0.751	0.0845%	20%	
		molybdenum, total	7439-98-7	E420	0.000100	mg/L	0.00466	0.00453	2.87%	20%	
		nickel, total	7440-02-0	E420	0.00100	mg/L	0.453	0.474	4.60%	20%	

Page	: 6 of 19
Work Order	: CG2104017 Amendment 1
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water							Labora	tory Duplicate (DU	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC L	ot: 292723) - continued										
CG2103999-001	Anonymous	potassium, total	7440-09-7	E420	0.100	mg/L	16.8	17.4	3.12%	20%	
		selenium, total	7782-49-2	E420	0.100	mg/L	98.9 µg/L	0.100	1.51%	20%	
		silicon, total	7440-21-3	E420	0.20	mg/L	2.90	2.93	1.14%	20%	
ub-Matrix: Water Laboratory sample ID Client sam Total Metals (QC Lot: 292723) CG2103999-001 Anonymous Total Metals (QC Lot: 292724) CG2103999-001 Anonymous Total Metals (QC Lot: 292724) CG2103999-001 Anonymous Total Metals (QC Lot: 296198) CG2104017-001 RG_GHFF2021-09-0 Dissolved Metals (QC Lot: 295 CG2103975-001 Anonymous CG2103975-001 Anonymous		silver, total	7440-22-4	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		sodium, total	17341-25-2	E420	0.100	mg/L	15.6	16.2	3.70%	20%	
		strontium, total	7440-24-6	E420	0.00040	mg/L	1.11	1.04	6.87%	20%	
		sulfur, total	7704-34-9	E420	1.00	mg/L	435	434	0.285%	20%	
		thallium, total	7440-28-0	E420	0.000020	mg/L	0.000398	0.000370	7.45%	20%	
		tin, total	7440-31-5	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000020	mg/L	0.0428	0.0390	9.41%	20%	
		vanadium, total	7440-62-2	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0060	mg/L	0.191	0.193	1.09%	20%	
Total Metals (QC L	ot: 292724)										
CG2103999-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Total Metals (OC L	ot: 296198)										
CG2104017-001	RG GHFF WS GGCAMP	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR	
	_2021-09-09_NP	<i></i>									
Dissolved Metals (QC Lot: 292384)										
CG2103975-001	Anonymous	copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00043	0.00045	0.00003	Diff <2x LOR	
CG2103975-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0029	0.0028	0.00006	Diff <2x LOR	
		antimony dissolved	7440-36-0	F421		4	0.00221	0.00236	0.000/	200/	
		ananony, alooonoa			0.00010	mg/L	0.00231	0.00200	2.26%	20%	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L mg/L	0.00231	0.00012	0.00002	Diff <2x LOR	
		arsenic, dissolved barium, dissolved	7440-38-2 7440-39-3	E421 E421	0.00010 0.00010 0.00010	mg/L mg/L mg/L	0.00011	0.00012	0.00002 2.65%	20% Diff <2x LOR 20%	
		arsenic, dissolved barium, dissolved beryllium, dissolved	7440-38-2 7440-39-3 7440-41-7	E421 E421 E421	0.00010 0.00010 0.00010 0.020	mg/L mg/L mg/L mg/L	0.00231 0.00011 0.0232 <0.020 µg/L	0.00012 0.0239 <0.000020	2.26% 0.00002 2.65% 0	20% Diff <2x LOR 20% Diff <2x LOR	
		arsenic, dissolved barium, dissolved beryllium, dissolved bismuth, dissolved	7440-38-2 7440-39-3 7440-41-7 7440-69-9	E421 E421 E421 E421 E421	0.00010 0.00010 0.00010 0.020 0.000050	mg/L mg/L mg/L mg/L	0.00231 0.00011 0.0232 <0.020 µg/L <0.000050	0.00012 0.0239 <0.000020 <0.000050	2.26% 0.00002 2.65% 0 0	20% Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR	
		arsenic, dissolved barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved	7440-38-2 7440-39-3 7440-41-7 7440-69-9 7440-42-8	E421 E421 E421 E421 E421 E421	0.00010 0.00010 0.00010 0.020 0.000050 0.010	mg/L mg/L mg/L mg/L mg/L	0.00231 0.00011 0.0232 <0.020 μg/L <0.000050 0.061	0.00012 0.0239 <0.000020 <0.000050 0.062	2.26% 0.00002 2.65% 0 0 0	20% Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR Diff <2x LOR	
		arsenic, dissolved barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved cadmium, dissolved	7440-38-2 7440-39-3 7440-41-7 7440-69-9 7440-42-8 7440-42-8	E421 E421 E421 E421 E421 E421 E421	0.00010 0.00010 0.020 0.00050 0.010 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L	0.00231 0.00011 0.0232 <0.020 µg/L <0.000050 0.061 0.307 µg/L	0.00012 0.0239 <0.000020 <0.000050 0.062 0.000325	2.26% 0.00002 2.65% 0 0 0.0008 5.45%	Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR Diff <2x LOR 20%	
		arsenic, dissolved barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved cadmium, dissolved calcium, dissolved	7440-38-2 7440-39-3 7440-41-7 7440-69-9 7440-42-8 7440-42-8 7440-43-9 7440-70-2	E421 E421 E421 E421 E421 E421 E421 E421	0.00010 0.00010 0.020 0.000050 0.010 0.0050 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00231 0.00011 0.0232 <0.020 μg/L <0.000050 0.061 0.307 μg/L 257	0.00012 0.0239 <0.000020 <0.000050 0.062 0.000325 263	2.26% 0.00002 2.65% 0 0 0.0008 5.45% 2.43%	20% Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR 20% 20%	
		arsenic, dissolved barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved cadmium, dissolved calcium, dissolved cobalt, dissolved	7440-38-2 7440-39-3 7440-41-7 7440-69-9 7440-42-8 7440-43-9 7440-70-2 7440-70-2	E421 E421 E421 E421 E421 E421 E421 E421	0.00010 0.00010 0.020 0.000050 0.010 0.0050 0.050 0.10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00231 0.00011 0.0232 <0.020 μg/L <0.000050 0.061 0.307 μg/L 257 31.0 μg/L	0.00012 0.0239 <0.000020 <0.000050 0.062 0.000325 263 0.0312	2.26% 0.00002 2.65% 0 0 0.0008 5.45% 2.43% 0.760%	20% Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR 20% 20% 20%	
		arsenic, dissolved barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved cadmium, dissolved calcium, dissolved cobalt, dissolved iron, dissolved	7440-38-2 7440-39-3 7440-41-7 7440-69-9 7440-42-8 7440-43-9 7440-70-2 7440-70-2 7440-48-4 7439-89-6	E421 E421 E421 E421 E421 E421 E421 E421	0.00010 0.00010 0.020 0.00050 0.010 0.050 0.050 0.10 0.010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00231 0.00011 0.0232 <0.020 µg/L <0.000050 0.061 0.307 µg/L 257 31.0 µg/L 0.055	0.00012 0.0239 <0.000020 <0.000050 0.062 0.000325 263 0.0312 0.054	2.26% 0.00002 2.65% 0 0 0.0008 5.45% 2.43% 0.760% 0.001	20% Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR 20% 20% 20% Diff <2x LOR	
		arsenic, dissolved barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved cadmium, dissolved calcium, dissolved cobalt, dissolved iron, dissolved lead, dissolved	7440-38-2 7440-39-3 7440-69-9 7440-69-9 7440-42-8 7440-43-9 7440-70-2 7440-70-2 7440-48-4 7439-89-6 7439-92-1	E421 E421 E421 E421 E421 E421 E421 E421	0.00010 0.00010 0.020 0.00050 0.010 0.050 0.10 0.010 0.010 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00231 0.00011 0.0232 <0.020 µg/L <0.000050 0.061 0.307 µg/L 257 31.0 µg/L 0.055 <0.000050	0.00012 0.0239 <0.000020 <0.000050 0.062 0.000325 263 0.0312 0.054 <0.000050	2.26% 0.00002 2.65% 0 0 0.0008 5.45% 2.43% 0.760% 0.001 0	20% Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR 20% 20% 20% Diff <2x LOR Diff <2x LOR	
		arsenic, dissolved barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved cadmium, dissolved calcium, dissolved cobalt, dissolved lead, dissolved lithium, dissolved	7440-38-2 7440-39-3 7440-69-9 7440-42-8 7440-42-8 7440-43-9 7440-70-2 7440-70-2 7440-48-4 7439-89-6 7439-92-1 7439-93-2	E421 E421 E421 E421 E421 E421 E421 E421	0.00010 0.00010 0.020 0.000050 0.010 0.0050 0.050 0.10 0.010 0.000050 0.0010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00231 0.00011 0.0232 <0.020 μg/L <0.061 0.307 μg/L 257 31.0 μg/L 0.055 <0.000050 0.716	0.00012 0.0239 <0.000020 <0.000050 0.062 0.000325 263 0.0312 0.054 <0.00050 0.717	2.26% 0.00002 2.65% 0 0 0.0008 5.45% 2.43% 0.760% 0.001 0 0.0122%	20% Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR 20% 20% 20% Diff <2x LOR Diff <2x LOR Diff <2x LOR	
		arsenic, dissolved barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved cadmium, dissolved calcium, dissolved cobalt, dissolved iron, dissolved lead, dissolved lithium, dissolved magnesium, dissolved	7440-38-2 7440-39-3 7440-41-7 7440-69-9 7440-42-8 7440-42-8 7440-43-9 7440-70-2 7440-48-4 7439-89-6 7439-92-1 7439-93-2 7439-95-4	E421 E421 E421 E421 E421 E421 E421 E421	0.00010 0.00010 0.020 0.000050 0.010 0.0050 0.10 0.010 0.00050 0.0010 0.0010 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00231 0.00011 0.0232 <0.020 µg/L <0.000050 0.061 0.307 µg/L 257 31.0 µg/L 0.055 <0.000050 0.716 103	0.00012 0.0239 <0.000020 <0.000050 0.062 0.000325 263 0.0312 0.054 <0.000050 0.717 101	2.28% 0.00002 2.65% 0 0 0.0008 5.45% 2.43% 0.760% 0.001 0 0.122% 1.52%	20% Diff <2x LOR 20% Diff <2x LOR 20% 20% 20% Diff <2x LOR 0iff <2x LOR Diff <2x LOR 20% 20%	
		arsenic, dissolved barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved cadmium, dissolved calcium, dissolved cobalt, dissolved iron, dissolved lead, dissolved lithium, dissolved magnesium, dissolved manganese, dissolved	7440-38-2 7440-39-3 7440-41-7 7440-69-9 7440-42-8 7440-70-2 7440-70-2 7440-70-2 7440-8-4 7439-89-6 7439-93-2 7439-93-2 7439-95-4 7439-96-5	E421 E421 E421 E421 E421 E421 E421 E421	0.00010 0.00010 0.020 0.00050 0.010 0.050 0.10 0.010 0.00050 0.0010 0.0050 0.0010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00231 0.00011 0.0232 <0.020 µg/L <0.000050 0.061 0.307 µg/L 257 31.0 µg/L 0.055 <0.000050 0.716 103 0.213	0.00012 0.0239 <0.000020 <0.000050 0.062 0.000325 263 0.0312 0.054 <0.000050 0.717 101 0.215	2.26% 0.00002 2.65% 0 0 0.0008 5.45% 2.43% 0.760% 0.001 0 0.122% 1.52% 1.30%	20% Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR 20% 20% 20% Diff <2x LOR Diff <2x LOR Diff <2x LOR 20% 20%	

Page	: 7 of 19
Work Order	: CG2104017 Amendment 1
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 292384) - co	ntinued									
CG2103975-001	Anonymous	nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.142	0.143	0.758%	20%	
	potassium, dissolved	7440-09-7	E421	0.050	mg/L	13.5	13.5	0.538%	20%		
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	3.67 µg/L	0.00363	1.12%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.69	2.65	1.70%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.050	mg/L	11.3	11.4	1.15%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.613	0.634	3.39%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	154	154	0.584%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000148	0.000155	5.24%	20%	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.0157	0.0160	2.18%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.216	0.219	1.06%	20%	
Dissolved Metals (QC Lot: 292385)										
CG2103975-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 294342)										
CG2104004-006	Anonymous	mercury, dissolved	7439-97-6	E509	0.000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR	

Qualifiers

Qualifier TKND Description

TKN duplication was poor due to interference from high nitrate, which causes negative bias on TKN.

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 290421)						
turbidity		E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 290541)						
turbidity		E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 291251)						
solids, total suspended [TSS]		E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 291257)						
solids, total dissolved [TDS]		E162	10	mg/L	<10	
Physical Tests (QCLot: 292788)						
solids, total suspended [TSS]		E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 292794)						
solids, total dissolved [TDS]		E162	10	mg/L	<10	
Physical Tests (QCLot: 297438)						
acidity (as CaCO3)		E283	2	mg/L	<2.0	
Physical Tests (QCLot: 298095)						
conductivity		E100	1	µS/cm	<1.0	
Physical Tests (QCLot: 298096)						
alkalinity, bicarbonate (as CaCO3)		E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)		E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)		E290	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 290452)						
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 290679)						
fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 290680)						
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 290681)						
bromide	24959-67-9	E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 290682)						
chloride	16887-00-6	E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 290683)						
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 290684)						

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 2906	84) - continued					
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 2913)	25)					
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 2943	97)					
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 3003	19)					
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCLot	: 297482)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot:	: 297485)					
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 292723)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.0000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	MBRR
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	17341-25-2	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
					1	

Sub-Matrix: Water

Analyte CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 292723) - continued					
sulfur, total 7704-34-9	E420	0.5	mg/L	<0.50	
thallium, total 7440-28-0	E420	0.00001	mg/L	<0.000010	
tin, total 7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total 7440-32-6	E420	0.0003	mg/L	<0.00030	
uranium, total 7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total 7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total 7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 292724)					
chromium, total 7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 296198)					
mercury, total 7439-97-6	E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 292384)					
aluminum, dissolved 7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved 7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved 7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved 7440-39-3	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved 7440-41-7	E421	0.00002	mg/L	<0.000020	
bismuth, dissolved 7440-69-9	E421	0.00005	mg/L	<0.000050	
boron, dissolved 7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved 7440-43-9	E421	0.000005	mg/L	<0.000050	
calcium, dissolved 7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved 7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved 7440-50-8	E421	0.0002	mg/L	<0.00020	MBRR
iron, dissolved 7439-89-6	E421	0.01	mg/L	<0.010	
lead, dissolved 7439-92-1	E421	0.00005	mg/L	<0.000050	
lithium, dissolved 7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved 7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved 7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved 7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved 7440-02-0	E421	0.0005	mg/L	<0.00050	
potassium, dissolved 7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved 7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved 7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved 7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved 17341-25-2	E421	0.05	mg/L	<0.050	
strontium, dissolved 7440-24-6	E421	0.0002	mg/L	<0.00020	

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier				
Dissolved Metals (QCLot: 292384) - continued										
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50					
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010					
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010					
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030					
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010					
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050					
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010					
Dissolved Metals (QCLot: 292385)										
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010					
Dissolved Metals (QCLot: 294342)										
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050					

Qualifiers

Qualifier

MBRR

Description

Initial MB for this submission had positive results for flagged analyte (data not shown). Low level samples were repeated with new QC (2nd MB results shown). High level results (>5x initial MB level) and non-detect results were reported and are defensible

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Aging CA3 Number (No. A Summer (Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
AnalyseCAS Maney MethadLORUnitConcentrationL.C.SLawHughQuadifierPhysical Tosts (CCL: 290421)-E1210.1NTU200 NTU1000.65.00115.0Physical Tosts (CCL: 290541)NTU200 NTU1000.65.00115.0Physical Tosts (CCL: 291557)NTU1000 mg/L10100 mg/L105.0105.0115.0Physical Tosts (CCL: 291257)						Spike	Recovery (%)	Recovery	Recovery Limits (%)		
Physical Tosts (QCL01: 290421) Image: Physical Tosts (QCL01: 290547) Image: Physical Tosts (QCL01: 291257) Image: Physical Tosts (QCL01: 291754) Image: Physical Tosts (QCL01: 291667) Image: Physical Tosts (QCL01: 291667) Image: Physical Tosts (QCL01: 291676) Image: Physical Tosts (QCL01: 291676)	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
turbidyTotalDitNTU200 NTU100085.01015	Physical Tests (QCLot: 290421)										
$ \frac{Prysical Tests} (QCLot: 290541) \\ \text{which with a supprised Tests} (QCLot: 291251) \\ \text{which with a supprised Tests} (QCLot: 292783) \\ \text{which with a supprised Tests} (QCLot: 292783) \\ \text{which with a supprised Tests} (QCLot: 292783) \\ \text{which with a supprised Tests} (QCLot: 292784) \\ \text{which with a supprised Tests} (QCLot: 296880) \\ \text{which with a supprised Tests} (QCLot: 296880) \\ \text{which with a supprised Tests} (QCLot: 294784) \\ \text{which with a supprised Tests} (QCLot: 294784) \\ \text{which with a supprised Tests} (QCLot: 294843) \\ \text{which with a supprised Tests} (QCLot: 298080) \\ \text{which with a supprised Tests} (QCLot: 294843) \\ \text{which with a supprised Tests} (QCLot: 290892) \\ \text{which with a supprised Tests} (QCLot: 290852) \\ \text{which a supprised Tests} (QCLot: 290854) \\ $	turbidity		E121	0.1	NTU	200 NTU	100.0	85.0	115		
tunidity … 121 0.1 NTU 200 NTU 99.3 68.0 115 … Physical rests (QCLot: 291257) … 150 mgL 150 mgL 0.00 68.0 115 … Physical rests (QCLot: 29278) … 160 mgL 1000 mgL 98.9 68.0 115 … Physical rests (QCLot: 29278) … mgL 150 mgL 0.03 68.0 115 … Physical rests (QCLot: 29278) … mgL 150 mgL 0.03 68.0 115 … Physical rests (QCLot: 29278) … mgL 150 mgL 0.03 68.0 115 … Quadamereductor potential (PKP) … E162 … mY 228 mV 0.161 95.4 104 … Quadamereductor potential (PKP) … E162 … mY 228 mV 0.161 95.4 104.0 … … Quadamereductor potential (PKP) … E162 … mY 228 mV 101 85.0 101 … … … Quadamereductor potential (PKP)<	Physical Tests (QCLot: 290541)										
physical Tests (QCL ot: 29157) effed. 1 mg/L 150 mg/L 0.00 0.00 0.00 0.0	turbidity		E121	0.1	NTU	200 NTU	99.3	85.0	115		
solds, bul sugended [TSs] Item (Inclusted (In	Physical Tests (QCLot: 291251)										
Physical Tests (QCL0: 291257) Image: Coll of 29748) Image: Coll of 29748) Image: Coll of 29748) Physical Tests (QCL0: 29278) E1004 10 mglt. 150 mglt. 1003 8.8.0 115 Physical Tests (QCL0: 29278) E1004 10 mglt. 150 mglt. 1003 8.8.0 115 Physical Tests (QCL0: 29274) E1004 10 mglt. 1000 mglt. 98.08 85.00 115 Physical Tests (QCL0: 29274) E102 0 mglt. 1000 mglt. 95.48 50.40 Physical Tests (QCL0: 292748) mglt. 1000 mglt. 95.48 50.44 50.44 Physical Tests (QCL0: 298080) mglt. 60.07 1101 86.0 115 Physical Tests (QCL0: 298093) E103 2 mglt. 146.6 µScm. 100 98.6 1010 Physical Tests (QCL0: 298095) E103 100 mglt. 146.6 µScm. 101 85.0 115 Physical Tests (QCL0: 298095) E20 10 mglt. 100	solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	100	85.0	115		
golds, total dissolved [T05] E162 10 mglL 1000 mglL 98.9 86.0 115 Physical Tests (QCLot: 29278) E160 1 mglL 1000 mglL 103 85.00 115 Solds, total augeoved [T05] E162 10 mglL 1000 mglL 97.8 85.0 115 Solds, total augeoved [T05] E162 mV 220 mV 101 95.4 104 Physical Tests (QCLot: 29888) mV 220 mV 101 95.4 104 Physical Tests (QCLot: 298080) mV 220 mV 101 95.4 101 Physical Tests (QCLot: 298080) mV 220 mV 1010 95.6 115 Physical Tests (QCLot: 298094) E100 1 µS/cm 146.9 µS/cm 98.1 90.0 110 Physical Tests (QCLot: 298080) E100 1 µS/cm 146.9 µS/cm 90.1 100	Physical Tests (QCLot: 291257)										
Physical Tests (QCLot: 292788) Image: Control of the set of	solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	98.9	85.0	115		
solids. total suspended [TSS] E 160-L 1 mg/L 150 mg/L 103 85.0 115 Physical Tosts (QCL0t: 292794) E 162 10 mg/L 1000 mg/L 97.8 85.0 115 Physical Tosts (QCL0t: 296880) E 125 mV 220 mV 101 95.4 104 Physical Tosts (QCL0t: 296880) E 125 mV 220 mV 101 95.4 104 Solids load disolos diso	Physical Tests (QCLot: 292788)										
Physical Tests (QCLot: 292794) Image: Control of the second	solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	103	85.0	115		
colds, total dissolved [TDS] E162 10 mg/L 1000 mg/L 97.8 85.0 115 Physical Tosts (QCL 01: 296880) mV 220 mV 101 95.4 104 Physical Tosts (QCL 01: 297438) mV 220 mV 101 85.0 115 addity (as CaC03) E283 2 mg/L 50 mg/L 110 85.0 115 Physical Tosts (QCL 01: 298094) E108 pH units 100 98.6 101 Physical Tosts (QCL 01: 298095) E100 1 µS/cm 146.9 µS/cm 99.1 90.0 110 conductivity E100 1 µS/cm 146.9 µS/cm 99.1 90.0 110 conductivity E200 1 mg/L 500 mg/L 101 85.0 115 Anions and Nutrients (QCL 01: 290696) 1 mg/L 500 mg/L 101	Physical Tests (QCLot: 292794)										
Physical Tests (QCLot: 296880) mV 220 mV 101 95.4 104 Physical Tests (QCLot: 297438) EX83 2 mg/L 50 mg/L 110 85.0 115 Physical Tests (QCLot: 298094) E108 PH units 7 pH units 100 98.6 101 Physical Tests (QCLot: 298095) E108 PH units 7 pH units 100 98.6 101 Physical Tests (QCLot: 298095) E100 1 µS/em 146.9 µS/em 90.0 110 Physical Tests (QCLot: 298096) E290 1 mg/L 500 mg/L 101 85.0 115 Alions and Nutrients (QCLot: 290452) E290 0.001 mg/L 500 mg/L 101 85.0 110 Anions and Nutrients (QCLot: 290679) 14265-44-2 E37.6-U 0.02 mg/L 1 mg/L 98.3 90.0 110	solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	97.8	85.0	115		
Description Description E125 MV 220 mV 101 95.4 104 Physical Tests (QCLot: 297438) E283 2 mg/L 50 mg/L 110 85.0 115 Physical Tests (QCLot: 298094) E108 pH units 7 pH units 100 98.6 101 Physical Tests (QCLot: 298095) E108 pH units 7 pH units 100 98.6 101 Physical Tests (QCLot: 298095) E100 1 mg/L 500 mg/L 99.1 90.0 110 Physical Tests (QCLot: 298096) E290 1 mg/L 500 mg/L 101 85.0 115 Anions and Nutrients (QCLot: 290673) E290 mg/L mg/L 500 mg/L 101 89.9 80.0 110 Anions and Nutrients (QCLot: 290673) Builde (as S0.4) 14808-79.8 E235.50.4	Physical Tests (OCI of: 296880)						1				
Physical Tests (QCLot: 297438) constraint of the set of th	oxidation-reduction potential [ORP]		E125		mV	220 mV	101	95.4	104		
adjw (as CaC03) E283 2 mg/L 50 mg/L 110 85.0 115 Physical Tests (QCL01: 298094) E108 pH units 7 pH units 7 pH units 100 98.6 101 Physical Tests (QCL01: 298095) E100 1 μS/cm 146.9 μS/cm 99.1 90.0 110 Physical Tests (QCL01: 298096) E100 1 mg/L 500 mg/L 101 85.0 115 Physical Tests (QCL01: 298096) E290 1 mg/L 500 mg/L 101 85.0 115 Anions and Nutrients (QCL01: 290452) E290 1 mg/L 500 mg/L 101 85.0 115 Anions and Nutrients (QCL01: 290679) 14265444.2 E37.F 0.02 mg/L 1 mg/L 98.3 90.0 110 Anions and Nutrients (QCL01: 290680) gained and barber B E325.F 0.02 mg/L 1 00 mg/L 101 90.0 110	Physical Tests (OCI of: 297438)						1				
Physical Tests (QCLot: 298094) E108 pH units 7 pH units 100 98.6 101 Physical Tests (QCLot: 298095) E100 1 µS/cm 146.9 µS/cm 99.1 99.0 110 Physical Tests (QCLot: 298096) E100 1 µS/cm 146.9 µS/cm 99.1 90.0 110 Physical Tests (QCLot: 298096) E290 1 mg/L 500 mg/L 101 85.0 115 Anions and Nutrients (QCLot: 290452) E290 0.001 mg/L 0.1 mg/L 98.9 80.0 1200 Anions and Nutrients (QCLot: 290679) 1426544-2 E37.F 0.02 mg/L 1 mg/L 98.3 90.0 110 Anions and Nutrients (QCLot: 290680) Size Size Size Size Size Size Size Size	acidity (as CaCO3)		E283	2	mg/L	50 mg/L	110	85.0	115		
pil pH units 7 pH units 100 98.6 101 Physical Tests (QCLot: 298095) E100 1 μS/cm 146.9 μS/cm 99.1 90.0 110 Physical Tests (QCLot: 298096) E100 1 μS/cm 146.9 μS/cm 99.1 90.0 110 Physical Tests (QCLot: 298096) E200 1 mg/L 500 mg/L 101 85.0 115 atkalinity, total (as CaCO3) E290 1 0.001 mg/L 500 mg/L 101 85.0 115 Ations and Nutrients (QCLot: 290452) E376-U 0.001 mg/L 0.1 mg/L 98.9 80.0 120 Anions and Nutrients (QCLot: 290679) Anions and Nutrients (QCLot: 290680) 1408-79-8 E325.5V 0.3 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290681) 0.05 mg/L 0.	Physical Tests (OCI of: 298094)										
Physical Tests (QCLot: 298095) Event <	pH		E108		pH units	7 pH units	100	98.6	101		
Anions and Nutrients (QCLot: 290679) E130 1 µS/cm 146.9 µS/cm 99.1 90.0 110 Anions and Nutrients (QCLot: 290452) E290 1 mg/L 500 mg/L 101 85.0 115 Anions and Nutrients (QCLot: 290452) E378-U 0.001 mg/L 0.1 mg/L 98.9 80.0 110 Anions and Nutrients (QCLot: 290679) E378-U 0.002 mg/L 1 mg/L 98.3 90.0 110 Anions and Nutrients (QCLot: 290679) Sulfate (as SO4) 14808-79-8 E325.FC 0.02 mg/L 100 mg/L 101 90.0 110 Sulfate (as SO4) 14808-79-8 E325.SO4 0.3 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290681) bronide 24959-67.9 E325.FC-L 0.05 mg/L 0.5 mg	Physical Tests (OCI of: 298095)										
Physical Tests (QCLot: 298096) alkalinity, total (as CaC03) E290 1 mg/L 500 mg/L 101 85.0 115 Anions and Nutrients (QCLot: 290452) phosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L 0.1 mg/L 98.9 80.0 120 Anions and Nutrients (QCLot: 290679)	conductivity		E100	1	µS/cm	146.9 µS/cm	99.1	90.0	110		
Anjoear locus (QCLot: 200452) E30 1 mg/L 500 mg/L 101 85.0 115 Anions and Nutrients (QCLot: 200452) Anions and Nutrients (QCLot: 200452) 0.001 mg/L 0.1 mg/L 98.9 80.0 120 Anions and Nutrients (QCLot: 200679) 115 101 90.0 110 110 <th< td=""><td>Physical Tests (OCI of: 298096)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Physical Tests (OCI of: 298096)										
Image: Anions and Nutrients (QCLot: 290452) phosphate, ortho-, dissolved (as P) 1426544-2 Image: Anions and Nutrients (QCLot: 290679) Image: Anions and Nutrients (QCLot: 290679) Image: Anions and Nutrients (QCLot: 290680) Image: Anions an	alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	101	85.0	115		
Anions and Nutrients (QCLot: 290452) Main of the second Nutrients (QCLot: 290679) Main of the second Nutrients (QCLot: 290679) Main of the second Nutrients (QCLot: 290679) Main of the second Nutrients (QCLot: 290680) Main of the second Nutrients (QCLot: 290680) Main of the second Nutrients (QCLot: 290680) Main of the second Nutrients (QCLot: 290681) Main of the second Nutrients (QCLot: 290681) Main of the second Nutrients (QCLot: 290682) Main of the second Nutrients (QCLot: 290682											
Image: Description of the second s	Anions and Nutrients (QCLot: 290452)										
Anions and Nutrients (QCLot: 290679) 16984-48-8 E235.F 0.02 mg/L 1 mg/L 98.3 90.0 110 Anions and Nutrients (QCLot: 290680) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290681) 5235.SO4 0.3 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290681) 5235.SP-L 0.05 mg/L 0.5 mg/L 103 85.0 115 Anions and Nutrients (QCLot: 290682) 5235.SP-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290682) 5235.SP-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290682) 523.CF-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290682) 523.CF-L 0.1 0.1 100 mg/L 101 </td <td>phosphate, ortho-, dissolved (as P)</td> <td>14265-44-2</td> <td>E378-U</td> <td>0.001</td> <td>mg/L</td> <td>0.1 mg/L</td> <td>98.9</td> <td>80.0</td> <td>120</td> <td></td>	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.1 mg/L	98.9	80.0	120		
Initial constraints (QCLot: 290680) E235.F 0.02 mg/L 1 mg/L 98.3 90.0 110 Anions and Nutrients (QCLot: 290680) E235.SO4 0.3 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290681) E235.SO4 0.3 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290681) E235.Br-L 0.05 mg/L 0.5 mg/L 103 85.0 115 Anions and Nutrients (QCLot: 290682) E235.Br-L 0.05 mg/L 100 mg/L 103 85.0 115 Anions and Nutrients (QCLot: 290682) E235.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290682) E235.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290682) E235.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290682) E235.Cl-L 0.1 mg/L 100 mg/	Anions and Nutrients (QCLot: 290679)										
Anions and Nutrients (QCLot: 290680) 14808-79-8 E335.SO4 0.3 mg/L 100 mg/L 101 90.0 110 sulfate (as SO4) 14808-79-8 E335.SO4 0.3 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290681) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 103 85.0 115 Anions and Nutrients (QCLot: 290682) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110	fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	98.3	90.0	110		
Sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290681) 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 103 85.0 115 Anions and Nutrients (QCLot: 290682) Choride E235.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290682) E235.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 290682) E235.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (OCL et: 200682) E235.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110	Anions and Nutrients (QCLot: 290680)										
Anions and Nutrients (QCLot: 290681) 24959-67-9 E33.Br-L 0.05 mg/L 0.5 mg/L 103 85.0 115 Anions and Nutrients (QCLot: 290682) Anions and Nutrients (QCLot: 290682) Anions and Nutrients (QCLot: 290682) 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110	sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	101	90.0	110		
Anione and Nutrients (QCLot: 290682) 24959-67-9 E335.Br-L 0.05 mg/L 0.5 mg/L 103 85.0 115 Anions and Nutrients (QCLot: 290682) chloride 16887-00-6 E335.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110	Anions and Nutrients (QCI of: 290681)										
Anions and Nutrients (QCLot: 290682) Chloride 16887-00-6 E235.CI-L 0.1 mg/L 100 mg/L 101 90.0 110	bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	103	85.0	115		
chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110	Anions and Nutrients (QCI of: 290682)						· · · · · ·		1	1	
	chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	101	90.0	110		
	Anions and Nutrients (QCLot: 290683)									1	

Page	: 13 of 19
Work Order	: CG2104017 Amendment 1
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report				
				Spike	Recovery (%)	Recovery Limits (%)		
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients(QCLot: 290683)	- continued							
nitrate (as N)	14797-55-8 E235.NO	3-L 0.005	mg/L	2.5 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 290684)								
nitrite (as N)	14797-65-0 E235.NO2	2-L 0.001	mg/L	0.5 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 291325)								
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	8.32 mg/L	102	80.0	120	
Anions and Nutrients (QCLot: 294397)								
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	106	75.0	125	
Anions and Nutrients (QCLot: 300319)								
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	101	85.0	115	
Organic / Inorganic Carbon (<u>QCLot: 29</u>	7482)							
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	10 mg/L	93.2	80.0	120	
Organic / Inorganic Carbon (QCLot: 29	7485)							
carbon, total organic [TOC]	E355-L	0.5	mg/L	10 mg/L	99.8	80.0	120	
Total Metals (QCLot: 292723)								
aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	107	80.0	120	
antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	102	80.0	120	
arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	100	80.0	120	
barium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	102	80.0	120	
peryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	103	80.0	120	
bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	99.4	80.0	120	
ooron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	100	80.0	120	
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	95.9	80.0	120	
calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	102	80.0	120	
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	101	80.0	120	
copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	97.3	80.0	120	
ron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	102	80.0	120	
ead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	97.3	80.0	120	
ithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	106	80.0	120	
nagnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	107	80.0	120	
nanganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	103	80.0	120	
nolybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	100	80.0	120	
nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	99.8	80.0	120	
potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	104	80.0	120	
selenium, total	7782-49-2 E420	0.00005	mg/L	1 mg/L	96.8	80.0	120	
silicon, total	7440-21-3 E420	0.1	mg/L	10 ma/L	98.2	80.0	120	

Page	: 14 of 19
Work Order	: CG2104017 Amendment 1
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report				
				Spike Recovery (%) Recovery Limits (%)				
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 292723) - continued								
silver, total	7440-22-4 E420	0.00001	mg/L	0.1 mg/L	97.4	80.0	120	
sodium, total	17341-25-2 E420	0.05	mg/L	50 mg/L	105	80.0	120	
strontium, total	7440-24-6 E420	0.0002	mg/L	0.25 mg/L	106	80.0	120	
sulfur, total	7704-34-9 E420	0.5	mg/L	50 mg/L	102	80.0	120	
thallium, total	7440-28-0 E420	0.00001	mg/L	1 mg/L	100	80.0	120	
tin, total	7440-31-5 E420	0.0001	mg/L	0.5 mg/L	96.0	80.0	120	
titanium, total	7440-32-6 E420	0.0003	mg/L	0.25 mg/L	101	80.0	120	
uranium, total	7440-61-1 E420	0.00001	mg/L	0.005 mg/L	97.7	80.0	120	
vanadium, total	7440-62-2 E420	0.0005	mg/L	0.5 mg/L	103	80.0	120	
zinc, total	7440-66-6 E420	0.003	mg/L	0.5 mg/L	104	80.0	120	
Total Metals (QCLot: 292724)								
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	98.8	80.0	120	
Total Metals (QCI of: 296198)					1			
mercury, total	7439-97-6 E508-L	0.5	ng/L	5 ng/L	96.2	80.0	120	
Dissolved Metals (QCLot: 292384)								1
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	2 mg/L	97.7	80.0	120	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	1 mg/L	104	80.0	120	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	1 mg/L	98.0	80.0	120	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	0.25 mg/L	104	80.0	120	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	0.1 mg/L	96.7	80.0	120	
bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	1 mg/L	98.7	80.0	120	
boron, dissolved	7440-42-8 E421	0.01	mg/L	1 mg/L	94.1	80.0	120	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	0.1 mg/L	100	80.0	120	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	50 mg/L	100	80.0	120	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	0.25 mg/L	98.7	80.0	120	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	0.25 mg/L	96.3	80.0	120	
iron, dissolved	7439-89-6 E421	0.01	mg/L	1 mg/L	98.1	80.0	120	
lead, dissolved	7439-92-1 E421	0.00005	mg/L	0.5 mg/L	95.0	80.0	120	
lithium, dissolved	7439-93-2 E421	0.001	mg/L	0.25 mg/L	96.3	80.0	120	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	50 mg/L	96.3	80.0	120	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	0.25 mg/L	97.8	80.0	120	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	0.25 mg/L	102	80.0	120	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	0.5 mg/L	97.1	80.0	120	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	50 mg/L	106	80.0	120	
colonium dissolved	7782 49 2 E421	0.00005	ma/L	1 ma/l	99.3	80.0	120	
selelliulli, dissolved	1102-43-2 6421	0.00000		i ing/E	00.0	00.0	120	

Page	: 15 of 19
Work Order	: CG2104017 Amendment 1
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

ub-Matrix: Water				Laboratory Control Sample (LCS) Report				
				Spike	Recovery (%)	Recovery (%) Recovery Limits (%)		
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 292384) - contin	ued							
silver, dissolved	7440-22-4 E421	0.00001	mg/L	0.1 mg/L	102	80.0	120	
sodium, dissolved	17341-25-2 E421	0.05	mg/L	50 mg/L	108	80.0	120	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	0.25 mg/L	99.8	80.0	120	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	50 mg/L	88.6	80.0	120	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	1 mg/L	95.1	80.0	120	
tin, dissolved	7440-31-5 E421	0.0001	mg/L	0.5 mg/L	100	80.0	120	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	0.25 mg/L	96.9	80.0	120	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	0.005 mg/L	99.4	80.0	120	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	0.5 mg/L	100	80.0	120	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	0.5 mg/L	103	80.0	120	
Dissolved Metals (QCLot: 292385)								
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	0.25 mg/L	98.9	80.0	120	
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	0.0001 mg/L	97.6	80.0	120	

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water			Matrix Spike (MS) Report							
					Spi	ike	Recovery (%)	Recovery	v Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutr	ients (QCLot: 290452)									
CG2104017-002	RG_GHNF_WS_GGCAMP_ 2021-09-10_NP	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0502 mg/L	0.05 mg/L	100	70.0	130	
Anions and Nutr	ients (QCLot: 290679)									
CG2104017-002	RG_GHNF_WS_GGCAMP_ 2021-09-10_NP	fluoride	16984-48-8	E235.F	0.827 mg/L	1 mg/L	82.7	75.0	125	
Anions and Nutr	ients (QCLot: 290680)									
CG2104017-002	RG_GHNF_WS_GGCAMP_ 2021-09-10_NP	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125	
Anions and Nutr	ients (QCLot: 290681)									
CG2104017-002	RG_GHNF_WS_GGCAMP_ 2021-09-10_NP	bromide	24959-67-9	E235.Br-L	0.497 mg/L	0.5 mg/L	99.4	75.0	125	
Anions and Nutr	ients (QCLot: 290682)									
CG2104017-002	RG_GHNF_WS_GGCAMP_ 2021-09-10_NP	chloride	16887-00-6	E235.CI-L	105 mg/L	100 mg/L	105	75.0	125	
Anions and Nutr	ients (QCLot: 290683)									
CG2104017-002	RG_GHNF_WS_GGCAMP_ 2021-09-10_NP	nitrate (as N)	14797-55-8	E235.NO3-L	ND mg/L	2.5 mg/L	ND	75.0	125	
Anions and Nutr	ients (QCLot: 290684)									
CG2104017-002	RG_GHNF_WS_GGCAMP_ 2021-09-10_NP	nitrite (as N)	14797-65-0	E235.NO2-L	0.528 mg/L	0.5 mg/L	106	75.0	125	
Anions and Nutr	ients (QCLot: 291325)									
CG2104005-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0593 mg/L	0.0676 mg/L	87.7	70.0	130	
Anions and Nutr	ients (QCLot: 294397)									
CG2104001-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.901 mg/L	2.5 mg/L	36.0	70.0	130	MSTN
Anions and Nutr	ients (QCLot: 300319)									
CG2104023-013	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.108 mg/L	0.1 mg/L	108	75.0	125	
Organic / Inorga	nic Carbon (QCLot: 297	482)								
CG2104007-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	26.5 mg/L	23.9 mg/L	111	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 297	485)								
CG2104006-002	Anonymous	carbon, total organic [TOC]		E355-L	25.0 mg/L	23.9 mg/L	105	70.0	130	
Total Metals (QC	CLot: 292723)									
CG2103999-002	Anonymous	aluminum, total	7429-90-5	E420	0.402 mg/L	0.4 mg/L	100	70.0	130	

Page : 17 of 19 Work Order : CG2104017 Amendment 1 Client : Teck Coal Limited Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water						Matrix Spike (MS) Report						
					Spil	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Total Metals (QCI	Lot: 292723) - continue	d										
CG2103999-002	Anonymous	antimony, total	7440-36-0	E420	0.0380 mg/L	0.04 mg/L	95.0	70.0	130			
		arsenic, total	7440-38-2	E420	0.0411 mg/L	0.04 mg/L	103	70.0	130			
		barium, total	7440-39-3	E420	0.0379 mg/L	0.04 mg/L	94.8	70.0	130			
		beryllium, total	7440-41-7	E420	0.0766 mg/L	0.08 mg/L	95.7	70.0	130			
		bismuth, total	7440-69-9	E420	0.0172 mg/L	0.02 mg/L	86.2	70.0	130			
		boron, total	7440-42-8	E420	0.205 mg/L	0.2 mg/L	103	70.0	130			
		cadmium, total	7440-43-9	E420	0.00717 mg/L	0.008 mg/L	89.6	70.0	130			
		calcium, total	7440-70-2	E420	ND mg/L	8 mg/L	ND	70.0	130			
		cobalt, total	7440-48-4	E420	ND mg/L	0.04 mg/L	ND	70.0	130			
		copper, total	7440-50-8	E420	0.0361 mg/L	0.04 mg/L	90.2	70.0	130			
		iron, total	7439-89-6	E420	3.83 mg/L	4 mg/L	95.7	70.0	130			
		lead, total	7439-92-1	E420	0.0350 mg/L	0.04 mg/L	87.6	70.0	130			
		lithium, total	7439-93-2	E420	ND mg/L	0.2 mg/L	ND	70.0	130			
		magnesium, total	7439-95-4	E420	ND mg/L	2 mg/L	ND	70.0	130			
		manganese, total	7439-96-5	E420	ND mg/L	0.04 mg/L	ND	70.0	130			
		molybdenum, total	7439-98-7	E420	0.0406 mg/L	0.04 mg/L	101	70.0	130			
		nickel, total	7440-02-0	E420	ND mg/L	0.08 mg/L	ND	70.0	130			
		potassium, total	7440-09-7	E420	ND mg/L	8 mg/L	ND	70.0	130			
		selenium, total	7782-49-2	E420	0.0835 mg/L	0.08 mg/L	104	70.0	130			
		silicon, total	7440-21-3	E420	19.1 mg/L	20 mg/L	95.7	70.0	130			
		silver, total	7440-22-4	E420	0.00730 mg/L	0.008 mg/L	91.2	70.0	130			
		sodium, total	17341-25-2	E420	ND mg/L	4 mg/L	ND	70.0	130			
		strontium, total	7440-24-6	E420	ND mg/L	0.04 mg/L	ND	70.0	130			
		sulfur, total	7704-34-9	E420	ND mg/L	40 mg/L	ND	70.0	130			
		thallium, total	7440-28-0	E420	0.00705 mg/L	0.008 mg/L	88.2	70.0	130			
		tin, total	7440-31-5	E420	0.0374 mg/L	0.04 mg/L	93.6	70.0	130			
		titanium, total	7440-32-6	E420	0.0823 mg/L	0.08 mg/L	103	70.0	130			
		uranium, total	7440-61-1	E420	ND mg/L	0.008 mg/L	ND	70.0	130			
		vanadium, total	7440-62-2	E420	0.207 mg/L	0.2 mg/L	104	70.0	130			
		zinc, total	7440-66-6	E420	0.734 mg/L	0.8 mg/L	91.8	70.0	130			
Total Metals (QCI	_ot: 292724)											
CG2103999-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0772 mg/L	0.08 mg/L	96.5	70.0	130			
Total Metals (QCI	_ot: 296198)											
CG2104017-002	RG_GHNF_WS_GGCAMP_ 2021-09-10_NP	mercury, total	7439-97-6	E508-L	4.19 ng/L	5 ng/L	83.7	70.0	130			
Dissolved Metals	(QCLot: 292384)											

Page : 18 of 19 Work Order : CG2104017 Amendment 1 Client : Teck Coal Limited Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water						Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Dissolved Metals	(QCLot: 292384) - con	tinued										
CG2103975-002	Anonymous	copper, dissolved	7440-50-8	E421	0.0181 mg/L	0.02 mg/L	90.4	70.0	130			
CG2103975-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.200 mg/L	0.2 mg/L	100	70.0	130			
		antimony, dissolved	7440-36-0	E421	0.0200 mg/L	0.02 mg/L	100.0	70.0	130			
		arsenic, dissolved	7440-38-2	E421	0.0198 mg/L	0.02 mg/L	99.1	70.0	130			
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		beryllium, dissolved	7440-41-7	E421	0.0367 mg/L	0.04 mg/L	91.8	70.0	130			
		bismuth, dissolved	7440-69-9	E421	0.00842 mg/L	0.01 mg/L	84.2	70.0	130			
		boron, dissolved	7440-42-8	E421	0.100 mg/L	0.1 mg/L	99.8	70.0	130			
		cadmium, dissolved	7440-43-9	E421	0.00374 mg/L	0.004 mg/L	93.4	70.0	130			
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130			
		cobalt, dissolved	7440-48-4	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		iron, dissolved	7439-89-6	E421	1.91 mg/L	2 mg/L	95.7	70.0	130			
		lead, dissolved	7439-92-1	E421	0.0178 mg/L	0.02 mg/L	88.9	70.0	130			
		lithium, dissolved	7439-93-2	E421	ND mg/L	0.1 mg/L	ND	70.0	130			
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130			
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		molybdenum, dissolved	7439-98-7	E421	0.0207 mg/L	0.02 mg/L	104	70.0	130			
		nickel, dissolved	7440-02-0	E421	ND mg/L	0.04 mg/L	ND	70.0	130			
		potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130			
		selenium, dissolved	7782-49-2	E421	0.0408 mg/L	0.04 mg/L	102	70.0	130			
		silicon, dissolved	7440-21-3	E421	8.86 mg/L	10 mg/L	88.6	70.0	130			
		silver, dissolved	7440-22-4	E421	0.00388 mg/L	0.004 mg/L	96.9	70.0	130			
		sodium, dissolved	17341-25-2	E421	ND mg/L	2 mg/L	ND	70.0	130			
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130			
		thallium, dissolved	7440-28-0	E421	0.00360 mg/L	0.004 mg/L	90.0	70.0	130			
		tin, dissolved	7440-31-5	E421	0.0198 mg/L	0.02 mg/L	99.1	70.0	130			
		titanium, dissolved	7440-32-6	E421	0.0410 mg/L	0.04 mg/L	102	70.0	130			
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.004 mg/L	ND	70.0	130			
		vanadium, dissolved	7440-62-2	E421	0.102 mg/L	0.1 mg/L	102	70.0	130			
		zinc, dissolved	7440-66-6	E421	0.356 mg/L	0.4 mg/L	89.0	70.0	130			
Dissolved Metals	(QCLot: 292385)											
CG2103975-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0392 mg/L	0.04 mg/L	98.0	70.0	130			
Dissolved Metals	(QCLot: 294342)											
CG2104004-007	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000981 mg/L	0.0001 mg/L	98.1	70.0	130			

Page	: 19 of 19
Work Order	: CG2104017 Amendment 1
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Qualifiers

Qualifier	Description
MSTN	TKN Matrix Spike recovery was low due to interference from high nitrate, which causes negative bias on TKN.

Environment Calgary Work Order			ALS PO 756546		ADDIFIONAL COMMEN		KG GHNE WS GGCAME 2021-05-10 NF	RG_GHFF_WS_GGCAMP_2021494-09_NP	Facility Name / Job Project Manag Ena Addre Phone Numb Phone Numb Phone Numb
al Division 04017	For Emergency <1 Day, ASAP or Weekend - Connaer ALS	Regular (default) x Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge	TURNED DESCRIPTION				C III CONTRACTOR CONT	RG_GHFF WS	COC ID: September GG PROJECT/CLENT INFO PROJECT/CLE
	Service (x Sampler's Name		Jennifer Ings/Minn				No 9/9/2021 1136	* Hazardous Material (Yes/No) Hazardous Material (Yes/No) Country Canada Date
		Jennifer Ings		ow					TURNA ROUND TIME: Lab Contact Lyudinyis Silves Email lyudinyis Silves Address 2592 9 Street N Postal Code TIY 7B5 Phone Number I 403 407 1794 Phone Number
	Darky Time	Mobile #			ACCEPTED BY/AFRI		>	× × × ×	ALS_Fackage-TKN/TOC 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	and the second secon	519-500-3444					>	× X × X	TECKCOAL-MET-T- VA TECKCOAL-MET-D- VA SC SC S

CERTIFICATE OF ANALYSIS

Work Order	: CG2104105	Page	: 1 of 7
Amendment	: 1		
Client	: Teck Coal Limited	Laboratory	: Calgary - Environmental
Contact	: Allie Ferguson	Account Manager	: Lyudmyla Shvets
Address	: 421 Pine Avenue	Address	2559 29th Street NE
	Sparwood BC Canada V0B 2G0		Calgary AB Canada T1Y 7B5
Telephone	:	Telephone	: +1 403 407 1800
Project	: REGIONAL EFFECTS PROGRAM	Date Samples Received	: 15-Sep-2021 08:50
PO	: VPO00750546	Date Analysis Commenced	: 16-Sep-2021
C-O-C number	: September GGCAMP 2021	Issue Date	01-Dec-2021 16:17
Sampler	: Jennifer Ings		
Site	:		
Quote number	: Teck Coal Master Quote		
No. of samples received	: 4		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Elke Tabora		Inorganics, Calgary, Alberta
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
µg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLA	Detection Limit adjusted for required dilution.
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
RRV	Reported result verified by repeat analysis.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

Sub-Matrix: Water Client sample ID				RG_GHUT_WS_	RG_GHBP_WS_	RG_RIVER_WS	RG_FBLANK_W		
(Matrix: Water)					GGCAMP_2021-	GGCAMP_2021-	_2021-09-13_N	S_2021-09-13_	
					09-13_NP	09-13_NP	Р	NP	
		Client sampling date / time			13-Sen-2021	13-Sen-2021	13-Sen-2021	13-Sen-2021	
		onent sumpling date / time			09:30	15:05	15:05	15:05	
Analyte	CAS Number	Method	LOR	Unit	CG2104105-001	CG2104105-002	CG2104105-003	CG2104105-004	
					Result	Result	Result	Result	
Physical Tests									
acidity (as CaCO3)		E283	2.0	mg/L	16.1	<2.0	<2.0	<2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	464	210	234	<1.0	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	20.6	21.6	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	464	230	256	<1.0	
conductivity		E100	2.0	μS/cm	2270	1600	1590	<2.0	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	1600	989	993	<0.50	
oxidation-reduction potential [ORP]		E125	0.10	mV	480	430	441	438	
рН		E108	0.10	pH units	8.04	8.44	8.43	5.32	
solids, total dissolved [TDS]		E162	10	mg/L	2040	1310	1300	<10	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.7	2.4	2.0	<1.0	
turbidity		E121	0.10	NTU	1.04	1.42	0.91	<0.10	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	565	256	286	<1.0	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	12.4	13.0	<1.0	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	0.0108	0.0091	<0.0050	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.250 DLDS	<0.250 DLDS	<0.250 DLDS	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	1.63	1.50	1.56	<0.10	
fluoride	16984-48-8	E235.F	0.020	mg/L	<0.100 DLDS	0.112	0.115	<0.020	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.443 TKNI	0.678	0.563	<0.050	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	10.0	4.74	4.71	<0.0050	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0050 DLDS	0.0064	0.0077	<0.0010	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0039	<0.0010	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0094	0.0065	0.0079	<0.0020	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	1120	787	783	<0.30	
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.52	2.35	2.05	<0.50	
carbon, total organic [TOC]		E355-L	0.50	mg/L	1.54	2.24	2.18	<0.50	

Sub-Matrix: Water Client sample ID			ient sample ID	RG_GHUT_WS_	RG_GHBP_WS_	RG_RIVER_WS	RG_FBLANK_W		
(Matrix: Water)					GGCAMP_2021-	GGCAMP_2021-	_2021-09-13_N	S_2021-09-13_	
					09-13_NP	09-13_NP	Р	NP	
			Client sampling date / time			13-Sep-2021	13-Sen-2021	13-Sep-2021	
			, <i>I</i>	J	09:30	15:05	15:05	15:05	
Analyte C/	AS Number	Method	LOR	Unit	CG2104105-001	CG2104105-002	CG2104105-003	CG2104105-004	
					Result	Result	Result	Result	
Ion Balance									
anion sum		EC101	0.10	meq/L	33.4	21.4	21.8	<0.10	
cation sum		EC101	0.10	meq/L	32.0	19.9	20.0	<0.10	
ion balance (cations/anions ratio)		EC101	0.010	%	95.8	93.0	91.7	100	
ion balance (cation-anion difference)		EC101	0.010	%	2.14	3.63	4.31	<0.010	
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0075	0.0110	0.0072	<0.0030	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00083	0.00053	0.00053	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00021	0.00020	0.00020	<0.00010	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0306	0.0363	0.0386	<0.00010	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.040 DLA	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000100 DLA	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	<0.020 DLA	0.012	0.012	<0.010	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.906	0.0128	0.0077	<0.0050	
calcium, total	7440-70-2	E420	0.050	mg/L	328	176	184	<0.050	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	<0.00020 DLA	<0.00010	<0.00010	<0.00010	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.20 DLA	<0.10	<0.10	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00100 DLA	0.00051	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	<0.020 DLA	0.010	0.012	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000100 DLA	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0199	0.0186	0.0185	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	196	139	152	0.0050 RRV	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0108	0.00183	0.00206	<0.00010	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	0.00072	0.00051	<0.00050	<0.00050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00173	0.00394	0.00441	<0.000050	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.0321	0.00747	0.00784	<0.00050	
potassium, total	7440-09-7	E420	0.050	mg/L	2.95	2.42	2.54	<0.050	
selenium, total	7782-49-2	E420	0.050	µg/L	253	145	156	<0.050	
silicon, total	7440-21-3	E420	0.10	mg/L	3.07	3.78	4.06	<0.10	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000020 DLA	<0.000010	<0.000010	<0.000010	
sodium, total	17341-25-2	E420	0.050	mg/L	1.84	2.54	2.71	<0.050	

ib-Matrix: Water Client sample ID			lient sample ID	RG_GHUT_WS_	RG_GHBP_WS_	RG_RIVER_WS	RG_FBLANK_W		
(Matrix: Water)					GGCAMP_2021-	GGCAMP_2021-	_2021-09-13_N	S_2021-09-13_	
					09-13_NP	09-13_NP	Р	NP	
			Client samn	lina date / time	12 San 2021	12 Son 2021	12 Son 2021	12 Son 2021	
			onen samp	ing date / time	09.30	15-3ep-2021 15:05	15-3ep-2021	15-3ep-2021	
Analyte CAS	S Number	Method	LOR	Unit	CG2104105-001	CG2104105-002	CG2104105-003	CG2104105-004	
					Result	Result	Result	Result	
Total Metals									
strontium, total 7	440-24-6	E420	0.00020	mg/L	0.179	0.188	0.195	<0.00020	
sulfur, total 7	704-34-9	E420	0.50	mg/L	362	265	280	<0.50	
thallium, total 7	440-28-0	E420	0.000010	mg/L	0.000025	<0.000010	<0.000010	<0.000010	
tin, total 7	440-31-5	E420	0.00010	mg/L	<0.00020 DLA	<0.00010	<0.00010	<0.00010	
titanium, total 7	440-32-6	E420	0.00030	mg/L	<0.00060 DLA	<0.00030	<0.00030	<0.00030	
uranium, total 7	440-61-1	E420	0.000010	mg/L	0.0148	0.00890	0.00891	<0.000010	
vanadium, total 7	440-62-2	E420	0.00050	mg/L	<0.00100 DLA	<0.00050	<0.00050	<0.00050	
zinc, total 7	440-66-6	E420	0.0030	mg/L	0.0569	0.0045	<0.0030	<0.0030	
Dissolved Metals									
aluminum, dissolved 7	429-90-5	E421	0.0010	mg/L	0.0022	<0.0010	<0.0010	<0.0010	
antimony, dissolved 7	440-36-0	E421	0.00010	mg/L	0.00080	0.00050	0.00048	<0.00010	
arsenic, dissolved 7	440-38-2	E421	0.00010	mg/L	0.00023	0.00019	0.00021	<0.00010	
barium, dissolved 7	440-39-3	E421	0.00010	mg/L	0.0313	0.0390	0.0377	<0.00010	
beryllium, dissolved 7	440-41-7	E421	0.020	µg/L	<0.040 DLA	<0.020	<0.020	<0.020	
bismuth, dissolved 7	440-69-9	E421	0.000050	mg/L	<0.000100 DLA	<0.000050	<0.000050	<0.000050	
boron, dissolved 7	440-42-8	E421	0.010	mg/L	<0.020 DLA	0.010	0.010	<0.010	
cadmium, dissolved 7	440-43-9	E421	0.0050	µg/L	0.946	0.0076	0.0052	<0.0050	
calcium, dissolved 7	440-70-2	E421	0.050	mg/L	316	170	170	<0.050	
chromium, dissolved 7	440-47-3	E421.Cr-L	0.00010	mg/L	<0.00020 DLA	<0.00010	<0.00010	<0.00010	
cobalt, dissolved 7	440-48-4	E421	0.10	µg/L	<0.20 DLA	<0.10	<0.10	<0.10	
copper, dissolved 7	440-50-8	E421	0.00020	mg/L	0.00060	0.00045	0.00027	<0.00020	
iron, dissolved 7	439-89-6	E421	0.010	mg/L	<0.020 DLA	<0.010	<0.010	<0.010	
lead, dissolved 7	439-92-1	E421	0.000050	mg/L	<0.000100 DLA	<0.000050	<0.000050	<0.000050	
lithium, dissolved 7	439-93-2	E421	0.0010	mg/L	0.0201	0.0179	0.0178	<0.0010	
magnesium, dissolved 7	439-95-4	E421	0.0050	mg/L	196	137	138	<0.0050	
manganese, dissolved 7	439-96-5	E421	0.00010	mg/L	0.00982	0.00065	0.00047	<0.00010	
mercury, dissolved 7	439-97-6	E509	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
molybdenum, dissolved 7	439-98-7	E421	0.000050	mg/L	0.00177	0.00380	0.00431	<0.000050	
nickel, dissolved 7	440-02-0	E421	0.00050	mg/L	0.0332	0.00724	0.00744	<0.00050	
potassium, dissolved 7	440-09-7	E421	0.050	mg/L	3.08	2.60	2.57	<0.050	

Sub-Matrix: Water Client same			ient sample ID	RG_GHUT_WS_	RG_GHBP_WS_	RG_RIVER_WS	RG_FBLANK_W		
(Matrix: Water)					GGCAMP_2021-	GGCAMP_2021-	_2021-09-13_N	S_2021-09-13_	
					09-13_NP	09-13_NP	Р	NP	
			Client samp	ling date / time	13-Sep-2021 09:30	13-Sep-2021 15:05	13-Sep-2021 15:05	13-Sep-2021 15:05	
Analyte	CAS Number	Method	LOR	Unit	CG2104105-001	CG2104105-002	CG2104105-003	CG2104105-004	
					Result	Result	Result	Result	
Dissolved Metals									
selenium, dissolved	7782-49-2	E421	0.050	µg/L	243	145	142	<0.050	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	3.43	3.85	3.90	<0.050	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000020 DLA	<0.000010	<0.000010	<0.000010	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	1.90	2.66	2.56	<0.050	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.171	0.178	0.174	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	384	260	257	<0.50	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000023	<0.000010	<0.000010	<0.000010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00020 DLA	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00060 DLA	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.0144	0.00831	0.00864	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00100 DLA	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0605	0.0053	<0.0010	<0.0010	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	
			1						

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: CG2104105	Page	: 1 of 20
Amendment	:1		
Client	: Teck Coal Limited	Laboratory	: Calgary - Environmental
Contact	: Allie Ferguson	Account Manager	: Lyudmyla Shvets
Address	: 421 Pine Avenue	Address	2559 29th Street NE
	Sparwood BC Canada V0B 2G0		Calgary, Alberta Canada T1Y 7B5
Telephone	:	Telephone	: +1 403 407 1800
Project	REGIONAL EFFECTS PROGRAM	Date Samples Received	: 15-Sep-2021 08:50
PO	: VPO00750546	Issue Date	: 01-Dec-2021 16:18
C-O-C number	: September GGCAMP 2021		
Sampler	: Jennifer Ings		
Site	:		
Quote number	: Teck Coal Master Quote		
No. of samples received	: 4		
No. of samples analysed	:4		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E	/aluation: × =	Holding time exce	edance ; •	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_FBLANK_WS_2021-09-13_NP	E298	13-Sep-2021	27-Sep-2021				27-Sep-2021	28 days	14 days	1
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_GHBP_WS_GGCAMP_2021-09-13_NP	E298	13-Sep-2021	27-Sep-2021				27-Sep-2021	28 days	14 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_GHUT_WS_GGCAMP_2021-09-13_NP	E298	13-Sep-2021	27-Sep-2021				27-Sep-2021	28 days	14 days	-
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)	5000	40.0	07.0				07.0 0004			,
RG_RIVER_WS_2021-09-13_NP	E298	13-Sep-2021	27-Sep-2021				27-Sep-2021	28 days	14 days	•
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HUPE PC ERIANK WS 2021 00 13 NP	E235 Br-I	13-Sen-2021					16-Sep-2021	28 days	3 dave	1
	E230.DI-E	10-0ep-2021					10-069-2021	20 0833	5 days	•
Anions and Nutriants : Bromide in Water by IC (Low Level)										
HDPE										
RG GHBP WS GGCAMP 2021-09-13 NP	E235.Br-L	13-Sep-2021					16-Sep-2021	28 days	3 days	✓
							·			
Anions and Nutrients : Bromide in Water by IC (Low Level)									1	
HDPE										
RG_GHUT_WS_GGCAMP_2021-09-13_NP	E235.Br-L	13-Sep-2021					16-Sep-2021	28 days	3 days	✓

Analyte Group Method Sampling Date Extraction / Preparation Freparation Eval Analysis Date Holding Times Eval Analysis Date Eval Analysis Date Eval Analysis Date Imal
Container / Client Sample ID(s) Freparation Date Holding Times Rec Eval Analysis Date Holding Times Rec Eval HDPE RG_RIVER_WS_2021-09-13_NP E235.Br-L 13-Sep-2021 16-Sep-2021 28 days 3 days
DateRecActualRecActualAnions and Nutrients : Bromide in Water by IC (Low Level)HDPE RG_RIVER_WS_2021-09-13_NPE235.Br-L13-Sep-202116-Sep-202128 days3 days✓
Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE RG_RIVER_WS_2021-09-13_NP E235.Br-L 13-Sep-2021 Image: Sep-2021 28 days 3 days ✓
HDPE RG_RIVER_WS_2021-09-13_NP E235.Br-L 13-Sep-2021 16-Sep-2021 28 days 3 days ✓
RG_RIVER_WS_2021-09-13_NP E235.Br-L 13-Sep-2021 16-Sep-2021 28 days 3 days ✓
Anions and Nutrients : Chloride in Water by IC (Low Level)
HDPE
RG_FBLANK_WS_2021-09-13_NP E235.CI-L 13-Sep-2021 16-Sep-2021 28 days 3 days ✓
Anions and Nutrients : Chloride in Water by IC (Low Level)
HDPE
RG_GHBP_WS_GGCAMP_2021-09-13_NP E235.CI-L 13-Sep-2021 16-Sep-2021 28 days 3 days ✓
Anions and Nutrients : Chloride in Water by IC (Low Level)
HDPE
RG GHUT WS GGCAMP 2021-09-13 NP E235.CI-L 13-Sep-2021 16-Sep-2021 28 days 3 days ✓
Anions and Nutrients : Chloride in Water by IC (Low Level)
HDPE
RG RIVER WS 2021-09-13 NP E235.CI-L 13-Sep-2021 16-Sep-2021 28 days 3 days ✓
Anions and Nutriants : Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)
RG FBLANK WS 2021-09-13 NP E378-U 13-Sep-2021 16-Sep-2021 3 days 3 days ✓
Aniana and Nutrianta L Dissolved Orthonhoonhots by Colourimetry (Ultra Trace Laval)
RG_GHBP_WS_GGCAMP_2021-09-13_NP E378-U 13-Sep-2021 16-Sep-2021 3 days 3 days ✓
RG_GHUT_WS_GGCAMP_2021_09_13_NP E378-U 13-Sen-2021 16-Sen-2021 3 days 3 days ✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)
ПИГЕ RG RIVER WS 2021_09_13 NP E378-U 13-Sen-2021 16-Sen-2021 3 days 3 days 4

Matrix: Water					Eva	aluation: × =	Holding time exce	edance ; 🗸	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ex	Extraction / Preparation				Analys		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_FBLANK_WS_2021-09-13_NP	E235.F	13-Sep-2021					16-Sep-2021	28 days	3 days	~
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_GHBP_WS_GGCAMP_2021-09-13_NP	E235.F	13-Sep-2021					16-Sep-2021	28 days	3 days	~
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_GHUT_WS_GGCAMP_2021-09-13_NP	E235.F	13-Sep-2021					16-Sep-2021	28 days	3 days	4
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_RIVER_WS_2021-09-13_NP	E235.F	13-Sep-2021					16-Sep-2021	28 days	3 days	*
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_FBLANK_WS_2021-09-13_NP	E235.NO3-L	13-Sep-2021					16-Sep-2021	3 days	3 days	~
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_GHBP_WS_GGCAMP_2021-09-13_NP	E235.NO3-L	13-Sep-2021					16-Sep-2021	3 days	3 days	~
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_GHUT_WS_GGCAMP_2021-09-13_NP	E235.NO3-L	13-Sep-2021					16-Sep-2021	3 days	3 days	4
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_RIVER_WS_2021-09-13_NP	E235.NO3-L	13-Sep-2021					16-Sep-2021	3 days	3 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_FBLANK_WS_2021-09-13_NP	E235.NO2-L	13-Sep-2021					16-Sep-2021	3 days	3 days	✓

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔹	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	, Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_GHBP_WS_GGCAMP_2021-09-13_NP	E235.NO2-L	13-Sep-2021					16-Sep-2021	3 days	3 days	~
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_GHUT_WS_GGCAMP_2021-09-13_NP	E235.NO2-L	13-Sep-2021					16-Sep-2021	3 days	3 days	~
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_RIVER_WS_2021-09-13_NP	E235.NO2-L	13-Sep-2021					16-Sep-2021	3 days	3 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_FBLANK_WS_2021-09-13_NP	E235.SO4	13-Sep-2021					16-Sep-2021	28 days	3 days	*
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_GHBP_WS_GGCAMP_2021-09-13_NP	E235.SO4	13-Sep-2021					16-Sep-2021	28 days	3 days	✓
Anions and Nutrients : Sulfate in Water by IC								1		
HDPE RG_GHUT_WS_GGCAMP_2021-09-13_NP	E235.SO4	13-Sep-2021					16-Sep-2021	28 days	3 days	*
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_RIVER_WS_2021-09-13_NP	E235.SO4	13-Sep-2021					16-Sep-2021	28 days	3 days	4
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_FBLANK_WS_2021-09-13_NP	E318	13-Sep-2021	21-Sep-2021				23-Sep-2021	28 days	10 days	4
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_GHBP_WS_GGCAMP_2021-09-13_NP	E318	13-Sep-2021	21-Sep-2021				23-Sep-2021	28 days	10 days	~

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_GHUT_WS_GGCAMP_2021-09-13_NP	E318	13-Sep-2021	21-Sep-2021				23-Sep-2021	28 days	10 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_RIVER_WS_2021-09-13_NP	E318	13-Sep-2021	21-Sep-2021				23-Sep-2021	28 days	10 days	~
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
RG_FBLANK_WS_2021-09-13_NP	E372-U	13-Sep-2021	17-Sep-2021				17-Sep-2021	28 days	4 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										,
RG_GHBP_WS_GGCAMP_2021-09-13_NP	E372-U	13-Sep-2021	17-Sep-2021				17-Sep-2021	28 days	4 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)	5070 11	40.0	17.0 0001				17.0 0004			
RG_GHUT_WS_GGCAMP_2021-09-13_NP	E372-0	13-Sep-2021	17-Sep-2021				17-Sep-2021	28 days	4 days	•
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)	E070 I.I	40.0	47.0				17.0	00.1	4.1	,
RG_RIVER_WS_2021-09-13_NP	E372-0	13-Sep-2021	17-Sep-2021				17-Sep-2021	28 days	4 days	•
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)	1									
HDPE dissolved (nitric acid)	E421 Cr I	12 Son 2021	21 Sam 2021				21 Sam 2021	400	0 dava	1
RG_FDLANK_WS_2021-09-13_NP	L421.01-L	13-3ep-2021	21-3ep-2021				21-3ep-2021	180	o uays	•
								uays		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
	E421 Cr I	13 Son 2021	21 Son 2021				21 San 2021	100	8 days	1
RG_GHDF_WS_GGCAMF_2021-09-13_NF	L421.01-L	13-3ep-2021	21-3ep-2021				21-3ep-2021	180 dave	ouays	•
								uays		
Uissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
RG GHUT WS GGCAMP 2021-09-13 NP	F421 Cr-I	13-Sep-2021	21-Sep-2021				21-Sep-2021	180	8 days	1
	2.2.1.0. 2		2. COP 2021				2. 00p 2021	days		

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_RIVER_WS_2021-09-13_NP	E421.Cr-L	13-Sep-2021	21-Sep-2021				21-Sep-2021	180 days	8 days	~
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_FBLANK_WS_2021-09-13_NP	E509	13-Sep-2021	22-Sep-2021				22-Sep-2021	28 days	8 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_GHBP_WS_GGCAMP_2021-09-13_NP	E509	13-Sep-2021	22-Sep-2021				22-Sep-2021	28 days	8 days	1
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_RIVER_WS_2021-09-13_NP	E509	13-Sep-2021	22-Sep-2021				22-Sep-2021	28 days	8 days	1
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_GHUT_WS_GGCAMP_2021-09-13_NP	E509	13-Sep-2021	22-Sep-2021				22-Sep-2021	28 days	9 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_FBLANK_WS_2021-09-13_NP	E421	13-Sep-2021	21-Sep-2021				21-Sep-2021	180 days	8 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_GHBP_WS_GGCAMP_2021-09-13_NP	E421	13-Sep-2021	21-Sep-2021				21-Sep-2021	180 days	8 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_GHUT_WS_GGCAMP_2021-09-13_NP	E421	13-Sep-2021	21-Sep-2021				21-Sep-2021	180 days	8 days	√
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_RIVER_WS_2021-09-13_NP	E421	13-Sep-2021	21-Sep-2021				21-Sep-2021	180 days	8 days	4

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid) RG FBLANK WS 2021-09-13 NP	E358-L	13-Sep-2021	22-Sep-2021				26-Sep-2021	28 days	13 days	1
			•				•		, ,	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)										
RG_GHBP_WS_GGCAMP_2021-09-13_NP	E358-L	13-Sep-2021	22-Sep-2021				26-Sep-2021	28 days	13 days	~
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)										
RG_GHUT_WS_GGCAMP_2021-09-13_NP	E358-L	13-Sep-2021	22-Sep-2021				26-Sep-2021	28 days	13 days	~
Organia (Inorgania Carbon - Dissolved Organia Carbon by Combustian (I our Law										
Amber class dissolved (suffuric acid)										
RG_RIVER_WS_2021-09-13_NP	E358-L	13-Sep-2021	22-Sep-2021				26-Sep-2021	28 days	13 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	on (Low Level)									
Amber glass total (sulfuric acid)										
RG_FBLANK_WS_2021-09-13_NP	E355-L	13-Sep-2021	22-Sep-2021				26-Sep-2021	28 days	13 days	~
Organia (Inorgania Carbon : Total Organia Carbon (Non Durganbla) by Cambustia										
Amber glass total (culturic acid)										
RG GHBP WS GGCAMP 2021-09-13 NP	E355-L	13-Sep-2021	22-Sep-2021				26-Sep-2021	28 days	13 days	1
							-	-	-	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	n (Low Level)									
Amber glass total (sulfuric acid)	50551	40.0.0004								,
RG_GHUT_WS_GGCAMP_2021-09-13_NP	E355-L	13-Sep-2021	22-Sep-2021				26-Sep-2021	28 days	13 days	*
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low Level)									
Amber glass total (sulfuric acid)										
RG_RIVER_WS_2021-09-13_NP	E355-L	13-Sep-2021	22-Sep-2021				26-Sep-2021	28 days	13 days	1
Physical Tests : Acidity by Titration										
HDPE BC FBLANK WS 2021-09-13 NP	E283	13-Sen-2021					22-Sen-2021	14 dave	9 dave	1
	L205	10-060-2021					22-060-2021	14 uays	Juays	•

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	, Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Acidity by Titration										
HDPE										
RG_GHBP_WS_GGCAMP_2021-09-13_NP	E283	13-Sep-2021					22-Sep-2021	14 days	9 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_GHUT_WS_GGCAMP_2021-09-13_NP	E283	13-Sep-2021					22-Sep-2021	14 days	9 days	✓
Physical Tests : Acidity by Titration				1						
HDPE		40.0.0004								,
RG_RIVER_WS_2021-09-13_NP	E283	13-Sep-2021					22-Sep-2021	14 days	9 days	*
Physical Tests : Alkalinity Species by Titration										
	F200	12 San 2021					25 San 2021	11 days	10 dava	
RG_FBLANK_WS_2021-09-13_NP	E290	13-Sep-2021					25-Sep-2021	14 days	12 days	*
Physical Tests : Alkalinity Species by Titration										
PC CHER WS CCCAMP 2021 00 13 NP	F290	13-Sen-2021					25-Sen-2021	14 days	12 dave	1
	2200	10-000-2021					20-060-2021	14 days	12 uays	•
Dhuniani Tasta : Alkalinity Canadian by Titestian										
RG GHUT WS GGCAMP 2021-09-13 NP	E290	13-Sep-2021					25-Sep-2021	14 davs	12 davs	1
								,	,	
Physical Tasts : Alkalinity Species by Titration										
HDPE										
RG RIVER WS 2021-09-13 NP	E290	13-Sep-2021					25-Sep-2021	14 days	12 days	1
							-		-	
Physical Tests : Conductivity in Water										
HDPE										
RG_FBLANK_WS_2021-09-13_NP	E100	13-Sep-2021					25-Sep-2021	28 days	12 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_GHBP_WS_GGCAMP_2021-09-13_NP	E100	13-Sep-2021					25-Sep-2021	28 days	12 days	✓

Matrix: Water					Ev	aluation: × = I	Holding time exce	edance ; •	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE RG_GHUT_WS_GGCAMP_2021-09-13_NP	E100	13-Sep-2021					25-Sep-2021	28 days	12 days	1
Physical Tests : Conductivity in Water										
HDPE RG_RIVER_WS_2021-09-13_NP	E100	13-Sep-2021					25-Sep-2021	28 days	12 days	~
Physical Tests : ORP by Electrode										
HDPE RG_FBLANK_WS_2021-09-13_NP	E125	13-Sep-2021					24-Sep-2021	0.25 hrs	262 hrs	¥ EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_GHBP_WS_GGCAMP_2021-09-13_NP	E125	13-Sep-2021					24-Sep-2021	0.25 hrs	262 hrs	¥ EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_RIVER_WS_2021-09-13_NP	E125	13-Sep-2021					24-Sep-2021	0.25 hrs	262 hrs	× EHTR-FM
Physical Tests : ORP by Electrode									I	
HDPE RG_GHUT_WS_GGCAMP_2021-09-13_NP	E125	13-Sep-2021					24-Sep-2021	0.25 hrs	268 hrs	¥ EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_FBLANK_WS_2021-09-13_NP	E108	13-Sep-2021					25-Sep-2021	0.25 hrs	287 hrs	¥ EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_GHBP_WS_GGCAMP_2021-09-13_NP	E108	13-Sep-2021					25-Sep-2021	0.25 hrs	287 hrs	¥ EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_RIVER_WS_2021-09-13_NP	E108	13-Sep-2021					25-Sep-2021	0.25 hrs	287 hrs	¥ EHTR-FM

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; 🗸	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Physical Tests : pH by Meter										
HDPE RG_GHUT_WS_GGCAMP_2021-09-13_NP	E108	13-Sep-2021					25-Sep-2021	0.25 hrs	293 hrs	× EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE RG_FBLANK_WS_2021-09-13_NP	E162	13-Sep-2021					20-Sep-2021	7 days	7 days	~
Physical Tests : TDS by Gravimetry										
HDPE RG_GHBP_WS_GGCAMP_2021-09-13_NP	E162	13-Sep-2021					20-Sep-2021	7 days	7 days	~
Physical Tests : TDS by Gravimetry										
HDPE RG_GHUT_WS_GGCAMP_2021-09-13_NP	E162	13-Sep-2021					20-Sep-2021	7 days	7 days	1
Physical Tests : TDS by Gravimetry										
HDPE RG_RIVER_WS_2021-09-13_NP	E162	13-Sep-2021					20-Sep-2021	7 days	7 days	1
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_FBLANK_WS_2021-09-13_NP	E160-L	13-Sep-2021					20-Sep-2021	7 days	7 days	1
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_GHBP_WS_GGCAMP_2021-09-13_NP	E160-L	13-Sep-2021					20-Sep-2021	7 days	7 days	~
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_GHUT_WS_GGCAMP_2021-09-13_NP	E160-L	13-Sep-2021					20-Sep-2021	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_RIVER_WS_2021-09-13_NP	E160-L	13-Sep-2021					20-Sep-2021	7 days	7 days	1

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Turbidity by Nephelometry										
HDPE RG_FBLANK_WS_2021-09-13_NP	E121	13-Sep-2021					16-Sep-2021	3 days	3 days	~
Physical Tests : Turbidity by Nephelometry										
HDPE RG_GHBP_WS_GGCAMP_2021-09-13_NP	E121	13-Sep-2021					16-Sep-2021	3 days	3 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE RG_GHUT_WS_GGCAMP_2021-09-13_NP	E121	13-Sep-2021					16-Sep-2021	3 days	3 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE RG_RIVER_WS_2021-09-13_NP	E121	13-Sep-2021					16-Sep-2021	3 days	3 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid) RG_FBLANK_WS_2021-09-13_NP	E420.Cr-L	13-Sep-2021					21-Sep-2021	180 days	8 days	~
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid) RG_GHBP_WS_GGCAMP_2021-09-13_NP	E420.Cr-L	13-Sep-2021					21-Sep-2021	180 days	8 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid) RG_GHUT_WS_GGCAMP_2021-09-13_NP	E420.Cr-L	13-Sep-2021					21-Sep-2021	180 days	8 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid) RG_RIVER_WS_2021-09-13_NP	E420.Cr-L	13-Sep-2021					21-Sep-2021	180 days	8 days	✓
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved) RG_FBLANK_WS_2021-09-13_NP	E508-L	13-Sep-2021					22-Sep-2021	28 days	9 days	1

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			, Date	Rec	Actual		-	Rec	Actual	
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)										
RG_GHBP_WS_GGCAMP_2021-09-13_NP	E508-L	13-Sep-2021					22-Sep-2021	28 days	9 days	1
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)										
RG_GHUT_WS_GGCAMP_2021-09-13_NP	E508-L	13-Sep-2021					22-Sep-2021	28 days	9 days	-
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)		12 Con 2021					22 San 2021		0 daya	
RG_RIVER_VV3_2021-09-13_NP	E300-L	13-3ep-2021					22-3ep-2021	20 uays	9 uays	•
Total Motals - Total Motals in Water by CPC ICPMS										
HDPE total (nitric acid)										
RG FBLANK WS 2021-09-13 NP	E420	13-Sep-2021					21-Sep-2021	180	8 days	1
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_GHBP_WS_GGCAMP_2021-09-13_NP	E420	13-Sep-2021					21-Sep-2021	180	8 days	1
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_GHUT_WS_GGCAMP_2021-09-13_NP	E420	13-Sep-2021					21-Sep-2021	180	8 days	1
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)	E 400	40.0								
RG_RIVER_WS_2021-09-13_NP	E420	13-Sep-2021					21-Sep-2021	180	8 days	✓
								days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluati	on: × = QC freque	ency outside spe	cification; ✓ = 0	QC frequency with	hin specification.
Quality Control Sample Type			Co	unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	299285	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	302837	1	9	11.1	5.0	✓
Ammonia by Fluorescence	E298	304087	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	293546	1	13	7.6	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	293547	1	13	7.6	5.0	✓
Conductivity in Water	E100	302836	1	9	11.1	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	298315	1	19	5.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	298918	1	20	5.0	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	298316	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	299650	1	20	5.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	293496	1	4	25.0	5.0	✓
Fluoride in Water by IC	E235.F	293544	1	13	7.6	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	293548	1	15	6.6	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	293549	1	15	6.6	5.0	✓
ORP by Electrode	E125	299552	1	20	5.0	5.0	✓
pH by Meter	E108	302835	1	11	9.0	5.0	✓
Sulfate in Water by IC	E235.SO4	293545	1	13	7.6	5.0	✓
TDS by Gravimetry	E162	296874	1	20	5.0	5.0	1
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	295747	1	18	5.5	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	298416	1	19	5.2	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	299579	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	295748	1	18	5.5	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	299658	1	20	5.0	5.0	1
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	293784	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	293633	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	299285	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	302837	1	9	11.1	5.0	✓
Ammonia by Fluorescence	E298	304087	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	293546	1	13	7.6	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	293547	1	13	7.6	5.0	✓
Conductivity in Water	E100	302836	1	9	11.1	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	298315	1	19	5.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	298918	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	298316	1	19	5.2	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	299650	1	20	5.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	293496	1	4	25.0	5.0	~

Matrix: Water		Evaluatio	n: × = QC freque	ency outside spe	cification; ✓ =	QC frequency with	hin specification.
Quality Control Sample Type			Co	unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	293544	1	13	7.6	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	293548	1	15	6.6	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	293549	1	15	6.6	5.0	✓
ORP by Electrode	E125	299552	1	20	5.0	5.0	✓
pH by Meter	E108	302835	1	11	9.0	5.0	✓
Sulfate in Water by IC	E235.SO4	293545	1	13	7.6	5.0	✓
TDS by Gravimetry	E162	296874	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	295747	1	18	5.5	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	298416	1	19	5.2	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	299579	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	295748	1	18	5.5	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	299658	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	293784	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	296869	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	293633	1	20	5.0	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	299285	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	302837	1	9	11.1	5.0	✓
Ammonia by Fluorescence	E298	304087	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	293546	1	13	7.6	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	293547	1	13	7.6	5.0	✓
Conductivity in Water	E100	302836	1	9	11.1	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	298315	1	19	5.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	298918	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	298316	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	299650	1	20	5.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	293496	1	4	25.0	5.0	✓
Fluoride in Water by IC	E235.F	293544	1	13	7.6	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	293548	1	15	6.6	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	293549	1	15	6.6	5.0	✓
Sulfate in Water by IC	E235.SO4	293545	1	13	7.6	5.0	✓
TDS by Gravimetry	E162	296874	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	295747	1	18	5.5	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	298416	1	19	5.2	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	299579	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	295748	1	18	5.5	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	299658	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	293784	1	20	5.0	5.0	1
TSS by Gravimetry (Low Level)	E160-L	296869	1	20	5.0	5.0	1
Turbidity by Nephelometry	E121	293633	1	20	5.0	5.0	~

Evaluation: ★ = QC frequency outside specification; ✓ = QC frequency within specification.									
Quality Control Sample Type			Co	ount		Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Matrix Spikes (MS)									
Ammonia by Fluorescence	E298	304087	1	20	5.0	5.0	✓		
Bromide in Water by IC (Low Level)	E235.Br-L	293546	1	13	7.6	5.0	✓		
Chloride in Water by IC (Low Level)	E235.CI-L	293547	1	13	7.6	5.0	✓		
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	298315	1	19	5.2	5.0	✓		
Dissolved Mercury in Water by CVAAS	E509	298918	1	20	5.0	5.0	✓		
Dissolved Metals in Water by CRC ICPMS	E421	298316	1	19	5.2	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	299650	1	20	5.0	5.0	✓		
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	293496	1	4	25.0	5.0	✓		
Fluoride in Water by IC	E235.F	293544	1	13	7.6	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	293548	1	15	6.6	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	293549	1	15	6.6	5.0	✓		
Sulfate in Water by IC	E235.SO4	293545	1	13	7.6	5.0	✓		
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	295747	1	18	5.5	5.0	✓		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	298416	1	19	5.2	5.0	✓		
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	299579	1	19	5.2	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	295748	1	18	5.5	5.0	✓		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	299658	1	20	5.0	5.0	✓		
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	293784	1	20	5.0	5.0	1		

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Calgary - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108 Calgary - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121 Calgary - Environmental	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L Calgary - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Calgary - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at $180 \pm 2^{\circ}$ C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Chloride in Water by IC (Low Level)	E235.CI-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Fluoride in Water by IC	E235.F Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	E235.SO4 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Acidity by Titration	E283 Calgary - Environmental	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a flow analyzer on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
	Vancouver - Environmental			
Total Mercury in Water by CVAFS (Low	E508-L	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction
Level, LOR = 0.5 ppt)	Vancouver -			with stannous chioride, and analyzed by CVAFS.
	Environmental			
Dissolved Mercury in Water by CVAAS	E509	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by
	Vancouver -			CVAAS.
Dissolved Hardness (Calculated)	EC100	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and
	Vancouver -			Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Environmental			calculated from dissolved Calculated and Magnesium concentrations, because it is a
Ion Balance using Dissolved Metals	EC101	Water	4PH4 1030E	property of water due to dissolved divalent cations.
In Balance using Dissolved Metals	LOIDI	Water	ATTIX TOOOL	Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are
	Calgary - Environmental			used where available. Minor ions are included where data is present.
				lon Balance cannot be calculated accurately for waters with very low electrical
				conductivity (EC).

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.

Page	: 20 of 20
Work Order	: CG2104105 Amendment 1
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order	CG2104105	Page	: 1 of 19
Amendment	÷1		
Client	: Teck Coal Limited	Laboratory	: Calgary - Environmental
Contact	: Allie Ferguson	Account Manager	: Lyudmyla Shvets
Address	: 421 Pine Avenue	Address	2559 29th Street NE
	Sparwood BC Canada V0B 2G0		Calgary, Alberta Canada T1Y 7B5
Telephone	:	Telephone	+1 403 407 1800
Project	REGIONAL EFFECTS PROGRAM	Date Samples Received	: 15-Sep-2021 08:50
PO	: VPO00750546	Date Analysis Commenced	: 16-Sep-2021
C-O-C number	: September GGCAMP 2021	Issue Date	:01-Dec-2021 16:17
Sampler	: Jennifer Ings		
Site			
Quote number	: Teck Coal Master Quote		
No. of samples received	: 4		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Elke Tabora		Inorganics, Calgary, Alberta
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

Vladka Stamenova

Analyst

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 293633)										
CG2104105-001	RG_GHUT_WS_GGCAMP _2021-09-13_NP	turbidity		E121	0.10	NTU	1.04	0.99	0.05	Diff <2x LOR	
Physical Tests (QC	Lot: 296874)										
CG2104061-007	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	290	289	0.346%	20%	
Physical Tests (QC	Lot: 299285)										
CG2104099-006	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	2.3	<2.0	0.3	Diff <2x LOR	
Physical Tests (QC	Lot: 299552)										
CG2104099-006	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	437	445	1.77%	15%	
Physical Tests (QC	Lot: 302835)										
CG2104099-011	Anonymous	pH		E108	0.10	pH units	8.27	8.31	0.482%	4%	
Physical Tests (QC	Lot: 302836)										
CG2104099-013	Anonymous	conductivity		E100	2.0	μS/cm	544	545	0.184%	10%	
Physical Tests (QC	Lot: 302837)										
CG2104099-013	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	323	341	5.52%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	32.2	31.4	2.52%	20%	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	355	372	4.81%	20%	
Anions and Nutrien	ts (QC Lot: 293496)										1
CG2104105-001	RG_GHUT_WS_GGCAMP _2021-09-13_NP	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0039	0.0037	0.0002	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 293544)										
CG2104092-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.185	0.183	0.002	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 293545)										
CG2104092-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	243	243	0.0797%	20%	
Anions and Nutrien	ts (QC Lot: 293546)										
CG2104092-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 293547)										
CG2104092-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	1.31	1.26	4.41%	20%	
Anions and Nutrien	ts (QC Lot: 293548)										
CG2104092-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	13.5	13.5	0.0140%	20%	
Anions and Nutrien	ts (QC Lot: 293549)										
CG2104092-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0243	0.0231	5.06%	20%	

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	s (QC Lot: 293784)										
CG2104104-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0576	0.0545	5.51%	20%	
Anions and Nutrient	s (QC Lot: 298416)										
CG2104099-004	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.164	0.169	0.005	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 304087)										
CG2104099-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0441	0.0427	0.0014	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 299650)									
CG2104099-009	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	2.77	2.90	0.13	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 299658	3)									
CG2104098-014	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 295747)										
CG2104087-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00018	<0.00010	0.00008	Diff <2x LOR	
Total Metals (QC Lo	ot: 295748)										
CG2104087-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0035	0.0034	0.0001	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00028	0.00028	0.000007	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00021	0.00018	0.00002	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0540	0.0538	0.401%	20%	
		beryllium, total	7440-41-7	E420	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.013	0.012	0.0004	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0050	mg/L	0.0509 µg/L	0.0000618	19.3%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	196	197	0.516%	20%	
		cobalt, total	7440-48-4	E420	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00070	0.00070	0.000006	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0221	0.0207	6.74%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	146	147	1.14%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00054	0.00059	0.00005	Diff <2x LOR	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00123	0.00122	0.370%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00138	0.00142	0.00003	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	2.58	2.63	1.72%	20%	
		selenium, total	7782-49-2	E420	0.050	mg/L	147 µg/L	0.146	0.998%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.31	2.29	0.728%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	17341-25-2	E420	0.050	mg/L	3.60	3.62	0.420%	20%	

Page	: 6 of 19
Work Order	: CG2104105 Amendment 1
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC L	ot: 295748) - continue	d									
CG2104087-001	Anonymous	strontium, total	7440-24-6	E420	0.00020	mg/L	0.191	0.186	2.59%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	249	248	0.250%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000012	0.000011	0.000003	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00813	0.00801	1.51%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
Total Metals (QC L	ot: 299579)										
CG2104098-001	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 298315)									1 1	
CG2104087-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00013	0.00015	0.00002	Diff <2x LOR	
Dissolved Metals (QC Lot: 298316)										
CG2104087-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0011	0.0011	0.00001	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00026	0.00026	0.000007	Diff <2x LOR	
	arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00020	0.00019	0.000006	Diff <2x LOR		
	barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0563	0.0567	0.739%	20%		
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.011	0.010	0.0005	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	0.0583 µg/L	0.0000598	2.47%	20%	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	175	172	1.48%	20%	
		cobalt, dissolved	7440-48-4	E421	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00086	0.00087	0.000008	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.000052	<0.000050	0.000002	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0195	0.0187	4.06%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	136	133	2.20%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00051	0.00048	0.00003	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00128	0.00129	0.223%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00147	0.00144	0.00002	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	2.62	2.69	2.43%	20%	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	137 µg/L	0.135	1.58%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.21	2.17	1.84%	20%	
						J					

Page	: 7 of 19
Work Order	: CG2104105 Amendment 1
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 298316) - continued											
CG2104087-001	Anonymous	sodium, dissolved	17341-25-2	E421	0.050	mg/L	3.64	3.60	0.935%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.189	0.188	0.634%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	234	232	0.864%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00770	0.00766	0.487%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0021	0.0020	0.0001	Diff <2x LOR	
Dissolved Metals (C	Dissolved Metals (QC Lot: 298918)										
CG2104099-005	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.000050	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	r Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 293633)						
turbidity		E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 296869)						
solids, total suspended [TSS]		E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 296874)						
solids, total dissolved [TDS]		E162	10	mg/L	<10	
Physical Tests (QCLot: 299285)						
acidity (as CaCO3)		E283	2	mg/L	<2.0	
Physical Tests (QCLot: 302836)						
conductivity		E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 302837)						
alkalinity, bicarbonate (as CaCO3)		· E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)		E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)		E290	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 293496)						
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 293544)						
fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 293545)						
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 293546)						
bromide	24959-67-9	E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 293547)						
chloride	16887-00-6	E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 293548)						
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 293549)						
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 293784)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 298416)						
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 304087)						

Page	: 9 of 19
Work Order	: CG2104105 Amendment 1
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 30408	37) - continued					
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCLot:	299650)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot:	299658)					
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 295747)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 295748)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	17341-25-2	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
- L		I construction of the second se	l l	I	1	l.

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 295748) - contir	nued					
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 299579)						
mercury, total	7439-97-6	E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 298315)						
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 298316)						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
			1	l l	1	1

Page	: 11 of 19
Work Order	: CG2104105 Amendment 1
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number	r Method	LOR	Unit	Result	Qualifier	
Dissolved Metals (QCLot: 298316) - continued							
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010		
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050		
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010		
Dissolved Metals (QCLot: 298918)							
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050		

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	v Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 293633)										
turbidity		E121	0.1	NTU	200 NTU	98.8	85.0	115		
Physical Tests (QCLot: 296869)										
solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	94.4	85.0	115		
Physical Tests (QCLot: 296874)										
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	94.0	85.0	115		
Physical Tests (QCLot: 299285)										
acidity (as CaCO3)		E283	2	mg/L	50 mg/L	108	85.0	115		
Physical Tests (QCLot: 299552)										
oxidation-reduction potential [ORP]		E125		mV	220 mV	100	95.4	104		
Physical Tests (QCLot: 302835)										
pH		E108		pH units	7 pH units	100	98.6	101		
Physical Tests (QCLot: 302836)										
conductivity		E100	1	μS/cm	146.9 µS/cm	98.8	90.0	110		
Physical Tests (QCLot: 302837)										
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	101	85.0	115		
Anions and Nutrients (QCLot: 293496)										
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	100	80.0	120		
Anions and Nutrients (QCLot: 293544)										
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	100	90.0	110		
Anions and Nutrients (QCLot: 293545)										
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	101	90.0	110		
Anions and Nutrients (QCLot: 293546)										
bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	101	85.0	115		
Anions and Nutrients (QCLot: 293547)										
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	104	90.0	110		
Anions and Nutrients (QCLot: 293548)										
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	104	90.0	110		
Anions and Nutrients (QCLot: 293549)										
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	104	90.0	110		
Anions and Nutrients (QCLot: 29378 <u>4)</u>										
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	8.32 mg/L	94.0	80.0	120		
Anions and Nutrients (QCLot: 298416)										

Page : 13 of 19 Work Order : CG2104105 Amendment 1 Client : Teck Coal Limited Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Anions and Nutrients (QCLot: 298416) - continu	ed										
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	111	75.0	125			
Anions and Nutrients (QCLot: 304087)											
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	102	85.0	115			
Organic / Inorganic Carbon (QCLot: 299650)											
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	10 mg/L	94.0	80.0	120			
Organic / Inorganic Carbon (QCLot: 299658)											
carbon, total organic [TOC]		E355-L	0.5	mg/L	10 mg/L	105	80.0	120			
Total Metals (QCLot: 295747)											
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	99.0	80.0	120			
Total Metals (QCLot: 295748)											
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	102	80.0	120			
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	106	80.0	120			
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	99.5	80.0	120			
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	98.9	80.0	120			
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	102	80.0	120			
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	101	80.0	120			
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	103	80.0	120			
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	100	80.0	120			
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	107	80.0	120			
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	99.1	80.0	120			
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	99.4	80.0	120			
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	100	80.0	120			
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	104	80.0	120			
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	103	80.0	120			
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	96.9	80.0	120			
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	104	80.0	120			
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	97.6	80.0	120			
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	99.4	80.0	120			
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	98.2	80.0	120			
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	101	80.0	120			
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	107	80.0	120			
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	102	80.0	120			
sodium, total	17341-25-2	E420	0.05	mg/L	50 mg/L	100	80.0	120			
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	105	80.0	120			
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	104	80.0	120			

Page	: 14 of 19
Work Order	: CG2104105 Amendment 1
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Total Metals (QCLot: 295748) - continued											
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	106	80.0	120			
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	99.4	80.0	120			
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	96.4	80.0	120			
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	104	80.0	120			
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	99.8	80.0	120			
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	99.5	80.0	120			
Total Metals (QCLot: 299579)											
mercury, total	7439-97-6	E508-L	0.5	ng/L	5 ng/L	108	80.0	120			
Dissolved Metals (QCLot: 298315)											
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	98.3	80.0	120			
Dissolved Metals (QCLot: 298316)											
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	97.3	80.0	120			
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	104	80.0	120			
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	98.4	80.0	120			
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	100	80.0	120			
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	102	80.0	120			
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	102	80.0	120			
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	102	80.0	120			
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	99.2	80.0	120			
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	106	80.0	120			
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	98.9	80.0	120			
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	98.1	80.0	120			
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	98.4	80.0	120			
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	103	80.0	120			
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	102	80.0	120			
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	88.1	80.0	120			
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	99.8	80.0	120			
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	97.2	80.0	120			
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	98.8	80.0	120			
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	98.7	80.0	120			
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	99.7	80.0	120			
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	98.8	80.0	120			
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	101	80.0	120			
sodium, dissolved	17341-25-2	E421	0.05	mg/L	50 mg/L	101	80.0	120			
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	98.7	80.0	120			
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	80.3	80.0	120			

Page	: 15 of 19
Work Order	: CG2104105 Amendment 1
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 298316) - continued									
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	99.6	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	98.5	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	95.0	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	101	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	100.0	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	99.4	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	101	80.0	120	

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ike	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Anions and Nutri	ents (QCLot: 293496)											
CG2104105-002	RG_GHBP_WS_GGCAMP_ 2021-09-13_NP	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0627 mg/L	0.05 mg/L	125	70.0	130			
Anions and Nutri	ents (QCLot: 293544)											
CG2104092-002	Anonymous	fluoride	16984-48-8	E235.F	0.994 mg/L	1 mg/L	99.4	75.0	125			
Anions and Nutri	ents (QCLot: 293545)											
CG2104092-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125			
Anions and Nutri	ents (QCLot: 293546)											
CG2104092-002	Anonymous	bromide	24959-67-9	E235.Br-L	0.535 mg/L	0.5 mg/L	107	75.0	125			
Anions and Nutri	ents (QCLot: 293547)											
CG2104092-002	Anonymous	chloride	16887-00-6	E235.CI-L	107 mg/L	100 mg/L	107	75.0	125			
Anions and Nutri	ents (QCLot: 293548)											
CG2104092-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	ND mg/L	2.5 mg/L	ND	75.0	125			
Anions and Nutri	ents (QCLot: 293549)											
CG2104092-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.544 mg/L	0.5 mg/L	109	75.0	125			
Anions and Nutri	ents (QCLot: 293784)											
CG2104105-001	RG_GHUT_WS_GGCAMP_ 2021-09-13_NP	phosphorus, total	7723-14-0	E372-U	0.0598 mg/L	0.0676 mg/L	88.5	70.0	130			
Anions and Nutri	ents (QCLot: 298416)											
CG2104099-005	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.77 mg/L	2.5 mg/L	111	70.0	130			
Anions and Nutri	ents (QCLot: 304087)											
CG2104099-006	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0987 mg/L	0.1 mg/L	98.7	75.0	125			
Organic / Inorgan	ic Carbon (QCLot: 2996	650)										
CG2104099-009	Anonymous	carbon, dissolved organic [DOC]		E358-L	27.4 mg/L	23.9 mg/L	114	70.0	130			
Organic / Inorgan	ic Carbon (QCLot: 2996	558)										
CG2104098-014	Anonymous	carbon, total organic [TOC]		E355-L	28.2 mg/L	23.9 mg/L	118	70.0	130			
Total Metals (QC	Lot: 295747)											
CG2104087-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0368 mg/L	0.04 mg/L	92.0	70.0	130			
Total Metals(QC	Lot: 295748)											
CG2104087-002	Anonymous	aluminum, total	7429-90-5	E420	0.159 mg/L	0.2 mg/L	79.7	70.0	130			

Page : 17 of 19 Work Order : CG2104105 Amendment 1 Client : Teck Coal Limited Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spike Recovery (%) Recov			Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Total Metals (QC	Lot: 295748) - continue	d										
CG2104087-002	Anonymous	antimony, total	7440-36-0	E420	0.0206 mg/L	0.02 mg/L	103	70.0	130			
		arsenic, total	7440-38-2	E420	0.0190 mg/L	0.02 mg/L	95.2	70.0	130			
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		beryllium, total	7440-41-7	E420	0.0387 mg/L	0.04 mg/L	96.7	70.0	130			
		bismuth, total	7440-69-9	E420	0.00946 mg/L	0.01 mg/L	94.6	70.0	130			
		boron, total	7440-42-8	E420	0.100 mg/L	0.1 mg/L	100	70.0	130			
		cadmium, total	7440-43-9	E420	0.00371 mg/L	0.004 mg/L	92.8	70.0	130			
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130			
		cobalt, total	7440-48-4	E420	0.0174 mg/L	0.02 mg/L	87.2	70.0	130			
		copper, total	7440-50-8	E420	0.0173 mg/L	0.02 mg/L	86.6	70.0	130			
		iron, total	7439-89-6	E420	1.86 mg/L	2 mg/L	92.8	70.0	130			
		lead, total	7439-92-1	E420	0.0189 mg/L	0.02 mg/L	94.6	70.0	130			
		lithium, total	7439-93-2	E420	0.0968 mg/L	0.1 mg/L	96.8	70.0	130			
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130			
		manganese, total	7439-96-5	E420	0.0180 mg/L	0.02 mg/L	90.0	70.0	130			
		molybdenum, total	7439-98-7	E420	0.0193 mg/L	0.02 mg/L	96.6	70.0	130			
		nickel, total	7440-02-0	E420	0.0347 mg/L	0.04 mg/L	86.8	70.0	130			
		potassium, total	7440-09-7	E420	3.46 mg/L	4 mg/L	86.6	70.0	130			
		selenium, total	7782-49-2	E420	ND mg/L	0.04 mg/L	ND	70.0	130			
		silicon, total	7440-21-3	E420	9.18 mg/L	10 mg/L	91.8	70.0	130			
		silver, total	7440-22-4	E420	0.00391 mg/L	0.004 mg/L	97.7	70.0	130			
		sodium, total	17341-25-2	E420	ND mg/L	2 mg/L	ND	70.0	130			
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130			
		thallium, total	7440-28-0	E420	0.00370 mg/L	0.004 mg/L	92.5	70.0	130			
		tin, total	7440-31-5	E420	0.0196 mg/L	0.02 mg/L	97.8	70.0	130			
		titanium, total	7440-32-6	E420	0.0367 mg/L	0.04 mg/L	91.8	70.0	130			
		uranium, total	7440-61-1	E420	ND mg/L	0.004 mg/L	ND	70.0	130			
		vanadium, total	7440-62-2	E420	0.0946 mg/L	0.1 mg/L	94.6	70.0	130			
		zinc, total	7440-66-6	E420	0.357 mg/L	0.4 mg/L	89.3	70.0	130			
Total Metals (QC	Lot: 299579)											
CG2104098-002	Anonymous	mercury, total	7439-97-6	E508-L	5.16 ng/L	5 ng/L	103	70.0	130			
Dissolved Metals	(QCLot: 298315)											
CG2104087-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0391 mg/L	0.04 mg/L	97.8	70.0	130			
Dissolved Metals	(QCLot: 298316)											
CG2104087-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.203 mg/L	0.2 mg/L	102	70.0	130			

Page : 18 of 19 Work Order : CG2104105 Amendment 1 Client : Teck Coal Limited Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ike	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Dissolved Metals	(QCLot: 298316) - con	tinued										
CG2104087-002	Anonymous	antimony, dissolved	7440-36-0	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130			
		arsenic, dissolved	7440-38-2	E421	0.0221 mg/L	0.02 mg/L	110	70.0	130			
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		beryllium, dissolved	7440-41-7	E421	0.0369 mg/L	0.04 mg/L	92.2	70.0	130			
		bismuth, dissolved	7440-69-9	E421	0.00906 mg/L	0.01 mg/L	90.6	70.0	130			
		boron, dissolved	7440-42-8	E421	0.096 mg/L	0.1 mg/L	95.9	70.0	130			
		cadmium, dissolved	7440-43-9	E421	0.00372 mg/L	0.004 mg/L	93.1	70.0	130			
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130			
		cobalt, dissolved	7440-48-4	E421	0.0186 mg/L	0.02 mg/L	93.0	70.0	130			
		copper, dissolved	7440-50-8	E421	0.0183 mg/L	0.02 mg/L	91.7	70.0	130			
		iron, dissolved	7439-89-6	E421	1.86 mg/L	2 mg/L	92.9	70.0	130			
		lead, dissolved	7439-92-1	E421	0.0192 mg/L	0.02 mg/L	96.2	70.0	130			
		lithium, dissolved	7439-93-2	E421	0.0954 mg/L	0.1 mg/L	95.4	70.0	130			
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130			
		manganese, dissolved	7439-96-5	E421	0.0192 mg/L	0.02 mg/L	96.2	70.0	130			
		molybdenum, dissolved	7439-98-7	E421	0.0206 mg/L	0.02 mg/L	103	70.0	130			
		nickel, dissolved	7440-02-0	E421	0.0365 mg/L	0.04 mg/L	91.3	70.0	130			
		potassium, dissolved	7440-09-7	E421	3.58 mg/L	4 mg/L	89.5	70.0	130			
		selenium, dissolved	7782-49-2	E421	ND mg/L	0.04 mg/L	ND	70.0	130			
		silicon, dissolved	7440-21-3	E421	8.40 mg/L	10 mg/L	84.0	70.0	130			
		silver, dissolved	7440-22-4	E421	0.00376 mg/L	0.004 mg/L	94.1	70.0	130			
		sodium, dissolved	17341-25-2	E421	ND mg/L	2 mg/L	ND	70.0	130			
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130			
		thallium, dissolved	7440-28-0	E421	0.00387 mg/L	0.004 mg/L	96.8	70.0	130			
		tin, dissolved	7440-31-5	E421	0.0195 mg/L	0.02 mg/L	97.7	70.0	130			
		titanium, dissolved	7440-32-6	E421	0.0393 mg/L	0.04 mg/L	98.3	70.0	130			
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.004 mg/L	ND	70.0	130			
		vanadium, dissolved	7440-62-2	E421	0.101 mg/L	0.1 mg/L	101	70.0	130			
		zinc, dissolved	7440-66-6	E421	0.358 mg/L	0.4 mg/L	89.6	70.0	130			
Dissolved Metals	(QCLot: 298918)											
CG2104099-006	Anonymous	mercury, dissolved	7439-97-6	E509	0.000103 mg/L	0.0001 mg/L	103	70.0	130			

Teck							, age												
	COC 1D:	Sep	tember GG	CAMP	2021		TURN	AROUN	D TIME:		Winds Transmission								
Excitity Name / Job	PROFECT KILIE	TIND 4.	Loge	1. (94	Q <u>. 1999</u>	The fit	L	ab Name	ALS Calear	ATORY Y	<u>. 151</u>	<u>k (1</u>				111 C	Excel	PDF	ED
Project Manager	Allie Ferguson						Lat	Contact	Lyudmyla S	hvets				allo forata	con@tecx.co	1 1	2.	<u>, 770 (</u>	İ.
Email	allie.ferguson@teck.co						1	Email	lyudmyla.s	hvets@al	sgiobal.com			ectore @e	ous ordine c	om slata			ĺ.
Address	421 Pine Avenue							Address	2559 29 Str	eet NE				Ibow on	Ominnow.c	r - 11		х. — — — — — — — — — — — — — — — — — — —	
							ļ					,		monica.tar	thatfire a	AR .			2
City		Sparwood			Province BC		<u> </u>	City	Calgary	. –	Province	AB		awiebos	minhow.ch		i		ŀ
Postal Code	aca 435 8303	VOB 2G0			Country Car	ada	Pos	stal Code	1 403 407 1	704	Country	Canada							
Phone Number	250-425-8202	M.P. Newsul					Filone	Number	14034071	(94)		WEGTE	,		144 ()	THE PART OF		1 19-44 P. 1	æ
		TE PETAILS					** 1	111111		i de su	CLIGHT ARA	Je kassi ka	En ser se	17	i dana I	as t		CIRLE.	
									14 N	F .	N	N	F	N	·∽r,			1.0	
										Constant,	1.45.94	1.169.16	i Ariel 2	1.1.1.1	20034		T		
						1			2	HUSO4	H2SON		HCL	HNO	HNOI		Mar I		Ŕ
				(9					ž .	The Ly					Bei Ng	Mandal.	· * * * *	iliane .	
	1			cs/j					실		ž								
				12					E E		TTC			ļ 🕂	¢				1
				cria					0	کو	¥	N N	-	E .	Ľ.				1
				late					Ť,	- -	5	AF.	N.	₹	N.				ł –
				N SI					IV.	kag	, and a second s	5	AF.	N I	IAI				
				dor					ž	Рис	Pac	13	Ý	18	10				Ĺ
			Field	1ZBL		Time	G≂Grab	# Of	ČĚ		5		3	١ð -	SCK				i i
Sample ID	Sam	ple Location	Matrix	II	Date	(24hr)	C=Comp	Cont.	<u>E></u>	¥.	IV	¥.	Ť	123	T X				<u> </u>
RG_GHUT_WS_GGCAMP_2021-09-13_NP	and a R	о онот	ws.	No.	9/13/2021	930	G	7	x	x	х	x	x	x	х				-
RG_GHBP_WS_GGCAMP_2021-09-13_NP	R	G_GHBP	ws	<u>No</u>	9/13/2021	1505	G	7	X	X	x	x	X	x	X				-
RG_RIVER_WS_2021-09-13_NP	R	RIVER	ws	No	9/13/2021	1505	G	7	x	x	x	<u>×</u>	<u> </u>	x	x	*	ļļ.		⊢
RG_FBLANK_WS_2021-09-13_NP	- RG	FBLANL	ws ws	No	9/13/2021	1505	G	7	X	x	x	x	X	x	x				-
																	├	[<u> </u>
<u> </u>	AND								200									I	
	B BARRAN			2223.9.5									·			· · · · · · · · ·			_
		<u></u>								<u> </u>									
· · · ·																			
ADDIFIONAL COMMENTS	SPECIAL INSTRUCT	IONS	7.2.6.		REMNQUISH	D BY/AFI	ILIATION		DATE/TIM	r i	460	EPILD	ny/appi	ULATIO					
						******							ĥ	1.		0	7/	<u>م</u>	^
					Jennifer	Ings/Min	10W		######################################	WWWWWW	-		V	ĸ		-71	1pm	0	5
0 750546																- /	0		_
		,																	
NB OF BOFTLES RAT	URNED/DESCRIPTIO	G	ала са	1.5.5	· * *	u.	NY KANA	<u></u> .	640	f		3. I.					- F i . I .	<u>.</u>	đ
		Reg	gular (default) x		Sampler's Nam	ie.	847.9 KG	:	Jennifer In	(A		Mah	ile#			519-500	L3444		
	Priori	ty (2-3 business days) - 5	0% surcharge				inanang manakanga M	1 22		6	2 C S Andhan			LINE BEAS	and the second second			લ સંસ્કાર છે. તે વ	14 Mar
	Emerger	icy (1 Business Day) - 10	0% surcharge	- 5	Sampler's Signat	ure	for	10 m	'' - II	N MAR		Date/	Time	H ARA	S	eptember	14, 2021		
	POF CIDEDADCV S · · ·	ANAP OF Weekend -	Contact ALS!						Guine and Street and S	20100-00-04 01-000-04	30 80 800 00000000000000000000000000000				the second se	a c backetagener-minin		an ann bhar de	

Environmental Division Calgary Work Order Reference CG2104105 . ٠.

Telephone : ~ 1 403 407 1800

CERTIFICATE OF ANALYSIS

Work Order	: CG2104192	Page	: 1 of 6
Client	: Teck Coal Limited	Laboratory	: Calgary - Environmental
Contact	: Allie Ferguson	Account Manager	: Lyudmyla Shvets
Address	: 421 Pine Avenue	Address	2559 29th Street NE
	Sparwood BC Canada V0B 2G0		Calgary AB Canada T1Y 7B5
Telephone	:	Telephone	+1 403 407 1800
Project	: Regional Effects Program	Date Samples Received	: 17-Sep-2021 10:00
PO	: VPO00750546	Date Analysis Commenced	: 18-Sep-2021
C-O-C number	: September GGCAMP 2021	Issue Date	06-Oct-2021 16:50
Sampler	: jennifer ings		
Site	:		
Quote number	: Teck Coal Master Quote		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Dion Chan	Lab Assistant	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
µg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.

Sub-Matrix: Water			Ci	lient sample ID	RG_GANF_WS_	 	
(Matrix: Water)					GGCAMP_2021- 09-15_NP		
			Client samp	oling date / time	15-Sep-2021 12:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104192-001	 	
					Result	 	
Physical Tests		E283	2.0	mg/l	<2.0		
alkalinity hicarbonato (as $Ca(O3)$		E200	1.0	mg/L	-2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	241	 	
alkalinity, carbonate (as CaCOS)		E290	1.0	mg/L	20.0	 	
alkalinity, hydroxide (as CaCOS)		E290	1.0	mg/L	<1.0 267	 	
aikalinity, total (as CaCO3)		E290	1.0	mg/L	207	 	
		E100	2.0	µS/cm	1210	 	
nardness (as CaCO3), dissolved		EC100	0.50	mg/L	800	 	
oxidation-reduction potential [ORP]		E125	0.10	mv	465	 	
рН		E108	0.10	pH units	8.54	 	
solids, total dissolved [TDS]		E162	10	mg/L	892	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.4	 	
turbidity		E121	0.10	NTU	0.35	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	294	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	16.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	 	
Anions and Nutrients							
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.250 DLDS	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	3.22	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.353	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.080	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.322	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0050 DLDS	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0027	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	473	 	
Organic / Inorganic Carbon							
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	2.56	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	2.58	 	

Sub-Matrix: Water			Cl	ient sample ID	RG_GANF_WS_	 	
(Matrix: Water)					GGCAMP_2021- 09-15_NP		
			Client samp	ling date / time	15-Sep-2021 12:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104192-001	 	
Ion Balance					Result	 	
anion sum		EC101	0.10	meg/L	15.3	 	
cation sum		EC101	0.10	meg/L	16.3	 	
ion balance (cations/anions ratio)		EC101	0.010	%	106	 	
ion balance (cation-anion difference)		EC101	0.010	%	3.16	 	
Total Metals							
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0043	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00011	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00016	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0670	 	
beryllium, total	7440-41-7	E420	0.020	µg/L	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	0.012	 	
cadmium, total	7440-43-9	E420	0.0050	µg/L	<0.0050	 	
calcium, total	7440-70-2	E420	0.050	mg/L	124	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	<0.00010	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0255	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	94.6	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00080	 	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00126	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00138	 	
potassium, total	7440-09-7	E420	0.050	mg/L	2.81	 	
selenium, total	7782-49-2	E420	0.050	μg/L	5.98	 	
silicon, total	7440-21-3	E420	0.10	mg/L	3.94	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	 	
sodium, total	17341-25-2	E420	0.050	mg/L	4.40	 	

Sub-Matrix: Water			Cli	ient sample ID	RG_GANF_WS_	 	
(Matrix: Water)					GGCAMP_2021- 09-15_NP		
			Client samp	ling date / time	15-Sep-2021 12:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104192-001	 	
					Result	 	
Total Metals	7440 04 0	E420	0.00020	mg/l	0.256		
	7440-24-6	E420	0.00020	mg/∟	0.230	 	
	7704-34-9	E420	0.50	mg/L	<0.000010	 	
	7440-28-0	E420	0.000010	mg/∟	<0.00010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00272	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	 	
Dissolved Metals							
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00010	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00016	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0794	 	
beryllium, dissolved	7440-41-7	E421	0.020	µg/L	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.013	 	
cadmium, dissolved	7440-43-9	E421	0.0050	µg/L	<0.0050	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	144	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00011	 	
cobalt, dissolved	7440-48-4	E421	0.10	µg/L	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00036	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0275	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	107	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00085	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00132	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00136	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	3.17	 	

Sub-Matrix: Water			Cl	ient sample ID	RG_GANF_WS_	 	
(Matrix: Water)					GGCAMP_2021- 09-15_NP		
			Client samp	ling date / time	15-Sep-2021 12:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104192-001	 	
					Result	 	
Dissolved Metals							
selenium, dissolved	7782-49-2	E421	0.050	µg/L	6.86	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	3.83	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	5.03	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.278	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	160	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00289	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0029	 	
dissolved mercury filtration location		EP509	-	-	Field	 	
dissolved metals filtration location		EP421	-	-	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: CG2104192	Page	: 1 of 12
Client	: Teck Coal Limited	Laboratory	: Calgary - Environmental
Contact	: Allie Ferguson	Account Manager	: Lyudmyla Shvets
Address	: 421 Pine Avenue	Address	2559 29th Street NE
	Sparwood BC Canada V0B 2G0		Calgary, Alberta Canada T1Y 7B5
Telephone	·	Telephone	: +1 403 407 1800
Project	: Regional Effects Program	Date Samples Received	: 17-Sep-2021 10:00
PO	: VPO00750546	Issue Date	: 06-Oct-2021 16:50
C-O-C number	: September GGCAMP 2021		
Sampler	: jennifer ings		
Site	;		
Quote number	: Teck Coal Master Quote		
No. of samples received	:1		
No. of samples analysed	:1		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• <u>No</u> Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E298	15-Sep-2021	29-Sep-2021				29-Sep-2021	28 days	14 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										,
RG_GANF_WS_GGCAMP_2021-09-15_NP	E235.Br-L	15-Sep-2021					18-Sep-2021	28 days	3 days	•
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE	E235 CU	15 Sep 2021					18 Sep 2021	28 days	3 dave	1
KG_GANF_WG_GGCANF_2021-09-13_NF	L255.01-L	15-5ep-2021					10-3ep-2021	20 uays	5 uays	•
Anione and Nutriante - Dissolved Orthonhoonhate by Colourimetry (Illitra Trace I	avel)									
HDPF										
RG GANF WS GGCAMP 2021-09-15 NP	E378-U	15-Sep-2021					18-Sep-2021	3 days	3 days	✓
								-	-	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E235.F	15-Sep-2021					18-Sep-2021	28 days	3 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E235.NO3-L	15-Sep-2021					18-Sep-2021	3 days	3 days	~
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE	E235 NO2 I	15 Sep 2021					18 Sep 2021	3 days	3 days	1
KG_GAINF_VV5_GGGAIVIF_ZUZ 1-U9-15_NP	E235.NU2-L	10-3ep-2021					10-3ep-2021	Juays	5 uays	*
	1	1		1				1		

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔹	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E235.SO4	15-Sep-2021					18-Sep-2021	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E318	15-Sep-2021	27-Sep-2021				27-Sep-2021	28 days	12 days	~
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E372-U	15-Sep-2021	22-Sep-2021				22-Sep-2021	28 days	7 days	1
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E421.Cr-L	15-Sep-2021	23-Sep-2021				23-Sep-2021	180 days	8 days	~
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E509	15-Sep-2021	23-Sep-2021				23-Sep-2021	28 days	8 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E421	15-Sep-2021	23-Sep-2021				23-Sep-2021	180 days	8 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Compustion (Low Leve	D									
Amber glass dissolved (sulfuric acid)	.,									
RG_GANF_WS_GGCAMP_2021-09-15_NP	E358-L	15-Sep-2021	27-Sep-2021				29-Sep-2021	28 days	14 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low Level)									
Amber glass total (sulfuric acid)										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E355-L	15-Sep-2021	27-Sep-2021				29-Sep-2021	28 days	14 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E283	15-Sep-2021					28-Sep-2021	14 days	13 days	1

Matrix: Water					E١	aluation: × =	Holding time exce	edance ; 🔹	= Withir	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E290	15-Sep-2021					28-Sep-2021	14 days	13 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E100	15-Sep-2021					28-Sep-2021	28 days	13 days	~
Physical Tests : ORP by Electrode										
HDPE										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E125	15-Sep-2021					25-Sep-2021	0.34	242 hrs	
								hrs		EHIR-FM
Physical Tests : pH by Meter									1	
	F100	45 0 - = 0004					00.0 0004		240 hm	
RG_GANF_WS_GGCAMP_2021-09-15_NP	EIUO	15-Sep-2021					20-Sep-2021	0.25	310 ms	
								nrs		
Physical Tests : TDS by Gravimetry										
HUPE PC CANE WS CCCAMP 2021 00 15 NP	F162	15-Sen-2021					22-Sen-2021	7 days	7 dave	1
KG_GANF_WS_GGCAMF_2021-09-15_NF	L 102	10-060-2021					22-3ep-2021	/ uays	i uays	•
Physical Tests a TOO has Organizates (Laus Laus)										
Physical Tests : TSS by Gravimetry (Low Level)										
RG GANE WS GGCAMP 2021-09-15 NP	E160-L	15-Sep-2021					22-Sep-2021	7 davs	7 davs	1
								,.	,-	
Physical Tasts - Turbidity by Nanhalometry										
HDPE										
RG GANF WS GGCAMP 2021-09-15 NP	E121	15-Sep-2021					18-Sep-2021	3 days	3 days	1
								,	,	
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E420.Cr-L	15-Sep-2021					23-Sep-2021	180	8 days	✓
								days		
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)									1	
Pre-cleaned amber glass - total (lab preserved)										
RG_GANF_WS_GGCAMP_2021-09-15_NP	E508-L	15-Sep-2021					24-Sep-2021	28 days	9 days	1

Matrix: Water					E٧	/aluation: × =	Holding time excee	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_GANF_WS_GGCAMP_2021-09-15_NP	E420	15-Sep-2021					23-Sep-2021	180 days	8 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Outling Control Sample Type Count Frequency (%) Analytical Methods QC Lot # QC Regular Actual Expected Evaluation Laboratory Duplicates (DUP)	Matrix: Water		Evaluatio	on: × = QC freque	ncy outside spe	cification; ✓ = 0	QC frequency wit	hin specification.
Analytical Methods Method QC Lot # QC Regular Actual Expected Evaluation Laboratory Duplicates (DUP) Acidify by Titration E283 304859 1 20 5.0 5.0 ✓ Alkalinity Species by Titration E290 304723 1 15 6.6 5.0 ✓ Ammonia by Fluorescence E298 305706 1 20 5.0 ✓ Chloride in Water by IC (Low Level) E235.Br-L 296270 1 16 6.2 5.0 ✓ Conductivity in Water E100 304722 1 15 6.6 5.0 ✓ Dissolved Chromium in Water by CRC ICPMS (Low Level) E421.Cr-L 296271 1 15 6.6 5.0 ✓ Dissolved Mercury in Water by CRC ICPMS (Low Level) E421.Cr-L 300110 1 20 5.0 ✓ ✓ Dissolved Mercury in Water by CRC ICPMS E509 300938 1 20 5.0 ✓ ✓ Dissolved Organic Carbo	Quality Control Sample Type			Co	unt		Frequency (%)	
Laboratory Duplicates (DUP) Acidity by Titration E283 304859 1 20 5.0 5.0 ✓ Alkalinity Species by Titration E290 304723 1 15 6.6 5.0 ✓ Anmonia by Fluorescence E298 305706 1 20 5.0 5.0 ✓ Bromide in Water by IC (Low Level) E235.Br-L 296270 1 16 6.2 5.0 ✓ Choride in Water by IC (Low Level) E235.Br-L 296270 1 16 6.2 5.0 ✓ Conductivity in Water E100 304722 1 15 6.6 5.0 ✓ Dissolved Chromium in Water by CRC ICPMS (Low Level) E421.Cr-L 300110 1 20 5.0 ✓ Dissolved Mercury in Water by CRC ICPMS E509 300938 1 20 5.0 ✓ Dissolved Organic Carbon by Combustion (Low Level) E358-L 3003820 1 19 5.2 5.0 ✓ Dissolved Orthophosphate by Colo	Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Acidity by TitrationE2833048591205.05.0✓Alkalinity Species by TitrationE2903047231156.65.0✓Ammonia by FluorescenceE2983057061205.05.0✓Bromide in Water by IC (Low Level)E235.Br-L2962701166.25.0✓Chloride in Water by IC (Low Level)E235.Cr-L2962711166.25.0✓Conductivity in WaterE1003047221156.65.0✓Dissolved Chromium in Water by CR ICPMS (Low Level)E421.Cr-L3001101205.05.0✓Dissolved Mercury in Water by CR ICPMSE4213001091205.05.0✓Dissolved Mercury in Water by CR ICPMSE4213001091205.05.0✓Dissolved Mercury in Water by CR ICPMSE4213001091205.0✓✓Dissolved Organic Carbon by Combustion (Low Level)E358-L3038201195.25.0✓Dissolved Orthophosphate by Clourimetry (Ultra Trace Level)E378-U2962681147.15.0✓Fluoride in Water by IC (Low Level)E235.NO3-L2962721166.25.0✓	Laboratory Duplicates (DUP)							
Alkalinity Species by TitrationE290 304723 115 6.6 5.0 \checkmark Armonia by FluorescenceE298 305706 1 20 5.0 5.0 \checkmark Bromide in Water by IC (Low Level)E235.Br-L 296270 1 16 6.2 5.0 \checkmark Chloride in Water by IC (Low Level)E235.Ci-L 296271 1 16 6.2 5.0 \checkmark Conductivity in WaterE100 304722 1 15 6.6 5.0 \checkmark Dissolved Chromium in Water by CRC ICPMS (Low Level)E421.Cr-L 300110 1 20 5.0 \checkmark Dissolved Mercury in Water by CRC ICPMSE509 300938 1 20 5.0 \checkmark Dissolved Metals in Water by CRC ICPMSE421 300109 1 20 5.0 \checkmark Dissolved Organic Carbon by Combustion (Low Level)E358-L 303820 1 19 5.2 5.0 \checkmark Dissolved Orthophosphate by Clourimetry (Ultra Trace Level)E378-U 296209 1 14 7.1 5.0 \checkmark Fluoride in Water by ICE235.NO3-LE235.NO3-L 296272 1 16 6.2 5.0 \checkmark	Acidity by Titration	E283	304859	1	20	5.0	5.0	1
Ammonia by FluorescenceE298 305706 1 20 5.0 5.0 \checkmark Bromide in Water by IC (Low Level)E235.Br-L 296270 1 16 6.2 5.0 \checkmark Chloride in Water by IC (Low Level)E235.Cl-L 296271 1 16 6.2 5.0 \checkmark Conductivity in WaterE100 304722 1 15 6.6 5.0 \checkmark Dissolved Chromium in Water by CRC ICPMS (Low Level)E421.Cr-L 300110 1 20 5.0 \checkmark Dissolved Mercury in Water by CRC ICPMSE509 300938 1 20 5.0 \checkmark Dissolved Metals in Water by CRC ICPMSE421 300109 1 20 5.0 \checkmark Dissolved Organic Carbon by Combustion (Low Level)E358-L 303820 1 19 5.2 5.0 \checkmark Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)E378-U 296209 1 14 7.1 5.0 \checkmark Fluoride in Water by ICE235.NO3-L 296272 1 16 6.2 5.0 \checkmark	Alkalinity Species by Titration	E290	304723	1	15	6.6	5.0	✓
Bromide in Water by IC (Low Level)E235.Br-L2962701166.25.0 \checkmark Chloride in Water by IC (Low Level)E235.Cl-L2962711166.25.0 \checkmark Conductivity in WaterE1003047221156.65.0 \checkmark Dissolved Chromium in Water by CRC ICPMS (Low Level)E421.Cr-L3001101205.05.0 \checkmark Dissolved Mercury in Water by CRC ICPMSE5093009381205.05.0 \checkmark Dissolved Metals in Water by CRC ICPMSE4213001091205.05.0 \checkmark Dissolved Organic Carbon by Combustion (Low Level)E358-L3038201195.25.0 \checkmark Dissolved Orthophosphate by Clourimetry (Ultra Trace Level)E378-U2962091147.15.0 \checkmark Fluoride in Water by ICE235.NO3-L2962721166.25.0 \checkmark	Ammonia by Fluorescence	E298	305706	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)E235.CI-L2962711166.25.0 \checkmark Conductivity in WaterE100 304722 1156.6 5.0 \checkmark Dissolved Chromium in Water by CRC ICPMS (Low Level)E421.Cr-L 300110 1 20 5.0 5.0 \checkmark Dissolved Mercury in Water by CVAASE509 300938 1 20 5.0 5.0 \checkmark Dissolved Metals in Water by CRC ICPMSE421 300109 1 20 5.0 5.0 \checkmark Dissolved Organic Carbon by Combustion (Low Level)E358-L 303820 1 19 5.2 5.0 \checkmark Dissolved Orthophosphate by Clourimetry (Ultra Trace Level)E378-U 296209 1 14 7.1 5.0 \checkmark Fluoride in Water by IC (Low Level)E235.NO3-L 296272 1 16 6.2 5.0 \checkmark	Bromide in Water by IC (Low Level)	E235.Br-L	296270	1	16	6.2	5.0	✓
Conductivity in WaterE100 304722 115 6.6 5.0 \checkmark Dissolved Chromium in Water by CRC ICPMS (Low Level)E421.Cr-L 300110 1 20 5.0 5.0 \checkmark Dissolved Mercury in Water by CVAASE509 300938 1 20 5.0 5.0 \checkmark Dissolved Metals in Water by CRC ICPMSE421 300109 1 20 5.0 5.0 \checkmark Dissolved Organic Carbon by Combustion (Low Level)E358-L 303820 1 19 5.2 5.0 \checkmark Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)E378-U 296209 1 14 7.1 5.0 \checkmark Fluoride in Water by ICE235.F 296268 1 16 6.2 5.0 \checkmark Nitrate in Water by IC (Low Level)E235.NO3-L 296272 1 16 6.2 5.0 \checkmark	Chloride in Water by IC (Low Level)	E235.CI-L	296271	1	16	6.2	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)E421.Cr-L 300110 1 20 5.0 5.0 \checkmark Dissolved Mercury in Water by CVAASE509 300938 1 20 5.0 5.0 \checkmark Dissolved Metals in Water by CRC ICPMSE421 300109 1 20 5.0 5.0 \checkmark Dissolved Organic Carbon by Combustion (Low Level)E358-L 303820 1 19 5.2 5.0 \checkmark Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)E378-U 296209 1 14 7.1 5.0 \checkmark Fluoride in Water by ICE235.F 296268 1 16 6.2 5.0 \checkmark	Conductivity in Water	E100	304722	1	15	6.6	5.0	✓
Dissolved Mercury in Water by CVAAS E509 300938 1 20 5.0 5.0 √ Dissolved Metals in Water by CRC ICPMS E421 300109 1 20 5.0 5.0 ✓ Dissolved Organic Carbon by Combustion (Low Level) E358-L 3003820 1 19 5.2 5.0 ✓ Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) E378-U 296209 1 14 7.1 5.0 ✓ Fluoride in Water by IC E235.F 296268 1 16 6.2 5.0 ✓ Nitrate in Water by IC (Low Level) E235.NO3-L 296272 1 16 6.2 5.0 ✓	Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300110	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS E421 300109 1 20 5.0 5.0 Dissolved Organic Carbon by Combustion (Low Level) E358-L 303820 1 19 5.2 5.0 ✓ Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) E378-U 296209 1 14 7.1 5.0 ✓ Fluoride in Water by IC E235.F 296268 1 16 6.2 5.0 ✓ Nitrate in Water by IC (Low Level) E235.NO3-L 296272 1 16 6.2 5.0 ✓	Dissolved Mercury in Water by CVAAS	E509	300938	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level) E358-L 303820 1 19 5.2 5.0 ✓ Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) E378-U 296209 1 14 7.1 5.0 ✓ Fluoride in Water by IC E235.F 296268 1 16 6.2 5.0 ✓ Nitrate in Water by IC (Low Level) E235.NO3-L 296272 1 16 6.2 5.0 ✓	Dissolved Metals in Water by CRC ICPMS	E421	300109	1	20	5.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) E378-U 296209 1 14 7.1 5.0 ✓ Fluoride in Water by IC E235.F 296268 1 16 6.2 5.0 ✓ Nitrate in Water by IC (Low Level) E235.NO3-L 296272 1 16 6.2 5.0 ✓	Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303820	1	19	5.2	5.0	✓
Fluoride in Water by IC E235.F 296268 1 16 6.2 5.0 Nitrate in Water by IC (Low Level) E235.NO3-L 296272 1 16 6.2 5.0	Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	296209	1	14	7.1	5.0	✓
Nitrate in Water by IC (Low Level) E235.NO3-L 296272 1 16 6.2 5.0 🗸	Fluoride in Water by IC	E235.F	296268	1	16	6.2	5.0	✓
	Nitrate in Water by IC (Low Level)	E235.NO3-L	296272	1	16	6.2	5.0	✓
Nitrite in Water by IC (Low Level) E235.NO2-L 296273 1 16 6.2 5.0 🗸	Nitrite in Water by IC (Low Level)	E235.NO2-L	296273	1	16	6.2	5.0	✓
ORP by Electrode E125 302476 1 20 5.0 5.0 √	ORP by Electrode	E125	302476	1	20	5.0	5.0	✓
pH by Meter E108 304721 1 18 5.5 5.0 √	pH by Meter	E108	304721	1	18	5.5	5.0	✓
Sulfate in Water by IC E235.SO4 296269 1 16 6.2 5.0 🗸	Sulfate in Water by IC	E235.SO4	296269	1	16	6.2	5.0	✓
TDS by Gravimetry E162 298977 1 20 5.0 5.0 🗸	TDS by Gravimetry	E162	298977	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level) E420.Cr-L 300563 1 19 5.2 5.0 🗸	Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300563	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level) E318 304121 1 19 5.2 5.0 🗸	Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	304121	1	19	5.2	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) E508-L 301411 1 19 5.2 5.0 🗸	Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	301411	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS E420 300562 1 20 5.0 5.0	Total Metals in Water by CRC ICPMS	E420	300562	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) E355-L 303828 1 19 5.2 5.0 🗸	Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303828	1	19	5.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace) E372-U 297810 1 20 5.0 5.0	Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	297810	1	20	5.0	5.0	✓
Turbidity by Nephelometry E121 296170 1 20 5.0 5.0 🗸	Turbidity by Nephelometry	E121	296170	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)	Laboratory Control Samples (LCS)							
Acidity by Titration E283 304859 1 20 5.0 5.0 🗸	Acidity by Titration	E283	304859	1	20	5.0	5.0	✓
Alkalinity Species by Titration E290 304723 1 15 6.6 5.0 🗸	Alkalinity Species by Titration	E290	304723	1	15	6.6	5.0	✓
Ammonia by Fluorescence E298 305706 1 20 5.0 5.0 🗸	Ammonia by Fluorescence	E298	305706	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level) E235.Br-L 296270 1 16 6.2 5.0 🗸	Bromide in Water by IC (Low Level)	E235.Br-L	296270	1	16	6.2	5.0	✓
Chloride in Water by IC (Low Level) E235.CI-L 296271 1 16 6.2 5.0 🗸	Chloride in Water by IC (Low Level)	E235.CI-L	296271	1	16	6.2	5.0	✓
Conductivity in Water E100 304722 1 15 6.6 5.0 🗸	Conductivity in Water	E100	304722	1	15	6.6	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level) E421.Cr-L 300110 1 20 5.0 5.0	Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300110	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS E509 300938 1 20 5.0 5.0	Dissolved Mercury in Water by CVAAS	E509	300938	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS E421 300109 1 20 5.0 5.0 🗸	Dissolved Metals in Water by CRC ICPMS	E421	300109	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level) E358-L 303820 1 19 5.2 5.0 🗸	Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303820	1	19	5.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) E378-U 296209 1 14 7.1 5.0 🖌	Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	296209	1	14	7.1	5.0	1

Page	: 7 of 12
Work Order	: CG2104192
Client	: Teck Coal Limited
Project	: Regional Effects Program

Matrix: Water	Evaluation: \star = QC frequency outside specification; \checkmark = QC frequency within						
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	296268	1	16	6.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	296272	1	16	6.2	5.0	\checkmark
Nitrite in Water by IC (Low Level)	E235.NO2-L	296273	1	16	6.2	5.0	✓
ORP by Electrode	E125	302476	1	20	5.0	5.0	✓
pH by Meter	E108	304721	1	18	5.5	5.0	✓
Sulfate in Water by IC	E235.SO4	296269	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	298977	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300563	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	304121	1	19	5.2	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	301411	1	19	5.2	5.0	\checkmark
Total Metals in Water by CRC ICPMS	E420	300562	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303828	1	19	5.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	297810	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	298276	1	13	7.6	5.0	✓
Turbidity by Nephelometry	E121	296170	1	20	5.0	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	304859	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	304723	1	15	6.6	5.0	✓
Ammonia by Fluorescence	E298	305706	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	296270	1	16	6.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	296271	1	16	6.2	5.0	✓
Conductivity in Water	E100	304722	1	15	6.6	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300110	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	300938	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	300109	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303820	1	19	5.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	296209	1	14	7.1	5.0	
Fluoride in Water by IC	E235.F	296268	1	16	6.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	296272	1	16	6.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	296273	1	16	6.2	5.0	✓
Sulfate in Water by IC	E235.SO4	296269	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	298977	1	20	5.0	5.0	\checkmark
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300563	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	304121	1	19	5.2	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	301411	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	300562	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303828	1	19	5.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	297810	1	20	5.0	5.0	
TSS by Gravimetry (Low Level)	E160-L	298276	1	13	7.6	5.0	
Turbidity by Nephelometry	E121	296170	1	20	5.0	5.0	✓

Page	: 8 of 12
Work Order	: CG2104192
Client	: Teck Coal Limited
Project	: Regional Effects Program

Matrix: Water		Evaluation	on: × = QC freque	ency outside spe	ecification; ✓ = 0	QC frequency wit	thin specification.	
Quality Control Sample Type	Count					Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Matrix Spikes (MS)								
Ammonia by Fluorescence	E298	305706	1	20	5.0	5.0	1	
Bromide in Water by IC (Low Level)	E235.Br-L	296270	1	16	6.2	5.0	✓	
Chloride in Water by IC (Low Level)	E235.CI-L	296271	1	16	6.2	5.0	✓	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300110	1	20	5.0	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	300938	1	20	5.0	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	300109	1	20	5.0	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303820	1	19	5.2	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	296209	1	14	7.1	5.0	✓	
Fluoride in Water by IC	E235.F	296268	1	16	6.2	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	296272	1	16	6.2	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	296273	1	16	6.2	5.0	✓	
Sulfate in Water by IC	E235.SO4	296269	1	16	6.2	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300563	1	19	5.2	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	304121	1	19	5.2	5.0	✓	
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	301411	1	19	5.2	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	300562	1	20	5.0	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303828	1	19	5.2	5.0	✓	
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	297810	1	20	5.0	5.0	√	

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Calgary - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108 Calgary - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121 Calgary - Environmental	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L Calgary - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Calgary - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Chloride in Water by IC (Low Level)	E235.CI-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Fluoride in Water by IC	E235.F Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	E235.SO4 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Acidity by Titration	E283 Calgary - Environmental	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page	: 11 of 12
Work Order	: CG2104192
Client	: Teck Coal Limited
Project	: Regional Effects Program

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
	Vancouver - Environmental			
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
	Vancouver - Environmental			
Dissolved Mercury in Water by CVAAS	E509	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by
	Vancouver - Environmental			CVAAS.
Dissolved Hardness (Calculated)	EC100	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	Vancouver -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Environmental			calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis) Dissolved species are
	Calgary - Environmental			used where available. Minor ions are included where data is present.
				lon Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Vancouver -			
	Environmental			

Page	: 12 of 12
Work Order	: CG2104192
Client	: Teck Coal Limited
Project	Regional Effects Program

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCI.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order	CG2104192	Page	: 1 of 18
Client	: Teck Coal Limited	Laboratory	: Calgary - Environmental
Contact	: Allie Ferguson	Account Manager	: Lyudmyla Shvets
Address	∶421 Pine Avenue Sparwood BC Canada V0B 2G0	Address	: 2559 29th Street NE Calgary, Alberta Canada T1Y 7B5
Telephone	;	Telephone	:+1 403 407 1800
Project	:Regional Effects Program	Date Samples Received	: 17-Sep-2021 10:00
PO	: VPO00750546	Date Analysis Commenced	: 18-Sep-2021
C-O-C number	: September GGCAMP 2021	Issue Date	: 06-Oct-2021 16:50
Sampler	: jennifer ings		
Site	:		
Quote number	: Teck Coal Master Quote		
No. of samples received	:1		
No. of samples analysed	:1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Dion Chan	Lab Assistant	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Page	: 3 of 18
Work Order	: CG2104192
Client	: Teck Coal Limited
Project	: Regional Effects Program

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water						Labora	tory Duplicate (D	UP) Report			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 296170)										
CG2104162-002	Anonymous	turbidity		E121	0.10	NTU	0.28	0.26	0.01	Diff <2x LOR	
Physical Tests (QC	Lot: 298977)										
CG2104186-002	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	248	252	1.80%	20%	
Physical Tests (QC	Lot: 302476)										
CG2104192-001	RG_GANF_WS_GGCAMP _2021-09-15_NP	oxidation-reduction potential [ORP]		E125	0.10	mV	465	471	1.28%	15%	
Physical Tests (QC	Lot: 304721)										
CG2104186-002	Anonymous	рН		E108	0.10	pH units	8.48	8.53	0.588%	4%	
Physical Tests (QC	Lot: 304722)										
CG2104186-005	Anonymous	conductivity		E100	2.0	μS/cm	454	457	0.659%	10%	
Physical Tests (QC	Lot: 304723)										
CG2104186-005	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	136	136	0.0737%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	7.8	7.4	0.4	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	144	143	0.349%	20%	
Physical Tests (QC	Lot: 304859)										
CG2104186-005	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 296209)										
CG2104188-018	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0019	0.0024	0.0005	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 296268)										
CG2104186-007	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 296269)										
CG2104186-007	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	<0.30	<0.30	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 296270)										
CG2104186-007	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 296271)										
CG2104186-007	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	<0.10	<0.10	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 296272)										
CG2104186-007	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	0.0061	0.0011	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 296273)										
CG2104186-007	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 297810)										

Page	: 4 of 18
Work Order	: CG2104192
Client	: Teck Coal Limited
Project	: Regional Effects Program

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Anions and Nutrien	ts (QC Lot: 297810) - co	ontinued									
CG2104189-003	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 304121)										
CG2104136-003	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 305706)										
CG2104183-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0167	0.0149	0.0018	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 30382	0)									
CG2104186-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.23	1.35	0.12	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 30382	8)									
CG2104186-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	1.45	1.30	0.14	Diff <2x LOR	
Total Met <u>als</u> (Q <u>C L</u>	ot: 300562)										
CG2104166-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	8.63	8.82	2.14%	20%	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00174	0.00176	1.23%	20%	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0115	0.0117	2.32%	20%	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.532	0.540	1.46%	20%	
		beryllium, total	7440-41-7	E420	0.020	mg/L	0.818 µg/L	0.000804	1.66%	20%	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	0.000225	0.000232	0.000008	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.030	0.030	0.0004	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0050	mg/L	2.04 µg/L	0.00206	0.785%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	235	234	0.574%	20%	
		cobalt, total	7440-48-4	E420	0.10	mg/L	9.70 µg/L	0.00985	1.52%	20%	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.0332	0.0330	0.376%	20%	
		iron, total	7439-89-6	E420	0.010	mg/L	27.6	28.5	3.39%	20%	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.0126	0.0127	0.888%	20%	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0328	0.0328	0.0523%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	68.3	67.8	0.792%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	1.64	1.62	1.06%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00284	0.00299	5.41%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.0310	0.0314	1.35%	20%	
		potassium, total	7440-09-7	E420	0.050	mg/L	5.08	5.04	0.813%	20%	
		selenium, total	7782-49-2	E420	0.050	mg/L	1.06 µg/L	0.00103	3.36%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	16.6	17.0	1.95%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	0.000748	0.000769	2.77%	20%	
		sodium, total	17341-25-2	E420	0.050	mg/L	13.8	13.5	2.02%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.671	0.683	1.76%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	22.0	21.6	2.04%	20%	

Page	: 5 of 18
Work Order	: CG2104192
Client	: Teck Coal Limited
Project	: Regional Effects Program

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC L	ot: 300562) - continue	d									
CG2104166-001	Anonymous	thallium, total	7440-28-0	E420	0.000010	mg/L	0.000489	0.000507	3.52%	20%	
		tin, total	7440-31-5	E420	0.00010	mg/L	0.00239	0.00241	0.732%	20%	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.0293	0.0304	3.67%	20%	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00499	0.00492	1.44%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.0328	0.0335	1.89%	20%	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.144	0.143	0.604%	20%	
Total Metals (QC L	ot: 300563)										
CG2104166-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.0248	0.0254	2.28%	20%	
Total Metals (QC L	ot: 301411)										
CG2104186-001	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR	
Dissolved Metals(QC Lot: 300109)										
CG2104166-004	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	<0.0050 µg/L	<0.0000050	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	<0.050 µg/L	<0.000050	0	Diff <2x LOR	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		strontium, dissolved	7440-24-6	E421	0.00020	ma/L	<0.00020	<0.00020	0	Diff <2x LOR	

Page	: 6 of 18
Work Order	: CG2104192
Client	: Teck Coal Limited
Project	: Regional Effects Program

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (C	C Lot: 300109) - continu	ued									
CG2104166-004	Anonymous	sulfur, dissolved	7704-34-9	E421	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Dissolved Metals (C	C Lot: 300110)										
CG2104166-004	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals (C	C Lot: 300938)										
CG2104188-014	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 296170)						
turbidity		E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 298276)						
solids, total suspended [TSS]		E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 298977)						
solids, total dissolved [TDS]		E162	10	mg/L	<10	
Physical Tests (QCLot: 304722)						
conductivity		E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 304723)						
alkalinity, bicarbonate (as CaCO3)		E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)		E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)		E290	1	mg/L	<1.0	
Physical Tests (QCLot: 304859)						
acidity (as CaCO3)		E283	2	mg/L	<2.0	
Anions and Nutrients (QCLot: 296209)						
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 296268)						
fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 296269)						
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 296270)						
bromide	24959-67-9	E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 296271)						
chloride	16887-00-6	E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 296272)						
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 296273)						
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 297810)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 304121)						
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 305706)						

Page	: 8 of 18
Work Order	: CG2104192
Client	: Teck Coal Limited
Project	: Regional Effects Program

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier				
Anions and Nutrients (QCLot: 305706) - continued										
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050					
Organic / Inorganic Carbon (QCLot: 3	303820)									
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50					
Organic / Inorganic Carbon (QCLot: 3	303828)									
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50					
Total Metals (QCLot: 300562)										
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030					
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010					
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010					
barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010					
beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020					
bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050					
boron, total	7440-42-8	E420	0.01	mg/L	<0.010					
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050					
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050					
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010					
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050					
iron, total	7439-89-6	E420	0.01	mg/L	<0.010					
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050					
lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010					
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050					
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010					
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050					
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050					
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050					
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050					
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10					
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010					
sodium, total	17341-25-2	E420	0.05	mg/L	<0.050					
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020					
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50					
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010					
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010					
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030					
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010					
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050					
					1 Contraction of the second					

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 300562) - contir	nued					
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 300563)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 301411)						
mercury, total	7439-97-6	E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 300109)						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
Page	: 10 of 18					
------------	----------------------------					
Work Order	: CG2104192					
Client	: Teck Coal Limited					
Project	: Regional Effects Program					

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 300109) - continued						
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 300110)						
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 300938)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
				Spike	Recovery (%)	Recover			
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 296170)									
turbidity	E121	0.1	NTU	200 NTU	97.8	85.0	115		
Physical Tests (QCLot: 298276)									
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	93.8	85.0	115		
Physical Tests (QCLot: 298977)									
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	99.4	85.0	115		
Physical Tests (QCLot: 302476)									
oxidation-reduction potential [ORP]	E125		mV	220 mV	101	95.4	104		
Physical Tests (QCLot: 304721)									
рН	E108		pH units	7 pH units	100	98.6	101		
Physical Tests (QCLot: 304722)									
conductivity	E100	1	μS/cm	146.9 µS/cm	101	90.0	110		
Physical Tests (QCLot: 304723)									
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	99.6	85.0	115		
Physical Tests (QCLot: 304859)									
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	100	85.0	115		
Anions and Nutrients (QCLot: 296209)									
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	0.02 mg/L	98.6	80.0	120		
Anions and Nutrients (QCLot: 296268)									
fluoride	16984-48-8 E235.F	0.02	mg/L	1 mg/L	106	90.0	110		
Anions and Nutrients (QCLot: 296269)									
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	100 mg/L	103	90.0	110		
Anions and Nutrients (QCLot: 296270)									
bromide	24959-67-9 E235.Br-L	0.05	mg/L	0.5 mg/L	107	85.0	115		
Anions and Nutrients (QCLot: 296271)									
chloride	16887-00-6 E235.CI-L	0.1	mg/L	100 mg/L	104	90.0	110		
Anions and Nutrients (QCLot: 296272)									
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	2.5 mg/L	105	90.0	110		
Anions and Nutrients (QCLot: 296273)									
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	0.5 mg/L	106	90.0	110		
Anions and Nutrients (QCLot: 297810)									
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	8.32 mg/L	98.8	80.0	120		
Anions and Nutrients (QCLot: 304121)									

Page	: 12 of 18
Work Order	: CG2104192
Client	: Teck Coal Limited
Project	: Regional Effects Program

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	Limits (%)				
Analyte CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Anions and Nutrients (QCLot: 304121) - continued											
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	99.9	75.0	125				
Anions and Nutrients (QCLot: 305706)											
ammonia, total (as N) 7664-41-7	E298	0.005	mg/L	0.2 mg/L	108	85.0	115				
Organic / Inorganic Carbon (QCLot: 303820)											
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	10 mg/L	102	80.0	120				
Organic / Inorganic Carbon (QCLot: 303828)											
carbon, total organic [TOC]	E355-L	0.5	mg/L	10 mg/L	106	80.0	120				
Total Metals (QCLot: 300562)											
aluminum, total 7429-90-5	E420	0.003	mg/L	2 mg/L	108	80.0	120				
antimony, total 7440-36-0	E420	0.0001	mg/L	1 mg/L	110	80.0	120				
arsenic, total 7440-38-2	E420	0.0001	mg/L	1 mg/L	102	80.0	120				
barium, total 7440-39-3	E420	0.0001	mg/L	0.25 mg/L	103	80.0	120				
beryllium, total 7440-41-7	E420	0.00002	mg/L	0.1 mg/L	97.3	80.0	120				
bismuth, total 7440-69-9	E420	0.00005	mg/L	1 mg/L	100	80.0	120				
boron, total 7440-42-8	E420	0.01	mg/L	1 mg/L	95.5	80.0	120				
cadmium, total 7440-43-9	E420	0.000005	mg/L	0.1 mg/L	99.7	80.0	120				
calcium, total 7440-70-2	E420	0.05	mg/L	50 mg/L	96.9	80.0	120				
cobalt, total 7440-48-4	E420	0.0001	mg/L	0.25 mg/L	100	80.0	120				
copper, total 7440-50-8	E420	0.0005	mg/L	0.25 mg/L	99.6	80.0	120				
iron, total 7439-89-6	E420	0.01	mg/L	1 mg/L	103	80.0	120				
lead, total 7439-92-1	E420	0.00005	mg/L	0.5 mg/L	99.3	80.0	120				
lithium, total 7439-93-2	E420	0.001	mg/L	0.25 mg/L	99.0	80.0	120				
magnesium, total 7439-95-4	E420	0.005	mg/L	50 mg/L	104	80.0	120				
manganese, total 7439-96-5	E420	0.0001	mg/L	0.25 mg/L	100.0	80.0	120				
molybdenum, total 7439-98-7	E420	0.00005	mg/L	0.25 mg/L	105	80.0	120				
nickel, total 7440-02-0	E420	0.0005	mg/L	0.5 mg/L	99.0	80.0	120				
potassium, total 7440-09-7	E420	0.05	mg/L	50 mg/L	103	80.0	120				
selenium, total 7782-49-2	E420	0.00005	mg/L	1 mg/L	102	80.0	120				
silicon, total 7440-21-3	E420	0.1	mg/L	10 mg/L	106	80.0	120				
silver, total 7440-22-4	E420	0.00001	mg/L	0.1 mg/L	104	80.0	120				
sodium, total 17341-25-2	E420	0.05	mg/L	50 mg/L	97.8	80.0	120				
strontium, total 7440-24-6	E420	0.0002	mg/L	0.25 mg/L	105	80.0	120				
sulfur, total 7704-34-9	E420	0.5	mg/L	50 mg/L	109	80.0	120				
thallium, total 7440-28-0	E420	0.00001	mg/L	1 mg/L	100	80.0	120				
tin, total 7440-31-5	E420	0.0001	mg/L	0.5 mg/L	97.6	80.0	120				

Page	: 13 of 18
Work Order	: CG2104192
Client	: Teck Coal Limited
Project	: Regional Effects Program

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number Me	ethod	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 300562) - continued										
titanium, total	7440-32-6 E4	420	0.0003	mg/L	0.25 mg/L	103	80.0	120		
uranium, total	7440-61-1 E4	420	0.00001	mg/L	0.005 mg/L	101	80.0	120		
vanadium, total	7440-62-2 E4	420	0.0005	mg/L	0.5 mg/L	102	80.0	120		
zinc, total	7440-66-6 E4	420	0.003	mg/L	0.5 mg/L	101	80.0	120		
Total Metals (QCLot: 300563)										
chromium, total	7440-47-3 E4	420.Cr-L	0.0001	mg/L	0.25 mg/L	100	80.0	120		
Total Metals (QCLot: 301411)										
mercury, total	7439-97-6 E5	508-L	0.5	ng/L	5 ng/L	97.6	80.0	120		
Dissolved Metals (QCLot: 3001 <u>09)</u>										
aluminum, dissolved	7429-90-5 E4	421	0.001	mg/L	2 mg/L	109	80.0	120		
antimony, dissolved	7440-36-0 E4	421	0.0001	mg/L	1 mg/L	102	80.0	120		
arsenic, dissolved	7440-38-2 E4	421	0.0001	mg/L	1 mg/L	112	80.0	120		
barium, dissolved	7440-39-3 E4	421	0.0001	mg/L	0.25 mg/L	110	80.0	120		
beryllium, dissolved	7440-41-7 E4	421	0.00002	mg/L	0.1 mg/L	98.4	80.0	120		
bismuth, dissolved	7440-69-9 E4	421	0.00005	mg/L	1 mg/L	106	80.0	120		
boron, dissolved	7440-42-8 E4	421	0.01	mg/L	1 mg/L	92.5	80.0	120		
cadmium, dissolved	7440-43-9 E4	421	0.000005	mg/L	0.1 mg/L	108	80.0	120		
calcium, dissolved	7440-70-2 E4	421	0.05	mg/L	50 mg/L	98.0	80.0	120		
cobalt, dissolved	7440-48-4 E4	421	0.0001	mg/L	0.25 mg/L	111	80.0	120		
copper, dissolved	7440-50-8 E4	421	0.0002	mg/L	0.25 mg/L	110	80.0	120		
iron, dissolved	7439-89-6 E4	421	0.01	mg/L	1 mg/L	101	80.0	120		
lead, dissolved	7439-92-1 E4	421	0.00005	mg/L	0.5 mg/L	102	80.0	120		
lithium, dissolved	7439-93-2 E4	421	0.001	mg/L	0.25 mg/L	95.8	80.0	120		
magnesium, dissolved	7439-95-4 E4	421	0.005	mg/L	50 mg/L	106	80.0	120		
manganese, dissolved	7439-96-5 E4	421	0.0001	mg/L	0.25 mg/L	109	80.0	120		
molybdenum, dissolved	7439-98-7 E4	421	0.00005	mg/L	0.25 mg/L	102	80.0	120		
nickel, dissolved	7440-02-0 E4	421	0.0005	mg/L	0.5 mg/L	110	80.0	120		
potassium, dissolved	7440-09-7 E4	421	0.05	mg/L	50 mg/L	108	80.0	120		
selenium, dissolved	7782-49-2 E4	421	0.00005	mg/L	1 mg/L	111	80.0	120		
silicon, dissolved	7440-21-3 E4	421	0.05	mg/L	10 mg/L	95.8	80.0	120		
silver, dissolved	7440-22-4 E4	421	0.00001	mg/L	0.1 mg/L	101	80.0	120		
sodium, dissolved	17341-25-2 E4	421	0.05	mg/L	50 mg/L	111	80.0	120		
strontium, dissolved	7440-24-6 E4	421	0.0002	mg/L	0.25 mg/L	98.8	80.0	120		
sulfur, dissolved	7704-34-9 E4	421	0.5	mg/L	50 mg/L	103	80.0	120		
thallium, dissolved	7440-28-0 E4	421	0.00001	mg/L	1 mg/L	103	80.0	120		
tin, dissolved	7440-31-5 E4	421	0.0001	mg/L	0.5 ma/L	100	80.0	120		

Page	: 14 of 18
Work Order	: CG2104192
Client	: Teck Coal Limited
Project	: Regional Effects Program

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
				Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Dissolved Metals (QCLot: 300109) - continued										
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	106	80.0	120		
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	104	80.0	120		
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	110	80.0	120		
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	112	80.0	120		
Dissolved Metals (QCLot: 300110)										
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	111	80.0	120		
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	93.1	80.0	120		

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water			Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutrie	ents (QCLot: 296209)									
CG2104188-019	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0557 mg/L	0.05 mg/L	111	70.0	130	
Anions and Nutrie	ents (QCLot: 296268)									
CG2104186-007	Anonymous	fluoride	16984-48-8	E235.F	1.07 mg/L	1 mg/L	107	75.0	125	
Anions and Nutrie	ents (QCLot: 296269)									
CG2104186-007	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	104 mg/L	100 mg/L	104	75.0	125	
Anions and Nutrie	ents (QCLot: 296270)									
CG2104186-007	Anonymous	bromide	24959-67-9	E235.Br-L	0.544 mg/L	0.5 mg/L	109	75.0	125	
Anions and Nutrie	ents (QCLot: 296271)									
CG2104186-007	Anonymous	chloride	16887-00-6	E235.CI-L	105 mg/L	100 mg/L	105	75.0	125	
Anions and Nutrie	ents (QCLot: 296272)									
CG2104186-007	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.63 mg/L	2.5 mg/L	105	75.0	125	
Anions and Nutrie	ents (QCLot: 296273)									
CG2104186-007	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.538 mg/L	0.5 mg/L	108	75.0	125	
Anions and Nutrie	ents (QCLot: 297810)									
CG2104189-004	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0520 mg/L	0.0676 mg/L	76.9	70.0	130	
Anions and Nutrie	ents (QCLot: 304121)									
CG2104138-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.50 mg/L	2.5 mg/L	99.8	70.0	130	
Anions and Nutrie	ents (QCLot: 305706)									
CG2104186-007	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.109 mg/L	0.1 mg/L	109	75.0	125	
Organic / Inorgan	ic Carbon (QCLot: 3038	320)								
CG2104186-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	28.4 mg/L	23.9 mg/L	119	70.0	130	
Organic / Inorgan	ic Carbon (QCLot: 3038	328)								
CG2104186-001	Anonymous	carbon, total organic [TOC]		E355-L	27.8 mg/L	23.9 mg/L	116	70.0	130	
Total Metals (QC	Lot: 300562)									
CG2104166-002	Anonymous	aluminum, total	7429-90-5	E420	ND mg/L	0.2 mg/L	ND	70.0	130	
		antimony, total	7440-36-0	E420	0.0425 mg/L	0.04 mg/L	106	70.0	130	
		arsenic, total	7440-38-2	E420	0.0388 mg/L	0.04 mg/L	96.9	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	

Page	: 16 of 18
Work Order	: CG2104192
Client	: Teck Coal Limited
Project	Regional Effects Program

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Total Metals (QC	Lot: 300562) - contir	nued										
CG2104166-002	Anonymous	beryllium, total	7440-41-7	E420	0.0729 mg/L	0.08 mg/L	91.1	70.0	130			
		bismuth, total	7440-69-9	E420	0.0189 mg/L	0.02 mg/L	94.5	70.0	130			
		boron, total	7440-42-8	E420	0.180 mg/L	0.2 mg/L	90.0	70.0	130			
		cadmium, total	7440-43-9	E420	0.00750 mg/L	0.008 mg/L	93.7	70.0	130			
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130			
		cobalt, total	7440-48-4	E420	0.0357 mg/L	0.04 mg/L	89.2	70.0	130			
		copper, total	7440-50-8	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		iron, total	7439-89-6	E420	ND mg/L	2 mg/L	ND	70.0	130			
		lead, total	7439-92-1	E420	0.0363 mg/L	0.04 mg/L	90.8	70.0	130			
		lithium, total	7439-93-2	E420	0.187 mg/L	0.2 mg/L	93.4	70.0	130			
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130			
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		molybdenum, total	7439-98-7	E420	0.0434 mg/L	0.04 mg/L	108	70.0	130			
		nickel, total	7440-02-0	E420	0.0694 mg/L	0.08 mg/L	86.8	70.0	130			
		potassium, total	7440-09-7	E420	ND mg/L	4 mg/L	ND	70.0	130			
		selenium, total	7782-49-2	E420	0.0778 mg/L	0.08 mg/L	97.2	70.0	130			
		silicon, total	7440-21-3	E420	ND mg/L	10 mg/L	ND	70.0	130			
		silver, total	7440-22-4	E420	0.00836 mg/L	0.008 mg/L	104	70.0	130			
		sodium, total	17341-25-2	E420	ND mg/L	2 mg/L	ND	70.0	130			
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130			
		thallium, total	7440-28-0	E420	0.00711 mg/L	0.008 mg/L	88.8	70.0	130			
		tin, total	7440-31-5	E420	0.0395 mg/L	0.04 mg/L	98.8	70.0	130			
		titanium, total	7440-32-6	E420	0.0794 mg/L	0.08 mg/L	99.3	70.0	130			
		uranium, total	7440-61-1	E420	0.00756 mg/L	0.008 mg/L	94.6	70.0	130			
		vanadium, total	7440-62-2	E420	0.197 mg/L	0.2 mg/L	98.5	70.0	130			
		zinc, total	7440-66-6	E420	0.729 mg/L	0.8 mg/L	91.2	70.0	130			
Total Metals (QC	Lot: 300563)											
CG2104166-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0743 mg/L	0.08 mg/L	92.9	70.0	130			
Total Metals (QC	Lot: 301411)											
CG2104186-002	Anonymous	mercury, total	7439-97-6	E508-L	4.83 ng/L	5 ng/L	96.6	70.0	130			
Dissolved Metals	(QCLot: 300109)											
CG2104171-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.209 mg/L	0.2 mg/L	105	70.0	130			
		antimony, dissolved	7440-36-0	E421	0.0204 mg/L	0.02 mg/L	102	70.0	130			
		arsenic, dissolved	7440-38-2	E421	0.0229 mg/L	0.02 mg/L	114	70.0	130			
	1	barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130			

Page: 17 of 18Work Order: CG2104192Client: Teck Coal LimitedProject: Regional Effects Program

ub-Matrix: Water						Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Dissolved Metals	(QCLot: 300109) - cont	inued										
CG2104171-001	Anonymous	beryllium, dissolved	7440-41-7	E421	0.0379 mg/L	0.04 mg/L	94.8	70.0	130			
		bismuth, dissolved	7440-69-9	E421	0.00906 mg/L	0.01 mg/L	90.6	70.0	130			
		boron, dissolved	7440-42-8	E421	0.092 mg/L	0.1 mg/L	92.6	70.0	130			
		cadmium, dissolved	7440-43-9	E421	0.00436 mg/L	0.004 mg/L	109	70.0	130			
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130			
		cobalt, dissolved	7440-48-4	E421	0.0216 mg/L	0.02 mg/L	108	70.0	130			
		copper, dissolved	7440-50-8	E421	0.0214 mg/L	0.02 mg/L	107	70.0	130			
		iron, dissolved	7439-89-6	E421	2.04 mg/L	2 mg/L	102	70.0	130			
		lead, dissolved	7439-92-1	E421	0.0198 mg/L	0.02 mg/L	98.8	70.0	130			
		lithium, dissolved	7439-93-2	E421	0.0921 mg/L	0.1 mg/L	92.1	70.0	130			
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130			
		manganese, dissolved	7439-96-5	E421	0.0214 mg/L	0.02 mg/L	107	70.0	130			
		molybdenum, dissolved	7439-98-7	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130			
		nickel, dissolved	7440-02-0	E421	0.0430 mg/L	0.04 mg/L	108	70.0	130			
		potassium, dissolved	7440-09-7	E421	4.42 mg/L	4 mg/L	111	70.0	130			
		selenium, dissolved	7782-49-2	E421	0.0467 mg/L	0.04 mg/L	117	70.0	130			
		silicon, dissolved	7440-21-3	E421	9.19 mg/L	10 mg/L	91.9	70.0	130			
		silver, dissolved	7440-22-4	E421	0.00409 mg/L	0.004 mg/L	102	70.0	130			
		sodium, dissolved	17341-25-2	E421	2.50 mg/L	2 mg/L	125	70.0	130			
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		sulfur, dissolved	7704-34-9	E421	20.3 mg/L	20 mg/L	101	70.0	130			
		thallium, dissolved	7440-28-0	E421	0.00404 mg/L	0.004 mg/L	101	70.0	130			
		tin, dissolved	7440-31-5	E421	0.0200 mg/L	0.02 mg/L	100	70.0	130			
		titanium, dissolved	7440-32-6	E421	0.0430 mg/L	0.04 mg/L	107	70.0	130			
		uranium, dissolved	7440-61-1	E421	0.00411 mg/L	0.004 mg/L	103	70.0	130			
		vanadium, dissolved	7440-62-2	E421	0.111 mg/L	0.1 mg/L	111	70.0	130			
		zinc, dissolved	7440-66-6	E421	0.439 mg/L	0.4 mg/L	110	70.0	130			
Dissolved Metals	(QCLot: 300110)											
CG2104171-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0442 mg/L	0.04 mg/L	110	70.0	130			
Dissolved Metals	(QCLot: 300938)											
CG2104188-015	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000993 mg/L	0.0001 mg/L	99.3	70.0	130			

Page	: 18 of 18
Work Order	: CG2104192
Client	: Teck Coal Limited
Project	: Regional Effects Program

Core Units September CoC X 14 P 1921 Lie AND/DOD THER Jassig Vann (Jost 197692) Lie AND/DOD THER Lie AND/DOD THER Jost 197692 Lie AND/DOD THER Lie AND/DOD THER Jost 197692 Lie AND/DOD THER Provide Marketing Andread Science (Lie Andread Scien (Lie Andread Science (Lie	Teck							Page	l of 1										
Base of the State Base of the State Base of the State Base of the State Parent Netting All And and All Anguage Base of the State Base o		COC ID:	Septen	iber GGC.	AMP	2021		TURNAROUND TIME:											
Project Name (1 and 1 and	141 (J. 1988)	PROTECTICITE	NTINFO DE HAL	- W			1. je	41	- M	LAPOR	ATORY	7					¥61	782	(** <u>,</u> ;
Page Mangel Mangel Mar Teget Lil Cara L (Janda Molt Mingel Comparison	Facility Name / Job#	REP						La	ıb Name	ALS Calgar	<u>у</u>			M282.80				Excel	PDF E
Image:	Project Manager	Allie Ferguson						Lab	Contact	Lyudmyla S	hvets				elletergus	on@teck.co	an .	x	
Data Data Description Description Description Description Notified Segment 10 2000 Courty		Alle.rerguson@teck.c	:om						Email	lyudmyla.s	nvets@al	sglobal.com			ieccioai@e	dakoujus c	ðm :		<u> </u>
Open State Open St	Address	421 Fine Avenue							Address .	2559 29 50	eetivit				(bowrer4	Peninnow.ca	<u></u>	X	
Prest Code Visi 200 County Canada Prest Code Visit Const Const Prest Code Visit Code Prest Code Visit Prest Code Visit Prest Code Visit Prest Code Visit Prest Code Prest Code <td>City</td> <td></td> <td>Sparwood</td> <td></td> <td></td> <td>Province BC</td> <td></td> <td></td> <td>City</td> <td>Calgary</td> <td></td> <td>Province</td> <td>AB</td> <td>M</td> <td>monica bar awieben</td> <td>thangites k.cc Jonuonow.ch</td> <td>¥7</td> <td></td> <td><u>x</u></td>	City		Sparwood			Province BC			City	Calgary		Province	AB	M	monica bar awieben	thangites k.cc Jonuonow.ch	¥7		<u>x</u>
Proce Number 194 - 25 - 502 Proce Number 401 - 171 - 141 Sample JD Sample Location Image Number	Postal Code		V0B 2G0			Country Can	ada	Pos	tal Code	TIY 785		Country	Canada					7000 <u>-</u>	<u>x</u>
Note:	Phone Number	250-425-8202						Phone	Number	403 407 1	794	1	<u>,</u>					· -	
Rog GANF Weiger Colored Color	an a	² SAR	IPLE OFTAILS		-11-11	194.		14	۱ <u>.</u>	(<u> </u>	AN	ALYSIS REA	OUESTE	D		344. QV	verand to	richt, La Lan. I	la Inte & Lat.
Normalization Sample JD S							T		and a second		Тъд.				1 1				
Sample ID Sampl								1		μ. N.	F	N	N.	10.F.	N	1 7		S.,	
Sample ID Sampl															ļ		b		
Sample ID Sample IC Sampl										5	H2504	H2904	1984	BCL	HINO3	HNOJ			
Sample ID Sample ID Sample ID Sample I.Contrion Field Mintry WS Not 915221 1200 G 77 X XX X					(oN					¥	1.2.8.2	ببدد عبا							+
Sample ID Sample ID Sample IC Sampl					(cs)					Ę	- arranter 2026	<u> </u>							
Sample JD Sample JD Sample JC Sampl					1 (Y					E E		L DI			É.	ė			
Sample JD Sample JD Sample JD Sample Location RC_GANP_WS_GOCAMP_2021-09-IS_NP The GOANS WS Nor 91/52021 12:0 G 7 X X X <td></td> <td></td> <td></td> <td>1 </td> <td>cria</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ğ</td> <td>S S</td> <td>A V</td> <td></td> <td>ET</td> <td>ET</td> <td></td> <td></td> <td></td>				1	cria						ğ	S S	A V		ET	ET			
Sample ID Simple Location Mint Provide Crists # Or for the set of the set					Jat					Ř Ř	e D	1	AF.		N N	N.			ļ
Sample ID Sample Location Heid RC_GANF_WS_GCCAMP_2021-09-15_NP If if GANF Ws Nor 9150201 1220 G 7 X </td <td></td> <td></td> <td></td> <td></td> <td>us h</td> <td></td> <td>[</td> <td></td> <td></td> <td>IV IV</td> <td>kag</td> <td>kag</td> <td>C </td> <td>NAI</td> <td>IVC</td> <td>IA</td> <td></td> <td></td> <td></td>					us h		[IV IV	kag	kag	C	NAI	IVC	IA			
Sample ID Sample ID RG_GANF_WS_GCCAMP_2011-0-45_NP Image: Control of the second secon					lop 1					ųξ	Pac	Pac		Ģ	ğ	ğ			
Sample ID Sample Location Marx To Date (24br) (> Comp Omt E > To To F To To <thto< th=""> To <thto< th=""> To <thto< th=""> T</thto<></thto<></thto<>				Field	aza i		Time	G=Grab	# Of	Ū,	Ś	s,	13	13	١Ö,	۵,			1
RG_GAMP_001+09-15, NP NG_GAMP_001 VS NS P0 9/15/2021 1/20 G 7 X <td< th=""><th>Sample ID</th><th>Sarr</th><th>nple Location</th><th>Matrix</th><th><u> </u></th><th>Date</th><th>(24hr)</th><th>C=Comp</th><th>Cont.</th><th>ÊŻ</th><th><u> </u></th><th>¥</th><th>Ĕ</th><th>Ĭ</th><th><u>F</u>Ž</th><th>ΕŻ</th><th></th><th></th><th></th></td<>	Sample ID	Sarr	nple Location	Matrix	<u> </u>	Date	(24hr)	C=Comp	Cont.	ÊŻ	<u> </u>	¥	Ĕ	Ĭ	<u>F</u> Ž	ΕŻ			
AMDITIONAL COMMENTS SPECIAL INSTRUCTIONS APPLING (SILEPBY APPLIATION ACCEPTED BY ARGULATION AMDITIONAL COMMENTS SPECIAL INSTRUCTIONS BRE INSPECIAL INSTRUCTIONS ACCEPTED BY ARGULATION PO 750546 Jeanifer Ing/Minnow Haddelemmented NB 0P ROTTLES BATTORNED/DESCRIPTION Regular (default) / Sampler's Name Hendler Tage NB 0P ROTTLES BATTORNED/DESCRIPTION Regular (default) / Sampler's Name Hendler Tage NB 0P ROTTLES BATTORNED/DESCRIPTION Regular (default) / Sampler's Signature Mobile # Structure Sampler's Signature Mobile # Sampler's Signature Environmental Division Calgary Work Order Reference Mo CG2104192 Model # Consect 192	RG_GANF_WS_GGCAMP_2021-09-15_NP	1. A R	RG GANF	ws	No	9/15/2021	1230	G	7	x	x	x	x	x	x	x			
ADDREGONAL COMMENTS SPECIAL ENSTRUCTIONS RELINGUISTIES BY/AFFILIATION ACCEPTUES BY/AFFILIATION NB OF EXERTILES RETURNED/DESCRIPTIONS Realing (default) ACCEPTUES BY/AFFILIATION NB OF EXERTILES RETURNED/DESCRIPTIONS Realing (default) Sampler's Name Realing (default) NB OF EXERTILES RETURNED/DESCRIPTIONS Realing (default) Sampler's Name Mobile # PO 750546 For Emergency (1) Durings Day) - 100% ancharge Sampler's Name Realing (default) Promy (2-3 busines day) - 50% stecharge Sampler's Name Realing (default) Sampler's Name Emergency (1) Durings Day) - 100% ancharge Sampler's Name Mobile # 519-500-3444 Date/Time Suppressive (A, 2023) Sampler's Signature Modile # Suppressive (A, 2023) Work Order Reference CC82104192 CC82104192 Mobile # Suppressive (A, 2024) Mobile #		NEW YORK												1	1				
ADDITIONAL COMMENTS REPORT AND ADDITIONS ATTAINABILIATION ADDITIONAL COMMENTS REPORT ADDITIONS ATTAINABILIATION NB OF DOTTLASS RETURNED/DESCRUPTIONS BELLINGUESTICE BY/ATTILIATION NB OF DOTTLASS RETURNED/DESCRUPTIONS Jeanifer Ing/Minnow Phomy (2-3) busines day) Sampler's Name Phomy (2-3) busines day) Sompler's Name Phomy (2-3) busines day) Sampler's Name Phomy (2-3) busines day) Sompler's Name Phomy (2-3) busines day) Sampler's Name Phomy (2-		182. Same 1			. 98														
No or pretries servorsephoes (RP non)* Relander logs/Mindow Accreced Prozen and Anno No or pretries servorsephoes (RP non)* Relander logs/Mindow Human Anno No or pretries servorsephoes (RP non)* Sampler's Name Jennifer logs Mobile # Signature Jennifer logs Mobile # Signature Environmental Division Calgary Work Order Reference CG2104192			- 18, 1986, - 1987, - 19		293 _{7.1}		i												
ANDERIONAL COMMENTS APSCIAL INSTRUCTIONS Image: Comments in the image: Comments instructions PO 750546 Image: Comments instructions NB OF BOTTLES RETURNED/DESCRIPTION Image: Comments instructions PO 750546 Image: Comments instructions Image: Comments instructions Image: Comments instructions Image: Comments instructions Image: Comments instructions Image: Comments instruction Image: Comments instruction Image: Comments instruction Image: Comments instruction <t< td=""><td></td><td></td><td></td><td></td><td>Хų.,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>i</td></t<>					Хų.,														i
PO 750546 PO 75054 PO 750	· · · · · · · · · · · · · · · · · · ·																		
Albertional Constructions Relative Relative Albertional Constructions P0 750546 Is of Portiles retroamed/abstructions Is and if is a construction in the second secon					π7 . 60														
NB OF BOTTLES RETURNED/DESCRIPTION * Result (defaul) * Sampler's Name Identife Jag Mobile # 519-500-3444 Piority (2-3 business Day) - 50% sucharge Sampler's Name Identife Jag Mobile # 519-500-3444 Environmental Division Calgary Work Order Reference Galgary Work Order Reference Galgary																			
ADDITIONAL COMMENT SPECIAL INSTRUCTIONS I RELINGUISTIC D P/APPILLETION ACCEPTED RVARGULATION PO 750546 Jennifer Ings/Minnow HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH			·		wn. "														
ARDITIONAL COMMENTS RECTAL INSTRUCTIONS 21 INS		1. 1993. N. 1994.	(,]																
PO 750546 Jennifer Ings/Minnov H####################################	ADDITIONAL COMMENTS	SPECIAL INSTRUC	HONS CHE	ales El parte d' 4		RELINCOUSHE	D BY/AFF	LIATION	<u> </u>	ATE/TIM	E (EPTED I	RY/AFF)	ULIATIO.	<u>v .</u>			
PO 750546 NB OF BOFTLES RETURNED/DESCRIPTION ^{1/2} Regular (default) x Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge For Emergency (1 Business Day) - 100% surcharge For Emergency (1 Business Day) - 100% surcharge Environmental Division Calgary Work Order Reference CG2104192				_											<u>i</u>		/	27	
NB OF EXEMPTORS REPTORS W Regular (default) x Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge Sampler's Name Jenaiter Jags Mobile # September 16, 2021 For Emergency <1 Day, ASAP or Weekend - Contact A1.5	LS PO 750546					Jennifer	Ings/Minn	0W		############	****				h_{-}			112-	1 12
NB OF BOLTTLES RETURNED/DESCRIPTION Regular (default) x Priority (2-3 business days) - 50% surcharge Imergency (1 Business Day) - 100% surcharge Emergency (1 Business Day) - 100% surcharge For Emergency (1 Day, ASAP or Weekend - Contact ALS) For Emergency <1 Day, ASAP or Weekend - Contact ALS Environmental Division Calgary Work Order Reference CG2104192							•										$ v_{1}$		
NE OF DEPICTES RETURNED/DESCRIPTION //// Regular (default) x Sampler's Name Jenuiter Lags Mobile # 519-500-3444 Emergency (1 Business Day) - 100% surcharge Sampler's Signature Jenuiter Lags Mobile # 519-500-3444 Emergency (1 Business Day) - 100% surcharge Sampler's Signature Jenuiter Lags Date/Time September 16, 2021							•							110			ŀ	11	1 IV
Regular (default) x Sampler's Name Jenaiter lags Mobile # 519-500-3444 Emergency (1 Business Day) - 100% surcharge Sampler's Name Jenaiter lags Mobile # 519-500-3444 For Emergency (1 Dusiness Day) - 100% surcharge Sampler's Signature Jenaiter lags Mobile # September 16, 2021 For Emergency (1 Day, ASAP or Weekend - Contact ALS Sampler's Signature Jenait Mobile # September 16, 2021 September 16, 2021 Environmental Division Calgary Work Order Reference GG2104192 Jenait Mobile # Jenait Mobile # Jenait Mobile #	NB OF BOTTLES RET	URNED/DESCRIPTIO	N ¹	1. Sec. 194		38.	. 18 ₆ .	1	ុ 1 - ខ	ાં "ાંગ		32.		1	4	1. C. S.	с . ,	_ /	
Pronty (2 business day) - 50% surcharge Sampler's Signature Junt 4000 Emergency (1 Business Day) - 100% surcharge Sampler's Signature Junt 4000 For Emergency (1 Day, ASAP or Weekend - Contact ALS) Sampler's Signature Junt 4000 Environmental Division Calgary Work Order Reference V CG2104192 V V V			Regular	(default) x		Sampler's Nam	e		່ 1	enaifer la	es in i	$\{i_i\}$	Mab	oile #			519-500	-3444	
Environmental Division Calgary Work Order Reference CG2104192		Prior	rity (2-3 business days) - 50% s	urcharge			'	i se a construction de la constr	i Dru	~> H					Second Second	910:000-75-6		NY 5 5 6800	CALCONFER -
Environmental Division Calgary Work Order Reference CG2104192	······	For Emergency <1 I	Day ASAP or Weekend - Con	tact ALS	S	Sampler's Signate	urc .	Fren	n e -	(R)			Date/	Тіте		Ś	eptember	16, 2021	
Environmental Division Calgary Work Order Reference CG2104192											<u></u>	<u> </u>			errer:01:01.221.00:000	ana a ta	<u></u>	<u></u>	ARCHINE ST. U. U. C. d.
Calgary Work Order Reference CG2104192		tal Division	`															1	1
Calgary Work Order Reference CG2104192	Environmer	Ital Division																(1
Work Order Reference CG2104192	Calgary																	~	r
CG2104192	Work Order	r Reference						•			•							- fi	
	CC2.	102192																V	

- · ·

Telephone: +1 403 407 1800

CERTIFICATE OF ANALYSIS

Work Order	: CG2104210	Page	: 1 of 7
Client	: Teck Coal Limited	Laboratory	: Calgary - Environmental
Contact	: Allie Ferguson	Account Manager	: Lyudmyla Shvets
Address	: 421 Pine Avenue	Address	2559 29th Street NE
	Sparwood BC Canada V0B 2G0		Calgary AB Canada T1Y 7B5
Telephone	:	Telephone	: +1 403 407 1800
Project	: REGIONAL EFFECTS PROGRAM	Date Samples Received	: 18-Sep-2021 09:05
PO	: VPO00750546	Date Analysis Commenced	: 19-Sep-2021
C-O-C number	: SEPTEMBER GGCAMP 2021	Issue Date	10-Oct-2021 14:56
Sampler	: JI		
Site	:		
Quote number	: Teck Coal Master Quote		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Oscar Ruiz	Lab Assistant	Inorganics, Calgary, Alberta
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Shaneel Dayal	Analyst	Metals, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.

Sub-Matrix: Water			Cl	lient sample ID	RG_GAUT_WS_	 	
(Matrix: Water)					GGCAMP_2021- 09-16_NP		
			Client samp	oling date / time	16-Sep-2021 12:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104210-001	 	
					Result	 	
Physical lests		E283	2.0	mg/l	<20	 	
alkalinity hicarbonato (as $Ca(O3)$		E200	1.0	mg/L	-2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	212	 	
alkalinity, carbonate (as CaCOS)		E290	1.0	mg/L	11.0	 	
alkalinity, hydroxide (as CaCOS)		E290	1.0	mg/∟	<1.0	 	
aikalinity, total (as CaCO3)		E290	1.0	mg/L	223	 	
		E100	2.0	µS/cm	495	 	
nardness (as CaCO3), dissolved		EC100	0.50	mg/L	202	 	
oxidation-reduction potential [ORP]		E125	0.10	mv	458	 	
рН		E108	0.10	pH units	8.43	 	
solids, total dissolved [TDS]		E162	10	mg/L	323	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	2.6	 	
turbidity		E121	0.10	NTU	1.53	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	258	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	7.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	 	
Anions and Nutrients							
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0057	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	3.11	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.149	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.118	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0079 HTD	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0150	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	61.7	 	
Organic / Inorganic Carbon							
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	3.14	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	3.33	 	

Sub-Matrix: Water			Cli	ient sample ID	RG_GAUT_WS_	 	
(Matrix: Water)					GGCAMP_2021- 09-16_NP		
			Client samp	ling date / time	16-Sep-2021 12:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104210-001	 	
Los Belance					Result	 	
anion sum		EC101	0 10	meg/l	5 84	 	
cation sum		EC101	0.10	meg/l	5.42	 	
ion balance (cations/anions ratio)		EC101	0.010	///C	92.8	 	
ion balance (cation-anion difference)		EC101	0.010	%	3.73	 	
Total Matala		20101	0.010	70	0.10		
aluminum, total	7429-90-5	E420	0.0030	ma/L	0.0214	 	
antimony, total	7440-36-0	E420	0.00010	ma/L	0.00022	 	
arsenic, total	7440-38-2	E420	0.00010	ma/L	0.00026	 	
barium, total	7440-39-3	E420	0.00010	ma/L	0.104	 	
beryllium, total	7440-41-7	E420	0.020	ua/L	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	0.010	 	
cadmium, total	7440-43-9	E420	0.0050	µq/L	0.0167	 	
calcium, total	7440-70-2	E420	0.050	mg/L	62.3	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	<0.00010	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	0.022	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0067	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	22.8	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00369	 	
mercury, total	7439-97-6	E508-L	0.00050	µg/L	0.00073	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000882	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00187	 	
potassium, total	7440-09-7	E420	0.050	mg/L	1.26	 	
selenium, total	7782-49-2	E420	0.050	µg/L	0.690	 	
silicon, total	7440-21-3	E420	0.10	mg/L	3.29	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	 	
sodium, total	17341-25-2	E420	0.050	mg/L	3.50	 	

Sub-Matrix: Water	ient sample ID	RG_GAUT_WS_	 	 			
(Matrix: Water)					GGCAMP_2021- 09-16_NP		
	ling date / time	16-Sep-2021 12:00	 	 			
Analyte	CAS Number	Method	LOR	Unit	CG2104210-001	 	
					Result	 	
Total Metals	7440 24 6	E420	0.00020	mg/l	0.248	 	
	7440-24-0	E420	0.00020	mg/L	10.6	 	
thellium total	7704-34-9	E420	0.00	mg/L	<0.000010	 	
	7440-28-0	E420	0.000010	mg/L	<0.00010	 	
	7440-31-5	E420	0.00010	mg/L		 	
	7440-32-6	E420	0.00030	mg/L	<0.00090	 	
	7440-61-1	E420	0.000010	mg/L	0.000466	 	
	7440-62-2	E420	0.00050	mg/L	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0032	 	
Dissolved Metals		E 404	0.0040		0.0040		
	7429-90-5	E421	0.0010	mg/L	0.0019	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00016	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00023	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.116	 	
beryllium, dissolved	7440-41-7	E421	0.020	µg/L	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.011	 	
cadmium, dissolved	7440-43-9	E421	0.0050	µg/L	0.0117	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	66.7	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	 	
cobalt, dissolved	7440-48-4	E421	0.10	µg/L	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00030	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0070	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	23.1	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00279	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000893	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00186	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.33	 	

Sub-Matrix: Water	ient sample ID	RG_GAUT_WS_	 	 			
(Matrix: Water)					GGCAMP_2021- 09-16 NP		
			Client samp	ling date / time	_ 16-Sep-2021 12:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104210-001	 	
					Result	 	
Dissolved Metals							
selenium, dissolved	7782-49-2	E421	0.050	µg/L	0.750	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	3.52	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	3.52	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.219	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	20.6	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000502	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0014	 	
dissolved mercury filtration location		EP509	-	-	Field	 	
dissolved metals filtration location		EP421	-	-	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: CG2104210	Page	: 1 of 13
Client	: Teck Coal Limited	Laboratory	: Calgary - Environmental
Contact	: Allie Ferguson	Account Manager	: Lyudmyla Shvets
Address	: 421 Pine Avenue	Address	2559 29th Street NE
	Sparwood BC Canada V0B 2G0		Calgary, Alberta Canada T1Y 7B5
Telephone	:	Telephone	: +1 403 407 1800
Project	REGIONAL EFFECTS PROGRAM	Date Samples Received	: 18-Sep-2021 09:05
PO	: VPO00750546	Issue Date	: 10-Oct-2021 14:56
C-O-C number	: SEPTEMBER GGCAMP 2021		
Sampler	: JI		
Site	:		
Quote number	: Teck Coal Master Quote		
No. of samples received	:1		
No. of samples analysed	:1		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• <u>No</u> Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Outliers : Quality Control Samples Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment		
Laboratory Control Sample (LCS) Recoveries										
Total Metals	QC-MRG2-3007360		antimony, total	7440-36-0	E420	122 % ^{MES}	80.0-120%	Recovery greater than		
	02							upper control limit		
Total Metals	QC-MRG2-3007360		strontium, total	7440-24-6	E420	122 % MES	80.0-120%	Recovery greater than		
	02							upper control limit		
Result Qualifiers										
Qualifier Descrip	tion									
MES Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a										
Multi-E	Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).									

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Eva	aluation: 🗶 =	Holding time exce	edance ; 🔹	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_GAUT_WS_GGCAMP_2021-09-16_NP	E298	16-Sep-2021	29-Sep-2021				29-Sep-2021	28 days	13 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_GAUT_WS_GGCAMP_2021-09-16_NP	E235.Br-L	16-Sep-2021					19-Sep-2021	28 days	3 days	1
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
RG_GAUT_WS_GGCAMP_2021-09-16_NP	E235.CI-L	16-Sep-2021					19-Sep-2021	28 days	3 days	1
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)									
HDPE	5070 //	40.0 0004								
RG_GAUT_WS_GGCAMP_2021-09-16_NP	E378-U	16-Sep-2021					20-Sep-2021	3 days	4 days	*
										EHI
Anions and Nutrients : Fluoride in Water by IC										
	E225 E	16 Sop 2021					10 Son 2021	29 dava	2 days	
RG_GAUT_WS_GGCAMP_2021-09-16_NP	E235.F	10-Sep-2021					19-Sep-2021	20 days	5 days	•
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
PC CALLE WS CCCAMP 2021 00 16 NP	E235 NO3-I	16-Sep-2021					10-Sen-2021	3 days	3 dave	1
	E200.1100-E	10-000-2021					13-069-2021	Juays	5 days	
Antione and Nothington Mitrite in Mictor by 10 (Low Lovel)										
Anions and Nutrients : Nitrite in water by IC (Low Level)										
RG GAUT WS GGCAMP 2021-09-16 NP	E235.NO2-L	16-Sep-2021					19-Sep-2021	3 davs	3 davs	1
									, -	

Matrix: Water					E١	aluation: × =	Holding time exce	edance ; 🔹	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_GAUT_WS_GGCAMP_2021-09-16_NP	E235.SO4	16-Sep-2021					19-Sep-2021	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_GAUT_WS_GGCAMP_2021-09-16_NP	E318	16-Sep-2021	28-Sep-2021				28-Sep-2021	28 days	12 days	4
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
RG_GAUT_WS_GGCAMP_2021-09-16_NP	E372-U	16-Sep-2021	23-Sep-2021				23-Sep-2021	28 days	7 days	4
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_GAUT_WS_GGCAMP_2021-09-16_NP	E421.Cr-L	16-Sep-2021	23-Sep-2021				24-Sep-2021	180	7 days	4
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_GAUT_WS_GGCAMP_2021-09-16_NP	E509	16-Sep-2021	24-Sep-2021				24-Sep-2021	28 days	8 days	4
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_GAUT_WS_GGCAMP_2021-09-16_NP	E421	16-Sep-2021	23-Sep-2021				24-Sep-2021	180	7 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	1)									
Amber glass dissolved (sulfuric acid)										
RG_GAUT_WS_GGCAMP_2021-09-16_NP	E358-L	16-Sep-2021	27-Sep-2021				30-Sep-2021	28 days	14 days	~
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low Level)									
Amber glass total (sulfuric acid)										
RG_GAUT_WS_GGCAMP_2021-09-16_NP	E355-L	16-Sep-2021	27-Sep-2021				30-Sep-2021	28 days	14 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_GAUT_WS_GGCAMP_2021-09-16_NP	E283	16-Sep-2021					29-Sep-2021	14 days	13 days	✓

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔹	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration				1				1	1	
HDPE RG_GAUT_WS_GGCAMP_2021-09-16_NP	E290	16-Sep-2021					28-Sep-2021	14 days	12 days	1
Physical Tests : Conductivity in Water										
HDPE RG_GAUT_WS_GGCAMP_2021-09-16_NP	E100	16-Sep-2021					28-Sep-2021	28 days	12 days	✓
Physical Tests : ORP by Electrode										
HDPE RG_GAUT_WS_GGCAMP_2021-09-16_NP	E125	16-Sep-2021					27-Sep-2021	0.34 hrs	265 hrs	× EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_GAUT_WS_GGCAMP_2021-09-16_NP	E108	16-Sep-2021					28-Sep-2021	0.25 hrs	288 hrs	≭ EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE RG_GAUT_WS_GGCAMP_2021-09-16_NP	E162	16-Sep-2021					23-Sep-2021	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)									1	
HDPE [TSS-WB] RG_GAUT_WS_GGCAMP_2021-09-16_NP	E160-L	16-Sep-2021					23-Sep-2021	7 days	7 days	~
Physical Tests : Turbidity by Nephelometry										
HDPE RG_GAUT_WS_GGCAMP_2021-09-16_NP	E121	16-Sep-2021					19-Sep-2021	3 days	3 days	~
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid) RG_GAUT_WS_GGCAMP_2021-09-16_NP	E420.Cr-L	16-Sep-2021					24-Sep-2021	180 days	8 days	4
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved) RG_GAUT_WS_GGCAMP_2021-09-16_NP	E508-L	16-Sep-2021					27-Sep-2021	28 days	11 days	4

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date Extraction / Preparation			Analysis					
Container / Client Sample ID(s)			Preparation	Holdin	Holding Times Eval		Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_GAUT_WS_GGCAMP_2021-09-16_NP	E420	16-Sep-2021					24-Sep-2021	180 days	8 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluati	on: × = QC freque	ency outside spe	cification; ✓ = 0	QC frequency with	hin specification.
Quality Control Sample Type			Co	unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	306147	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	304819	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	305806	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	296824	1	5	20.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	296825	1	5	20.0	5.0	✓
Conductivity in Water	E100	304817	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300105	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	301260	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	300106	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303950	1	20	5.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	297211	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	296828	1	5	20.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	296826	1	5	20.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	296827	1	5	20.0	5.0	✓
ORP by Electrode	E125	303222	1	16	6.2	5.0	✓
pH by Meter	E108	304818	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	296823	1	5	20.0	5.0	✓
TDS by Gravimetry	E162	300153	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300736	1	20	5.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	302113	1	19	5.2	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	303406	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	300737	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303957	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	299080	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	296756	1	1	100.0	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	306147	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	304819	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	305806	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	296824	1	5	20.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	296825	1	5	20.0	5.0	✓
Conductivity in Water	E100	304817	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300105	1	20	5.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	301260	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	300106	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303950	1	20	5.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	297211	1	20	5.0	5.0	~

Page	: 8 of 13
Work Order	: CG2104210
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Matrix: Water	Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specification.						
Quality Control Sample Type			Co	ount		Frequency (%)	1
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	296828	1	5	20.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	296826	1	5	20.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	296827	1	5	20.0	5.0	✓
ORP by Electrode	E125	303222	1	16	6.2	5.0	✓
pH by Meter	E108	304818	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	296823	1	5	20.0	5.0	✓
TDS by Gravimetry	E162	300153	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300736	1	20	5.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	302113	1	19	5.2	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	303406	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	300737	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303957	1	20	5.0	5.0	 Image: A start of the start of
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	299080	1	20	5.0	5.0	 ✓
TSS by Gravimetry (Low Level)	E160-L	300146	1	20	5.0	5.0	 ✓
Turbidity by Nephelometry	E121	296756	1	1	100.0	5.0	✓
Method Blanks (MB)							_
Acidity by Titration	E283	306147	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	304819	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	305806	1	20	5.0	5.0	<u> </u>
Bromide in Water by IC (Low Level)	E235.Br-L	296824	1	5	20.0	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	296825	1	5	20.0	5.0	<u> </u>
Conductivity in Water	E100	304817	1	20	5.0	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300105	1	20	5.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	301260	1	20	5.0	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	300106	1	20	5.0	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303950	1	20	5.0	5.0	<u> </u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	297211	1	20	5.0	5.0	<u> </u>
Fluoride in Water by IC	E235.F	296828	1	5	20.0	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	296826	1	5	20.0	5.0	<u> </u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	296827	1	5	20.0	5.0	1
Sulfate in Water by IC	E235.SO4	296823	1	5	20.0	5.0	<u> </u>
TDS by Gravimetry	E162	300153	1	20	5.0	5.0	<u> </u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300736	1	20	5.0	5.0	1
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	302113	1	19	5.2	5.0	1
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	303406	1	20	5.0	5.0	<u> </u>
Total Metals in Water by CRC ICPMS	E420	300737	1	20	5.0	5.0	<u> </u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303957	1	20	5.0	5.0	-
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	299080	1	20	5.0	5.0	
TSS by Gravimetry (Low Level)	E160-L	300146	1	20	5.0	5.0	
Turbidity by Nephelometry	E121	296756	1	1	100.0	5.0	 ✓

Page	: 9 of 13
Work Order	: CG2104210
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Matrix: Water	Evaluation: \star = QC frequency outside specification; \star = QC frequency within specification.								
Quality Control Sample Type			Co	unt		Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Matrix Spikes (MS)									
Ammonia by Fluorescence	E298	305806	1	20	5.0	5.0	✓		
Bromide in Water by IC (Low Level)	E235.Br-L	296824	1	5	20.0	5.0	✓		
Chloride in Water by IC (Low Level)	E235.CI-L	296825	1	5	20.0	5.0	✓		
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300105	1	20	5.0	5.0	✓		
Dissolved Mercury in Water by CVAAS	E509	301260	1	20	5.0	5.0	✓		
Dissolved Metals in Water by CRC ICPMS	E421	300106	1	20	5.0	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303950	1	20	5.0	5.0	✓		
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	297211	1	20	5.0	5.0	✓		
Fluoride in Water by IC	E235.F	296828	1	5	20.0	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	296826	1	5	20.0	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	296827	1	5	20.0	5.0	✓		
Sulfate in Water by IC	E235.SO4	296823	1	5	20.0	5.0	✓		
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300736	1	20	5.0	5.0	✓		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	302113	1	19	5.2	5.0	✓		
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	303406	1	20	5.0	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	300737	1	20	5.0	5.0	✓		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303957	1	20	5.0	5.0	✓		
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	299080	1	20	5.0	5.0	✓		

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Calgary - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH electrode in the field within the recommended 15 minute held time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the penhalometric method by measuring the intensity of light
	Calgary - Environmental		/	scatter under defined conditions.
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L Calgary - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Calgary - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at $180 \pm 2^{\circ}$ C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Chloride in Water by IC (Low Level)	E235.CI-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Fluoride in Water by IC	E235.F Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	E235.SO4 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Acidity by Titration	E283 Calgary - Environmental	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
	Vancouver -			
	Environmental			
Total Mercury in Water by CVAFS (Low	E508-L	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction
Level, LOR = 0.5 ppt)				with stannous chloride, and analyzed by CVAFS.
	Vancouver -			
	Environmental			
Dissolved Mercury in Water by CVAAS	E509	Water	APHA 3030B/EPA	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation
			1631E (mod)	using bromine monochloride prior to reduction with stannous chloride, and analyzed by
	Vancouver -			CVAAS.
	Environmental			
Dissolved Hardness (Calculated)	EC100	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and
				Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	Vancouver -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Environmental			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA
				Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are
	Calgary - Environmental			used where available. Minor ions are included where data is present.
				Ion Balance cannot be calculated accurately for waters with very low electrical
				conductivity (EC).

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.

Page	: 13 of 13
Work Order	: CG2104210
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order	CG2104210	Page	: 1 of 17
		Laboration .	
Client	: Teck Coal Limited	Laboratory	: Calgary - Environmental
Contact	: Allie Ferguson	Account Manager	: Lyudmyla Shvets
Address	: 421 Pine Avenue	Address	2559 29th Street NE
	Sparwood BC Canada V0B 2G0		Calgary, Alberta Canada T1Y 7B5
Telephone	;	Telephone	:+1 403 407 1800
Project	REGIONAL EFFECTS PROGRAM	Date Samples Received	: 18-Sep-2021 09:05
PO	: VPO00750546	Date Analysis Commenced	: 19-Sep-2021
C-O-C number	SEPTEMBER GGCAMP 2021	Issue Date	: 10-Oct-2021 14:56
Sampler	: JI		
Site	:		
Quote number	: Teck Coal Master Quote		
No. of samples received	:1		
No. of samples analysed	:1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Oscar Ruiz	Lab Assistant	Inorganics, Calgary, Alberta
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Shaneel Dayal	Analyst	Metals, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	: Lot: 296756)										
CG2104210-001	RG_GAUT_WS_GGCAMP _2021-09-16_NP	turbidity		E121	0.10	NTU	1.53	1.41	8.15%	15%	
Physical Tests (QC	: Lot: 300153)										
CG2104181-010	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	1320	1340	1.43%	20%	
Physical Tests (QC	Lot: 303222)										
CG2104202-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	462	465	0.690%	15%	
Physical Tests (QC	: Lot: 304817)										
CG2104202-002	Anonymous	conductivity		E100	2.0	μS/cm	1520	1520	0.329%	10%	
Physical Tests (QC	: Lot: 304818)										
CG2104202-002	Anonymous	pH		E108	0.10	pH units	8.14	8.15	0.123%	4%	
Physical Tests (QC	Lot: 304819)										
CG2104202-002	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	354	354	0.113%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	354	354	0.113%	20%	
Physical Tests (QC	Lot: 306147)										1
CG2104202-002	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	5.4	6.1	0.7	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 296823)										
CG2104210-001	RG_GAUT_WS_GGCAMP _2021-09-16_NP	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	61.7	61.8	0.147%	20%	
Anions and Nutrien	ts (QC Lot: 296824)										
CG2104210-001	RG_GAUT_WS_GGCAMP _2021-09-16_NP	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 296825)										
CG2104210-001	RG_GAUT_WS_GGCAMP _2021-09-16_NP	chloride	16887-00-6	E235.CI-L	0.10	mg/L	3.11	3.09	0.406%	20%	
Anions and Nutrien	ts (QC Lot: 296826)										
CG2104210-001	RG_GAUT_WS_GGCAMP _2021-09-16_NP	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 296827)										
CG2104210-001	RG_GAUT_WS_GGCAMP _2021-09-16_NP	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 296828)										
CG2104210-001	RG_GAUT_WS_GGCAMP _2021-09-16_NP	fluoride	16984-48-8	E235.F	0.020	mg/L	0.149	0.143	0.007	Diff <2x LOR	

Page	: 4 of 17
Work Order	: CG2104210
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	ts (QC Lot: 297211)										
CG2104209-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 299080)										
CG2104202-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 302113)										
CG2104196-003	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 305806)										
CG2104200-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.125	mg/L	2.80	2.81	0.535%	20%	
Organic / Inorganic	Carbon (QC Lot: 30395	0)									
CG2104202-002	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.92	0.79	0.13	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 30395	7)									
CG2104202-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	0.63	0.64	0.006	Diff <2x LOR	
Total Metals (QC Lo	ot: 300736)										
CG2104170-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00012	0.00013	0.000006	Diff <2x LOR	
Total Metals (QC Lo	ot: 300737)										
CG2104170-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	0.0034	0.0004	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00019	0.00020	0.000005	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0668	0.0664	0.596%	20%	
		beryllium, total	7440-41-7	E420	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.014	0.013	0.0001	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0050	mg/L	0.113 µg/L	0.000110	2.19%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	89.2	87.2	2.34%	20%	
		cobalt, total	7440-48-4	E420	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0335	0.0330	1.47%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	40.6	41.0	0.850%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00116	0.00127	9.74%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00219	0.00226	3.02%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00373	0.00366	0.00007	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.15	1.17	1.72%	20%	
		selenium, total	7782-49-2	E420	0.050	mg/L	26.7 µg/L	0.0271	1.66%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.16	2.13	1.11%	20%	

Page	: 5 of 17
Work Order	: CG2104210
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 300737) - continued										
CG2104170-001	Anonymous	silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	17341-25-2	E420	0.050	mg/L	6.25	6.29	0.640%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.224	0.227	1.06%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	64.7	66.3	2.44%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00280	0.00278	0.974%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0054	0.0057	0.0003	Diff <2x LOR	
Total Metals (QC Lo	ot: 303406)										
CG2104208-001	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 300105)										
CG2104202-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00012	0.00012	0.000006	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 300106)								1		
CG2104202-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0013	0.0011	0.0002	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0152	0.0152	0.550%	20%	
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	0.0129 µg/L	0.0000110	0.0000019	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	43.9	44.2	0.799%	20%	
		cobalt, dissolved	7440-48-4	E421	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0021	0.0021	0.00002	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	12.4	12.6	1.38%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00102	0.000970	5.22%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.266	0.273	0.007	Diff <2x LOR	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	1.32 µg/L	0.00134	1.93%	20%	

Page	: 6 of 17						
Work Order	: CG2104210						
Client	: Teck Coal Limited						
Project	: REGIONAL EFFECTS PROGRAM						

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Dissolved Metals (QC Lot: 300106) - continued												
CG2104202-001	Anonymous	silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.57	1.56	0.623%	20%		
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		sodium, dissolved	17341-25-2	E421	0.050	mg/L	0.478	0.482	0.004	Diff <2x LOR		
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.123	0.120	2.51%	20%		
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	17.8	18.1	1.97%	20%		
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR		
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00149	0.00147	1.75%	20%		
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0034	0.0038	0.0004	Diff <2x LOR		
Dissolved Metals (QC Lot: 301260)												
CG2104161-008	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 296756)						
turbidity		E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 300146)						
solids, total suspended [TSS]		E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 300153)						
solids, total dissolved [TDS]		E162	10	mg/L	<10	
Physical Tests (QCLot: 304817)						
conductivity		E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 304819)						
alkalinity, bicarbonate (as CaCO3)		E290	1	mg/L	1.1	
alkalinity, carbonate (as CaCO3)		E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)		E290	1	mg/L	<1.0	
Physical Tests (QCLot: 306147)						
acidity (as CaCO3)		E283	2	mg/L	<2.0	
Anions and Nutrients (QCLot: 296823)						
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 296824)						
bromide	24959-67-9	E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 296825)						
chloride	16887-00-6	E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 296826)						
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 296827)						
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 296828)						
fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 297211)						
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 299080)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 302113)						
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	<0.050	
Anions and Nutrients (OCI of: 305806)						

Page	: 8 of 17
Work Order	: CG2104210
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 3058	06) - continued					
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCLot:	: 303950)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot:	: 303957)					
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 300736)					1	
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 300737)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	17341-25-2	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
I contract of the second se		1	l i i i i i i i i i i i i i i i i i i i	l.		I

Page	: 9 of 17
Work Order	: CG2104210
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 300737) - continu	ed					
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 303406)						
mercury, total	7439-97-6	E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 300105)						
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 300106)						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
			1			

Page	: 10 of 17
Work Order	: CG2104210
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier			
Dissolved Metals (QCLot: 300106) - continued									
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010				
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050				
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010				
Dissolved Metals (QCLot: 301260)									
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050				

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	ľ			Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	v Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 296756)									
turbidity	F	E121	0.1	NTU	200 NTU	96.6	85.0	115	
Physical Tests (QCLot: 300146)									
solids, total suspended [TSS]	F	E160-L	1	mg/L	150 mg/L	93.8	85.0	115	
Physical Tests (QCLot: 300153)									
solids, total dissolved [TDS]	8	E162	10	mg/L	1000 mg/L	99.1	85.0	115	
Physical Tests (QCLot: 303222)									
oxidation-reduction potential [ORP]	F	E125		mV	220 mV	101	95.4	104	
Physical Tests (QCLot: 304817)									
conductivity	F	E100	1	μS/cm	146.9 µS/cm	100	90.0	110	
Physical Tests (QCLot: 304818)									
pH	I	E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 304819)									
alkalinity, total (as CaCO3)	I	E290	1	mg/L	500 mg/L	98.9	85.0	115	
Physical Tests (QCLot: 306147)									
acidity (as CaCO3)	[E283	2	mg/L	50 mg/L	108	85.0	115	
Anions and Nutrients (QCLot: 296823)									
sulfate (as SO4)	14808-79-8 I	E235.SO4	0.3	mg/L	100 mg/L	106	90.0	110	
Anions and Nutrients (QCLot: 296824)									
bromide	24959-67-9 I	E235.Br-L	0.05	mg/L	0.5 mg/L	102	85.0	115	
Anions and Nutrients (QCLot: 296825)									
chloride	16887-00-6 I	E235.CI-L	0.1	mg/L	100 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 296826)									
nitrate (as N)	14797-55-8 I	E235.NO3-L	0.005	mg/L	2.5 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 296827)									
nitrite (as N)	14797-65-0 I	E235.NO2-L	0.001	mg/L	0.5 mg/L	105	90.0	110	
Anions and Nutrients (QCLot: 296828)									
fluoride	16984-48-8 I	E235.F	0.02	mg/L	1 mg/L	108	90.0	110	
Anions and Nutrients (QCLot: 297211)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	100	80.0	120	
Anions and Nutrients (QCLot: 299080)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	8.32 mg/L	96.2	80.0	120	
Anions and Nutrients (QCLot: 302113)									

Page	: 12 of 17
Work Order	: CG2104210
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water			Laboratory Control Sample (LCS) Report						
					Spike Recovery (%) Recovery Limits (%)			Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 302113) - continue	əd								
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	93.2	75.0	125	
Anions and Nutrients (QCLot: 305806)									
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	105	85.0	115	
Organic / Inorganic Carbon (QCLot: 303950)									
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	10 mg/L	98.9	80.0	120	
Organic / Inorganic Carbon (QCLot: 303957)									
carbon, total organic [TOC]		E355-L	0.5	mg/L	10 mg/L	103	80.0	120	
Total Metals (QCLot: 300736)									
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	107	80.0	120	
Total Metals (QCLot: 300737)									
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	110	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	# 122	80.0	120	MES
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	107	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	115	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	97.0	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	115	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	94.6	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	104	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	95.7	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	107	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	104	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	99.8	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	101	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	100	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	107	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	107	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	111	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	106	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	106	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	98.4	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	107	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	109	80.0	120	
sodium, total	17341-25-2	E420	0.05	mg/L	50 mg/L	108	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	# 122	80.0	120	MES
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	101	80.0	120	

Page	: 13 of 17
Work Order	: CG2104210
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
					Spike Recovery (%) Recovery Limits (%)			Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 300737) - continued									
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	105	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	105	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	110	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	97.9	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	108	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	106	80.0	120	
Total Metals (QCLot: 303406)									
mercury, total	7439-97-6	E508-L	0.5	ng/L	5 ng/L	93.2	80.0	120	
Dissolved Metals (QCLot: 300105)									
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	99.0	80.0	120	
Dissolved Metals (QCLot: 300106)									
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	102	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	103	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	99.0	80.0	120	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	100	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	95.5	80.0	120	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	96.4	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	93.2	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	103	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	97.6	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	98.7	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	97.4	80.0	120	
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	102	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	95.5	80.0	120	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	95.8	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	104	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	96.7	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	102	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	96.2	80.0	120	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	101	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	105	80.0	120	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	106	80.0	120	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	97.2	80.0	120	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	50 mg/L	99.2	80.0	120	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	97.2	80.0	120	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	104	80.0	120	

Page	: 14 of 17
Work Order	: CG2104210
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
				Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low High		Qualifier	
Dissolved Metals (QCLot: 300106) - continu	ied								
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	1 mg/L	97.0	80.0	120		
tin, dissolved	7440-31-5 E421	0.0001	mg/L	0.5 mg/L	101	80.0	120		
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	0.25 mg/L	93.8	80.0	120		
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	0.005 mg/L	98.4	80.0	120		
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	0.5 mg/L	99.1	80.0	120		
zinc, dissolved	7440-66-6 E421	0.001	mg/L	0.5 mg/L	98.0	80.0	120		
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	0.0001 mg/L	92.8	80.0	120		
Qualifiers									

Qualifier MES

Description

Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report						
					Sp	ike	Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Anions and Nutri	ents (QCLot: 296823)										
CG2104211-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125		
Anions and Nutri	ents (QCLot: 296824)										
CG2104211-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.560 mg/L	0.5 mg/L	112	75.0	125		
Anions and Nutri	ents (QCLot: 296825)										
CG2104211-001	Anonymous	chloride	16887-00-6	E235.CI-L	111 mg/L	100 mg/L	111	75.0	125		
Anions and Nutri	ents (QCLot: 296826)										
CG2104211-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	ND mg/L	2.5 mg/L	ND	75.0	125		
Anions and Nutri	ents (QCLot: 296827)										
CG2104211-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.576 mg/L	0.5 mg/L	115	75.0	125		
Anions and Nutri	ents (QCLot: 296828)										
CG2104211-001	Anonymous	fluoride	16984-48-8	E235.F	1.00 mg/L	1 mg/L	100	75.0	125		
Anions and Nutri	ents (QCLot: 297211)										
CG2104210-001	RG_GAUT_WS_GGCAMP_ 2021-09-16_NP	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0582 mg/L	0.05 mg/L	116	70.0	130		
Anions and Nutri	ents (QCLot: 299080)										
CG2104202-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0561 mg/L	0.0676 mg/L	83.0	70.0	130		
Anions and Nutri	ents (QCLot: 302113)										
CG2104196-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.45 mg/L	2.5 mg/L	98.1	70.0	130		
Anions and Nutri	ents (QCLot: 305806)										
CG2104202-005	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.116 mg/L	0.1 mg/L	116	75.0	125		
Organic / Inorgar	ic Carbon (QCLot: 303	950)									
CG2104202-002	Anonymous	carbon, dissolved organic [DOC]		E358-L	23.0 mg/L	23.9 mg/L	96.3	70.0	130		
Organic / Inorgar	ic Carbon (QCLot: 303	957)									
CG2104202-001	Anonymous	carbon, total organic [TOC]		E355-L	23.3 mg/L	23.9 mg/L	97.5	70.0	130		
Total Metals (QC	Lot: 300736)										
CG2104185-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0400 mg/L	0.04 mg/L	100	70.0	130		
Total Metals (QC	Lot: 300737)										
CG2104185-001	Anonymous	aluminum, total	7429-90-5	E420	0.192 mg/L	0.2 mg/L	95.9	70.0	130		

Page : 16 of 17 Work Order : CG2104210 Client : Teck Coal Limited Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Total Metals (QC	Lot: 300737) - contin	nued										
CG2104185-001	Anonymous	antimony, total	7440-36-0	E420	0.0209 mg/L	0.02 mg/L	105	70.0	130			
		arsenic, total	7440-38-2	E420	0.0200 mg/L	0.02 mg/L	99.8	70.0	130			
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		beryllium, total	7440-41-7	E420	0.0358 mg/L	0.04 mg/L	89.5	70.0	130			
		bismuth, total	7440-69-9	E420	0.00978 mg/L	0.01 mg/L	97.8	70.0	130			
		boron, total	7440-42-8	E420	0.092 mg/L	0.1 mg/L	92.3	70.0	130			
		cadmium, total	7440-43-9	E420	0.00399 mg/L	0.004 mg/L	99.7	70.0	130			
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130			
		cobalt, total	7440-48-4	E420	0.0191 mg/L	0.02 mg/L	95.5	70.0	130			
		copper, total	7440-50-8	E420	0.0187 mg/L	0.02 mg/L	93.5	70.0	130			
		iron, total	7439-89-6	E420	1.92 mg/L	2 mg/L	96.2	70.0	130			
		lead, total	7439-92-1	E420	0.0187 mg/L	0.02 mg/L	93.3	70.0	130			
		lithium, total	7439-93-2	E420	0.0878 mg/L	0.1 mg/L	87.8	70.0	130			
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130			
		manganese, total	7439-96-5	E420	0.0191 mg/L	0.02 mg/L	95.6	70.0	130			
		molybdenum, total	7439-98-7	E420	0.0206 mg/L	0.02 mg/L	103	70.0	130			
		nickel, total	7440-02-0	E420	0.0376 mg/L	0.04 mg/L	93.9	70.0	130			
		potassium, total	7440-09-7	E420	3.83 mg/L	4 mg/L	95.8	70.0	130			
		selenium, total	7782-49-2	E420	0.0392 mg/L	0.04 mg/L	97.9	70.0	130			
		silicon, total	7440-21-3	E420	8.52 mg/L	10 mg/L	85.2	70.0	130			
		silver, total	7440-22-4	E420	0.00416 mg/L	0.004 mg/L	104	70.0	130			
		sodium, total	17341-25-2	E420	1.92 mg/L	2 mg/L	95.9	70.0	130			
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		sulfur, total	7704-34-9	E420	18.2 mg/L	20 mg/L	91.3	70.0	130			
		thallium, total	7440-28-0	E420	0.00363 mg/L	0.004 mg/L	90.8	70.0	130			
		tin, total	7440-31-5	E420	0.0199 mg/L	0.02 mg/L	99.7	70.0	130			
		titanium, total	7440-32-6	E420	0.0410 mg/L	0.04 mg/L	102	70.0	130			
		uranium, total	7440-61-1	E420	0.00392 mg/L	0.004 mg/L	97.9	70.0	130			
		vanadium, total	7440-62-2	E420	0.102 mg/L	0.1 mg/L	102	70.0	130			
		zinc, total	7440-66-6	E420	0.383 mg/L	0.4 mg/L	95.7	70.0	130			
Total Metals (QC	Lot: 303406)											
CG2104209-001	Anonymous	mercury, total	7439-97-6	E508-L	4.51 ng/L	5 ng/L	90.1	70.0	130			
Dissolved Metals	(QCLot: 300105)											
CG2104202-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0392 mg/L	0.04 mg/L	98.0	70.0	130			
Dissolved Metals	(QCLot: 300106)											
CG2104202-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.199 mg/L	0.2 mg/L	99.5	70.0	130			

Page: 17 of 17Work Order: CG2104210Client: Teck Coal LimitedProject: REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Dissolved Metals	(QCLot: 300106) - cont	tinued										
CG2104202-002	Anonymous	antimony, dissolved	7440-36-0	E421	0.0198 mg/L	0.02 mg/L	99.0	70.0	130			
		arsenic, dissolved	7440-38-2	E421	0.0196 mg/L	0.02 mg/L	98.0	70.0	130			
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		beryllium, dissolved	7440-41-7	E421	0.0366 mg/L	0.04 mg/L	91.6	70.0	130			
		bismuth, dissolved	7440-69-9	E421	0.00831 mg/L	0.01 mg/L	83.1	70.0	130			
		boron, dissolved	7440-42-8	E421	0.093 mg/L	0.1 mg/L	93.3	70.0	130			
		cadmium, dissolved	7440-43-9	E421	0.00399 mg/L	0.004 mg/L	99.7	70.0	130			
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130			
		cobalt, dissolved	7440-48-4	E421	0.0183 mg/L	0.02 mg/L	91.7	70.0	130			
		copper, dissolved	7440-50-8	E421	0.0178 mg/L	0.02 mg/L	89.2	70.0	130			
		iron, dissolved	7439-89-6	E421	1.88 mg/L	2 mg/L	94.1	70.0	130			
		lead, dissolved	7439-92-1	E421	0.0177 mg/L	0.02 mg/L	88.7	70.0	130			
		lithium, dissolved	7439-93-2	E421	ND mg/L	0.1 mg/L	ND	70.0	130			
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130			
		manganese, dissolved	7439-96-5	E421	0.0188 mg/L	0.02 mg/L	94.2	70.0	130			
		molybdenum, dissolved	7439-98-7	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130			
		nickel, dissolved	7440-02-0	E421	0.0345 mg/L	0.04 mg/L	86.3	70.0	130			
		potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130			
		selenium, dissolved	7782-49-2	E421	ND mg/L	0.04 mg/L	ND	70.0	130			
		silicon, dissolved	7440-21-3	E421	9.71 mg/L	10 mg/L	97.1	70.0	130			
		silver, dissolved	7440-22-4	E421	0.00370 mg/L	0.004 mg/L	92.6	70.0	130			
		sodium, dissolved	17341-25-2	E421	ND mg/L	2 mg/L	ND	70.0	130			
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130			
		thallium, dissolved	7440-28-0	E421	0.00354 mg/L	0.004 mg/L	88.5	70.0	130			
		tin, dissolved	7440-31-5	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130			
		titanium, dissolved	7440-32-6	E421	0.0373 mg/L	0.04 mg/L	93.3	70.0	130			
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.004 mg/L	ND	70.0	130			
		vanadium, dissolved	7440-62-2	E421	0.0996 mg/L	0.1 mg/L	99.6	70.0	130			
		zinc, dissolved	7440-66-6	E421	0.355 mg/L	0.4 mg/L	88.6	70.0	130			
Dissolved Metals	(QCLot: 301260)											
CG2104161-009	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000943 mg/L	0.0001 mg/L	94.3	70.0	130			

· ·		A STATUTOR NO AND	ALS DO 750546			RG_GAUT_WS_GGCAMP_2021-09-16_NP	Telephone : +1 403 407 1900 Sample ID		Calgary Work Order Reference	Environmenta		Email	Facility Name / Job
		Regular (default) Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge For Emergency (1 Day, ASAP or Weekend - Contex AI.S	SSERCIAL MOTIVE TOORS AND THE SECOND			KG CAUT WS	Sample Location Fiel		0-425-8202 SAMELE WY/ALS (V0B 2G0	21 Pine Avenue	allie ferguson@teck.com	COC ID: September G
		x Sampler's Name Sampler's Signature	RELINOU ISHED BY/M			No 9/16/2021 1200	Hazardous Material (Yo Hazardous Material (Yo Date	cs/No)	H 11 11	Country Canada	2		GCAMP 2021
			anow			G 7 X X	C G C G C G C G C H C H C H C H C H C H C H C H C H C H	і Літранії (Пірії Б- 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	Phone Number 1403 407 1794	Postal Code TTY 7B5	Address 2359 29 Street NE	Email lyudmyla.shvets@	TURNAROUND TIME:
		Mobile #		*	-	x x x x	ALS_Package-TKN/TO HG-T-U-CVAF-VA HG-D-CVAF-VA TECKCOAL-MET-T-	C Barrier R	OLYSIS REQUESTED	Country Canada	The second se	alsglobal.com tecco	
J	$\int g$	September 17, 3021				×	VA TECKCOAL-MET-D- VA		and a second second to second a second s		kronijenskovani stali br>Starihenji kr.com stali stal	al E edite com	Excel PDF EDD

CERTIFICATE OF ANALYSIS

Work Order	: CG2104395	Page	: 1 of 6
Client	: Teck Coal Limited	Laboratory	: Calgary - Environmental
Contact	: Allie Ferguson	Account Manager	: Lyudmyla Shvets
Address	: 421 Pine Avenue	Address	2559 29th Street NE
	Sparwood BC Canada V0B 2G0		Calgary AB Canada T1Y 7B5
Telephone	:	Telephone	: +1 403 407 1800
Project	: REGIONAL EFFECTS PROGRAM	Date Samples Received	: 24-Sep-2021 08:40
PO	: VPO00750546	Date Analysis Commenced	: 25-Sep-2021
C-O-C number	: SEPTEMBERGGCAMP2021	Issue Date	13-Oct-2021 17:01
Sampler	: JENIFER INGS		
Site	:		
Quote number	: Teck Coal Master Quote		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Elke Tabora		Inorganics, Calgary, Alberta
Erin Sanchez		Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within
	hold time.

Sub-Matrix: Water	Sub-Matrix: Water Client same							
(Matrix: Water)					GCAMP_2021-0 9-23_NP			
			Client samp	ling date / time	23-Sep-2021 09:30			
Analyte	CAS Number	Method	LOR	Unit	CG2104395-001			
					Result			
Physical Tests		E202	2.0	mg/l	<2.0			
		E203	2.0	mg/L	~2.0			
aikalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	223			
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	16.0			
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0			
alkalinity, total (as CaCO3)		E290	1.0	mg/L	239			
conductivity		E100	2.0	μS/cm	1610			
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	1050			
oxidation-reduction potential [ORP]		E125	0.10	mV	483			
рН		E108	0.10	pH units	8.39			
solids, total dissolved [TDS]		E162	10	mg/L	1380			
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.5			
turbidity		E121	0.10	NTU	0.92			
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	272			
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	9.6			
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0			
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0140			
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.250 DLDS			
chloride	16887-00-6	E235.CI-L	0.10	mg/L	1.84			
fluoride	16984-48-8	E235.F	0.020	mg/L	0.152			
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.614			
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	6.52 HTD			
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0064 HTD			
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0012			
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0050			
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	804			
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	2.29			
carbon, total organic [TOC]		E355-L	0.50	mg/L	2.44			

Sub-Matrix: Water	ient sample ID	RG_GHP_WS_G	 					
(Matrix: Water)					GCAMP_2021-0 9-23_NP			
			Client samp	ling date / time	23-Sep-2021 09:30	 		
Analyte	CAS Number	Method	LOR	Unit	CG2104395-001	 		
					Result	 		
lon Balance		E0101	0.40		22.0			
anion sum		EC101	0.10	meq/L	22.0	 		
		EC101	0.10	meq/L	21.1	 		
ion balance (cations/anions ratio)		EC101	0.010	%	95.9	 		
ion balance (cation-anion difference)		EC101	0.010	%	2.09	 		
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0063	 		
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00051	 		
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00023	 		
barium, total	7440-39-3	E420	0.00010	mg/L	0.0394	 		
beryllium, total	7440-41-7	E420	0.020	µg/L	<0.020	 		
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	 		
boron, total	7440-42-8	E420	0.010	mg/L	0.010	 		
cadmium, total	7440-43-9	E420	0.0050	µg/L	0.0067	 		
calcium, total	7440-70-2	E420	0.050	mg/L	174	 		
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00039	 		
cobalt, total	7440-48-4	E420	0.10	µg/L	<0.10	 		
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	 		
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	 		
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	 		
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0168	 		
magnesium, total	7439-95-4	E420	0.0050	mg/L	159	 		
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00152	 		
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	 		
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00188	 		
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00854	 		
potassium, total	7440-09-7	E420	0.050	mg/L	2.81	 		
selenium, total	7782-49-2	E420	0.050	μg/L	161	 		
silicon, total	7440-21-3	E420	0.10	mg/L	4.42	 		
silver, total	7440-22-4	E420	0.000010	ma/L	<0.000010	 		
sodium. total	17341-25-2	E420	0.050	ma/L	2.86	 		
	1/071-20-2	2.20	0.000	. g, –	2.00		I	I I

Sub-Matrix: Water			Cl	ient sample ID	RG_GHP_WS_G	 	
(Matrix: Water)					GCAMP_2021-0 9-23_NP		
			Client samp	ling date / time	23-Sep-2021 09:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104395-001	 	
					Result	 	
Total Metals	7440-24-6	E420	0.00020	ma/l	0 194	 	
sulfur, total	7440-24-0	E420	0.50	mg/L	312	 	
thallium total	7440-28-0	E420	0.00010	mg/L	<0.000010	 	
tin total	7440-20-0	E420	0.00010	mg/L	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	 	
uranium total	7440-52-0	E 120	0.000010	mg/L	0.00876	 	
vanadium total	7440-62-2	E420	0.00050	mg/L	<0.00050	 	
zinc. total	7440-66-6	E420	0.0030	ma/l	<0.0030	 	
Dissolved Metals	7440-00-0	2.20	0.0000	ing/E	0.0000		
aluminum, dissolved	7429-90-5	E421	0.0010	ma/L	0.0012	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00046	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00019	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0351	 	
beryllium, dissolved	7440-41-7	E421	0.020	μα/L	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.010	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μα/L	<0.0050	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	173	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00025	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0162	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	150	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00047	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00168	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00698	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	2.41	 	

Sub-Matrix: Water			Cl	ient sample ID	RG_GHP_WS_G	 	
(Matrix: Water)					GCAMP_2021-0 9-23_NP		
			Client samp	ling date / time	23-Sep-2021 09:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104395-001	 	
					Result	 	
Dissolved Metals							
selenium, dissolved	7782-49-2	E421	0.050	µg/L	154	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	4.12	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	2.48	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.184	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	274	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00811	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	 	
dissolved mercury filtration location		EP509	-	-	Field	 	
dissolved metals filtration location		EP421	-	-	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: CG2104395	Page	: 1 of 12
Client	: Teck Coal Limited	Laboratory	: Calgary - Environmental
Contact	: Allie Ferguson	Account Manager	: Lyudmyla Shvets
Address	: 421 Pine Avenue	Address	2559 29th Street NE
	Sparwood BC Canada V0B 2G0		Calgary, Alberta Canada T1Y 7B5
Telephone	:	Telephone	: +1 403 407 1800
Project	: REGIONAL EFFECTS PROGRAM	Date Samples Received	: 24-Sep-2021 08:40
PO	: VPO00750546	Issue Date	: 13-Oct-2021 17:01
C-O-C number	: SEPTEMBERGGCAMP2021		
Sampler	: JENIFER INGS		
Site	:		
Quote number	: Teck Coal Master Quote		
No. of samples received	:1		
No. of samples analysed	:1		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• <u>No</u> Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Eva	aluation: 🗶 =	Holding time exce	edance ; 🔹	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation					
Container / Client Sample ID(s)			Preparation	Holding Times		Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E298	23-Sep-2021	06-Oct-2021				06-Oct-2021	28 days	13 days	1
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E235.Br-L	23-Sep-2021					25-Sep-2021	28 days	2 days	1
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E235.CI-L	23-Sep-2021					25-Sep-2021	28 days	2 days	1
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra	Frace Level)									
HDPE										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E378-U	23-Sep-2021					25-Sep-2021	3 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E235.F	23-Sep-2021					25-Sep-2021	28 days	2 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E235.NO3-L	23-Sep-2021					25-Sep-2021	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E235.NO2-L	23-Sep-2021					25-Sep-2021	3 days	2 days	1

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	= Within	Holding Time
Analyte Group	Method	Sampling Date	Extraction / Preparation					Analys		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E235.SO4	23-Sep-2021					25-Sep-2021	28 days	2 days	~
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E318	23-Sep-2021	29-Sep-2021				29-Sep-2021	28 days	6 days	1
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E372-U	23-Sep-2021	30-Sep-2021				30-Sep-2021	28 days	7 days	1
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E421.Cr-L	23-Sep-2021	30-Sep-2021				30-Sep-2021	180 days	7 days	~
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E509	23-Sep-2021	01-Oct-2021				01-Oct-2021	28 days	8 days	~
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E421	23-Sep-2021	30-Sep-2021				30-Sep-2021	180 davs	7 days	*
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	l :I)							,		
Amber glass dissolved (sulfuric acid)										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E358-L	23-Sep-2021	02-Oct-2021				04-Oct-2021	28 days	11 days	*
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low Level)									
Amber glass total (sulfuric acid)										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E355-L	23-Sep-2021	02-Oct-2021				04-Oct-2021	28 days	11 days	*
Physical Tests : Acidity by Titration										
HDPE										
RG_GHP_WS_GGCAMP_2021-09-23_NP	E283	23-Sep-2021					02-Oct-2021	14 days	9 days	*

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔹	<pre>/ = Withir</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	; Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE RG_GHP_WS_GGCAMP_2021-09-23_NP	E290	23-Sep-2021					02-Oct-2021	14 days	9 days	~
Physical Tests : Conductivity in Water										
HDPE RG_GHP_WS_GGCAMP_2021-09-23_NP	E100	23-Sep-2021					02-Oct-2021	28 days	9 days	~
Physical Tests : ORP by Electrode										
HDPE RG_GHP_WS_GGCAMP_2021-09-23_NP	E125	23-Sep-2021					01-Oct-2021	0.25 hrs	196 hrs	× EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_GHP_WS_GGCAMP_2021-09-23_NP	E108	23-Sep-2021					02-Oct-2021	0.25 hrs	217 hrs	* EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE RG_GHP_WS_GGCAMP_2021-09-23_NP	E162	23-Sep-2021					29-Sep-2021	7 days	6 days	•
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB] RG_GHP_WS_GGCAMP_2021-09-23_NP	E160-L	23-Sep-2021					29-Sep-2021	7 days	6 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE RG_GHP_WS_GGCAMP_2021-09-23_NP	E121	23-Sep-2021					26-Sep-2021	3 days	3 days	~
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid) RG_GHP_WS_GGCAMP_2021-09-23_NP	E420.Cr-L	23-Sep-2021					01-Oct-2021	180 days	8 days	~
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved) RG_GHP_WS_GGCAMP_2021-09-23_NP	E508-L	23-Sep-2021					30-Sep-2021	28 days	7 days	1

Matrix: Water					E	valuation: × =	Holding time excee	edance ; •	= Within	Holding Time	
Analyte Group	Method Sampling Date Extraction / Preparation							Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Total Metals : Total Metals in Water by CRC ICPMS											
HDPE total (nitric acid) RG_GHP_WS_GGCAMP_2021-09-23_NP	E420	23-Sep-2021					01-Oct-2021	180 days	8 days	~	

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Charly Conditions Simple Type Cont Cont Frequency (%) Analytical Methods Method OC Lat # CP Regine Laboratory Number Laboratory Laboratory Data Laboratory Data Laboratory Data Laboratory Data Laboratory South 2 I CP Regine Laboratory Velocity Atalatity Spacia by Tration E230 South 2 I CP Regine Laboratory Velocity Atalatity Spacia by Tration E230 South 2 I CP	Matrix: Water Evaluation: ★ = QC frequency outside specification; ✓ = QC frequency within spe								
Analysecond Method OC (# graph" Actual Expected Numerican interval	Quality Control Sample Type			Co	ount	Frequency (%)			
Internation E283 309212 1 20 5.0 5.0 Akalin's praton E280 309212 1 12 8.3 6.0 Akalin's praton E280 313146 1 12 8.3 6.0 Bronden Water by (C. Low Level) E235.8 L, 302733 1 16 6.2 6.0 Conductivity in Water by (C. Conk Level) E201 300770 1 11 9.0 6.0 Disaverid Chronistion (Low Level) E421 30770 1 13 7.6 6.0 Disaverid Chronistion (Low Level) E325 30271 1 13 7.6 6.0 Disaverid Chronistion (Low Level) E325 30371 1 20 5.0 6.0 Disaverid Chronistion (Low Level) E325 30371 1 16 6.2 6.0 Disaverid Chronistion (Low Level) E325.5 30276 1	Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Addity Spreads E283 3092/1 1 20 5.0 Adminity Spreads by Tranton E290 309001 1 12 8.3 5.0 Ammonits by Fluorescence E298 331346 10 6.0 5.0 Brondie in Waler by CL Core Lovei) E235 GAL 302783 1 16 6.2 5.0 Conductivity in Water by CL Core Lovei) E421 GAL 3027271 1 11 8.0 5.0 Disolveid Alternary in Water by CCNBS E509 307785 1 2.0 5.0 Disolveid Alternary in Water by CCNBS E421 302770 1 13 7.6 5.0 Disolveid Alternare Water by CC (DML sevei) E235 NO24 302764 1 16 6.2 5.0 Disolveid Alternare Water by CL (Low Levei) E235 NO24 302764 1 16 6.2 5.0 Plondein Water by IC (Low Levei) E235 N	Laboratory Duplicates (DUP)								
Akalini Species by Titution E220 303(d) 1 12 8.3 5.0 ✓ Amonaia by Functsoeance E228 313140 1 20 5.0 ✓ Brondie in Water by CL (zw Lewi) E235.61, 302782 1 16 6.2 5.0 ✓ Choldidis in Water by CL (zw Lewi) E100 302833 1 12 8.3 5.0 ✓ Disolved Chronium In Water by CR (ZPMS (Low Lewi) E421.6-1, 302737 1 11 9.0 5.0 ✓ Disolved Metais In Water by CR (ZPMS (Low Lewi) E354.L 30377 1 120 5.0 5.0 ✓ Disolved Metais In Water by CR (ZPMS E421 30377 1 200 5.0 ✓ Disolved Metais In Water by CR (ZPMS E421 30371 1 200 5.0 ✓ Disolved Metais In Water by CR (ZPMS) E354.L 30371 1 16 6.2 5.0 ✓ Disolved Metais In Water by CR (ZPMS) E235.NJ 302761 1<	Acidity by Titration	E283	309212	1	20	5.0	5.0	✓	
Ammonia by Fluorescence E288 13146 1 201 5.0	Alkalinity Species by Titration	E290	309201	1	12	8.3	5.0	✓	
Brondie in Water by (C. (buc Love)) E238 Br.4. 302782 1 161 6.2 5.0 ✓ Conductivity in Water E100 302783 1 16 6.2 5.0 ✓ Desolved Chromium in Water by CRC (DPMS (buc Lovel)) E421.0-L,L 307731 1 11 9.0 5.0 ✓ Desolved Metais in Water by CRC (DPMS E421 307737 1 13 7.6 5.0 ✓ Desolved Metais in Water by CRC (DPMS E421 300771 1 2.0 5.0 ✓ Desolved Othophosphate by Colourinetry (Ultra Trace Lovel) E358-L 300571 1 2.0 5.0 ✓ Desolved Othophosphate by Colourinetry (Ultra Trace Lovel) E378-U 302764 1 16 6.2 5.0 ✓ Nitrate in Water by IC (box Lovel) E238 NO24, 302764 1 16 6.2 5.0 ✓ Nitrate in Water by IC (box Lovel) E128 302761 1 16 6.2 5.0 ✓ Intrite in Water by IC (box	Ammonia by Fluorescence	E298	313146	1	20	5.0	5.0	✓	
Chorden in Water by IC (Low Level) E23, CL. 302763 1 16 6.2 5.0 Dissolved Chomum in Water by CRC ICPMS (Low Level) E400 307271 1 11 9.0 5.0 Dissolved Menary in Water by CRC ICPMS (Low Level) E421. CL 307720 1 13 7.8 5.0 Dissolved Melaris in Water by CRC ICPMS E421 307720 1 13 7.8 5.0 Dissolved Melaris in Water by CRC ICPMS E421 307270 1 120 5.0 5.0 Dissolved Othomisophila by Columitery UIL Trace Level) E378-U 302760 1 160 6.2 5.0 Fluotide in Water by IC (Low Level) E235 NO2-L 302760 1 166 6.2 5.0 Vibria In Water by IC (Low Level) E235 NO2-L 302761 1 16 6.2 5.0 Sufface In Water by IC (Low Level) E335 SO4 302761 1	Bromide in Water by IC (Low Level)	E235.Br-L	302762	1	16	6.2	5.0	✓	
Conductivi in Water DC ICPMS (Low Level) E100 300203 1 12 8.3 5.0 Dissolved Chromin in Water by CC ICPMS (Low Level) E509 3077895 1 20 5.0 5.0 Dissolved Metais in Water by CR ICPMS (Low Level) E421 307270 1 13 7.6 5.0 Dissolved Othophosphate by Columinerly (Ultra Trace Level) E3584 309371 1 20 5.0 5.0 Dissolved Othophosphate by Columinerly (Ultra Trace Level) E3584 309371 1 16 6.2 5.0 Dissolved Othophosphate by Columinerly (Ultra Trace Level) E358 NO2-L 302764 1 16 6.2 5.0 Nthie in Water by IC (Low Level) E235 NO2-L 302764 1 16 6.2 5.0 Solitate in Water by IC (Low Level) E128 304635 1 16 6.2 5.0 Tolat Kolitatin Water by IC E235 NO2-L 307684 1 16	Chloride in Water by IC (Low Level)	E235.CI-L	302763	1	16	6.2	5.0	✓	
Disached Chronium in Water by CRC ICPNS (Low Level) E421 307271 1 11 9.0 5.0 ✓ Disached Merals in Water by CRC ICPMS E509 307865 1 2.0 5.0 5.0 ✓ Disached Merals in Water by CRC ICPMS E421 307270 1 13 7.6 5.0 ✓ Disached Ortraphots by Condunitor (Low Lavel) E338-L 308371 1 2.0 5.0 4.0 Disached Ortraphots by Condunitor (Low Lavel) E338-L 3082764 1 16 6.2 5.0 ✓ Nitrite in Water by IC (Low Level) E235 NG2-L 302765 1 16 6.2 5.0 ✓ PI by Meter E108 309202 1 14 7.1 5.0 ✓ Staffe in Water by IC Con Level) E108 309202 1 14 6.0 ✓ ✓ Staffe in Water by IC Conserve(ICPMS (Low Level) E108 309202 1 14 11 5.0 ✓ Staffe in Water by CR ICPMS (Low Level)	Conductivity in Water	E100	309203	1	12	8.3	5.0	✓	
Dissolve Metroury in Water by CVAAS Es00 307805 1 20 5.0 6.0 7 Dissolve Metroury in Water by COLOPMS E421 309371 1 20 5.0 5.0 7 Dissolve dorting in Water by COLORMS E338-L 309371 1 20 5.0 5.0 7 Dissolve dorting by Colorimetry (Utra Trace Level) E337-L 302760 1 16 6.2 5.0 7 Nitrate in Water by IC (Low Level) E235 NO3-L 302765 1 16 6.2 5.0 7 ORP by Electrode E123 30431 1 20 5.0 5.0 7 Staffate In Water by IC (Low Level) E123 30431 1 20 5.0 7 ORP by Electrode E123 30431 1 20 5.0 7 Diskolve Mutery DY CC (DeVs (Low Level) E123 304355 1 20 5.0 7 Diskolve Mutery DY CC (DeVs (Low Level) E420 307667 1 18	Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	307271	1	11	9.0	5.0	✓	
Dissolved Metals in Water by CRC ICPMS EA21 307270 1 13 7.6 5.0 ✓ Dissolved Organic Carbon by Combustion (Low Level) E378-L 300871 1 20 5.0 5.0 ✓ Dissolved Orbiphosphate by Colourimetry (Ultra Trace Level) E378-L 302764 1 16 6.2 5.0 ✓ Fluoride in Water by IC Level) E235.NO3-L 302764 1 16 6.2 5.0 ✓ Nitrite in Water by IC (Low Level) E235.NO3-L 302765 1 16 6.2 5.0 ✓ Sulfate in Water by IC (Low Level) E125 308431 1 20 5.0 5.0 ✓ Sulfate in Water by IC (Low Level) E108 309202 1 14 7.1 5.0 ✓ Sulfate in Water by CR (DPMS (Low Level) E108 300768 1 9.0 5.0 5.0 ✓ Total Merson in Water by CRC (DPMS (Low Level) E308-L 300746 1 18 5.0 ✓	Dissolved Mercury in Water by CVAAS	E509	307895	1	20	5.0	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level) E388-L 308371 1 20 5.0 5.0 Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) E378-U 302815 1 20 5.0 5.0 ✓ Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) E235, F3 302760 1 16 6.2 5.0 ✓ Nitrate in Water by (C Low Level) E235, NO3-L 302764 1 16 6.2 5.0 ✓ ORP by Electrode E125 308431 1 20 5.0 5.0 ✓ Sulfate in Water by IC Cow Level E168 309202 1 144 7.1 5.0 ✓ Sulfate in Water by CR ICPMS (Low Level) E162 304955 1 20 5.0 5.0 ✓ Total Krigdath Nitorgen by Flurorescence (Low Level) E318 305746 1 18 5.5 ✓ Total Merican Nitorgen by Flurorescence (Low Level) E328-L 309374 1 20 5.0 ✓ ✓ Total	Dissolved Metals in Water by CRC ICPMS	E421	307270	1	13	7.6	5.0	✓	
Dissolved Orthophosphate by Clourimetry (Ultra Trace Level) E378-J 302815 1 20 5.0 5.0 Fluoride in Water by IC E235.NO3-L 302760 1 16 6.2 5.0 ✓ Nitrie in Water by IC (Low Level) E235.NO3-L 302764 1 16 6.2 5.0 ✓ ORP by Electode E235.NO3-L 302765 1 16 6.2 5.0 ✓ PH by Meter E108 309202 1 14 7.1 5.0 ✓ Sulfae in Water by IC E162 300431 1 20 5.0 ✓ Sulfae in Water by IC E162 3004761 1 16 6.2 5.0 ✓ Sulfae in Water by CRC ICPMS (Low Level) E162 3004955 1 9 11.1 5.0 ✓ Total Keidzhin Nitorgen by Fluorescence (Low Level) E318 305746 1 18 5.5 5.0 ✓ Total Means in Water by CRC ICPMS E420 307697 1 19 </td <td>Dissolved Organic Carbon by Combustion (Low Level)</td> <td>E358-L</td> <td>309371</td> <td>1</td> <td>20</td> <td>5.0</td> <td>5.0</td> <td>✓</td>	Dissolved Organic Carbon by Combustion (Low Level)	E358-L	309371	1	20	5.0	5.0	✓	
Function in Water by IC E235,F 302760 1 16 6.2 5.0 ✓ Nitrate in Water by IC (Low Level) E235,NO3-L 302764 1 16 6.2 5.0 ✓ ORP by Electrode E125 302764 1 16 6.2 5.0 ✓ pH by Meter E125 304941 1 20 5.0 5.0 ✓ Sulfate in Water by IC E235,SO4 302761 1 16 6.2 5.0 ✓ Sulfate in Water by IC E235,SO4 302761 1 16 6.2 5.0 ✓ Total Kjeldahl Nitrogen by CRC (CPMS (Low Level) E162 304955 1 20 5.0 ✓ Total Kjeldahl Nitrogen by FLorescence (Low Level) E318 305746 1 18 5.5 5.0 ✓ Total Meetr by CRC (CPMS (Low Level, LOR = 0.5 pt) E508-L 309374 1 20 5.0 ✓ Total Mesian Water by CRC (CPMS E121 303018 1 6	Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	302815	1	20	5.0	5.0	✓	
Nitrate in Water by IC (Low Level) E235 NO3-L 302764 1 16 6.2 5.0 ✓ Nitrite in Water by IC (Low Level) E235 NO2-L 302765 1 16 6.2 5.0 ✓ ORP by Electode E125 308431 1 20 5.0 ✓ pH by Meter E108 309202 1 14 7.1 5.0 ✓ Sulfate in Water by IC E162 304955 1 20 5.0 5.0 ✓ Total Kjeldahi Nitrogen by Fluorescence (Low Level) E420, Cr-L 307698 1 9 11.1 5.0 ✓ Total Kjeldahi Nitrogen by Fluorescence (Low Level) E318 305746 1 18 5.5 5.0 ✓ Total Mercury Invater by CARS (Low Level, LOR = 0.5 pt) E508-L 307697 1 19 5.2 5.0 ✓ Total Mercury by CAC ICPMS E372-J 304175 1 20 5.0 ✓ Total Mercury by CAC ICPMS E372-J 304175 1 <td>Fluoride in Water by IC</td> <td>E235.F</td> <td>302760</td> <td>1</td> <td>16</td> <td>6.2</td> <td>5.0</td> <td>✓</td>	Fluoride in Water by IC	E235.F	302760	1	16	6.2	5.0	✓	
Nitrite in Water by IC (Low Level) E235 NO2-L 302765 1 16 6.2 5.0 ✓ ORP by Electrode E125 308431 1 20 5.0 5.0 ✓ Ph Dy Meter E108 309202 1 14 7.1 5.0 ✓ Sulfate in Water by IC E235 SO4 302761 1 16 6.2 5.0 ✓ Sulfate in Water by CRC ICPMS (Low Level) E235 SO4 302761 1 16 6.2 5.0 ✓ Total Kjeldahl Nitrogen by Fluorescence (Low Level) E420 Cr-L 307698 1 9 11.1 5.0 ✓ Total Metain Water by CRC ICPMS E508-L 307697 1 19 5.0 ✓ ✓ Total Metain Water by CRC ICPMS E372-U 304415 1 20 5.0 ✓ ✓ Total Phosphorus by Colourinetry (Ultra Trace) E372-U 304415 1 20 5.0 ✓ Total Metain Water by Control Samples (LCS) E283 309212 <td>Nitrate in Water by IC (Low Level)</td> <td>E235.NO3-L</td> <td>302764</td> <td>1</td> <td>16</td> <td>6.2</td> <td>5.0</td> <td>✓</td>	Nitrate in Water by IC (Low Level)	E235.NO3-L	302764	1	16	6.2	5.0	✓	
ORP by Electrode E125 308431 1 20 5.0 5.0 ✓ pH by Meter E108 309202 1 144 7.1 5.0 ✓ Suffate in Water by IC E235,S04 302761 1 166 6.2 5.0 ✓ TDS by Gravimetry E162 304955 1 20 5.0 5.0 ✓ Total Chromium in Water by CR (LOW Level) E420, Cr-L 307682 1 18 5.5 5.0 ✓ Total Metals in Water by CR CICPNS E420 307662 1 17 5.8 5.0 ✓ Total Metals in Water by CR CICPNS E420 307687 1 19 5.2 5.0 ✓ Total Metals in Water by CR CICPNS E35-L 309374 1 20 5.0 ✓ Total Metals in Water by CR CICPNS E372-U 304415 1 20 5.0 ✓ Total Mesphorus by Colourimetry (Ultra Trace) E121 303018 1 20 5.0	Nitrite in Water by IC (Low Level)	E235.NO2-L	302765	1	16	6.2	5.0	✓	
pH by Meter E 108 309202 1 14 7.1 5.0 ✓ Sulfate in Water by IC E238.S04 302761 1 16 6.2 5.0 ✓ Total Chromium in Water by CR ICPMS (Low Level) E420.Cr-L 304955 1 20 5.0 ✓ Total Chromium in Water by CRC ICPMS (Low Level) E420.Cr-L 307698 1 18 5.5 5.0 ✓ Total Mercury in Water by CRC ICPMS (Low Level, LOR = 0.5 ppt) E508-L 307697 1 19 5.2 5.0 ✓ Total Metar by CRC ICPMS E420 307697 1 19 5.2 5.0 ✓ Total Metar by CRC ICPMS E420 307697 1 19 5.0 ✓ ✓ Total Phosphorus by Colourimetry (Utra Trace) E355-L 309374 1 20 5.0 5.0 ✓ Turbidity by Nephelometry E121 303018 1 6 16.6 5.0 ✓ Alkalinity Species by Titration E283 3	ORP by Electrode	E125	308431	1	20	5.0	5.0	✓	
Sulfate in Water by IC E235.SO4 302761 1 16 6.2 5.0 ✓ TDS by Gravimetry E162 304955 1 20 5.0 5.0 ✓ Total Kreidelah Nitrogen by CRC ICPMS (Low Level) E420.Cr.L 307698 1 18 5.5 5.0 ✓ Total Kreidelah Nitrogen by Fluorescence (Low Level) E318 305746 1 17 5.8 5.0 ✓ Total Kreidelah Nitrogen by CRC ICPMS E420 307697 1 19 5.2 5.0 ✓ Total Meater by CRC ICPMS E420 307697 1 19 5.2 5.0 ✓ Total Meater by CRC ICPMS E420 307697 1 20 5.0 5.0 ✓ Total Phosphorus by Colourimetry (Ultra Trace) E372-U 304415 1 20 5.0 ✓ ✓ Turbidity by Nephelometry E121 303018 1 6 16.6 5.0 ✓ Alkalinty Species by Tirration E283 <td< td=""><td>pH by Meter</td><td>E108</td><td>309202</td><td>1</td><td>14</td><td>7.1</td><td>5.0</td><td>✓</td></td<>	pH by Meter	E108	309202	1	14	7.1	5.0	✓	
TDS by Gravimetry E162 304955 1 20 5.0 5.0 ✓ Total Chromium in Water by CRC ICPMS (Low Level) E420.Cr-L 307698 1 9 11.1 5.0 ✓ Total Kjeldah Nitrogen by Fluorescence (Low Level) E318 306746 1 18 5.0 ✓ Total Metary in Water by CVAFS (Low Level, LOR = 0.5 ppt) E508-L 307697 1 19 5.2 5.0 ✓ Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) E355-L 309374 1 20 5.0 ✓ Total Prosphorus by Colourimetry (Ultra Trace) E372-U 304415 1 20 5.0 ✓ ✓ Turbidity by Nephelometry E121 303018 1 6 16.6 5.0 ✓ Akalanity Species by Titration E283 309212 1 20 5.0 ✓ ✓ Alkalanity Species by Titration E290 309201 1 12 8.3 5.0 ✓ Bromide in Water by IC (Low Level) E235.Br-L 302762 1 16 6.2 5.0 ✓	Sulfate in Water by IC	E235.SO4	302761	1	16	6.2	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level) E420,Cr-L 307698 1 9 11.1 5.0 ✓ Total Kjeldah Nitrogen by Fluorescence (Low Level) E518 305746 1 178 5.5 5.0 ✓ Total Marcury in Water by CVAFS (Low Level, LOR = 0.5 ppt) E508-L 307062 1 177 5.8 5.0 ✓ Total Marcury in Water by CRC ICPMS E420 307697 1 19 5.2 5.0 ✓ Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) E355-L 309374 1 20 5.0 ✓ Total Phosphorus by Colourimetry (Ultra Trace) E372-U 304415 1 20 5.0 ✓ Laboratory Control Samples (LCS) E121 303018 1 6 16.6 5.0 ✓ Alkalinity Species by Titration E283 309212 1 20 5.0 ✓ Alkalinity Species by Titration E290 309201 1 12 8.3 5.0 ✓ Amononia by Fluorescence	TDS by Gravimetry	E162	304955	1	20	5.0	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level) E318 305746 1 18 5.5 5.0 ✓ Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) E508-L 307062 1 177 5.8 5.0 ✓ Total Metals in Water by CVAFS (Low Level, LOR = 0.5 ppt) E420 307067 1 19 5.2 5.0 ✓ Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) E335-L 309374 1 20 5.0 5.0 ✓ Total Phosphorus by Colourimetry (Ultra Trace) E372-U 304415 1 20 5.0 5.0 ✓ Acidity by Repleometry E121 303018 1 6 16.6 5.0 ✓ Acidity by Titration E283 309212 1 20 5.0 ✓ ✓ Alkalinity Species by Titration E290 309201 1 12 8.3 5.0 ✓ Armonia by Fluorescence E298 313146 1 20 5.0 ✓ ✓ Con	Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	307698	1	9	11.1	5.0	✓	
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) E608-L 307062 1 17 5.8 5.0 ✓ Total Metals in Water by CRC ICPMS E420 307697 1 19 5.2 5.0 ✓ Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) E355-L 309374 1 20 5.0 5.0 ✓ Total Posphorus by Colourimetry (Ultra Trace) E372-U 300415 1 20 5.0 5.0 ✓ Turbidity by Nephelometry E121 303018 1 6 16.6 5.0 ✓ Aklainity Species by Titration E283 309212 1 20 5.0 5.0 ✓ Anmonia by Fluorescence E290 309201 1 12 8.3 5.0 ✓ Choirde in Water by C (Low Level) E235.Br-L 302762 1 16 6.2 5.0 ✓ Conductivity in Water E100 309203 1 12 8.3 5.0 ✓ Dissolved Meraus in Water by CRC I	Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	305746	1	18	5.5	5.0	✓	
Total Metals in Water by CRC ICPMS E420 307697 1 19 5.2 5.0 ✓ Total Organic Carbon (Non-Purgeable) by combustion (Low Level) E355-L 309374 1 20 5.0 5.0 ✓ Total Phosphorus by Colourinetry (Ultra Trace) E372-U 304415 1 20 5.0 ✓ Turbidity by Nephelometry E121 303018 1 6 16.6 5.0 ✓ Laboratory Control Samples (LCS) E121 303018 1 20 5.0 5.0 ✓ Alkalinity Species by Titration E283 309212 1 20 5.0 5.0 ✓ Amonia by Fluorescence E290 309201 1 12 8.3 5.0 ✓ Bromide in Water by IC (Low Level) E235.Br-L 302762 1 16 6.2 5.0 ✓ Conductivity in Water by CRC ICPMS (Low Level) E100 302763 1 16 6.2 5.0 ✓ Dissolved Mercury in Water by CRC ICPMS (Low Level)	Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	307062	1	17	5.8	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) E355-L 309374 1 20 5.0 5.0 ✓ Total Phosphorus by Colourimetry (Ultra Trace) E372-U 304415 1 20 5.0 5.0 ✓ Turbidity by Nephelometry E121 303018 1 6 16.6 5.0 ✓ Laboratory Control Samples (LCS) 20 5.0 5.0 ✓ Akalinity Species by Titration E283 309212 1 20 5.0 5.0 ✓ Ammonia by Fluorescence E290 309201 1 12 8.3 5.0 ✓ Chotride in Water by IC (Low Level) E235.Br-L 302762 1 16 6.2 5.0 ✓ Chotride in Water by IC (Low Level) E235.Cl-L 302763 1 16 6.2 5.0 ✓ Dissolved Chromium in Water by CRC ICPMS (Low Level) E421.Cr-L 302763 1 16 6.2 5.0 ✓ Dissolved Mercury in Water by CRC ICPMS (Low	Total Metals in Water by CRC ICPMS	E420	307697	1	19	5.2	5.0	✓	
Total Phosphorus by Colourimetry (Ultra Trace)E372-U 304415 120 5.0 5.0 \checkmark Turbidity by NephelometryE121 303018 16 16.6 5.0 \checkmark Laboratory Control Samples (LCS)Acidity by TitrationE283 309212 1 20 5.0 5.0 \checkmark Aklainity Species by TitrationE283 309212 1 20 5.0 5.0 \checkmark Aklainity Species by TitrationE283 309212 1 20 5.0 5.0 \checkmark Amonia by FluorescenceE298 313146 1 20 5.0 5.0 \checkmark Bromide in Water by IC (Low Level)E235.Br-L 302762 1 16 6.2 5.0 \checkmark Chloride in Water by IC (Low Level)E235.Cl-L 302763 1 11 9.0 5.0 \checkmark Dissolved Chromium in Water by CRC ICPMS (Low Level)E421 307271 1 11 9.0 5.0 \checkmark Dissolved Mercury in Water by CRC ICPMSE421 307270 1 13 7.6 5.0 \checkmark Dissolved Organic Carbon by Combustion (Low Level)E358-L 309371 1 20 5.0 5.0 \checkmark Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)E378-U 302815 1 20 5.0 5.0 \checkmark	Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	309374	1	20	5.0	5.0	✓	
Turbidity by Nephelometry E121 303018 1 6 16.6 5.0 ✓ Laboratory Control Samples (LCS) Acidity by Titration E283 309212 1 20 5.0 5.0 ✓ Aklalinity Species by Titration E290 309201 1 12 8.3 5.0 ✓ Ammonia by Fluorescence E298 313146 1 20 5.0 5.0 ✓ Bromide in Water by IC (Low Level) E235.Br-L 302762 1 16 6.2 5.0 ✓ Chloride in Water by IC (Low Level) E100 309203 1 12 8.3 5.0 ✓ Dissolved Chromium in Water by CRC ICPMS (Low Level) E100 309203 1 12 8.3 5.0 ✓ Dissolved Mercury in Water by CRC ICPMS (Low Level) E421.Cr-L 307271 1 11 9.0 5.0 ✓ Dissolved Mercury in Water by CRC ICPMS E509 307895 1 20 5.0 ✓ Dissolved Organic Carbon b	Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	304415	1	20	5.0	5.0	✓	
Laboratory Control Samples (LCS) Acidity by Titration E283 309212 1 20 5.0 5.0 ✓ Alkalinity Species by Titration E290 309201 1 12 8.3 5.0 ✓ Ammonia by Fluorescence E298 313146 1 20 5.0 5.0 ✓ Bromide in Water by IC (Low Level) E235.Br-L 302762 1 16 6.2 5.0 ✓ Chloride in Water by IC (Low Level) E235.Cl-L 302763 1 16 6.2 5.0 ✓ Conductivity in Water E100 309203 1 12 8.3 5.0 ✓ Dissolved Chromium in Water by CRC ICPMS (Low Level) E421.Cr-L 307271 1 11 9.0 5.0 ✓ Dissolved Mercury in Water by CRC ICPMS E509 307895 1 20 5.0 ✓ Dissolved Organic Carbon by Combustion (Low Level) E358-L 309371 1 13 7.6 5.0 ✓ Disso	Turbidity by Nephelometry	E121	303018	1	6	16.6	5.0	✓	
Acidity by Titration E283 309212 1 20 5.0 5.0 ✓ Alkalinity Species by Titration E290 309201 1 12 8.3 5.0 ✓ Ammonia by Fluorescence E298 313146 1 20 5.0 5.0 ✓ Bromide in Water by IC (Low Level) E235.Br-L 302762 1 16 6.2 5.0 ✓ Chloride in Water by IC (Low Level) E235.Cl-L 302763 1 16 6.2 5.0 ✓ Conductivity in Water E100 309203 1 12 8.3 5.0 ✓ Dissolved Chromium in Water by CRC ICPMS (Low Level) E421.Cr-L 307271 1 11 9.0 5.0 ✓ Dissolved Mercury in Water by CRC ICPMS E421 307270 1 13 7.6 5.0 ✓ Dissolved Organic Carbon by Combustion (Low Level) E358-L 309371 1 20 5.0 5.0 ✓ Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) E378-U 302815 1 20 5.0 5.0	Laboratory Control Samples (LCS)								
Alkalinity Species by TitrationE2903092011128.35.0 \checkmark Ammonia by FluorescenceE2983131461205.05.0 \checkmark Bromide in Water by IC (Low Level)E235.Br-L3027621166.25.0 \checkmark Chloride in Water by IC (Low Level)E235.Cl-L3027631166.25.0 \checkmark Conductivity in WaterE1003092031128.35.0 \checkmark Dissolved Chromium in Water by CRC ICPMS (Low Level)E421.Cr-L3072711119.05.0 \checkmark Dissolved Mercury in Water by CRC ICPMSE5093078951205.0 \checkmark \checkmark Dissolved Organic Carbon by Combustion (Low Level)E358-L3093711137.65.0 \checkmark Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)E378-U3028151205.05.0 \checkmark	Acidity by Titration	E283	309212	1	20	5.0	5.0	✓	
Ammonia by FluorescenceE298 313146 1 20 5.0 5.0 \checkmark Bromide in Water by IC (Low Level)E235.Br-L 302762 1 16 6.2 5.0 \checkmark Chloride in Water by IC (Low Level)E235.Cl-L 302763 1 16 6.2 5.0 \checkmark Conductivity in WaterE100 309203 1 12 8.3 5.0 \checkmark Dissolved Chromium in Water by CRC ICPMS (Low Level)E421.Cr-L 307271 1 11 9.0 5.0 \checkmark Dissolved Metals in Water by CRC ICPMSE421 307270 1 13 7.6 5.0 \checkmark Dissolved Organic Carbon by Combustion (Low Level)E358-L 309371 1 20 5.0 \checkmark Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)E378-U 302815 1 20 5.0 5.0 \checkmark	Alkalinity Species by Titration	E290	309201	1	12	8.3	5.0	✓	
Bromide in Water by IC (Low Level)E235.Br-L 302762 116 6.2 5.0 \checkmark Chloride in Water by IC (Low Level)E235.Cl-L 302763 116 6.2 5.0 \checkmark Conductivity in WaterE100 309203 112 8.3 5.0 \checkmark Dissolved Chromium in Water by CRC ICPMS (Low Level)E421.Cr-L 307271 111 9.0 5.0 \checkmark Dissolved Metals in Water by CRC ICPMSE421 307270 120 5.0 \checkmark Dissolved Organic Carbon by Combustion (Low Level)E358-L 309371 1 20 5.0 \checkmark Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)E378-U 302815 1 20 5.0 5.0 \checkmark	Ammonia by Fluorescence	E298	313146	1	20	5.0	5.0	✓	
Chloride in Water by IC (Low Level)E235.CI-L 302763 116 6.2 5.0 \checkmark Conductivity in WaterE100 309203 112 8.3 5.0 \checkmark Dissolved Chromium in Water by CRC ICPMS (Low Level)E421.Cr-L 307271 111 9.0 5.0 \checkmark Dissolved Mercury in Water by CRC ICPMSE509 307895 1 20 5.0 5.0 \checkmark Dissolved Metals in Water by CRC ICPMSE421 307270 1 13 7.6 5.0 \checkmark Dissolved Organic Carbon by Combustion (Low Level)E358-L 309371 1 20 5.0 5.0 \checkmark Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)E378-U 302815 1 20 5.0 5.0 \checkmark	Bromide in Water by IC (Low Level)	E235.Br-L	302762	1	16	6.2	5.0	✓	
Conductivity in WaterE100 309203 112 8.3 5.0 \checkmark Dissolved Chromium in Water by CRC ICPMS (Low Level)E421.Cr-L 307271 111 9.0 5.0 \checkmark Dissolved Mercury in Water by CVAASE509 307895 1 20 5.0 5.0 \checkmark Dissolved Mercury in Water by CRC ICPMSE421 307270 1 13 7.6 5.0 \checkmark Dissolved Organic Carbon by Combustion (Low Level)E358-L 309371 1 20 5.0 5.0 \checkmark Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)E378-U 302815 1 20 5.0 5.0 \checkmark	Chloride in Water by IC (Low Level)	E235.CI-L	302763	1	16	6.2	5.0	✓	
Dissolved Chromium in Water by CRC ICPMS (Low Level) E421.Cr-L 307271 1 11 9.0 5.0 ✓ Dissolved Mercury in Water by CVAAS E509 307895 1 20 5.0 ✓ Dissolved Metals in Water by CRC ICPMS E421 307270 1 13 7.6 5.0 ✓ Dissolved Organic Carbon by Combustion (Low Level) E358-L 309371 1 20 5.0 ✓ Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) E378-U 302815 1 20 5.0 ✓	Conductivity in Water	E100	309203	1	12	8.3	5.0	✓	
Dissolved Mercury in Water by CVAAS E509 307895 1 20 5.0 5.0 √ Dissolved Metals in Water by CRC ICPMS E421 307270 1 13 7.6 5.0 ✓ Dissolved Organic Carbon by Combustion (Low Level) E358-L 309371 1 20 5.0 ✓ Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) E378-U 302815 1 20 5.0 5.0 ✓	Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	307271	1	11	9.0	5.0	✓	
Dissolved Metals in Water by CRC ICPMS E421 307270 1 13 7.6 5.0 ✓ Dissolved Organic Carbon by Combustion (Low Level) E358-L 309371 1 20 5.0 ✓ Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) E378-U 302815 1 20 5.0 ✓	Dissolved Mercury in Water by CVAAS	E509	307895	1	20	5.0	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level) E358-L 309371 1 20 5.0 5.0 Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) E378-U 302815 1 20 5.0<	Dissolved Metals in Water by CRC ICPMS	E421	307270	1	13	7.6	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) E378-U 302815 1 20 5.0 5.0 🗸	Dissolved Organic Carbon by Combustion (Low Level)	E358-L	309371	1	20	5.0	5.0	✓	
	Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	302815	1	20	5.0	5.0	✓	

Page	: 7 of 12
Work Order	: CG2104395
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Matrix: Water	Evaluation: \times = QC frequency outside specification; \checkmark = QC frequency within specificatio								
Quality Control Sample Type			Co	unt		Frequency (%))		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Laboratory Control Samples (LCS) - Continued									
Fluoride in Water by IC	E235.F	302760	1	16	6.2	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	302764	1	16	6.2	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	302765	1	16	6.2	5.0	✓		
ORP by Electrode	E125	308431	1	20	5.0	5.0	✓		
pH by Meter	E108	309202	1	14	7.1	5.0	✓		
Sulfate in Water by IC	E235.SO4	302761	1	16	6.2	5.0	✓		
TDS by Gravimetry	E162	304955	1	20	5.0	5.0	✓		
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	307698	1	9	11.1	5.0	✓		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	305746	1	18	5.5	5.0	✓		
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	307062	1	17	5.8	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	307697	1	19	5.2	5.0	✓		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	309374	1	20	5.0	5.0	✓		
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	304415	1	20	5.0	5.0	✓		
TSS by Gravimetry (Low Level)	E160-L	304925	1	20	5.0	5.0	✓		
Turbidity by Nephelometry	E121	303018	1	6	16.6	5.0	✓		
Method Blanks (MB)									
Acidity by Titration	E283	309212	1	20	5.0	5.0	1		
Alkalinity Species by Titration	E290	309201	1	12	8.3	5.0	✓		
Ammonia by Fluorescence	E298	313146	1	20	5.0	5.0	✓		
Bromide in Water by IC (Low Level)	E235.Br-L	302762	1	16	6.2	5.0	\checkmark		
Chloride in Water by IC (Low Level)	E235.CI-L	302763	1	16	6.2	5.0	✓		
Conductivity in Water	E100	309203	1	12	8.3	5.0	✓		
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	307271	1	11	9.0	5.0	\checkmark		
Dissolved Mercury in Water by CVAAS	E509	307895	1	20	5.0	5.0	✓		
Dissolved Metals in Water by CRC ICPMS	E421	307270	1	13	7.6	5.0	\checkmark		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	309371	1	20	5.0	5.0	✓		
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	302815	1	20	5.0	5.0	✓		
Fluoride in Water by IC	E235.F	302760	1	16	6.2	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	302764	1	16	6.2	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	302765	1	16	6.2	5.0	✓		
Sulfate in Water by IC	E235.SO4	302761	1	16	6.2	5.0	✓		
TDS by Gravimetry	E162	304955	1	20	5.0	5.0	✓		
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	307698	1	9	11.1	5.0	✓		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	305746	1	18	5.5	5.0	✓		
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	307062	1	17	5.8	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	307697	1	19	5.2	5.0	✓		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	309374	1	20	5.0	5.0	✓		
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	304415	1	20	5.0	5.0	✓		
TSS by Gravimetry (Low Level)	E160-L	304925	1	20	5.0	5.0	✓		
Turbidity by Nephelometry	E121	303018	1	6	16.6	5.0	✓		

Page	: 8 of 12
Work Order	: CG2104395
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

rix: Water Evaluation: ★ = QC frequency outside specification; ✓ = QC frequency within specification									
Quality Control Sample Type		· ·	Co	ount		Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Matrix Spikes (MS)									
Ammonia by Fluorescence	E298	313146	1	20	5.0	5.0	✓		
Bromide in Water by IC (Low Level)	E235.Br-L	302762	1	16	6.2	5.0	✓		
Chloride in Water by IC (Low Level)	E235.CI-L	302763	1	16	6.2	5.0	✓		
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	307271	1	11	9.0	5.0	✓		
Dissolved Mercury in Water by CVAAS	E509	307895	1	20	5.0	5.0	✓		
Dissolved Metals in Water by CRC ICPMS	E421	307270	1	13	7.6	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	309371	1	20	5.0	5.0	✓		
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	302815	1	20	5.0	5.0	✓		
Fluoride in Water by IC	E235.F	302760	1	16	6.2	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	302764	1	16	6.2	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	302765	1	16	6.2	5.0	✓		
Sulfate in Water by IC	E235.SO4	302761	1	16	6.2	5.0	✓		
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	307698	1	9	11.1	5.0	✓		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	305746	1	18	5.5	5.0	✓		
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	307062	1	17	5.8	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	307697	1	19	5.2	5.0	✓		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	309374	1	20	5.0	5.0	✓		
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	304415	1	20	5.0	5.0	✓		

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Calgary - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108 Calgary - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121 Calgary - Environmental	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L Calgary - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Calgary - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Chloride in Water by IC (Low Level)	E235.CI-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Fluoride in Water by IC	E235.F Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	E235.SO4 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Acidity by Titration	E283 Calgary - Environmental	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions					
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.					
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence d after reaction with orthophthaldialdehyde (OPA).					
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.					
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).					
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).					
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.					
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.					
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.					
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.					
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.					

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
	Vancouver - Environmental			
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
	Vancouver - Environmental			
Dissolved Mercury in Water by CVAAS	E509	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCI, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by
	Vancouver - Environmental			CVAAS.
Dissolved Hardness (Calculated)	EC100	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	Vancouver -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Environmental			calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis) Discolved species are
	Calgary - Environmental			used where available. Minor ions are included where data is present.
				Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.

Page	: 12 of 12
Work Order	: CG2104395
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order	CG2104395	Page	: 1 of 18
Client	: Teck Coal Limited	Laboratory	: Calgary - Environmental
Contact	: Allie Ferguson	Account Manager	: Lyudmyla Shvets
Address	: 421 Pine Avenue	Address	2559 29th Street NE
Telephone	Sparwood BC Canada V0B 2G0	Telephone	Calgary, Alberta Canada T1Y 7B5 :+1 403 407 1800
Project	REGIONAL EFFECTS PROGRAM	Date Samples Received	:24-Sep-2021 08:40
PO	: VPO00750546	Date Analysis Commenced	25-Sep-2021
C-O-C number	SEPTEMBERGGCAMP2021	Issue Date	: 13-Oct-2021 17:01
Sampler	: JENIFER INGS		
Site	:		
Quote number	: Teck Coal Master Quote		
No. of samples received	:1		
No. of samples analysed	:1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Elke Tabora		Inorganics, Calgary, Alberta
Erin Sanchez		Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Physical Tests (QC Lot: 303018)										
CG2104383-001	Anonymous	turbidity		E121	0.10	NTU	0.38	0.39	0.007	Diff <2x LOR	
Physical Tests (QC	Lot: 304955)										
CG2104385-002	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	178	180	2	Diff <2x LOR	
Physical Tests (QC	Lot: 308431)										
CG2104389-002	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	421	422	0.308%	15%	
Physical Tests (QC	Lot: 309201)										
CG2104390-011	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	885	869	1.85%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	885	869	1.85%	20%	
Physical Tests (QC	Lot: 309202)										
CG2104390-011	Anonymous	рН		E108	0.10	pH units	8.09	8.10	0.124%	4%	
Physical Tests (QC	Lot: 309203)										
CG2104390-011	Anonymous	conductivity		E100	1.0	μS/cm	13700	13700	0.00%	10%	
Physical Tests (QC	Lot: 309212)										
CG2104389-002	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	2.1	<2.0	0.1	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 302760)									· · · · · ·	
CG2104389-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.391	0.365	6.88%	20%	
Anions and Nutrient	s (QC Lot: 302761)										
CG2104389-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	29.7	26.8	10.1%	20%	
Anions and Nutrient	s (QC Lot: 302762)										
CG2104389-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	0.108	0.098	0.010	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 302763)										
CG2104389-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	20.3	19.1	6.23%	20%	
Anions and Nutrient	s (QC Lot: 302764)										
CG2104389-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0373	0.0306	0.0067	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 302765)										
CG2104389-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	0.0010	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: <u>302815)</u>									· · · · · · · · · · · · · · · · · · ·	
CG2104363-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 304415)										

Page	: 4 of 18
Work Order	: CG2104395
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water							Labora	tory Duplicate (D	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
nions and Nutrien	ts (QC Lot: 304415) - c	ontinued									
CG2104383-004	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 305746)										
CG2104381-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.500	mg/L	2.23	2.27	0.034	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 313146)										
CG2104385-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0129	0.0083	0.0046	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 30937	71)								II	
CG2104390-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	11.1	10.8	3.28%	20%	
Organic / Inorganic	Carbon (QC Lot: 30937	(4)								<u> </u>	
CG2104384-014	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	0.85	0.71	0.14	Diff <2x LOR	
Fotal Metals (QC Lo	ot: 307062)										
CG2104394-001	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	0.00058 µg/L	0.78	0.21	Diff <2x LOR	
Fotal Metals (QC Lo	ot: 307697)										
CG2104385-002	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0057	0.0041	0.0016	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00040	0.00044	0.00004	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0599	0.0608	1.46%	20%	
		beryllium, total	7440-41-7	E420	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0050	mg/L	<0.0050 µg/L	<0.0000050	0	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	35.7	34.6	3.27%	20%	
		cobalt, total	7440-48-4	E420	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.010	<0.010	0.0004	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0029	0.0028	0.0001	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	18.8	18.6	0.849%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00061	0.00046	0.00015	Diff <2x LOR	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00140	0.00135	3.56%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.07	1.08	0.860%	20%	
		selenium, total	7782-49-2	E420	0.050	mg/L	0.297 µg/L	0.000238	0.000059	Diff <2x LOR	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.20	2.18	0.878%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium total	17341-25-2	E420	0.050	ma/l	1.94	1 97	1.65%	20%	

Page	: 5 of 18
Work Order	: CG2104395
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 307697) - continued										
CG2104385-002	Anonymous	strontium, total	7440-24-6	E420	0.00020	mg/L	0.135	0.133	1.19%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	7.98	7.90	0.983%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000858	0.000847	1.35%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0057	0.0050	0.0007	Diff <2x LOR	
Total Metals (QC Lo	ot: 307698)								1	11	
CG2104385-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 307270)										
CG2104381-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0020	mg/L	0.0042	0.0030	0.0011	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00092	0.00091	0.000005	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00033	0.00032	0.00001	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	3.00	2.96	1.40%	20%	
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.029	0.027	0.002	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	0.0584 µg/L	0.0000631	7.78%	20%	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	87.3	82.5	5.72%	20%	
		cobalt, dissolved	7440-48-4	E421	0.10	mg/L	2.07 µg/L	0.00211	1.83%	20%	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00276	0.00276	0.130%	20%	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.000063	0.000062	0.0000009	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.114	0.109	4.65%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	34.3	36.1	5.07%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0324	0.0333	3.01%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00200	0.00194	3.23%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00808	0.00826	2.12%	20%	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	5.81	5.91	1.68%	20%	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	0.816 µg/L	0.000775	5.20%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	3.30	3.31	0.194%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.050	mg/L	7.99	8.22	2.92%	20%	
		strontium dissolved	7440-24-6	F421	0.00020	ma/l	1.81	1 81	0 111%	20%	

Page	: 6 of 18
Work Order	: CG2104395
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 307270) - continued											
CG2104381-001	Anonymous	sulfur, dissolved	7704-34-9	E421	0.50	mg/L	3.26	3.38	0.12	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000053	0.000052	0.0000009	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000306	0.000303	1.07%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0067	0.0069	0.0002	Diff <2x LOR	
Dissolved Metals (Q	C Lot: 307271)										
CG2104381-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals (Q	C Lot: 307895)										
CG2104374-008	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	r Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 303018)						
turbidity		E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 304925)						
solids, total suspended [TSS]		E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 304955)						
solids, total dissolved [TDS]		E162	10	mg/L	<10	
Physical Tests (QCLot: 309201)						
alkalinity, bicarbonate (as CaCO3)		E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)		E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)		E290	1	mg/L	<1.0	
Physical Tests (QCLot: 309203)						
conductivity		E100	1	µS/cm	<1.0	
Physical Tests (QCLot: 309212)						
acidity (as CaCO3)		E283	2	mg/L	<2.0	
Anions and Nutrients (QCLot: 302760)						
fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 302761)						
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 302762)						
bromide	24959-67-9	E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 302763)						
chloride	16887-00-6	E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 302764)						
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 302765)						
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 302815)						
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 304415)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 305746)						
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 313146)						

Page	: 8 of 18
Work Order	: CG2104395
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 313	146) - continued					
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCLo	ot: 309371)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLo	ot: 309374)					
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 307062)						
mercury, total	7439-97-6	E508-L	0.5	ng/L	<0.50	
Total Metals (QCLot: 307697)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	17341-25-2	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
- Letter and the second se		1		I		l i i i i i i i i i i i i i i i i i i i

Page	: 9 of 18
Work Order	: CG2104395
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 307697) - continu	ied					
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 307698)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 307270)						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	

Page	: 10 of 18
Work Order	: CG2104395
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier			
Dissolved Metals (QCLot: 307270) - continued									
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010				
Dissolved Metals (QCLot: 307271)									
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010				
Dissolved Metals (QCLot: 307895)	Dissolved Metals (QCLot: 307895)								
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050				

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water			Laboratory Control Sample (LCS) Report						
					Spike Recovery (%) Recovery Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 303018)									
turbidity		E121	0.1	NTU	200 NTU	98.5	85.0	115	
Physical Tests (QCLot: 304925)									
solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	93.7	85.0	115	
Physical Tests (QCLot: 304955)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	99.6	85.0	115	
Physical Tests (QCLot: 308431)									
oxidation-reduction potential [ORP]		E125		mV	220 mV	101	95.4	104	
Physical Tests (QCLot: 309201)									
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	104	85.0	115	
Physical Tests (QCLot: 309202)									
pH		E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 309203)									
conductivity		E100	1	µS/cm	146.9 µS/cm	98.7	90.0	110	
Physical Tests (QCLot: 309212)									
acidity (as CaCO3)		E283	2	mg/L	50 mg/L	104	85.0	115	
Anions and Nutrients (QCLot: 302760)									
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 302761)									
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	90.9	90.0	110	
Anions and Nutrients (QCLot: 302762)									
bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	101	85.0	115	
Anions and Nutrients (QCLot: 302763)									
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	93.2	90.0	110	
Anions and Nutrients (QCLot: 302764)									
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	93.1	90.0	110	
Anions and Nutrients (QCLot: 302765)									
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	97.2	90.0	110	
Anions and Nutrients (QCLot: 302815)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	102	80.0	120	
Anions and Nutrients (QCLot: 304415)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	8.32 mg/L	93.6	80.0	120	
Anions and Nutrients (QCLot: 305746)									

Page	: 12 of 18
Work Order	: CG2104395
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water			Laboratory Control Sample (LCS) Report						
					Spike Recovery (%) Recovery Limits (%)			Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 305746) - cont	inued								
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	105	75.0	125	
Anions and Nutrients (QCLot: 313146)									
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	95.8	85.0	115	
Organic / Inorganic Carbon (QCLot: 309371)									
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	10 mg/L	86.0	80.0	120	
Organic / Inorganic Carbon (QCLot: 309374)									
carbon, total organic [TOC]		E355-L	0.5	mg/L	10 mg/L	101	80.0	120	
Total Metals (QCLot: 307062)									
mercury, total	7439-97-6	E508-L	0.5	ng/L	5 ng/L	102	80.0	120	
Total Metals (QCLot: 307697)									
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	107	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	120	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	116	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	115	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	108	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	97.8	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	101	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	115	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	108	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	114	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	112	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	108	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	104	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	101	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	109	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	112	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	112	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	114	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	113	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	119	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	108	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	110	80.0	120	
sodium, total	17341-25-2	E420	0.05	mg/L	50 mg/L	114	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	114	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	110	80.0	120	

Page	: 13 of 18
Work Order	: CG2104395
Client	: Teck Coal Limited
Project	: REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
					Spike	ike Recovery (%) Recovery Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 307697) - continued									
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	101	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	109	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	109	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	110	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	113	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	114	80.0	120	
Total Metals (QCLot: 307698)									
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	111	80.0	120	
Dissolved Metals (QCLot: 307270)									
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	104	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	106	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	105	80.0	120	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	106	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	93.8	80.0	120	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	93.0	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	90.0	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	104	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	103	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	101	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	101	80.0	120	
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	101	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	105	80.0	120	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	90.5	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	98.6	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	105	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	103	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	101	80.0	120	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	101	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	113	80.0	120	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	101	80.0	120	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	99.1	80.0	120	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	50 mg/L	106	80.0	120	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	103	80.0	120	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	109	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	104	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	100	80.0	120	

Page	: 14 of 18
Work Order	: CG2104395
Client	: Teck Coal Limited
Project	REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 307270) - continued									
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	97.2	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	106	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	103	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	99.4	80.0	120	
Dissolved Metals (QCLot: 307271)									
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	101	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	99.7	80.0	120	

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spik	e (MS) Report				
					Spil	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutri	ents (QCLot: 302760)									
CG2104389-002	Anonymous	fluoride	16984-48-8	E235.F	0.862 mg/L	1 mg/L	86.2	75.0	125	
Anions and Nutri	ents (QCLot: 302761)									
CG2104389-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	97.9 mg/L	100 mg/L	97.9	75.0	125	
Anions and Nutri	ents (QCLot: 302762)									
CG2104389-002	Anonymous	bromide	24959-67-9	E235.Br-L	0.440 mg/L	0.5 mg/L	88.0	75.0	125	
Anions and Nutri	ents (QCLot: 302763)									
CG2104389-002	Anonymous	chloride	16887-00-6	E235.CI-L	87.2 mg/L	100 mg/L	87.2	75.0	125	
Anions and Nutri	ents (QCLot: 302764)									
CG2104389-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.30 mg/L	2.5 mg/L	91.9	75.0	125	
Anions and Nutri	ents (QCLot: 302765)									
CG2104389-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.491 mg/L	0.5 mg/L	98.2	75.0	125	
Anions and Nutri	ents (QCLot: 302815)									
CG2104363-009	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0525 mg/L	0.05 mg/L	105	70.0	130	
Anions and Nutri	ents (QCLot: 304415)									
CG2104383-005	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0637 mg/L	0.0676 mg/L	94.3	70.0	130	
Anions and Nutri	ents (QCLot: 305746)									
CG2104381-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	ND mg/L	2.5 mg/L	ND	70.0	130	
Anions and Nutri	ents (QCLot: 313146)									
CG2104385-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.112 mg/L	0.1 mg/L	112	75.0	125	
Organic / Inorgan	ic Carbon (QCLot: 3093	371)								
CG2104390-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	20.2 mg/L	23.9 mg/L	84.8	70.0	130	
Organic / Inorgan	ic Carbon (QCLot: 3093	374)								
CG2104384-014	Anonymous	carbon, total organic [TOC]		E355-L	23.6 mg/L	23.9 mg/L	98.6	70.0	130	
Total Metals (QC	Lot: 307062)									
CG2104394-002	Anonymous	mercury, total	7439-97-6	E508-L	4.59 ng/L	5 ng/L	91.8	70.0	130	
Total Metals (QC	Lot: 307697)									
CG2104385-001	Anonymous	aluminum, total	7429-90-5	E420	0.202 mg/L	0.2 mg/L	101	70.0	130	
		antimony, total	7440-36-0	E420	0.0216 mg/L	0.02 mg/L	108	70.0	130	

Page: 16 of 18Work Order: CG2104395Client: Teck Coal LimitedProject: REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water			Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	Lot: 307697) - continue	d								
CG2104385-001	Anonymous	arsenic, total	7440-38-2	E420	0.0213 mg/L	0.02 mg/L	107	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0407 mg/L	0.04 mg/L	102	70.0	130	
		bismuth, total	7440-69-9	E420	0.0101 mg/L	0.01 mg/L	101	70.0	130	
		boron, total	7440-42-8	E420	0.097 mg/L	0.1 mg/L	97.5	70.0	130	
		cadmium, total	7440-43-9	E420	0.00428 mg/L	0.004 mg/L	107	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0207 mg/L	0.02 mg/L	104	70.0	130	
		copper, total	7440-50-8	E420	0.0204 mg/L	0.02 mg/L	102	70.0	130	
		iron, total	7439-89-6	E420	2.11 mg/L	2 mg/L	106	70.0	130	
		lead, total	7439-92-1	E420	0.0190 mg/L	0.02 mg/L	94.8	70.0	130	
		lithium, total	7439-93-2	E420	0.0984 mg/L	0.1 mg/L	98.4	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0211 mg/L	0.02 mg/L	105	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0208 mg/L	0.02 mg/L	104	70.0	130	
		nickel, total	7440-02-0	E420	0.0419 mg/L	0.04 mg/L	105	70.0	130	
		potassium, total	7440-09-7	E420	4.32 mg/L	4 mg/L	108	70.0	130	
		selenium, total	7782-49-2	E420	0.0453 mg/L	0.04 mg/L	113	70.0	130	
		silicon, total	7440-21-3	E420	9.87 mg/L	10 mg/L	98.7	70.0	130	
		silver, total	7440-22-4	E420	0.00420 mg/L	0.004 mg/L	105	70.0	130	
		sodium, total	17341-25-2	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	22.3 mg/L	20 mg/L	111	70.0	130	
		thallium, total	7440-28-0	E420	0.00370 mg/L	0.004 mg/L	92.6	70.0	130	
		tin, total	7440-31-5	E420	0.0208 mg/L	0.02 mg/L	104	70.0	130	
		titanium, total	7440-32-6	E420	0.0428 mg/L	0.04 mg/L	107	70.0	130	
		uranium, total	7440-61-1	E420	0.00406 mg/L	0.004 mg/L	101	70.0	130	
		vanadium, total	7440-62-2	E420	0.109 mg/L	0.1 mg/L	109	70.0	130	
		zinc, total	7440-66-6	E420	0.405 mg/L	0.4 mg/L	101	70.0	130	
Total Metals (QC	Lot: 307698)									
CG2104385-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0415 mg/L	0.04 mg/L	104	70.0	130	
Dissolved Metals	(QCLot: 307270)						I			
CG2104392-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.400 mg/L	0.4 mg/L	100	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0407 mg/L	0.04 mg/L	102	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0422 mg/L	0.04 mg/L	106	70.0	130	
I	I	barium, dissolved	7440-39-3	E421	ND mg/L	0.04 mg/L	ND	70.0	130	· ···· I

Page: 17 of 18Work Order: CG2104395Client: Teck Coal LimitedProject: REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water			Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	/ Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	(QCLot: 307270) -	continued								
CG2104392-001	Anonymous	beryllium, dissolved	7440-41-7	E421	0.0747 mg/L	0.08 mg/L	93.4	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.0177 mg/L	0.02 mg/L	88.4	70.0	130	
		boron, dissolved	7440-42-8	E421	0.176 mg/L	0.2 mg/L	88.0	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00784 mg/L	0.008 mg/L	98.0	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	8 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0374 mg/L	0.04 mg/L	93.4	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0365 mg/L	0.04 mg/L	91.4	70.0	130	
		iron, dissolved	7439-89-6	E421	3.82 mg/L	4 mg/L	95.5	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0383 mg/L	0.04 mg/L	95.7	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.199 mg/L	0.2 mg/L	99.4	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	2 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0402 mg/L	0.04 mg/L	100	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0404 mg/L	0.04 mg/L	101	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0737 mg/L	0.08 mg/L	92.1	70.0	130	
		potassium, dissolved	7440-09-7	E421	8.06 mg/L	8 mg/L	101	70.0	130	
		selenium, dissolved	7782-49-2	E421	ND mg/L	0.08 mg/L	ND	70.0	130	
		silicon, dissolved	7440-21-3	E421	19.1 mg/L	20 mg/L	95.5	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00727 mg/L	0.008 mg/L	90.9	70.0	130	
		sodium, dissolved	17341-25-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.04 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	40 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00747 mg/L	0.008 mg/L	93.4	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0396 mg/L	0.04 mg/L	98.9	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0803 mg/L	0.08 mg/L	100	70.0	130	
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.008 mg/L	ND	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.206 mg/L	0.2 mg/L	103	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.701 mg/L	0.8 mg/L	87.6	70.0	130	
Dissolved Metals	(QCLot: 307271)									
CG2104392-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0370 mg/L	0.04 mg/L	92.5	70.0	130	
Dissolved Metals	(QCLot: 307895)									
CG2104374-009	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000947 mg/L	0.0001 mg/L	94.7	70.0	130	

Teck							r	nge lofl											
	COC ID:	Septem	ber GGC	AMP	2021		TUR	NAROUN	ND TIME:										
Casility Name / Joka	PROJECTACLIENT.	NEO à saider a	<u>. 11 - 11</u>	258*	20	•		Lab Name	E ALS Cale	RATORY arv	E 55	·	li	daa ji k	(*/ <u>) : -</u> [#1	<u>4: 111</u>	Excel	PDF	EDC
Project Manager	Allie Ferguson		. <u> </u>				l	ab Contac	t Lyudmyla	Shvets			20-56	<u></u>		2			Ţ
Email	allie ferguson@teck.com							Emai	il lyudrnyla	.shvets@a	isglobal.com	1		alle rengu	Series Texas	<u></u>	1445	1994	107
Address	421 Pine Avenue							Addres	s 2559 29 S	treet NE			1.1.1	Threater	e dinnow ca		i, iii		.
		······································												menica.ea	nha@iecx.co	en St		883 - 2-3 8	1,82
City		Sparwood			Province	BC		City	y Calgary		Province	AB	1	aniebes	рантенных ала	<u> </u>	× .co is 1		4 8
Postal Code		V0B 2G0			Country	Canada	Р	ostal Code	e TIY 785		Country	Canada	<u> </u>						
Phone Number	250-425-8202					which Mathematica	Pho	ne Numbe	r 1 403 407	1794									-
ALL AND THE REAL PROPERTY OF THE REAL PROPERTY	SAMPL	e detáils	مراجع المراجع محمد المراجع الم		<u>i ie</u>		C N	<u>.</u>		CO LAN	ALYSIS RE	QUESTE	D ::?: (-		Aural J:	Field, La Lab.	21. SWIJ &	Tate No.
									A N	P	N	N	, p · ·		F	₩.		3.85	See.
									54		141	I					1 . 1		
									ġ .							12.42		1. 1. 1. 1.	
				6						H2504	H2SO4	10004	met	HINOS,	HNO	W.(\$13)		A V SULE	14.0
				-Ś-								1			1			<u></u>	422
· · ·				3					INF		ĕ			1					
				lai					5	l g	l Z	<			E				
				ater					8 22	Ă	Ē	E.	N N	Ĩ.	W.				
				M					VI I	366	age	N N	AF.	12	AL				
				alous					1 g	ack	ack	3	5	8	8				
			Field	zarc		Tim	G=Gra	₩Of	Ŭ Š	5	.	-	ļģ	1 ð	8				
Sample ID	Sample	Location	Matrix	Ha	Date	(24hr) C=Com	p Cont.	Ŭ Ĥ Ă	F	AL	Н	E E E	TE VA	T.E.				
RG_GHP_WS_GGCAMP_2021-09-23_NP	RG	GHP	ws	Na	9/23/2021	930	G	7	x	x	x	x	x	x	x				
		The country of the second										<u> </u>	1						
	C NEWS 1	and the second se	<u> </u>	10524							· ·								
	1945.1211	·••	· · · · ·											+		•.			
											<u> </u>								1
		and a first stand of the second standard standard standard standard standard standard standard standard standar		11.2.8.21					4										
	10785	5.18.2.18.4.55							2.6										
		a state the second s											1						
	a - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	CONTRACTOR OF																	
	in a state of the	1.515**																	
ADDITIONAL COMMENTS/	SPECIAL INSTRUCTION	65		- 19 C.D.	RELINQUE	SHED BY/AI	THIATIO	V. CLASA	DATE/IN	41	<u>AC</u>	EPTED	BY/AFF	ILIATIO	Nasili	્યુના			
			-						· · · · · · · · · · · · · · · · · · ·								2-1	1	<u> </u>
S PO 750546			-		Jenni	ifer Ings/Mi	nnow		******	******	ŧ		}Y)		_0		14	Q,
															-		111	≤ 1	$\underline{\lambda}$
													0				0 -	,	0
NB OF BOTTLES RETU	RNED/OFSCRIPTION	es die Missiw S	14	i.	5. Sec. 20	3 1 1 29 -	- 43 0 - 1				id (2 11)	NO PORT	2.94	121.1			1.66	<u>i 114</u> .	1)1
<u> </u>		Regular (default) x		Sampler's N	ame	19982		Jennifer l	829		Mol	oile #	Í.,		519-500	-3444		
	Priority (2-3 Ousiness days) - 50% su	ircharge		·		/	1 0	20 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ir 1987. () Ir fer að ræ			87.5 F 19928	<u></u>	: SAMPILS	1801735		iterk)
			INCOMPANY AL				0		¥7 ~ 60	The second second second								The second s	

Environmental Division

Calgary Work Order Reference CG2104395

Telephone : +1 403 407 1800

Teck Coal Ltd. ATTN: Allie Ferguson 421 Pine Avenue Sparwood BC VOB 2G0 Date Received: 19-FEB-21 Report Date: 27-FEB-21 12:18 (MT) Version: FINAL

Client Phone: 250-425-8202

Certificate of Analysis

Lab Work Order #: L2559277

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: VPO00689999 REGIONAL EFFECTS PROGRAM GHO CALCITE FEB 2021

Lyudmyla Shvets, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2559277 CONTD.... PAGE 2 of 8 27-FEB-21 12:18 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2559277-1 WS 17-FEB-21 10:00 RG_GHUT_WS_C ALCITE_GHO_202 1-02 NP	L2559277-2 WS 18-FEB-21 14:00 RG_GHBP_WS_LA EMP_GH0_2021- 21 NP	L2559277-3 WS 18-FEB-21 14:00 RG_RIVER_WS_L AEMP_GHO_2021- 21 NP	L2559277-4 WS 18-FEB-21 14:00 RG_FBLANK _WS_LAEMP_GH O 2021-21 NP	L2559277-5 WS 18-FEB-21 14:00 RG_TRIP WS_LAEMP_GH 0 2021-21 NP
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (@ 25C) (uS/cm)	2380	1690	1700	<2.0	<2.0
	Hardness (as CaCO3) (mg/L)	1800	1180	1170	<0.50	
	рН (рН)	8.12	8.22	8.21	5.59	5.62
	ORP (mV)	316	311	314	391	434
	Total Suspended Solids (mg/L)	15.6	<1.0	<1.0	<1.0	<1.0
	Total Dissolved Solids (mg/L)	2310 DLHC	DLHC 1540	DLHC 1560	<10	<10
	Turbidity (NTU)	3.78	0.24	0.20	<0.10	<0.10
Anions and	Acidity (as CaCO3) (mg/L)	9.2	1.6	1.6	1.1	<1.0
Nutrients	Alkalinity Bicarbonate (as CaCO3) (mg/L)	407	004	000	4.0	1.0
	Alkalinity, Carbonate (as CaCO3) (mg/L)	487	294	293	<1.0	<1.0
	Alkalinity, Hydroxide (as CaCO3) (mg/l)	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Total (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Ammonia as N (mg/L)	407	294	293	<1.0 RRV	<1.0
	Bromide (Br) (mg/L)	<0.0030 DLHC	0.0227 DLHC	0.0200 DLHC	<0.0004	<0.0050
	Chloride (Cl) (mg/L)	CU.23 DLHC 1 70	CU.25 DLHC 1.88	2 60	<0.050	<0.050
	Fluoride (F) (mg/L)	DLHC	0.16	2.00 DLHC	<0.10	<0.10
	Ion Balance (%)	95.2	94.0	94.1	0.020	0.020
	Nitrate (as N) (mg/L)	00.2 DLHC 10.5	5 87	5.83	<0.00	<0.00
	Nitrite (as N) (mg/L)	DLHC	DLHC	0.003 DLHC	<0.0000	<0.0030
	Total Kjeldahl Nitrogen (mg/L)	<0.0000	<0.25	<0.050	<0.0010	<0.0010
	Orthophosphate-Dissolved (as P) (mg/L)	0.0076	0.0037	0.0045	<0.000	<0.000
	Phosphorus (P)-Total (mg/L)	0.0070	0.0034	0.0052	<0.0010	<0.0020
	Sulfate (SO4) (mg/L)	DLHC 1320	DLHC 910	DLHC 898	<0.30	<0.30
	Anion Sum (meq/L)	37.9	25.3	25.1	<0.10	<0.10
	Cation Sum (meq/L)	36.1	23.8	23.6	<0.10	<0.10
	Cation - Anion Balance (%)	-2.5	-3.1	-3.0	0.0	0.0
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	1.20	1.51	1.58	<0.50	
	Total Organic Carbon (mg/L)	1.27	1.43	1.58	<0.50	<0.50
Total Metals	Aluminum (Al)-Total (mg/L)	0.0061	<0.0030	<0.0030	<0.0030	<0.0030
	Antimony (Sb)-Total (mg/L)	0.00087	0.00047	0.00047	<0.00010	<0.00010
	Arsenic (As)-Total (mg/L)	0.00038	0.00028	0.00031	<0.00010	<0.00010
	Barium (Ba)-Total (mg/L)	0.0270	0.0525	0.0493	<0.00010	<0.00010
	Beryllium (Be)-Total (ug/L)	<0.040	<0.020	<0.020	<0.020	<0.020
	Bismuth (Bi)-Total (mg/L)	<0.00010	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	<0.020	0.010	0.013	<0.010	<0.010
	Cadmium (Cd)-Total (ug/L)	0.549	0.0098	0.0099	<0.0050	<0.0050

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2559277 CONTD.... PAGE 3 of 8 27-FEB-21 12:18 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2559277-1 WS 17-FEB-21 10:00 RG_GHUT_WS_C ALCITE_GH0_202 1-02 NP	L2559277-2 WS 18-FEB-21 14:00 RG_GHBP_WS_LA EMP_GH0_2021- 21 NP	L2559277-3 WS 18-FEB-21 14:00 RG_RIVER_WS_L AEMP_GHO_2021- 21 NP	L2559277-4 WS 18-FEB-21 14:00 RG_FBLANK _WS_LAEMP_GH 0_2021-21 NP	L2559277-5 WS 18-FEB-21 14:00 RG_TRIP _WS_LAEMP_GH 0.2021-21 NP
Grouping	Analyte					
WATER						
Total Metals	Calcium (Ca)-Total (mg/L)	399	224	231	<0.050	<0.050
	Chromium (Cr)-Total (mg/L)	DLA <0.00020	0.00010	0.00011	<0.00010	<0.00010
	Cobalt (Co)-Total (ug/L)	<0.20	<0.10	<0.10	<0.10	<0.10
	Copper (Cu)-Total (mg/L)	DLA <0.0010	<0.00050	<0.00050	<0.00050	<0.00050
	Iron (Fe)-Total (mg/L)	<0.020	<0.010	<0.010	<0.010	<0.010
	Lead (Pb)-Total (mg/L)	DLA <0.00010	<0.000050	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Total (mg/L)	0.0198	0.0166	0.0171	<0.0010	<0.0010
	Magnesium (Mg)-Total (mg/L)	251	175	176	<0.10	<0.10
	Manganese (Mn)-Total (mg/L)	0.0141	0.00172	0.00180	<0.00010	<0.00010
	Mercury (Hg)-Total (ug/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Molybdenum (Mo)-Total (mg/L)	0.00227	0.00403	0.00399	<0.000050	<0.000050
	Nickel (Ni)-Total (mg/L)	0.0366	0.0106	0.0106	<0.00050	<0.00050
	Potassium (K)-Total (mg/L)	3.08	2.45	2.50	<0.050	<0.050
	Selenium (Se)-Total (ug/L)	297	177	180	<0.050	<0.050
	Silicon (Si)-Total (mg/L)	3.38	4.14	4.27	<0.10	<0.10
	Silver (Ag)-Total (mg/L)	DLA <0.000020	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	2.04	3.02	2.94	<0.050	<0.050
	Strontium (Sr)-Total (mg/L)	0.211	0.230	0.236	<0.00020	<0.00020
	Sulfur (S)-Total (mg/L)	487	325	332	<0.50	<0.50
	Thallium (TI)-Total (mg/L)	0.000023	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	DLA <0.00020	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Total (mg/L)	0.0146	0.00924	0.00913	<0.000010	<0.000010
	Vanadium (V)-Total (mg/L)	<0.0010	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	0.0380	<0.0030	<0.0030	<0.0030	<0.0030
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	LAB
	Aluminum (Al)-Dissolved (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	
	Antimony (Sb)-Dissolved (mg/L)	0.00076	0.00043	0.00045	<0.00010	
	Arsenic (As)-Dissolved (mg/L)	0.00024	0.00019	0.00019	<0.00010	
	Barium (Ba)-Dissolved (mg/L)	0.0249	0.0471	0.0477	<0.00010	
	Beryllium (Be)-Dissolved (ug/L)	<0.040	<0.020	<0.020	<0.020	
	Bismuth (Bi)-Dissolved (mg/L)	<0.00010	<0.000050	<0.000050	<0.000050	
	Boron (B)-Dissolved (mg/L)	<0.020	0.010	<0.010	<0.010	
	Cadmium (Cd)-Dissolved (ug/L)	0.463	0.0089	0.0089	<0.0050	
	Calcium (Ca)-Dissolved (mg/L)	329	202	203	<0.050	<0.050
	Chromium (Cr)-Dissolved (mg/L)	<0.00020	0.00010	<0.00010	<0.00010	

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2559277 CONTD.... PAGE 4 of 8 27-FEB-21 12:18 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2559277-1 WS 17-FEB-21 10:00 RG_GHUT_WS_C ALCITE_GHO_202 1-02_NP	L2559277-2 WS 18-FEB-21 14:00 RG_GHBP_WS_LA EMP_GH0_2021- 21_NP	L2559277-3 WS 18-FEB-21 14:00 RG_RIVER_WS_L AEMP_GHO_2021- 21_NP	L2559277-4 WS 18-FEB-21 14:00 RG_FBLANK _WS_LAEMP_GH O_2021-21_NP	L2559277-5 WS 18-FEB-21 14:00 RG_TRIP WS_LAEMP_GH O_2021-21_NP
Grouping	Analyte					
WATER						
Dissolved Metals	Cobalt (Co)-Dissolved (ug/L)	<0.20	<0.10	<0.10	<0.10	
	Copper (Cu)-Dissolved (mg/L)	<0.00040	<0.00020	<0.00020	<0.00020	
	Iron (Fe)-Dissolved (mg/L)	<0.020	<0.010	<0.010	<0.010	
	Lead (Pb)-Dissolved (mg/L)	<0.00010	<0.000050	<0.000050	<0.000050	
	Lithium (Li)-Dissolved (mg/L)	0.0179	0.0172	0.0167	<0.0010	
	Magnesium (Mg)-Dissolved (mg/L)	237	164	161	<0.10	<0.0050
	Manganese (Mn)-Dissolved (mg/L)	0.0126	0.00081	0.00084	<0.00010	
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.000050	<0.0000050	<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.00190	0.00386	0.00392	<0.000050	
	Nickel (Ni)-Dissolved (mg/L)	0.0337	0.00991	0.00988	<0.00050	
	Potassium (K)-Dissolved (mg/L)	2.98	2.53	2.49	<0.050	<0.050
	Selenium (Se)-Dissolved (ug/L)	293	167	180	<0.050	
	Silicon (Si)-Dissolved (mg/L)	3.20	3.99	4.04	<0.050	
	Silver (Ag)-Dissolved (mg/L)	<0.000020	<0.000010	<0.000010	<0.000010	
	Sodium (Na)-Dissolved (mg/L)	1.97	3.08	3.03	<0.050	<0.050
	Strontium (Sr)-Dissolved (mg/L)	0.183	0.223	0.228	<0.00020	
	Sulfur (S)-Dissolved (mg/L)	457	305	313	<0.50	
	Thallium (TI)-Dissolved (mg/L)	<0.000020	<0.000010	<0.000010	<0.000010	
	Tin (Sn)-Dissolved (mg/L)	<0.00020	<0.00010	<0.00010	<0.00010	
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Uranium (U)-Dissolved (mg/L)	0.0123	0.00785	0.00802	<0.000010	
	Vanadium (V)-Dissolved (mg/L)	<0.0010	<0.00050	<0.00050	<0.00050	
	Zinc (Zn)-Dissolved (mg/L)	0.0366	<0.0010	0.0012	<0.0010	

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

QC Samples with Qualifiers & Comments:

QC Type Descrip	tion	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike		Barium (Ba)-Dissolved	MS-B	L2559277-2, -3, -4
/latrix Spike		Calcium (Ca)-Dissolved	MS-B	L2559277-1
/latrix Spike		Calcium (Ca)-Dissolved	MS-B	L2559277-2, -3, -4
/latrix Spike		Cobalt (Co)-Dissolved	MS-B	L2559277-1
/latrix Spike		Lithium (Li)-Dissolved	MS-B	L2559277-1
latrix Spike		Magnesium (Mg)-Dissolved	MS-B	L2559277-1
latrix Spike		Magnesium (Mg)-Dissolved	MS-B	L2559277-2, -3, -4
latrix Spike		Manganese (Mn)-Dissolved	MS-B	L2559277-1
latrix Spike		Nickel (Ni)-Dissolved	MS-B	L2559277-1
latrix Spike		Potassium (K)-Dissolved	MS-B	L2559277-1
latrix Spike		Selenium (Se)-Dissolved	MS-B	L2559277-2, -3, -4
latrix Spike		Sodium (Na)-Dissolved	MS-B	L2559277-1
latrix Spike		Sodium (Na)-Dissolved	MS-B	L2559277-2, -3, -4
latrix Spike		Strontium (Sr)-Dissolved	MS-B	L2559277-1
latrix Spike		Strontium (Sr)-Dissolved	MS-B	L2559277-2, -3, -4
latrix Spike		Sulfur (S)-Dissolved	MS-B	L2559277-1
latrix Spike		Sulfur (S)-Dissolved	MS-B	L2559277-2, -3, -4
latrix Spike		Uranium (U)-Dissolved	MS-B	L2559277-1
latrix Spike		Uranium (U)-Dissolved	MS-B	L2559277-2, -3, -4
latrix Spike		Barium (Ba)-Total	MS-B	L2559277-1, -2, -3, -4, -5
latrix Spike		Calcium (Ca)-Total	MS-B	L2559277-1, -2, -3, -4, -5
latrix Spike		Magnesium (Mg)-Total	MS-B	L2559277-1, -2, -3, -4, -5
latrix Spike		Selenium (Se)-Total	MS-B	L2559277-1, -2, -3, -4, -5
latrix Spike		Sodium (Na)-Total	MS-B	L2559277-1, -2, -3, -4, -5
latrix Spike		Strontium (Sr)-Total	MS-B	L2559277-1, -2, -3, -4, -5
latrix Spike		Sulfur (S)-Total	MS-B	L2559277-1, -2, -3, -4, -5
latrix Spike		Uranium (U)-Total	MS-B	L2559277-1, -2, -3, -4, -5
Qualifiers for In	dividual Parameters	Listed:		
Qualifier	Description			
DLA	Detection Limit adjust	ted for required dilution		
DLHC	Detection Limit Raise	d: Dilution required due to high concen	tration of test and	alyte(s).
ИS-B	Matrix Spike recovery	could not be accurately calculated due	e to high analyte	background in sample.
RRV	Reported Result Verif	ied By Repeat Analysis		
st Method Ref	ferences:			
LS Test Code	Matrix	Test Description		Method Reference**
CIDITY-PCT-CL	Water	Acidity by Automatic Titration		APHA 2310 Acidity
This analysis is c endpoint.	carried out using proce	edures adapted from APHA Method 23	10 "Acidity". Acid	lity is determined by potentiometric titration to a specified
LK-MAN-CL	Water	Alkalinity (Species) by Manual Titra	tion	APHA 2320 ALKALINITY

 pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

 BE-D-L-CCMS-VA
 Water
 Diss. Be (low) in Water by CRC ICPMS
 APHA 3030B/6020A (mod)

 Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.
 EPA 200.2/6020A (mod)

 Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.
 EPA 200.2/6020A (mod)

EPA 300.1 (mod)

 BR-L-IC-N-CL
 Water
 Bromide in Water by IC (Low Level)

 Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

This method is applicable to the analysis of ground water, wastewater, and surface water samples. The form detected depends upon sample pretreatment: Unfiltered sample = TC, 0.45um filtered = TDC. Samples are injected into a combustion tube containing an oxidation catalyst. The carrier gas containing the combustion product from the combustion tube flows through an inorganic carbon reactor vessel and is then sent through a

C-DIS-ORG-LOW-CL

Water

Dissolved Organic Carbon

APHA 5310 B-Instrumental

halogen scrubber into a sa and dissolved inorganic ca dioxide.	imple cell set irbon, the san	in a non-dispersive infrared gas analyzer (NDIR) when nple is injected into an IC reactor vessel where only the	e carbon dioxide is detected. For total inorganic carbon e IC component is decomposed to become carbon
The peak area generated to subtracting the TIC from the TOC = TC-TIC, DOC = TD	by the NDIR i ne TC. IC-DIC, Partic	ndicates the TC/TDC or TIC/DIC as applicable. The tot culate = Total - Dissolved.	al organic carbon content of the sample is calculated by
C-TOT-ORG-LOW-CL	Water	Total Organic Carbon	APHA 5310 TOTAL ORGANIC CARBON (TOC)
This method is applicable pretreatment: Unfiltered sa carrier gas containing the halogen scrubber into a sa and dissolved inorganic ca dioxide.	to the analysi ample = TC, 0 combustion p imple cell set irbon, the san	s of ground water, wastewater, and surface water sam 0.45um filtered = TDC. Samples are injected into a com- roduct from the combustion tube flows through an inor- in a non-dispersive infrared gas analyzer (NDIR) when nple is injected into an IC reactor vessel where only the	ples. The form detected depends upon sample abustion tube containing an oxidation catalyst. The ganic carbon reactor vessel and is then sent through a e carbon dioxide is detected. For total inorganic carbon e IC component is decomposed to become carbon
The peak area generated the subtracting the TIC from the TIC from the TOC = TC-TIC, DOC = TD	by the NDIR i ne TC. IC-DIC, Partic	ndicates the TC/TDC or TIC/DIC as applicable. The tot culate = Total - Dissolved.	al organic carbon content of the sample is calculated by
CL-L-IC-N-CL	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion Cl	nromatography with conductivity and/or UV detection.	
EC-L-PCT-CL	Water	Electrical Conductivity (EC)	APHA 2510B
Conductivity, also known a electrodes into a water sar	as Electrical C mple. Condu	Conductivity (EC) or Specific Conductance, is measured to ctivity measurements are temperature-compensated to	d by immersion of a conductivity cell with platinum 25C.
F-IC-N-CL	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion Cl	nromatography with conductivity and/or UV detection.	
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
Hardness (also known as ⁻ Dissolved Calcium and Ma	Total Hardnes	ss) is calculated from the sum of Calcium and Magnesi centrations are preferentially used for the hardness ca	um concentrations, expressed in CaCO3 equivalents. Iculation.
HG-D-CVAA-VA	Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)
Water samples are filtered with stannous chloride, and	l (0.45 um), p d analyzed by	reserved with hydrochloric acid, then undergo a cold-or v CVAAS or CVAFS.	xidation using bromine monochloride prior to reduction
HG-T-U-CVAF-VA	Water	Total Mercury in Water by CVAFS (Ultra)	EPA 1631 REV. E
This analysis is carried out procedure involves a cold- reduction of the sample wi	t using proced oxidation of th th stannous c	dures adapted from Method 1631 Rev. E. by the United ne acidified sample using bromine monochloride prior t chloride. Instrumental analysis is by cold vapour atomic	d States Environmental Protection Agency (EPA). The to a purge and trap concentration step and final c fluorescence spectrophotometry.
IONBALANCE-BC-CL	Water	Ion Balance Calculation	APHA 1030E
Cation Sum, Anion Sum, a Correctness of Analysis). should be near-zero.	and Ion Balan Because all a	ce (as % difference) are calculated based on guidance aqueous solutions are electrically neutral, the calculate	from APHA Standard Methods (1030E Checking dion balance (% difference of cations minus anions)
Cation and Anion Sums ar included where data is pre	e the total me sent. Ion Bal	eq/L concentration of major cations and anions. Dissol ance is calculated as:	ved species are used where available. Minor ions are
Ion Balance (%) = [Cation	Sum-Anion S	um] / [Cation Sum+Anion Sum]	
MET-D-CCMS-CL	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	l (0.45 um), p	reserved with nitric acid, and analyzed by CRC ICPMS	
Method Limitation (re: Sulf	ur): Sulfide a	nd volatile sulfur species may not be recovered by this	method.
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	l (0.45 um), p	reserved with nitric acid, and analyzed by CRC ICPMS	
Method Limitation (re: Sulf	ur): Sulfide a	nd volatile sulfur species may not be recovered by this	method.
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020A (mod)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. NH3-L-F-CL Water Ammonia, Total (as N) J. ENVIRON. MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et NO2-L-IC-N-CL Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-L-IC-N-CL Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. ORP-CL Water Oxidation redution potential by elect. **ASTM D1498** This analysis is carried out in accordance with the procedure described in the "ASTM" method D1498 "Oxidation-Reduction Potential of Water" published by the American Society for Testing and Materials (ASTM). Results are reported as observed oxidation-reduction potential of the platinum metal-reference electrode employed, in mV. It is recommended that this analysis be conducted in the field. Phosphorus (P)-Total P-T-L-COL-CL Water APHA 4500-P PHOSPHORUS This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample. PH-CL Water APHA 4500 H-Electrode pН pH is determined in the laboratory using a pH electrode. All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed) PO4-DO-L-COL-CL Orthophosphate-Dissolved (as P) **APHA 4500-P PHOSPHORUS** Water This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. SO4-IC-N-CL Water Sulfate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. SOLIDS-TDS-CL Water Total Dissolved Solids APHA 2540 C A well-mixed sample is filtered through a glass fibre filter paper. The filtrate is then evaporated to dryness in a pre-weighed vial and dried at 180 - 2 °C. The increase in vial weight represents the total dissolved solids (TDS). **TECKCOAL-IONBAL-CL** Water Ion Balance Calculation **APHA 1030E** Cation Sum, Anion Sum, and Ion Balance (as % difference) are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Because all aqueous solutions are electrically neutral, the calculated ion balance (% difference of cations minus anions) should be near-zero. Cation and Anion Sums are the total meg/L concentration of major cations and anions. Dissolved species are used where available. Minor ions are included where data is present. Ion Balance is calculated as: Ion Balance (%) = [Cation Sum-Anion Sum] / [Cation Sum+Anion Sum] **TKN-L-F-CL** Water Total Kjeldahl Nitrogen APHA 4500-NORG (TKN) This analysis is carried out using procedures adapted from APHA Method 4500-Norg D. "Block Digestion and Flow Injection Analysis". Total Kjeldahl Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection. TSS-L-CL Water Total Suspended Solids APHA 2540 D-Gravimetric This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C. TURBIDITY-CL Turbidity APHA 2130 B-Nephelometer Water This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method. ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location CL ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

VA

Chain of Custody Numbers:

GHO CALCITE FEB 2021

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample. mg/kg wwt - milligrams per kilogram based on wet weight of sample. mg/L - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per litre. < - Less than. D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR). N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L2559277	'F	Report Date:	27-FEB-21	Pag	ge 1 of 16
Client: Contact:	Teck Coa 421 Pine Sparwood Allie Ferg	ll Ltd. Avenue d BC V0B 2G0 uson							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ACIDITY-PCT-C	L	Water							
Batch WG3491809- Acidity (as C	R5386203 5 LCS aCO3)			99.5		%		85-115	20-FEB-21
WG3491809- Acidity (as C	4 МВ аСО3)			1.2		mg/L		2	20-FEB-21
ALK-MAN-CL		Water							
Batch WG3491803-	R5386192 5 LCS								
Alkalinity, To	tal (as CaC	O3)		102.4		%		85-115	20-FEB-21
Alkalinity, To	4 MB tal (as CaC	O3)		<1.0		mg/L		1	20-FEB-21
BE-D-L-CCMS-V	/Α	Water							
Batch	R5384757								
WG3490784- Beryllium (Be	3 DUP e)-Dissolved	1	L2559277-2 <0.000020	<0.000020	RPD-N/	∖ mg/L	N/A	20	22-FEB-21
WG3490783- Beryllium (Be	2 LCS e)-Dissolved	ł		101.4		%		80-120	22-FEB-21
WG3490784- Beryllium (Be	2 LCS e)-Dissolved	1		104.5		%		80-120	22-FEB-21
WG3490783- Beryllium (Be	1 MB e)-Dissolved	ł	NP	<0.000020)	mg/L		0.00002	22-FEB-21
WG3490784- Beryllium (Be	1 MB e)-Dissolved	ł	NP	<0.000020)	mg/L		0.00002	22-FEB-21
WG3490784- Beryllium (Be	4 MS e)-Dissolved	1	L2559277-3	98.3		%		70-130	22-FEB-21
BE-T-L-CCMS-V	Ά	Water							
Batch	R5385392								
WG3490785- Beryllium (Be	2 LCS e)-Total			106.4		%		80-120	22-FEB-21
WG3490785- Beryllium (Be	1 MB e)-Total			<0.000020	I	mg/L		0.00002	22-FEB-21
BR-L-IC-N-CL		Water							
Batch	R5386321								
WG3491822- Bromide (Br)	3 DUP		L2559277-5 <0.050	<0.050	RPD-N/	∖, mg/L	N/A	20	19-FEB-21
WG3491822- Bromide (Br)	2 LCS			98.2		%		85-115	19-FEB-21
WG3491822-	1 MB								

		Workorder:	L2559277	Rep	oort Date: 27-FE	B-21	Pag	e 2 of 16
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BR-L-IC-N-CL Batch R5386321 WG3491822-1 MB Bromide (Br)	Water		~0.050		ma/l		0.05	10 EEP 21
WG3491822-4 MS Bromide (Br)		L2559277-5	98.5		%		75-125	19-FEB-21
C-DIS-ORG-LOW-CL	Water							
Batch R5393071 WG3494285-3 DUP Dissolved Organic Carb	oon	L2559277-4 <0.50	<0.50	RPD-NA	mg/L	N/A	20	26-FEB-21
WG3494285-2 LCS Dissolved Organic Carb	oon		85.7		%		80-120	26-FEB-21
WG3494285-1 MB Dissolved Organic Carb	oon		<0.50		mg/L		0.5	26-FEB-21
WG3494285-4 MS Dissolved Organic Carb	oon	L2559277-4	107.0		%		70-130	26-FEB-21
C-TOT-ORG-LOW-CL	Water							
Batch R5393071 WG3494285-3 DUP Total Organic Carbon		L2559277-4 <0.50	<0.50	RPD-NA	mg/L	N/A	20	26-FEB-21
WG3494285-2 LCS Total Organic Carbon			88.9		%		80-120	26-FEB-21
WG3494285-1 MB Total Organic Carbon			<0.50		mg/L		0.5	26-FEB-21
WG3494285-4 MS Total Organic Carbon		L2559277-4	108.3		%		70-130	26-FEB-21
CL-L-IC-N-CL	Water							
Batch R5386321 WG3491822-3 DUP Chloride (Cl)		L2559277-5 <0.10	<0.10	RPD-NA	ma/L	N/A	20	19-FFB-21
WG3491822-2 LCS Chloride (Cl)			99.9		%		85-115	19-FFB-21
WG3491822-1 MB Chloride (Cl)			<0.10		mg/L		0.1	19-FEB-21
WG3491822-4 MS Chloride (Cl)		L2559277-5	102.4		%		75-125	19-FEB-21
EC-L-PCT-CL	Water							

	Workorder: L2559277		Re	Report Date: 27-FEB-21			Page 3 of 16		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
EC-L-PCT-CL	Water								
Batch R5386192									
WG3491803-5 LCS Conductivity (@ 25C)			98.1		%		90-110	20-FEB-21	
WG3491803-4 MB Conductivity (@ 25C)			<2.0		uS/cm		2	20-FEB-21	
F-IC-N-CL	Water								
Batch R5386321									
WG3491822-3 DUP Fluoride (F)		L2559277-5 <0.020	<0.020	RPD-NA	mg/L	N/A	20	19-FEB-21	
WG3491822-2 LCS Fluoride (F)			100.4		%		90-110	19-FEB-21	
WG3491822-1 MB Fluoride (F)			<0.020		mg/L		0.02	19-FEB-21	
WG3491822-4 MS Fluoride (F)		L2559277-5	102.7		%		75-125	19-FEB-21	
HG-D-CVAA-VA	Water								
Batch R5387478									
WG3492188-6 LCS Mercury (Hg)-Dissolved			99.5		%		80-120	24-FEB-21	
WG3492188-5 MB Mercury (Hg)-Dissolved		NP	<0.000005	с	mg/L		0.000005	24-FEB-21	
HG-T-U-CVAF-VA	Water								
Batch R5387176									
WG3492091-2 LCS									
Mercury (Hg)-Total			92.4		%		80-120	23-FEB-21	
WG3492091-1 MB Mercury (Hg)-Total			<0.00050		ua/L		0.0005	23-FEB-21	
WG3492091-4 MS		1 2550277-5			-9		0.0000	2512021	
Mercury (Hg)-Total			81.0		%		70-130	23-FEB-21	
MET-D-CCMS-CL	Water								
Batch R5384647									
WG3491797-3 DUP Calcium (Ca)-Dissolved		L2559277-5 <0.050	<0.050	RPD-NA	mg/L	N/A	20	22-FEB-21	
Magnesium (Mg)-Dissol	ved	<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	22-FEB-21	
Potassium (K)-Dissolve	b	<0.050	<0.050	RPD-NA	mg/L	N/A	20	22-FEB-21	
Sodium (Na)-Dissolved		<0.050	<0.050	RPD-NA	mg/L	N/A	20	22-FEB-21	
WG3491797-2 LCS Calcium (Ca)-Dissolved		TMRM	91.4		%		80-120	22-FEB-21	

		Workorder: L2559277			Report Date: 2	27-FEB-21	Page 4 of 16		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-D-CCMS-CL	Water								
Batch R53846	647								
WG3491797-2 LC Magnesium (Mg)-Dis	S ssolved	TMRM	99.1		%		80-120	22-FEB-21	
Potassium (K)-Disso	lved		95.5		%		80-120	22-FEB-21	
Sodium (Na)-Dissolv	ved		93.2		%		80-120	22-FEB-21	
WG3491797-1 MB Calcium (Ca)-Dissolv	B ved		<0.050		mg/L		0.05	22-FEB-21	
Magnesium (Mg)-Dis	ssolved		<0.0050		mg/L		0.005	22-FEB-21	
Potassium (K)-Disso	lved		<0.050		mg/L		0.05	22-FEB-21	
Sodium (Na)-Dissolv	ved		<0.050		mg/L		0.05	22-FEB-21	
WG3491797-4 MS Calcium (Ca)-Dissol	; ved	L2559277-5	117 9		%		70-130	22-EEB-21	
Magnesium (Mg)-Dis	solved		117.3		%		70-130	22-1 LD-21	
Potassium (K)-Disso	lved		119.2		%		70-130	22-FEB-21	
Sodium (Na)-Dissolv	ved		119.5		%		70-130	22-FEB-21	
	Water								
Batch R53847	/57								
WG3490784-3 DU	P	L2559277-2							
Aluminum (Al)-Disso	lved	<0.0030	<0.0030	RPD-NA	A mg/L	N/A	20	22-FEB-21	
Antimony (Sb)-Disso	lved	0.00043	0.00043		mg/L	0.9	20	22-FEB-21	
Arsenic (As)-Dissolv	ed	0.00019	0.00019		mg/L	1.8	20	22-FEB-21	
Barium (Ba)-Dissolve	ed	0.0471	0.0485		mg/L	2.9	20	22-FEB-21	
Bismuth (Bi)-Dissolv	ed	<0.000050	<0.000050	RPD-NA	A mg/L	N/A	20	22-FEB-21	
Boron (B)-Dissolved		0.010	<0.010	RPD-NA	∖ mg/L	N/A	20	22-FEB-21	
Cadmium (Cd)-Disso	olved	0.000089	0.0000088	5	mg/L	1.5	20	22-FEB-21	
Calcium (Ca)-Dissol	ved	202	204		mg/L	1.0	20	22-FEB-21	
Chromium (Cr)-Disse	olved	0.00010	<0.00010	RPD-NA	A mg/L	N/A	20	22-FEB-21	
Cobalt (Co)-Dissolve	ed	<0.00010	<0.00010	RPD-NA	∖ mg/L	N/A	20	22-FEB-21	
Copper (Cu)-Dissolv	red	<0.00020	<0.00020	RPD-NA	A mg/L	N/A	20	22-FEB-21	
Iron (Fe)-Dissolved		<0.010	<0.010	RPD-NA	A mg/L	N/A	20	22-FEB-21	
Lead (Pb)-Dissolved		<0.000050	<0.000050	RPD-NA	∖ mg/L	N/A	20	22-FEB-21	
Lithium (Li)-Dissolve	d	0.0172	0.0168		mg/L	2.2	20	22-FEB-21	
Magnesium (Mg)-Dis	ssolved	164	162		mg/L	1.1	20	22-FEB-21	
Manganese (Mn)-Dis	ssolved	0.00081	0.00080		mg/L	1.0	20	22-FEB-21	
Molybdenum (Mo)-D	issolved	0.00386	0.00374		mg/L	3.2	20	22-FEB-21	
Nickel (Ni)-Dissolved	ł	0.00991	0.0100		mg/L	1.1	20	22-FEB-21	
Potassium (K)-Disso	lved	2.53	2.54		mg/L	0.6	20	22-FEB-21	

		Workorder: L2559277 F			eport Date: 2	27-FEB-21	Page 5 of 16		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-D-CCMS-VA	Water								
Batch R53847	57								
WG3490784-3 DU	P	L2559277-2	0.470						
Selenium (Se)-Dissoi	veu	0.167	0.173		mg/L	3.3	20	22-FEB-21	
Silicon (Si)-Dissolved		3.99	3.97		mg/L	0.5	20	22-FEB-21	
Sodium (Na) Dissolved	od	<0.000010	<0.000010	RPD-NA	mg/∟	N/A	20	22-FEB-21	
Strantium (Sr) Dissolve	eu	3.00	3.05		mg/L	0.7	20	22-FEB-21	
Subruce (S) Dissol	ved	0.223	0.223		mg/L	0.0	20	22-FEB-21	
Sulfur (S)-Dissolved	1	305	300		mg/L	1.5	20	22-FEB-21	
Thailium (TI)-Dissolve	ea	<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	22-FEB-21	
Tin (Sn)-Dissolved		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	22-FEB-21	
l itanium (1i)-Dissolve	ed	<0.010	<0.010	RPD-NA	mg/L	N/A	20	22-FEB-21	
Uranium (U)-Dissolve	ed	0.00785	0.00798		mg/L	1.6	20	22-FEB-21	
Vanadium (V)-Dissol	ved	<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	22-FEB-21	
Zinc (Zn)-Dissolved		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	22-FEB-21	
WG3490783-2 LCS	3		104 1		0/		00.400		
Antimony (Sh) Dissol	ved		104.1		70 0/		80-120	22-FEB-21	
Arconic (Ac) Dissolu	veu		105.4		70 9/		80-120	22-FEB-21	
Arsenic (As)-Dissolve			105.4		70 07		80-120	22-FEB-21	
Banum (Ba)-Dissolve	u a		103.0		% 0/		80-120	22-FEB-21	
BISMUM (BI)-DISSOIVE	a		103.5		% 0/		80-120	22-FEB-21	
Boron (B)-Dissolved	h an al		94.5		%		80-120	22-FEB-21	
	ived		103.8		%		80-120	22-FEB-21	
Calcium (Ca)-Dissolv	ed		100.6		%		80-120	22-FEB-21	
Chromium (Cr)-Disso	olved		105.2		%		80-120	22-FEB-21	
Cobalt (Co)-Dissolved	d		105.7		%		80-120	22-FEB-21	
Copper (Cu)-Dissolve	ed		102.6		%		80-120	22-FEB-21	
Iron (Fe)-Dissolved			102.8		%		80-120	22-FEB-21	
Lead (Pb)-Dissolved			106.6		%		80-120	22-FEB-21	
Lithium (Li)-Dissolved	ł		96.6		%		80-120	22-FEB-21	
Magnesium (Mg)-Dis	solved		110.7		%		80-120	22-FEB-21	
Manganese (Mn)-Dis	solved		104.6		%		80-120	22-FEB-21	
Molybdenum (Mo)-Di	ssolved		103.0		%		80-120	22-FEB-21	
Nickel (Ni)-Dissolved			103.5		%		80-120	22-FEB-21	
Potassium (K)-Dissol	ved		102.8		%		80-120	22-FEB-21	
Selenium (Se)-Dissol	ved		105.7		%		80-120	22-FEB-21	
Silicon (Si)-Dissolved	l		104.8		%		60-140	22-FEB-21	

		Workorder: L2559277			Report Date: 27-FEB-21		Page 6 of 16	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-VA	Water							
Batch R53847	757							
WG3490783-2 LC	S							
Silver (Ag)-Dissolve	d		96.5		%		80-120	22-FEB-21
Sodium (Na)-Dissol	ved		109.7		%		80-120	22-FEB-21
Strontium (Sr)-Disso	blved		113.4		%		80-120	22-FEB-21
Sulfur (S)-Dissolved			103.5		%		80-120	22-FEB-21
Thallium (TI)-Dissolv	ved		104.4		%		80-120	22-FEB-21
Tin (Sn)-Dissolved			96.9		%		80-120	22-FEB-21
Titanium (Ti)-Dissolv	ved		101.0		%		80-120	22-FEB-21
Uranium (U)-Dissolv	ved		101.7		%		80-120	22-FEB-21
Vanadium (V)-Disso	lved		106.0		%		80-120	22-FEB-21
Zinc (Zn)-Dissolved			102.0		%		80-120	22-FEB-21
WG3490784-2 LC	S		400.0		0/			
Autimonum (AI)-Disso	Dived		103.2		%		80-120	22-FEB-21
Antimony (Sb)-Disso	bived		109.5		%		80-120	22-FEB-21
Arsenic (As)-Dissolv	ved		104.0		%		80-120	22-FEB-21
Barium (Ba)-Dissolv	ed		104.7		%		80-120	22-FEB-21
Bismuth (Bi)-Dissolv	red		104.3		%		80-120	22-FEB-21
Boron (B)-Dissolved			96.1		%		80-120	22-FEB-21
Cadmium (Cd)-Diss	olved		99.4		%		80-120	22-FEB-21
Calcium (Ca)-Dissol	ved		104.4		%		80-120	22-FEB-21
Chromium (Cr)-Diss	olved		105.3		%		80-120	22-FEB-21
Cobalt (Co)-Dissolve	ed		104.5		%		80-120	22-FEB-21
Copper (Cu)-Dissolv	ved		102.0		%		80-120	22-FEB-21
Iron (Fe)-Dissolved			102.0		%		80-120	22-FEB-21
Lead (Pb)-Dissolved	1		106.7		%		80-120	22-FEB-21
Lithium (Li)-Dissolve	ed		100.9		%		80-120	22-FEB-21
Magnesium (Mg)-Dis	ssolved		109.4		%		80-120	22-FEB-21
Manganese (Mn)-Di	ssolved		101.2		%		80-120	22-FEB-21
Molybdenum (Mo)-D	Dissolved		103.5		%		80-120	22-FEB-21
Nickel (Ni)-Dissolved	d		101.6		%		80-120	22-FEB-21
Potassium (K)-Disso	blved		102.1		%		80-120	22-FEB-21
Selenium (Se)-Disso	olved		103.6		%		80-120	22-FEB-21
Silicon (Si)-Dissolve	d		101.7		%		60-140	22-FEB-21
Silver (Ag)-Dissolve	d		96.7		%		80-120	22-FEB-21
Sodium (Na)-Dissolv	ved		109.7		%		80-120	22-FEB-21

		Workorder: L2559277			Report Date: 27-FEB-21		Page 7 of 16	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-VA	Water							
Batch R5384	757							
WG3490784-2 LC	S							
Strontium (Sr)-Disso	olved		107.5		%		80-120	22-FEB-21
Sulfur (S)-Dissolved	1		96.1		%		80-120	22-FEB-21
Thallium (TI)-Dissol	ved		105.8		%		80-120	22-FEB-21
Tin (Sn)-Dissolved			97.8		%		80-120	22-FEB-21
Titanium (Ti)-Dissol	ved		101.0		%		80-120	22-FEB-21
Uranium (U)-Dissolv	ved		90.6		%		80-120	22-FEB-21
Vanadium (V)-Disso	blved		103.1		%		80-120	22-FEB-21
Zinc (Zn)-Dissolved			101.0		%		80-120	22-FEB-21
WG3490783-1 MI Aluminum (Al)-Disso	B olved	NP	<0.0010		ma/l		0.001	22 EER 21
Antimony (Sh)-Diss	olved			J	mg/L		0.001	22-FEB-21
Arsenic (As)-Dissol	ved)	mg/L		0.0001	22-FED-21
Barium (Ba)-Dissoly	ved)	mg/L		0.0001	22-FEB-21
Bismuth (Bi)-Dissol	ved			50	mg/L		0.0001	22-FEB-21
Boron (B)-Dissolver	1		<0.0000		mg/L		0.00003	22-FEB-21
Cadmium (Cd)-Diss	solved)5(mg/L		0.000005	22-1 LD-21
Calcium (Ca)-Disso	lved		<0.0000		mg/L		0.000000	22-FEB-21
Chromium (Cr)-Diss	solved		<0.000	۱	mg/L		0.00	22-FED-21
Cobalt (Co)-Dissolv	ed)	mg/L		0.0001	22-FED-21
Copper (Cu)-Dissol	ved)	mg/L		0.0001	22-FED-21
Iron (Fe)-Dissolved			<0.0002	,	mg/L		0.0002	22-FED-21
Lead (Ph)-Dissolver	4			50	mg/L		0.0005	22-FEB-21
Lithium (Li)-Dissolve	~ ~		<0.00000		mg/L		0.00003	22-1 LD-21
Magnesium (Mg)-Di	issolved		<0.0010		mg/L		0.001	22-FEB-21
Magnesiam (Mg) Di	issolved		<0.0000	J	mg/L		0.000	22-FEB-21
Malybdenum (Ma)-F	Dissolved			50	mg/L		0.0001	22-FED-21
Nickel (Ni)-Dissolve	d))	mg/L		0.0005	22-FED-21
Potassium (K)-Diss	alved		<0.0000	,	mg/L		0.0005	22-FED-21
Selenium (Se)-Diss	olved		<0.000	50	mg/L		0.00	22-FED-21
Silicon (Si)-Dissolve	20110G		<0.0000		mg/L		0.00003	22-FED-21
Silver (An)-Dissolve	d.			10	mg/L		0.00	22-FED-21
Sodium (Na)-Dissolve	ved				mg/L		0.00001	22-FED-21
Strontium (Sr)-Disso				h	mg/L		0.000	22-FED-21
	1		<0.00020	,	mg/⊑		0.0002	22-FEB-21
Sullui (S)-Dissolved	1		<0.50		iiig/L		0.5	22-FEB-21

		Workorder: L2559277			Report Date: 2	27-FEB-21	Page 8 of 16		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-D-CCMS-VA	Water								
Batch R5384	757								
WG3490783-1 MI	В	NP							
	vea		<0.00001	10	mg/L		0.00001	22-FEB-21	
Tin (Sn)-Dissolved			<0.00010)	mg/L		0.0001	22-FEB-21	
Litanium (Ti)-Dissol	ved		<0.00030)	mg/L		0.0003	22-FEB-21	
Uranium (U)-Dissolv	ved		<0.00001	0	mg/L		0.00001	22-FEB-21	
Vanadium (V)-Disso	olved		<0.00050)	mg/L		0.0005	22-FEB-21	
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	22-FEB-21	
WG3490784-1 MI	B	NP	-0.0010		~~~~ /l		0.004		
Autimanu (Al)-Diss	olved		<0.0010	、 、	mg/L		0.001	22-FEB-21	
Antimony (SD)-Diss	oived		<0.00010)	mg/∟		0.0001	22-FEB-21	
Arsenic (As)-Disson	ved		<0.00010)	mg/∟		0.0001	22-FEB-21	
Barium (Ba)-Dissol	/ed		<0.00010)	mg/L		0.0001	22-FEB-21	
Bismuth (BI)-Dissol	vea		<0.00005	50	mg/∟		0.00005	22-FEB-21	
Boron (B)-Dissolved			<0.010		mg/L		0.01	22-FEB-21	
Cadmium (Cd)-Diss	solved		<0.00000)50	mg/L		0.000005	22-FEB-21	
Calcium (Ca)-Disso	lved		<0.050		mg/L		0.05	22-FEB-21	
Chromium (Cr)-Diss	solved		<0.00010)	mg/L		0.0001	22-FEB-21	
Cobalt (Co)-Dissolv	ed		<0.00010)	mg/L		0.0001	22-FEB-21	
Copper (Cu)-Dissol	ved		<0.00020)	mg/L		0.0002	22-FEB-21	
Iron (Fe)-Dissolved			<0.010		mg/L		0.01	22-FEB-21	
Lead (Pb)-Dissolved	d		<0.00005	50	mg/L		0.00005	22-FEB-21	
Lithium (Li)-Dissolve	ed		<0.0010		mg/L		0.001	22-FEB-21	
Magnesium (Mg)-Di	issolved		<0.0050		mg/L		0.005	22-FEB-21	
Manganese (Mn)-Di	issolved		<0.00010)	mg/L		0.0001	22-FEB-21	
Molybdenum (Mo)-E	Dissolved		<0.00005	50	mg/L		0.00005	22-FEB-21	
Nickel (Ni)-Dissolve	d		<0.00050)	mg/L		0.0005	22-FEB-21	
Potassium (K)-Diss	olved		<0.050		mg/L		0.05	22-FEB-21	
Selenium (Se)-Diss	olved		<0.00005	50	mg/L		0.00005	22-FEB-21	
Silicon (Si)-Dissolve	ed		<0.050		mg/L		0.05	22-FEB-21	
Silver (Ag)-Dissolve	ed		<0.00001	0	mg/L		0.00001	22-FEB-21	
Sodium (Na)-Dissol	ved		<0.050		mg/L		0.05	22-FEB-21	
Strontium (Sr)-Disso	olved		<0.00020)	mg/L		0.0002	22-FEB-21	
Sulfur (S)-Dissolved	t		<0.50		mg/L		0.5	22-FEB-21	
Thallium (TI)-Dissol	ved		<0.00001	0	mg/L		0.00001	22-FEB-21	
Tin (Sn)-Dissolved			<0.00010)	mg/L		0.0001	22-FEB-21	

Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-VA Water Batch R5384757 VG3490784-1 MB NP Titanium (Ti)-Dissolved <0.00030 mg/L 0.0003 22-FEB-21 Uranium (U)-Dissolved <0.00050 mg/L 0.0005 22-FEB-21 Vanadium (V)-Dissolved <0.0010 mg/L 0.001 22-FEB-21 Zinc (Zn)-Dissolved <0.0010 mg/L 0.001 22-FEB-21 WG3490784-4 MS L2559277-3 Aluminum (Al)-Dissolved 101.9 % 70-130 22-FEB-21 Arsenic (As)-Dissolved 102.0 % 70-130 22-FEB-21 Barium (Ba)-Dissolved 107.3 % 70-130 22-FEB-21 Barium (Ba)-Dissolved 82.0 % 70-130 22-FEB-21 Boron (B)-Dissolved 95.1 % 70-130 22-FEB-21 Cadmium (Cd)-Dissolved 95.1 % <th colspan="2"></th> <th colspan="3">Workorder: L2559277</th> <th colspan="2">Report Date: 27-FEB-21</th> <th colspan="2">Page 9 of 16</th>			Workorder: L2559277			Report Date: 27-FEB-21		Page 9 of 16	
METDCMS-VWateBatchR5384757VG349078-1NPTitanium (Ti)-Dissolved 0.0003 mg/L 0.0003 22-FEB-21Uranium (U)-Dissolved 0.0003 mg/L 0.0001 22-FEB-21Vanadium (V)-Dissolved 0.0007 mg/L 0.0005 22-FEB-21Vanadium (V)-Dissolved 0.0007 mg/L 0.0010 22-FEB-21VG349078-4MSL25592773mg/L 0.010 22-FEB-21Atuminum (Al)-DissolvedL25592773101.9%70.13022-FEB-21Atuminum (Al)-Dissolved102.0%%70.13022-FEB-21Atuminum (Al)-Dissolved107.3%%70.13022-FEB-21Atuminum (Al)-Dissolved107.3%%70.13022-FEB-21Atuminum (Al)-Dissolved107.3%%70.13022-FEB-21Atuminum (Al)-Dissolved107.3%%70.13022-FEB-21Atuminum (Al)-Dissolved107.3%%70.13022-FEB-21Atuminum (Al)-Dissolved104.1%%10.13022-FEB-21Bismuth (B)-Dissolved104.1%%10.13022-FEB-21Gadmium (Cd)-Dissolved95.1%%10.13022-FEB-21Gadmium (Cd)-Dissolved104.1%%10.13022-FEB-21Gadmium (Cd)-Dissolved104.1%%10.13022-FEB-21Gadmium (Cd)-Dissolved104.1%%10.13022-FEB	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Batch R5384757 WG3490784-1 MB Titanium (Ti)-Dissolved <0.00030	MET-D-CCMS-VA	Water							
WG3490784-1 MB NP Titanium (Ti)-Dissolved <0.00030	Batch R53847	757							
Intantium (1)-Dissolved <0.00030	WG3490784-1 ME	3	NP	0.00000		A			
Oranium (0)-Dissolved <0.00010		ved		<0.00030	`	mg/L		0.0003	22-FEB-21
Variadium (V)-Dissolved <0.00050	Vrandium (U)-Dissolv	ved		<0.000010)	mg/L		0.00001	22-FEB-21
Zinc (2h)-Dissolved <	Vanadium (V)-Disso	lived		<0.00050		mg/L		0.0005	22-FEB-21
WG3490784-4 MS L2559277-3 Aluminum (Al)-Dissolved 101.9 % 70-130 22-FEB-21 Antimony (Sb)-Dissolved 102.0 % 70-130 22-FEB-21 Arsenic (As)-Dissolved 107.3 % 70-130 22-FEB-21 Barium (Ba)-Dissolved 107.3 % 70-130 22-FEB-21 Barium (Ba)-Dissolved N/A MS-B % - 22-FEB-21 Boron (B)-Dissolved 82.0 % 70-130 22-FEB-21 Boron (B)-Dissolved 94.1 % 70-130 22-FEB-21 Cadmium (Cd)-Dissolved 95.1 % 70-130 22-FEB-21 Calcium (Ca)-Dissolved 95.1 % - 22-FEB-21 Chromium (Cr)-Dissolved 103.5 % - 22-FEB-21 Cobalt (Co)-Dissolved 95.2 % 70-130 22-FEB-21 Cobalt (Co)-Dissolved 95.2 % 70-130 22-FEB-21 Cobalt (Cu)-Dissolved 95.2 % 70-130 22-FEB-	ZINC (ZN)-DISSOIVED			<0.0010		mg/L		0.001	22-FEB-21
Antimum (n) Discord 101.0 102.0 70-130 22-FEB-21 Antimony (Sb)-Dissolved 107.3 % 70-130 22-FEB-21 Arsenic (As)-Dissolved 107.3 % 70-130 22-FEB-21 Barium (Ba)-Dissolved N/A MS-B % - 22-FEB-21 Bismuth (Bi)-Dissolved 82.0 % 70-130 22-FEB-21 Boron (B)-Dissolved 94.1 % 70-130 22-FEB-21 Cadmium (Cd)-Dissolved 95.1 % 70-130 22-FEB-21 Calcium (Ca)-Dissolved N/A MS-B % - 22-FEB-21 Calcium (Ca)-Dissolved 95.1 % 70-130 22-FEB-21 Chromium (Cr)-Dissolved N/A MS-B % - 22-FEB-21 Cobalt (Co)-Dissolved 95.2 % 70-130 22-FEB-21 Cobalt (Co)-Dissolved 95.2 % 70-130 22-FEB-21 Copper (Qu)-Dissolved 93.7 % 70.130 22-FEB-21	MG3490784-4 MS Aluminum (Al)-Disso	5 blyed	L2559277-3	101 9		%		70-130	22 EER 21
Arsenic (As)-Dissolved 107.3 % 70-130 22-FEB-21 Barium (Ba)-Dissolved N/A MS-B % - 22-FEB-21 Bismuth (Bi)-Dissolved 82.0 % 70-130 22-FEB-21 Boron (B)-Dissolved 94.1 % 70-130 22-FEB-21 Cadmium (Cd)-Dissolved 95.1 % 70-130 22-FEB-21 Calcium (Ca)-Dissolved N/A MS-B % - 22-FEB-21 Calcium (Ca)-Dissolved 95.1 % 70-130 22-FEB-21 Chromium (Cr)-Dissolved N/A MS-B % - 22-FEB-21 Cobalt (Co)-Dissolved 95.2 % 70-130 22-FEB-21 Cobalt (Co)-Dissolved 95.2 % 70-130 22-FEB-21 Copper (Cu)-Dissolved 93.7 % 70-130 22-FEB-21	Antimony (Sh)-Disso	olved		101.0		%		70-130	22-FLD-21
Nickline (N) Dissolved N/A MS-B % - 22-FEB-21 Barium (Ba)-Dissolved 82.0 % 70-130 22-FEB-21 Boron (B)-Dissolved 94.1 % 70-130 22-FEB-21 Cadmium (Cd)-Dissolved 95.1 % 70-130 22-FEB-21 Calcium (Ca)-Dissolved N/A MS-B % - 22-FEB-21 Calcium (Ca)-Dissolved 95.1 % 70-130 22-FEB-21 Calcium (Ca)-Dissolved N/A MS-B % - 22-FEB-21 Cobalt (Co)-Dissolved 95.2 % 70-130 22-FEB-21 Cobalt (Co)-Dissolved 95.2 % 70-130 22-FEB-21 Copper (Cu)-Dissolved 93.7 % 70.420 92.FEB-21	Arsenic (As)-Dissolv	red		102.0		%		70-130	22-FLD-21
Bismuth (Bi)-Dissolved 82.0 % 70-130 22-FEB-21 Boron (B)-Dissolved 94.1 % 70-130 22-FEB-21 Cadmium (Cd)-Dissolved 95.1 % 70-130 22-FEB-21 Calcium (Ca)-Dissolved 95.1 % 70-130 22-FEB-21 Chromium (Cr)-Dissolved N/A MS-B % - 22-FEB-21 Chromium (Cr)-Dissolved 103.5 % 70-130 22-FEB-21 Cobalt (Co)-Dissolved 95.2 % 70-130 22-FEB-21 Copper (Cu)-Dissolved 93.7 % 70-130 22-FEB-21	Barium (Ba)-Dissolv	ed		N/A	MS-B	%		-	22-1 LD-21
Boron (B)-Dissolved 94.1 % 70-130 22-FEB-21 Cadmium (Cd)-Dissolved 95.1 % 70-130 22-FEB-21 Calcium (Ca)-Dissolved 95.1 % 70-130 22-FEB-21 Calcium (Ca)-Dissolved N/A MS-B % - 22-FEB-21 Chromium (Cr)-Dissolved 103.5 % 70-130 22-FEB-21 Cobalt (Co)-Dissolved 95.2 % 70-130 22-FEB-21 Copper (Cu)-Dissolved 93.7 % 70.420 92.FEB-21	Bismuth (Bi)-Dissolv	red		82.0	MO B	%		70 120	22-FLD-21
Cadmium (Cd)-Dissolved 95.1 % 70-130 22-FEB-21 Calcium (Ca)-Dissolved N/A MS-B % - 22-FEB-21 Chromium (Cr)-Dissolved 103.5 % 70-130 22-FEB-21 Cobalt (Co)-Dissolved 95.2 % 70-130 22-FEB-21 Copper (Cu)-Dissolved 95.2 % 70-130 22-FEB-21	Boron (B)-Dissolved			94.1		%		70-130	22-FLD-21
Calcium (Ca)-Dissolved N/A MS-B % - 22-FEB-21 Chromium (Cr)-Dissolved 103.5 % 70-130 22-FEB-21 Cobalt (Co)-Dissolved 95.2 % 70-130 22-FEB-21 Copper (Cu)-Dissolved 93.7 % 70.420 92.7	Cadmium (Cd)-Diss	olved		95.1		%		70-130	22-FLD-21
Chromium (Cr)-Dissolved 103.5 % 70-130 22-FEB-21 Cobalt (Co)-Dissolved 95.2 % 70-130 22-FEB-21 Copper (Cu)-Dissolved 93.7 % 70.420 92.FEB-21	Calcium (Ca)-Dissol	ved		N/A	MS-B	%		-	22-FEB-21
Cobalt (Co)-Dissolved 95.2 % 70-130 22-FEB-21 Copper (Cu)-Dissolved 93.7 % 70.430 92.FEB-21	Chromium (Cr)-Diss	olved		103.5		%		70 120	22-1 LD-21
Copper (Cu)-Dissolved 03.7 % 70-130 22-1 ED-21	Cobalt (Co)-Dissolve	be		95.2		%		70-130	22-FEB-21
	Copper (Cu)-Dissolv	ved		93.7		%		70-130	22-FEB-21
Iron (Fe)-Dissolved 99.5 % 70-130 22-FEB-21	Iron (Fe)-Dissolved			99.5		%		70-130	22-FEB-21
Lead (Pb)-Dissolved 92.3 % 70-130 22-FEB-21	Lead (Pb)-Dissolved	1		92.3		%		70-130	22-FEB-21
Lithium (Li)-Dissolved 97.5 % 70-130 22-FEB-21	Lithium (Li)-Dissolve	ed		97.5		%		70-130	22-FEB-21
Magnesium (Mg)-Dissolved N/A MS-B % - 22-FEB-21	Magnesium (Mg)-Dis	ssolved		N/A	MS-B	%		-	22-FEB-21
Manganese (Mn)-Dissolved 96.4 % 70-130 22-FEB-21	Manganese (Mn)-Di	ssolved		96.4		%		70-130	22-FEB-21
Molvbdenum (Mo)-Dissolved 105.1 % 70-130 22-FEB-21	Molvbdenum (Mo)-D	Dissolved		105.1		%		70-130	22-FEB-21
Nickel (Ni)-Dissolved 93.3 % 70-130 22-FEB-21	Nickel (Ni)-Dissolved	d		93.3		%		70-130	22-FEB-21
Potassium (K)-Dissolved 107.8 % 70-130 22-FEB-21	Potassium (K)-Disso	blved		107.8		%		70-130	22-FEB-21
Selenium (Se)-Dissolved N/A MS-B % - 22-FEB-21	Selenium (Se)-Disso	blved		N/A	MS-B	%		-	22-FEB-21
Silicon (Si)-Dissolved 92.4 % 70-130 22-FEB-21	Silicon (Si)-Dissolve	d		92.4		%		70-130	22-FFB-21
Silver (Ag)-Dissolved 93.3 % 70-130 22-FEB-21	Silver (Ag)-Dissolved	d		93.3		%		70-130	22-FEB-21
Sodium (Na)-Dissolved N/A MS-B % - 22-FEB-21	Sodium (Na)-Dissolv	ved		N/A	MS-B	%		-	22-FEB-21
Strontium (Sr)-Dissolved N/A MS-B % - 22-FEB-21	Strontium (Sr)-Disso	blved		N/A	MS-B	%		_	22-FEB-21
Sulfur (S)-Dissolved N/A MS-B % - 22-FEB-21	Sulfur (S)-Dissolved			N/A	MS-B	%		_	22-FEB-21
Thallium (TI)-Dissolved 93.0 % 70-130 22-FEB-21	Thallium (TI)-Dissolv	/ed		93.0		%		70-130	22-FEB-21
Tin (Sn)-Dissolved 98.7 % 70.130 22-FEB-21	Tin (Sn)-Dissolved	'		98.7		%		70-130	22-1 LD-21
Titanium (Ti)-Dissolved 104.6 % 70-130 22-FEB-21	Titanium (Ti)-Dissol	ved		104.6		%		70-130	22-1 LD-21
Uranium (U)-Dissolved N/A MS-B % - 22 EE 21	Uranium (U)-Dissolv	ved		N/A	MS-R	%		-	22-1 LD-21

		Workorder: L2559277			Report Date: 2	27-FEB-21	Page 10 of 16		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-D-CCMS-VA	Water								
Batch R5384	757								
WG3490784-4 M	S	L2559277-3	400.4		<u>.</u>				
Vanadium (V)-Diss	oived		103.4		%		70-130	22-FEB-21	
Zinc (Zn)-Dissolved	1		93.6		%		70-130	22-FEB-21	
MET-T-CCMS-VA	Water								
Batch R5385	5392								
MG3490785-2 LC Aluminum (Al)-Tota	CS al		111.6		%		80-120	22-FEB-21	
Antimony (Sb)-Tota	al		111.5		%		80-120	22-FEB-21	
Arsenic (As)-Total	-		111.5		%		80-120	22-FEB-21	
Barium (Ba)-Total			112.7		%		80-120	22-FEB-21	
Bismuth (Bi)-Total			117.9		%		80-120	22-FEB-21	
Boron (B)-Total			100.1		%		80-120	22-FEB-21	
Cadmium (Cd)-Tota	al		110.6		%		80-120	22-FEB-21	
Calcium (Ca)-Total			112.6		%		80-120	22-FEB-21	
Chromium (Cr)-Tot	al		109.8		%		80-120	22-FEB-21	
Cobalt (Co)-Total			112.3		%		80-120	22-FEB-21	
Copper (Cu)-Total			110.0		%		80-120	22-FEB-21	
Iron (Fe)-Total			101.9		%		80-120	22-FEB-21	
Lead (Pb)-Total			112.4		%		80-120	22-FEB-21	
Lithium (Li)-Total			103.8		%		80-120	22-FEB-21	
Magnesium (Mg)-T	otal		108.5		%		80-120	22-FEB-21	
Manganese (Mn)-T	otal		110.1		%		80-120	22-FEB-21	
Molybdenum (Mo)-	Total		109.6		%		80-120	22-FEB-21	
Nickel (Ni)-Total			109.8		%		80-120	22-FEB-21	
Potassium (K)-Tota	al		104.8		%		80-120	22-FEB-21	
Selenium (Se)-Tota	al		115.3		%		80-120	22-FEB-21	
Silicon (Si)-Total			111.9		%		80-120	22-FEB-21	
Silver (Ag)-Total			110.2		%		80-120	22-FEB-21	
Sodium (Na)-Total			108.2		%		80-120	22-FEB-21	
Strontium (Sr)-Tota	l		112.4		%		80-120	22-FEB-21	
Sulfur (S)-Total			107.5		%		80-120	22-FEB-21	
Thallium (TI)-Total			111.5		%		80-120	22-FEB-21	
Tin (Sn)-Total			107.2		%		80-120	22-FEB-21	
Titanium (Ti)-Total			112.3		%		80-120	22-FEB-21	
Uranium (U)-Total			110.3		%		80-120	22-FEB-21	

		Workorder: L2559277			Report Date: 27-FEB-21		Page 11 of 16	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R5385392								
WG3490785-2 LCS								
Vanadium (V)-Total			113.6		%		80-120	22-FEB-21
Zinc (Zn)- I otal			105.3		%		80-120	22-FEB-21
MG3490785-1 MB Aluminum (Al)-Total			<0.0030		ma/l		0.003	22 EER 21
Antimony (Sb)-Total			<0.0000)	mg/L		0.000	22-FEB-21
Arsenic (As)-Total				,)	mg/L		0.0001	22-FEB-21
Barium (Ba)-Total			<0.00010)	mg/L		0.0001	22-1 LD-21
Bismuth (Bi)-Total			<0.00005	, 50	mg/L		0.0001	22-1 LD-21
Boron (B)-Total			~0.010		mg/L		0.00000	22-1 LD-21
Cadmium (Cd)-Total			<0.0000	50	mg/L		0.01	22-FEB-21
Calcium (Ca)-Total			<0.050		mg/L		0.05	22-1 LD-21
Chromium (Cr)-Total			<0.00010)	mg/L		0.0001	22-FEB-21
Cobalt (Co)-Total			<0.00010)	mg/L		0.0001	22-FEB-21
Copper (Cu)-Total			< 0.00050)	mg/L		0.0005	22-FEB-21
Iron (Fe)-Total			<0.010		mg/L		0.01	22-FFB-21
Lead (Pb)-Total			<0.00005	50	mg/L		0.00005	22-FEB-21
Lithium (Li)-Total			<0.0010		mg/L		0.001	22-FEB-21
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	22-FEB-21
Manganese (Mn)-Total			<0.00010)	mg/L		0.0001	22-FEB-21
Molybdenum (Mo)-Total	Į		<0.00005	50	mg/L		0.00005	22-FEB-21
Nickel (Ni)-Total			<0.00050)	mg/L		0.0005	22-FEB-21
Potassium (K)-Total			<0.050		mg/L		0.05	22-FEB-21
Selenium (Se)-Total			<0.00005	50	mg/L		0.00005	22-FEB-21
Silicon (Si)-Total			<0.10		mg/L		0.1	22-FEB-21
Silver (Ag)-Total			<0.00001	0	mg/L		0.00001	22-FEB-21
Sodium (Na)-Total			<0.050		mg/L		0.05	22-FEB-21
Strontium (Sr)-Total			<0.00020)	mg/L		0.0002	22-FEB-21
Sulfur (S)-Total			<0.50		mg/L		0.5	22-FEB-21
Thallium (TI)-Total			<0.00001	0	mg/L		0.00001	22-FEB-21
Tin (Sn)-Total			<0.00010)	mg/L		0.0001	22-FEB-21
Titanium (Ti)-Total			<0.00030)	mg/L		0.0003	22-FEB-21
Uranium (U)-Total			<0.00001	0	mg/L		0.00001	22-FEB-21
Vanadium (V)-Total			<0.00050)	mg/L		0.0005	22-FEB-21
Zinc (Zn)-Total			<0.0030		mg/L		0.003	22-FEB-21

		Workorder:	L2559277	. Rej	port Date: 27-Fl	EB-21	Pag	e 12 of 16
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-L-F-CL Batch R5386	Water							
WG3491477-18 L Ammonia as N	cs		99.5		%		85-115	22-FEB-21
WG3491477-17 M Ammonia as N	IB		<0.0050		mg/L		0.005	22-FEB-21
NO2-L-IC-N-CL	Water							
Batch R5386 WG3491822-3 D Nitrite (as N)	5321 UP	L2559277-5 <0.0010	<0.0010	RPD-NA	mg/L	N/A	20	19-FEB-21
WG3491822-2 L Nitrite (as N)	cs		101.1		%		90-110	19-FEB-21
WG3491822-1 M Nitrite (as N)	IB		<0.0010		mg/L		0.001	19-FEB-21
WG3491822-4 M Nitrite (as N)	IS	L2559277-5	105.3		%		75-125	19-FEB-21
NO3-L-IC-N-CL	Water							
Batch R5386	5321 ···							
WG3491822-3 D Nitrate (as N)		L2559277-5 <0.0050	0.0097	RPD-NA	mg/L	N/A	20	19-FEB-21
WG3491822-2 L Nitrate (as N)	CS		101.3		%		90-110	19-FEB-21
WG3491822-1 M Nitrate (as N)	IB		<0.0050		mg/L		0.005	19-FEB-21
WG3491822-4 M Nitrate (as N)	IS	L2559277-5	103.8		%		75-125	19-FEB-21
ORP-CL	Water							
Batch R5388 WG3492639-9 C ORP	3780 RM	CL-ORP	225		mV		210-230	24-FEB-21
P-T-L-COL-CL	Water							
Batch R5386 WG3491736-6 Li Phosphorus (P)-To	6117 CS otal		87.6		%		80-120	23-FEB-21
WG3491736-5 M Phosphorus (P)-To	I B otal		<0.0020		mg/L		0.002	23-FEB-21
PH-CL	Water							

		Workorder:	L2559277	7 Re	port Date: 27-FE	B-21	Pag	e 13 of 16
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-CL Batch R5386192 WG3491803-5 LCS рН	Water		7.02		рН		6.9-7.1	20-FEB-21
PO4-DO-L-COL-CL	Water							
Batch R5382596 WG3490429-6 LCS Orthophosphate-Dissolv	red (as P)		92.7		%		80-120	19-FEB-21
WG3490429-5 MB Orthophosphate-Dissolv	red (as P)		<0.0010		mg/L		0.001	19-FEB-21
SO4-IC-N-CL	Water							
Batch R5386321 WG3491822-3 DUP Sulfate (SO4)		L2559277-5 <0.30	<0.30	RPD-NA	mg/L	N/A	20	19-FEB-21
WG3491822-2 LCS Sulfate (SO4)			109.4		%		90-110	19-FEB-21
WG3491822-1 MB Sulfate (SO4)			<0.30		mg/L		0.3	19-FEB-21
WG3491822-4 MS Sulfate (SO4)		L2559277-5	112.2		%		75-125	19-FEB-21
SOLIDS-TDS-CL	Water							
Batch R5386017 WG3491102-6 DUP Total Dissolved Solids		L2559277-2 1540	1590		mg/L	3.5	20	22-FEB-21
WG3491102-11 LCS Total Dissolved Solids			102.0		%		85-115	22-FEB-21
WG3491102-5 LCS Total Dissolved Solids			96.0		%		85-115	22-FEB-21
WG3491102-8 LCS Total Dissolved Solids			100.5		%		85-115	22-FEB-21
WG3491102-10 MB Total Dissolved Solids			<10		mg/L		10	22-FEB-21
WG3491102-4 MB Total Dissolved Solids			<10		mg/L		10	22-FEB-21
WG3491102-7 MB Total Dissolved Solids			<10		mg/L		10	22-FEB-21
TKN-L-F-CL	Water							

		Workorder: L2559277			Report Date: 27-FEB-21		Page 14 of 16	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TKN-L-F-CL	Water							
Batch R5390882 WG3492958-2 LCS Total Kjeldahl Nitrogen			90.0		%		75-125	25-FEB-21
WG3492958-6 LCS Total Kjeldahl Nitrogen			90.0		%		75-125	25-FEB-21
WG3492958-1 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	25-FEB-21
WG3492958-5 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	25-FEB-21
TSS-L-CL	Water							
Batch R5385736								
Total Suspended Solids			104.6		%		85-115	22-FEB-21
WG3491101-5 MB Total Suspended Solids			<1.0		mg/L		1	22-FEB-21
TURBIDITY-CL	Water							
Batch R5382598 WG3490586-5 LCS Turbidity			103.0		%		85-115	19-FEB-21
WG3490586-4 MB Turbidity			<0.10		NTU		0.1	19-FEB-21

Workorder: L2559277

Report Date: 27-FEB-21

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

_	Qualifier	Description
	MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
	RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
Quality Control Report

Workorder: L2559277

Report Date: 27-FEB-21

Page 16 of 16

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
Oxidation redution potential	l by elect.						
	1	17-FEB-21 10:00	24-FEB-21 11:30	0.25	169	hours	EHTR-FM
	2	18-FEB-21 14:00	24-FEB-21 11:30	0.25	142	hours	EHTR-FM
	3	18-FEB-21 14:00	24-FEB-21 11:30	0.25	142	hours	EHTR-FM
	4	18-FEB-21 14:00	24-FEB-21 11:30	0.25	142	hours	EHTR-FM
	5	18-FEB-21 14:00	24-FEB-21 11:30	0.25	142	hours	EHTR-FM
рН							
	1	17-FEB-21 10:00	20-FEB-21 12:00	0.25	74	hours	EHTR-FM
	2	18-FEB-21 14:00	20-FEB-21 12:00	0.25	46	hours	EHTR-FM
	3	18-FEB-21 14:00	20-FEB-21 12:00	0.25	46	hours	EHTR-FM
	4	18-FEB-21 14:00	20-FEB-21 12:00	0.25	46	hours	EHTR-FM
	5	18-FEB-21 14:00	20-FEB-21 12:00	0.25	46	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2559277 were received on 19-FEB-21 09:30.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

COC ID: COL ID: COL ID: COL ID: Lab Call CALCUTE FEB 2020 TURNAROUND TMH: Projek Manage // Alle Fragion Lab Call / Alle Mare / Alle / Alle Mare / Alle / All	COC ID: CHO CALCITE FEB 2020 TURNAROUND TIME: Project Mange Alia Ferguson Lab Name ALS Calgary Lab Name ALS Calgary Project Mange Alia Ferguson Lab Name ALS Calgary Project Mange Alia Ferguson Address 422 Price Alia BC City City Sparwood Province Phone Number 250-425-8202 V0B 2G0 Coarty Canda Poolation of the sparse of	Excel PDF EDD
Barbard Mark Project Manage (LTP) Barbard Mark Project Manage (LTP) Date of point PD Dot of PD Dot of point PD Dot of PD <	Address Address Address Address Address Poised Manager Address Address Address Address Address Address Address Address Address Address Address City Sparwood Province BC City City Sparwood Province BC City City Country Canada Postal Code Time City City Sparwood Province BC City City </th <th>Excel PDF EDD</th>	Excel PDF EDD
Pedidity Name Cold Date Cold	Project Manage Alie Perguson Lab Contract / Lob Calgary Email site/region@teck.com Lab Contract / Lob Contract / Lo	Excel PDP EDD second structure of the second structur
Date Instrumentation Date Instrumentation Date Instrumentation Date Instrumentation Date Date <thdate< th=""> Date Date <thd< td=""><td>Email Hudryla.shvets@alsglobal.com Hudryla.shvets@alsglob</td><td>Performante de la companya de la company</td></thd<></thdate<>	Email Hudryla.shvets@alsglobal.com Hudryla.shvets@alsglob	Performante de la companya de la company
Address 322 78 mer NE Improvement Charlens Sample 1D Sample Location Prevince BC Colspan="2">County Prevince Address 329 78 mer NE Improvement Address 329 78 mer NE Address 328 78 mer NE <td>Address 421 Pine Avenue Address 259 29 Street NE page the all of the component of the comp</td> <td>n ca /td>	Address 421 Pine Avenue Address 259 29 Street NE page the all of the component of the comp	n ca
City Sparvad Prevue BC City Provide AD Plast Code V08 200 Coarry Canda Postal Code TV 7073 Coarry Canda Plast Number 20:242-53:02 F. SAMELE METALLS ALA VISACUESTID F. Same ALA VISACUESTID F. Same Mail of the same F. Same F. Same Mail of the same F. Same <	City Sparwood Province BC City Calgary Province AB Jeterscenteres Postal Code V0B 2G0 Country Canada Postal Code T1Y 7B5 RECUESTED V	Protection 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Chy Openation Construction	City Sparwou Provide BC City County Canada Postal Code V0B 200 County Canada Postal Code TV 785 County Canada Phone Number 250-425-8202 Phone Number 1 403 407 1794 Itage Itage Itage Itage Itage Image: Code Time County Canada Postal Code Time R N F N N F N Y Image: Code Image	Jan Frank Karley (* 1995) Jan Stand (* 1995) Jan St
Phone Number 250-425-8202 Phone Number 1400 497 1794 Phone Number 260-425-8202 Reserved of the second of the s	Phone Number 250-425-8202 Phone Number 1 403 407 1794 XRALVSIS REQUESTED XRALVSIS REQUESTED <	Informer a state of the fact that is based of
Sample Deraits Sample April 10 Sample Deraits Samp	SAMPLE DETAILS XRAIXSIS REQUESTED XRAIXSIS REQUESTED N N F N N	
Sample ID Sample Location Field Time G=Grad # of	L25592777-COFC	
Sample ID Sample Location Field Dis Constrained # OF Time O V/V	L2559277-COFC Field Field Fie	
Number of the state o	L25592777-COFC Field Field J Field J	
Image:	Field International Material (Yes/No)	
L2559277-COFC Sample LO Field Time G=Grab # OF O Vit Vit <th< td=""><td>ECKCOAL-MET-T-VA C-D-CVAF-VA</td><td></td></th<>	ECKCOAL-MET-T-VA C-D-CVAF-VA	
L2559277-COFC Image: Sample Location Field Time G=Grab # Of Sample Location Field Time G=Grab # Of Sample Location Matrix Image: Sample Location Field Time G=Grab # Of Sample Location Matrix Image: Sample Location Field Time G=Grab # Of Sample Location Matrix Image: Sample Location	L25592777-COFC Field Time G=Grab #0 f 0 f 0 f 0 f 0 f 0 f 0 f 0 f 0 f 0	
L2559277-COFC J <	L2559277-COFC	
Sample ID Sample Location Field Time G=Grab # Of So A TO A	A S A S S S <	
Sample ID Sample Location High Time G=Grab # Of Ø <thø< th=""> Ø Ø</thø<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Sample ID Sample Location // Matrix Image of Calling # Original Original # Original# Original # Original # Origi		
a GRUT WS_CALCTL GRO 201:14 NP RC_GRUT WS No 2/17/2021 10:00 G 7 1	Sample ID Sample Location Matrix I Date (24hr) C=Comp Cont. 📷 F E E E E E E E E E	
G.G. GRBF_WS_LAEMP_GRO_2021-11, NP RO_OHIP WS NO. 2/18/2021 14:00 G 7 1	RG_GHUT_WS_CALCTTE_GB0_2021+2_NP RG_GHUT WS No 2/17/2021 10:00 G 7 1 1 1 1 1 1 1 1 1 1	
C_REVER_WS_LALEMP_CHO_2021-21_NP RO_RIVER WS No 2/18/2021 14.00 G 7 1 <th1< th=""> <th1< th=""> 1 <</th1<></th1<>	RG_GHBP_WS_LAEMP_GH0_2021-11_NP RG_GHBP WS No. 2/18/2021 14:00 G 7 1 1 1 1 1 1 1 1 1	
C.FELANK, WS_LARM_CR0.201-11,NP RO_FRLANK, WS PK0 2/18/2021 14/00 G I I I I I C_TRP_WS_LARM_CR0.201-11,NP RG_TRP_GAPWEIGH WS NS 2/18/2021 14/00 G 4 ADDITIONAL_COMMENTS/SPECIAL INSTRUCTIONS RETROCERSHED SYLARFILLATION 1 ACCONTED BY APPRILATION 1 ADDITIONAL_COMMENTS/SPECIAL INSTRUCTIONS REGULAR (default) × Regular (default) × Regular (default) × Sampler's Name Maddy Stokes Mobile # 647-522-0672 Emergency (1 Business Day) - 100% surcharge Sampler's Signature Sampler's Signature Date/Time	RG_RIVER_WS_LAEMP_GE0_001:21_NP RG_RIVER WS No 2/18/2021 14:00 G 7 1 1 1 1 1 1 1	
RELENQUISHED SYAFFILIATION ACCOPTED BY AFFILIATION NB OF BOTTLESS RETURNED DESCRIPTION 11 Regular (default) x Regular (default) x Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge For Emergency <1 Day, ASAP or Weekend - Contact ALS	RG_FBLANK_WS_LAEMP_GH0_2021-11_NP RG_FBLANK WS PG6 2/15/2021 14/00 G 7 1 1 1 1 1 RG_FBLANK_WS_LAEMP_GH0_2021-11_NP RG_TRP_GAD_2021-11_NP RG	
NB OF BOTTLES RETURNED DESCRIPTION 1 <th1< th=""> <th1< <="" td=""><td>ADDITIONAL COMMENTS SPECIAL INSTRUCTIONS</td><td>1 A</td></th1<></th1<>	ADDITIONAL COMMENTS SPECIAL INSTRUCTIONS	1 A
NB 04 BOTTLES RETURNED DESCRIPTION Image: Sampler's Name Maddy Stokes Mobile # 647-522-0672 Priority (2-3 business days) - 50% surcharge Sampler's Name Maddy Stokes Mobile # 647-522-0672 Emergency (1 Business Day) - 100% surcharge Sampler's Signature Date/Time 18-Feb-2021/15:30	7/11	HOAN UP
NB OF BOTTLES RETURNED/DESCRIPTION Regular (default) × Sampler's Name Maddy Stokes Mobile # 647-522-0672 Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge Sampler's Signature Date/Time 18-Feb-2021 / 15:30 For Emergency <1 Day, ASAP or Weekend - Contact ALS		17/02 1-
NB OF BOTTLES RETURNED/DESCRIFTION Regular (default) × Sampler's Name Maddy Stokes Mobile # 647-522-0672 Priority (2-3 business days) - 50% surcharge Sampler's Name Maddy Stokes Mobile # 647-522-0672 Emergency (1 Business Day) - 100% surcharge Sampler's Signature Date/Time 18-Feb-2021/15:30 For Emergency <1 Day, ASAP or Weekend - Contact ALS		
Regular (default) × Sampler's Name Middady Stokes Mobile # 647-522-0672 Priority (2-3 business days) - 50% surcharge Sampler's Name Maddy Stokes Mobile # 647-522-0672 Emergency (1 Business Day) - 100% surcharge Sampler's Signature Date/Time 18-Febr2021/15:30 For Emergency <1 Day, ASAP or Weekend - Contact ALS	NB OF BUTTLES RETURNED DESCRIPTION 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	×
Priority (2-3 business days) - 50% surcharge Date/Time Emergency (1 Business Day) - 100% surcharge Sampler's Signature For Emergency <1 Day, ASAP or Weekend - Contact ALS	Regular (default) × Sampler's Name Maddy Stokes Mobile # 64	
Friegency (1 Business Day) - 100/e succarge Sampler's Signature Date/Time 18-Feb-2021/15:30	Priority (2-3 business days) - 50% surcharge	647-522-0672
		647-522-0672
	For Emergency <1 Day, ASAP or Weekend - Contact ALS Sampler's Signature Date/Time 13-Fee	647-522-0672 8-Feb-2021/15:30

•

.

BROOKS - SELENIUM SPECIATION

March 24, 2021

Teck Resources Limited - Vancouver Allie Ferguson 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 allie.ferguson@teck.com

Re: REP

Dear Allie Ferguson,

On March 11, 2021, Brooks Applied Labs (BAL) received six (6) aqueous samples.

A hard copy chain-of-custody (COC) form describing the samples in this work order was not received with the sample shipment. The client was contacted and later provided a COC form via email. This is the COC form that was used for this work order.

The samples were logged-in for total recoverable selenium [Se], dissolved Se [Se], and Se speciation analyses, according to the chain-of-custody (COC) form. The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL; sample fractions for total recoverable and dissolved Se had also been preserved by the client prior to receipt. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Se Speciation

Each aqueous sample was analyzed for Se speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, Se speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate $[SeSO_3]$, and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all

unknown Se species observed during the analysis. This item is identified on the report as [*Unk Se Sp*].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional Se species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting Se species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific method detection limits (MDLs), MRLs, and other details.

In instances when a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries, and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the RPD of the MS/MSD set was not calculated (N/C).

All data were reported without qualification, aside from concentration qualifiers. Except for items noted above, all associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited met all NELAP requirements. For more information, please see the Report Information page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute Senior Project Manager Brooks Applied Labs Jeremy@brooksapplied.com

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
ССВ	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	т	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- **E** An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- **H** Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- J-1 Estimated value. A full explanation is presented in the narrative.
- M Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- **X** Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic</u> <u>Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNIIssued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)Issued on: July 27, 2020; Valid to: June 30, 2021

Certificate Number: E87982-35

Method	Matrix	TNI Accredited Analyte(s)		
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn		
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn		
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn		
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn		
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness		
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn		
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn		
EPA 1640	Non-Potable Waters	Ag, As, Cd, Cu, Pb, Ni, Zn		
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury		
EPA 1630	Non-Potable Waters	Methyl Mercury		
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury		
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs		
BAL-4200	Non-Potable Waters	Se(IV), Se(VI)		
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)		
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)		
SM2340B	Non-Potable Waters	Hardness		

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2),

and DoD/DOE (3)

Issued by: ANAB

Issued on: November 20, 2020; Valid to: March 20, 2022

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)	Not Accredited
EPA 1640 Mod	Non-Potable Waters	Ag, As, Cd, Cu, Pb, Ni, Zn Cr, Co, Se, Tl, V (ISO Only) Not Accredited	
EPA 1631E Mod BAL-3100 (waters)	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic, As(III) (ISO Only)	Not Accredited
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)	Not Accredited
AOAC 2015.01 Mod BAL-5000 by BAL-5040	Food	As, Cd, Hg, Pb	Not Accredited
DAL 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited
BAL-4100	Biological by BAL-4115	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4101	Food by BAL-4116	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)	Not Accredited
SM2340B	Non-Potable Waters	Hardness	Hardness
SM 2540G EPA 160.3 BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight

(1) ISO/IEC 17025:2017 - Certificate Number ADE-1447.2

(2) Non-Governmental NELAC Institute 2016 Standard - Certificate Number ADE-1447.1

(3) Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.3 for DOE.

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_GHUT_WS_CALCITE_2021_02 _NP	2103140-01	WS	Sample	02/17/2021	03/11/2021
RG_GHUT_WS_CALCITE_2021_02 _NP_NAL	2103140-02	WS	Sample	02/17/2021	03/11/2021
RG_GHUT_WS_CALCITE_2021_02 _NP_NAL	2103140-03	WS	Sample	02/17/2021	03/11/2021
RG_GHBP_WS_CALCITE_2021_02	2103140-04	WS	Sample	02/18/2021	03/11/2021
	2103140-05	WS	Sample	02/18/2021	03/11/2021
RG_GHBP_WS_CALCITE_2021_02 _NP_NAL	2103140-06	WS	Sample	02/18/2021	03/11/2021
RG_RIVER_WS_CALCITE_2021_02 NP	2103140-07	WS	Sample	02/18/2021	03/11/2021
RG_RIVER_WS_CALCITE_2021_02	2103140-08	WS	Sample	02/18/2021	03/11/2021
 RG_RIVER_WS_CALCITE_2021_02 _NP_NAL	2103140-09	WS	Sample	02/18/2021	03/11/2021

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	03/10/2021	03/13/2021	B210611	S210275
MeSe(IV)	Water	SOP BAL-4201	03/10/2021	03/13/2021	B210611	S210275
MeSe(VI)	Water	SOP BAL-4201	03/10/2021	03/13/2021	B210611	S210275
Se	Water	EPA 1638 Mod	03/15/2021	03/17/2021	B210649	S210298
Se(IV)	Water	SOP BAL-4201	03/10/2021	03/13/2021	B210611	S210275
Se(VI)	Water	SOP BAL-4201	03/10/2021	03/13/2021	B210611	S210275
SeCN	Water	SOP BAL-4201	03/10/2021	03/13/2021	B210611	S210275
SeMet	Water	SOP BAL-4201	03/10/2021	03/13/2021	B210611	S210275
SeSO3	Water	SOP BAL-4201	03/10/2021	03/13/2021	B210611	S210275
Unk Se Sp	Water	SOP BAL-4201	03/10/2021	03/13/2021	B210611	S210275

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_GHUT_W	S_CALCITE_20	21_02_NP								
2103140-01	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B210611	S210275
2103140-01	MeSe(IV)	WS	D	0.013	J	0.010	0.025	µg/L	B210611	S210275
2103140-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B210611	S210275
2103140-01	Se(IV)	WS	D	0.373		0.010	0.075	µg/L	B210611	S210275
2103140-01	Se(VI)	WS	D	238		0.010	0.055	µg/L	B210611	S210275
2103140-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	µg/L	B210611	S210275
2103140-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B210611	S210275
2103140-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	µg/L	B210611	S210275
2103140-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	µg/L	B210611	S210275
RG GHUT W	S CALCITE 20	21 02 NP NAL								
2103140-02	 Se	 WS	TR	251		0.132	0.528	µg/L	B210649	S210298
RG_GHUT_W	S_CALCITE_20	21_02_NP_NAL								
2103140-03	Se	WS	D	254		0.132	0.528	µg/L	B210649	S210298
RG_GHBP_W	S_CALCITE_20	21_02_NP								
2103140-04	DMSeO	WS	D	0.066		0.010	0.025	µg/L	B210611	S210275
2103140-04	MeSe(IV)	WS	D	0.032		0.010	0.025	µg/L	B210611	S210275
2103140-04	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B210611	S210275
2103140-04	Se(IV)	WS	D	1.46		0.010	0.075	µg/L	B210611	S210275
2103140-04	Se(VI)	WS	D	120		0.010	0.055	µg/L	B210611	S210275
2103140-04	SeCN	WS	D	≤ 0.010	U	0.010	0.050	µg/L	B210611	S210275
2103140-04	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B210611	S210275
2103140-04	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	µg/L	B210611	S210275
2103140-04	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	µg/L	B210611	S210275
RG GHBP W	S CALCITE 20	21 02 NP NAL								
2103140-05		ws	TR	142		0.132	0.528	µg/L	B210649	S210298
RG_GHBP_W	S_CALCITE_20	21_02_NP_NAL								
2103140-06	Se	WS	D	148		0.132	0.528	µg/L	B210649	S210298

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_RIVER_W	S_CALCITE_20	021_02_NP								
2103140-07	DMSeO	WS	D	0.068		0.010	0.025	µg/L	B210611	S210275
2103140-07	MeSe(IV)	WS	D	0.034		0.010	0.025	µg/L	B210611	S210275
2103140-07	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B210611	S210275
2103140-07	Se(IV)	WS	D	1.64		0.010	0.075	µg/L	B210611	S210275
2103140-07	Se(VI)	WS	D	131		0.010	0.055	µg/L	B210611	S210275
2103140-07	SeCN	WS	D	≤ 0.010	U	0.010	0.050	µg/L	B210611	S210275
2103140-07	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B210611	S210275
2103140-07	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	µg/L	B210611	S210275
2103140-07	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	µg/L	B210611	S210275
RG_RIVER_W	S_CALCITE_20	021_02_NP_NAL								
2103140-08	Se	WS	TR	146		0.132	0.528	µg/L	B210649	S210298
RG_RIVER_W	S_CALCITE_20	021_02_NP_NAL								
2103140-09	Se	WS	D	149		0.132	0.528	µg/L	B210649	S210298

Accuracy & Precision Summary

Batch: B210611 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC 8	Limits	RPD & Li	mits
B210611-BS1	Blank Spike, (1923027)								
	MeSe(IV)		5.095	4.920	µg/L	97%	75-125		
	Se(IV)		5.000	4.968	µg/L	99%	75-125		
	Se(VI)		5.000	4.752	µg/L	95%	75-125		
	SeCN		5.015	4.798	µg/L	96%	75-125		
	SeMet		4.932	4.340	µg/L	88%	75-125		
B210611-DUP6	Duplicate, (2103140-07)								
	DMSeO	0.068		0.058	µg/L			17%	25
	MeSe(IV)	0.034		0.033	µg/L			3%	25
	MeSe(VI)	ND		ND	µg/L			N/C	25
	Se(IV)	1.641		1.704	µg/L			4%	25
	Se(VI)	131.3		134.7	µg/L			3%	25
	SeCN	ND		ND	µg/L			N/C	25
	SeMet	ND		ND	µg/L			N/C	25
	SeSO3	ND		ND	µg/L			N/C	25
	Unk Se Sp	ND		ND	µg/L			N/C	25
B210611-MS6	Matrix Spike, (2103140-0)7)							
	Se(IV)	, 1.641	4.900	6.345	µg/L	96%	75-125		
	Se(VI)	131.3	5.100	140.3	µg/L	NR	75-125		
	SeCN	ND	1.962	1.904	µg/L	97%	75-125		
	SeMet	ND	1.977	1.898	µg/L	96%	75-125		
B210611-MSD6	Matrix Spike Duplicate,	(2103140-07	7)						
	Se(IV)	1.641	4.900	6.364	µg/L	96%	75-125	0.3%	25
	Se(VI)	131.3	5.100	139.6	µg/L	NR	75-125	N/C	25
	SeCN	ND	1.962	1.904	μg/L	97%	75-125	0.02%	25
	SeMet	ND	1.977	1.888	µg/L	95%	75-125	0.5%	25

Accuracy & Precision Summary

Batch: B210649 Lab Matrix: Water Method: EPA 1638 Mod

Sample B210649-BS1	Analyte Blank Snike (2035013)	Native	Spike	Result	Units	REC 8	Limits	RPD & Li	mits
	Se		200.0	186.2	µg/L	93%	75-125		
B210649-BS2	Blank Spike, (2035013) Se		200.0	188.2	µg/L	94%	75-125		
B210649-BS3	Blank Spike, (2035013) Se		200.0	186.3	µg/L	93%	75-125		
B210649-SRM1	Reference Material (204101	9. TMDA 51	.5 Reference	Standard -	Bottle 6 - SR	(M)			
	Se	•, • • • • •	14.30	13.65	µg/L	95%	75-125		
B210649-SRM2	Reference Material (204101	9, TMDA 51	.5 Reference	Standard -	Bottle 6 - SR	M)			
	Se		14.30	12.77	µg/L	89%	75-125		
B210649-SRM3	Reference Material (204101	9, TMDA 51	.5 Reference	Standard -	Bottle 6 - SR	M)			
	Se		14.30	12.72	µg/L	89%	75-125		
B210649-DUP6	Duplicate. (2103140-02)								
	Se	250.6		247.9	µg/L			1%	20
B210649-MS6	Matrix Spike, (2103140-02)								
	Se	250.6	220.0	462.4	µg/L	96%	75-125		
B210649-MSD6	Matrix Spike Duplicate, (21	03140-02)							
	Se	250.6	220.0	472.5	µg/L	101%	75-125	2%	20

BAL Final Report 2103140 Client PM: Allie Ferguson Client Project: REP

Method Blanks & Reporting Limits

Batch: B210611			
Matrix: Water			
Method: SOP BAL-4201			
Analyte: DMSeO			
Sample	Result	Units	
B210611-BLK1	0.00	µg/L	
B210611-BLK2	0.00	µg/L	
B210611-BLK3	0.00	µg/L	
B210611-BLK4	0.00	µg/L	
	Average: 0.000		
	Limit: 0.005		
Analyte: MeSe(IV)			
Sample	Result	Units	
B210611-BLK1	0.00	µg/L	
B210611-BLK2	0.00	µg/L	
B210611-BLK3	0.00	µg/L	
B210611-BLK4	0.00	µg/L	
	Average: 0.000		
	Limit: 0.005		
Analyte: MeSe(VI)			

Sample	Result	Units
B210611-BLK1	0.00	µg/L
B210611-BLK2	0.00	µg/L
B210611-BLK3	0.00	µg/L
B210611-BLK4	0.00	µg/L
	Average: 0.000	
	Limit: 0.005	

MDL: 0.002 MRL: 0.005

MDL: 0.002 MRL: 0.005

MDL: 0.002 MRL: 0.005

BAL Final Report 2103140 Client PM: Allie Ferguson Client Project: REP

Method Blanks & Reporting Limits

Analyte: Se(IV)			
Sample	Result	Units	
B210611-BLK1	0.00	µg/L	
B210611-BLK2	0.00	µg/L	
B210611-BLK3	0.00	µg/L	
B210611-BLK4	0.00	µg/L	
	Average: 0.000		MDL: 0.002
	Limit: 0.015		MRL: 0.015
Analyte: Se(VI)			
Sample	Result	Units	
B210611-BLK1	0.00	µg/L	
B210611-BLK2	0.00	µg/L	
B210611-BLK3	0.00	µg/L	
B210611-BLK4	0.00	µg/L	
	Average: 0.000		MDL: 0.002
			WIRE. 0.011
Analyte: SeCN			
Sample	Result	Units	
B210611-BLK1	0.00	µg/L	
B210611-BLK2	0.00	µg/L	
B210611-BLK3	0.00	µg/L	
B210611-BLK4	0.00	µg/L	
	Average: 0.000		MDL: 0.002
	Limit: 0.010		MRL: 0.010
Analyte: SeMet			
Sample	Result	Units	
B210611-BLK1	0.00	µg/L	
B210611-BLK2	0.00	µg/L	
B210611-BLK3	0.00	µg/L	
B210611-BLK4	0.00	µg/L	
	Average: 0.000	-	MDL: 0.002
	Limit: 0.005		MRL: 0.005

BAL Final Report 2103140 Client PM: Allie Ferguson Client Project: REP

0.002 0.011

MDL: 0.002 MRL: 0.015

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units	
B210611-BLK1	0.00	µg/L	
B210611-BLK2	0.00	µg/L	
B210611-BLK3	0.00	µg/L	
B210611-BLK4	0.00	µg/L	
	Average: 0.000		MDL:
	Limit: 0.011		MRL:

Analyte: Unk Se Sp

Sample	Result	Units
B210611-BLK1	0.00	µg/L
B210611-BLK2	0.00	µg/L
B210611-BLK3	0.00	µg/L
B210611-BLK4	0.00	µg/L
	Average: 0.000	
	Limit: 0.015	

18804 North Creek Parkway, Suite 100, Bothell, WA 98011 + P(206) 632-6206 + F(206) 632-6017 + info@brooksapplied.com + www.brooksapplied.com

BAL Final Report 2103140 Client PM: Allie Ferguson Client Project: REP

Method Blanks & Reporting Limits

Batch: B210649
Matrix: Water
Method: EPA 1638 Mod
Analyte: Se

Sample	Result	Units
B210649-BLK1	0.070	µg/L
B210649-BLK2	-0.0006	µg/L
B210649-BLK3	0.011	µg/L
B210649-BLK4	0.014	µg/L
	Average: 0.024	
	Limit: 0.480	

MDL: 0.120 MRL: 0.480

Sample Containers

Lab I Sami	D: 2103140-01 DIE: RG_GHUT_WS_CALCIT	E 2021 02 NP		Report Matrix: WS Sample Type: Sample + Sum		Colleo Rece	cted: 02/17/2021 ived: 03/11/2021
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2103140
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2103140
С	XTRA_VOL	120 mL	na	none	na	na	Styrofoam Cooler #4 - 2103140
Lab I Samj	D: 2103140-02 ble:			Report Matrix: WS Sample Type: Sample + Sum		Colleo Rece	cted: 02/17/2021 ived: 03/11/2021
	Container	UZ_NP_NAL	Lot	Proconvation	R L of	nH	Shin Cont
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	2037003	<2	Styrofoam Cooler #3 - 2103140
Lab I Sam	D: 2103140-03 ble:			Report Matrix: WS Sample Type: Sample + Sum		Colleo Rece	cted: 02/17/2021 ived: 03/11/2021
	Container	02_NP_NAL	Lot	Preservation	P-L of	рH	Shin Cont
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	2037003	<2	Styrofoam Cooler #3 - 2103140
Lab I Sami	D: 2103140-04 DE: RG, GHBP, WS, CALCIT	E 2021 02 NP		Report Matrix: WS		Collec	cted: 02/18/2021
Des	Container	Size	Lot	Preservation	P-Lot	pH	Ship. Cont.
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2103140
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2103140
С	XTRA_VOL	120 mL	na	none	na	na	Styrofoam Cooler #4 - 2103140

BAL Final Report 2103140 Client PM: Allie Ferguson Client Project: REP

Sample Containers

Lab ID: 2103140-05 Sample: RG_GHBP_WS_CALCITE_2021_02_NP_NAL			Report Matrix: WS Sample Type: Sample + Sum	Collec Recei	Collected: 02/18/2021 Received: 03/11/2021			
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	2037003	<2	Styrofoam Cooler #3 - 2103140	
Lab Sam RG	I D: 2103140-06 ple: GHBP WS CALCITE 2021 0	2 NP NAL		Report Matrix: WS Sample Type: Sample + Sum		Collec Recei	ted: 02/18/2021 ved: 03/11/2021	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	2037003	<2	Styrofoam Cooler #3 - 2103140	
Lab Sam	I D: 2103140-07 ple: RG_RIVER_WS_CALCITI	E_2021_02_NP		Report Matrix: WS Sample Type: Sample + Sum		Collec Recei	ted: 02/18/2021 ved: 03/11/2021	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2103140	
В	XTRA_VOL	15 mL	na	none	na na		Styrofoam Cooler #4 - 2103140	
С	XTRA_VOL	120 mL	na	none	na	na	Styrofoam Cooler #4 - 2103140	
Lab Sam RG	I D: 2103140-08 ple: RIVER WS CALCITE 2021 ()2 NP NAL		Report Matrix: WS Sample Type: Sample + Sum		Collec Recei	ted: 02/18/2021 ved: 03/11/2021	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	2037003	<2	Styrofoam Cooler #3 - 2103140	

BAL Final Report 2103140 Client PM: Allie Ferguson Client Project: REP

Sample Containers

 Lab ID: 2103140-09

 Sample:

 RG_RIVER_WS_CALCITE_2021_02_NP_NAL

 Des Container
 Size

 A
 Client-Provided - TM
 120 mL

Report Matrix: WS Sample Type: Sample + Sum

Received: 03/11/2021

pН

<2

Collected: 02/18/2021

Lot na Preservation 10% HNO3 (BAL) P-Lot 2037003 Ship. Cont. Styrofoam Cooler #3 -2103140

Shipping Containers

Styrofoam Cooler #3 - 2103140

Received: March 11, 2021 6:30 Tracking No: 54126 via Courier Coolant Type: Blue Ice Temperature: 1.7 °C

Styrofoam Cooler #4 - 2103140

Received: March 11, 2021 6:30 Tracking No: 54126 via Courier Coolant Type: Blue Ice Temperature: 1.1 °C Description: Styrofoam Cooler #3 Damaged in transit? No Returned to client? No Comments: IR #31

Description: Styrofoam Cooler #4 Damaged in transit? No Returned to client? No Comments: IR #31 Custody seals present? No Custody seals intact? No COC present? No

Custody seals present? No Custody seals intact? No COC present? No

Teck						Page		l of	1									P V	rint CO /er 6.4.0.	C 1
leek	COC ID:	Calcite Feb 2021						TURNAROUND TIME:												
	PROJECT/CLIENT INFO								LABO	RATORY						OTHE	R INFO			
Facility Name / Job#	REP					La	ib Name	Br	ooks App	lied Labs			Repor	rt Forn	nat / Dis	tributio	n	Excel	PDF	EDD
Project Manager	Allie Ferguson					Lab	Contac	t Be	n Woznia	k			Email	1: 0	carlie.mey	er@teck.	com	X	X	X
Email	allerle gave Øjeck can						Emai	l ber	n@brooks	applied.com			Email	2:	teckcoal@	equisonli	ne.com			X
Address	421 Pine Avenue						Address	s 18	804 Nort	n Creek Parl	kway		Email	3:	alie.ferguso	n@teck.con		X	X	X
													Email	4:	awiebe@nir	nnow.ca		X	X	X
City	Sparwoo	d		Province BC			City	Bo	thell		Province	WA	Email	5:				x	x	x
Postal Code	V0B 2G	0		Country Car	ada	Pos	tal Code	98	011		Country	USA	Email	5:				X	X	X
Phone Number	250.425.8257					Phone	Number	r 20	5-632-62	06			PO num	ber			625	683		
	SAMPLE DET	AILS								ANA	LYSIS REQ	UESTED]	Titered - F: F	ield, L: Lab,	FL: Field &	Lab, N: None
								- Elli	HNO3	HNO3										
								×.						_						
			6					PRESER	р	F/P	F									
s L D	Sample Location	Field	lazardous Material (Yes/N	Dete	Time (24br)	G-Grab C=Com	# Of	SISATIVAV	otal Selenium	issolved Selenium	clenium Speciation									
Sample ID DC CHUT WS CALCITE 2021 02 ND	(sys_loc_code)	ws	No	Date	10:00	p C	Loni.	┢	H	8	<u>x</u>			-						
RG_GHUT WS_CALCITE 2021 02 NP NAL	RG GHUT	ws	No	17-Feb-2021	10:00	G	2		1	1										
RG GHRP WS CALCITE 2021 02 NP	RG_GHBP	ws	No	17-Feb-2021	14:00	G	1		-		1									
RG GHRP WS CALCITE 2021 02 NP NAL	RG_GHBP	ws	No	18-Eub-2021	14:00	G	2	1	1	1										<u> </u>
RG_DIVED_WS_CALCITE_2021_02_NF_OL	RG RIVER	ws	No	18 Eub 2021	14:00	G	1				1									
RG_RIVER_WS_CALCITE_2021_02_V	RG_RIVER	ws	No	18-Feb-2021	14:00	G	2		1	1										
				10-100-2021																-
																				-
ADDITIONAL COMMENTS/SPECI	AL INSTRUCTIONS			RELINQUI	SHED BY/AFFILI	ATION	1		DATE	/TIME	ACC	EPTED B	Y/AFFILI	IATIO	N		D	ATE/TE	Æ	1
Samples for total selenium have been preserved in the field. Dissolve selenium have been filtered and preserved. Speciation samples have been filtered and frozen.																				
SERVICE REQUEST (rush - subj	ject to availability)																			
	Regular (default) X		Samularia	Nomo				adda 64	Jaco		Mahi					7 522 04	.72		
Priority (2	2-3 business days) - 50% su	rcharge		sampler's	Name			M	iuuy st	JKes		NIODI	ie #	647-522-0672						
Emergency (1 Business Day) - 100% su	rcharge		Sampler's Si	gnature							Date/T)ate/Time March 8 2021							
For Emergency <1 Day, ASAP or Weekend - Contact ALS				Sampler's Signature																

Confidential AIGHT BILL OF LADING P.D.	24 Hour Hot S BOX 276, SPAR PHONE: (250) FAX: (250)	Shot Service VCDD, 80 V08 11 25-7447 425-7450	250 250	BAL Final Report 210314(
			DA	TE
BILL OF LADING #		PUR HASE ORDER NUMBER		Marchlerel
SHIPPER (FROM)		CON SIGNEE (TO)	a Warra	
STREET	- the an ender	STR ET	Directio	- 305
CITY/PROVINCE	POSTAL CODE		THERE R.	PACKLAN
INTERLINE CARRIER	WAY BILL#	Epinen !	AL	POSTAL CODE
SPECIAL INSTRUCTIONS		- 10		
PACKAGES DESCRIPTION OF ARTH	CLES AND SPECIAL MADERS			
E Contener in the	CONT MARKS	(8	WEIGHT ubject to Correction)	FREIGHT CHARGES
AND CIDENTS	C Sanal	C.b. ? (nide	SHIPPER TO CHECK
			The second se	PREPAID COLLECT
	1			WAITING
DAGE BLUE		V		
PAK# KIU	IEU101	L. L.	1	XPU
THO TIMIN	1,777	0		
NIT#				CHARGES
PERMIT#	DECLARED - VALUATI	ON: Mevimum		FSC
	kilogram) unless declared otherwise.	per lb (\$4.41 per valu tion states	Petro I	
IVER'S SIGNATURE - PICK UP BY	DRIVER'S SIGNATURE	DEI VERV RV		SUB TOTAL
TOC OF CLASH: (e) No carrier is jable for lass. (tampes of data)	And	2		GST
The final statistical of the data may be in writing to the origin of the device the data of Ladey unless the data with the data may be the data of the data of the device the device the device the data of the data the data with the data of the data and the data of the data as indicated as to address writing the carrier spices to carry the data of the da	police, therefor setting out particulars of the origin, a sty (60) days after the delivery of the goods, or in the after of shipment, together, with a capy	estimates and shares of shores of the goods and case of the goods and so to trake delivory, within nice (8) m	the estimated amount claimed in	
a consistence sendered Bird Lading, et a power at the data of latence of any portion of the rest, to find, con- ange of any sender, which will be rest, but the data of latence of the rest of any sender of any sender of the contract for the campage of the goods Based in the Bit of Lading is governed by regulation in the campage of the goods Based in the Bit of Lading is governed by regulation in the campage of the goods Based in the Bit of Lading is governed by regulation in the campage of the goods Based in the Bit of Lading is governed by regulation in the campage of the goods Based in the Bit of Lading is governed by regulation in the campage of the goods Based in the Bit of Lading is governed by regulation in the campage of the goods Based in the Bit of Lading is governed by regulation in the campage of the goods Based in the Bit of Lading is governed by regulation in the campage of the goods Based in the Bit of Lading is governed by the campage of the goods Based in the Bit of Lading is governed by the regulation in the same set of the goods Based in the Bit of Lading is governed by the campage of the goods Based in the Bit of Lading is governed by the same set of the same set of the goods Based in the Bit of Lading is governed by the same set of the same set of the same set of the goods Based in the same set of the	heigned at the said destination, subject to , and as to each party of any time chemistry in subject to or and accounted for himself and his sesting, Printed of iself and his systems.	(content: condition of costants of packape us the and classification in affact any of the tast avery service to be perform of writter using conditions are as the beat	oknown) manued, consigned and on the dete of shipment, an hereunder shell be subject to	TOTAL \$
PPER NT	CONSIGNEE	of to the amplitions set out in such conditions.	mouro ber of Lading, in power at	IF AT OWNER'S RISK, WRITE ORD HERE
PPER SN	CONSIGNEE	- Anelles	E. S. F.	3-11-21
Presting WHITE: Office YELLOW Con	SIGN	ee,	3 - The second of the	TIME 0430 (5)
PINK: Consignee	GOLDENROAD; Shipper	GST# 864540398R1	'0001 NI	JMBER OF PIECES RECEIVED
Cooler ID: Strangenel 3	606 ()//hi)			Contraction of the second
Colore T		emperature: 1.+		IR: 3/
Coorant Type: Ice Blue Ice Ar	mbient	and the second second		
Notes:		791		
· · · · ·		61		
Sampling Locations:	7103127	7103128	267	-
Sampling Locations:	203127 D. T/D SP	2103128	LG.	-
Sampling Locations:	2. T/D SP 7. T/D SP 7. T/D	7/D SP	RG T/D SI	T/D SP
Sampling Locations:	2. T/D SP. 7.0 IV.0	T/D SP 1000 SP	T/D SI	T/D SP
Sampling Locations:	Date: 211(11)	T/D SP 1031005	T/D SI	T/D SP
Sampling Locations:	Date: 311(11)	7/D SP 10	T/B SI	T/D SP
Sampling Locations:	Date: 31111	T/D SP 1000000000000000000000000000000000000	T/D SI	T/D SP
Sampling Locations:	Date: 31111	T/D SP 103145	TA SI	T/D SP
Sampling Locations:	Date: 31111	T/D SP 100	TO SI	T/D SP
Sampling Locations:	Date: 31110	T/D SP 1000000000000000000000000000000000000	T/D SI	T/D SP T/D SP Revision 004
Sampling Locations: Sample Types: Container Types: Opened By: MA Effective 7/29/20	Date: 3141(11	T/D SP 10	T/B SI	T/D SP

19 of 20

MOICE TO	PHONE: (2 FAX: (250	SO) 425-74	08 260 47		54126
VOICE TO			THE KENNEN	DATE	
LC OF LADING #		PUR HASE ORD	ER NUMBER		aconol
HIPPER (FROM)		CON SIGNEE (TO)	A WAY		
REET	A. Ar ward I	STR ET	(S. ADINE	d L W	NS SE
I'YPROVINCE P	OSTAL CODE	CITY PROVINCE	t N. CYR.	ek Kar	KINDU
ERUINE CARRIER	VAY BILL#	La pina	-11 WA		POSTAL CODE
ECIALINSTRUCTIONS		Fr	2		
ACKAGES DESCRIPTION OF A PTOL					
B A A A A A A A A A A A A A A A A A A A	AND SPECIAL MARKS	W.Y.	WEIGHT (Subject to Com	stion) ED	
- colers - Water	S. Johr	sten :	2000	SHIP	ER TO CHEOK
			1 4 4 4 1 H	PRE If not indic	
	Participation of the	10000		WA (TI)	IC
7.0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			<u> </u>
ALSH KILLIN	51110	1		XPU	
ALO# NAUA	244	h	N. J.		
	V			CHARG	ES
* PERMIT #	DECLARED . VAL		Court	FSC	
	liability of carrier is \$ kilogram) unless de otherwise	2.00 per lb. (14.41 per clared valu tion states	• •	1	
ER'S SIGNATURE - PICK UP BY	DRIVER'S SIGNATU	JRE - DE VERV RV	.	SUB TO	TAL
DPE CLASSA: (a) No carrier is liable for loss demonstration	Kan	A		GST	
That use definition of data is given in synthemy of the only of any production the tild of Lading unlease notio Data the mean of the claim must be fined only in strate or break devined grames within a boty (b). Data the mean of the claim must be fined only the consignor mine (9) months from the data of 1'se indicated before on the data prodiect from the consignor mine (9) months from the data of grand as before within the carrier ergeness to consignor mine (9).	therefor setting out particulars of the days after the delivery of the goods of shipmant together with a	crean, des state of short or, in the case of capy of the	of the goods and the estimated amo	int claimed in	
namices standard Bill of Lading. In positive of the good over at or any portion of the roots, and the or of last units, which many horeasy it appeads the standard standard and the standard standard and many for the centrage of the goods laad of the Band of Lading is governed by regulation in Storm the standard many for the centrage of the goods laad of the Band of Lading is governed by regulation in Storm the standard many for the centrage of the goods laad of the Band of Lading is governed by regulation in Storm the standard standard standard standard in the Band of the Band of Lading is governed by regulation in Storm the standard	ad at the said destination, sub a to each party of any time-interested accepted for himself and his assigns, and his assigns,	a noted (commune in condition of c pject 10 in all or any of the antidiction of c printed or any of the postal that every printed or any of the postal condition	othents of package unknown) marked, rication in sfiect, dn the diete o service to be performed hereunder sheet a set aske by the standhereunder sheet	shipment, TOTAL \$	N.
	CONSIGNEE PRINT	is subject to the amiltions set out i	such conditiona	IF AT OWNER	'S RISK, WRITE ORD HERE
SR ·	CONSIGNEE	Ke held		DATE	11-71
WHITE: Office VELLOW 2	SIGN	1. c. e.	11 - 12 - 14 - 14 - 14 - 14 - 14 - 14 -	TIME T	630 5
TELEOW: Carrier PINK: Consignee	GOLDENROAD: Shipp	er GST#	864540398RT0001	NUMBER OF	PIECES RECEIVED
				and a later of	Shake and Little
Styre Cooster 4	COC (Y/N)	Tem eratur	e: / _ /		IR: 31
Coolant Type: Ice Blue Ice Amb	pient		and a		
Notes:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		100	
Sampling Locations: . 10 31 76	126.	-	-		-
Sample Types T/D SP	T/D s		SD T/S		
	17	0	24 I/D	SP	T/D SP
container Types: 40 1120				· •	-
		0.0 114		1	

20 of 20

5

Revision 004

Effective 7/29/20

October 14, 2021

Teck Resources Limited - Vancouver Allie Ferguson 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 allie.ferguson@teck.com

Re: REP

Dear Allie Ferguson,

On September 16, 2021, Brooks Applied Labs (BAL) received ten (10) aqueous samples. The samples were logged-in for total recoverable selenium [*Se*], dissolved Se, and Se speciation analyses, according to the chain-of-custody (COC) forms.

Sample ID values listed on the chain-of-custody (COC) forms did not exactly match the corresponding **Sample ID** values listed on container labels several samples in this work order. The discrepancies are described in the table below.

Laboratory ID	Sample ID (From COC form)	Sample ID (Listed on container label)
2109237-05	RG_GHNF_WS_GGCAMP_2021-09- <mark>10</mark> _N_NAL	RG_GHNF_WS_GGCAMP_2021-09- <mark>NP</mark> _N_NAL
2109237-06	RG_GHNF_WS_GGCAMP_2021-09- <mark>10</mark> _N_NAL	RG_GHNF_WS_GGCAMP_2021-09- <mark>NP</mark> _N_NAL
2109237-08	RG_GHUT_WS_GGCAMP_2021-09- <mark>13</mark> _N_NAL	RG_GHUT_WS_GGCAMP_2021-09- <mark>NP</mark> _N_NAL
2109237-09	RG_GHUT_WS_GGCAMP_2021-09- <mark>13</mark> _N_NAL	RG_GHUT_WS_GGCAMP_2021-09- <mark>NP</mark> _N_NAL
2109237-11	RG_RIVER_WS_2021-09- <mark>13</mark> _N_NAL	RG_RIVER_WS_2021-09- <mark>NP</mark> _N_NAL
2109237-12	RG_RIVER_WS_2021-09- <mark>13</mark> _N_NAL	RG_RIVER_WS_2021-09- <mark>NP</mark> _N_NAL
2109237-14	RG_GHBP_WS_GGCAMP_2021-09- <mark>13</mark> _N_NAL	RG_GHBP_WS_GGCAMP_2021-09- <mark>NP</mark> _N_NAL
2109237-15	RG_GHBP_WS_GGCAMP_2021-09- <mark>13</mark> _N_NAL	RG_GHBP_WS_GGCAMP_2021-09- <mark>NP</mark> _N_NAL

Per client request, the samples described the table above were logged and reported in using the **Sample IDs** listed on the COC forms.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Se Speciation

Each aqueous sample was analyzed for Se speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate [SeSO3], and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk Se Sp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional Se species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting Se species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances when a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the RPD of the MS/MSD set was not calculated (N/C).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited met all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute Senior Project Manager Brooks Applied Labs Jeremy@brooksapplied.com

Report Information

Laboratory Accreditation

BAL is accredited by the National Environmental Laboratory Accreditation Program (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at <http://www.brooksapplied.com/resources/certificates-permits/> or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
ССВ	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	т	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- **E** An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- **H** Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but \leq the MRL. Result is reported and considered an estimate.
- J-1 Estimated value. A full explanation is presented in the narrative.
- M Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- N Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic</u> <u>Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)

Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, TI, U, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury
EPA 1630	Non-Potable Waters	Methyl Mercury
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)
SM2340B	Non-Potable Waters	Hardness

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)	Not Accredited
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)	Not Accredited
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)	Not Accredited
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)	Not Accredited
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb	Not Accredited
DAL 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)	Not Accredited
SM2340B	Non-Potable Waters	Hardness	Hardness
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight

(1) ISO/IEC 17025:2017 - Certificate Number ADE-1447.02

(2) Non-Governmental NELAC Institute 2016 Standard - Certificate Number ADE-1447.01

(3) Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.03 for DOE.

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_GHFF_WS_GGCAMP_2021-09- 09_N	2109237-01	WS	Sample	09/09/2021	09/16/2021
RG_GHFF_WS_GGCAMP_2021-09- 09_N_NAL	2109237-02	WS	Sample	09/09/2021	09/16/2021
RG_GHFF_WS_GGCAMP_2021-09- 09_N_NAL	2109237-03	WS	Sample	09/09/2021	09/16/2021
RG_GHNF_WS_GGCAMP_2021-09- 10_N	2109237-04	WS	Sample	09/10/2021	09/16/2021
RG_GHNF_WS_GGCAMP_2021-09- 10_N_NAL	2109237-05	WS	Sample	09/10/2021	09/16/2021
RG_GHNF_WS_GGCAMP_2021-09- 10_N_NAL	2109237-06	WS	Sample	09/10/2021	09/16/2021
RG_GHUT_WS_GGCAMP_2021-09- 13_N	2109237-07	WS	Sample	09/13/2021	09/16/2021
RG_GHUT_WS_GGCAMP_2021-09- 13_N_NAL	2109237-08	WS	Sample	09/13/2021	09/16/2021
RG_GHUT_WS_GGCAMP_2021-09- 13_N_NAL	2109237-09	WS	Sample	09/13/2021	09/16/2021
RG_RIVER_WS_2021-09-13_N	2109237-10	WS	Sample	09/13/2021	09/16/2021
RG_RIVER_WS_2021-09-13_N_NAL	2109237-11	WS	Sample	09/13/2021	09/16/2021
RG_RIVER_WS_2021-09-13_N_NAL	2109237-12	WS	Sample	09/13/2021	09/16/2021
RG_GHBP_WS_GGCAMP_2021-09- 13_N	2109237-13	WS	Sample	09/13/2021	09/16/2021
RG_GHBP_WS_GGCAMP_2021-09- 13_N_NAL	2109237-14	WS	Sample	09/13/2021	09/16/2021
RG_GHBP_WS_GGCAMP_2021-09- 13_N_NAL	2109237-15	WS	Sample	09/13/2021	09/16/2021

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
MeSe(IV)	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
MeSe(VI)	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
Se	Water	EPA 1638 Mod	09/21/2021	09/22/2021	B212615	S211084
Se(IV)	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
Se(VI)	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
SeCN	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
SeMet	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
SeSO3	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070
Unk Se Sp	Water	SOP BAL-4201	09/16/2021	09/18/2021	B212603	S211070

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_GHFF_WS	S_GGCAMP_20	21-09-09_N								
2109237-01	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212603	S211070
2109237-01	MeSe(IV)	WS	D	0.029		0.010	0.025	µg/L	B212603	S211070
2109237-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212603	S211070
2109237-01	Se(IV)	WS	D	1.08		0.010	0.075	µg/L	B212603	S211070
2109237-01	Se(VI)	WS	D	167		0.010	0.055	µg/L	B212603	S211070
2109237-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	µg/L	B212603	S211070
2109237-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212603	S211070
2109237-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	µg/L	B212603	S211070
2109237-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	µg/L	B212603	S211070
RG GHFF WS	S GGCAMP 20	21-09-09 N NAL								
2109237-02	Se	WS	TR	139		0.165	0.528	µg/L	B212615	S211084
RG_GHFF_WS	S_GGCAMP_20	21-09-09_N_NAL								
2109237-03	Se	WS	D	143		0.165	0.528	µg/L	B212615	S211084
RG_GHNF_W	S_GGCAMP_20	021-09-10_N								
2109237-04	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212603	S211070
2109237-04	MeSe(IV)	WS	D	0.017	J	0.010	0.025	µg/L	B212603	S211070
2109237-04	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212603	S211070
2109237-04	Se(IV)	WS	D	1.10		0.010	0.075	µg/L	B212603	S211070
2109237-04	Se(VI)	WS	D	189		0.010	0.055	µg/L	B212603	S211070
2109237-04	SeCN	WS	D	≤ 0.010	U	0.010	0.050	µg/L	B212603	S211070
2109237-04	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212603	S211070
2109237-04	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	µg/L	B212603	S211070
2109237-04	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	µg/L	B212603	S211070
RG GHNF WS	S GGCAMP 20	21-09-10 N NAL								
2109237-05	Se	ws	TR	211		0.165	0.528	µg/L	B212615	S211084
RG GHNF W	S GGCAMP 20	21-09-10 N NAL								
2109237-06		ws	D	206		0.165	0.528	µg/L	B212615	S211084

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_GHUT_W	S_GGCAMP_20)21-09-13_N								
2109237-07	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212603	S211070
2109237-07	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212603	S211070
2109237-07	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212603	S211070
2109237-07	Se(IV)	WS	D	0.363		0.010	0.075	µg/L	B212603	S211070
2109237-07	Se(VI)	WS	D	230		0.010	0.055	µg/L	B212603	S211070
2109237-07	SeCN	WS	D	≤ 0.010	U	0.010	0.050	µg/L	B212603	S211070
2109237-07	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212603	S211070
2109237-07	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	µg/L	B212603	S211070
2109237-07	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	µg/L	B212603	S211070
RG GHUT W	S GGCAMP 20	021-09-13 N NAL								
2109237-08	 Se	ws	TR	216		0.165	0.528	µg/L	B212615	S211084
RG_GHUT_W	S_GGCAMP_20	021-09-13_N_NAL								
2109237-09	Se	WS	D	224		0.165	0.528	µg/L	B212615	S211084
RG_RIVER_W	/S_2021-09-13_/	N								
2109237-10	DMSeO	WS	D	0.255		0.010	0.025	µg/L	B212603	S211070
2109237-10	MeSe(IV)	WS	D	0.113		0.010	0.025	µg/L	B212603	S211070
2109237-10	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212603	S211070
2109237-10	Se(IV)	WS	D	4.06		0.010	0.075	µg/L	B212603	S211070
2109237-10	Se(VI)	WS	D	131		0.010	0.055	µg/L	B212603	S211070
2109237-10	SeCN	WS	D	≤ 0.010	U	0.010	0.050	µg/L	B212603	S211070
2109237-10	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212603	S211070
2109237-10	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	µg/L	B212603	S211070
2109237-10	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	µg/L	B212603	S211070
RG_RIVER_W	/S_2021-09-13_/	N_NAL								
2109237-11	_ Se	- WS	TR	121		0.165	0.528	µg/L	B212615	S211084
RG_RIVER_W	S_2021-09-13	N_NAL								
2109237-12	Se	WS	D	129		0.165	0.528	µg/L	B212615	S211084

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_GHBP_W	S_GGCAMP_20)21-09-13_N								
2109237-13	DMSeO	WS	D	0.250		0.010	0.025	µg/L	B212603	S211070
2109237-13	MeSe(IV)	WS	D	0.099		0.010	0.025	µg/L	B212603	S211070
2109237-13	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212603	S211070
2109237-13	Se(IV)	WS	D	4.23		0.010	0.075	µg/L	B212603	S211070
2109237-13	Se(VI)	WS	D	132		0.010	0.055	µg/L	B212603	S211070
2109237-13	SeCN	WS	D	≤ 0.010	U	0.010	0.050	µg/L	B212603	S211070
2109237-13	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212603	S211070
2109237-13	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	µg/L	B212603	S211070
2109237-13	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	µg/L	B212603	S211070
RG_GHBP_W	S_GGCAMP_20	021-09-13_N_NAL								
2109237-14	Se	WS	TR	128		0.165	0.528	µg/L	B212615	S211084
RG_GHBP_W	S_GGCAMP_20	021-09-13_N_NAL								
2109237-15	Se	WS	D	122		0.165	0.528	µg/L	B212615	S211084

Accuracy & Precision Summary

Batch: B212603 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC 8	Limits	RPD & Li	mits
B212603-BS1	Blank Spike, (2124033)								
	MeSe(IV)		5.095	5.395	µg/L	106%	75-125		
	Se(IV)		5.000	4.902	µg/L	98%	75-125		
	Se(VI)		5.000	4.701	µg/L	94%	75-125		
	SeCN		5.015	4.811	µg/L	96%	75-125		
	SeMet		4.932	4.724	µg/L	96%	75-125		
B212603-DUP5	Duplicate, (2109237-04)								
	DMSeO	ND		0.011	µg/L			N/C	25
	MeSe(IV)	0.017		0.021	µg/L			21%	25
	MeSe(VI)	ND		ND	µg/L			N/C	25
	Se(IV)	1.103		1.093	µg/L			0.9%	25
	Se(VI)	188.6		193.0	µg/L			2%	25
	SeCN	ND		ND	µg/L			N/C	25
	SeMet	ND		ND	µg/L			N/C	25
	SeSO3	ND		ND	µg/L			N/C	25
	Unk Se Sp	ND		ND	µg/L			N/C	25
B212603-MS5	Matrix Spike, (2109237-0	4)							
	Se(IV)	1.103	4.900	5.744	µg/L	95%	75-125		
	Se(VI)	188.6	5.100	198.4	µg/L	NR	75-125		
	SeCN	ND	1.962	1.960	µg/L	100%	75-125		
	SeMet	ND	1.977	2.046	µg/L	103%	75-125		
B212603-MSD5	Matrix Spike Duplicate,(2109237-04	•)						
	Se(IV)	1.103	4.900	5.688	µg/L	94%	75-125	1%	25
	Se(VI)	188.6	5.100	198.8	µg/L	NR	75-125	N/C	25
	SeCN	ND	1.962	2.015	µg/L	103%	75-125	3%	25
	SeMet	ND	1.977	2.140	µg/L	108%	75-125	4%	25

Accuracy & Precision Summary

Batch: B212615 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC &	Limits	RPD & Limits
B212015-B51	Se		200.0	190.9	µg/L	95%	75-125	
B212615-BS2	Blank Spike, (2104075) Se		200.0	193.3	µg/L	97%	75-125	
B212615-BS3	Blank Spike, (2104075) Se		200.0	188.6	µg/L	94%	75-125	
B212615-BS4	Blank Spike, (2104075) Se		200.0	191.9	µg/L	96%	75-125	
B212615-BS5	Blank Spike, (2104075) Se		200.0	188.0	µg/L	94%	75-125	
B212615-BS6	Blank Spike, (2104075) Se		200.0	186.7	µg/L	93%	75-125	
B212615-BS7	Blank Spike, (2104075) Se		200.0	188.4	µg/L	94%	75-125	
B212615-SRM1	Reference Material (21100 Se	006, TMDA 5	1.5 Reference 14.30	Standard - 15.15	Bottle 6 µg/L	- SRM) 106%	75-125	
B212615-SRM2	Reference Material (21100 Se	006, TMDA 5	1.5 Reference 14.30	Standard - 14.39	Bottle 6 µg/L	- SRM) 101%	75-125	
B212615-SRM3	Reference Material (21100 Se	006, TMDA 5	1.5 Reference 14.30	e Standard - 14.63	Bottle 6 µg/L	- SRM) 102%	75-125	
B212615-SRM4	Reference Material (21100 Se	006, TMDA 5	1.5 Reference 14.30	Standard - 13.99	Bottle 6 µg/L	- SRM) 98%	75-125	

Accuracy & Precision Summary

Batch: B212615 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC 8	Limits	RPD & Lii	mits
B212615-SRM5	Reference Material (211000	6, TMDA 51	.5 Reference	Standard -	Bottle 6 - SRI	A)			
	Se		14.30	14.00	µg/L	98%	75-125		
B212615-SRM6	Reference Material (211000	6, TMDA 51	.5 Reference	Standard -	Bottle 6 - SRI	И)			
	Se		14.30	14.15	µg/L	99%	75-125		
B212615-SRM7	Reference Material (211000	6, TMDA 51	.5 Reference	Standard - I	Bottle 6 - SRI	/ I)			
	Se		14.30	13.77	µg/L	96%	75-125		
B212615-DUP8	Duplicate. (2109237-11)								
	Se	121.4		121.7	µg/L			0.3%	20
B212615-MS8	Matrix Snike (2109237-11)								
	Se	121.4	220.0	318.4	µg/L	90%	75-125		
B212615-MSD8	Matrix Snike Dunlicate (21	09237-11)							
5212010-MODU	Se	121.4	220.0	320.1	µg/L	90%	75-125	0.5%	20

BAL Final Report 2109237 Client PM: Allie Ferguson Client Project: REP

Method Blanks & Reporting Limits

Batch: B212603		
Matrix: Water		
Method: SOP BAL-4201		
Analyte: DMSeO		
Sample	Result	Units
B212603-BLK1	0.00	µg/L
B212603-BLK2	0.00	µg/L
B212603-BLK3	0.00	µg/L
B212603-BLK4	0.00	µg/L
	Average: 0.000	
	Limit: 0.005	

Analyte: MeSe(IV)

Sample	Result	Units
B212603-BLK1	0.00	µg/L
B212603-BLK2	0.00	µg/L
B212603-BLK3	0.00	µg/L
B212603-BLK4	0.00	µg/L
	Average: 0.000	
	Limit: 0.005	

Sample	Result	Units
B212603-BLK1	0.00	μg/L
B212603-BLK2	0.00	µg/L
B212603-BLK3	0.00	µg/L
B212603-BLK4	0.00	µg/L
	Average: 0.000	
	Limit: 0.005	

MDL:	0.002
MRL:	0.005

MDL: 0.002 MRL: 0.005

MDL: 0.002 MRL: 0.005

BAL Final Report 2109237 Client PM: Allie Ferguson Client Project: REP

Method Blanks & Reporting Limits

Analyte: Se(IV)			
Sample	Result	Units	
B212603-BLK1	0.00	µg/L	
B212603-BLK2	0.00	µg/L	
B212603-BLK3	0.00	µg/L	
B212603-BLK4	0.00	µg/L	
	Average: 0.000		MDL: 0.002
	Limit: 0.015		MRL: 0.015
Analyte: Se(VI)			
Sample	Result	Units	
B212603-BLK1	0.00	µg/L	
B212603-BLK2	0.00	µg/L	
B212603-BLK3	0.00	µg/L	
B212603-BLK4	0.00	µg/L	
	Average: 0.000		MDL: 0.002
	Limit: 0.011		MRL: 0.011
Analyte: SeCN			
Sample	Result	Units	
B212603-BLK1	0.00	µg/L	
B212603-BLK2	0.00	µg/L	
B212603-BLK3	0.00	µg/L	
B212603-BLK4	0.00	µg/L	
	Average: 0.000		MDL: 0.002
	Limit: 0.010		MRL: 0.010
Analyte: SeMet			
Sample	Result	Units	
B212603-BLK1	0.00	µg/L	
B212603-BLK2	0.00	µg/L	
B212603-BLK3	0.00	µg/L	
B212603-BLK4	0.00	µg/L	
	Average: 0.000		MDL: 0.002
	Limit: 0.005		MRL: 0.005

BAL Final Report 2109237 Client PM: Allie Ferguson Client Project: REP

Method Blanks & Reporting Limits

MDL: 0.002 MRL: 0.015

Analyte: SeSO3

Sample	Result	Units		
B212603-BLK1	0.00	µg/L		
B212603-BLK2	0.00	µg/L		
B212603-BLK3	0.00	µg/L		
B212603-BLK4	0.00	µg/L		
	Average: 0.000		MDL: 0.0)02
	Limit: 0.011		MRL: 0.0)11

Analyte: Unk Se Sp

Sample	Result	Units
B212603-BLK1	0.00	µg/L
B212603-BLK2	0.00	µg/L
B212603-BLK3	0.00	µg/L
B212603-BLK4	0.00	μg/L
	Average: 0.000	
	Limit: 0.015	

BAL Final Report 2109237 Client PM: Allie Ferguson Client Project: REP

Method Blanks & Reporting Limits

Batch: B212615			
Matrix: Water			
Method: EPA 1638 Mod			
Analyte: Se			

Sample	Result	Units
B212615-BLK1	0.130	µg/L
B212615-BLK2	0.191	µg/L
B212615-BLK3	0.098	µg/L
B212615-BLK4	0.107	µg/L
B212615-BLK5	0.157	µg/L
B212615-BLK6	0.136	µg/L
B212615-BLK7	0.192	µg/L
	Average: 0.144	
	Limit: 0.480	

MDL: 0.150 MRL: 0.480

Lab I	D: 2109237-01	N 00 00 100 00 N		Report Matrix: WS		Colle	cted: 09/09/2021
Des	Container	Size	Lot	Preservation	P-L of	nH	Shin Cont
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109237
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109237
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2109237
Lab I Sam	D: 2109237-02 ple: GHEE_WS_GGCAMP_2021-	09-09 N NAI		Report Matrix: WS Sample Type: Sample + Sum		Collee Rece	cted: 09/09/2021 ived: 09/16/2021
Des	Container	Size	Lot	Preservation	P-Lot	На	Ship, Cont.
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109237
Lab I	D: 2109237-03			Report Matrix: WS		Colle	cted: 09/09/2021
Sam	DIE: Ghff WS GGCAMP 2021-	19-09 N NAI		Sample Type: Sample + Sum		Rece	ived: 09/16/2021
Des	Container	Size	Lot	Preservation	P-Lot	рH	Ship. Cont.
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109237
Lab I	D: 2109237-04			Report Matrix: WS		Colle	cted: 09/10/2021
Sam	ple: RG_GHNF_WS_GGCAN	1P_2021-09-10_N		Sample Type: Sample + Sum	D L . t	Rece	ived: 09/16/2021
Des	Container	Size	Lot	Preservation	P-Lot	рн	Ship. Cont.
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109237
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109237
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2109237

BAL Final Report 2109237 Client PM: Allie Ferguson Client Project: REP

Lab ID: 2109237-05 Sample: RG GHNE WS GGCAMP 2021-09-10 N NAI			Report Matrix: WS Sample Type: Sample + Sum	Collec Recei	Collected: 09/10/2021 Received: 09/16/2021		
Des A	Container Client-Provided - TM	Size 60 mL	Lot na	Preservation 10% HNO3 (BAL)	P-Lot 2127026	рН <2	Ship. Cont. Styrofoam Cooler #1 - 2109237
Lab I Sam RG_0	I D: 2109237-06 ple: GHNF_WS_GGCAMP_2021-0	9-10_N_NAL		Report Matrix: WS Sample Type: Sample + Sum		Collec Receiv	ted: 09/10/2021 ved: 09/16/2021
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109237
Lab I Sam	I D: 2109237-07 ple: RG_GHUT_WS_GGCAM	P_2021-09-13_N		Report Matrix: WS Sample Type: Sample + Sum		Collec Recei	ted: 09/13/2021 ved: 09/16/2021
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109237
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109237
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2109237
Lab I Sam RG	I D: 2109237-08 ple: GHUT WS GGCAMP 2021-0	9-13 N NAL		Report Matrix: WS Sample Type: Sample + Sum		Collec Recei	ted: 09/13/2021 ved: 09/16/2021
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109237

BAL Final Report 2109237 Client PM: Allie Ferguson Client Project: REP

Lab ID: 2109237-09 Sample:			Report Matrix: WS Sample Type: Sample + Sum			Collected: 09/13/2021 Received: 09/16/2021		
Des A	Container Client-Provided - TM	Size 60 mL	Lot na	Preservation 10% HNO3 (BAL)	P-Lot 2127026	рН <2	Ship. Cont. Styrofoam Cooler #1 - 2109237	
Lab Sam	D: 2109237-10 ple: RG_RIVER_WS_2021-09	-13_N		Report Matrix: WS Sample Type: Sample + Sum		Collec Receiv	ted: 09/13/2021 ved: 09/16/2021	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109237	
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109237	
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2109237	
Lab Sam	D: 2109237-11 ple: RG_RIVER_WS_2021-09	-13_N_NAL		Report Matrix: WS Sample Type: Sample + Sum		Collec Receiv	ted: 09/13/2021 ved: 09/16/2021	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109237	
Lab Sam	D: 2109237-12 ple: RG_RIVER_WS_2021-09	-13_N_NAL		Report Matrix: WS Sample Type: Sample + Sum		Collec Receiv	ted: 09/13/2021 ved: 09/16/2021	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109237	

Sample Containers

Lab ID: 2109237-13 Sample: RG GHBP WS GGCAMP 2021-09-13 N				Report Matrix: WS Sample Type: Sample + Sum	Collected: 09/13/2021 Received: 09/16/2021			
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109237	
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109237	
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2109237	
Lab Sam RG_	I D: 2109237-14 ple: GHBP_WS_GGCAMP_2021-09	9-13_N_NAL		Report Matrix: WS Sample Type: Sample + Sum		Collec Recei	ted: 09/13/2021 ved: 09/16/2021	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109237	
Lab Sam RG	I D: 2109237-15 ple: GHBP WS GGCAMP 2021-09	9-13 N NAL		Report Matrix: WS Sample Type: Sample + Sum		Collec Recei	ted: 09/13/2021 ved: 09/16/2021	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109237	

Shipping Containers

Styrofoam Cooler #1 - 2109237

Received: September 16, 2021 6:41 Tracking No: PAPS#RWHV87364 via Courier Coolant Type: Ice Temperature: 0.8 °C Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: IR#30 Custody seals present? No Custody seals intact? No COC present? No

						Page	1	l of	1											040000
CIECK	COCID	Son	tamb	on CCCAN	1D	TUDNA	ROUN	yn '	TIME ·								BAL FI	nal Re	sport 2	2109237
PRO	COCID.	Sep	temp	er GGCAN	11	TURITA	ROUN		LABOR	ATORY		Regula	r 3	(Water	-	OTHE	R INFO			
Facility Name / Job#	REP		1000	F <u>26</u> 7083		Lat	Name	Br	ooks App	lied Labs		£	Re	eport For	mat / Di	stributic	m	Excel	PDF	EDD
Project Manager	Allie Ferguson					Lab	Contact	t Be	n Woznia	ık			Em	ail 1:	atte foru	uson@te	ck.com	X	x	x
Email	allie.ferguson@teck.c	om				1	Email	l be	n@brooks	applied.com	n		Em	ail 2:	teckooal	Chequisor	aline com		1	x
Address	421 Pine Avenue					I A	Address	s 18	804 North	n Creek Pa	ırkway		Em	ail 3:	monica.t	oartha@th	eck.com	X	x	X
													Em	ail 4:	Ibowrond	minnov	/.ca	x	X	X
City	Sparw	boov		Province BC			City	y Bo	othell		Province	WA	Em	nail 5:	awiebe@	aminnow	ca	X	x	x
Postal Code	V0B	2G0		Country Cana	ada	Post	al Code	e 98	011		Country	USA	Em	nail 5:		_				
Phone Number	250-910-8755					Phone 1	Number	r 20	6-632-62	06			PO r	number			VPOR	748540	_	and the co
	SAMPLE DETA	AILS .	00	12=2±0=00=		The second se	1 210		-	ANA	LYSIS REC	UESTE	D	1	T	File	ared - Fr Fle	id, Li Lab, P	L Field A	Lab, N. None
									1	F	F									
								WRW.												1
			(0N/		6			CHR40		1.51										
			l (Yes																	
			us Materia					ANALYSIS	enium	l Selenium	Speciation									
Sample ID	Sample Location (sys_loc_code)	Field Matrix	Hazardo	Date	Time (24hr)	G=Grab C=Com p	# Of Cont.	f	Total Sel	Dissolved	Selenium									
RG_GHFF_WS_GGCAMP_2021-09-09_N	RG_GHFF	ws	No	09/09/2021	1136	G	1				1		1					-		
RG_GHFF_WS_GGCAMP_2021-09-09_N_NAL	RG_GHFF	ws	No	09/09/2021	1136	G	2		1	1										
RG_GHNF_WS_GGCAMP_2021-09-10_N	RG_GHNF	ws	No	09/10/2021	1045	G	1	-			1	<u> </u>						<u> </u>		
RG_GHNF_WS_GGCAMP_2021-09-10_N_NAL	RG_GHNF	WS	No	09/10/2021	1045	G	2		1	1	-	-		-				_	-	-
RG_GHUT_WS_GGCAMP_2021-09-13_N	RG_GHUT	ws	No	09/13/2021	0930	G	1				1	-						_	-	_
RG_GHUT_WS_GGCAMP_2021-09-13_N_NAL	RG_GHUT	ws	No	09/13/2021	0930	G	2		1	1									_	_
RG_RIVER_WS_2021-09-13_N	RG_RIVER	WS	No	09/13/2021	1505	G	1		-		1	-	-							
RG_RIVER_WS_2021-09-13_N_NAL	RG_RIVER	ws	No	09/13/2021	1505	G	2		1	1							_			
RG_GHBP_WS_GGCAMP_2021-09-13_N	RG_GHBP	WS	No	09/13/2021	1505	G	1		-		1					-			_	_
RG_GHBP_WS_GGCAMP_2021-09-13_N_NAL	RG_GHBP	WS	No	09/13/2021	1505	G	2		1	1						_				
ADDITIONAL COMMENTS/SPECIAL	INSTRUCTIONS		120000	RELANGUE	SHED BY/AFFI	LIATION			DATE	TIME	AC	CEPTER	BY/AF	FILIAT	ION		1	ATE/I	IME	
Total and dissolved selenium samples have NOT been been filtered. Speciation samples have be	preserved. Dissolved se en filtered and frozen.	elenium have		Jenn	iter ings/withto	DW		2	Septemb	er 14, 20		nill	finis	int			[(6]	21		-41
SERVICE REQUEST (rush - subjec	t to availability)	ist that S		s instant i							El Wise	1318-	No.	- 	- The last	Constant of				
	Regu	lar (default) X	_	Sampler's	Name				Jennifer	Ings		M	obile #			Ę	s19-500-	3444		
Priority Emergency	(2-3 business days) - 50% (1 Business Day) - 100%	% surcharge	-	Sampler's S	ionsture	_1 	i der	; ⊃				Def	te/Time			Son	tember	14, 202		
For Emergency <1 Day, ASAP or Weekend - Contact ALS				Sampler 8.5	Suarane	C Septembe														

	a state of the second	94- 94 970							
Confidential	£.	11≹:∳:∦. 12.	P		TSHOT		В	AL Final Report	2109237
				WSER	VICE II	AC.	No	. 87364	
8	STRAIGHT BILL NOT NEGO	TABLE		250-	.425-744 Shai Sohi	4/			
	¢		24	Hour not	e BC E	ikford, BC	Tu	nbler Ridge, B	C
	Sparwood, BC	Vancouve Calgary,	AB	Edmonton, A	B F	t. McMurray, Al Shelby, MT	Gil	lette, WY	
¥	Red Deer, AB	Montrea	I, QC	Spokane, m			DATE	pt 15-	21
INVOICE TO	1, ∉.	······································		PURC	HASE ORDER NU	MBER		The seal	
BILL OF LADING #			13 1	CONS CONS	IGNEE (TO)	Applif	dla	bs	
SHUPPER (FROM	Lait	tel The	ortin	at 12	EOH I	V.Cree	K FO	Kull	AL CODE
CAVEROVINCE	line	I ECA III	POSTAL COL		PROVINCE 1	WH		FREIGHT CH	ARGES
SPECIAL INSTRU	DCTIONS		\$			WEIGHT	<u>\$</u>	HIPPER TO CHEC	
PACKAGES	7. 78	DESCRIPTION OF A	RTICLES AND SPEC	IAL MARKS	<u>.</u>	(Subject to Correct	stion)	not indicated, shipping will auto	prostically move collect.
5	Toolei	s - Wate	27 50	aples		10m	F	EE	
		7			11		ľ	VAITING	
ni inte	1. 1.	i			· · · ·		3	(PU	
	1.1	Di III	10	1211	-	₩i 1 An	-	CHARGES	
DA	K#	KMH	48	136		-		FSC	
IN	10.	HAAH		:	i	1		US	
UNIT #	1		D	ECLARED VALUATI ability of carrier is \$2.00	ON: Maximum per lb. (\$4.41 per -		•	SUB TOTAL	
		2 A	, o	ilogram) unless declared	DELIVERY BY	FINISH TIME		GST	معنی الابلاغ میدید. ارژو موجهه که موجه الدهریامه موجههای از مرجعهای موجه ا
DRIVER'S SIG	BNATURE - PICK UP B	Y PICK UP TIME		RIVER'S SIGNATURE			the furning claimed		
	(a) No carrier is liable for loss, dama	ge or delay of any goods under the Bai of the originating canter or the delivering of	Liding unless notice, then arrier within sixty (60) days in the date of ship	efor setting out periodiars of the orig after the delivery of the goods, ohn ment together with a copy second and order, except as not	in, destination and data of sh he case of failure to make de of the paid fraight bill of (contents and condition of the file raises and condition of	hisment of the goods and the data eavery within more (9) months from 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	the date of shipment. Inded consigned and inter of shipment, inder shall be subject	TOTAL \$	
respect of such loss. (b)The frant stall RECEIVED at the po destined as indicated it is mainally agreed.	demage or deay a great must be ement of the claim must be out of origin on the data spectified for out of origin on the data spectified for out of below, which the carrie cated below, which the carrie of all or any of the to part of adice, in bower at the	filed within nine. (s) interest, the par m the consignor mentioned herein, the par r agrees to carry and to deliver, r goods over all or any portion of the norm poods over all or any portion of the norm late of issuing. Which are hereto agreed by the consignor and accepter.	operty herein described, m to the consigned at to destination, and estant the consignor and accept of the consignor and accept for, himself, and his for himself, and his	the seld destination, subject accepts of any time interested in a log for himself and his assigns. Printe assigns. a time and place of shipment and is	I or any of the goods, that even d or written, including conditions subject to the conditions set	tout in such conditions	of Laging, in power of	IF AT OWNER'S RISK, WRIT	1
all the condition sau the date of issu The Contract for the SHIPPER	ing, which are hereby agree carriage of the goods listed in the Bi	I of Lading is governed by regulation of to		CONSIGNEE		10.01	G	VEMEDI	-(5%)
PRINT	acon 1	horth		SIGN SIGNEE		(DAL)		NUMBER OF PIERES'R	ECERVED
SHIPPER	Ropa Y	HLOW: Carrier PINK:	Consignee	GOLDENROAD: Shippe	r GST	T # 864540395R 10001		71 016121	
AMOOR PERCENC	WHITE: Once	a the second				عيينية الديادة فيبيها المكافيتين	and the second	and the second	*
		·		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
çoo	ler ID: Stin of	oan Coole	r#1 c	OC (Y/N)	Temperatu	ire: () . 8		IR:	30
Coo	lant Type: 🤇	Ice Blue Ice	Ambie	nt s	· · ·				
Not	es:		* (<u>)</u>	\$ - 4		•			
Sam	pling Location	s: 66		ΕV	6	井二		10923	57
Sam	ple Types:	T/D	SP	T/D SP	- T/D	SP	-		
Con	tainer Types:	40ml	60nl	60,	al 40ml	60-4			S. 44
Ope	ned By: 1/1		i i Da	ite: Λ /// /~	21 21		·**	•	
	- (,VL			4/16/2		$\ \ $	OP	Y	*
						ч		• Det d	ision 604
Effec	tive 7/29/20			24 of 27				Kevi	

f (

From:	Tyler Mehler
To:	Chelsea Van Landeghen; allie.ferguson@teck.com; jessica.ritz@teck.com; Lisa Bowron
Cc:	Jeremy Maute
Subject:	RE: Received - WO (2109233, 2109235, 2109237), REP - Privileged and Confidential
Date:	Wednesday, September 22, 2021 1:25:20 PM

Hi Chelsea -- Please use the sample ID from the COC in this situation. Thanks.

From: Chelsea Van Landeghen <chelsea@brooksapplied.com>
Sent: Wednesday, September 22, 2021 10:47 AM
To: allie.ferguson@teck.com; jessica.ritz@teck.com; Lisa Bowron <LBowron@minnow.ca>; Tyler Mehler
<tyler.mehler@minnow.ca>
Cc: Jeremy Maute <Jeremy@brooksapplied.com>
Subject: Received - WO (2109233, 2109235, 2109237), REP - Privileged and Confidential

Good morning!

This is confirmation that samples from the REP project were received at Brooks Applied Labs on September 16, 2021. The samples were logged in for the following turnaround times (TATs):

WO 2109233 – (5-9 business day) TAT WO 2109235 – (5-9 business day) TAT WO 2109237 – (5-9 business day) TAT

The **Sample ID** value listed on the chain-of-custody (COC) form did not exactly match the corresponding **Sample ID** terms listed on container labels for samples in WO 2109233, 2109235, and 2109237. The discrepancies are described in the table below.

Laboratory ID (From COC form)		Sample ID (listed on container label)	Analytical Parameter
2109233-01	RG_ALUSM_WS_ <mark>LAEMP_EVO</mark> _2021-09- 12_N	RG_ALUSM_WS_2021-09-12_N	Se Speciation
2109233-02	RG_ALUSM_WS_ <mark>LAEMP_EVO</mark> _2021-09- 12_N_NAL	RG_ALUSM_WS_2021-09-12_N_NAL	Total Recoverable Se
2109233-03	RG_ALUSM_WS_ <mark>LAEMP_EVO</mark> _2021-09- 12_N_NAL	RG_ALUSM_WS_2021-09-12_N_NAL	Dissolved Se
2109233-04	RG_ERCK_WS_ <mark>LAEMP_EVO</mark> _2021-09- 10_N	RG_ERCK_WS_2021-09-10- <mark>1130</mark> _N	Se Speciation
2109233-05	RG_ERCK_WS_ <mark>LAEMP_EVO</mark> _2021-09- 10_N_NAL	RG_ERCK_WS_2021-09-10- <mark>1130</mark> _N_NAL	Total Recoverable Se
2109233-06	RG_ERCK_WS_ <mark>LAEMP_EVO</mark> _2021-09- 10_N_NAL	RG_ERCK_WS_2021-09-10- <mark>1130</mark> _N_NAL	Dissolved Se
2109233-07	RG_M13_WS_ <mark>LAEMP_EVO</mark> _2021-09- 10_N	RG_M13_WS_2021-09-10- <mark>1600</mark>	Se Speciation
2109233-08	RG_M13_WS_ <mark>LAEMP_EVO</mark> _2021-09- 10_N_NAL	RG_M13_WS_2021-09-10- <mark>1600</mark>	Total Recoverable Se
2109233-09	RG_M13_WS <mark>_LAEMP_EVO</mark> _2021-09- 10_N_NAL	RG_M13_WS_2021-09-10- <mark>1600</mark>	Dissolved Se

2109233-10	RG_MIDER_WS_ <mark>LAEMP_EVO</mark> _2021-09- 09_N	RG_MIDER_WS_2021-09-09- <mark>1435</mark> _N	Se Speciation
2109233-11	RG_MIDER_WS_LAEMP_EVO_2021-09- 09_N_NAL	RG_MIDER_WS_2021-09- 09- <mark>1435</mark> _N_NAL	Total Recoverable Se
2109233-12	RG_MIDER_WS_LAEMP_EVO_2021-09- 09_N_NAL	RG_MIDER_WS_2021-09- 09- <mark>1435</mark> _N_NAL	Dissolved Se
2109233-13	RG_MIDGA_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N	RG_MIDGA_WS_2021-09-11- <mark>1530</mark>	Se Speciation
2109233-14	RG_MIDGA_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N_NAL	RG_MIDGA_WS_2021-09-11- <mark>1530</mark>	Total Recoverable Se
2109233-15	RG_MIDGA_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N_NAL	RG_MIDGA_WS_2021-09-11- <mark>1530</mark>	Dissolved Se
2109233-16	RG_RIVER_WS_2021-09-11 <mark>_N</mark>	RG_RIVER_WS_2021-09-11- <mark>1530</mark>	Se Speciation
2109233-17	RG_RIVER_WS_2021-09-11_ <mark>N_NAL</mark>	RG_RIVER_WS_2021-09-11- <mark>1530</mark>	Total Recoverable Se
2109233-18	RG_RIVER_WS_2021-09-11 <mark>_N_NAL</mark>	RG_RIVER_WS_2021-09-11- <mark>1530</mark>	Dissolved Se
2109233-19	RG_MIDBO_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N	RG_MIDBO_WS_2021-09-11- <mark>1130</mark>	Se Speciation
2109233-20	RG_MIDBO_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N_NAL	RG_MIDBO_WS_2021-09-11- <mark>1130</mark>	Total Recoverable Se
2109233-21	RG_MIDBO_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N_NAL	RG_MIDBO_WS_2021-09-11- <mark>1130</mark>	Dissolved Se
2109233-22	RG_MICOMP_WS_LAEMP_EVO_2021- 09-13_N	RG_MICOMP_WS_LAEMP_EVO_2021- 09-13- <mark>1600</mark> _N	Se Speciation
2109233-23	RG_MICOMP_WS_LAEMP_EVO_2021- 09-13_N_NAL	RG_MICOMP_WS_LAEMP_EVO_2021- 09-13- <mark>1600</mark> _N_NAL	Total Recoverable Se
2109233-24	RG_MICOMP_WS_LAEMP_EVO_2021- 09-13_N_NAL	RG_MICOMP_WS_LAEMP_EVO_2021- 09-13- <mark>1600</mark> _N_NAL	Dissolved Se
2109235-04	RG_RIVER_WS_2021-09-09_N	RG_RIVER_WS_ <mark>RAEM</mark> _2021-09-09_N	Se Speciation
2109235-06	RG_RIVER_WS_2021-09-09_N_NAL	RG_RIVER_WS <mark>_RAEM</mark> _2021-09- 09_N_NAL	Dissolved Se
2109235-20	RG_GHCKD_WS_RAEMP_2021- 09- <mark>11</mark> _N_NAL	RG_GHCKD_WS_RAEMP_2021- 09- <mark>NP</mark> _N_NAL	Total Recoverable Se
2109235-21	RG_GHCKD_WS_RAEMP_2021- 09- <mark>11</mark> _N_NAL	RG_GHCKD_WS_RAEMP_2021- 09- <mark>NP</mark> _N_NAL	Dissolved Se
2109235-26	RG_BACK_WS_RAEMP_2021-09- <mark>13</mark> _NAL	RG_BACK_WS_RAEMP_2021-09- <mark>NP</mark> _NAL	Total Recoverable Se
2109235-27	RG_BACK_WS_RAEMP_2021-09- <mark>13</mark> _NAL	RG_BACK_WS_RAEMP_2021-09- <mark>NP</mark> _NAL	Dissolved Se
2109237-05	RG_GHNF_WS_GGCAMP_2021- 09- <mark>10</mark> _N_NAL	RG_GHNF_WS_GGCAMP_2021- 09- <mark>NP</mark> _N_NAL	Total Recoverable Se
2109237-06	RG_GHNF_WS_GGCAMP_2021- 09- <mark>10</mark> _N_NAL	RG_GHNF_WS_GGCAMP_2021- 09- <mark>NP</mark> _N_NAL	Dissolved Se
2109237-08	RG_GHUT_WS_GGCAMP_2021- 09- <mark>13</mark> _N_NAL	RG_GHUT_WS_GGCAMP_2021- 09- <mark>NP</mark> _N_NAL	Total Recoverable Se
2109237-09	RG_GHUT_WS_GGCAMP_2021- 09- <mark>13</mark> _N_NAL	RG_GHUT_WS_GGCAMP_2021- 09- <mark>NP</mark> _N_NAL	Dissolved Se
2109237-11	RG_RIVER_WS_2021-09- <mark>13</mark> _N_NAL	RG_RIVER_WS_2021-09- <mark>NP</mark> _N_NAL	Total Recoverable Se
2109237-12	RG_RIVER_WS_2021-09- <mark>13</mark> _N_NAL	RG_RIVER_WS_2021-09- <mark>NP</mark> _N_NAL	Dissolved Se
	RG_GHBP_WS_GGCAMP_2021-	RG_GHBP_WS_GGCAMP_2021-	Total

2109237-14	09- <mark>13</mark> _N_NAL	09- <mark>NP</mark> _N_NAL	Recoverable Se
2100227 15	RG_GHBP_WS_GGCAMP_2021-	RG_GHBP_WS_GGCAMP_2021-	Dissolved Se
2109257-15	09- <mark>13</mark> N NAL	09- <mark>NP</mark> N NAL	

The samples described the table above were logged in using the **Sample ID** terms listed on the COC form. Please let us know if you would have us report any of these samples in a different manner.

Unfortunately, a recent storm has damaged our server and the lab has not had access to the server this week. Do not worry; no data was lost. We just do not have access to the server currently. This has delayed many processes, including analysis and reporting. The board we needed was obtained today and access to the server should be restored by this evening. We are making every effort to get the work orders reported within the requested time frame. I apologize for any inconvenience this may cause.

I've attached copies of the COC forms. If you have any questions, please contact the project manager, Jeremy Maute.

Best, Chelsea

Chelsea Van Landeghen

Group Lead - Sample Control

email: chelsea@brooksapplied.com

BROOKS APPLIED LABS Meaningful Metals Data and Advanced Speciation Solutions

P: 206-632-6206 | F: 206-632-6017 | 18804 North Creek Parkway, Suite 100, Bothell, WA 98011, USA

This electronic message transmission (including any attachments) is intended only for use by the addressee(s) named herein; it contains legally privileged and confidential information. If you are not the intended recipient, you are hereby notified that any dissemination, distribution, printing, or copying is strictly prohibited. If you have received this e-mail in error, please notify the sender and permanently delete any copies thereof.

October 22, 2021

Teck Resources Limited - Vancouver Allie Ferguson 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 allie.ferguson@teck.com

Re: REP

Dear Allie Ferguson,

On September 16, 2021, Brooks Applied Labs (BAL) received ten (10) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se, and Se speciation analyses, according to the chain-of-custody (COC) forms.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

B212656-SRM1 was mis-prepped in the digest. Consequently, results are not reported for B212656-SRM1. The remaining blank spike samples and reference material samples in batch B212656 are used to demonstrate acceptable digest performance.

The client sample 2109307-05 was received with limited volume, and BAL was able to use only 1 milliliter (mL) of sample in the B212656 digest. With the lower volume used for 2109307-05, MDL/MRLs were adjusted accordingly. Consequently, the total recoverable Se result for 2109307-05 is reported with elevated MDL/MRLs.

Se Speciation

Each aqueous sample was analyzed for Se speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate [SeSO3], and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk Se Sp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional Se species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting Se species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances when a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the RPD of the MS/MSD set was not calculated (N/C).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited met all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute Senior Project Manager Brooks Applied Labs Jeremy@brooksapplied.com

Report Information

Laboratory Accreditation

BAL is accredited by the National Environmental Laboratory Accreditation Program (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at <http://www.brooksapplied.com/resources/certificates-permits/> or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
ССВ	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	т	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- **E** An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- **H** Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but \leq the MRL. Result is reported and considered an estimate.
- J-1 Estimated value. A full explanation is presented in the narrative.
- M Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- N Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic</u> <u>Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)

Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)			
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn			
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, TI, U, V, Zn			
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn			
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn			
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness			
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn			
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn			
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn			
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury			
EPA 1630	Non-Potable Waters	Methyl Mercury			
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury			
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs			
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)			
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)			
SM2340B	Non-Potable Waters	Hardness			

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	hod Matrix ISO and Non-Gov. TNI Accredited Analyte(s)		DoD/DOE Accredited Analytes		
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn		
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)	Not Accredited		
EPA 1640 Mod	I640 Mod Non-Potable Waters Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Ti, V (ISO Only)		Not Accredited		
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury		
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)		
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)	Not Accredited		
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)	Not Accredited		
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb	Not Accredited		
DAL 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited		
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited		
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited		
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited		
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)		
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)	Not Accredited		
SM2340B	Non-Potable Waters	Hardness	Hardness		
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight		

(1) ISO/IEC 17025:2017 - Certificate Number ADE-1447.02

(2) Non-Governmental NELAC Institute 2016 Standard - Certificate Number ADE-1447.01

(3) Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.03 for DOE.

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_GANF_WS_GGCAMP_2021-09- 15_N	2109307-01	WS	Sample	09/15/2021	09/23/2021
RG_GANF_WS_GGCAMP_2021-09- 15_N_NAL	2109307-02	WS	Sample	09/15/2021	09/23/2021
RG_GANF_WS_GGCAMP_2021-09- 15_N_NAL	2109307-03	WS	Sample	09/15/2021	09/23/2021
RG_GAUT_WS_GGCAMP_2021-09- 16_N	2109307-04	WS	Sample	09/16/2021	09/23/2021
RG_GAUT_WS_GGCAMP_2021-09- 16_N+_NAF	2109307-05	WS	Sample	09/16/2021	09/23/2021
RG_GAUT_WS_GGCAMP_2021-09- 16_N+_NAF	2109307-06	WS	Sample	09/16/2021	09/23/2021

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
MeSe(IV)	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
MeSe(VI)	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
Se	Water	EPA 1638 Mod	09/28/2021	09/30/2021	B212656	S211116
Se(IV)	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
Se(VI)	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
SeCN	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
SeMet	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
SeSO3	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081
Unk Se Sp	Water	SOP BAL-4201	09/22/2021	09/24/2021	B212622	S211081

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_GANF_W	S_GGCAMP_20)21-09-15_N								
2109307-01	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212622	S211081
2109307-01	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212622	S211081
2109307-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212622	S211081
2109307-01	Se(IV)	WS	D	0.112		0.010	0.075	µg/L	B212622	S211081
2109307-01	Se(VI)	WS	D	5.39		0.010	0.055	µg/L	B212622	S211081
2109307-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	µg/L	B212622	S211081
2109307-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212622	S211081
2109307-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	µg/L	B212622	S211081
2109307-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	µg/L	B212622	S211081
RG GANF W	S GGCAMP 20	021-09-15 N NAL								
2109307-02	 Se	ws	TR	5.95		0.165	0.528	µg/L	B212656	S211116
RG_GANF_W	S_GGCAMP_20	021-09-15_N_NAL								
2109307-03	Se	WS	D	5.61		0.165	0.528	µg/L	B212656	S211116
RG_GAUT_W	S_GGCAMP_20)21-09-16_N								
2109307-04	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212622	S211081
2109307-04	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212622	S211081
2109307-04	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212622	S211081
2109307-04	Se(IV)	WS	D	0.108		0.010	0.075	µg/L	B212622	S211081
2109307-04	Se(VI)	WS	D	0.437		0.010	0.055	µg/L	B212622	S211081
2109307-04	SeCN	WS	D	≤ 0.010	U	0.010	0.050	µg/L	B212622	S211081
2109307-04	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212622	S211081
2109307-04	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	µg/L	B212622	S211081
2109307-04	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	µg/L	B212622	S211081
RG_GAUT_W	S_GGCAMP_20)21-09-16_N+_NAI	=							
2109307-05	Se	WS	TR	≤ 0.825	U	0.825	2.64	µg/L	B212656	S211116
RG_GAUT_W	S_GGCAMP_20)21-09-16_N+_NAI	=							
2109307-06	Se	WS	D	0.784		0.165	0.528	µg/L	B212656	S211116

Accuracy & Precision Summary

Batch: B212622 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B212622-BS1	Blank Spike, (2124033)						
	MeSe(IV)		5.095	5.615	µg/L	110% 75-125	
	Se(IV)		5.000	4.997	µg/L	100% 75-125	
	Se(VI)		5.000	5.149	µg/L	103% 75-125	
	SeCN		5.015	5.067	µg/L	101% 75-125	
	SeMet		4.932	5.109	µg/L	104% 75-125	
B212622-DUP6	Duplicate, (2109306-42)						
	DMSeO	ND		ND	µg/L		N/C 25
	MeSe(IV)	ND		ND	µg/L		N/C 25
	MeSe(VI)	ND		ND	µg/L		N/C 25
	Se(IV)	0.375		0.375	µg/L		0.1% 25
	Se(VI)	40.70		40.58	µg/L		0.3% 25
	SeCN	ND		ND	µg/L		N/C 25
	SeMet	ND		ND	µg/L		N/C 25
	SeSO3	ND		ND	µg/L		N/C 25
	Unk Se Sp	ND		ND	µg/L		N/C 25
B212622-MS6	Matrix Spike, (2109306-4	2)					
	Se(IV)	0.375	4.900	5.126	µg/L	97% 75-125	
	Se(VI)	40.70	5.100	47.06	µg/L	NR 75-125	
	SeCN	ND	1.962	1.902	µg/L	97% 75-125	
	SeMet	ND	1.977	1.909	µg/L	97% 75-125	
B212622-MSD6	Matrix Spike Duplicate, (2109306-42	2)				
	Se(IV)	0.375	4.900	5.143	µg/L	97% 75-125	0.3% 25
	Se(VI)	40.70	5.100	46.88	µg/L	NR 75-125	N/C 25
	SeCN	ND	1.962	1.870	µg/L	95% 75-125	2% 25
	SeMet	ND	1.977	1.920	µg/L	97% 75-125	0.6% 25

Accuracy & Precision Summary

Batch: B212656 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte Blank Spike (2104075)	Native	Spike	Result	Units	REC 8	Limits	RPD & Li	mits
B212030-B31	Se		200.0	200.6	µg/L	100%	75-125		
B212656-BS2	Blank Spike, (2104075) Se		200.0	196.2	µg/L	98%	75-125		
B212656-BS3	Blank Spike, (2104075) Se		200.0	201.0	µg/L	100%	75-125		
B212656-BS4	Blank Spike, (2104075) Se		200.0	197.1	µg/L	99%	75-125		
B212656-SRM2	Reference Material (211000) Se	8, TMDA 51	.5 Reference 14.30	Standard - 13.20	Bottle 8 - SF μg/L	RM) 92%	75-125		
B212656-SRM3	Reference Material (211000 Se	8, TMDA 51	.5 Reference 14.30	Standard - 13.91	Bottle 8 - SF μg/L	RM) 97%	75-125		
B212656-SRM4	Reference Material (211000 Se	8, TMDA 51	.5 Reference 14.30	Standard - 13.70	Bottle 8 - SF μg/L	RM) 96%	75-125		
B212656-DUP4	Duplicate, (2109307-02) Se	5.947		6.345	µg/L			6%	20
B212656-MS4	Matrix Spike, (2109307-02) Se	5.947	220.0	229.8	µg/L	102%	75-125		
B212656-MSD4	Matrix Spike Duplicate, (21 Se	09307-02) 5.947	220.0	226.8	µg/L	100%	75-125	1%	20

BAL Final Report 2109307 Client PM: Allie Ferguson Client Project: REP

Method Blanks & Reporting Limits

Batch: B212622		
Matrix: Water		
Method: SOP BAL-4201		
Analyte: DMSeO		
Sample	Result	Units
B212622-BLK1	0.00	µg/L
B212622-BLK2	0.00	µg/L
B212622-BLK3	0.00	µg/L
B212622-BLK4	0.00	µg/L
	Average: 0.000	
	Limit: 0.005	

Analyte: MeSe(IV)

Sample	Result	Units
B212622-BLK1	0.00	µg/L
B212622-BLK2	0.00	µg/L
B212622-BLK3	0.00	µg/L
B212622-BLK4	0.00	µg/L
	Average: 0.000	
	Limit: 0.005	

Analyte:	MeSe(VI)
----------	----------

Sample	Result	Units
B212622-BLK1	0.00	µg/L
B212622-BLK2	0.00	µg/L
B212622-BLK3	0.00	µg/L
B212622-BLK4	0.00	µg/L
	Average: 0.000	
	Limit: 0.005	

MDL:	0.002
MRL:	0.005

MDL: 0.002 MRL: 0.005

MDL: 0.002 MRL: 0.005

BAL Final Report 2109307 Client PM: Allie Ferguson Client Project: REP

Method Blanks & Reporting Limits

Result	Units		
0.00	µg/L		
Average: 0.000			MDL: 0.002
Limit: 0.015			MRL: 0.015
Result	Units		
0.00	µg/L		
Average: 0.000			MDL: 0.002
Limit: 0.011			MRL: 0.011
Result	Units		
0.00	µg/L		
Average: 0.000			MDL: 0.002
Limit: 0.010			MRL: 0.010
Result	Units		
0.00	µg/L		
Average: 0.000			MDL: 0.002
Limit: 0.005			MRL: 0.005
	Result 0.00 0.00 0.00 0.00 Average: 0.000 Limit: 0.015 Result 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Average: 0.000 Limit: 0.010 0.00 <	Result Units 0.00 µg/L 0.0	Result Units 0.00 $\mu g/L$

BAL Final Report 2109307 Client PM: Allie Ferguson Client Project: REP

Method Blanks & Reporting Limits

MDL: 0.002 MRL: 0.015

Analyte: SeSO3

Sample	Result	Units		
B212622-BLK1	0.00	µg/L		
B212622-BLK2	0.00	µg/L		
B212622-BLK3	0.00	µg/L		
B212622-BLK4	0.00	µg/L		
	Average: 0.000		MDL : 0	.002
	Limit: 0.011		MRL: 0	.011

Analyte: Unk Se Sp

Sample	Result	Units
B212622-BLK1	0.00	µg/L
B212622-BLK2	0.00	µg/L
B212622-BLK3	0.00	µg/L
B212622-BLK4	0.00	µg/L
	Average: 0.000	
	Limit: 0.015	

BAL Final Report 2109307 Client PM: Allie Ferguson Client Project: REP

Method Blanks & Reporting Limits

Batch: B212656
Matrix: Water
Method: EPA 1638 Mod
Analyte: Se

Sample	Result	Units
B212656-BLK1	0.077	µg/L
B212656-BLK2	0.095	µg/L
B212656-BLK3	0.154	µg/L
B212656-BLK4	0.153	µg/L
	Average: 0.120	
	Limit: 0.480	

MDL: 0.150 MRL: 0.480

Lab I Sam	D: 2109307-01 ple: RG GANF WS GGCAM	P 2021-09-15 N		Report Matrix: WS Sample Type: Sample + Sum		Colle Rece	cted: 09/15/2021 ived: 09/23/2021
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2109307
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2109307
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #4 - 2109307
Lab I Sam	D: 2109307-02 ple: GANE WS GGCAMP 2021-(19-15 N NAI		Report Matrix: WS Sample Type: Sample + Sum		Colle Rece	cted: 09/15/2021 ived: 09/23/2021
Des	Container	Size	Lot	Preservation	P-Lot	рH	Ship, Cont.
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109307
Lab I Sam	D: 2109307-03 ple:	00 15 N NAL		Report Matrix: WS Sample Type: Sample + Sum		Colle Rece	cted: 09/15/2021 ived: 09/23/2021
Des	Container	Size	Lot	Preservation	P-L of	рH	Shin, Cont.
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109307
Lab I Sam	D: 2109307-04 ple: RG_GAUT_WS_GGCAM	P_2021-09-16_N		Report Matrix: WS Sample Type: Sample + Sum		Colle Rece	cted: 09/16/2021 ived: 09/23/2021
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2109307
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2109307
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #4 - 2109307

BAL Final Report 2109307 Client PM: Allie Ferguson Client Project: REP

Sample Containers

Lab Sam RG	ID: 2109307-05 ple: GAUT WS GGCAMP 202	1-09-16 N+ NAF	Re Sa	port Matrix: WS mple Type: Sample + Sum		Colle Rece	cted: 09/16/2021 ived: 09/23/2021
Des A	Container Client-Provided - TM	Size 60 mL	Lot na	Preservation 10% HNO3 (BAL)	P-Lot 2127026	рН <2	Ship. Cont. Styrofoam Cooler #1 - 2109307
Lab Sam RG	ID: 2109307-06 ple: GAUT WS GGCAMP 202	1-09-16 N+ NAF	Re Sa	port Matrix: WS mple Type: Sample + Sum		Colle Rece	cted: 09/16/2021 ived: 09/23/2021
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109307

Shipping Containers

Styrofoam Cooler #1 - 2109307

Received: September 23, 2021 7:15 Tracking No: PAPS#RWHV87409 via Courier Coolant Type: Blue Ice Temperature: 2.0 °C

Styrofoam Cooler #4 - 2109307

Received: September 23, 2021 7:15 Tracking No: PAPS#RWHV87409 via Courier Coolant Type: Blue Ice Temperature: 0.5 °C Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: IR#30

Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: IR#31 Custody seals present? No Custody seals intact? No COC present? Yes

Custody seals present? No Custody seals intact? No COC present? Yes

Confidentia	2						Page	1	l of	1									BAL I	Final F	{epor	t 21093
ICCN	COC ID:	Sep	temb	er GGC	AM	IP	TURNA	ROUN	T DA	TIME:				Penda	w.			1				
PRO	JECT/CLIENT INFO		200	14-14-14-1	2210				-	LABO	RATOR	1. 175 S.S.	1	Regula	Carl Street	and the pair	15-KING	OTF	ER INFO	and the second	- any	
Facility Name / Job#	REP						La	b Name	Bro	ooks Ap	plied Lal	s			Re	port Fo	rmat / T	Distribu	tion	Excel	PDF	EDD
Project Manager	Allie Ferguson						Lab	Contact	t Be	n Wozni	iak				Em	ail 1:	plin fer	ouson/B	Neck com	x	¥	x
Email	allie.ferguson@teck.com					Email	ber	@brook	sapplied.	mo:			Em	ail 2:	teckon	imation	sonline com			S		
Address	421 Pine Avenue						1	Address	s 188	804 Nor	th Creek	Parkway	_		Em	ail 3:	monitos	harther	Dieck.com	X	x	x
															Em	ail 4:	loownor	n@minn	OW CA	R.	X	X
City	Sparwo	bod		Province	BC			City	у Во	thell		Proving	e V	VA	Em	ail 5;	awiebe	minn	w ca	X	×	1
Postal Code	V0B 2	G0		Country	Cana	ida	Post	al Code	980	011		Countr	y U	JSA	Em	ail 5:		S. Contraction			1	
Phone Number	250-910-8755						Phone 1	Number	r 200	5-632-63	206				PO n	umber	1		VPOO	0748541	i i	u punse vis
	SAMPLE DETAI	15	8		1						AN	ALYSIS R	EQU	ESTE	D	all and a second second	The season is not		Pitiersid - 37 15	64. 1. 1.a.h.	IL PEAK	L Lob NINing
									THE .		F	F		1								
									1	-	+					+ -				1	1	
			(0)						ALC: U	26										128	185	
			(es/						*					11.2	1.15		1		_	1.02		
Sample ID	Sample Location (sγs loc code)	Field Matrix	Hazardous Material (Y	Date)	Time (24hr)	G=Grab C=Com	# Of Cont.	SIRATION	Total Selenium	Dissolved Selenium	Selenium Speciation										
RG_GANF_WS_GGCAMP_2021-09-15_N	RG_GANF	WS	No	September	г 15,	1230	G	1				1								-		
AG_GANF_WS_GGCAMP_2021-09-15_N_NAL	RG_GANF	ws	No	September 2021	r 15,	1230	G	2	1	1	1								-	1		
RG_GAUT_WS_GGCAMP_2021-09-16_N	RG_GAUT	ws	No	September 2021	r 16,	1200	G	1				i			-		1					
RG_GAUT_WS_GGCAMP_2021-09-16_N+_NAF	RG_GAUT	ws	No	September 2021	т 16,	1200	G	2		1	1											
ADDITIONAL COMMENTS/SPECIAL	INSTRUCTIONS			RELIN	QUIS	HED BY/AFFIL	IATION.			DATI	ETTIME.	4	CCER	PTED	BY/AF	FILIAT	ION		I III	ATE/TI	ME	82.1
Total and dissolved selenium samples have NOT been p been filtered. Speciation samples have bee	reserved. Dissolved sele n filtered and frozen.	enium have			Jenni	fer Ings/Minno	w		Se	eptemb	er 21, 2	021	U	1.1	n			9	123/1	11 C	07	15
SERVICE REQUEST (rush - subject	to availability)		and the second					7		12.041		1000	100	100			20	Nº Com				TO A DE
Priority (2	Regula 2-3 business days) - 50%	r (default) X surcharge		Samp	ler's l	Name			Je	ennifer	Ings			Mo	bile #				519-500-	3444		
Emergency	1 Business Day) - 100%	surcharge		Sample	r's Sie	enature	James	3247 2						Date	e/Time			Sa	ntember '	1 2021		
For Emergency <1 Day.	ASAP or Weekend - Con	ntact ALS		Sample	- 3 GIŞ	Summe								Dati	e/ i une			Sei	prember 2	/1, 4041		

			The start and start	and a start
Confidential	R- A MOT CHI	TI	BAL Final Report 2109	307
ATTAINT BUL OF ADING	L WSERINCE	inc.	No 97400	
NOT NEGOTIABLE	250-425-7	447	NU. 0/402	
	24 Hour Hot Shot St	ruice		3.5
Sparwood, BC Vancouver, BC	Prince George, BC	Elkford, BC	Tymbler Ridge, BC Hinton, AB	
Tetrace, BC Colgary, AB Red Deer, AB Montreal, QC	Spokane, WA	Shelby, MT	Gillette, WY	10.
NGRETO		+ DA	APT 22-21	
LL CLADING #	PURCHASE ORDER I	WMBER SI AND	ATT BALL	7
PPER (FROM)	· · · CONSIGNEE (TQ)	s Applied	Labs	
The CIVILICI	TANA T STREET	NUCreek	Parkway -	
POST POST	TAL CODE BITY/PROVINCE	H.WA	918 alle	- 100
PECTL INSTRUCTIONS	N 21 M A LAND		FREIGHT CHARGES	æ y
DESCRIPTION OF ARTICLES A	ND SPECIAL MARKS	WEIGHT (Subject to Correction)	DPREPAID DCOLLECT	5.76
PACKAGES	Sandles	97135	R norindicated, shirping will externatically move college,	
Y CODIERS-MATO	SUM MCS		FER.	With the
	· · · · · · · · · · · · · · · · · · ·		WAITING	
	the second secon	The second	XPU	
	ALIAA		-ne)	21
DVN2 PP KITHA	SHH)4		CHARGES	
AUTINIT	UTIVI	1-1-1-1	FBC	ſ″,
	A STREET AND A STREET AND A STREET	1	U8	
TMT #	DECLARED VALUATION. liability of carrier is \$2.00 per b. (\$4:41 per- idiogram) unless declared valuation states	Š	SUB TOTAL	1.2
6	otherwise.	FINISH TIME		1
DRIVER'S SIGNATURE - PICK UP BY PICK UP TIME	DIVERSE		(3)	
A line of the sector is factors for time, claritation or data, of any it pacts such or the SM of Lading Uniters for producting control with or the sector of the sector of the sector of the data of the sector of the sector of the	ce. Revision setting cult pertoaners of the option, destination and case of all both and the observer of the pools, on the mass of failure to make can also many together; with a copy of the pedditional in the set	privine of the poods and the extrasted amount ca many within have (9) months from the date or effect contants of gackage unknown) market, consigned	TOTAL S	
4.3. Specification strategy is a final writing must be further to the strategy of the strat	and, in general pool only another bound as power to the rates and classes of an the days of any sine internet bound on any other pools. The aver a to each pilling of any sine internet bound on any other pools. The aver account for internet and the easy to Photos or where, including condi-	Building to a stort on the date of anyone by service to be performed hereinder clade to suit as set series by the standard Bit of Lading, in power the series of the standard Bit of Lading, in power	IF AT OWNER'S RISK, WRITE ORD HERE	- gent
which have a start ground by the consignor and accepted for Arrest a	Constitute area and proof of alloyment and is subject to the conditions set of		DATE	
Rob Beneich	CONSIGNEE	<u>~ '</u>	TANE	A
supper his fair? .	SIGN	- BEARAC3980270001	NUMBER OF PIEDES RECEIVED	
WHITE: Office YELLOW: Carrier PINK: Consignee	GOLDENROAD: Shipper		119 H 2.M	
the second s	A second second second second second	NEE TO	10· 40	
Cooler ID: Styrotoam Cooler #	COC (Y/N) Temperatu	re: p 9/13/11	···· 20	
Coolant Type: Ice Blue Ice Am	bient	2.0		*
Notes:	-2020	• 5	1	
Sampling Locations:	EN	_ -		
T/D SP	(T/D) SP T/D	SP T/D	SP T/D SP	~2
and sample types:	110 ml	4		
Container Types: 40 th				
Opened By: 7	Date: 9/13/2/	free and the		
	с) (an)(a) (that) (th)) having supported	l Batti (Ba) Ibai	2
			n 604	
Effective 7/29/20	Mar and a second se	21093	07	

Confidential	HOT SHOT SERVICE INC. 250-425-7447	BAL Fin No. 8740	al Report 2109307
24 Hew Supervision, BC Foregand, BC Red Data: AB. Nontreal, QC Spo	nce George, BC nonton, AB Name, WA	C Trendbler Ridge, ray, AB Hinton, AB T Gilledts, WY	
Cochtete 51 Cochtete 51 Line (recki Treating) Posna coole Posna coole	PURCHASE ORDER NUMBER	Micd Lats	
DESCRIPTION OF ARTICLEU AND SPECIAL MARKS	ples ' 9	WEARHT TO Correction) CPREFAU LBS The correction of the correction	
SHANHN81	109	AT A CONTRACT OF	
DECLARED Signard under DECKUP TIME DRIVER'S SIGNARIAN STREAM OF TIME	INALUATION - Maximum and Compare (Set 3) parts declared values on parase anature DELIVERY BY FINSIP FINSP FINSIP FINS	SUB BOTM	
And Andrews	SEAN ZIGATA		
Constant Type: Ice Stue Ice Ambient	Temperature: 0.5	*	31
Notes: Sempling Locations: Sample Types: Container Types: Big Container Co	EV SP T/D SP 60ml 60ml	T/D SP T/D	SP
Opened by: CVL Date: 9	128/21	Revi	sion 004

October 29, 2021

Teck Resources Limited - Vancouver Allie Ferguson 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 allie.ferguson@teck.com

Re: REP

Dear Allie Ferguson,

On October 7, 2021, Brooks Applied Labs (BAL) received two (2) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se, and Se speciation analyses, according to the chain-of-custody (COC) forms.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

In the trace metals digest (Batch B212828), the method blank samples (*B212828-BLK1*, *B212828-BLK2*, *B212828-BLK3*, and *B212828-BLK4*) and reference material samples (*B212828-SRM1*, *B212828-SRM2*, and *B212828-SRM3*) contained volumes of 11.0 milliliters (mL) following the heating step of the digestion. The target volume for this stage of the digest is 11.5 mL. All client samples in Batch B212828-BS1, B212828-BS2, and B212828-BS3). Spike recoveries for the blank spike samples (B212828-BS1, B212828-BS2, and B212828-BS3). Spike recoveries for the blank spike samples were within acceptable ranges, demonstrating acceptable digest performance. Spike recoveries for the reference material samples were acceptable as well. After the digest, all client samples and QC samples are diluted to a final volume of 12.0 mL prior to analysis. Since blank spike samples are reported unqualified. No additional corrective actions were necessary.

Se Speciation

Each aqueous sample was analyzed for Se speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater

retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate [SeSO3], and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk Se Sp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional Se species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting Se species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances when a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the RPD of the MS/MSD set was not calculated (N/C).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited met all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute Senior Project Manager Brooks Applied Labs Jeremy@brooksapplied.com

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
ССВ	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	т	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- **E** An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- **H** Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- J-1 Estimated value. A full explanation is presented in the narrative.
- M Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic</u> <u>Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)

Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)					
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn					
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, TI, U, V, Zn					
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn					
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn					
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness					
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn					
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn					
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn					
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury					
EPA 1630	Non-Potable Waters	Methyl Mercury					
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury					
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs					
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)					
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)					
SM2340B	Non-Potable Waters	Hardness					

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)	Not Accredited
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)	Not Accredited
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)	Not Accredited
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)	Not Accredited
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb	Not Accredited
DAL 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)	Not Accredited
SM2340B	Non-Potable Waters	Hardness	Hardness
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight

(1) ISO/IEC 17025:2017 - Certificate Number ADE-1447.02

(2) Non-Governmental NELAC Institute 2016 Standard - Certificate Number ADE-1447.01

(3) Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.03 for DOE.

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_GHP_WS_GGCAMP_2021-09-2	2110067-01	WS	Sample	09/23/2021	10/07/2021
3_N					
RG_GHP_WS_GGCAMP_2021-09-2	2110067-02	WS	Sample	09/23/2021	10/07/2021
3_N_NAL					
RG_GHP_WS_GGCAMP_2021-09-2	2110067-03	WS	Sample	09/23/2021	10/07/2021
3_N_NAL					

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	10/06/2021	10/07/2021	B212803	S211154
MeSe(IV)	Water	SOP BAL-4201	10/06/2021	10/07/2021	B212803	S211154
MeSe(VI)	Water	SOP BAL-4201	10/06/2021	10/07/2021	B212803	S211154
Se	Water	EPA 1638 Mod	10/08/2021	10/13/2021	B212828	S211178
Se(IV)	Water	SOP BAL-4201	10/06/2021	10/07/2021	B212803	S211154
Se(VI)	Water	SOP BAL-4201	10/06/2021	10/07/2021	B212803	S211154
SeCN	Water	SOP BAL-4201	10/06/2021	10/07/2021	B212803	S211154
SeMet	Water	SOP BAL-4201	10/06/2021	10/07/2021	B212803	S211154
SeSO3	Water	SOP BAL-4201	10/06/2021	10/07/2021	B212803	S211154
Unk Se Sp	Water	SOP BAL-4201	10/06/2021	10/07/2021	B212803	S211154

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_GHP_WS_	_GGCAMP_202	21-09-23_N								
2110067-01	DMSeO	WS	D	0.213		0.010	0.025	µg/L	B212803	S211154
2110067-01	MeSe(IV)	WS	D	0.098		0.010	0.025	µg/L	B212803	S211154
2110067-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212803	S211154
2110067-01	Se(IV)	WS	D	3.52		0.010	0.075	µg/L	B212803	S211154
2110067-01	Se(VI)	WS	D	124		0.010	0.055	µg/L	B212803	S211154
2110067-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	µg/L	B212803	S211154
2110067-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B212803	S211154
2110067-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	µg/L	B212803	S211154
2110067-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	µg/L	B212803	S211154
RG_GHP_WS	_GGCAMP_202	21-09-23_N_NAL								
2110067-02	Se	WS	TR	132		0.165	0.528	µg/L	B212828	S211178
RG_GHP_WS	_GGCAMP_202	21-09-23_N_NAL								
2110067-03	Se	WS	D	132		0.165	0.528	µg/L	B212828	S211178

Accuracy & Precision Summary

Batch: B212803 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC &	Limits	RPD & Li	mits
B212803-BS1	Blank Spike, (2124033)								
	MeSe(IV)		5.095	5.406	µg/L	106%	75-125		
	Se(IV)		5.000	4.898	µg/L	98%	75-125		
	Se(VI)		5.000	4.712	µg/L	94%	75-125		
	SeCN		5.015	4.754	µg/L	95%	75-125		
	SeMet		4.932	4.850	µg/L	98%	75-125		
B212803-DUP1	Duplicate, (2110068-01)								
	DMSeO	0.014		0.014	µg/L			1%	25
	MeSe(IV)	0.019		0.019	µg/L			0.5%	25
	MeSe(VI)	ND		ND	µg/L			N/C	25
	Se(IV)	0.326		0.311	µg/L			5%	25
	Se(VI)	51.28		51.36	µg/L			0.2%	25
	SeCN	ND		ND	µg/L			N/C	25
	SeMet	ND		ND	µg/L			N/C	25
	SeSO3	ND		ND	µg/L			N/C	25
	Unk Se Sp	ND		ND	µg/L			N/C	25
B212803-MS1	Matrix Spike, (2110068-(01)							
	Se(IV)	0.326	4.900	4.947	µg/L	94%	75-125		
	Se(VI)	51.28	5.100	54.74	µg/L	NR	75-125		
	SeCN	ND	1.962	1.805	µg/L	92%	75-125		
	SeMet	ND	1.977	1.857	µg/L	94%	75-125		
B212803-MSD1	Matrix Spike Duplicate,	(2110068-01)						
	Se(IV)	0.326	4.900	4.955	µg/L	94%	75-125	0.1%	25
	Se(VI)	51.28	5.100	54.22	µg/L	NR	75-125	N/C	25
	SeCN	ND	1.962	1.756	µg/L	89%	75-125	3%	25
	SeMet	ND	1.977	1.841	µg/L	93%	75-125	0.9%	25

Accuracy & Precision Summary

Batch: B212828 Lab Matrix: Water Method: EPA 1638 Mod

Sample B212828-BS1	Analyte Blank Snike (2104075)	Native	Spike	Result	Units	REC 8	Limits	RPD & Lii	mits
B212020-B01	Se		200.0	198.1	µg/L	99%	75-125		
B212828-BS2	Blank Spike, (2104075) Se		200.0	184.4	µg/L	92%	75-125		
B212828-BS3	Blank Spike, (2104075) Se		200.0	187.0	µg/L	94%	75-125		
B212828-SRM1	Reference Material (211000	9. TMDA 51	.5 Reference	Standard -	Bottle 9 - SR	M)			
	Se	•, • •	14.30	12.87	µg/L	90%	75-125		
B212828-SRM2	Reference Material (211000	9, TMDA 51	.5 Reference	Standard -	Bottle 9 - SR	M)			
	Se		14.30	12.92	µg/L	90%	75-125		
B212828-SRM3	Reference Material (211000	9, TMDA 51	.5 Reference	Standard - I	Bottle 9 - SR	M)			
	Se		14.30	12.77	µg/L	89%	75-125		
B212828-DUP1	Duplicate. (2110080-11)								
	Se	30.27		30.11	µg/L			0.5%	20
B212828-MS1	Matrix Spike, (2110080-11)								
	Se	30.27	220.0	235.1	µg/L	93%	75-125		
B212828-MSD1	Matrix Snike Dunlicate (21	10080-11)							
	Se	30.27	220.0	235.6	µg/L	93%	75-125	0.2%	20

BAL Final Report 2110067 Client PM: Allie Ferguson Client Project: REP

Method Blanks & Reporting Limits

Batch: B212803		
Matrix: Water		
Method: SOP BAL-420	1	
Analyte: DMSeO		
Sample	Result	Units
B212803-BLK1	0.00	µg/L
B212803-BLK2	0.00	μg/L
B212803-BLK3	0.00	μg/L
B212803-BLK4	0.00	μg/L
	Average: 0.000	
	Limit: 0.005	

Analyte: MeSe(IV)

Sample	Result	Units
B212803-BLK1	0.00	µg/L
B212803-BLK2	0.00	µg/L
B212803-BLK3	0.00	µg/L
B212803-BLK4	0.00	µg/L
	Average: 0.000	
	Limit: 0.005	

Analyte: N	/leSe(VI)
------------	-----------

Sample	Result	Units
B212803-BLK1	0.00	µg/L
B212803-BLK2	0.00	µg/L
B212803-BLK3	0.00	µg/L
B212803-BLK4	0.00	µg/L
	Average: 0.000	
	Limit: 0.005	

MDL: 0.002 MRL: 0.005

MDL: 0.002 MRL: 0.005

MDL: 0.002 MRL: 0.005

BAL Final Report 2110067 Client PM: Allie Ferguson Client Project: REP

Method Blanks & Reporting Limits

Analyte: Se(IV)			
Sample	Result	Units	
B212803-BLK1	0.00	µg/L	
B212803-BLK2	0.00	µg/L	
B212803-BLK3	0.00	µg/L	
B212803-BLK4	0.00	µg/L	
	Average: 0.000		MDL: 0.002
	Limit: 0.015		MRL: 0.015
Analyte: Se(VI)			
Sample	Result	Units	
B212803-BLK1	0.00	µg/L	
B212803-BLK2	0.00	µg/L	
B212803-BLK3	0.00	µg/L	
B212803-BLK4	0.00	µg/L	
	Average: 0.000		MDL: 0.002
	Limit: 0.011		MRL: 0.011
Analyte: SeCN			
Sample	Result	Units	
B212803-BLK1	0.00	µg/L	
B212803-BLK2	0.00	µg/L	
B212803-BLK3	0.00	µg/L	
B212803-BLK4	0.00	µg/L	
	Average: 0.000		MDL: 0.002
	Limit: 0.010		MRL: 0.010
Analyte: SeMet			
Sample	Result	Units	
B212803-BLK1	0.00	µg/L	
B212803-BLK2	0.00	µg/L	
B212803-BLK3	0.00	µg/L	
B212803-BLK4	0.00	µg/L	
	Average: 0.000		MDL: 0.002
	Limit: 0.005		MRL: 0.005

BAL Final Report 2110067 Client PM: Allie Ferguson Client Project: REP

0.002 0.011

MDL: 0.002 MRL: 0.015

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units	
B212803-BLK1	0.00	µg/L	
B212803-BLK2	0.00	µg/L	
B212803-BLK3	0.00	µg/L	
B212803-BLK4	0.00	µg/L	
	Average: 0.000		MDL:
	Limit: 0.011		MRL:

Analyte: Unk Se Sp

Sample	Result	Units
B212803-BLK1	0.00	µg/L
B212803-BLK2	0.00	µg/L
B212803-BLK3	0.00	µg/L
B212803-BLK4	0.00	µg/L
	Average: 0.000	
	Limit: 0.015	

18804 North Creek Parkway, Suite 100, Bothell, WA 98011 + P(206) 632-6206 + F(206) 632-6017 + info@brooksapplied.com + www.brooksapplied.com

BAL Final Report 2110067 Client PM: Allie Ferguson Client Project: REP

Method Blanks & Reporting Limits

Batch: B212828
Matrix: Water
Method: EPA 1638 Mod
Analyte: Se

Sample	Result	Units
B212828-BLK1	0.098	µg/L
B212828-BLK2	0.081	µg/L
B212828-BLK3	0.094	µg/L
B212828-BLK4	0.065	µg/L
	Average: 0.084	
	Limit: 0.480	

MDL: 0.150 MRL: 0.480

Sample Containers

Lab Sam	D: 2110067-01 ple: RG_GHP_WS_GGCAMI	P_2021-09-23_N		Report Matrix: WS Sample Type: Sample + Sum		Colle Rece	cted: 09/23/2021 ived: 10/07/2021
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler #1 - 2110067
В	XTRA_VOL	15 mL	na	none	na	na	Cooler #1 - 2110067
С	XTRA_VOL	60 mL	na	none	na	na	Cooler #1 - 2110067
Lab I Sam	D: 2110067-02 ple: GHP_WS_GGCAMP_2021-0	9-23 N NAI		Report Matrix: WS Sample Type: Sample + Sum		Colle Rece	cted: 09/23/2021 ived: 10/07/2021
Des	Container	Size	Lot	Preservation	P-Lot	рH	Ship, Cont.
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Cooler #1 - 2110067
Lab Sam	D: 2110067-03 ple:			Report Matrix: WS Sample Type: Sample + Sum		Colle Rece	cted: 09/23/2021 ived: 10/07/2021
RG_	GHP_WS_GGCAMP_2021-0	9-23_N_NAL	1.4	Description	Dist		
Des	Container	Size	Lot	Preservation	P-LOT	рн	Snip. Cont.
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Cooler #1 - 2110067

Shipping Containers

Cooler #1 - 2110067

Received: October 7, 2021 7:20 Tracking No: RWHV87445 via Courier Coolant Type: Ice Temperature: 4.2 °C Description: Cooler #1 Damaged in transit? No Returned to client? No Comments: IR#31 Custody seals present? No Custody seals intact? No COC present? Yes

Confidential						Page	. 1	l of	1								BAL I	-inal F	Repor	t 21100
IECK	COC ID:	Sep	temb	er GGC	AMP	TURNA	AROUN	ND T	IME:			Found								
PRO	DIECT/CLIENT INFO	Raft Recorderat	And Personnel of the local division of the l	ROM		LABORATORY								Steeller	OTHER INFO			Contra a		-
Facility Name / Job#	REP						b Name	Bro	ooks App	lied Labs			Re	eport Fo	mat / Di	stributic	m	Excel	PDF	EDD
Project Manager	Allie Ferguson					Lab	Lab Contact			k		-	Em	ail 1	office Road	the second second	alt dam			
Email	allie.ferguson@teck.co	m					l ben	@brooks	applied.com	1		Em	ail 2	tookoon!	(Shore vine	ALL COM	A	-	1	
Address	421 Pine Avenue						Address	188	804 North	1 Creek Par	kwav		Em	ail 3.	COUNDO	ARCOUNCE	senter, contr		w	
1 441 633						-	, idoi etc						Em	ail 4	THOMPGA.	2 HITINGER	HCK, CONT	<u>A</u>	A N	1.
City	Sparave	bod		Province	BC		City	Bot	thell		Province	WA	Em	ail 5	DOWTON	Gununov	Y,Ca	X	×	
Postal Cada	VOB 2	60 60		Country	Canada	Post	tal Code	080	011	_	Country	LISA	Em	ail 5.	awiebe	aminnow	.ca	<u>×</u>	<u>Å</u>	×
Postal Code	250 010 9755	00		Country	Callada	Dhopa	Mumba	- 204	6 627 67	06	Country	USA	DO a	all J.	-	123.1	3/19/10/	749546	ļ	· 1 · · · · ·
Phone Number	230-910-8733	15			Contraction of the local division of the loc	ruone	Number	1 200	0=032=021	45141	VETC DEA	MESTE	FOI	iumber	10.0	-	*POIN	1/40340		TAN AVA
	- 074.011 Lat. We 174	A COLUMN TO A COLUMN		Surger and		COLUMN AND INCOLUMN			1.1.1.1.1.1.1	- ALVAR	LOID ALA	ALT MATER	1	The second secon	1	1	1		1	Contraction of the local division of the loc
								臣	2.2.3	F	F	1	1		1					
										2				+				+	++	-
								AHA				1.15	1000			1257			1	
			6					No.	2.00							13935	1			
			Ř										4		1	-			4	-
			Yes																	
											-					1				
			eria				ł.			E .	tion									
		late				1	A'sth	e	eni	cia										
			2 S					NAY	liu	Sel	Spe									
			lou			G=Grah	,		elei	eq	E		1							
	Sample Location	Field	arc			C=Com	í #0	r 🔛	S	olv	niur									
Sample ID	(sys_loc_code)	Matrix	Taz	Date	Time (24hr		Cont		lot:	Diss	ele			1		1				
RG_GHP_WS_GGCAMP_2021-09-23_N	RG_GHP	ws	No	Septembe 2021	r 23, 9:30	G	1		-		1		-						-	
DC CHD WE CCCAMB 2021 00 22 N NAL	DC CUD	WE	87.	Septembe	r 23, 0.70	-					-	1		+	-	1	1	1		
RG_GHP_WS_GGCAMP_2021-09-23_N_NAL	KG_GHP	113	Pto	2021	9:30	G	2	-	1	1	-		-	-	1			1	-	_
												4	1		1					1
				-												1		1		
ADDITIONAL COMMENTS/SPECIAL	INSTRUCTIONS		1000	RELIN	QUISHED BY/AFF	NOTALI	10		DATE	TIME	AC	CEPTER	BY/AF	FILLAT	ION	Constanti	Line Carp	ATE/T	ME	27.26.00
					Jennifer Ings/Minn	10W		Se	eptembe	r 23, 2021	S.=	Z. (BAL)		10/	17/2	11	7:2	٩
Total and dissolved selenium samples have NOT been	preserved. Dissolved sele	enium have												A.,.		-		_		
been filtered. Speciation samples have be	en filtered and frozen.							+							•			_		
			-					+								-				
SERVICE REQUEST (rush - subjec	t to availability)	1 (0) 1 200						THE R		211		E.1	100	Star Land	S.C.				193	
	Regula	r (default) X		C	Landa Manual			7				1	. 1. 21							
Priority	(2-3 business days) - 50%	surcharge	1	Samp	ier's Name			Je	ennifer l	ings		M	obile #	ile # 519-500-3444						
Emergency	(1 Business Day) - 100%	surcharge		Comela	ula Siamatana		: 2.10	,				D	- (T)'							
For Emergency <1 Day	r s signature	and the state			re Date/Time O							Uc.	October 4, 2021							

onfidential	STRAIGHT BILL OF LAD NOT NEGOTIMBLE	ping states and states	A Hour Ho	tot sh ERUICE 50-425- t Shot S	OT INC. 7447 Service	BAL Final Report 2110067
	Sparwood, BC Terrace, BC Red Deer, AB	Vancouver, BC Calgary, AB Montreal, QC	Prince Ge Edmontor Spokane,	eorge, BC n, AB WA	Elkford, BC Ft. McMurray, AB Sheiby, MT	Tumbler Ridge, BC Hinton, AB Giliette, WY
INVOICE TO			()	· · · · · · · · · · · · · · · · · · ·	e ²	DATE
BILL OF LADING #		4 '	IR a	URCHASE ORDEF	RNUMBER	
SHIPPER (FROM)	;	*	" și C	ONSIGNEE (TO)		
STREET				TREET		<u> </u>
CITY/PROVINCE		POSTAL CO	ODE C	ITY/PROVINCE	8	POSTAL CODE
SPECIAL INSTRUC	CTIONS				A2	FREIGHT CHARGES
PACKAGES	DE	SCRIPTION OF ARTICLES AND SPE	CIAL MARKS		WEIGHT (Subject to Correction)	
				1	(Subject to contextion)	If not indicated, shipping will automatically move collect
		· · · · · · · · · · · · · · · · · · ·		14	50 2497 W	
	. 1			1.		waiting
-25				11.		
		11/071			No.	XPU
VAL	X# KI	H//2 I	445		م ^{ر ب} رچې	CHARGES
1/1	UT INN	TIAOT				FSC
N 11 T #				23		us
INI I #	84 ¹	DE liat	ECLARED VALUAT bility of carrier is \$2.00 poram) unless declare	per lb. (\$4.41 per d valuation states	A	
		oth	nerwise.		3	SUB TOTAL
RIVER'S SIGNAT	URE - PICK UP BY	CK UP TIME DR	IVER'S SIGNATURE	- DELIVERY BY	FINISH LIME	GST
IOTICE OF CLAIM: (a) No c	arrier is liable for loss, damage or delay of any good	s under the Bill of Lading unless notice. therefor	setting out particulars of the drigi	n, destination and date of sh he case of failure to make de	ipment of the goods and the estimated amount c livery within nine (9) months from the date of shit	aimed noment.
b) The final statement RECEIVED at the point of cri- lestined as indicated b is mutually agreed, as to ear	of the claim must be filed within nine i gin on the date specified from the consignor mention elow, which the carrier agrees to carry a ch carrier of all or any of the goods over all or any p	(9) months from the date of shipme ned herein, the property herein described, in app and to deliver to the consigned at the ortion of the route to destination, and as to each bond on the route to destination, and as to each	int together with a copy of parent good order, except as note a said destimation. subject party of any time interested in all or brokell and his assigns. Partie	of the paid freight bill d (contents and condition of to the rates and class or any of the goods, that eve or any written induction condition	contents of package unknown) marked, consigne sification in effect on the date of ships ery service to be performed hereunder shall be su nos set aside by the standard Bill of Lading, in po	d and TOTAL \$
the contract for the camage	of Lading, in power is the case of issain, which are inch are hereby agreed by the consignor of the goods listed in the Bill of Lading is governed to	and accepted for himself and his as y regulation in force in the jurisdiction at the limit	stigns. e and place of shipment and is si NSIGNEE	ubject to the conditions set of	out in such conditions? *	DATE
PRINT		۶۳۴ PRI	INT			
SHIPPER SIGN		→- CO SIG	INSIGNEE	er 🐮		TIME F
WHIT	E: Office YELLOW: Carrier	PINK: Consignee GOL	LDENROAD: Shipper	GST	# 864540398RT0D01	
Cooler Coolan Notes: Samplin Sample Contair	ID: Coler #] t Type: ce #] ng Locations: Types: (ner Types: 40ml (125ml	R-G T/D SP (Glass Gow L Glass Glass (T/D (SP S. L GOM	Temperatu M T/D	re: 4.2	IR: 3 SP T/D SP
Opened Effective	1 By: 5.7. 10/7/21 7/29/20		^{e: [0} /7/2]	1	211	0067

•

CORDILLERA - BENTHIC INVERTEBRATE COMMUNITY

Methods and QC Report 2021

Project ID: GGCAMP (21-52)

Client: Minnow Environmental

Prepared by: Cordillera Consulting Inc. Summerland, BC © 2021

Unit 1, 13216 Henry Ave B1202 Summerland, BC, V0H 1Z0 www.cordilleraconsulting.ca P: 250.494.7553 F: 250.494.7562

Table of Contents

Sample Reception	3
Sample Sorting	3
Sorting Quality Control - Sorting Efficiency	4
Sorting Quality Control - Sub-Sampling QC	5
Taxonomic Effort	7
Taxonomists	7
Taxonomic QC	8
Error Summary	9
Error Rationale	9
References	
Taxonomic Keys	

Sample Reception

On October 15, 2021, Cordillera Consulting received 3 benthic samples from Minnow Environmental. When samples arrived to Cordillera Consulting, exterior packaging was initially inspected for damage or wet spots that would have indicated damage to the interior containers.

Samples were logged into a proprietary software database (INSTAR1) where the clients assigned sample name was recorded along with a Cordillera Consulting (CC) number for cross-reference. Each sample was checked to ensure that all sites and replicates recorded on field sheets or packing lists were delivered intact and with adequate preservative. Any missing, mislabelled or extra samples were reported to the client immediately to confirm the total numbers and correct names on the sample jars. The client representative was notified of the arrival of the shipment and provided a sample inventory once intake was completed.

See table below for sample inventory:

	Table 1: Summary	of sample	information	including	Cordillera	Consulting	(CC) number
--	------------------	-----------	-------------	-----------	------------	------------	-------------

Sample	CC#	Date	Size	# of Jars
RG_GHNF_BIC_1_2021-09-23	CC221898	9/23/2021	400µM	1
RG_GHNF_BIC_2_2021-09-23	CC221899	9/23/2021	400µM	2
RG_GHNF_BIC_3_2021-09-23	CC221900	9/23/2021	400µM	1

Sample Sorting

- Using a gridded Petri dish, fine forceps and a low power stereo-microscope (Olympus, Nikon, Leica) the sorting technicians removed the invertebrates and sorted them into family/orders.
- The sorting technician kept a running tally of total numbers excluding organisms from Porifera, Nemata, Platyhelminthes, Ostracoda, Copepoda, Cladocera and terrestrial drop-ins such as aphids. These organisms were marked for their presence (given a value of 1) only and left in the sample. They were not included towards the 300-organism subsample count.
- Where specimens are broken or damaged, only heads were counted.
- Subsampling was conducted with the use of a Marchant Box.
- When using the Marchant box, cells were extracted at the same time in the order indicated by a random number table. If the 300th organism was found part way into sorting a cell then the balance of that cell was sorted. If the organism count had not reached 300 by the 50th cell then the entire sample was sorted.
- The total number of cells sorted and the number of organisms removed were recorded manually on a bench sheet and then recorded into INSTAR1

- Organisms were stored in vials containing 80% ethanol and an interior label indicating the site names, date of sampling, site code numbers and portion subsampled. This information was also recorded on the laboratory bench sheet and on INSTAR1.
- The sorted portion of the debris was preserved and labeled separately from the unsorted portion and was tested for sorting efficiency (Sorting Quality Control – Sorting Efficiency). The unsorted portion was also labeled and preserved in separate jars.

Percent sub-sampled and total countable invertebrates pulled from the samples were summarized in the table below.

Sample	Date	CC#	400 micron fraction	
			% Sampled	# Invertebrates
RG_GHNF_BIC_1_2021-09-23	23-Sep-21	CC221898	15%	354
RG_GHNF_BIC_2_2021-09-23	23-Sep-21	CC221899	5%	403
RG_GHNF_BIC_3_2021-09-23	23-Sep-21	CC221900	20%	496

Table 2: Percent sub-sample and invertebrate count for each sample

Sorting Quality Control - Sorting Efficiency

As a part of Cordillera's laboratory policy, all projects undergo sorting efficiency checks.

- As sorting progresses, 10% of samples were randomly chosen by senior members of the sorting team for resorting.
- All sorters working on a project had at least 1 sample resorted by another sorter.
- An efficiency of 90 % was expected (95% for CABIN samples).
- If 90/95% efficiency was not met, samples from that sorter were resorted.
- To calculated sorting efficiency the following formula was used:

 $\frac{\# Organisms Missed}{Total Organisms Found} * 100 = \% OM$

Table 3 Summary of sorting efficiency

Site - QC, Sample - QC 1, CC# - CC221899, P	ercent			
sampled = 5%, Sieve size = 400				
Diptera		2		
Chironomidae		3		
Plecoptera		5		
Trichoptera		1		
	Total:	11	403	

Sorting Quality Control - Sub-Sampling QC

Certain Provincial and Mining projects require additional sorting checks in the form of sub-sampling QC, (Environmental Effects Monitoring (EEM) protocol). This ensured that any fraction of the total sample that was examined was actually an accurate representation of the number of total organisms. Organisms from the additional sub-samples were not identified; rather total organism count only was compared.

Sub-Sampling efficiency was measured on 10% of the number of sub-sampled samples in the project. Ex. In a project where 50 of 100 total samples were processed through subsampling using a Marchant box, then 10% of 50; or 5 samples were used for sub sampling efficiency.

Sub-Sampling efficiency was performed by fractioning the entire sample into subsample percentages. On each sub-sampled portion, a total organism count was recorded and compared to the rest of the sub-samples. In order to pass, all fractions were required to be within 20% of total organism count.

Example: If 300 organisms are found in 10% of the sample, the sorter will continue to sample in 10% fractions until the entire sample is separated. They will then count the total number of organisms in each of the 10 fractions of 10% and compare the organism count.

When divergence is >20% the sorting manager examines for the source of the problem and takes steps to correct it. With the Marchant box, the problem typically rested with how the box is flipped back to the upright position. For this reason, subsampling was performed by experienced employees only. Another common source of error would be the type of debris in the sample. Samples with algae or heavy with periphyton have a higher incident of failure due to clumping than clear samples.

Table 4 Summary of Sub Sample efficiency

:	Station ID		Organisms in Subsample										So	orter		Precision		Accuracy										
CC#	Sample Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Ву	Time	Actual Total	Percent	t Range	Min	Max
221900	RG_GHNF_BIC-3	497	490	477	470	482																RH	540	2416	1.04	5.43	0.25	2.86

Taxonomic Effort

The next procedure was the identification to genus-species level where possible of all the organisms in the sample.

- Identifications were made at the genus/species level for all insect organisms found including Chironomidae (Based on CABIN protocol).
- Non-insect organisms (except those not included in CABIN count) were identified to genus/species where possible and to a minimum of family level with intact and mature specimens.
- The Standard Taxonomic Effort lists compiled by the CABIN manual¹, SAFIT², and PNAMP³ were used as a guide line for what level of identification to achieve where the condition and maturity of the organism enabled.
- Organisms from the same families/order were kept in separate vials with 80% ethanol and an interior label of printed laser paper.
- Chironomidae was identified to genus/species level where possible and was aided by slide mounts. CMC-10 was used to clear and mount the slide.
- Oligochaetes was identified to family/genus level with the aid of slide mounts. CMC-10 was used to clear and mount the slide.
- Other Annelida (leeches, polychaetes) were identified to the family/genus/species level with undamaged, mature specimens.
- Mollusca was identified to family and genus/species where possible
- Decapoda, Amphipoda and Isopoda were identified at family/genus/species level where possible.
- Bryozoans and Nemata remained at the phylum level
- Hydrachnidae and Cnidaria were identified at the family/genus level where possible.
- When requested, reference collections were made containing at least one individual from each taxa listed. Organisms represented will have been identified to the lowest practical level.
- Reference collection specimens were stored in 55 mm glass vials with screw-cap lids with polyseal inserts (museum quality). They were labeled with taxa name, site code, date identified and taxonomist name. The same information was applied to labels on the slide mounts.

Taxonomists

The taxonomists for this project were certified by the Society of Freshwater Science (SFS) Taxonomic Certification Program at level 2 which is the required certification for CABIN projects:

Scott Finlayson: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae (East/West); Group 4 Oligochaeta Adam Bliss: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae

Rita Avery: Group 1 General Arthropods (East/West); Group 2 EPT (East/West)

Taxonomic QC

Taxonomic QC was performed in house by someone other than the original taxonomist.

- Quality control protocol involved complete, blind re-identification and reenumeration of at least 10% of samples by a second SFS-certified taxonomist.
- Samples for taxonomic quality control were randomly selected and quality control procedures were conducted as the project progresses through the laboratories.
- The second (QC) taxonomist will calculate and record four types of errors:
 - 1. Misidentification error
 - 2. Enumeration error
 - 3. Questionable taxonomic resolution error
 - 4. Insufficient taxonomic resolution error

The QC coordinator then calculates the following estimates of taxonomic precision.

1. The percent total identification error rate is calculated as:

 $\frac{Sum of incorrect identifications}{total organisms counted in audit} * (100)$

The average total identification error rate of audited samples did not exceed 5%. All samples that exceed a 5% error rate were re-evaluated to determine whether repeated errors or patterns in error contributed.

2. The percent difference in enumeration (PDE) to quantify the consistency of specimen counts.

$$PDE = \frac{|n_1 - n_2|}{n_1 + n_2} x100$$

3. The percent taxonomic disagreement (PTD) to quantify the shared precision between two sets of identifications.

$$PTD = \left(1 - \left[\frac{a}{N}\right]\right) x100$$

4. Bray Curtis dissimilarity Index to quantify the differences in identifications.

$$BC_{ij} = 1 - \frac{2C_{ij}}{S_j + S_i}$$

Error Summary

All samples report errors within the acceptable limits for CABIN Laboratory methods (less than 5% error).

Table 5 Summary of taxonomic error following QC

Site	Taxa Identified	% Error	BDE	DTQ	Bray - Curtis Dissimilarity index
Site - 2021, Sample - RG_GHNF_BIC_2_2021-09-23, CC# -					
CC221899, Percent sampled = 5%, Sieve size = 400	403	0.00	0	0.49627792	0.00496278

There will always be disagreements between taxonomists regarding the degree of taxonomic resolution in immature specimens and when laboratories make use of different keys for certain groups (Mollusks is an especially disputed group). It is always possible that some taxa found by the original taxonomist were overlooked in QC.

All of the Taxonomic QC samples that were observed passed testing according to the CABIN misidentification protocols. See the tables below for results from taxonomic QC audit.

Error Rationale

Site - 2021, Sample - RG_GHNF_BIC_2_2021- 09-23, CC# - CC221899, Percent sampled = 5%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Brillia	4	4						
Capniidae	79	78	No			Х		
Chironomidae	17	17						
Chloroperlidae	1	1						
Corynoneura	1	1						
Dicranota	15	15						
Diptera	1	1						
Empididae	2	2						
Heleniella	14	14						

Hydrobaenus	7	6	No			Х		
Leuctridae	3	3						
Limnephilidae	6	6						
Limnophyes	1	1						
Micropsectra	40	41	No			Х		
Naididae	2	2						
Nemouridae	26	26						
Neoplasta	1	1						
Orthocladius complex	16	17	No			х		
Pagastia	29	29						
Pericoma/Telmatoscopus	36	36						
Perlodidae	16	16						
Plecoptera	1	1						
Plecoptera	1	1						
Pseudodiamesa	6	6						
Skwala	1	1						
Taeniopterygidae	2	2						
Tanypodinae	2	2						
Tvetenia	22	22						
Zapada cinctipes	50	50						
Zapada columbiana	1	1						
Total:	403	403						
					0	4	0	
% Total Misidentification	misidentifications	v100 -	0.00	Pass				
Rate =	total number	×100 -						

References

¹ McDermott, H., Paull, T., Strachan, S. (May 2014). Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples, Environment Canada. ISBN: 978-1-100-25417-3

² Southwest Association of Freshwater Invertebrate Taxonomists. (2015). www.safit.org

³ Pacific Northwest Aquatic Monitoring Partnership (Accessed 2015). www.pnamp.org

Taxonomic Keys

Below is a reference list of taxonomic keys utilized by taxonomists at Cordillera Consulting. Cordillera taxonomists routinely seek out new literature to ensure the most accurate identification keys are being utilized. This is not reflective of the exhaustive list of resources that we use for identification. A more complete list of taxonomic resources can be found at Southwest Association of Freshwater Invertebrate

Taxonomists. (2015). http://www.safit.org/Docs/SAFIT_Taxonomic_Literature_Database_1_March_2011.enl

Brook, Arthur R. and Leonard A. Kelton. 1967. Aquatic and semiaquatic Heteroptera of Alberta, Saskatchewan and Manitoba (Hemiptera) Memoirs of the Entomological Society of Canada. No. 51.

Brown HP & White DS (1978) Notes on Seperation and Identification of North American Riffle Beetles (Coleoptera: Dryopidea: Elmidae).Entomological News 89 (1&2): 1-13

Clifford, Hugh F. 1991. Aquatic Invertebrates of Alberta. University of Alberta Press Edmonton, Alberta.

Epler, John. 2001 The Larval Chironomids of North and South Carolina. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Water Beetles of Florida. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Aquatic and Semi-aquatic Heteroptera of Florida. http://home.earthlink.net/~johnepler/

Trond Andersen, Peter S. Cranston & John H. Epler (Eds) (2013) Chironomidae of the Holarctic Region: Keys and Dlagnoses. Part 1. Larvae. *Insect Systematics and Evolution Supplements* 66: 1-571.

Jacobus, Luke and Pat Randolph. 2005. Northwest Ephemeroptera Nymphs. Manual from Northwest Biological Assessment Working Group. Moscow Idaho 2005. Not Published.

Jacobus LM, McCafferty WP (2004) Revisionary Contributions to the Genus Drunella (Ephemeroptera : Ephemerellidae). Journal of the New York Entomological Society 112: 127-147

Jacobus LM, McCafferty WP (2003) Revisionary Contributions to North American Ephemerella and Serratella (Ephemeroptera : Ephemerellidae). Journal of the New York Entomological Society 111 (4): 174-193.

Kathman, R.D., R.O. Brinkhurst. 1999. Guide to the Freshwater Oligochaetes of North America. Aquatic Resources Center, College Grove, Tennessee.

Larson, D.J., Y. Alarie, R.E. Roughly.2005. Predaceous Diving Beetles (Coleoptera: Dytiscidae) of the Neararctic Region. NRC-CNRC Research Press. Ottawa.

Merritt, R.W., K.W. Cummins, M. B. Berg. (eds.). 2007. An introduction to the aquatic insects of North America, 4th. Kendall/Hunt, Dubuque, IA

Morihara DK, McCafferty WP (1979) The Baetis Larvae of North American (Ephemeroptera: Baetidae). Transactions of the American Entomological Society 105: 139-221.

Needham, James, M. May, M. Westfall Jr. 2000. Dragonflies of North America. Scientific Publishers. Gainsville FL.

Prescott David, R.C.and Medea M. Curteanu.2004. Survey of Aquatic Gastropods of Alberta. Species at Risk Report No. 104. ISSN: 1496-7146 (Online Edition)

Needham, K. 1996. An Identification Guide to the Nymphal Mayflies of British Columbia. Publication #046 Resource Inventory Committee, Government of British Columbia.

Oliver, Donald R. and Mary E. Roussel. 1983. The Insects and Arachnids of Canada Part 11. The Genera of larval midges of Canada. Biosystematics Research Institute. Ottawa, Ontario. Research Branch, Agriculture Canada. Publication 1746.

Proctor, H. The 'Top 18' Water Mite Families in Alberta. Zoology 351. University of Alberta, Edmonton, Alberta.

Rogers, D.C. and M. Hill, 2008. Key to the Freshwater Malacostraca (Crustacea) of the mid-Atlantic Region. EPA-230-R-08-017. US Environmental Protection Agency, Office of Environmental Information, Washington, DC.

Stewart, Kenneth W. and Bill Stark. 2002. The Nymphs of North American Stonefly Genera (Plecoptera). The Caddis Press. Columbus Ohio.

Stewart, Kenneth W. and Mark W. Oswood. 2006 The Stoneflies (Plecoptera) of Alaska and Western Canada. The Caddis Press.

Stonedahl, Gary and John D. Lattin. 1986. The Corixidae of Oregon and Washington (Hemiptera: Heteroptera). Technical Bulletin 150. Oregon State University, Corvalis Oregon.

Thorpe, J. H. and A. P. Covich [Eds.] 1991. Ecology and classification of North American freshwater invertebrates. Academic Press, San Diego.

Tinerella, Paul P. and Ralph W. Gunderson.2005. The Waterboatmen (Insecta: Heteroptera: Corixidae) of Minisota. Publication No.23 Dept. Of Entomology, North Dakota State University, Fargo, North Dakota, USA.

Weiderholm, Torgny (Ed.) 1983. The larvae of Chironomidae (Diptera) of the Holartic region. Entomologica Scaninavica. Supplement No. 19.

Westfall, Minter J. Jr. and May, Michael L. 1996. Damselflies of North America. Scientific Publishers, Gainesville, FL.

Wiggins, Glenn B. 1998. Larvae of the North American Caddisfly Genera (Tricoptera) 2nd ed. University of Toronto Press. Toronto Ontario.

Site:		2021		2021		2021
Sample:	RG GHNF BIC 1 2021-09-23		RG GHNF BIC 2 2021-09-23		RG GHNF BIC 3 2021-09-23	
Sample Collection Date:	 23-Sep-21		 23-Sep-21		 23-Sep-21	
CC#:	CC221898		CC221899		CC221900	
Richness Measures						
Species Richness		23		26		21
EPT Richness		9		9		8
Ephemeroptera Richness						
Plecoptera Richness		9		8		7
Trichoptera Richness				1		1
Chironomidae Richness		9		11		6
Oligochaeta Richness				1		1
Non-Chiro, Non-Olig, Richness						
Abundance Measures						
Corrected Abundance		2360		8060		2460
EPT Abundance		1554		3740		1120
Dominance Measures						
1st Dominant Taxon	Capniidae		Capniidae		Pagastia	
1st Dominant Abundance		1168		1598		689
2nd Dominant Taxon	Pericoma/Telmatoscopus		Zapada cinctipes		Tvetenia	
2nd Dominant Abundance		240		1527		330
3rd Dominant Taxon	Tvetenia		Micropsectra		Capniidae	
3rd Dominant Abundance		145		896		307
% 1 Dominant Taxon	49	.51%		19.82%		28.00%
% 2 Dominant Taxon	10	.17%		18.94%		13.43%
% 3 Dominant Taxon	6	.15%		11.11%		12.46%
Percent Dominance	65	.83%		49.88%		53.89%
Community Composition						
% Ephemeroptera						
% Plecoptera	65	.85%		44.91%		45.12%
% Trichoptera				1.49%		0.41%
% EPT	65	.85%		46.40%		45.53%
% Diptera	33	.31%		53.10%		53.46%
% Oligochaeta				0.50%		0.61%
% Baetidae						
% Chironomidae	17	.75%		39.45%		45.53%
% Odonata						
Functional Group Composition						
% Predators	10	.37%		9.54%		10.52%
% Shredder-Herbivores	61	.27%		41.51%		39.91%
% Collector-Gatherers	28	.36%		48.71%		49.57%
% Scrapers						
% Macrophyte-Herbivore						
% Collector-Filterer						
% Omnivore						
% Parasite						
% Piercer-Herbivore						

- % Gatherer
- % Unclassified

Functional Group Richness			
Predators Richness	5	7	4
Shredder-Herbivores Richness	7	6	8
Collector-Gatherers Richness	11	12	9
Scrapers Richness			
MH Richness			
CF Richness			
OM Richness			
PA Richness			
Piercer-Herbivore Richness			
Gatherer Richness			
Unclassified		1	

Site:	20	21	2021	2021
Sample:	RG GHNF BIC 1 2021-09-23	RG GHNF BIC 2 2021-09-23	RG GHNF BIC 3 2021-09-23	
Sample Collection Date:	23-Sep-21	23-Sep-21	23-Sep-21	
CC#:	CC221898	CC221899	CC221900	
EPA Functional Group Composition				
% Predators				
% Parasite				
% Collector-Gatherers				
% Collector-Filterer				
% Macrophyte-Herbivore				
% Xylophage				
% Scraper				
% Shredder				
% Piercer				
% Omnivore				
% Unclassified				
EPA Functional Group Richness				
Predators				
Parasite				
Collector-Gatherers				
Collector-Filterer				
Macrophyte-Herbivore				
Xylophage				
Scraper				
Shredder				
Piercer				
Omnivore				
Unclassified				
SAFIT Functional Group Composition				
% Predators				
% Parasite				
% Collector-Gatherers				
% Collector-Filterer				
% Macrophyte-Herbivore				
% Periphyton-Herbivore				
% Scraper				
% Shredder				
% Omnivore				
% Unclassified				
SAFIT Functional Group Richness				
Predators				
Parasite				
Collector-Gatherers				
Collector-Filterer				
Macrophyte-Herbivore				
Periphyton-Herbivore				
Scraper				

Shredder Omnivore

Unclassified

EPA Habitat Composition

- % Clinger
- % Climber

% Sprawler

% Burrower

% Swimmer

% Diver

% Skater

EPA Habitat Richness

Clinger

Climber

Sprawler

Burrower

Swimmer

Diver

Skater

Site: Sample: RG GHNF BIC 1 202	2021 21-09-23 RG GHNF B	2021	2021 C 3 2021-09-23
Sample Collection Date: 23-Sep-21	23-Sep-21	23-Sep-21	
CC#: <mark>CC221898</mark>	CC221899	CC221900	
Voltinism Composition			
% Univoltine	8.90%	23.41%	3.46%
% Semivoltine	0.31%	0.38%	0.21%
% Multivoltine			
Voltinism Richness			
Univoltine	3	4	2
Semivoltine	1	1	1
Multivoltine			
Diversity/Evenness Measures			
Shannon-Weiner H' (log 10)	0.87	1.09	0.99
Shannon-Weiner H' (log 2)	2.90	3.61	3.30
Shannon-Weiner H' (log e)	2.01	2.50	2.28
Simpson's Index (D)	0.27	0.11	0.14
Simpson's Index of Diversity (1 - D)	0.73	0.89	0.86
Simpson's Reciprocal Index (1/D)	3.71	8.82	7.14
Biotic Indices			
Hilsenhoff Biotic Index	2.26	3.36	2.38

Page 3 of 3

Site:	2021	2021	2021
Sample:	RG_GHNF_BIC_1_2021-09-23	RG_GHNF_BIC_2_2021-09-23	RG_GHNF_BIC_3_2021-09-23
Sample Collection Date:	23-Sep-21	23-Sep-21	23-Sep-21
CC#:	CC221898	CC221899	CC221900
Sieve Size:	400	400	400
Subsample %:	15	5	20
Phylum: Arthropoda	0	0	0
Order: Collembola	3	0	2
•			
Subphylum: Hexapoda	0	0	0
l Class: Insecta	0	0	0
Order: Plecoptera	7	2	12
Family: Canniidae	170	79	58
Family: Chloroperlidae	0	1	0
Sweltsa	1	0	0
Eamily: Leuctridae	2	3	3
	5	26	25
Zanada	3	20	40
Zapada cinctinos	4	50	40
Zapada columbiana	14	50	0
<u>Zapada columbiana</u>	0	1	1
	16	16	31
<u>Skwala</u>	1	1	0
Family: Taeniopterygidae	8	2	42
	_	_	
Order: Trichoptera	0	0	0
Family: Limnephilidae	0	6	2
Order: Diptera	0	1	0
Family: Chironomidae	14	17	24
Subfamily: Chironominae	0	0	0
Tribe: Tanytarsini	0	0	0
<u>Micropsectra</u>	2	40	6
Subfamily: Diamesinae	0	0	0
Tribe: Diamesini	0	0	0
Pagastia	13	29	123
<u>Pseudodiamesa</u>	1	6	0
Subfamily: Orthocladiinae	0	0	0
<u>Brillia</u>	2	4	1
<u>Corynoneura</u>	2	1	0
<u>Heleniella</u>	1	14	0
<u>Hydrobaenus</u>	0	7	0
<u>Limnophyes</u>	3	1	1
Orthocladius complex	8	16	10
<u>Tvetenia</u>	17	22	59
Subfamily: Tanypodinae	0	2	0
Family: Dixidae	0	0	0
<u>Dixa</u>	1	0	0
Family: Empididae	0	2	5
<u>Neoplasta</u>	0	1	2
Family: Muscidae	0	0	0
Limnophora	2	0	0
Family: Psychodidae	0	0	0
Pericoma/Telmatoscopus	36	36	14
Family: Tipulidae	4	0	6
Dicranota	12	15	16
			10
Phylum: Annelida	0	Ο	0
Subnhylum: Clitellata	0	0 0	0
Class: Oligochaeta	0	0	0
Order: Tubificida	0	0 0	0
1	v	v	v

Family: Naididae	0	2	0
<u>Nais</u>	0	0	3
Totals:	354	403	496
Taxa present but not included:			
Phylum: Arthropoda	0	0	0
Subphylum: Hexapoda	0	0	0
Class: Insecta	0	0	0
Order: Diptera	0	0	0
Family: Cecidomyiidae	1	0	0
Subphylum: Crustacea	0	0	0
Class: Ostracoda	1	1	1
Phylum: Nemata	0	0	1
Phylum: Platyhelminthes	0	0	0
Class: Turbellaria	1	0	1
Totals:	3	1	3

ND designation of a taxa represents a non-distinct taxa. This adjusts where the associated taxa fall in the metrics for this sample because the individuals are likely represented by Genus or Species level identifications.

| Family: Naididae

Site:	2021	2021	2021
Sample	RG GHNE BIC 1 2021-09-23	RG GHNE BIC 2 2021-09-23	RG GHNE BIC 3 2021-09-23
Sample Collection Date:	22 Son 21	22 Son 21	22 Son 21
Sample Collection Date.	23-36p-21	23-360-21	25-36p-21
CC#:	CC221898	CC221899	CC221900
Sieve Size:	400	400	400
Subsample %:	15	5	20
Phylum: Arthropoda	0	0	0
Order: Collembola	3	0	2
Subphylum: Hexapoda	0	0	0
l Class: Insecta	0	0	0
	7 ND	2 ND	12 ND
	7 NU	2 ND	12 ND
Family: Caphildae	170	/9	58
Family: Chloroperlidae	0	1	0
<u>Sweltsa</u>	1	0	0
Family: Leuctridae	3	3	3
Family: Nemouridae	9	26 ND	35
<u>Zapada</u>	4	0	40
Zapada cinctipes	14	50	0
Zapada columbiana	0	1	1
L Family: Periodidae	16	16	31
Shwala	1	1	0
<u>Skwala</u>	1	1	0
Family: Taemopterygidae	٥	2	42
Order: Trichoptera	0	0	0
Family: Limnephilidae	0	6	2
Order: Diptera	0	1	0
Family: Chironomidae	14 ND	17 ND	24 ND
Subfamily: Chironominae	0	0	0
Tribe: Tanytarsini	0	0	0
Micropsectra	2	40	6
L Subfamily: Diamesinae	0	0	0
	0	0	Õ
Pagastia	12	20	122
<u>Fugustia</u> Broudodiamosa	1	23	125
<u>Pseudodidinesu</u>	1	0	0
Subtamily: Orthociadiinae	0	0	0
<u>Brillia</u>	2	4	1
<u>Corynoneura</u>	2	1	0
<u>Heleniella</u>	1	14	0
<u>Hydrobaenus</u>	0	7	0
<u>Limnophyes</u>	3	1	1
<u>Orthocladius complex</u>	8	16	10
<u>Tvetenia</u>	17	22	59
Subfamily: Tanypodinae	0	2	0
Family: Dixidae	0	0	0
Dixa	1	0	0
 L Family: Empididae	0	2	5
Neonlasta	0	-	2
L Family: Muscidae	0	-	-
limnonhora	2	0	õ
Linnophora	2	0	0
	0	0	0
<u>Pericoma/Teimatoscopus</u>	30	30	14
Family: Tipulidae	4 ND	U	6
<u>Dicranota</u>	12	15	16
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
Class: Oligochaeta	0	0	0
Order: Tubificida	0	0	0

<u>Nais</u>	0	0	3
Totals:	354	403	496
Taxa present but not included:			
Phylum: Arthropoda	0	0	0
Subphylum: Hexapoda	0	0	0
Class: Insecta	0	0	0
Order: Diptera	0	0	0
Family: Cecidomyiidae	1	0	0
		2	
Subphylum: Crustacea	0	U	U
Class: Ostracoda	1	1	1
Bhulum: Nomata	0	0	1
	0	0	1
Phylum: Platyneiminthes	0	U	0
Class: Turbellaria	1	0	1
Totals:	3	1	3

2

0

0

ND designation of a taxa represents a non-distinct taxa. This adjusts where the associated taxa fall in the metrics for this sample because the individuals are likely represented by Genus or Species level identifications.

Total from Sample Percent Efficiency

Site - QC, Sample - QC 1, CC# - CC221899, Percent sampled = 5%, Sieve size = 400					
Diptera		2			
Chironomidae		3			
Plecoptera		5			
Trichoptera		1			
	Total:	11	403	97%	

Minnow Environmental (BC) Taxonomist: Scott Finlayson <u>scottfinlayson@cordilleraconsulting.ca</u> 250-494-7553

								Fun	ictional Fee	ding					
Phylum	Sub Phylum	Class	Order	Family	Subfamily	Tribe	Taxonomy	ITIS Code Voltinism	Group	Maturity	Name	ND	Site	Sample	Date
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae				127917		Рира	Chironomidae	ND	2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Chironominae	Tanytarsini	Micropsectra	129890	CG	Larvae	Micropsectra		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Diamesinae	Diamesini	Pagastia	128401	CG	Larvae	Pagastia		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Diamesinae	Diamesini	Pseudodiamesa	128416	CG	Larvae	Pseudodiamesa		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Brillia	128477	SH	Larvae	Brillia		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Heleniella	128730	CG	Larvae	Heleniella		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Limnophyes	128776	CG	Larvae	Limnophyes		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Orthocladius complex	128874A	CG	Larvae	Orthocladius complex		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Tvetenia	129197	CG	Larvae	Tvetenia		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Corynoneura	128563	CG	Larvae	Corynoneura		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Dixidae			Dixa	125810	CG	Larvae	Dixa		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Muscidae			Limnophora	150730	Р	Larvae	Limnophora		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Psychodidae			Pericoma/Telmatoscopus	125351A	CG	Larvae	Pericoma/Telmatoscopus		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Tipulidae				118840	SH	Juvenile/Damaged	Tipulidae	ND	2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Tipulidae			Dicranota	121027 UV	Р	Larvae	Dicranota		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera					102467 Unclassified		Adult	Plecoptera	ND	2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera					102467 Unclassified		Juvenile/Damaged	Plecoptera	ND	2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Capniidae				102643 Unclassified	SH	Juvenile/Damaged	Capniidae		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Chloroperlidae			Sweltsa	103273 SV	Р	Larvae	Sweltsa		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Leuctridae				102840 Unclassified	SH	Juvenile/Damaged	Leuctridae		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Nemouridae				102517 Unclassified	SH	Juvenile/Damaged	Nemouridae		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Nemouridae			Zapada cinctipes	102594 UV	SH	Larvae	Zapada cinctipes		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Perlodidae				102994 Unclassified	Р	Juvenile/Damaged	Perlodidae		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Perlodidae			Skwala	103102 UV	Р	Larvae	Skwala		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Nemouridae			Zapada	102591 Unclassified	SH	Larvae	Zapada		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Taeniopterygidae				102788 Unclassified	SH	Juvenile/Damaged	Taeniopterygidae		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda			Collembola					99237	CG	None	Collembola		2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Perlodidae				102994 Unclassified	Р	Juvenile/Damaged	Perlodidae		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Trichoptera	Limnephilidae				115933 Unclassified	CG	Juvenile/Damaged	Limnephilidae		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Annelida	Clitellata	Oligochaeta	Tubificida	Naididae				68854	CG	None	Naididae		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Perlodidae			Skwala	103102 UV	Р	Larvae	Skwala		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Taeniopterygidae				102788 Unclassified	SH	Juvenile/Damaged	Taeniopterygidae		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Nemouridae			Zapada cinctipes	102594 UV	SH	Larvae	Zapada cinctipes		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Nemouridae			Zapada columbiana	102596 SV	SH	Larvae	Zapada columbiana		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Nemouridae				102517 Unclassified	SH	Juvenile/Damaged	Nemouridae	ND	2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Leuctridae				102840 Unclassified	SH	Juvenile/Damaged	Leuctridae		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera					102467 Unclassified		Adult	Plecoptera	ND	2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Chloroperlidae				103202 Unclassified	Р	Juvenile/Damaged	Chloroperlidae		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Capniidae				102643 Unclassified	SH	Juvenile/Damaged	Capniidae		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Tipulidae			Dicranota	121027 UV	Р	Larvae	Dicranota		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera					102467 Unclassified		Juvenile/Damaged	Plecoptera	ND	2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21

	CC#	Count	Percent Sampled	Seive Size
1	CC221898	14	15	400
1	CC221898	2	15	400
1	CC221898	13	15	400
1	CC221898	1	15	400
1	CC221898	2	15	400
1	CC221898	1	15	400
1	CC221898	3	15	400
1	CC221898	8	15	400
1	CC221898	17	15	400
1	CC221898	2	15	400
1	CC221898	1	15	400
1	CC221898	2	15	400
1	CC221898	36	15	400
1	CC221898	4	15	400
1	CC221898	12	15	400
1	CC221898	1	15	400
1	CC221898	6	15	400
1	CC221898	170	15	400
1	CC221898	1	15	400
1	CC221898	3	15	400
1	CC221898	9	15	400
1	CC221898	14	15	400
1	CC221898	16	15	400
1	CC221898	1	15	400
1	CC221898	4	15	400
1	CC221898	8	15	400
1	CC221898	3	15	400
1	CC221899	16	5	400
1	CC221899	6	5	400
1	CC221899	2	5	400
1	CC221899	1	5	400
1	CC221899	2	5	400
1	CC221899	50	5	400
1	CC221899	1	5	400
1	CC221899	26	5	400
1	CC221899	3	5	400
1	CC221899	1	5	400
1	CC221899	1	5	400
1	CC221899	79	5	400
1	CC221899	15	5	400
1	CC221899	1	5	400

Minnow Environmental (BC) Taxonomist: Scott Finlayson <u>scottfinlayson@cordilleraconsulting.ca</u> 250-494-7553

										Func	tional Feed	ling					
Phylum	Sub Phylum	Class	Order	Family	Subfamily	Tribe	Taxonomy	ITIS	Code	Voltinism	Group	Maturity	Name	ND	Site	Sample	Date
Arthropoda	Hexapoda	Insecta	Diptera	Psychodidae			Pericoma/Telmatoscopus	125351	1A		CG	Larvae	Pericoma/Telmatoscopus		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Empididae					135830 UV		Р	Pupa	Empididae		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Empididae			Neoplasta		136352		Р	Larvae	Neoplasta		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Corynoneura		128563		CG	Larvae	Corynoneura		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Tanypodinae				127994		Р	Juvenile/Damaged	Tanypodinae		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Orthocladius complex	128874	4A		CG	Larvae	Orthocladius complex		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Tvetenia		129197		CG	Larvae	Tvetenia		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Hydrobaenus		128750		CG	Larvae	Hydrobaenus		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Limnophyes		128776		CG	Larvae	Limnophyes		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Brillia		128477		SH	Larvae	Brillia		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Heleniella		128730		CG	Larvae	Heleniella		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Diamesinae	Diamesini	Pseudodiamesa		128416		CG	Larvae	Pseudodiamesa		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera						118831			Juvenile/Damaged	Diptera		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Chironominae	Tanytarsini	Micropsectra		129890		CG	Larvae	Micropsectra		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Diamesinae	Diamesini	Pagastia		128401		CG	Larvae	Pagastia		2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae					127917			Pupa	Chironomidae	ND	2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae					127917			Pupa	Chironomidae	ND	2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Chironominae	Tanytarsini	Micropsectra		129890		CG	Larvae	Micropsectra		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Diamesinae	Diamesini	Pagastia		128401		CG	Larvae	Pagastia		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Brillia		128477		SH	Larvae	Brillia		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Limnophyes		128776		CG	Larvae	Limnophyes		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Tvetenia		129197		CG	Larvae	Tvetenia		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Orthocladius complex	128874	1A		CG	Larvae	Orthocladius complex		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Empididae			Neoplasta		136352		Р	Larvae	Neoplasta		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Empididae					135830 UV		Р	Pupa	Empididae	ND	2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Empididae					135830 UV		Р	Juvenile/Damaged	Empididae		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Psychodidae			Pericoma/Telmatoscopus	125351	1A		CG	Larvae	Pericoma/Telmatoscopus		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Tipulidae					118840		SH	Juvenile/Damaged	Tipulidae		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera						102467 Un	classified		Juvenile/Damaged	Plecoptera	ND	2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Diptera	Tipulidae			Dicranota		121027 UV		Р	Larvae	Dicranota		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Capniidae					102643 Un	classified	SH	Juvenile/Damaged	Capniidae		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Leuctridae					102840 Un	classified	SH	Juvenile/Damaged	Leuctridae		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Nemouridae					102517 Un	classified	SH	Juvenile/Damaged	Nemouridae		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Nemouridae			Zapada columbiana		102596 SV		SH	Larvae	Zapada columbiana		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Perlodidae					102994 Un	classified	Р	Juvenile/Damaged	Perlodidae		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Taeniopterygidae					102788 Un	classified	SH	Juvenile/Damaged	Taeniopterygidae		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Plecoptera	Nemouridae			Zapada		102591 Un	classified	SH	Larvae	Zapada		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Annelida	Clitellata	Oligochaeta	Tubificida	Naididae			Nais		68946		CG	None	Nais		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda	Hexapoda	Insecta	Trichoptera	Limnephilidae					115933 Un	classified	CG	Juvenile/Damaged	Limnephilidae		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21
Arthropoda			Collembola						99237		CG	None	Collembola		2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21

ND designation of a taxa represents a non-distinct taxa. This adjusts where the associated taxa fall in the metrics for this sample because the individuals are likely represented by Genus or Species level identifications.

CC#	Count	Percent Sampled	Seive Size
CC221899	36	5	400
CC221899	2	5	400
CC221899	1	5	400
CC221899	1	5	400
CC221899	2	5	400
CC221899	16	5	400
CC221899	22	5	400
CC221899	7	5	400
CC221899	1	5	400
CC221899	4	5	400
CC221899	14	5	400
CC221899	6	5	400
CC221899	1	5	400
CC221899	40	5	400
CC221899	29	5	400
CC221899	17	5	400
CC221900	24	20	400
CC221900	6	20	400
CC221900	123	20	400
CC221900	1	20	400
CC221900	1	20	400
CC221900	59	20	400
CC221900	10	20	400
CC221900	2	20	400
CC221900	4	20	400
CC221900	1	20	400
CC221900	14	20	400
CC221900	6	20	400
CC221900	12	20	400
CC221900	16	20	400
CC221900	58	20	400
CC221900	3	20	400
CC221900	35	20	400
CC221900	1	20	400
CC221900	31	20	400
CC221900	42	20	400
CC221900	40	20	400
CC221900	3	20	400
CC221900	2	20	400
CC221900	2	20	400

Client	Project	Site	Sample	Date	CC#	400 micron fraction	
						% Sampled	# Invertebrates
Minnow Environmental (BC)	GGCAMP (21-52)	2021	RG_GHNF_BIC_1_2021-09-23	23-Sep-21	CC221898	15%	354
Minnow Environmental (BC)	GGCAMP (21-52)	2021	RG_GHNF_BIC_2_2021-09-23	23-Sep-21	CC221899	5%	403
Minnow Environmental (BC)	GGCAMP (21-52)	2021	RG_GHNF_BIC_3_2021-09-23	23-Sep-21	CC221900	20%	496

	Functional Feeding					
	Groups	Abbreviation	ITIS Number	Tolerance	Voltinism	
Phylum: Arthropoda	Unclassified		82696			
Order: Collembola	Collector-Gatherer	CG	99237	10		
Subphylum: Hexapoda	Unclassified		563886			
Class: Insecta	Unclassified		99208			
Order: Plecoptera	Unclassified	C 11	102467		Unclassified	
Family: Caphidae	Shredder-Herbivore	SH	102643	1	Unclassified	
Family: Chloroperildae	Predator	P	103202	1	Unclassified	
<u>Sweitsa</u>	Predator Shraddar Harbiyara	р Р	103273	1	SV	
	Shredder Herbivere	2H	102640	р	Unclassified	
Zanada	Shredder Herbivere	сц 2П	102517	2	Unclassified	
Zapada cinctines	Shredder Herbivore	сц ЭП	102591	2	Uliciassilieu	
Zapada columbiana	Shredder-Herbivore	SH	102594	2	SV	
Lepide Columbiana	Predator	D	102000	2	Unclassified	
Skwala	Predator	F D	102334	2		
Eamily: Taeniontervgidae	Shredder-Herbivore	ч SH	102788	2	Unclassified	
		511	102700	2	oneidssined	
l Order: Trichontera	Unclassified		115095			
Family: Limpenhilidae	Collector-Gatherer	ſG	115933	Д	Unclassified	
		60	115555	-	onclassifica	
Order: Diptera	Unclassified		118831			
Family: Chironomidae	Unclassified		127917	6		
Subfamily: Chironominae	Collector-Gatherer	CG	129228	6		
Tribe: Tanytarsini	Collector-Gatherer	CG	129872	6		
Micropsectra	Collector-Gatherer	CG	129890	7		
Subfamily: Diamesinae	Collector-Gatherer	CG	128341	2		
Tribe: Diamesini	Collector-Gatherer	CG	128351	4		
Pagastia	Collector-Gatherer	CG	128401	1		
Pseudodiamesa	Collector-Gatherer	CG	128416	6		
Subfamily: Orthocladiinae	Collector-Gatherer	CG	128457	5		
Brillia	Shredder-Herbivore	SH	128477	5		
Corynoneura	Collector-Gatherer	CG	128563	7		
Heleniella	Collector-Gatherer	CG	128730	6		
<u>Hydrobaenus</u>	Collector-Gatherer	CG	128750	8		
Limnophyes	Collector-Gatherer	CG	128776	8		
Orthocladius complex	Collector-Gatherer	CG	128874A	6		
<u>Tvetenia</u>	Collector-Gatherer	CG	129197	5		
Subfamily: Tanypodinae	Predator	Р	127994	7		
Family: Dixidae	Unclassified		125809	2		
<u>Dixa</u>	Collector-Gatherer	CG	125810	2		
Family: Empididae	Predator	Р	135830	6	UV	
<u>Neoplasta</u>	Predator	Р	136352	6		
Family: Muscidae	Predator	Р	150025	6		
<u>Limnophora</u>	Predator	Р	150730	6		
Family: Psychodidae	Collector-Gatherer	CG	125351	10		
<u>Pericoma/Telmatoscopus</u>	Collector-Gatherer	CG	125351A	4		
Family: Tipulidae	Shredder-Herbivore	SH	118840	3		
<u>Dicranota</u>	Predator	Р	121027	3	UV	
Phylum: Annelida	Unclassified		64357			
Subphylum: Clitellata	Unclassified		568832			
Class: Oligochaeta	Collector-Gatherer	CG	68422	5		
Order: Tubificida	Unclassified		68498			
Family: Naididae	Collector-Gatherer	CG	68854	10		
<u>Nais</u>	Collector-Gatherer	CG	68946	10		
Taxa present but not included:						
Phylum: Arthropoda	Unclassified		82696			
Subphylum: Hexapoda	Unclassified		563886			
Class: Insecta	Unclassified		99208			
Order: Diptera	Unclassified		118831			
Family: Cecidomyiidae	Unclassified		122975			
Subphylum: Crustacea	Collector-Gatherer	CG	83677	8		
Class: Ostracoda	Collector-Gatherer	CG	84195	8		
Phylum: Nemata	Shredder-Herbivore	SH	563956			
Phylum: Platyhelminthes	Unclassified		53963	8		
Class: Turbellaria	Predator	Р	53964	4		

Site:	2021	2021	2021
Sample:	RG_GHNF_BIC_1_2021-09-23	RG_GHNF_BIC_2_2021-09-23	RG_GHNF_BIC_3_2021-09-23
Sample Collection Date:	23-Sep-21	23-Sep-21	23-Sep-21
CC#:	CC221898	CC221899	CC221900
Phylum: Arthropoda	0	0	0
Order: Collembola	20	0	10
Subphylum: Hexapoda	0	0	0
Class: Insecta	0	0	0
Order: Plecoptera	47	40	60
Family: Capniidae	1133	1580	290
Family: Chloroperlidae	7	20	0
Family: Leuctridae	20	60	15
Family: Nemouridae	180	1540	380
Family: Perlodidae	114	340	155
Family: Taeniopterygidae	53	40	210
Order: Trichoptera	0	0	0
Family: Limnephilidae	0	120	10
Order: Diptera	0	20	0
Family: Chironomidae	419	3180	1120
Family: Dixidae	7	0	0
Family: Empididae	0	60	35
Family: Muscidae	13	0	0
Family: Psychodidae	240	720	70
Family: Tipulidae	107	300	110
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
Class: Oligochaeta	0	0	0
Order: Tubificida	0	0	0
Family: Naididae	0	40	15
Totals:	2360	8060	2480

Taxa present but not included:

Phylum: Arthropoda	0	0	0
Subphylum: Hexapoda	0	0	0
Class: Insecta	0	0	0
Order: Diptera	0	0	0
Family: Cecidomyiidae	7	0	0
Subphylum: Crustacea	0	0	0
Class: Ostracoda	7	20	5
Phylum: Nemata	0	0	5
Phylum: Platyhelminthes	0	0	0
Class: Turbellaria	7	0	5
Totals:	21	20	15

ND designation of a taxa represents a non-distinct taxa. This adjusts where the associated taxa fall in the metrics for this sample because the individuals are likely represented by Genus or Species level identifications.

Project: GGCAMP (21-52) Minnow Environmental (BC) Taxonomist: Scott Finlayson scottfinlayson@cordilleraconsulting.ca 250-494-7553

Site: Sample: Sample Collection Date:	2021 RG_GHNF_BIC_1_2021-09-23 23-Sep-21	2021 RG_GHNF_BIC_2_2021-09-23 23-Sep-21	2021 RG_GHNF_BIC_3_2021-09-23 23-Sep-21
CC#:	CC221898	CC221899	CC221900
Phylum: Arthropoda	0	0	0
Order: Collembola	20	0	10
Subphylum: Hexapoda	0	0	0
l Class: Insecta	0	0	0
Order: Plecontera	47	40	60
Family: Canniidae	1133	1580	290
Family: Chloroperlidae	0	20	0
Sweltsa	7	0	0
Family: Leuctridae	20	60	15
Family: Nemouridae	60	520	175
Zanada	27	0	200
Zapada cinctines	03	1000	0
Zapada columbiana	0	20	5
Eamily: Periodidae	107	320	155
skwala	7	20	133
Family: Taeniontervgidae	52	20	210
I ranny. raenopteryglude		40	210
Order: Trichoptera	0	0	0
Family: Limnephilidae	0	120	10
Order: Diptera	0	20	0
Family: Chironomidae	93	340	120
Subfamily: Chironominae	0	0	0
Tribe: Tanytarsini	0	0	0
<u>Micropsectra</u>	13	800	30
Subfamily: Diamesinae	0	0	0
Tribe: Diamesini	0	0	0
<u>Pagastia</u>	87	580	615
<u>Pseudodiamesa</u>	7	120	0
Subfamily: Orthocladiinae	0	0	0
Brillia	13	80	5
<u>Corynoneura</u>	13	20	0
<u>Heleniella</u>	7	280	0
<u>Hydrobaenus</u>	0	140	0
<u>Limnophyes</u>	20	20	5
Orthocladius complex	53	320	50
Tvetenia	113	440	295
Subfamily: Tanypodinae	0	40	0
Family: Dixidae	0	0	0
<u>Dixa</u>	7	0	0
Family: Empididae	0	40	25
<u>Neoplasta</u>	0	20	10
Family: Muscidae	0	0	0
<u>Limnophora</u>	13	0	0
Family: Psychodidae	0	0	0
<u>Pericoma/Telmatoscopus</u>	240	720	70
Family: Tipulidae	27	0	30
<u>Dicranota</u>	80	300	80
Phylum: Annelida	0	0	0
Subphylum: Clitellata	0	0	0
l Class: Oligochaeta	0	0	0
Order: Tubificida	0	0	0
Family: Naididae	0	40	0
Nais	0	0	15
 Totals:	2360	8060	2480

Totals:	21	20	15	
Class: Turbellaria	7	0	5	
Phylum: Platyhelminthes	0	0	0	
Phylum: Nemata	0	0	5	
Class: Ostracoda	7	20	5	
Subphylum: Crustacea	0	0	0	
Family: Cecidomyiidae	7	0	0	
Order: Diptera	0	0	0	
Class: Insecta	0	0	0	
Subphylum: Hexapoda	0	0	0	
Phylum: Arthropoda	0	0	0	

ND designation of a taxa represents a non-distinct taxa. This adjusts where the associated taxa fall in the metrics for this sample because the individuals are likely represented by Genus or Species level identifications.

Invoice

Number: SI-220056 Reference: GGCAMP (21-52) Issued: 12/07/2021 Due: 01/06/2022 Deliver To BC V8T 2A2

Cordillera Consulting PO Box 1202, Unit 1 - 13216 Henry Ave SUMMERLAND BC V0H 1Z0 Canada www.cordilleraconsulting.ca 250-494-7553

scottfinlayson@cordilleraconsulting.ca GST/HST 831642491 RT 0001

Minnow Environmental BC V8T 2A2

ltem		Qty	Price	Sales Tax	Amount
0001	A Sorting and Taxonomic Analysis to Genus/Species Level	3.00	325.00	GST 5.00%	975.00
0021	EEM Subsample QC	4.00	100.00	GST 5.00%	400.00
			Subtotal	1,375.00	
Terms an	d Conditions		GST 5.00	GST 5.00%	
Cordillera	Consulting Inc.		Invoice T	Invoice Total	
Unit 1 - 13 Box 1202	3216 Henry Ave		Total to I	Total to Pay	
Summerla V0H 1Z0	ind, BC				

GST No. 831642491

Minnow Environmental (BC) Taxonomist: Scott Finlayson <u>scottfinlayson@cordilleraconsulting.ca</u> 250-494-7553

Client	Project	Site	Sample	CC#	Date	Size	# of Jars	
1 Minnow Environmental (BC) GGCAMP (21-52)) 2021	RG_GHNF_BIC_1_2021-09-23	CC221898	9/23/2021	400µM		1
2 Minnow Environmental (BC) GGCAMP (21-52)) 2021	RG_GHNF_BIC_2_2021-09-23	CC221899	9/23/2021	400µM		2
3 Minnow Environmental (BC) GGCAMP (21-52)) 2021	RG_GHNF_BIC_3_2021-09-23	CC221900	9/23/2021	400µM		1

TRICHANALYTICS -BENTHIC INVERTEBRATE TISSUE

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Amy Wiebe Date Received: 28 Sep 2021 Client: Aquatic Scientist Date of Analysis: 17 Oct 2021 Final Report Date: 20 Oct 2021 Minnow Environmental Rev 02 Issued: 22 Oct 2021 **Phone:** (250) 595-1627 Project No.: 2021-265 Email: awiebe@teck.com / awiebe@minnow.ca Method No.: MET-002.05 Client Project: GGCAMP (21-52) (PO 750554) Analytical Request: Composite-Taxa Benthic Invertebrate Tissue (total metals and moisture) - 24 samples. See chain of custody form provided for sample identification numbers. Notes: Analytical results are expressed in parts per million (ppm) dry weight (equivalent to mg/kg). Samples guantified using DORM-4, NIST-1566b, and NIST-2976 certified reference standards. Aluminum concentrations above 1,000 ppm are outside linear range of the calibration curve. RPD values calculated according to the British Columbia Environmental Laboratory Manual (2020) criteria. Client specific DQO for Selenium accuracy is 90-110% of the certified value; result achieved 108% (ranging from 104-110%). Sample ID # 605 is clams only (ID # RG_GHP_INV-1_2021-09-22). Report Rev02 includes the following changes to sample IDs, as per client request: Sample ID # 606a is clams only & assigned as RG_GHP_INVBIV-3_2021-09-22. Sample ID # 606b is all other benthic invertebrate tissues & assigned as RG_GHP_INV-3_2021-09-22. Sample ID # 607a is clams only & assigned as RG_GHP_INVBIV-5_2021-09-23. Sample ID # 607b is all other benthic invertebrate tissues & assigned as RG GHP INV-5 2021-09-23. This report provides the analytical results only for tissue samples noted above as received from the Client. undensen 22 Oct 2021 Reviewed and Approved by Jennie Christensen, PhD, RPBio Date [The analytical report shall not be reproduced except in full under the expressed written consent of TrichAnalytics Inc.] TrichAnalytics Inc. 207-1753 Sean Heights Saanichton, BC V8M 0B3 www.trichanalytics.com Testing Accreditation No. A4196

			RG GANF INV-	RG GAUT INV-	RG GAUT INV-	RG GAUT INV-	RG GHBP INV-
		Client ID	1_2021-09-15	1_2021-09-16	2_2021-09-16	3_2021-09-16	1_2021-09-14
			-	_	-	-	-
		Lab ID	586	587	588	589	590
	We	et Weight (g)	0.5952	0.2086	0.1892	0.3416	0.3567
	Di	ry Weight (g)	0.1792	0.0418	0.0388	0.0495	0.0715
	Moisture (%		69.9	80.0	79.5	85.5	80.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.009	0.030	0.767	2.8	5.2	4.5	3.1
11B	0.102	0.340	1.6	6.4	15	17	2.4
23Na	1.4	4.7	4,285	4,988	5,078	10,209	4,905
24Mg	0.024	0.080	1,906	1,501	2,384	2,626	3,188
27AI	0.058	0.193	1,164	6,541	14,715	13,927	1,506
31P	32	107	11,621	10,741	13,436	9,501	11,315
39K	2.0	6.7	10,182	12,441	17,449	21,859	11,045
44Ca	17	57	5,808	3,442	5,141	4,859	83,627
49Ti	0.116	0.387	70	373	990	841	102
51V	0.072	0.240	1.9	7.4	21	18	2.3
52Cr	0.184	0.613	6.0	21	31	28	7.4
55Mn	0.007	0.023	43	120	325	115	27
57Fe	0.906	3.0	448	1,574	3,922	4,001	552
59Co	0.010	0.033	0.511	1.9	3.8	3.8	0.806
60Ni	0.047	0.157	13	41	57	61	24
63Cu	0.010	0.033	16	31	28	18	64
66Zn	0.227	0.757	146	185	255	137	74
75As	0.423	1.4	<0.423	0.818	1.2	1.2	1.8
77Se	0.378	1.3	4.8	3.9	5.1	3.9	21
88Sr	0.001	0.003	9.8	13	23	21	80
95Mo	0.001	0.003	0.287	0.653	0.993	1.3	0.679
107Ag	0.001	0.003	0.143	0.184	0.273	0.136	0.715
111Cd	0.044	0.147	0.458	1.9	4.0	1.3	0.671
118Sn	0.027	0.090	0.218	1.0	1.9	0.906	0.481
121Sb	0.004	0.013	0.053	0.258	0.495	0.432	0.057
137Ba	0.001	0.003	59	123	281	265	147
202Hg	0.026	0.087	0.109	0.093	0.116	0.101	0.054
205TI	0.001	0.003	0.041	0.103	0.204	0.208	0.120
208Pb	0.001	0.003	0.340	1.2	2.6	2.4	0.277
238U	0.001	0.003	0.059	0.161	0.359	0.407	0.272

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_GHBP_INV-	RG_GHBP_INV-	RG_GANF_INV-	RG_GANF_INV-	RG_GHFF_INV-
		Client ID	2_2021-09-14	3_2021-09-14	2_2021-09-15	3_2021-09-16	1_2021-09-09
		Lab ID	591	592	593	594	595
	We	et Weight (g)	0.5314	0.3492	0.4483	0.1261	0.1870
	Di	ry Weight (g)	0.1004	0.0724	0.1103	0.0283	0.0335
	Moisture (%)		81.1	79.3	75.4	77.6	82.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.009	0.030	2.7	2.3	0.600	1.5	1.2
11B	0.102	0.340	2.1	1.5	1.2	3.1	1.6
23Na	1.4	4.7	6,472	5,091	2,228	3,183	5,928
24Mg	0.024	0.080	2,769	3,019	1,556	2,533	2,841
27AI	0.058	0.193	977	878	766	2,867	965
31P	32	107	12,447	12,659	10,625	13,497	15,742
39K	2.0	6.7	13,656	11,908	8,016	13,301	14,794
44Ca	17	57	39,060	57,497	4,870	16,862	11,361
49Ti	0.116	0.387	57	49	44	196	67
51V	0.072	0.240	1.8	1.4	1.1	3.9	1.3
52Cr	0.184	0.613	6.9	7.8	8.7	28	7.7
55Mn	0.007	0.023	47	39	39	45	36
57Fe	0.906	3.0	479	428	373	1,276	435
59Co	0.010	0.033	0.557	0.720	0.585	2.5	0.330
60Ni	0.047	0.157	23	23	15	56	22
63Cu	0.010	0.033	50	50	16	22	17
66Zn	0.227	0.757	157	96	152	113	176
75As	0.423	1.4	1.2	1.3	<0.423	0.961	<0.423
77Se	0.378	1.3	34	24	3.8	5.0	14
88Sr	0.001	0.003	42	61	5.6	15	9.1
95Mo	0.001	0.003	0.601	0.496	0.209	0.655	0.335
107Ag	0.001	0.003	0.606	0.538	0.129	0.234	0.117
111Cd	0.044	0.147	0.763	0.549	0.671	0.907	0.488
118Sn	0.027	0.090	0.422	0.343	0.376	1.9	1.1
121Sb	0.004	0.013	0.070	0.053	0.053	0.125	0.058
137Ba	0.001	0.003	78	98	27	77	33
202Hg	0.026	0.087	0.085	0.047	0.081	0.054	0.068
205TI	0.001	0.003	0.127	0.122	0.035	0.107	0.041
208Pb	0.001	0.003	0.308	0.201	0.228	0.585	0.315
238U	0.001	0.003	0.141	0.124	0.044	0.133	0.209

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_GHFF_INV-	RG_GHFF_INV-	RG_GHFF_INVLU	RG_GHUT_INV-	RG_GHUT_INV-
		Client ID	2_2021-09-09	3_2021-09-10	M-1_2021-09-10	1_2021-09-13	2_2021-09-13
						_	_
		Lab ID	596	597	598	599	600
	We	et Weight (g)	0.0884	0.1420	0.0124	0.1856	0.1888
	Di	ry Weight (g)	0.0194	0.0286	0.0049	0.0395	0.0320
	Moisture (%		78.1	79.9	60.5	78.7	83.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.009	0.030	1.2	1.3	0.342	1.7	2.1
11B	0.102	0.340	1.9	2.6	0.117	2.8	3.8
23Na	1.4	4.7	5,098	3,973	5,043	5,109	4,785
24Mg	0.024	0.080	2,847	3,155	2,469	3,073	2,996
27AI	0.058	0.193	1,220	2,058	59	3,944	4,933
31P	32	107	12,935	13,083	10,814	15,254	14,261
39K	2.0	6.7	13,541	13,943	8,402	15,637	14,627
44Ca	17	57	9,154	15,104	5,611	7,889	9,146
49Ti	0.116	0.387	85	147	3.8	284	389
51V	0.072	0.240	2.1	2.7	0.266	5.3	8.0
52Cr	0.184	0.613	16	20	7.3	9.3	20
55Mn	0.007	0.023	29	28	13	49	61
57Fe	0.906	3.0	678	863	192	1,243	1,524
59Co	0.010	0.033	0.911	1.3	0.339	1.6	2.3
60Ni	0.047	0.157	40	51	12	27	47
63Cu	0.010	0.033	18	19	14	32	43
66Zn	0.227	0.757	164	151	174	238	218
75As	0.423	1.4	0.494	0.522	<0.423	1.1	0.961
77Se	0.378	1.3	8.4	8.4	13	7.9	7.5
88Sr	0.001	0.003	7.4	9.1	8.2	7.1	8.7
95Mo	0.001	0.003	0.251	0.223	0.139	0.474	0.502
107Ag	0.001	0.003	0.135	0.216	0.171	0.099	0.135
111Cd	0.044	0.147	0.436	0.418	2.0	3.8	3.6
118Sn	0.027	0.090	0.630	1.3	0.256	1.1	1.1
121Sb	0.004	0.013	0.068	0.100	0.024	0.166	0.223
137Ba	0.001	0.003	29	56	19	49	61
202Hg	0.026	0.087	0.041	0.072	0.081	0.081	0.072
205TI	0.001	0.003	0.038	0.049	0.009	0.116	0.126
208Pb	0.001	0.003	0.637	0.401	0.044	1.1	1.5
238U	0.001	0.003	0.215	0.287	0.018	0.241	0.307

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_GHUT_INV-	RG_GHNF_INV-	RG_GHNF_INV-	RG_GHNF_INV-	RG_GHP_INV-
		Client ID	3_2021-09-13	1_2021-09-10	2_2021-09-10	3_2021-09-11	1_2021-09-22
				_		_	_
		Lab ID	601	602	603	604	605
	We	et Weight (g)	0.2080	0.2392	0.1908	0.1149	0.3351
	Di	ry Weight (g)	0.0421	0.0415	0.0307	0.0179	0.1076
	Moisture (%		79.8	82.7	83.9	84.4	67.9
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.009	0.030	1.5	1.3	1.1	0.914	1.9
11B	0.102	0.340	1.6	1.1	1.6	1.0	5.2
23Na	1.4	4.7	6,161	4,797	4,968	3,061	924
24Mg	0.024	0.080	3,083	3,243	2,625	2,606	1,267
27AI	0.058	0.193	2,245	1,211	1,089	1,059	5,711
31P	32	107	15,069	14,220	13,850	12,973	1,187
39K	2.0	6.7	15,451	12,196	13,164	9,905	1,942
44Ca	17	57	4,946	10,478	6,189	9,311	215,780
49Ti	0.116	0.387	181	89	69	58	475
51V	0.072	0.240	3.2	2.0	2.1	1.7	11
52Cr	0.184	0.613	9.0	7.5	5.3	6.0	77
55Mn	0.007	0.023	43	42	32	29	38
57Fe	0.906	3.0	672	457	369	359	3,218
59Co	0.010	0.033	1.6	0.642	0.447	0.384	4.2
60Ni	0.047	0.157	24	20	21	17	138
63Cu	0.010	0.033	39	17	16	17	9.6
66Zn	0.227	0.757	178	147	135	220	26
75As	0.423	1.4	0.576	0.615	0.615	0.643	0.951
77Se	0.378	1.3	7.9	10	11	10	12
88Sr	0.001	0.003	3.8	6.0	5.4	4.8	181
95Mo	0.001	0.003	0.418	0.290	0.232	0.203	0.406
107Ag	0.001	0.003	0.117	0.050	0.084	0.092	0.218
111Cd	0.044	0.147	2.9	1.5	1.2	0.689	0.517
118Sn	0.027	0.090	0.851	0.909	0.877	1.3	0.642
121Sb	0.004	0.013	0.105	0.058	0.061	0.052	0.244
137Ba	0.001	0.003	23	22	17	19	169
202Hg	0.026	0.087	0.072	0.035	0.052	0.087	0.052
205TI	0.001	0.003	0.087	0.068	0.066	0.101	0.084
208Pb	0.001	0.003	0.758	0.285	0.251	0.243	1.4
238U	0.001	0.003	0.208	0.201	0.273	0.191	0.385

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_GHP_INVBIV-	RG_GHP_INV-	RG_GHP_INVBIV-	RG_GHP_INV-
		Client ID	3_2021-09-22	3_2021-09-22	5_2021-09-23	5_2021-09-23
			_	_	_	_
		Lab ID	606a	606b	607a	607b
	We	et Weight (g)	0.0585	0.2374	0.0846	0.2885
	Di	ry Weight (g)	0.0304	0.0472	0.0495	0.0494
		Moisture (%)	48.0	80.1	41.5	82.9
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.009	0.030	2.9	6.5	5.3	5.3
11B	0.102	0.340	5.4	9.7	11	11
23Na	1.4	4.7	3,827	5,863	5,967	5,544
24Mg	0.024	0.080	1,742	5,038	2,363	3,794
27AI	0.058	0.193	5,872	10,651	13,669	12,090
31P	32	107	4,839	12,801	5,461	10,876
39K	2.0	6.7	7,596	13,876	9,996	11,851
44Ca	17	57	319,525	134,919	500,159	96,029
49Ti	0.116	0.387	439	1,036	998	878
51V	0.072	0.240	14	18	31	18
52Cr	0.184	0.613	163	19	437	29
55Mn	0.007	0.023	91	86	207	84
57Fe	0.906	3.0	4,342	2,807	10,575	3,530
59Co	0.010	0.033	7.3	1.8	21	2.9
60Ni	0.047	0.157	315	52	740	62
63Cu	0.010	0.033	36	77	61	71
66Zn	0.227	0.757	49	65	68	82
75As	0.423	1.4	1.5	3.7	2.0	3.1
77Se	0.378	1.3	9.4	17	11	20
88Sr	0.001	0.003	669	125	176	90
95Mo	0.001	0.003	0.638	1.0	2.6	0.638
107Ag	0.001	0.003	0.916	1.4	0.983	1.1
111Cd	0.044	0.147	0.751	0.720	1.5	1.2
118Sn	0.027	0.090	0.670	0.886	1.3	1.0
121Sb	0.004	0.013	0.220	0.345	0.405	0.263
137Ba	0.001	0.003	338	335	255	270
202Hg	0.026	0.087	0.052	0.074	0.052	0.078
205TI	0.001	0.003	0.100	0.263	0.199	0.305
208Pb	0.001	0.003	1.2	2.0	2.3	2.5
238U	0.001	0.003	0.402	0.390	0.448	0.357

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

	Client ID	RG_GANF_INV-1_2021-09-15			RG_GHF	F_INV-1_202	21-09-09	RG_GHN	IF_INV-1_20	21-09-10
	Lab ID		586			595			602	
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.009	0.767	0.745	2.9	1.2	1.1	8.7	1.3	1.2	8.0
11B	0.102	1.6	1.3	21	1.6	1.6	0.0	1.1	1.0	-
23Na	1.4	4,285	4,113	4.1	5,928	5,317	11	4,797	4,816	0.4
24Mg	0.024	1,906	1,581	19	2,841	2,547	11	3,243	3,068	5.5
27AI	0.058	1,164	1,139	2.1	965	1,008	4.4	1,211	1,286	6.0
31P	32	11,621	12,941	11	15,742	14,241	10	14,220	13,519	5.1
39K	2.0	10,182	11,066	8.3	14,794	13,386	10	12,196	12,135	0.5
44Ca	17	5,808	7,112	20	11,361	9,640	16	10,478	9,960	5.1
49Ti	0.116	70	51	31	67	69	2.9	89	92	3.3
51V	0.072	1.9	2.1	10	1.3	1.4	7.4	2.0	2.1	4.9
52Cr	0.184	6.0	8.2	31	7.7	5.7	30	7.5	7.0	6.9
55Mn	0.007	43	51	17	36	33	8.7	42	34	21
57Fe	0.906	448	589	27	435	410	5.9	457	438	4.2
59Co	0.010	0.511	0.640	22	0.330	0.278	17	0.642	0.522	21
60Ni	0.047	13	17	27	22	16	32	20	18	11
63Cu	0.010	16	22	31	17	16	6.1	17	16	6.1
66Zn	0.227	146	178	20	176	136	26	147	131	12
75As	0.423	<0.423	<0.423	-	<0.423	<0.423	-	0.615	0.671	-
77Se	0.378	4.8	5.1	5.5	14	12	15	10	11	9.5
88Sr	0.001	9.8	9.2	5.8	9.1	8.7	4.5	6.0	5.7	5.1
95Mo	0.001	0.287	0.287	0.1	0.335	0.293	13	0.290	0.261	11
107Ag	0.001	0.143	0.143	0.0	0.117	0.108	8.0	0.050	0.050	0.0
111Cd	0.044	0.458	0.458	0.1	0.488	0.453	7.4	1.5	1.6	6.5
118Sn	0.027	0.218	0.197	10	1.1	0.989	11	0.909	0.804	12
121Sb	0.004	0.053	0.068	25	0.058	0.056	3.5	0.058	0.060	3.4
137Ba	0.001	59	62	4.7	33	33	0.0	22	23	4.4
202Hg	0.026	0.109	0.124	-	0.068	0.063	-	0.035	0.035	-
205TI	0.001	0.041	0.032	26	0.041	0.036	13	0.068	0.059	14
208Pb	0.001	0.340	0.348	2.4	0.315	0.315	0.0	0.285	0.308	7.8
238U	0.001	0.059	0.067	13	0.209	0.176	17	0.201	0.194	3.5

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	Sa	ample Group ID		01			02	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.009	1.21	1.3	106	10	1.3	109	3.7
11B	0.102	4.5	4.8	107	2.8	5.2	115	2.6
23Na	1.4	14,000	14,726	105	5.4	15,492	111	1.7
24Mg	0.024	910	1,026	113	9.2	977	107	2.8
27AI	0.058	197.2	207	105	11	219	111	7.6
31P	32	8,000	8,569	107	7.4	8,619	108	3.7
39K	2.0	15,500	16,450	106	4.1	17,265	111	4.1
44Ca	17	2,360	2,572	109	6.2	2,531	107	3.6
49Ti	0.116	12.24	12	97	14	14	118	10
51V	0.072	1.57	1.9	118	3.7	1.6	102	13
52Cr	0.184	1.87	2.0	109	4.0	2.0	108	4.1
55Mn	0.007	3.17	3.7	117	7.8	3.5	109	2.4
57Fe	0.906	343	388	113	5.1	381	111	2.6
59Co	0.010	0.25	0.300	120	6.6	0.268	107	2.8
60Ni	0.047	1.34	1.5	114	7.4	1.5	110	3.1
63Cu	0.010	15.7	18	114	6.2	18	114	2.1
66Zn	0.227	51.6	59	115	7.6	57	110	1.4
75As	0.423	6.87	7.3	106	6.5	7.6	111	2.5
77Se	0.378	3.45	3.9	110	1.5	3.8	109	4.8
88Sr	0.001	10.1	11	109	5.2	11	112	4.2
95Mo	0.001	0.29	0.324	112	4.4	0.310	107	8.1
107Ag	0.001	0.0252	0.033	130	9.3	0.033	132	12
111Cd	0.044	0.299	0.311	104	10	0.334	112	9.3
118Sn	0.027	0.061	0.075	124	12	0.067	109	17
121Sb	0.004	0.011	0.009	77	13	0.014	124	4.2
137Ba	0.001	8.6	8.9	104	3.6	9.8	114	2.5
202Hg	0.026	0.412	0.462	112	3.9	0.480	116	2.8
205TI	0.001	0.0013	-	-	-	-	-	-
208Pb	0.001	0.404	0.508	126	8.1	0.380	94	4.4
238U	0.001	0.05	0.062	124	7.8	0.051	102	7.3

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of \leq 20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

TrichAnalytics Inc.

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	Sa	ample Group ID		03	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.009	1.21	1.2	100	5.8
11B	0.102	4.5	4.5	100	3.6
23Na	1.4	14,000	14,638	105	5.4
24Mg	0.024	910	998	110	2.8
27AI	0.058	197.2	189	96	5.8
31P	32	8,000	8,756	109	4.1
39K	2.0	15,500	16,559	107	2.9
44Ca	17	2,360	2,531	107	3.9
49Ti	0.116	12.24	12	97	12
51V	0.072	1.57	1.8	115	2.2
52Cr	0.184	1.87	2.0	106	2.5
55Mn	0.007	3.17	3.5	112	2.6
57Fe	0.906	343	368	107	3.1
59Co	0.010	0.25	0.283	113	4.1
60Ni	0.047	1.34	1.5	112	4.4
63Cu	0.010	15.7	17	109	4.6
66Zn	0.227	51.6	54	106	1.9
75As	0.423	6.87	7.3	106	3.1
77Se	0.378	3.45	3.6	104	7.3
88Sr	0.001	10.1	11	109	3.4
95Mo	0.001	0.29	0.302	104	11
107Ag	0.001	0.0252	0.024	93	16
111Cd	0.044	0.299	0.351	117	10
118Sn	0.027	0.061	0.067	111	16
121Sb	0.004	0.011	0.009	82	0.0
137Ba	0.001	8.6	8.3	97	3.3
202Hg	0.026	0.412	0.396	96	6.5
205TI	0.001	0.0013	-	-	-
208Pb	0.001	0.404	0.491	122	8.6
238U	0.001	0.05	0.060	121	5.4

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation **Data Quality Objectives:**

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of \leq 20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Sample Group Information

Sample Group ID	Client ID	Lab ID	Date of Analysis
Sample Group ID 01 02 03	Client ID RG_GANF_INV-1_2021-09-15 RG_GAUT_INV-2_2021-09-16 RG_GAUT_INV-3_2021-09-16 RG_GAUT_INV-3_2021-09-14 RG_GHBP_INV-2_2021-09-14 RG_GHBP_INV-2_2021-09-14 RG_GANF_INV-2_2021-09-15 RG_GANF_INV-3_2021-09-16 RG_GHFF_INV-1_2021-09-09 RG_GHFF_INV-2_2021-09-09 RG_GHFF_INV-2_2021-09-10 RG_GHFF_INV-1_2021-09-10 RG_GHUT_INV-1_2021-09-13 RG_GHUT_INV-3_2021-09-13 RG_GHNF_INV-2_2021-09-10 RG_GHNF_INV-2_2021-09-10 RG_GHNF_INV-3_2021-09-22 RG_GHP_INV-1_2021-09-22 RG_GHP_INVBIV-3_2021-09-22 RG_GHP_INVBIV-3_2021-09-23 RG_GHP_INV-5_2021-09-23 RG_GHP_INV-5_2021-09-23	Lab ID 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606a 606b 607a 607b	Date of Analysis 17 Oct 2021 17 Oct 2021 17 Oct 2021

TrichAnalytics Inc. 207-1753 Sean Heights, Saanichton, BC, V8M OB3 Ph: (250) 532-1084			Chain of Custody (COC) for LA-ICP-MS Analysis	
	Invoicing		Reporting (if different from Invoicing)	
Project Numb	er: GGCAMP (21-52) (PO 750554)	, Standard and and any	
Company Name	: Teck Coal Limited	Company Name:	Minnow Environmental	
Contact Name:	Allie Ferguson	Contact Name:	Amy Wiebe	
Address:	421 Pine Avenue	Address:	2 Lamb Street	
City, Province:	Sparwood, BC	City, Province:	Georgetown ON	
Postal Code:	VOB 2G0	Postal Code:	176.267	
Phone:		Phone:	250-595-1627	
Email:	allie.ferguson@teck.com	Email:	awiebe@teck.com	
		Sample Analysis Re	auested	
	Sample Identification:		Sample Type:	
TRICH ID.		Species	Sample type	
586	1 RG_GANF_INV-1_2021-09-15	Composite	Composite-taxa benthic invertebrate tissue samples	
587	2 RG_GAUT_INV-1_2021-09-16 /	Composite	Composite-taxa penthic invertebrate tissue samples	
588	3 RG_GAUT_INV-2_2021-09-16	Composite	Composite-taxa penthic invertebrate tissue samples	
589	4 RG_GAUT_INV-3_2021-09-16	Composite	Composite-taxa penthic invertebrate tissue samples	
590	5 RG_GHBP_INV-1_2021-09-14	Composite	Composite-taxa penthic invertebrate tissue samples	
591	6 RG_GHBP_INV-2_2021-09-14	Composite	Composite-taxa penthic invertebrate tissue samples	
592	RG_GHBP_INV-3_2021-09-14	Composite	Composite-taxa penthic invertebrate tissue samples	
543	3 RG_GANF_INV-2_2021-09-15	Composite	Composite taxa penthic invertebrate tissue samples	
594 9	RG_GANF_INV-3_2021-09-16/	Composite	Composite-taxa benthic invertebrate tissue samples	
595 10	RG_GHFF_INV-1_2021-09-09 🧹	Composite	Composite-taxa benthic invertebrate tissue samples	
596 1	RG_GHFF_INV-2_2021-09-09	Composite	Composite-taxa benthic invertebrate tissue samples	
597 12	RG_GHFF_INV-3_2021-09-10 🗸	Composite	Composite-taxa benthic invertebrate tissue samples	
598 13	RG_GHFF_INVLUM-1_2021-09-10 🖌	Composite	Single taxon	
599 14	RG_GHUT_INV-1_2021-09-13	Composite	Composite-taxa benthic invertebrate tissue samples	
600 15	RG_GHUT_INV-2_2021-09-13	Composite	Composite-taxa benthic invertebrate tissue samples	
601 16	RG_GHUT_INV-3_2021-09-13	Composite	Composite-taxa benthic invertebrate tissue samples	
602 17	RG_GHNF_INV-1_2021-09-10	Composite	Composite-taxa benthic invertebrate tissue samples	
603 18	RG_GHNF_INV-2_2021-09-10	Composite	Composite-taxa benthic invertebrate tissue samples	
604 19	RG_GHNF_INV-3_2021-09-11	Composite	Composite-taxa benthic invertebrate tissue samples	_
605 20	RG_GHP_INV-1_2021-09-22 🖌	Composite	Composite-taxa benthic invertebrate tissue samples	
Sample(s) Release	ed By:	Sample(s) Received	By: Alex Wade	
Signature:		Signature:	2P2	
Date Sent:		Date Received:	28 500 2021 (Pri # 2002 715)	ans osoction
Sample(s) Returne	ed to Client By:	Shipping Condition	s: (10) (02) - 205)	-
		Shipping Container		-
Signature:		Date Sent:		-

COM-011.01

Page _____ of _____

Тгіс 207-1753 Se	TrichAnalytics Inc. 207-1753 Sean Heights, Saanichton, BC, V8M 0B3 Ph: (250) 532-1084		hain of Custody (COC) or LA-ICP-MS Analysis		
	Invoicing		Rep	orting (if different from Invoicing)	-
Project Numbe	er: GGCAMP (21-52) (PO 750554)		, and the second s	-
Company Name:	Teck Coal Limited	Company Name:	Minnow	Environmental	-
Contact Name:	Cait Good	Contact Name:	Peter So	hnurr	
Address:	421 Pine Avenue	Address:	2 Lamb	Street	-
Lity, Province:	Sparwood, BC	City, Province:	George	own. ON	1
ostal Code:	VOB 2G0	Postal Code:	176.26		-
hone:	250-425-8202	Phone:	250-595	-1627	-
mail:	cait.good@teck.com	Email:	pschnurr@n	innow.ca	-
		Sample Analysis Re	auested		4
	Sample Identification:			Sample Type:	1
TRICH ID		Species		Sample type]
606 21	RG_GHP_INV-3_2021-09-22	Composite	Composite-	axa benthic invertebrate tissue samples	
607 22	RG_GHP_INV-5_2021-09-23	Composite	Composite-	axa benthic invertebrate tissue samples	1
23		Composite	Composite-	axa benthic invertebrate tissue samples	1
24		Composite	Composite-	axa benthic invertebrate tissue samples	1
25		Composite	Composite-	axa benthic invertebrate tissue samples	
26		Composite	Composite-	axa benthic invertebrate lissue samples	
27		Composite	Composite-	axa benthic invertebrate tissue samples	
28		Composite	Composite-	axa benthic invertebrate tissue samples	
29		Composite	Composite-	axa benthic invertebrate tissue samples	
30		Composite	Composite	axa benthic invertebrate tissue samples	
31		Composite	Composite-	axa benthic invertebrate tissue samples	
32		Composite	Composite-	axa benthic invertebrate tissue samples	
33		Composite	Composite-	axa benthic invertebrate tissue samples	
34		Composite	Composite-I	axa benthic invertebrate tissue samples	
35		Composite	Composite-	axa benthic invertebrate tissue samples	
36		Composite	Composite-I	axa benthic invertebrate tissue samples	-9
37		Composite	Composite-I	axa benthic invertebrate tissue samples	
38		Composite	Composite-1	axa benthic invertebrate tissue samples	
39		Composite	Composite-I	axa benthic invertebrate tissue samples	
40		Composite	Composite-t	axa benthic invertebrate tissue samples	
ample(s) Release	d By:	Sample(s) Received	By: Aler	unde	
ignature:		Signature:	fit	1	
ate Sent:		Date Received:	28 Se	2021 (Proj #: 2021 - 265) au	o osect
ample(s) Returne	ed to Client By:	Shipping Condition	ns:		
1		Shipping Containe	r:		
ignature:		Date Sent:			

COM-011.01

Page 1 of 🔒

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Client: Amy Wiebe		D	ate Received:	18 Mar 2021
Aquatic Scie	entist	D	ate of Analysis:	23 Mar 2021
Minnow Env	vironmental	Fi	nal Report Date:	23 Mar 2021
Phone: (306) 952-3	779	P	roject No.:	2021-194
Email: <u>awiebe@mi</u>	nnow.ca	N	lethod No.:	MET-002.05
Client Project: Te	ck Coal/Minnow Environmental 20-14 (G	reenhills Creek Calcit	e)	
Analytical Request:	Benthic Invertebrate Tissue Microchemistry	(total metals and moistu	ıre) – 6 samples.	
	See chain of custody form provided for sam	ple identification number	ers.	
Notes:				
Analytical results are ex	pressed in part per million (ppm) dry weight (equivalent to mg/kg).		
Samples quantified usin	ng DORM-4, NIST-1566b, and NIST-2976 certi	fied reference standards	5.	
Aluminum concentratio	ns above 1,000 ppm are outside linear range	of the calibration curve.	10000	
Client specific DQU for	Selenium accuracy is 90 - 110% of the certifie	d value; (result achieved tal Laboraton, Manual (1 100%).	
		lai Laboralory Manual (2020) Chteria.	
This report provides the	e analytical results only for tissue samples note	ed above as received fro	om the Client.	
-	\frown			
Sel.	mensell.	23 Ma	r 2021	
Reviewed and Arl prove	d by Jennie Christensen, PhD, RPBio	Date		-
[The analytica! report sh	nall not be reproduced except in full under the	e expressed written con	sent of TrichAnalytics	Inc.]
			•	
207-1753 Sean Heigh	ntc			
Saanichton, BC V8M	0B3		N CA	LA
www.trichanalytics.co	<u>om</u>		Testing	
			Accreditation No.	A4190

TrichAnalytics Inc.

			RG_GHUT_INV-	RG_GHUT_INV-	RG_GHUT_INV-	RG_GHBP_INV_01	RG_GHBP_INV_0
		Client ID	01_2021-02-17	02_2021-02-17	03_2021-02-17	2021-02-17	2-2021-02-17
		Lab ID	062	063	064	065	066
	We	et Weight (g)	0.2181	0.2198	0.2627	0.8680	0.4608
	Di	ry Weight (g)	0.0325	0.0350	0.0342	0.1509	0.0823
		Moisture (%)	85.1	84.1	87.0	82.6	82.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	1.3	1.5	1.6	0.703	1.1
11B	0.095	0.317	0.596	0.830	1.1	1.9	3.4
23Na	0.504	1.7	5,375	6,380	5,096	2,445	3,377
24Mg	0.019	0.063	2,170	2,385	2,690	2,144	2,723
27AI	0.031	0.103	414	730	930	1,144	1,251
31P	51	170	13,516	14,081	12,712	9,137	10,329
39K	0.638	2.1	9,421	12,352	9,770	7,674	7,791
44Ca	5.4	18	3,965	4,854	5,123	2,339	3,887
49Ti	0.138	0.460	30	56	73	85	100
51V	0.042	0.140	1.1	1.5	2.2	2.2	2.5
52Cr	0.140	0.467	9.7	7.4	9.3	6.2	7.5
55Mn	0.008	0.027	30	33	33	74	67
57Fe	0.575	1.9	396	416	533	533	646
59Co	0.002	0.007	0.663	0.580	0.848	1.1	0.995
60Ni	0.001	0.003	24	19	22	23	29
63Cu	0.004	0.013	12	12	16	17	25
66Zn	0.416	1.4	245	145	156	246	267
75As	0.431	1.4	<0.431	0.509	0.538	1.1	0.768
77Se	0.356	1.2	8.8	6.4	5.9	33	33
88Sr	0.001	0.003	2.6	3.0	4.3	5.3	8.6
95Mo	0.001	0.003	0.246	0.266	0.307	0.246	0.430
107Ag	0.001	0.003	0.025	0.028	0.032	0.107	0.151
111Cd	0.041	0.137	3.1	2.7	2.8	0.816	0.917
118Sn	0.021	0.070	0.569	0.809	1.6	0.305	0.516
121Sb	0.004	0.013	0.042	0.054	0.067	0.076	0.111
137Ba	0.001	0.003	7.1	9.4	15	25	37
202Hg	0.032	0.107	<0.032	0.036	0.036	0.120	0.120
205TI	0.001	0.003	0.036	0.047	0.045	0.089	0.040
208Pb	0.004	0.013	0.124	0.210	0.258	0.347	0.503
238U	0.001	0.003	0.145	0.134	0.213	0.122	0.252

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_GHBP_INV_0
		Client ID	3-2021-02-17
		Lab ID	067
	W	et Weight (g)	0.8407
	D	ry Weight (g)	0.1675
		Moisture (%)	80.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)
7Li	0.004	0.013	0.445
11B	0.095	0.317	0.915
23Na	0.504	1.7	3,605
24Mg	0.019	0.063	2,407
27AI	0.031	0.103	655
31P	51	170	12,142
39K	0.638	2.1	10,117
44Ca	5.4	18	2,727
49Ti	0.138	0.460	39
51V	0.042	0.140	1.2
52Cr	0.140	0.467	3.0
55Mn	0.008	0.027	62
57Fe	0.575	1.9	207
59Co	0.002	0.007	0.781
60Ni	0.001	0.003	17
63Cu	0.004	0.013	23
66Zn	0.416	1.4	237
75As	0.431	1.4	0.499
77Se	0.356	1.2	32
88Sr	0.001	0.003	3.9
95Mo	0.001	0.003	0.246
107Ag	0.001	0.003	0.145
111Cd	0.041	0.137	0.374
118Sn	0.021	0.070	0.179
121Sb	0.004	0.013	0.062
137Ba	0.001	0.003	15
202Hg	0.032	0.107	0.084
205TI	0.001	0.003	0.039
208Pb	0.004	0.013	0.213
238U	0.001	0.003	0.093

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

Client ID RG_GHBP_INV_03-2021-02					
	Lab ID	067			
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	
7Li	0.004	0.445	0.460	3.3	
11B	0.095	0.915	1.1	-	
23Na	0.504	3,605	3,126	14	
24Mg	0.019	2,407	2,187	9.6	
27AI	0.031	655	634	3.3	
31P	51	12,142	10,483	15	
39K	0.638	10,117	8,606	16	
44Ca	5.4	2,727	2,429	12	
49Ti	0.138	39	52	29	
51V	0.042	1.2	1.3	8.0	
52Cr	0.140	3.0	3.0	0.0	
55Mn	0.008	62	72	15	
57Fe	0.575	207	268	26	
59Co	0.002	0.781	0.735	6.1	
60Ni	0.001	17	17	0.0	
63Cu	0.004	23	20	14	
66Zn	0.416	237	284	18	
75As	0.431	0.499	0.519	-	
77Se	0.356	32	26	21	
88Sr	0.001	3.9	5.1	27	
95Mo	0.001	0.246	0.287	15	
107Ag	0.001	0.145	0.164	12	
111Cd	0.041	0.374	0.561	-	
118Sn	0.021	0.179	0.226	-	
121Sb	0.004	0.062	0.062	0.0	
137Ba	0.001	15	18	18	
202Hg	0.032	0.084	0.132	-	
205TI	0.001	0.039	0.046	17	
208Pb	0.004	0.213	0.258	19	
238U	0.001	0.093	0.112	19	

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

Sample Group ID 01							
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)		
7Li	0.004	1.21	1.4	119	3.7		
11B	0.095	4.5	4.8	108	2.8		
23Na	0.504	14,000	15,660	112	6.5		
24Mg	0.019	910	1,020	112	6.0		
27Al	0.031	197.2	184	93	9.3		
31P	51	8,000	8,488	106	4.1		
39K	0.638	15,500	16,599	107	4.1		
44Ca	5.4	2,360	2,501	106	7.1		
49Ti	0.138	12.24	13	104	11		
51V	0.042	1.57	1.7	110	12		
52Cr	0.140	1.87	2.1	110	5.3		
55Mn	0.008	3.17	3.4	109	11		
57Fe	0.575	343	397	116	6.4		
59Co	0.002	0.25	0.276	111	4.4		
60Ni	0.001	1.34	1.6	116	8.5		
63Cu	0.004	15.7	18	115	6.3		
66Zn	0.416	51.6	60	116	6.0		
75As	0.431	6.87	7.6	110	6.1		
77Se	0.356	3.45	3.4	100	7.3		
88Sr	0.001	10.1	11	111	4.3		
95Mo	0.001	0.29	0.311	107	5.5		
107Ag	0.001	0.0252	0.029	115	12		
111Cd	0.041	0.299	0.334	112	10		
118Sn	0.021	0.061	0.060	98	14		
121Sb	0.004	0.011	0.015	134	13		
137Ba	0.001	8.6	9.4	110	6.9		
202Hg	0.032	0.412	0.463	112	12		
205TI	0.001	0.0013	-	-	-		
208Pb	0.004	0.404	0.506	125	17		
238U	0.001	0.05	0.056	113	9.5		

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of \leq 20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

TrichAnalytics Inc.

Teck Coal Limited Sample Group Information

Sample Group ID	Client ID	Lab ID	Date of Analysis
01	RG_GHUT_INV-01_2021-02-17 RG_GHUT_INV-02_2021-02-17 RG_GHBP_INV_01-2021-02-17 RG_GHBP_INV_02-2021-02-17 RG_GHBP_INV_03-2021-02-17	062 063 064 065 066 067	23 Mar 2021

Involuting roject Number: 20-14 (Greenhills Creek Calcit company Name: Teck contact Name: Allie Ferguson cddress: PO Box 1777 ty, Province: Sparwood, BC ostal Code: V0B 2G0 none: 250.425.8048 mail: Allie.Ferguson@teck.com Sample Identification: rich Sample 10 Sample Identification: G62 1 RG_GHUT_INV-01_2021-02-17 062 RG_GHUT_INV-03_2021-02-17 064 RG_GHBP_INV_01-02-2021-02-17 065 RG_GHBP_INV_03-2021-02-17 066 RG_GHBP_INV_03-2021-02-17 067 6 8 9	te) Company Name. Contact Name: Address: City, Province: Postal Code: Phone: Email: - Sample Analysis Re Species Composite Composite	Minnow Environmental Amy Wiebe 110 - 2750 Faithful Ave Saskatoon, SK S7K 6M6 306.952.3379 awiebe@minnow.ca Equested Sample Type: Sample type
Name: Teck Dempany Name: Allie Ferguson Iddress: PO Box 1777 ty, Province: Sparwood, BC Dostal Code: V0B 2G0 Donne: 250.425.8048 mail: Allie_Ferguson@teck.com Sample Identification: Mile_Ferguson@teck.com Sample Identification: O62 1 RG_GHUT_INV-01_2021-02-17 O63 2 RG_GHUT_INV-03_2021-02-17 O64 RG_GHBP_INV_01-2021-02-17 O65 RG_GHBP_INV_02-2021-02-17 O66 RG_GHBP_INV_03-2021-02-17 O66 RG_GHBP_INV_03-2021-02-17 O66 RG_GHBP_INV_03-2021-02-17 O66 RG_GHBP_INV_03-2021-02-17 O67 6 8 9	Company Name. Contact Name: Address: City, Province: Postal Code: Phone: Email: Sample Analysis Re Species Composite Composite	Minnow Environmental Amy Wiebe 110 - 2750 Faithful Ave Saskatoon, SK S7K 6M6 306.952.3379 awiebe@minnow.ca equested Sample Type: Sample type
Sample IV IV Allie Ferguson ddress: PO Box 1777 ty, Province: Sparwood, BC ostal Code: V0B 2G0 none: 250.425.8048 mail: Allie.Ferguson@teck.com Sample Identification: rich Sample IV RG_GHUT_INV-01_2021-02-17 062 1 RG_GHUT_INV-02_2021-02-17 063 2 RG_GHUT_INV-03_2021-02-17 064 RG_GHBP_INV_01-02-2021-02-17 066 5 RG_GHBP_INV_02-2021-02-17 066 6 RG_GHBP_INV_03-2021-02-17 067 6 RG_GHBP_INV_03-2021-02-17 7 8 9	Company Name. Contact Name: Address: City, Province: Postal Code: Phone: Email: Sample Analysis Re Species Composite Composite	Minnow Environmental Amy Wiebe 110 - 2750 Faithful Ave Saskatoon, SK S7K 6M6 306.952.3379 awiebe@minnow.ca equested Sample Type: Sample type
Allie Ferguson ddress: PO Box 1777 ty, Province: Sparwood, BC ostal Code: V0B 2G0 botad: 250.425.8048 mail: Allie Ferguson@teck.com Sample Identification: Sample Identification: Code: V Sample Identification: Sample Identification: Code: RG_GHUT_INV-01_2021-02-17 O62 1 RG_GHUT_INV-03_2021-02-17 O63 2 RG_GHBP_INV_01-2021-02-17 O65 RG_GHBP_INV_02-2021-02-17 O66 5 RG_GHBP_INV_03-2021-02-17 O66 6 RG_GHBP_INV_03-2021-02-17 O66 7 RG_GHBP_INV_03-2021-02-17 O67 6 RG_GHBP_INV_03-2021-02-17 067 8 9	Contact Name: Address: City, Province: Postal Code: Phone: Email: Sample Analysis Re Species Composite Composite	Amy Wiebe 110 - 2750 Faithful Ave Saskatoon, SK S7K 6M6 306.952.3379 awiebe@minnow.ca equested Sample Type: Sample type
Image: ddress: PO Box 1777 ty, Province: Sparwood, BC ostal Code: V0B 2G0 none: 250.425.8048 mail: Alle.Ferguson@teck.com Sample Identification:	Address: City, Province: Postal Code: Phone: Email: - Sample Analysis Re Species Composite Composite	110 - 2750 Faithful Ave Saskatoon, SK S7K 6M6 306.952.3379 awiebe@minnow.ca equested Sample Type: Sample type
ty, Province: Sparwood, BC ostal Code: V0B 2G0 none: 250.425.8048 mail: Alle.ferguson@teck.com Sample Identification: Sample Identification: Yich Sample IO RG_GHUT_INV-01_2021-02-17 062 1 RG_GHUT_INV-02_2021-02-17 063 2 RG_GHUT_INV-03_2021-02-17 064 RG_GHBP_INV_01-2021-02-17 065 RG_GHBP_INV_01-2021-02-17 066 5 RG_GH3P_INV_03-2021-02-17 067 6 8 1 9 9	City, Province: Postal Code: Phone: Email: - Sample Analysis Re Species Composite Composite	Saskatoon, SK S7K 6M6 306.952.3379 awiebe@minnow.ca equested Sample Type: Sample type
Distal Code: V0B 2G0 none: 250.425.8048 nail: Alle.Ferguson@teck.com Sample Identification: Trich Sample ID C62 1 RG_GHUT_INV-01_2021-02-17 O63 2 RG_GHUT_INV-02_2021-02-17 O643 8 RG_GHBP_INV_01-2021-02-17 O65 8 RG_GH3P_INV_02-2021-02-17 O66 5 RG_GH3P_INV_03-2021-02-17 O66 6 RG_GH3P_INV_03-2021-02-17 O66 7 RG_GH3P_INV_03-2021-02-17 O66 7 RG_GH3P_INV_03-2021-02-17 O66 7 RG_GH3P_INV_03-2021-02-17 O67 6 8 9	Postal Code: Phone: Email: - Sample Analysis Re Species Composite Composite	S7K 6M6 306.952.3379 awiebe@minnow.ca equested Sample Type: Sample type
none: 250.425.8048 mail: Alle.Ferguson@teck.com Sample IO Sample Identification: Yich Sample IO RG_GHUT_INV-01_2021-02-17 O62 1 RG_GHUT_INV-02_2021-02-17 063 O64 3 RG_GHUT_INV-03_2021-02-17 064 O65 4 RG_GHBP_INV_01-2021-02-17 066 O66 5 RG_GH3P_INV_02-2021-02-17 066 O67 6 RG_GH3P_INV_03-2021-02-17 067 RG 8 9 9	Phone: Email: - Sample Analysis Re Species Composite Composite	306.952.3379 awiebe@minnow.ca equested Sample Type: Sample type
Alle.Ferguson@teck.com Sample Identification: Chch Sample ID O62 I RG_GHUT_INV-01_2021-02-17 O63 2 RG_GHUT_INV-02_2021-02-17 O643 RG_GHUT_INV-03_2021-02-17 O643 RG_GHUT_INV-03_2021-02-17 O645 RG_GHBP_INV_01-2021-02-17 O665 RG_GHBP_INV_02-2021-02-17 O667 6 RG_GH3P_INV_03-2021-02-17 O667 6 RG_GH3P_INV_03-2021-02-17 O667 6 RG_GH3P_INV_03-2021-02-17 O67 6 RG_GH3P_INV_03-2021-02-17 O67 6 RG_GH3P_INV_03-2021-02-17 Ø 9 9	Email: - Sample Analysis Re Species Composite Composite	awiebe@minnow.ca equested Sample Type: Sample type
Sample Identification: Tich Sample ID 062 1 RG_GHUT_INV-01_2021-02-17 063 2 RG_GHUT_INV-02_2021-02-17 064 3 RG_GHUT_INV-03_2021-02-17 065 4 RG_GHBP_INV_01-2021-02-17 066 5 RG_GH3P_INV_02-2021-02-17 066 6 RG_GH3P_INV_03-2021-02-17 067 6 8 9	- Sample Analysis Re Species Composite Composite	Sample Type: Sample type
Sample Identification: O62 1 RG_GHUT_INV-01_2021-02-17 O63 2 RG_GHUT_INV-02_2021-02-17 O64 3 RG_GHUT_INV-03_2021-02-17 O65 4 RG_GHBP_INV_01-2021-02-17 O66 5 RG_GHBP_INV_01-2021-02-17 O66 5 RG_GHBP_INV_02-2021-02-17 O66 6 RG_GHBP_INV_02-2021-02-17 O66 6 RG_GHBP_INV_03-2021-02-17 O67 6 RG_GHBP_INV_03-2021-02-17 067 8 1 9 9 1	Species Composite Composite	Sample Type: Sample type
OG2 1 RG_GHUT_INV-01_2021-02-17 OG3 2 RG_GHUT_INV-02_2021-02-17 OG4 3 RG_GHUT_INV-03_2021-02-17 OG5 4 RG_GHBP_INV_01-2021-02-17 OG6 5 RG_GH3P_INV_02-2021-02-17 OG6 6 RG_GH3P_INV_03-2021-02-17 OG6 6 RG_GH3P_INV_03-2021-02-17 OG6 7 8 9 9 9	Composite Composite	Somple type
063 2 RG_GHUT_INV-02_2021-02-17 064 3 RG_GHUT_INV-03_2021-02-17 065 4 RG_GHBP_INV_01-2021-02-17 066 5 RG_GHBP_INV_02-2021-02-17 067 6 RG_GHBP_INV_03-2021-02-17 067 6 RG_GHBP_INV_03-2021-02-17 067 6 RG_GHBP_INV_03-2021-02-17 7 8 9	Composite	Freshwater Benthic Invertebrate Tissue for Metals Analysis
069 3 RG_GHUT_INV-03_2021-02-17 065 4 RG_GHBP_INV_01-2021-02-17 066 5 RG_GH3P_INV_02-2021-02-17 067 6 RG_GH3P_INV_03-2021-02-17 7 8 9	persection environments	Freshwater Benthic Invertebrate Tissue for Metals Analysis
065 4 RG_GHBP_INV_01-2021-02-17 066 5 RG_GH3P_INV_02-2021-02-17 067 6 RG_GH3P_INV_03-2021-02-17 7 7 8 9	Composite	Freshwater Benthic invertebrate Tissue for Metals Analysis
066 5 RG_GH3P_INV_02-2021-02-17 067 6 RG_GH3P_INV_03-2021-02-17 7 7 8 ' 9 '	Composite	Freshwater Benthic Invertebrate Tissue for Metals Analysis
067 6 RG_GH3P_INV_03-2021-02-17 7 8 9	Composite	Freshwater Benthic Invertebrate Tissue for Metals Analysis
7 8 9	Composite	Freshwater Benthic Invertebrate Tissue for Metals Analysis
8 ,		
9		
10		
11		
12		
13		
14		
15		
17		
18		
19		10 - 17 - 1
20		
ample(c) Peleace - Maddy Str	okes Sample(s) Receive	d By Carry in 1 2
	ci la	GERLIENE LADINE
gnature: MU	Signature: Ou	une 25
ate Sent: 17-Ma	r-21 Date Received: /	18 Mar 2021 (Project #: 2021-194)
ample(s) Returned to Client By:	Shipping Conditio	ons:
	Shipping Containe	er:

ZEAS - BENTHIC INVERTEBRATE COMMUNITY

TABLE 1: CALCULATION OF SUBSAMPLING ERROR FOR BENTHIC MACROINVERTEBRATE SAMPLES FROM LOWER GREENHILLS (2021).

Station	Whole Organisms	Number of	Number of	Number of	Number of	Actual Density*	Prec	ision	Acci	iracy
Station	Organisiiis	in Fraction 1	in Fraction 2	in Fraction 3	in Fraction 4	Density	% ra	ange	min	max
GANF-2	-	188	200	-	-	388	6.0	-	3.1	-
GANF-2	-	91	97	99	101	388	2.0	9.9	0.0	6.2
GANF-1	2	192	208	-	-	400	7.7	-	-	-
GHBP-1	-	210	249	-	-	459	15.7	-	-	-

* whole large organisms excluded in calculations.

min = minimum absolute % error

max = maximum absolute % error

TABLE 2: PERCENT RECOVERY OF BENTHIC MACROINVERTEBRATES FROM SAMPLES COLLECTED FROM LOWER GREENHILLS (2021).

Station	Number of Organisms Recovered (initial sort)	Number of Organisms in Re-sort	Percent Recovery
GANF-1	398	402	99.0%
GAUT-3	193	196	98.5%
GHBP-4	469	482	97.3%
GHUT-6	280	284	98.6%
		Average % Recovery	98.3%

TABLE 3: SAMPLE FRACTIONS SORTED FROM LOWER GREENHILLS (2021).

Station	Fraction	Station	Fraction	Station	Fraction
	Sorted		Sorted		Sorted
GANF-1	1/2 ^c	GHBP-1	1/4 ^d	GHFF-1	1/4
GANF-2	Whole ^{a, b}	GHBP-2	1/2	GHFF-2	Whole
GANF-3	1/2	GHBP-3	1/4	GHFF-3	1/2
GANF-4	1/4	GHBP-4	1/4	GHFF-4	1/2
GANF-5	1/2	GHBP-5	1/4	GHFF-5	1/4
GANF-6	1/2	GHBP-6	1/4	GHFF-6	1/4
GAUT-1	1/4	GHNF-1	1/8	GHUT-1	1/8
GAUT-2	1/4	GHNF-2	1/16	GHUT-2	1/4
GAUT-3	1/2	GHNF-3	1/16	GHUT-3	1/8
GAUT-4	1/4	GHNF-4	1/8	GHUT-4	1/8
GAUT-5	1/2	GHNF-5	1/4	GHUT-5	1/8
GAUT-6	1/2	GHNF-6	1/8	GHUT-6	1/8

^a four quarters sorted for subsampling error calculations

^b two halves sorted for subsampling error calculations.

^c two quarters sorted for subsampling error calculations.

^d two eighths sorted for subsampling error calculations.

QA/QC Notes

Pupae should not be counted toward total number of taxa unless they were the sole representative of their taxa group. Immatures should not be counted toward total number of taxa unless they were the sole representative of their taxa group. The exceptions to this rule are immature tubificidae with and without hairs. Immature oligocheates are counted as taxa as the probability of the immature being a unique taxa is high.

Indeterminates are unique taxa that could not be identified further for whatever reason, e.g., (small, damaged).

Ostracods, nematodes and collembola included in data set and can be deleted if not required by CABIN.

Densities expressed per fraction sorted.

quantity	life_stage_code	observ_sample_code	BENCH_TAXON_NAME	PERCENT_SAMPLED	RAW_BIOMASS	QC_COMMENTS
Numeric	Text(20)	Text(40)	Text(255)	Numeric	Text(255)	Text(255)
1	none	RG_GANF_BIC-1_2021-09-15	Nematoda	50	0.0002	
		RG_GANF_BIC-1_2021-09-15	Planariidae	50	0.0210	
10) none	RG_GANF_BIC-1_2021-09-15	Polycelis	50		
1	none	RG_GANF_BIC-1_2021-09-15	Enchytraeidae	50	0.0002	
		RG_GANF_BIC-1_2021-09-15	Lebertiidae	50	0.0002	
3	8 Adult	RG_GANF_BIC-1_2021-09-15	Lebertia	50		
235	none	RG_GANF_BIC-1_2021-09-15	Ostracoda	50	0.0548	
		RG_GANF_BIC-1_2021-09-15	Elmidae	50	0.0019	
2	larvae	RG_GANF_BIC-1_2021-09-15	Heterlimnius	50		
		RG_GANF_BIC-1_2021-09-15	Baetidae	50	0.0081	
4	Nymph	RG_GANF_BIC-1_2021-09-15	Baetis	50		
	, ,	RG GANF BIC-1 2021-09-15	Capniidae	50	0.0025	
9	Nymph	RG_GANF_BIC-1_2021-09-15	Paracapnia	50		
21	Nymph/immature	RG GANF BIC-1 2021-09-15	Capniidae	50		
		RG GANF BIC-1 2021-09-15	Leuctridae	50	0.0002	
3	Nymph	RG_GANF_BIC-1_2021-09-15	Paraleuctra	50		
-		RG GANE BIC-1 2021-09-15	Nemouridae	50	0.0202	
40) Nymph	RG GANE BIC-1 2021-09-15	Zanada	50	010202	
11	Nymph/immature	RG GANE BIC-1 2021-09-15	Nemouridae	50		
	winph/initiature	RG_GANE_BIC-1_2021-09-15	Poltoporlidao	50	0 0003	
1	Nymph	PG_GANE_BIC-1_2021-09-15	Veraporta	50	0.0005	
1	Тупрп	RG_GANE_BIC 1 2021-09-15	Portodidao	100	0 0272	largo/raro coarch
	Niumania	RG_GANF_BIC-1_2021-09-15	Magazaria	100	0.0372	large/rare search
1	мутра	RG_GANF_BIC-1_2021-09-15	Megarcys	100	0.0001	large/rare search
-		RG_GANF_BIC-1_2021-09-15	Taeniopterygidae	50	0.0001	
3	s Nympn/immature	RG_GANF_BIC-1_2021-09-15	Taeniopterygidae	50		
-		RG_GANF_BIC-1_2021-09-15	Glossosomatidae	50		
2	larvae	RG_GANF_BIC-1_2021-09-15	Anagapetus	50		
		RG_GANF_BIC-1_2021-09-15	Limnephilidae	50	0.0005	
3	larvae/immature	RG_GANF_BIC-1_2021-09-15	Limnephilidae	50		
		RG_GANF_BIC-1_2021-09-15	Rhyacophilidae	50	0.0221	
17	' larvae	RG_GANF_BIC-1_2021-09-15	Rhyacophila	50		
		RG_GANF_BIC-1_2021-09-15	Chironomidae	50	0.0109	
2	larvae	RG_GANF_BIC-1_2021-09-15	Micropsectra	50		
10) larvae	RG_GANF_BIC-1_2021-09-15	Pagastia	50		
2	larvae	RG GANF BIC-1 2021-09-15	Cricotopus/Orthocladius	50		
3	larvae	RG GANF BIC-1 2021-09-15	Zavrelimvia	50		
		RG GANF BIC-1 2021-09-15	Empididae	50	0.0020	
5	larvae	RG_GANF_BIC-1_2021-09-15	Chelifera/Metachela	50		
		RG GANF BIC-1 2021-09-15	Pelecorhyncidae	100	0.0236	large/rare search
		RG_GANE_BIC-1_2021-09-15	Pelecorhyncidae	50	0.0015	ange, rare bearen
1	lanvae	RG_GANE_BIC-1_2021-09-15	Glutons	100	0.0015	large/rare search
1		PG_GANE_BIC-1_2021-09-15	Glutops	50		large/rare search
0		RG_GANE_BIC-1_2021-09-15	Baychodidao	50	0 0002	
-	lanca	RG_GANE_BIC 1 2021-09-15	Psychouldae	50	0.0002	
2	laivae	RG_GANF_BIC-1_2021-09-15	Tinulidae	50	0.0001	
	law and	RG_GANF_BIC-1_2021-09-15	Tipulidae Diama ata	50	0.0001	
1	larvae	RG_GANF_BIC-1_2021-09-15	Dicranota	50	0.0000	
		RG_GANF_BIC-1_2021-09-15	Pisidiidae	50	0.0002	
1	none	RG_GANF_BIC-1_2021-09-15	Pisidium	50		
		RG_GANF_BIC-2_2021-09-15	Planariidae	100	0.0048	
4	none	RG_GANF_BIC-2_2021-09-15	Polycelis	100		
116	none	RG_GANF_BIC-2_2021-09-15	Ostracoda	100	0.0274	
		RG_GANF_BIC-2_2021-09-15	Elmidae	100	0.0062	
3	larvae	RG_GANF_BIC-2_2021-09-15	Heterlimnius	100		
		RG_GANF_BIC-2_2021-09-15	Baetidae	100	0.0248	
5	5 Nymph	RG_GANF_BIC-2_2021-09-15	Baetis	100		
2	Nymph/immature	RG_GANF_BIC-2_2021-09-15	Ephemerellidae	100	0.0004	
		RG_GANF_BIC-2_2021-09-15	Heptageniidae	100	0.0006	
1	Nymph/indeterminate	RG_GANF_BIC-2_2021-09-15	Heptageniidae	100		
		RG_GANF_BIC-2_2021-09-15	Capniidae	100	0.0035	
6	5 Nymph	RG_GANF_BIC-2_2021-09-15	Paracapnia	100		
18	8 Nymph/immature	RG_GANF_BIC-2_2021-09-15	Capniidae	100		
		RG_GANF_BIC-2_2021-09-15	Chloroperlidae	100	0.0019	
6	Nymph/immature	RG_GANF_BIC-2_2021-09-15	Chloroperlidae	100		
		RG GANF BIC-2 2021-09-15	Leuctridae	100	0.0001	
1	Nymph	RG_GANF_BIC-2_2021-09-15	Paraleuctra	100		
_		RG GANE BIC-2 2021-09-15	Nemouridae	100	0.0338	
32	Nymph	RG GANE BIC-2 2021-09-15	Zanada	100	010000	
22	Nymph/immature	RG GANE BIC-2 2021-09-15	Nemouridae	100		
22	i tympi, innacare	RG_GANE_BIC-2_2021-09-15	Poltoporlidao	100	0.0005	
1	Nymph	RG_GANE_BIC-2_2021-09-15	Voranerla	100	0.0005	
1	Тупрп	RG_GANE_BIC 2_2021 00 15	Portodidao	100	0 0000	
2	Numph	RG_GANE_BIC 2, 2021-09-15	Mogarava	100	0.0000	
د.	Nymph/immetrice	NG_UAINF_DIC-2_2021-09-15	Dorladidaa	100		
1	Nymph/immature	NG_UANE_DIC-2_2021-09-15	Teoplopter reide -	100	0.0000	
~	Nymph/mmdure	NG_GANE_DIC-2_2021-00-15	r aemopterygidae	100	0.0090	
د	wympn/immature	NG_UANF_DIC-2_2021-09-15	Classocamatida	100	0.0100	
	lanca	RG_GANE_DIC-2_2021-09-15	GIUSSUSUIIId(IQae	100	0.0130	
67	IdrVae	KG_GANF_BIC-2_2021-09-15	Anagapetus	100		
		KG_GANF_BIC-2_2021-09-15	Lepidostomatidae	100	0.0007	
2	larvae	KG_GANF_BIC-2_2021-09-15	Lepidostoma	100		
		RG_GANF_BIC-2_2021-09-15	Limnephilidae	100	0.0018	
1	larvae	RG_GANF_BIC-2_2021-09-15	Ecclisomyia	100		
1	larvae	KG_GANF_BIC-2_2021-09-15	Philocasca	100		
4	larvae/immature	RG_GANF_BIC-2_2021-09-15	Limnephilidae	100		
		RG_GANF_BIC-2_2021-09-15	Rhyacophilidae	100	0.0320	
20) larvae	RG_GANF_BIC-2_2021-09-15	Rhyacophila	100		

quantity	life_stage_code	observ_sample_code	BENCH_TAXON_NAME	PERCENT_SAMPLED	RAW_BIOMASS QC_COMMENTS
Numeric	Text(20)	Text(40)	Text(255)	Numeric	Text(255) Text(255)
		RG_GANF_BIC-2_2021-09-15	Chironomidae	100	0.0421
ç	Э рирае	RG_GANF_BIC-2_2021-09-15	Chironomidae	100	
5	5 larvae	RG_GANF_BIC-2_2021-09-15	Micropsectra	100	
25	5 larvae	RG GANF BIC-2 2021-09-15	Pagastia	100	
2	2 larvae	RG GANF BIC-2 2021-09-15	Brillia	100	
1	1 larvae	RG_GANF_BIC-2_2021-09-15	Corvnoneura	100	
-	3 larvae	RG GANE BIC-2 2021-09-15	Cricotopus/Orthocladius	100	
	2 larvao	RG_GANE_BIC-2_2021-09-15	Eukiofforiolla	100	
4		RG_GANE BIC 2 2021-09-15	Tuetenia	100	
-		RG_GANF_BIC-2_2021-09-15		100	
-	b larvae	RG_GANF_BIC-2_2021-09-15	Zavrelimyia	100	
		RG_GANF_BIC-2_2021-09-15	Empididae	100	0.0047
e	5 larvae	RG_GANF_BIC-2_2021-09-15	Chelifera/Metachela	100	
		RG_GANF_BIC-2_2021-09-15	Pelecorhyncidae	100	0.0266
4	4 larvae	RG GANF BIC-2 2021-09-15	Glutops	100	
		RG_GANE_BIC-2_2021-09-15	Psychodidae	100	0.0010
-	1 Janvao	PG_GANE_BIC-2_2021-09-15	Pericoma	100	0.0010
L	I Idi Vde	RG_GANE_BIC-2_2021-09-15	Tinulidae	100	0.0005
_		RG_GANF_BIC-2_2021-09-15	Tipulidae	100	0.0065
5	b larvae	RG_GANF_BIC-2_2021-09-15	Dicranota	100	
		RG_GANF_BIC-3_2021-09-15	Planariidae	50	0.0060
5	5 none	RG_GANF_BIC-3_2021-09-15	Polycelis	50	
5	5 none	RG_GANF_BIC-3_2021-09-15	Enchytraeidae	50	0.0008
61	1 none	RG_GANF_BIC-3_2021-09-15	Ostracoda	50	0.0153
-	7 none	RG GANE BIC-3 2021-09-15	Collembola	50	0.0007
,	none	RG_GANE BIC 2 2021 00 15	Bastidao	50	0.0147
	C. Niumania	RG_GANE_DIC-3_2021-09-15	Daetia	50	0.014/
6	э мутрп	KG_GANF_BIC-3_2021-09-15	Daetis	50	0.0001
		RG_GANF_BIC-3_2021-09-15	Ephemerellidae	50	0.0001
t	1 Nymph/immature	RG_GANF_BIC-3_2021-09-15	Ephemerellidae	50	
		RG_GANF_BIC-3_2021-09-15	Capniidae	50	0.0002
ç	9 Nymph	RG GANF BIC-3 2021-09-15	Paracapnia	50	
-	, F	RG GANE BIC-3 2021-00-15	Chloroperlidae	50	0.0058
	1 Numerala	RG_GANE BIC 3 2021 00 15	Civilia	50	0.0050
1		RG_GANF_BIC-3_2021-09-15	Swellsd	50	
1	1 Nymph/immature	RG_GANF_BIC-3_2021-09-15	Chloroperlidae	50	
		RG_GANF_BIC-3_2021-09-15	Leuctridae	50	0.0011
1	1 Nymph	RG_GANF_BIC-3_2021-09-15	Paraleuctra	50	
		RG_GANF_BIC-3_2021-09-15	Nemouridae	50	0.0325
47	7 Nymph	RG GANE BIC-3 2021-09-15	Zapada	50	
	, r	RG GANE BIC-3 2021-09-15	Periodidae	50	0.0361
-	1 Nymph	PG_GANE_BIC-3_2021-09-15	Icoperla	50	0.0001
	Numerala	RG_GANE BIC 2 2021-09-15	150pena	50	
_	Nympn	RG_GANF_BIC-3_2021-09-15	Megarcys	50	
3	3 Nymph	RG_GANF_BIC-3_2021-09-15	Megarcys	50	
3	3 Nymph/immature	RG_GANF_BIC-3_2021-09-15	Perlodidae	50	
		RG_GANF_BIC-3_2021-09-15	Taeniopterygidae	50	0.0011
10) Nymph/immature	RG GANF BIC-3 2021-09-15	Taenioptervgidae	50	
	,,,,,	RG GANE BIC-3 2021-09-15	Glossosomatidae	50	0.0002
F	5 Jarvao	RG_GANE_BIC-3_2021-09-15	Anagapotus	50	010002
, i i i i i i i i i i i i i i i i i i i		RG_GANE BIC 2 2021 00 15	Limpophilidae	50	0.0001
		RG_GANF_DIC-5_2021-09-15	Linneprinde	50	0.0001
1	l larvae/immature	RG_GANF_BIC-3_2021-09-15	Limnephilidae	50	
		RG_GANF_BIC-3_2021-09-15	Rhyacophilidae	50	0.0072
8	8 larvae	RG_GANF_BIC-3_2021-09-15	Rhyacophila	50	
		RG GANF BIC-3 2021-09-15	Chironomidae	50	0.0485
8	3 pupae	RG_GANF_BIC-3_2021-09-15	Chironomidae	50	
-	3 larvae	RG_GANE_BIC-3_2021-09-15	Micronsectra	50	
3	7 larvao	PC CANE BIC-3 2021-09-15	Pagactia	50	
57		RG_GANE BIC 3 2021 00 15	Prillip	50	
-		RG_GANF_BIC-3_2021-09-15	brillia	50	
	blarvae	RG_GANF_BIC-3_2021-09-15	Cricotopus/Orthocladius	50	
5	arvae	RG_GANF_BIC-3_2021-09-15	Eukiefferiella	50	
4	4 larvae	RG_GANF_BIC-3_2021-09-15	Zavrelimyia	50	
		RG_GANF_BIC-3_2021-09-15	Empididae	50	0.0002
1	1 larvae	RG_GANF_BIC-3 2021-09-15	Chelifera/Metachela	50	
		RG_GANF_BIC-3_2021-09-15	Pelecorhyncidae	100	0.0241 large/rare search
		RG GANE BIC-3 2021-09-15	Pelecorhyncidae	50	0.0117
-	1 Januar	RC_CANE BIC 2 2021 00 15	Clutons	100	large/rare coarch
-		NG_OANE DIC 2 2021-09-15	Clutops	100	iaige/iaie SedfCli
4		KG_GANF_DIC-3_2021-09-15	Giutops	50	0.0001
		KG_GANF_BIC-3_2021-09-15	Psychodidae	50	0.0004
3	3 larvae	RG_GANF_BIC-3_2021-09-15	Pericoma	50	
		RG_GANF_BIC-3_2021-09-15	Tipulidae	50	0.0042
1	1 larvae	RG GANF BIC-3 2021-09-15	Dicranota	50	
1	1 larvae	RG_GANE_BIC-3_2021-09-15	Pseudolimnophila	50	
_		RG GANE BIC-4 2021-09-16	Naididae	25	0.0017
-	1	RG_GANE_DIC-4_2021-09-10	limmodulude	25	0.0017
20	1	RG_GANF_BIC-4_2021-09-10	Linnounius nonmeisten	25	0.0061
26	o none	RG_GANF_BIC-4_2021-09-16	Ostracoda	25	0.0064
2	2 none	RG_GANF_BIC-4_2021-09-16	Collembola	25	0.0001
		RG_GANF_BIC-4_2021-09-16	Elmidae	25	0.0017
1	1 adult	RG_GANF_BIC-4_2021-09-16	Heterlimnius	25	
		RG_GANF_BIC-4 2021-09-16	Baetidae	25	0.0479
10	9 Nymph	RG GANE BIC-4 2021-09-16	Baetis	25	· · · · -
1.	· · · / · · · P· · ·	RG GANE RIC-4 2021-00-14	Canniidae	25	0 0032
) Ni mamb		Dereceptio	20	0.0032
10		KG_GANF_BIC-4_2021-09-16	raracaprila	25	
18	8 Nymph/immature	RG_GANF_BIC-4_2021-09-16	Capniidae	25	
		RG_GANF_BIC-4_2021-09-16	Chloroperlidae	25	0.0002
1	1 Nymph/immature	RG_GANF_BIC-4_2021-09-16	Chloroperlidae	25	
		RG GANF BIC-4 2021-09-16	Nemouridae	25	0.0563
101	1 Nymph	RG GANE BIC-4 2021-09-16	Zapada		
101	Nymph/immature	RG GANE BIC-4 2021-00-16	Nemouridae	25	
9	- wympn/immature	RG_GANE_DIC 4_2021-09-10		25	0.0004
		KG_GANF_BIC-4_2021-09-16	renodidae	25	0.0084

quantity	life stage code	observ sample code	BENCH TAXON NAME	PERCENT SAMPLED	RAW BIOMASS	OC COMMENTS
Numeric	Text(20)	<i>Text(40)</i>	Text(255)	Numeric	Text(255)	Text(255)
	6 Nymph	RG_GANF_BIC-4_2021-09-16	Isoperla	25		
:	1 Nymph/immature	RG_GANF_BIC-4_2021-09-16	Perlodidae	25	0.0005	
21	0 Nymph/immature	RG_GANF_BIC-4_2021-09-16	Taeniopterygidae	25	0.0025	
20	o Nymph/immature	RG_GANE_BIC-4_2021-09-16	Glossosomatidae	25	0.0002	
	2 larvae	RG GANF BIC-4 2021-09-16	Anagapetus	25	0.0002	
		RG_GANF_BIC-4_2021-09-16	Limnephilidae	25	0.0003	
1	2 larvae/immature	RG_GANF_BIC-4_2021-09-16	Limnephilidae	25		
		RG_GANF_BIC-4_2021-09-16	Rhyacophilidae	25	0.0018	
!	5 larvae	RG_GANF_BIC-4_2021-09-16	Rhyacophila	25		
	2	RG_GANF_BIC-4_2021-09-16	Chironomidae	25	0.0372	
1	8 pupae	RG_GANF_BIC-4_2021-09-16	Chironomidae	25		
4.	1 larvae	RG_GANE_BIC-4_2021-09-16	PdydSud Brillia	25		
-	2 larvae	RG_GANE_BIC-4_2021-09-16	Cricotopus/Orthocladius	25		
	1 larvae	RG GANF BIC-4 2021-09-16	Eukiefferiella	25		
	1 larvae	RG_GANF_BIC-4_2021-09-16	Tvetenia	25		
!	5 larvae	RG_GANF_BIC-4_2021-09-16	Zavrelimyia	25		
		RG_GANF_BIC-4_2021-09-16	Dixidae	25	0.0002	
	1 larvae	RG_GANF_BIC-4_2021-09-16	Dixa	25	0.0040	
		RG_GANF_BIC-4_2021-09-16	Empididae Chalifara (Matachala	25	0.0049	
		RG_GANF_BIC-4_2021-09-16	Empididao	25		
	i huhae	RG_GANE_BIC-4_2021-09-16	Pelecorhyncidae	25	0 0002	
	1 larvae	RG GANE BIC-4 2021-09-16	Glutops	25	0.0002	
		RG_GANF_BIC-4_2021-09-16	Psychodidae	25	0.0001	
:	2 larvae	RG_GANF_BIC-4_2021-09-16	Pericoma	25		
		RG_GANF_BIC-4_2021-09-16	Tipulidae	25	0.0017	
:	2 larvae	RG_GANF_BIC-4_2021-09-16	Dicranota	25		
		RG_GANF_BIC-5_2021-09-16	Planariidae	50	0.0003	
	1 none	RG_GANF_BIC-5_2021-09-16	Polycelis	50	0.0005	
1	8 none	RG_GANF_BIC-5_2021-09-16 PG_GANE_BIC-5_2021-09-16	Collembola	50	0.0025	
1.	2 Hone	RG_GANE_BIC-5_2021-09-16	Baetidae	50	0.023	
2	7 Nymph	RG GANF BIC-5 2021-09-16	Baetis	50	0.0252	
	7 F	RG_GANF_BIC-5_2021-09-16	Capniidae	50	0.0018	
;	7 Nymph/immature	RG_GANF_BIC-5_2021-09-16	Capniidae	50		
		RG_GANF_BIC-5_2021-09-16	Nemouridae	50	0.0287	
4	4 Nymph	RG_GANF_BIC-5_2021-09-16	Zapada	50		
12	2 Nymph/immature	RG_GANF_BIC-5_2021-09-16	Nemouridae	50		
		RG_GANF_BIC-5_2021-09-16	Periodidae	50	0.0114	
:	з мутпрп	RG_GANE_BIC-5_2021-09-16	Taopiontonyaidao	50	0.0060	
11	8 Nymph/immature	RG_GANE_BIC-5_2021-09-16	Taeniopterygidae	50	0.0000	
-	o nympny miniacare	RG GANF BIC-5 2021-09-16	Rhyacophilidae	50	0.0001	
	1 larvae	RG_GANF_BIC-5_2021-09-16	Rhyacophila	50		
		RG_GANF_BIC-5_2021-09-16	Chironomidae	50	0.0325	
:	1 pupae	RG_GANF_BIC-5_2021-09-16	Chironomidae	50		
-	2 larvae	RG_GANF_BIC-5_2021-09-16	Micropsectra	50		
48	8 larvae	RG_GANF_BIC-5_2021-09-16	Pagastia	50	0.0000	
1/	0 Jan/20	RG_GANE_BIC-5_2021-09-16	Empididae Chalifara/Matachala	50	0.0089	
1		RG_GANE_BIC-5_2021-09-16	Psychodidae	50	0.0011	
	3 larvae	RG GANE BIC-5 2021-09-16	Pericoma	50	0.0011	
		RG_GANF_BIC-5_2021-09-16	Tipulidae	50	0.0026	
:	3 larvae	RG_GANF_BIC-5_2021-09-16	Dicranota	50		
:	1 larvae	RG_GANF_BIC-5_2021-09-16	Helius	50		
-	2 none	RG_GANF_BIC-6_2021-09-16	Enchytraeidae	50	0.0003	
	4. 4. 4. 14	RG_GANF_BIC-6_2021-09-16	Sperchonidae	50	0.0001	
		RG_GANE_BIC 6 2021-09-16	Sperchon	50	0.0000	
	3 none	RG_GANF_BIC-6_2021-09-16	Collembola	50	0.0009	
	5 Hone	RG GANF BIC-6 2021-09-16	Baetidae	50	0.0253	
12	2 Nymph	RG_GANF_BIC-6_2021-09-16	Baetis	50		
	<i>,</i> ,	RG_GANF_BIC-6_2021-09-16	Capniidae	50	0.0023	
:	3 Nymph	RG_GANF_BIC-6_2021-09-16	Paracapnia	50		
1	1 Nymph/immature	RG_GANF_BIC-6_2021-09-16	Capniidae	50		
		RG_GANF_BIC-6_2021-09-16	Nemouridae	50	0.0199	
40	8 Nympn 7 Nymph/immatura	RG_GANF_BIC-6_2021-09-16	Zapada	50		
1.	/ Nymph/immature	PG_GANE_BIC-6_2021-09-16	Periodidae	50	0.0051	
	5 Nymph	RG GANF BIC-6 2021-09-16	Isoperla	50	0.0031	
	1 Nymph/immature	RG_GANF_BIC-6_2021-09-16	Perlodidae	50		
		RG_GANF_BIC-6_2021-09-16	Taeniopterygidae	50	0.0013	
10	0 Nymph/immature	RG_GANF_BIC-6_2021-09-16	Taeniopterygidae	50		
		RG_GANF_BIC-6_2021-09-16	Limnephilidae	50	0.0005	
4	4 larvae/immature	RG_GANF_BIC-6_2021-09-16	Limnephilidae	50		
	1	RG_GANF_BIC-6_2021-09-16	Rhyacophilidae	50	0.0001	
:	1 larvae	RG_GANF_BIC-6_2021-09-16	Knyacophila	50	0.0100	
	2 กมกวอ	RG_GANE_BIC 6 2021-09-16	Chironomidae	50	0.0162	
10	2 pupae 9 larvae	RG GANE BIC-6 2021-09-16	Pagastia	50 50		
1	5 larvae	RG GANF BIC-6 2021-09-16	Eukiefferiella	50		
	1 larvae	RG_GANF_BIC-6_2021-09-16	Zavrelimyia	50		
		RG GANF BIC-6 2021-09-16	Empididae	50	0.0075	

quantity <i>Numeric</i>	life_stage_code Text(20)	observ_sample_code <i>Text(40)</i>	BENCH_TAXON_NAME Text(255)	PERCENT_SAMPLED Numeric	RAW_BIOMASS <i>Text(255)</i>	QC_COMMENTS Text(255)
11	larvae	RG_GANF_BIC-6_2021-09-16 RG_GANF_BIC-6_2021-09-16	Chelifera/Metachela Psychodidae	50 50	0.0002	
3	larvae	RG_GANF_BIC-6_2021-09-16	Pericoma	50	0.0002	
	lawias	RG_GANF_BIC-6_2021-09-16	Tipulidae	50	0.0001	
1	ldrvæ	RG_GANF_BIC-6_2021-09-16 RG_GAUT_BIC-1_2021-09-16	Hygrobatidae	25	0.0027	,
3	Adult	RG_GAUT_BIC-1_2021-09-16	Hygrobates	25		
58	none	RG_GAUT_BIC-1_2021-09-16	Ostracoda	25	0.0134	-
1	larvae	RG_GAUT_BIC-1_2021-09-16	Heterlimnius	25	0.0003	
		RG_GAUT_BIC-1_2021-09-16	Baetidae	25	0.0007	,
1	Nymph Nymph/immature	RG_GAUT_BIC-1_2021-09-16 RG_GAUT_BIC-1_2021-09-16	Baetis Hentageniidae	25 25	0.0055	
1	Nymph	RG_GAUT_BIC-1_2021-09-16	Cinygma	25		
	Nymph	RG_GAUT_BIC-1_2021-09-16	Capniidae	25	0.0020	
6	Nymph/immature	RG_GAUT_BIC-1_2021-09-16	Capniidae	25		
		RG_GAUT_BIC-1_2021-09-16	Nemouridae	25	0.0079	1
1	. Nymph	RG_GAUT_BIC-1_2021-09-16 RG_GAUT_BIC-1_2021-09-16	Zapada Glossosomatidae	25	0.0024	L
8	larvae	RG_GAUT_BIC-1_2021-09-16	Anagapetus	25	0.002	
-	lawaa	RG_GAUT_BIC-1_2021-09-16	Limnephilidae	25	0.0014	ł
2	ldrvæ	RG_GAUT_BIC-1_2021-09-16 RG_GAUT_BIC-1_2021-09-16	Chironomidae	25	0.0025	i
2	larvae	RG_GAUT_BIC-1_2021-09-16	Micropsectra	25		
1	larvae/immature	RG_GAUT_BIC-1_2021-09-16	Tanypodinae	25	0.0321	
4	larvae	RG_GAUT_BIC-1_2021-09-16	Dicranota	25	0.0521	
1	larvae/indeterminate	RG_GAUT_BIC-1_2021-09-16	Tipulidae	25		
5	none	RG_GAUT_BIC-2_2021-09-16 RG_GAUT_BIC-2_2021-09-16	Planariidae Polycelis	25	0.0094	ł
		RG_GAUT_BIC-2_2021-09-16	Hygrobatidae	25	0.0020	1
2	Adult	RG_GAUT_BIC-2_2021-09-16	Hygrobates	25	0.0090	
25	Tione	RG_GAUT_BIC-2_2021-09-16	Dytiscidae	25	0.0009	
1	larvae/indeterminate	RG_GAUT_BIC-2_2021-09-16	Dytiscidae	25		
5	larvae	RG_GAUT_BIC-2_2021-09-16	Elmidae Heterlimpius	25	0.0077	,
2	larvae/immature	RG_GAUT_BIC-2_2021-09-16	Elmidae	25		
-	N. M. march	RG_GAUT_BIC-2_2021-09-16	Baetidae	25	0.0001	
2	Nymph Nymph/immature	RG_GAUT_BIC-2_2021-09-16 RG_GAUT_BIC-2_2021-09-16	Baetis Heptageniidae	25 25	0.0151	
3	8 Nymph	RG_GAUT_BIC-2_2021-09-16	Cinygma	25	0.0151	
-	Numph	RG_GAUT_BIC-2_2021-09-16	Capniidae	25	0.0066	i
9	Nymph	RG_GAUT_BIC-2_2021-09-16	Paracapnia	25		
36	Nymph/immature	RG_GAUT_BIC-2_2021-09-16	Capniidae	25		
2	Nymph	RG_GAUT_BIC-2_2021-09-16	Nemouridae Zapada	25	0.0031	
-	, tryinpir	RG_GAUT_BIC-2_2021-09-16	Perlodidae	100	0.0911	large/rare search
-	Numerala	RG_GAUT_BIC-2_2021-09-16	Perlodidae	25	0.0022	1
2	Nymph	RG_GAUT_BIC-2_2021-09-16 RG_GAUT_BIC-2_2021-09-16	Isoperia Megarcys	25 100		large/rare search
	, .	RG_GAUT_BIC-2_2021-09-16	Taeniopterygidae	25	0.0002	
3	Nymph/immature	RG_GAUT_BIC-2_2021-09-16	Taeniopterygidae	25	0.0001	
1	larvae	RG_GAUT_BIC-2_2021-09-16	Anagapetus	25	0.0001	
-		RG_GAUT_BIC-2_2021-09-16	Limnephilidae	25	0.0056	i
2	larvae	RG_GAUT_BIC-2_2021-09-16 RG_GAUT_BIC-2_2021-09-16	Rhvacophilidae	25	0.0016	i
1	larvae	RG_GAUT_BIC-2_2021-09-16	Rhyacophila	25		
1	lanzao	RG_GAUT_BIC-2_2021-09-16	Chironomidae	25	0.0013	
1	larvae	RG_GAUT_BIC-2_2021-09-16	Tvetenia	25		
1	larvae	RG_GAUT_BIC-2_2021-09-16	Zavrelimyia	25	0.0100	
q	none	RG_GAUT_BIC-3_2021-09-16 RG_GAUT_BIC-3_2021-09-16	Planariidae Polycelis	50	0.0122	
1	none	RG_GAUT_BIC-3_2021-09-16	Enchytraeidae	50	0.0002	
7	Adult	RG_GAUT_BIC-3_2021-09-16	Hygrobatidae	50	0.0040	1
/	Auuit	RG_GAUT_BIC-3_2021-09-16	Hydryphantidae	50	0.0006	i
2	2 Adult	RG_GAUT_BIC-3_2021-09-16	Wandesia	50		
3	Adult	RG_GAUT_BIC-3_2021-09-16	Sperchonidae Sperchon	50 50	0.0016	i
74	none	RG_GAUT_BIC-3_2021-09-16	Ostracoda	50	0.0180	1
-	lawing	RG_GAUT_BIC-3_2021-09-16	Elmidae	50	0.0014	ł
5	o idrvae	RG GAUT_BIC-3_2021-09-16 RG GAUT BIC-3 2021-09-16	Baetidae	50 50	0.0004	ł
3	8 Nymph	RG_GAUT_BIC-3_2021-09-16	Baetis	50	0.000	
-	Numph	RG_GAUT_BIC-3_2021-09-16	Capniidae	50	0.0089	1
3 43	S Nymph	RG_GAUT_BIC-3_2021-09-16	Paracapnia	50		
17	Nymph/immature	RG_GAUT_BIC-3_2021-09-16	Capniidae	50		
2	Nymph	RG_GAUT_BIC-3_2021-09-16 RG_GAUT_BIC-3_2021-09-16	Chioroperlidae Sweltsa	50 50	0.0037	
2		0.00.0 0_2021 00 10		50		

quantity <i>Numeric</i>	life_stage_code Text(20)	observ_sample_code Text(40)	BENCH_TAXON_NAME <i>Text(255)</i>	PERCENT_SAMPLED Numeric	RAW_BIOMASS <i>Text(255)</i>	QC_COMMENTS <i>Text(255)</i>
	. ,	RG_GAUT_BIC-3_2021-09-16	Nemouridae	50	0.0013	
3	3 Nymph	RG_GAUT_BIC-3_2021-09-16	Zapada	50		
		RG_GAUT_BIC-3_2021-09-16	Perlodidae	50	0.0317	
4	2 Nymph	RG_GAUT_BIC-3_2021-09-16	Isoperia	50		
4	2 Nympn	RG_GAUT_BIC-3_2021-09-16	Megarcys	50	0.0012	
2	4 larvae	RG_GAUT_BIC-3_2021-09-16	Anaganetus	50	0.0015	
	T la vac	RG GAUT BIC-3 2021-09-16	Limnephilidae	50	0.0071	
1	1 larvae/immature	RG GAUT BIC-3 2021-09-16	Limnephilidae	50		
		RG_GAUT_BIC-3_2021-09-16	Rhyacophilidae	50	0.0073	
1	1 larvae	RG_GAUT_BIC-3_2021-09-16	Rhyacophila	50		
		RG_GAUT_BIC-3_2021-09-16	Chironomidae	50	0.0005	
1	1 pupae	RG_GAUT_BIC-3_2021-09-16	Chironomidae	50		
1	1 larvae	RG_GAUT_BIC-3_2021-09-16	Chaetocladius	50		
1	1 larvae	RG_GAUT_BIC-3_2021-09-16	Zavrelimyia	50		
	2 1	RG_GAUT_BIC-3_2021-09-16	Emploidae	50	0.0015	
4	2 larvae	RG_GAUT_BIC-3_2021-09-16	Chellfera/Metachela	50		
-	1 Idrvae	RG_GAUT_BIC-3_2021-09-16	Rychodidae	50	0.0001	
	1 larvae	RG_GAUT_BIC-3_2021-09-16	Pericoma	50	0.0001	
-		RG GAUT BIC-3 2021-09-16	Tipulidae	50	0.0081	
6	6 larvae	RG GAUT BIC-3 2021-09-16	Dicranota	50		
1	1 larvae	RG_GAUT_BIC-3_2021-09-16	Limnophila	50		
		RG_GAUT_BIC-4_2021-09-16	Naididae	25	0.0002	
1	1	RG_GAUT_BIC-4_2021-09-16	immatures with hair chaetae	25		
96	6 none	RG_GAUT_BIC-4_2021-09-16	Ostracoda	25	0.0226	
		RG_GAUT_BIC-4_2021-09-16	Elmidae	25	0.0071	
6	6 larvae	RG_GAUT_BIC-4_2021-09-16	Heterlimnius	25		
3	3 larvae/immature	RG_GAUT_BIC-4_2021-09-16	Elmidae	25		
		RG_GAUT_BIC-4_2021-09-16	Baetidae	25	0.0010	
1	1 Nympn	RG_GAUT_BIC-4_2021-09-16	Baetis	25	0.0025	
2.	1 Numnh	RG_GAUT_BIC-4_2021-09-16	Caphildae	25	0.0035	
2.	1 Nymph/immature	RG_GAUT_BIC-4_2021-09-16	Cappiidae	25		
	+ Nymphymmiddare	RG_GAUT_BIC-4_2021-09-16	Nemouridae	25	0.0006	
	2 Nymph/immature	RG GAUT BIC-4 2021-09-16	Nemouridae	25	0.0000	
-		RG GAUT BIC-4 2021-09-16	Perlodidae	100	0.1821	large/rare search
6	6 Nymph	RG_GAUT_BIC-4_2021-09-16	Megarcys	100		large/rare search
	<i>,</i> ,	RG_GAUT_BIC-4_2021-09-16	Taeniopterygidae	25	0.0006	5,
1	1 Nymph/immature	RG_GAUT_BIC-4_2021-09-16	Taeniopterygidae	25		
		RG_GAUT_BIC-4_2021-09-16	Glossosomatidae	25	0.0016	
8	8 larvae	RG_GAUT_BIC-4_2021-09-16	Anagapetus	25		
		RG_GAUT_BIC-4_2021-09-16	Limnephilidae	25	0.0004	
1	1 larvae	RG_GAUT_BIC-4_2021-09-16	Ecclisomyia	25	0.0000	
	1	RG_GAUT_BIC-4_2021-09-16	Chironomidae	25	0.0026	
-	1 larvae	RG_GAUT_BIC-4_2021-09-16	Drillid Cricotopus/Orthocladius	25		
-	1 ldi Vde 3 larvao	RG_GAUT_BIC-4_2021-09-16	Zavrelimvia	25		
		RG_GAUT_BIC-4_2021-09-16	Empididae	25	0 0008	
1	1 larvae	RG GAUT BIC-4 2021-09-16	Chelifera/Metachela	25	0.0000	
-		RG GAUT BIC-4 2021-09-16	Tipulidae	25	0.0059	
2	2 larvae	RG_GAUT_BIC-4_2021-09-16	Dicranota	25		
1	1 larvae	RG_GAUT_BIC-4_2021-09-16	Rhabdomastix	25		
		RG_GAUT_BIC-5_2021-09-16	Planariidae	50	0.0061	
2	2 none	RG_GAUT_BIC-5_2021-09-16	Polycelis	50		
		RG_GAUT_BIC-5_2021-09-16	Lumbricidae	50	0.0051	
1	1 none	RG_GAUT_BIC-5_2021-09-16	Lumbricidae	50	0.0115	
40	u none	RG_GAUT_BIC-5_2021-09-16	Ustracoda	50	0.0115	
-	2 Januaro	RG_GAUT_BIC-5_2021-09-16	Heterlimnius	50	0.0008	
-		RG_GAUT_BIC-5_2021-09-16	Cappiidae	50	0.0073	
4	4 Nymph	RG GAUT BIC-5 2021-09-16	Eucaphopsis	50		
e	6 Nymph	RG_GAUT_BIC-5_2021-09-16	Paracapnia	50		
31	1 Nymph/immature	RG_GAUT_BIC-5_2021-09-16	Capniidae	50		
		RG_GAUT_BIC-5_2021-09-16	Nemouridae	50	0.0038	
7	7 Nymph	RG_GAUT_BIC-5_2021-09-16	Zapada	50		
		RG_GAUT_BIC-5_2021-09-16	Perlodidae	100	0.0519	large/rare search
		RG_GAUT_BIC-5_2021-09-16	Perlodidae	50	0.0204	
4	2 Nympn 1 Nymph	RG_GAUT_BIC-5_2021-09-16	Megarcys	100		large/rare search
-	т мутпрп	RG_GAUT_BIC-5_2021-09-16	Megarcys	50	0.0005	
	2 Nymph/immature	RG GAUT RIC-5 2021-09-10	Taeniopterygidae	50 50	0.0005	
4		RG GAUT BIC-5 2021-09-16	Glossosomatidae	50	0.0059	
28	8 larvae	RG_GAUT BIC-5 2021-09-16	Anagapetus	50	0.0000	
_		RG_GAUT_BIC-5_2021-09-16	Limnephilidae	50	0.0014	
1	1 larvae	RG_GAUT_BIC-5_2021-09-16	Ecclisomyia	50		
		RG_GAUT_BIC-5_2021-09-16	Rhyacophilidae	50	0.0001	
1	1 larvae	RG_GAUT_BIC-5_2021-09-16	Rhyacophila	50		
		RG_GAUT_BIC-5_2021-09-16	Chironomidae	50	0.0012	
2	2 larvae	KG_GAUT_BIC-5_2021-09-16	Brillia	50		
1	1 Januar	RG_GAUT_BIC-5_2021-09-16	Corynoneura	50		
1	1 IdfVde 1 Jarvae	RG GALIT BIC-5 2021-09-16	nelenielid Zavrolimvia	50		
1		RG GALIT BIC-5 2021-09-10	∠avrennyid Dividae	50	0.0055	
:	2 larvae	RG GAUT BIC-5 2021-09-16	Dixa	50	0.0055	

quantity <i>Numeric</i>	life_stage_code Text(20)	observ_sample_code <i>Text(40)</i>	BENCH_TAXON_NAME <i>Text(255)</i>	PERCENT_SAMPLED Numeric	RAW_BIOMASS <i>Text(255)</i>	QC_COMMENTS <i>Text(255)</i>
1	larvae	RG_GAUT_BIC-5_2021-09-16	Meringodixa	50		
		RG_GAUT_BIC-5_2021-09-16	Tipulidae	50	0.0005	i
1	larvae	RG_GAUT_BIC-5_2021-09-16	Dicranota	50	0.007	
-	7 nono	RG_GAUT_BIC-6_2021-09-16	Planariidae	50	0.0076)
/	none	RG_GAUT_BIC-6_2021-09-16	Lumbricidae	100	0.0934	large/rare search
1	none	RG GAUT BIC-6 2021-09-16	Eiseniella tetraedra	100	0.055	large/rare search
2	2 none	RG GAUT BIC-6 2021-09-16	Lumbricidae	50	0.0013	
		RG_GAUT_BIC-6_2021-09-16	Sperchonidae	50	0.0005	i
1	Adult	RG_GAUT_BIC-6_2021-09-16	Sperchon	50		
153	8 none	RG_GAUT_BIC-6_2021-09-16	Ostracoda	50	0.0375	i
		RG_GAUT_BIC-6_2021-09-16	Elmidae	50	0.0006	i
2	2 larvae	RG_GAUT_BIC-6_2021-09-16	Heterlimnius	50		
1	larvae/immature	RG_GAUT_BIC-6_2021-09-16	Elmidae	50	0.004	
-	Nymph/immature	RG_GAUT_BIC-6_2021-09-16	Heptageniidae	50	0.0045	
2	2 Nympn	RG_GAUT_BIC-6_2021-09-16	Cappiidae	50	0.0130	
-	8 Nymph	RG_GAUT_BIC-6_2021-09-16	Fucaphonesis	50	0.0150	
25	5 Nymph	RG GAUT BIC-6 2021-09-16	Paracaphia	50		
49	Nymph/immature	RG GAUT BIC-6 2021-09-16	Capniidae	50		
		RG_GAUT_BIC-6_2021-09-16	Leuctridae	50	0.0001	
2	2 Nymph/immature	RG_GAUT_BIC-6_2021-09-16	Leuctridae	50		
		RG_GAUT_BIC-6_2021-09-16	Nemouridae	50	0.0158	1
11	Nymph	RG_GAUT_BIC-6_2021-09-16	Zapada	50		
5	Nymph/immature	RG_GAUT_BIC-6_2021-09-16	Nemouridae	50	0.1000	lange/vare coards
		RG_GAUT_BIC-6_2021-09-16	Periodidae	100	0.1000	large/rare search
-	Nymph	RG GAUT BIC-6 2021-09-16	Menarcys	100	0.000.	large/rare search
4	1 Nymph	RG_GAUT_BIC-6_2021-09-16	Megarcys	50		large/rare scaren
	,	RG GAUT BIC-6 2021-09-16	Glossosomatidae	50	0.0026	i
11	larvae	RG_GAUT_BIC-6_2021-09-16	Anagapetus	50		
		RG_GAUT_BIC-6_2021-09-16	Rhyacophilidae	50	0.0005	i
3	3 larvae	RG_GAUT_BIC-6_2021-09-16	Rhyacophila	50		
		RG_GAUT_BIC-6_2021-09-16	Chironomidae	50	0.0031	
1	pupae	RG_GAUT_BIC-6_2021-09-16	Chironomidae	50		
1	larvae	RG_GAUT_BIC-6_2021-09-16	Brillia	50		
2	larvae	RG_GAUT_BIC-6_2021-09-16	Orthogladius lignicala	50 F0		
1	larvae	RG_GAUT_BIC-6_2021-09-16	Tvetenia	50		
2	2 larvae	RG GAUT BIC-6 2021-09-16	Zavrelimvia	50		
7	7 none	RG_GHBP_BIC-1_2021-09-11	Nematoda	25	0.0004	ł
1	none	RG_GHBP_BIC-1_2021-09-11	Enchytraeidae	25	0.0001	
		RG_GHBP_BIC-1_2021-09-11	Lumbricidae	25	0.0815	
e	5 none	RG_GHBP_BIC-1_2021-09-11	Lumbricidae	25	0.000	
	Adult	RG_GHBP_BIC-1_2021-09-11	Lebertidae	25	0.0007	
4	1 none	RG_GHBP_BIC-1_2021-09-11	Ostracoda	25	0.0006	
	Thone	RG GHBP BIC-1 2021-09-11	Gammaridae	25	0.4238	
11	none	RG_GHBP_BIC-1_2021-09-11	Gammarus	25		
		RG_GHBP_BIC-1_2021-09-11	Elmidae	25	0.0086	i
5	5 larvae/adult	RG_GHBP_BIC-1_2021-09-11	Heterlimnius	25		
		RG_GHBP_BIC-1_2021-09-11	Capniidae	25	0.0003	
1	Nymph	RG_GHBP_BIC-1_2021-09-11	Paracapnia	25	0.0012	
-	Numph	RG_GHBP_BIC-1_2021-09-11	Chioroperiidae	25	0.0013	i
1	i Nymph	RG_GHBP_BIC-1_2021-09-11	Nemouridae	25	0 1030	
33	8 Nymph	RG GHBP BIC-1 2021-09-11	Malenka	25	0.1050	
20) Nymph	RG GHBP BIC-1 2021-09-11	Zapada	25		
		RG_GHBP_BIC-1_2021-09-11	Brachycentridae	25	0.0045	i
7	7 larvae	RG_GHBP_BIC-1_2021-09-11	Micrasema	25		
		RG_GHBP_BIC-1_2021-09-11	Lepidostomatidae	25	0.0002	
1	larvae	RG_GHBP_BIC-1_2021-09-11	Lepidostoma	25	0.074	
17		RG_GHBP_BIC-1_2021-09-11	Rhyacophilidae	25	0.0743	
12	ldrvæ	RG_GHBP_BIC-1_2021-09-11	Chiropomidae	25	0.0013	
1	nunae	RG_GHBP_BIC-1_2021-09-11	Chironomidae	25	0.0012	
1	larvae	RG GHBP BIC-1 2021-09-11	Pentaneura	25		
-		RG GHBP BIC-1 2021-09-11	Pelecorhyncidae	25	0.0036	i
4	ł larvae	RG_GHBP_BIC-1_2021-09-11	Glutops	25		
		RG_GHBP_BIC-1_2021-09-11	Psychodidae	25	0.0185	
72	2 larvae	RG_GHBP_BIC-1_2021-09-11	Pericoma	25		
267	7	RG_GHBP_BIC-1_2021-09-11	Pisidiidae	25	0.3141	
267	none	RG GHRP RIC-2 2021-09-11	Nematoda	20 50	0.000	
3	, none	RG GHBP BIC-2 2021-09-14	Planariidae	50	0.000	
2	2 none	RG GHBP BIC-2 2021-09-14	Polvcelis	50	0.002.	
ç) none	RG_GHBP_BIC-2_2021-09-14	Enchytraeidae	50	0.0010	1
		RG_GHBP_BIC-2_2021-09-14	Lumbricidae	100	0.2373	large/rare search
2	2 none	RG_GHBP_BIC-2_2021-09-14	Eiseniella tetraedra	100		large/rare search
2	2 none	RG_GHBP_BIC-2_2021-09-14	Lumbricidae	100		large/rare search
-	A dult	RG_GHBP_BIC-2_2021-09-14	Lebertiidae	50	0.0010)
2		RG_GHBP_BIC-2_2021-09-14	Lebertia	50	0.000	
3		RG GHBP BIC-2 2021-09-14	Gammaridae	100	0.000	large/rare search
		RG_GHBP_BIC-2_2021-09-14	Gammaridae	50	0.0247	5., <u></u> Soaran

quantity	life_stage_code	observ_sample_code	BENCH_TAXON_NAME	PERCENT_SAMPLED	RAW_BIOMASS QC_COMMENTS
Numeric	Text(20)	Text(40)	Text(255)	Numeric	<i>Text(255) Text(255)</i>
	1 none	RG_GHBP_BIC-2_2021-09-14	Gammarus	100	large/rare search
	2 none	RG_GHBP_BIC-2_2021-09-14	Gammarus	50	
	1 none	RG_GHBP_BIC-2_2021-09-14	Collembola	50	0.0003
		RG_GHBP_BIC-2_2021-09-14	Elmidae	50	0.0018
	4 larvae/adult	RG_GHBP_BIC-2_2021-09-14	Heterlimnius	50	
		RG_GHBP_BIC-2_2021-09-14	Baetidae	50	0.0059
	1 Nymph	RG_GHBP_BIC-2_2021-09-14	Baetis	50	
		RG_GHBP_BIC-2_2021-09-14	Chloroperlidae	50	0.0014
	1 Nymph	RG_GHBP_BIC-2_2021-09-14	Sweltsa	50	
		RG_GHBP_BIC-2_2021-09-14	Nemouridae	100	0.0476 large/rare search
		RG_GHBP_BIC-2_2021-09-14	Nemouridae	50	0.2849
1	2 Nymph	RG_GHBP_BIC-2_2021-09-14	Malenka	100	large/rare search
4	10 Nymph	RG_GHBP_BIC-2_2021-09-14	Malenka	50	
	3 Nymph	RG_GHBP_BIC-2_2021-09-14	Zapada	100	large/rare search
18	34 Nymph	RG_GHBP_BIC-2_2021-09-14	Zapada	50	
	5 Nymph/immature	RG_GHBP_BIC-2_2021-09-14	Nemouridae	50	
		RG_GHBP_BIC-2_2021-09-14	Perlodidae	50	0.0004
	1 Nymph/immature	RG_GHBP_BIC-2_2021-09-14	Perlodidae	50	
		RG_GHBP_BIC-2_2021-09-14	Brachycentridae	50	0.0063
1	4 larvae	RG_GHBP_BIC-2_2021-09-14	Micrasema	50	
		RG_GHBP_BIC-2_2021-09-14	Lepidostomatidae	50	0.0003
	4 larvae	RG GHBP BIC-2 2021-09-14	Lepidostoma	50	
		RG GHBP BIC-2 2021-09-14	Rhyacophilidae	100	0.2840 large/rare search
		RG GHBP BIC-2 2021-09-14	Rhyacophilidae	50	0.0481
1	2 larvae	RG GHBP BIC-2 2021-09-14	Rhyacophila	100	large/rare search
4	16 larvae	RG GHBP BIC-2 2021-09-14	Rhyacophila	50	5,
		RG GHBP BIC-2 2021-09-14	Ceratopogonidae	50	0.0009
	3 larvae	RG GHBP BIC-2 2021-09-14	Probezzia	50	
		RG GHBP BIC-2 2021-09-14	Chironomidae	50	0.0057
1	8 pupae	RG_GHBP_BIC-2_2021-09-14	Chironomidae	50	
-	1 Jarvae	RG GHBP BIC-2 2021-09-14	Micronsectra	50	
	2 larvae	RG_GHBP_BIC-2_2021-09-14	Corynoneura	50	
	7 larvae	RG GHBP BIC-2 2021-09-14	Cricotonus/Orthocladius	50	
	1 Janvae	RG_GHBP_BIC-2_2021-09-14	Eukiofforialla	50	
	3 Jan/20	PC CHEP BIC-2 2021-00-14	Pontanoura	50	
	5 101 400	PC CHEP BIC-2 2021-00-14	Dividao	50	0 0033
	1 Jan/20	PC CHEP BIC-2 2021-09-14	Dixidae	50	0.0032
	1 101 100	RG_GHDF_DIC-2_2021-05-14	Dika	100	0 1272 Jargo/raro coarch
		RG_GHDP_DIC-2_2021-09-14	Pelecomyncidae	100	0.1373 laige/laie search
1	1 122/20	RG_GHBP_BIC-2_2021-09-14	Clutere	50	0.0330
1		RG_GHDP_BIC-2_2021-09-14	Glutops	100	la ge/ra e sea ch
	7 larvae	RG_GHDP_DIC-2_2021-09-14	Glutops	50	0.0042
20		RG_GHDP_DIC-2_2021-09-14	Psychouldae	50	0.0943
26	ou larvae	RG_GHBP_BIC-2_2021-09-14	Pericoma Gianaliida a	50	0.0129
	8 larvae/indeterminate	RG_GHBP_BIC-2_2021-09-14	Simulidae	50	0.0128
10		RG_GHBP_BIC-2_2021-09-14	Pisidiidae	50	0.1388
10	14 none	RG_GHBP_BIC-2_2021-09-14	Pisidium	50	0.0000
	1 none	RG_GHBP_BIC-3_2021-09-11	Iricladida	25	0.0022
		RG_GHBP_BIC-3_2021-09-11	Planariidae	25	0.0001
	1 none	RG_GHBP_BIC-3_2021-09-11	Polycells	25	0.0000
	1 none	RG_GHBP_BIC-3_2021-09-11	Enchytraeidae	25	0.0003
		RG_GHBP_BIC-3_2021-09-11	Lumbricidae	100	0.68/3 large/rare search
		RG_GHBP_BIC-3_2021-09-11	Lumbricidae	25	0.0018
1	0 none	RG_GHBP_BIC-3_2021-09-11	Eiseniella tetraedra	100	large/rare search
	1 none	RG_GHBP_BIC-3_2021-09-11	Lumbricidae	100	large/rare search
	1 none	RG_GHBP_BIC-3_2021-09-11	Lumbricidae	25	
	2.4.1.11	KG_GHBP_BIC-3_2021-09-11	Lebertiidae	25	0.0008
	2 Adult	RG_GHBP_BIC-3_2021-09-11	Lebertia	25	
		RG_GHBP_BIC-3_2021-09-11	Gammaridae	100	0.1084 large/rare search
		KG_GHBP_BIC-3_2021-09-11	Gammaridae	25	0.0123
	4 none	RG_GHBP_BIC-3_2021-09-11	Gammarus	100	large/rare search
	2 none	KG_GHBP_BIC-3_2021-09-11	Gammarus	25	
		KG_GHBP_BIC-3_2021-09-11	Elmidae	25	0.0005
	1 Iarvae/adult	KG_GHBP_BIC-3_2021-09-11	Heterlimnius	25	
		KG_GHBP_BIC-3_2021-09-11	Baetidae	25	0.0146
	2 Nymph	KG_GHBP_BIC-3_2021-09-11	Baetis	25	
		RG_GHBP_BIC-3_2021-09-11	Chloroperlidae	25	0.0054
	3 Nymph	RG_GHBP_BIC-3_2021-09-11	Sweltsa	25	
		RG_GHBP_BIC-3_2021-09-11	Nemouridae	100	0.0137 large/rare search
		KG_GHBP_BIC-3_2021-09-11	Nemouridae	25	0.1874
	4 Nymph	RG_GHBP_BIC-3_2021-09-11	Malenka	100	large/rare search
4	15 Nymph	RG_GHBP_BIC-3_2021-09-11	Malenka	25	
5	54 Nymph	RG_GHBP_BIC-3_2021-09-11	Zapada	25	
	7 Nymph/immature	RG_GHBP_BIC-3_2021-09-11	Nemouridae	25	
		RG_GHBP_BIC-3_2021-09-11	Brachycentridae	25	0.0017
	7 larvae	RG_GHBP_BIC-3_2021-09-11	Micrasema	25	
		RG_GHBP_BIC-3_2021-09-11	Lepidostomatidae	25	0.0002
	6 larvae	RG_GHBP_BIC-3_2021-09-11	Lepidostoma	25	
		RG_GHBP_BIC-3_2021-09-11	Limnephilidae	25	0.0001
	1 larvae/immature	RG_GHBP_BIC-3_2021-09-11	Limnephilidae	25	
		RG_GHBP_BIC-3_2021-09-11	Rhyacophilidae	100	0.4698 large/rare search
		RG_GHBP_BIC-3_2021-09-11	Rhyacophilidae	25	0.0499
2	25 larvae	RG_GHBP_BIC-3_2021-09-11	Rhyacophila	100	large/rare search
1	.6 larvae	RG_GHBP_BIC-3_2021-09-11	Rhyacophila	25	
		RG_GHBP_BIC-3_2021-09-11	Ceratopogonidae	25	0.0002
	1 larvae/indeterminate	RG GHBP BIC-3 2021-09-11	Ceratopogonidae	25	

quantity	life_stage_code	observ_sample_code	BENCH_TAXON_NAME	PERCENT_SAMPLED	RAW_BIOMASS QC_COMMENTS
Numeric	Text(20)	Text(40)	Text(255)	Numeric	Text(255) Text(255)
		RG_GHBP_BIC-3_2021-09-11	Chironomidae	25	0.0032
	8 pupae	RG_GHBP_BIC-3_2021-09-11	Chironomidae	25	
	1 larvae	RG_GHBP_BIC-3_2021-09-11	Micropsectra	25	
	3 larvae	RG_GHBP_BIC-3_2021-09-11	Eukiefferiella	25	
		RG_GHBP_BIC-3_2021-09-11	Pelecorhyncidae	100	0.0118 large/rare search
	1 larvae	RG GHBP BIC-3 2021-09-11	Glutops	100	large/rare search
		RG GHBP BIC-3 2021-09-11	Psvchodidae	25	0.0075
7	24 larvae	RG_GHBP_BIC-3_2021-09-11	Pericoma	25	
		RG GHBP BIC-3 2021-09-11	Simuliidae	25	0.0247
	8 larvae/indeterminate	RG_GHBP_BIC-3_2021-09-11	Simuliidae	25	010217
	o la vac/indeterminate	PC CHEP BIC-3 2021-09-11	Dicidiidae	25	0.2701
20	12 2020		Dicidium	25	0.2791
20	3 none		Fisicium	25	0.0007
	3 none	RG_GHDP_DIC-4_2021-09-14	Enchytraeidae	25	0.0007
	2	RG_GHBP_BIC-4_2021-09-14	Lumbricidae	25	0.2187
	2 none	RG_GHBP_BIC-4_2021-09-14	Lumbricidae	100	large/rare search
		RG_GHBP_BIC-4_2021-09-14	Trombidiformes	25	0.0005
	2 Adult/indeterminate	RG_GHBP_BIC-4_2021-09-14	Trombidiformes	25	
		RG_GHBP_BIC-4_2021-09-14	Lebertiidae	25	0.0004
	1 Adult	RG_GHBP_BIC-4_2021-09-14	Lebertia	25	
	1 Adult/indeterminate	RG_GHBP_BIC-4_2021-09-14	Torrenticolidae	25	0.0003
	2 none	RG GHBP BIC-4 2021-09-14	Ostracoda	25	0.0008
		RG GHBP BIC-4 2021-09-14	Gammaridae	100	0.1168 Jarge/rare search
		RG GHBP BIC-4 2021-09-14	Gammaridae	25	0.0596
	1 2020	RG_GHBI_DIC 4_2021 00 14	Commonue	100	large/rare coarch
	4 none	RG_GHBP_BIC-4_2021-09-14	Gammanus	100	large/rare search
	5 none	RG_GHDP_DIC-4_2021-09-14	Gammarus	25	0.0016
		RG_GHBP_BIC-4_2021-09-14	Elmidae	25	0.0016
	1 larvae/adult	RG_GHBP_BIC-4_2021-09-14	Heterlimnius	25	
		RG_GHBP_BIC-4_2021-09-14	Baetidae	25	0.0037
	2 Nymph	RG GHBP BIC-4 2021-09-14	Baetis	25	
	, .	RG_GHBP_BIC-4_2021-09-14	Capniidae	25	0.0002
	1 Nymph/immature	RG GHBP BIC-4 2021-09-14	Canniidae	25	
	1 Nymphymmature	PC_CHED_BIC_4_2021-00-14	Nomouridae	25	0.2565
,	11 Numerala	RG_GIIDF_DIC-4_2021-09-14	Malaala	25	0.2303
	+1 Nympn	RG_GHDP_DIC-4_2021-09-14	маепка	25	
11	17 Nymph	RG_GHBP_BIC-4_2021-09-14	Zapada	25	
	6 Nymph/immature	RG_GHBP_BIC-4_2021-09-14	Nemouridae	25	
		RG_GHBP_BIC-4_2021-09-14	Brachycentridae	25	0.0067
1	15 larvae	RG_GHBP_BIC-4_2021-09-14	Micrasema	25	
		RG GHBP BIC-4 2021-09-14	Lepidostomatidae	25	0.0002
	1 larvae	RG_GHBP_BIC-4_2021-09-14	Lenidostoma	25	
		RG GHBP BIC-4 2021-09-14	Physcophilidae	100	0 2605 Jarge/rare search
		RC_CHPD_BIC 4_2021 00 14	Bhyacophilidae	25	0.1257
	12 Jam (86	RG_GIIDF_DIC-4_2021-09-14	Rhyacoprillidae	25	0.1257
1		RG_GHDP_DIC-4_2021-09-14	Rhyacophila	100	large/rare search
5	51 larvae	RG_GHBP_BIC-4_2021-09-14	Rhyacophila	25	
		RG_GHBP_BIC-4_2021-09-14	Ceratopogonidae	25	0.0004
	1 larvae	RG_GHBP_BIC-4_2021-09-14	Probezzia	25	
		RG_GHBP_BIC-4_2021-09-14	Chironomidae	25	0.0034
	6 pupae	RG_GHBP_BIC-4_2021-09-14	Chironomidae	25	
	3 larvae	RG GHBP BIC-4 2021-09-14	Micronsectra	25	
	5 141 142	PC_CHEP_BIC-4_2021-09-14	Pelecerbyncidae	100	0.0004 Jargo/raro coarch
	1	RG_GIIDF_DIC-4_2021-09-14	Clutere	100	
	1 Idrvae	RG_GHDP_DIC-4_2021-09-14	Giutops	100	large/rare search
_		RG_GHBP_BIC-4_2021-09-14	Psychodidae	25	0.0348
/	// larvae	RG_GHBP_BIC-4_2021-09-14	Pericoma	25	
		RG_GHBP_BIC-4_2021-09-14	Simuliidae	25	0.0170
	6 larvae/indeterminate	RG_GHBP_BIC-4_2021-09-14	Simuliidae	25	
		RG_GHBP_BIC-4_2021-09-14	Pisidiidae	25	0.1406
12	20 none	RG GHBP BIC-4 2021-09-14	Pisidium	25	
	8 none	RG_GHBP_BIC-5_2021-09-11	Nematoda	25	0.0003
	1 none	RG_GHBP_BIC-5_2021-09-11	Enchytraeidae	100	0.0059 Jarge/rare search
-	28 none	RG GHBP BIC-5 2021-09-11	Enchytraeidae	200	0.0050
2	EO HOHE	DC CHPD BIC 5 2021 00 11	Lumbrisidae	100	0.6EE2 large/rare coarch
	~	RG_GHDP_DIC-5_2021-09-11		100	0.0555 large/lare search
	6 none	RG_GHBP_BIC-5_2021-09-11	Eiseniella tetraedra	100	large/rare search
		RG_GHBP_BIC-5_2021-09-11	Irombidiformes	25	0.0003
	 Adult/indeterminate 	RG_GHBP_BIC-5_2021-09-11	Trombidiformes	25	
		RG_GHBP_BIC-5_2021-09-11	Lebertiidae	25	0.0008
	5 Adult	RG GHBP BIC-5 2021-09-11	Lebertia	25	
	2 none	RG GHBP BIC-5 2021-09-11	Ostracoda	25	0.0004
		RG GHBP BIC-5 2021-09-11	Gammaridae	100	0.2152 Jarge/rare search
		PC_CHED_BIC_5_2021-00-11	Cammaridae	25	0.1526
	6 2020	RG_GHDF_DIC-5_2021-09-11	Gammarua	25	0.1320
	o none	RG_GHDP_DIC-5_2021-09-11	Gammarus	100	laige/laie seaich
1	to none	KG_GHBP_BIC-5_2021-09-11	Gammarus	25	
		RG_GHBP_BIC-5_2021-09-11	Elmidae	25	0.0036
	2 Iarvae/adult	RG_GHBP_BIC-5_2021-09-11	Heterlimnius	25	
	1 adult/indeterminate	RG_GHBP_BIC-5_2021-09-11	Staphylinidae	25	0.0004
		RG_GHBP BIC-5 2021-09-11	Baetidae	25	0.0071
	6 Nymph	RG GHBP BIC-5 2021-09-11	Baetis	25	
	· /···	RG GHBP BIC-5 2021-09-11	Chloroperlidae	25	0.0130
	9 Nymph	DC CHRD BIC 5 2021-07-11	Swolten	23	0.0130
	z wympn 1 Nemenia (marca)		SWEILSd Chleron cull de c	25	
	1 Nympn/Immature	KG_GHBP_BIC-5_2021-09-11	Chloroperiidae	25	0.00.7
		KG_GHBP_BIC-5_2021-09-11	Nemouridae	100	0.0047 large/rare search
		RG_GHBP_BIC-5_2021-09-11	Nemouridae	25	0.3348
	1 Nymph	RG_GHBP_BIC-5_2021-09-11	Malenka	100	large/rare search
8	35 Nymph	RG_GHBP_BIC-5_2021-09-11	Malenka	25	
	1 Nymph	RG GHBP BIC-5 2021-09-11	Zapada	100	large/rare search
14	45 Nymph	RG GHBP BIC-5 2021-09-11	Zapada	25	
14	A Nymph/immature	DC CHRD BIC 5 2021-05-11	Nemouridae	23	
4		10_0101_010-0_2021-09-11	incitiour lude	23	

quantity	life_stage_code	observ_sample_code	BENCH_TAXON_NAME	PERCENT_SAMPLED	RAW_BIOMASS QC_COMMENTS
Numeric	Text(20)	<i>Text(40)</i>	Text(255)	Numeric	Text(255) Text(255)
		RG_GHBP_BIC-5_2021-09-11	Brachycentridae	25	0.0184
30	larvae	RG_GHBP_BIC-5_2021-09-11	Micrasema	25	0.0015
		RG_GHBP_BIC-5_2021-09-11	Lepidostomatidae	25	0.0015
15	larvae	RG_GHBP_BIC-5_2021-09-11	Lepidostoma Diverse a selalida a	25	0.2016 January (mana ana math
		RG_GHBP_BIC-5_2021-09-11	Rhyacophilidae	100	0.2016 large/rare search
0	law can	RG_GHBP_BIC-5_2021-09-11	Rhyacophilidae	25	0.1320
5	larvae	RG_GHDP_BIC-5_2021-09-11	Rhyacophila	100	large/rare search
64	Idivae	RG_GHDP_BIC-5_2021-09-11	Rnyacophila	25	0.0006
1	lan/aa	RG_GHBP_BIC-5_2021-09-11	Drobozzia	25	0.0008
1	Idrvae	RG_GHDP_DIC-5_2021-09-11	Chironomidaa	25	0.0197
17	nunno	RG_GHBP_BIC-5_2021-09-11	Chironomidae	25	0.0187
1/	Janvao	RG_GHBP_BIC-5_2021-09-11	Micropootro	25	
27		PC CHRP BIC-5 2021-09-11	Convonoura	25	
1	lanvae	RG_GHBP_BIC-5_2021-09-11	Koloniolla	25	
1	lanvae	RG_GHBP_BIC-5_2021-09-11	Pentapoura	25	
3	Idivae	RG_GHBP_BIC-5_2021-09-11	Empididae	25	0.0011
-	lawing	RG_GHBP_BIC-5_2021-09-11	Chaliforn (Matachala	25	0.0011
2		RG_GHBP_BIC-5_2021-09-11	Delecerburgidae	25	0.0022
6	Jan/ao	RG_GHBP_BIC-5_2021-09-11	Clutops	25	0.0022
0		PC CHRP BIC-5 2021-09-11	Bruchodidaa	25	0.2554
E14	lancas	RG_GIIDF_DIC-5_2021-05-11	Psychoulude	25	0.2354
514	Idi vae	RG_GHBP_BIC-5_2021-09-11	Simuliidaa	25	0.0208
0	lan/ag/indotorminato	RG_GHBP_BIC-5_2021-09-11	Simuliidaa	25	0.0208
5	al vae/indeterminate	RG_GHBP_BIC-5_2021-09-11	Tipulidae	25	0.0011
1	lan/ao	RG_GHBP_BIC-5_2021-09-11	Digrapata	25	0.0011
1		PC CHRP BIC-5 2021-09-11	Dicidiidaa	25	0.0130 Jargo/raro coarch
		PC CHRP BIC-5 2021-09-11	Pisidiidae	100	0.4602
c	nono	RG_GIIDF_DIC-5_2021-05-11	Dicidium	100	0.7052
215	none	RG_GHBP_BIC-5_2021-09-11	Pisidium	100	large/rare search
515	none	RG_GHBP_BIC-5_2021-09-11	Pisiului	25	0.0065
-	nono	RG_GHBP_BIC-6_2021-09-14	Planaliude	25	0.0005
7	none	RG_GHBP_BIC-6_2021-09-14	Folycells	25	0.0013
,	none	PC CHEP BIC-6 2021-09-14	Lumbricidae	25	0.3400 Jarge/rare search
2	nono	RG_GHBP_BIC-6_2021-09-14	Lumbricidae	100	0.3400 large/rare search
3	none	RG_GHBP_BIC-6_2021-09-14	Labortiidaa	100	
3	Adult	PC CHEP BIC-6 2021-09-14	Lebertia	25	0.0000
5	none	PG GHBP BIC-6 2021-09-14	Ostracoda	25	0.0011
5	none	RG_GHBP_BIC-6_2021-09-14	Cammaridao	100	0.00011
		RG_GHBP_BIC-6_2021-09-14	Gammaridae	25	0.0804
2	none	RG_GHBP_BIC-6_2021-09-14	Gammarus	100	large/rare search
2	none	PC CHEP BIC-6 2021-09-14	Cammarus	25	large/rare search
0	none	RG_GHBP_BIC-6_2021-09-14	Baetidae	25	0.0003
1	Nymph	RG GHBP BIC-6 2021-09-14	Raptic	25	0.0005
-	Nympii	RG_GHBP_BIC-6_2021-09-14	Nemouridae	25	0 1304
16	Nymph	RG_GHBP_BIC-6_2021-09-14	Malenka	25	0.1301
49	Nymph	RG_GHBP_BIC-6_2021-09-14	Zanada	25	
15	Nympii	RG_GHBP_BIC-6_2021-09-14	Brachycentridae	25	0 0147
43	larvae	RG_GHBP_BIC-6_2021-09-14	Micrasema	25	0.0117
-15		RG_GHBP_BIC-6_2021-09-14	Lenidostomatidae	25	0.0010
5	larvae	RG GHBP BIC-6 2021-09-14	Lepidostoma	25	0.0010
5		RG_GHBP_BIC-6_2021-09-14	Rhyacophilidae	25	0 1110
20	larvae	RG_GHBP_BIC-6_2021-09-14	Rhyacophila	25	0.1110
20		RG GHBP BIC-6 2021-09-14	Chironomidae	25	0.0036
3	nunae	RG_GHBP_BIC-6_2021-09-14	Chironomidae	25	0.0000
5	larvae	RG_GHBP_BIC-6_2021-09-14	Micronsectra	25	
1	larvae	RG GHBP BIC-6 2021-09-14	Pagastia	25	
		RG GHBP BIC-6 2021-09-14	Empididae	25	0.0003
1	larvae	RG GHBP BIC-6 2021-09-14	Chelifera/Metachela	25	
		RG GHBP BIC-6 2021-09-14	Pelecorhyncidae	25	0.0010
1	larvae	RG GHBP BIC-6 2021-09-14	Glutops	25	
		RG GHBP BIC-6 2021-09-14	Psychodidae	25	0.0433
76	larvae	RG GHBP BIC-6 2021-09-14	Pericoma	25	
		RG_GHBP_BIC-6_2021-09-14	Simuliidae	25	0.0074
2	larvae/indeterminate	RG_GHBP_BIC-6_2021-09-14	Simuliidae	25	
		RG_GHBP_BIC-6_2021-09-14	Pisidiidae	25	0.4527
299	none	RG_GHBP_BIC-6_2021-09-14	Pisidium	25	
		RG_GHNF_BIC-1_2021-09-10	Planariidae	12.5	0.0145
5	none	RG_GHNF_BIC-1_2021-09-10	Polycelis	12.5	
5	none	RG_GHNF_BIC-1_2021-09-10	Enchytraeidae	12.5	0.0013
		RG_GHNF_BIC-1_2021-09-10	Sperchonidae	12.5	0.0002
1	Adult	RG_GHNF_BIC-1_2021-09-10	Sperchon	12.5	
12	none	RG_GHNF_BIC-1_2021-09-10	Ostracoda	12.5	0.0025
		RG_GHNF_BIC-1_2021-09-10	Capniidae	12.5	0.0148
5	Nymph	RG_GHNF_BIC-1_2021-09-10	Mesocapnia/Capnia	12.5	
13	Nymph	RG_GHNF_BIC-1_2021-09-10	Paracapnia	12.5	
26	Nymph/immature	RG_GHNF_BIC-1_2021-09-10	Capniidae	12.5	
		RG_GHNF_BIC-1_2021-09-10	Chloroperlidae	12.5	0.0001
1	Nymph/immature	RG_GHNF_BIC-1_2021-09-10	Chloroperlidae	12.5	
		KG_GHNF_BIC-1_2021-09-10	Nemouridae	12.5	0.0207
1	Nymph	KG_GHNF_BIC-1_2021-09-10	Malenka	12.5	
32	Nymph	KG_GHNF_BIC-1_2021-09-10	Zapada	12.5	
44	wympn/immature	KG_GHNF_BIC-1_2021-09-10	Nemouridae	12.5	
		KG_GHNF_BIC-1_2021-09-10	Periodidae	100	0.0136 large/rare search
		кg_ghnf_bic-1_2021-09-10	refioalaae	12.5	0.0183

quantity <i>Numeric</i>	life_stage_code Text(20)	observ_sample_code Text(40)	BENCH_TAXON_NAME Text(255)	PERCENT_SAMPLED	RAW_BIOMASS <i>Text(255)</i>	QC_COMMENTS Text(255)
1/	Nymph	PG GHNE BIC-1 2021-09-10	Megarovs	12.5		large/rare search
1	Nymph	PG GHNE BIC-1 2021-09-10	Taeniontervaidae	100	0.0005	large/rare search
4	Nymph/immature	RG_GHNF_BIC-1_2021-09-10	Taeniopterygidae	12.5	0.0005	
	Nymphymmacure	RG_GHNF_BIC-1_2021-09-10	Limpenhilidae	12.5	0 0027	
6	larvae/immature	RG_GHNF_BIC-1_2021-09-10	Limnephilidae	12.5	0.0027	
0		RG_GHNF_BIC-1_2021-09-10	Chironomidae	12.5	0.0638	
23	nunae	RG_GHNF_BIC-1_2021-09-10	Chironomidae	12.5	0.0050	
1	larvae	RG GHNE BIC-1 2021-09-10	Micronsectra	12.5		
1	larvae	RG_GHNE_BIC-1_2021-09-10	Diamesa	12.5		
79	larvae	RG_GHNE_BIC-1_2021-09-10	Pagastia	12.5		
2	larvae	RG_GHNE_BIC-1_2021-09-10	Pseudodiamesa	12.5		
1	larvae	RG GHNF BIC-1 2021-09-10	Corynoneura	12.5		
12	larvae	RG GHNF BIC-1 2021-09-10	Cricotopus/Orthocladius	12.5		
3	larvae	RG GHNE BIC-1 2021-09-10	Fukiefferiella	12.5		
2	larvae	RG GHNF BIC-1 2021-09-10	Heleniella	12.5		
145	larvae	RG GHNF BIC-1 2021-09-10	Tvetenia	12.5		
		RG GHNF BIC-1 2021-09-10	Empididae	12.5	0.0324	
15	larvae	RG GHNF BIC-1 2021-09-10	Chelifera/Metachela	12.5		
3	larvae	RG GHNF BIC-1 2021-09-10	Clinocera	12.5		
		RG_GHNF_BIC-1_2021-09-10	Psychodidae	12.5	0.0025	
5	larvae	RG_GHNF_BIC-1_2021-09-10	Pericoma	12.5		
		RG_GHNF_BIC-1_2021-09-10	Tipulidae	12.5	0.0049	
14	larvae	RG_GHNF_BIC-1_2021-09-10	Dicranota	12.5		
		RG_GHNF_BIC-2_2021-09-10	Planariidae	6.25	0.0044	
1	none	RG_GHNF_BIC-2_2021-09-10	Polycelis	6.25		
2	none	RG_GHNF_BIC-2_2021-09-10	Enchytraeidae	6.25	0.0001	
8	none	RG_GHNF_BIC-2_2021-09-10	Ostracoda	6.25	0.0015	
		RG_GHNF_BIC-2_2021-09-10	Capniidae	6.25	0.0142	
3	Nymph	RG_GHNF_BIC-2_2021-09-10	Mesocapnia/Capnia	6.25		
31	Nymph	RG_GHNF_BIC-2_2021-09-10	Paracapnia	6.25		
24	Nymph/immature	RG_GHNF_BIC-2_2021-09-10	Capniidae	6.25		
		RG_GHNF_BIC-2_2021-09-10	Nemouridae	6.25	0.0180	
1	Nymph	RG_GHNF_BIC-2_2021-09-10	Malenka	6.25		
18	Nymph	RG_GHNF_BIC-2_2021-09-10	Zapada	6.25		
16	Nymph/immature	RG_GHNF_BIC-2_2021-09-10	Nemouridae	6.25	0.0163	
12	Ni mania	RG_GHNF_BIC-2_2021-09-10	Periodidae	6.25	0.0162	
15	Nymph	RG_GHNF_BIC-2_2021-09-10	Taopiontonygidao	6.25	0 0002	
2	Nymph/immature	RG_GHNF_BIC-2_2021-09-10	Taeniopterygidae	6.25	0.0002	
2	Nymphymmacure	RG_GHNF_BIC-2_2021-09-10	Limpenhilidae	6.25	0.0023	
8	larvae/immature	RG_GHNF_BIC-2_2021-09-10	Limnephilidae	6.25	0.0025	
0	iai vac/ininacare	RG_GHNF_BIC-2_2021-09-10	Chironomidae	6.25	0.0541	
11	pupae	RG GHNF BIC-2 2021-09-10	Chironomidae	6.25	010011	
4	larvae	RG GHNF BIC-2 2021-09-10	Micropsectra	6.25		
10	larvae	RG GHNF BIC-2 2021-09-10	Pagastia	6.25		
6	larvae	RG GHNF BIC-2 2021-09-10	Pseudodiamesa	6.25		
1	larvae	RG_GHNF_BIC-2_2021-09-10	Brillia	6.25		
2	larvae	RG_GHNF_BIC-2_2021-09-10	Corynoneura	6.25		
1	larvae	RG_GHNF_BIC-2_2021-09-10	Cricotopus/Orthocladius	6.25		
4	larvae	RG_GHNF_BIC-2_2021-09-10	Heleniella	6.25		
5	larvae	RG_GHNF_BIC-2_2021-09-10	Hydrobaenus	6.25		
98	larvae	RG_GHNF_BIC-2_2021-09-10	Tvetenia	6.25		
		RG_GHNF_BIC-2_2021-09-10	Empididae	6.25	0.0034	
2	larvae	RG_GHNF_BIC-2_2021-09-10	Chelifera/Metachela	6.25		
1	pupae	RG_GHNF_BIC-2_2021-09-10	Empididae	6.25		
		RG_GHNF_BIC-2_2021-09-10	Pelecorhyncidae	6.25	0.0242	
1	larvae	RG_GHNF_BIC-2_2021-09-10	Glutops	6.25		
		RG_GHNF_BIC-2_2021-09-10	Psychodidae	6.25	0.0046	
18	larvae	RG_GHNF_BIC-2_2021-09-10	Pericoma	6.25	0.0014	
-		RG_GHNF_BIC-2_2021-09-10	Tipulidae	6.25	0.0011	
3	larvae	RG_GHNF_BIC-2_2021-09-10	Dicranota	6.25	0.0010	
2		RG_GHNF_BIC-3_2021-09-10	Planariidae	6.25	0.0019	
2	none	RG_GHNF_BIC-3_2021-09-10	Polycells	6.25	0.0007	
3	none	RG_GHNF_BIC-3_2021-09-10	Ostracoda	6.25	0.0007	
1	Nymph	PC CHNE BIC-3 2021-09-10	Capillude Mesocappia/Cappia	6.25	0.0092	
28	Nymph	PC CHNE BIC-3 2021-09-10	Paracaphia	6.25		
19	Nymph/immature	PG GHNE BIC-3 2021-09-10	Canniidae	6.25		
19	Nymph/ininacure	PG GHNE BIC-3 2021-09-10	Nemouridae	6.25	0.0101	
2	Nymph	RG_GHNF_BIC-3_2021-09-10	Malenka	6.25	0.0101	
17	Nymph	RG_GHNE_BIC-3_2021-09-10	Zanada	6.25		
15	Nymph/immature	RG GHNF BIC-3 2021-09-10	Nemouridae	6.25		
15	,	RG GHNF BIC-3 2021-09-10	Perlodidae	6.25	0.0013	
1	Nymph	RG GHNF BIC-3 2021-09-10	Isoperla	6.25	3.3015	
1	, r	RG_GHNF_BIC-3 2021-09-10	Taeniopterygidae	6.25	0.0004	
5	Nymph/immature	RG_GHNF_BIC-3_2021-09-10	Taeniopterygidae	6.25		
	-	RG_GHNF_BIC-3_2021-09-10	Limnephilidae	6.25	0.0002	
1	larvae/immature	RG_GHNF_BIC-3_2021-09-10	Limnephilidae	6.25		
		RG_GHNF_BIC-3_2021-09-10	Chironomidae	6.25	0.0511	
14	pupae	RG_GHNF_BIC-3_2021-09-10	Chironomidae	6.25		
1	larvae	RG_GHNF_BIC-3_2021-09-10	Micropsectra	6.25		
30	larvae	RG_GHNF_BIC-3_2021-09-10	Pagastia	6.25		
4	larvae	KG_GHNF_BIC-3_2021-09-10	Pseudodiamesa	6.25		
4	idi Vde	ко_опиг_BIC-3_2021-09-10	Diiilld	0.25		

quantity	life_stage_code	observ_sample_code	BENCH_TAXON_NAME	PERCENT_SAMPLED	RAW_BIOMASS	QC_COMMENTS
Numeric	Text(20)	Text(40)	Text(255)	Numeric	Text(255)	Text(255)
1	L larvae	RG_GHNF_BIC-3_2021-09-10	Corynoneura	6.25		
3	3 larvae	RG_GHNF_BIC-3_2021-09-10	Cricotopus/Orthocladius	6.25		
1	L larvae	RG_GHNF_BIC-3_2021-09-10	Diplocladius	6.25		
1	L larvae	RG_GHNF_BIC-3_2021-09-10	Heleniella	6.25		
151	L larvae	RG_GHNF_BIC-3_2021-09-10	Tvetenia	6.25		
		RG_GHNF_BIC-3_2021-09-10	Empididae	6.25	0.0015	
1	L larvae	RG_GHNF_BIC-3_2021-09-10	Chelifera/Metachela	6.25		
1	L larvae	RG_GHNF_BIC-3_2021-09-10	Clinocera	6.25		
1	L pupae	RG_GHNF_BIC-3_2021-09-10	Empididae	6.25		
		RG_GHNF_BIC-3_2021-09-10	Psychodidae	6.25	0.0032	
9) larvae	RG_GHNF_BIC-3_2021-09-10	Pericoma	6.25		
		RG_GHNF_BIC-3_2021-09-10	Tipulidae	6.25	0.0043	
12	2 larvae	RG_GHNF_BIC-3_2021-09-10	Dicranota	6.25		
		RG_GHNF_BIC-4_2021-09-10	Planariidae	12.5	0.0066	
2	2 none	RG_GHNF_BIC-4_2021-09-10	Polycelis	12.5		
		RG GHNF BIC-4 2021-09-10	Lebertiidae	12.5	0.0006	
1	L Adult	RG GHNF BIC-4 2021-09-10	Lebertia	12.5		
5	5 none	RG GHNF BIC-4 2021-09-10	Ostracoda	12.5	0.0008	
2	2 none	RG GHNF BIC-4 2021-09-10	Collembola	12.5	0.0003	
		RG GHNF BIC-4 2021-09-10	Capniidae	12.5	0.0023	
1	L Nymph	RG GHNF BIC-4 2021-09-10	Mesocapnia/Capnia	12.5		
2	2 Nymph	RG GHNF BIC-4 2021-09-10	Paracapnia	12.5		
2	Nymph/immature	RG GHNE BIC-4 2021-09-10	Canniidae	12.5		
-		RG_GHNE_BIC-4_2021-09-10	Chloroperlidae	12.5	0.0018	
1	l Nymph	RG_GHNF_BIC-4_2021-09-10	Sweltsa	12.5	0.0010	
	i nympri	RG_GHNE_BIC-4_2021-09-10	Nemouridae	12.5	0 0029	
7	7 Nymph	RG_GHNF_BIC-4_2021-09-10	Zanada	12.5	0.0025	
15	5 Nymph/immature	RG_GHNF_BIC-4_2021-09-10	Nemouridae	12.5		
15	nympn/ininature	RG_GHNF_BIC-4_2021-09-10	Periodidae	12.5	0.0046	
-	Numph	RG_GINN _DIC-4_2021-09-10	Iconorla	12.5	0.00+0	
3	мушрп	RG_GHNF_BIC-4_2021-09-10	Taoniontonusidae	12.5	0.0000	
-	Ni manin (inananin ura	RG_GHNF_BIC-4_2021-09-10	Taeniopterygidae	12.5	0.0002	
2	z wympn/immature	RG_GHNF_BIC-4_2021-09-10	l aeniopterygidae	12.5	0.0020	
	N I	RG_GHNF_BIC-4_2021-09-10	Limnephilidae	12.5	0.0028	
9	arvae/immature	RG_GHNF_BIC-4_2021-09-10	Limnephilidae	12.5	0.0000	
_		RG_GHNF_BIC-4_2021-09-10	Chironomidae	12.5	0.0080	
6	o pupae	RG_GHNF_BIC-4_2021-09-10	Chironomidae	12.5		
2	2 larvae	RG_GHNF_BIC-4_2021-09-10	Pagastia	12.5		
1	Llarvae	RG_GHNF_BIC-4_2021-09-10	Brillia	12.5		
1	Liarvae	RG_GHNF_BIC-4_2021-09-10	Corynoneura	12.5		
1	Llarvae	RG_GHNF_BIC-4_2021-09-10	Cricotopus/Orthocladius	12.5		
1	Llarvae	RG_GHNF_BIC-4_2021-09-10	Eukiefferiella	12.5		
1	L larvae	RG_GHNF_BIC-4_2021-09-10	Limnophyes	12.5		
25	5 larvae	RG_GHNF_BIC-4_2021-09-10	Tvetenia	12.5		
		RG_GHNF_BIC-4_2021-09-10	Empididae	12.5	0.0002	
1	L larvae	RG_GHNF_BIC-4_2021-09-10	Chelifera/Metachela	12.5		
		RG_GHNF_BIC-4_2021-09-10	Psychodidae	12.5	0.0017	
6	5 larvae	RG_GHNF_BIC-4_2021-09-10	Pericoma	12.5		
		RG_GHNF_BIC-4_2021-09-10	Tipulidae	12.5	0.0003	
2	2 larvae	RG_GHNF_BIC-4_2021-09-10	Dicranota	12.5		
		RG_GHNF_BIC-5_2021-09-11	Planariidae	25	0.0098	
7	7 none	RG_GHNF_BIC-5_2021-09-11	Polycelis	25		
4	1 none	RG_GHNF_BIC-5_2021-09-11	Enchytraeidae	25	0.0010	
13	3 none	RG_GHNF_BIC-5_2021-09-11	Ostracoda	25	0.0024	
1	L none	RG_GHNF_BIC-5_2021-09-11	Collembola	25	0.0001	
		RG_GHNF_BIC-5_2021-09-11	Capniidae	25	0.0225	
8	3 Nymph	RG_GHNF_BIC-5_2021-09-11	Mesocapnia/Capnia	25		
11	L Nymph	RG_GHNF_BIC-5_2021-09-11	Paracapnia	25		
14	1 Nymph/immature	RG_GHNF_BIC-5_2021-09-11	Capniidae	25		
		RG_GHNF_BIC-5_2021-09-11	Nemouridae	25	0.0113	
2	2 Nymph	RG_GHNF_BIC-5_2021-09-11	Malenka	25		
18	3 Nymph	RG GHNF BIC-5 2021-09-11	Zapada	25		
14	1 Nymph/immature	RG_GHNF_BIC-5_2021-09-11	Nemouridae	25		
		RG_GHNF_BIC-5_2021-09-11	Perlodidae	25	0.0555	
1	L Nymph	RG_GHNF_BIC-5_2021-09-11	Isoperla	25		
16	5 Nymph	RG GHNF BIC-5 2021-09-11	Megarcvs	25		
1	L Nymph/immature	RG GHNF BIC-5 2021-09-11	Periodidae	25		
	- · · / · · · · · · · · · · · · · · ·	RG GHNE BIC-5 2021-09-11	Taeniontervoidae	25	0.0005	
6	5 Nymph/immature	RG GHNF BIC-5 2021-09-11	Taenioptervoidae	25	0.0005	
-	· · · / · · · · · · · · · · · · · · ·	RG GHNE BIC-5 2021-09-11	Limnephilidae	25	0.0007	
5	5 larvae/immature	RG GHNF BIC-5 2021-09-11	Limnephilidae	25	0.0007	
5		RG GHNF BIC-5 2021-09-11	Chironomidae	25	0.0238	
c	nunae	RG GHNE BIC-5 2021-09-11	Chironomidae	25	0.0200	
51	l larvae	RG GHNE BIC-5 2021-09-11	Pagastia	25		
1	l larvae	RG GHNE BIC-5 2021-09-11	Pseudodiamesa	25		
1	2 larvae	RG GHNF RIC-5 2021-09-11	Convinoneura	25		
2	larvao	RG_GHNF_BIC-5_2021-09-11	Cricotopus/Orthododius	20		
J 21	l larvao	RG_GHNF_BIC-5_2021-05-11	Tyotopia	20		
51		RG_GHNF_BIC-5_2021-05-11	Fmnididae	20	0.0145	
-	7 lanvao	PC CHNE BIC-5 2021-09-11	Chalifera/Matachala	25	0.0105	
/		PC CHNE BIC 5 2021-09-11	Empididae	20		
4	r pupae		Baychodidaa	20	0.0010	
	1 Janvao	RG_CHNE_DIC-5_2021-09-11	r sychoulde Dericomp	20	0.0012	
4	י וטו אמכ	NG_GHNE_BIC 5 2021-09-11	Tipulidaa	20	0.0047	
	Lanza		Disconsta	25	0.0047	
11	LidiVde		Dicranota	25	0.0000	
		RG_GHNF_DIC-0_2021-09-11	ridiidiilude	12.5	0.0030	
quantity	life_stage_code	observ_sample_code	BENCH_TAXON_NAME	PERCENT_SAMPLED	RAW_BIOMASS	QC_COMMENTS
----------	--------------------	---------------------------	-------------------------	-----------------	-------------	-------------
Numeric	Text(20)	Text(40)	Text(255)	Numeric	Text(255)	Text(255)
2	none	RG_GHNF_BIC-6_2021-09-11	Polycelis	12.5		
2	none	RG_GHNF_BIC-6_2021-09-11	Enchytraeidae	12.5	0.0001	
2	none	RG_GHNF_BIC-6_2021-09-11	Ostracoda	12.5	0.0001	
1	none	RG_GHNF_BIC-6_2021-09-11	Collembola	12.5	0.0001	
		RG_GHNF_BIC-6_2021-09-11	Capniidae	12.5	0.0327	
6	Nymph	RG GHNF BIC-6 2021-09-11	Mesocapnia/Capnia	12.5		
7	Nymph	RG GHNF BIC-6 2021-09-11	Paracapnia	12.5		
132	Nymph/immature	RG GHNF BIC-6 2021-09-11	Canniidae	12.5		
	· · /····	RG GHNE BIC-6 2021-09-11	Nemouridae	12.5	0.0031	
4	Nymph	PG_GHNE_BIC-6_2021-09-11	Zanada	12.5	0.0051	
ד סר	Nymph/immature	DC CHNE BIC 6 2021-09-11	Nomouridaa	12.5		
20	Nymph/immature	RG_GHNF_BIC-0_2021-09-11	Derledidee	12.5	0.0200	
12	Ni wanda	RG_GHNF_BIC-0_2021-09-11	Periodidae	12.5	0.0309	
12	Nympn	RG_GHNF_BIC-6_2021-09-11	Isoperia	12.5		
1	Nympn	RG_GHNF_BIC-6_2021-09-11	Megarcys	12.5		
		RG_GHNF_BIC-6_2021-09-11	Taeniopterygidae	12.5	0.0004	
7	Nymph/immature	RG_GHNF_BIC-6_2021-09-11	Taeniopterygidae	12.5		
		RG_GHNF_BIC-6_2021-09-11	Chironomidae	12.5	0.0694	
32	pupae	RG_GHNF_BIC-6_2021-09-11	Chironomidae	12.5		
14	larvae	RG_GHNF_BIC-6_2021-09-11	Micropsectra	12.5		
27	larvae	RG GHNF BIC-6 2021-09-11	Pagastia	12.5		
3	larvae	RG_GHNF_BIC-6_2021-09-11	Pseudodiamesa	12.5		
1	larvae	RG GHNF BIC-6 2021-09-11	Brillia	12.5		
- 7	larvae	RG GHNE BIC-6 2021-09-11	Chaetocladius	12.5		
, 7	lanvao	PG GHNE BIC-6 2021-09-11	Convinoneura	12.5		
/		RG_GHNI_DIC-0_2021-09-11	Crisetonus/Orthocladius	12.5		
0		RG_GHNF_BIC-0_2021-09-11	Chectopus/Orthoclaulus	12.5		
3	ldrvde	RG_GHNF_BIC-6_2021-09-11	Heleniella	12.5		
5	larvae	RG_GHNF_BIC-6_2021-09-11	Hydrobaenus	12.5		
236	larvae	RG_GHNF_BIC-6_2021-09-11	lvetenia	12.5		
		RG_GHNF_BIC-6_2021-09-11	Empididae	12.5	0.0064	
4	larvae	RG_GHNF_BIC-6_2021-09-11	Chelifera/Metachela	12.5		
		RG_GHNF_BIC-6_2021-09-11	Psychodidae	12.5	0.0089	
22	larvae	RG GHNF BIC-6 2021-09-11	Pericoma	12.5		
		RG GHNF BIC-6 2021-09-11	Tipulidae	12.5	0.0130	
27	larvae	RG GHNE BIC-6 2021-09-11	Dicranota	12.5		
27		PC CHEE BIC-1 2021-09-09	Lobertiidae	12.5	0.0008	
2	Adult	RG_GHIT_DIC-1_2021-09-09	Lebertia	25	0.0000	
3	Adult	RG_GHFF_BIC-1_2021-09-09	Lebertia	25	0.0010	
5	none	RG_GHFF_BIC-1_2021-09-09	Ostracoda	25	0.0010	
		RG_GHFF_BIC-1_2021-09-09	Nemouridae	25	0.0037	
11	Nymph	RG_GHFF_BIC-1_2021-09-09	Zapada	25		
9	Nymph/immature	RG_GHFF_BIC-1_2021-09-09	Nemouridae	25		
		RG GHFF BIC-1 2021-09-09	Perlodidae	25	0.0003	
1	Nymph/immature	RG_GHFF_BIC-1_2021-09-09	Perlodidae	25		
-	itympių initiacare	RG_GHEE_BIC-1_2021-09-09	Taeniontervoidae	25	0.0010	
4	Nymph/immature	RG_GHEE_BIC-1_2021-09-09	Tagnionten/gidag	25	0.0010	
т	Nymph/immature	RG_GHIT_DIC-1_2021-05-05	Dhysesphilides	23	0 0026	
		RG_GHFF_BIC-1_2021-09-09	Rnyacophilidae	25	0.0036	
1	larvae	RG_GHFF_BIC-1_2021-09-09	Rhyacophila	25		
		RG_GHFF_BIC-1_2021-09-09	Chironomidae	25	0.1128	
33	pupae	RG_GHFF_BIC-1_2021-09-09	Chironomidae	25		
83	larvae	RG_GHFF_BIC-1_2021-09-09	Pagastia	25		
26	larvae	RG GHFF BIC-1 2021-09-09	Cricotopus/Orthocladius	25		
90	larvae	RG_GHFF_BIC-1_2021-09-09	Eukiefferiella	25		
		RG_GHFF_BIC-1_2021-09-09	Empididae	25	0.0204	
17	larvae	RG_GHEE_BIC-1_2021-09-09	Chelifera/Metachela	25		
2	nunae	RG_GHEE_BIC-1_2021-09-09	Empididae	25		
2	pupac	DC CHEE DIC 2 2021 00 00	Dapariidae	100	0.000	
0		RG_GHFF_BIC-2_2021-09-09	Planafiluae	100	0.0098	
8	none	RG_GHFF_BIC-2_2021-09-09	Polycells	100	0.0007	
2	none	RG_GHFF_BIC-2_2021-09-09	Enchytraeidae	100	0.0007	
		RG_GHFF_BIC-2_2021-09-09	Lebertiidae	100	0.0005	
2	Adult	RG_GHFF_BIC-2_2021-09-09	Lebertia	100		
40	none	RG_GHFF_BIC-2_2021-09-09	Ostracoda	100	0.0090	
1	none	RG_GHFF_BIC-2_2021-09-09	Collembola	100	0.0002	
		RG GHFF BIC-2 2021-09-09	Capniidae	100	0.0002	
2	Nymph	RG GHFF BIC-2 2021-09-09	Paracappia	100		
	7 1	RG_GHFE_BIC-2_2021-09-09	Nemouridae	100	0.0104	
3	Nymph	PG_GHEE_BIC-2_2021-09-09	Malenka	100	0.0101	
15	Nymph	PC CHEE BIC-2 2021-09-09	Zanada	100		
15	мушрп	RG_GHFF_BIC-2_2021-09-09	Zapaua	100	0.0160	
	Numerala	RU_UNFF_BIC-2_2021-09-09	renounde	100	0.0160	
1	Nymph	RG_GHFF_BIC-2_2021-09-09	Megarcys	100		
1	wympn/immature	KG_GHFF_BIC-2_2021-09-09	Periodidae	100		
		RG_GHFF_BIC-2_2021-09-09	Taeniopterygidae	100	0.0009	
8	Nymph/immature	RG_GHFF_BIC-2_2021-09-09	Taeniopterygidae	100		
		RG_GHFF_BIC-2_2021-09-09	Limnephilidae	100	0.0009	
6	larvae/immature	RG GHFF BIC-2 2021-09-09	Limnephilidae	100		
-		RG GHFF BIC-2 2021-09-09	Rhvacophilidae	100	0.0011	
1	larvae	RG GHEF BIC-2 2021-09-09	Rhyacophila	100	0.0011	
1		RG CHEE BIC-2 2021-09-09	Chironomidao	100	0 2574	
05	nunao		Chiranamidae	100	0.25/0	
85	pupae	RG_CUFF_DIC-2_2021-09-09	Chironomidae	100		
48	idi vae	KG_GHFF_BIC-2_2021-09-09	Micropsectra	100		
72	larvae	RG_GHFF_BIC-2_2021-09-09	Pagastia	100		
8	larvae	RG_GHFF_BIC-2_2021-09-09	Cricotopus/Orthocladius	100		
237	larvae	RG_GHFF_BIC-2_2021-09-09	Eukiefferiella	100		
4	larvae	RG_GHFF_BIC-2_2021-09-09	Hydrobaenus	100		
4	larvae	RG GHFF BIC-2 2021-09-09	Tvetenia	100		
		RG GHEE BIC-2 2021-09-09	Dixidae	100	0 0005	
	larvao	RG CHEE BIC-2 2021 00 00	Diva	100	0.0000	
1	iui vac	VO_01111_01C-5_5051-03-03	Dixa	100		

quantity <i>Numeric</i>	life_stage_code Text(20)	observ_sample_code Text(40)	BENCH_TAXON_NAME <i>Text(255)</i>	PERCENT_SAMPLED Numeric	RAW_BIOMASS <i>Text(255)</i>	QC_COMMENTS Text(255)
,	1 10000	RG_GHFF_BIC-2_2021-09-09	Emplaidae Chalifora (Matachala	100	0.0138	
2		RG_GHFF_BIC-2_2021-09-09	Empididae	100		
-	r pupae	PC CHEE BIC-2 2021-09-09	Polocorhyncidae	100	0 0002	
-	2 larvae	RG_GHFF_BIC-2_2021-09-09	Glutons	100	0.0002	
-		RG GHFF BIC-2 2021-09-09	Psychodidae	100	0.0054	
18	8 larvae	RG GHFF BIC-2 2021-09-09	Pericoma	100		
1	1 larvae/indeterminate	RG_GHFF_BIC-2_2021-09-09	Sciomyzidae	100	0.0069	
		RG_GHFF_BIC-2_2021-09-09	Tipulidae	100	0.0009	
1	1 larvae	RG_GHFF_BIC-2_2021-09-09	Dicranota	100		
		RG_GHFF_BIC-3_2021-09-09	Planariidae	50	0.0092	
	5 none	RG_GHFF_BIC-3_2021-09-09	Polycelis	50		
1	1 none	RG_GHFF_BIC-3_2021-09-09	Enchytraeidae	50	0.0001	
	4 4 -1 -14	RG_GHFF_BIC-3_2021-09-09	Lebertiidae	50	0.0009	
2	4 Adult E nono	RG_GHFF_BIC-3_2021-09-09	Lebertia	50 E0	0.0012	
-	1 Nymph/immature	RG_GHEF_BIC-3_2021-09-09	Enhemerellidae	50	0.0012	
	1 Nymphymmiddare	RG_GHFF_BIC-3_2021-09-09	Capniidae	50	0.0033	
1	1 Nymph	RG GHFF BIC-3 2021-09-09	Mesocannia/Cannia	50	0.0000	
1	1 Nymph/immature	RG GHFF BIC-3 2021-09-09	Capniidae	50		
		RG_GHFF_BIC-3_2021-09-09	Chloroperlidae	50	0.0035	
1	1 Nymph	RG_GHFF_BIC-3_2021-09-09	Sweltsa	50		
		RG_GHFF_BIC-3_2021-09-09	Nemouridae	50	0.0146	
19	9 Nymph	RG_GHFF_BIC-3_2021-09-09	Zapada	50		
19	9 Nymph/immature	RG_GHFF_BIC-3_2021-09-09	Nemouridae	50		
		RG_GHFF_BIC-3_2021-09-09	Periodidae	50	0.0004	
1	1 Nymph/immature	RG_GHFF_BIC-3_2021-09-09	Periodidae	50	0.0001	
	2 Numph/immatura	RG_GHFF_BIC-3_2021-09-09	Taeniopterygidae	50 E0	0.0001	
4	z wympn/ininature	RG_GHEF_BIC-3_2021-09-09	Limpenhilidae	50	0 0002	
-	3 larvae/immature	RG_GHEE_BIC-3_2021-09-09	Limnephilidae	50	0.0002	
		RG_GHFF_BIC-3_2021-09-09	Rhyacophilidae	50	0.0124	
l.	5 larvae	RG GHFF BIC-3 2021-09-09	Rhvacophila	50		
		RG_GHFF_BIC-3_2021-09-09	Chironomidae	50	0.0331	
12	2 pupae	RG_GHFF_BIC-3_2021-09-09	Chironomidae	50		
1	1 larvae	RG_GHFF_BIC-3_2021-09-09	Micropsectra	50		
31	1 larvae	RG_GHFF_BIC-3_2021-09-09	Pagastia	50		
6	6 larvae	RG_GHFF_BIC-3_2021-09-09	Cricotopus/Orthocladius	50		
55	5 larvae	RG_GHFF_BIC-3_2021-09-09	Eukiefferiella	50	0.0216	
20	0 100000	RG_GHFF_BIC-3_2021-09-09	Emplaidae Chalifara (Matachala	50 F0	0.0216	
20		RG_GHEF_BIC-3_2021-09-09	Empididae	50		
	i huhae	RG_GHEE_BIC-3_2021-09-09	Psychodidae	50	0.0008	
3	3 larvae	RG_GHFF_BIC-3_2021-09-09	Pericoma	50	0.0000	
		RG GHFF BIC-3 2021-09-09	Tipulidae	50	0.0001	
1	1 larvae	RG_GHFF_BIC-3_2021-09-09	Dicranota	50		
		RG_GHFF_BIC-4_2021-09-09	Planariidae	50	0.0152	
7	7 none	RG_GHFF_BIC-4_2021-09-09	Polycelis	50		
1	1 none	RG_GHFF_BIC-4_2021-09-09	Enchytraeidae	50	0.0003	
	5 A	RG_GHFF_BIC-4_2021-09-09	Lebertiidae	50	0.0007	
4	2 Adult 1 popo	RG_GHFF_BIC-4_2021-09-09	Lebertia	50 F0	0.000	
-	4 HOHE	PC CHEE BIC-4 2021-09-09	Nemouridae	50	0.0008	
-	2 Nymnh	RG_GHFF_BIC-4_2021-09-09	Malenka	50	0.0005	
11	1 Nymph	RG_GHFF_BIC-4_2021-09-09	Zapada	50		
	6 Nymph/immature	RG GHFF BIC-4 2021-09-09	Nemouridae	50		
		RG_GHFF_BIC-4_2021-09-09	Perlodidae	100	0.0007	
2	2 Nymph	RG_GHFF_BIC-4_2021-09-09	Megarcys	100		
		RG_GHFF_BIC-4_2021-09-09	Taeniopterygidae	50	0.0013	
12	2 Nymph/immature	RG_GHFF_BIC-4_2021-09-09	Taeniopterygidae	50		
		RG_GHFF_BIC-4_2021-09-09	Rhyacophilidae	50	0.0001	
1	1 larvae	RG_GHFF_BIC-4_2021-09-09	Rhyacophila	50	0 1241	
34	6 00000	PC CHEE BIC-4 2021-09-09	Chironomidae	50	0.1241	
68	8 larvae	RG_GHFF_BIC-4_2021-09-09	Pagastia	50		
17	7 larvae	RG_GHFF_BIC-4_2021-09-09	Cricotopus/Orthocladius	50		
131	1 larvae	RG GHFF BIC-4 2021-09-09	Eukiefferiella	50		
		RG_GHFF_BIC-4_2021-09-09	Empididae	50	0.0174	
-	7 larvae	RG_GHFF_BIC-4_2021-09-09	Chelifera/Metachela	50		
7	7 pupae	RG_GHFF_BIC-4_2021-09-09	Empididae	50		
		RG_GHFF_BIC-4_2021-09-09	Psychodidae	50	0.0009	
2	3 larvae	RG_GHFF_BIC-4_2021-09-09	Pericoma	50	0.0004	
	1. In man / in data main ato	RG_GHFF_BIC-4_2021-09-09	Simuliidae	50	0.0001	
1	1 iarvae/indeterminate	KU_UTTT_BIC-4_2021-09-09	Dapariidae	50	0.0000	
4	6 none	RG GHFF RIC-5 2021-09-10	Polycelis	20 25	0.0082	
	2 none	RG GHFF BIC-5 2021-09-10	Enchytraeidae	25	0.0005	
4		RG GHFF BIC-5 2021-09-10	Hygrobatidae	25	0.0002	
1	1 Adult	RG_GHFF_BIC-5 2021-09-10	Hygrobates	25	0.0002	
-		RG_GHFF_BIC-5_2021-09-10	Lebertiidae	25	0.0007	
2	2 Adult	RG_GHFF_BIC-5_2021-09-10	Lebertia	25		
6	6 none	RG_GHFF_BIC-5_2021-09-10	Ostracoda	25	0.0014	
		RG_GHFF_BIC-5_2021-09-10	Capniidae	25	0.0001	
1	1 Nymph/immature	KG_GHFF_BIC-5_2021-09-10	Capniidae	25	0.000-	
		KG GHEE BIC-5 2021-09-10	Nemouridae	25	0.0085	

quantity <i>Numeric</i>	life_stage_code Text(20)	observ_sample_code <i>Text(40)</i>	BENCH_TAXON_NAME <i>Text(255)</i>	PERCENT_SAMPLED Numeric	RAW_BIOMASS <i>Text(255)</i>	QC_COMMENTS <i>Text(255)</i>
23	3 Nymph	RG_GHFF_BIC-5_2021-09-10	Zapada	25		
1	2 Nymph/immature	RG_GHFF_BIC-5_2021-09-10	Nemouridae	25		
		RG_GHFF_BIC-5_2021-09-10	Periodidae	25	0.0011	
	1 Nymph	RG_GHFF_BIC-5_2021-09-10	Isoperla	25	0.0005	
	4 November Gaussian and succession	RG_GHFF_BIC-5_2021-09-10	Taeniopterygidae	25	0.0005	
4	4 Nymph/Immature	RG_GHFF_BIC-5_2021-09-10	Limpopterygidae	25	0.0010	
	1 lan/ac/immatura	RG_GHFF_BIC-5_2021-09-10	Limnephilidae	25	0.0010	
•		RG_GHFF_BIC-5_2021-09-10	Rhyacophilidae	25	0.0119	
	1 Janvao	RG_GHFF_BIC-5_2021-09-10	Rhyacophila	25	0.0116	
		RG_GHEF_BIC-5_2021-09-10	Chironomidae	25	0.0766	
25	8 nunae	RG_GHEE_BIC-5_2021-09-10	Chironomidae	25	0.0700	
20	3 larvae	RG_GHEE_BIC-5_2021-09-10	Micronsectra	25		
30	9 larvae	RG_GHEE_BIC-5_2021-09-10	Pagastia	25		
1	8 larvae	RG_GHEE_BIC-5_2021-09-10	Cricotopus/Orthocladius	25		
10	7 larvae	RG_GHEE_BIC-5_2021-09-10	Fukiefferiella	25		
10.		RG GHFF BIC-5 2021-09-10	Empididae	25	0.0168	
1(0 larvae	RG GHFF BIC-5 2021-09-10	Chelifera/Metachela	25		
	3 pupae	RG GHFF BIC-5 2021-09-10	Empididae	25		
-		RG GHFF BIC-5 2021-09-10	Psychodidae	25	0.0018	
-	7 larvae	RG GHFF BIC-5 2021-09-10	Pericoma	25		
		RG GHFF BIC-5 2021-09-10	Tipulidae	25	0.0002	
:	1 larvae	RG GHFF BIC-5 2021-09-10	Dicranota	25		
		RG GHFF BIC-6 2021-09-10	Planariidae	25	0.0268	
17	7 none	RG GHFF BIC-6 2021-09-10	Polycelis	25		
1	8 none	RG_GHFF_BIC-6_2021-09-10	Enchytraeidae	25	0.0015	
		RG_GHFF_BIC-6_2021-09-10	Lebertiidae	25	0.0009	
:	3 Adult	RG_GHFF_BIC-6_2021-09-10	Lebertia	25		
33	3 none	RG_GHFF_BIC-6_2021-09-10	Ostracoda	25	0.0065	
		RG GHFF BIC-6 2021-09-10	Ephemerellidae	25	0.0001	
	1 Nymph/immature	RG GHFF BIC-6 2021-09-10	Ephemerellidae	25		
	, , , ,	RG_GHFF_BIC-6_2021-09-10	Capniidae	25	0.0017	
	1 Nymph	RG_GHFF_BIC-6_2021-09-10	Mesocapnia/Capnia	25		
	2 Nymph/immature	RG_GHFF_BIC-6_2021-09-10	Capniidae	25		
		RG_GHFF_BIC-6_2021-09-10	Nemouridae	25	0.0292	
!	5 Nymph	RG_GHFF_BIC-6_2021-09-10	Malenka	25		
20	6 Nymph	RG_GHFF_BIC-6_2021-09-10	Zapada	25		
1	1 Nymph/immature	RG_GHFF_BIC-6_2021-09-10	Nemouridae	25		
		RG_GHFF_BIC-6_2021-09-10	Perlodidae	25	0.0008	
	1 Nymph	RG_GHFF_BIC-6_2021-09-10	Isoperla	25		
1	2 Nymph/immature	RG_GHFF_BIC-6_2021-09-10	Perlodidae	25		
		RG_GHFF_BIC-6_2021-09-10	Taeniopterygidae	25	0.0011	
10	0 Nymph/immature	RG_GHFF_BIC-6_2021-09-10	Taeniopterygidae	25		
		RG_GHFF_BIC-6_2021-09-10	Chironomidae	25	0.1460	
40	0 pupae	RG_GHFF_BIC-6_2021-09-10	Chironomidae	25		
1	8 larvae	RG_GHFF_BIC-6_2021-09-10	Micropsectra	25		
120	6 larvae	RG_GHFF_BIC-6_2021-09-10	Pagastia	25		
1	2 larvae	RG_GHFF_BIC-6_2021-09-10	Pseudodiamesa	25		
48	8 larvae	RG_GHFF_BIC-6_2021-09-10	Cricotopus/Orthocladius	25		
11.	2 larvae	RG_GHFF_BIC-6_2021-09-10	Eukiefferiella	25		
	/ larvae	RG_GHFF_BIC-6_2021-09-10	Hydrobaenus	25	0.0007	
		RG_GHFF_BIC-6_2021-09-10	Empididae	25	0.0367	
3	5 larvae	RG_GHFF_BIC-6_2021-09-10	Chelifera/Metachela	25		
	і рирае	RG_GHFF_BIC-6_2021-09-10	Empididae	25	0.0027	
1.		RG_GHFF_BIC-6_2021-09-10	Psychodidae	25	0.0037	
14		RG_GHFF_BIC-0_2021-09-10	Pericoma En elu tra sida s	25	0.0020	
10	s none	RG_GHUT_DIC-1_2021-09-13	Lebertiidee	12.5	0.0039	
	1 Adult	RG_GHUT_BIC-1_2021-09-13	Lebertia	12.5	0.0001	
	6 none	RG_GHUT_BIC-1_2021-09-13	Ostracoda	12.5	0.0015	
		RG GHUT BIC-1 2021-09-13	Flmidae	12.5	0.0013	
	1 Janvao	RG_GHUT_BIC-1_2021-09-13	Heterlimnius	12.5	0.0012	
		RG GHUT BIC-1 2021-09-13	Canniidae	12.5	0 0322	
	1 Nymph	RG GHUT BIC-1 2021-09-13	Fucannonsis	12.5	0.052/	
1	1 Nymph	RG GHUT BIC-1 2021-09-13	Mesocannia/Cannia	12.5		
1	5 Nymph	RG GHUT BIC-1 2021-09-13	Paracannia	12.5		
19	9 Nymph/immature	RG GHUT BIC-1 2021-09-13	Capniidae	12.5		
-		RG GHUT BIC-1 2021-09-13	Nemouridae	12.5	0.0162	
	2 Nymph	RG GHUT BIC-1 2021-09-13	Malenka	12.5		
	2 Nymph	RG GHUT BIC-1 2021-09-13	Visoka	12.5		
10	6 Nymph	RG GHUT BIC-1 2021-09-13	Zapada	12.5		
20	0 Nymph/immature	RG_GHUT_BIC-1_2021-09-13	Nemouridae	12.5		
		RG_GHUT_BIC-1_2021-09-13	Peltoperlidae	12.5	0.0001	
:	1 Nymph	RG_GHUT_BIC-1_2021-09-13	Yoraperla	12.5		
		RG_GHUT_BIC-1_2021-09-13	Perlodidae	12.5	0.0130	
(6 Nymph	RG_GHUT_BIC-1_2021-09-13	Isoperla	12.5		
:	1 Nymph	RG_GHUT_BIC-1_2021-09-13	Megarcys	12.5		
		RG_GHUT_BIC-1_2021-09-13	Taeniopterygidae	12.5	0.0003	
:	2 Nymph/immature	RG_GHUT_BIC-1_2021-09-13	Taeniopterygidae	12.5		
		RG_GHUT_BIC-1_2021-09-13	Limnephilidae	12.5	0.0002	
1	2 larvae/immature	RG_GHUT_BIC-1_2021-09-13	Limnephilidae	12.5		
		RG_GHUT_BIC-1_2021-09-13	Rhyacophilidae	12.5	0.0507	
:	2 larvae	RG_GHUT_BIC-1_2021-09-13	Rhyacophila	12.5		
		RG_GHUT_BIC-1_2021-09-13	Chironomidae	12.5	0.1149	
59	9 pupae	RG_GHUT_BIC-1_2021-09-13	Chironomidae	12.5		

quantity life_stag	je_code observ_sample_code	BENCH_TAXON_NAM	E PERCENT_SAMPLED	RAW_BIOMASS QC_CC	OMMENTS
Numeric	Text(20) Text(40)	Text(255)	Numeric	Text(255)	Text(255)
2 larvae	RG_GHUT_BIC-1_2021-0	19-13 Micropsectra	12.5		
39 larvae	RG_GHUT_BIC-1_2021-0	19-13 Pagastia	12.5		
4 larvae	RG_GHUT_BIC-1_2021-0	19-13 Brillia	12.5		
2 larvae	RG_GHUT_BIC-1_2021-0	19-13 Corynoneura	12.5		
12 larvae	RG_GHUT_BIC-1_2021-0	19-13 Cricotopus/Orthocladi	us 12.5		
219 larvae	RG_GHUT_BIC-1_2021-0	19-13 Eukiefferiella	12.5		
12 larvae	RG_GHUT_BIC-1_2021-0	19-13 Ivetenia	12.5	0.0055	
1.1	RG_GHUT_BIC-1_2021-0	19-13 Empididae	12.5	0.0055	
1 larvae	RG_GHUT_BIC-1_2021-0	19-13 Clinocera	12.5		
2 pupae	RG_GHUT_BIC-1_2021-C	19-13 Empididae	12.5	0.0455	
5 larvae/inc	leterminate RG_GHUT_BIC-1_2021-0	19-13 Muscidae	12.5	0.0455	
10.1	RG_GHUT_BIC-1_2021-0	19-13 Psychodidae	12.5	0.0060	
13 larvae	RG_GHUT_BIC-1_2021-0	19-13 Pericoma	12.5	0.0057	
	RG_GHUT_BIC-1_2021-0	19-13 Tipulidae	12.5	0.0057	
8 larvae	RG_GHUT_BIC-1_2021-0	19-13 Dicranota	12.5		
	RG_GHUT_BIC-2_2021-0	19-13 Planariidae	25	0.0124	
6 none	RG_GHUT_BIC-2_2021-0	9-13 Polycelis	25		
11 none	RG_GHUT_BIC-2_2021-0	9-13 Enchytraeidae	25	0.0013	
1 none	RG_GHUT_BIC-2_2021-0	9-13 Ostracoda	25	0.0006	
	RG_GHUT_BIC-2_2021-0	19-13 Elmidae	25	0.0078	
8 larvae	RG_GHUT_BIC-2_2021-0	19-13 Heterlimnius	25		
2 larvae/im	mature RG_GHUT_BIC-2_2021-0	19-13 Elmidae	25		
	RG_GHUT_BIC-2_2021-0	9-13 Capniidae	25	0.0136	
7 Nymph	RG_GHUT_BIC-2_2021-0	19-13 Mesocapnia/Capnia	25		
2 Nymph	RG_GHUT_BIC-2_2021-0	19-13 Paracapnia	25		
	RG_GHUT_BIC-2_2021-0	9-13 Nemouridae	25	0.0010	
3 Nymph	RG_GHUT_BIC-2_2021-0	19-13 Zapada	25		
1 Nymph/ir	nmature RG_GHUT_BIC-2_2021-0	9-13 Nemouridae	25		
	RG_GHUT_BIC-2_2021-0	19-13 Peltoperlidae	25	0.0005	
1 Nymph	RG_GHUT_BIC-2_2021-0	19-13 Yoraperla	25		
	RG_GHUT_BIC-2_2021-0	19-13 Perlodidae	25	0.0049	
6 Nymph	RG_GHUT_BIC-2_2021-0	19-13 Isoperla	25		
	RG_GHUT_BIC-2_2021-0	19-13 Lepidostomatidae	25	0.0008	
3 larvae	RG_GHUT_BIC-2_2021-0	19-13 Lepidostoma	25		
	RG_GHUT_BIC-2_2021-0	19-13 Limnephilidae	25	0.0014	
7 larvae/im	mature RG_GHUT_BIC-2_2021-0	19-13 Limnephilidae	25		
	RG_GHUT_BIC-2_2021-0	9-13 Chironomidae	25	0.1255	
47 pupae	RG_GHUT_BIC-2_2021-0	9-13 Chironomidae	25		
51 larvae	RG_GHUT_BIC-2_2021-0	19-13 Pagastia	25		
5 larvae	RG_GHUT_BIC-2_2021-0	9-13 Pseudodiamesa	25		
36 larvae	RG_GHUT_BIC-2_2021-0	9-13 Cricotopus/Orthocladi	us 25		
176 larvae	RG_GHUT_BIC-2_2021-0	9-13 Eukiefferiella	25		
3 larvae	RG_GHUT_BIC-2_2021-0	19-13 Tvetenia	25		
	RG_GHUT_BIC-2_2021-0	9-13 Empididae	25	0.0125	
5 larvae	RG_GHUT_BIC-2_2021-0	9-13 Chelifera/Metachela	25		
	RG_GHUT_BIC-2_2021-0	9-13 Psychodidae	25	0.0079	
16 larvae	RG_GHUT_BIC-2_2021-0	19-13 Pericoma	25		
	RG_GHUT_BIC-2_2021-0	19-13 Tipulidae	25	0.0350	
13 larvae	RG_GHUT_BIC-2_2021-0	19-13 Dicranota	25		
	RG_GHUT_BIC-3_2021-0	19-13 Planariidae	12.5	0.0228	
4 none	RG_GHUT_BIC-3_2021-0	9-13 Polycelis	12.5		
9 none	RG_GHUT_BIC-3_2021-0	9-13 Enchytraeidae	12.5	0.0015	
	RG_GHUT_BIC-3_2021-0	9-13 Lebertiidae	12.5	0.0004	
2 Adult	RG_GHUT_BIC-3_2021-0	19-13 Lebertia	12.5		
13 none	RG_GHUT_BIC-3_2021-0	9-13 Ostracoda	12.5	0.0036	
	RG_GHUT_BIC-3_2021-0	9-13 Dytiscidae	12.5	0.0029	
1 adult/inde	eterminate RG_GHUT_BIC-3_2021-0	9-13 Dytiscidae	12.5		
	RG_GHUT_BIC-3_2021-0	19-13 Capniidae	12.5	0.0155	
6 Nymph	RG_GHUT_BIC-3_2021-0	9-13 Mesocapnia/Capnia	12.5		
3 Nymph	RG_GHUT_BIC-3_2021-0	9-13 Paracapnia	12.5		
12 Nymph/ir	nmature RG_GHUT_BIC-3_2021-0	9-13 Capniidae	12.5		
	RG_GHUT_BIC-3_2021-0	9-13 Chloroperlidae	12.5	0.0003	
1 Nymph/ir	nmature RG_GHUT_BIC-3_2021-0	9-13 Chloroperlidae	12.5		
	RG_GHUT_BIC-3_2021-0	9-13 Nemouridae	12.5	0.0027	
1 Nymph	RG_GHUT_BIC-3_2021-0	19-13 Malenka	12.5		
1 Nymph	RG_GHUT_BIC-3_2021-0	19-13 Visoka	12.5		
2 Nymph	RG_GHUT_BIC-3_2021-0	19-13 Zapada	12.5		
	RG_GHUT_BIC-3_2021-0	9-13 Perlodidae	12.5	0.0096	
9 Nymph	RG_GHUT_BIC-3_2021-0	19-13 Isoperla	12.5		
1 Nymph/ir	nmature RG_GHUT_BIC-3_2021-0	9-13 Perlodidae	12.5		
	RG_GHUT_BIC-3_2021-0	9-13 Limnephilidae	12.5	0.1050	
1 larvae	RG_GHUT_BIC-3_2021-0	19-13 Homophylax	12.5		
11 larvae/im	mature RG_GHUT_BIC-3_2021-0	9-13 Limnephilidae	12.5		
	RG_GHUT_BIC-3_2021-0	9-13 Chironomidae	12.5	0.0654	
29 pupae	RG_GHUT_BIC-3_2021-0	9-13 Chironomidae	12.5		
20 larvae	RG_GHUT_BIC-3_2021-0	19-13 Pagastia	12.5		
12 larvae	RG_GHUT_BIC-3_2021-0	9-13 Pseudodiamesa	12.5		
1 larvae	RG_GHUT_BIC-3_2021-0	19-13 Brillia	12.5		
2 larvae	RG_GHUT_BIC-3_2021-0	9-13 Corynoneura	12.5		
20 larvae	RG_GHUT_BIC-3_2021-0	9-13 Cricotopus/Orthocladi	us 12.5		
80 larvae	RG_GHUT_BIC-3_2021-0	9-13 Eukiefferiella	12.5		
1 larvae	RG_GHUT_BIC-3_2021-0	19-13 Hydrobaenus	12.5		
2 larvae	RG_GHUT_BIC-3_2021-0	19-13 Tvetenia	12.5		
	RG_GHUT_BIC-3_2021-0	9-13 Empididae	12.5	0.0033	
1 larvae	RG_GHUT_BIC-3_2021-0	19-13 Clinocera	12.5		

quantity <i>Numeric</i>	life_stage_code Text(20)	observ_sample_code <i>Text(40)</i>	BENCH_TAXON_NAME <i>Text(255)</i>	PERCENT_SAMPLED Numeric	RAW_BIOMASS <i>Text(255)</i>	QC_COMMENTS <i>Text(255)</i>
1	1 pupae	RG_GHUT_BIC-3_2021-09-13	Empididae	12.5		
	larvae/indeterminate	RG_GHUT_BIC-3_2021-09-13	Muscidae	12.5	0.0005	
		RG_GHUT_BIC-3_2021-09-13	Psychodidae	12.5	0.0052	
15	5 larvae	RG_GHUT_BIC-3_2021-09-13	Pericoma	12.5		
		RG_GHUT_BIC-3_2021-09-13	Tipulidae	12.5	0.0054	
8	8 larvae	RG_GHUT_BIC-3_2021-09-13	Dicranota	12.5		
		RG_GHUT_BIC-4_2021-09-13	Planariidae	12.5	0.0202	
2	4 none	RG GHUT BIC-4 2021-09-13	Polvcelis	12.5		
1	5 none	RG GHUT BIC-4 2021-09-13	Enchytraeidae	12.5	0.0007	
		RG_GHUT_BIC-4_2021-09-13	Sperchonidae	12.5	0.0006	
1	1 Adult	RG_GHUT_BIC-4_2021-09-13	Sperchon	12.5		
-	3 none	RG GHUT BIC-4 2021-09-13	Ostracoda	12.5	0.0008	
	5 Holle	RG GHUT BIC-4 2021-09-13	Canniidae	12.5	0.0060	
-	3 Nymph	RG GHUT BIC-4 2021-09-13	Mesocannia/Cannia	12.5	0.0000	
	1 Nymph	PG_CHUT_BIC-4_2021-09-13	Paracappia	12.5		
-	2 Numph/immatura	RG_GHUT_BIC 4 2021-09-13	Cappiidae	12.5		
-	s nymph/immature	RG_GHUT_BIC-4_2021-09-13	Caprilluae	12.5	0.0000	
		RG_GHU1_BIC-4_2021-09-13	Nemouridae	12.5	0.0009	
-	3 Nymph	RG_GHU1_BIC-4_2021-09-13	Zapada	12.5		
2	4 Nymph/immature	RG_GHU1_BIC-4_2021-09-13	Nemouridae	12.5		
		RG_GHUT_BIC-4_2021-09-13	Perlodidae	12.5	0.0139	
1	1 Nymph	RG_GHUT_BIC-4_2021-09-13	Isoperla	12.5		
1	1 Nymph	RG_GHUT_BIC-4_2021-09-13	Megarcys	12.5		
		RG_GHUT_BIC-4_2021-09-13	Limnephilidae	12.5	0.0022	
16	6 larvae/immature	RG_GHUT_BIC-4_2021-09-13	Limnephilidae	12.5		
		RG GHUT BIC-4 2021-09-13	Rhvacophilidae	12.5	0.0309	
1	1 larvae	RG GHUT BIC-4 2021-09-13	Rhvacophila	12.5		
-		RG GHUT BIC-4 2021-09-13	Chironomidae	12.5	0.0838	
74	5 nunae	RG GHUT BIC-4 2021-09-13	Chironomidae	12.3	0.0030	
20		RG_GHUT_BIC-4_2021-09-13	Chilonomuae De se stis	12.5		
3.		KG_GHUT_BIC-4_2021-09-13	Pagastia	12.5		
-	3 larvae	RG_GHUT_BIC-4_2021-09-13	Pseudodiamesa	12.5		
2	2 larvae	RG_GHUT_BIC-4_2021-09-13	Corynoneura	12.5		
28	8 larvae	RG_GHUT_BIC-4_2021-09-13	Cricotopus/Orthocladius	12.5		
154	4 larvae	RG GHUT BIC-4 2021-09-13	Eukiefferiella	12.5		
	2 larvae	RG_GHUT_BIC-4_2021-09-13	Tvetenia	12.5		
		BG GHUT BIC-4 2021-09-13	Fmpididae	12.5	0.0029	
	2 120/20	PG_CHUT_BIC-4_2021-09-13	Clinocera	12.5	0.0025	
4		RG_GHUT_DIC-4_2021-09-13	Mussidas	12.5	0.0034	
-	1 larvae/indeterminate	RG_GHU1_BIC-4_2021-09-13	Muscidae	12.5	0.0034	
		RG_GHUT_BIC-4_2021-09-13	Psychodidae	12.5	0.0016	
2	4 larvae	RG_GHUT_BIC-4_2021-09-13	Pericoma	12.5		
		RG_GHUT_BIC-4_2021-09-13	Tipulidae	12.5	0.0047	
6	6 larvae	RG_GHUT_BIC-4_2021-09-13	Dicranota	12.5		
		RG_GHUT_BIC-5_2021-09-13	Planariidae	12.5	0.0098	
8	8	RG GHUT BIC-5 2021-09-13	Polvcelis	12.5		
-	1 none	RG GHUT BIC-5 2021-09-13	Enchytraeidae	12.5	0.0004	
-	1 Holle	RG GHUT BIC-5 2021-09-13	Canniidae	12.5	0.0040	
-	2 Nymph	RG_GHUT_BIC-5_2021-09-13	Mesocannia/Cannia	12.5	0.0010	
4	2 Nymph	RG_GHUT_DIC-5_2021-09-13	Mesocapilia/Capilia	12.5		
4	z wympn	RG_GHU1_BIC-5_2021-09-13	Paracaprila	12.5	0.0014	
		RG_GHU1_BIC-5_2021-09-13	Nemouridae	12.5	0.0011	
1	1 Nymph	RG_GHUT_BIC-5_2021-09-13	Malenka	12.5		
2	2 Nymph/immature	RG_GHUT_BIC-5_2021-09-13	Nemouridae	12.5		
		RG_GHUT_BIC-5_2021-09-13	Peltoperlidae	12.5	0.0002	
1	1 Nymph	RG_GHUT_BIC-5_2021-09-13	Yoraperla	12.5		
		RG GHUT BIC-5 2021-09-13	Perlodidae	12.5	0.0068	
6	6 Nymph	RG GHUT BIC-5 2021-09-13	Isoperla	12.5		
		BG GHUT BIC-5 2021-09-13	Taeniontervoidae	12.5	0.0003	
	2 Nymnh/immature	RG GHUT RIC-5 2021 00 13	Taeniontervoidae	17 5	0.0005	
4	2 Nymph/ininature	DC CHUT DIC 5 2021-09-13	Limporbilideo	12.5	0.0027	
	0 lon/oo/immoture			12.5	0.0027	
19	a vae/iiiiidlufe		chiranamida -	12.5	0.0670	
-	4	KG_GHUT_BIC-5_2021-09-13	Chironomidae	12.5	0.0672	
24	+ pupae	кс_GHU1_BIC-5_2021-09-13	Chironomidae	12.5		
12	2 Iarvae	RG_GHUT_BIC-5_2021-09-13	Pagastia	12.5		
1	1 larvae	RG_GHUT_BIC-5_2021-09-13	Pseudodiamesa	12.5		
	7 larvae	RG_GHUT_BIC-5_2021-09-13	Cricotopus/Orthocladius	12.5		
124	4 larvae	RG_GHUT_BIC-5_2021-09-13	Eukiefferiella	12.5		
4	4 larvae	RG_GHUT_BIC-5_2021-09-13	Tvetenia	12.5		
		RG GHUT BIC-5 2021-09-13	Psychodidae	12.5	0.0045	
13	3 larvae	RG GHUT BIC-5 2021-09-13	Pericoma	12.5		
1.		RG GHUT BIC-5 2021-09-13	Tipulidae	12.5	0 0050	
-	7 128/20	DC CHUT DIC 5_2021 00 13	Disranota	12.5	0.0052	
-		RG GHUT BIC-6 2021-09-13	Nematoda	12.5	0.0004	
4				12.5	0.0004	
	_	KG_GHUT_BIC-6_2021-09-13	Pianariidae	12.5	0.0294	
13	3 none	RG_GHUT_BIC-6_2021-09-13	Polycelis	12.5		
6	6 none	RG_GHUT_BIC-6_2021-09-13	Enchytraeidae	12.5	0.0010	
		RG_GHUT_BIC-6_2021-09-13	Lebertiidae	12.5	0.0001	
1	1 Adult	RG_GHUT_BIC-6_2021-09-13	Lebertia	12.5		
		RG_GHUT_BIC-6 2021-09-13	Sperchonidae	12.5	0.0006	
1	1 Adult	RG GHUT BIC-6 2021-09-13	Sperchon	12.5		
	8 none	RG GHUT BIC-6 2021-09-13	Ostracoda	12 5	0.0010	
	1 Nymph/immature	RG GHUT BIC-6 2021-09-13	Enhemerellidae	17 5	0.0019	
	r wympn/mmature		Cappiidae	12.5	0.0001	
		KG_GHUT_BIC-6_2021-09-13	Caphilaae	12.5	0.0282	
1	1 Nymph	RG_GHUT_BIC-6_2021-09-13	Eucapnopsis	12.5		
10	0 Nymph	RG_GHUT_BIC-6_2021-09-13	Mesocapnia/Capnia	12.5		
3	3 Nymph	RG_GHUT_BIC-6_2021-09-13	Paracapnia	12.5		
6	6 Nymph/immature	RG_GHUT_BIC-6_2021-09-13	Capniidae	12.5		
		RG_GHUT_BIC-6_2021-09-13	Nemouridae	12.5	0.0034	

quantity	life_stage_code	observ_sample_code	BENCH_TAXON_NAME	PERCENT_SAMPLED	RAW_BIOMASS	QC_COMMENTS
Numeric	Text(20)	Text(40)	Text(255)	Numeric	Text(255)	Text(255)
14	Nymph/immature	RG_GHUT_BIC-6_2021-09-13	Nemouridae	12.5		
		RG_GHUT_BIC-6_2021-09-13	Peltoperlidae	12.5	0.0005	5
2	Nymph	RG_GHUT_BIC-6_2021-09-13	Yoraperla	12.5		
		RG_GHUT_BIC-6_2021-09-13	Perlodidae	12.5	0.0137	7
12	Nymph	RG_GHUT_BIC-6_2021-09-13	Isoperla	12.5		
1	Nymph/immature	RG_GHUT_BIC-6_2021-09-13	Perlodidae	12.5		
		RG_GHUT_BIC-6_2021-09-13	Taeniopterygidae	12.5	0.0003	3
3	Nymph/immature	RG_GHUT_BIC-6_2021-09-13	Taeniopterygidae	12.5		
		RG_GHUT_BIC-6_2021-09-13	Limnephilidae	12.5	0.0036	5
15	larvae/immature	RG_GHUT_BIC-6_2021-09-13	Limnephilidae	12.5		
		RG_GHUT_BIC-6_2021-09-13	Rhyacophilidae	12.5	0.021	L
2	larvae	RG_GHUT_BIC-6_2021-09-13	Rhyacophila	12.5		
		RG_GHUT_BIC-6_2021-09-13	Chironomidae	12.5	0.0476	5
15	pupae	RG_GHUT_BIC-6_2021-09-13	Chironomidae	12.5		
14	larvae	RG_GHUT_BIC-6_2021-09-13	Pagastia	12.5		
3	larvae	RG_GHUT_BIC-6_2021-09-13	Brillia	12.5		
7	larvae	RG_GHUT_BIC-6_2021-09-13	Cricotopus/Orthocladius	12.5		
117	larvae	RG_GHUT_BIC-6_2021-09-13	Eukiefferiella	12.5		
		RG_GHUT_BIC-6_2021-09-13	Empididae	12.5	0.0075	5
2	larvae	RG_GHUT_BIC-6_2021-09-13	Clinocera	12.5		
2	larvae/pupae	RG_GHUT_BIC-6_2021-09-13	Empididae	12.5		
1	larvae/indeterminate	RG_GHUT_BIC-6_2021-09-13	Muscidae	12.5	0.0039)
		RG_GHUT_BIC-6_2021-09-13	Pelecorhyncidae	100	0.021	large/rare search
1	larvae	RG_GHUT_BIC-6_2021-09-13	Glutops	100		large/rare search
		RG_GHUT_BIC-6_2021-09-13	Psychodidae	12.5	0.0079)
14	larvae	RG_GHUT_BIC-6_2021-09-13	Pericoma	12.5		
		RG_GHUT_BIC-6_2021-09-13	Tipulidae	12.5	0.0046	5
6	larvae	RG_GHUT_BIC-6_2021-09-13	Dicranota	12.5		
1	larvae	RG_GHUT_BIC-6_2021-09-13	Molophilus	12.5		

quantity life_stage_co	ie observ_sample_code	ITIS_TAXON_NAME_Y-N	ITIS_TSN	BENCH_TAXON_NAME	PERCENT_SAMPLED	RAW_BIOMASS QC_COMMENTS	0.0001
1	RG_GHP_BIC-01_2021-09-22 RG_GHP_BIC-03_2021-09-21	Y	68510	Enchytraeidae	12.5	0.0001	1.0001
1 none	RG_GHP_BIC-05_2021-09-23	Ν		Nemata	100	0.0001	1.0001
1 none	RG_GHP_BIC-01_2021-09-22	N		Nemata	12.5	0.0002	1.0002
1 none Adult	RG_GHP_BIC-06_2021-09-22 RG_GHP_BIC-06_2021-09-22	N Y	83330	Nemata Pionidae	100	0.0002	0.0002
, addre	RG_GHP_BIC-03_2021-09-21	Ŷ	76591	Planorbidae	100	0.0004	0.0004
Nymph	RG_GHP_BIC-06_2021-09-22	Y	100755	Baetidae	100	0.0004	0.0004
larvae	RG_GHP_BIC-01_2021-09-22	Y	127076	Ceratopogonidae	12.5	0.0007	0.0007
Adult	RG_GHP_BIC-06_2021-09-22	Y	83033	Lebertiidae	100	0.0008	0.0008
none	RG_GHP_BIC-02_2021-09-23	Y	111857	Haliplidae	12.5	0.0009	0.0009
none	RG_GHP_BIC-01_2021-09-22	N	100755	Hyalellidae	12.5	0.0011	0.0011
none	RG_GHP_BIC-01_2021-09-22 RG_GHP_BIC-04_2021-09-21	Y N	100/55	Baetidae Hyalellidae	12.5	0.0016	0.0016
Adult	RG_GHP_BIC-06_2021-09-22	Ŷ	83476	Mideopsidae	100	0.0018	0.0018
none	RG_GHP_BIC-01_2021-09-22	Ν		Gammaridae	12.5	0.0025	0.0025
2020	RG_GHP_BIC-06_2021-09-22	Y	68854	Naididae	100	0.0028	0.0028
Nymph	RG_GHP_BIC-06_2021-09-22 RG_GHP_BIC-02_2021-09-23	N Y	100755	Hyalellidae Baetidae	12.5	0.0028	0.0028
larvae	RG_GHP_BIC-03_2021-09-21	Ŷ	125886	Chaoboridae	100	0.0039	0.0039
	RG_GHP_BIC-01_2021-09-22	Y	68854	Naididae	12.5	0.0050	0.005
Nymph	RG_GHP_BIC-04_2021-09-21	Y	100755	Baetidae	50	0.0053	0.0053
25 none	RG_GHP_BIC-04_2021-09-21 RG_GHP_BIC-06_2021-09-22	Y Y	84195 76591	Ostracoda Planorhidae	100	0.0057	25.0057
35 none	RG_GHP_BIC-03_2021-09-21	Ŷ	84195	Ostracoda	100	0.0079	35.0079
42 none	RG_GHP_BIC-02_2021-09-23	Y	84195	Ostracoda	12.5	0.0087	42.0087
99 none	RG_GHP_BIC-01_2021-09-22	Ŷ	84195	Ostracoda	12.5	0.0174	99.0174
none	RG_GHP_BIC-01_2021-09-22	N	70391	Hvalellidae	12.5	0.0302	0.0279
Nymph	RG_GHP_BIC-01_2021-09-22	Ŷ	102077	Coenagrionidae	12.5	0.0342	0.0342
larvae	RG_GHP_BIC-04_2021-09-21	Y	125886	Chaoboridae	50	0.0370	0.037
none	RG_GHP_BIC-01_2021-09-22	Ŷ	127917	Chironomidae	12.5	0.0383	0.0383
none	RG_GHP_BIC-02_2021-09-23 RG_GHP_BIC-03_2021-09-21	r Y	102077	Corixidae	100	0.0467	0.044
none	RG_GHP_BIC-02_2021-09-23	Ň		Gammaridae	12.5	0.0476	0.0476
none	RG_GHP_BIC-04_2021-09-21	Y	127917	Chironomidae	50	0.0583	0.0583
294 none	RG_GHP_BIC-06_2021-09-22	Ŷ	84195	Ostracoda	100	0.0625	294.0625
307 none	RG_GHP_BIC-05_2021-09-23	Y	84195	Ostracoda	100	0.0693	307.0693
none	RG_GHP_BIC-03_2021-09-21	Y	127917	Chironomidae	100	0.0776	0.0776
larvae	RG_GHP_BIC-06_2021-09-22	Y	125886	Chaoboridae	100	0.0839	0.0839
larvae	KG_GHP_BIC-06_2021-09-22 RG_GHP_BIC-02_2021-09-22	Y Y	115867 127917	rnryganeidae	100 12 5	0.1081 0.1192	0.1081
none	RG_GHP_BIC-02_2021-09-23	N	/)1/	Gammaridae	100	0.1630	0.163
none	RG_GHP_BIC-01_2021-09-22	Ν		Sphaeriidae	12.5	0.2402	0.2402
none	RG_GHP_BIC-05_2021-09-23	Y	127917	Chironomidae	100	0.2549	0.2549
none	RG_GHP_BIC-06_2021-09-22	Y	12/91/	Chironomidae	100	0.2842	0.2842
none	RG_GHP_BIC-01_2021-09-22	N	115007	Sphaeriidae	12.5	0.3210	0.321
	RG_GHP_BIC-02_2021-09-23	Y	76591	Planorbidae	12.5	0.3516	0.3516
none	RG_GHP_BIC-03_2021-09-21	Ν		Gammaridae	100	0.4019	0.4019
none	RG_GHP_BIC-06_2021-09-22	N		Gammaridae	100	0.4481	0.4481
none	RG_GHP_BIC-04_2021-09-21 RG_GHP_BIC-05_2021-09-23	N		Gammaridae	100	0.5275	0.5275
none	RG_GHP_BIC-04_2021-09-21	N		Sphaeriidae	50	0.9012	0.9012
none	RG_GHP_BIC-03_2021-09-21	N		Sphaeriidae	100	1.6352	1.6352
none	RG_GHP_BIC-06_2021-09-22	N		Sphaeriidae	100	2.2342	2.2342
Numeric Text(20)	Text(40)	Text(255)	Text(255)	<i>Text(255)</i>	Numeric	Text(255) Text(255)	2.9092
8	RG_GHP_BIC-01_2021-09-22	Y	974289	Tubificinae	12.5	immature with hair chaetae	8
1 none	RG_GHP_BIC-01_2021-09-22	N		Hyalella	12.5		1
1 none/immature	RG_GHP_BIC-01_2021-09-22	N Y	100903	Gammarus	12.5		1
1 Nymph	RG_GHP_BIC-01_2021-09-22	Ý	101478	Caenis	12.5		1
1 Nymph/immatu	re RG_GHP_BIC-01_2021-09-22	Y	102077	Coenagrionidae	12.5		1
1 larvae	RG_GHP_BIC-01_2021-09-22	Y	115892	Phryganea	100	large/rare sort	1
2 Iarvae 6 Iarvae	RG_GHP_BIC-01_2021-09-22 RG_GHP_BIC-01_2021-09-22	Y Y	12/7/8	Bezzia Chironomus	12.5		2
1 larvae	RG_GHP_BIC-01_2021-09-22	Ŷ	129368	Cryptochironomus	12.5		1
2 larvae	RG_GHP_BIC-01_2021-09-22	Y	129978	Tanytarsus	12.5		2
3 larvae	RG_GHP_BIC-01_2021-09-22	Y	128079	Ablabesmyia	12.5		3
8 larvae	RG_GHP_BIC-01_2021-09-22	Y V	128277	Procladius	12.5		8
115 none	RG_GHP_BIC-01_2021-09-22	N	70352	Pisidium (Cyclocalyx)	12.5		115
30 none	RG_GHP_BIC-02_2021-09-23	N		Hyalella	12.5		30
7 none	RG_GHP_BIC-02_2021-09-23	N		Gammarus lacustris	100		7
4 none/immature	RG_GHP_BIC-02_2021-09-23	N		Gammarus	12.5		4
1 none	RG_GHP_BIC-02_2021-09-23	Y	111858	Haliplus	12.5		1
9 Nymph	RG_GHP_BIC-02_2021-09-23	Y	100903	Callibaetis	12.5		9
1 Nymph 1 Nymph/immatu	RG_GHP_BIC-02_2021-09-23	Y	102077	Coenagrionidae	100		1
4 larvae	RG GHP BIC-02 2021-09-23	Ŷ	129254	Chironomus	12.5		4
6 larvae	RG_GHP_BIC-02_2021-09-23	Y	129368	Cryptochironomus	12.5		6
1 larvae	RG_GHP_BIC-02_2021-09-23	Y	129935	Paratanytarsus	12.5		1
2 larvae	RG_GHP_BIC-02_2021-09-23	Ŷ	129785	Stictochironomus	12.5		2
2 larvae	RG_GHP_BIC-02_2021-09-23	Y	128277	Procladius	12.5		2
133	RG_GHP_BIC-02_2021-09-23	Y	76592	Gyraulus	12.5		133
140 none	RG_GHP_BIC-02_2021-09-23	N		Pisidium (Cyclocalyx)	12.5		140
4 none/immature	RG GHP BIC-03 2021-09-21	N		Gammarus lacustris	100		13 4
1 none	RG_GHP_BIC-03_2021-09-21	Y	103364	Corixidae	100		1
2 larvae	RG_GHP_BIC-03_2021-09-21	N	1000-	Chaoborus flavicans	100		2
10 larvae 8 Jarvae	KG_GHP_BIC-03_2021-09-21 RG_GHP_BIC-03_2021-00_21	Y V	129254	Cryptochironomus	100		10 °
1 larvae	RG_GHP_BIC-03_2021-09-21	Ý	129785	Stictochironomus	100		1
6 larvae	RG_GHP_BIC-03_2021-09-21	Y	129978	Tanytarsus	100		6
29 larvae	RG_GHP_BIC-03_2021-09-21	Y	128277	Procladius	100		29
I 613 none	RG_GHP_BIC-03_2021-09-21 RG_GHP_BIC-03_2021-09-21	YN	76592	Gyraulus Pisidium (Cyclocalyx)	100		613
1 none	RG_GHP_BIC-04_2021-09-21	N		Hyalella	50		1
14 none	RG_GHP_BIC-04_2021-09-21	Ν		Gammarus lacustris	50		14
12 none/immature	RG_GHP_BIC-04_2021-09-21	N	100002	Gammarus	50 50		12
13 larvae	RG GHP BIC-04 2021-09-21	N	100303	Chaoborus flavicans	50		18 13
8 larvae	RG_GHP_BIC-04_2021-09-21	Ŷ	129368	Cryptochironomus	50		8
3 larvae	RG_GHP_BIC-04_2021-09-21	Y	129978	Tanytarsus	50		3
1 larvae	RG_GHP_BIC-04_2021-09-21	Y	128079	Ablabesmyia Procladius	50 50		1
279 none	RG_GHP_BIC-04 2021-09-21	N	1202//	Pisidium (Cvclocalvx)	50		45 279
13 none	RG_GHP_BIC-05_2021-09-23	N		Gammarus lacustris	100		13
3 none/immature	RG_GHP_BIC-05_2021-09-23	N		Gammarus Chaobarra finai	100		3
21 larvae	KG_GHP_BIC-05_2021-09-23 RG_GHP_BIC-05_2021-09-23	N Y	129254	Chironomus	100 100		21 59
5 larvae	RG_GHP_BIC-05_2021-09-23	Y	129368	Cryptochironomus	100		50 5
21 larvae	RG_GHP_BIC-05_2021-09-23	Y	129978	Tanytarsus	100		21
15 larvae	RG_GHP_BIC-05_2021-09-23	Y	128277	Procladius	100		15
783 none 1	ко_GПР_BIC-05_2021-09-23 RG GHP BIC-06 2021-09-22	N Y	974289	risiaium (Cyclocalyx) Tubificinae	100 100	immature without hair chae	/83 tae 1
1 Adult	RG_GHP_BIC-06_2021-09-22	Ý	83034	Lebertia	100		1
1 Adult	RG_GHP_BIC-06_2021-09-22	Y	83479	Mideopsis	100		1
1 Adult/indetermin	RG_GHP_BIC-06_2021-09-22	Y	83330	Pionidae	100		1
5 0000	NG_GHF_BIC-00_2021-09-22	IN N		Commonus locustris	100		3 16
16 none	RG GHP BIC-06 2021-09-22	IN		Gammarus lacusins	1		10
16 none 4 none/immature	RG_GHP_BIC-06_2021-09-22 RG_GHP_BIC-06_2021-09-22	N		Gammarus	100		4
16 none 4 none/immature 1 Nymph	RG_GHP_BIC-06_2021-09-22 RG_GHP_BIC-06_2021-09-22 RG_GHP_BIC-06_2021-09-22	N Y	100903	Gammarus Callibaetis	100		4
16 none 4 none/immature 1 Nymph 1 Iarvae 21 Iarvae	RG_GHP_BIC-06_2021-09-22 RG_GHP_BIC-06_2021-09-22 RG_GHP_BIC-06_2021-09-22 RG_GHP_BIC-06_2021-09-22 RG_GHP_BIC-06_2021-09-22	N N Y Y N	100903 115892	Gammarus Callibaetis Phryganea Chaoborus flavicans	100 100 100 100		4 1 1 21

quantity	life_stage_code	observ_sample_code	ITIS_TAXON_NAME_Y-N	ITIS_TSN	BENCH_TAXON_NAME	PERCENT_SAMPLED	RAW_BIOMASS	QC_COMMENTS	
	Nymph	RG_GHP_BIC-01_2021-09-22	Y	101467	Caenidae	12.5	0.0001		0.0001
23	larvae	RG_GHP_BIC-06_2021-09-22	Y	129254	Chironomus	100			23
2	larvae	RG_GHP_BIC-06_2021-09-22	Y	129368	Cryptochironomus	100			2
53	larvae	RG_GHP_BIC-06_2021-09-22	Y	129978	Tanytarsus	100			53
145	larvae	RG_GHP_BIC-06_2021-09-22	Y	128277	Procladius	100			145
3	}	RG_GHP_BIC-06_2021-09-22	Y	76592	Gyraulus	100			3
803	none	RG_GHP_BIC-06_2021-09-22	N		Pisidium (Cyclocalyx)	100			803

APPENDIX C WATER QUALITY

Figure C.1: Total Dissolved Solids (TDS) Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.1: Total Dissolved Solids (TDS) Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

- - EVWQP Level 1 Screening Value

Figure C.1: Total Dissolved Solids (TDS) Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.2: Nitrate-N Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.2: Nitrate-N Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

- - BCWQG (long term) - - BCWQG (short term) - - EVWQP Level 1 Benchmark - - EVWQP Level 2 Benchmark

Figure C.2: Nitrate-N Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.3: Nitrite-N Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.3: Nitrite-N Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

- - BCWQG (long term) - - BCWQG (short term)

Figure C.3: Nitrite-N Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.4: Sulphate Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.4: Sulphate Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

- - BCWQG (long term) - - EVWQP Level 1 Benchmark

Figure C.4: Sulphate Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.5: Total Antimony Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.5: Total Antimony Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

- - BCWQG (long term)

Figure C.5: Total Antimony Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.6: Total Barium Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.6: Total Barium Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

- - BCWQG (long term)

Figure C.6: Total Barium Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.7: Total Boron Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.7: Total Boron Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

- - BCWQG (long term)

Figure C.7: Total Boron Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.8: Total Lithium Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.8: Total Lithium Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.8: Total Lithium Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.9: Total Manganese Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.9: Total Manganese Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

- - BCWQG (long term) - - BCWQG (short term)

Figure C.9: Total Manganese Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.10: Total Molybdenum Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.10: Total Molybdenum Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

- - BCWQG (long term) - - BCWQG (short term)

Figure C.10: Total Molybdenum Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.11: Total Nickel Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.11: Total Nickel Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

- - Level 1 Interim Screening Value - - Level 2 Interim Screening Value - - Level 3 Interim Screening Value

Figure C.11: Total Nickel Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.12: Total Selenium Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.12: Total Selenium Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

- - BCWQG (long term) - - EVWQP Level 1 Benchmark - - EVWQP Level 2 Benchmark

Figure C.12: Total Selenium Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.13: Total Uranium Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.13: Total Uranium Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

- - BCWQG (long term)

Figure C.13: Total Uranium Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.14: Total Zinc Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.14: Total Zinc Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

- - BCWQG (long term) - - BCWQG (short term)

Figure C.14: Total Zinc Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.15: Dissolved Cadmium Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.15: Dissolved Cadmium Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

- - BCWQG (long term) - - BCWQG (short term) - - EVWQP Level 1 Benchmark

Figure C.15: Dissolved Cadmium Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.16: Dissolved Cobalt Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.16: Dissolved Cobalt Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Figure C.16: Dissolved Cobalt Concentrations at Sampling Locations on Greenhills and Gardine Creeks, 2016 to 2021

Table C.1: Summary of Water Chemistry Data for Key Parameters Measured at Routine Water Quality Monitoring Stations on Greenhills and Gardine Creeks, 2021

Area	Station	Summary Statistic	Total Dissolved Solids (mg/L)	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)
		n	12	12	11	11	12	12	12
		Annual Minimum	785	8.00	8.11	9.67	237	3.53	< 0.005
		Annual Maximum	2,090	8.43	8.50	11.7	424	10.7	0.0116
		Annual Mean	1,723	8.21	8.24	10.6	359	8.19	0.00609
		Annual Median	1,905	8.20	8.22	10.6	376	8.91	< 0.005
	GH CTE	% <lrl< th=""><th>0%</th><th>0%</th><th>0%</th><th>0%</th><th>0%</th><th>0%</th><th>83%</th></lrl<>	0%	0%	0%	0%	0%	0%	83%
	on_on	% > Long-term BC WQG ^a	-	-	0%	0%	0%	100%	0%
		% > Short-term Max BC WOG ^a	-	-	0%	0%	_	0%	0%
		% >Lovel 1 Benchmark ^b	02%		0,0	0,0		0%	070
			52.70	-	-	-	-	0 %	-
Upper Greenhills		% > Level 2 Benchmark	-	-	-	-	-	0%	-
Creek Upstream		% > Level 3 Benchmark ⁵	-	-	-	-	-	-	-
from Gardine		n	13	13	13	13	13	13	13
Creek		Annual Minimum	604	8.12	7.94	9.68	226	2.69	0.00110
		Annual Maximum	2,140	8.45	8.61	11.9	374	10.8	0.0223
		Annual Mean	1,633	8.26	8.28	11.0	311	7.66	0.00353
		Annual Median	1,780	8.27	8.29	11.0	313	8.46	0.00110
	GH_HWGH_BRB	% <lrl< th=""><th>0%</th><th>0%</th><th>0%</th><th>0%</th><th>0%</th><th>0%</th><th>69%</th></lrl<>	0%	0%	0%	0%	0%	0%	69%
		% > Long-term BC WQG ^a	-	-	0%	0%	0%	92%	0%
		% > Short-term Max BC WQG ^a	-	-	0%	0%	-	0%	0%
		% > Level 1 Benchmark ^b	92%	-	-	-	-	0%	-
		% > Level 2 Benchmark ^b	-	-	-	-	-	0%	-
		% > Level 3 Benchmark ^b	_	-	-	-	-		_
		n	12	12	12	12	12	12	12
		Annual Minimum	308	7.82	8.21	9.33	157	0.0304	<0.001
		Annual Maximum	984	8.50	8.81	11.9	341	1.27	< 0.005
		Annual Mean	723	8.32	8.44	10.7	260	0.354	0.00117
		Annual Median	860	8.33	8.44	11.0	279	0.295	<0.001
Lower Gardine		% <lrl< th=""><th>0%</th><th>0%</th><th>0%</th><th>0%</th><th>0%</th><th>0.0%</th><th>92%</th></lrl<>	0%	0%	0%	0%	0%	0.0%	92%
Creek	01_001	% > Long-term BC WQG ^a	-	-	0%	0%	0%	0%	0%
		% > Short-term Max BC WOG ^a	-	_	0%	0%		0%	0%
		% > Lovel 1 Benchmark ^b	0%		070	070		0%	070
	_		070	-	-	-	-	0%	-
		% > Level 2 Benchmark	-	-	-	-	-	0%	-
		% > Level 3 Benchmark ²	-	-	-	-	-	-	-
		n	19	19	1/	17	19	19	19
		Annual Minimum	530	7.47	6.64	9.43	179	1.63	< 0.001
			1,640	8.43	8.71	12.6	300	0.50	0.0101
Upper Greenhills		Annual Mean	1,273	8.31	8.34	10.8	269	4.97	0.00206
Creek			1,390	8.30	8.42	10.8	279	5.75	<0.005
Downstream from	GH_GH1B		0%	0%	0%	0%	0%	0.0%	04 70
Gardine Creek		% > Long-term BC WQG	-	-	0%	0%	0%	84%	0%
		% > Short-term Max BC WQG "	-	-	0%	0%	-	0%	0%
		% > Level 1 Benchmark ^D	79%	-	-	-	-	0%	-
		% > Level 2 Benchmark ^b	-	-	-	-	-	0%	-
		% > Level 3 Benchmark ^b	-		-		_		_
		n	14	14	55	27	49	14	14
		Annual Minimum	548	8.13	6.66	7.88	189	1.67	<0.001
		Annual Maximum	1,470	8.43	8.68	12.4	297	6.19	0.0182
Lower Greenhills		Annual Mean	1,202	8.33	8.26	10.5	249	4.49	0.00762
Creek Upstream		Annual Median	1,370	8.34	8.25	10.8	245	4.62	0.00615
from the	GH GH1	% <lrl< th=""><th>0%</th><th>0%</th><th>0%</th><th>0%</th><th>0%</th><th>0%</th><th>21%</th></lrl<>	0%	0%	0%	0%	0%	0%	21%
Antiscalant	-	% > Long-term BC WQG ^a	-	-	0%	4%	0%	79%	0%
Addition Facility		% > Short-term Max BC WQG ^a	-	-	0%	0%	-	0%	0%
		% > Level 1 Benchmark ^b	79%	-	-	-	-	0%	-
		% > Level 2 Benchmark ^b	-	-	-	_	-	0%	-
		% > Level 3 Benchmark ^b	_	_	-	_	-		_
		n	15	15	15	14	15	15	15
		 Annual Minimum	569	8.23	6.61	7.50	202	1.65	< 0.001
		Annual Maximum	1,530	8.52	8.68	12.0	307	5.99	0.0152
		Annual Mean	1,159	8.39	8.26	9.79	252	4.23	0.00365
Lower Greennills		Annual Median	1,170	8.39	8.37	10.1	238	4.14	< 0.005
Oreek Downstroom from		% <lrl< th=""><th>0%</th><th>0%</th><th>0%</th><th>0%</th><th>0%</th><th>0.0%</th><th>67%</th></lrl<>	0%	0%	0%	0%	0%	0.0%	67%
the Antiecolont		% > Long-term BC WQG ^a	-	-	0%	21%	0%	80%	0%
Addition Facility		% > Short-term Max BC WOC ^a	_	_	0%	0%	_	0%	0%
Addition raciiity		% > Lovel 4 Benchmark ^b	80%	-	0.0	070	-	0%	0,0
			0070	-	-	-	-	070	-
		% > Level 2 Benchmark ~	-	-	-	-	-	0%	-
		% > Level 3 Benchmark ^D	-	-		-	-	-	-

Concentrations in >5% of samples exceeded the BC WQG, benchmark, or screening value.

Concentrations in > 50% of samples exceeded the BC WQG, benchmark, or screening value.

Concentrations in > 50% of samples exceeded the BC WQG, benchmark, of screening value. Notes: mg/L = milligrams per litre; < = less than; % = percent; LRL = laboratory reporting limit; > = greater than; BC WQG = British Columbia Water Quality Guideline; max = maximum- = no data/not applicable. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Working and Approved BC WQG for the Protection of Freshwater Aquatic Life (BCMOECCS 2021a,b).

Table C.1: Summary of Water Chemistry Data for Key Parameters Measured at Routine Water Quality Monitoring Stations on Greenhills and Gardine Creeks, 2021

Area	Station	Summary Statistic	Ammonia	Sulphate	Total Chloride	Total Fluoride	Total Antimony	Total Arsenic	Total Barium
-Tivu	otatio	ounnary oracions	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
		n	12	12	12	12	12	12	12
		Annual Minimum	<0.005	355	1.00	<0.1	0.000500	0.000200	0.0282
		Annual Maximum	0.192	1,280	2.36	0.107	0.000770	0.000300	0.0397
		Annual Mean	0.0289	957.2	1.78	0.101	0.000682	0.000252	0.0327
			12%	1,025	0%	<0.1 92%	0.000705	0.000250	0.0329
	GH_CTF	% > Long-term BC WOG ^a	- <u>+</u> 2 %	92%	0%		0%	-	0%
		% > Short-term Max BC WOG ^a	0%	5270	0%		070	0%	
		% > Level 1 Benchmark ^b		02%	070				_
Upper Creenbille		% > Level 2 Benchmark ^b	_				-	_	_
Creek Unstream		% > Level 3 Benchmark ^b	_				-	_	_
from Gardine		n	13	13	13	13	13	13	13
Creek		Annual Minimum	< 0.005	295	0.530	0.0710	0.000410	0.000180	0.0289
		Annual Maximum	0.0479	1,290	2.58	<0.1	0.000740	0.000260	0.0381
		Annual Mean	0.0116	914.4	1.67	0.0710	0.000612	0.000221	0.0330
		Annual Median	0.00650	983	1.60	0.0710	0.000640	0.000220	0.0326
	GH_HWGH_BRB	% <lrl< th=""><th>23%</th><th>0%</th><th>0%</th><th>92%</th><th>0%</th><th>15%</th><th>0%</th></lrl<>	23%	0%	0%	92%	0%	15%	0%
		% > Long-term BC WQG "	0%	92%	0%	-	0%	-	0%
		% > Short-term Max BC WQG	0%	-	0%	0%	-	0%	-
		% > Level 1 Benchmark *	-	92%	-	-	-	-	-
		% > Level 2 Benchmark *	-	-	-	-	-	-	-
		% > Level 3 Benchmark *	- 12	- 12	- 10	- 12	- 10	- 12	- 12
		Annual Minimum	<0.005	88.5	0.250	0.108	<0.0001	0.000140	0.0507
		Annual Maximum	0.0441	508	3.91	0.908	0.000270	0.000320	0.0923
	_	Annual Mean	0.0142	335	2.63	0.340	0.000153	0.000213	0.0727
		Annual Median	0.00800	414	2.88	0.260	0.000130	0.000210	0.0740
Lower Gardine	GH_GC1	% <lrl< th=""><th>33%</th><th>0%</th><th>0%</th><th>0%</th><th>25%</th><th>0%</th><th>0%</th></lrl<>	33%	0%	0%	0%	25%	0%	0%
Сгеек	_	% > Long-term BC WQG ^a	0%	33%	0%	-	0%	-	0%
		% > Short-term Max BC WQG ^a	0%	-	0%	0%	-	0%	-
	_	% > Level 1 Benchmark ^b	-	33%	-	-	-	-	-
		% > Level 2 Benchmark ^b	-	-	-	-	-	-	-
		% > Level 3 Benchmark ^b	-	-	-	-	-	-	-
		n	19	19	19	19	19	19	19
		Annual Minimum	<0.005	220	0.910	0.0810	0.000350	0.000153	0.0326
		Annual Mean	0.0430	699	4.57	0.270	0.000970	0.000375	0.384
Upper Greenhills		Annual Median	0.00860	796	1.55	0.133	0.000420	0.000200	0.0479
Creek	GH GH1B	% <lrl< th=""><th>21%</th><th>0%</th><th>0%</th><th>5%</th><th>0%</th><th>0%</th><th>0%</th></lrl<>	21%	0%	0%	5%	0%	0%	0%
Downstream from	002	% > Long-term BC WQG ^a	0%	84%	0%	-	0%	-	0%
Gardine Creek		% > Short-term Max BC WQG ^a	0%	-	0%	0%	-	0%	-
		% > Level 1 Benchmark ^b	-	84%	-	-	-	-	-
		% > Level 2 Benchmark ^b	-	-	-	-	-	-	-
		% > Level 3 Benchmark ^b	-	-	-	-	-	-	-
		n	14	14	14	14	14	14	14
		Annual Minimum	0.00500	243	1.04	0.0760	0.000360	0.000150	0.0352
		Annual Maximum	0.118	874	5.86	0.238	0.000520	0.000320	0.0489
Lower Greenhills		Annual Median	0.0222	743	2.40	0.151	0.000441	0.000220	0.0420
Creek Upstream		% <lrl< th=""><th>0%</th><th>0%</th><th>0%</th><th>21%</th><th>0%</th><th>0%</th><th>0%</th></lrl<>	0%	0%	0%	21%	0%	0%	0%
Antiscalant	GH_GH1	% > Long-term BC WQG ^a	0%	79%	0%	-	0%	_	0%
Addition Facility		% > Short-term Max BC WQG ^a	0%	-	0%	0%	_	0%	-
		% > Level 1 Benchmark ^b	-	79%	-	-	-	-	-
		% > Level 2 Benchmark ^b	_	_	_	_	_	_	-
		% > Level 3 Benchmark ^b	_	_	-	_	_	_	-
		n	15	15	15	15	15	15	15
		Annual Minimum	<0.005	249	1.27	0.0760	0.000360	0.000170	0.0372
		Annual Maximum	0.0457	880	4.16	0.250	0.000530	0.000300	0.0496
Lower Greenhills		Annual Mean	0.0157	640	2.34	0.142	0.000446	0.000221	0.0446
Creek			0.0134	616 0%	2.18	U.145 13%	0%	0.000220	0.0463
Downstream from	GH_GH2	% > Long-torm BC WOG ^a	0%	0 % 8 ∩ %	0%	1370	0%	070	0%
the Antiscalant		% > Short-term May BC WOC ^a	0%	00%	0%	<u> </u>		- 0%	
		% > Level 1 Benchmark ^b		80%					-
		% > Level 2 Renchmark ^b	-		-			-	-
		% > Level 3 Renchmark ^b	-	-		-	-	-	-

Concentrations in >5% of samples exceeded the BC WQG, benchmark, or screening value.

Concentrations in > 50% of samples exceeded the BC WQG, benchmark, or screening value.

Concentrations in > 50% of samples exceeded the BC WQG, benchmark, or screening value. Concentrations in > 95% of samples exceeded the BC WQG, benchmark, or screening value. Notes: mg/L = milligrams per litre; <= less than; % = percent; LRL = laboratory reporting limit; > = greater than; BC WQG = British Columbia Water Quality Guideline; max = maximum- = no data/not applicable. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Working and Approved BC WQG for the Protection of Freshwater Aquatic Life (BCMOECCS 2021a,b).

Table C.1: Summary of Water Chemistry Data for Key Parameters Measured at Routine Water Quality Monitoring Stations on Greenhills and Gardine Creeks, 2021

Area	Station	Summary Statistic	Total Bervilium	Total Boron	Total Chromium	Total Cobalt	Total Iron	Total Lead	Total Lithium
Alcu	olution	ourmary ofatione	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(mg/L)	(mg/L)	(mg/L)
		n	12	12	12	12	12	12	12
		Annual Minimum	<0.00002	<0.01	0.000110	<0.1	<0.01	<0.00005	0.00970
		Annual Maximum	<0.00004	< 0.02	0.000250	<0.2	0.0730	< 0.0001	0.0203
		Annual Mean	<0.00002	< 0.01	0.000140	0.112	0.0188	0.0000540	0.0165
			<0.00004	<0.02	58%	<0.1	0.0150	<0.00005	0.0174
	GH_CTF		0%	0%	0%	9270	0770	0%	0 70
		% > Short form Max BC WOG ^a	070	078	070	0%	0%	0%	-
		% > Lovel 1 Bonchmark ^b	-	-	-	070	070	070	-
Ummen Omerschille		% > Level 2 Bonchmark ^b	-	-	-	-	-	-	-
Opper Greennills		% > Level 2 Benchmark ^b	-	-	-	-	-	-	-
from Gardine		n	13	13	13	13	13	13	13
Creek		Annual Minimum	<0.00002	<0.01	< 0.0001	<0.1	<0.01	<0.00005	0.00820
		Annual Maximum	<0.00004	<0.02	<0.0002	<0.2	0.0510	<0.0001	0.0191
		Annual Mean	<0.00002	<0.01	0.000119	<0.1	0.0143	0.0000507	0.0152
		Annual Median	<0.00002	<0.01	0.000100	<0.1	<0.01	< 0.00005	0.0163
	GH_HWGH_BRB	% <lrl< th=""><th>100%</th><th>100%</th><th>54%</th><th>100%</th><th>77%</th><th>92%</th><th>0%</th></lrl<>	100%	100%	54%	100%	77%	92%	0%
		% > Long-term BC WQG *	0%	0%	0%	0%	-	0%	-
		% > Short-term Max BC WQG *	-	-	-	0%	0%	0%	-
		% > Level 1 Benchmark ^b	-	-	-	-	-	-	-
		% > Level 2 Benchmark ^b	-	-	-	-	-	-	-
		% > Level 3 Benchmark ^b	-	-	-	-	-	-	-
		n Annual Minimum	12	12	12	12	12	12	12
			<0.00002	0.01	0.000390	<0.1 0.210	0.01	<0.00005 0.000256	0.00350
		Annual Mean	<0.00002	0.0122	0.000176	0.109	0.0616	0.0000230	0.0189
		Annual Median	< 0.00002	0.0120	0.000155	<0.1	0.0335	< 0.00005	0.0220
Lower Gardine Creek	GH GC1	% <lrl< th=""><th>100%</th><th>17%</th><th>17%</th><th>92%</th><th>33%</th><th>83%</th><th>0%</th></lrl<>	100%	17%	17%	92%	33%	83%	0%
		% > Long-term BC WQG ^a	0%	0%	0%	0%	-	0%	-
		% > Short-term Max BC WQG ^a	-	-	-	0%	0%	0%	-
		% > Level 1 Benchmark ^b	-	-	-	-	-	-	-
		% > Level 2 Benchmark ^b	-	-	-	-	-	-	-
		% > Level 3 Benchmark ^b	-	-	-	-	-	-	-
		n	19	19	19	19	19	19	19
		Annual Minimum	< 0.00002	< 0.01	< 0.0001	<0.1	< 0.01	<0.00005	0.00770
		Annual Maximum	0.000614	0.0200	0.00546	6.63	6.78	0.0111	0.0196
Upper Greenhills		Annual Median	<0.0000513	0.0110	0.000414	0.444 <0.1	<0.00	<0.000037	0.0150
Creek		% <lrl< th=""><th>95%</th><th>32%</th><th>11%</th><th>89%</th><th>53%</th><th>79%</th><th>0%</th></lrl<>	95%	32%	11%	89%	53%	79%	0%
Downstream from	GH_GHIB	% > Long-term BC WQG ^a	5%	0%	5%	5%	-	0%	-
Gardine Creek		% > Short-term Max BC WQG ^a	-	-	-	0%	5%	0%	-
		% > Level 1 Benchmark ^b	-	-	-	-	-	-	-
		% > Level 2 Benchmark ^b	-	-	-	-	-	-	-
		% > Level 3 Benchmark ^b	-	-	-	-	-	-	-
		n	14	14	14	14	14	14	14
		Annual Minimum	<0.00002	<0.01	<0.0001	<0.1	<0.01	<0.00005	0.00790
		Annual Maximum	<0.00002	0.0120	0.000250	0.100	0.113	0.000148	0.0192
Lower Greenhills		Annual Mean	< 0.00002	0.0105	0.000130	0.100	0.0209	0.0000594	0.0147
Creek Upstream			<0.00002	0.0100	0.000120	<0.1	<0.01	<0.00005	0.0152
from the	GH_GH1	% >Long torm BC WOG ^a	100 %	0%	2170	9376	5770	0%	0 78
Antiscalant		% > Short form Max BC WQG	0 /8	0 78	0 78	0%	- 0%	0%	-
Addition Facility		% > Lovel 1 Bonchmark ^b	-	-	-	070	070	070	-
		% > Level 2 Bonchmark ^b	-	-	-	-	-	-	-
		% > Level 2 Benchmark ^b	-	-	-	-	-	-	-
		n	- 15	- 15	 15	- 15	- 15	- 15	- 15
		Annual Minimum	<0.00002	<0.01	< 0.0001	<0.1	<0.01	<0.00005	0.00790
		Annual Maximum	<0.00002	0.0130	0.000290	0.170	0.153	0.000185	0.0189
Lower Greenhills		Annual Mean	<0.00002	0.0110	0.000154	0.106	0.0453	0.0000691	0.0143
Creek		Annual Median	<0.00002	0.0110	0.000130	<0.1	0.0260	<0.00005	0.0152
Downstream from	GH_GH2	% <lrl< th=""><th>100%</th><th>40%</th><th>7%</th><th>87%</th><th>27%</th><th>67%</th><th>0%</th></lrl<>	100%	40%	7%	87%	27%	67%	0%
the Antiscalant		% > Long-term BC WQG *	0%	0%	0%	0%	-	0%	-
Addition Facility		% > Short-term Max BC WQG *	-	-	-	0%	0%	0%	-
		% > Level 1 Benchmark [®]	-	-	-	-	-	-	-
		% > Level 2 Benchmark "	-	-	-	-	-	-	-
	-	% > Level 3 Benchmark ^b	-	- 1	-		-	- 1	-

Concentrations in >5% of samples exceeded the BC WQG, benchmark, or screening value.

Concentrations in > 50% of samples exceeded the BC WQG, benchmark, or screening value.

Concentrations in > 50% of samples exceeded the BC WQG, benchmark, of screening value. Notes: mg/L = milligrams per litre; < = less than; % = percent; LRL = laboratory reporting limit; > = greater than; BC WQG = British Columbia Water Quality Guideline; max = maximum- = no data/not applicable. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Working and Approved BC WQG for the Protection of Freshwater Aquatic Life (BCMOECCS 2021a,b).

Table C.1: Summary of Water Chemistry Data for Key Parameters Measured at Routine Water Quality Monitoring Stations on Greenhills and Gardine Creeks, 2021

			Total	Total Moroury	Total	Total Nickol	Total	Total Silver	Total	Total
Area	Station	Summary Statistic	Manganese	(mg/l)	Molybdenum		Selenium	(mg/l)	Thallium	Uranium
		-	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(mg/L)	(mg/L)	(mg/L)
		n	12	12	12	12	12	12	12	12
		Annual Minimum	0.00466	< 0.0000005	0.00173	12.9	91.0	< 0.00001	0.0000130	0.00435
		Annual Maximum	0.0136	< 0.000005	0.00212	30.1	275	< 0.00002	< 0.00002	0.0146
		Annual Mean	0.00862	0.00000687	0.00193	23.4	220	< 0.00001	0.0000150	0.0116
		Annual Median	0.00883	< 0.0000005	0.00195	25.3	236	<0.00002	0.0000150	0.0126
		% <lrl< th=""><th>0%</th><th>67%</th><th>0%</th><th>0%</th><th>0%</th><th>100%</th><th>58%</th><th>0%</th></lrl<>	0%	67%	0%	0%	0%	100%	58%	0%
	GH_CIF	% > Long-term BC WOG ^a	0%	17%	0%		100%	0%	0%	83%
			070	17.70	070	-	10070	070	070	0370
		% > Short-term Max BC WQG	0%	-	0%	-	-	0%	-	-
		% > Level 1 Benchmark	-	-	-	100%	100%	-	-	-
Upper Greenhills		% > Level 2 Benchmark ^b	-	-	-	92%	75%	-	-	-
Creek Upstream		% > Level 3 Benchmark ^b	-	-	-	58%	-	-	-	-
from Gardine		n	13	13	13	13	13	13	13	13
Creek		Annual Minimum	0.000690	< 0.0000005	0.00151	8.76	71.9	<0.00001	<0.00001	0.00354
		Annual Maximum	0.00387	< 0.000005	0.00196	21.5	272	< 0.00002	< 0.00002	0.0135
		Annual Mean	0.00148	0.000000608	0.00181	16.7	211	< 0.00001	< 0.00001	0.0107
		Annual Median	0.00129	< 0.0000005	0.00189	18.0	233	< 0.00001	< 0.00001	0.0117
		% RI</th <th>0%</th> <th>77%</th> <th>0%</th> <th>0%</th> <th>0%</th> <th>100%</th> <th>100%</th> <th>0%</th>	0%	77%	0%	0%	0%	100%	100%	0%
	GH_HWGH_BRB		0%	159/	0%	070	100%	0%	09/	770/
			0%	13%	0%	-	100%	0%	0%	1170
		% > Short-term Max BC WQG "	0%	-	0%	-	-	0%	-	-
		% > Level 1 Benchmark ^b	-	-	-	100%	100%	-	-	-
		% > Level 2 Benchmark ^b			-	62%	69%			-
		% > Level 3 Benchmark ^b	-	-	-	0%	-	-	-	-
		n	12	12	12	12	12	12	12	12
		Annual Minimum	0.000560	<0.0000005	0.000561	<0.5	4 17	<0.00001	<0.00001	0.000848
		Annual Maximum	0.00913	0.00000398	0.00228	1.93	8.35	0.0000150	0.0000100	0.00362
		Annual Mean	0.00328	0.0000000000000000000000000000000000000	0.00220	1.00	6.00	0.0000100	0.0000100	0.00002
		Annual Median	0.00020	0.000000515	0.00122	1.42	5.96	<0.0000104	<0.0000100	0.00223
Lower Gardine		% <i ri<="" th=""><th>0%</th><th>50%</th><th>0%</th><th>17%</th><th>0.00</th><th>92%</th><th>92%</th><th>0.00200</th></i>	0%	50%	0%	17%	0.00	92%	92%	0.00200
Creek	GH_GC1		0%	00/0	0%	17.70	1000/	00/	00/	0%
oroon		% > Long-term BC WQG	0%	8%	0%	-	100%	0%	0%	0%
		% > Short-term Max BC WQG *	0%	-	0%	-	-	0%	-	-
		% > Level 1 Benchmark ^b	-	-	-	0%	0%	-	-	-
		% > Level 2 Benchmark ^b	-	-	-	0%	0%	-	-	-
		% > Level 3 Benchmark ^b	-	-	_	0%	_	_	-	_
		n	19	19	19	19	19	19	19	19
		Annual Minimum	0.000280	<0.000005	0.00117	5.46	15.8	<0.00001	<0.00001	0.00259
			0.000200	<0.0000000	0.00117	23.0	170	0.000337	0.000001	0.00200
			0.105	~0.0001	0.00342	23.9	120	0.000337	0.000232	0.00390
Upper Greenhills			0.00001	0.000000702	0.00107	9.94	155	<0.0000272	<0.0000240	0.00700
Creek			0.000000	37%	0.00100	9.50	0%	<0.00001 05%	<0.00001 05%	0.00013
Downstream from	GH_GH1B		070	5170	070	070	1000/	9570	9070	070
Gardine Creek		% > Long-term BC WQG	0%	11%	0%	-	100%	0%	0%	47%
		% > Short-term Max BC WQG *	0%	-	0%	-	-	0%	-	-
		% > Level 1 Benchmark ^b	-	-	-	100%	95%	-	-	-
		% > Level 2 Benchmark ^b	-	-	-	5%	0%	-	-	-
		% > Level 3 Benchmark ^b	-	-	-	5%	-	-	-	-
		n	14	14	14	14	15	14	14	14
		Annual Minimum	0.00106	<0.0000005	0.00137	5.74	49.3	<0.00001	<0.00001	0.00289
		Annual Maximum	0.00349	0.00000193	0.00196	10.4	200	< 0.00001	< 0.00001	0.00941
		Annual Mean	0.00190	0.00000688	0.00163	8 10	130	<0.00001	<0.00001	0.00731
Lower Greennilis		Annual Median	0.00161	0.000000510	0.00160	8 12	150	<0.00001	<0.00001	0.00802
Creek Upstream		% <lrl< th=""><th>0%</th><th>50%</th><th>0%</th><th>0%</th><th>0%</th><th>100%</th><th>100%</th><th>0%</th></lrl<>	0%	50%	0%	0%	0%	100%	100%	0%
from the	GH_GH1	% >Long torm BC WOG ^a	0%	70/	0%	0,0	100%	0%	0%	20%
Antiscalant			070	1 /0	070	-	10070	0%	070	2370
Addition Facility		% > Short-term Max BC WQG	0%	-	0%	-	-	0%	-	-
		% > Level 1 Benchmark ²	-	-	-	100%	80%	-	-	-
		% > Level 2 Benchmark ^b	-	-	-	0%	7%	-	-	-
		% > Level 3 Benchmark ^b	-	-	-	0%	-	-	-	-
		n	15	15	15	15	15	15	15	15
		Annual Minimum	0.00167	< 0.000005	0.00144	5.28	48.9	<0.00001	<0.00001	0.00305
		Annual Maximum	0.0136	0.00000193	0.00526	11.4	191	<0.00001	0.0000120	0.00946
Lowor Groenhills		Annual Mean	0.00415	0.00000845	0.00372	7.78	126	<0.00001	0.0000101	0.00710
Crock		Annual Median	0.00340	0.00000690	0.00377	7.88	122	<0.00001	<0.00001	0.00722
Downstream from		% <lrl< th=""><th>0%</th><th>27%</th><th>0%</th><th>0%</th><th>0%</th><th>100%</th><th>93%</th><th>0%</th></lrl<>	0%	27%	0%	0%	0%	100%	93%	0%
the Antiecolont	61_012	% > Long-term BC WOG ^a	0%	20%	0%	-	100%	0%	0%	20%
Addition Englishe		% > Short-term May BC WOG ^a	0%		0%			0%	0.0	
Auunion Facility			0 /0	-	0 /0	-	-	0 /0	-	-
		% > Level 1 Benchmark *	-	-	-	93%	87%	-	-	-
		% > Level 2 Benchmark [®]	-	-	-	0%	7%	-	-	-
		% > Level 3 Benchmark ^b	-		-	0%	-	-	-	-

Concentrations in >5% of samples exceeded the BC WQG, benchmark, or screening value.

Concentrations in > 50% of samples exceeded the BC WQG, benchmark, or screening value.

Concentrations in > 95% of samples exceeded the BC WQG, benchmark, or screening value. Notes: mg/L = milligrams per litre; < = less than; % = percent; LRL = laboratory reporting limit; > = greater than; BC WQG = British Columbia Water Quality Guideline; max = maximum- = no data/not applicable. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Working and Approved BC WQG for the Protection of Freshwater Aquatic Life (BCMOECCS 2021a,b).

Table C.1: Summary of Water Chemistry Data for Key Parameters Measured at Routine Water Quality Monitoring Stations on Greenhills and Gardine Creeks, 2021

A			Total Zine	Dissolved	Dissolved	Discolved	Dissolved	Dissolved				
Area	Station	Summary Statistic		Aluminum	Cadmium	Dissolved	Copper	lron (mg/L)				
			(iiig/L)	(mg/L)	(ug/L)	Cobait (ug/L)	(mg/L)	non (ing/L)				
		n	12	12	12	11	12	12				
		Annual Minimum	< 0.003	<0.001	0.0215	<0.1	0.000280	<0.01				
		Annual Maximum	0.0246	0.00430	0.316	<0.2	0.000500	<0.02				
		Annual Mean	0.0101	0.00198	0.125	<0.1	0.000337	<0.01				
		Annual Median	0.00820	0.00140	0.0577	<0.2	0.000310	<0.02				
	GH CTF	% <lrl< th=""><th>33%</th><th>42%</th><th>0%</th><th>100%</th><th>50%</th><th>100%</th></lrl<>	33%	42%	0%	100%	50%	100%				
	•·· <u></u> •··	% > Long-term BC WQG ^a	0%	0%	0%	-	0%	-				
		% > Short-term Max BC WQG ^a	0%	0%	0%	_	0%	0%				
		% > Level 1 Benchmark ^b	_	_	0%	_		_				
		% > Level 2 Benchmark ^b			0,0							
Opper Greennills			-	-	-	-	-	-				
Creek Opstream		% > Level 3 Benchmark	-	-	-	-	-	-				
from Garuine		n A annual Minimum	13	13	13	12	13	13				
Creek		Annual Minimum	< 0.003	<0.001	0.00670	<0.1	0.000220	<0.01				
			0.0120	0.00350	0.120	<0.2	0.00135	<0.02				
		Annual Median	0.00414	0.00170	0.0239	<0.1	0.000375	<0.01				
			<0.003	0.00100	0.0100	<0.2 100%	0.000260	<0.01 100%				
	GH_HWGH_BRB		1170	23%	31%	100%	30%	100%				
		% > Long-term BC WQG "	0%	0%	0%	-	8%	-				
		% > Short-term Max BC WQG *	0%	0%	0%	-	0%	0%				
		% > Level 1 Benchmark ^b	-	-	0%	-	-	-				
		% > Level 2 Benchmark ^b	-	-	-	-	-	-				
		% > Level 3 Benchmark ^b	-	-	-	-	-	-				
		n	12	12	12	11	12	12				
		Annual Minimum	< 0.003	<0.001	0.00560	<0.1	<0.0002	<0.01				
		Annual Maximum	0.00310	0.00740	0.0132	<0.1	0.000550	0.0210				
		Annual Mean	0.00301	0.00231	0.00851	<0.1	0.000262	0.0109				
		Annual Median	< 0.003	0.00140	0.00770	<0.1	0.000220	<0.01				
Lower Gardine	GH GC1	% <lrl< th=""><th>92%</th><th>25%</th><th>0%</th><th>100%</th><th>42%</th><th>92%</th></lrl<>	92%	25%	0%	100%	42%	92%				
Creek	01-001	% > Long-term BC WQG ^a	0%	0%	0%	-	0%	-				
		% > Short-term Max BC WQG ^a	0%	0%	0%	_	0%	0%				
	-	% > Level 1 Benchmark ^b	-		0%	_	-	-				
		-				% > Level 2 Benchmark ^b	_		070	_		
			-	-	-	-	-	-				
		% > Level 3 Benchmark	-	-	-	-	-	-				
			n August Misimum	19	19	19	19	19	19			
		Annual Minimum	<0.003	<0.001	<0.005	<0.1	<0.0002	<0.01				
		Annual Maximum	0.0957	0.0384	0.0607	0.250	0.000780	0.0110				
Upper Greenhills		Annual Median	0.00805	0.00366	0.0107	0.100	0.000316	0.0101				
Creek			<0.003 70%	37%	11%	<0.1 05%	21%	<0.01 05%				
Downstream from	GH_GH1B		7970	5770	00/	9070	21/0	3070				
Gardine Creek		% > Long-term BC WQG	0%	0%	0%	-	0%	-				
		% > Short-term Max BC WQG "	0%	0%	0%	-	0%	0%				
		% > Level 1 Benchmark ^D	-	-	0%	-	-	-				
		% > Level 2 Benchmark ^b	-	-	-	-	-	-				
		% > Level 3 Benchmark ^b	-	-	-	-	-	-				
		n	14	14	14	14	14	14				
		Annual Minimum	< 0.003	<0.001	<0.005	<0.1	<0.0002	<0.01				
		Annual Maximum	0.00490	0.00340	0.0534	<0.1	0.000550	<0.01				
Lower Greenhills		Annual Mean	0.00326	0.00138	0.0133	<0.1	0.000291	<0.01				
Creek Upstream		Annual Median	<0.003	0.00120	0.00705	<0.1	0.000255	<0.01				
from the	GH GH1	% <lrl< th=""><th>86%</th><th>57%</th><th>29%</th><th>100%</th><th>29%</th><th>100%</th></lrl<>	86%	57%	29%	100%	29%	100%				
Antiscalant	-	% > Long-term BC WQG ^a	0%	0%	0%	-	0%	-				
Addition Facility		% > Short-term Max BC WQG ^a	0%	0%	0%	-	0%	0%				
-		% > Level 1 Benchmark ^b	-	-	0%	-	-	-				
		% > Level 2 Benchmark ^b	-	-	-	-	-	-				
		% > Level 3 Benchmark ^b	_	_	_	_		_				
		n	15	15	15	15	15	- 15				
		Annual Minimum	<0.003	<0.001		<0.1	<0.0005	<0.01				
		Annual Maximum	0.00380	0.001	0.000	<0.1	0.000630	0.0280				
		Annual Mean	0.00314	0.00227	0 0154	<0.1	0.000323	0 0112				
Lower Greenhills		Annual Median	<0.003	0.00130	0.0126	<0.1	0.000310	<0.01				
Creek		% <lrl< th=""><th>73%</th><th>47%</th><th>13%</th><th>100%</th><th>20%</th><th>93%</th></lrl<>	73%	47%	13%	100%	20%	93%				
Downstream from	GH_GH2	% > Long-term BC WOG ^a	0%	0%	0%	-	7%					
the Antiscalant			0 /0	0 /0	0 /0	-	7 /0	-				
Addition Facility			0%	U%	0%	-	U%	U%				
		% > Level 1 Benchmark	-	-	0%	-	-	-				
		% > Level 2 Benchmark ^D	-	-	-	-	-	-				
	_	% > Level 3 Benchmark ^b	-	-	-	-	-	-				

Concentrations in >5% of samples exceeded the BC WQG, benchmark, or screening value.

Concentrations in > 50% of samples exceeded the BC WQG, benchmark, or screening value.

Concentrations in > 95% of samples exceeded the BC WQG, benchmark, or screening value.

Notes: mg/L = milligrams per litre; < = less than; % = percent; LRL = laboratory reporting limit; > = greater than; BC WQG = British Columbia Water Quality Guideline; max = maximum- = no data/not applicable. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are

reported to 3 significant figures.

^a Working and Approved BC WQG for the Protection of Freshwater Aquatic Life (BCMOECCS 2021a,b).

 Table C.2: Water Quality at Biological Monitoring Areas on Greenhills Creek, Greenhills Creek Sedimentation Pond, and

 Gardine Creek, 2021

	Analyte	Units	BC W	QGs	EVWQP Level 1 Benchmarks/		Upper Gree	nhills Creek	
			Long-term Average	Short-term Maximum	Screening Values	RG_(GHUT	RG_GHNF	RG_GHFF
	Hardness (as CaCO)	ma/l				17-FeD-21	13-Sep-21	10-Sep-21	09-Sep-21
Ś	nH Field	nig/∟	- 65 to 9.0	- 65 to 9.0	-	1,600	7 30	1,550	1,175
stic	pH, Lab	pH	6.5 to 9.0	6.5 to 9.0	-	8.12	8.04	8.23	8.34
sica	Total Suspended Solids, Lab	mg/L	-	-	-	15.6	1.70	1.40	1.85
^p hy: ract	Total Dissolved Solids	mg/L	1,000 to 3,000	-	1,000	2,310	2,040	1,910	1,625
Cha F	Dissolved Oxygen, Field	mg/L	≥8	≥5	-	11.41	10.05	10.08	10.51
0		%	-	-	-	83.1	105.5	98.5	104.8
	lemperature, Field	°C	-	-	-	2.1	5.1	5.4	6.7
nts	Ammonia (as N)	mg/L	0.10102.0	0.08 10 20	-	<0.005	<0.005	<0.005	0.00675
trie	Chloride (Cl)	mg/L mg/l	- 150	600	-	1 70	1.63	1 46	2 10
Nu	Fluoride (F) ^b	mg/L	-	1.73 to 1.88	-	<0.1	<0.1	<0.1	0.140
and	Nitrate (as N) ^{b,c}	mg/L	3	32.8	6.8 to 15	10.5	10.0	8.96	7.00
us a	Nitrite (as N) ^d	mg/L	0.020 to 0.20	0.060 to 0.60	0.015 to 0.050	<0.005	<0.005	0.00500	0.0104
inio	Phosphorus (P), Total	mg/L	-	-	-	0.00700	0.00940	0.00220	0.00460
A	Sulphate (SO ₄) ^b	mg/L	429	-	429	1,320	1,120	1,120	944
on ci	Total Organic Carbon	mg/L	-	-	-	1.27	1.54	2.44	1.86
rgai arb							4 = 0		4.00
ōυ	Dissolved Organic Carbon	mg/L	-	-	-	1.20	1.52	2.46	1.29
	Aluminum (Al)	mg/L	-	-	-	0.00610	0.00750	< 0.006	0.00970
	Antimony (Sb)	mg/L	0.009	-	-	0.000870	0.000830	0.000710	0.000520
	Arsenic (AS) Barium (Ba)	mg/L	- 1	0.005	-	0.000380	0.000210	0.000240	0.000220
	Beryllium (Be)	mg/L	0.00013	-	0.0053	< 0.00004	< 0.00004	< 0.00024	< 0.00002
	Bismuth (Bi)	mg/L	-	-	-	<0.0001	<0.0001	<0.0001	<0.00005
	Boron (B)	mg/L	1.2	-	-	<0.02	<0.02	<0.02	0.0100
	Cadmium (Cd)	mg/L	-	-	-	0.000549	0.000906	0.0000116	0.0000168
	Calcium (Ca)	mg/L	- 0.001	-	- 0.005	399	328	2/3	189
	Cohalt $(Co)^{b}$	ua/I	4	- 110	3.8 to 8.3	<0.0002	<0.0002	<0.0002	<0.000123
	Copper (Cu)	ma/L	-	-	-	< 0.001	< 0.001	< 0.001	<0.0005
	Iron (Fe)	mg/L	-	1	-	<0.02	<0.02	<0.02	0.0120
	Lead (Pb) ^b	mg/L	0.012 to 0.020	0.23 to 0.42	-	<0.0001	<0.0001	<0.0001	<0.00005
tals	Lithium (Li)	mg/L	-	-	-	0.0198	0.0199	0.0204	0.0193
Met	Magnesium (Mg)	mg/L	-	-	-	251	196	216	171
tal	Manganese (Mn) ^D	mg/L	1.6 to 2.6	3.0 to 3.4	-	0.0141	0.0108	0.00832	0.00108
<u>۲</u>	Mercury (Hg)	mg/L	0.0000013	-	-	<0.0000005	0.000000720	<0.0000005	<0.000005
	Nickel (Ni)	ing/∟	7.0	40	- 53	36.6	32.1	23.7	12.6
	Potassium (K)	ma/l	-	-	-	3.08	2.95	2.96	2 73
	Selenium (Se) ^e	µg/L	2.0	-	70	274	234	226	169
	Silicon (Si)-Total	mg/L	-	-	-	3.38	3.07	3.31	3.80
	Silver (Ag) ^b	mg/L	0.0015	0.0030	-	<0.00002	<0.00002	<0.00002	<0.00001
	Sodium (Na)	mg/L	-	-	-	2.04	1.84	1.90	2.50
	Strontium (Sr)	mg/L	-	-	-	0.211	0.179	0.176	0.199
	Tinallium (TI)	mg/L	0.0008	-	-	0.0000230	0.0000250	<0.0002	<0.0001
	Titanium (Ti)	ma/L	-	-	-	<0.002	<0.0002	<0.0002	<0.0001
	Uranium (U)	mg/L	0.0085	-	-	0.0146	0.0148	0.0138	0.0102
	Vanadium (V)	mg/L	-	-	0.12	<0.001	<0.001	<0.001	< 0.0005
	Zinc (Zn) ^b	mg/L	0.11 to 0.19	0.13 to 0.34	-	0.0380	0.0569	<0.006	< 0.003
	Aluminum (AI) ^f	mg/L	0.05	0.1	-	< 0.003	0.00220	<0.001	<0.001
	Antimony (Sb)	mg/L	-	-	-	0.000760	0.000800	0.000700	0.000510
	AISENIC (AS) Barium (Bo)	mg/L	-	-	-	0.000240	0.000230	0.000180	0.000160
	Bervilium (Be)	mg/L	-		-	<0.0249	<0.0013	<0.0002	<0.0470
	Bismuth (Bi)	mg/L	-	-	-	< 0.0001	<0.0001	< 0.00002	< 0.00002
	Boron (B)	mg/L	-	-	-	<0.02	<0.02	<0.01	<0.01
	Cadmium (Cd) ^{b,g}	µg/L	0.38 to 0.46	1.4 to 2.8	0.26 to 1.6	0.463	0.946	0.00920	0.00607
	Calcium (Ca)	mg/L	-	-	-	329	316	275	196
	Chromium (Cr)	mg/L	-	-	-	< 0.0002	< 0.0002	<0.0001	<0.0001
	Copper (Cu) ^h	µg/L mg/l	- 0.00060 to 0.0047	- 0.0038 to 0.029	-	<0.004	0.00600	NU. 1	<u> \0.1</u> 0.00215
	Iron (Fe)	ma/l	-	0.35	11	<0.0004	<0.02	<0.00	<0.00
tals	Lead (Pb)	mg/L	-	-	-	< 0.0001	< 0.0001	< 0.00005	< 0.00005
Mei	Lithium (Li)	mg/L		-		0.0179	0.0201	0.0197	0.0186
ed	Magnesium (Mg)	mg/L	-	-	-	237	196	210	167
∑ol∨	Manganese (Mn)	mg/L	-	-	-	0.0126	0.00982	0.00849	0.000470
Dise	Molybdenum (Mo)	mg/L	-	-	-		<0.000005 0.00177	<0.000005 0.00102	<0.000005 0.00174
	Nickel (Ni)	ma/L	-	-	-	0.00190	0.00177	0.00192	0.00174
	Potassium (K)	mg/L	-	-	-	2.98	3.08	3.41	2.82
	Selenium (Se)	mg/L	-	-		0.274	0.234	0.248	0.176
	Silicon (Si)	mg/L	-	-	-	3.20	3.43	3.32	3.66
	Silver (Ag)	mg/L	-	-	-	< 0.00002	< 0.00002	< 0.00001	< 0.00001

Strontium (Sr)	mg/L	-	-	-	0.183	0.171	0.182	0.196
Thallium (TI)	mg/L	-	-	-	<0.00002	0.0000230	0.0000130	<0.00001
Tin (Sn)	mg/L	-	-	-	<0.0002	<0.0002	<0.0001	<0.0001
Titanium (Ti)	mg/L	-	-	-	<0.01	<0.0006	< 0.0003	<0.0003
Uranium (U)	mg/L	-	-	-	0.0123	0.0144	0.0126	0.00936
Vanadium (V)	mg/L	-	-	-	<0.001	<0.001	<0.0005	<0.0005
Zinc (Zn)	mg/L	-	-	-	0.0366	0.0605	0.00210	<0.001

Exceeds the Long-term Average BC WQG for the protection of freshwater aquatic life (BCMOECCS 2021a,b).

Exceeds the Short-term Maximum BC WQG for the protection of freshwater aquatic life (BCMOECCS 2021a,b).

Exceeds the site-specific EVWQP Level 1 Benchmark (Teck 2014) or relevant site-specific screening value.

Notes: BC WQGs = British Columbia Water Quality Guidelines; EVWQP = Elk Valley Water Quality Plan; CaCO₃ = calcium carbonate; mg/L = milligrams per litre; - = no data/not applicable; < = less

than; \geq = greater than or equal to; % = percent; °C = degrees Celsius; μ g/L = micrograms per litre; MU = Management Unit.

^a Ammonia guidelines were calculated based on the temperature and pH of individual water samples.

^b Hardness-based guidelines, benchmarks, and/or screening values were calculated based on the hardness of individual water samples.

^c The upper (i.e., highest) EVWQP Level 1 Benchmark for nitrate was calculated based on the maximum applicable hardness (Teck 2014).

^d Nitrite guidelines and screening values were calculated based on chloride concentrations in individual water samples.

^e The EVWQP Level 1 Benchmark for selenium (i.e., 0.070 mg/L for MU 1; Golder 2014) was derived for lotic habitats and does not apply to Greenhills Creek Sedimentation Pond.

^f Dissolved aluminum guidelines were calculated based on the pH of individual water samples.

⁹ The upper (highest) EVWQP Level 1 Benchmark for dissolved cadmium was calculated based on the maximum applicable hardness (Teck 2014).

^h Dissolved copper guidelines were calculated based on the Biotic Ligand Model (BCMOECCS 2021b).

 Table C.2: Water Quality at Biological Monitoring Areas on Greenhills Creek, Greenhills Creek Sedimentation

 Pond, and Gardine Creek, 2021

Process of the section of th	Analyte		Units	BC W	QGs	EVWQP Level 1 Benchmarks/ Relevant	Greenhills Creek Sedimentation Pond	Greenhills Creek Sedimentation Pond	
Bit Protect (no. CaCO ₂) rpd rpd <td></td> <td></td> <td></td> <td>Long-term Average</td> <td>Short-term Maximum</td> <td>Screening Values</td> <td>RG_GHP</td> <td>RG_C</td> <td>ЭНВР</td>				Long-term Average	Short-term Maximum	Screening Values	RG_GHP	RG_C	ЭНВР
The others is backed, by mpt is 0.0 0.1 0.150 1.180 0.899 Inter Stangeness Solits, Lab. mpt is 0.0 - - 1.80 4.41 2.60 Inter Stangeness Solits, Lab. mpt is 0.00 - - 1.80 - 7.83 4.41 2.60 Intersected Dorgen, Field MS 4.00 5.00 - 1.93 - 7.7 7.83 0.11 1.13 Intersected Dorgen, Field MS 4.00 5.00 - 0.0143 0.0227 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0258 0.0257 0.0258 0.0258 0.0258 0.0258 0.0258 0.0258 0.0258 0.0258 0.0258 0.02540 0.00560 0.00560 0.00560 0.00560 0.00560 0.00540 0.00560 0.00560 0.00560 0.00560 0.00560 0.00560 0.00560 0.00560 0.00560 0.00560 0.00560 0.00560 0.00560 0.00560 0.00560 0.00560 0.00560 0.					maximum		23-Sep-21	18-Feb-21	13-Sep-21
Bit Iss Pit Iss <t< td=""><td></td><td>Hardness (as CaCO₃)</td><td>mg/L</td><td>-</td><td>-</td><td>-</td><td>1,050</td><td>1,180</td><td>989</td></t<>		Hardness (as CaCO ₃)	mg/L	-	-	-	1,050	1,180	989
gg	tics		рН	6.5 to 9.0	6.5 to 9.0	-	8.33	8.19	8.07
Best Description Interaction Interaction <thinteraction< th=""></thinteraction<>	ical	pri, Lab Total Suspended Solids I ab	pn ma/l	0.5 10 9.0	0.5 10 9.0	-	0.39	<1	0.44 2.40
B B Participant Physic Participant Paritipant	acte	Total Dissolved Solids	ma/L	1.000 to 3.000	-	1.000	1.380	1.540	1.310
O Disable Copyer, Field fs. - - - 107.09 84.7 113.7 Barnone Lies M1 mol - - - 0.0140 0.0223 0.0140 0.0223 0.0140 0.0223 0.0158 Barnone Lies M1 mol - 1.739 to 188 - 0.152 0.1160 0.0124 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.00540 0.00630 0.00630	ars P		ma/L	≥8	≥5	-	10.10	-	9.93
Temperature, Field C - - - 1033 0.11 13.7 Bronnie (En) mg4 0.102 0.00148 - 0.0148 0.0227 0.01168 Bronnie (En) mg4 0.10 0.00 - - 0.128 0.0237 0.01168 Bronnie (En) mg4 0.00 0.00 0.0156 0.522 5.57 4.72 Brancis (En) mg4 0.20 0.000 E0 0.0056 0.00440 0.00640 0.00640 Brancis (En) mg4 0.20 - - 0.00500 0.00440 0.00640 Brancin (EN) mg4 - - - 0.00500 0.00310 0.00707 0.00050 Brancin (EN) mg4 - - - 0.00503 0.00027 0.00050 0.000207 0.00050 0.000207 0.000207 0.000207 0.000207 0.000207 0.000207 0.000207 0.000207 0.000207 0.000207 0.000207 0.000207	Ċ	Dissolved Oxygen, Field	%	-	-	-	107.9	84.7	114.9
Bernela (a) mold 0.10 to 2.0 0.68 to 28 - 0.0140 0.0225 0.0168 Bernela (b) mg1 - - - - 42.5 42.5 42.5 Bernela (b) mg1 190 70.0 88 - 42.5 42.5 42.5 Bernela (b) mg1 190 70.0 88.0 190 0.0040 0.0040 0.0040 0.0040 0.00540 0.00540 0.00540 0.00540 0.00540 0.00540 0.00540 0.00540 0.00540 0.00540 0.00540 0.00540 0.00540 0.00540 0.00540 0.00540 0.00540 0.00550 1.2.4 1.4		Temperature, Field	°C	-	-	-	10.3	0.1	13.7
gg gg Provide (P) mg4 92.05	ts	Ammonia (as N) ^a	mg/L	0.10 to 2.0	0.68 to 26	-	0.0140	0.0227	0.0108
Bit Accide (D) Ingl. 1500 600 - 1.864 <	ien	Bromide (Br)	mg/L	-	-	-	<0.25	<0.25	<0.25
Second (a) Induct (a) <thinduct (a)<="" th=""> Induct (a) Induct (</thinduct>	lutr	Chloride (Cl)	mg/L	150	600	-	1.84	1.88	1.50
Tento (mail) (mail) 3 22.8 0.8105 0.822 0.819 4.74 Nime (ar, N) (mail)	∠ p	Fluoride (F)	mg/L	-	1.73 to 1.88	-	0.152	0.160	0.112
Bytes (a) 1. mpd L 0.029 to 0.20 0.006 to 0.00 0.005 to 0.00 0.00600 0.00340 0.00640 0.	an	Nitrate (as N)	mg/L	3	32.8	6.8 to 15	6.52	5.87	4.74
E Disphone (P), I call mpL 1- - - - 0.00000 D.000800 D.000800 D.000800 Suphone (Co)_1 mpL - - 42.9 151 2.24 151 2.24 Baseword Organic Cathon mpL - - - 0.00080 - - 0.00080 - 0.00016 - 0.00120 -	suo	Nitrite (as N) ^a	mg/L	0.020 to 0.20	0.060 to 0.60	0.015 to 0.050	0.00640	0.00640	0.00640
Test Suphate (SQ) mpL - 429 804 910 767 Test (organic Carbon mpL - - 2.23 1.51 2.35 Test (organic Carbon mpL - - 0.000510 0.000050 0.0000510 0.000051 0.0000510 0.00001712 0.001712 0.001712 0.001712 0.001712 0.001712 0.001712 0.001712 0.001712 0.001712 0.001712 0.001712 0.0001712 0.001712 0.001712	Ani	Phosphorus (P), Total	mg/L	-	-	-	0.00500	0.00340	0.00650
Bit Total organic Carbon mpt - - 2.44 1.51 2.24 Adminian (b) mpt - - 2.00000 0.00010 0.000730 0.000730 Adminian (b) mpt - - 0.00000 0.000240 0.000780 0.000780 Baruin (b) mpt 1 - - 0.00002 0.000028 0.00002 0.000028 0.00002 0.00005 0.00002	`	Sulphate (SO ₄)	mg/L	429	-	429	804	910	787
Bisached Organic Carbon mgl. - - 2.29 1.51 2.35 Aummun (A) mgl. - - 0.00530 0.00110 Aummun (A) mgl. 0.000 - - 0.00230 0.00110 Aummun (A) mgl. 0.000 - - 0.00344 0.00230 0.00226 0.00230 0.00226 0.00230 0.00226 0.00263 0.00205 0.00205 0.00205 0.00205 0.00005	on	Total Organic Carbon	mg/L	-	-	-	2.44	1.43	2.24
gram Aluminary (A) mgL - - - 2.429 (1.1) 2.439 Name (A) mgL - - - 0.0050 - 0.00270 0.00170 0.000270 0.000270 0.000270 0.000270 0.000270 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.00007	nge arb	Dissolved Organia Carbon	ma/l				2.20	1 5 1	2.25
grammum (A) mgL 0.06883 0.00210 0.00210 0.00233 grammum (B) mgL 1 0.006 0.000210 0.00224 0.00233 Beryllum (Be) mgL 1.2 0.0013 0.00021 0.00224 0.002054 0.000055 Beryllum (Be) mgL 1.2 0.0100 0.01000 0.000054 0.0000054 0.0000054 0.0000054 0.0000054 0.0000055 0.0000056 0.0000056 0.0000056 0.0000056 0.0000056 0.0000056 0.0000056 0.0000056 0.0000056 0.0000056 0.0000056 0.00056 0.00056 0.00056 0.00056 0.00016 0.	00		mg/∟	-	-	-	2.23	1.01	2.33
Partners (ser) maps 0.006 - 0.006341 0.00834 0.00836 0.0008		Aluminum (Al)	mg/L	-	-	-	0.00630	< 0.003	0.00110
Barram (Ba) mpl, mpl, mpl, mpl, mpl, mpl, mpl, mpl,		Arsenic (As)	ma/L	0.009	- 0.005	-	0.000510	0.000470	0.000530
Beryllum' (Be) mgL - - - - - - - - - - 0.00005 - 0.00005 - 0.00005 - 0.00005 - 0.00005 - 0.00006 - 0.0100 0.01100 0.01100 0.01100 -		Barium (Ba)	ma/L	1	-	-	0.0394	0.0525	0.0363
Binmuh (B) mgL - - - - - - - 0.00005 - 0.0000100 0.0100 0.0100 0.0100 0.0100 0.0000280 0.0000100 0.00000000000000000000000000000000000		Beryllium (Be)	mg/L	0.00013	-	0.0053	< 0.00002	<0.00002	< 0.00002
Boon (B) mgL 1.2 - - 0.0100 0.0120 Cadmium (Cd) mgL - - - 0.0000867 0.0000867 0.000086 0.000128 Cadmium (Cd) mgL 0.0011 0.0058 0.000168 0.000168 0.000178 Chommun (Ch) mgL 0.011 0.0168 0.000580 0.000168 0.00016 0.000510 Chommun (Ch) mgL 1 - - 40.0005 <0.00056		Bismuth (Bi)	mg/L	-	-	-	<0.00005	<0.00005	<0.00005
Open Cardinum (Ca) mg/L - - - 0.00000980 0.00001980 0.00001980 0.0000100 - 0.00017 C 0.000000 0.00000000 0.00000000 0.00000000 0.000000000 0.00000000000000 0.000000000000000 0.00000000000000 0.0000000000000000 0.000000000000000 0.0000000000000000 0.0000000000000000 0.000000000000000 0.0000000000000000 0.00000000000000000 0.000000000000000000 0.00000000000000000 0.00000000000000000 0.000000000000000 0.0000000000000000 0.00000000000000000 0.000000000000000000000000 0.00000000000000000000000000000000000		Boron (B)	mg/L	1.2	-	-	0.0100	0.0100	0.0120
Open Difference Di		Cadmium (Cd)	mg/L	-	-	-	0.00000670	0.00000980	0.0000128
Channan (Lo) Ingl Count Count <thcount< th=""> Count Count</thcount<>		Calcium (Ca)	mg/L	-	-	-	1/4	224	1/6
Obs Obs <td></td> <td></td> <td>Ing/L</td> <td>0.001</td> <td>- 110</td> <td>0.005 3.8 to 8.3</td> <td>0.000390</td> <td>0.000100</td> <td><0.0001</td>			Ing/L	0.001	- 110	0.005 3.8 to 8.3	0.000390	0.000100	<0.0001
Image mpdL - 1 - 0011 4011 00100 Intervent mpdL 0.02 to 0.02 0.23 to 0.42 - 0.0168 0.0166 0.0186 Manganese mpdL 1.6 to 2.6 3.0 to 3.4 - 0.0162 0.00162 0.00162 0.00162 0.00172 0.0188 Manganese MpdL 7.6 46 - 0.00168 0.000394 0.000394 Noked(N) mpdL - - - 2.01184 0.00172 0.01183 Silion (Si) Fotal mpdL - - - 2.01184 0.000394 0.003944 Silion (Si) Fotal mpdL - - - 4.42 4.14 3.78 Silion (Si) Fotal mpdL - - - 2.048 3.02 2.54 Stortinum (Na) mpdL - - - - 0.0001 - 0.0001 - 0.0001 - 0.0001 0.0003 0.001		Copper (Cu)	µy/∟ ma/l	-	-	5.0 10 0.5	<0.1	<0.005	0.00510
Usad (Pp) ^h mpL 0.012 to 0.020 0.23 to 0.42 - - - 0.00005 - - 0.0168 0.0166 0.01005 0.00005 0.00005 0.00005 0.00152 0.00152 0.00153 0.00163 </td <td></td> <td>Iron (Fe)</td> <td>ma/L</td> <td>-</td> <td>1</td> <td>-</td> <td>< 0.01</td> <td><0.01</td> <td>0.0100</td>		Iron (Fe)	ma/L	-	1	-	< 0.01	<0.01	0.0100
Bit Lithum (L) mgL - - - 0.0188 0.0166 0.0186 Mangarese (Mn)* mgL 16 to 2.6 3.01 to 3.4 - 0.00172 0.00183 Mangarese (Mn)* mgL 16 to 2.6 3.01 to 3.4 - 0.00188 0.000013 0.000013 Molybdamar (No) mgL 7.6 46 - 0.00188 0.000034 0.000034 Nicke (N) mgL - - 2.81 2.45 2.42 Steenium (Se)* µgL 2.0 - 70 146* 160 138 Steenium (Se)* µgL 2.0 - 70 144.2 4.14 3.78 Steenium (Se)* mgL 0.0015 0.0030 - 0.00001 40.0001 40.0001 Steenium (Na) mgL - - 0.184 0.2330 0.185 Tim (Sin mgL 0.0005 - - 0.00014 40.0003 Tin (Sin mgL		Lead (Pb) ^b	mg/L	0.012 to 0.020	0.23 to 0.42	-	< 0.00005	< 0.00005	< 0.00005
Magnesium (Mg) mgL - - 159 175 139 Magnesium (Mg) mgL 1.5 to 2.6 3.0 to 3.4 - 0.00182 0.000005 0.00001 0.00001 0.00001 0.00001 7.47 Selonium (Se) mgL - - - 4.42 4.14 3.78 Storotium (Se) mgL - - - 2.86 5.02 2.54 Storotium (Se) mgL - - - 0.0001 <0.00001	als	Lithium (Li)	mg/L	-	-	-	0.0168	0.0166	0.0186
Manganese (Mn)* mg/L 1.6 to 2.6 3.0 to 3.4 - 0.00152 0.00172 0.001782 Mercury (Ha) mg/L 0.00000051 - - 0.00188 0.00403 0.00033 Molybdenum (Mo) mg/L - - 5.3 8.54 10.6 7.47 Nickel (N) mg/L - - - 2.81 2.45 2.42 Selenium (Se)* mg/L 2.0 - 70 146* 160 136 Siltern (Se)* mg/L 2.0 - 70 146* 160 136 Siltern (Se)* mg/L 0.0015 0.0000 - 4.00001 <0.00001	/leta	Magnesium (Mg)	mg/L	=	-	-	159	175	139
Mercury (Hg) mgL 0.0000013 - - - - - 0.000005 0.000005 0.000005 Mokel (N) µg/L - - - 0.01188 0.000015 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000	al N	Manganese (Mn) ^b	mg/L	1.6 to 2.6	3.0 to 3.4	-	0.00152	0.00172	0.00183
Molybdenum (Mo) mg/L 7.6 46 - 0.00188 0.00403 0.00344 Nicket (N) mg/L - - 5.3 8.84 10.6 7.77 Selenium (Se)* µµ/L 2.0 - - 2.81 2.45 2.42 Sileon (S)-Total mg/L - - 4.42 4.14 3.78 Sileon (S)-Total mg/L - - - 4.42 4.14 3.78 Stortinum (Se)* mg/L - - - 0.194 0.230 0.188 Tin (Sn) mg/L - - - - 0.0001 <0.0001	Tot	Mercury (Hg)	mg/L	0.0000013	-	-	<0.000005	<0.000005	0.00000510
Nickel (N) µg0. - - 5.3 8.54 10.6 7.44 Potassium (K) mg1. - - - 2.81 2.45 2.42 Siltor (A)* mg1. - - - 4.42 4.14 3.78 Siltor (A)* mg1. - - - 4.62 4.14 3.78 Stontium (Sr) mg1. - - - 2.86 3.02 2.54 Stontium (Sr) mg4. - - - - 0.0001 <0.0001	-	Molybdenum (Mo)	mg/L	7.6	46	-	0.00188	0.00403	0.00394
Polassium (k) ImgL - - - - 2.61 2.42 2.42 Steinen (Se)* Total mgL - - - 4.42 4.14 3.78 Silter (Ag)* mgL 0.0015 0.0030 - - 0.00011 <0.000011		Nickel (Ni)	µg/L	-	-	5.3	8.54	10.6	7.47
Selentum (se) µg/L 2.0 - 10 140 100 130 Siltor (Ag) [*] mg/L - - - 4.42 1.14 3.78 Sodium (Na) mg/L - - 2.86 3.02 2.54 Strontium (Sr) mg/L - - 0.194 0.230 0.188 Thalium (Ti) mg/L 0.0008 - - <0.0001		Potassium (K)	mg/L	-	-	- 70	2.81	2.45	2.42
Silver (4g) ² mgL 0.015 0.030 - <0.00001 <0.00001 <0.00001 Solum (Na) mgL - - - 2.86 3.02 2.54 Strontium (Sr) mgL - - - 0.194 0.20001 <0.00001		Selenium (Se)	µg/∟ ma/l	2.0	-	70	140	100	3 78
Social (ng) Ing L Coord		Silver (Ag) ^b	mg/L	- 0.0015	0.0030	-	<0.00001	<0.0001	<0.0001
Strontum (Sr) mgL - - 0.194 0.230 0.188 Thallum (TI) mgL - - <0.0001		Sodium (Na)	ma/L	-	-	-	2.86	3.02	2.54
Thailum (TI) mg/L 0.0008 - - - - - 0.00001 < 0.00001 Tinsium (Ti) mg/L - - - - 0.0003 <		Strontium (Sr)	mg/L	-	-	-	0.194	0.230	0.188
Tin (Sn) mg/L - - < < < < < < < < < < < < < < < < < < < < < < <<		Thallium (TI)	mg/L	0.0008	-	-	<0.00001	<0.00001	<0.00001
Titanium (1) mg/L - - - < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <th< td=""><td></td><td>Tin (Sn)</td><td>mg/L</td><td>-</td><td>-</td><td>-</td><td>< 0.0001</td><td><0.0001</td><td><0.0001</td></th<>		Tin (Sn)	mg/L	-	-	-	< 0.0001	<0.0001	<0.0001
Oranium (V) Img/L 0.0005 - - 0.0005 0.0005 0.0005 Zinc (Zn) ^b mg/L 0.11 to 0.19 0.13 to 0.34 - 0.0005 <0.0005		Titanium (Ti)	mg/L	-	-	-	< 0.0003	< 0.01	< 0.0003
Structure (c) Ingl. -		Vanadium (V)	mg/L	0.0085	-	- 0 12		<0.00924	<0.00890
End (etc) Ing-L On the show One show		$Z_{inc} (Z_n)^{b}$	ma/L	0 11 to 0 19	0.13 to 0.34	-	<0.0003	<0.0003	0.00450
Antimum (w) mg/L - - 0.00120 50.00120 50.00120 Arsenic (As) mg/L - - 0.000480 0.000430 0.000500 Barinu (Ba) mg/L - - 0.000190 0.000190 0.000190 Beryllum (Be) mg/L - - 0.00002 <0.00002		$\Delta \text{luminum } (\Delta I)^{\text{f}}$	ma/l	0.05	0 1	-	0.00120	<0.000	<0.001
Arsenin (As) mg/L - - 0.000100 0.000100 0.000100 Barium (Ba) mg/L - - 0.03511 0.0471 0.0390 Beryllum (Be) mg/L - - - 0.03511 0.0471 0.0390 Bismuth (Bi) mg/L - - - - 0.00002 <0.00002		Antimony (Sb)	ma/l	-	-	-	0.000460	0.000430	0.000500
Barium (Ba) mg/L - - - 0.0351 0.0471 0.0390 Beryllium (Be) mg/L - - - - - 0.00002 <0.00002		Arsenic (As)	mg/L	-	-	-	0.000190	0.000190	0.000190
Beryllium (Be) mg/L - - < < < < < < < < < < < < < < < < < <		Barium (Ba)	mg/L	-	-	-	0.0351	0.0471	0.0390
Itismuth (B) mg/L - - - <		Beryllium (Be)	mg/L	-	-	-	< 0.00002	<0.00002	< 0.00002
Image: Second (Cd) Image:		Bismuth (Bi)	mg/L	-	-	-	< 0.00005	< 0.00005	< 0.00005
Cadmiun (Cd) Ipple 0.38 to 0.460 1.4 to 2.6 0.20 to 1.6 5.0003 0.00030 0.000760 Calcium (Ca) mg/L - - - 173 202 170 Chromium (Cr) mg/L - - - <0.0001		Boron (B)	mg/L	- 0.29 to 0.46	-	-	0.0100	0.0100	0.0100
Bit Chromium (Cr) mg/L -		Calcium (Ca)	µg/L mg/l	0.30 10 0.40	1.4 10 2.0	0.20 10 1.0	<0.005 173	0.00690	170
Cobalt (Co) µg/L -		Chromium (Cr)	ma/l	-	-	-	<0.0001	0.000100	<0.0001
Copper (Cu) ^h mg/L 0.00060 to 0.0047 0.0038 to 0.028 - 0.000250 <0.0002 0.000450 Iron (Fe) mg/L - 0.35 1.1 <0.01		Cobalt (Co)	µg/L	-	-	-	<0.1	<0.1	<0.1
Induct Induct <thinduct< th=""> <thinduct< t<="" td=""><td></td><td>Copper (Cu)^h</td><td>mg/L</td><td>0.00060 to 0.0047</td><td>0.0038 to 0.028</td><td>-</td><td>0.000250</td><td>< 0.0002</td><td>0.000450</td></thinduct<></thinduct<>		Copper (Cu) ^h	mg/L	0.00060 to 0.0047	0.0038 to 0.028	-	0.000250	< 0.0002	0.000450
Image: Second	s	Iron (Fe)	mg/L	=	0.35	1.1	<0.01	<0.01	<0.01
Lithium (L) mg/L - - - 0.0162 0.0172 0.0179 Magnesium (Mg) mg/L - - - 150 164 137 Manganese (Mn) mg/L - - - 0.000470 0.000810 0.000650 Mercury (Hg) mg/L - - - 0.00168 0.00386 0.00380 Molybdenum (Mo) mg/L - - - 0.00168 0.00386 0.00380 Nickel (Ni) mg/L - - - 0.00698 0.00991 0.00724 Potassium (K) mg/L - - - 0.0143 0.158 0.134 Silicon (Si) mg/L - - - 4.12 3.99 3.85 Silver (Ag) mg/L - - - 4.12 3.98 2.66 Strontium (Sr) mg/L - - - 0.184 0.223 0.178 Thallium (TI)	etal	Lead (Pb)	mg/L	-	-	-	< 0.00005	<0.00005	< 0.00005
Magnesum (Mg) Mg/L - - 150 164 137 Manganese (Mn) mg/L - - 0.000470 0.000810 0.000650 Mercury (Hg) mg/L - - - 0.000470 0.000810 0.000650 Molybdenum (Mo) mg/L - - - 0.00168 0.00386 0.00380 Nickel (Ni) mg/L - - - 0.00698 0.00991 0.00724 Potassium (K) mg/L - - - 0.00698 0.00991 0.00724 Potassium (K) mg/L - - - 0.143 0.158 0.134 Silicon (Si) mg/L - - - 0.143 0.158 0.134 Silicon (Si) mg/L - - - 2.41 2.53 2.60 Sodium (Na) mg/L - - - 2.48 3.085 2.66 Strontium (Sr) mg/L -	Ž	Lithium (Li)	mg/L	-	-	-	0.0162	0.0172	0.0179
Bit Manual OSC (Min) Ingr. - - - - 0.000470 0.000810 0.000800 Mercury (Hg) mg/L - - - 0.00005 <0.000005	ved	wagnesium (Mg) Manganese (Mn)	mg/L	-	-	-	150	0.000810	137
model model <th< td=""><td>los</td><td>Mercury (Ha)</td><td>ma/L</td><td>-</td><td>-</td><td>-</td><td><0.000005</td><td>< 0.000005</td><td>< 0.000005</td></th<>	los	Mercury (Ha)	ma/L	-	-	-	<0.000005	< 0.000005	< 0.000005
Nickel (Ni) mg/L - - - 0.00698 0.00991 0.00724 Potassium (K) mg/L - - - 2.41 2.53 2.60 Selenium (Se) mg/L - - - 0.143 0.158 0.134 Silicon (Si) mg/L - - - 4.12 3.99 3.85 Silver (Ag) mg/L - - - 4.12 3.08 2.66 Stontium (Na) mg/L - - - 0.00001 <0.00001	Dis	Molybdenum (Mo)	mg/L	-	-	-	0.00168	0.00386	0.00380
Potassium (K) mg/L - - 2.41 2.53 2.60 Selenium (Se) mg/L - - 0.143 0.158 0.134 Silicon (Si) mg/L - - 0.143 0.158 0.134 Silicon (Si) mg/L - - 4.12 3.99 3.85 Silver (Ag) mg/L - - - 4.12 3.08 2.66 Stontium (Na) mg/L - - - 2.48 3.08 2.66 Strontium (Sr) mg/L - - 0.184 0.223 0.178 Thallium (TI) mg/L - - - 0.00001 <0.00001		Nickel (Ni)	mg/L	-	-	-	0.00698	0.00991	0.00724
Selenium (Se) mg/L - - 0.143 0.158 0.134 Silicon (Si) mg/L - - 4.12 3.99 3.85 Silver (Ag) mg/L - - - 4.12 3.99 3.85 Silver (Ag) mg/L - - - <0.00001		Potassium (K)	mg/L	-	-	-	2.41	2.53	2.60
Silver (Ag) Ing/L - - 4.12 3.99 3.85 Silver (Ag) mg/L - - - <0.00001		Selenium (Se)	mg/L	-	-	-	0.143	0.158	0.134
Circle (vg) mg/L - - - - 0.00001 <0.00001 <0.00001 <0.00001 Sodium (Na) mg/L - - - 2.48 3.08 2.66 Strontium (Sr) mg/L - - 0.184 0.223 0.178 Thallium (TI) mg/L - - - <0.00001		Silver (Ag)	mg/L	-	-	-	4.12	3.99	3.85 <0.0001
Strontium (Sr) mg/L - - 0.184 0.223 0.178 Thallium (Ti) mg/L - - 0.184 0.223 0.178 Thallium (Ti) mg/L - - - 0.0001 <0.00001		Sodium (Na)	ma/L	-	-	-	2 48	3.08	2 66
Thallium (TI) mg/L - - - <th< th=""> <</th<>		Strontium (Sr)	mg/L	-	-	-	0.184	0.223	0.178
Tin (Sn) mg/L - - - < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <		Thallium (TI)	mg/L			-	<0.00001	<0.00001	<0.00001
Titanium (Ti) mg/L - - < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <		Tin (Sn)	mg/L	-	-	-	<0.0001	<0.0001	< 0.0001
Uranium (U) mg/L - - 0.00811 0.00785 0.00831 Vanadium (V) mg/L - - - <0.0005		Titanium (Ti)	mg/L	-	-	-	<0.0003	< 0.01	< 0.0003
Zinc (Zn) mg/L		Uranium (U)	mg/L	-	-	-	0.00811	0.00785	0.00831
		Zinc (Zn)	ma/L	-	-	-		<0.0005	0.0000

Exceeds the Long-term Average BC WQG for the protection of freshwater aquatic life (BCMOECCS 2021a,b).

Exceeds the Short-term Maximum BC WQG for the protection of freshwater aquatic life (BCMOECCS 2021a,b).

Exceeds the site-specific EVWQP Level 1 Benchmark (Teck 2014) or relevant site-specific screening value.

Notes: BC WQGs = British Columbia Water Quality Guidelines; EVWQP = Elk Valley Water Quality Plan; CaCO₃ = calcium carbonate; mg/L = milligrams per litre; - = no data/not

applicable; < = less than; ≥ = greater than or equal to; % = percent; °C = degrees Celsius; µg/L = micrograms per litre; MU = Management Unit.

^a Ammonia guidelines were calculated based on the temperature and pH of individual water samples.

^b Hardness-based guidelines, benchmarks, and/or screening values were calculated based on the hardness of individual water samples.

^c The upper (i.e., highest) EVWQP Level 1 Benchmark for nitrate was calculated based on the maximum applicable hardness (Teck 2014).

^d Nitrite guidelines and screening values were calculated based on chloride concentrations in individual water samples.

^e The EVWQP Level 1 Benchmark for selenium (i.e., 0.070 mg/L for MU 1; Golder 2014) was derived for lotic habitats and does not apply to Greenhills Creek Sedimentation Pond.

^f Dissolved aluminum guidelines were calculated based on the pH of individual water samples.

⁹ The upper (highest) EVWQP Level 1 Benchmark for dissolved cadmium was calculated based on the maximum applicable hardness (Teck 2014).

^h Dissolved copper guidelines were calculated based on the Biotic Ligand Model (BCMOECCS 2021b).

 Table C.2: Water Quality at Biological Monitoring Areas on Greenhills Creek, Greenhills Creek

 Sedimentation Pond, and Gardine Creek, 2021

	Analyte	Units	BC W	QGs	EVWQP Level 1 Benchmarks/	Gardine	e Creek
			Long-term Average	Short-term Maximum	Screening Values	RG_GAUT	RG_GANF
	Hardness (as CaCO ₂)	ma/l				262	800
ŝ	nH Field	nH	6 5 to 9 0	6.5 to 9.0	-	7 93	8.07
al stic	pH, Lab	pH	6.5 to 9.0	6.5 to 9.0	-	8.43	8.54
sica	Total Suspended Solids, Lab	mg/L	-	-	-	2.60	1.40
Phy Irac	Total Dissolved Solids	mg/L	1,000 to 3,000		1,000	323	892
F	Dissolved Oxygen, Field	mg/L	≥8	≥5	-	9.84	10.43
U	Tomporatura Field	%	-	-	-	93.1	104.6
	Ammonia (as N) ^a	ma/l	0 10 to 2 0	0.68 to 26	-	4.1	<0.005
ents	Bromide (Br)	mg/L	-	-	-	< 0.05	<0.25
utri	Chloride (Cl)	mg/L	150	600	-	3.11	3.22
Np	Fluoride (F) ^b	mg/L	-	1.73 to 1.88	-	0.149	0.353
an	Nitrate (as N) ^{b,c}	mg/L	3	32.8	6.8 to 15	<0.005	0.322
suo	Nitrite (as N) ^a	mg/L	0.020 to 0.20	0.060 to 0.60	0.015 to 0.050	< 0.001	<0.005
Ani	Phosphorus (P), Total	mg/L	-	-	-	0.0150	0.00270
<u>ں ج</u>		mg/∟	423	-	423	01.7	475
bor	Total Organic Carbon	mg/L	-	=	-	3.33	2.58
Car	Dissolved Organic Carbon	mg/L	-	-	-	3.14	2.56
	Aluminum (Al)	mg/L	-	-	-	0.0214	0.00430
	Antimony (Sb)	mg/L	0.009	=	-	0.000220	0.000110
	Arsenic (As)	mg/L	-	0.005	-	0.000260	0.000160
	Danum (Ba) Beryllium (Be)	mg/L	0.00013	-	- 0.0053	0.104	0.0670
	Bismuth (Bi)	mg/L	-	-	-	<0.00002	<0.00002
	Boron (B)	mg/L	1.2	-	-	0.0100	0.0120
	Cadmium (Cd)	mg/L	-	-	-	0.0000167	< 0.00005
	Calcium (Ca)	mg/L	-	-	- 0.005	62.3	124
	Cobalt (Co) $^{\rm b}$	ing/∟ ua/l	4	110	3.8 to 8.3	<0.0001	<0.0001
	Copper (Cu)	mg/L	-	-	-	< 0.0005	< 0.0005
	Iron (Fe)	mg/L	-	1	-	0.0220	<0.01
<i>(</i> 0	Lead (Pb) ^b	mg/L	0.012 to 0.020	0.23 to 0.42	-	<0.00005	<0.00005
etals	Lithium (Li)	mg/L	-	-	-	0.00670	0.0255
Me	Magnesium (Mg)	mg/L	- 1.6 to 2.6	2.0 to 2.4	-	22.8	94.6
otal	Manganese (Mn)	mg/L mg/l	0.000013	-	-	0.00309	<0.000800
Ĕ	Molybdenum (Mo)	mg/L	7.6	46	-	0.000882	0.00126
	Nickel (Ni)	µg/L	-	-	5.3	1.87	1.38
	Potassium (K)	mg/L	-	-	-	1.26	2.81
	Selenium (Se) ^e	µg/L	2.0	-	70	0.690	5.97
	Silicon (Si)-Total	mg/L	-	-	-	3.29	3.94
	Silver (Ag)	mg/L	0.0015	0.0030	-	<0.00001	<0.00001
	Strontium (Sr)	mg/L	-	-	-	0.248	0.256
	Thallium (TI)	mg/L	0.0008	-	-	<0.00001	<0.00001
	Tin (Sn)	mg/L	-	-	-	< 0.0001	< 0.0001
	Litanium (Ti)	mg/L	- 0.0085	-	-	<0.0009	<0.0003
	Vanadium (V)	mg/L	-	-	0.12	< 0.0005	< 0.0005
	Zinc (Zn) ^b	mg/L	0.11 to 0.19	0.13 to 0.34	-	0.00320	< 0.003
	Aluminum (Al) ^f	mg/L	0.05	0.1		0.00190	<0.001
	Antimony (Sb)	mg/L	-	-	-	0.000160	0.000100
	Arsenic (As)	mg/L	-	-	-	0.000230	0.000160
	Beryllium (Be)	ma/L	-	-	-	<0.00002	<0.00002
	Bismuth (Bi)	mg/L	<u> </u>		-	< 0.00005	< 0.00005
	Boron (B)	mg/L	-	-	-	0.0110	0.0130
	Cadmium (Cd) ^{b,g}	µg/L	0.38 to 0.46	1.4 to 2.8	0.26 to 1.6	0.0117	<0.005
	Calcium (Ca)	mg/L	-	-	-	66.7	144
	Cobalt (Co)	ua/L	-	-	-	<0.001	<0.1
	Copper (Cu) ^h	mg/L	0.00060 to 0.0047	0.0038 to 0.028	-	0.000300	0.000360
s	Iron (Fe)	mg/L	-	0.35	1.1	<0.01	<0.01
etal	Lead (Pb)	mg/L	-	-	-	< 0.00005	< 0.00005
Ň	Lithium (Li) Magnesium (Mg)	mg/L	-	-	-	0.00700	0.0275
lve	Manganese (Mn)	mg/L	-	-	-	0.00279	0.000850
sso	Mercury (Hg)	mg/L	-	-	-	<0.000005	<0.000005
Ō	Molybdenum (Mo)	mg/L	-	-		0.000893	0.00132
	INICKEI (NI) Potassium (K)	mg/L	-	-	-	0.00186	0.00136
	Selenium (Se)	ma/L	-	-	-	0.000767	0.00644
	Silicon (Si)	mg/L				3.52	3.83
	Silver (Ag)	mg/L	-	-	-	< 0.00001	< 0.00001
	Sodium (Na) Strontium (Sr)	mg/L	-	-	-	3.52	5.03
	Thallium (TI)	ma/l	-	-	-	<0.00001	<0.00001
	Tin (Sn)	mg/L	-	-	-	< 0.0001	<0.0001
	Titanium (Ti)	mg/L	-	-	-	<0.0003	<0.0003
	Uranium (U)	mg/L	-	-	-	0.000502	0.00289
	Zinc (Zn)	mg/L				0.0000	0.0000

Exceeds the Long-term Average BC WQG for the protection of freshwater aquatic life (BCMOECCS 2021a,b).

Exceeds the Short-term Maximum BC WQG for the protection of freshwater aquatic life (BCMOECCS 2021a,b).

Exceeds the site-specific EVWQP Level 1 Benchmark (Teck 2014) or relevant site-specific screening value.

Notes: BC WQGs = British Columbia Water Quality Guidelines; EVWQP = Elk Valley Water Quality Plan; CaCO₃ = calcium carbonate; mg/L = milligrams per litre; - = no data/not applicable; < = less than; \geq = greater than or equal to; % = percent; °C = degrees Celsius; µg/L = micrograms per litre; MU = Management Unit.

^a Ammonia guidelines were calculated based on the temperature and pH of individual water samples.

^b Hardness-based guidelines, benchmarks, and/or screening values were calculated based on the hardness of individual water samples.

^c The upper (i.e., highest) EVWQP Level 1 Benchmark for nitrate was calculated based on the maximum applicable hardness (Teck 2014).

^d Nitrite guidelines and screening values were calculated based on chloride concentrations in individual water samples.

^e The EVWQP Level 1 Benchmark for selenium (i.e., 0.070 mg/L for MU 1; Golder 2014) was derived for lotic habitats and does not apply to Greenhills Creek Sedimentation Pond.

^f Dissolved aluminum guidelines were calculated based on the pH of individual water samples.

⁹ The upper (highest) EVWQP Level 1 Benchmark for dissolved cadmium was calculated based on the maximum applicable hardness (Teck 2014).

^h Dissolved copper guidelines were calculated based on the Biotic Ligand Model (BCMOECCS 2021b).

Date	UTM Coo (NAD8	ordinates 3, 11U)	Depth	Temperature	pН	Dissolve	d Oxygen	Conductivity	Specific Conductance										
	Easting	Northing	(11)	(0)		mg/L	%	(μο/cm)	(µS/cm)										
			Surface	12.4	8.01	9.80	109	1,215	1,594										
			1.0	12.5	8.02	9.70	110	1,215	1,594										
			2.0	12.5	8.03	9.90	112	1,214	1,595										
07-Sep-18	653480	5545945	3.0	12.5	8.04	9.90	110	1,213	1,596										
			4.0	12.2	8.03	10.10	113	1,206	1,595										
			5.0	12.1	8.03	10.40	116	1,207	1,604										
			5.5	12.0	7.96	9.80	110	1,208	1,608										
			Surface	4.9	8.85	15.67	123	1,042	1,691										
			0.5	4.7	8.87	15.70	123	1,035	1,693										
			1.0	4.6	8.88	15.73	123	1,035	1,693										
11-Oct-18	653484	5545945	2.0	4.4	8.89	15.75	122	1,028	1,694										
			3.0	4.4	8.89	15.74	122	1,027	1,694										
			4.0	4.4	8.89	15.74	122	1,027	1,694										
			5.0	4.4	8.89	15.81	123	1,027	1,694										
			Surface	6.8	8.32	10.64	87	653	1,005										
			0.5	6.7	8.36	10.93	89	652	1,006										
			1.0	6.7	8.37	10.94	90	676	1,041										
			1.5	6.4	8.21	10.78	89	790	1,228										
			2.0	4.8	7.90	8.38	66	1,032	1,691										
			2.5	4.4	7.87	7.73	60	1,025	1,704										
24-Apr-19	653471	5545949	3.0	4.0	7.84	7.24	56	1,022	1,709										
			3.5	4.0	7.72	4.20	32	1,030	1,718										
			4.0	4.1	7.60	3.40	26	1,032	1,720										
														4.5	4.1	7.58	3.28	26	1,032
													5.0	4.1	7.59	3.18	24	1,032	1,719
			5.5	4.1	7.59	3.11	24	1,033	1,719										
			6.0	4.1	7.59	3.07	24	1,033	1,719										
			Surface	14.1	8.17	10.90	107	1,080	1,365										
			1.0	14.0	8.17	10.80	106	1,078	1,366										
			2.0	13.8	8.18	10.90	106	1,075	1,368										
12-Sep-19	653471	5545949	3.0	13.8	8.16	10.80	105	1,082	1,378										
			4.0	13.3	8.15	11.00	106	1,080	1,393										
			5.0	12.8	8.13	11.10	105	1,075	1,400										
			5.5	12.7	8.09	10.80	103	1,070	1,399										
			Surface	3.1	8.03	11.23	100	885	1,504										
			1.0	3.4	8.08	11.24	100	885	1,505										
			2.0	3.4	8.10	11.24	100	884	1,505										
10-Oct-19	653466	5545942	3.0	3.3	8.11	11.25	100	882	1,506										
			4.0	3.5	8.11	11.20	100	886	1,504										
			5.0	3.5	8.11	11.17	100	887	1,504										
			5.7	3.5	8.11	11.17	100	888	1,504										
			Surface	12.8	8.39	8.95	83	1,541	2,010										
			1.0	12.8	8.48	8.65	82	1,542	2,009										
10-Sep-20	653478	5545938	2.0	12.8 12.7	0.40 8.48	0.00 8.40	82	1,541	2,009										
			4.0	12.4	8.47	9.04	85	1,553	2,039										
			5.0	12.1	8.45	9.30	87	1,545	2,051										

Table C.3: Depth Profiles for Greenhills Pond, 2018 to 2021

Notes: UTM = Universal Transverse Mercator; NAD = North American Datum; m = metres; $^{\circ}C$ = degrees Celsius; mg/L = milligrams per litre; % = percent; μ S/cm = microSiemens per centimetre; - = not recorded.

Date	UTM Coordinates (NAD83, 11U)		Depth	Temperature	рН	Dissolve	d Oxygen	Conductivity	Specific Conductance
	Easting	Northing	(11)	(0)		mg/L	%	(μο/cm)	(µS/cm)
			Surface	10.4	8.34	10.42	111	1,208	1,680
			0.5	10.4	8.34	10.35	110	1,206	1,680
23-Sep-21	653654	5546040	1.0	10.3	8.33	10.29	110	1,204	1,680
			1.5	10.3	8.34	10.22	109	1,204	1,680
			2.0	10.2	8.33	10.44	111	1,201	1,680
			0.5	10.1	8.33	9.56	101	1,200	1,680
			1.0	10.0	8.33	9.73	102	1,197	1,680
			1.5	10.0	8.34	9.65	102	1,196	1,680
01.001	050404	FF45004	2.0	9.9	8.33	9.81	103	1,196	1,680
21-Sep-21	653481	5545994	2.5	9.9	8.33	9.55	100	1,195	1,680
			3.0	9.9	8.33	9.76	103	1,194	1,680
			3.5	9.0	0.24	9.71	102	1,190	1,000
			4.0	9.5	0.20 9.27	9.55	99	1,100	1,090
			4.5	9.5	0.27	9.42	103	1,100	1,090
			1.0	10.0	8 30	9.05	103	1,190	1,000
			1.0	10.0	8.31	9.48	104	1,100	1,680
21-Sep-21	653681	5545999	2.0	10.0	8.30	9.40	99	1,100	1,680
21-000-21	000001		2.5	10.0	8 29	9.02	95	1,195	1,000
				3.0	10.0	8.29	9.25	97	1,194
			3.5	10.0	8.29	8.95	95	1,195	1,670
			Surface	10.3	8.33	10.1	108	1,208	1,680
			0.5	10.3	8.33	9.95	106	1,207	1,680
			1.0	10.3	8.33	10.1	108	1,207	1,680
			1.5	10.3	8.33	9.95	106	1,207	1,680
			2.0	10.3	8.33	10.03	107	1,207	1,680
23-Sen-21	653537	5545648	2.5	10.3	8.33	10	107	1,208	1,680
20-00p-21	000007	0040040	3.0	10.3	8.33	9.95	106	1,208	1,680
			3.5	10.3	8.32	9.92	106	1,207	1,680
			4.0	10.1	8.28	9.87	105	1,201	1,680
			4.5	10.0	8.26	9.89	105	1,202	1,690
			5.0	10.0	8.25	9.84	104	1,202	1,690
			5.5	9.9	8.22	9.21	97	1,200	1,690
			Surface	10.1	8.32	9.75	104	1,202	1,680
			0.5	10.1	8.33	9.7	104	1,202	1,680
			1.0	10.1	8.32	9.72	103	1,202	1,680
			1.5	10.1	0.32	9.75	104	1,201	1,080
22-Sep-21	653681	5545953	2.0	10.1	0.32	9.75	104	1,202	1,080
			2.0	10.1	0.31	9.19	104	1,202	1,000
			3.0	10.1	8 30	9.75	104	1,201	1,000
			4.0	10.1	8 27	9.64	103	1,201	1,000
			4.5	10.0	8.22	8.51	90	1 198	1,680

Table C.3: Depth Profiles for Greenhills Pond, 2018 to 2021

Notes: UTM = Universal Transverse Mercator; NAD = North American Datum; m = metres; $^{\circ}C$ = degrees Celsius; mg/L = milligrams per litre; % = percent; μ S/cm = microSiemens per centimetre; - = not recorded.

 Table C.4: Concentrations of Selenium Species Measured in Water Samples Collected from Biological Monitoring

 Areas on Greenhills and Gardine Creeks, 2021

Watercourse/ Waterbody	Biological Monitoring Area	Sample Date	Selenate (µg/L)	Selenite (µg/L)	Dimethylselenoxide (µg/L)	Methylseleninic Acid (µg/L)	Methaneselenonic Acid (µg/L)	Selenocyanate (µg/L)	Selenomethionine (µg/L)	Selenosulphate (µg/L)	Unknown Species (µg/L)	Sum of Dimethylselenoxide and Methylseleninic Acid ^a
	RG_GHUT		238	0.373	< 0.010	0.013	<0.010	<0.010	<0.010	<0.010	<0.010	0.023
		13-Sep-21	230	0.363	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	RG_GHNF	10-Sep-21	189	1.10	<0.010	0.017	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.027 ^D
Upper Greenhills Creek	RG_GHFF	09-Sep-21	167	1.08	<0.010	0.029	<0.010	<0.010	<0.010	<0.010	<0.010	<0.039
	GH_GH1A °	26-Aug-21	140	1.12	<0.010	0.031	<0.010	<0.010	<0.010	<0.010	<0.010	<0.041
		17-Sep-21	159	0.851	<0.010	0.014	<0.010	<0.010	<0.010	<0.010	<0.010	<0.024
		06-Oct-21	149	0.839	<0.010	0.021	<0.010	<0.010	<0.010	<0.010	<0.010	<0.031 ^b
		09-Nov-21	137	0.544	<0.010	<0.022	<0.010	<0.010	<0.010	<0.010	<0.010	<0.032 ^b
		06-Dec-21	100	0.633	<0.010	0.013	<0.010	<0.010	<0.010	<0.010	<0.010	<0.023
Greenhills Creek Sedimentation Pond	RG_GHP	23-Sep-21	124	3.52	0.213	0.098	<0.010	<0.010	<0.010	<0.010	<0.010	0.311
		26-Aug-21	120	3.80	0.042	0.082	<0.010	<0.010	<0.010	<0.010	<0.010	0.124
		14-Sep-21	133	3.44	0.163	0.121	<0.010	<0.010	<0.010	<0.010	<0.010	0.284
	GH_GH1SP_DS1 °	06-Oct-21	129	3.69	0.119	0.103	<0.010	<0.010	<0.010	<0.010	<0.010	0.222
Lower Greenhills Creek		11-Nov-21	136	2.30	0.065	0.069	<0.010	<0.010	<0.010	<0.010	<0.010	0.134
		06-Dec-21	95.2	0.937	<0.010	0.027	<0.010	<0.010	<0.010	<0.010	<0.010	<0.037
		18-Feb-21	120	1.46	0.066	0.032	<0.010	<0.010	<0.010	<0.010	<0.010	0.098
	KG_GHBP	13-Sep-21	132	4.23	0.250	0.099	<0.010	<0.010	<0.010	<0.010	<0.010	0.349
Cardina Craak	RG_GAUT	16-Sep-21	0.437	0.108	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Garune Cleek	RG_GANF	15-Sep-21	5.39	0.112	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010

Exceeds the site-specific EVWQP Level 1 Benchmark (70 µg/L; Teck 2014).

Exceeds the Long-term Average BC WQG for the protection of freshwater aquatic life (2 µg/L; BCMOECCS 2021b).

Exceeds the draft screening value (0.025 µg/L) indicative of conditions that may cause an incremental increase in bioaccumulation (ADEPT 2022).

Notes: $\mu g/L = micrograms per litre; < = less than; EVWQP = Elk Valley Water Quality Plan; BC WQG = British Columbia Water Quality Guideline; LRL = Laboratory Reporting Limit.$ ^a Values <LRL were replaced with the LRL.

^b It is possible that this value is less than the draft screening value; however, because the <LRL value for dimethylselenoxide was replaced with the LRL, it is "conservatively" identified as being greater than the screening value.

^c Samples were collected as part of the 2021 Elk Valley Selenium Speciation Monitoring Program (ADEPT 2022).
Parameter ^a	Station	Annual	Variation ^b	Q1. Is there	a positive or neg MOD ^c and S	gative change ir monito Significance (bo	n concentrations pring? plded) from Base	s since the base e Year (b) ^d	e year (b) of	Q2. Is the	2021 annual m	ean greater or	less than all a	nnual historica	means (2016	6 to 2020)? ^d
		DF	P-Value	2016	2017	2018	2019	2020	2021	2016	2017	2018	2019	2020	2021	2021 vs. 2016 to 2020
	GH_CTF	4	<0.001	-	b	-0.4	-10	-20	-23	-	A	A	AB	В	В	-
	GH_HWGH_BRB	4	0.158	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH_GC1	4	0.464	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
Nitrate-N	GH_GH1B	4	<0.001		b	15	-4.8	-6.3	-25	-	A	A	AB	AB	В	-
	GH_GH1	5	< 0.001	d	25	38	-10	-2.4	-18	BC	AB	A			C	-
		<u> </u>	<0.001		- b	0 3 C	-32	-34	-	-	-	A	B	B	- B	-
	GH_CTE	4	<0.001		b	276	-33	-43	59	-	B	A	B	B	AB	
	GH HWGH BRB	4	<0.001		b	130	-24		49	-	AB	A	B	B	AB	
	GH GC1	4	0.003		b	194	-76	-94	-4.4	-	AB	A	B	AB	AB	-
Nitrite-N	GH GH1B	4	0.004		b	81	-39	-39	-11	-	AB	A	AB	В	AB	-
	GH_GH1	5	0.013	b	63	69	2.2	-23	-36	AB	А	А	AB	AB	В	-
	GH_GH5	2	0.001	-	-	b	-43	-60	-	-	-	A	В	В	-	-
	GH_GH2	4	< 0.001	-	b	-16	-51	-60	-76	-	A	AB	ABC	BC	С	-
	GH_CTF	4	0.711	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH_HWGH_BRB	4	0.640	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH_GC1	4	< 0.001	-	b	3.9	-31	-33	-49	-	A	A	AB	AB	В	-
Sulphate	GH_GH1B	4	0.710	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH_GH1	5	< 0.001	d	18	35	1.1	20	19	В	AB	A	В	AB	AB	-
		Z	0.107	-	-	ns	ns	ns	-	-	-	-	-	-	-	-
		4	0.473	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
		4	0.834	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
		4	<0.023		h	4.2	-26	-24	-40	-	Δ	Δ	AB	AR	B	
Total Dissolved Solids	GH GH1B	4	0.357	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH GH1	5	< 0.001	b	15	26	6.3	16	9.5	С	ABC	А	BC	AB	ABC	-
	GH GH5	2	0.166	-	-	ns	ns	ns	-	-	-	-	-	-	-	-
	GH_GH2	4	0.181	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH_CTF	4	< 0.001	-	b	-19	-35	-44	-50	-	A	В	С	D	E	\downarrow
	GH_HWGH_BRB	4	<0.001	-	b	-18	-31	-37	-45	-	A	В	С	С	D	-
	GH_GC1	4	<0.001	-	b	55	-37	-61	-52	-	AB	A	BC	С	С	-
Total Antimony	GH_GH1B	4	< 0.001	-	b	6.8	-32	-31	-41	-	A	A	В	В	B	-
	GH_GH1	5	< 0.001	b	-11	5.9	-41	-44	-49	A	A	A	В	B	В	-
	GH_GH5	2	< 0.001	•	-	b	-45	-50	-	-	-	A	B	B	-	-
	GH_GH2	4	< 0.001	-	D	3.4	-36	-39	-44	-	A	A	B	B	В	-
		4	< 0.001	-	D	-12	-17	-20	-22	-	A	B	BC	вс		
		4	0.001	-	U DC	-12	-21	-23	-24	-	A	D	BC		U U	-
Total Barium		4	0.207	-	ne	ne	ne	ne	ns	-	-	-	-	-	-	-
		5	<0.004	- h	-0.5		_27	_24	_27	- A	- Δ	- Δ	- R	R	- R	
	GH GH5	2	<0.001	-	-0.0	<u>-1.2</u> b	-21	_22	-21	-	-	A	B	B	-	
	GH GH2	4	< 0.001	-	b	-11	-28	-25	-29	-	А	B	C	C	С	-

Table C.5: Temporal Changes in Concentrations of Water Quality Parameters with Early Warning Triggers (EWT) at Water Quality Monitoring Stations on Greenhills and Gardine Creeks, 2016 to 2021

P-value <0.05 (annual variation). >20% decrease in concentration. >33% decrease in concentration. >43% decrease in concentration. >50% decrease in concentration. >25% increase in concentration. >50% increase in concentration. >75% increase in concentration. >100% increase in concentration.

Significantly less than all historical years.

Significantly greater than all historical years.

Significant increase or decrease from base year (b). *Bold

Notes: DF = degrees of freedom; MOD = Magnitude of Difference; vs. = versus; < = less than; - = no data available/not applicable; ns = not significant; b = base year; > = greater than; % = percent; ANOVA = Analysis of Variance.

^a Total boron is excluded from the table because there were too few detectable concentrations to support statistical comparisons

^b The presence of annual variation was determined by a significant Year term ($\alpha = 0.05$) using an ANOVA with factors Year and Month.

^c The MOD was calculated as the concentrations in each year minus the concentrations in the first or base year divided by the concentration in the first or base year × 10C

^d Significance between each year was determined using all pairwise comparisons with Tukey corrections

		Annual	/ariation ^b	Q1. Is there	a positive or ne	gative change ir monito	n concentrations pring?	s since the base	year (b) of	Q2. Is the	2021 annual m	ean greater or	less than all a	nnual historical	means (2016	5 to 2020)? ^d
Parameter ^a	Station				MOD ^c and	Significance (bo	olded) from Base	e Year (b) ^d				J				· · · · · · · · · · · · · · · · · · ·
		DF	P-Value	2016	2017	2018	2019	2020	2021	2016	2017	2018	2019	2020	2021	2021 vs. 2016 to 2020
	GH_CTF	4	< 0.001	-	b	7.6	5.6	18	21	-	С	ABC	BC	AB	A	-
	GH_HWGH_BRB	4	< 0.001	-	b	6.9	4.9	23	23	-	В	AB	В	A	A	-
Total Lithium	GH_GC1	4	< 0.001	-	b	53	-8.6	-10	-32	-	AB	A	В	В	В	-
	GH_GH1B	4	0.007	-	b	24	-1.0	15	7.8	-	В	A	В	AB	AB	-
	GH_GH1	5	< 0.001	b	19	69	8.7	27	24	С	BC	A	BC	В	В	-
	GH_GH2	4	< 0.001	-	b	22	-8.2	1.4	2.0	-	В	A	В	В	В	-
	GH_CTF	4	< 0.001	-	b	-32	-44	-43	-52	-	A	В	В	В	В	-
	GH HWGH BRB	4	< 0.001	-	b	-42	-63	-71	-78	-	Α	В	BC	CD	D	-
Total Manganaga	GH_GC1	4	< 0.001	-	b	17	-70	-79	-55	-	A	A	В	В	AB	-
rotar Manganese	GH GH1B	4	0.005	-	b	-44	-73	-57	-61	-	A	AB	В	AB	AB	-
	GH_GH1	5	0.014	b	-10	-0.7	-28	-20	-51	А	AB	A	AB	AB	В	-
	GH GH2	4	0.060	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH CTF	4	< 0.001	-	b	-20	-35	-42	-48	-	A	В	С	CD	D	-
Total Molvbdenum	GH HWGH BRB	4	< 0.001	-	b	-20	-33	-37	-44	-	Α	В	С	CD	D	-
	GH GC1	4	0.039	-	b	106	18	17	22	-	В	A	AB	AB	AB	-
Total Molybdenum	GH GH1B	4	< 0.001	-	b	24	-22	-25	-33	-	AB	А	BC	С	С	-
	GH GH1	5	< 0.001	b	-13	32	-31	-42	-47	AB	BC	A	CD	D	D	-
	GH GH2	4	< 0.001	-	b	55	-10	-33	-16	-	В	А	BC	С	BC	-
	GH CTF	4	< 0.001	-	b	-12	-47	-50	-59	-	Α	A	В	BC	С	-
	GH HWGH BRB	4	< 0.001	-	b	-20	-51	-52	-61	-	Α	А	В	В	В	-
Total Niekal	GH GC1	4	< 0.001	-	b	49	-46	-57	-66	-	AB	A	BC	С	С	-
TOTAL MICKEL	GH GH1B	4	< 0.001	-	b	-12	-49	-49	-58	-	Α	A	В	В	В	-
	GH GH1	5	< 0.001	b	12	1.1	-47	-48	-57	А	Α	А	В	В	В	-
	GH GH2	4	< 0.001	-	b	-29	-60	-62	-66	-	Α	В	С	С	С	-
	GH CTF	4	0.721	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH HWGH BRB	4	0.505	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
Tatal Calanium	GH GC1	4	0.663	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
Total Selenium	GH GH1B	4	0.661	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH GH1	5	< 0.001	b	40	53	28	41	40	В	Α	A	Α	A	A	-
	GH GH2	4	0.416	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH CTF	4	0.945	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH HWGH BRB	4	0.802	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
Tatal Linenium	GH GC1	4	< 0.001	-	b	10	-33	-37	-45	-	Α	A	В	В	В	-
i otai Uranium	GH GH1B	4	0.425	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH GH1	5	< 0.001	b	18	34	5.0	15	16	В	AB	A	В	AB	AB	-
	GH_GH2	4	0.252	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-

Table C.5: Temporal Changes in Concentrations of Water Quality Parameters with Early Warning Triggers (EWT) at Water Quality Monitoring Stations on Greenhills and Gardine Creeks, 2016 to 2021

P-value <0.05 (annual variation). >20% decrease in concentration. >33% decrease in concentration. >43% decrease in concentration. >50% decrease in concentration. >25% increase in concentration. >50% increase in concentration. >75% increase in concentration. >100% increase in concentration.

Significant increase or decrease from base year (b).

Notes: DF = degrees of freedom; MOD = Magnitude of Difference; vs. = versus; < = less than; - = no data available/not applicable; ns = not significant; b = base year; > = greater than; % = percent; ANOVA = Analysis of Variance. ^a Total boron is excluded from the table because there were too few detectable concentrations to support statistical comparisons.

^b The presence of annual variation was determined by a significant Year term (α = 0.05) using an ANOVA with factors Year and Month.

^c The MOD was calculated as the concentrations in each year minus the concentrations in the first or base year divided by the concentration in the first or base year × 100.

^d Significance between each year was determined using all pairwise comparisons with Tukey corrections.

Significantly less than all historical years. Significantly greater than all historical years.

Table C.5: Temporal Changes in Concentrations of Water Quality Parameters with Early Warning Triggers (EWT) at Water Quality Monitoring Stations on Greenhills and Gardine Creeks, 2016 to 2021

		Annual \	/ariation ^b	Q1. Is there	a positive or ne	gative change in monito	n concentrations pring?	s since the base	year (b) of	Q2. Is the	2021 annual m	ean greater or	less than all a	nnual historical	means (2010	6 to 2020)? ^d
Parameter ^a	Station				MOD ^c and	Significance (bo	olded) from Base	e Year (b) ^d								
		DF	P-Value	2016	2017	2018	2019	2020	2021	2016	2017	2018	2019	2020	2021	2021 vs. 2016 to 2020
	GH_CTF	4	<0.001	-	b	-10	-30	-49	-64	-	A	A	AB	BC	С	-
	GH_HWGH_BRB	4	0.167	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
Total Zinc	GH_GC1	4	0.154	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH_GH1B	4	0.381	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH_GH1	5	0.661	ns	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH_GH2	4	0.002	-	b	-22	-96	-40	-47	-	A	A	A	A	А	-
	GH_CTF	4	0.012	-	b	-35	96	121	51	-	AB	В	A	A	AB	-
	GH_HWGH_BRB	4	0.252	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
Dissolved Cadmium	GH_GC1	4	0.051	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
Dissolved Caumum	GH_GH1B	4	0.164	-	ns	ns	ns	ns	ns	-	-	-	-	-	-	-
	GH_GH1	5	0.014	b	41	6.7	32	66	-14	AB	AB	AB	AB	A	В	-
	GH_GH2	4	0.002	-	b	21	-14	11	-30	-	AB	A	AB	A	В	-
	GH_CTF	4	<0.001	-	b	-46	-92	-63	-92	-	A	В	AB	В	AB	-
	GH_HWGH_BRB	4	<0.001	-	b	-56	-84	-84	-84	-	Α	В	AB	AB	AB	-
Dissolved Cobalt	GH_GC1	4	<0.001	-	b	929	-28	-97	-97	-	В	A	В	AB	AB	-
Dissolved Condit	GH_GH1B	4	0.002	-	b	82	-97	-46	-35	-	AB	A	AB	В	AB	-
	GH_GH1	5	<0.001	b	-19	89	-34	-95	-95	AB	В	A	В	AB	AB	-
	GH_GH2	4	<0.001	-	b	28	-79	-79	-79	-	A	A	A	A	А	-

P-value <0.05 (annual variation). >20% decrease in concentration. >33% decrease in concentration. >43% decrease in concentration. >50% decrease in concentration.

>25% increase in concentration.

>50% increase in concentration.

>75% increase in concentration.

>100% increase in concentration.
 *Bold Significant increase or decrease from base year (b).

Notes: DF = degrees of freedom; MOD = Magnitude of Difference; vs. = versus; < = less than; - = no data available/not applicable; ns = not significant; b = base year; > = greater than; % = percent; ANOVA = Analysis of Variance. ^a Total boron is excluded from the table because there were too few detectable concentrations to support statistical comparisons.

^b The presence of annual variation was determined by a significant Year term ($\alpha = 0.05$) using an ANOVA with factors Year and Month.

^c The MOD was calculated as the concentrations in each year minus the concentrations in the first or base year divided by the concentration in the first or base year × 100.

^d Significance between each year was determined using all pairwise comparisons with Tukey corrections.

Significantly less than all historical years. Significantly greater than all historical years. Table C.6: Comparison of Relative Monthly Mean Concentrations of Analytes Before (May to September 2017) and After (May to September 2018 to 2021) Calcite Treatment for Stations Upstream (GH_GH1) and Downstream (GH_GH2) of Water Treatment ^a

	Analyta	Unite			Sample Size ^b			ANOVA	Does	the ratio of the	concentrations	s between GH_	GH1 and GH	_GH2 change	among yea	rs? ^c
	Analyte	Units						P-value	2017 v	rs. 2018	2017 v	/s. 2019	2017 \	vs. 2020	2017 v	/s. 2021
			2017	2018	2019	2020	2021		P-value	MOD (%) ^d	P-value	MOD (%) ^d	P-value	MOD (%) ^d	P-value	MOD (%) ^d
	Conductivity, Field	µS/cm	5	4	4	0	0	0.455	-	-	-	-	-	-	-	-
	Conductivity, Lab	µS/cm	5	4	4	5	5	0.938	-	-	-	-	-	-	-	-
	Hardness (as CaCO ₃)	mg/L	5	4	4	5	5	0.919	-	-	-	-	-	-	-	-
	pH, Field	pН	5	4	4	5	5	0.691	-	-	-	-	-	-	-	-
	pH, Lab	pН	5	4	4	5	5	0.471	-	-	-	-	-	-	-	-
	ORP, Field	mV	5	3	4	5	5	0.192	-	-	-	-	-	-	-	-
Physical	ORP, Lab	mV	5	4	4	5	5	0.522	-	-	-	-	-	-	-	-
Characteristics	Total Suspended Solids, Lab	mg/L	5	4	4	5	5	0.800	-	-	-	-	-	-	-	-
	Total Dissolved Solids	mg/L	5	4	4	5	5	0.917	-	-	-	-	-	-	-	-
	Turbidity, Field	NTU	4	4	4	5	5	0.955	-	-	-	-	-	-	-	-
	Turbidity, Lab	NTU	5	4	4	5	5	0.243	-	-	-	-	-	-	-	-
	Dissolved Oxygen-Field	mg/L	5	4	4	5	5	0.367	-	-	-	-	-	-	-	-
	Dissolved Oxygen-Field	%	5	4	4	5	5	0.430	-	-	-	-	-	-	-	-
	I emperature-Field	°C	5	4	4	5	5	0.838	-	-	-	-	-	-	-	-
	Acidity (as CaCO ₃)	mg/L	0	0	0	0	0	nd	-	-	-	-	-	-	-	-
Acidity and	Alkalinity, Bicarbonate (as CaCO ₃)	mg/L	5	4	4	5	5	0.201	-	-	-	-	-	-	-	-
Alkalinity	Alkalinity, Carbonate (as $CaCO_3$)	mg/L	5	4	4	5	5	0.745	-	-	-	-	-	-	-	-
Alkalinity Al	Alkalinity, Hydroxide (as CaCO ₃)	mg/L	0	0	0	0	0	nd	-	-	-	-	-	-	-	-
	Alkalinity, Total (as CaCO ₃)	mg/L	5	4	4	5	5	0.067	-	-	-	-	-	-	-	-
	Ammonia as N	mg/L	5	4	4	5	5	0.059	-	-	-	-	-	-	-	-
	Bromide (Br)	mg/L	0	0	0	0	0	nd	-	-	-	-	-	-	-	-
	Chloride (Cl)	mg/L	2	4	2	4	5	nd	-	-	-	-	-	-	-	-
	Fluoride (F)	mg/L	4	4	4	4	5	0.813	-	-	-	-	-	-	-	-
Anions and	Nitrate (as N)	mg/L	5	4	4	5	5	0.892	-	-	-	-	-	-	-	-
Nutrients	Nitrite (as N)	mg/L	5	4	3	5	3	0.782	-	-	-	-	-	-	-	-
	Total Kjeldahl Nitrogen	mg/L	5	4	4	5	5	0.433	-	-	-	-	-	-	-	-
	Orthophosphate-Dissolved (as P)	mg/L	3	3	0	2	3	0.583	-	-	-	-	-	-	-	-
	Phosphorus (P)-Total	mg/L	5	4	4	5	5	0.038	0.845	-	0.969	-	0.909	-	0.104	-
	Sulphate (SO ₄)	mg/L	5	4	4	5	5	0.819	-	-	-	-	-	-	-	-
Organic Carbon	Dissolved Organic Carbon	mg/L	5	4	4	5	5	0.092	-	-	-	-	-	-	-	-
	Total Organic Carbon	mg/L	5	4	4	5	5	0.608	-	-	-	-	-	-	-	-
	Aluminum (Al)	mg/L	5	4	4	5	5	0.161	-	-	-	-	-	-	-	-
	Antimony (Sb)	mg/L	5	4	4	5	5	0.669	-	-	-	-	-	-	-	-
	Arsenic (As)	mg/L	5	4	4	5	5	0.306	-	-	-	-	-	-	-	-
	Barium (Ba)	mg/L	5	4	4	5	5	0.495	-	-	-	-	-	-	-	-
Total Metals	Beryllium (Be)	mg/L	1	0	0	0	0	nd	-	-	-	-	-	-	-	-
	Bismuth (Bi)	mg/L	0	0	0	0	0	nd	-	-	-	-	-	-	-	-
	Boron (B)	mg/L	5	4	2	5	4	0.920	-	-	-	-	-	-	-	-
	Cadmium (Cd)	mg/L	5	4	4	5	5	0.085	-	-	-	-	-	-	-	-
	Calcium (Ca)	mg/L	5	4	4	5	5	0.374	-	-	-	-	-	-	-	-

P-value <0.05.

Positive MOD (increase in concentration of analyte at GH_GH2 relative to GH_GH1).

Negative MOD (decrease in concentration of analyte at GH_GH2 relative to GH_GH1).

Notes: ANOVA = Analysis of Variance; vs. = versus; MOD = magnitude of difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; NA = not applicable; - = no significant difference; % = percent; µS/cm = microSiemens per centimetre; % = percent; µS/cm = microSiem Nephelometric Turbidity Units; °C = degrees Celsius; nd = insufficient data were available to conduct the analysis; µg/L = micrograms per litre; < = less than; LRL = Laboratory Reporting Limit.

^a The antiscalant addition facility was not operating in May 2018, September 2019, or May 2020; consequently, data for these months were excluded from the "after" dataset.

^b Comparison conducted as a two-sample t-test between time periods on the relative differences between areas, calculated as log₁₀(GH_GH2) – log₁₀(GH_GH1). Values less than the LRL were replaced with the LRL when only one of the two paired samples was <LRL. No Difference was calculated when both paired samples were <LRL.

^c Only comparisons with more than three difference values for both time periods were included.

^d The MOD was calculated as the observed post-treatment concentration at (GH_GH2_{observed post-treatment} is the gredicted post-treatment)/GH_GH2_{predicted post-treatment} is the geometric mean for GH2 post-treatment and GH_GH2_{predicted post-treatment} is the predicted mean concentration for GH_GH2 assuming the ratio of concentration of GH_GH1 to GH_GH2 are the same as pre-treatment (i.e., GH_GH2_{oredicided nost-treatment}] = 10^[log₁₀(GH_GH1_{nost-treatment}]) + log₁₀(GH_GH2_{ore-treatment}]) - log₁₀(GH_GH1_{nost-treatment}]) - log₁₀(GH1_{nost-treatment}]) - log₁₀(GH1_{nost-treatment}]]) - log₁₀(GH1_{nost-treatment}]]) - log₁₀(GH1_{nost-treatment}]]) - log₁₀(GH1_{nost-treatment}]]) -

Table C.6: Comparison of Relative Monthly Mean Concentrations of Analytes Before (May to September 2017) and After (May to September 2018 to 2021) Calcite Treatment for Stations Upstream (GH_GH1) and Downstream (GH_GH2) of Water Treatment ^a

	Analyta	Unite			Sample Size ^b			ANOVA	Does	the ratio of the	concentration	s between GH_0	GH1 and GH	_GH2 change	among yea	ırs? °
	Analyte	Onits						P-value	2017 \	/s. 2018	2017	vs. 2019	2017 \	/s. 2020	2017	vs. 2021
			2017	2018	2019	2020	2021		P-value	MOD (%) ^d	P-value	MOD (%) ^d	P-value	MOD (%) ^d	P-value	MOD (%) ^d
_	Chromium (Cr)	mg/L	5	2	3	5	5	0.623	-	-	-	-	-	-	-	-
	Cobalt (Co)	mg/L	2	2	0	1	2	nd	-	-	-	-	-	-	-	-
	Copper (Cu)	mg/L	2	1	1	4	3	nd	-	-	-	-	-	-	-	-
	Iron (Fe)	mg/L	5	4	4	5	5	0.197	-	-	-	-	-	-	-	-
	Lead (Pb)	mg/L	1	1	0	2	3	nd	-	-	-	-	-	-	-	-
	Lithium (Li)	mg/L	5	4	4	5	5	0.585	-	-	-	-	-	-	-	-
	Magnesium (Mg)	mg/L	5	4	4	5	5	0.634	-	-	-	-	-	-	-	-
	Manganese (Mn)	mg/L	5	4	4	5	5	0.329	-	-	-	-	-	-	-	-
	Mercury (Hg)	µg/L	4	3	4	5	5	0.093	-	-	-	-	-	-	-	-
	Methyl Mercury	µg/L	0	4	4	5	5	nd	-	-	-	-	-	-	-	-
	Molybdenum (Mo)	mg/L	5	4	4	5	5	<0.001	0.067	-	<0.001	140	0.075	-	0.005	87
Total Matala	Nickel (Ni)	mg/L	5	4	4	5	5	0.375	-	-	-	-	-	-	- 1	-
Total Metals	Potassium (K)	mg/L	5	4	4	5	5	0.262	-	-	-	-	-	-	-	-
	Selenium (Se)	µg/L	5	4	4	5	5	0.807	-	-	-	-	-	-	-	-
	Silicon (Si)-Total	mg/L	5	4	4	5	5	0.775	-	-	-	-	-	-	- 1	-
	Silver (Ag)	mg/L	1	0	0	0	0	nd	-	-	-	-	-	-	-	-
	Sodium (Na)	mg/L	5	4	4	5	5	0.889	-	-	-	-	-	-	-	-
	Strontium (Sr)	mg/L	5	4	4	5	5	0.993	-	-	-	-	-	-	-	-
	Thallium (TI)	mg/L	5	4	0	1	1	0.372	-	-	-	-	-	-	-	-
	Tin (Sn)	mg/L	0	0	0	1	0	nd	-	-	-	-	-	-	-	-
	Titanium (Ti)	mg/L	0	0	0	0	5	nd	-	-	-	-	-	-	-	-
	Uranium (U)	mg/L	5	4	4	5	5	0.423	-	-	-	-	-	-	- 1	-
	Vanadium (V)	mg/L	2	0	1	2	2	nd	-	-	-	-	-	-	-	-
	Zinc (Zn)	mg/L	2	1	1	5	4	nd	-	-	-	-	-	-	-	-
	Aluminum (Al)	mg/L	3	1	1	1	4	0.451	-	-	-	-	-	-	-	-
	Antimony (Sb)	mg/L	5	4	4	5	5	0.179	-	-	-	-	-	-	-	-
	Arsenic (As)	mg/L	5	4	4	5	5	0.877	-	-	-	-	-	-	-	-
	Barium (Ba)	mg/L	5	4	4	5	5	0.040	0.207	-	0.715	-	1.000	-	0.980	-
	Beryllium (Be)	mg/L	0	0	0	0	0	nd	-	-	-	-	-	-	-	-
	Bismuth (Bi)	mg/L	0	0	0	0	0	nd	-	-	-	-	-	-	-	-
Dissolved Metals	Boron (B)	mg/L	5	3	3	3	4	0.880	-	-	-	-	-	-	-	-
	Cadmium (Cd)	mg/L	4	4	4	5	5	0.223	-	-	-	-	-	-	-	-
	Calcium (Ca)	mg/L	5	4	4	5	5	0.228	-	-	-	-	-	-	-	-
	Chromium (Cr)	mg/L	2	0	4	3	3	nd	-	-	-	-	-	-	-	-
	Cobalt (Co)	mg/L	2	2	0	0	0	nd	-	-	-	-	-	-	-	-
	Copper (Cu)	mg/L	3	1	0	5	5	0.401	-	-	-	-	-	-	-	-
	Iron (Fe)	mg/L	1	0	0	1	1	nd	-	-	-	-	-	-	-	-

P-value < 0.05.

Positive MOD (increase in concentration of analyte at GH GH2 relative to GH GH1).

Negative MOD (decrease in concentration of analyte at GH_GH2 relative to GH_GH1).

Notes: ANOVA = Analysis of Variance; vs. = versus; MOD = magnitude of difference; % = percent; µS/cm = milliolts; NV = milliolts; NTU = Nephelometric Turbidity Units; °C = degrees Celsius; nd = insufficient data were available to conduct the analysis; µg/L = micrograms per litre; < = less than; LRL = Laboratory Reporting Limit.

^a The antiscalant addition facility was not operating in May 2018, September 2019, or May 2020; consequently, data for these months were excluded from the "after" dataset.

^b Comparison conducted as a two-sample t-test between time periods on the relative differences between areas, calculated when both paired samples were <LRL.

^c Only comparisons with more than three difference values for both time periods were included.

^d The MOD was calculated as the observed post-treatment concentration at (GH_GH2_{observed post-treatment} – GH_GH2_{predicted post-treatment})/GH_GH2_{predicted post-treatment} × 100%, where GH_GH2_{predicted post-treatment} is the geometric mean for GH2 post-treatment and GH_GH2_{predicted post-treatment} is the predicted mean concentration for GH_GH2 assuming the ratio of concentration of GH_GH1 to GH_GH2 are the same as pre-treatment (i.e., GH_GH2_{predicted post-treatment} = 10^[log₁₀(GH_GH1_{post-treatment}) + log₁₀(GH_GH2_{pre-treatment}) - log₁₀(GH_GH1_{pre-treatment}) - log₁₀(GH1_{pre-treatment}) - log

Table C.6: Comparison of Relative Monthly Mean Concentrations of Analytes Before (May to September 2017) and After (May to September 2018 to 2021) Calcite Treatment for Stations Upstream (GH_GH1) and Downstream (GH_GH2) of Water Treatment ^a

Analyte	Units			Sample Size ^b			ANOVA	Does	the ratio of the	concentration	s between GH_	GH1 and GH	_GH2 change	among yea	rs? ^c
,	••••••						P-value	2017 \	/s. 2018	2017 \	/s. 2019	2017 \	vs. 2020	2017 \	/s. 2021
		2017	2018	2019	2020	2021		P-value	MOD (%) ^d	P-value	MOD (%) ^d	P-value	MOD (%) ^d	P-value	MOD (%) ^d
Lead (Pb)	mg/L	1	0	0	0	1	nd	-	-	-	-	-	-	-	-
Lithium (Li)	mg/L	5	4	4	5	5	0.176	-	-	-	-	-	-	-	-
Magnesium (Mg)	mg/L	5	4	4	5	5	0.790	-	-	-	-	-	-	-	-
Manganese (Mn)	mg/L	5	4	4	5	5	0.135	-	-	-	-	-	-	-	-
Mercury (Hg)	µg/L	1	1	0	0	0	nd	-	-	-	-	-	-	-	-
Molybdenum (Mo)	mg/L	5	4	4	5	5	< 0.001	0.058	-	<0.001	132	0.059	-	0.002	88
Nickel (Ni)	mg/L	5	4	4	5	5	0.235	-	-	-	-	-	-	-	-
Potassium (K)	mg/L	5	4	4	5	5	0.653	-	-	-	-	-	-	-	-
Selenium (Se)	µg/L	5	4	4	5	5	0.111	-	-	-	-	-	-	-	-
Silicon (Si)	mg/L	5	4	4	5	5	0.766	-	-	-	-	-	-	-	-
Silver (Ag)	mg/L	0	0	0	0	0	nd	-	-	-	-	-	-	-	-
Sodium (Na)	mg/L	5	4	4	5	5	0.542	-	-	-	-	-	-	-	-
Strontium (Sr)	mg/L	5	4	4	5	5	0.993	-	-	-	-	-	-	-	-
Thallium (TI)	mg/L	3	4	0	0	1	0.544	-	-	-	-	-	-	-	-
Tin (Sn)	mg/L	0	0	0	2	0	nd	-	-	-	-	-	-	-	-
Titanium (Ti)	mg/L	0	0	0	0	1	nd	-	-	-	-	-	-	-	-
Uranium (U)	mg/L	5	4	4	5	5	0.428	-	-	-	-	-	-	-	-
Vanadium (V)	mg/L	0	0	0	0	0	nd	-	-	-	-	-	-	-	-
Zinc (Zn)	mg/L	2	1	1	5	4	nd	-	-	-	-	-	-	-	-

P-value <0.05.

Positive MOD (increase in concentration of analyte at GH GH2 relative to GH GH1).

Negative MOD (decrease in concentration of analyte at GH GH2 relative to GH GH1).

Notes: ANOVA = Analysis of Variance; vs. = versus; MOD = magnitude of difference; % = percent; µS/cm = milliolts; NT = no significant difference observed; CaCO₃ = calcium carbonate; mg/L = milligrams per litre; ORP = oxidation-reduction potential; mV = millivolts; NTU = Nephelometric Turbidity Units; °C = degrees Celsius; nd = insufficient data were available to conduct the analysis; $\mu g/L$ = micrograms per litre; < = less than; LRL = Laboratory Reporting Limit.

^a The antiscalant addition facility was not operating in May 2018, September 2019, or May 2020; consequently, data for these months were excluded from the "after" dataset.

^b Comparison conducted as a two-sample t-test between time periods on the relative differences between areas, calculated as log₁₀(GH_GH2) - log₁₀(GH_GH2). Values less than the LRL when only one of the two paired samples was <LRL. No Difference was calculated when both paired samples were <LRL.

^c Only comparisons with more than three difference values for both time periods were included.

^d The MOD was calculated as the observed post-treatment concentration at (GH_GH2_{observed post-treatment} – GH_GH2_{predicted post-treatment})/GH_GH2_{predicted post-treatment} is the geometric mean for GH2 post-treatment and GH_GH2_{predicted post-treatment} is the predicted mean concentration of GH_GH2 assuming the ratio of concentration of GH_GH1 to GH_GH2 are the same as pre-treatment (i.e., GH_GH2_{predicted post-treatment}) + log₁₀(GH_GH1_{post-treatment}) - log₁₀(GH_GH1_{pre-treatment}).

APPENDIX D SUBSTRATE QUALITY

Table D.1: Pebble Counts and Calcite Measurements at RG_GHUT on Upper Greenhills Creek, September 2021

		RG_GHUT-1					RG_GHUT-2					RG_GHUT-3		
		13-Sep-21					13-Sep-21					13-Sep-21		
Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)
1	2	1	1	calcite	1	0	1	1	4.5	1	2	1	1	calcite
2	2	1	1	calcite	2	0	1	1	1.2	2	2	1	1	calcite
3	2	1	1	calcite	3	0	1	0.5	4.0	3	0	1	0.7	1.5
4	2	1	1	calcite	4	0	1	1	2.5	4	0	1	0.8	1.6
5	2	1	1	calcite	5	0	1	1	3.6	5	0	1	0.5	0.8
6	2	1	1	calcite	6	0	1	1	7.0	6	0	1	0.9	1.0
/	2	1	1	calcite	/	2	1	1	calcite	1	1	1	0.9	11.Z
0	2	1	1	calcite	0	0	1	1	siit	0	2	1	0.6	Calcile
	2	1	1	calcite	9 10	1	1	1	4.0		0	1	0.0	3.0
11	2	1	1	calcite	11	0	1	1	3.5	11	1	1	0.8	1.8
12	1	1	1	4 7	12	0	1	1	3.0	12	2	1	0.9	8.8
13	1	1	1	2.5	13	0	1	1	2.4	13	2	1	1	calcite
14	2	1	1	calcite	14	0	1	0.8	3.3	14	0	1	1	5.1
15	2	1	1	calcite	15	0	1	1	2.7	15	0	1	0.9	2.2
16	2	1	1	calcite	16	2	1	1	calcite	16	0	1	0.8	3.7
17	2	1	1	calcite	17	2	1	1	9.5	17	0	1	0.9	1.8
18	1	1	1	5.1	18	0	1	1	5.7	18	0	1	1	1.1
19	2	1	1	calcite	19	2	1	1	calcite	19	0	1	1	0.9
20	2	1	1	calcite	20	0	1	1	silt	20	1	1	1	2.5
21	2	1	1	calcite	21	0	1	1	5.0	21	1	1	1	3.9
22	0	1	1	silt	22	0	1	1	4.9	22	0	1	1	1.2
23	2	1	1	calcite	23	2	1	1	calcite	23	0	1	1	3.4
24	2	1	1	calcite	24	2	1	1	calcite	24	0	1	1	1.4
25	2	1	1	calcite	25	2	1	1	calcite	25	0	1	1	2.8
20	2	1	1	calcite	20	0	1	1		20	0	1	0.8	1.0
28	1	1	1	2.4	21	0	1	1	4.0	27	0	1	1	2.0 silt
20	2	1	1	calcite	20	0	1	1	3.4	20	0	1	0.5	1 4
30	2	1	1	calcite	30	0	1	1	silt	30	2	1	0.9	6.2
31	2	1	1	calcite	31	0	1	1	5.9	31	0	1	1	2.7
32	2	1	1	calcite	32	1	1	1	4.6	32	1	1	1	2.8
33	2	1	1	calcite	33	2	1	1	calcite	33	0	1	0.8	2.2
34	0	1	1	silt	34	0	1	1	6.7	34	2	1	1	8.0
35	2	1	1	calcite	35	2	1	1	9.2	35	0	1	1	silt
36	2	1	1	calcite	36	2	1	1	calcite	36	0	1	0.8	2.6
37	2	1	1	calcite	37	0	1	1	2.4	37	2	1	1	9.2
38	2	1	1	calcite	38	2	1	1	calcite	38	1	1	1	9.5
39	2	1	1	calcite	39	2	1	1	calcite	39	2	1	1	9.8
40	2	1	1	calcite	40	0	1	1	SIIT	40	2	1	1	8.2
41	0	1	1	SIIL	41	0	1	1	Z.0	41	2	1	1	0.0
42	0	1	1	silt	42	0	1	1	2.0	42	0	1	1	2.6
43	2	1	1	calcite	43	0	1	1	2.0	43	0	1	0.8	4.2
45	1	1	1	7.5	45	0	1	1	silt	45	0	1	0.7	1.9
46	2	1	1	calcite	46	0	1	1	8.4	46	0	1	0.6	1.8
47	2	1	1	calcite	47	2	1	1	calcite	47	0	1	0.8	1.7
48	1	1	1	3.2	48	2	1	1	5.2	48	2	1	1	3.5
49	2	1	1	calcite	49	2	1	1	9.8	49	0	1	1	2.7
50	2	1	1	calcite	50	0	1	1	2.6	50	0	1	1	3.0
Cc, Cp, and Cp' =	1.68	1.00	1.00	-	Cc, Cp, and Cp' =	0.64	1.00	0.99	-	Cc, Cp, and Cp' =	0.60	1.00	0.90	-
Cal	Calcite Index (CI) = 2.68				Cal	cite Index (CI) =		1.64	·	Calc	te Index (CI) =		1.60	·
Calcite Inc	ilcite Index Prime (CI') = 2.68				Calcite Inc	dex Prime (Cl') =		1.63		Calcite Ind	ex Prime (CI') =		1.50	
L	Index Prime (CI') = 2.68					• •	1				. ,	1		

Notes: cm = centimetres; C_c = calcite concretion score; C_p = calcite presence score; C_p' = calcite presence score prime; - = no data/not applicable; % = percent.

^a 0 = particle can be removed with no resistance; 1 = some resistance, but particle is still movable; 2 = particle is immovable/fully concreted.

^b 0 = calcite is absent; 1 = calcite is present.

Table D.1: Pebble Counts and Calcite Measurements at RG_GHUT on Upper Greenhills Creek, September 2021

		RG_GHUT-4					RG_GHUT-5					RG_GHUT-6		
		13-Sep-21					13-Sep-21					13-Sep-21		
Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)
1	2	1	1	4.6	1	0	1	1	3.5	1	0	1	0.9	2.2
2	1	1	1	6.3	2	2	1	0.9	4.4	2	2	1	1	6.8
3	2	1	1	calcite	3	0	1	1	silt	3	0	1	1	1.3
4	2	1	1	7.2	4	2	1	1	calcite	4	2	1	1	9.6
5	2	1	1	5.9	5	0	1	1	1.5	5	2	1	1	7.5
6	0	1	0.8	1.5	6	0	1	1	2.0	6	0	1	1	6.0
/	2	1	1		/	0	1	1	3.1	/ 0	0	1	1	SIII
0	0	1	0.5	1.7 calcite	0	0	1	1	7.5 silt	0	0	1	0.6	2.3
10	2	1	1	8.5	10	2	1	1	6.8	10	2	1	1	3.9
11	0	1	1	5.3	10	0	1	1	2.0	11	2	1	1	3.9
12	1	1	1	5.8	12	2	1	1	5.7	12	0	1	1	2.5
13	2	1	1	4.2	13	0	1	0.9	2.7	13	0	1	1	3.0
14	0	1	1	5.8	14	0	1	1	2.2	14	2	1	1	9.0
15	2	1	1	calcite	15	0	1	0.5	1.5	15	0	1	1	silt
16	0	1	1	4.5	16	0	1	1	2.9	16	2	1	1	calcite
17	2	1	1	7.5	17	0	1	1	2.3	17	0	1	0.6	2.6
18	2	1	1	3.2	18	0	1	1	0.8	18	0	1	1	7.0
19	1	1	1	3.6	19	0	1	1	silt	19	2	1	1	calcite
20	2	1	1	3.0	20	2	1	1	7.7	20	2	1	1	6.0
21	1	1	0.7	1.1	21	2	1	1	calcite	21	2	1	1	calcite
22	0	1	1	3.0	22	2	1	1	calcite	22	2	1	1	calcite
23	2	0	1	calcile	23	0	1	0.9	1.3	23	0	1	1	3.0
24	0	0	1	Z.Z	24	2	1	1	3.4 calcite	24	0	1	1	0.8
25	0	1	1	silt	25	2	1	1	calcite	25	2	1	1	7.6
27	0	1	0.4	1.5	27	1	1	1	silt	27	2	1	1	5.2
28	0	1	1	2.0	28	0	1	1	1.2	28	2	1	1	calcite
29	2	1	1	calcite	29	0	1	0.7	1.0	29	0	1	1	silt
30	2	1	1	calcite	30	0	1	1	1.0	30	0	1	1	2.0
31	0	1	1	4.4	31	0	1	1	0.8	31	2	1	1	5.0
32	0	1	1	silt	32	0	1	1	1.7	32	2	1	1	5.6
33	0	1	1	2.9	33	2	1	1	calcite	33	0	1	1	silt
34	2	1	1	6.0	34	0	1	0.8	1.9	34	0	1	0.3	1.7
35	2	1	1	4.8	35	2	1	1	calcite	35	0	1	1	silt
36	0	1	1	4.6	36	2	1	1	calcite	36	2	1	1	6.0
3/	2	1	1	4.4	3/	0	1	1	SIII	37	2	1	1	calcite
30	2	1	1	3.0 calcite	30	0	1	1	2.2	30	0	1	0.5	1.8
40	2	1	1	6 5	40	2	1	0.9	23	40	2	1	1	calcite
40	2	1	1	4.2	40	2	1	1	13.7	40	0	1	0.4	1 7
42	2	1	1	calcite	42	2	1	1	10.1	42	0	1	0.3	2.0
43	0	1	1	silt	43	0	1	1	4.2	43	0	1	1	silt
44	2	1	1	calcite	44	0	1	1	silt	44	0	1	0.5	2.7
45	2	1	1	6.8	45	0	1	1	2.7	45	2	1	1	9.2
46	2	1	1	2.5	46	0	1	1	1.5	46	0	1	0.2	2.4
47	2	1	1	calcite	47	2	1	1	calcite	47	0	1	0.5	2.2
48	2	1	1	calcite	48	2	1	1	calcite	48	0	1	1	8.5
49	0	1	1	silt	49	0	1	1	4.9	49	2	1	1	6.5
50 Co. Co. and Co.	2	1	1	5.2	50 Co. Co. and Co.	U	1	0.7	4./	50	2	1	1	4.5
=	1.28	0.98	0.94	-	= =	0.70	1.00	0.97	-	=	0.88	1.00	0.90	-
Ca	Calcite Index (CI) = 2.26					cite Index (CI) =		1.70		Cal	cite Index (CI) =		1.88	
Calcite Inc	dex Prime (CI') =		2.22		Calcite Inc	dex Prime (CI') =		1.67		Calcite Ind	ex Prime (CI') =		1.78	

Notes: cm = centimetres; C_c = calcite concretion score; C_p = calcite presence score; C_p' = calcite presence score prime; - = no data/not applicable; % = percent.

^a 0 = particle can be removed with no resistance; 1 = some resistance, but particle is still movable; 2 = particle is immovable/fully concreted.

^b 0 = calcite is absent; 1 = calcite is present.

Table D.2: Pebble Counts and Calcite Measurements at RG_GHNF on Upper Greenhills Creek, September 2021

		RG_GHNF-1					RG_GHNF-2					RG_GHNF-3		
		10-Sep-21					10-Sep-21					10-Sep-21		
Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)
1	0	1	0.8	14.7	1	0	1	1	silt	1	2	1	1	calcite
2	0	1	1	10.2	2	1	1	1	3.0	2	2	1	1	calcite
3	2	1	1	calcite	3	0	1	1	silt	3	0	1	1	silt
4	2	1	1	calcite	4	0	1	1	silt	4	2	1	1	calcite
5	1	1	0.6	6.4	5	1	1	1	2.0	5	0	1	1	silt
6	1	1	1	4.0	6	2	1	1	calcite	6	2	1	1	calcite
1	1	1	1	5.6	/	0	1	1	silt	1	2	1	1	calcite
8	2	1	1	calcite	8	0	1	1	silt	8	2	1	1	calcile
10	1	1	1	6 5	10	0	1	1	silt	10	0	1	1	2.1
10	2	1	1	calcite	11	1	1	1	7.0	10	0	1	1	silt
12	2	1	1	calcite	12	1	1	1	8.0	12	0	1	1	silt
13	2	1	1	calcite	13	0	1	1	silt	13	0	1	1	3.7
14	1	1	1	5.0	14	0	1	1	6.0	14	2	1	1	calcite
15	1	1	1	1.8	15	1	1	1	7.0	15	2	1	1	calcite
16	2	1	1	calcite	16	1	1	1	4.0	16	1	1	1	3.8
17	2	1	1	calcite	17	2	1	1	calcite	17	2	1	1	calcite
18	0	1	1	5.8	18	2	1	1	calcite	18	2	1	1	calcite
19	1	1	1	6.2	19	2	1	1	calcite	19	0	1	1	silt
20	0	1	1	4.8	20	2	1	1	calcite	20	1	1	1	5.4
21	2	1	1	calcite	21	0	1	1	silt	21	0	1	1	SIIL
22	2	1	1	calcite	22	1	1	1	4.0	22	1	1	1	
23	1	1	1	3.1	23	2	1	1	calcite	23	2	1	1	calcite
25	2	1	1	calcite	25	0	1	1	silt	25	0	1	1	silt
26	2	1	1	calcite	26	2	1	1	calcite	26	2	1	1	calcite
27	2	1	1	calcite	27	0	1	1	2.0	27	0	1	1	5.8
28	0	1	0.3	20.4	28	0	1	1	1.5	28	0	1	1	silt
29	2	1	1	calcite	29	0	1	1	2.5	29	2	1	1	calcite
30	2	1	1	calcite	30	0	1	1	silt	30	2	1	1	calcite
31	2	1	1	calcite	31	2	1	1	calcite	31	2	1	1	calcite
32	1	1	1	2.5	32	0	1	1	silt	32	2	1	1	calcite
33	2	1	1	calcite	33	0	1	1	SIIT	33	0	1	1	SIIT
34	2	1	1	calcite	34	1	1	1	4.5	34	1	1	1	1.4
36	1	1	1	1 7	36	1	1	1	4.0	36	0	1	1	silt
37	2	1	1	calcite	37	2	1	1	calcite	37	1	1	1	8.4
38	2	1	1	calcite	38	1	1	1	2.5	38	2	1	1	calcite
39	0	1	1	4.4	39	1	1	1	3.0	39	2	1	1	calcite
40	2	1	1	calcite	40	2	1	1	calcite	40	2	1	1	calcite
41	2	1	1	calcite	41	0	1	1	silt	41	0	1	1	silt
42	2	1	1	calcite	42	0	1	1	3.5	42	2	1	1	calcite
43	2	1	1	calcite	43	2	1	1	calcite	43	0	1	1	silt
44	0	1	1	silt	44	2	1	1	calcite	44	2	1	1	calcite
45	2	1	1	calcite	45	2	1	1	calcite	45	2	1	1	calcite
46	0	1	1	SIII	46	2	1	1	calcite	46	2	1	1	calcite
4/	2	1	1	calcite	4/	0	1	1	SIIL	4/	2	1	1	SIIL
40	0	1	1	silt	49	2	1	1	calcite	40	2	1	1	calcite
50	2	1	1	calcite	50	2	1	1	calcite	50	2	1	1	calcite
Cc, Cp, and Cp' =	1.44	1.00	0.97	-	Cc, Cp, and Cp' =	0.86	1.00	1.00	-	Cc, Cp, and Cp' =	1.20	1.00	1.00	-
Cal	cite Index (CI) =		2.44		Calci	te Index (CI) =		1.86		Cal	cite Index (CI) =		2.20	
Calcite Ind	dex Prime (CI') =		2.41		Calcite Inde	x Prime (Cl') =		1.86		Calcite Inc	lex Prime (CI') =		2.20	

Notes: cm = centimetres; C_c = calcite concretion score; C_p = calcite presence score; C_p' = calcite presence score prime; - = no data/not applicable; % = percent.

^a 0 = particle can be removed with no resistance; 1 = some resistance, but particle is still movable; 2 = particle is immovable/fully concreted.

^b 0 = calcite is absent; 1 = calcite is present.

Table D.2: Pebble Counts and Calcite Measurements at RG_GHNF on Upper Greenhills Creek, September 2021

		RG_GHNF-4					RG_GHNF-5					RG_GHNF-6		
		10-Sep-21					11-Sep-21					11-Sep-21		
Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)
1	2	1	1	14.0	1	2	1	1	calcite	1	2	1	1	calcite
2	2	1	1	calcite	2	0	1	1	2.0	2	2	1	1	calcite
3	2	1	1	calcite	3	0	1	1	2.2	3	2	1	1	calcite
4	2	1	1	calcite	4	0	1	1	1.5	4	0	1	1	silt
5	2	1	1	8.5	5	0	1	1	1.0	5	2	1	1	calcite
6	2	1	1	calcite	6	1	1	1	7.0	6	0	1	1	silt
/	2	1	1	calcite	/	2	1	1	calcite	1	2	1	1	calcite
0 0	2	1	1	calcite	0	2	1	1	calcite	0	2	1	1	
	2	1	1	calcite		0	1	1	4.0	10	2	1	1	2.4 calcite
11	2	1	1	calcite	10	0	1	1	4.0 6.0	11	2	1	1	calcite
12	2	1	1	calcite	12	0	1	1	silt	12	2	1	1	calcite
13	2	1	1	calcite	13	0	1	1	4.5	13	0	1	1	silt
14	0	1	1	2.0	14	0	1	1	2.7	14	2	1	1	calcite
15	0	1	1	1.0	15	2	1	1	calcite	15	2	1	1	calcite
16	2	1	1	calcite	16	2	1	1	calcite	16	2	1	1	calcite
17	2	1	1	calcite	17	0	1	1	silt	17	1	1	1	4.0
18	0	1	1	1.5	18	2	1	1	calcite	18	0	1	1	silt
19	2	1	1	calcite	19	2	1	1	calcite	19	2	1	1	calcite
20	2	1	1	calcite	20	0	1	1	SIIt	20	0	1	1	SIIt
21	2	1	1		21	2	1	1	calcite	21	0	1	1	calcite
23	0	1	1	1.5	22	1	1	1	5 4	22	2	1	1	calcite
24	2	1	1	calcite	24	1	1	1	11.3	24	2	1	1	calcite
25	1	1	1	2.0	25	0	1	1	silt	25	0	1	1	silt
26	1	1	1	1.5	26	1	1	1	2.7	26	0	1	1	2.2
27	2	1	1	calcite	27	2	1	1	calcite	27	2	1	1	calcite
28	2	1	1	calcite	28	2	1	1	calcite	28	2	1	1	calcite
29	2	1	1	calcite	29	0	1	1	silt	29	0	1	1	silt
30	2	1	1	calcite	30	1	1	1	11.8	30	1	1	1	4.0
31	2	1	1	calcite	31	1	1	1	5.8	31	2	1	1	calcite
32	2	1	1	calcite	32	0	1	1	SIIt	32	2	1	1	calcite
33	2	1	1	calcite	33	0	1	1	SIIL	33	2	1	1	calcile
34	2	1	1	calcite	35	0	1	1	4.0	34	2	1	1	calcite
36	1	1	1	0.7	36	2	1	1	calcite	36	2	1	1	calcite
37	2	1	1	calcite	37	2	1	1	calcite	37	0	1	1	silt
38	0	1	1	silt	38	1	1	1	2.0	38	0	1	1	silt
39	2	1	1	calcite	39	1	1	1	2.0	39	2	1	1	calcite
40	0	1	1	silt	40	0	1	1	silt	40	2	1	1	calcite
41	1	1	1	7.5	41	2	1	1	calcite	41	0	1	1	silt
42	2	1	1	10.1	42	1	1	1	6.0	42	2	1	1	calcite
43	2	1	1	calcite	43	2	1	1	calcite	43	0	1	1	silt
44	1	1	1	3.3	44	0	1	1	silt	44	0	1	1	silt
45	2	1	1	calcite	45	2	1	1	calcite	45	0	1	1	3.6
40 47	0	1	1	SIII	40 47	0	1	1	SIII	40	0	1	1	4.8 calcite
47	2	1	1	3.5	47	2	1	1	calcite	41	2	1	1	calcite
49	1	1	1	2.5	49	<u> </u>	1	1	10	49	0	1	1	3.5
50	0	1	1	silt	50	0	1	1	4.0	50	0	1	1	silt
Cc, Cp, and Cp' =	1.52	1.00	1.00	-	Cc, Cp, and Cp' =	0.88	1.00	1.00	-	Cc, Cp, and Cp' =	1.16	1.00	1.00	-
Cal	cite Index (CI) =		2.52		Cale	cite Index (CI) =		1.88		Cal	cite Index (CI) =		2.16	
Calcite Ind	lex Prime (CI') =		2.52		Calcite Ind	ex Prime (CI') =		1.88		Calcite Ind	lex Prime (Cl') =		2.16	
h							l					1		

Notes: cm = centimetres; C_c = calcite concretion score; C_p = calcite presence score; C_p' = calcite presence score prime; - = no data/not applicable; % = percent.

^a 0 = particle can be removed with no resistance; 1 = some resistance, but particle is still movable; 2 = particle is immovable/fully concreted.

^b 0 = calcite is absent; 1 = calcite is present.

Table D.3: Pebble Counts and Calcite Measurements at RG_GHFF on Upper Greenhills Creek, September 2021

		RG_GHFF-1					RG_GHFF-2					RG_GHFF-3	1	
		09-Sep-21					09-Sep-21					09-Sep-21		
Pebble	Concreted Status ^a	Calcite Presence	Proportional Calcite Presence	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence	Proportional Calcite Presence	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presen	Ce Proportional Calcite Presence	Intermediate Axis (cm)
1	2	1	0.3	5.0	1	1	1	1	8.6	1	0	1	1	9.0
2	2	1	0.6	14.1	2	2	1	0.9	16.0	2	0	1	1	7.9
4	1	1	0.9	8.2	3	2	1	0.9	63		2	1	0.9	20.2
5	1	1	0.8	8.6	5	2	1	0.8	5.8	5	2	1	0.9	4.3
6	0	1	0.4	11.1	6	2	1	0.6	6.8	6	2	1	0.8	8.5
7	1	1	0.7	8.5	7	2	1	0.9	5.6	7	2	1	1	23.5
8	0	1	0.6	8.2	8	2	1	0.9	13.4	8	2	1	1	10.4
9	0	0	0	3.7	9	2	1	0.9	7.0	9	2	1	1	6.6
10	2	1	0.5	7.6	10	2	1	0.9	11.1	10	2	1	1	5.5
11	2	1	0.3	5.5	11	2	1	0.9	2.4	11	0	1	0.6	7.0
13	1	1	1	10.4	13	2	1	1	8.3	12	1	1	1	9.5
14	2	1	0.6	4.0	14	1	1	0.9	10.9	10	0	1	0.7	4.9
15	2	1	0.6	7.6	15	2	1	0.8	14.9	15	0	1	0.4	4.0
16	1	1	0.5	6.0	16	2	1	1	9.7	16	2	1	1	19.7
17	1	1	0.8	24.4	17	2	1	1	23.5	17	2	1	0.8	12.6
18	1	1	1	13.8	18	2	1	0.9	6.7	18	2	1	0.6	5.8
19	1	1	0.7	15.3	19	2	1	1	9.6	19	2	1	1	13.0
20	0	1	0.9	9.5	20	2	1	0.9	7.9	20	0	1	1	3.0
22	0	1	1	32	22	2	1	0.9	9.9	22	0	1	0.8	6.0
23	2	1	0.8	7.0	23	2	1	1	11.4	23	1	1	0.9	17.0
24	0	1	0.7	3.9	24	2	1	0.9	2.0	24	0	1	0.9	3.6
25	1	1	0.5	6.0	25	2	1	0.9	22.3	25	2	1	1	7.0
26	1	1	0.8	10.6	26	2	1	1	7.3	26	2	1	0.9	8.0
27	2	1	1	5.6	27	2	1	1	10.8	27	2	1	0.9	6.6
28	0	1	0.6	9.0	28	1	1	0.8	5.9	28	2	1	0.8	13.6
30	2	1	0.9	10.7	30	1	1	1	9.5	30	2	1	1	6.6
31	2	1	0.9	6.7	31	1	1	1	3.8	31	0	1	0.5	5.0
32	2	1	1	14.1	32	2	1	0.9	4.2	32	2	1	0.8	9.6
33	1	1	1	13.2	33	2	1	0.9	6.3	33	1	1	0.6	7.5
34	2	1	0.9	12.0	34	2	1	0.9	7.9	34	1	1	0.8	3.5
35	0	1	0.9	11.6	35	1	1	0.9	7.1	35	2	1	1	14.3
36	2	1	0.9	14.4	36	2	1	1	2.5	36	2	1	1	8.0
38	2	1	0.0	8.1	38	2	1	0.9	16.3	38	2	1	1	11.5
39	0	1	0.9	2.0	39	1	1	0.9	10.0	39	0	1	1	3.6
40	2	1	0.5	14.0	40	2	1	0.9	8.6	40	1	1	0.7	8.5
41	1	1	0.6	7.3	41	2	1	1	3.9	41	2	1	1	10.4
42	2	1	0.8	8.5	42	2	1	0.9	4.7	42	2	1	1	5.0
43	2	1	0.9	6.2	43	2	1	0.9	(.4	43	2	1	1	30.0
44	2 1	1	0.9	7.5	44		1	0.9	13.1	44		1	1	3.U 8.5
45	2	1	0.5	24.4	45	2	1	0.9	13.2	40	2	1	0.8	9.0
47	2	1	1	4.6	47	0	1	0.8	2.5	47	0	1	0.9	10.0
48	2	1	0.6	9.6	48	1	1	0.8	11.4	48	1	1	1	7.5
49	49 2 1 0.8 25.6				49	2	1	0.9	10.5	49	2	1	1	12.0
50	50 1 1 0.6 12.9				50	1	1	0.7	4.0	50	2	1	1	5.0
Cc, Cp, and Cp' =	c, Cp, and Cp' 1.26 0.98 0.72 -					1.68	1.00	0.90	-	Cc, Cp, and Cp' =	1.28	1.00	0.90	-
Ci	alcite Index (CI) =		Ca	cite Index (CI) =	•	2.68		Ca	alcite Index (CI) =		2.28			
Calcite Ir	Calcite Index Prime (CI') = 1.98					lex Prime (CI') =	:	2.58		Calcite In	dex Prime (CI') =		2.18	

Notes: cm = centimetres; C_c = calcite concretion score; C_p = calcite presence score; C_p' = calcite presence score prime; - = no data/not applicable; % = percent.

^a 0 = particle can be removed with no resistance; 1 = some resistance, but particle is still movable; 2 = particle is immovable/fully concreted.

^b 0 = calcite is absent; 1 = calcite is present.

Table D.3: Pebble Counts and Calcite Measurements at RG_GHFF on Upper Greenhills Creek, September 2021

		RG_GHFF-	4				RG_GHFF-5					RG_GHFF-	-6	
		09-Sep-21					10-Sep-21					10-Sep-21		
Pebble	Concreted Status ^a	Calcite Prese	nce Proportional Calcite Presence	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence	Proportional Calcite Presence	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Prese	nce Proportional Calcite Presence	Intermediate Axis (cm)
1	2	1	1	7.5	1	2	1	0.9	27.1	1	0	1	1	7.2
2	2	1	1	<u> </u>	2	2	1	0.9	13.4	2	2	1	1	8.9
4	2	1	1	25.6	4	2	1	0.8	4.5	4	2	1	1	19.0
5	2	1	1	9.8	5	2	1	0.9	15.0	5	1	1	1	11.0
6	2	1	0.9	11.4	6	2	1	1	10.6	6	2	1	1	7.5
7	2	1	0.7	24.0	7	1	1	0.7	8.5	7	2	1	0.9	27.0
8	2	1	0.8	9.6	8	1	1	0.8	7.3	8	2	1	0.6	19.5
9	2	1	0.7	10.7	9	2	1	0.9	10.4	9	2	1	1	6.7
10	2	1	0.9	11.8	10	<u>1</u>	1	0.7	11.3	10	2	1	1	12.6
12	2	1	0.7	12.2	12	2	1	0.8	4.1	11	2	1	1	14.0
13	1	1	1	6.0	13	2	1	0.8	11.0	13	0	1	0.6	14.4
14	2	1	1	13.4	14	2	1	0.9	5.4	14	2	1	1	9.6
15	2	1	0.4	16.0	15	1	1	0.8	8.8	15	0	1	0.9	19.4
16	2	1	1	14.5	16	2	1	0.9	15.2	16	0	1	1	9.6
17	1	1	0.9	12.0	17	2	1	1	11.1	17	0	1	0.9	14.2
18	0	1	1	5.0	18	2	1	1	18.8	18	1	1	0.8	12.6
19	1	1	0.9	7.0	19	2	1	0.6	0.4 5.6	19	2	1	1	11.0
20	0	1	1	5.6	20	0	1	0.5	4 7	20	2	1	1	10.0
22	2	1	1	9.5	22	1	1	0.7	14.1	22	2	1	1	4.9
23	2	1	1	11.6	23	1	1	0.7	4.4	23	2	1	1	9.6
24	2	1	0.9	7.8	24	0	1	0.8	19.8	24	2	1	1	8.4
25	2	1	0.8	3.6	25	2	1	0.9	5.1	25	2	1	0.8	13.0
26	2	1	0.9	5.0	26	2	1	1	8.7	26	2	1	1	12.6
27	2	1	1	11.6	2/	2	1	0.9	6.0	27	2	1	0.7	21.1
28	2	1	1	10.4	28	2	1	0.4	5.0	28	2	1	1	9.2
30	2	1	1	5.4	30	2	1	1	3.8	30	2	1	1	21.1
31	2	1	1	15.0	31	2	1	0.9	11.1	31	1	1	1	5.0
32	2	1	1	12.0	32	2	1	1	8.5	32	2	1	1	8.2
33	2	1	0.9	4.3	33	2	1	0.8	12.4	33	1	1	1	8.0
34	2	1	1	7.6	34	0	1	1	3.5	34	1	1	1	11.4
35	2	1	0.9	10.6	35	2	1	1	7.0	35	2	1	1	16.1
30	0	1	0.9	8.4	30	2	1	0.9	4.9	30	1	1	0.8	<u> </u>
38	1	1	0.5	5.5	38	2	1	0.9	8.3	38	1	1	0.0	7.6
39	2	1	1	8.2	39	2	1	0.8	7.5	39	2	1	1	7.4
40	2	1	1	12.2	40	2	1	0.9	5.0	40	0	1	1	14.2
41	2	1	1	17.0	41	2	1	1	9.8	41	2	1	1	7.3
42	2	1	1	11.5	42	2	1	1	6.1	42	2	1	1	9.2
43	0	1	1	4.4	43	1	1	0.7	11.0	43	1	1	0.4	23.0
44	2	1	U./ 1	20.0	44 45	2	1	0.9	9.0	44 45	<u> </u>	1	0.9	3.0
46	2	1	1	12.4	46	2	1	1	33	46	2	1	1	7.4
47	0	1	1	7.5	47	2	1	0.8	6.2	47	0	1	1	11.2
48	48 2 1 0.8 6.8				48	2	1	0.9	8.3	48	0	1	1	3.4
49	49 2 1 1 8.3				49	2	1	0.9	1.3	49	2	1	1	4.6
50	50 2 1 1 6.8				50	2	1	1	7.1	50	2	1	0.9	7.1
cc, cp, and Cp' =	c, Cp, and Cp' 1.64 1.00 0.92 -					1.68	1.00	0.86	-	cc, cp, and Cp' =	1.46	1.00	0.93	-
Ca	Calcite Index (CI) = 2.64					lcite Index (CI) =		2.68		Ca	alcite Index (CI) =		2.46	
Calcite In	ndex Prime (CI') =	2.56		Calcite In	dex Prime (Cl') =		2.54		Calcite In	dex Prime (CI') =		2.39		

Notes: cm = centimetres; C_c = calcite concretion score; C_p = calcite presence score; C_p' = calcite presence score prime; - = no data/not applicable; % = percent.

^a 0 = particle can be removed with no resistance; 1 = some resistance, but particle is still movable; 2 = particle is immovable/fully concreted.

^b 0 = calcite is absent; 1 = calcite is present.

Table D.4: Pebble Counts and Calcite Measurements at RG_GHBP on Lower Greenhills Creek, September 2021

		RG_GHBP-1					RG_GHBP-2					RG_GHBP-3		
		11-Sep-21					14-Sep-21					11-Sep-21		
Pebble	Concreted Status ^a	Calcite Presence	Proportional Calcite Presence	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence	Proportional Calcite Presence	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence	Proportional Calcite Presence	Intermediate Axis (cm)
1	0	1	0.6	10.5	1	0	1	1	8.4	1	0	1	0.5	16.7
2	0	1	0.4	5.5	2	0	1	0.5	13.6	2	0	1	0.6	10.2
3	0	0	0	3.2	3	0	1	0.9	6.6	3	0	1	0.8	9.0
4	0	1	0.2	0.4	4	0	1	0.2	7.3	4	0	1	0.6	9.0
6	0	1	0.4	10.3	6	0	1	0.8	6.5	6	0	1	0.1	8.1
7	0	1	0.1	4.2	7	0	1	0.7	7.9	7	0	1	0.1	3.6
8	0	1	0.2	3.5	8	0	1	0.4	5.9	8	0	1	0.4	6.9
9	0	1	0.1	2.1	9	0	1	1	9.6	9	0	1	0.7	7.0
10	0	0	0	1.8	10	0	1	0.4	5.9	10	0	1	0.8	7.3
11	0	0	0	0.9	11	0	0	0	4.4	11	0	1	0.5	12.5
12	0	0	0	0.5	12	0	1	0.3	5.2	12	0	1	0.3	11.2
13	0	1	02	92	13	0	1	0.5	9.5	13	0	1	0.2	5.4
15	0	1	0.6	7.8	15	0	1	0.4	5.5	15	0	0	0	4.6
16	0	1	0.8	6.5	16	0	1	0.5	6.0	16	0	1	0.1	2.3
17	0	0	0	5.2	17	0	1	0.4	7.2	17	0	1	0.6	9.4
18	0	1	0.3	6.1	18	0	1	0.2	7.5	18	0	1	0.4	8.9
19	0	1	0.8	9.4	19	0	1	0.1	4.9	19	0	1	0.5	11.7
20	0	1	0.6	9.2	20	0	1	0.6	7.0	20	0	1	0.7	7.8
21	0	1	0.1	4.7	21	0	1	0.4	9.5	21	0	1	0.3	4.7
23	0	1	1	11.0	23	0	0	0	3.2	23	0	1	0.5	47
24	0	1	0.1	6.0	24	0	1	0.2	9.0	24	0	1	0.7	12.3
25	0	1	0.3	10.1	25	0	1	0.1	3.5	25	0	1	0.4	9.5
26	0	1	0.6	7.6	26	0	1	1	7.4	26	0	1	0.3	6.2
27	0	1	0.9	8.7	27	0	1	0.5	10.0	27	0	0	0	1.1
28	0	1	0.5	8.5	28	0	1	0.6	7.3	28	0	0	0 1	0.8
30	0	1	0.4	4.5	30	0	1	0.2	7.0	30	0	1	0.1	3.1
31	0	1	0.6	3.5	31	0	1	1	13.7	31	0	0	0	1.7
32	0	1	0.7	8.5	32	0	1	0.1	6.9	32	0	1	0.1	2.3
33	0	1	0.6	7.2	33	0	1	1	16.4	33	0	0	0	6.8
34	0	1	0.1	4.9	34	0	1	1	7.2	34	0	1	0.7	6.7
35	0	1	0.4	8.3	35	0	1	0.4	9.5	35	0	1	0.8	10.5
30	0	1	0.3	5.4 7.8	30	0	1	0.5	0.9	30	0	1	0.7	13.3
38	0	1	0.5	7.5	38	0	1	0.3	9.2	38	0	1	0.2	3.8
39	0	1	0.6	9.1	39	0	0	0	8.7	39	0	1	0.9	12.4
40	0	1	0.6	14.1	40	0	1	1	6.2	40	0	1	0.7	10.5
41	0	1	0.1	4.6	41	0	1	0.3	6.4	41	0	1	0.6	4.7
42	0	1	0.2	6.1	42	0	1	0.1	7.0	42	0		0.4	5.8
43	0	1	0.5	10.0	43	0	1	0.1	5.5	43	0	1	0.2	0.5
44	0	1	0.4	13.2	44	0	1	0.9	10.9	44	0	1	0.0	10.9
46	0	1	0.1	3.1	46	0	0	0	3.0	46	0	1	0.5	5.8
47	0	0	0	2.3	47	0	0	0	3.7	47	0	1	0.6	9.9
48	0	1	0.2	3.7	48	0	1	0.1	6.8	48	0	1	1	10.3
49	0	1	0.1	4.2	49	0	1	0.2	7.6	49	0	1	0.7	9.1
50	0	1	0.4	9.0	50	0	1	0.4	6.9	50	0	1	0.3	7.3
=	0.00	0.86	0.36	-	=	0.00	0.90	0.47	-	- cc, cp, and cp =	0.00	0.90	0.45	-
Ca	alcite Index (CI) =	•	0.86		Ca	Icite Index (CI)	=	0.90		Ca	alcite Index (CI) =		0.90	
Calcite In	idex Prime (CI') =	:	0.36		Calcite In	dex Prime (CI')	=	0.47		Calcite In	dex Prime (Cl') =		0.45	

Notes: cm = centimetres; C_c = calcite concretion score; C_p = calcite presence score; C_p' = calcite presence score prime; - = no data/not applicable; % = percent.

^a 0 = particle can be removed with no resistance; 1 = some resistance, but particle is still movable; 2 = particle is immovable/fully concreted.

^b 0 = calcite is absent; 1 = calcite is present.

Table D.4: Pebble Counts and Calcite Measurements at RG_GHBP on Lower Greenhills Creek, September 2021

		RG_GHBP-4					RG_GHBP-5					RG_GHBP-	6	
		14-Sep-21					11-Sep-21					14-Sep-21		
Pebble	Concreted Status ^a	Calcite Presenc	Ce Proportional Calcite Presence	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence	Proportional Calcite Presence	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Prese	nce Proportional Calcite Presence	Intermediate Axis (cm)
1	0	1	0.3	8.4	1	0	1	0.5	7.1	1	1	1	1	13.1
2	0	1	1	8.6	2	0	1	0.2	12.2	2	0	1	1	8.8
3	0	1	0.5	10.2	3	0	1	0.1	7.3	3	0	1	0.6	8.5
4	0	1	0.2	10.2	4	0	1	0.3	7.0	4	0	1	0.8	9.5
6	0	1	0.0	82	6	0	1	0.8	9.9	6	0	1	0.0	5.2
7	0	0	0	4.9	7	0	0	0.0	4.7	7	0	1	0.4	3.2
8	0	1	0.1	4.5	8	0	1	0.9	2.3	8	0	1	1	7.2
9	0	1	0.1	2.9	9	0	1	0.1	5.1	9	0	1	0.3	5.4
10	0	1	0.4	8.7	10	0	1	0.2	3.7	10	0	1	0.2	5.0
11	0	1	0.5	9.4	11	0	1	1	10.6	11	0	1	0.4	7.5
12	0	1	0.6	5.2	12	0	1	0.6	6.2	12	0	1	0.5	5.9
13	0	1	0.9	6.0	13	0	1	0.4	0.4 1 3	13	0	1	0.7	9.2
15	0	1	0.0	3.0	15	0	1	0.2	2.4	15	0	1	0.7	7 1
16	0	1	0.8	8.7	16	0	1	1	10.5	16	0	1	0.9	5.7
17	0	1	0.3	7.0	17	0	1	1	3.2	17	0	1	0.8	4.2
18	0	1	0.5	10.7	18	0	1	0.5	6.1	18	0	1	1	2.3
19	0	1	1	9.2	19	0	1	0.4	6.3	19	1	1	0.9	4.3
20	0	1	0.8	10.8	20	0	1	1	5.3	20	0	1	0.6	6.5
21	0	1	0.4	9.0	21	0	1	0.7	4.7	21	0	1	0.9	10.7
22	0	1	0.3	9.9	22	0	1	0.8	0.1 5.2	22	0	1	0.7	4.5
23	0	0	0.1	4.5	23	0	1	0.2	22	23	0	1	0.0	13.4
25	0	0	0	6.9	25	0	1	0.5	10.3	25	2	1	1	9.6
26	0	1	0.7	5.4	26	0	1	0.5	9.3	26	0	1	0.6	5.2
27	0	1	0.6	9.2	27	0	1	0.3	7.2	27	0	1	1	5.5
28	0	1	0.3	6.4	28	0	1	0.2	5.8	28	0	1	0.8	5.3
29	0	1	0.1	9.0	29	0	1	0.1	4.9	29	1	1	0.9	6.3
30	0	1	0.3	5.4	30	0	1	0.7	3.5	30	0	1	0.9	6.3
31	0	1	0.3	13.4	31	0	0	0	2.2	31	1	1	1	7.4
33	0	0	0.1	6.2	33	0	1	0.1	2.1	33	0	1	0.8	1.5
34	0	1	0.1	8.4	34	0	0	0.0	1.9	34	0	1	1	1.2
35	0	1	0.1	9.7	35	0	1	0.4	3.8	35	0	1	0.6	2.3
36	0	1	0.3	7.5	36	0	1	0.5	8.7	36	0	1	0.8	2.6
37	0	1	0.4	10.4	37	0	0	0	2.5	37	2	1	1	9.5
38	0	1	0.2	10.6	38	0	1	0.3	8.8	38	0		0.7	2.5
39	0	U 1	0.4	3.5 10 e	39	0	1	0.4	4.8 6.0	39	U 1	1	1	1.9
40	0	1	0.4	14 5	40	0	1	0.5	0.9 9 1	40 <u>4</u> 1	0	1	1	6.8
42	0	1	0.6	10.9	42	0	1	0.2	8.2	42	0	1	0.7	4.3
43	0	1	0.3	10.7	43	0	1	0.7	9.5	43	0	1	0.9	5.7
44	0	0.5	5.4	44	0	1	0.2	6.2	44	0	1	0.8	2.7	
45	0	1	1	10.4	45	0	1	0.4	5.8	45	0	1	0.6	2.3
46	0	1	1	6.4	46	0	1	0.2	4.1	46	0	1	0.9	6.4
47	0	1	0.9	12.2	47	0	1	0.6	9.2	47	1		0.6	6.2
48	0	1	0.7	11.9	48	0	1	0.5	0.1 3.1	48	0	1	0.9	<u>/.1</u> 23
	0	1	0.3	7.5		0	1	1	10.3		0	1	0.9	4.2
Cc, Cp, and Cp' =	0.00	0.90	0.42	-	Cc, Cp, and Cp' =	0.00	0.92	0.44	-	Cc, Cp, and Cp' =	0.24	1.00	0.79	-
Ca	alcite Index (CI) =		0.90		Ca	lcite Index (CI)	=	0.92		Ca	licite Index (CI) =		1.24	
Calcite In	idex Prime (Cl') =		0.42		Calcite Inc	dex Prime (CI') :	=	0.44		Calcite In	dex Prime (Cl') =		1.03	

Notes: cm = centimetres; C_c = calcite concretion score; C_p = calcite presence score; C_p' = calcite presence score prime; - = no data/not applicable; % = percent.

^a 0 = particle can be removed with no resistance; 1 = some resistance, but particle is still movable; 2 = particle is immovable/fully concreted.

^b 0 = calcite is absent; 1 = calcite is present.

Table D.5: Comparison of Calcite Presence and Concretion Scores Among Treated (RG_GHBP) and Untreated (RG_GHUT, RG_GHNF, and RG_GHFF) Areas of Greenhills Creek, 2017 to 2021^a

Calcite ,		P-values			Calcite	Presence	Concret	ion Score				Area Contras	sts						Temporal	Contrasts			
Calcite	Year x	Voor	Area	Year						Letter	Contrasts			MOD (%) ^b		RG_	GHBP	RG	GHUT	RG_	GHNF	RG	_GHFF
	Area	rear	Area		RG_GHBP	RG_GHU1	RG_GH	NF RG_GHFF	RG_GHBP	RG_GHU	T RG_GHN	NF RG_GHFF	RG_GHUT	RG_GHNF	RG_GHFF	Letter	MOD (%) ^c	Letter	MOD (%) ^c	Letter	MOD (%) ^c	Letter	MOD (%) ^c
				2017	0.69	1.0	1.0	1.0	В	Α	Α	А	44	45	44	В	-	A	-	А	-	А	-
Presence Score (C _p) ^d				2018	0.63	1.0	1.0	1.0	В	А	А	А	57	57	57	BC	-8.1	А	0.34	А	0	А	0.33
	<0.001	0.008 <	<0.001	2019	0.75	1.0	1.0	1.0	В	А	А	А	33	33	33	В	8.8	А	0.0028	А	0	А	0.33
				2020	0.58	1.0	1.0	1.0	В	Α	Α	А	72	74	74	С	-17	А	-0.33	А	0	А	0.33
				2021	0.91	1.0	1.0	1.0	А	А	А	А	10	10	9.4	А	32	А	0.33	А	0	А	0
				2017	0.089	1.1	1.8	1.2	В	Α	Α	А	1,160	1,920	1,201	А	-	С	-	AB	-	С	-
O an anatian				2018	0.085	1.5	1.6	1.6	В	А	А	А	1,718	1,815	1,785	AB	-5.2	AB	37	В	-10	А	37
Score (C ₂)	<0.001	<0.001 <	<0.001	2019	0.064	1.8	2.0	1.6	В	А	А	А	2,694	2,997	2,396	BC	-29	А	58	А	9.0	AB	36
				2020	0.055	1.5	1.7	1.3	В	Α	Α	А	2,559	3,061	2,329	С	-39	В	29	AB	40	BC	14
				2021	0.010	1.0	1.2	1.5	В	А	А	А	9,265	11,284	14,522	D	-89	С	-15	С	-36	AB	29

Relevant p-value <0.05.

P-value <0.05 and MOD <0 (i.e., score is lower relative to the score for RG_GHBP or decreased relative to 2017).

P-value <0.05 and MOD >0 (i.e., score is higher relative to the score for RG_GHBP or increased relative to 2017).

Notes: MOD = Magnitude of Difference; % = percent; < = less than; - = not calculated/not applicable; > = greater than; GLMM = Generalized Linear Mixed Model; HSD = Honestly Significant Difference. Letters A, B, and C are used to illustrate similarities and differences among areas and years (e.g., areas assigned an "A" have significantly higher calcite present scores than areas assigned a "B").

^a The differences among areas and years for calcite presence and concretion scores were compared using a GLMM with factors Area and Year and Area x Year assuming a negative binomial distribution. Post-hoc comparisons were corrected for multiple comparisons using a Tukey's HSD test. ^b MOD = (Score_{Exposed}-Score_{GHBP})/Score_{GHBP}.

^c MOD = (Score_{year}-Scoree2017)/Score₂₀₁₇.

^d Binomial calcite presence scores (C_p) were included in the analysis, rather than proportional presence scores (C_p') because multiple years of data were available for the former (i.e., 2017 to 2021) but not the latter (i.e., 2021 only).

Table D.6: Pebble Counts and Calcite Measurements at RG_GAUT on Upper Gardine Creek, September 2021

istrate <			RG_GAUT-1					RG_GAUT-2					RG_GAUT-3		
Description Gaths Propertion Internation Path State Concrete (Notice) Propertion (Notice) Internation (Notice) Concrete (Notice) Propertion (Notice) Concrete (Notice) Propertion (Notice) Concrete (Notice) Propertion (Notice) Concrete (Notice) Propertion (Notice) Concrete (Notice) Concrete (Notice)			16-Sep-21					16-Sep-21					16-Sep-21		
1 0 0 0 0 0 0 17 1 0	Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)
2 0 0 0 40 0 40 0 40 0	1	0	0	0	6.4	1	0	0	0	1.7	1	0	0	0	4.9
4 0 0 0 32 4 0 0 33 4 0 0 33 4 0 0 33 4 0 0 33 4 0 0 33 4 0 0 33 4 0 0 33 4 0 0 33 4 0 0 33 4 0 0 33 4 0 0 33 4 0 0 0 33 4 0	2	0	0	0	3.5	2	0	0	0	4.9	2	0	0	0	6.2
i i	3	0	0	0	SIII 8 7	3	0	0	0	Z.5	3	0	0	0	7.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	0	0	0	3.2	5	0	0	0	1 /	5	0	0	0	2.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	0	0	0	4.5	6	0	0	0	3.9	6	0	0	0	3.0
8 0 0 3.1 8 0 0 1.3 8 0 0 2.0 9 0 0 3.1 8 0 0 1.3 8 0 0 0 2.0 10 0 0 1.0 1.0 1.0 1.0 0 0.0 1.3 8 0 </td <th>7</th> <td>0</td> <td>0</td> <td>0</td> <td>2.1</td> <td>7</td> <td>0</td> <td>0</td> <td>0</td> <td>1.9</td> <td>7</td> <td>0</td> <td>0</td> <td>0</td> <td>2.2</td>	7	0	0	0	2.1	7	0	0	0	1.9	7	0	0	0	2.2
θ 0 0 3.3 9 0 0 15. 9 0 0 0 25 10 0 0 17. 10 0 15. 9 0 <th0< th=""> <th0< th=""> <th< td=""><th>8</th><td>0</td><td>0</td><td>0</td><td>3.1</td><td>8</td><td>0</td><td>0</td><td>0</td><td>1.3</td><td>8</td><td>0</td><td>0</td><td>0</td><td>2.0</td></th<></th0<></th0<>	8	0	0	0	3.1	8	0	0	0	1.3	8	0	0	0	2.0
10 0 0 17 19 0 0 14 19 0 0 24 11 0 0 10 11 0 0 25 11 0 0 11 0 0 11 0	9	0	0	0	3.3	9	0	0	0	1.5	9	0	0	0	2.5
11 0 0 1.1 0 0 2.8 11 0 0 0 1.1 12 0 0 0.2 1.5 1.6 0 0 2.8 11 0	10	0	0	0	1.7	10	0	0	0	1.4	10	0	0	0	2.4
12 0 0 12 0 0 0 12 0 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0<	11	0	0	0	1.0	11	0	0	0	2.6	11	0	0	0	1.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	12	0	0	0	1.2	12	0	0	0	0.9	12	0	0	0	3.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13	0	0	0	10.5	13	0	0	0	2.1	13	0	0	0	0.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14	0	1	0.2	9.9	14	0	0	0	silt	14	0	0	0	silt
inf 0 0 0 2 1 1 1 1 1 1 1 1 1 0 0 2 1 1 0	15	0	0	0	3.3	15	0	0	0	1.9	15	0	0	0	2.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	0	0	0	0.7	10	0	0	0	2.7	10	0	0	0	2.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	0	0	0	11 1	18	0	0	0	22	18	0	0	0	2.7
20 0 0 0 1 20 0 0 31 20 0 0 0 34 21 0 0 0 1.4 21 0 0 1.5 21 0 0 0 1.5 22 0 0 0 2.3 22 0 0 0 1.5 23 0 0 0 2.1 23 0 0 0 0 1.5 24 0 0 0 0.1 2.4 0	19	0	0	0	94	19	0	0	0	2.2	19	0	0	0	1.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	0	0	0	2.0	20	0	0	0	3.1	20	0	0	0	3.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	21	0	0	0	1.4	21	0	0	0	1.6	21	0	0	0	1.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	22	0	0	0	2.3	22	0	0	0	1.9	22	0	0	0	4.1
24 0 0 7.1 24 0 0 1.9 24 0 0 0 4.2 25 0 0 0.3 32 0 0 0.1 1.8 25 0 0 0 2.2 26 0 0 0 2.5 2.7 0 0 0 2.2 2.7 0	23	0	0	0	11.3	23	0	0	0	2.1	23	0	0	0	1.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24	0	0	0	7.1	24	0	0	0	1.9	24	0	0	0	4.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25	0	0	0	3.3	25	0	0	0	1.8	25	0	0	0	2.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26	0	0	0	9.1	26	0	0	0	0.8	26	0	0	0	1./
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27	0	0	0	2.5	27	0	0	0	2.2	2/	0	0	0	3.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	28	0	0	0	10.0	28	0	0	0	2.5	28	0	0	0	1.8
31 0 1 35 31 0 0 sit 31 0 0 1.7 32 0 1 0.3 2.7 32 0 0 0.9 32 0 0 0 6.7 1.7 33 0 0 4.5 33 0 0 0.9 32 0 0 0 6.7 3.7 34 0 1 0.1 2.3 34 0 0.6 34 0 0 0 3.0 35 0 0 6.7 35 0 0 0.6 34 0 0 3.0 36 0 0 0 1.1 36 0 0 1.3 38 0 0 0 4.8 37 0 0 0 3.1 38 0 0 1.3 38 0 0 0 1.9 38 0	30	0	0	0	12	30	0	0	0	1.2	30	0	0	0	2.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31	0	1	1	3.5	31	0	0	0	silt	31	0	0	0	1.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32	0	1	0.3	2.7	32	0	0	0	0.9	32	0	0	0	5.2
34 0 1 0.1 2.3 34 0 0 0 0.6 34 0 0.0	33	0	0	0	4.5	33	0	0	0	silt	33	0	0	0	1.5
35 0 0 1.8 35 0 0 2.8 36 0 1 36 0 0 1.5 36 0 0 4.8 37 0 1 0.1 3.1 37 0 0 0 4.5 37 0 0 0 2.7 38 0 0 0 3.1 37 0 0 4.5 37 0 0 0 2.7 38 0 0 0 3.1 38 0 0 1.3 38 0 0 0 0 1.3 38 0 0 0 3.9 39 0 0 0 1.7 39 0 0 0 1.3 38 0 0 0 3.9 40 0 0 0 1.7 40 0 0 0 3.1 41 0 0 3 42 0 0 0 3.1 3.1 3.1 3.1 3.1 3.1 <th>34</th> <td>0</td> <td>1</td> <td>0.1</td> <td>2.3</td> <td>34</td> <td>0</td> <td>0</td> <td>0</td> <td>0.6</td> <td>34</td> <td>0</td> <td>0</td> <td>0</td> <td>3.0</td>	34	0	1	0.1	2.3	34	0	0	0	0.6	34	0	0	0	3.0
36 0 0 1.1 36 0 0 1.5 36 0 0 0 4.8 37 0 0 0 0.1 3.1 37 0 0 4.5 37 0 0 0 4.8 38 0 0 0 0.1 3.1 38 0 0 1.3 38 0 0 1.3 38 0 0 1.3 38 0 0 1.3 38 0 0 1.3 38 0 0 1.9 39 0 0 0 1.9 40 0 0 0 3.9 40 0 0 0 1.7 41 0 0 0 1.7 41 0 0 0 3.1 41 0 0 0 1.4 42 0 0 1.7 41 0 0 3.1 43 0 1 0.2 1.7 43 0 0 0 3.1 3.4 0 0	35	0	0	0	6.7	35	0	0	0	1.8	35	0	0	0	2.8
37 0 1 0.1 3.1 37 0 0 4.5 37 0 0 0 2.7 38 0 0 0 3.1 38 0 0 1.3 38 0 0 1.9 39 0 0 0 1.7 39 0 0 1.5 39 0 0 0 3.9 40 0 0 0 8.5 40 0 0 1.5 39 0 0 0 3.9 41 0 0 0 2.1 41 0 0 1.7 41 0 0 0 3.1 42 0 0 0 4.3 42 0 0 1.7 43 0 0 0 0 3.1 43 0 1 0.2 1.7 43 0 0 0 3.1 3.8 0 0 0 3.1 44 0 0 0 1.4 44 0 0	36	0	0	0	1.1	36	0	0	0	1.5	36	0	0	0	4.8
3e 0 0 0 3.1 38 0 0 1.3 38 0 0 0 1.9 39 0 0 0 1.7 39 0 0 1.5 38 0 0 0 3.9 40 0 0 0 8.5 40 0 0 1.5 38 0 0 0 0 2.2 41 0 0 0 2.1 41 0 0 1.7 41 0 0 0 0 3.1 42 0 0 0 1.7 43 0 0 1.7 41 0 0 0 0 0 0 0 1.3 1.4 43 0 0 0 1.4 44 0 0 2.2 44 0 0 0 1.6 44 0 0 2.3 45 0 0 <th>37</th> <td>0</td> <td></td> <td>0.1</td> <td>3.1</td> <td>37</td> <td>0</td> <td>0</td> <td>0</td> <td>4.5</td> <td>37</td> <td>0</td> <td>0</td> <td>0</td> <td>2.7</td>	37	0		0.1	3.1	37	0	0	0	4.5	37	0	0	0	2.7
40 0 0 1.7 39 0 0 1.3 39 0 0 0 2.3 41 0 0 0 2.1 41 0 0 1.9 40 0 0 0 2.2 41 0 0 0 2.1 41 0 0 1.7 41 0 0 0 3.1 42 0 0 0 4.3 42 0 0 1.7 41 0 0 0 3.1 43 0 1.4 42 0 0 0 1.3 43 0 0 0 1.2 44 0 0.2 1.4 44 0	38	0	0	0	3.1	38 20	0	0	0	1.3	38 20	0	0	0	1.9
$\overline{n_{0}}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{10}$ $\overline{11}$ $\overline{10}$ <t< td=""><th>39 40</th><td>0</td><td>0</td><td>0</td><td>85</td><td>39</td><td>0</td><td>0</td><td>0</td><td>1.0</td><td>39</td><td>0</td><td>0</td><td>0</td><td>3.9 2.2</td></t<>	39 40	0	0	0	85	39	0	0	0	1.0	39	0	0	0	3.9 2.2
1.1 0 0 1.1 1.1 0 0 1.1	41	0	0	0	21	41	0	0	0	1.5	40	0	0	0	silt
43 0 1 0.2 1.7 43 0 0 silt 43 0 0 0 1.2 0	42	0	0	0	4.3	42	0	0	0	1.7	42	0	0	0	3.1
44 0 0 1.4 44 0 0 2.0 44 0 0 0 4.1 45 0 0 0 2.3 45 0 0 1.3 45 0 0 0 1.6 46 0 0 0 4.2 46 0 0 0 2.2 46 0 0 0.4 2.4 47 0 1 0.1 2.1 47 0 0 1.4 47 0 0 0 0.4 0 0 2.4 48 0 0 0 2.5 48 0 0 0 1.3 48 0 0 0 0 1.3 49 0 0 0 2.5 50 0 0 0.6 50 0 0 0.7 50 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.	43	0	1	0.2	1.7	43	0	0	0	silt	43	0	0	0	1.2
45 0 0 2.3 45 0 0 1.3 45 0 0 0 1.6 46 0 0 4.2 46 0 0 0 2.2 46 0 0 2.4 47 0 1 0.1 2.1 47 0 0 site 47 0 0 0 1.5 48 0 0 0 0 0 0 0 1.1 48 0 0 0 1.5 49 0 0 2.5 48 0 0 0 1.1 48 0 0 0 1.3 49 0 0 2.5 48 0 0 0 1.1 48 0 0 0 1.3 50 0 0 0 0 0 0 0 0 0.6 50 0 0.00 0.7 50 0.04 - Cc, Cp, and Cp' = 0.00 0.00 0.00 0.00 0.00 <t< td=""><th>44</th><td>0</td><td>0</td><td>0</td><td>1.4</td><td>44</td><td>0</td><td>0</td><td>0</td><td>2.0</td><td>44</td><td>0</td><td>0</td><td>0</td><td>4.1</td></t<>	44	0	0	0	1.4	44	0	0	0	2.0	44	0	0	0	4.1
46 0 0 4.2 46 0 0 2.2 46 0 0 2.4 47 0 1 0.1 2.1 47 0 0 silt 47 0 0 0 1.5 48 0 0 0 2.5 48 0 0 1.1 48 0 0 1.3 49 0 0 2.6 49 0 0 1.8 49 0 0 0 0.7 50 0 0 2.5 50 0 0 0.6 50 0 0 2.8 6c, Cp, and Cp' = 0.00 0.14 0.04 - Cc, Cp, and Cp' = 0.00 0.66 50 0 0.00 2.8 7c, Cp, and Cp' = 0.00 0.14 0.04 - Cc, Cp, and Cp' = 0.00 0.00 - Cc, Cp, and Cp' = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	45	0 0 1.4 0 0 0 2.5				45	0	0	0	1.3	45	0	0	0	1.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	46					46	0	0	0	2.2	46	0	0	0	2.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	47	0 1 0.1 2. 0 0 0 0 2.5				47	0	0	0	silt	47	0	0	0	1.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	48	0	0	0	2.5	48	0	0	0	1.1	48	0	0	0	1.3
50 0 0 0 0 2.5 50 0 0 0.6 50 0 0 0 2.8 Cc, p, and Cp' = 0.00 0.14 0.04 - $Cc, p, and Cp'= 0.00 0.00 - Cc, p, and Cp'= 0.00 0.00 0.00 - Cc, p, and Cp'= 0.00 0.00 0.00 - Cc, p, and Cp'= 0.00 0.00 0.00 - Cc, p, and Cp' = 0.00 0.00 0.00 - Cc, p, and Cp' = 0.00 0.00 0.00 - Cc, p, and Cp' = 0.00 0.00$	49	0	0	0	2.6	49	0	0	0	1.8	49	0	0	0	0.7
0.00 0.14 0.04 - 0.0, or, and or = 0.00 0.00 - 0.0, or, and or = 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 0.00 - 0.00 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 0.00 - 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 - 0.00<	UC Cn and Cn'	U	U	U	2.5	UC Cn and Cn'	U	U	U	0.0	UC Cn and Cn'	U	U	U	2.8
Calcite Index (CI) = 0.14 Calcite Index (CI) = 0.00 Calcite Index (CI) = 0.00 Calcite Index Prime (CI') = 0.04 Calcite Index Prime (CI') = 0.00 Calcite Index Prime (CI') = 0.00	=	0.00	0.14	0.04	-	=	0.00	0.00	0.00	-	=	0.00	0.00	0.00	-
Calcite Index Prime (CI') = 0.04 Calcite Index Prime (CI') = 0.00 Calcite Index Prime (CI') = 0.00	Cal	lcite Index (CI) =		0.14		Cal	cite Index (CI) =		0.00		Ca	cite Index (CI) =		0.00	
	Calcite Inc	dex Prime (CI') =		0.04		Calcite Inc	lex Prime (Cl') =		0.00		Calcite Inc	lex Prime (CI') =		0.00	

Notes: cm = centimetres; C_c = calcite concretion score; C_p = calcite presence score; C_p' = calcite presence score prime; - = no data/not applicable; % = percent.

^a 0 = particle can be removed with no resistance; 1 = some resistance, but particle is still movable; 2 = particle is immovable/fully concreted.

^b 0 = calcite is absent; 1 = calcite is present.

Table D.6: Pebble Counts and Calcite Measurements at RG_GAUT on Upper Gardine Creek, September 2021

		RG_GAUT-4					RG_GAUT-5					RG_GAUT-6		
		16-Sep-21					16-Sep-21					16-Sep-21		
Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence ^b	Proportional Calcite Presence ^c	Intermediate Axis (cm)
1	0	0	0	18.5	1	0	0	0	9.2	1	0	0	0	3.4
2	0	0	0	6.2	2	0	0	0	10.7	2	0	0	0	1.9
3	0	0	0	3.7	3	0	0	0	13.4	3	0	0	0	2.4
4	0	0	0	2.1	4	0	0	0	8.8 0.2	4	0	0	0	1.9
6	0	0	0	6.4	6	0	0	0	silt	6	0	0	0	3.8
7	0	0	0	2.6	7	0	0	0	1.6	7	0	0	0	3.3
8	0	0	0	6.1	8	0	0	0	2.5	8	0	0	0	1.6
9	0	0	0	6.2	9	0	0	0	2.9	9	0	0	0	2.3
10	0	0	0	9.5	10	0	0	0	2.2	10	0	0	0	0.8
11	0	0	0	7.4	11	0	0	0	1.8	11	0	0	0	2.1
12	0	0	0	<u>Z.Z</u> 5.3	12	0	0	0	0.9	12	0	0	0	1.8
14	0	0	0	1.5	14	0	0	0	4.2	14	0	0	0	3.7
15	0	0	0	2.1	15	0	0	0	2.3	15	0	0	0	2.1
16	0	0	0	3.2	16	0	0	0	silt	16	0	0	0	3.6
17	0	0	0	1.2	17	0	0	0	1.1	17	0	0	0	1.8
18	0	0	0	2.7	18	0	0	0	0.8	18	0	0	0	2.1
19	0	0	0	2.1	19	0	0	0	0.5	19	0	0	0	1.5
20	0	0	0	4.9	20	0	0	0	2.5	20	0	0	0	22
22	0	0	0	3.2	22	0	0	0	1.3	22	0	0	0	1.3
23	0	0	0	2.5	23	0	0	0	1.2	23	0	0	0	1.9
24	0	0	0	1.7	24	0	0	0	2.3	24	0	0	0	1.0
25	0	0	0	1.6	25	0	0	0	2.9	25	0	0	0	0.9
26	0	0	0	10.2	26	0	0	0	2.1	26	0	0	0	0.6
27	0	0	0	2.9	27	0	0	0	3.2	27	0	0	0	2.1
20	0	0	0	1.5	20	0	0	0	r.o silt	20	0	0	0	3.4
30	0	0	0	2.4	30	0	0	0	1.9	30	0	0	0	1.1
31	0	0	0	silt	31	0	0	0	2.4	31	0	0	0	4.1
32	0	0	0	6.1	32	0	0	0	2.8	32	0	0	0	silt
33	0	0	0	9.8	33	0	0	0	1.2	33	0	0	0	2.5
34	0	0	0	3.0	34	0	0	0	0.7	34	0	0	0	1.7
35	0	0	0	11.7	35	0	0	0	0.5	35	0	0	0	1.5
37	0	0	0	19	37	0	0	0	21	37	0	0	0	22
38	0	0	0	2.8	38	0	0	0	silt	38	0	0	0	1.2
39	0	0	0	3.2	39	0	0	0	4.4	39	0	0	0	2.4
40	0	0	0	5.8	40	0	0	0	1.7	40	0	0	0	2.0
41	0	0	0	silt	41	0	0	0	1.9	41	0	0	0	1.5
42	U	0	0	4.0	42	0	0	0	1.6	42	0	0	0	1.2
43	0	0	0	0.4 2.5	43 44	0	0	0	10.3	43 44	0	0	0	0.9
45	0	0	0	1.9	45	0	0	0	2.9	45	0	0	0	silt
46	15 0 0 0 1.5 16 0 0 0 10.				46	0	0	0	silt	46	0	0	0	2.9
47	0	0	0	2.3	47	0	0	0	2.2	47	0	0	0	2.7
48	0	0	0	3.7	48	0	0	0	2.3	48	0	0	0	2.2
49	0	0	0	1.5	49	0	0	0	1.6	49	0	0	0	3.1
50 Co Co and Co'	U	U	0	0.4	UC Co Co and Co'	U	U	U	1.1	50 Cc Cn and Cn'	U	U	U	1.4
=	0.00	0.00	0.00	-	=	0.00	0.00	0.00	-	=	0.00	0.00	0.00	-
Cal	lcite Index (CI) =		0.00		Cal	cite Index (CI) =		0.00		Cal	cite Index (CI) =		0.00	
Calcite Inc	dex Prime (CI') =		0.00		Calcite Inc	dex Prime (CI') =		0.00		Calcite Ind	lex Prime (CI') =		0.00	

Notes: cm = centimetres; C_c = calcite concretion score; C_p = calcite presence score; C_p' = calcite presence score prime; - = no data/not applicable; % = percent.

^a 0 = particle can be removed with no resistance; 1 = some resistance, but particle is still movable; 2 = particle is immovable/fully concreted.

^b 0 = calcite is absent; 1 = calcite is present.

Table D.7: Pebble Counts and Calcite Measurements at RG_GANF on Lower Gardine Creek, September 2021

		RG_GANF-1					RG_GANF-2					RG_GANF-	3	
		15-Sep-21					15-Sep-21					15-Sep-21		
Pebble	Concreted Status ^a	Calcite Presence	Proportional Calcite Presence	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence	Proportional Calcite Presence	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Preser	Proportional Calcite Presence	Intermediate Axis (cm)
1	0	1	0.8	19.2	1	0	1	0.4	10.2	1	0	1	0.2	4.1
2	0	1	0.7	12.7	2	0	1	0.6	11.9	2	0	1	0.3	4.5
3	0	1	0.9	12.1	3	0	1	0.4	12.8	3	0	1	0.1	2.2
5	0	1	0.3	10.5	5	0	1	0.3	3.4	5	0	0	0.2	11
6	0	1	0.8	1.7	6	0	1	0.5	10.6	6	2	1	0.9	21.0
7	0	1	0.1	3.5	7	0	1	0.4	13.1	7	0	1	0.7	6.8
8	0	1	0.1	3.5	8	0	1	0.4	5.7	8	0	1	0.9	3.4
9	0	1	0.4	5.6	9	0	1	0.7	2.5	9	0	1	0.4	4.9
10	0	1	0.7	3.1	10	0	1	0.7	5.1	10	0	1	0.8	5.9
11	0	1	0.5	8.2	11	0	1	0.8	6.5	11	0	1	0.7	3.7
13	0	1	0.8	4 1	12	0	1	0.71	3.2	12	0	1	0.4	12.8
14	1	1	0.6	6.9	14	0	1	0.1	4.7	14	0	1	0.7	14.5
15	0	1	0.5	5.0	15	0	1	0.4	3.0	15	0	1	0.4	11.2
16	0	1	0.9	3.0	16	0	1	0.8	4.9	16	0	1	0.6	4.2
17	0	1	0.8	5.2	17	0	1	0.6	2.8	17	0	1	0.3	8.9
18	0	1	0.7	5.4	18	0	1	0.5	2.2	18	0	1	0.2	8.1
19	0	1	0.5	7.5 3.8	19	0	1	0.8	6.9 7.4	19	0	1	0.5	0.2
20	0	1	0.0	4.6	20	0	1	0.2	6.5	20	0	1	0.5	19.5
22	0	1	0.3	8.2	22	0	1	0.4	7.3	22	0	1	0.4	5.1
23	0	1	0.1	3.2	23	0	1	0.5	6.2	23	0	1	1	11.0
24	0	1	0.2	2.4	24	0	1	0.8	11.1	24	0	0	0	1.3
25	0	1	0.2	4.9	25	0	1	0.7	8.7	25	0	0	0	0.6
26	0	1	0.4	5.4	26	0	1	0.8	9.3	26	0	1	1	4.2
27	0	1	0.3	4.0	27	0	1	0.3	3.3	2/	0	1	0.3	2.5
20	0	1	0.4	63	20	0	1	01	2.9	20	0	1	0.9	<u> </u>
30	0	1	0.5	2.5	30	0	1	0.1	6.5	30	0	1	0.1	2.5
31	0	1	1	4.4	31	0	0	0	1.2	31	0	1	0.1	3.1
32	1	1	0.9	7.8	32	0	1	0.2	2.2	32	0	1	1	5.4
33	0	1	0.9	3.0	33	0	1	0.6	4.9	33	0	1	0.5	2.3
34	0	1	0.4	5.2	34	0	1	0.3	2.9	34	0	1	1	4.1
35	0	1	0.8	4.1	35	0	1	0.8	12.1	35	0	1	0.6	5.9
30	0	1	0.5	6.1	30	0	1	0.8	8.4	30	0	1	0.7	4.0
38	0	1	0.5	5.2	38	0	1	0.7	3.4	38	0	1	0.6	7.2
39	0	1	0.4	9.2	39	0	1	0.1	3.3	39	0	1	0.8	5.5
40	0	1	0.1	3.4	40	0	1	0.6	5.6	40	0	1	0.1	3.5
41	0	1	0.5	11.2	41	0	1	0.2	3.2	41	0	1	0.5	12.6
42	0	1	0.9	5.6	42	0	1	0.3	10.1	42	0	1	0.9	5.7
43	U 1	1	0.8	26.5	43	0	1	0.8	3.0	43	0	1	0.8	<u> </u>
44	2	1	0.9	4.4	44	0	1	0.3	3.0 4 1	44	0	1	0.5	3.0
46	0	1	0.2	21.2	46	0	1	0.7	7.2	46	0	1	0.2	2.3
47	0	1	0.5	7.1	47	0	1	0.5	4.7	47	Ő	1	0.6	8.4
48	0	-	-	17.2	48	0	1	0.8	9.5	48	0	1	0.6	8.9
49	0	1	1	7.9	49	0	1	0.8	11.2	49	0	1	0.1	4.4
50	0	1	0.4	5.5	50	0	1	0.8	7.9	50	0	1	0.2	3.4
cc, Cp, and Cp' =	0.12	0.98	0.55	-	ec, Cp, and Cp'	0.00	0.96	0.50	-	CC, Cp, and Cp'	0.04	0.94	0.51	-
Са	alcite Index (CI) =		1.10		Cale	cite Index (CI)	=	0.96		Ca	alcite Index (CI) =		0.98	
Calcite In	idex Prime (CI') =		0.67		Calcite Ind	ex Prime (CI')	=	0.50		Calcite In	dex Prime (Cl') =		0.55	

Notes: cm = centimetres; C_c = calcite concretion score; C_p = calcite presence score; C_p' = calcite presence score prime; - = no data/not applicable; % = percent.

^a 0 = particle can be removed with no resistance; 1 = some resistance, but particle is still movable; 2 = particle is immovable/fully concreted.

^b 0 = calcite is absent; 1 = calcite is present.

Table D.7: Pebble Counts and Calcite Measurements at RG_GANF on Lower Gardine Creek, September 2021

		RG_GANF-	4				RG_GANF-5					RG_GANF-6					
		15-Sep-21					16-Sep-21					16-Sep-21					
Pebble	Concreted Status ^a	Calcite Prese	nce Calcite Presence	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence	Proportional Calcite Presence c	Intermediate Axis (cm)	Pebble	Concreted Status ^a	Calcite Presence	Proportional Calcite Presence	Intermediate Axis (cm)			
1	0	1	0.1	3.4	1	0	1	0.8	8.7	1	0	1	0.8	4.9			
2	0	1	0.8	9.5	2	0	1	1	7.6	2	2	1	0.8	10.5			
3	0	1	0.9	3.2	3	0	1	0.9	5.1	3	2	1	1	10.2			
4	0	0	09	6.4		2	1	1	3.0	5	0	1	0.2	3.3			
6	0	1	0.8	7.5	6	0	1	1	1.7	6	2	1	1	5.4			
7	1	1	0.6	17.4	7	1	1	1	7.2	7	0	1	0.6	4.2			
8	2	1	0.8	5.5	8	0	1	1	2.6	8	2	1	1	10.4			
9	0	1	0.6	14.2	9	0	1	0.9	30.5	9	0	1	0.4	2.4			
10	0	1	0.6	11.2	10	1	1	0.9	6.7	10	2	1	1	9.2			
11	0	1	0.9	8.0	11	0	1	0.8	0.0	11	2	1	1	<u> </u>			
13	0	1	0.6	8.2	13	2	1	0.8	11.5	13	0	1	0.9	2.5			
14	2	1	1	10.5	14	1	1	0.9	7.2	14	1	1	1	5.6			
15	0	1	1	8.5	15	2	1	1	6.5	15	0	1	0.8	3.1			
16	1	1	0.7	8.7	16	2	1	1	7.2	16	0	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
17	0	1	0.1	7.9	17	2	1	1	4.2	17	0	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
18	1	1	0.6	19.8	18	2	1	1	9.3	18	0	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
20	2	1	1	11.2	20	2	1	1	5.5	20	0	1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
21	0	1	0.6	5.3	21	2	1	0.8	12.7	21	0	1					
22	0	1	1	9.0	22	2	1	1	3.9	22	1	1	1 1 1 1 2 1 1 2 1 1 2 1 07 2				
23	1	1	0.7	15.5	23	2	1	1	6.0	23	2	1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
24	0	1	0.4	14.0	24	2	1	0.9	4.1	24	1	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
25	0	1	0.4	11.2	25	0	1	0.9	5.1	25	1	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
26	2	1	0.8	13.5	26	0	1	0.9	<i>1.2</i> 5.0	26	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
28	1	1	0.0	52	28	2	1	1	6.3	28	1	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
29	1	1	1	7.6	29	2	1	1	6.5	29	2	1	6.1				
30	0	1	1	3.2	30	0	1	0.4	7.3	30	0	1	1	7.9			
31	1	1	0.2	2.8	31	0	1	1	4.4	31	1	1	0.9	11.2			
32	2	1	1	11.2	32	0	1	1	2.1	32	2	1	1	11.5			
33	1	1	0.4	8.4	33	0	1	0.7	5.2	33	1	1	1	3.9			
34	0	0	0.0	<u> </u>	34	2	1	1	9.1	34	2	1	0.5	5.7			
36	0	1	0.7	9.9	36	2	1	1	8.8	36	2	1	0.9	8.3			
37	0	1	0.3	7.6	37	2	1	1	3.3	37	2	1	1	17.5			
38	0	1	0.4	3.3	38	2	1	1	10.5	38	2	1	0.9	7.3			
39	0	1	0.2	7.6	39	0	1	0.8	8.1	39	0	1	1	9.8			
40	0	1	1	2.8	40	2	1	1	<u>б.1</u> 7 0	40	0	1	0.9	2.3			
41	0	1	1	3.0	41	0	1	0.7	5.8	41	∠ 	1	0.0	37			
43	2	1	0.8	9.4	43	1	1	1	10.3	43	0	1	1	3.7			
44	0	0	0	-	44	2	1	1	12.4	44	0	1	0.8	2.8			
45	0	1	0.1	1.5	45	0	1	1	4.3	45	0	1	0.9	6.9			
46	0	1	1	4.0	46	2	1	1	5.4	46	0	1	1	3.2			
47	0	1	1	1.4	47	2	1	1	11.7	47	2		1	-			
48	0	1	0.5	0.1	48	2	1	1	4.2	48	U 2	1	1	<u> </u>			
	0	1	0.1	10.2	50	1	1	1	66	50	2	1	1	5.6			
Cc, Cp, and Cp' =	0.42	0.92	0.63	-	Cc, Cp, and Cp' =	1.08	1.00	0.94	-	Cc, Cp, and Cp' =	0.98	1.00	0.89	-			
Ca	alcite Index (CI) =		1.34		Calo	cite Index (CI)	=	2.08		Ca	lcite Index (CI) =		1.98				
Calcite In	idex Prime (Cl') =		1.05		Calcite Ind	ex Prime (CI')	=	2.02		Calcite In	dex Prime (CI') =		1.87				

Notes: cm = centimetres; C_c = calcite concretion score; C_p = calcite presence score; C_p' = calcite presence score prime; - = no data/not applicable; % = percent.

^a 0 = particle can be removed with no resistance; 1 = some resistance, but particle is still movable; 2 = particle is immovable/fully concreted.

^b 0 = calcite is absent; 1 = calcite is present.

			BC W	SOG ^a		Lo	wer Greenhills Cr	eek	
	Analyte	Units					RG_GHBP		
<u> </u>			Lower	Upper	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5
ical ts	Moisture	%	-	-	85.8	87.6	64.0	85.8	84.0
lysi esi									
<u></u> Е	pH (1:2)	рН	-	-	7.99	8.06	8.17	8.12	8.10
	% Gravel (>2 mm)	%	-	-	<1	4.70	9.30	<1	<1
	% Sand (2.00 mm to 1.00 mm)	%	-	-	2.50	19.9	12.0	<1	5.20
	% Sand (1.00 mm to 0.50 mm)	%	-	-	3.00	10.2	11.3	<1	8.30
e	% Sand (0.50 mm to 0.25 mm)	%	-	-	3.30	6.70	10.3	2.10	6.40
Siz	% Sand (0.25 mm to 0.125 mm)	%	-	-	5.70	5.40	8.50	3.30	4.70
e	% Sand (0.125 mm to 0.063 mm)	%	-	-	8.10	3.90	6.70	4.50	3.70
iti	% Silt (0.063 mm to 0.0312 mm)	%	-	-	26.8	17.2	14.8	28.8	22.5
P	% Silt (0.0312 mm to 0.004 mm)	%	-	-	37.4	23.7	19.8	43.1	36.7
	% Clay (<4 um)	%	-	-	12.3	8.30	7.30	17.4	12.5
		,,,			12.0	0.00	1.00		12.0
	Texture	-	-	-	Silt loam	Sandy loam	Sandy loam	Silt loam	Silt loam
n ic									
gan rbo	Total Organic Carbon	%	-	-	17.9	10.9	5.87	22.3	20.3
Ca									
	Aluminum (AI)	mg/kg	-	-	4,590	4,870	8,200	4,800	3,900
	Antimony (Sb)	ma/ka	-	-	0.630	0.640	0.760	0.690	0.590
	Arsenic (As)	ma/ka	5.90	17.0	3.06	2.74	5.87	2.88	2.64
	Barium (Ba)	ma/ka	-	-	176	176	267	180	177
	Bervllium (Be)	ma/ka	-	-	0 440	0 4 1 0	0.670	0 4 20	0.360
	Bismuth (Bi)	ma/ka	-	-	<n 2<="" td=""><td><0.410</td><td><0.070</td><td><0.720</td><td><0.000</td></n>	<0.410	<0.070	<0.720	<0.000
	Boron (B)	mg/kg	-	-	~0.2	5.40	~U.Z	-v.2 6 20	~0.2
		mg/Kg	-	-	NO	0.40	0.70	0.20	5 0
		mg/Kg	0.000	3.50	1.47	1.41	1.06	1.20	1.30
		mg/kg	-	-	68,500	82,000	32,200	64,100	109,000
	Chromium (Cr)	mg/kg	37.3	90.0	7.51	7.60	15.2	8.10	6.36
	Cobalt (Co)	mg/kg	-	-	6.56	7.27	7.63	6.51	6.13
	Copper (Cu)	mg/kg	35.7	197	18.1	17.0	20.5	17.9	14.5
	Iron (Fe)	mg/kg	21,200	43,766	9,150	8,200	17,800	8,900	7,820
	Lead (Pb)	mg/kg	35.0	91.3	8.22	7.43	11.5	7.74	6.63
	Lithium (Li)	mg/kg	-	-	6.00	5.50	11.5	6.20	5.10
	Magnesium (Mg)	mg/kg	-	-	5,020	4,920	6,960	4,750	4,970
s	Manganese (Mn)	mg/kg	460	1,100	377	304	542	466	458
eta	Mercury (Hg)	mg/kg	0.170	0.486	0.0717	0.0829	0.0760	0.0651	0.0632
Š	Molybdenum (Mo)	mg/kg	25.0	23,000	1.05	0.930	1.38	0.950	0.940
	Nickel (Ni)	mg/kg	16.0	75.0	118	116	68.1	117	99.9
	Phosphorus (P)	mg/kg	-	-	778	727	1,150	763	715
	Potassium (K)	mg/kg	-	-	1,060	1,230	2,030	1,240	1,100
	Selenium (Se)	mg/kg	2	b	29.5	32.6	11.9	20.7	19.2
	Silver (Ag)	mg/kg	0.500	-	0.240	0.220	0.280	0.220	0.180
	Sodium (Na)	ma/ka	-	-	64.0	69.0	72.0	69.0	70.0
	Strontium (Sr)	ma/ka	-	-	51.2	53.9	44.1	50.9	65.9
	Sulfur (S)	ma/ka	-	-	1.900	2.100	<1.000	1.900	2.100
	Thallium (TI)	ma/ka	-	_	0 124	0 121	0.208	0 107	0,106
	Tin (Sn)	ma/ka	-	_	<2	<2	<2	<2	<2
	Titanium (Ti)	ma/ka			7 30	7.60	5 70	7 50	5.00
	Tungsten (W)	ma/ka	-	-	<0.5	<0.5	<0.5	<0.5	<0.5
		ma/ka	-	-	1 80	2 00	1 28	1 67	2 01
	Vanadium (V)	ma/ka	-	-	16.0	16.5	30.0	17.07	1/ 6
	Zinc (Zn)	ma/ka	-	-	1/7	150	127	1/1	120
	Zirconium (Zr)	ma/ka	120	515	1 10	1 10	-1	~1	~1
		ma/ka	- 0.00671	- 0 0880	<0.43	<0.24	<0.10	<0.64	<0.6
	Acenaphthylene	ma/ka	0.00587	0 128	<0.45	<0.03	<0.025	0.0860	0.0300
	Acridine	ma/ka	-	-	<0.85	<0.54	0.379	<1 2	<1 2
	Anthracene	ma/ka	0 0469	0 245	0.0170	<0.035	<0.010	0.0200	<0.01
	Benz(a)anthracene	ma/ka	0.0409	0.240	<0.28	<0.000	<0.004	<0.30	<0.01
	Bonzo(a)pyropo	mg/kg	0.0310	0.303	0.175	<0.52	0.0830	0.03	0.33
su	Benzo(b&i)fluorantheno	ma/ka	0.0018	0.102	0.113	0.10	0.000	0.134	0.626
pol	Benzo(btitk)fluoropthone	mg/kg	-	-	0.511	0.434	0.207	0.001	0.020
car		mg/kg	-	-	0.551	0.460	0.207	0.000	0.020
<u>p</u>		mg/Kg	-	-	0.004	0.402	0.221	0.711	0.099
Ě		mg/kg	0.170	3.20	0.255	0.191	0.0930	0.328	0.308
ic		mg/kg	0.240	13.4	0.0400	0.0370	<0.01	0.0570	<0.025
nat		mg/kg	0.05/1	0.862	0.682	0.451	<0.49	<0.89	<1.5
ror	Dibenz(a,h)anthracene	mg/kg	0.00622	0.135	<0.11	<0.075	<0.045	0.128	0.142
C P	Fluoranthene	mg/kg	0.111	2.36	0.214	0.143	0.0780	0.229	0.268
cli	Fluorene	mg/kg	0.0212	0.144	1.06	0.761	0.457	1.61	1.53
ycy	Indeno(1,2,3-c,d)pyrene	mg/kg	0.200	3.20	0.0640	<0.035	<0.01	0.0480	0.0540
jo	1-Methylnaphthalene	mg/kg	-	-	5.22	4.01	2.16	7.85	7.36
	2-Methylnaphthalene	mg/kg	0.0202	0.201	9.74	6.69	4.06	14.8	13.7
	Naphthalene	mg/kg	0.0346	0.391	3.02	2.15	1.26	4.79	4.50
	Perylene	mg/kg	-	-	<0.035	<0.035	<0.01	<0.025	<0.025
	Phenanthrene	mg/ka	0.0419	0.515	4.00	3.30	1.65	5.69	5.36
	Pyrene	mg/ka	0.0530	0.875	0.364	0.273	0.143	0.477	0.450
	Quinoline	mg/ka	-	-	<0.035	0.0360	<0.05	<0.025	<0.025
L				1	· · · · ·	· · · · · · ·	-		.

Concentration is <LRL and LRL exceeds the lower WSQG.

Concentration is <LRL and LRL exceeds the upper WSQG.

Concentration exceeds the lower WSQG.

Concentration exceeds the upper WSQG.

Notes: BC WSQG = British Columbia Working Sediment Quality Guideline; % = percent; - = no data/not applicable; > = greater than; mm = millimetres; < = less than; µm = micrometres; mg/kg = milligrams per kilogram; PAHs = polycyclic aromatic hydrocarbons; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

			BC W	SQG ^a			Gardine Creek		
	Analyte	Units	Upper	Lower		RG GAUT-2	RG_GAUT	RG GAUT-4	RG GAUT-5
-	Malatana	0/	Opper	Lower	<u>KG_GAUI-I</u>	14 F			07.7
sica	Moisture	%	-	-	31.7	44.5	91.6	55.5	67.7
ъ Ч	pH (1:2)	pН	-	-	7.53	7.54	7.38	7.46	7.53
	% Gravel (>2 mm)	%	-	-	5.50	4.00	2.30	15.9	6.50
	% Sand (2.00 mm to 1.00 mm)	%	-	-	13.7	11.4	12.2	4.30	9.40
	% Sand (1.00 mm to 0.50 mm)	%	-	-	16.8	13.8	20.1	6.20	12.8
aze	% Sand (0.50 mm to 0.25 mm)	%	-	-	15.9	19.9	15.9	9.30	16.8
ŝSi	% Sand (0.25 mm to 0.125 mm)	%	-	-	12.2	15.2	10.4	10.5	15.0
ticle	% Sand (0.125 mm to 0.063 mm)	%	-	-	8.10	7.50	6.30	8.20	8.00
Part	% Silt (0.063 mm to 0.0312 mm)	%	-	-	9.20	8.20	10.5	16.8	10.2
	% Silt (0.0312 mm to 0.004 mm)	%	-	-	12.0	12.2	15.5	21.4	14.4
		70	-	-	0.50	7.70	0.90	7.40 Loam / Sandy	0.90
	Texture	-	-	-	Sandy loam	Sandy loam	Sandy loam	loam	Sandy loam
nic									
rgai arb	Total Organic Carbon	%	-	-	5.44	6.47	8.44	11.1	7.24
ōΰ					0.500	0.040	0.550	= = 10	0.010
	Aluminum (Al)	mg/kg	-	-	8,590	8,340	8,550	/,/10	8,210
	Anumony (SD)	mg/kg	-	-	0.870	5.31	2.02	5.43	1.50
	Barium (Ba)	ma/ka	5.90	-	223	219	303	239	253
	Beryllium (Be)	ma/ka	-	-	0 750	0 730	0.830	0 730	0.810
	Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2
1	Boron (B)	mg/kg	-	-	7.00	7.40	8.40	7.00	8.90
	Cadmium (Cd)	mg/kg	0.600	3.50	0.638	0.636	1.29	0.755	0.850
	Calcium (Ca)	mg/kg	-	-	9,380	8,750	16,000	10,100	11,500
	Chromium (Cr)	mg/kg	37.3	90.0	12.1	12.2	12.8	11.8	12.3
	Cobalt (Co)	mg/kg	-	-	10.9	10.2	11.6	10.9	10.7
	Copper (Cu)	mg/kg	35.7	197	14.9	14.9	23.2	16.6	17.4
	Iron (Fe)	mg/kg	21,200	43,766	22,400	17,700	14,900	16,700	16,000
	Lead (PD)	mg/kg	35.0	91.3	15.0	12.0	12.3	11.3	12.9
	Magnesium (Mg)	ma/ka	-	-	3 240	2 920	3 130	2 860	2 800
s	Manganese (Mn)	ma/ka	460	1.100	579	440	767	669	492
etal	Mercury (Hg)	mg/kg	0.170	0.486	0.0492	0.0577	0.126	0.0770	0.0823
ž	Molybdenum (Mo)	mg/kg	25.0	23,000	1.15	1.09	1.10	1.08	1.03
	Nickel (Ni)	mg/kg	16.0	75.0	35.0	33.7	47.7	35.1	37.7
	Phosphorus (P)	mg/kg	-	-	1,270	1,090	1,030	1,070	1,020
	Potassium (K)	mg/kg	-	-	1,770	1,810	1,650	1,640	1,720
	Selenium (Se)	mg/kg	2	2.5	0.870	1.09	2.86	1.32	1.65
	Sodium (Na)	mg/kg	0.500	-	60.0	60.0	68.0	55.0	59.0
	Strontium (Sr)	ma/ka	-	-	42.8	42.0	66.0	47.5	53.4
	Sulfur (S)	mg/kg	-	-	<1,000	<1,000	1,200	<1,000	<1,000
	Thallium (TI)	mg/kg	-	-	0.162	0.153	0.211	0.156	0.172
	Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2
	Titanium (Ti)	mg/kg	-	-	12.2	16.5	14.1	14.7	17.9
	Tungsten (W)	mg/kg	-	-	<0.5	<0.5	<0.5	<0.5	<0.5
	Uranium (U)	mg/kg	-	-	0.667	0.618	0.911	0.753	0.725
	Vanadium (V)	mg/kg	-	-	26.8	26.1	26.6	25.6	25.9
1	Zirconium (Zr)	mg/kg	-		1.04	ອວ.ອ <1	99.9 1 40	94.0 1 00	94.0 1 10
<u> </u>	Acenaphthene	ma/ka	0.00671	0.0889	0.0423	0.105	0.586	0.191	0.206
1	Acenaphthylene	mg/kg	0.00587	0.128	< 0.005	0.0195	0.103	0.0330	0.0330
	Acridine	mg/kg	-	-	0.0740	0.176	0.867	0.352	0.322
1	Anthracene	mg/kg	0.0469	0.245	<0.004	<0.004	0.0192	<0.004	<0.008
	Benz(a)anthracene	mg/kg	0.0317	0.385	0.0260	0.0560	0.319	0.119	0.118
s	Benzo(a)pyrene	mg/kg	0.0319	0.782	0.0120	0.0320	0.151	0.0650	0.0670
bor		mg/kg	-	-	0.0760	0.147	0.752	0.303	0.301
car	Benzo(e)pyrene	ma/ka	-	-	0.0700	0.130	0.769	0.329	0.325
/drc	Benzo(g,h,i)perylene	ma/ka	0.170	3.20	0.0270	0.0520	0.319	0.112	0.126
f	Benzo(k)fluoranthene	mg/kg	0.240	13.4	<0.01	0.0120	0.0370	0.0260	0.0230
atic	Chrysene	mg/kg	0.0571	0.862	0.144	0.340	1.71	0.655	0.663
Mo	Dibenz(a,h)anthracene	mg/kg	0.00622	0.135	0.0178	0.0274	0.128	0.0544	0.0450
C A	Fluoranthene	mg/kg	0.111	2.36	0.0340	0.0590	0.263	0.101	0.105
/clic	Fluorene	mg/kg	0.0212	0.144	0.0910	0.234	1.26	0.428	0.437
lyc)	Indeno(1,2,3-c,d)pyrene	mg/kg	0.200	3.20	0.0100	0.0150	0.0500	0.0290	0.0300
Po	1-Methylnaphthalene	mg/kg	-	-	0.480	1.27	6.68	2.09	2.38
	∠-ivietnyinaphthalene	mg/kg	0.0202	0.201	0.891	2.40	12.7	3.89	4.43
1	Pervlene	mg/kg	0.0340	0.391	<0.252	0.095	0.0500	0.0100	0.0240
1	Phenanthrene	ma/ka	0.0419	0.515	0.414	1.08	5.66	1.98	2.14
1	Pyrene	ma/ka	0.0530	0.875	0.0670	0.150	0.717	0.245	0.282
1	Quinoline	mg/kg	-	-	< 0.05	<0.05	<0.05	<0.05	0.0220

Concentration is <LRL and LRL exceeds the lower WSQG.

Concentration is <LRL and LRL exceeds the upper WSQG.

Concentration exceeds the lower WSQG.

Concentration exceeds the upper WSQG.

Notes: BC WSQG = British Columbia Working Sediment Quality Guideline; % = percent; - = no data/not applicable; > = greater than; mm = millimetres; < = less than; µm = micrometres; mg/kg = milligrams per kilogram; PAHs = polycyclic aromatic hydrocarbons; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

			BC W	SOG 8			Gardine Creek		
	Analyte	Units					RG_GANF		
			Lower	Upper	RG_GANF-1	RG_GANF-2	RG_GANF-3	RG_GANF-4	RG_GANF-5
ical ts	Moisture	%	-	-	78.4	59.8	67.9	82.8	71.3
lysi esi									
E -	pH (1:2)	рН	-	-	7.62	7.41	7.69	7.46	7.42
	% Gravel (>2 mm)	%	-	-	<1	<1	<1	5.90	2.70
	% Sand (2.00 mm to 1.00 mm)	%	-	-	5.90	4.60	3.10	5.50	8.90
	% Sand (1.00 mm to 0.50 mm)	%	-	-	9.60	6.20	4.60	8.70	10.6
e	% Sand (0.50 mm to 0.25 mm)	%	-	-	14.3	13.8	12.6	14.6	13.0
Siz	% Sand (0.25 mm to 0.125 mm)	%	-	-	17.2	19.0	19.7	17.5	14.5
e l	% Sand (0.125 mm to 0.063 mm)	%	-	-	11.4	12.4	12.4	10.1	10.9
ij	% Silt (0.063 mm to 0.0312 mm)	%	-	-	14.4	16.1	16.5	13.8	14.2
Ра	% Silt (0.0312 mm to 0.004 mm)	%	-	-	19.6	20.3	22.2	17.4	19.0
	% Clay (<4 um)	%	_		7 70	7 70	8 90	6.60	6.20
		,,,			1.10	1.10	0.00	0.00	0.20
	Texture	-	-	-	Sandy loam	Sandy loam	Sandy loam	Sandy loam	Sandy loam
ы С									
jan rbc	Total Organic Carbon	%	-	-	9.72	8.66	9.93	8.75	9.41
Ca									
	Aluminum (Al)	ma/ka	-	-	5.270	5.590	6.280	5.300	5.300
	Antimony (Sb)	ma/ka	-	-	1.03	0.840	0.910	0.810	0.840
	Arsenic (As)	ma/ka	5 90	17.0	3.71	4 13	3 85	3.98	3 29
1	Barium (Ba)	ma/ka	-	-	228	200	225	223	195
1	Benyllium (Bo)	malka	-	-	0.610	0.640	0.650	0 630	0.490
1		mg/kg	-	-	-0.0	0.040	-0.0	0.030	V.40U
1	Distilutit (DI)	тту/кд	-	-	<u>~U.2</u>	<u>~U.2</u>	<u><u></u> <u></u> </u>	<u>~U.2</u>	<u><u></u> <u></u> </u>
1		mg/Kg	-	-	<5	<5	0.50	<5	0.500
1		mg/kg	0.600	3.50	0.757	0.651	0.635	0.710	0.566
	Calcium (Ca)	mg/kg	-	-	85,700	76,300	92,300	91,500	104,000
	Chromium (Cr)	mg/kg	37.3	90.0	8.46	8.78	9.58	8.67	7.98
	Cobalt (Co)	mg/kg	-	-	6.32	6.90	6.30	6.49	5.29
	Copper (Cu)	mg/kg	35.7	197	13.7	12.7	12.7	12.9	11.7
	Iron (Fe)	mg/kg	21,200	43,766	10,900	12,600	11,900	11,900	9,710
	Lead (Pb)	mg/kg	35.0	91.3	8.40	9.00	8.62	8.95	7.26
	Lithium (Li)	mg/kg	-	-	8.20	9.10	9.60	9.10	8.40
	Magnesium (Mg)	mg/kg	-	-	3,950	3,760	4,090	3,860	3,860
s	Manganese (Mn)	mg/kg	460	1,100	365	409	371	389	330
etal	Mercury (Hg)	mg/kg	0.170	0.486	0.0721	0.0696	0.0809	0.0660	0.0690
ž	Molybdenum (Mo)	ma/ka	25.0	23.000	0.810	0.830	0.890	0.810	0.700
	Nickel (Ni)	ma/ka	16.0	75.0	25.5	24.4	23.2	23.7	20.4
	Phosphorus (P)	ma/ka	-	-	894	969	974	963	749
	Potassium (K)	ma/ka	_	-	1 090	1 190	1 420	1 090	1 210
	Selenium (Se)	ma/ka	2	b	2 56	1.56	2 05	1.96	1.35
	Silver (Ag)	ma/ka	0 500		0.270	0.220	0.230	0.250	0.220
	Sodium (Na)	mg/kg	0.000	_	70.0	65.0	75.0	72.0	73.0
	Strontium (Sr)	mg/kg	_	_	76.5	67.2	70.0	72.0	81.7
	Sulfur (S)	mg/kg	-	-	2 000	1 400	1 700	1 800	1 000
	Thellium (TI)	mg/kg	-	-	2,000	0.144	0,101	0,150	1,900
		mg/kg	-	-	0.147	0.144	0.101	0.109	0.127
	Till (SII)	mg/kg	-	-	~2	~2	~2	~2	~2
1		mg/Kg	-	-	9.00	10.7	13.2	11.9	14.0
1		mg/kg	-	-	<0.5	<0.5	<0.5	<0.5	<0.5
1		mg/kg	-	-	0.852	0.742	0.851	0.915	0.728
1		mg/kg	-	-	16.8	1/./	20.1	16.7	16.9
1		mg/kg	123	315	/4.8	/8.1	/4./	/5.3	59.0
 	∠irconium (∠r)	mg/kg	-	-	1.10	<1	<1	1.20	<1
1		mg/kg	0.006/1	0.0889	0.285	0.136	0.155	0.291	0.223
1	Aoridina	mg/Kg	0.00587	0.120	0.0440	0.0231	0.0203	0.0420	0.0308
1		тиу/кд	-	-	0.000	0.201	0.248	0000	0.3/5
1		пц/кд	0.0409	0.240	SUUU8	<u><u></u> <u>0.004</u></u>	<u><u></u> <u>0.000</u></u>	<0.008	SU.UU4
1		mg/kg	0.0317	0.385	0.166	0.0650	0.0820	0.168	0.125
s	Benzo(a)pyrene	mg/kg	0.0319	0.782	0.102	0.0310	0.0460	0.0870	0.0/10
Nor	Benzo(b&j)fluoranthene	mg/kg	-	-	0.363	0.145	0.193	0.434	0.300
art	Benzo(b+j+k)fluoranthene	mg/kg	-	-	0.403	0.159	0.209	0.459	0.314
2 2	Benzo(e)pyrene	mg/kg	-	-	0.386	0.145	0.191	0.405	0.294
łyd	Benzo(g,h,i)perylene	mg/kg	0.170	3.20	0.153	0.0550	0.0800	0.147	0.103
ic F	Benzo(k)fluoranthene	mg/kg	0.240	13.4	0.0400	0.0140	0.0160	0.0250	0.0140
nati	Chrysene	mg/kg	0.0571	0.862	0.854	0.340	0.435	0.903	0.670
uo.	Dibenz(a,h)anthracene	mg/kg	0.00622	0.135	0.0660	0.0208	0.0351	0.0690	0.0469
A.	Fluoranthene	mg/kg	0.111	2.36	0.133	0.0600	0.0740	0.154	0.119
lic	Fluorene	mg/ka	0.0212	0.144	0.651	0.301	0.349	0.750	0.515
5	Indeno(1,2,3-c.d)pyrene	ma/ka	0.200	3.20	0.0310	0.0150	0.0240	0.0450	0.0150
ار م	1-Methylnaphthalene	ma/ka	-	-	3.58	1.66	1.82	3.84	2.70
Ā	2-Methylnaphthalene	ma/ka	0 0202	0 201	6 70	3 16	3 42	7 27	5 20
1	Naphthalene	ma/ka	0.0346	0.301	2 05	0.999	1 02	2 15	1 55
1	Pervlene	ma/ka	0.00+0		0.0200	0.000	0.0170	0.0440	0.0200
1	Phenanthrene	ma/ka	0.0/10	- 0.515	2.02.30	1 36	1.51	3 32	2.0200
1		mg/kg	0.0419	0.010	0.226	0.152	0.100	0.270	0.270
1		ms/Kg	0.0000	0.010	0.330	0.100	0.100	0.379	0.270
1	QUITOTTE	ппд/кд	-	-	∽ 0.02	SO.02	~U.U5	SU.UZ	~U.U5

Concentration is <LRL and LRL exceeds the lower WSQG.

Concentration is <LRL and LRL exceeds the upper WSQG.

Concentration exceeds the lower WSQG.

Concentration exceeds the upper WSQG.

Notes: BC WSQG = British Columbia Working Sediment Quality Guideline; % = percent; - = no data/not applicable; > = greater than; mm = millimetres; < = less than; µm = micrometres; mg/kg = milligrams per kilogram; PAHs = polycyclic aromatic hydrocarbons; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

			BC W	SOC 8		Gree	enhills Sediment I	Pond	
	Analyte	Units	BC W	300			RG_GHP		
	1		Lower	Upper	RG_GHP-1	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6
ical ts	Moisture	%	-	-	60.5	57.8	61.7	61.1	59.6
Iysi esi									
E -	pH (1:2)	рН	-	-	8.02	8.21	8.31	8.07	8.13
	% Gravel (>2 mm)	%	-	-	<1	<1	<1	<1	<1
	% Sand (2.00 mm to 1.00 mm)	%	-	-	<1	<1	<1	<1	<1
	% Sand (1.00 mm to 0.50 mm)	%	-	-	<1	<1	<1	<1	<1
Зe	% Sand (0.50 mm to 0.25 mm)	%	-	-	<1	<1	<1	<1	<1
Si	% Sand (0.25 mm to 0.125 mm)	%	-	-	<1	<1	1.10	<1	<1
icle	% Sand (0.125 mm to 0.063 mm)	%	-	-	1.20	<1	2.70	<1	1.10
arti	% Silt (0.063 mm to 0.0312 mm)	%	-	-	19.0	14.7	15.1	4.70	15.5
_ ₽	% Silt (0.0312 mm to 0.004 mm)	%	-	-	53.5	56.0	51.7	52.7	49.1
	% Clay (<4 μm)	%	-	-	25.0	28.1	28.9	42.1	33.6
	Texture	-	-	-	Silt loam	Silt loam	Silt loam	Silty clay loam	Silt loam / Silty
0 -									clay loam
anic	Total Organia Carbon	0/			16.6	17 1	21.2	10.0	22.2
)rg(Total Organic Carbon	70	-	-	10.0	17.1	21.3	10.2	22.3
00	Aluminum (Al)	ma/ka			7 020	9.210	8 620	11 100	9 520
	Antimony (Sh)	mg/kg	-	-	1,930	0,210	0,020	1 1 2	0,320
	Anumony (Sb)	mg/kg	-	-	5.70	5.03	5.01	6.51	5.77
	Arsenic (As) Barium (Ba)	mg/kg	5.90	17.0	365	310	308	361	310
	Bandlium (Ba)	mg/kg	-	-	0.940	0.740	0.750	0.020	0.790
	Biomuth (Bi)	mg/kg	-	-	0.040	0.740	0.750	0.930	0.760
	Dismuti (Di)	mg/kg	-	-	<0.2	<0.2	<0.2 6.00	0.200	<0.2
	Boron (B)	mg/kg	-	-	<5	1 20	0.00	1.00	< <u>-</u>
		mg/kg	0.600	3.50	1.48	1.39	1.15	1.54	1.44
		mg/kg	-	-	54,300	43,200	60,500	53,200	60,900
		mg/kg	37.3	90.0	12.0	12.8	13.1	10.8	13.1
		mg/kg	-	-	9.99	11.1	8.77	12.1	9.97
		mg/кg	35.7	197	24.9	25.6	22.4	30.5	26.1
		mg/kg	21,200	43,766	13,700	14,500	12,200	16,400	13,200
		mg/kg	35.0	91.3	11.8	12.2	10.8	14.1	12.3
		mg/kg	-	-	9.10	8.90	8.30	10.6	8.00
	Magnesium (Mg)	mg/kg	-	-	5,390	5,020	4,730	5,150	4,630
als	Manganese (Mn)	mg/kg	460	1,100	195	673	308	688	567
Aet	Mercury (Hg)	mg/kg	0.170	0.486	0.103	0.130	0.0971	0.135	0.108
-	Molybdenum (Mo)	mg/kg	25.0	23,000	1.36	1.63	1.32	1.75	1.66
		mg/kg	16.0	75.0	65.7	64.5	56.3	72.8	64.5
	Phosphorus (P)	mg/kg	-	-	957	967	919	1,020	923
		mg/kg	-	- . b	1,780	1,870	2,150	2,790	2,070
	Selenium (Se)	mg/kg	2	2~	46.4	8.38	13.8	16.0	8.70
	Soliver (Ag)	mg/kg	0.500	-	0.370	0.360	0.340	0.470	0.360
	Sodium (Na)	mg/kg	-	-	73.0	77.0 54.2	62.0	03.0 67.7	71.0
	Subrum (SI)	mg/kg	-	-	59.0	54.5	02.1	07.7	02.3
	Thellium (T)	mg/kg	-	-	2,400	1,000	2,000	1,700	1,000
		mg/kg	-	-	0.139	0.125	0.111	0.122	0.0920
	Tihonium (Ti)	mg/kg	-	-	<2	<2	<2	<2	<2
		mg/kg	-	-	5.00	0.80	6.90	10.2	7.30
		mg/kg	-	-	<0.5 1.76	<0.5 1 1 2	<0.5	<0.5 1.00	<0.5
		mg/kg	-	-	1./0	1.13	1.14	1.22	1.09
		mg/kg	-	-	3U.3	01.1 107	J∠.J 117	41.2	
	Zirconium (Zr)	mg/kg	123	515	1 10	-1	~1	-1	-1
	Acenaphthene	ma/ka	- 0.00671	- 0 0880	<0.32	<0.44	<0.53	<0.46	<0.67
	Acenaphthylene	ma/ka	0.00587	0.128	0.426	0.0166	< 0.02	< 0.03	0.0347
	Acridine	ma/ka	-	-	<0.59	<0.8	<1	<0.82	<1.1
	Anthracene	mg/kg	0.0469	0.245	<0.004	<0.004	0.00740	< 0.004	0.00640
	Benz(a)anthracene	ma/ka	0.0317	0.385	0.483	<0.22	<0.27	<0.56	<0.76
	Benzo(a)pyrene	ma/ka	0.0319	0.782	0.0770	0.0970	0.137	0.0890	0.133
su	Benzo(b&i)fluoranthene	ma/ka	-	-	0.386	0.478	0.496	0.475	0.514
-bo	Benzo(b+i+k)fluoranthene	ma/ka	-	-	0.408	0.515	0.536	0.508	0.540
oca	Benzo(e)pyrene	ma/ka	-	-	0.364	0.458	0.480	0.452	0.511
/drc	Benzo(g,h,i)perylene	ma/ka	0.170	3.20	0.101	0.120	<0.13	0.122	0.142
f	Benzo(k)fluoranthene	mg/kg	0.240	13.4	0.0220	0.0370	0.0390	0.0330	0.0260
atic	Chrysene	mg/kg	0.0571	0.862	<0.62	<0.72	<0.96	< 0.59	<0.87
ü	Dibenz(a,h)anthracene	mg/ka	0.00622	0.135	0.0655	<0.08	0.0879	0.0818	<0.08
Ar	Fluoranthene	ma/ka	0.111	2.36	<0.18	0.193	0.239	0.220	0.215
lic	Fluorene	ma/ka	0.0212	0.144	0.807	0.851	1.47	1.15	1.39
cyc	Indeno(1,2.3-c.d)pvrene	ma/ka	0.200	3.20	0.0380	0.0440	0.0490	0.0470	0.0520
٥	1-Methylnaphthalene	ma/ka	-	-	3.84	5.14	6.81	5.23	7.39
Ā	2-Methylnaphthalene	ma/ka	0.0202	0.201	7.09	9.45	13.1	9.70	13.9
	Naphthalene	ma/ka	0.0346	0.391	2.18	2.92	4.61	3.02	4.68
	Pervlene	ma/ka	-	-	< 0.01	< 0.01	< 0.01	0.0150	< 0.01
	Phenanthrene	ma/ka	0.0419	0.515	3.13	4.04	4.84	4.04	5.34
	Pyrene	ma/ka	0.0530	0.875	< 0.35	0.432	0.459	0.437	0.493
	Quinoline	mg/kg	-	-	<0.05	<0.05	<0.05	<0.05	<0.05

Concentration is <LRL and LRL exceeds the lower WSQG.

Concentration is <LRL and LRL exceeds the upper WSQG.

Concentration exceeds the lower WSQG.

Concentration exceeds the upper WSQG.

Notes: BC WSQG = British Columbia Working Sediment Quality Guideline; % = percent; - = no data/not applicable; > = greater than; mm = millimetres; < = less than; µm = micrometres; mg/kg = milligrams per kilogram; PAHs = polycyclic aromatic hydrocarbons; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

			• a								Area Magnit	ude of Difference						· · · · · · · · · · · · · · · · · · ·
	AN	OVA Mode	el "			Ī			Area E	Effects ^b					Area Effec	ts by Year ^c		
															20	019		-
	Analyte	Units	Assumed Distribution	Area	Year	Area:Year	RG_GHP vs RG_GHBP	RG_GHP vs RG_GAUT	RG_GHP vs RG_GANF	RG_GHBP vs RG_GAUT	RG_GHBP vs RG_GANF	RG_GAUT vs RG_GANF	RG_GHP vs RG_GHBP	RG_GHP vs RG_GAUT	RG_GHP vs RG_GANF	RG_GHBP vs RG_GAUT	RG_GHBP vs RG_GANF	RG_GAUT vs RG_GANF
	Moisture	%	lognormal	< 0.001	< 0.001	0.007	nc	nc	nc	nc	nc	nc	ns	-26	-26	-41	-41	ns
	pH (1:2 soil:water)	pH units	lognormal	0.198	0.538	<0.001	nc	nc	nc	nc	nc	nc	-4.6	3.8	ns	8.8	6.2	-2.3
	Silt (0.0312 mm to 0.004 mm)	%	lognormal	< 0.001	0.642	0.005	nc	nc	nc	nc	nc	nc	-47	-67	-51	-37	ns	48
	Silt (0.063 mm to 0.004 mm)	%	lognormal	< 0.001	0.738	0.039	nc	nc	nc	nc	nc	nc	74	ns	93	ns	ns	ns
	Clay (<4 µm)	%	lognormal	< 0.001	0.589	< 0.001	nc	nc	nc	nc	nc	nc	-75	-85	-83	-39	-31	ns
Physical Tests	Sand (0.125 mm to 0.063 mm)	%	lognormal	< 0.001	0.999	0.015	nc	nc	nc	nc	nc	nc	599	797	786	ns	ns	ns
	Sand (0.25 mm to 0.125 mm)	%	lognormal	< 0.001	0.622	0.029	nc	nc	nc	nc	nc	nc	ns	ns	ns	105	ns	ns
	Sand (0.50 mm to 0.25 mm)	%	lognormal	< 0.001	0.261	0.321	ns	ns	ns	224	118	ns	nc	nc	nc	nc	nc	nc
	Sand (1.00 mm to 0.50 mm)	%	lognormal	< 0.001	0.205	0.354	ns	ns	ns	1/6	ns	-57	nc	nc	nc	nc	nc	nc
	Sand (2.00 mm to 1.00 mm)	%	lognormal	< 0.001	0.158	0.214	ns	ns	ns	ns	ns	-57	nc	nc	nc	nc	nc	nc
Ormania Orahan	Glavel (>2 mm)	% 0/	lognormal	<0.001	0.369	0.535	115	ris C1	TIS TO	TIS TO	ns ac	-09	nc	nc	nc	nc	nc	nc
Organic Carbon		%	lognormal	<0.001	0.750	0.007	-23	-01	-50	-50	-30	28	nc	nc	nc	nc	nc	nc
	Aluminum (Al)	mg/kg	lognormal	< 0.001	<0.001	0.264	-40	ns	-25	64	25	-24	nc	nc	nc	nc	nc	nc
	Antimony (SD)	mg/kg	lognormal	<0.001	0.007	0.003		nc			nc		-44	ns	-52	ns	ns	-33
	Arsenic (As)	mg/kg	lognormal	<0.001	0.001	0.964	-40	115	-20	04	ns	-21	nc	nc	nc	nc	nc	nc
	Bondlium (Bo)	mg/kg	lognormal	<0.001	0.136	0.707	-37	-23	-29	53	21	21	nc	nc	nc	nc	nc	nc
	Boron (B)	mg/kg	lognormal	0.001	<0.001	0.790	-40	nc	-51		21	-21	ne	ne	ne	ne	ne	ne
	Cadmium (Cd)	mg/kg	lognormal	<0.041	0.503	0.040	ne	-51	-56		-10	ne	nc	nc	nc	nc	nc	nc
	Calcium (Ca)	ma/ka	lognormal	<0.001	0.303	0.000	60	-75	53	-42	-49 ns	514	nc	nc	nc	nc	nc	nc
	Chromium (Cr)	ma/ka	lognormal	<0.001	<0.001	0.861	-36	ns	-30	35	ns	-20	nc	nc	nc	nc	nc	nc
	Cobalt (Co)	ma/ka	lognormal	< 0.001	< 0.001	0.345	-36	ns	-33	71	ns	-39	nc	nc	nc	nc	nc	nc
	Copper (Cu)	ma/ka	lognormal	< 0.001	0.225	0.381	-41	-40	-53	ns	-20	-21	nc	nc	nc	nc	nc	nc
	Iron (Fe)	ma/ka	lognormal	< 0.001	0.007	0.967	-29	31	ns	85	28	-31	nc	nc	nc	nc	nc	nc
	Lead (Pb)	mg/kg	lognormal	< 0.001	0.065	0.647	-42	ns	-37	51	ns	-27	nc	nc	nc	nc	nc	nc
	Lithium (Li)	mg/kg	lognormal	< 0.001	0.051	0.876	-23	52	ns	97	46	-26	nc	nc	nc	nc	nc	nc
	Magnesium (Mg)	mg/kg	lognormal	< 0.001	< 0.001	0.810	17	-33	-15	-43	-28	26	nc	nc	nc	nc	nc	nc
	Manganese (Mn)	mg/kg	lognormal	0.002	0.612	0.411	ns	39	ns	30	ns	-23	nc	nc	nc	nc	nc	nc
Metals	Mercury (Hg)	mg/kg	lognormal	< 0.001	< 0.001	0.041	nc	nc	nc	nc	nc	nc	-60	-57	-52	ns	ns	ns
	Molybdenum (Mo)	mg/kg	lognormal	< 0.001	0.131	0.771	-34	-35	-47	ns	-20	-19	nc	nc	nc	nc	nc	nc
	Nickel (Ni)	mg/kg	lognormal	< 0.001	0.271	< 0.001	nc	nc	nc	nc	nc	nc	ns	ns	-48	-36	-58	-35
	Phosphorus (P)	mg/kg	lognormal	0.006	0.002	0.994	ns	ns	ns	27	ns	ns	nc	nc	nc	nc	nc	nc
	Potassium (K)	mg/kg	lognormal	< 0.001	<0.001	0.639	-38	-18	-36	32	ns	-22	nc	nc	nc	nc	nc	nc
	Selenium (Se)	mg/kg	lognormal	< 0.001	0.843	0.189	ns	-89	-89	-92	-92	ns	nc	nc	nc	nc	nc	nc
	Silver (Ag)	mg/kg	lognormal	< 0.001	0.440	0.325	-50	-43	-49	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Sodium (Na)	mg/kg	lognormal	0.012	< 0.001	0.021	nc	nc	nc	nc	nc	nc	ns	ns	ns	ns	ns	ns
	Strontium (Sr)	mg/kg	lognormal	< 0.001	0.642	0.383	ns	-19	ns	ns	ns	38	nc	nc	nc	nc	nc	nc
	Sulphur (S)	mg/kg	lognormal	<0.001	0.385	0.009	nc	nc	nc	nc	nc	nc	ns	ns	ns	ns	ns	ns
	Thallium (TI)	mg/kg	lognormal	0.004	<0.001	0.028	nc	nc	nc	nc	nc	nc	46	45	ns	ns	ns	ns
	Tito (Sn)	mg/kg	iognormal	0.179	< 0.001	<0.001	nc	nc	nc	nc	nc	nc	36	113	ns	56	-35	-58
	Litanium (Sn)	mg/kg	lognormal	0.179	< 0.001	< 0.001	ric 27	nc 42	nc 29	nc 59	nc 55	nc	36	113	ns	50	-35	-58
		mg/kg	lognormal	<0.001	0.305	0.395	57	-40	-30	-00	-00	115	nc	nc	nc	nc	nc	nc
	Zinc (Zn)	mg/kg	lognormal	<0.001	0.001	<0.756	-44	-22	-40	41 pc	115	-20	-27	-25	-41	ne	-10	-21
	Zirconium (Zr)	mg/kg	lognormal	0.001	<0.009	0.001	110	nc	nc	nc	nc	110 pc	-21	-20	-41	56	-19	-21
L		шу/ку	lognormal	0.070	~0.00T	0.030	110	IIC	IIC IIC	IIC	IIC	IIC	115	115	115	50	115	115

P-value <0.05. Positive MOD (higher concentration of analyte at second biological monitoring area relative to the first). Negative MOD (lower concentration of analyte at second biological monitoring area relative to the first). Notes: ANOVA = Analysis of Variance; vs = versus; % = percent; < = less than; nc = no comparison; ns = not significant; mm = millimetres;µm = micrometres; > = greater than; mg/kg = milligrams per kilogram dry weight; HSD = Honestly Significant Difference; MOD = Magnitude of Difference; EMM = the estimated marginal mean from the censored regression model.

^a Censored regression ANOVA with factors Area, Year and Area: Year. Post-hoc contrasts were corrected using a Tukey's HSD Test. Analytes that had >75% censored data were excluded from the analyses

^b The MOD was calculated as $[EMM_{area 1}]/EMM_{area 1}^*100$ for all years combined when the *Area*: Year term was insignificant ($\alpha = 0.05$). ^c The MOD was calculated as $[EMM_{area 1}]/EMM_{area 1}^*100$ for each year when the *Area*: Year term was significant ($\alpha = 0.05$).

											Area Magnit	ude of Difference						
	ANC	VA MOD	ei -						Area E	ffects ^b					Area Effec	ts by Year ^c		
															20)19		
	Analyte	Units	Assumed Distribution	Area	Year	Area:Year	RG_GHP vs RG_GHBP	RG_GHP vs RG_GAUT	RG_GHP vs RG_GANF	RG_GHBP vs RG_GAUT	RG_GHBP vs RG_GANF	RG_GAUT vs RG_GANF	RG_GHP vs RG_GHBP	RG_GHP vs RG_GAUT	RG_GHP vs RG_GANF	RG_GHBP vs RG_GAUT	RG_GHBP vs RG_GANF	RG_GAUT vs RG_GANF
	Acenaphthylene	mg/kg	lognormal	0.107	< 0.001	0.648	ns	-61	ns	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Benz(a)anthracene	mg/kg	lognormal	<0.001	<0.001	< 0.001	nc	nc	nc	nc	nc	nc	ns	ns	-70	ns	ns	ns
	Benzo(a)pyrene	mg/kg	lognormal	< 0.001	0.001	0.001	nc	nc	nc	nc	nc	nc	-66	-88	-60	-66	ns	240
	Benzo(b&j)fluoranthene	mg/kg	lognormal	<0.001	<0.001	0.009	nc	nc	nc	nc	nc	nc	-62	-86	-62	-63	ns	167
	Benzo(b+j+k)fluoranthene	mg/kg	lognormal	< 0.001	< 0.001	0.011	nc	nc	nc	nc	nc	nc	-63	-86	-62	-62	ns	167
	Benzo(e)pyrene	mg/kg	lognormal	<0.001	<0.001	0.003	nc	nc	nc	nc	nc	nc	-63	-87	-61	-64	ns	194
	Benzo(g,h,i)perylene	mg/kg	lognormal	< 0.001	< 0.001	0.002	nc	nc	nc	nc	nc	nc	ns	-81	-69	-66	ns	ns
	Benzo(k)fluoranthene	mg/kg	lognormal	<0.001	<0.001	0.013	nc	nc	nc	nc	nc	nc	ns	ns	-59	ns	ns	ns
Polycyclic	Chrysene	mg/kg	lognormal	0.002	0.017	< 0.001	nc	nc	nc	nc	nc	nc	-65	-87	-72	-62	ns	111
Aromatic	Dibenz(a,h)anthracene	mg/kg	lognormal	< 0.001	< 0.001	< 0.001	nc	nc	nc	nc	nc	nc	ns	ns	-69	ns	ns	ns
Hydrocarbons	Fluoranthene	mg/kg	lognormal	<0.001	<0.001	0.012	nc	nc	nc	nc	nc	nc	-62	-87	-79	-66	ns	ns
	Fluorene	mg/kg	lognormal	< 0.001	< 0.001	0.042	nc	nc	nc	nc	nc	nc	-65	-89	-75	-68	ns	122
	Indeno(1,2,3-c,d)pyrene	mg/kg	lognormal	< 0.001	0.006	0.002	nc	nc	nc	nc	nc	nc	-70	ns	-82	ns	ns	ns
	1-Methylnaphthalene	mg/kg	lognormal	< 0.001	< 0.001	0.107	-47	-82	-70	-67	-43	71	nc	nc	nc	nc	nc	nc
	2-Methylnaphthalene	mg/kg	lognormal	< 0.001	< 0.001	0.140	-47	-82	-69	-66	-42	71	nc	nc	nc	nc	nc	nc
	Naphthalene	mg/kg	lognormal	<0.001	<0.001	0.246	-48	-83	-71	-67	-43	74	nc	nc	nc	nc	nc	nc
	Perylene	mg/kg	lognormal	0.019	<0.001	0.364	ns	ns	ns	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Phenanthrene	mg/kg	lognormal	< 0.001	< 0.001	0.087	-45	-81	-69	-65	-43	62	nc	nc	nc	nc	nc	nc
	Pyrene	mg/kg	lognormal	< 0.001	<0.001	0.065	-48	-74	-64	-49	ns	ns	nc	nc	nc	nc	nc	nc

P-value <0.05.

Positive MOD (higher concentration of analyte at second biological monitoring area relative to the first). Negative MOD (lower concentration of analyte at second biological monitoring area relative to the first). Notes: ANOVA = Analysis of Variance; vs = versus; % = percent; < = less than; nc = no comparison; ns = not significant; mm = millimetres; µm = micrometres; > = greater than; mg/kg = milligrams per kilogram dry weight; HSD = Honestly Significant Difference; MOD = Magnitude of Difference; EMM = the estimated marginal mean from the censored regression model.

^a Consored regression ANOVA with factors *Area*, *Year* and *Area*:Year. Post-hoc contrasts were corrected using a Tukey's HSD Test. Analytes that had >75% censored data were excluded from the analyses ^b The MOD was calculated as [EMM_{brea 2}⁻ EMM_{brea 1}]/EMM_{brea 1}*100 for all years combined when the *Area*:Year term was insignificant (α = 0.05). ^c The MOD was calculated as [EMM_{brea 2}⁻ EMM_{brea 1}]/EMM_{brea 1}*100 for each year when the *Area*:Year term was significant (α = 0.05).

Table D.9: Differences in	Concentrations of Sediment Qu	litv Analv	tes Amona	Sampling	Areas on	Greenhills an	d Gardine Cr	eeks.	2019 to 2021
								,	

												Area Magnitud	de of Differend	e				
	AN	OVA Mode	el "									Area Effec	ts bv Year ^c					
									2	020					2	021		
	Analyte	Units	Assumed Distribution	Area	Year	Area:Year	RG_GHP vs RG_GHBP	RG_GHP vs RG_GAUT	RG_GHP vs RG_GANF	RG_GHBP vs RG_GAU1	RG_GHBP vs RG_GANF	RG_GAUT vs RG_GANF	RG_GHP vs RG_GHBP	RG_GHP vs RG_GAUT	RG_GHP vs RG_GANF	RG_GHBP vs RG_GAU1	RG_GHBP vs RG_GANF	RG_GAUT v RG_GANF
	Moisture	%	lognormal	< 0.001	< 0.001	0.007	56	ns	ns	-49	-29	40	35	ns	ns	-33	ns	31
	pH (1:2 soil:water)	pH units	lognormal	0.198	0.538	< 0.001	nc	nc	nc	nc	nc	nc	ns	-8.1	-7.7	-7.4	-7.0	ns
	Silt (0.0312 mm to 0.004 mm)	%	lognormal	< 0.001	0.642	0.005	ns	-80	-55	-74	-40	127	-41	-72	-63	-52	-36	ns
	Silt (0.063 mm to 0.004 mm)	%	lognormal	< 0.001	0.738	0.039	101	ns	ns	-71	ns	196	ns	ns	ns	-50	ns	ns
	Clay (<4 µm)	%	lognormal	< 0.001	0.589	< 0.001	-57	-86	-83	-66	-60	ns	-65	-77	-76	-36	-33	ns
Physical Tests	Sand (0.125 mm to 0.063 mm)	%	lognormal	< 0.001	0.999	0.015	287	506	1,469	ns	305	159	332	540	863	ns	123	ns
	Sand (0.25 mm to 0.125 mm)	%	lognormal	< 0.001	0.622	0.029	486	1,696	2,566	206	355	ns	616	1,598	2,277	137	232	ns
	Sand (0.50 mm to 0.25 mm)	%	lognormal	< 0.001	0.261	0.321	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Sand (1.00 mm to 0.50 mm)	%	lognormal	< 0.001	0.205	0.354	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Sand (2.00 mm to 1.00 mm)	%	lognormal	< 0.001	0.158	0.214	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Gravel (>2 mm)	%	lognormal	<0.001	0.389	0.535	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
Organic Carbon	Total Organic Carbon	%	lognormal	<0.001	0.750	0.667	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Aluminum (Al)	mg/kg	lognormal	< 0.001	<0.001	0.264	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Antimony (Sb)	mg/kg	lognormal	< 0.001	0.007	0.003	-32	ns	-48	ns	ns	ns	-33	ns	ns	90	ns	-30
	Arsenic (As)	mg/kg	lognormal	< 0.001	0.001	0.964	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Barium (Ba)	mg/kg	lognormal	< 0.001	< 0.001	0.767	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Beryllium (Be)	mg/kg	lognormal	< 0.001	0.136	0.798	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Boron (B)	mg/kg	lognormal	0.041	<0.001	0.043	38	ns	ns	ns	ns	ns	ns	45	ns	43	ns	-35
	Cadmium (Cd)	mg/kg	lognormal	<0.001	0.503	0.080	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Calcium (Ca)	mg/kg	lognormal	< 0.001	0.755	0.295	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Chromium (Cr)	mg/kg	lognormal	<0.001	<0.001	0.861	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Cobalt (Co)	mg/kg	lognormal	< 0.001	< 0.001	0.345	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Copper (Cu)	mg/kg	lognormal	< 0.001	0.225	0.381	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Iron (Fe)	mg/kg	lognormal	< 0.001	0.007	0.967	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Lead (Pb)	mg/kg	lognormal	< 0.001	0.065	0.647	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Lithium (Li)	mg/kg	lognormal	< 0.001	0.051	0.876	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Magnesium (Mg)	mg/kg	lognormal	< 0.001	< 0.001	0.810	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Manganese (Mn)	mg/kg	lognormal	0.002	0.612	0.411	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
Metals	Mercury (Hg)	mg/kg	lognormal	< 0.001	<0.001	0.041	-36	-46	-51	ns	ns	ns	-37	-35	-37	ns	ns	ns
	Molybdenum (Mo)	mg/kg	lognormal	< 0.001	0.131	0.771	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Nickel (Ni)	mg/kg	lognormal	< 0.001	0.271	<0.001	109	-31	-53	-67	-78	-33	58	-42	-64	-63	-//	-38
	Phosphorus (P)	mg/kg	lognormal	0.006	0.002	0.994	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Potassium (K)	mg/kg	lognormal	<0.001	<0.001	0.639	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Selenium (Se)	mg/kg	lognormal	< 0.001	0.843	0.189	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Silver (Ag)	mg/kg	lognormal	<0.001	0.440	0.325	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Sodium (Na)	mg/kg	lognormal	0.012	<0.001	0.021	34	ns	ns	-21	ns	ns	ns	-22	ns	ns	ns	ns
	Strontium (Sr)	mg/kg	lognormal	< 0.001	0.642	0.383	nc 105	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
		mg/kg	lognormal	<0.001	0.385	0.009	135	ns	ns	ns	-47	ns	ns	-59	ns	-54	ns	124
	Thallium (TI)	mg/kg	lognormal	0.004	<0.001	0.028	ns	ns	ns	ns	ns	ns	ns	45	ns	32	ns	ns
	Titonium (Cn)	mg/Kg	lognormal	0.179	<0.001	<0.001	ns	ns	ns	ns	ns	ns	ns	112	65	129	78	ns
		mg/kg	lognormal	0.179	< 0.001	<0.001	ns	ns	ns	ns	ns	ns	ns	112	05	129	/8	ns
		mg/kg	lognormal	<0.001	0.305	0.393		110		IIC PC	nc	110	nc	nc	nc	IIC DO	110	110
		mg/kg	lognormal	<0.001	0.001	0.758	nc	29	45	29	53	24	nc	28	17	31	10	26
	Zirconium (Zr)	mg/kg	lognormal	0.079	<0.009	0.030	115	-20	-40	-30	-00	-24	115	-20	-47	-01	-49	-20
		тту/ку	lognormal	0.070	<u>∼0.001</u>	0.030	115	115	(15	(15	(15	115	115	115	115	115	115	115

P-value <0.05. Positive MOD (higher concentration of analyte at second biological monitoring area relative to the first). Negative MOD (lower concentration of analyte at second biological monitoring area relative to the first). Notes: ANOVA = Analysis of Variance; vs = versus; % = percent; < = less than; nc = no comparison; ns = not significant; mm = millimetres;µm = micrometres; > = greater than; mg/kg = milligrams per kilogram dry weight; HSD = Honestly Significant Difference; MOD = Magnitude of Difference; EMM = the estimated marginal mean from the censored regression model.

^a Censored regression ANOVA with factors Area, Year and Area: Year. Post-hoc contrasts were corrected using a Tukey's HSD Test. Analytes that had >75% censored data were excluded from the analyses

^b The MOD was calculated as $[EMM_{area 2} - EMM_{area 1}]/EMM_{area 1}*100$ for all years combined when the *Area*: *Year* term was insignificant ($\alpha = 0.05$). ^c The MOD was calculated as $[EMM_{area 2} - EMM_{area 1}]/EMM_{area 1}*100$ for each year when the *Area*: *Year* term was significant ($\alpha = 0.05$).

			- 3									Area Magnitud	e of Differenc	e				
	A	NOVA Mod	el "									Area Effec	ts by Year ^c					
									20)20					20	21		-
	Analyte	Units	Assumed Distribution	Area	Year	Area:Year	RG_GHP vs RG_GHBP	RG_GHP vs RG_GAUT	RG_GHP vs RG_GANF	RG_GHBP vs RG_GAUT	RG_GHBP vs RG_GANF	RG_GAUT vs RG_GANF	RG_GHP vs RG_GHBP	RG_GHP vs RG_GAUT	RG_GHP vs RG_GANF	RG_GHBP vs RG_GAUT	RG_GHBP vs RG_GANF	RG_GAUT vs RG_GANF
	Acenaphthylene	mg/kg	lognormal	0.107	<0.001	0.648	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Benz(a)anthracene	mg/kg	lognormal	<0.001	<0.001	<0.001	ns	-84	ns	-79	ns	ns	ns	ns	ns	ns	ns	ns
	Benzo(a)pyrene	mg/kg	lognormal	<0.001	0.001	0.001	ns	-87	-75	-81	-65	ns	ns	-54	ns	-68	-59	ns
	Benzo(b&j)fluoranthene	mg/kg	lognormal	<0.001	< 0.001	0.009	ns	-83	-72	-69	ns	ns	ns	-49	ns	ns	ns	ns
	Benzo(b+j+k)fluoranthene	mg/kg	lognormal	<0.001	< 0.001	0.011	ns	-84	-72	-69	ns	ns	ns	-50	ns	ns	ns	ns
	Benzo(e)pyrene	mg/kg	lognormal	<0.001	<0.001	0.003	ns	-83	-72	-72	-54	ns	ns	ns	ns	-53	ns	ns
	Benzo(g,h,i)perylene	mg/kg	lognormal	<0.001	<0.001	0.002	ns	-81	-66	-75	-56	ns	ns	ns	ns	-58	-53	ns
	Benzo(k)fluoranthene	mg/kg	lognormal	<0.001	< 0.001	0.013	ns	-78	-69	-68	-54	ns	ns	ns	ns	ns	ns	ns
Polycyclic	Chrysene	mg/kg	lognormal	0.002	0.017	< 0.001	ns	-81	ns	-76	ns	ns	ns	ns	ns	ns	ns	ns
Aromatic	Dibenz(a,h)anthracene	mg/kg	lognormal	<0.001	<0.001	< 0.001	ns	-84	-73	-72	-53	ns	ns	ns	ns	ns	ns	ns
Hydrocarbons	Fluoranthene	mg/kg	lognormal	<0.001	<0.001	0.012	ns	-87	-78	-77	-60	ns	ns	-55	ns	ns	ns	ns
-	Fluorene	mg/kg	lognormal	<0.001	<0.001	0.042	ns	-90	-82	-81	-67	ns	ns	-69	-56	-65	ns	ns
	Indeno(1,2,3-c,d)pyrene	mg/kg	lognormal	<0.001	0.006	0.002	ns	-83	-73	-77	-63	ns	ns	ns	ns	ns	ns	ns
	1-Methylnaphthalene	mg/kg	lognormal	<0.001	<0.001	0.107	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	2-Methylnaphthalene	mg/kg	lognormal	<0.001	<0.001	0.140	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Naphthalene	mg/kg	lognormal	<0.001	< 0.001	0.246	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Perylene	mg/kg	lognormal	0.019	< 0.001	0.364	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Phenanthrene	mg/kg	lognormal	< 0.001	<0.001	0.087	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Pyrene	mg/kg	lognormal	< 0.001	< 0.001	0.065	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc

P-value <0.05.

Positive ADD. Positive MOD (lower concentration of analyte at second biological monitoring area relative to the first). Negative MOD (lower concentration of analyte at second biological monitoring area relative to the first). Notes: ANOVA = Analysis of Variance; vs = versus; % = percent; < = less than; nc = no comparison; ns = not significant; mm = millimetres;µm = micrometres; > = greater than; mg/kg = milligrams per kilogram dry weight; HSD = Honestly Significant Difference; MOD = Magnitude of Difference; EMM = the estimated marginal mean from the censored regression model.

^a Censored regression ANOVA with factors Area, Year and Area:Year. Post-hoc contrasts were corrected using a Tukey's HSD Test. Analytes that had >75% censored data were excluded from the analyses ^b The MOD was calculated as [EMM_{area 2}' EMM_{area 1}]/EMM_{area 1}*100 for all years combined when the *Area:Year* term was insignificant (α = 0.05). ^c The MOD was calculated as [EMM_{area 2}' EMM_{area 1}]/EMM_{area 1}*100 for each year when the *Area:Year* term was significant (α = 0.05).

										Yearly Mag	nitude of Differ	ence			
	AI	NOVA Mo	del "					Year Effects ^b				Year Effec	ts by Area ^c		
	Analvte	Units	Assumed	Area	Year	Area:Year	2019 vs 2020	2019 vs 2021	2020 vs 2021		RG_GHP	1		RG_GHBP	
			Distribution							2019 vs 2020	2019 vs 2021	2020 vs 2021	2019 vs 2020	2019 vs 2021	2020 vs 2021
	Moisture	%	lognormal	<0.001	<0.001	0.007	nc	nc	nc	ns	ns	ns	ns	ns	ns
	pH (1:2 soil:water)	pH units	lognormal	0.198	0.538	<0.001	nc	nc	nc	nc	3.7	nc	nc	7.9	nc
	Silt (0.0312 mm to 0.004 mm)	%	lognormal	<0.001	0.642	0.005	nc	nc	nc	ns	ns	ns	45	ns	ns
	Silt (0.063 mm to 0.004 mm)	%	lognormal	< 0.001	0.738	0.039	nc	nc	nc	ns	ns	ns	ns	ns	ns
	Clay (<4 μm)	%	lognormal	< 0.001	0.589	< 0.001	nc	nc	nc	ns	-24	ns	60	ns	-33
Physical Tests	Sand (0.125 mm to 0.063 mm)	%	lognormal	< 0.001	0.999	0.015	nc	nc	nc	ns	ns	ns	ns	ns	ns
	Sand (0.25 mm to 0.125 mm)	%	lognormal	< 0.001	0.622	0.029	nc	nc	nc	ns	ns	ns	-47	ns	ns
	Sand (0.50 mm to 0.25 mm)	%	lognormal	< 0.001	0.261	0.321	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Sand (1.00 mm to 0.50 mm)	%	lognormal	< 0.001	0.205	0.354	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Sand (2.00 mm to 1.00 mm)	%	lognormal	< 0.001	0.158	0.214	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Gravel (>2 mm)	%	lognormal	<0.001	0.389	0.535	ns	ns	ns	nc	nc	nc	nc	nc	nc
Organic Carbon	Total Organic Carbon	%	lognormal	<0.001	0.750	0.667	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Aluminum (Al)	mg/kg	lognormal	<0.001	<0.001	0.264	ns	-22	-31	nc	nc	nc	nc	nc	nc
	Antimony (Sb)	mg/kg	lognormal	<0.001	0.007	0.003	nc	nc	nc	ns	ns	ns	ns	ns	ns
	Arsenic (As)	mg/kg	lognormal	<0.001	0.001	0.964	ns	-22	-16	nc	nc	nc	nc	nc	nc
	Barium (Ba)	mg/kg	lognormal	< 0.001	<0.001	0.767	ns	-17	-10	nc	nc	nc	nc	nc	nc
	Beryllium (Be)	mg/kg	lognormal	<0.001	0.136	0.798	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Boron (B)	mg/kg	lognormal	0.041	<0.001	0.043	nc	nc	nc	48	ns	-37	62	-25	-54
	Cadmium (Cd)	mg/kg	lognormal	< 0.001	0.503	0.080	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Calcium (Ca)	mg/kg	lognormal	< 0.001	0.755	0.295	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Chromium (Cr)	mg/kg	lognormal	< 0.001	<0.001	0.861	ns	-15	-24	nc	nc	nc	nc	nc	nc
	Cobalt (Co)	mg/kg	lognormal	< 0.001	<0.001	0.345	ns	-15	-12	nc	nc	nc	nc	nc	nc
	Copper (Cu)	mg/kg	lognormal	<0.001	0.225	0.381	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Iron (Fe)	mg/kg	lognormal	<0.001	0.007	0.967	ns	-20	ns	nc	nc	nc	nc	nc	nc
		mg/kg	lognormal	<0.001	0.065	0.647	ns	ns	ns	nc	nc	nc	nc	nc	nc
		mg/kg	lognormal	<0.001	0.051	0.876	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Magnesium (Mg)	mg/kg	lognormal	< 0.001	<0.001	0.810	ns	-18	ns	nc	nc	nc	nc	nc	nc
Madala		mg/kg	lognormal	0.002	0.612	0.411	ns	ns	ns	nc	nc	nc	nc	nc	nc
Metals	Mercury (Hg)	mg/kg	lognormal	< 0.001	<0.001	0.041	nc	nc	nc	ns	ns	ns	86	52	ns
	Niekel (Nii)	mg/kg	lognormal	<0.001	0.131	0.771	ns	ns	ns	nc	nc	nc	nc 50	nc	nc
	Dheenherve (D)	mg/kg	lognormal	<0.001	0.271	<0.001	nc	17	nc	ns	ns	ns	52	ns	ns
	Phosphorus (P)	mg/kg	lognormal	0.000	0.002	0.994	115	-17	11S 24	nc	nc	nc	nc	nc	nc
	Polassium (R)	mg/kg	lognormal	<0.001	~0.001	0.039	24	-14	-31	nc	lic	nc	nc	nc	nc
	Selenium (Se)	mg/kg	lognormal	<0.001	0.043	0.109	lis	lis	lis	nc	lic	nc	nc	nc	nc
	Sodium (Na)	mg/kg	lognormal	0.001	<0.001	0.021	nc	nc	nc	nc	ne	nc	23	nc	31
	Stroptium (Sr)	mg/kg	lognormal	<0.012	0.642	0.021	nc	nc	nc	no	lis	115	23	no	-51
	Subbur (S)	mg/kg	lognormal	<0.001	0.042	0.383	no	ns no	lis	nc	nc	77	nc	nc	nc
	Thallium (TI)	mg/kg	lognormal	0.001	<0.000	0.009		nc	nc	115	ns	-34	ne	-26	-/1
	Tin (Sn)	mg/kg	lognormal	0.004	<0.001	<0.020		nc	nc	37/	ne		203	-20	-41
	Titanium (Sn)	mg/kg	lognormal	0.179	<0.001	<0.001	nc	nc	nc	374	ne	_80	203	-30	-79
	Uranium (U)	mg/kg	lognormal	<0.001	0.305	0.395	ns	ns	ns		nc	-00	200	-30	-13 nc
	Vanadium (V)	ma/ka	lognormal	<0.001	<0.000	0.758	ne	_18	_27	nc	nc	nc	nc	nc	nc
	Zinc (Zn)	mg/kg	lognormal	<0.001	0.001	<0.001	nc	nc	- <u>-</u> _1	ns	ns	ns	53	22	-20
	Zirconium (Zr)	ma/ka	lognormal	0.078	<0.001	0.030	nc	nc	nc	ne	ne	_37	54	ns	-26
L			iognormu	0.070	0.001	0.000		10	10	10			57	10	20

P-value < 0.05.

Positive MOD (higher concentration of analyte in second year relative to the first).

Negative MOD (lower concentration of analyte in second year relative to the first).

Notes: ANOVA = Analysis of Variance; vs = versus; % = percent; < = less than; nc = no comparison; ns = not significant; mm = millimetres; µm = micrometres; > = greater than; mg/kg = milligrams per kilogram dry weight; HSD = Honestly Significant Difference; MOD = Magnitude of Difference; EMM = the estimated marginal mean from the censored regression model.

^a Censored regression ANOVA with factors Area, Year and Area: Year. Post-hoc contrasts were corrected using a Tukey's HSD Test. Analytes that had >75% censored data were excluded from the analyses.

^b The MOD was calculated as [EMM_{year 2}⁻ EMM_{year 1}/EMM_{year 1}*100 for all areas combined when the Area: Year term was insignificant (α = 0.05).

^c The MOD was calculated as [EMM_{vear 2}^r EMM_{vear 1}]/EMM_{vear 1}*100 for each area when the *Area:Year* term was significant ($\alpha = 0.05$).

	ANOVA Model Test	ing for Diff		Veere a						Yearly Mag	nitude of Differe	ence			
	ANOVA MODEL LEST	ing for Diff	rerence Among	Years				Year Effects ^b				Year Effec	ts by Area ^c		
	Analyta	Unito	Assumed	A.r.o.a	Aroo	Aroo	2010 vo 2020	2010 vo 2021	2020 vo 2021		RG_GHP			RG_GHBP	
	Analyte	Units	Distribution	Area	Area	Area	2019 VS 2020	2019 VS 2021	2020 VS 2021	2019 vs 2020	2019 vs 2021	2020 vs 2021	2019 vs 2020	2019 vs 2021	2020 vs 2021
	Acenaphthylene	mg/kg	log-normal	< 0.001	< 0.001	<0.001	ns	ns	ns	ns	ns	ns	ns	ns	ns
	Benz(a)anthracene	mg/kg	lognormal	<0.001	< 0.001	<0.001	nc	nc	nc	ns	ns	ns	ns	ns	ns
	Benzo(a)pyrene	mg/kg	lognormal	< 0.001	0.001	0.001	nc	nc	nc	ns	ns	ns	127	260	ns
	Benzo(b&j)fluoranthene	mg/kg	lognormal	<0.001	<0.001	0.009	nc	nc	nc	ns	ns	ns	122	222	ns
	Benzo(b+j+k)fluoranthene	mg/kg	lognormal	< 0.001	< 0.001	0.011	nc	nc	nc	ns	ns	ns	124	222	ns
	Benzo(e)pyrene	mg/kg	lognormal	<0.001	<0.001	0.003	nc	nc	nc	ns	ns	ns	132	228	ns
	Benzo(g,h,i)perylene	mg/kg	lognormal	< 0.001	<0.001	0.002	nc	nc	nc	ns	ns	ns	137	268	ns
	Benzo(k)fluoranthene	mg/kg	lognormal	<0.001	<0.001	0.013	nc	nc	nc	ns	ns	ns	ns	ns	ns
Polycyclic	Chrysene	mg/kg	lognormal	0.002	0.017	<0.001	nc	nc	nc	ns	ns	ns	114	ns	ns
Aromatic	Dibenz(a,h)anthracene	mg/kg	lognormal	<0.001	<0.001	<0.001	nc	nc	nc	89	ns	ns	ns	ns	ns
Hydrocarbons	Fluoranthene	mg/kg	lognormal	<0.001	<0.001	0.012	nc	nc	nc	ns	ns	ns	138	201	ns
	Fluorene	mg/kg	lognormal	< 0.001	<0.001	0.042	nc	nc	nc	ns	ns	ns	177	294	ns
	Indeno(1,2,3-c,d)pyrene	mg/kg	lognormal	<0.001	0.006	0.002	nc	nc	nc	ns	ns	ns	156	ns	ns
	1-Methylnaphthalene	mg/kg	lognormal	< 0.001	<0.001	0.107	72	184	65	nc	nc	nc	nc	nc	nc
	2-Methylnaphthalene	mg/kg	lognormal	< 0.001	<0.001	0.140	74	192	68	nc	nc	nc	nc	nc	nc
	Naphthalene	mg/kg	lognormal	< 0.001	<0.001	0.246	89	214	67	nc	nc	nc	nc	nc	nc
	Perylene	mg/kg	lognormal	0.019	< 0.001	0.364	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Phenanthrene	mg/kg	lognormal	< 0.001	< 0.001	0.087	68	173	63	nc	nc	nc	nc	nc	nc
	Pyrene	mg/kg	lognormal	< 0.001	< 0.001	0.065	82	165	45	nc	nc	nc	nc	nc	nc

P-value < 0.05.

Positive MOD (higher concentration of analyte in second year relative to the first).

Negative MOD (lower concentration of analyte in second year relative to the first).

Notes: ANOVA = Analysis of Variance; vs = versus; % = percent; < = less than; nc = no comparison; ns = not significant; mm = millimetres; μ m = micrometres; > = greater than; mg/kg = milligrams per kilogram dry weight; HSD = Honestly Significant Difference; MOD = Magnitude of Difference; EMM = the estimated marginal mean from the censored regression model.

^a Censored regression ANOVA with factors Area, Year and Area: Year. Post-hoc contrasts were corrected using a Tukey's HSD Test. Analytes that had >75% censored data were excluded from the analyses.

^b The MOD was calculated as [EMM_{year 2}⁻ EMM_{year 1}]/EMM_{year 1}*100 for all areas combined when the Area: Year term was insignificant (α = 0.05).

^c The MOD was calculated as [EMM_{year 2^{*}} EMM_{year 1}]/EMM_{year 1}*100 for each area when the *Area:Year* term was significant ($\alpha = 0.05$).

	Δ	NOVA Mo	del ^a						Yearly Magnitu	de of Difference	9	
					1				Year Effec	ts by Area ^c		
	Australia	11	Assumed	A	No	A		RG_GAUT			RG_GANF	
	Analyte	Units	Distribution	Area	rear	Area: rear	2019 vs 2020	2019 vs 2021	2020 vs 2021	2019 vs 2020	2019 vs 2021	2020 vs 2021
	Moisture	%	lognormal	<0.001	< 0.001	0.007	ns	36	38	38	78	29
	pH (1:2 soil:water)	pH units	lognormal	0.198	0.538	< 0.001	nc	-8.2	nc	nc	-5.6	nc
	Silt (0.0312 mm to 0.004 mm)	%	lognormal	<0.001	0.642	0.005	-39	ns	56	ns	ns	ns
	Silt (0.063 mm to 0.004 mm)	%	lognormal	<0.001	0.738	0.039	-48	ns	ns	ns	ns	ns
	Clay (<4 µm)	%	lognormal	<0.001	0.589	< 0.001	ns	ns	ns	ns	ns	ns
Physical Tests	Sand (0.125 mm to 0.063 mm)	%	lognormal	<0.001	0.999	0.015	ns	ns	ns	97	ns	ns
	Sand (0.25 mm to 0.125 mm)	%	lognormal	<0.001	0.622	0.029	ns	ns	ns	ns	ns	ns
	Sand (0.50 mm to 0.25 mm)	%	lognormal	<0.001	0.261	0.321	nc	nc	nc	nc	nc	nc
	Sand (1.00 mm to 0.50 mm)	%	lognormal	<0.001	0.205	0.354	nc	nc	nc	nc	nc	nc
	Sand (2.00 mm to 1.00 mm)	%	lognormal	<0.001	0.158	0.214	nc	nc	nc	nc	nc	nc
	Gravel (>2 mm)	%	lognormal	<0.001	0.389	0.535	nc	nc	nc	nc	nc	nc
Organic Carbon	Total Organic Carbon	%	lognormal	<0.001	0.750	0.667	nc	nc	nc	nc	nc	nc
	Aluminum (Al)	mg/kg	lognormal	< 0.001	< 0.001	0.264	nc	nc	nc	nc	nc	nc
	Antimony (Sb)	mg/kg	lognormal	< 0.001	0.007	0.003	ns	62	51	ns	71	51
	Arsenic (As)	mg/kg	lognormal	< 0.001	0.001	0.964	nc	nc	nc	nc	nc	nc
	Barium (Ba)	mg/kg	lognormal	< 0.001	< 0.001	0.767	nc	nc	nc	nc	nc	nc
	Beryllium (Be)	mg/kg	lognormal	< 0.001	0.136	0.798	nc	nc	nc	nc	nc	nc
	Boron (B)	mg/kg	lognormal	0.041	< 0.001	0.043	41	ns	-23	47	ns	-45
	Cadmium (Cd)	mg/kg	lognormal	< 0.001	0.503	0.080	nc	nc	nc	nc	nc	nc
	Calcium (Ca)	mg/kg	lognormal	<0.001	0.755	0.295	nc	nc	nc	nc	nc	nc
	Chromium (Cr)	mg/kg	lognormal	<0.001	< 0.001	0.861	nc	nc	nc	nc	nc	nc
	Cobalt (Co)	mg/kg	lognormal	<0.001	< 0.001	0.345	nc	nc	nc	nc	nc	nc
	Copper (Cu)	mg/kg	lognormal	<0.001	0.225	0.381	nc	nc	nc	nc	nc	nc
	Iron (Fe)	mg/kg	lognormal	<0.001	0.007	0.967	nc	nc	nc	nc	nc	nc
	Lead (Pb)	mg/kg	lognormal	<0.001	0.065	0.647	nc	nc	nc	nc	nc	nc
	Lithium (Li)	mg/kg	lognormal	<0.001	0.051	0.876	nc	nc	nc	nc	nc	nc
	Magnesium (Mg)	mg/kg	lognormal	<0.001	< 0.001	0.810	nc	nc	nc	nc	nc	nc
	Manganese (Mn)	mg/kg	lognormal	0.002	0.612	0.411	nc	nc	nc	nc	nc	nc
Metals	Mercury (Hg)	mg/kg	lognormal	<0.001	< 0.001	0.041	43	47	ns	ns	ns	ns
	Molybdenum (Mo)	mg/kg	lognormal	<0.001	0.131	0.771	nc	nc	nc	nc	nc	nc
	Nickel (Ni)	mg/kg	lognormal	<0.001	0.271	< 0.001	ns	-26	ns	ns	-30	ns
	Phosphorus (P)	mg/kg	lognormal	0.006	0.002	0.994	nc	nc	nc	nc	nc	nc
	Potassium (K)	mg/kg	lognormal	<0.001	< 0.001	0.639	nc	nc	nc	nc	nc	nc
	Selenium (Se)	mg/kg	lognormal	<0.001	0.843	0.189	nc	nc	nc	nc	nc	nc
	Silver (Ag)	mg/kg	lognormal	<0.001	0.440	0.325	nc	nc	nc	nc	nc	nc
	Sodium (Na)	mg/kg	lognormal	0.012	< 0.001	0.021	ns	ns	-23	ns	ns	ns
	Strontium (Sr)	mg/kg	lognormal	<0.001	0.642	0.383	nc	nc	nc	nc	nc	nc
	Sulphur (S)	mg/kg	lognormal	< 0.001	0.385	0.009	ns	ns	ns	ns	ns	ns
	Thallium (TI)	mg/kg	lognormal	0.004	< 0.001	0.028	ns	ns	ns	ns	ns	ns
	Tin (Sn)	mg/kg	lognormal	0.179	< 0.001	< 0.001	86	ns	-50	362	75	-62
	Titanium (Sn)	mg/kg	lognormal	0.179	< 0.001	< 0.001	86	ns	-50	362	75	-62
	Uranium (U)	mg/kg	lognormal	<0.001	0.305	0.395	nc	nc	nc	nc	nc	nc
	Vanadium (V)	mg/kg	lognormal	<0.001	< 0.001	0.758	nc	nc	nc	nc	nc	nc
	Zinc (Zn)	mg/kg	lognormal	<0.001	0.009	< 0.001	ns	-18	ns	ns	-23	ns
	Zirconium (Zr)	mg/kg	lognormal	0.078	<0.001	0.030	ns	ns	ns	ns	ns	ns

P-value <0.05.

Positive MOD (higher concentration of analyte in second year relative to the first).

Negative MOD (lower concentration of analyte in second year relative to the first).

Notes: ANOVA = Analysis of Variance; vs = versus; % = percent; < = less than; nc = no comparison; ns = not significant; mm = millimetres; μ m = micrometres; > = greater than; mg/kg = milligrams per kilogram dry weight; HSD = Honestly Significant Difference; MOD = Magnitude of Difference; EMM = the estimated marginal mean from the censored regression model.

^a Censored regression ANOVA with factors Area, Year and Area: Year. Post-hoc contrasts were corrected using a Tukey's HSD Test. Analytes that had >75% censored data were excluded from the analyses.

^b The MOD was calculated as [EMM_{year 2}^{*} EMM_{year 1}]/EMM_{year 1}*100 for all areas combined when the Area: Year term was insignificant (α = 0.05).

^c The MOD was calculated as [EMM_{vear 2}^r EMM_{vear 1}]/EMM_{vear 1}*100 for each area when the *Area:Year* term was significant ($\alpha = 0.05$).

	ANOVA Medal Teat	ing for Diff		Veere ^a					Yearly Magnitu	de of Difference	9	
	ANOVA Model Test	ing for Diff	erence Among	rears					Year Effect	ts by Area ^c		
	Analyta	Unito	Assumed	Aree	Aree	A 100		RG_GAUT			RG_GANF	
	Analyte	Units	Distribution	Area	Area	Area	2019 vs 2020	2019 vs 2021	2020 vs 2021	2019 vs 2020	2019 vs 2021	2020 vs 2021
	Acenaphthylene	mg/kg	log-normal	<0.001	<0.001	<0.001	ns	ns	ns	ns	ns	ns
	Benz(a)anthracene	mg/kg	lognormal	<0.001	<0.001	<0.001	ns	ns	241	ns	121	ns
	Benzo(a)pyrene	mg/kg	lognormal	<0.001	0.001	0.001	ns	242	173	ns	ns	ns
	Benzo(b&j)fluoranthene	mg/kg	lognormal	<0.001	<0.001	0.009	87	364	148	ns	94	ns
	Benzo(b+j+k)fluoranthene	mg/kg	lognormal	<0.001	<0.001	0.011	ns	353	153	ns	93	ns
	Benzo(e)pyrene	mg/kg	lognormal	<0.001	<0.001	0.003	ns	335	143	ns	ns	ns
	Benzo(g,h,i)perylene	mg/kg	lognormal	<0.001	<0.001	0.002	ns	364	162	88	208	ns
	Benzo(k)fluoranthene	mg/kg	lognormal	<0.001	<0.001	0.013	ns	ns	121	ns	ns	ns
Polycyclic	Chrysene	mg/kg	lognormal	0.002	0.017	<0.001	ns	356	228	ns	151	ns
Aromatic	Dibenz(a,h)anthracene	mg/kg	lognormal	<0.001	<0.001	<0.001	ns	ns	142	ns	135	ns
Hydrocarbons	Fluoranthene	mg/kg	lognormal	<0.001	<0.001	0.012	ns	358	184	ns	216	90
	Fluorene	mg/kg	lognormal	<0.001	<0.001	0.042	ns	332	168	ns	171	113
	Indeno(1,2,3-c,d)pyrene	mg/kg	lognormal	<0.001	0.006	0.002	ns	ns	ns	ns	ns	ns
	1-Methylnaphthalene	mg/kg	lognormal	<0.001	<0.001	0.107	nc	nc	nc	nc	nc	nc
	2-Methylnaphthalene	mg/kg	lognormal	<0.001	<0.001	0.140	nc	nc	nc	nc	nc	nc
	Naphthalene	mg/kg	lognormal	<0.001	<0.001	0.246	nc	nc	nc	nc	nc	nc
	Perylene	mg/kg	lognormal	0.019	<0.001	0.364	nc	nc	nc	nc	nc	nc
	Phenanthrene	mg/kg	lognormal	<0.001	<0.001	0.087	nc	nc	nc	nc	nc	nc
	Pyrene	mg/kg	lognormal	< 0.001	<0.001	0.065	nc	nc	nc	nc	nc	nc

P-value < 0.05.

Positive MOD (higher concentration of analyte in second year relative to the first).

Negative MOD (lower concentration of analyte in second year relative to the first).

Notes: ANOVA = Analysis of Variance; vs = versus; % = percent; < = less than; nc = no comparison; ns = not significant; mm = millimetres; μ m = micrometres; > = greater than; mg/kg = milligrams per kilogram dry weight; HSD = Honestly Significant Difference; MOD = Magnitude of Difference; EMM = the estimated marginal mean from the censored regression model.

^a Censored regression ANOVA with factors Area, Year and Area: Year. Post-hoc contrasts were corrected using a Tukey's HSD Test. Analytes that had >75% censored data were excluded from the analyses.

^b The MOD was calculated as [EMM_{year 2}^{*} EMM_{year 1}]/EMM_{year 1}*100 for all areas combined when the Area: Year term was insignificant (α = 0.05).

^c The MOD was calculated as [EMM_{year 2}⁻ EMM_{year 1}]/EMM_{year 1}*100 for each area when the *Area*:Year term was significant (α = 0.05).

		BC W	SQG ^a				SEA F	Results				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	265	506	5,620	871	6,491	315	4,590
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	0.370	0.400	0.770	0.200	0.630
Arsenic (As)	mg/kg	5.90	17.0	0.0740	0.0710	0.394	0.333	3.14	0.872	4.01	0.465	3.06
Barium (Ba)	mg/kg	-	-	19.6	47.7	39.6	12.0	103	119	222	87.3	176
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	0.220	0.800	1.02	0.400	0.440
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	<5
Cadmium (Cd)	mg/kg	0.600	3.50	<0.05	0.382	1.68	0.0910	0.0580	2.20	2.26	2.06	1.47
Calcium (Ca)	mg/kg	-	-	3,130	48,100	64,700	2,140	1,310	118,070	119,380	112,800	68,500
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	1.16	1.91	8.90	8.57	17.5	6.16	7.51
Cobalt (Co)	mg/kg	-	-	0.180	0.740	1.25	0.660	1.46	2.83	4.29	1.99	6.56
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	<0.5	4.01	5.82	5.51	11.3	1.00	18.1
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	2,700	1,160	7,040	3,960	11,000	2,750	9,150
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	3.22	<0.5	2.71	4.72	7.43	3.72	8.22
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	7.10	20.0	27.1	10.0	6.00
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	5,020
Manganese (Mn)	mg/kg	460	1,100	82.3	120	221	9.70	33.0	433	466	341	377
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.0717
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	0.800	2.00	2.80	1.00	1.05
Nickel (Ni)	mg/kg	16.0	75.0	1.37	4.80	8.85	4.63	7.10	19.6	26.8	13.6	118
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	73.0	-	-	173	173	123	778
Potassium (K)	mg/kg	-	-	120	-	-	-	-	120	120	-	1,060
Selenium (Se) ^b	mg/kg	2.	.00	<0.2	<0.2	0.640	2.71	0.410	3.75	4.16	0.840	29.5
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	<0.1	0.400	0.500	0.200	0.240
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	64.0
Strontium (Sr)	mg/kg	-	-	5.46	22.3	39.6	3.41	17.9	70.8	88.7	61.9	51.2
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	1,900
Thallium (TI)	mg/kg	-	-	<0.05	<0.05	< 0.05	<0.05	0.138	0.200	0.338	0.100	0.124
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	8.80	32.0	15.8	47.8	6.00	7.30
Tungsten (Ŵ)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	<0.05	0.154	0.216	0.113	0.401	0.533	0.934	0.370	1.89
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	2.98	2.21	17.0	5.59	22.6	3.18	16.0
Zinc (Zn)	mg/kg	123	315	<1	27.4	68.7	6.10	37.3	103	140	96.1	147

Table D.11: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GHBP-1 on Lower Greenhills Creek, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

		BC W	'SQG ^a				SEA R	esults				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	278	856	5,560	1,234	6,794	328	4,870
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	0.420	0.400	0.820	0.200	0.640
Arsenic (As)	mg/kg	5.90	17.0	0.0720	0.0940	0.521	0.513	2.92	1.20	4.12	0.615	2.74
Barium (Ba)	mg/kg	-	-	29.2	48.1	29.5	9.45	96.9	116	213	77.6	176
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	0.240	0.800	1.04	0.400	0.410
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	5.40
Cadmium (Cd)	mg/kg	0.600	3.50	<0.05	0.161	3.56	0.245	0.0670	4.02	4.08	3.72	1.41
Calcium (Ca)	mg/kg	-	-	4,030	44,500	42,100	2,000	1,040	92,630	93,670	86,600	82,000
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	1.04	2.92	9.00	9.46	18.5	6.04	7.60
Cobalt (Co)	mg/kg	-	-	0.240	0.890	1.22	0.980	1.46	3.33	4.79	2.11	7.27
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	<0.5	5.70	6.48	7.20	13.7	1.00	17.0
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	2,830	1,950	6,560	4,880	11,440	2,880	8,200
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	3.08	<0.5	3.26	4.58	7.84	3.58	7.43
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	6.90	20.0	26.9	10.0	5.50
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	4,920
Manganese (Mn)	mg/kg	460	1,100	99.3	117	207	10.8	31.0	434	465	324	304
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.0829
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	0.830	2.00	2.83	1.00	0.930
Nickel (Ni)	mg/kg	16.0	75.0	1.09	6.30	11.2	8.20	6.90	26.8	33.7	17.5	116
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	93.0	-	-	193	193	143	727
Potassium (K)	mg/kg	-	-	<100	-	-	-	-	100	100	-	1,230
Selenium (Se) ^b	mg/kg	2.	00	0.280	<0.2	1.33	4.74	0.660	6.55	7.21	1.53	32.6
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	0.100	0.400	0.500	0.200	0.220
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	69.0
Strontium (Sr)	mg/kg	-	-	7.55	23.2	27.3	4.16	17.8	62.2	80.0	50.5	53.9
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	2,100
Thallium (TI)	mg/kg	-	-	< 0.05	<0.05	< 0.05	<0.05	0.153	0.200	0.353	0.100	0.121
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	13.3	23.7	20.3	44.0	6.00	7.60
Tungsten (Ŵ)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	<0.05	0.257	0.288	0.211	0.349	0.806	1.16	0.545	2.09
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	2.90	3.23	17.7	6.53	24.2	3.10	16.5
Zinc (Zn)	mg/kg	123	315	<1	28.0	107	11.7	38.6	148	186	135	150

Table D.12: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GHBP-2 on Lower Greenhills Creek, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

		BC W	SQG ^a				SEA R	Results				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	274	807	5,670	1,181	6,851	324	8,200
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	0.430	0.400	0.830	0.200	0.760
Arsenic (As)	mg/kg	5.90	17.0	0.0850	0.0510	0.491	0.540	2.98	1.17	4.15	0.542	5.87
Barium (Ba)	mg/kg	-	-	22.4	46.6	38.8	14.5	100	122	222	85.4	267
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	0.230	0.800	1.03	0.400	0.670
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	6.70
Cadmium (Cd)	mg/kg	0.600	3.50	<0.05	0.229	3.46	0.257	0.0660	4.00	4.06	3.69	1.06
Calcium (Ca)	mg/kg	-	-	3,840	45,200	50,100	2,290	964	101,430	102,394	95,300	32,200
Chromium (Ćr)	mg/kg	37.3	90.0	<0.5	<5	1.01	3.07	9.40	9.58	19.0	6.01	15.2
Cobalt (Co)	mg/kg	-	-	0.180	0.830	1.38	1.15	1.50	3.54	5.04	2.21	7.63
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	<0.5	6.01	6.37	7.51	13.9	1.00	20.5
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	2,690	2,020	6,730	4,810	11,540	2,740	17,800
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	3.11	<0.5	3.29	4.61	7.90	3.61	11.5
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	6.80	20.0	26.8	10.0	11.5
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	6,960
Manganese (Mn)	mg/kg	460	1,100	121	148	237	12.9	33.6	519	552	385	542
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.0760
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	0.780	2.00	2.78	1.00	1.38
Nickel (Ni)	mg/kg	16.0	75.0	1.32	6.30	12.8	9.74	7.10	30.2	37.3	19.1	68.1
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	90.0	-	-	190	190	140	1,150
Potassium (K)	mg/kg	-	-	110	-	-	-	-	110	110	-	2,030
Selenium (Se) ^b	mg/kg	2.	00	<0.2	<0.2	0.960	4.06	0.480	5.42	5.90	1.16	11.9
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	<0.1	0.400	0.500	0.200	0.280
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	72.0
Strontium (Sr)	mg/kg	-	-	7.77	22.5	33.3	4.22	17.9	67.8	85.7	55.8	44.1
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	<1,000
Thallium (TI)	mg/kg	-	-	<0.05	<0.05	< 0.05	<0.05	0.148	0.200	0.348	0.100	0.208
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	13.1	24.5	20.1	44.6	6.00	5.70
Tungsten (W)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (Ù)	mg/kg	-	-	<0.05	0.195	0.291	0.195	0.355	0.731	1.09	0.486	1.28
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	2.79	3.27	17.9	6.46	24.4	2.99	30.0
Zinc (Zn)	mg/kg	123	315	<1	33.0	104	12.0	38.2	150	188	137	137

Table D.13: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GHBP-3 on Lower Greenhills Creek, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

		BC W	SQG ^a				SEA R	lesults				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	260	320	5,000	680	5,680	310	4,800
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	0.340	0.400	0.740	0.200	0.690
Arsenic (As)	mg/kg	5.90	17.0	0.0770	<0.05	0.420	0.254	2.86	0.801	3.66	0.470	2.88
Barium (Ba)	mg/kg	-	-	21.4	47.2	57.2	13.4	84.1	139	223	104	180
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	0.230	0.800	1.03	0.400	0.420
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	6.20
Cadmium (Cd)	mg/kg	0.600	3.50	< 0.05	0.593	1.59	0.0910	0.0710	2.32	2.40	2.18	1.20
Calcium (Ca)	mg/kg	-	-	3,120	48,700	88,700	3,140	1,210	143,660	144,870	137,400	64,100
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	0.990	1.84	7.80	8.33	16.1	5.99	8.10
Cobalt (Co)	mg/kg	-	-	0.200	0.780	1.19	0.750	1.42	2.92	4.34	1.97	6.51
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	<0.5	5.70	5.47	7.20	12.7	1.00	17.9
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	2,470	957	6,600	3,527	10,127	2,520	8,900
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	3.05	<0.5	2.42	4.55	6.97	3.55	7.74
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	6.50	20.0	26.5	10.0	6.20
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	4,750
Manganese (Mn)	mg/kg	460	1,100	83.7	139	213	11.9	30.1	448	478	352	466
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.0651
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	0.670	2.00	2.67	1.00	0.950
Nickel (Ni)	mg/kg	16.0	75.0	1.32	5.60	10.3	6.01	6.30	23.2	29.5	15.9	117
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	80.0	-	-	180	180	130	763
Potassium (K)	mg/kg	-	-	<100	-	-	-	-	100	100	-	1,240
Selenium (Se) ^b	mg/kg	2.	00	<0.2	<0.2	0.740	2.95	0.490	4.09	4.58	0.940	20.7
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	0.100	0.400	0.500	0.200	0.220
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	69.0
Strontium (Sr)	mg/kg	-	-	6.12	19.8	49.2	3.00	16.2	78.1	94.3	69.0	50.9
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	1,900
Thallium (TI)	mg/kg	-	-	<0.05	<0.05	< 0.05	<0.05	0.129	0.200	0.329	0.100	0.107
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	6.90	26.5	13.9	40.4	6.00	7.50
Tungsten (W)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (Ù)	mg/kg	-	-	<0.05	0.155	0.259	0.0890	0.369	0.553	0.922	0.414	1.67
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	2.73	2.08	15.1	5.21	20.3	2.93	17.2
Zinc (Zn)	mg/kg	123	315	<1	28.0	74.3	6.00	33.5	109	143	102	141

Table D.14: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GHBP-4 on Lower Greenhills Creek, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021).
		BC W	'SQG ^a				SEA R	esults				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	270	591	5,790	961	6,751	320	3,900
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	0.520	0.400	0.920	0.200	0.590
Arsenic (As)	mg/kg	5.90	17.0	0.0590	0.0940	0.459	0.248	5.07	0.860	5.93	0.553	2.64
Barium (Ba)	mg/kg	-	-	21.8	33.3	23.2	6.50	82.7	84.8	168	56.5	177
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	0.260	0.800	1.06	0.400	0.360
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	<5
Cadmium (Cd)	mg/kg	0.600	3.50	<0.05	0.482	1.28	0.0910	0.0960	1.90	2.00	1.76	1.30
Calcium (Ca)	mg/kg	-	-	2,210	44,500	32,200	1,470	1,550	80,380	81,930	76,700	109,000
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	1.25	2.04	8.70	8.79	17.5	6.25	6.36
Cobalt (Co)	mg/kg	-	-	0.200	0.980	1.33	0.650	1.60	3.16	4.76	2.31	6.13
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	<0.5	4.83	10.4	6.33	16.7	1.00	14.5
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	2,770	1,070	9,480	3,940	13,420	2,820	7,820
Lead (Pb)	mg/kg	35.0	91.3	<0.5	0.510	2.97	<0.5	3.56	4.48	8.04	3.48	6.63
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	7.90	20.0	27.9	10.0	5.10
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	4,970
Manganese (Mn)	mg/kg	460	1,100	86.8	168	222	10.3	37.9	487	525	390	458
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.0632
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	0.600	2.94	2.10	5.04	1.00	0.940
Nickel (Ni)	mg/kg	16.0	75.0	0.810	5.10	7.31	4.53	8.80	17.8	26.6	12.4	99.9
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	74.0	-	-	174	174	124	715
Potassium (K)	mg/kg	-	-	<100	-	-	-	-	100	100	-	1,100
Selenium (Se) ^b	mg/kg	2.	.00	<0.2	<0.2	0.450	1.82	0.540	2.67	3.21	0.650	19.2
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	<0.1	0.400	0.500	0.200	0.180
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	70.0
Strontium (Sr)	mg/kg	-	-	6.78	34.4	22.5	3.47	17.6	67.2	84.8	56.9	65.9
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	2,100
Thallium (TI)	mg/kg	-	-	< 0.05	<0.05	0.0880	<0.05	0.286	0.238	0.524	0.138	0.106
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	6.00	25.9	13.0	38.9	6.00	5.00
Tungsten (Ŵ)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	<0.05	0.200	0.214	0.147	0.452	0.611	1.06	0.414	2.01
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	3.04	2.84	19.3	6.28	25.6	3.24	14.6
Zinc (Zn)	mg/kg	123	315	<1	24.7	47.2	6.90	53.7	79.8	134	71.9	129

Table D.15: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GHBP-5 on Lower Greenhills Creek, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021).

		BC W	'SQG ^a				SEA R	esults				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	645	1,270	8,250	2,015	10,265	695	8,590
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	0.710	0.400	1.11	0.200	0.870
Arsenic (As)	mg/kg	5.90	17.0	<0.05	<0.05	0.368	0.155	5.71	0.623	6.33	0.418	6.71
Barium (Ba)	mg/kg	-	-	36.0	36.9	41.0	15.8	118	130	248	77.9	223
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	0.260	<0.2	0.360	0.860	1.22	0.460	0.750
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	7.00
Cadmium (Cd)	mg/kg	0.600	3.50	0.129	0.117	0.218	<0.05	0.0960	0.514	0.610	0.335	0.638
Calcium (Ca)	mg/kg	-	-	2,510	1,940	2,200	898	1,010	7,548	8,558	4,140	9,380
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	1.09	2.04	11.4	8.63	20.0	6.09	12.1
Cobalt (Co)	mg/kg	-	-	<0.1	0.410	6.65	0.950	3.49	8.11	11.6	7.06	10.9
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	0.510	1.99	12.9	3.50	16.4	1.01	14.9
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	3,990	1,090	16,400	5,180	21,580	4,040	22,400
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	3.29	0.770	7.90	5.06	13.0	3.79	13.0
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	8.60	20.0	28.6	10.0	15.1
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	3,240
Manganese (Mn)	mg/kg	460	1,100	4.80	65.7	326	23.9	61.9	420	482	392	579
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.0492
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	1.02	2.00	3.02	1.00	1.15
Nickel (Ni)	mg/kg	16.0	75.0	<0.5	2.30	13.7	4.60	13.9	21.1	35.0	16.0	35.0
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	129	-	-	229	229	179	1,270
Potassium (K)	mg/kg	-	-	140	-	-	-	-	140	140	-	1,770
Selenium (Se) ^b	mg/kg	2.	00	<0.2	<0.2	<0.2	0.450	0.390	1.05	1.44	0.400	0.870
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	<0.1	0.400	0.500	0.200	0.190
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	60.0
Strontium (Sr)	mg/kg	-	-	10.5	<5	4.91	4.37	18.4	24.8	43.2	9.91	42.8
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	<1,000
Thallium (TI)	mg/kg	-	-	<0.05	<0.05	<0.05	<0.05	0.138	0.200	0.338	0.100	0.162
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	<1	13.8	8.00	21.8	6.00	12.2
Tungsten (W)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	<0.05	<0.05	0.107	0.175	0.355	0.382	0.737	0.157	0.667
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	2.73	2.27	25.4	5.40	30.8	2.93	26.8
Zinc (Zn)	mg/kg	123	315	<1	5.10	25.7	4.70	72.1	36.5	109	30.8	104

Table D.16: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GAUT-1 on Upper Gardine Creek, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

		BC W	SQG ^a				SEA R	Results				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	656	1,530	8,660	2,286	10,946	706	8,340
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	0.950	0.400	1.35	0.200	1.01
Arsenic (As)	mg/kg	5.90	17.0	<0.05	<0.05	0.395	0.248	5.62	0.743	6.36	0.445	5.31
Barium (Ba)	mg/kg	-	-	41.0	37.4	44.6	18.1	128	141	269	82.0	219
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	0.250	<0.2	0.350	0.850	1.20	0.450	0.730
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	7.40
Cadmium (Cd)	mg/kg	0.600	3.50	0.151	0.144	0.232	<0.05	0.0860	0.577	0.663	0.376	0.636
Calcium (Ca)	mg/kg	-	-	3,230	2,470	2,270	935	812	8,905	9,717	4,740	8,750
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	0.820	2.62	11.1	8.94	20.0	5.82	12.2
Cobalt (Co)	mg/kg	-	-	<0.1	0.500	7.01	1.18	3.37	8.79	12.2	7.51	10.2
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	<0.5	3.10	13.0	4.60	17.6	1.00	14.9
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	3,960	1,500	14,700	5,560	20,260	4,010	17,700
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	2.96	0.960	8.27	4.92	13.2	3.46	10.8
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	8.20	20.0	28.2	10.0	12.9
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	2,920
Manganese (Mn)	mg/kg	460	1,100	7.70	87.4	301	24.1	55.4	420	476	388	440
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.0577
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	0.970	2.00	2.97	1.00	1.09
Nickel (Ni)	mg/kg	16.0	75.0	0.520	2.50	13.8	5.59	13.3	22.4	35.7	16.3	33.7
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	125	-	-	225	225	175	1,090
Potassium (K)	mg/kg	-	-	140	-	-	-	-	140	140	-	1,810
Selenium (Se) ^b	mg/kg	2.	00	<0.2	<0.2	<0.2	0.610	0.390	1.21	1.60	0.400	1.09
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	<0.1	0.400	0.500	0.200	0.230
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	60.0
Strontium (Sr)	mg/kg	-	-	12.6	6.50	5.45	4.35	18.5	28.9	47.4	12.0	42.0
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	<1,000
Thallium (TI)	mg/kg	-	-	<0.05	<0.05	<0.05	<0.05	0.152	0.200	0.352	0.100	0.153
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	1.20	17.1	8.20	25.3	6.00	16.5
Tungsten (W)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	<0.05	<0.05	0.103	0.206	0.335	0.409	0.744	0.153	0.618
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	2.66	3.34	26.1	6.40	32.5	2.86	26.1
Zinc (Zn)	mg/kg	123	315	<1	6.00	27.1	5.60	72.1	39.7	112	33.1	93.9

Table D.17: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GAUT-2 on Upper Gardine Creek, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

		BC W	SQG ^a				SEA R	lesults				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	658	3,150	7,140	3,908	11,048	708	8,550
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	0.300	1.76	0.600	2.36	0.200	2.02
Arsenic (As)	mg/kg	5.90	17.0	0.0520	0.138	0.644	1.36	3.23	2.19	5.42	0.782	5.11
Barium (Ba)	mg/kg	-	-	69.9	37.9	69.8	39.4	127	217	344	108	303
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	0.330	<0.2	0.300	0.930	1.23	0.530	0.830
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	8.40
Cadmium (Cd)	mg/kg	0.600	3.50	0.156	0.279	0.638	0.137	0.0690	1.21	1.28	0.917	1.29
Calcium (Ca)	mg/kg	-	-	8,260	3,400	3,300	1,550	149	16,510	16,659	6,700	16,000
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	0.590	5.66	9.60	11.8	21.4	5.59	12.8
Cobalt (Co)	mg/kg	-	-	0.590	1.44	5.07	2.76	1.95	9.86	11.8	6.51	11.6
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	<0.5	14.4	11.1	15.9	27.0	1.00	23.2
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	4,480	5,440	6,510	10,020	16,530	4,530	14,900
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	1.92	3.89	6.40	6.81	13.2	2.42	12.3
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	6.00	20.0	26.0	10.0	11.9
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	3,130
Manganese (Mn)	mg/kg	460	1,100	227	239	224	33.8	24.7	724	748	463	767
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.126
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	0.770	2.00	2.77	1.00	1.10
Nickel (Ni)	mg/kg	16.0	75.0	1.17	3.50	17.4	19.3	8.10	41.4	49.5	20.9	47.7
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	107	-	-	207	207	157	1,030
Potassium (K)	mg/kg	-	-	170	-	-	-	-	170	170	-	1,650
Selenium (Se) ^b	mg/kg	2.	00	<0.2	<0.2	0.360	2.50	0.500	3.26	3.76	0.560	2.86
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	0.430	0.400	0.830	0.200	0.510
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	68.0
Strontium (Sr)	mg/kg	-	-	30.0	7.50	7.78	6.28	18.2	51.6	69.8	15.3	66.0
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	1,200
Thallium (TI)	mg/kg	-	-	< 0.05	<0.05	<0.05	<0.05	0.163	0.200	0.363	0.100	0.211
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	1.30	22.4	8.30	30.7	6.00	14.1
Tungsten (W)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	<0.05	0.0870	0.188	0.457	0.226	0.782	1.01	0.275	0.911
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	2.41	7.85	23.3	10.7	34.0	2.61	26.6
Zinc (Zn)	mg/kg	123	315	<1	9.10	38.6	23.8	41.5	72.5	114	47.7	99.9

Table D.18: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GAUT-3 on Upper Gardine Creek, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

		BC W	SQG ^a				SEA R	Results				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	685	2,030	7,600	2,815	10,415	735	7,710
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	1.17	0.400	1.57	0.200	1.17
Arsenic (As)	mg/kg	5.90	17.0	<0.05	0.0640	0.512	0.573	5.13	1.20	6.33	0.576	5.43
Barium (Ba)	mg/kg	-	-	53.8	36.8	56.7	24.2	122	172	294	93.5	239
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	0.320	<0.2	0.310	0.920	1.23	0.520	0.730
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	7.00
Cadmium (Cd)	mg/kg	0.600	3.50	0.150	0.171	0.397	0.0650	0.0960	0.783	0.879	0.568	0.755
Calcium (Ca)	mg/kg	-	-	4,600	2,510	2,970	1,230	506	11,310	11,816	5,480	10,100
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	0.700	3.73	10.3	9.93	20.2	5.70	11.8
Cobalt (Co)	mg/kg	-	-	0.490	1.04	5.68	1.49	3.09	8.70	11.8	6.72	10.9
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	<0.5	6.79	13.2	8.29	21.5	1.00	16.6
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	4,280	2,560	11,800	6,940	18,740	4,330	16,700
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	2.62	1.55	8.08	5.17	13.2	3.12	11.3
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	6.50	20.0	26.5	10.0	11.7
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	2,860
Manganese (Mn)	mg/kg	460	1,100	211	187	286	25.7	46.6	710	756	473	669
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.0770
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	0.930	2.00	2.93	1.00	1.08
Nickel (Ni)	mg/kg	16.0	75.0	0.900	2.60	14.8	8.59	12.2	26.9	39.1	17.4	35.1
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	127	-	-	227	227	177	1,070
Potassium (K)	mg/kg	-	-	150	-	-	-	-	150	150	-	1,640
Selenium (Se) ^b	mg/kg	2.	00	<0.2	<0.2	<0.2	1.09	0.440	1.69	2.13	0.400	1.32
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	0.200	0.400	0.600	0.200	0.270
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	55.0
Strontium (Sr)	mg/kg	-	-	18.4	5.70	6.47	5.30	17.9	35.9	53.8	12.2	47.5
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	<1,000
Thallium (TI)	mg/kg	-	-	<0.05	<0.05	<0.05	<0.05	0.147	0.200	0.347	0.100	0.156
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	1.50	19.4	8.50	27.9	6.00	14.7
Tungsten (W)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	<0.05	0.0620	0.141	0.324	0.304	0.577	0.881	0.203	0.753
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	2.58	4.61	24.9	7.59	32.5	2.78	25.6
Zinc (Zn)	mg/kg	123	315	<1	6.10	32.1	9.40	67.6	48.6	116	38.2	94.5

Table D.19: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GAUT-4 on Upper Gardine Creek, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

		BC W	SQG ^a				SEA R	Results				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	687	2,570	7,630	3,357	10,987	737	8,210
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	0.100	1.64	0.400	2.04	0.200	1.50
Arsenic (As)	mg/kg	5.90	17.0	<0.05	<0.05	0.520	0.855	4.60	1.48	6.08	0.570	5.33
Barium (Ba)	mg/kg	-	-	57.7	38.3	66.5	32.7	122	195	317	105	253
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	0.330	<0.2	0.350	0.930	1.28	0.530	0.810
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	8.90
Cadmium (Cd)	mg/kg	0.600	3.50	0.194	0.194	0.452	0.0870	0.0780	0.927	1.00	0.646	0.850
Calcium (Ca)	mg/kg	-	-	6,650	2,970	3,030	1,260	293	13,910	14,203	6,000	11,500
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	0.610	4.59	10.4	10.7	21.1	5.61	12.3
Cobalt (Co)	mg/kg	-	-	0.330	1.06	6.14	2.21	2.72	9.74	12.5	7.20	10.7
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	<0.5	9.77	12.6	11.3	23.9	1.00	17.4
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	4,320	3,750	10,500	8,170	18,670	4,370	16,000
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	2.28	2.51	7.78	5.79	13.6	2.78	11.9
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	6.50	20.0	26.5	10.0	12.9
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	2,800
Manganese (Mn)	mg/kg	460	1,100	61.5	162	292	32.0	38.6	548	586	454	492
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.0823
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	0.950	2.00	2.95	1.00	1.03
Nickel (Ni)	mg/kg	16.0	75.0	0.860	2.70	17.2	13.5	10.9	34.3	45.2	19.9	37.7
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	129	-	-	229	229	179	1,020
Potassium (K)	mg/kg	-	-	150	-	-	-	-	150	150	-	1,720
Selenium (Se) ^b	mg/kg	2.	00	<0.2	<0.2	0.210	1.66	0.470	2.27	2.74	0.410	1.65
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	0.310	0.400	0.710	0.200	0.300
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	59.0
Strontium (Sr)	mg/kg	-	-	23.9	6.50	7.34	5.48	17.7	43.2	60.9	13.8	53.4
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	<1,000
Thallium (TI)	mg/kg	-	-	<0.05	<0.05	<0.05	<0.05	0.155	0.200	0.355	0.100	0.172
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	<1	19.2	8.00	27.2	6.00	17.9
Tungsten (W)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	<0.05	0.0580	0.174	0.376	0.261	0.658	0.919	0.232	0.725
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	2.43	6.17	24.7	9.00	33.7	2.63	25.9
Zinc (Zn)	mg/kg	123	315	<1	7.40	34.0	13.5	59.7	55.9	116	41.4	94.8

Table D.20: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GAUT-5 on Upper Gardine Creek, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021).

		BC W	SQG ^a				SEA F	Results				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	404	1,570	7,190	2,074	9,264	454	5,270
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	1.05	0.400	1.45	0.200	1.03
Arsenic (As)	mg/kg	5.90	17.0	0.0530	0.0730	0.406	0.498	3.49	1.03	4.52	0.479	3.71
Barium (Ba)	mg/kg	-	-	28.7	57.7	50.7	21.6	118	159	277	108	228
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	0.270	<0.2	0.310	0.870	1.18	0.470	0.610
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	<5
Cadmium (Cd)	mg/kg	0.600	3.50	0.0540	0.244	0.358	0.0710	0.0700	0.727	0.797	0.602	0.757
Calcium (Ca)	mg/kg	-	-	4,530	46,900	37,500	2,620	547	91,550	92,097	84,400	85,700
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	0.570	3.30	9.80	9.37	19.2	5.57	8.46
Cobalt (Co)	mg/kg	-	-	0.270	0.910	2.51	1.34	2.33	5.03	7.36	3.42	6.32
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	<0.5	6.65	9.87	8.15	18.0	1.00	13.7
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	2,480	2,630	9,010	5,210	14,220	2,530	10,900
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	2.99	0.950	5.40	4.94	10.3	3.49	8.40
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	6.20	20.0	26.2	10.0	8.20
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	3,950
Manganese (Mn)	mg/kg	460	1,100	85.8	148	132	11.9	34.5	378	412	280	365
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.0721
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	0.620	2.00	2.62	1.00	0.810
Nickel (Ni)	mg/kg	16.0	75.0	0.560	2.80	8.73	8.58	8.90	20.7	29.6	11.5	25.5
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	63.0	-	-	163	163	113	894
Potassium (K)	mg/kg	-	-	170	-	-	-	-	170	170	-	1,090
Selenium (Se) ^b	mg/kg	2.	.00	<0.2	<0.2	0.400	2.10	0.540	2.90	3.44	0.600	2.56
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	0.250	0.400	0.650	0.200	0.270
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	70.0
Strontium (Sr)	mg/kg	-	-	9.72	26.8	21.7	5.84	16.2	64.1	80.3	48.5	76.5
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	2,000
Thallium (TI)	mg/kg	-	-	<0.05	<0.05	< 0.05	<0.05	0.153	0.200	0.353	0.100	0.147
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	23.1	15.5	30.1	45.6	6.00	9.00
Tungsten (W)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	<0.05	0.188	0.209	0.226	0.243	0.673	0.916	0.397	0.852
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	1.84	4.04	22.2	6.28	28.5	2.04	16.8
Zinc (Zn)	mg/kg	123	315	<1	7.60	27.7	7.10	52.0	43.4	95.4	35.3	74.8

Table D.21: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GANF-1 on Lower Gardine Creek, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

		BC W	SQG ^a				SEA R	esults				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	425	1,410	6,510	1,935	8,445	475	5,590
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	0.930	0.400	1.33	0.200	0.840
Arsenic (As)	mg/kg	5.90	17.0	< 0.05	0.0510	0.281	0.407	4.24	0.789	5.03	0.332	4.13
Barium (Ba)	mg/kg	-	-	23.0	55.3	40.4	21.0	114	140	254	95.7	200
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	0.260	<0.2	0.310	0.860	1.17	0.460	0.640
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	<5
Cadmium (Cd)	mg/kg	0.600	3.50	<0.05	0.233	0.287	0.0610	0.0800	0.631	0.711	0.520	0.651
Calcium (Ca)	mg/kg	-	-	3,680	48,500	24,600	2,060	703	78,840	79,543	73,100	76,300
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	0.660	2.95	8.80	9.11	17.9	5.66	8.78
Cobalt (Co)	mg/kg	-	-	0.230	0.780	2.91	1.06	2.59	4.98	7.57	3.69	6.90
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	<0.5	4.80	10.7	6.30	17.0	1.00	12.7
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	2,640	2,060	10,400	4,800	15,200	2,690	12,600
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	2.97	0.760	5.87	4.73	10.6	3.47	9.00
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	6.20	20.0	26.2	10.0	9.10
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	3,760
Manganese (Mn)	mg/kg	460	1,100	86.9	134	169	12.2	38.3	402	440	303	409
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.0696
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	0.660	2.00	2.66	1.00	0.830
Nickel (Ni)	mg/kg	16.0	75.0	<0.5	2.50	8.48	6.53	9.70	18.0	27.7	11.0	24.4
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	58.0	-	-	158	158	108	969
Potassium (K)	mg/kg	-	-	150	-	-	-	-	150	150	-	1,190
Selenium (Se) ^b	mg/kg	2.	00	<0.2	<0.2	0.210	1.43	0.460	2.04	2.50	0.410	1.56
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	0.150	0.400	0.550	0.200	0.220
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	65.0
Strontium (Sr)	mg/kg	-	-	7.72	27.1	15.2	5.45	16.0	55.5	71.5	42.3	67.2
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	1,400
Thallium (TI)	mg/kg	-	-	<0.05	<0.05	<0.05	<0.05	0.137	0.200	0.337	0.100	0.144
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	17.1	13.7	24.1	37.8	6.00	10.7
Tungsten (W)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	<0.05	0.147	0.160	0.211	0.274	0.568	0.842	0.307	0.742
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	1.82	3.73	19.9	5.95	25.8	2.02	17.7
Zinc (Zn)	mg/kg	123	315	<1	6.50	25.3	5.70	54.8	38.5	93.3	31.8	78.1

Table D.22: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GANF-2 on Lower Gardine Creek, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

		BC W	SQG ^a				SEA F	Results				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	392	1,700	5,380	2,192	7,572	442	6,280
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	0.890	0.400	1.29	0.200	0.910
Arsenic (As)	mg/kg	5.90	17.0	0.0550	0.104	0.421	0.556	2.91	1.14	4.05	0.525	3.85
Barium (Ba)	mg/kg	-	-	27.5	57.6	47.3	22.4	107	155	262	105	225
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	0.300	<0.2	0.260	0.900	1.16	0.500	0.650
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	6.50
Cadmium (Cd)	mg/kg	0.600	3.50	0.0610	0.218	0.325	0.0740	0.0570	0.678	0.735	0.543	0.635
Calcium (Ca)	mg/kg	-	-	4,870	50,000	33,100	2,730	463	90,700	91,163	83,100	92,300
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	0.540	4.11	7.40	10.2	17.6	5.54	9.58
Cobalt (Co)	mg/kg	-	-	0.280	0.900	2.17	1.31	1.94	4.66	6.60	3.07	6.30
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	<0.5	7.36	8.55	8.86	17.4	1.00	12.7
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	2,320	2,860	7,180	5,280	12,460	2,370	11,900
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	2.77	1.16	4.72	4.93	9.65	3.27	8.62
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	<5	20.0	25.0	10.0	9.60
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	4,090
Manganese (Mn)	mg/kg	460	1,100	112	135	98.1	10.9	26.3	356	382	233	371
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.0809
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	0.580	2.00	2.58	1.00	0.890
Nickel (Ni)	mg/kg	16.0	75.0	0.510	2.30	7.46	9.11	7.50	19.4	26.9	9.76	23.2
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	52.0	-	-	152	152	102	974
Potassium (K)	mg/kg	-	-	160	-	-	-	-	160	160	-	1,420
Selenium (Se) b	mg/kg	2.	.00	<0.2	<0.2	0.360	2.35	0.490	3.11	3.60	0.560	2.05
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	0.260	0.400	0.660	0.200	0.230
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	75.0
Strontium (Sr)	mg/kg	-	-	10.5	28.2	20.1	6.07	15.7	64.9	80.6	48.3	79.4
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	1,700
Thallium (TI)	mg/kg	-	-	<0.05	<0.05	<0.05	<0.05	0.132	0.200	0.332	0.100	0.181
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	27.0	11.4	34.0	45.4	6.00	13.2
Tungsten (W)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	0.0500	0.230	0.247	0.267	0.215	0.794	1.01	0.477	0.851
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	1.68	4.26	16.9	6.34	23.2	1.88	20.1
Zinc (Zn)	mg/kg	123	315	<1	7.10	24.4	7.50	43.6	40.0	83.6	31.5	74.7

Table D.23: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GANF-3 on Lower Gardine Creek, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

		BC W	SQG ^a				SEA R	Results				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	408	1,740	5,960	2,248	8,208	458	5,300
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	0.920	0.400	1.32	0.200	0.810
Arsenic (As)	mg/kg	5.90	17.0	0.0510	0.108	0.377	0.599	3.24	1.14	4.38	0.485	3.98
Barium (Ba)	mg/kg	-	-	29.5	55.0	45.0	22.6	113	152	265	100	223
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	0.340	<0.2	0.250	0.940	1.19	0.540	0.630
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	<5
Cadmium (Cd)	mg/kg	0.600	3.50	0.0550	0.216	0.327	0.0740	0.0610	0.672	0.733	0.543	0.710
Calcium (Ca)	mg/kg	-	-	5,080	47,100	29,900	2,640	436	84,720	85,156	77,000	91,500
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	0.630	4.22	8.10	10.4	18.4	5.63	8.67
Cobalt (Co)	mg/kg	-	-	0.230	0.790	2.43	1.41	2.06	4.86	6.92	3.22	6.49
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	<0.5	7.30	8.93	8.80	17.7	1.00	12.9
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	2,380	2,900	7,670	5,380	13,050	2,430	11,900
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	2.65	1.38	5.21	5.03	10.2	3.15	8.95
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	5.20	20.0	25.2	10.0	9.10
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	3,860
Manganese (Mn)	mg/kg	460	1,100	106	129	111	12.3	28.6	358	387	240	389
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.0660
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	0.620	2.00	2.62	1.00	0.810
Nickel (Ni)	mg/kg	16.0	75.0	0.510	2.30	7.86	9.67	7.80	20.3	28.1	10.2	23.7
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	83.0	-	-	183	183	133	963
Potassium (K)	mg/kg	-	-	150	-	-	-	-	150	150	-	1,090
Selenium (Se) ^b	mg/kg	2.	00	<0.2	<0.2	0.370	2.52	0.510	3.29	3.80	0.570	1.96
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	0.250	0.400	0.650	0.200	0.250
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	72.0
Strontium (Sr)	mg/kg	-	-	10.9	27.7	18.1	6.05	15.1	62.8	77.8	45.8	78.6
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	1,800
Thallium (TI)	mg/kg	-	-	<0.05	<0.05	<0.05	<0.05	0.143	0.200	0.343	0.100	0.159
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	25.4	13.2	32.4	45.6	6.00	11.9
Tungsten (W)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	0.0510	0.235	0.256	0.273	0.212	0.815	1.03	0.491	0.915
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	1.66	4.44	19.1	6.50	25.6	1.86	16.7
Zinc (Zn)	mg/kg	123	315	<1	6.50	25.3	7.50	46.0	40.3	86.3	31.8	75.3

Table D.24: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GANF-4 on Lower Gardine Creek, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

		BC W	SQG ^a				SEA R	esults				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	374	1,160	5,530	1,634	7,164	424	5,300
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	0.730	0.400	1.13	0.200	0.840
Arsenic (As)	mg/kg	5.90	17.0	< 0.05	0.0600	0.417	0.323	3.23	0.850	4.08	0.477	3.29
Barium (Ba)	mg/kg	-	-	17.6	50.1	66.8	20.4	93.0	155	248	117	195
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	0.220	<0.2	0.230	0.820	1.05	0.420	0.480
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	5.60
Cadmium (Cd)	mg/kg	0.600	3.50	<0.05	0.179	0.313	0.0570	0.0570	0.599	0.656	0.492	0.566
Calcium (Ca)	mg/kg	-	-	3,150	50,400	71,700	2,470	589	127,720	128,309	122,100	104,000
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	0.620	2.31	7.60	8.43	16.0	5.62	7.98
Cobalt (Co)	mg/kg	-	-	0.190	0.670	2.77	0.900	2.11	4.53	6.64	3.44	5.29
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	<0.5	4.75	8.77	6.25	15.0	1.00	11.7
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	2,230	1,800	8,740	4,130	12,870	2,280	9,710
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	3.36	<0.5	4.21	4.86	9.07	3.86	7.26
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	5.20	20.0	25.2	10.0	8.40
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	3,860
Manganese (Mn)	mg/kg	460	1,100	72.5	122	148	8.60	33.4	351	384	270	330
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.0690
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	0.520	2.00	2.52	1.00	0.700
Nickel (Ni)	mg/kg	16.0	75.0	<0.5	2.30	7.89	5.70	8.00	16.4	24.4	10.2	20.4
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	66.0	-	-	166	166	116	749
Potassium (K)	mg/kg	-	-	150	-	-	-	-	150	150	-	1,210
Selenium (Se) ^b	mg/kg	2.	00	<0.2	<0.2	0.260	1.00	0.340	1.66	2.00	0.460	1.35
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	0.140	0.400	0.540	0.200	0.220
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	73.0
Strontium (Sr)	mg/kg	-	-	7.53	28.5	39.9	5.07	13.8	81.0	94.8	68.4	81.7
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	1,900
Thallium (TI)	mg/kg	-	-	<0.05	<0.05	<0.05	<0.05	0.106	0.200	0.306	0.100	0.127
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	17.6	11.0	24.6	35.6	6.00	14.0
Tungsten (Ŵ)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	<0.05	0.139	0.233	0.163	0.214	0.585	0.799	0.372	0.728
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	1.76	3.05	16.8	5.21	22.0	1.96	16.9
Zinc (Zn)	mg/kg	123	315	<1	5.60	22.5	4.50	45.0	33.6	78.6	28.1	59.0

Table D.25: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GANF-5 on Lower Gardine Creek, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

[Area Magnitud	le of Difference					
		ANOVA	Model ^a						Area F	ffects ^b		Area Magintuu			Area Effec	ts by Year ^c		
															20	19		
Analyte	Fraction	Units	Assumed Distribution	Area	Year	Area:Year	RG_GHP vs RG_GHBP	RG_GHP vs RG_GAUT	RG_GHP vs RG_GANF	RG_GHBP vs RG_GAUT	RG_GHBP vs RG_GANF	RG_GAUT vs RG_GANF	RG_GHP vs RG_GHBP	RG_GHP vs RG_GAUT	RG_GHP vs RG_GANF	RG_GHBP vs RG_GAUT	RG_GHBP vs RG_GANF	RG_GAUT vs RG_GANF
	Fraction 3	mg/kg	lognormal	<0.001	0.398	<0.001	nc	nc	nc	nc	nc	nc	-49	ns	-18	99	60	-20
Aluminum (Al)	Fraction 4	mg/kg	lognormal	<0.001	0.131	0.011	nc	nc	nc	nc	nc	nc	-42	ns	ns	71	ns	ns
	Fraction 5	mg/kg	lognormal	< 0.001	< 0.001	0.855	-19	17	-13	46	ns	-25	nc	nc	nc	nc	nc	nc
Antimony (Sb)	Fraction 5	mg/kg	lognormal	< 0.001	0.278	< 0.001	nc	nc	nc	nc	nc	nc	-41	-40	-47	ns	ns	ns
	Fraction 2	mg/kg	lognormal	0.015	0.001	0.003	20	nc 21	22	hc	nc	nc	ns	ns	ns	ns	ns	ns
Arsenic (As)	Fraction 4	ma/ka	lognormal	0.001	0.114	0.105	-30	-21	-32 ns	ns	ns	ns	nc	nc	nc	nc	nc	nc
, "eenne (, te)	Fraction 5	ma/ka	lognormal	<0.001	0.000	0.120	-34	ns	-22	67	ns	-30	nc	nc	nc	nc	nc	nc
	Sum of 2 and 3	mg/kg	lognormal	0.003	0.007	0.037	nc	nc	nc	nc	nc	nc	-42	ns	ns	ns	ns	ns
	Fraction 1	mg/kg	lognormal	< 0.001	< 0.001	< 0.001	nc	nc	nc	nc	nc	nc	-39	67	ns	175	43	-48
	Fraction 2	mg/kg	lognormal	<0.001	<0.001	< 0.001	nc	nc	nc	nc	nc	nc	-34	-36	ns	ns	43	46
	Fraction 3	mg/kg	lognormal	0.057	0.450	0.051	ns	ns	ns	ns	ns	ns	nc	nc	nc	nc	nc	nc
Barium (Ba)	Fraction 4	mg/kg	lognormal	<0.001	0.035	<0.001	nc	nc	nc	nc	nc	nc	-32	-37	-41	ns	ns	ns
()	Fraction 5	mg/kg	lognormal	< 0.001	0.359	0.585	-40	-31	-31	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Sum of 1 to 4	mg/kg	lognormal	< 0.001	0.050	0.003	nc	nc	nc	nc	nc	nc	-20	ns	-16	ns	ns	ns
	Sum of 2 and 3	mg/kg	lognormal	<0.001	0.050	0.058	-21	nc	nc	nc	21	nc	-29	-20	-20	ns	nc	nc
	Fraction 3	ma/ka	lognormal	<0.001	0.033	<0.000	-21	nc	nc	nc	21	nc	-38	-35	-33	ns	nc	ns
Beryllium (Be)	Fraction 5	ma/ka	lognormal	< 0.001	<0.001	0.139	-34	-11	-32	35	ns	-24	nc	nc	nc	nc	nc	nc
	Fraction 1	mg/kg	lognormal	< 0.001	0.245	< 0.001	nc	nc	nc	nc	nc	nc	-57	ns	-58	ns	ns	ns
	Fraction 2	mg/kg	lognormal	<0.001	0.006	0.116	-40	-70	-60	-50	-32	35	nc	nc	nc	nc	nc	nc
	Fraction 3	mg/kg	lognormal	<0.001	<0.001	<0.001	nc	nc	nc	nc	nc	nc	ns	-58	-57	-51	-49	ns
Cadmium (Cd)	Fraction 4	mg/kg	lognormal	<0.001	0.269	<0.001	nc	nc	nc	nc	nc	nc	-41	-61	-55	-34	ns	ns
oddinidin (od)	Fraction 5	mg/kg	lognormal	< 0.001	< 0.001	0.232	-28	ns	-30	23	ns	-21	nc	nc	nc	nc	nc	nc
	Sum of 1 to 4	mg/kg	lognormal	< 0.001	0.351	0.034	nc	nc	nc	nc	nc	nc	-32	-62	-57	-44	-37	ns
	Sum of 1 to 5	mg/kg	lognormal	< 0.001	0.462	0.033	nc	nc	nc	nc	nc	nc	-30	-58	-55	-41	-36	ns
	Sulli of 2 and 3	mg/kg	lognormal	0.805	0.110	0.001	nc	nc	nc	nc	nc	nc	lis	-00	-57	-55	-40	lis
	Fraction 2	ma/ka	lognormal	<0.095	0.010	0.000	nc	nc	nc	nc	nc	nc	ns	_91	ns	_91	ns	1501
	Fraction 3	ma/ka	lognormal	< 0.001	0.005	0.061	465	-64	142	-94	-57	576	nc	nc	nc	nc	nc	nc
	Fraction 4	mg/kg	lognormal	< 0.001	< 0.001	<0.001	nc	nc	nc	nc	nc	nc	37	-36	ns	-54	-26	59
Calcium (Ca)	Fraction 5	mg/kg	lognormal	<0.001	0.516	< 0.001	nc	nc	nc	nc	nc	nc	622	797	491	ns	ns	ns
	Sum of 1 to 4	mg/kg	lognormal	<0.001	0.003	0.723	99	-78	61	-89	ns	640	nc	nc	nc	nc	nc	nc
	Sum of 1 to 5	mg/kg	lognormal	<0.001	0.003	0.685	101	-76	62	-88	ns	587	nc	nc	nc	nc	nc	nc
	Sum of 2 and 3	mg/kg	lognormal	< 0.001	0.006	0.465	107	-88	68	-94	ns	1246	nc	nc	nc	nc	nc	nc
Chromium (Cr)	Fraction 3	mg/kg	lognormal	<0.001	0.005	<0.001	nc	nc	nc	nc	nc	nc	-41	-23	-28	31	ns	ns
Chromium (Cr)	Fraction 5	mg/kg	lognormal	0.000	0.059	0.100	-20	-22	-22	27	ns	20	nc	nc	nc	nc	nc	nc
	Fraction 1	mg/kg	lognormal	0.978	<0.010	0.009	-20 nc	nc	- <u>-</u> 21	nc	nc	-20	ns	ns	ns	ns	ns	nc
	Fraction 2	ma/ka	lognormal	0.145	0.032	0.001	nc	nc	nc	nc	nc	nc	-61	ns	-61	131	ns	-57
	Fraction 3	mg/kg	lognormal	< 0.001	< 0.001	< 0.001	nc	nc	nc	nc	nc	nc	-30	50	ns	114	ns	-42
Cobalt (Co)	Fraction 4	mg/kg	lognormal	0.002	0.252	< 0.001	nc	nc	nc	nc	nc	nc	44	ns	ns	ns	-35	ns
Cobalt (CO)	Fraction 5	mg/kg	lognormal	<0.001	<0.001	0.468	-48	ns	-31	77	33	-25	nc	nc	nc	nc	nc	nc
	Sum of 1 to 4	mg/kg	lognormal	<0.001	<0.001	<0.001	nc	nc	nc	nc	nc	nc	-100	30	-25	-	-	-42
	Sum of 1 to 5	mg/kg	lognormal	< 0.001	< 0.001	<0.001	nc	nc	nc	nc	nc	nc	ns	15	-28	ns	ns	-37
	Sum of 2 and 3	mg/kg	lognormal	< 0.001	<0.001	<0.001	nc	nc	nc	nc	nc	nc	-36	39	-21	116	23	-43
Copper (Cu)	Fraction 5	mg/kg	lognormal	< 0.001	0.104	<0.001	11C	D(1)	NC	11C	11C	C1C	-39	-/3	-01	-50	ns	ns
	Fraction 3	ma/ka	lognormal	<0.001	0.296	<0.001	-30 nc	-33 nc	-47		21	-22	_49	ne	ne	113	64	-23
Iron (Fe)	Fraction 4	ma/ka	lognormal	0.081	0.611	0.094	ns	ns	ns	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Fraction 5	mg/ka	lognormal	< 0.001	< 0.001	0.445	-27	30	ns	78	25	-30	nc	nc	nc	nc	nc	nc
	Fraction 3	mg/kg	lognormal	< 0.001	0.004	0.014	nc	nc	nc	nc	nc	nc	-32	-27	-32	ns	ns	ns
Lead (Pb)	Fraction 4	mg/kg	lognormal	< 0.001	0.089	< 0.001	nc	nc	nc	nc	nc	nc	-61	-53	-39	ns	ns	ns
L	Fraction 5	mg/kg	lognormal	<0.001	< 0.001	0.078	-54	ns	-36	100	39	-30	nc	nc	nc	nc	nc	nc
Lithium (Li)	Fraction 5	mg/kg	lognormal	<0.001	0.315	< 0.001	nc	nc	nc	nc	nc	nc	ns	65	29	61	26	-22

P-value <0.05.

Positive MOD (higher concentration of analyte at second biological monitoring area relative to the first).

Negative MOD (lower concentration of analyte at second biological monitoring area relative to the first).

Notes: ANOVA = Analysis of Variance; vs = versus; mg/kg = milligrams per kilogram; < = less than; nc = no comparison; ns = not significant; HSD = Honestly Significant Difference; LRL = Laboratory Reporting Limit; > = greater than; MOD = Magnitude of Difference; EMM = the estimated marginal mean from the censored regression model. ^b Censored regression ANOVA with factors Area, Year and Area: Year. Cost-hoc contrasts were excluded from the analyses. If the concentrations in one or more fractions was <LRL, the fraction sum was equal to the sum of the LRL values. Analytes that had >75% censored data were excluded from the analyses. ^b The MOD was calculated as [EMM_{area 2}- EMM_{area 1}]/EMM_{area 1}*100 for all years combined when the *Area:*Year term was significant ($\alpha = 0.05$). ^c The MOD was calculated as [EMM_{area 2}- EMM_{area 1}]/EMM_{area 1}*100 for each year when the *Area:*Year term was significant ($\alpha = 0.05$).

												Area Magnitud	le of Difference					
		ANOVA	Model ^ª						Area	Effects ^b		U			Area Effec	ts by Year ^c		
															20)19		
Analyte	Fraction	Units	Assumed Distribution	Area	Year	Area:Year	RG_GHP vs RG_GHBP	RG_GHP vs RG_GAUT	RG_GHP vs RG_GANF	RG_GHBP vs RG_GAUT	RG_GHBP vs RG_GANF	RG_GAUT vs RG_GANF	RG_GHP vs RG_GHBP	RG_GHP vs RG_GAUT	RG_GHP vs RG_GANF	RG_GHBP vs RG_GAUT	RG_GHBP vs RG_GANF	RG_GAUT vs RG_GANF
	Fraction 1	mg/kg	lognormal	0.370	< 0.001	0.008	nc	nc	nc	nc	nc	nc	-76	-81	ns	ns	ns	ns
	Fraction 2	mg/kg	lognormal	0.174	< 0.001	0.096	28	ns	ns	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Fraction 3	mg/kg	lognormal	< 0.001	0.041	0.002	nc	nc	nc	nc	nc	nc	85	130	108	ns	ns	ns
Manganese (Mn)	Fraction 4	mg/kg	lognormal	< 0.001	0.256	0.057	ns	97	ns	136	ns	-52	nc	nc	nc	nc	nc	nc
Manganese (MIT)	Fraction 5	mg/kg	lognormal	<0.001	<0.001	0.062	-33	ns	-23	71	ns	-33	nc	nc	nc	nc	nc	nc
	Sum of 1 to 4	mg/kg	lognormal	< 0.001	0.160	0.527	ns	57	ns	ns	ns	-26	nc	nc	nc	nc	nc	nc
	Sum of 1 to 5	mg/kg	lognormal	<0.001	0.307	0.471	ns	51	ns	29	ns	-27	nc	nc	nc	nc	nc	nc
	Sum of 2 and 3	mg/kg	lognormal	< 0.001	0.526	0.092	ns	69	ns	38	ns	-32	nc	nc	nc	nc	nc	nc
Molybdenum (Mo)	Fraction 5	mg/kg	lognormal	< 0.001	0.200	0.055	-32	-22	-44	ns	ns	-28	nc	nc	nc	nc	nc	nc
	Fraction 1	mg/kg	lognormal	< 0.001	0.145	<0.001	nc	nc	nc	nc	nc	nc	ns	-36	-58	-50	-67	-34
	Fraction 2	mg/kg	lognormal	< 0.001	< 0.001	< 0.001	nc	nc	nc	nc	nc	nc	46	-47	-66	-64	-76	-35
	Fraction 3	mg/kg	lognormal	< 0.001	< 0.001	< 0.001	nc	nc	nc	nc	nc	nc	34	-21	-52	-41	-64	-39
Nickel (Ni)	Fraction 4	mg/kg	lognormal	< 0.001	0.081	< 0.001	nc	nc	nc	nc	nc	nc	106	ns	ns	-62	-65	ns
()	Fraction 5	mg/kg	lognormal	< 0.001	<0.001	0.919	-44	-15	-37	52	ns	-27	nc	nc	nc	nc	nc	nc
	Sum of 1 to 4	mg/kg	lognormal	< 0.001	0.006	<0.001	nc	nc	nc	nc	nc	nc	54	-26	-52	-52	-68	-34
	Sum of 1 to 5	mg/kg	lognormal	<0.001	<0.001	<0.001	nc	nc	nc	nc	nc	nc	28	-23	-47	-40	-59	-31
Dheenhemve (D)	Sum of 2 and 3	mg/kg	lognormal	<0.001	<0.001	<0.001	nc	nc	nc	nc	nc	nc	37	-21	-55	-47	-67	-38
Phosphorus (P)	Fraction 3	mg/kg	lognormal	<0.001	0.079	<0.001	nc	nc	nc	nc	nc	nc	ns	ns	ns	ns	ns	ns
Potossium (K)	Fraction 1	mg/kg	lognormal	0.991	<0.001	<0.001	nc	nc	nc	nc	nc	nc	ns	ns	ns	ns	ns	ns
Foldssluff (K)	Sum of 1 to 5	mg/kg	lognormal	0.991	<0.001	<0.001	ne	nc	nc	nc	nc	nc	ns	lis	lis	lis	lis	lis
	Sum of 1 to 5	mg/kg	lognormal	<0.001	<u>0.616</u>	<0.001	nc	nc	nc	nc	nc	nc	ns	TIS no	lis	lis	lis	lis
	Fraction 2	mg/kg	lognormal	<0.001	0.010	0.003	nc	nc	nc	nc	nc	nc	165	70	lis	02	lis	lis
Selenium (Se)	Fraction 4	mg/kg	lognormal	<0.001	0.549	<0.001	nc	nc	nc	nc	nc	nc	100	-79	00	-92	80	ns
	Fraction 5	mg/kg	lognormal	<0.001	0.010	<0.001	nc	nc	nc	nc	nc	nc	60	-93	-90	-31	-03	ns
Silver (Aa)	Fraction 5	mg/kg	lognormal	<0.001	0.010	<0.001	nc	nc	nc	nc	nc	nc	-58	-69	-55	ns	ns	ns
	Fraction 1	mg/kg	lognormal	<0.001	0.001	0 191	ns	194	49	162	33	-49	nc	nc	nc	nc	nc	nc
	Fraction 2	mg/kg	lognormal	<0.001	0.004	0.028	nc	nc	nc	nc	nc	nc	ns	-62	58	-58	79	321
	Fraction 3	mg/kg	lognormal	<0.001	0.002	0.020	181	ns	76	-73	-37	130	nc	nc	nc	nc	nc	nc
	Fraction 4	ma/ka	lognormal	0.022	0.017	0.011	nc	nc	nc	nc	nc	nc	ns	ns	ns	ns	ns	ns
Strontium (Sr)	Fraction 5	ma/ka	lognormal	< 0.001	0.021	0.230	-25	-23	-32	ns	ns	ns	nc	nc	nc	nc	nc	nc
	Sum of 1 to 4	ma/ka	lognormal	< 0.001	< 0.001	0.311	57	ns	60	-40	ns	71	nc	nc	nc	nc	nc	nc
	Sum of 1 to 5	mg/kg	lognormal	< 0.001	0.003	0.030	nc	nc	nc	nc	nc	nc	ns	-22	ns	-33	ns	35
	Sum of 2 and 3	mg/kg	lognormal	< 0.001	0.002	0.163	75	-50	73	-71	ns	243	nc	nc	nc	nc	nc	nc
Thallium (TI)	Fraction 5	mg/kg	lognormal	0.017	0.609	0.116	ns	ns	-16	ns	ns	ns	nc	nc	nc	nc	nc	nc
Titanium (Sn)	Fraction 4	mg/kg	lognormal	< 0.001	<0.001	< 0.001	nc	nc	nc	nc	nc	nc	ns	ns	ns	ns	ns	ns
	Fraction 5	mg/kg	lognormal	0.002	0.012	< 0.001	nc	nc	nc	nc	nc	nc	ns	ns	ns	ns	ns	ns
	Fraction 1	mg/kg	lognormal	<0.001	0.046	<0.001	nc	nc	nc	nc	nc	nc	ns	ns	ns	ns	ns	ns
	Fraction 2	mg/kg	lognormal	<0.001	0.494	< 0.001	nc	nc	nc	nc	nc	nc	ns	-82	-45	-86	-56	211
	Fraction 3	mg/kg	lognormal	<0.001	0.502	<0.001	nc	nc	nc	nc	nc	nc	98	-50	-41	-75	-70	ns
Uranium (U)	Fraction 4	mg/kg	lognormal	< 0.001	0.213	<0.001	nc	nc	nc	nc	nc	nc	ns	-46	-37	ns	ns	ns
	Fraction 5	mg/kg	lognormal	< 0.001	0.253	<0.001	nc	nc	nc	nc	nc	nc	ns	ns	-28	ns	ns	ns
	Sum of 1 to 4	mg/kg	lognormal	<0.001	0.100	< 0.001	nc	nc	nc	nc	nc	nc	ns	ns	ns	ns	ns	ns
	Sum of 1 to 5	mg/kg	lognormal	< 0.001	0.095	< 0.001	nc	nc	nc	nc	nc	nc	ns	ns	ns	ns	ns	ns
ļ	Sum of 2 and 3	mg/kg	lognormal	< 0.001	0.933	< 0.001	nc	nc	nc	nc	nc	nc	60	-71	-44	-82	-65	91
	Fraction 3	mg/kg	Iognormal	< 0.001	0.016	< 0.001	nc	nc	nc	nc	nc	nc	-56	-26	-49	66	ns	-30
vanadium (V)	Fraction 4	mg/kg	Iognormal	< 0.001	0.060	0.112	-39	-28	-35	ns	ns	ns	nc	nc	nc	nc	nc	nc
l	Fraction 5	mg/kg	Iognormal	< 0.001	< 0.001	0.908	-36	-12	-32	36	ns	-22	nc	nc	nc	nc	nc	nc
	Fraction 2	mg/kg	Iognormal	< 0.001	0.001	0.013	nc	nc	nc	nc	nc	nc	ns	-55	-61	-62	-67	ns
Zing (Zn)	Fraction 3	mg/kg	Iognormal	< 0.001	0.005	< 0.001	nc	nc	nc	nc	nc	nc	ns	-47	-55	-44	-53	ns
Zinc (Zn)	Fraction 4	mg/kg	lognormal	<0.001	0.039	<0.001	11C	nc	nc 21	nc F2	11C	11C	-38	-51	-49	ris	ris no	ris no
	Sum of 2 and 2	mg/kg	lognormal	<0.001	<u>\0.001</u>	0.9/4	-40	115	-31	52	20	-21	10	50	F7	10	F6	
<u></u>	Sum of Z and 3	mg/kg	lognormal	NU.UU1	0.001	<u></u> <u> </u> -0.001	I IIC	nc	nc	nc	IIC	nc	IIS	-50	-57	-49	-00	115

P-value <0.05.

Positive MOD (higher concentration of analyte at second biological monitoring area relative to the first).

Negative MOD (lower concentration of analyte at second biological monitoring area relative to the first).

Notes: ANOVA = Analysis of Variance; vs = versus; mg/kg = milligrams per kilogram; < = less than; nc = no comparison; ns = not significant; HSD = Honestly Significant Difference; LRL = Laboratory Reporting Limit; > = greater than; MOD = Magnitude of Difference; EMM = the estimated marginal mean from the censored regression model. ^a Censored regression ANOVA with factors Area, Year and Area: Year. Post-hoc contrasts were corrected using a Tukey's HSD Test. If the concentrations in one or more fractions was <LRL, the fraction sum was equal to the sum of the LRL values. Analytes that had >75% censored data were excluded from the analyses.

^b The MOD was calculated as [EMM_{area 2⁺} EMM_{area 1}]/EMM_{area 1}*100 for all years combined when the *Area*: Year term was insignificant (α = 0.05).

^c The MOD was calculated as[EMM_{area 2}- EMM_{area 1}]/EMM_{area 1}*100 for each year when the *Area:Year* term was significant ($\alpha = 0.05$).

			_									Area Magnitug	le of Difference					
	4	ANOVA Model	а									Area Effec	ts by Year ^c					
									20)20					20	021		
Analyte	Fraction	Units	Assumed Distribution	Area	Year	Area:Year	RG_GHP vs RG_GHBP	RG_GHP vs RG_GAUT	RG_GHP vs RG_GANF	RG_GHBP vs RG_GAUT	RG_GHBP vs RG_GANF	RG_GAUT vs RG_GANF	RG_GHP vs RG_GHBP	RG_GHP vs RG_GAUT	RG_GHP vs RG_GANF	RG_GHBP vs RG_GAUT	RG_GHBP vs RG_GANF	RG_GAUT vs RG_GANF
	Fraction 3	mg/kg	lognormal	<0.001	0.398	<0.001	-57	ns	-28	161	67	-36	-58	ns	-37	147	49	-40
Aluminum (Al)	Fraction 4	mg/kg	lognormal	<0.001	0.131	0.011	ns	ns	ns	ns	ns	ns	-64	ns	ns	244	158	ns
	Fraction 5	mg/kg	lognormal	<0.001	<0.001	0.855	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
Antimony (Sb)	Fraction 5	mg/kg	lognormal	< 0.001	0.278	< 0.001	-40	ns	-46	61	ns	-45	-57	ns	ns	186	118	-24
	Fraction 2	mg/kg	lognormal	0.015	0.001	0.003	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Araania (Aa)	Fraction 3	mg/kg	lognormal	<0.001	0.114	0.155	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
Arsenic (AS)	Fraction 4	mg/kg	lognormal	0.194	0.033	0.108	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	FIACIIOT 5	mg/kg	lognormal	<0.001 0.003	0.003	0.120	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc nc
	Fraction 1	mg/kg	lognormal	<0.003	<0.007	<0.001	-69	07	ns	528	1/18	-61	ns	170	38	122	ne	-51
	Fraction 2	mg/kg	lognormal	<0.001	<0.001	<0.001	-05	-18	ns	29	71	33	-14	-27	ns	-15	25	47
	Fraction 3	mg/kg	lognormal	0.057	0.450	0.051	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 4	mg/kg	lognormal	< 0.001	0.035	< 0.001	ns	-28	-39	-30	-40	ns	-61	ns	ns	128	101	ns
Barium (Ba)	Fraction 5	mg/kg	lognormal	< 0.001	0.359	0.585	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Sum of 1 to 4	mg/kg	lognormal	< 0.001	0.050	0.003	-30	ns	-19	48	ns	-22	-20	ns	ns	46	32	ns
	Sum of 1 to 5	mg/kg	lognormal	<0.001	0.658	<0.001	-35	-16	-27	29	ns	-13	-30	ns	-13	40	25	ns
	Sum of 2 and 3	mg/kg	lognormal	< 0.001	0.055	0.058	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
Beryllium (Be)	Fraction 3	mg/kg	lognormal	<0.001	0.147	<0.001	-48	-24	-43	46	ns	-25	ns	ns	-21	ns	ns	ns
Derymann (De)	Fraction 5	mg/kg	lognormal	<0.001	<0.001	0.139	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 1	mg/kg	lognormal	<0.001	0.245	<0.001	ns	ns	-81	ns	ns	-73	ns	ns	-71	ns	ns	-69
	Fraction 2	mg/kg	lognormal	< 0.001	0.006	0.116	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 3	mg/kg	lognormal	< 0.001	< 0.001	< 0.001	81	-51	-59	-73	-77	ns	347	ns	-32	-83	-85	ns
Cadmium (Cd)	Fraction 4	mg/kg	lognormal	<0.001	0.269	<0.001	ns	-61	-56	-67	-63	ns	ns	ns	ns	-49	-51	ns
, , ,	Fraction 5	mg/kg	lognormal	<0.001	<0.001	0.232	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Sum of 1 to 4	mg/kg	lognormal	< 0.001	0.351	0.034	-82	-58	-00	140	91	ns	-100	-42	-51	606659	512106	ns
	Sum of 2 and 2	mg/kg	lognormal	< 0.001	0.462	0.033	ns	-54	-04	ns	ns	ns	ns 154	-39	-49	70	70	ns
	Fraction 1	mg/kg	lognormal	0.805	0.110	0.001	ns	-00	-01	-00	-07	lis	104	-47	-40	-19	-79	ns ns
	Fraction 2	mg/kg	lognormal	<0.093	0.110	0.000	59	-92	85	-95	-50	2074	ns	-94	ns	-9/	ns	1750
	Fraction 3	mg/kg	lognormal	<0.001	0.010	0.000	nc	-52 nc	nc	-90 nc	nc	2014	nc	-04 nc	nc	-54	nc	nc
	Fraction 4	mg/kg	lognormal	<0.001	<0.000	<0.001	82	-34	ns	-64	-38	70	61	ns	87	-46	ns	117
Calcium (Ca)	Fraction 5	mg/kg	lognormal	< 0.001	0.516	< 0.001	201	491	374	96	ns	ns	1077	341	430	-63	-55	ns
	Sum of 1 to 4	mg/kg	lognormal	< 0.001	0.003	0.723	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Sum of 1 to 5	mg/kg	lognormal	< 0.001	0.003	0.685	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Sum of 2 and 3	mg/kg	lognormal	< 0.001	0.006	0.465	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 3	mg/kg	lognormal	<0.001	0.005	<0.001	-52	ns	-32	75	43	-18	ns	-25	-39	-32	-45	-19
Chromium (Cr)	Fraction 4	mg/kg	lognormal	0.006	0.659	0.168	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 5	mg/kg	lognormal	<0.001	0.010	0.534	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 1	mg/kg	lognormal	0.978	< 0.001	0.009	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	Fraction 2	mg/kg	lognormal	0.145	0.032	0.001	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	Fraction 3	mg/kg	lognormal	< 0.001	< 0.001	< 0.001	-65	34	-41	284	71	-56	-75	ns	-50	377	100	-58
Cobalt (Co)	Fraction 4	mg/kg	lognormal	0.002	0.252	<0.001	/1	ns	ns	ns	-52	-35	ns	57	ns	95	46	ns
. ,	Fraction 5	mg/kg	lognormal	< 0.001	<0.001	0.468	nc 27	nc 27	nc 20		nc	10	nc 56		nc 22	101	nc 52	nc 46
	Sum of 1 to 5	mg/kg	lognormal	<0.001		<0.001	-21	24	-30	00 86	ns	-49	-50	23	-33	101	53	-40
	Sum of 2 and 3	mg/kg	lognormal	<0.001	<0.001	<0.001	-53	24	-30	160	21	-44	-50	10	-33	231	50	
	Fraction 4	mg/kg	lognormal	<0.001	0 104	<0.001	ns	-61	-61	-58	-57	-52 ns	-04	-39	ns	ns	ns	ns
Copper (Cu)	Fraction 5	ma/ka	lognormal	< 0.001	<0.001	0.131	nc	nc	nc	pc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 3	mg/kg	lognormal	< 0.001	0.296	< 0.001	-53	28	-22	173	67	-39	-22	ns	-30	56	ns	-43
Iron (Fe)	Fraction 4	ma/ka	lognormal	0.081	0.611	0.094	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
` '	Fraction 5	mg/kg	lognormal	< 0.001	< 0.001	0.445	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 3	mg/kg	lognormal	< 0.001	0.004	0.014	-21	-26	-26	ns	ns	ns	-15	-29	-19	-17	ns	ns
Lead (Pb)	Fraction 4	mg/kg	lognormal	< 0.001	0.089	< 0.001	ns	ns	-49	ns	ns	ns	ns	ns	-42	ns	ns	-46
	Fraction 5	mg/kg	lognormal	<0.001	<0.001	0.078	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
Lithium (Li)	Fraction 5	mg/kg	lognormal	< 0.001	0.315	<0.001	ns	82	ns	93	ns	-41	47	48	ns	ns	-22	-23

P-value <0.05.

Positive MOD (higher concentration of analyte at second biological monitoring area relative to the first).

Negative MOD (lower concentration of analyte at second biological monitoring area relative to the first).

Notes: ANOVA = Analysis of Variance; vs = versus; mg/kg = milligrams per kilogram; < = less than; nc = no comparison; ns = not significant; HSD = Honestly Significant Difference; LRL = Laboratory Reporting Limit; > = greater than; MOD = Magnitude of Difference; EMM = the estimated marginal mean from the censored regression model. ^a Censored regression ANOVA with factors Area, Year and Area: Year. Post-hoc contrasts were corrected using a Tukey's HSD Test. If the concentrations in one or more fractions was <LRL, the fraction sum was equal to the sum of the LRL values. Analytes that had >75% censored data were excluded from the analyses. ^b The MOD was calculated as [EMM_{area 2}⁻ EMM_{area 1}/10M for all years combined when the Area: Year term was insignificant (α = 0.05). ^c The MOD was calculated as [EMM_{area 2}⁻ EMM_{area 1}/10M for each year when the Area: Year term was significant (α = 0.05).

												Aroa Magnitur	la of Difforance					
	ANC	OVA Mode	l ^a									Area wayiitut						
			1		-							Area Effec	ts by Year °		-			
			Assumed	_				1	20	020	1	1		1	20)21	1	<u>т</u>
Analyte	Fraction	Units	Distribution	Area	Year	Area:Year	RG_GHP vs	RG_GHP vs	RG_GHP vs	RG_GHBP vs	RG_GHBP vs	RG_GAUT vs	RG_GHP vs	RG_GHP vs	RG_GHP vs	RG_GHBP vs	RG_GHBP vs	RG_GAUT vs
							RG_GHBP	RG_GAUT	RG_GANF	RG_GAUI	RG_GANF	RG_GANF	RG_GHBP	RG_GAUI	RG_GANF	RG_GAUI	RG_GANF	RG_GANF
	Fraction 1	mg/kg	lognormal	0.370	< 0.001	0.008	359	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	Fraction 2	mg/kg	lognormal	0.174	<0.001	0.096	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 3	mg/kg	lognormal	< 0.001	0.041	0.002	ns	127	ns	234	ns	-59	ns	ns	ns	ns	ns	-55
Manganese (Mn)	Fraction 4	mg/kg	lognormal	< 0.001	0.256	0.057	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
,	Fraction 5	mg/kg	lognormal	<0.001	<0.001	0.062	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Sum of 1 to 4	mg/kg	lognormal	< 0.001	0.160	0.527	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Sum of 1 to 5	mg/kg	lognormal	< 0.001	0.307	0.471	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
Malada and a second (MAa)	Sum of 2 and 3	mg/kg	lognormal	<0.001	0.526	0.092	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
Molybdenum (Mo)	Fraction 5	mg/kg	lognormal	< 0.001	0.200	0.055	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 1	mg/kg	lognormal	< 0.001	0.145	<0.001	166	ns	-62	-/3	-86	-46	-46	-66	-78	-37	-59	-35
	Fraction 2	mg/kg	lognormal	< 0.001	<0.001	<0.001	164	-53	-64	-82	-86	-23	-48	-75	-78	-52	-57	ns
	Fraction 3	mg/kg	lognormal	<0.001	<0.001	<0.001	6/	-31	-64	-59	-79	-48	-68	-50	-74	54	-19	-47
Nickel (Ni)	Fraction 4	mg/kg	lognormal	< 0.001	0.081	<0.001	329	ns	-36	-82	-85	ns	-41	ns	ns	ns	ns	ns
· · /	Fraction 5	mg/kg	lognormal	< 0.001	<0.001	0.919	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Sum of 1 to 4	mg/kg	lognormal	< 0.001	0.006	<0.001	144	-33	-60	-/3	-84	-40	-58	-49	-67	ns	ns	-35
	Sum of 1 to 5	mg/kg	lognormal	< 0.001	<0.001	<0.001	91	-28	-55	-62	-76	-37	-55	-41	-61	32	ns	-34
	Sum of 2 and 3	mg/kg	lognormal	< 0.001	<0.001	<0.001	89	-36	-64	-66	-81	-44	-63	-57	-75	ns	-32	-42
Phosphorus (P)	Fraction 3	mg/kg	lognormal	< 0.001	0.079	<0.001	ns	ns	-54	ns	-35	-56	-39	ns	-52	51	ns	-48
	Fraction 1	mg/kg	lognormal	0.991	< 0.001	< 0.001	ns	ns	ns	ns	ns	ns	ns	49	55	49	55	ns
Potassium (K)	Sum of 1 to 4	mg/kg	lognormal	0.991	< 0.001	< 0.001	ns	ns	ns	ns	ns	ns	ns	49	55	49	55	ns
	Sum of 1 to 5	mg/kg	lognormal	0.991	< 0.001	< 0.001	ns	ns	ns	ns	ns	ns	ns	49	55	49	55	ns
	Fraction 1	mg/kg	lognormal	< 0.001	0.616	0.003	ns	ns	ns	ns	ns	ns	-81	ns	ns	ns	ns	ns
Selenium (Se)	Fraction 3	mg/kg	lognormal	< 0.001	0.349	< 0.001	314	ns	-79	ns	-95	ns	ns	-84	-74	-75	-60	ns
()	Fraction 4	mg/kg	lognormal	<0.001	0.530	<0.001	96	-92	-89	-96	-94	ns	-74	-91	-85	-66	ns	ns
	Fraction 5	mg/kg	lognormal	<0.001	0.010	<0.001	ns	-85	-87	-84	-86	ns	-85	-87	-87	ns	ns	ns
Silver (Ag)	Fraction 5	mg/kg	lognormal	< 0.001	0.990	<0.001	-48	-60	-56	ns	ns	ns	-70	ns	ns	123	143	ns
	Fraction 1	mg/kg	lognormal	<0.001	0.001	0.191	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 2	mg/kg	lognormal	< 0.001	0.004	0.028	ns	-52	102	-63	55	321	ns	-67	53	-75	ns	356
	Fraction 3	mg/kg	lognormal	< 0.001	0.002	0.104	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
Strontium (Sr)	Fraction 4	mg/kg	lognormal	0.022	0.017	0.011	ns	ns	ns	ns	ns	ns	ns	ns	ns	41	57	ns
	Fraction 5	mg/kg	lognormal	< 0.001	0.021	0.230	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Sum of 1 to 4	mg/kg	lognormal	< 0.001	< 0.001	0.311	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Sum of 1 to 5	mg/kg	lognormal	< 0.001	0.003	0.030	ns	ns	ns	-22	ns	33	54	ns	44	-38	ns	50
	Sum of 2 and 3	mg/kg	lognormal	< 0.001	0.002	0.163	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
Thallium (TI)	Fraction 5	mg/kg	lognormal	0.017	0.609	0.116	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
Titanium (Sn)	Fraction 4	mg/kg	lognormal	<0.001	<0.001	<0.001	ns	ns	ns	ns	ns	ns	ns	-85	206	-89	137	1953
()	Fraction 5	mg/kg	lognormal	0.002	0.012	<0.001	ns	98	ns	146	38	-44	109	44	ns	-31	-51	-29
	Fraction 1	mg/kg	lognormal	< 0.001	0.046	<0.001	ns	ns	ns	ns	ns	ns	ns	ns	-65	ns	ns	ns
	Fraction 2	mg/kg	lognormal	< 0.001	0.494	< 0.001	211	ns	ns	ns	-74	ns	ns	-81	ns	-71	ns	232
	Fraction 3	mg/kg	lognormal	<0.001	0.502	<0.001	160	-54	-41	-82	-78	ns	ns	-37	ns	-45	ns	58
Uranium (U)	Fraction 4	mg/kg	lognormal	< 0.001	0.213	< 0.001	ns	-43	-37	-42	-36	ns	-58	ns	ns	101	56	ns
	Fraction 5	mg/kg	lognormal	< 0.001	0.253	< 0.001	-43	ns	-39	38	ns	ns	ns	ns	-33	-24	-40	ns
	Sum of 1 to 4	mg/kg	lognormal	< 0.001	0.100	< 0.001	90	ns	ns	ns	ns	ns	ns	ns	-37	ns	ns	ns
	Sum of 1 to 5	mg/kg	lognormal	< 0.001	0.095	<0.001	47	ns	ns	ns	ns	ns	ns	ns	-36	ns	ns	ns
	Sum of 2 and 3	mg/kg	lognormal	< 0.001	0.933	< 0.001	181	ns	ns	ns	-76	ns	ns	-63	ns	-57	ns	114
	Fraction 3	mg/kg	lognormal	< 0.001	0.016	<0.001	-64	-24	-51	109	34	-36	-17	-27	-50	ns	-39	-32
Vanadium (V)	Fraction 4	mg/kg	lognormal	<0.001	0.060	0.112	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 5	mg/kg	lognormal	<0.001	<0.001	0.908	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 2	mg/kg	lognormal	<0.001	0.001	0.013	84	-53	-61	-74	-79	ns	62	-62	-62	-77	-76	ns
	Fraction 3	mg/kg	lognormal	< 0.001	0.005	<0.001	83	-40	-54	-67	-75	-24	58	-36	-49	-60	-68	ns
Zinc (Zn)	Fraction 4	mg/kg	lognormal	<0.001	0.039	<0.001	ns	-47	-55	-57	-63	ns	ns	ns	-35	ns	ns	-34
	Fraction 5	mg/kg	lognormal	<0.001	< 0.001	0.974	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Sum of 2 and 3	mg/kg	lognormal	<0.001	0.001	< 0.001	83	-44	-56	-69	-76	-22	59	-43	-52	-64	-70	ns

P-value <0.05.

Positive MOD (higher concentration of analyte at second biological monitoring area relative to the first).

Negative MOD (lower concentration of analyte at second biological monitoring area relative to the first).

Notes: ANOVA = Analysis of Variance; vs = versus; mg/kg = milligrams per kilogram; < = less than; nc = no comparison; ns = not significant; HSD = Honestly Significant Difference; LRL = Laboratory Reporting Limit; > = greater than; MOD = Magnitude of Difference; EMM = the estimated marginal mean from the censored regression model. ^a Censored regression ANOVA with factors Area, Year and Area: Year. Post-hoc contrasts were corrected using a Tukey's HSD Test. If the concentrations in one or more fractions was <LRL, the fraction sum was equal to the sum of the LRL values. Analytes that had >75% censored data were excluded from the analyses.

^b The MOD was calculated as [EMM_{area 2⁺} EMM_{area 1}]/EMM_{area 1}*100 for all years combined when the *Area*: Year term was insignificant (α = 0.05).

^c The MOD was calculated as[EMM_{area 2}- EMM_{area 1}]/EMM_{area 1}*100 for each year when the *Area:Year* term was significant ($\alpha = 0.05$).

													Yearly	Magnitude of	Difference						
		ANOVA	Model ^a				١	Year Effects	b					- J	Year Effec	ts by Area ^c					
Analyte	Fraction	Units	Assumed	Area	Year	Area:Year	2019 vs	2019 vs	2020 vs		RG_GHP			RG_GHBP			RG_GAUT			RG_GANF	1
		Unito	Distribution	7.000	. oui	/	2020	2021	2021	2019 vs 2020	2019 vs 2021	2020 vs 2021	2019 vs 2020	2019 vs 2021	2020 vs 2021	2019 vs 2020	2019 vs 2021	2020 vs 2021	2019 vs 2020	2019 vs 2021	2020 vs 2021
	Fraction 3	mg/kg	lognormal	<0.001	0.398	<0.001	nc	nc	nc	ns	ns	ns	-15	ns	ns	ns	ns	ns	ns	-18	ns
Aluminum (Al)	Fraction 4	mg/kg	lognormal	<0.001	0.131	0.011	nc	nc	nc	ns	ns	ns	ns	ns	-57	ns	ns	ns	ns	ns	ns
	Fraction 5	mg/kg	lognormal	<0.001	< 0.001	0.855	ns	-12	-18	nc	nc	nc	nc	nc	nc						
Antimony (Sb)	Fraction 5	mg/kg	lognormal	< 0.001	0.278	<0.001	nc	nc	nc	ns	ns	ns	ns	-35	-32	52	84	ns	ns	58	68
	Fraction 2	mg/kg	lognormal	0.015	0.001	0.003	nc	nc	nc	ns	ns	ns	193	ns	ns	ns	ns	ns	ns	ns	ns
	Fraction 3	mg/kg	lognormal	< 0.001	0.114	0.155	ns	ns	ns	nc	nc	nc	nc	nc	nc						
Arsenic (As)	Fraction 4	mg/kg	lognormal	0.194	0.033	0.108	ns	ns	-26	nc	nc	nc	nc	nc	nc						
	Fraction 5	mg/kg	lognormal	< 0.001	0.003	0.120	ns	-19	ns	nc	nc	nc	nc	nc	nc						
	Sum of 2 and 3	mg/kg	lognormal	0.003	0.007	0.037	nc	nc	nc	ns	ns	ns	ns	ns	ns	ns 40	ns E1	ns	ns	ns 44	ns
	Fraction 1	mg/kg	lognormal	<0.001	<0.001	<0.001	nc	nc	nc	ns 12	ns	ns	-39	87	206	40	51	ns	ns	44	35
	Fraction 2	mg/kg	lognormal	<0.001 0.057	<0.001	<0.001	nc	nc	nc	-13	ns	ns	-10	24	40	ns	ns	ns	ns	ns	ns
	Fraction 4	mg/kg	lognormal	0.037	0.450	0.031	no	115	no	nc	nc	nc	53	110	65	nc	23	nc	nc	nc	nc
Barium (Ba)	Fraction 5	mg/kg	lognormal	<0.001	0.035	0.585	ne	ne	ne	nc	nc	nc	55	-47	-00	nc	55	nc	nc	nc	nc
	Sum of 1 to 4	mg/kg	lognormal	<0.001	0.050	0.003	nc	nc	nc	ne	ne	ne	ne	ne	ne	22	31	nc	ne	22	24
	Sum of 1 to 5	mg/kg	lognormal	<0.001	0.658	<0.000	nc	nc	nc	ns	ns	ns	ns	-11	ns	12	21	ns	ns	ns	ns
	Sum of 2 and 3	mg/kg	lognormal	<0.001	0.055	0.058	ns	ns	12	nc	nc	nc	nc	nc	nc						
	Fraction 3	ma/ka	lognormal	< 0.001	0.147	< 0.001	nc	nc	nc	ns	ns	ns	ns	ns	ns	18	29	ns	ns	17	35
Beryllium (Be)	Fraction 5	ma/ka	lognormal	< 0.001	< 0.001	0.139	ns	-14	-13	nc	nc	nc	nc	nc	nc						
	Fraction 1	ma/ka	lognormal	< 0.001	0.245	< 0.001	nc	nc	nc	ns	ns	ns	ns	ns	ns						
	Fraction 2	mg/kg	lognormal	< 0.001	0.006	0.116	-18	ns	18	nc	nc	nc	nc	nc	nc						
	Fraction 3	mg/kg	lognormal	< 0.001	< 0.001	<0.001	nc	nc	nc	ns	ns	ns	101	312	104	ns	41	ns	ns	ns	ns
	Fraction 4	mg/kg	lognormal	<0.001	0.269	<0.001	nc	nc	nc	ns	ns	ns	84	75	ns	ns	ns	47	ns	ns	ns
Cadmium (Cd)	Fraction 5	mg/kg	lognormal	<0.001	< 0.001	0.232	-14	-27	-15	nc	nc	nc	nc	nc	nc						
	Sum of 1 to 4	mg/kg	lognormal	<0.001	0.351	0.034	nc	nc	nc	ns	ns	ns	-74	-100	-100	ns	34	ns	ns	ns	ns
	Sum of 1 to 5	mg/kg	lognormal	<0.001	0.462	0.033	nc	nc	nc	ns	26	ns	-21	ns	ns						
	Sum of 2 and 3	mg/kg	lognormal	<0.001	<0.001	<0.001	nc	nc	nc	ns	ns	ns	40	180	100	ns	30	ns	ns	ns	ns
	Fraction 1	mg/kg	lognormal	0.895	0.110	0.006	nc	nc	nc	ns	ns	ns	ns	ns	-27	ns	56	ns	ns	ns	37
	Fraction 2	mg/kg	lognormal	<0.001	0.010	0.039	nc	nc	nc	ns	ns	60	ns	52	ns	ns	ns	ns	ns	ns	ns
	Fraction 3	mg/kg	lognormal	<0.001	0.005	0.061	ns	78	54	nc	nc	nc	nc	nc	nc						
Calcium (Ca)	Fraction 4	mg/kg	lognormal	<0.001	<0.001	<0.001	nc	nc	nc	ns	ns	ns	39	ns	ns	ns	32	ns	ns	80	54
Galolalli (Ga)	Fraction 5	mg/kg	lognormal	<0.001	0.516	<0.001	nc	nc	nc	ns	ns	ns	-47	57	195	ns	-53	-44	ns	ns	ns
	Sum of 1 to 4	mg/kg	lognormal	<0.001	0.003	0.723	ns	40	30	nc	nc	nc	nc	nc	nc						
	Sum of 1 to 5	mg/kg	lognormal	<0.001	0.003	0.685	ns	38	29	nc	nc	nc	nc	nc	nc						
	Sum of 2 and 3	mg/kg	lognormal	< 0.001	0.006	0.465	ns	38	32	nc	nc	nc	nc	nc	nc						
	Fraction 3	mg/kg	lognormal	< 0.001	0.005	<0.001	nc	nc	nc	ns	ns	ns	-29	74	144	ns	ns	ns	ns	-20	ns
Chromium (Cr)	Fraction 4	mg/kg	lognormal	0.006	0.659	0.168	ns	ns	ns	nc	nc	nc	nc	nc	nc						
	Fraction 5	mg/kg	lognormal	<0.001	0.010	0.534	ns	-11	-11	nc	nc	nc	nc	nc	nc						

Table D.27: Differences in Concentrations of Sediment Quality Analytes Among Years on Lower Greenhills and Gardine Creeks Sampling Areas, Based on Sequential Extraction Analysis, 2019 to 2021

P-value <0.05.

Positive MOD (higher concentration of analyte in second year relative to the first).

Negative MOD (lower concentration of analyte in second year relative to the first).

Notes: ANOVA = Analysis of Variance; vs = versus; % = percent; < = less than; nc = no comparison; ns = not significant; mm = millimetres; µm = micrometres; > = greater than; mg/kg = milligrams per kilogram dry weight; HSD = Honestly Significant Difference; MOD = Magnitude of Difference; EMM = the estimated marginal mean from the censored regression model.

^a Censored regression ANOVA with factors Area, Year and Area:Year. Post-hoc contrasts were corrected using a Tukey's HSD Test. Analytes that had >75% censored data were excluded from the analyses.

^b The MOD was calculated as [EMM_{vear 2}- EMM_{vear 1}]/EMM_{vear 1}*100 for all areas combined when the Area: Year term was insignificant (α = 0.05).

^c The MOD was calculated as [EMM_{vear 2⁺} EMM_{vear 1}]/EMM_{vear 1}*100 for each area when the *Area*: Year term was significant (α = 0.05).

													Yearly	Magnitude of	Difference						
		ANOVA	Model ^a					Year Effects	b				rearry	magintade of	Year Effec	ts by Area ^c					
			A a a u u u a al				0040	0040	0000		RG_GHP			RG_GHBP			RG_GAUT			RG_GANF	
Analyte	Fraction	Units	Distribution	Area	Year	Area:Year	2019 VS 2020	2019 VS 2021	2020 VS 2021	2019 vs 2020	2019 vs 2021	2020 vs 2021	2019 vs 2020	2019 vs 2021	2020 vs 2021	2019 vs 2020	2019 vs 2021	2020 vs 2021	2019 vs 2020	2019 vs 2021	2020 vs 2021
	Fraction 1	mg/kg	lognormal	0.978	<0.001	0.009	nc	nc	nc	ns	ns	ns	ns	ns	ns	183	186	ns	159	230	ns
	Fraction 2	mg/kg	lognormal	0.145	0.032	0.001	nc	nc	nc	ns	ns	ns	221	133	ns	ns	ns	ns	ns	124	ns
	Fraction 3	mg/kg	lognormal	<0.001	<0.001	<0.001	nc	nc	nc	ns	ns	ns	-49	-66	-34	ns	-24	ns	-30	-45	-22
Cobalt (Co)	Fraction 4	mg/kg	lognormal	0.002	0.252	<0.001	nc	nc	nc	ns	ns	ns	ns	-48	-57	ns	ns	ns	ns	ns	ns
Cobait (CO)	Fraction 5	mg/kg	lognormal	<0.001	<0.001	0.468	ns	-26	-21	nc	nc	nc	nc	nc	nc						
	Sum of 1 to 4	mg/kg	lognormal	<0.001	<0.001	<0.001	nc	nc	nc	ns	ns	ns	-	-	-40	ns	ns	ns	ns	ns	ns
	Sum of 1 to 5	mg/kg	lognormal	<0.001	<0.001	<0.001	nc	nc	nc	ns	ns	ns	ns	ns	-37	ns	-12	-14	ns	-16	ns
	Sum of 2 and 3	mg/kg	lognormal	<0.001	<0.001	<0.001	nc	nc	nc	ns	ns	ns	-25	-48	-31	ns	-21	-16	-20	-33	-16
Copper (Cu)	Fraction 4	mg/kg	lognormal	<0.001	0.104	<0.001	nc	nc	nc	ns	ns	ns	58	ns	-53	ns	85	ns	ns	ns	ns
	Fraction 5	mg/kg	lognormal	<0.001	<0.001	0.131	ns	-21	-20	nc	nc	nc	nc	nc	nc						
	Fraction 3	mg/kg	lognormal	<0.001	0.296	<0.001	nc	nc	nc	ns	ns	ns	ns	50	66	ns	ns	ns	ns	ns	ns
Iron (Fe)	Fraction 4	mg/kg	lognormal	0.081	0.611	0.094	ns	ns	ns	nc	nc	nc	nc	nc	nc						
	Fraction 5	mg/kg	lognormal	<0.001	<0.001	0.445	ns	-26	-18	nc	nc	nc	nc	nc	nc						
	Fraction 3	mg/kg	lognormal	<0.001	0.004	0.014	nc	nc	nc	ns	-16	ns	ns	ns	ns	ns	-18	-16	ns	ns	ns
Lead (Pb)	Fraction 4	mg/kg	lognormal	<0.001	0.089	<0.001	nc	nc	nc	ns	ns	ns	76	ns	ns	ns	103	ns	ns	ns	ns
	Fraction 5	mg/kg	lognormal	<0.001	<0.001	0.078	-15	-24	ns	nc	nc	nc	nc	nc	nc						
Lithium (Li)	Fraction 5	mg/kg	lognormal	<0.001	0.315	<0.001	nc	nc	nc	ns	ns	ns	ns	28	39	ns	-20	-28	ns	-21	ns
	Fraction 1	mg/kg	lognormal	0.370	<0.001	0.008	nc	nc	nc	ns	ns	ns	2004	1480	ns	782	787	ns	349	682	ns
	Fraction 2	mg/kg	lognormal	0.174	<0.001	0.096	45	59	ns	nc	nc	nc	nc	nc	nc						
	Fraction 3	mg/kg	lognormal	<0.001	0.041	0.002	nc	nc	nc	ns	ns	ns	-60	ns	101	ns	ns	ns	-51	-57	ns
Manganese (Mn)	Fraction 4	mg/kg	lognormal	<0.001	0.256	0.057	ns	ns	ns	nc	nc	nc	nc	nc	nc						
	Fraction 5	mg/kg	lognormal	<0.001	<0.001	0.062	ns	-24	-16	nc	nc	nc	nc	nc	nc						
	Sum of 1 to 4	mg/kg	lognormal	<0.001	0.160	0.527	ns	ns	ns	nc	nc	nc	nc	nc	nc						
	Sum of 1 to 5	mg/kg	lognormal	<0.001	0.307	0.471	ns	ns	ns	nc	nc	nc	nc	nc	nc						
	Sum of 2 and 3	mg/kg	lognormal	<0.001	0.526	0.092	ns	ns	ns	nc	nc	nc	nc	nc	nc						
Molybdenum (Mo)	Fraction 5	mg/kg	lognormal	<0.001	0.200	0.055	ns	ns	ns	nc	nc	nc	nc	nc	nc						
	Fraction 1	mg/kg	lognormal	<0.001	0.145	<0.001	nc	nc	nc	ns	53	66	93	-35	-66	ns	ns	ns	ns	ns	ns
	Fraction 2	mg/kg	lognormal	<0.001	<0.001	<0.001	nc	nc	nc	ns	27	43	61	-55	-72	ns	-41	-25	ns	ns	ns
	Fraction 3	mg/kg	lognormal	< 0.001	< 0.001	< 0.001	nc	nc	nc	ns	23	26	22	-71	-76	ns	-23	ns	-28	-34	ns
Nickel (Ni)	Fraction 4	mg/kg	lognormal	< 0.001	0.081	< 0.001	nc	nc	nc	ns	ns	ns	103	-68	-84	ns	ns	ns	ns	ns	ns
()	Fraction 5	mg/kg	lognormal	<0.001	<0.001	0.919	ns	-26	-21	nc	nc	nc	nc	nc	nc						
	Sum of 1 to 4	mg/kg	lognormal	< 0.001	0.006	<0.001	nc	nc	nc	ns	ns	ns	53	-66	-78	ns	ns	ns	ns	ns	ns
	Sum of 1 to 5	mg/kg	lognormal	<0.001	< 0.001	<0.001	nc	nc	nc	ns	ns	ns	43	-62	-73	ns	-16	ns	-17	-20	ns
	Sum of 2 and 3	mg/kg	lognormal	< 0.001	<0.001	<0.001	nc	nc	nc	ns	24	29	33	-66	-75	ns	-26	ns	-24	-30	ns
Phosphorus (P)	Fraction 3	mg/kg	lognormal	<0.001	0.079	<0.001	nc	nc	nc	ns	ns	ns	-56	-50	ns						
	Fraction 1	mg/kg	lognormal	0.991	<0.001	<0.001	nc	nc	nc	30	ns	-16	ns	ns	-25	ns	67	ns	ns	ns	ns
Potassium (K)	Sum of 1 to 4	mg/kg	lognormal	0.991	<0.001	<0.001	nc	nc	nc	30	ns	-16	ns	ns	-25	ns	67	ns	ns	ns	ns
	Sum of 1 to 5	mg/kg	lognormal	0.991	< 0.001	<0.001	nc	nc	nc	30	ns	-16	ns	ns	-25	ns	67	ns	ns	ns	ns

Table D.27: Differences in Concentrations of Sediment Quality Analytes Among Years on Lower Greenhills and Gardine Creeks Sampling Areas, Based on Sequential Extraction Analysis, 2019 to 2021

Positive MOD (higher concentration of analyte in second year relative to the first).

Negative MOD (lower concentration of analyte in second year relative to the first).

Notes: ANOVA = Analysis of Variance; vs = versus; % = percent; < = less than; nc = no comparison; ns = not significant; mm = millimetres; µm = micrometres; > = greater than; mg/kg = milligrams per kilogram dry weight; HSD = Honestly Significant Difference; MOD = Magnitude of Difference; EMM = the estimated marginal mean from the censored regression model.

^a Censored regression ANOVA with factors Area, Year and Area:Year. Post-hoc contrasts were corrected using a Tukey's HSD Test. Analytes that had >75% censored data were excluded from the analyses.

^b The MOD was calculated as [EMM_{year 2}- EMM_{year 1}]/EMM_{year 1}*100 for all areas combined when the Area: Year term was insignificant (α = 0.05).

^c The MOD was calculated as [EMM_{year 2}- EMM_{year 1}]/EMM_{year 1}*100 for each area when the Area. Year term was significant (α = 0.05).

													Yearly	Magnitude of	Difference						
		ANOVA	Model *				١	ear Effects	b				,		Year Effec	ts by Area ^c					
Analyte	Fraction	Units	Assumed Distribution	Area	Year	Area:Year	2019 vs 2020	2019 vs 2021	2020 vs 2021	2019 vs	RG_GHP 2019 vs 2021	2020 vs	2019 vs	RG_GHBP 2019 vs 2021	2020 vs	2019 vs	RG_GAUT	2020 vs	2019 vs	RG_GANF	2020 vs
										2020	2021	2021	2020	2021	2021	2020	2021	2021	2020	2021	2021
	Fraction 1	mg/kg	lognormal	< 0.001	0.616	0.003	nc	nc	nc	ns	140	195	ns	ns	-59	ns	ns	ns	ns	ns	ns
Selenium (Se)	Fraction 3	mg/kg	lognormal	< 0.001	0.349	< 0.001	nc	nc	nc	ns	73	74	ns	-57	-73	ns	ns	ns	ns	ns	114
	Fraction 4	mg/kg	lognormal	< 0.001	0.530	< 0.001	nc	nc	nc	ns	ns	ns	79	-69	-83	ns	ns	ns	ns	ns	ns
O(h = m (A =))	Fraction 5	mg/kg	lognormal	< 0.001	0.010	<0.001	nc	nc	nc	ns	ns	ns	82	-68	-82	ns	ns	ns	ns	ns	ns
Sliver (Ag)	Fraction 5	mg/kg	lognormal	< 0.001	0.990	<0.001	nc	nc	nc	ns	ns	ns	ns	-45	-49	ns	71	ns	ns	ns	ns
	Fraction 1	mg/kg	lognormal	< 0.001	0.001	0.191	ns	29	21	nc	nc	nc 42	nc		nc 4E	nc	nc	nc	nc	nc	nc
	Fraction 2	mg/kg	lognormal	<0.001	0.004	0.020		TIC EQ	12	ns	ns	43	ns	73	45	ns	ns	lis	ns	ns	ns
	Fraction 4	mg/kg	lognormal	<0.001 0.022	0.002	0.104	115 no	50	43	nc	nc	nc	26	nc	20	nc	nc	nc	nc	nc	nc
Strontium (Sr)	Fraction 5	mg/kg	lognormal	<0.022	0.017	0.011	ne	-14	ne	nc	nc	nc	20	nc	-29	nc	nc	nc	nc	nc	nc
	Sum of 1 to 4	mg/kg	lognormal	<0.001	<0.021	0.230	ns	- 14	26	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Sum of 1 to 5	mg/kg	lognormal	<0.001	0.003	0.030	nc	nc	nc	ns	ns	ns	ns	24	34	ns	ns	ns	ns	28	21
	Sum of 2 and 3	mg/kg	lognormal	<0.001	0.002	0.000	ns	35	31	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
Thallium (TI)	Fraction 5	ma/ka	lognormal	0.017	0.609	0.116	ns	ns	ns	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 4	mg/kg	lognormal	< 0.001	< 0.001	< 0.001	nc	nc	nc	ns	-69	-67	ns	ns	-55	ns	-93	-93	ns	ns	ns
Litanium (Sn)	Fraction 5	mg/kg	lognormal	0.002	0.012	< 0.001	nc	nc	nc	ns	ns	ns	ns	102.0	119	100	ns	-39	ns	ns	-23
	Fraction 1	mg/kg	lognormal	< 0.001	0.046	<0.001	nc	nc	nc	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	Fraction 2	mg/kg	lognormal	<0.001	0.494	<0.001	nc	nc	nc	ns	ns	70	91	ns	-64	ns	ns	ns	ns	ns	ns
	Fraction 3	mg/kg	lognormal	<0.001	0.502	<0.001	nc	nc	nc	ns	ns	ns	ns	-49	-60	ns	ns	ns	ns	48	53
	Fraction 4	mg/kg	lognormal	< 0.001	0.213	<0.001	nc	nc	nc	ns	ns	ns	ns	-47	-60	ns	ns	ns	ns	ns	ns
Oranium (O)	Fraction 5	mg/kg	lognormal	<0.001	0.253	<0.001	nc	nc	nc	ns	ns	ns	-28	ns	65	ns	ns	ns	ns	ns	ns
	Sum of 1 to 4	mg/kg	lognormal	<0.001	0.100	<0.001	nc	nc	nc	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	Sum of 1 to 5	mg/kg	lognormal	<0.001	0.095	<0.001	nc	nc	nc	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	Sum of 2 and 3	mg/kg	lognormal	<0.001	0.933	<0.001	nc	nc	nc	ns	ns	ns	50	-43	-62	ns	ns	ns	ns	48	ns
	Fraction 3	mg/kg	lognormal	<0.001	0.016	<0.001	nc	nc	nc	ns	ns	ns	-15	83	116	ns	ns	ns	ns	ns	ns
Vanadium (V)	Fraction 4	mg/kg	lognormal	<0.001	0.060	0.112	ns	ns	ns	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 5	mg/kg	lognormal	<0.001	<0.001	0.908	ns	-12	-15	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Fraction 2	mg/kg	lognormal	<0.001	0.001	0.013	nc	nc	nc	ns	ns	ns	57	68	ns	ns	ns	ns	ns	ns	ns
	Fraction 3	mg/kg	lognormal	<0.001	0.005	<0.001	nc	nc	nc	ns	ns	ns	80	64	ns	ns	ns	ns	ns	ns	ns
Zinc (Zn)	Fraction 4	mg/kg	lognormal	<0.001	0.039	<0.001	nc	nc	nc	ns	ns	ns	110	ns	-42	ns	82	56	ns	ns	ns
	Fraction 5	mg/kg	lognormal	< 0.001	< 0.001	0.974	ns	-24	-19	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	Sum of 2 and 3	mg/kg	lognormal	<0.001	0.001	<0.001	nc	nc	nc	ns	ns	ns	74	66	ns	ns	ns	ns	ns	ns	ns

Table D.27: Differences in Concentrations of Sediment Quality Analytes Among Years on Lower Greenhills and Gardine Creeks Sampling Areas, Based on Sequential Extraction Analysis, 2019 to 2021

Positive MOD (higher concentration of analyte in second year relative to the first).

Negative MOD (lower concentration of analyte in second year relative to the first).

Notes: ANOVA = Analysis of Variance; vs = versus; % = percent; < = less than; nc = no comparison; ns = not significant; mm = millimetres; µm = milligrams per kilogram dry weight; HSD = Honestly Significant Difference; MOD = Magnitude of Difference; EMM = the estimated marginal mean from the censored regression model.

^a Censored regression ANOVA with factors Area, Year and Area: Year. Post-hoc contrasts were corrected using a Tukey's HSD Test. Analytes that had >75% censored data were excluded from the analyses.

^b The MOD was calculated as [EMM_{year 2}- EMM_{year 1}]/EMM_{year 1}*100 for all areas combined when the Area: Year term was insignificant (α = 0.05).

^c The MOD was calculated as [EMM_{year 2}- EMM_{year 1}]/EMM_{year 1}*100 for each area when the Area: Year term was significant (α = 0.05).

Table D.28: Annual Differences in Sediment Quality in Lower Greenhills Creek (RG_GHBP) for Years Before (2017) and After (2018 to 2021) Initiation of Treatment with Antiscalant

	ANOVA Model Testing for Differe	nce Amo	ong Treatment	and Year		Post-hoc Co	ontrasts and	d MOD Rela ⁄ear (2017)	tive to Pre-1	Freatment
		Unito	%	Treatment	Year	Treatment	Tre	eatment Effe	ects by Yea	rs ^c
	Analyte	Units	Censored	Treatment	(Treatment)	Effects ^b	2018	2019	2020	2021
	Moisture	%	0	<0.001	0.416	34	nc	nc	nc	nc
	% Sand (0.125 mm to 0.063 mm)	%	0	0.509	0.352	ns	nc	nc	nc	nc
	% Sand (0.25 mm to 0.125 mm)	% 0/.	0	0.181	0.722	ns	nc	nc	nc	nc
	% Sand (0.50 mm to 0.25 mm)	% %	8.00	0.319	0.942	ns	nc	nc	nc	nc
Physical Tests	% Sand (2.00 mm to 1.00 mm)	%	20.0	0.126	1.000	ns	nc	nc	nc	nc
	% Silt (0.0312 mm to 0.004 mm)	%	0	0.304	0.883	ns	nc	nc	nc	nc
	% Silt (0.063 mm to 0.0312 mm)	%	0	0.240	0.990	ns	nc	nc	nc	nc
	% Clay (<4 μm)	%	0	0.700	0.279	ns	nc	nc	nc	nc
	% Gravel (>2 mm)	%	48.0	0.246	0.986	ns	nc	nc	nc	nc
Organic Carbon	I otal Organic Carbon	%	0	0.127	0.984	ns	nc	nc	nc	nc
	Aluminum (Al)	mg/kg	0	0.417	0.607	ns	nc	nc	nc	nc
	Artimony (Sb)	ma/ka	0	0.397	0.071	ns	nc	nc	nc	nc
	Barium (Ba)	ma/ka	0	0.862	0.118	ns	nc	nc	nc	nc
	Beryllium (Be)	mg/kg	0	0.308	0.978	ns	nc	nc	nc	nc
	Boron (B)	mg/kg	12.0	0.840	<0.001	nc	ns	ns	64	ns
	Cadmium (Cd)	mg/kg	0	0.705	0.113	ns	nc	nc	nc	nc
	Calcium (Ca)	mg/kg	0	0.824	0.997	ns	nc	nc	nc	nc
	Chromium (Cr)	mg/kg	0	0.102	0.975	ns	nc	nc	nc	nc
	Copper (Cu)	mg/kg	0	0.710	0.071	ns	nc	nc	nc	nc
	Iron (Fe)	ma/ka	0	0.330	1 000	ns	nc	nc	nc	nc
	Lead (Pb)	ma/ka	0	0.181	1.000	ns	nc	nc	nc	nc
	Lithium (Li)	mg/kg	0	0.162	0.999	ns	nc	nc	nc	nc
	Magnesium (Mg)	mg/kg	0	0.823	0.058	ns	nc	nc	nc	nc
Metals	Manganese (Mn)	mg/kg	0	0.016	0.685	28	nc	nc	nc	nc
	Mercury (Hg)	mg/kg	0	0.395	0.108	ns	nc	nc	nc	nc
	Molybdenum (Mo)	mg/kg	0	0.162	0.967	ns	nc	nc	nc	nc
	NICKEI (NI)	mg/kg	0	0.300	0.417	ns	nc	nc	nc	nc
	Potassium (K)	ma/ka	0	0.400	0.351	ns	nc	nc	nc	nc
	Selenium (Se)	ma/ka	0	0.005	0.217	90	nc	nc	nc	nc
	Silver (Ag)	mg/kg	4.00	0.754	0.914	ns	nc	nc	nc	nc
	Sodium (Na)	mg/kg	0	0.290	0.017	nc	39	ns	ns	ns
	Strontium (Sr)	mg/kg	0	0.777	0.947	ns	nc	nc	nc	nc
	Sulfur (S)	mg/kg	20.0	0.169	0.936	ns	nc	nc	nc	nc
	Thallium (TI)	mg/kg	0	0.124	0.082	ns	nc	nc	nc	nc
	Litanium (11)	mg/kg	0	0.021	<0.001	nc	128	ns	411 pc	ns
	Vanadium (V)	ma/ka	0	0.000	0.200	ns	nc	nc	nc	nc
	Zinc (Zn)	mg/kg	0	0.209	< 0.001	nc	ns	ns	43	14
	Zirconium (Zr)	mg/kg	48.0	0.678	0.302	ns	nc	nc	nc	nc
	Acenaphthylene	mg/kg	56.0	0.561	0.207	ns	nc	nc	nc	nc
	Benz(a)anthracene	mg/kg	44.0	0.202	0.035	nc	ns	ns	146	ns
	Benzo(a)pyrene	mg/kg	4.00	0.017	0.179	141	nc	nc	nc	nc
	Benzo(b&j)fluoranthene	mg/kg	0	0.020	0.122	109	nc	nc	nc	nc
	Benzo(e)pyrene	mg/kg	0	0.009	0.122	136	nc	nc	nc	nc
	Benzo(g,h,i)perylene	mg/kg	0	0.004	0.099	182	nc	nc	nc	nc
	Benzo(k)fluoranthene	mg/kg	68.0	0.231	0.167	ns	nc	nc	nc	nc
Polycyclic	Chrysene	mg/kg	16.0	0.053	0.673	ns	nc	nc	nc	nc
Aromatic	Dibenz(a,h)anthracene	mg/kg	36.0	0.155	0.012	nc	ns	ns	167	207
Hydrocarbons	Fluoranthene	mg/kg	0	0.020	0.160	114	nc	nc	nc	nc
	Fluorene	mg/kg	0	0.005	0.117	210	nc	nc	nc	nc
	Indeno(1,2,3-c,d)pyrene	mg/kg	32.0	0.022	0.740	155	nc	nc	nc	nc
	1-Methylnaphthalene	mg/kg	0	0.009	0.109	171	nc	nc	nc	nc
	2-Methylnaphthalene	mg/kg	0	0.013	0.132	165	nc	nc	nc	nc
	Naphthalene	mg/ka	0	0.009	0.115	201	nc	nc	nc	nc
	Phenanthrene	mg/ka	0	0.011	0.172	140	nc	nc	nc	nc
	Pyrene	mg/kg	0	0.001	0.193	193	nc	nc	nc	nc

Main effect p-value <0.05; interaction p-value <0.05.

Positive MOD (higher concentration of analyte after treatment relative to before treatment or in 2018, 2019, 2020, or 2021 relative to 2017).

Negative MOD (lower concentration of analyte after treatment relative to before treatment or in 2018, 2019, 2020, or 2021 relative to 2017).

Notes: ANOVA = Analysis of Variance; % = percent; MOD = Magnitude of Difference; < = less than; nc = no comparison; mm = millimetre; ns = not significant; > = greater than; mg/kg = milligrams per kilogram; LRL = Laboratory Reporting Limit; MCT = Measure of Central Tendency (i.e., the estimated marginal mean from the censored regression model).

^a Analytes with >75% of reported values <LRL were excluded from the analysis. When year (treatment) was insignificant, the post-doc test was conducted as a Dunnett's test comparing all post-treatment years to the pre-treatment year (2017).

post-treatment years to the pre-treatment year (2017). ^b MOD = (MCT_{After Treatment} - MCT_{Before Treatment})/MCT_{Before Treatment}*100. "After Treatment" combined all years (2018 to 2021) when Year (Treatment) was insignificant. ^c MOD = (MCT_{after year} - MCT₂₀₁₇)/MCT₂₀₁₇*100 when Year (Treatment) was significant.

 Table D.29: Sediment Quality Indices (SQI) for Biological Monitoring Areas on

 Greenhills and Gardine Creeks, 2013 to 2021

Biological Monitoring Area	Year	SQI ª	F1 (Scope) ^b	F2 (Area Frequency) ^c	F3 (Amplitude) ^d	Sample Size
	2017	31.2	62.1	49.7	88.8	145
	2018	26.0	65.5	57.9	93.7	145
RG_GHBP	2019	27.0	69.0	54.5	90.8	145
	2020	23.6	69.0	60.7	95.1	145
	2021	23.6	65.5	62.1	96.9	145
	2019	32.3	69.0	49.7	80.8	145
RG_GAUT	2020	34.2	55.2	51.0	85.6	145
	2021	24.9	72.4	53.1	94.1	145
	2019	32.4	58.6	51.7	87.2	145
RG_GANF	2020	34.6	51.7	46.9	89.2	145
	2021	30.6	55.2	50.3	94.2	145
	2013	20.5	79.3	57.1	96.9	210
	2017	24.5	69.0	58.6	94.4	174
RG_GHP	2019	20.3	75.9	64.4	95.8	174
	2020	21.3	69.0	66.2	97.2	145
	2021	23.6	65.5	61.4	97.2	145

Notes: Non-detect data were replaced with the LRL to support calculation of the SQI. Calculations were derived using a total of 29 BC WSQG, including the alert concentration for selenium (BCMOECCS 2021a,b). SQI = Sediment Quality Index; LRL = Laboratory Reporting Limit; BC WSQG = British Columbia Working Sediment Quality Guidelines; no. = number.

^a SQI = 100 - ($sqr(F1^2+F2^2+F3^2)/1.732$).

^b Percentage of constituents that did not meet their respective guidelines (i.e., no. of constituents with failed samples/total no. of constituents*100).

^c Percentage of samples that did not meet their respective guidelines (i.e., no. of failed samples/total no. of samples*100). ^d Normalized sum of extent above guidelines scaled between 0 and 100.

		BC W	SQG ^a				SEA R	esults				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	631	1,670	6,100	2,401	8,501	681	7,930
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	0.880	0.400	1.28	0.200	1.03
Arsenic (As)	mg/kg	5.90	17.0	<0.05	0.100	0.816	0.480	3.86	1.45	5.31	0.916	5.70
Barium (Ba)	mg/kg	-	-	18.1	55.0	49.6	26.6	190	149	339	105	365
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	0.330	<0.2	0.340	0.930	1.27	0.530	0.840
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	<5
Cadmium (Cd)	mg/kg	0.600	3.50	0.109	0.559	0.626	0.108	0.0740	1.40	1.48	1.18	1.48
Calcium (Ca)	mg/kg	-	-	3,780	41,400	7,850	1,500	115	54,530	54,645	49,250	54,300
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	0.990	4.16	9.60	10.6	20.2	5.99	12.6
Cobalt (Co)	mg/kg	-	-	0.420	1.44	4.09	1.15	2.83	7.10	9.93	5.53	9.99
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	0.570	10.5	15.5	12.1	27.6	1.07	24.9
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	3,680	1,780	9,080	5,560	14,640	3,730	13,700
Lead (Pb)	mg/kg	35.0	91.3	<0.5	1.05	3.36	1.51	7.58	6.42	14.0	4.41	11.8
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	<5	20.0	25.0	10.0	9.10
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	5,390
Manganese (Mn)	mg/kg	460	1,100	23.4	55.6	59.8	8.20	36.6	147	184	115	195
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.103
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	0.910	2.00	2.91	1.00	1.36
Nickel (Ni)	mg/kg	16.0	75.0	2.34	11.8	30.6	12.2	11.5	56.9	68.4	42.4	65.7
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	111	-	-	211	211	161	957
Potassium (K)	mg/kg	-	-	<100	-	-	-	-	100	100	-	1,780
Selenium (Se) ^b	mg/kg	2.	00	2.62	0.820	2.81	34.4	10.2	40.6	50.9	3.63	46.4
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	0.320	0.400	0.720	0.200	0.370
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	73.0
Strontium (Sr)	mg/kg	-	-	5.04	18.9	8.34	5.33	19.3	37.6	56.9	27.2	59.0
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	2,400
Thallium (TI)	mg/kg	-	-	<0.05	<0.05	< 0.05	<0.05	0.154	0.200	0.354	0.100	0.139
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	14.6	13.2	21.6	34.8	6.00	5.00
Tungsten (W)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	0.271	0.516	0.320	0.426	0.325	1.53	1.86	0.836	1.76
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	3.59	5.66	25.3	9.65	35.0	3.79	30.5
Zinc (Zn)	mg/kg	123	315	<1	24.9	51.1	9.70	62.2	86.7	149	76.0	138

Table D.30: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GHP-1 on the Greenhills Creek Sedimentation Pond, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

		BC W	'SQG ^a				SEA R	esults				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	638	1,750	7,020	2,488	9,508	688	8,210
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	1.04	0.400	1.44	0.200	1.01
Arsenic (As)	mg/kg	5.90	17.0	< 0.05	0.0560	0.487	0.453	5.28	1.05	6.33	0.543	5.93
Barium (Ba)	mg/kg	-	-	17.3	47.9	47.7	25.1	163	138	301	95.6	310
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	0.350	<0.2	0.380	0.950	1.33	0.550	0.740
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	<5
Cadmium (Cd)	mg/kg	0.600	3.50	0.266	0.501	0.441	0.100	0.109	1.31	1.42	0.942	1.39
Calcium (Ca)	mg/kg	-	-	3,420	32,000	6,440	1,400	109	43,260	43,369	38,440	43,200
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	0.980	4.07	11.2	10.6	21.8	5.98	12.8
Cobalt (Co)	mg/kg	-	-	0.110	0.360	6.55	1.20	3.49	8.22	11.7	6.91	11.1
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	0.570	9.76	19.2	11.3	30.5	1.07	25.6
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	3,400	1,660	11,600	5,160	16,760	3,450	14,500
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	3.47	1.59	9.30	6.06	15.4	3.97	12.2
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	5.30	20.0	25.3	10.0	8.90
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	5,020
Manganese (Mn)	mg/kg	460	1,100	69.8	126	410	26.6	48.0	632	680	536	673
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.130
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	1.29	2.00	3.29	1.00	1.63
Nickel (Ni)	mg/kg	16.0	75.0	1.88	9.40	31.1	11.9	14.6	54.3	68.9	40.5	64.5
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	159	-	-	259	259	209	967
Potassium (K)	mg/kg	-	-	<100	-	-	-	-	100	100	-	1,870
Selenium (Se) ^b	mg/kg	2.	.00	0.300	<0.2	0.830	7.14	2.05	8.47	10.5	1.03	8.38
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	0.150	<0.1	0.240	0.450	0.690	0.250	0.380
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	77.0
Strontium (Sr)	mg/kg	-	-	4.79	14.4	6.78	4.86	21.3	30.8	52.1	21.2	54.3
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	1,600
Thallium (TI)	mg/kg	-	-	<0.05	<0.05	<0.05	<0.05	0.166	0.200	0.366	0.100	0.125
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	10.9	17.0	17.9	34.9	6.00	6.80
Tungsten (Ŵ)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (Ù)	mg/kg	-	-	0.0740	0.203	0.228	0.379	0.366	0.884	1.25	0.431	1.13
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	3.27	5.68	29.6	9.35	39.0	3.47	31.1
Zinc (Zn)	mg/kg	123	315	<1	16.2	48.6	10.6	80.7	76.4	157	64.8	137

Table D.31: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GHP-3 on the Greenhills Creek Sedimentation Pond, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

		BC W	SQG ^a				SEA R	esults				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	592	1,440	5,900	2,132	8,032	642	8,620
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	0.850	0.400	1.25	0.200	0.790
Arsenic (As)	mg/kg	5.90	17.0	< 0.05	0.0960	0.622	0.379	4.20	1.15	5.35	0.718	5.01
Barium (Ba)	mg/kg	-	-	21.4	51.9	37.2	25.8	144	136	280	89.1	308
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	0.330	<0.2	0.350	0.930	1.28	0.530	0.750
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	6.00
Cadmium (Cd)	mg/kg	0.600	3.50	0.113	0.481	0.416	0.0940	0.0820	1.10	1.19	0.897	1.15
Calcium (Ca)	mg/kg	-	-	3,170	45,600	8,810	1,360	99.0	58,940	59,039	54,410	60,500
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	0.920	3.40	9.40	9.82	19.2	5.92	13.1
Cobalt (Co)	mg/kg	-	-	0.370	1.11	3.81	0.830	3.05	6.12	9.17	4.92	8.77
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	<0.5	8.21	17.2	9.71	26.9	1.00	22.4
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	3,160	1,380	9,620	4,640	14,260	3,210	12,200
Lead (Pb)	mg/kg	35.0	91.3	<0.5	0.850	3.49	1.33	7.31	6.17	13.5	4.34	10.8
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	<5	20.0	25.0	10.0	8.30
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	4,730
Manganese (Mn)	mg/kg	460	1,100	81.8	91.5	88.1	9.10	41.6	270	312	180	308
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.0971
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	1.01	2.00	3.01	1.00	1.32
Nickel (Ni)	mg/kg	16.0	75.0	2.18	10.4	27.9	9.70	12.3	50.2	62.5	38.3	56.3
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	143	-	-	243	243	193	919
Potassium (K)	mg/kg	-	-	110	-	-	-	-	110	110	-	2,150
Selenium (Se) ^b	mg/kg	2.	00	0.850	<0.2	0.990	10.6	3.65	12.6	16.3	1.19	13.8
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	<0.1	<0.1	0.280	0.400	0.680	0.200	0.340
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	82.0
Strontium (Sr)	mg/kg	-	-	4.63	18.6	8.56	4.37	20.2	36.2	56.4	27.2	62.1
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	2,000
Thallium (TI)	mg/kg	-	-	< 0.05	<0.05	<0.05	< 0.05	0.109	0.200	0.309	0.100	0.111
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	13.9	13.1	20.9	34.0	6.00	6.90
Tungsten (W)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	0.107	0.327	0.192	0.285	0.310	0.911	1.22	0.519	1.14
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	3.19	5.30	25.4	8.89	34.3	3.39	32.3
Zinc (Zn)	mg/kg	123	315	<1	15.3	42.0	8.70	69.4	67.0	136	57.3	117

Table D.32: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GHP-4 on the Greenhills Creek Sedimentation Pond, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

		BC W	'SQG ^a				SEA R	esults				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	642	1,770	7,610	2,512	10,122	692	11,100
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	1.11	0.400	1.51	0.200	1.12
Arsenic (As)	mg/kg	5.90	17.0	< 0.05	<0.05	0.468	0.410	5.61	0.978	6.59	0.518	6.51
Barium (Ba)	mg/kg	-	-	17.2	50.0	48.3	29.8	166	145	311	98.3	361
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	0.370	<0.2	0.420	0.970	1.39	0.570	0.930
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	0.200
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	7.80
Cadmium (Cd)	mg/kg	0.600	3.50	0.235	0.588	0.471	0.102	0.103	1.40	1.50	1.06	1.54
Calcium (Ca)	mg/kg	-	-	3,710	39,900	5,990	1,410	110	51,010	51,120	45,890	53,200
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	1.01	3.96	12.0	10.5	22.5	6.01	16.8
Cobalt (Co)	mg/kg	-	-	0.190	0.560	6.04	1.15	3.72	7.94	11.7	6.60	12.1
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	0.710	10.6	22.0	12.3	34.3	1.21	30.5
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	3,520	1,540	12,000	5,160	17,160	3,570	16,400
Lead (Pb)	mg/kg	35.0	91.3	<0.5	0.510	3.90	1.63	9.79	6.54	16.3	4.41	14.1
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	5.30	20.0	25.3	10.0	10.6
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	5,150
Manganese (Mn)	mg/kg	460	1,100	103	153	351	26.3	51.2	633	684	504	688
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.135
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	1.51	2.00	3.51	1.00	1.75
Nickel (Ni)	mg/kg	16.0	75.0	2.40	11.4	33.8	11.5	15.8	59.1	74.9	45.2	72.8
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	134	-	-	234	234	184	1,020
Potassium (K)	mg/kg	-	-	120	-	-	-	-	120	120	-	2,790
Selenium (Se) ^b	mg/kg	2.	.00	0.690	<0.2	1.16	12.3	3.54	14.4	17.9	1.36	16.0
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	0.130	<0.1	0.310	0.430	0.740	0.230	0.470
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	83.0
Strontium (Sr)	mg/kg	-	-	5.48	19.1	6.67	4.71	23.4	36.0	59.4	25.8	67.7
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	1,700
Thallium (TI)	mg/kg	-	-	< 0.05	<0.05	<0.05	<0.05	0.144	0.200	0.344	0.100	0.122
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	<1	12.4	8.00	20.4	6.00	10.2
Tungsten (W)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	0.114	0.225	0.197	0.357	0.404	0.893	1.30	0.422	1.22
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	3.57	5.78	31.4	9.75	41.1	3.77	41.2
Zinc (Zn)	mg/kg	123	315	<1	16.4	53.5	11.4	85.2	82.3	168	69.9	156

Table D.33: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GHP-5 on the Greenhills Creek Sedimentation Pond, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

		BC W	'SQG ^a				SEA R	esults				
Metal	Units	Lower	Upper	Fraction 1: Exchangeable and Adsorbed Metals	Fraction 2: Metals Bound to Carbonates	Fraction 3: Reducible Metals and Iron Oxides	Fraction 4: Metals Bound to Organic Material	Fraction 5: Residual Metals	Sum of Fractions 1 to 4	Sum of Fractions 1 to 5	Sum of Fractions 2 and 3	Conventional Bulk Metals Analysis
Aluminum (Al)	mg/kg	-	-	<50.0	<50.0	665	1,430	5,810	2,195	8,005	715	8,520
Antimony (Sb)	mg/kg	-	-	<0.1	<0.1	<0.1	<0.1	0.920	0.400	1.32	0.200	1.03
Arsenic (As)	mg/kg	5.90	17.0	< 0.05	<0.05	0.473	0.382	4.53	0.955	5.48	0.523	5.77
Barium (Ba)	mg/kg	-	-	16.5	52.9	45.2	32.2	119	147	266	98.1	310
Beryllium (Be)	mg/kg	-	-	<0.2	<0.2	0.370	<0.2	0.360	0.970	1.33	0.570	0.780
Bismuth (Bi)	mg/kg	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.800	1.00	0.400	<0.2
Boron (B)	mg/kg	-	-	-	-	-	-	-	-	-	-	<5
Cadmium (Cd)	mg/kg	0.600	3.50	0.161	0.537	0.435	0.0880	0.0900	1.22	1.31	0.972	1.44
Calcium (Ca)	mg/kg	-	-	2,990	49,400	6,290	1,040	80.0	59,720	59,800	55,690	60,900
Chromium (Cr)	mg/kg	37.3	90.0	<0.5	<5	1.08	3.15	9.40	9.73	19.1	6.08	13.1
Cobalt (Co)	mg/kg	-	-	0.120	0.400	5.34	0.810	3.19	6.67	9.86	5.74	9.97
Copper (Cu)	mg/kg	35.7	197	<0.5	<0.5	0.600	7.78	19.6	9.38	29.0	1.10	26.1
Iron (Fe)	mg/kg	21,200	43,766	<50.0	<50.0	3,560	1,210	9,580	4,870	14,450	3,610	13,200
Lead (Pb)	mg/kg	35.0	91.3	<0.5	<0.5	3.97	1.52	7.96	6.49	14.4	4.47	12.3
Lithium (Li)	mg/kg	-	-	<5	<5	<5	<5	<5	20.0	25.0	10.0	8.00
Magnesium (Mg)	mg/kg	-	-	-	-	-	-	-	-	-	-	4,630
Manganese (Mn)	mg/kg	460	1,100	60.2	109	319	18.2	43.5	506	550	428	567
Mercury (Hg)	mg/kg	0.170	0.486	-	-	-	-	-	-	-	-	0.108
Molybdenum (Mo)	mg/kg	25.0	23,000	<0.5	<0.5	<0.5	<0.5	1.11	2.00	3.11	1.00	1.66
Nickel (Ni)	mg/kg	16.0	75.0	1.98	11.2	31.2	8.45	13.0	52.8	65.8	42.4	64.5
Phosphorus (P)	mg/kg	-	-	<50.0	<50.0	125	-	-	225	225	175	923
Potassium (K)	mg/kg	-	-	<100	-	-	-	-	100	100	-	2,070
Selenium (Se) ^b	mg/kg	2.	.00	0.520	0.210	0.860	6.91	1.84	8.50	10.3	1.07	8.70
Silver (Ag)	mg/kg	0.500	-	<0.1	<0.1	0.120	<0.1	0.230	0.420	0.650	0.220	0.360
Sodium (Na)	mg/kg	-	-	<100	-	-	-	-	100	100	-	71.0
Strontium (Sr)	mg/kg	-	-	4.24	20.2	7.29	3.64	20.7	35.4	56.1	27.5	62.3
Sulfur (S)	mg/kg	-	-	-	-	-	-	-	-	-	-	1,800
Thallium (TI)	mg/kg	-	-	<0.05	<0.05	<0.05	<0.05	0.0990	0.200	0.299	0.100	0.0920
Tin (Sn)	mg/kg	-	-	<2	<2	<2	<2	<2	8.00	10.0	4.00	<2
Titanium (Ti)	mg/kg	-	-	<1	<5	<1	8.70	8.70	15.7	24.4	6.00	7.30
Tungsten (W)	mg/kg	-	-	-	-	-	-	-	-	-	-	<0.5
Uranium (U)	mg/kg	-	-	0.0870	0.261	0.179	0.270	0.325	0.797	1.12	0.440	1.09
Vanadium (V)	mg/kg	-	-	<0.2	<0.2	3.84	5.13	25.3	9.37	34.7	4.04	33.4
Zinc (Zn)	mg/kg	123	315	<1	15.6	49.3	8.60	71.0	74.5	146	64.9	135

Table D.34: Results of Sequential Extraction Analysis (SEA) for Sediment Collected from RG_GHP-6 on the Greenhills Creek Sedimentation Pond, September 2021

Concentration exceeds the lower BC WSQG.

Concentration exceeds the upper BC WSQG or alert concentration for selenium.

Notes: BC WSQG = British Columbia Working Sediment Quality Guidelines; SEA = Sequential Extraction Analysis; mg/kg = milligrams per kilogram; - = no data/not applicable; < = less than; LRL = Laboratory Reporting Limit; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy. Values <LRL were replaced with the LRL in the calculation of the sum of fractions.

Fraction 1 - exchangeable and adsorbed metals that are released due to changes in ionic strength.

Fraction 2 - metals bound to carbonate that are released due to changes in pH.

Fraction 3 - easily reducible metals and iron oxides that are released under reducing conditions.

Fraction 4 - organic or mineral bound fractions that are released under oxidizing conditions.

Fraction 5 - residual metals resistant to the first four digestions that are mobilized with a strong acid. Representative of "total" or "bulk" metals in sediment.

^a BC WSQG for the protection of freshwater aquatic life (BCMOECCS 2021a).

APPENDIX E BENTHIC INVERTEBRATE COMMUNITY

Figure E.1: Benthic Invertebrate Community Endpoint Comparisons for Upper Gardine Creek (RG_GAUT), September 2019 to 2021

Figure E.1: Benthic Invertebrate Community Endpoint Comparisons for Upper Gardine Creek (RG_GAUT), September 2019 to 2021

Figure E.2: Benthic Invertebrate Community Endpoint Comparisons for Lower Gardine Creek (RG_GANF), September 2019 to 2021

Figure E.2: Benthic Invertebrate Community Endpoint Comparisons for Lower Gardine Creek (RG_GANF), September 2019 to 2021

Watercourse		Upper Greenhills Creek								
Biological Area Code		RG_GHUT								
Station ID		RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6			
Date Sampled		13-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21			
Weather		90% cloud cover, overnight precipitation								
Air Temperature (°C)		10								
	Easting	654137	654138	654138	654130	654125	654135			
	Northing	5550025	5550039	5550056	5550071	5550084	5540098			
Habitat Characteristics										
Surrounding Land Use				Forest, logo	ging, mining					
Length of Reach Assessed	(m)	100								
Water Temperature (°C)		5.1	5.2	5.2	5.6	5.8	5.7			
рН		7.39	7.58	7.64	7.65	7.66	7.63			
	% sat	105.5	106.6	110.1	109.7	108.4	109.7			
Dissolved Oxygen	mg/L	10.05	10.94	11.27	11.13	10.91	11.08			
Conductance (µS/cm)		1,439	1,444	1,460	1,480	1,489	1,486			
Specific Conductance (µS/	 cm)	2.323	2.325	2.349	2.352	2.353	2.356			
Water Clarity		Clear								
Water Colour		Colourless								
Wetted width (m)		1.3								
Bankfull width (m)				1	.4					
Average Wa	ater Depth (cm)	9.5	15.0	15.5	12.0	12.5	14.0			
Average Wat	ter Velocity (m/s)	0.525	0.377	0.265	0.448	0.543	0.606			
	% Bedrock			(3					
	% Boulder	0								
	% Cobble	0								
Substrate	% Pebble	60								
	% Gravel	0								
	% Sand/Fines	40								
				1 tc	J 25					
	Streameide Vegetation		Ferr	e/arass shruh	$\frac{1}{2}$ coniferous t	raac				
	Dominant Vegetation			Shr						
Vegetation	Macrophyte Coverage (%)			(0					
	Dominant Macrophyte				-					
	Periphyton Coverage (1 to 5)	4 -	Rocks are very	v slipperv, num	erous clumps	(5 to 20 mm th	ick)			
Bonthic Invertebrate Sam		,	/ *"FF <i>},</i>		(•					
Dentino mvertebrate Jam	ping									
Number of Jars		2	1	2	1	1	1			
Macrophytes (in sampler)		N	N	N	N	N	N			
Algae (in sampler)		A	A	A	С	С	С			
Comments			Calcite coveri	ng entire strea	Calcite covering entire streambed (acting as pavement).					

Notes: ID = identifier; % = percent; - = no data/not recorded; °C = degrees Celsius; UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; % sat = percent saturation; mg/L = milligrams per litre; μ S/cm = microSiemens per centimetre; m = metres; cm = centimetres; m/s = metres per second; mm = millimetres; < = less than; CABIN = Canadian Aquatic Biomonitoring Network; N = none; A = abundant; C = common; S = sparse; μ m = micrometre; m² = square metres.

^a Data are for area-based kicks unless otherwise indicated.

^b A kick net with a 400 μ m mesh was used to kick an estimated sampling area of 1/3 m² at each station listed in the table. A kick net with a 400 μ m mesh was also used to collected the timed CABIN samples from RG_GHNF (n = 3).

Page 1 of 6

Watercourse		Upper Greenhills Creek								
Biological Area Code		RG_GHNF								
Station ID		RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6			
Date Sampled		10-Sep-21	10-Sep-21	10-Sep-21	10-Sep-21					
Weather		Overcast (10-Sep-21); rainy (11-Sep-21)								
Air Temperature (°C)		15 (10-Sep-21); 8 (11-Sep-21)								
	Easting	654372	654359	654343	654335	654338	654341			
UTMS (NAD83, Zone 110)	Northing	5549052	5549088	5549094	5549122	5549130	5549160			
Habitat Characteristics										
Surrounding Land Use				Forest, log	ging, mining					
Length of Reach Assessed	(m)	100								
Water Temperature (°C)		5.5	6.5	7.2	7.9	6.0	6.0			
рН		8.36	8.32	8.32	8.32	8.42	8.43			
	% sat	98.5	105.0	104.6	99.5	118.1	113.4			
Dissolved Oxygen	mg/L	10.08	10.46	10.25	9.60	11.98	11.52			
Conductance (µS/cm)	-	1,386	1,427	1,453	1,480	1,400	1,394			
Specific Conductance (µS/o	cm)	2,214	2,207	2,203	2,197	2,200	2,186			
Water Clarity	,	Clear								
Water Colour		Colourless								
Wetted width (m)		2.9								
Bankfull width (m)		3.1								
Average Water Depth (cm)		7.0	15.5	14.0	26.0	30.0	8.0			
Average Wat	er Velocity (m/s)	0.255	0.446	0.167	0.852	0.352	0.439			
	% Bedrock			(0					
	% Boulder	0								
	% Cobble	0)			
Substrate	% Pebble	0								
	% Gravel	0								
	% Sand/Fines	90								
	% Organics			1	0					
	Canopy Coverage (%)	26 to 50								
	Streamside Vegetation		Ferr	ns/grass, shrub	os, coniferous t	rees				
	Dominant Vegetation			Shr	ubs					
Vegetation	Macrophyte Coverage (%)			(C					
	Dominant Macrophyte				-					
Periphyton Coverage (1 to 5)		4 -	Rocks are very	y slippery, num	erous clumps	(5 to 20 mm th	ick)			
Benthic Invertebrate Sam	pling ^{a,b}									
		1 each area-		2 each area-		1 each area-				
Number of Jars		based and	2	based and	2	based and	1			
Macrophytes (in sampler)		N	N	N	N	N	N			
Algae (in sampler)		A	C	C	С	C	C			
		No riffle habi	itat due to barra	age tufa blockii	ng flow/forming	g cascades/cal	cite terraces.			
Comments	Kicks had to be completed among the cascades. Calcite covering all substrate (acting as pavement/concrete over stream bed)									

Notes: ID = identifier; % = percent; - = no data/not recorded; °C = degrees Celsius; UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; % sat = percent saturation; mg/L = milligrams per litre; μ S/cm = microSiemens per centimetre; m = metres; cm = centimetres; m/s = metres per second; mm = millimetres; < = less than; CABIN = Canadian Aquatic Biomonitoring Network; N = none; A = abundant; C = common; S = sparse; μ m = micrometre; m² = square metres.

^a Data are for area-based kicks unless otherwise indicated.

^b A kick net with a 400 μ m mesh was used to kick an estimated sampling area of 1/3 m² at each station listed in the table. A kick net with a 400 μ m mesh was also used to collected the timed CABIN samples from RG_GHNF (n = 3).

Page 2 of 6

Watercourse		Upper Greenhills Creek								
Biological Area Code		RG_GHFF								
Station ID		RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6			
Date Sampled		09-Sep-21	09-Sep-21	09-Sep-21	09-Sep-21	10-Sep-21	10-Sep-21			
Weather			I	0% cloud c	over, sunny					
Air Temperature (°C)										
	Easting	654130	654136	654138	654142	654141	654159			
UTMS (NAD83, Zone 110)	Northing	5547161	5547187	5547184	5547184	5547189	5547188			
Habitat Characteristics										
Surrounding Land Use				Forest, logo	ging, mining					
Length of Reach Assessed	(m)	100								
Water Temperature (°C)		6.7	7.8	8.4	8.9	6.3	6.3			
pH		8.24	8.41	8.26	8.47	8.69	8.62			
	% sat	104.8	105.7	94.4	95.6	101.9	102.1			
Dissolved Oxygen	ma/l	10.51	10.36	9 12	9.07	10.36	10.44			
Conductance (uS/cm)	ing, E	1 164	1 205	1 211	1 236	1 150	1 158			
Specific Conductance (uS/	cm)	1,104	1,203	1,211	1 794	1,100	1,100			
Weter Clarity		1,792 1,797 1,773 1,784 1,800 1,803								
Water Colour		Colourless								
Wetted width (m)		2.7								
Bankfull width (m)	3.2									
Average Water Depth (cm)		11.7	14.0	24.5	13.0	13.0	20.5			
Average Water Velocity (m/s)		0.283	0.409	0.534	0.275	0.275	0.305			
	% Bedrock	0								
	% Boulder			()					
	% Cobble			7	0					
Substrate	% Pebble	20								
	% Gravel	10								
	% Sand/Fines	0								
	% Organics			()					
	Canopy Coverage (%)			26 te	o 50					
	Streamside Vegetation		Fern	s/grass, shrub	s, coniferous t	rees				
	Dominant Vegetation			Conifero	us trees					
Vegetation	Macrophyte Coverage (%)			()					
	Dominant Macrophyte			-	-					
Periphyton Coverage (1 to 5)		1 - Rocks not slippery, no obvious colour (<0.5 mm thick)								
Benthic Invertebrate Sam										
Number of Jars		1	1	1	1	1	1			
Macrophytes (in sampler)		N	Ν	Ν	Ν	Ν	Ν			
Algae (in sampler)		S	S	S	S	S	С			
Comments										

Notes: ID = identifier; % = percent; - = no data/not recorded; °C = degrees Celsius; UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; % sat = percent saturation; mg/L = milligrams per litre; μ S/cm = microSiemens per centimetre; m = metres; cm = centimetres; m/s = metres per second; mm = millimetres; < = less than; CABIN = Canadian Aquatic Biomonitoring Network; N = none; A = abundant; C = common; S = sparse; μ m = micrometre; m² = square metres.

^a Data are for area-based kicks unless otherwise indicated.

^b A kick net with a 400 μ m mesh was used to kick an estimated sampling area of 1/3 m² at each station listed in the table. A kick net with a 400 μ m mesh was also used to collected the timed CABIN samples from RG_GHNF (n = 3).

Page 3 of 6

Watercourse		Lower Greenhills Creek								
Biological Area Code		RG_GHBP								
Station ID		RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6			
Date Sampled	11-Sep-21	14-Sep-21	11-Sep-21	14-Sep-21	11-Sep-21	14-Sep-21				
Weather			L	Su	nny	L				
Air Temperature (°C)		12								
	Easting	653507	653503	653522	653525	653523	653552			
UTIMS (NAD83, Zone 110)	Northing	554599	5545596	5545615	5545610	6545637	5545658			
Habitat Characteristics										
Surrounding Land Use				Forest,	mining					
Length of Reach Assessed	(m)			10	00					
Water Temperature (°C)		13.7	11.2	11.4	13.2	13.6	14.6			
pН		8.07	8.04	8.07	7.98	8.03	7.98			
	% sat	114.9	118.1	115.7	115.9	115.7	117.6			
Dissolved Oxygen	ma/L	9.93	10.83	10.57	10.17	10.07	10.05			
Conductance (uS/cm)	5	1,225	1,154	1,164	1,215	1,192	1.256			
Specific Conductance (uS/	cm)	1 562	1 565	1 573	1 570	1 522	1 568			
Water Clarity	,	Clear								
Water Colour		Colourless								
Wetted width (m)		1.9								
Bankfull width (m)		4.1								
Average Water Depth (cm)		15.0	13.5	14.0	11.5	9.0	9.0			
Average Wat	ter Velocity (m/s)	0.332	0.617	0.560	0.342	0.361	0.308			
	% Bedrock			(0					
	% Boulder				C					
	% Cobble			6	60					
Substrate	% Pebble	10								
	% Gravel	20								
	% Sand/Fines	20								
	% Organics			(0					
	Canopy Coverage (%)	1 to 25								
	Streamside Vegetation		Ferr	ns/grass, shrub	os, coniferous t	rees				
Manatatian	Dominant Vegetation			Conifero	ous trees					
vegetation	Macrophyte Coverage (%)			(0					
	Dominant Macrophyte				-					
Periphyton Coverage (1 to 5)		2 - Rocks s	slightly slippery	, yellow-brown	to light green	colour (0.5 to 1	mm thick)			
Benthic Invertebrate Sam	pling ^{a,b}									
Number of Jare		1	1	1	1	1	1			
							I			
Macrophytes (in sampler)		N	N	N	N	N	N			
Algae (in sampler)		S	S	S	S	S	S			
Comments		More calcite in depositional areas (large chunks of calcite present at banks in depositional areas and much less in faster-moving water).								

Notes: ID = identifier; % = percent; - = no data/not recorded; °C = degrees Celsius; UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; % sat = percent saturation; mg/L = milligrams per litre; μ S/cm = microSiemens per centimetre; m = metres; cm = centimetres; m/s = metres per second; mm = millimetres; < = less than; CABIN = Canadian Aquatic Biomonitoring Network; N = none; A = abundant; C = common; S = sparse; μ m = micrometre; m² = square metres.

^a Data are for area-based kicks unless otherwise indicated.

^b A kick net with a 400 µm mesh was used to kick an estimated sampling area of 1/3 m² at each station listed in the table. A kick net with a 400 µm mesh was also used to collected the timed CABIN samples from RG_GHNF (n = 3).

Page 4 of 6

Watercourse	Gardine Creek									
Biological Area Code		RG_GAUT								
Station ID		RG_GAUT-1	RG_GAUT-2	RG_GAUT-3	RG_GAUT-4	RG_GAUT-5	RG_GAUT-6			
Date Sampled		16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21			
Weather	10% cloud cover									
Air Temperature (°C)		9								
	Easting	653459	653442	653434	653429	653424	653404			
UTIVIS (INAD83, Zone TTU)	Northing	5548928	5548923	5548937	5548960	5578968	5548973			
Habitat Characteristics										
Surrounding Land Use				Forest,	mining					
Length of Reach Assessed	(m)	-								
Water Temperature (°C)		4.1	4.4	4.9	5.1	5.3	5.4			
pH		7.93	7.91	7.88	7.85	7.86	7.87			
	% sat	93.1	78.9	96.0	94.5	90.4	87.7			
Dissolved Oxygen	ma/l	9.84	8 24	9 95	9.76	9 29	9.00			
Conductance (uS/cm)		280	295	296	208	300	201			
Specific Conductores (uS/c		490	295	470	230	490	466			
	лп <i>)</i>	402	400	479	40 I	400	400			
Water Colour		Oh								
Water Colour		0.55								
Bankfull width (m)		1.4								
Average Water Depth (cm)		4.5	6.0	5.5	5.0	3.0	4.5			
Average Wat	er Velocity (m/s)	0.215	0.059	0.082	0.098	0.101	0.134			
	% Bedrock	0								
	% Boulder	0								
	% Cobble	0								
Substrate	% Pebble	5								
	% Gravel	45								
	% Sand/Fines	45								
	% Organics			Ę	5					
	Canopy Coverage (%)			76 to	0 100					
	Streamside Vegetation	Ferns/grass, shrubs, coniferous trees								
	Dominant Vegetation			Coniferc	us trees					
Vegetation	Macrophyte Coverage (%)			()					
	Dominant Macrophyte				-					
Periphyton Coverage (1 to 5)		1 - Rocks not slippery, no obvious colour (<0.5 mm thick)								
Benthic Invertebrate Sam	pling ^{a,b}									
Number of Jare		1	1	1	1	1	1			
			I	1	1	I	I			
Macrophytes (in sampler)		N	N	N	Ν	N	Ν			
Algae (in sampler)		N	N	N	N	N				
Comments										

Notes: ID = identifier; % = percent; - = no data/not recorded; °C = degrees Celsius; UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; % sat = percent saturation; mg/L = milligrams per litre; μ S/cm = microSiemens per centimetre; m = metres; cm = centimetres; m/s = metres per second; mm = millimetres; < = less than; CABIN = Canadian Aquatic Biomonitoring Network; N = none; A = abundant; C = common; S = sparse; μ m = micrometre; m² = square metres.

^a Data are for area-based kicks unless otherwise indicated.

^b A kick net with a 400 μ m mesh was used to kick an estimated sampling area of 1/3 m² at each station listed in the table. A kick net with a 400 μ m mesh was also used to collected the timed CABIN samples from RG_GHNF (n = 3).

Page 5 of 6

Watercourse		Gardine Creek							
Biological Area Code		RG_GANF							
Station ID		RG_GANF-1	RG_GANF-2	RG_GANF-3	RG_GANF-4	RG_GANF-5	RG_GANF-6		
Date Sampled									
Weather			<u>.</u>	Ove	rcast	l			
Air Temperature (°C)		10							
UTMA (NIADO2 Jana 111)	Easting	654275	654275	654266	654255	654234	654203		
	Northing	5547745	5547767	5547786	5547789	5547809	5577821		
Habitat Characteristics									
Surrounding Land Use				Forest,	, mining				
Length of Reach Assessed	(m)	100							
Water Temperature (°C)		6.7	6.8	6.8	3.0	2.9	3.2		
рН		8.07	7.99	7.97	8.04	8.07	8.02		
<u>.</u>	% sat	104.6	104.1	102.3	113.2	109.7	110.2		
Dissolved Oxygen	ma/L	10.43	10.33	10.17	12.48	12.15	12.07		
Conductance (uS/cm)		765	772	771	843	847	864		
Specific Conductance (uS/	-m)	1 178	1 185	1 180	1 452	1 466	1 481		
Water Clarity	лп <i>)</i>	1,170	1,100		0,702 0ar	1,700	1,01		
Water Colour				Color	urless				
Wetted width (m)				1	.3				
Bankfull width (m)				1	.7				
Average Wa	ater Depth (cm)	9.5	14.5	15.0	8.0	6.5	8.5		
Average Wat	er Velocity (m/s)	0.132	0.175	0.256	0.317	0.151	0.045		
	% Bedrock			(0				
	% Boulder			Ę	5				
	% Cobble	30							
Substrate	% Pebble	40							
	% Gravel	10							
	% Sand/Fines	5							
	% Organics)				
	Canopy Coverage (%)			Chruba con	-				
	Streamside vegetation			Shrubs, com	Iferous trees				
Vegetation	Moorophyte Coverage (%)				-				
	Dominant Macronhyte				-				
			1 Dealia not	-linnami no oh		-0. E thick)			
Periphyton Coverage (1 to 5)			1 - ROCKS HOLS	slippery, no ou		:0.5 mm tnick)			
Benthic Invertebrate Sam	pling ^{a,b}	<u> </u>	<u></u>		T	T			
Number of Jars		1	1	1	1	1	1		
Macrophytes (in sampler) Algae (in sampler)		N C	N C	N N	N N	N -	N N		
Comments	Noticed more calcite at this station than previous.								

Notes: ID = identifier; % = percent; - = no data/not recorded; °C = degrees Celsius; UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; % sat = percent saturation; mg/L = milligrams per litre; μ S/cm = microSiemens per centimetre; m = metres; cm = centimetres; m/s = metres per second; mm = millimetres; < = less than; CABIN = Canadian Aquatic Biomonitoring Network; N = none; A = abundant; C = common; S = sparse; μ m = micrometre; m² = square metres.

^a Data are for area-based kicks unless otherwise indicated.

^b A kick net with a 400 μ m mesh was used to kick an estimated sampling area of 1/3 m² at each station listed in the table. A kick net with a 400 μ m mesh was also used to collected the timed CABIN samples from RG_GHNF (n = 3).

Page 6 of 6
	Та	ixon								De	nsity						
Higher Level	Classification	Family	Lowest Practical		I	I	1	I	1	2	016	I	I	I	I	1	I
	1	5	Level Identification	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2
Clitellata	- Tubificido	Enchytraeidae	Enchytraeidae	347	254	92	57	137	79	80	60	93	33	76	174	12	13
Cilieilaia	Collombolo	Naididae		0	0	0	57	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	- Hydrynhantidae	Wandesia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydropatidae	Hydrobates	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	32	0	46	0	20	0	0	20	27	6.7	12	44	24	17
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0	0	0	0	0	0	0	13	0	36	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	0	0	0	0	20	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Élmidae	Heterlimnius	32	0	46	0	0	20	13	0	0	0	0	0	6.0	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	0	0	13	0	10	0	0	0
Insecta	Diptera	Ceratopogonidae	Culicoides	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Apedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	159	0	23	0	0	86	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0	0	0	0	0	0	0	0	13	0
Insecta	Diptera	Chironomidae	Convoonaura	0	0	0	0	0	22	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Diamesa	146	01	115	170	102	170	<u> </u>	73	0	88	10	0	0	0
Insecta	Diptera	Chironomidae	Dialitesa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Fukiefferiella	223	114	137	284	508	388	41	7.3	0	18	19	0	69	66
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Hvdrobaenus	0	45	0	0	0	0	0	7.3	40	7.3	86	131	6.3	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0	13	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	43	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	64	0	0	341	0	0	14	158	0	0	0	566	0	0
Insecta	Diptera	Chironomidae	Orthocladius complex	1,814	432	115	625	407	452	232	239	667	131	1,095	958	1,004	607
Insecta	Diptera	Chironomidae	Pagastia	0	23	23	0	61	43	14	0	0	0	0	0	257	126
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0	0	0	27	48	0	0	19	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	0	0	0	0	9.6	0	0	0
Insecta	Diptera	Chironomidae	Polypeullulli Pseudodiamesa	32	0	23	227	0	13	0	0	0	0	0	0	63	0
Insecta	Diptera	Chironomidae	Psilometriocnemus	64	0	0	0	0	43	55	139	0	73	0	131	0.5	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	6.3	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	127	136	46	0	41	86	137	48	53	7.3	106	218	44	17
Insecta	Diptera	Chironomidae	Zavrelimyia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	0	22	0	0	0	0	80	6.7	27	34	67	87	96	77
Insecta	Diptera	Empididae	Clinocera	32	22	23	0	0	0	13	20	0	0	115	44	30	6.7
Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae Delecemburg - bist-	Muscidae	0	0	23	0	26	59	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecornynchidae	Giutops	0	22	U 115	170	0	U 50	13	3/	13	0	48	U 121	30	10
Insecta	Diptera	Sciomyzidae	Sciomyzidae	03	0	0	0	0	0	13	13	13	0	0	131	12	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0	0	0	67	0	0	0	0	0	0
Insecta	Diptera	Stratiomvidae	Stratiomvidae	0	0	0	114	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Antocha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	284	216	183	398	235	99	293	290	360	20	154	392	36	3.3
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Molophilus	0	0	0	0	0	0	0	13	0	0	0	0	0	3.3
Insecta	Diptera	Tipulidae	Pedicia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Epnemeroptera	Baetidae	Baetis	U 20	U	U	U	U	39	U	0	U	U	0	0	U 10	U
	Ephemeroptera	Hentageniidaa	Epnemereilidae Hentageniidaa	32	0	0	0	0	39	0	0.7	0	0	0	0	18	0
Insecta	Plecontera	Cappiidae	Cappia	159	85	0	11/	0	20	80	53	67	123	67	131	0	0
insecta	Fiecoptera	Capilluae	Capilla	100	00	U	114	U	20	00	55	07	120	07	101	U	U

	Т	avon								De							
	10		Laura et Dus ette et							De	nsity						
Higher Level	Classification	Family	Lowest Practical							20	016						
			Level Identification	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Mesocapnia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Paracapnia	347	317	252	1,705	275	197	347	110	133	53	134	915	42	3.3
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	0	23	0	0	0	13	0	27	17	9.6	0	6.0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	57	0	0	0	0	0	6.7	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0	0	0	0	0	0	0	0	0	0	0	0	6.0	0
Insecta	Plecoptera	Nemouridae	Visoka	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	63	21	23	398	353	414	80	13	13	0	9.6	305	42	13
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	0	42	23	0	0	0	187	163	347	33	267	392	0	6.7
Insecta	Plecoptera	Perlodidae	Megarcys	0	3.3	0	0	3.3	0	0	0	27	17	0	0	6.0	10
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	158	21	0	57	39	0	0	30	0	6.7	19	0	36	6.7
Insecta	Trichoptera	Apataniidae	Pedomoecus	0	21	0	170	0	20	0	0	0	10	9.6	0	0	10
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	0	21	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	32	0	0	227	79	20	0	0	13	6.7	9.6	0	36	13
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	63	0	0	0	0	0	0	0	0	0	0	0	39	13
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Та	xon								De	nsity						
Higher Lovel	Classification	Family	Lowest Practical		20	016					2	20	017				
Higher Level	Classification	Failing	Level Identification	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4
Clitellata	-	Enchytraeidae	Enchytraeidae	61	195	48	8.3	160	280	97	303	90	80	0	10	57	37
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	I rombidiformes	Hydryphantidae	Wandesia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	0	0	0	0	0	0	0	0	0	0	0	0	0	6.7
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	23	0	21	0	10	10	0	0	3.3	0	0	0	0	0.7
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0	0	10	0	33	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	0	0	0	0	0	0	0	0	0	0	0	0	33
Insecta	Coleoptera	Elmidae	Heterlimnius	0	0	0	0	0	0	0	0	3.3	10	0	0	0	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	3.3	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Culicoides	0	0	0	0	10	0	0	0	3.3	0	0	0	6.7	0
Insecta	Diptera	Chironomidae	Apedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0	0	0	0	20	0	35	0	21	3.6	0	7.0	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0	6.7	0	35	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chironomus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Diamesa	0	0	0	0	432	209	112	458	170	376	20	87	53	99
Insecta	Diptera	Chironomidae	Dialitesa	0	0	0	0	432	0	0	35	0	0	0	0.7	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	196	274	93	125	0	131	116	884	82	134	15	4.4	7.0	9.0
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	0	0	34	37	11	70	24	21	0	127	42	9.0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	0	0	0	0	0	0	3.5	35	20	63	0	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius complex	1,339	1,299	1,486	602	1,720	798	576	3,427	514	1,423	7.2	39	182	0
Insecta	Diptera	Chironomidae	Pagastia	613	957	380	258	105	51	49	458	82	207	0	0	0	0
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	35	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	3.5	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0	0	29	86	0	74	28	178	61	74	0	0	12	0
Insecta	Diptera	Chironomidae	Psilometriocnemus	0	0	14	0.0	10	0	0	0	0	0	0	0	7.0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0	0	0	7.0	0
Insecta	Diptera	Chironomidae	Tvetenia	0	114	151	39	95	81	14	248	31	11	69	4.4	0	0
Insecta	Diptera	Chironomidae	Zavrelimyia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	53	119	103	17	10	6.7	0	0	0	0	0	20	0	17
Insecta	Diptera	Empididae	Clinocera	7.6	43	28	8.3	10	6.7	3.3	0	10	20	0	0	0	0
Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	10	13	10	0	3.3	0	3.4	0	0	0
Insecta	Diptera	Muscidae Delegerty mehide -	Muscidae	0	0	0	0	0	0	0	0	0	40	0	0	0	0
	Diptera	Pelecomynchidae	Giutops	0.1	U 11	U 14	0	0	0	0	33	U 10	0	0	0./	0./	0./
Insecta	Diptera	Sciomyzidae	Scionyzidae	0	0	14 0	0	23		3.3 0	0	10 0	30 0	0	0.7	0	0.3
Insecta	Diptera	Simuliidae	Simuliidae	0	11	0	0	23	0	0	0	0	10	34	0	0	0
Insecta	Diptera	Stratiomvidae	Stratiomvidae	0	0	0	0	0	0	0	0	0	0	0.4	0	0	0
Insecta	Diptera	Tipulidae	Antocha	0	0	0	0	10	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	7.6	54	34	0	70	137	77	473	30	90	6.8	6.7	323	13
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Molophilus	6.7	0	0	3.4	0	0	3.3	0	0	0	0	0	6.7	0
Insecta	Diptera	Tipulidae	Pedicia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	7.6	0	0	0	0	13	0	0	0	0	3.3	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0	11	0	0	0	0	0	0	3.3	0	0	0	0	
Insecta	Epnemeroptera	Heptageniidae	Heptageniidae	0	0	0	0	0	0	0	0	0	0	0	3.3	0	6./
Insecta	Piecoptera	Caphildae	Capnia	U	U	0	U	33	20	3.3	203	20	40	40	1/	3/3	1/

	Т	avon								Da	noitu						
	10		Lowest Dresting		0	040				De	lisity		47				
Higher Level	Classification	Family	Lowest Practical		2	016						20	J17				
		-	Level identification	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Mesocapnia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Paracapnia	7.6	65	14	8.3	893	270	200	3,740	200	257	140	167	1,217	287
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	0	0	0	0	6.7	0	67	13	10	0	0	0	13
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	13	0	33	10	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0	0	0	0	0	6.7	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Visoka	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	15	65	76	41	80	30	17	170	80	227	0	0	0	3.3
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	0	76	96	17	0	0	0	0	0	0	33	27	40	3.3
Insecta	Plecoptera	Perlodidae	Megarcys	0	14	0	4.1	0	0	0	67	3.3	20	0	3.3	0	0
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	107	141	21	58	10	0	10	33	3.3	0	17	0	0	0
Insecta	Trichoptera	Apataniidae	Pedomoecus	0	0	6.9	12	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	23	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	7.6	11	41	4.1	0	6.7	10	0	40	60	0	0	17	0
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	69	0	14	17	23	0	3.3	33	0	0	0	0	0	3.3
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Та	ixon								De	nsitv						
	o	- ··	Lowest Practical				20	017						20	18		
Higher Level	Classification	Family	Level Identification	RG GHNF-5	RG GHNF-6	RG GHFF-1	RG GHFF-2	RG GHFF-3	RG GHFF-4	RG GHFF-5	RG GHFF-6	RG GHUT-1	RG GHUT-2	RG GHUT-3	RG GHUT-4	RG GHUT-5	RG GHUT-6
Clitellata	-	Enchytraeidae	Enchytraeidae	23		6.7	0	6.7	– 10	0	3.3	240	800	53	27	640	320
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	0	0	0	0	0	0	0	0	0	0	80	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	3.3	0	3.3	3.3	10	0	6.7	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	3.3	0	3.3	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Irombidiformes	I orrenticolidae	I orrenticolidae	0	3.3	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Dytiscidae	3.3	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Narous	0	0	0	0	0	0	0	0	0	0	0	0	0	53
Insecta	Coleoptera	Stanhylinidae	Stanbylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Culicoides	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Apedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	3.7	0	3.5	0	0	0	0	11	97	0	33	107	203	192
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0	0	0	0	97	0	0	0	68	0
Insecta	Diptera	Chironomidae	Chironomus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corynoneura	0	0	0	0	0	0	0	0	0	0	0	0	0	64
Insecta	Diptera	Chironomidae	Diamesa	26	51	14	10	14	25	0	11	0	61	0	0	0	1,280
Insecta	Diptera	Chironomidae	Diplocladius	0	0	0	0	0	0	0	0	0	0	0	36	0	64
Insecta	Diptera	Chironomidae	Eukiefferiella	48	12	3.5	17	0	32	10	7.2	552	1,280	329	286	4,737	2,944
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Hydrobaenus	11	12	0	0	0	0	0	0	325	61	559	0	135	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	0	0	3.5	48	3.6	42	0	25	33	0	0	0	135	64
Insecta	Diptera	Chironomidae	Orthocladius complex	37	71	367	360	190	486	197	372	649	853	361	1,285	1,692	960
Insecta	Diptera	Chironomidae	Pagastia	0	0	232	367	176	342	92	207	65	61	33	143	0	128
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenociadius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0	0	0	69	0	35	17	0	292	0	230	0	880	576
Insecta	Diptera	Chironomidae	Psilometriocnemus	0	0	0	0.0	0	0.0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	66	31	0	10	0	3.5	3.4	11	130	244	296	464	1,963	128
Insecta	Diptera	Chironomidae	Zavrelimyia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	3.3	0	20	47	20	57	20	33	0	0	0	0	0	0
Insecta	Diptera	Empididae	Clinocera	0	3.3	0	3.3	0	0	3.3	0	27	0	27	53	0	0
Insecta	Diptera	Empididae	Wiedemannia	0	0	6.7	6.7	0	6.7	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	0	0	0	0	0	0	0	0	0	0	107	0
Insecta	Diptera	Pelecorhynchidae	Glutops	3.3	0	0	23	0	3.3	0	6.7	0	0	0	0	0	0
Insecta	Diptera	Psychodidae	Pericoma	13	0.7	0	3.3	U	3.3	U	0	0	53	187	21	320	0
	Diptera	Scionyzidae	Scionyzidae	10	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Strationvidae	Strationvidae	10	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Antocha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tinulidae	Dicranota	33	0	10	30	10	13	0	23	880	373	187	427	747	267
Insecta	Diptera	Tipulidae	Limnonhila	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Molophilus	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Pedicia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	10	0	3.3	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0	0	0	3.3	0	3.3	0	3.3	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	3.3	13	17	6.7	6.7	3.3	27	27	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Capnia	103	127	0	0	0	0	0	0	0	0	0	0	0	0

	Т	avon								Day	a a itu						
	10		Laurant Drastical				20	47		Dei	isity				4.0		
Higher Level	Classification	Family	Lowest Practical			<u> </u>	20)1 <i>7</i>			L			20	18		
			Level identification	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Mesocapnia	0	0	0	0	0	0	0	0	80	0	0	0	0	53
Insecta	Plecoptera	Capniidae	Paracapnia	663	773	23	147	23	33	0	43	1,520	427	773	427	2,027	533
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	3.3	0	10	0	3.3	0	0	53	0	0	0	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	10	3.3	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	3.3	0	0	3.3	0	0	3.3	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Visoka	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	27	37	13	90	43	60	3.3	50	53	107	27	0	320	480
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	13	20	0	0	3.3	6.7	0	0	27	0	80	27	53	0
Insecta	Plecoptera	Perlodidae	Megarcys	0	3.3	20	17	13	33	0	23	0	0	0	0	53	0
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0	0	0	0	0	53
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	6.7	17	60	23	3.3	60	13	133	0	0	0	0	0	53
Insecta	Trichoptera	Apataniidae	Pedomoecus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	0	0	0	3.3	0	0	0	6.7	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0	0	3.3	0	6.7	6.7	3.3	3.3	0	0	27	0	107	0
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0	0	13	23	20	33	3.3	17	27	0	0	0	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Та	xon								De	nsity						
Higher Level	Classification	Family	Lowest Practical						20	018						20)19
	Classification	ranny	Level Identification	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2
Clitellata	-	Enchytraeidae	Enchytraeidae	0	0	160	0	53	0	6.7	0	0	0	6.7	6.7	213	400
Ciltellata	I ubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	- Hydrynhantidae	Wandesia	0	0	0	455	27	0	0	0	67	13	0	0	0	0
Euchelicerata	Trombidiformes	Hvorobatidae	Hydrobates	0	0	0	0	0	0	0	0	0.7	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	0	0	0	27	0	0	0	3.3	0	0	3.3	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0	0	0	0	0	6.7	0	3.3	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	0	0	0	0	0	0	0	0	0	0	0	6.7	0	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0	0	3.3	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	27	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Culicoides	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	130	759	53	170	383	270	0	0	0	0	0	0	27	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0	135	0	0	0	21	0	0	0	0
Insecta	Diptera	Chironomidae	Chironomus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corvnoneura	0	28	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Diamesa	28	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Diplocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	388	197	107	0	118	135	64	98	72	21	49	23	975	993
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Hydrobaenus	0	225	0	28	0	0	0	0	0	0	0	0	271	827
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	57	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	0	28	0	0	0	0	14	0	3.5	0	0	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius complex	166	84	133	57	88	135	797	922	538	524	480	317	1,300	1,048
Insecta	Diptera	Chironomidae	Pagastia	56	28	0	0	0	0	571	671	179	478	371	298	379	380
Insecta	Diptera	Chironomidae	Parametriochemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Polypedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0	56	0	28	0	0	0	0	0	0	0	0	54	221
Insecta	Diptera	Chironomidae	Psilometriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	1,997	1,715	267	1,047	531	757	7.1	56	6.9	25	56	23	433	552
Insecta	Diptera	Chironomidae	Zavrelimyia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	0	0	0	0	3.3	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	0	0	0	0	0	0	67	53	10	13	13	73	0	27
Insecta	Diptera	Empididae	Clinocera	0	0	0	0	0	0	73	13	20	17	3.3	10	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	27	0	0	108	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutons	0	0	0	0	27	0	0	0	67	33	0	0	0	0
Insecta	Diptera	Psychodidae	Pericoma	133	53	187	27	80	243	0	0	0.7	10	0	67	53	133
Insecta	Diptera	Sciomvzidae	Sciomvzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Antocha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	293	213	427	187	107	162	73	13	17	17	10	47	267	187
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	0	0	0	0	3.3	0	0	0
Insecta	Diptera	Tipulidae	Molophilus	0	0	27	27	0	0	6.7	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Pedicia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0	0	0	3.3	0	0	0	0	
Insecta	Ephemoroptera	Enhemorollidae	Enhemorollidad	0	0	0	0	0	0	0	0	U	0	0./	67	0	0
Insecta	Ephemeroptera	Hentageniidae	Hentageniidae	0	0	0	0	0	0	21	0	12	10	10	6.7	0	0
Insecta	Plecontera	Capniidae	Cannia	0	0	0	0	0	0	0	0	0	0	0	0.7	0	0
mocola	i iccopicia	Cupilidae	Saprila	U U	0	0		v	U	0	v	U U	v	0	0	0	<u> </u>

	_																
	Та	axon								Dei	nsity						
Higher Lovel	Classification	Family	Lowest Practical						20	18						20)19
Higher Level	Classification	ганну	Level Identification	RG GHNF-1	RG GHNF-2	RG GHNF-3	RG GHNF-4	RG GHNF-5	RG GHNF-6	RG GHFF-1	RG GHFF-2	RG GHFF-3	RG GHFF-4	RG GHFF-5	RG GHFF-6	RG_GHUT-1	RG GHUT-2
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Mesocapnia	27	133	53	53	27	80	0	0	3.3	0	0	0	53	53
Insecta	Plecoptera	Capniidae	Paracapnia	693	1,307	613	507	320	587	233	93	47	23	47	33	507	347
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	0	0	0	0	0	0	13	3.3	0	17	10	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	0	6.7	0	0	0	0	3.3	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Visoka	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	133	27	80	27	187	133	627	840	477	310	187	153	53	53
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	107	107	187	53	133	80	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Megarcys	0	0	0	0	0	0	33	53	20	13	27	57	27	0
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	6.7	13	3.3	6.7	6.7	10	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	107	27	53	0	80	187	140	253	113	50	43	50	80	107
Insecta	Trichoptera	Apataniidae	Pedomoecus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	13	0	0	10	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	0	3.3	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	27	27	0	0	0	0	0	13	3.3	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0	0	0	0	0	0	0	0	27
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0	0	0	0	0	0	13	53	17	3.3	27	13	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Та	ixon	1							Dei	nsity						
Higher Level	Classification	Family	Lowest Practical		I	1	1	T	1	20	019		1	T.	1	T	- <u></u>
			Level Identification	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4
Clitellata	-	Enchytraeidae	Enchytraeidae	40	133	227	433	27	13	0	3.3	3.3	0	120	0	3.3	0
Clitellata	I ubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	53	0	0	0	0	21	0	6.7	60	293	13	0	3.3	3.3
Euchelicerata	Trombidiformes	Hydryphaniidae	Wandesia	0	0	0	0	0	0	0	0	3.3	21	0	0	0	0
Euchelicerata	Trombidiformes	Hygrobalidae	Hygrobates	12	12	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sporebontidao	Sporebon	13	13	0	6.7	0	0	0	0	0	0	52	0	3.3	0.5
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0.7	0	0	0	0	0	0	0	0	0	0
Insecta	Coleontera	Dytiscidae	Dytiscidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Flmidae	Heterlimnius	0	0	13	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Culicoides	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Apedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	28	0	0	0	0	30	28	15	25	29	0	0	0	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chironomus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corynoneura	0	0	0	0	0	0	0	0	0	0	0	0	4.0	0
Insecta	Diptera	Chironomidae	Diamesa	0	0	0	0	28	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Diplocladius	0	0	0	28	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	266	557	675	2,013	141	105	444	7.3	25	200	1,544	128	165	270
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Hydrobaenus	883	70	55	28	141	15	444	11	8.3	114	76	0	254	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0	0	29	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	28	0	14	0	0	0	28	0	0	0	45	0	16	0
Insecta	Diptera	Chironomidae	Orthociadius complex	308	1,059	1,019	340	226	179	222	11	4.1	57	303	8.2	40	/6
Insecta	Diptera	Chironomidae	Pagastia	112	348	234	451	/35	30	250	0	0	143	2,316	/8	57	113
	Diptera	Chironomidae	Parametriocriemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Polypedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	210	14	41	28	28	0	166	7.3	0	57	30	0	40	0
Insecta	Diptera	Chironomidae	Psilometriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	98	125	69	87	9,580	986	7,991	152	58	5,664	666	12	16	8.1
Insecta	Diptera	Chironomidae	Zavrelimyia	0	0	0	0	0	15	28	0	0	0	0	0	0	0
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	0	0	0	0	53	0	0	3.3	0	27	147	13	0	6.7
Insecta	Diptera	Empididae	Clinocera	40	0	0	0	27	13	0	10	0	0	0	6.7	3.3	17
Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	0	13	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	0	0	0	0	0	0	0	0	0	0	0	0	0	
Insecta	Diptera	Psychodidae	Pericoma	160	53	27	27	400	108	133	40	20	480	80	0	3.3	6.7
Insecta	Diptera	Sciomyzidae	Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0	13	0	23	17	80	0	0	0	0
Insecta	Diptera	Tipulidae	Stratiomyldae	0	0	U	0	0	0	0	0	0	0	0	0	0	
Insecta	Diptera	Tipulidae	Dieropoto	197	160	107	72	122	0	52	0	0	160	0	0	12	0
Insecta	Diptera	Tipulidae	Limpophila	107	0	0	13	133	0	000	3.3 0	0	00	207	0	13	0
Insecta	Diptera	Tipulidae	Molophilus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Pedicia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0	0	0	0	0	0	0	3.3	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0	13	13	0	0	13	0	0	0	0	27	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0	0	0	0	0	0	3.3	0	0	0	3.3	0	6.7
Insecta	Plecoptera	Capniidae	Capnia	0	0	0	0	0	0	0	0	0	0	0	0	0	0

				1													
		axon								Der	nsity						
Higher Level	Classification	Family	Lowest Practical							20	019						-
ringinor 2000	elacomoation	. anny	Level Identification	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Mesocapnia	13	0	53	6.7	133	160	213	90	33	320	0	0	0	0
Insecta	Plecoptera	Capniidae	Paracapnia	227	240	107	113	427	160	827	230	57	693	133	3.3	33	10
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	0	0	0	0	13	0	0	0	0	13	0	0	3.3
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	0	0	0	0	0	0	3.3	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0	13	0	47	0	0	0	0	6.7	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Visoka	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	67	160	80	113	133	387	853	167	30	613	1,773	143	87	103
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	0	0	0	0	133	67	80	23	10	107	13	3.3	0	0
Insecta	Plecoptera	Perlodidae	Megarcys	0	3.3	0	0	0	0	0	0	3.3	0	3.3	6.7	0	10
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	0	13	13	13	27	67	53	33	13	53	40	17	3.3	10
Insecta	Trichoptera	Apataniidae	Pedomoecus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	0	0	0	0	0	0	0	0	13	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	0	0	0	0	0	0	0	0	0	0	0	0	3.3	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	67	0	0	27	0	67	107	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	67	80	27	0	0	0	0	10	10	0	13	0	13	3.3
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0	6.7	13	0	0	0	0	0	0	0	43	6.7	0	10
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Ta	axon								Dei	nsitv						
Llinhan Laval	Classification	Family	Lowest Practical	20	019						20)20					
Higher Level	Classification	Family	Level Identification	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6
Clitellata	-	Enchytraeidae	Enchytraeidae	100	10	347	293	267	293	240	1,707	107	67	53	0	80	27
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	0	3.3	0	40	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	Vvandesia	0	0	0	0	0	0	0	0	0	0	13	0	0	0
Euchelicerata	Trombidiformes	Hygrobalidae	Hygrobates	6.7	0	27	0	52	0	0	0	0	0	0	12	0	12
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0.7	0	0	0	0	0	0	0	0	0	0	0	0	13
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	0	0	0	0	0	0	27	107	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	27	0	0	0	0	0	0	0	0	0	14	0
Insecta	Diptera	Ceratopogonidae	Culicoides	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Apedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0	0	108	55	30	61	0	0	14	0	0	14	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	15	0	0	0	0	0	0	0	0	14	0
Insecta	Diptera	Chironomidae	Convocomus	0	0	U EG	0	0	0	U 01	U 112	0	0	0	U	U 120	0
Insecta	Diptera	Chironomidae	Diamesa	0	0	00	92	2/4	00	91	113	120	09	0	0	130	04
Insecta	Diptera	Chironomidae	Dinlocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	920	404	790	62	766	634	1.067	5.649	126	14	34	15	0	32
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0	0	0	0	315	14	51	0	58	0
Insecta	Diptera	Chironomidae	Hydrobaenus	56	31	113	523	985	694	1,554	1,243	441	263	0	15	115	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	16	12	113	77	274	754	1,737	904	63	0	0	0	14	0
Insecta	Diptera	Chironomidae	Orthocladius complex	120	31	1,523	431	547	121	1,310	3,954	63	0	17	0	0	0
Insecta	Diptera	Chironomidae	Pagastia	1,767	602	705	15	164	211	427	3,276	126	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0	0	0	0	0	0	0	17	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	15	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0	3.9	28	62	492	272	274	339	189	152	0	0	43	0
Insecta	Diptera	Chironomidae	Psilometriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	208	66	113	92	657	573	305	1,582	1,324	166	0	194	29	64
Insecta	Diptera	Chironomidae	Zavrelimyia	0	0	0	0	0	0	0	0	0	28	0	0	14	0
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	0	0	0	0	0	0	14	0
Insecta	Diptera	Empididae	Chelifera/Metachela	80	27	40	27	0	0	0	0	160	53	133	56	27	13
Insecta	Diptera	Empididae	Clinocera	67	3.3	40	0	0	0	0	0	0	0	13	28	0	0
Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	27	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Perecornynchidae	Pericoma	13	20	53	200	1 120	613	033	0	107	23	132	08	54	U 12
Insecta	Diptera	Sciomyzidae	Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	67	27	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomvidae	Stratiomvidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Antocha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	147	17	400	163	1,227	350	880	1,387	2,027	280	347	140	338	253
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Molophilus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Pedicia	6.7	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0	0	27	0	0	0	0	0	53	0	0	0	0	0
Insecta	Ephemeroptera	Epnemerellidae	Epnemereilidae	13	U	21	0	U	0	21	U	0	0	0	U	U	U
Insecta		Conniidae	Connio	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Piecoptera	Caphildae	Capnia	U	U	U	U	U	U	U	U	U	U	U	U	U	U

	T	avon		-						De							
	10				40	1				De	nsity						
Higher Level	Classification	Family	Lowest Practical	20	19		1	I	1	I.	20	020			1	1	-1
		,	Level Identification	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Mesocapnia	0	0	0	80	0	98	0	409	1,542	175	201	91	46	124
Insecta	Plecoptera	Capniidae	Paracapnia	213	10	213	53	907	782	907	2,044	1,285	491	345	136	728	249
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	6.7	0	0	13	0	27	0	0	0	0	27	0	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	53	0	0	0	0	27	13	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0	6.7	0	0	373	0	0	0	293	0	0	120	0	0
Insecta	Plecoptera	Nemouridae	Visoka	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	1,307	310	80	27	0	347	240	640	293	53	53	120	0	173
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	40	3.3	0	13	160	80	0	0	320	67	93	120	40	40
Insecta	Plecoptera	Perlodidae	Megarcys	6.7	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	13	13	0	0	0	0	0	0	0	0	0	13	0	13
Insecta	Trichoptera	Apataniidae	Pedomoecus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	0	0	0	0	0	0	53	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	107	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	0	0	3.3	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	13	803	693	1,413	853	53	53	27	13	53	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	6.7	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	6.7	3.3	0	0	0	0	0	3.3	0	0	0	0	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	27	0	0	0	0	0	0	0	0	0	0	0

	Та	xon								De	nsity						
Higher Loval	Classification	Fomily	Lowest Practical			20	20						20	021			
Higher Level	Classification	Family	Level Identification	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2
Clitellata	-	Enchytraeidae	Enchytraeidae	80	0	6.7	67	6.7	67	432	132	216	120	24	144	120	96
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	I rombidiformes	Hydryphantidae	Wandesia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidilormes	Hygrobalidae	Hygrobates	12	10	67	0	12	0	0	0	19	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	40	67	0	0	0	24	0	40	24	0	24	24	0
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0.7	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	0	0	0	0	0	0	0	24	0	0	0	0	0
Insecta	Coleoptera	Élmidae	Heterlimnius	13	0	0	0	6.7	40	24	120	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	13	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Culicoides	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Apedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0	U	0	0	U	116	0	29	0	0	80	0	52
Insecta	Diptera	Chironomidae	Chironomus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corvnoneura	0	0	0	0	0	0	58	0	58	54	0	0	26	104
Insecta	Diptera	Chironomidae	Diamesa	0	0	0	0	0	0	0	0	0	0	0	0	26	0
Insecta	Diptera	Chironomidae	Diplocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	123	115	142	29	97	111	6,325	2,478	2,324	4,129	3,459	3,107	79	0
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0	0	0	0	0	0	0	0	53	208
Insecta	Diptera	Chironomidae	Hydrobaenus	165	115	0	462	14	111	0	0	29	0	0	0	0	260
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	178	29	14	0	14	28	58	0	0	0	0	0	26	208
Insecta	Diptera	Chironomidae	Orthocladius complex	370	288	654	881	839	319	347	507	581	751	195	186	315	52
Insecta	Diptera	Chironomidae	Pagastia	1,001	620	1,180	823	562	2,306	1,126	718	581	885	335	372	2,073	520
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenociaulus	0	0	0	14	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Polypedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	41	14	0	0	14	28	0	70	349	80	28	0	53	312
Insecta	Diptera	Chironomidae	Psilometriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	55	58	36	58	0	97	347	42	58	54	112	0	3,805	5,099
Insecta	Diptera	Chironomidae	Zavrelimyia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	293	262	206	320	92	253	0	60	0	0	0	0	360	144
	Diptera	Empididae	Wiedemonnio	13	18	14	0	0.J	0	12	0	48	48	0	90	12	0
Insecta	Diptera	Muscidae	Muscidae	0	0	0	0	0	0	120	0	0	24	0	24	0	0
Insecta	Diptera	Pelecorhvnchidae	Glutons	80	0	0	27	67	0	0	0	0	0	0	30	0	48
Insecta	Diptera	Psychodidae	Pericoma	173	0	0	160	27	40	312	192	360	96	312	336	120	864
Insecta	Diptera	Sciomyzidae	Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Antocha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	80	80	13	200	40	133	192	156	192	144	168	144	336	144
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Molophilus	0	0	0	0	0	0	0	0	0	0	0	24	0	0
Insecta	Diptera	Tipulidae	Pedicia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	l ipulidae	Knabdomastix	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	U	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Enhemerellidae	Enhemerellidae	67	107	27	0	40	53	0	0	0	0	0	24	0	0
Insecta	Ephemeroptera	Hentageniidae	Hentageniidae	13	0	0	0		0	0	0	0	0	0	0	0	0
Insecta	Plecontera	Capniidae	Cannia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
motota	i iccopicia	ouprilluac	Saprila	0	0	U	v	v	U	v	Ū	0	0	0	0	v	U

	Та	axon								De	nsity						
	o		Lowest Practical			20	020				•		20	21			
Higher Level	Classification	Family	Level Identification	RG GHFF-1	RG GHFF-2	RG_GHFF-3	RG GHFF-4	RG GHFF-5	RG GHFF-6	RG_GHUT-1	RG_GHUT-2	RG GHUT-3	RG GHUT-4	RG_GHUT-5	RG GHUT-6	RG_GHNF-1	RG GHNF-2
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	41	0	0	0	0	34	0	0
Insecta	Plecoptera	Capniidae	Mesocapnia	0	122	0	17	0	29	450	84	336	126	48	343	293	246
Insecta	Plecoptera	Capniidae	Paracapnia	173	305	6.7	117	20	345	613	24	168	42	48	103	763	2,538
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	13	0	0	0	6.7	0	0	0	24	0	0	0	24	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	13	0	0	6.7	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	31	165	0	0	14	39	96	0	24	0	72	0	56	88
Insecta	Plecoptera	Nemouridae	Visoka	0	0	0	0	0	0	96	0	24	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	1,009	2,035	380	800	193	2,161	768	48	48	168	0	336	1,792	1,592
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	6.7	0	0	0	24	12	0	0	24	48	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	13	20	0	20	0	16	144	72	240	24	144	312	408	624
Insecta	Plecoptera	Perlodidae	Megarcys	27	60	20	20	0	64	24	0	0	24	0	0	3.0	0
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	0	13	0	53	6.7	40	48	0	0	0	48	72	96	96
Insecta	Trichoptera	Apataniidae	Pedomoecus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	0	0	0	0	0	27	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	13	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	36	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0	80	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0	24	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	107	0	53	13	0	80	48	84	264	384	456	360	144	384
Insecta	Trichoptera	Limnephilidae	Philocasca	0	13	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	27	120	13	13	0	53	48	0	0	24	0	48	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Та	xon						Der	sity				
Higher Lovel	Classification	Family	Lowest Practical					20	21				
Higher Lever	Classification	Failing	Level Identification	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHF
Clitellata	-	Enchytraeidae	Enchytraeidae	0	0	48	48	0	6.0	6.0	6.0	24	96
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	0	48	12	24	0	3.0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	0	0	0	0	0	0	0	0	12	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	24	0	0	36	6.0	24	12	24	36
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Culicoides	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Apedilum	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	206	29	0	27	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	185	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chironomus	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corynoneura	51	29	26	185	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Diamesa	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Diplocladius	51	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	0	29	0	0	1,259	873	373	917	1,513	1,521
Insecta	Diptera	Chironomidae	Heleniella	51	0	0	79	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	0	132	0	15	0	0	0	95
Insecta	Diptera	Chironomidae	Limnophyes	0	29	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	51	0	0	371	0	177	6.8	0	42	109
Insecta	Diptera	Chironomidae	Orthocladius complex	154	29	40	212	364	30	41	119	113	652
Insecta	Diptera	Chironomidae	Pagastia	1.543	57	675	715	1.161	265	210	476	551	1.712
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Polypedilum	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	206	0	13	79	0	0	0	0	0	27
Insecta	Diptera	Chironomidae	Psilometriocnemus	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	7 766	713	410	6 247	0	15	0	0	0	0
Insecta	Diptera	Chironomidae	Zavrelimvia	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	3.0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	72	24	132	96	228	24	126	84	156	432
Insecta	Diptera	Empididae	Clinocera	72	0	0	0	0	0	0	0	0	
Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutons	0	0	0	0	0	6.0	0	0	0	0
Insecta	Diptora	Psychodidae	Dericoma	432	144	48	528	0	54	18	18	84	144
Insecta	Diptora	Sciomyzidae	Sciomyzidae	402	0	-+0	0	0	3.0	0	0	0	0
Insecta	Diptora	Simuliidae	Simuliidae	0	0	0	0	0	0.0	0	60	0	0
Insecta	Diptera	Stratiomvidao	Strationvidao	0	0	0	0	0	0	0	0.0	0	0
Insecta	Diptera	Tipulidaa	Antocho	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dioropoto	576	19	122	649	0	3.0	6.0	0	12	0
Insecta	Diptera	Tipulidae	Dicianola	576	40	132	040	0	3.0	0.0	0	12	0
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	IVIOIOPNIIUS	0	U	0	0	0	0	0	0	U	0
Insecta	Diptera		Pedicia	0	U	0	0	0	0	0	0	U	U
Insecta			Amalatur	0	U	0	0	0	0	0	0	U	U
Insecta	Epnemeroptera	Ameletidae	Ameletus	U	U	0	U	U	U C	U C	U	U	0
insecta	Epnemeroptera	Baetidae	Baetis	U	U	U	U	U	0	U	U	U	0
insecta	Epnemeroptera	Epnemereilidae	Epnemerellidae	U	U	U	U	U	0	0.0	U	U	12
Insecta	Epnemeroptera	Heptageniidae	Heptageniidae	0	U	0	0	Ű	0	0	0	Ű	0
Insecta	Plecoptera	Capniidae	Capnia	0	0	0	0	0	0	0	0	0	0

	1	Taxon						Der	nsity				
l linken Level	Classification	Family	Lowest Practical					20)21				
Higher Level	Classification	ramily	Level Identification	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHF
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Mesocapnia	80	40	167	1,606	0	0	12	0	0	36
Insecta	Plecoptera	Capniidae	Paracapnia	2,225	80	229	1,874	0	6.0	0	0	12	0
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	24	0	0	0	0	6.0	0	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	172	0	41	0	0	9.0	0	18	0	81
Insecta	Plecoptera	Nemouridae	Visoka	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	1,460	528	367	768	240	45	228	97	300	423
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	48	120	13	288	12	0	6.0	0	12	36
Insecta	Plecoptera	Perlodidae	Megarcys	0	0	203	24	0	6.0	0	6.0	0	0
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	240	48	72	168	48	24	12	72	48	120
Insecta	Trichoptera	Apataniidae	Pedomoecus	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	48	216	60	0	0	18	18	0	48	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0	0	0	0	12	3.0	30	6.0	12	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0

	Та	xon							Three-minute	Kick Samples				
Likeberg Level	01	F 11	Lowest Practical	2012		20	014			20)15			
Higher Level	Classification	Family	Level Identification	RG_GHCKU-1	GREE3-25-1	GREE3-75-1	GREE4-25-1	GREE4-75-1	RG GHCKU-1	GREE3-75-1	GREE4-25-1	GREE4-75-1	RG GHNF-1	RG
Clitellata	-	Enchytraeidae	Enchytraeidae	0	0	0	0	0	0	0	0	0	0	
Clitellata	-	Enchytraeidae	Enchytraeus	0	0	0	0	0	0	0.946	0.761	0.338	0	
Clitellata	Tubificida	Naididae	Nais	0	0	1.13	0	0.289	0	0	0.254	0.338	0	(
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	
Collembola	Collembola	-	Collembola	0	0	0	0	0	0	0	0	0	0.847	
Euchelicerata	Sarcoptiformes	-	Oribatida	0	0	0	0	0.289	0	0	0	0	0	
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0	0	0	0	0	0	0	0	0	0	
Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	0	0	0	0	0	0	0	0	0	0	_
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	0	0	0.156	0.289	0.287	0	0	0	0	
Euchelicerata	I rombidiformes	Sperchontidae	Sperchon	0	0	0	0.156	0	0.287	0	0	0	0	-
Euchelicerala		Cureuliepidee	Cureuliepidee	0 212	0	0	0	0	0	0	0	0	0	
Insecta	Coleoptera	Duticoidoo	Duticoidoo	0.313	0	0	0	0	0	0	0	0	0	
	Coleoptera	Dytiscidae	Liodessus	0	0	0	0	0	0	0	0	0 338	0	
Insecta	Coleoptera	Flmidae	Heterlimnius	0	0	0	0 156	0	0	0	0	0.000	0	-
Insecta	Coleoptera	Elmidae	Narous	0	0	0	0.150	0	0	0	0	0	0	
Insecta	Coleoptera	Elmidae	Ontioservus	0	0	0	0	0	0	0	0 254	0	0	
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0.204	0	0	-
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	-
Insecta	Diptera	Ceratopogonidae	Culicoides	0	0	0	0	0	0	0	0	0	0	-
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0.157	0	0	0	0	0	0	-
Insecta	Diptera	Chironomidae	Apedilum	0	0	0	0	0	0	0	0	0	0	-
Insecta	Diptera	Chironomidae	Boreoheptagyia	0	0	0	0	0	0	0.333	0	0.379	0	-
Insecta	Diptera	Chironomidae	Brillia	0	0	0	0.482	0.306	0	0	0	0	0.726	-
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0.306	0	0	0	0	0	
Insecta	Diptera	Chironomidae	Chironomus	0	0	0	0	0	0	0	0	0	0	
Insecta	Diptera	Chironomidae	Corynoneura	0	0	0	0	0	0	0	0	0	0.726	(
Insecta	Diptera	Chironomidae	Diamesa	89	11	5.27	52	20	0.985	0.667	2.69	5.69	0	
Insecta	Diptera	Chironomidae	Diplocladius	0	0	0	0	0	0	0	0	0	0	
Insecta	Diptera	Chironomidae	Eukiefferiella	0	37	14	4.02	0	1.64	3.00	1.61	7.20	0	
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0	0	0	0	0	0.363	
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	2.05	0	0.306	1.97	3.33	1.61	0.379	0	_
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0.538	0	1.09	(
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0	0	0	0	0	_
Insecta	Diptera	Chironomidae	Micropsectra	0	0.336	0.293	0.803	4.59	1.31	2.00	0	0.379	0.726	_
Insecta	Diptera	Chironomidae	Orthocladius	0	0	0	0	0	54	49	47	25	0	-
Insecta	Diptera	Chironomidae	Orthocladius complex	0	23	11	13	39	0	0	0	0	2.91	
Insecta	Diptera	Chironomidae	Pagastia	0	1.68	0	0	0.612	1.64	2.33	0.807	0	4.72	-
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0 672	0	0	0	0	0.333	0	0	0	-
Insecta	Diptera	Chironomidae	Paraphaenociadius	0	0.073	0	0	0	0	0 222	0	0	0	
Insecta	Diptera	Chironomidae	Paronthociadius	0	0	0	0	0	0	0.333	0	0	0	
Insecta	Diptera	Chironomidae	Pellaneura	0	0	0	0	0	0	0	0	0	0	-
Insecta	Diptera	Chironomidae	Pseudodiamesa	0	0	0 293	0 321	0.612	0.985	2 00	0.538	1 1/	0 363	-
Insecta	Diptera	Chironomidae	Psilometriocnemus	0	0	0.295	0.521	0.012	0.905	2.00	0.550	0	0.303	-
Insecta	Diptera	Chironomidae	Rheocricotonus	0	0	0	0	0	0	0	0 269	0	0	-
Insecta	Diptera	Chironomidae	Rheotanytarsus	0	0	0 293	0	0	0	0	0	0	0	-
Insecta	Diptera	Chironomidae	Stempellina	0	0	0	0	0.306	0	0	0	0	0	-
Insecta	Diptera	Chironomidae	Stempellinella	0	0	0	0	0	0.657	0	0	0	0	-
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0	-
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0.306	0	0	1.34	0	0	-
Insecta	Diptera	Chironomidae	hienemannimyia comp	0	0	0	0	0	0	0	0	0	0	(
Insecta	Diptera	Chironomidae	Tvetenia	0	0	0.879	0.964	2.45	2.30	0.667	2.15	4.93	6.17	
Insecta	Diptera	Chironomidae	Zavrelimyia	0	0	0	0	0	0	0	0	0	0	
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	0	0	0	0.282	L
Insecta	Diptera	Empididae	Chelifera/Metachela	0.313	0	0.567	0.392	0	1.72	2.22	0	1.43	0	
Insecta	Diptera	Empididae	Clinocera	0	0	0	0.392	0	0	0	0	5.02	0	
Insecta	Diptera	Empididae	Neoplasta	0	0.637	0	0	0	0	0	0	0	0	(
Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	0	0	0	0	0	0	
Insecta	Diptera	Muscidae	Muscidae	0	0.319	0	0	3.18	0	0	3.30	0	0.565	
Insecta	Diptera	Pelecorhynchidae	Glutops	0	0	0	0	0	0	0	0	0.339	0	4
Insecta	Diptera	Psychodidae	Pericoma	0	0	0	0	0	0	0	0	0	0	

2021	
G GHNE-2	RG GHNE-3
0	0
0	0
0 496	0.605
0	0
0	0 403
0	0.100
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
1 12	0 226
0	0
0	0
0 279	0
0	0
0	0
0	0
3.91	0
1 95	0
0.279	0 226
0	0
11	1.35
0	0
4 47	2 26
8 10	28
0	0
0	0
0	0
0	0
0	0
1 67	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0.558	0
6.14	13
0	0
0	0
0	0
0	0
0.748	1.41
0	0
0	0
0	0
0	0

	Та	xon							Three-minute	Kick Samples			
Higher Level	Classification	Family	Lowest Practical	2012		20	014			20	015		
	Classification	ranny	Level Identification	RG_GHCKU-1	GREE3-25-1	GREE3-75-1	GREE4-25-1	GREE4-75-1	RG_GHCKU-1	GREE3-75-1	GREE4-25-1	GREE4-75-1	RG_GHNF-1 RG_
Insecta	Diptera	Psychodidae	Pericoma/Telmatoscopu	1.57	1.91	1.70	1.10	1.73	3.72	0.317	3.55	2.38	10
Insecta	Diptera	Psychodidae	Psychoda	0	0	0	0.157	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	Sciomyzidae	0	0	0	0 100	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Gymnopais	0	0	0	0.188	0	0	0	0	0	0
Insecta	Diptera	Simuliidaa	Simuliidaa	0	0	0	0.100	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliuae	0 313	1 16	1 13	2.45	0	088.0	0 317	0	6.45	0
Insecta	Diptera	Stratiomvidae	Stratiomvidae	0.010	0	0	0	0	0.000	0.017	0	0.45	0
Insecta	Diptera	Tipulidae	Antocha	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	0.940	0.319	2.27	1.10	0.867	2.58	1.27	0.254	11	4.52
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Molophilus	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Pedicia	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletidae	0	0	0	0	0	0	0	0	0.338	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis rhodani group	1.88	0.317	1.13	0.939	0	0	0.315	0	1.01	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella doddsii	0	0	0	0	0	0	0	0	0.338	0
Insecta	Epnemeroptera	Ephemereilidae	Drunella grandis group	0	0.625	0	0	0.579	0	0.046	0.254	0.676	0
Insecta	Ephemeroplera	Ephemerellidae	Ephemereilidae	0	0.035	0	0	0.576	1.15	0.940	0	0.070	0
Insecta	Ephemeroptera	Hentageniidae	Hentageniidae	3.45	1 90	0 567	1.88	1 16	0.573	2.21	0 254	0 338	0
Insecta	Enhemerontera	Hentageniidae	Rhithrogena	0.40	0	0.307	0	0	0.287	0	0.234	0.000	0
Insecta	Plecoptera	Capniidae	Capnia	0	0	0	0	0	0	0	0	1 01	0
Insecta	Plecoptera	Capniidae	Capniidae	0.627	5.71	18	12	10	1.43	2.84	17	19	50
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Mesocapnia	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Paracapnia	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	Sweltsa	0	0	0	0.469	0	0	1.58	0.254	0.338	0.291 (
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	0	0	0	0	0.874 (
Insecta	Plecoptera	Nemouridae	Malenka	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Visoka	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada cinctipes	0	4.85	13	0.469	5.06	8.02	4.73	14	2.30	7.80
Insecta	Plecoptera	Nemouridae	Zapada columbiana	0	1.39	0.01	0.469	3.03	1.43	0	0	0	0 (
Insecta	Plecontera	Peltoperlidae	Peltonerlidae	0	1.39	0	0 156	0	0	0	0	0	0
Insecta	Plecontera	Peltoperlidae	Yoraperla	0	0	0	0.150	0	0	0	0	0	0
Insecta	Plecoptera	Periodidae	Isoperla	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Kogotus	0	0	0	1.10	0.867	0	0	1.27	0	0
Insecta	Plecoptera	Perlodidae	Megarcys	0	0.635	2.83	0	0	2.87	1.89	0	0	0
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0	4.95
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	0	1.59	13	2.19	3.47	8.60	12	0	1.01	2.33 (
Insecta	Trichoptera	Apataniidae	Pedomoecus	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	0.283	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0	0	0
Insecta	I richoptera	Glossosomatidae	Glossosomatidae	0	0	0	0	0	0.573	0.868	0	0	0
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae		0 313	0	2 55	0	0.578	0	0.434	0	0	0
Insecta	Trichontera	Hydropsychidae	Paransyche	0.010	0	2.00	0	0.570	0	0.454	0	0	0
Insecta	Trichontera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomvia	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0.627	0.317	0	0.939	0	0	1.74	0.254	0	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0.313	0	0	1.10	0	0.287	0.434	0	0.338	0
Insecta	Trichoptera	Rhyacophilidae	cophila brunnea/vemna	0.313	0.317	0	0.156	0	0	0	0	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0

2021	
_GHNF-2	RG_GHNF-3
8.97	2.82
0	U
0	U
0	0
0	0
0	0
0	0
0	0
0 2 7/	1 11
0.14	4.44 0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	U 40
20	12
0	U
0	U
0	U
0	U
0.251	0
0.753	0.639
0	0
0	0
0	0
19	0
0.3/9	01
0	U
0	U
0	U
0	0
0	6.61
0	0
4.27	0
0.502	8.95
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
1.49	0.403
0	0
0	0
0	0
0	0
0	0

	Та	ixon								Area-based	Kick Samples						
Higher Level	Classification	Family	Lowest Practical			[1		1	2	016		1	ſ	1	1	
Clitallata		F inally the side s	Level Identification	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2
Clitellata	-	Enchytraeidae	Enchytraeidae	7.59	13	0.90	0	0.01	3.20	4.51	4.01	4.70	0.32	3.19	0	0.634	1.30
Clitellata	Tubificida	Naididae	Nais	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	1.10	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Sarcoptiformes	-	Oribatida	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphaniidae	Hydrobates	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0.690	0	3.45	0	0.858	0	0	1.34	1.34	1.06	0.498	0.943	1.27	1.63
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0	0	0	0	0	0	0	0.671	0	1.49	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Liodessus	0	0	0	0	0	0.800	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Flmidae	Heterlimnius	0.690	0	3.45	0	0	0.800	0.752	0	0	0	0	0	0.317	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Optioservus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	0	0	0.671	0	0.419	0	0	0
Insecta	Diptera	Ceratopogonidae	Culicoldes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Apedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Boreoheptagyia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	3.49	0	1.72	0	0	3.50	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0	0	0	0	0	0	0	0	0.665	0
Insecta	Diptera	Chironomidae	Chironomus	0	0	0	0	0	0.875	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Diamesa	0 76	0	8.62	3 30	0	7.00	0	0 490	1 3/	0	0 801	0	0	0
Insecta	Diptera	Chironomidae	Diplocladius	0	4.77	0.02	0	0	0	0	0.490	0	0	0.001	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	4.88	5.96	10	5.49	22	16	2.31	0.490	0	2.91	0.801	0	3.66	6.48
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Hydrobaenus	0	2.38	0	0	0	0	0	0.490	2.01	1.16	3.60	2.83	0.332	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0	0.671	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	1 39	0	0	6.59	0	1.75	0 770	11	0	0	0	12	0	0
Insecta	Diptera	Chironomidae	Orthocladius	0	0	0	0.00	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius complex	40	23	8.62	12	18	18	13	16	34	21	46	21	53	59
Insecta	Diptera	Chironomidae	Pagastia	0	1.19	1.72	0	2.67	1.75	0.770	0	0	0	0	0	14	12
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0	0	0	1.54	3.19	0	0	0.801	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	0	0	0	0	0 401	0	0	0
Insecta	Diptera	Chironomidae	Polypedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0.697	0	1.72	4.40	0	1.75	0	0	0	0	0	0	0.332	0
Insecta	Diptera	Chironomidae	Psilometriocnemus	1.39	0	0	0	0	1.75	3.08	9.32	0	1.16	0	2.83	0	0
Insecta	Diptera	Chironomidae	Rheocricotopus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempelling	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellinella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0.332	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	hienemannimyia compl	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	I vetenia	2.79	7.15	3.45	0	1.78	3.50	1.70	3.19	2.68	1.16	4.41	4.72	2.33	1./1
Insecta	Diptera	Dixidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	0	1.13	0	0	0	0	4.51	0.445	1.34	5.43	2.80	1.89	5.07	7.49
Insecta	Diptera	Empididae	Clinocera	0.690	1.13	1.72	0	0	0	0.752	1.34	0	0	4.81	0.943	1.58	0.651
Insecta	Diptera	Empididae	Neoplasta	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	1.72	0	1.15	2.40	0	0	0	0	0	0	0	0
Insecta	Diptera	Psychodidae	Pericoma	1.38	0	8,62	3 30	0	2.40	0.752	∠.45 0.891	0.671	0	2.00	2.83	0.634	0.977
mocola	Diptera	i syonouluae	i chooma			0.02	0.00			0.102	0.001	0.071	~		2.00	0.001	

	Тах	kon								Area-based	Kick Samples						
Higher Level	Classification	Family	Lowest Practical Level Identification	RG GHUT-1	RG GHUT-2	RG GHUT-3	RG GHUT-4	RG GHUT-5	RG GHUT-6	2 RG GHNF-1	016 RG GHNF-2	RG GHNF-3	RG GHNF-4	RG GHNF-5	RG GHNF-6	RG GHFF-1	RG GHFF-2
Insecta	Diptera	Psychodidae	Pericoma/Telmatoscopi	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Psychodidae	Psvchoda	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Gymnopais	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Prosimulium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0	0	0	0.445	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simulium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	Stratiomyidae	0	0	0	2.20	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Antocha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	6.21	11	14	7.69	10	4.00	17	19	18	3.26	6.41	8.49	1.90	0.326
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	0	0 801	0	0	0	0	0	0 226
Insecta	Diptera	Tipulidae	Redicio	0	0	0	0	0	0	0	0.691	0	0	0	0	0	0.320
Insecta	Diptera	Tipulidae	Rhabdomastiv	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Enhemerontera	Ameletidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0	0	0	0	0	1.60	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis rhodani group	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella doddsii	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella grandis group	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0.690	0	0	0	0	1.60	0	0.445	0	0	0	0	0.951	0
Insecta	Ephemeroptera	Heptageniidae	Epeorus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Rhithrogena	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Capnia	3.45	4.44	0	2.20	0	0.800	4.51	3.56	3.36	20	2.79	2.83	0	0
Insecta	Plecoptera	Capniidae	Capniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Nesocaphia	7.50	17	10	0	0	0	0	7.25	0	0 51	0	0	0	0 226
Insecta	Plecoptera	Caprilidae	Chloroperlidae	7.59	0	19	0	12	0.00	20	7.55	0.71	0.01	0.308	20	2.22	0.320
Insecta	Plecontera	Chloroperlidae	Sweltsa	0	0	0	0	0	0	0.752	0	0	0	0.390	0	0.517	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	1 10	0	0	0	0	0	1 06	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0	0	0	0	0	0	0	0	0	0	0	0	0.317	0
Insecta	Plecoptera	Nemouridae	Visoka	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	1.38	1.11	1.72	7.69	15	17	4.51	0.891	0.671	0	0.398	6.60	2.22	1.30
Insecta	Plecoptera	Nemouridae	Zapada cinctipes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada columbiana	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	apada oregonensis gro	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Periodidae	Isoperia	0	2.22	1.72	0	0	0	11	11	17	5.32	11	8.49	0	0.651
Insecta	Plecoplera	Periodidae	Kogolus	0	0 175	0	0	0 146	0	0	0	0	2.66	0	0	0 217	0 077
Insecta	Plecontera	Periodidae	Skwala	0	0.175	0	0	0.140	0	0	0	1.34 N	2.00	0	0	0.317	0.977
Insecta	Plecontera	Taeniontervoidae	Taenioptervoidae	3 45	1 11	0	1 10	1 72	0	0	2 00	0	1 06	0 797	0	1.90	0.651
Insecta	Trichoptera	Apataniidae	Pedomoecus	0	1.11	0	3.30	0	0.800	0	0	0	1.60	0.398	0 0	0	0.977
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	0	1.11	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Hydropsychidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Irichoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	U	0	0	0	0	0	0	0	0
Insecta	Trichontera		Lepidostomatidae	0 600	U	0	U 4.40	U 2.42	0 800	0	0	0.674	0	0 200	0	U 1.00	U 1 20
Insecta	Trichoptera	Limnephilidae	Ecciisomyia	0.090	U	0	4.40	3.43	0.800	0	0	0.0/1	1.06	0.398	0	1.90	1.30
Insecta	Trichontera	Linnephilidae	Limnenhilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichontera	Limnenhilidae	Philocasca	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichontera	Limnenhilidae	Psychoalynha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhvacophilidae	Rhyacophila	1.38	0	0	0	0	0	0	0	0	0	0	0	2.08	1,30
Insecta	Trichoptera	Rhyacophilidae	cophila brunnea/vemna	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Ta	axon								Area-based	Kick Samples						
Higher I c	vel Classification	Family	Lowest Practical		20	016					•	2	017				
Tigher Le		ганну	Level Identification	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	6 RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4
Clitellata	-	Enchytraeidae	Enchytraeidae	2.39	5.64	1.80	0.672	4.24	12	7.14	2.71	5.96	2.48	0	2.22	2.32	6.83
Clitellata	- Tubificido	Enchytraeidae	Enchytraeus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubilicida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Sarcoptiformes	-	Oribatida	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0.896	0	0.771	0	0.265	0	0	0	0.221	0	0	0	0	1.24
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0	0	0	0	0.440	0	0	0	0	0	0	0	0
Euchelicerata	Coloontoro	Curculiopidae	Curculionidae	0	0	0	0	0	0.440	0	0.298	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0.621
Insecta	Coleoptera	Dytiscidae	Liodessus	0	0	0	0	0	0	0	0	0	0	0	0	0	0.021
Insecta	Coleoptera	Elmidae	Heterlimnius	0	0	0	0	0	0	0	0	0.221	0.310	0	0	0	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0.246	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Optioservus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Culicoides	0	0	0	0	0.265	0	0	0	0.221	0	0	0	0.273	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Boreobentaqvia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0	0	0	0	0.888	0	0.312	0	0.654	0.978	0	0.287	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0	0.296	0	0.312	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chironomus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corynoneura	0	0	0	0	0	0.296	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Diamesa	0	0	0	0	11	9.18	8.31	4.09	11	12	7.82	1.94	2.15	18
Insecta	Diptera	Chironomidae	Diplocladius	0	0	0	0	0	0	0	0.312	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukietteriella	7.68	7.91	3.50	10	0	5.77	8.57	7.90	5.41	4.14	3.91	0.970	0.287	1.67
Insecta	Diptera	Chironomidae	Helefilella	0	0	0	0	0 901	1.63	0 770	0.625	1 58	0 654	0	28	1 72	1.67
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0.901	0	0.775	0.025	0	0.054	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	0	0	0	0	0	0	0.260	0.312	1.35	1.96	0	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius complex	53	38	56	49	46	35	43	31	34	44	1.96	8.73	7.45	0
Insecta	Diptera	Chironomidae	Pagastia	24	28	14	21	2.79	2.22	3.63	4.09	5.41	6.43	0	0	0	0
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	0.312	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parapnaenociadius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	0.260	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Polypedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0	0	1.08	0.699	0	3.26	2.08	1.59	4.06	2.29	0	0	1.72	0
Insecta	Diptera	Chironomidae	Psilometriocnemus	0	0	0.538	0	0.270	0	0	0	0	0	0	0	0.287	0
Insecta	Diptera	Chironomidae	Rheocricotopus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Rheotanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellina	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tonytorous	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0	0	0	0 287	0
Insecta	Diptera	Chironomidae	hienemannimvia compl	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	0	3.29	5.65	3.15	2.52	3.55	1.04	2.22	2.03	0.327	19	0.970	0	0
Insecta	Diptera	Chironomidae	Zavrelimyia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	2.09	3.44	3.87	1.35	0.265	0.293	0	0	0	0	0	4.44	0	3.11
Insecta	Diptera	Empididae	Clinocera	0.299	1.25	1.03	0.677	0.265	0.293	0.246	0	0.662	0.620	0	0	0	0
Insecta	Diptera	Empididae	Wiodemonnia	U	0	0	0	0.265	0 597	0 720	0	0.001	0	0.022	0	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	0	0	0.200	0.367	0.739	0	0.221	1 24	0.925	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutons	0.299	0	0	0	0	0	0	0.298	0	0	0	1.48	0.273	1.24
Insecta	Diptera	Psychodidae	Pericoma	0	0.313	0.516	0	0.618	1.32	0.246	0.894	0.662	0.931	0	1.48	2.05	0.621

	Тах	on								Area-based k	Kick Samples						
Higherleyal	Classification	Family	Lowest Practical		20)16						20	017				
Higher Level	Classification	Family	Level Identification	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4
Insecta	Diptera	Psychodidae	Pericoma/Telmatoscopu	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Psychodidae	Psychoda	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Prosimulium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0.313	0	0	0.618	0	0	0	0	0.310	0.923	0	0	0
Insecta	Diptera	Simuliidae	Simulium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Antocha	0	0	0	0	0.265	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	0.299	1.57	1.29	0	1.86	6.01	5.67	4.23	1.99	2.79	1.85	1.48	13	2.48
Insecta	Diptera	Tipulidae	Limnophila	0.261	0	0	0 272	0	0	0.246	0	0	0	0	0	0 272	0
Insecta	Diptera	Tipulidae	Pedicia	0.201	0	0	0.273	0	0	0.240	0	0	0	0	0	0.273	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0.299	0	0	0	0	0.587	0	0	0	0	0.901	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis rhodani group	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella doddsii	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Enhemerellidae	0	0 313	0	0	0	0	0	0	0 221	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Epeorus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0	0	0	0	0	0	0	0	0	0	0.741	0	1.24
Insecta	Ephemeroptera	Heptageniidae	Rhithrogena	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Capnia	0	0	0	0	0.883	0.880	0.246	1.82	1.32	1.24	11	3.70	15	3.11
Insecta	Plecoptera	Capniidae	Capniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Mesocapnia	0	0	0	0 672	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0.299	1.00	0.514	0.072	0	0.293	15	0.596	0.883	0.310	0	0	50	2 48
Insecta	Plecoptera	Chloroperlidae	Sweltsa	0	0	0	0	0	0.200	0	0.000	0.000	0.010	0	0	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	0.587	0	0.298	0.662	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0	0	0	0	0	0.293	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Visoka	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	0.597	1.88	2.83	3.36	2.12	1.32	1.23	1.52	5.30	7.03	0	0	0	0.621
Insecta	Plecopiera	Nemouridae	Zapada cinclipes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	apada oregonensis gro	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	0	2.19	3.60	1.34	0	0	0	0	0	0	9.01	5.93	1.64	0.621
Insecta	Plecoptera	Perlodidae	Kogotus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Megarcys	0	0.410	0	0.336	0	0	0	0.596	0.221	0.620	0	0.741	0	0
Insecta	Plecoptera	Taeniontervaidae	JKWala Taenioptervaidae	U 	0 4 07	0 771	0 4 70	0.265	0	0 730	0.208	0 221	0	4 50	0	0	0
Insecta	Trichoptera	Anataniidae	Pedomoecus	0	0	0.257	1.01	0.205	0	0.755	0.230	0.221	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0.896	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	I richoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydronsychidae	Hydronsychidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Parapsychiae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0.299	0.313	1.54	0.336	0	0.293	0.739	0	2.65	1.86	0	0	0.682	0
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	I richoptera	Limnephilidae	Philocasca	0	0	0	0	0	U	U	U	0	U	0	0	U	U
Insecta	Trichoptera	Rhyaconhilidae	Rhyacophila	2.69	0	0 514	1.34	0.618	0	0.246	0.298	0	0	0	0	0	0 621
Insecta	Trichoptera	Rhyacophilidae	cophila brunnea/vemna	0	0	0	0	0	0	0	0.230	0	0	0	0	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1	Та	xon								Area-based	Kick Samples						
Higher Leve	I Classification	Family	Lowest Practical				20	017			•			20	018		
	r orassification		Level Identification	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6
Clitellata	-	Enchytraeidae	Enchytraeidae	2.13	1.39	0.820	0	1.22	0.777	0	0.326	4.64	19	1.63	0.806	4.49	3.90
Clitellata	Tubificida	Naididae	Nais	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	0	0	0	0	0	0	0	0	0	0	2.44	0	0	0
Euchelicerata	Sarcoptiformes	-	Oribatida	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphaniidae	Hydrobates	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	0.279	0	0.257	0.610	0.777	0	0.651	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0.279	0	0.257	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0.279	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Liodessus	0.304	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	0	0	0	0	0	0	0	0	0	0	0	0	0.375	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0	0	0	0	0	0	0	0.649
Insecta	Coleoptera	Elmidae	Optioservus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Apedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Boreoheptagyia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0.333	0	0.426	0	0	0	0	1.05	1.88	0	1.00	3.24	1.43	2.34
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0	0	0	0	1.88	0	0	0	0.475	0
Insecta	Diptera	Chironomidae	Chironomus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Diamesa	2 33	4 26	1 70	0 794	2.62	1 92	0	1.05	0	1 4 1	0	0	0	0.779
Insecta	Diptera	Chironomidae	Diplocladius	0	0	0	0.754	0	0	0	0	0	0	0	1.08	0	0.779
Insecta	Diptera	Chironomidae	Eukiefferiella	4.33	0.984	0.426	1.32	0	2.46	2.74	0.699	11	30	10	8.64	33	36
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Hydrobaenus	1.00	0.984	0	0	0	0	0	0	6.28	1.41	17	0	0.951	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	0	0	0 426	3 70	0.655	3 28	0	2 44	0.628	0	0	0	0.951	0 779
Insecta	Diptera	Chironomidae	Orthocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius complex	3.33	5.91	45	28	35	38	53	36	13	20	11	39	12	12
Insecta	Diptera	Chironomidae	Pagastia	0	0	29	28	32	27	25	20	1.26	1.41	1.00	4.32	0	1.56
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenociaulus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Polypedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0	0	0	0.529	0	0.274	4.56	0	5.65	0	7.01	0	6.18	7.01
Insecta	Diptera	Chironomidae	Psilometriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Rheocricotopus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellina	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellinella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	hienemannimyia compl	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	I Vetenia Zavrelimvia	0.00	2.62	0	0.794	0	0.274	0.912	1.05	2.51	5.64 0	9.02	14	14	00.1
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	0.304	0	2.46	3.60	3.66	4.40	5.36	3.26	0	0	0	0	0	0
Insecta	Diptera	Empididae	Clinocera	0	0.279	0	0.257	0	0	0.893	0	0.515	0	0.813	1.61	0	0
Insecta	Diptera	Empididae	Neoplasta	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Wiedemannia	0	0	0.820	0.514	0	0.518	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae Pelecorbynchidaa	Glutops	0 304	0	0	U 1 80	0	0 250	0	0.651	0	0	0	0	0.749	0
Insecta	Diptera	Psvchodidae	Pericoma	1.22	0.557	0	0.257	0	0.259	0	0.001	0	1.23	5.69	0.806	2.25	0

	Тах	on								Area-based	Kick Samples						
Higher Level	Classification	Family	Lowest Practical				20)17						20	018		
riighei Level	Classification	r annry	Level Identification	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6
Insecta	Diptera	Psychodidae	Pericoma/Telmatoscopu	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Psychodidae	Psychoda	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Gymnonais	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Prosimulium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0.912	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simulium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Antocha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	3.04	0	1.23	2.31	1.83	1.04	0	2.28	17	8.64	5.69	13	5.24	3.25
Insecta	Diptera	Tipulidae	Molophilus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Pedicia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0.771	0	0.259	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis rhodani group	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella doddsli Drupella grapdis group	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0	0	0	0.257	0	0.259	0	0.326	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Epeorus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0.279	1.64	1.29	1.22	0.518	0.893	2.61	0.515	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Rhithrogena	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Capnia	9.42	11	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Capniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0	0	0	0	0	0	0	0 640
Insecta	Plecoptera	Capniidae	Paracaphia	61	65	2.87	11	4 27	2 59	0	1 23	1.55	0 88	24	13	1/	6.49
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	0.279	0	0.771	0	0.259	0	0	1.03	0.00	0	0	0	0.40
Insecta	Plecoptera	Chloroperlidae	Sweltsa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0.771	0.610	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0.304	0	0	0.257	0	0	0.893	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Visoka	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	2.43	3.06	1.64	6.94	7.93	4.66	0.893	4.89	1.03	2.47	0.813	0	2.25	5.84
Insecta	Plecoptera	Nemouridae	Zapada cilictipes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	apada oregonensis gro	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	1.22	1.67	0	0	0.610	0.518	0	0	0.515	0	2.44	0.806	0.375	0
Insecta	Plecoptera	Periodidae	Kogotus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Periodidae	skwala	0	0.279	∠.40 0	1.29	<u>2.44</u>	2.59	0	2.20	0	0	0	0	0.375	0.640
Insecta	Plecontera	Taenioptervoidae	Taenioptervoidae	0,608	1.39	7.38	1.80	0.610	4,66	3 57	13	0	0	0	0	0	0.649
Insecta	Trichoptera	Apataniidae	Pedomoecus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	I richoptera	Glossosomatidae	Glossosomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatonsyche	0	0	0	0 257	0	0	0	0 651	0	0	0	0	0	0
Insecta	Trichoptera	Hydronsychidae	Hydronsvchidae	0	0	0	0	0	0	0	0.001	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0	0	0.410	0	1.22	0.518	0.893	0.326	0	0	0.813	0	0.749	0
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0	0	U	0	0	0	0	0	U
Insecta	Trichontera	Rhyaconbilidae	Rhvacophila	0	0	1.64	1.80	3.66	2 50	0	1.63	0 515	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	cophila brunnea/vemna	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Та	xon	-							Area-based	Kick Samples						
Higher Level	Classification	Family	Lowest Practical						20	18						20	/19
Clitellata		Enchytraeidae	Encovtragidage	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3 6.74	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	0 230	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	0.576	RG_GHUI-1	RG_GHU1-2
Clitellata	-	Enchytraeidae	Enchytraeus	0	0	0.74	0	2.44	0	0.239	0	0	0	0.480	0.570	4.55	0
Clitellata	Tubificida	Naididae	Nais	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	1.23	0.529	0	17	1.22	0.870	0	0	0	0.855	0	0	0	0
Euchelicerata	Sarcoptiformes	-	Oribatida	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphaniidae	Hydrobates	0	0	0	0	0	0	0	0	0.423	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	0	0	0	1.22	0	0	0	0.211	0	0	0.288	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0	0	0	0	0	0.239	0	0.211	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	0	0	0	0	0	0	0	0	0	0	0	0.576	0	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0	0	0.211	0	0	0.070	0	0
Insecta	Coleoptera	Elmidae	Optioservus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0.870	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Culicoides	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Apedilum	0	0	0	0	0	0	0	0	0	0	0	0	0 577	0
Insecta	Diptera	Chironomidae	Boreoheptagvia	0	0	0	0	0	0	0	0	0	0	0	0	0.017	0
Insecta	Diptera	Chironomidae	Brillia	3.19	15	2.25	6.24	18	8.82	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0	4.41	0	0	0	1.36	0	0	0	0
Insecta	Diptera	Chironomidae	Chironomus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corynoneura	0 639	0.558	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Diamesa	0.030	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	8.93	3.90	4.49	0	5.39	4.41	2.27	3.08	4.59	1.36	3.53	1.96	21	19
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Hydrobaenus	0	4.46	0	1.04	0	0	0	0	0	0	0	0	5.77	15
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	2.08	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0 558	0	0	0	0	0 505	0	0.210	0	0	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius	0	0.558	0	0	0	0	0.505	0	0.219	0	0	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius complex	3.83	1.67	5.62	2.08	4.04	4.41	29	29	34	34	35	27	28	20
Insecta	Diptera	Chironomidae	Pagastia	1.28	0.558	0	0	0	0	21	21	11	31	27	26	8.08	7.20
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parorthociadius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Polypedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0	1.12	0	1.04	0	0	0	0	0	0	0	0	1.15	4.12
Insecta	Diptera	Chironomidae	Psilometriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Rheocricotopus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Rheotanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellinella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	hienemannimyia compl	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	46	34	11	39	24	25	0.253	1.76	0.437	1.59	4.03	1.96	9.23	10
Insecta	Diptera	Chironomidae	Zavrelimyia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	DIXa Chelifera/Metachela	0	0	0	0	0	0	239	1.68	0.634	0.855	0.240	6 34	0	0 498
Insecta	Diptera	Empididae	Clinocera	0	0	0	0	0	0	2.63	0.420	1.27	1.07	0.240	0.865	0	0
Insecta	Diptera	Empididae	Neoplasta	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	1.12	0	0	3.53	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	0	0	0	0	1.22	0	0	0	0.423	0.214	0	0	0	0
insecia	Diptera	rsychodidae	Pericoma	3.07	1.00	1.01	0.900	3.00	1.93	U	U	U	U.04 I	U	0.570	1.14	2.49

	Тах	con								Area-based	Kick Samples					-	
Higher Level	Classification	Family	Lowest Practical		I		1	I	20)18		[1	20	019
la sete	Distant	Develo e diele e	Level Identification	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2
Insecta	Diptera	Psychodidae	Pericoma/ Teimatoscopu	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Gymnopais	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Prosimulium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simulium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Antocha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	6.75	4.23	18	6.86	4.88	5.29	2.63	0.420	1.06	1.07	0.719	4.03	5.68	3.48
Insecta	Diptera	Tipulidae	Molophilus	0	0	1 12	0.980	0	0	0 239	0	0	0	0.240	0	0	0
Insecta	Diptera	Tipulidae	Pedicia	0	0	0	0.000	0	0	0.200	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0	0	0	0.211	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0	0	0	0	0	0	0	0	0	0	0.480	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis rhodani group	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella doddsii	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella grandis group	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Epnemerellidae	Epnemerellidae	0	U	U	U	0	0	0.955	U	0	U	0.959	0.5/6	U	U
Insecta	Ephemeroptera	Heptageniidae	Epeorus	0	0	0	0	0	0	0 716	0	0.846	0 641	0 710	0.576	0	0
Insecta	Ephemeroptera	Hentageniidae	Rhithrogena	0	0	0	0	0	0	0.710	0	0.040	0.041	0.713	0.570	0	0
Insecta	Plecoptera	Capniidae	Capnia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Capniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Mesocapnia	0.613	2.65	2.25	1.96	1.22	2.61	0	0	0.211	0	0	0	1.14	0.995
Insecta	Plecoptera	Capniidae	Paracapnia	16	26	26	19	15	19	8.35	2.94	2.96	1.50	3.36	2.88	11	6.47
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	0	0	0	0	0	0	0.420	0.211	0	1.20	0.865	0	0
Insecta	Plecoptera	Chloroperlidae	Sweltsa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	0	0.239	0	0	0	0	0.288	0	0
Insecta	Plecopiera	Nemouridae	Viseka	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zanada	3.07	0.529	3 37	0 980	8.54	4 35	22	27	30	20	13	13	1 1/	0 995
Insecta	Plecoptera	Nemouridae	Zapada cinctipes	0	0.525	0	0.300	0.04	4.00 0	0	0	0	0	0	0	0	0.555
Insecta	Plecoptera	Nemouridae	Zapada columbiana	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	apada oregonensis gro	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	2.45	2.12	7.87	1.96	6.10	2.61	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Kogotus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Periodidae	Megarcys	U	0	0	U	0	0	1.19	1.68	1.27	0.855	1.92	4.90	0.568	0
Insecta	Plecoptera	Taeniontervaidaa	Jrwaia Taeniontervaidao	2 45	0.520	0 2.25	0	3.66	0	0.239	7.09	7 10	0.427	0.480	0.000	U 1 70	1 00
Insecta	Trichontera	Apataniidae	Pedomoecus	0	0.525	0	0	0	0.03	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0.420	0	0	0.719	0	0	0
Insecta	I richoptera	Hydropsychidae	Cheumatopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	I richoptera	Hydropsychidae	Hydropsychidae	0	0	0	U	0	0	0	0	0	U	U	0	0	0
Insecta	Trichoptera			0	0	0	0	0	0	0	0	0 211	0	0	0	0	0
Insecta	Trichontera	limnenhilidae	Feelisomvia	0.613	0.529	0	0	0	0	0	0 420	0.211	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0.420	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0	0	0	0	0	0	0	0	0.498
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0	0	0	0	0	0	0.477	1.68	1.06	0.214	1.92	1.15	0	0
Insecta	Trichoptera	Rhyacophilidae	cophila brunnea/vemna	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Та	ixon								Area-based	Kick Samples						
Higher Level	Classification	Family	Lowest Practical			I	I			20)19		1	1		T	1
Olitellete		Fu chu tra cida c	Level Identification	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4
Clitellata	-	Enchytraeidae	Enchytraeidae	1.40	4.33	8.13	0	0.216	0.541	0	0.391	0.862	0	1.54	0	0.435	0
Clitellata	Tubificida	Naididae	Nais	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	1.86	0	0	0	0	1.08	0	0.781	16	3.21	0.171	0	0.435	0.505
Euchelicerata	Sarcoptiformes	-	Oribatida	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphaniidae	Hydrobates	0	0	0	0	0	0	0	0	0.862	0.292	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0.465	0.433	0	0	0	0	0	0	0	0	0	0	0.435	0.505
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0.433	0	0.173	0	0	0	0	0	0	0.684	0	0.435	0
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Liodessus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	0	0	0.478	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Optioservus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Apedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Boreoheptagyia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0.977	0	0	0	0	1.21	0.233	1.70	6.42	0.313	0	0	0	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corvnoneura	0	0	0	0	0	0	0	0	0	0	0	0	0 526	0
Insecta	Diptera	Chironomidae	Diamesa	0	0	0	0	0.228	0	0	0	0	0	0	0	0.020	0
Insecta	Diptera	Chironomidae	Diplocladius	0	0	0	0.721	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	9.29	18	24	52	1.14	4.24	3.72	0.851	6.42	2.19	20	30	22	41
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Limnophyes	31	2.20	1.98	0.721	1.14	0.605	3.72	1.28	2.14	0.313	0.971	0	33	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	0.977	0	0.494	0	0	0	0.233	0	0	0	0.583	0	2.11	0
Insecta	Diptera	Chironomidae	Orthocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius complex	11	34	37	8.83	1.83	7.26	1.86	1.28	1.07	0.625	4.66	1.90	5.26	12
Insecta	Diptera	Chironomidae	Pagasila	0	0	0.40	0	0.94	0	2.09	0	0	1.50	30 0	10	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parorthocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Polypedilum	0	0 452	0	0	0	0	0	0	0	0	0 299	0	0	0
Insecta	Diptera	Chironomidae	Psilometriocnemus	1.33	0.453	1.4ð N	0.721	0.228	0	0	0.001	0	0.025	0.388	0	0.20	0
Insecta	Diptera	Chironomidae	Rheocricotopus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Rheotanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellina	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellinella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	hienemannimyia comp	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	3.42	4.08	2.47	2.25	77	40	67	18	15	62	8.55	2.85	2.11	1.22
Insecta	Diptera	Chironomidae	Zavrelimyia	0	0	0	0	0	0.605	0.233	0	0	0	0	0	0	0
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Clinocera	1.40	0	0	0	0.431	0.545	0	0.391	0	0.292	0	3.08	0/35	1.01
Insecta	Diptera	Empididae	Neoplasta	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	0	0.347	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	0	0	0	0	0	0	0	0	0	0	0	0	0 425	0
Insecta	Diptera	Psychodidae	Pericoma	5.58	1./3	0.957	0.693	3.23	4.36	1.12	4.69	5.17	5.25	1.03	U	0.435	1.01

	Тах	on								Area-based	Kick Samples						
Higher Level	Classification	Family	Lowest Practical Level Identification	RG GHUT-3	RG GHUT-4	RG GHUT-5	RG GHUT-6	RG GHNF-1	RG GHNF-2	20 RG_GHNE-3	019 RG GHNF-4	RG GHNF-5	RG GHNF-6	RG GHFF-1	RG GHEE-2	RG GHFF-3	RG GHFF-4
Insecta	Diptera	Psvchodidae	Pericoma/Telmatoscopu	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Psychodidae	Psychoda	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Gymnopais	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Prosimulium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0	0.545	0	2.73	4.31	0.875	0	0	0	0
Insecta	Diptera	Simuliidae	Simulium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Antocha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	6.51	5 20	3.83	1 91	1.08	0	0 447	0 391	0	1 75	342	0	1 74	0
Insecta	Diptera	Tipulidae	Limnophila	0.01	0	0.00	0	0	0	0.447	0.001	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Molophilus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Pedicia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0	0	0	0	0	0	0	0.391	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis rhodani group	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Epnemeroptera	Ephemerellidae	Drunella doddsii	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemorollidae	Ephemorollidae		0/33	0.478	0	0	0.541	0	0	0	0	0 342	0	0	0
Insecta	Ephemeroptera	Hentageniidae	Epitemereilluae	0	0.433	0.470	0	0	0.041	0	0	0	0	0.342	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0	0	0	0	0	0	0 391	0	0	0	0 769	0	1 01
Insecta	Ephemeroptera	Heptageniidae	Rhithrogena	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Capnia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Capniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Mesocapnia	0.465	0	1.91	0.173	1.08	6.49	1.79	11	8.62	3.50	0	0	0	0
Insecta	Plecoptera	Capniidae	Paracapnia	7.91	7.80	3.83	2.95	3.45	6.49	6.94	27	15	7.58	1.71	0.769	4.35	1.52
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	0	0	0	0	0.541	0	0	0	0	0.171	0	0	0.505
Insecta	Plecoptera	Chloroperlidae	Sweltsa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Leucindae	0	0.433	0	1 21	0	0	0	0	1 72	0	0	0.769	0	0
Insecta	Plecontera	Nemouridae	Visoka	0	0.433	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	2.33	5.20	2.87	2.95	1.08	16	7.16	20	7.76	6.71	23	33	11	16
Insecta	Plecoptera	Nemouridae	Zapada cinctipes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada columbiana	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	apada oregonensis gro	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Periodidae	Isoperla	0	0	0	0	1.08	2.70	0.671	2.73	2.59	1.17	0.1/1	0.769	0	0
Insecta	Plecopiera	Periodidae	Mogorovo	0	0 108	0	0	0	0	0	0	0.862	0	0.0428	1.54	0	1.52
Insecta	Plecontera	Periodidae	Skwala	0	0.100	0	0	0	0	0	0	0.002	0	0.0420	0	0	0
Insecta	Plecoptera	Taenioptervoidae	Taenioptervoidae	0	0.433	0.478	0.347	0.216	2.70	0.447	3.91	3.45	0.583	0.513	3.85	0.435	1.52
Insecta	Trichoptera	Apataniidae	Pedomoecus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	0	0	0	0	0	0	0	0	0.171	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	I richoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Hydropsyche	0	0	0	0	0	0	0	0	0	0	0	0	0.435	0
Insecta	Trichoptera	Hydronsychidae	Parapsychiae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomvia	2.33	0	0	0.693	0	2.70	0.895	0	0	0	0 0	0	0	0
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	2.33	2.60	0.957	0	0	0	0	1.17	2.59	0	0.171	0	1.74	0.505
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0	0.217	0.478	0	0	0	0	0	0	0	0.556	1.54	0	1.52
Insecta	Trichoptera	Rhyacophilidae	cophila brunnea/vemna	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	U	U	U	U	U	U	U	U	U	U	U	U	U	U

	Та	xon								Area-based	Kick Samples						
Higher Level	Classification	Family	Lowest Practical	20	19		1	a.	T	T	20	20	1	1	1	T	
			Level Identification	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6
Clitellata	-	Enchytraeidae	Enchytraeidae	1.96	0.629	7.22	12	2.89	4.36	2.09	6.42	1.14	3.14	3.36	0	4.26	2.47
Clitellata	- Tubificida	Naididae	Enchytraeus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	0	0.210	0	1.66	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Sarcoptiformes	-	Oribatida	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0	0	0	0	0	0	0	0	0	0	0.840	0	0	0
Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0.130	0	0.555	0	0.578	0	0	0	0	0	0	1.14	0	1.23
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Liodessus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	0	0	0	0	0	0	0.232	0.402	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Optioservus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0 555	0	0	0	0	0	0	0	0	0	0 719	0
Insecta	Diptera	Ceratopogonidae	Culicoides	0	0	0.333	0	0	0	0	0	0	0	0	0	0.713	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Apedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Boreoheptagyia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0	0	4.46	0.593	0.449	0.530	0	0	0.653	0	0	0.767	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0.637	0	0	0	0	0	0	0	0	0.767	0
Insecta	Diptera	Chironomidae	Chironomus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Diamesa	0	0	1.17	3.82	2.90	0.898	0.795	0.425	1.35	3.27	0	0	0.91	5.93
Insecta	Diptera	Chironomidae	Dianesa	0	0	0	0	0	0	0	0.423	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	18	25	16	2.55	8.30	9.43	9.28	21	1.35	0.653	2.16	1.27	0	2.96
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0	0	0	0	3.38	0.653	3.24	0	3.07	0
Insecta	Diptera	Chironomidae	Hydrobaenus	1.09	1.95	2.35	22	11	10	14	4.68	4.73	12	0	1.27	6.14	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	0.313	0.733	2.35	3.19	2.96	11	15	3.40	0.675	0	0	0	0.767	0
Insecta	Diptera	Chironomidae	Orthocladius complex	2 35	1 95	32	18	5.93	1.80	11	15	0.675	0	1.08	0	0	0
Insecta	Diptera	Chironomidae	Pagastia	35	38	15	0.637	1.78	3.14	3.71	12	1.35	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0	0	0	0	0	0	0	1.08	0	0	0
Insecta	Diptera	Chironomidae	Parorthocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Polypedilum	0	0	0	0.637	0	0	0	0	0	U 7 40	0	0	0	0
Insecta	Diptera	Chironomidae	Psilometriocnemus	0	0.244 0	0.587	2.55	5.34 0	4.04	2.39	1.2δ	2.03	1.18 0	0	0	2.30	0
Insecta	Diptera	Chironomidae	Rheocricotonus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Rheotanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellina	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellinella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tuetonia		U 15	U 2.25	0	U 7 1 1	U 8.52	0	U 5.05	U 14	U 7 0/	0	U 17	U 1 52	U 5.02
Insecta	Diptera	Chironomidae	7avrelimvia	4.07	4.10 0	2.33 N	<u> </u>	0	0.00	2.00	0.90	0	1.04	0	0	0 767	0.93
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	0	0	0	0	0	0	0.719	0
Insecta	Diptera	Empididae	Chelifera/Metachela	1.56	1.68	0.833	1.10	0	0	0	0	1.71	2.52	8.40	4.78	1.44	1.23
Insecta	Diptera	Empididae	Clinocera	1.30	0.210	0.833	0	0	0	0	0	0	0	0.840	2.39	0	0
Insecta	Diptera	Empididae	Neoplasta	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	0.555	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	Giutops	0 261	U 1 26	0	U 8 20	0.578	0 12	U 8 12	0	1.14	2.52	0.840	0	2.88	0
insecta	Diptera	Psychodidae	Pericoma	0.201	1.20	1.11	0.2ŏ	12	9.1Z	0.12	0.03	∠.ŏ0	3.11	0.40	0.30	∠.ŏŏ	1.23

	Тах	kon								Area-based	Kick Samples						
Higher Lovel	Classification	Family	Lowest Practical	20	019						20)20					
Higher Lever	Classification	Failing	Level Identification	RG_GHFF-5	RG_GHFF-6	RG_GHUT-	I RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6
Insecta	Diptera	Psychodidae	Pericoma/Telmatoscopu	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Psychodidae	Psychoda	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	Gymnonais	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Prosimulium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0.419	0.555	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simulium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Antocha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Limpophila	2.87	1.05	8.33	6.76	13	5.21	7.66	5.22	22	13	22	12	18	24
Insecta	Diptera	Tipulidae	Molophilus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Pedicia	0.130	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0	0	0.555	0	0	0	0	0	0.571	0	0	0	0	0
Insecta	Ephemeroptera	Enhemerellidae	Drunella doddsii	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella grandis group	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0.261	0	0.555	0	0	0	0.232	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Epeorus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Rhithrogena	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Capnia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Caphildae	Eucaphilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Mesocaphia	0	0	0	3.31	0	1.45	0	1.54	17	8.28	13	7.73	2.42	12
Insecta	Plecoptera	Capniidae	Paracapnia	4.17	0.629	4.44	2.21	9.82	12	7.89	7.70	14	23	22	12	39	23
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0.130	0	0	0.552	0	0.397	0	0	0	0	1.68	0	0	0
Insecta	Plecoptera	Chloroperlidae	Sweltsa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0.578	0	0	0	0	1.26	0.840	0	0	0
Insecta	Plecoptera	Nemouridae	Visoka	0	0.419	0	0	4.04	0	0	0	3.14	0	0	10	0	0
Insecta	Plecoptera	Nemouridae	Zapada	26	20	1.67	1 10	0	5 16	2 09	2 4 1	3 14	2.52	3.36	10	0	16
Insecta	Plecoptera	Nemouridae	Zapada cinctipes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada columbiana	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	apada oregonensis gro	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0 782	0.210	0	0.552	0	1 10	0	0	0	3 14	5.88	0	2 13	0 3.70
Insecta	Plecontera	Periodidae	Konotus	0.782	0.210	0	0.552	0	0	0	0	0	0	0.00	0	0	0
Insecta	Plecoptera	Perlodidae	Megarcys	0.130	0	Ő	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	0.261	0.839	0	0	0	0	0	0	0	0	0	1.14	0	1.23
Insecta	Trichoptera	Apataniidae	Pedomoecus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Anagapetus	0	0	0	0	0	0	0	0 402	0.571	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0.402	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	0	0	0.0694	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Hydropsychidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	I richoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera		Ecclisomvia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0.552	8.70	10	12	3.21	0.571	2.52	1.68	1.14	2.84	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0.419	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0.130	0.210	0	0	0	0	0	0.0125	0	0	0	0	0	0
Insecta	I richoptera	Rhyacophilidae	cophila brunnea/vemna		0	0 555	0	0	0	0	0	0	0	0	0	0	0
ivialacostraca	Amphipoda	Gammaridae	Gammarus	U	U	0.000	U	U	U	U	U	U	U	U	U	U	U

	Та	xon								Area-based	Kick Samples						
Higher Level	Classification	Family	Lowest Practical			2	020				-		20	021			
Tigher Lever	olassification	i anny	Level Identification	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2
Clitellata	-	Enchytraeidae	Enchytraeidae	1.92	0	0.239	1.59	0.329	1.03	3.61	2.73	3.57	1.67	0.439	2.31	1.08	0.702
Clitellata	- Tubificido	Enchytraeidae	Enchytraeus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Sarcoptiformes	-	Oribatida	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0.319	0.852	0.239	0	0.658	0.412	0.201	0	0.794	0	0	0.384	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0	0.239	0	0	0	0	0	0	0.333	0	0.384	0.217	0
Insecta	Coleoptera	Curculionidae	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	0	0	0	0	0	0	0	0.397	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Liodessus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	0.319	0	0	0	0.329	0.619	0.201	2.48	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Optioservus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Culicoides	0.319	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Prohezzia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Apedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Boreoheptagyia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0	0	0	0	0	0.967	0	0.480	0	0	1.28	0	0.380
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chironomus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corynoneura	0	0	0	0	0	0	0.483	0	0.960	0.745	0	0	0.237	0.761
Insecta	Diptera	Chironomidae	Diamesa	0	0	0	0	0	0	0	0	0	0	0	0	0.237	0
Insecta	Diptera	Chironomidae	Fukiefferiella	2.96	2.46	5 10	0 687	4 79	1 72	53	51	38	57	63	50	0 711	0
Insecta	Diptera	Chironomidae	Heleniella	0	0	0.10	0.007	0	0	0	0	0	0	0	0	0.474	1.52
Insecta	Diptera	Chironomidae	Hydrobaenus	3.94	2.46	0	11	0.685	1.72	0	0	0.480	0	0	0	0	1.90
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	4.27	0.614	0.510	0	0.685	0.430	0.483	0	0	0	0	0	0.237	1.52
Insecta	Diptera	Chironomidae	Orthocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0 280
Insecta	Diptera	Chironomidae	Orthociadius complex Pagastia	0.87	0.14	<u></u>	21	41	4.94	2.90	15	9.60	10	3.57	2.98	2.80	0.380
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	- 42	0	0	0	0	0	0	0	0.12	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0.344	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parorthocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Polypedilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0.986	0.307	0	0	0.685	0.430	0	1.46	5.76	1.12	0.510	0	0.474	2.28
Insecta	Diptera	Chironomidae	Psilometriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Rheotanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellina	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellinella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	hienemannimyia comp	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	1.31	1.23	1.28	1.37	0	1.50	2.90	0.874	0.960	0.745	2.04	0	34	37
Insecta	Diptera	Divideo	Zavrelimyla	0	0	0	0	0	0	0	U	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	7.03	5 59	7 40	7.62	4 52	3.92	0	1 24	0	0	0	0	3 25	1.05
Insecta	Diptera	Empididae	Clinocera	0.319	0.373	0.493	0	0.411	0.02	0.602	0	0.794	0.667	0	1.54	0.651	0
Insecta	Diptera	Empididae	Neoplasta	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	0	0	0	0	1.00	0	0	0.333	0	0.384	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	1.92	0	0	0.635	0.329	0	0	0	0	0	0	0.0481	0	0.351
Insecta	Diptera	Psychodidae	Pericoma	4.15	0	0	3.81	1.32	0.619	2.61	3.97	5.95	1.33	5.70	5.38	1.08	6.32

	Tax	on								Area-based	Kick Samples						
Higher Leve	el Classification	Family	Lowest Practical			20)20				-		2	021			
		i anniy	Level Identification	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2
Insecta	Diptera	Psychodidae	Pericoma/Telmatoscopu	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Gvmnopais	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Prosimulium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simulium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	1 92	1 70	0 478	4 76	1 97	2.06	1 61	3 23	3 17	2.00	3.07	2.31	3.04	1.05
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Molophilus	0	0	0	0	0	0	0	0	0	0	0	0.384	0	0
Insecta	Diptera	Tipulidae	Pedicia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis rhodani group	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella doddsii	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella grandis group	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	1.60	2.27	0.957	2.22	1.97	0.825	0	0	0	0	0	0.384	0	0
Insecta	Ephemeroptera	Heptageniidae	Epeorus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0.319	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecontera	Cappiidae	Cappia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Capniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0.342	0	0	0	0	0.549	0	0
Insecta	Plecoptera	Capniidae	Mesocapnia	0	2.60	0	0.397	0	0.444	3.76	1.74	5.56	1.75	0.877	5.49	2.65	1.80
Insecta	Plecoptera	Capniidae	Paracapnia	4.15	6.49	0.239	2.78	0.987	5.33	5.13	0.496	2.78	0.583	0.877	1.65	6.89	19
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0.319	0	0	0	0.329	0	0	0	0.397	0	0	0	0.217	0
Insecta	Plecoptera		Sweitsa	0	0.284	0	0	0 320	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0 733	3 52	0	0	0.529	0.608	0.803	0	0 397	0	1.32	0	0.506	0.646
Insecta	Plecoptera	Nemouridae	Visoka	0	0	0	0	0	0	0.803	0	0.397	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	24	43	14	19	9.52	33	6.43	0.993	0.794	2.33	0	5.38	16	12
Insecta	Plecoptera	Nemouridae	Zapada cinctipes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada columbiana	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	apada oregonensis gro	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecontera	Peltoperlidae	Yoraperla	0	0	0 239	0	0	0	0 201	0 248	0	0	0 439	0 769	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	0.319	0.426	0	0.476	0	0.247	1.20	1.49	3.97	0.333	2.63	5.00	3.69	4.56
Insecta	Plecoptera	Perlodidae	Kogotus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Megarcys	0.639	1.28	0.718	0.476	0	0.990	0.201	0	0	0.333	0	0	0.0271	0
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	I aeniopterygidae	I aeniopterygidae	0	0.284	0	1.27	0.329	0.619	0.402	0	0	0	0.877	1.15	0.867	0.702
Insecta	Trichontera	Brachvcentridae	Micrasema	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	I richoptera	Hydropsychidae	Cheumatopsyche	0	0	0	0	0	0.412	0	0	0	0	0	0	0	0
Insecta	Trichontera	Hydropsychidae	Parapsychiae	0	0	0	0 317	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	L epidostomatidae	Lepidostomatidae	0	0	0	0.517	0	0	0	0 744	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0	1.70	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0	0.397	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	2.56	0	1.91	0.317	0	1.24	0.402	1.74	4.37	5.33	8.33	5.77	1.30	2.81
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0.284	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	I richoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0 825	0	0	0	0	0	0	0	0
Insecta	Trichontera	Rhyacophilidae	ronhila brunnea/vemna	0.039	∠.50 0	0.478	0.317	0	0.020	0.402	0	0	0.333	0	0.769	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Та	xon	1					Area-based	Kick Samples				
Higher Level	Classification	Family	Lowest Practical					20)21				
		,	Level Identification	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6
Clitellata	-	Enchytraeidae	Enchytraeidae	0	0	1.79	0.336	0	0.377	0.532	0.327	0.810	1.74
Clitellata	- Tubificida	Naididae	Nois	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	0	2.13	0.446	0.168	0	0.188	0	0	0	0
Euchelicerata	Sarcoptiformes	-	Oribatida	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	0	0	0	0	0	0	0	0	0.405	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	1.06	0	0	1.07	0.377	2.13	0.654	0.810	0.651
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	Curculionidae	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dyliscidae	Liodessus	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Optioservus	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Culicoides	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Apedilum	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Boreoheptagyia	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	1.33	1.26	0	0.185	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	1.30	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chironomus	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corynoneura	0.332	1.26	0.984	1.30	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Diamesa	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Dipiociadius	0.332	0	0	0	0	55	0	0 50	0 51	0
Insecta	Diptera	Chironomidae	Eukienenella	0 332	1.20	0	0 555	30	55	33 0	50	0	20
Insecta	Diptera	Chironomidae	Hydrobaenus	0.352	0	0	0.000	0	0 925	0	0	0	1 72
Insecta	Diptera	Chironomidae	Limnophyes	0	1 26	0	0.020	0	0.020	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	0.332	0	0	2.59	0	11	0.601	0	1.43	1.96
Insecta	Diptera	Chironomidae	Orthocladius	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius complex	0.995	1.26	1.48	1.48	11	1.85	3.60	6.48	3.82	12
Insecta	Diptera	Chironomidae	Pagastia	9.95	2.53	25	5.00	35	17	19	26	19	31
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parorthocladius	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	0	0	0	U
Insecta	Diptera	Chironomidae	Polypealium	133	0	0 402	0 555	0	0	0	0	0	0 /01
Insecta	Diptera	Chironomidae	Psilometriocnemus	1.33 0	0	0.492	0.000	0	0	0	0	0	0.491
Insecta	Diptera	Chironomidae	Rheocricotopus	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Rheotanytarsus	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellina	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellinella	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	hienemannimyia comple	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	50	32	15	44	0	0.925	0	0	0	0
Insecta	Diptera	Chironomidae	Zavrelimyia	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Dixidae	Dixa Chalifara (Mataria	0	0	0	0 0 0 7 1	0	0.188	0	0	0	U 7.04
Insecta	Diptera	Empididae	Clineasra	0.464	1.00	4.91	0.0/1	0.79	1.51	11	4.58	5.20	1.81
Insecta	Diptera	Empididae	Neoplasta	0.404	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhvnchidae	Glutops	0	0	0	0	0	0.377	0	0	0	0
Insecta	Diptera	Psychodidae	Pericoma	2.79	6.38	1.79	3.69	0	3.39	1.60	0.980	2.83	2.60

	Tax	xon						Area-based	Kick Samples				
HigherLoyal	Classification	Family	Lowest Practical					20					
Figlier Lever	Classification	Failing	Level Identification	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6
Insecta	Diptera	Psychodidae	Pericoma/Telmatoscopu	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Psychodidae	Psychoda	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	Sciomyzidae	0	0	0	0	0	0.188	0	0	0	0
Insecta	Diptera	Simuliidae	Brosimulium	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0	0	0	0.327	0	0
Insecta	Diptera	Simuliidae	Simulium	0	0	0	0	0	0	0	0.027	0	0
Insecta	Diptera	Stratiomyidae	Stratiomyidae	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Antocha	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	3.72	2.13	4.91	4.53	0	0.188	0.532	0	0.405	0
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Molophilus	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Pedicia	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	l ipulidae	Rhabdomastix	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletidae	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis rhodani group	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella doddsii	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella grandis group	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0	0	0	0	0	0	0.532	0	0	0.217
Insecta	Ephemeroptera	Heptageniidae	Epeorus	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Rhithrogena	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Capnia	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Capniidae	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Eucapnopsis	0 510	0	0	0	0	0	0	0	0	0 0 0 0 1
Insecta	Plecoptera	Capniidae	Derecephia	0.512	1.//	0.20	12	0	0 277	1.06	0	0 405	0.051
Insecta	Plecontera	Chloroperlidae	Chloroperlidae	0	1.06	0.55	0	0	0.377	0 532	0	0.405	0
Insecta	Plecoptera	Chloroperlidae	Sweltsa	0	0	0	0	0	0	0.002	0	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	1.11	0	1.52	0	0	0.565	0	0.955	0	1.47
Insecta	Plecoptera	Nemouridae	Visoka	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	9.42	23	14	5.37	7.14	2.82	20	5.25	10	7.64
Insecta	Plecoptera	Nemouridae	Zapada cinctipes	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada columbiana	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	apada oregonensis gro	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peitoperiidae	Peitoperiidae	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Periopenidae	Isoperla	0 310	5 32	0 473	2.01	0 357	0	0 532	0	0 405	0 651
Insecta	Plecoptera	Periodidae	Kogotus	0.010	0.52	0.475	0	0.007	0	0.002	0	0.400	0.001
Insecta	Plecoptera	Perlodidae	Megarcvs	0	0	7.56	0.168	0	0.377	0	0.327	0	0
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	1.55	2.13	2.68	1.17	1.43	1.51	1.06	3.92	1.62	2.17
Insecta	Trichoptera	Apataniidae	Pedomoecus	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosomatidae	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatonsyche	0	0	0	0	0	0	0	0	0	0
Insecta	Trichontera	Hydronsychidae	Hydronsychidae	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Paransvche	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Homophylax	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0.310	9.57	2.23	0	0	1.13	1.60	0	1.62	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0	0	0	0	0.357	0.188	2.66	0.327	0.405	0
Insecta	Irichoptera	Rhyacophilidae	cophila brunnea/vemna	U	0	0	0	0	0	0	0	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	U	U	U	U	0	U	U	U	U	U

		Taxon							Abundar	lce					
			Lowest Practical Level	2012		2(014		Abundar	20	15			2021	
Higher Level Classification		Family	Identification	PG GHCKII 1	GPEE2 25 1	GDEE2 75 1		GDEE4 75 1	BC CHCKII 1	CDEE2 75 1	GDEE4 25 1	GDEE4 75 1	PC CHNE 1		PC CHNE 2
Clitellata	_	Enchytraeidae	Enchytraeus		OREE3-23-1	0 0	0 0	0 0		7 5	18	1 0		0	0
Clitellata	Tubificida	Naididae	Nais	0	0	50	0	20	0	0	59	1.0	0	40	15
Collembola	Collembola	-	Collembola	0	0	0	0	0	0	0	0	0	20		10
Fuchelicerata	Sarcoptiformes	-	Oribatida	0	0	0	0	20	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	0	0	1.0	20	22	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0	0	1.0	0	2.2	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	Curculionidae	11	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Liodessus	0	0	0	0	0	0	0	0	1.0	0	0	0
Insecta	Coleoptera	Flmidae	Heterlimnius	0	0	0	1.0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Optioservus	0	0	0	0	0	0	0	59	0	0	0	0
Insecta	Dintera	Ceratopogonidae	Probezzia	0	0	0	1.0	0	0	0	0.0	0	0	0	0
Insecta	Diptera	Chironomidae	Boreoheptagvia	0	0	0	0	0	0	26	0	11	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0	0	31	21	0	0	0	0	17	90	5.6
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0.1	21	0	0	0	0	0	0	0.0
Insecta	Diptera	Chironomidae	Coryponeura	0	0	0	0	0	0	0	0	0	17	23	0
Insecta	Diptera	Chironomidae	Diamesa	3 156	339	233	331	1 397	7.6	53	62	17	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	0,100	1 155	608	26	0	13	24	37	21	0	0	0
Insecta	Diptera	Chironomidae	Heleniella	0	1,155	000	20	0	15	0	0	0	86	315	0
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	0	0	21	15	26	37	11	0.0	157	0
Insecta	Diptera	Chironomidae	Limpophyes	0	0	0	0	0	15	20	13	0	26	23	56
Insecta	Diptera	Chironomidae	Micropsoctra	0	11	13	5.1	317	10	16	0	1 1	17	000	34
Insecta	Diptera	Chironomidae	Orthocladius	0	0	13	0	0	10	301	1 001	75	0	900	0
Insecta	Diptera	Chironomidae	Orthooladius complex	0	721	401	0	2,666	410		1,091	75	60	260	56
Insecta	Diptera	Chironomidae	Dagastia	0	52	491	03	2,000	12	10	10	0	111	500	620
Insecta	Diptera	Chironomidae	Pagaslia	0	53	0	0	42	13	19	19	0	111	032	009
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	2.0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parapnaenociadius	0	21	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parortnociadius	0	0	0	0	0	0	2.6	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0	0	13	2.1	42	7.6	16	13	3.4	8.6	135	0
Insecta	Diptera	Chironomidae	Rheocricotopus	0	0	0	0	0	0	0	6.2	0	0	0	0
Insecta	Diptera	Chironomidae	Rheotanytarsus	0	0	13	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellina	0	0	0	0	21	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellinella	0	0	0	0	0	5.1	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	21	0	0	31	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemannimyia complex	0	0	0	0	0	0	0	0	0	0	45	0
Insecta	Diptera	Chironomidae	Tvetenia	0	0	39	6.2	169	18	5.3	50	15	146	495	330
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	0	0	0	6.7	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	11	0	25	2.5	0	13	18	0	4.2	0	0	0
Insecta	Diptera	Empididae	Clinocera	0	0	0	2.5	0	0	0	0	15	0	0	0
Insecta	Diptera	Empididae	Neoplasta	0	20	0	0	0	0	0	0	0	0	60	35
Insecta	Diptera	Muscidae	Muscidae	0	10	0	0	220	0	0	77	0	13	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	0	0	0	0	0	0	0	0	1.0	0	0	0
Insecta	Diptera	Psychodidae	Pericoma/Telmatoscopus	56	60	75	7.0	120	29	2.5	82	7.0	240	723	70
Insecta	Diptera	Psychodidae	Psychoda	0	0	0	1.0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Gymnopais	0	0	0	1.2	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Prosimulium	0	0	0	1.2	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simulium	11	141	50	16	0	6.7	2.5	0	19	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	33	10	100	7.0	60	20	10	5.9	32	107	301	110
Insecta	Ephemeroptera	Ameletidae	Ameletidae	0	0	0	0	0	0	0	0	1.0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis rhodani group	67	10	50	6.0	0	0	2.5	0	3.0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella doddsii	0	0	0	0	0	0	0	0	1.0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella grandis group	0	0	0	0	0	0	0	5.9	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0	20	0	0	40	8.9	7.5	0	2.0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Epeorus	0	0	0	0	0	0	2.5	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	122	60	25	12	80	4.4	18	5.9	1.0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Rhithrogena	0	0	0	0	0	2.2	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Capnia	0	0	0	0	0	0	0	0	3.0	0	0	0

Notes: No./3-min kick = number of organisms per three minute kick; - = not applicable.

Table E.4: Abundance	(No./3-min Kick) of Benthic Invertebrate	Taxa in Samples	from Upper Gr	reenhills Creek. E	Based on the Low	vest Practical Level (of Taxonomy, 2012
								···· · ··· · ··· · ··· · ··· · ··· · ···· · ······

Taxon				Abundance											
Higher Level Classification		Family	Lowest Practical Level	2012		20	14			20	15	2021			
			Identification	RG_GHCKU-1	GREE3-25-1	GREE3-75-1	GREE4-25-1	GREE4-75-1	RG_GHCKU-1	GREE3-75-1	GREE4-25-1	GREE4-75-1	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3
Insecta	Plecoptera	Capniidae	Capniidae	22	180	775	78	700	11	23	382	57	1,168	1,598	307
Insecta	Plecoptera	Chloroperlidae	Sweltsa	0	0	0	3.0	0	0	13	5.9	1.0	6.9	20	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	0	0	0	0	21	61	16
Insecta	Plecoptera	Nemouridae	Zapada cinctipes	0	153	570	3.0	350	62	38	329	7.0	186	1,527	0
Insecta	Plecoptera	Nemouridae	Zapada columbiana	0	44	380	3.0	210	11	0	0	0	0	31	402
Insecta	Plecoptera	Nemouridae	Zapada oregonensis group	0	44	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Peltoperlidae	0	0	0	1.0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Kogotus	0	0	0	7.0	60	0	0	29	0	0	0	164
Insecta	Plecoptera	Perlodidae	Megarcys	0	20	125	0	0	22	15	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0	117	344	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	0	50	562	14	240	67	98	0	3.0	55	41	222
Insecta	Trichoptera	Brachycentridae	Micrasema	0	0	13	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosomatidae	0	0	0	0	0	4.4	6.9	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Hydropsychidae	11	0	112	0	40	0	3.4	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	22	10	0	6.0	0	0	14	5.9	0	0	120	10
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	11	0	0	7.0	0	2.2	3.4	0	1.0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila brunnea/vemna group	p 11	10	0	1.0	0	0	0	0	0	0	0	0

Notes: No./3-min kick = number of organisms per three minute kick; - = not applicable.

2 to 2021
	Taxon					Der	nsity			
Higher Lovel	Classification	Family				20	16			
	Classification	i anniy	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2
Clitellata	-	Enchytraeidae	347	254	92	57	137	79	80	60
Collembola	Collembola	Collembola	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	20	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	0	0	23	0	26	59	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	114	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0	0	23	0	0	0	13	0
Insecta	Plecoptera	Leuctridae	0	0	0	57	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	158	21	0	57	39	0	0	30
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0

	Taxon					Der	nsity			
Higher Lovel	Classification	Family				20	16			
nigher Lever	Glassification	Failing	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4
Clitellata	-	Enchytraeidae	93	33	76	174	12	13	61	195
Collembola	Collembola	Collembola	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	13	0	10	0	0	0	0	0
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	27	17	10	0	6	0	0	0
Insecta	Plecoptera	Leuctridae	0	7	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	0	7	19	0	36	7	107	141
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0

	Taxon					Der	sity			
Higher Lovel	Classification	Family	20	16			20)17		
ringher Lever	Classification	i anniy	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6
Clitellata	-	Enchytraeidae	48	8	160	280	97	303	90	80
Collembola	Collembola	Collembola	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	10	0	33	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	10	0	0	0	3	0
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	40
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0	0	0	7	0	67	13	10
Insecta	Plecoptera	Leuctridae	0	0	0	13	0	33	10	0
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	21	58	10	0	10	33	3	0
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0

	Taxon					Der	nsity			
Higher Lovel	Classification	Family				20	17			
riigher Lever	Classification	i anniy	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2
Clitellata	-	Enchytraeidae	0	10	57	37	23	17	7	0
Collembola	Collembola	Collembola	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	3	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	3	3	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	7	0	0	0	0	0
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0	0	0	13	0	3	0	10
Insecta	Plecoptera	Leuctridae	0	0	0	0	0	0	0	10
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	17	0	0	0	7	17	60	23
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0

	Taxon					Der	nsity			
Higher Lovel	Classification	Family		20	17			20)18	
Higher Lever	Classification	Failing	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4
Clitellata	-	Enchytraeidae	7	10	0	3	240	800	53	27
Collembola	Collembola	Collembola	0	0	0	0	0	0	80	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0	3	0	0	53	0	0	0
Insecta	Plecoptera	Leuctridae	3	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	3	60	13	133	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0

	Taxon					Der	nsity			
Higher Lovel	Classification	Family				20	18			
Tingher Lever	Glassification	i anniy	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6
Clitellata	-	Enchytraeidae	640	320	0	0	160	0	53	0
Collembola	Collembola	Collembola	0	0	53	27	0	453	27	27
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	27
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	107	0	0	0	27	0	0	108
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Leuctridae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	0	53	107	27	53	0	80	187
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0

	Taxon					Der	nsity			
Higher Lovel	Classification	Family			20)18			20	19
Ingher Lever	Glassification	i anniy	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2
Clitellata	-	Enchytraeidae	7	0	0	0	7	7	213	400
Collembola	Collembola	Collembola	0	0	0	13	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	3	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0	13	3	0	17	10	0	0
Insecta	Plecoptera	Leuctridae	7	0	0	0	0	3	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	140	253	113	50	43	50	80	107
Insecta	Trichoptera	Lepidostomatidae	0	0	3	0	0	0	0	0

	Taxon					Der	nsity			
Higher Lovel	Classification	Family				20	19			
ringher Lever	Classification	i anniy	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4
Clitellata	-	Enchytraeidae	40	133	227	433	27	13	0	3
Collembola	Collembola	Collembola	53	0	0	0	0	27	0	7
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	0	0	0	13	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0	0	0	0	0	13	0	0
Insecta	Plecoptera	Leuctridae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	0	13	13	13	27	67	53	33
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0

	Taxon					Der	sity			
Higher Lovel	Classification	Family				20	19			
	Classification	i anniy	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6
Clitellata	-	Enchytraeidae	3	0	120	0	3	0	100	10
Collembola	Collembola	Collembola	60	293	13	0	3	3	0	3
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0	0	13	0	0	3	7	0
Insecta	Plecoptera	Leuctridae	0	0	0	3	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	13	53	40	17	3	10	13	13
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0

	Taxon					Der	nsity			
Higher Lovel	Classification	Family				20	20			
ringher Lever	Classification	i anniy	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2
Clitellata	-	Enchytraeidae	347	293	267	293	240	1,707	107	67
Collembola	Collembola	Collembola	0	40	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	27	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	27	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0	13	0	27	0	0	0	0
Insecta	Plecoptera	Leuctridae	0	0	53	0	0	0	0	27
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0

	Taxon					Der	sity			
Higher Lovel	Classification	Family				20	20			
	Classification	i anniy	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4
Clitellata	-	Enchytraeidae	53	0	80	27	80	0	7	67
Collembola	Collembola	Collembola	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	14	0	13	0	0	0
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	27	0	0	0	13	0	0	0
Insecta	Plecoptera	Leuctridae	13	0	0	0	0	13	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	7	0
Insecta	Plecoptera	Taeniopterygidae	0	13	0	13	0	13	0	53
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0

	Taxon					Der	nsity			
Higher Lovel	Classification	Family	20	20			20)21		
	Classification	i anniy	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6
Clitellata	-	Enchytraeidae	7	67	432	132	216	120	24	144
Collembola	Collembola	Collembola	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	24	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	0	0	120	0	0	24	0	24
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	7	0	0	0	24	0	0	0
Insecta	Plecoptera	Leuctridae	7	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	24	12	0	0	24	48
Insecta	Plecoptera	Taeniopterygidae	7	40	48	0	0	0	48	72
Insecta	Trichoptera	Lepidostomatidae	0	0	0	36	0	0	0	0

	Taxon					Der	nsity			
Higher Lovel	Classification	Family				20	21			
riigher Lever	Classification	i anniy	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2
Clitellata	-	Enchytraeidae	120	96	0	0	48	48	0	6
Collembola	Collembola	Collembola	0	0	0	48	12	24	0	3
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	3
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	24	0	0	24	0	0	0	0
Insecta	Plecoptera	Leuctridae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	96	96	240	48	72	168	48	24
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0

	Taxon			Der	nsity	
Higher Lovel	Classification	Family		20	21	
riigher Lever	Classification	i anny	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6
Clitellata	-	Enchytraeidae	6	6	24	96
Collembola	Collembola	Collembola	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0
Insecta	Diptera	Muscidae	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	6	0	0	0
Insecta	Plecoptera	Leuctridae	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	12	72	48	120
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0

Table E.6: Relative Abundance (Percent[%]) of Benthic Invertebrate Taxa in Samples from Upper Greenhills Creek, Based on the Family Level of Taxonomy, 2012 to 2021

	Taxon							Three-minute	Kick Samples	;						Area-based I	Kick Samples	
Higher Lovel	Classification	Family	2012		20)14			20)15			2021			20	16	
riigher Lever	Classification	r anniy	RG_GHCKU-	1 GREE3-25-1	GREE3-75-1	GREE4-25-1	GREE4-75-1	RG_GHCKU-1	GREE3-75-1	GREE4-25-1	GREE4-75-1	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4
Clitellata	-	Enchytraeidae	0	0	0	0	0	0	0.946	0.761	0.338	0	0	0	7.59	13	6.90	1.10
Collembola	Collembola	Collembola	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	0.313	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0	0.338	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0.157	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	0	0.319	0	0	3.18	0	0	3.30	0	0.565	0	0	0	0	1.72	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.20
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0	0.338	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0	0	0	0.469	0	0	1.58	0.254	0.338	0.291	0.251	0	0	0	1.72	0
Insecta	Plecoptera	Leuctridae	0	0	0	0	0	0	0	0	0	0.874	0.753	0.639	0	0	0	1.10
Insecta	Plecoptera	Peltoperlidae	0	0	0	0.156	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	0	1.59	13	2.19	3.47	8.60	12	0	1.01	2.33	0.502	8.95	3.45	1.11	0	1.10
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Taxon									Area-based	Kick Samples							
HigherLoyal	Classification	Family							2	016							2	017
nigher Lever	Classification	ганну	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2
Clitellata	-	Enchytraeidae	6.01	3.20	4.51	4.01	4.70	5.32	3.19	3.77	0.634	1.30	2.39	5.64	1.80	0.672	4.24	12
Collembola	Collembola	Collembola	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.440
Insecta	Coleoptera	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0.800	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0.671	0	0.419	0	0	0	0	0	0	0	0.265	0
Insecta	Diptera	Muscidae	1.15	2.40	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0	0	0.752	0	1.34	2.66	0.398	0	0.317	0	0	0	0	0	0	0.293
Insecta	Plecoptera	Leuctridae	0	0	0	0	0	1.06	0	0	0	0	0	0	0	0	0	0.587
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	1.72	0	0	2.00	0	1.06	0.797	0	1.90	0.651	4.18	4.07	0.771	4.70	0.265	0
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Taxon									Area-based	Kick Samples							
Higher Loval	Classification	Family								20	017							
Higher Lever	Classification	Failing	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6
Clitellata	-	Enchytraeidae	7.14	2.71	5.96	2.48	0	2.22	2.32	6.83	2.13	1.39	0.820	0	1.22	0.777	0	0.326
Collembola	Collembola	Collembola	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0.298	0	0	0	0	0	0	0	0.279	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0.621	0.304	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0.221	0	0	0	0.273	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	0	0	0	1.24	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0	0.596	0.883	0.310	0	0	0	2.48	0	0.279	0	0.771	0	0.259	0	0
Insecta	Plecoptera	Leuctridae	0	0.298	0.662	0	0	0	0	0	0	0	0	0.771	0.610	0	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	0.739	0.298	0.221	0	4.50	0	0	0	0.608	1.39	7.38	1.80	0.610	4.66	3.57	13
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Taxon									Area-based	Kick Samples							
Higher Lovel	Classification	Family								20)18							
Higher Lever	Classification	Failing	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4
Clitellata	-	Enchytraeidae	4.64	19	1.63	0.806	4.49	3.90	0	0	6.74	0	2.44	0	0.239	0	0	0
Collembola	Collembola	Collembola	0	0	2.44	0	0	0	1.23	0.529	0	17	1.22	0.870	0	0	0	0.855
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0.870	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	0	0	0	0	0.749	0	0	0	1.12	0	0	3.53	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.211	0
Insecta	Plecoptera	Chloroperlidae	1.03	0	0	0	0	0	0	0	0	0	0	0	0	0.420	0.211	0
Insecta	Plecoptera	Leuctridae	0	0	0	0	0	0	0	0	0	0	0	0	0.239	0	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	0	0	0	0	0	0.649	2.45	0.529	2.25	0	3.66	6.09	5.01	7.98	7.19	3.21
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.211	0

	Taxon									Area-based	Kick Samples							
Higher Lovel	Classification	Family	20	018							20	19						
	Classification	i anny	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2
Clitellata	-	Enchytraeidae	0.480	0.576	4.55	7.46	1.40	4.33	8.13	11	0.216	0.541	0	0.391	0.862	0	1.54	0
Collembola	Collembola	Collembola	0	0	0	0	1.86	0	0	0	0	1.08	0	0.781	16	3.21	0.171	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	0.347	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	1.20	0.865	0	0	0	0	0	0	0	0.541	0	0	0	0	0.171	0
Insecta	Plecoptera	Leuctridae	0	0.288	0	0	0	0	0	0	0	0	0	0	0	0	0	0.769
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	3.12	4.32	1.70	1.99	0	0.433	0.478	0.347	0.216	2.70	0.447	3.91	3.45	0.583	0.513	3.85
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Taxon									Area-based	Kick Samples							
Higher Lovel	Classification	Family		20)19							20	20					
Higher Lever	Classification	Failing	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4	RG_GHNF-5	RG_GHNF-6
Clitellata	-	Enchytraeidae	0.435	0	1.96	0.629	7.22	12	2.89	4.36	2.09	6.42	1.14	3.14	3.36	0	4.26	2.47
Collembola	Collembola	Collembola	0.435	0.505	0	0.210	0	1.66	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0.555	0	0	0	0	0	0	0	0	0	0.719	0
Insecta	Diptera	Muscidae	0	0	0	0	0.555	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0	0.505	0.130	0	0	0.552	0	0.397	0	0	0	0	1.68	0	0	0
Insecta	Plecoptera	Leuctridae	0	0	0	0	0	0	0.578	0	0	0	0	1.26	0.840	0	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	0.435	1.52	0.261	0.839	0	0	0	0	0	0	0	0	0	1.14	0	1.23
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Taxon									Area-based	Kick Samples							
Higher Loval	Classification	Family			20)20							2	021				
Higher Lever	Glassification	Failing	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6	RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-4	RG_GHUT-5	RG_GHUT-6	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3	RG_GHNF-4
Clitellata	-	Enchytraeidae	1.92	0	0.239	1.59	0.329	1.03	3.61	2.73	3.57	1.67	0.439	2.31	1.08	0.702	0	0
Collembola	Collembola	Collembola	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.13
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0	0.397	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0.319	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	0	0	0	0	0	0	1.00	0	0	0.333	0	0.384	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0.319	0	0	0	0.329	0	0	0	0.397	0	0	0	0.217	0	0	1.06
Insecta	Plecoptera	Leuctridae	0	0.284	0	0	0.329	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	0.239	0	0	0	0.201	0.248	0	0	0.439	0.769	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	0	0.284	0	1.27	0.329	0.619	0.402	0	0	0	0.877	1.15	0.867	0.702	1.55	2.13
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0.744	0	0	0	0	0	0	0	0

	Taxon					Area-based I	Kick Samples			
Higher Lovel	Classification	Family				20	21			
Tingher Lever	Classification	i anny	RG_GHNF-5	RG_GHNF-6	RG_GHFF-1	RG_GHFF-2	RG_GHFF-3	RG_GHFF-4	RG_GHFF-5	RG_GHFF-6
Clitellata	-	Enchytraeidae	1.79	0.336	0	0.377	0.532	0.327	0.810	1.74
Collembola	Collembola	Collembola	0.446	0.168	0	0.188	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Sciomyzidae	0	0	0	0.188	0	0	0	0
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0	0	0	0	0.532	0	0	0
Insecta	Plecoptera	Leuctridae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	2.68	1.17	1.43	1.51	1.06	3.92	1.62	2.17
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0

	_													
	laxon							Abun	dance					
Higher Lovel	Classification	Family	2012		20)14			20	15			2021	
Higher Level	Classification	гаппу	RG_GHCKU-1	GREE3-25-1	GREE3-75-1	GREE4-25-1	GREE4-75-1	RG_GHCKU-1	GREE3-75-1	GREE4-25-1	GREE4-75-1	RG_GHNF-1	RG_GHNF-2	RG_GHNF-3
Clitellata	-	Enchytraeidae	0	0	0	0	0	0	8	18	1	0	0	0
Insecta	Coleoptera	Curculionidae	11	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0	1	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	1	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	0	10	0	0	220	0	0	77	0	13	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0	1	0	0	0
Insecta	Plecoptera	Chloroperlidae	0	0	0	3	0	0	13	6	1	7	20	0
Insecta	Plecoptera	Leuctridae	0	0	0	0	0	0	0	0	0	21	61	16
Insecta	Plecoptera	Peltoperlidae	0	0	0	1	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	0	50	562	14	240	67	98	0	3	55	41	222

Table E.7: Abundance (No./3-min Kick) of Benthic Invertebrate Taxa in Samples from Upper Greenhills Creek, Based on the Family Level of Taxonomy, 2012 to 2021

Notes: No./3-min kick = number of organisms per three minute kick; - = not applicable.

		Taxon							Dei	nsity					
Higher Lovel (Classification	Family	Lowest Bractical Lovel Identification			20	16			~		20	017		
Higher Lever	Glassification	Failing	Lowest Fractical Level Identification	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6
Bivalvia	Veneroida	Pisidiidae	Pisidium	377	340	272	461	1,430	373	63	50	47	140	540	137
Clitellata	-	Enchytraeidae	Enchytraeidae	28	699	1,039	1,152	2,682	4,507	27	313	443	23	200	697
Clitellata	l ubificida	Naididae	Chaetogaster	0	0	0	0	0	0	0	0	0	10	0	0
Clitellata	Tubilicida	Naididae	Nais preischen	0	0	470	1,190	1,371	1,547	0	0	0	20	0	0
Clitellata	Tubificida	Naididae	Tubificinae	70	19	148	0	0	587	0	0	0	10	0	0
Collembola	Collembola	-	Collembola	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	78	208	322	422	298	308	57	63	17	87	27	77
Euchelicerata	Trombidiformes	Neoacaridae	Neoacaridae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	20	0	0	0	0	39	0	0	0	0	0	6.7
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0	0	0	0	6.7	0	0	0	13
Insecta	Coleoptera	Elmidae	Heterlimnius	140	117	152	192	0	0	0	10	10	20	6.7	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	13	0	0	0	0	6.7
Insecta	Diptora	Stapnylinidae	Corotopogopidao	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Probezzia	14	0	20	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brundiniella	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corynoneura	37	32	32	0	0	0	80	25	45	13	0	0
Insecta	Diptera	Chironomidae	Diamesa	0	0	0	0	0	0	0	0	5.6	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	0	0	0	0	0	30	0	0	0	0	0	17
Insecta	Diptera	Chironomidae	Heleniella	0	32	0	0	72	30	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	32	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Macropelopia	0	0	0	0	0	0	0	0	0	4.4	0	0
Insecta	Diptera	Chironomidae	Micropsectra	221	95	/12	576	579	628	23	303	101	257	230	144
Insecta	Diptera	Chironomidae	Nanociadius Orthogladius complex	0	32	97	58	0	0	11	10	11	4.4	77	17
Insecta	Diptera	Chironomidae	Pagastia	0	0	0	0	0	0	11	5.1	0	0	0	0
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paratanytarsus	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parorthocladius	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	74	0	129	58	72	30	28	15	5.6	44	38	25
Insecta	Diptera	Chironomidae	Psectrocladius	0	0	0	0	0	0	0	0	5.6	0	0	0
Insecta	Diptera	Chironomidae	Rheotanytarsus	37	63	226	115	289	269	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellina	0	0	0	0	0	0	0	0	0	0	0	8.3
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	131	31	33
Insecta	Diptera	Chironomidae	l vetenia	0	32	0	0	0	0	0	5.1	5.6	0	0	0
Insecta	Diptera	Dixidae	Dixa Chalifara/Matachala	0	0	0	0	0	0	3.3	0	0	0	0	0
	Diptera	Empididae	Clinocera	0	30	14	154	0	207	0	0.7	13	10	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	42	243	172	77	189	27	33	23	67	10	47	67
Insecta	Diptera	Psvchodidae	Pericoma	1.146	1.502	2.254	1.920	1.788	507	577	423	527	277	417	433
Insecta	Diptera	Simuliidae	Simuliidae	168	567	247	307	0	613	117	313	273	53	177	357
Insecta	Diptera	Tipulidae	Antocha	14	19	25	346	179	133	3.3	0	0	0	33	90
Insecta	Diptera	Tipulidae	Dicranota	14	57	50	38	0	27	70	60	87	20	47	50
Insecta	Diptera	Tipulidae	Hexatoma	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	3.3	0	0	0	0	0
Insecta	Diptera	Tipulidae	Tipula	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	84	38	(4	115	179	53	60	23	13	3.3	20	63
Insecta	Ephemeroptera	Epnemerellidae	Epnemerellidae	0	0	0	0	0	0	43	<u>б/</u> 10	<u>ю./</u>	10	<u>б./</u>	0
Insecta	Epnemeroptera Plecentora	Cappiidae	Paracappia	14	0	0	0	0	U	23	10	0	0	67	0
Insecta	Plecontera	Chloroperlidae	Chloroperlidge	U 112	10	222	77	110	27	10	0 3.2	67	0	0.7	0
Insecta	Plecontera	Leuctridae		28	19	0	0	60	0	0	0.5	0.7	43	0	67
Insecta	Plecoptera	Nemouridae	Malenka	531	888	798	422	715	293	67	83	40	97	103	63
Insecta	Plecoptera	Nemouridae	Zapada	671	661	322	729	596	107	683	623	650	383	357	350
Insecta	Plecoptera	Perlodidae	Isoperla	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Megarcys	13	0	0	0	0	27	13	6.7	0	0	6.7	0

		Taxon							Der	isity					
Higher Level C	lassification	Family	I owest Practical Level Identification			2	016					2	017		
Tingher Lever O	assincation	i anny	Lowest I factical Level Mentification	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	0	0	25	0	0	27	6.7	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Brachycentrus	0	0	0	0	0	0	3.3	0	0	0	90	0
Insecta	Trichoptera	Brachycentridae	Micrasema	14	151	74	269	656	1,467	20	20	30	30	0	257
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydroptilidae	Hydroptilidae	56	38	420	729	596	880	0	0	0	3.3	40	110
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	126	19	198	38	0	0	43	30	0	10	33	13
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0	0	0	38	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	233	283	247	576	467	160	77	70	217	0	77	117
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0	0	0
Malacostraca	Amphipoda	Hyalellidae	Hyalella	0	0	0	0	0	0	0	0	0	0	0	0

	Taxon								Dei	nsity					
						2	018			,		20	019		
Higher Level	Classification	Family	Lowest Practical Level Identification	RG GHBP-1	RG GHBP-2	RG GHBP-3	RG GHBP-4	RG GHBP-5	RG GHBP-6	RG GHBP-1	RG GHBP-2	RG GHBP-3	RG GHBP-4	RG GHBP-5	RG GHBP-6
Bivalvia	Veneroida	Pisidiidae	Pisidium	93	147	320	193	287	123	47	147	777	87	387	333
Clitellata	-	Enchytraeidae	Enchytraeidae	0	0	13	67	37	23	13	40	23	6.7	93	6.7
Clitellata	Tubificida	Naididae	Chaetogaster	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais bretscheri	0	0	0	20	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	l ubificida	Naididae		0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerate	Trombidiformos	- Hydrynhantidaa	Wandasia	0	0	0	0	0	0	0	13	0	0	0	0
Euchelicerata	Trombidiformes			27	213	40	320	73	70	13	20	13	13	80	67
Euchelicerata	Trombidiformes	Neoacaridae	Neoacaridae	0	0	40	0	0	0	0	0	43	0	0	0.7
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	13	0	0	20	0	10	13	20	0	0	6.7	6.7
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	13	0	0	6.7	3.3	3.3	13	0	0	0	6.7	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	20	0	3.3	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	6.7	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brundiniella	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corynoneura	17	52	35	39	0	0	7.9	56	0	10	0	0
Insecta	Diptera	Chironomidae	Diamesa	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	0	0	0	0	0	3.8	0	14	0	0	12	0
Insecta	Diptera	Chironomidae	Heleniella	34	0	141	13	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0	0	0	0	7.0
	Diptera	Chironomidae	Micropsectra	272	288	353	26	30	86	71	160	255	50	36	105
Insecta	Diptera	Chironomidae	Nanocladius	0	200	0	20	39	0	0	103	233	0	0	105
Insecta	Diptera	Chironomidae	Orthocladius complex	0	0	0	0	4.4	0	0	0	0	0	0	7.0
Insecta	Diptera	Chironomidae	Pagastia	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parametriocnemus	17	0	35	26	0	0	0	0	7.4	3.3	0	0
Insecta	Diptera	Chironomidae	Paratanytarsus	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parorthocladius	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	340	366	141	77	26	30	7.9	14	7.4	3.3	12	14
Insecta	Diptera	Chironomidae	Psectrocladius	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Rheotanytarsus	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellina	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	6.7	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	0	40	40	20	17	3.3	6.7	13	3.3	0	0	13
Insecta	Diptera	Empididae		0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Nuscidae Deleserbypabidae	Clutene	0	0	0	107	0	0	0	0	0	0	0	0
	Diptera	Pelecomynchidae	Bericoma	1 333	21	1 267	107	3.3	307	87	21 107	37 737	60	027	87
Insecta	Diptera	Simuliidae	Simuliidae	1,00	227	333	6.7	33	27	480	1 1/7	267	43	587	160
Insecta	Diptera	Tipulidae	Antocha	0	0	0	13	33	17	400	0	33	45	0	0
Insecta	Diptera	Tipulidae	Dicranota	40	53	40	13	6.7	33	67	40	13	33	47	33
Insecta	Diptera	Tipulidae	Hexatoma	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Tipula	0	0	0	0	0	0	20	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	173	427	227	293	70	93	720	2,653	1,350	220	1,200	1,033
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Paracapnia	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	13	3.3	13	13	6.7	10	73	40	53	17	87	20
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	67	147	27	313	120	127	100	267	37	27	73	27
Insecta	Plecoptera	Nemouridae	Zapada	1,720	2,227	1,347	1,100	430	383	853	1,400	293	40	940	160
Insecta	Plecoptera	Periodidae	Isoperla	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Periodidae	Megarcys	0	3.3	0	0	0	0	0	0	б.7	0	13	б.7

		Taxon							Der	nsity					
Higher Level C	lassification	Family	Lowest Practical Level Identification			2	018					20	019		
Tingher Lever O	assincation	i anny	Lowest I factical Level Mentification	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6
Insecta	Plecoptera	Perlodidae	Skwala	13	13	0	0	0	3.3	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Brachycentrus	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	13	27	13	33	30	180	27	40	17	3.3	73	153
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	27	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	0	0	0	0	0	0	0	0	3.3	0	0	0
Insecta	Trichoptera	Hydroptilidae	Hydroptilidae	0	0	0	0	10	33	6.7	0	10	0	0	6.7
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	80	267	53	40	110	37	67	93	37	3.3	0	67
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0	0	0	0	0	0	6.7	0	0	0	0	6.7
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	387	413	440	153	90	107	253	867	163	33	187	67
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0	0	6.7
Malacostraca	Amphipoda	Hyalellidae	Hyalella	0	0	0	0	0	0	0	0	0	0	0	0

		Taxon								Dens	ity						
Llinhan Laval C	lessification	Femily	Lowest Practical Level				202	0			2			2	021		
Higner Level C	lassification	Family	Identification	GH_GH1_AS-1	GH_GH1_AS-2	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6
Bivalvia	Veneroida	Pisidiidae	Pisidium	3,653	2,133	1,200	373	1,947	2,307	2,947	500	3,204	624	2,436	1,440	3,804	3,588
Clitellata	-	Enchytraeidae	Enchytraeidae	800	160	40	10	53	27	53	17	12	54	12	36	339	84
Clitellata	Tubificida	Naididae	Chaetogaster	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais bretscheri	613	693	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubilicida	Naididae		107	0	0	0	0	13	0	0	0	0	0	0	0	0
Collembola	Collembola		Collembola	0	0	13	0	0	0	0	0	0	60	0	0	0	0
Euchelicerata	Trombidiformes	Hvdrvphantidae	Wandesia	0	0	0	0	0	0	0	0	0	0.0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	53	107	53	20	93	53	40	3.3	60	12	24	24	72	36
Euchelicerata	Trombidiformes	Neoacaridae	Neoacaridae	0	0	0	0	0	13	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	373	907	0	0	0	0	0	6.7	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	24	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	0	0	53	13	27	13	13	3.3	60	24	12	12	24	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Dintoro	Staphylinidae	Staphylinidae	0	0	0	0	0	13	0	0	0	0	0	0	12	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0	0	0	0	18	12	12	12	0
Insecta	Diptera	Chironomidae	Brillia	0	0	0	0	0	0	18	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brundiniella	0	0	0	0	22	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corynoneura	0	0	41	32	65	19	55	4.3	0	27	0	0	19	0
Insecta	Diptera	Chironomidae	Diamesa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	33	0	20	0	0	0	0	0	0	14	108	0	0	0
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0	0	0	0	0	0	0	0	19	0
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropeopla	158	0 360	265	53	105	127	580	65	0	14	36	108	457	0
Insecta	Diptera	Chironomidae	Nanocladius	430	0	205	0	0	19	0	00	0	0	0	0	437	<u> </u>
Insecta	Diptera	Chironomidae	Orthocladius complex	98	60	0	21	0	19	18	0	0	96	0	0	0	0
Insecta	Diptera	Chironomidae	Pagastia	0	0	0	11	0	0	0	0	0	0	0	0	0	18
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paratanytarsus	0	480	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parorthocladius	0	0	0	0	0	0	0	4.3	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	327	60	20	11	65	37	92	13	24	41	0	0	57	0
Insecta	Diptera	Chironomidae	Psectrocladius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempelling	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	98	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	27	0	0	0	0	6.0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	27	160	0	0	0	0	0	0	0	0	0	0	24	12
Insecta	Diptera	Empididae	Clinocera	0	0	0	6.7	0	0	0	6.7	0	0	0	0	0	0
Insecta	Diptera	Muscidae	Muscidae	27	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	0	0	0	0	27	27	27	3.3	48	84	3.0	3.0	72	12
Insecta	Diptera	Psychodidae	Pericoma	133	53	880	517	1,560	2,053	840	517	864	1,560	288	924	6,168	912
Insecta	Diptera	Simulidae	Simulidae	088	853	53	67	53	27	93	13	0	48	96	12	108	24
Insecta	Diptera	Tipulidae	Dicranota	240	320	0	13	27	13	0	0	0	0	0	0	12	0
Insecta	Diptera	Tipulidae	Hexatoma	37	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Tipula	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	80	53	133	230	293	307	200	260	0	6.0	24	24	72	12
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Paracapnia	0	0	13	0	0	0	13	0	12	0	0	12	0	0
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	0	13	23	27	53	27	0	12	6.0	36	0	120	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	0	13	3.3	0	0	0	0	0	0
Insecta	Plecontera	Nemouridae	Vialenka Zapada	240	107	530	077	30 3/1	14	10	4.9 88	240	202	291	1 /57	1,130	192
Insecta	Plecontera	Periodidae	Isoperla	240	0	0	33	0	-00		10	0	60	035	0	0	0
Insecta	Plecoptera	Perlodidae	Megarcvs	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			- <u>1</u> -				-	-	-	-	-			-			

		Taxon								Densi	ty						
Higher Level C	lassification	Family	Lowest Practical Level				202	0						20)21		
Tingher Lever O	assincation	i anny	Identification	GH_GH1_AS-1	GH_GH1_AS	-2 RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Brachycentrus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	53	53	40	53	147	240	173	460	84	84	84	180	360	516
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	1,840	2,187	0	0	0	0	0	3.3	0	0	0	0	0	0
Insecta	Trichoptera	Hydroptilidae	Hydroptilidae	0	0	0	0	0	0	13	6.7	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	53	267	160	37	187	240	320	27	12	24	72	12	180	60
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0	13	0	0	0	12	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0	0	107	230	347	213	533	27	144	312	267	651	1,035	240
Malacostraca	Amphipoda	Gammaridae	Gammarus	987	1,013	6.7	0	27	17	27	27	132	15	36	72	210	78
Malacostraca	Amphipoda	Hyalellidae	Hyalella	160	427	0	0	0	0	0	0	0	0	0	0	0	0

		Taxon						Three-minute	Kick Samples					Area	-based Kick San	nples
Higher Lovel C	lassification	Family	Lowest Practical Level	2012	2014	20	15	2018	2019	2020		2021			2016	
Tilgher Level o	assincation	T anniy	Identification	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-1	GREE1-50-1	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-2	RG_GHCKD-3	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3
Bivalvia	Veneroida	Pisidiidae	Pisidiidae	0.0483	0	5.11	2.67	18	16	7.31	16	19	23	0	0	0
Bivalvia	Veneroida	Pisidiidae	Pisidium	0	0	0	0	0	0	0	0	0	0	8.58	5.49	2.98
Clitellata	-	Enchytraeidae	Enchytraeidae	0	0	0	0	0	0	0	0	0	0	0.636	11	11
Clitellata	- Lumbriculida	Lumbriculidae		0	0	0.41	2.13	0	0.826	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Chaetogaster	0	0	0	0	0	0.020	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais	0.532	2.79	0.189	0	1.20	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais bretscheri	0	0	0	0	0	0	0	0	0	0	0	0	2.44
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	0	0	5.15
Clitellata	Tubificida	Naididae	Tubificinae	0	0	12	3.47	0	0	0	0.771	0.935	0.587	1.59	0.305	1.63
Collembola	Collembola	-	Collembola	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	Hypogastruridae	Hypogastruridae	0	0	0	0	0	0	0	0.257	0	0	0	0	0
Euchelicerata	Trombidiformes	- Aturidae	Aturidae	0	0	0.189	0	0	0	0	0.257	0.312	0.293	0	0	0
Euchelicerata	Trombidiformes	Feltriidae	Feltria	0	1 24	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hvdrvphantidae	Protzia	0	0	0	0	0	0	0.292	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0.0725	0.310	1.44	0	1.51	1.03	0.292	0.257	0.312	2.64	1.78	3.36	3.53
Euchelicerata	Trombidiformes	Neoacaridae	Neoacaridae	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0.0725	0	0	0	0	0.344	0	0	0	0	0.445	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	Curculionidae	0	0	0	0	0	0.275	0 977	0.257	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0.877	0.257	0	0	3.18	1.89	1.00
Insecta	Coleoptera	Elmidae	Ontioservus	0	0	0.379	1 07	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0.0483	0	0	0	0.301	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Bezzia/ Palpomyia	0	0	0.189	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0.318	0	0.308
Insecta	Diptera	Ceratopogonidae	Mallochohelea	0.0483	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0	0	0	0	0	2.63	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Convincina	0	0	0	0	0 337	0 565	0	0	0	0	0.838	0 509	0 355
Insecta	Diptera	Chironomidae	Diamesa	0	0.964	0	0	0.337	0.505	0	0	0	0	0.000	0.503	0.355
Insecta	Diptera	Chironomidae	Eukiefferiella	0.532	0.964	0.201	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Heleniella	0	0	0.401	0	0	0	0	0	0	0	0	0.509	0
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	0	0	0	0	0	0	0	0	0	0	0.355
Insecta	Diptera	Chironomidae	Labrundinia	0	0.964	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Macropelopia	0	0	0	0	0	0	0	0 700	0	0	0	0	0
Insecta	Diptera	Chironomidae	Nanocladius	13	0.321	0	∠.31 ∩	0.41	9.3Z	0	0.720	2.08 0	0	0.03	0 500	1.00
Insecta	Diptera	Chironomidae	Orthocladius	0	0	1.20	0.329	0	0	0	0	0	0	0	0.000	0
Insecta	Diptera	Chironomidae	Orthocladius complex	0	0.643	0	0	0	0.565	0	0	0.692	0.411	0.838	0	0.355
Insecta	Diptera	Chironomidae	Pagastia	0	0.321	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paramerina	0	0	0	0	1.69	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parametriocnemus	0.0967	0	0	0	0	0.565	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0.643	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paratanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	2.01	0 320	0	0	0	0	0	0	1 68	0	1/2
Insecta	Diptera	Chironomidae	Procladius	0	0	0.401	1.32	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Psectrocladius	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Rheotanytarsus	0	12	0	0	0	0	0	0	0	0	0.838	1.02	2.48
Insecta	Diptera	Chironomidae	Stempellina	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellinella	0	0	6.22	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0.201	1.32	0	0	0	2.16	2.77	1.64	0	0	0
Insecta	Diptera	Chironomidae		0.0967	0.321	5.42	0	0	0.282	0	0 720	0.692	0.821	0	0 500	0
insecta	Diptera	Chironomidae	i vetenia	U	U	0.201	U	U	U	U	0.720	U	U	U	0.009	U

		Taxon						Three-minute	Kick Samples					Area	-based Kick Sar	nples
llinher Level (Classification	Formiller	Lowest Practical Level	2012	2014	20	15	2018	2019	2020		2021			2016	
Higher Level C	Classification	Family	Identification	RG_GHCKD-1	RG GHCKD-1	RG_GHCKD-1	GREE1-50-1	RG GHCKD-1	RG_GHCKD-1	RG GHCKD-1	RG GHCKD-1	RG GHCKD-2	RG GHCKD-3	RG GHBP-1	RG_GHBP-2	RG_GHBP-3
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	0.193	4.02	1.70	0	0	0	0	0	0	0	0	0.611	0.814
Insecta	Diptera	Empididae	Clinocera	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Neoplasta	0	0	0	0.533	0	0	0	0	0.312	0	0	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	0	0	0.189	0.533	0	1.10	0	0	0	0	0.954	3.93	1.88
Insecta	Diptera	Psychodidae	Pericoma Dericomo/Tolmotoconuo	0	0	0	0	0	0	15	0	10	0	26	24	25
Insecta	Diptera	Psychodidae	Simuliidaa	3.04	24	0.33	44	27	19	15	0.23	19	32	2 91	0.16	0
Insecta	Diptera	Simuliidae	Simuliuae	77	13	8 71	2.40	0 602	3 31	13	3.60	2.40	0 203	0.01	9.10	2.71
Insecta	Diptera	Strationvidae	Strationvidae	0	0	0.71	0	0.002	0.01	0	0.00	0	0.293	0	0	0
Insecta	Diptera	Tipulidae	Antocha	0 483	0.619	0	0 267	0	0	0	0	0	0.200	0 318	0 305	0 271
Insecta	Diptera	Tipulidae	Dicranota	0.290	2 17	0.568	0.533	0 452	0	0	0	0	0	0.318	0.000	0.543
Insecta	Diptera	Tipulidae	Hexatoma	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Tipula	0	0.310	0.568	0	0.452	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletidae	0	0	0.379	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0	0	0	0	0	0	0	0	0	0	1.91	0.611	0.814
Insecta	Ephemeroptera	Baetidae	Baetis rhodani group	0	0.310	5.30	5.33	2.71	28	7.31	0.771	0.623	0.293	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella doddsii	0	0	0.379	0	0	0	0	0.257	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0	0	0	0	0	0	1.17	0.257	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Cinygmula	0	0	0	0	0	0	0	0.514	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0.193	0	0.379	0.267	0	0	0	0	0	0	0.318	0	0
Insecta	Plecoptera	Capniidae	Capnildae	0	0	0	0	0	0	0.292	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Paracapnia	0	0	0	0	0	0	0	0	0	0	0	0 205	0
Insecta	Plecoptera	Chloroperlidae	Sweltsa	0.0483	1.24	2.65	0 800	0 602	0.826	0 585	0 257	0 623	0 587	2.54	0.305	2.44
Insecta	Plecontera			0.0483	0	0.189	0.800	0.002	0.820	0.385	0.257	0.023	0.567	0.636	0	0
Insecta	Plecontera	Nemouridae	Amphinemura	0	0	1 23	0	0	0	0	0	0	0	0.000	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0	0	0	0	11	1 23	2 49	24	12	8 76	12	14	8 75
Insecta	Plecoptera	Nemouridae	Zapada	0	0	0	0	0	0	0	0	0	0	15	11	3.53
Insecta	Plecoptera	Nemouridae	Zapada cinctipes	0.725	6.50	1.23	20	8.49	4.00	31	20	26	12	0	0	0
Insecta	Plecoptera	Peltoperlidae	Peltoperlidae	0	0.310	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Kogotus	0	0	0	0	0	0	0.292	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Megarcys	0	0	0	0	0	0	0	0	0	0	0.303	0	0
Insecta	Plecoptera	Perlodidae	Skwala	0	0.310	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Pteronarcyidae	Pteronarcella	0	0	0	0.267	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	0	0	0	0	0	0	0.292	0.771	0	1.47	0	0	0.271
Insecta	Trichoptera	Brachycentridae	Brachycentrus	0.0483	0	0	0	0	2.73	0	0	0	0	0	0	0
Insecta	I richoptera	Brachycentridae	Micrasema	U	0.619	2.99	0.800	1.45	0	1.49	2.35	1.56	3.38	0.318	2.44	0.814
Insecta	Trichoptera	Hydropsychidae		0 330	0	0	0	0	0	0	0	0	0	0	0	0
Insecto	Trichontera	Hydronsychidae	Hydropsychidae	0.330	0	0 2/0	0 267	0	0	0 803	0.203	0	0	0	0	0
Insecta	Trichontera	Hydronsychidae	Paransyche elsis	0.433	0	0.243	0.207	0	0	0.093	0.235	0	0	0	0	0
Insecta	Trichontera	Hydroptilidae	Hydrontila	0	0	1 74	0	5 78	0.911	0.200	0	0	0	0	0	0
Insecta	Trichoptera	Hydroptilidae	Hydroptilidae	0	0	0	0	0	0	0	Ő	0	0	1.27	0.611	4.61
Insecta	Trichoptera	Lepidostomatidae	Lepidostoma	0	0.929	0	0	8.67	4.56	2.68	0.293	0.312	1.84	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	2.86	0.305	2.17
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0.0483	0	0.249	4.27	0	0	0.595	0.879	0	0	0	0	0
Insecta	Trichoptera	Phryganeidae	Phryganeidae	0.0483	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0.242	9.91	2.24	2.40	1.45	1.21	3.57	4.98	4.67	3.99	5.30	4.58	2.71
Insecta	Trichoptera	Rhyacophilidae R	hyacophila brunnea/vemna grou	0.870	15	1.99	2.67	2.53	2.43	7.14	7.92	3.12	3.69	0	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	1.06	0	0.631	0	0	0	0.877	2.57	1.56	0.880	0	0	0
Malacostraca	Amphipoda	Hyalellidae	Hyalella	0	0.310	0.316	0	0	0	0	0.257	0	0	0	0	0

		Taxon							Area	-based Kick Sa	mples					
Higher Lovel C	lassification	Family	Lowest Practical Level		2016				20	17				20)18	
Higher Level C	assincation	Failing	Identification	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4
Bivalvia	Veneroida	Pisidiidae	Pisidiidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Bivalvia	Veneroida	Pisidiidae	Pisidium	4.58	12	2.88	2.96	1.95	1.82	8.16	21	4.37	1.94	1.65	6.52	3.93
Clitellata	-	Enchytraeidae	Enchytraeidae	11	22	35	1.25	12	17	1.36	7.67	22	0	0	0.272	1.36
Clitellata	-	Enchytraeidae	Enchytraeus	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Lumbriculida	Lumpriculidae	Chaotogostor	0	0	0	0	0	0	0 583	0	0	0	0	0	0
Clitellata	Tubilicida	Naididae	Nais	0	0	0	0	0	0	0.303	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais bretscheri	12	11	12	0	0	0	1 17	2.56	0	0	0	0	0 407
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Tubificinae	0	0	4.53	0	0	0	0.583	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	Hypogastruridae	Hypogastruridae	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Sarcoptiformes	-	Oribatida	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Aturidae	Aturidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Feltriidae	Feltria	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	Protzia	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydrypnantidae	Vvandesla	0	2.40	0	0	0	0 640	5.05	0	2.45	0 554	0	0 915	0
Euchelicerata	Trombidiformee	Neoacaridae	Neoacaridae	4.20 0	2.4U 0	2.30	2.00	2.40 0	0.049	0.00	0	2.40	0.004	2.4U 0	0.010	0.50
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0	0 297	0	0	0	0	0	0 213	0 277	0	0	0 407
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0.207	0	0 259	0	0	0	0.426	0.211	0	0	0.407
Insecta	Coleoptera	Curculionidae	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	1.91	0	0	0	0.389	0.390	1.17	0.256	0	0.277	0	0	0.136
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0.623	0	0	0	0	0.213	0	0	0	0.407
Insecta	Coleoptera	Elmidae	Optioservus	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Bezzia/ Palpomyia	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Mallochohelea	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brindinialla	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corypopeura	0	0	0	3 72	0 982	1 75	0 762	0	0	0 353	0 589	0 720	0 784
Insecta	Diptera	Chironomidae	Diamesa	0	0	0	0	0.302	0.219	0.702	0	0	0.000	0.505	0.720	0.704
Insecta	Diptera	Chironomidae	Eukiefferiella	0	0	0.231	0	0	0	0	0	0.527	0	0	0	0
Insecta	Diptera	Chironomidae	Heleniella	0	0.584	0.231	0	0	0	0	0	0	0.706	0	2.88	0.261
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Labrundinia	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Macropelopia	0	0	0	0	0	0	0.254	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	5.73	4.67	4.84	1.06	12	3.94	15	8.82	4.61	5.65	3.24	7.20	0.523
Insecta	Diptera	Chironomidae	Nanocladius	0.573	0	0	0	0	0	0.254	0	0	0	0	0	0
Insecta	Diptera	Chironomidae		0	U	U	0.521	U 0.202	U 0.429	0	0.004	0.527	0	0	U	U
Insecta	Diptera	Chironomidae	Pagastia	0	0	0	0.531	0.393	0.430	0	0.294	0.527	0	0	0	0
Insecta	Diptera	Chironomidae	Paramerina	0	0	0	0.551	0.190	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	0	0	0 353	0	0 720	0.523
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paratanytarsus	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parorthocladius	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0.573	0.584	0.231	1.33	0.589	0.219	2.54	1.47	0.791	7.06	4.12	2.88	1.57
Insecta	Diptera	Chironomidae	Procladius	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Psectrocladius	0	0	0	0	0	0.219	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Rheotanytarsus	1.15	2.34	2.08	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellina	0	0	0	0	0	0	0	0	0.264	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellinella	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thionomonnialla	0	0	0	0	0	0	7.62	1.18	1.05	0	U	0	0
Insecta	Diptera	Chironomidae		0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae		0	0	0	0	0 196	0.219	0	0	0	0	0	0	0
mseula	Dipleia	Chironomiuae	i velenia	U	U	U	v	0.100	0.210	v	U	0	5	v	v	U

		Taxon							Area-	based Kick San	nples					
			Lowest Practical Level		2016				201	7				20	18	
Higher Level 0	Classification	Family	Identification	RG GHBP-4	RG GHBP-5	RG GHBP-6	RG GHBP-1	RG GHBP-2	RG GHBP-3	RG GHBP-4	RG GHBP-5	RG GHBP-6	RG GHBP-1	RG GHBP-2	RG GHBP-3	RG GHBP-4
Insecta	Diptera	Dixidae	Dixa	0	0	0	0.156	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	1.53	0.481	2.06	0	0.259	0.519	0.583	0	1.06	0	0.450	0.815	0.407
Insecta	Diptera	Empididae	Clinocera	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Neoplasta	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	0.763	1.52	0.206	0.156	0.908	0.260	0.583	1.79	0.213	0	0.300	0.543	2.17
Insecta	Diptera	Psychodidae	Pericoma	19	14	3.91	27	17	21	16	16	14	28	44	26	40
Insecta	Diptera	Psychodidae	Pericoma/Telmatoscopus	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	3.05	0	4.73	5.45	12	11	3.11	6.78	11	2.49	2.55	6.79	0.136
Insecta	Diptera	Simuliidae	Simulium	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Antocha	3.44	1.44	1.03	0.156	0	0	0	1.28	2.88	0	0	0	0.271
Insecta	Diptera	Tipulidae	Dicranota	0.382	0	0.206	3.27	2.33	3.38	1.17	1.79	1.60	0.831	0.600	0.815	0.271
Insecta	Diptera	Tipulidae	Hexatoma	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0.156	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Tipula	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	1.15	1.44	0.412	2.80	0.908	0.519	0.194	0.767	2.02	3.60	4.80	4.62	5.96
Insecta	Ephemeroptera	Baetidae	Baetis rhodani group	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella doddsii	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0	0	0	2.02	2.59	0.260	0.583	0.256	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Cinygmula	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0	0	1.09	0.389	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Capniidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Paracapnia	0	0	0	0	0	0	0	0.256	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0.763	0.962	0.206	0.467	0.130	0.260	2.52	0	0	0.277	0.0375	0.272	0.271
Insecta	Plecoptera	Chloroperlidae	Sweltsa	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0.481	0	0	0	0	0.194	0	0.213	0	0	0	0
Insecta	Plecoptera	Nemouridae	Amphinemura	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	4.20	5.77	2.26	3.12	3.24	1.56	5.63	3.96	2.02	1.39	1.65	0.543	6.37
Insecta	Plecoptera	Nemouridae	Zapada	7.25	4.81	0.823	32	24	25	22	14	11	36	25	27	22
Insecta	Plecoptera	Nemouridae	Zapada cinctipes	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Kogotus	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Megarcys	0	0	0.206	0.623	0.259	0	0	0.256	0	0	0.0375	0	0
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0	0.277	0.150	0	0
Insecta	Plecoptera	Pteronarcyidae	Pteronarcella	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	I aeniopterygidae	Taeniopterygidae	0	0	0.206	0.312	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Brachycentrus	0	0	0	0.156	0	0	0	3.45	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	2.67	5.29	11	0.935	0.778	1.17	1.75	0	8.20	0.277	0.300	0.272	0.678
Insecta	Irichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0.554	0	0	0
Insecta	Irichoptera	Hydropsychidae	Cheumatopsyche	U	0	0	0	0	U	U	U	0	0	0	0	0
Insecta	I richoptera	Hydropsychidae	Hydropsychidae	U	0	0	0	0	U	U	U	0	0	0	0	0
Insecta	I richoptera	Hydropsychidae	Parapsyche elsis	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydroptilidae	Hydroptila	0	0	0	0	0	U	U	0	0	0	0	0	0
Insecta	Irichoptera	Hydroptilidae	Hydroptilidae	7.25	4.81	6.79	0	0	U	0.194	1.53	3.51	0	0	0	0
Insecta	I richoptera	Lepidostomatidae		0 202	U	U	0	0	U	0 500	0	0 400	0	U 2.00	U 1 00	0 010
Insecta	I richoptera	Lepidostomatidae	Lepidostomatidae	0.382	0	0	2.02	1.1/	U	0.583	1.28	0.426	1.66	3.00	1.09	0.813
Insecta	Irichoptera	Limnephilidae	Ecclisomyia	0.382	0	0	0	0	U	U	U	0	0	0	0	0
Insecta	Irichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Irichoptera	Phryganeidae	Phryganeidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	5.73	3.77	1.23	3.58	2.72	8.44	Ű	2.94	3.73	8.03	4.65	8.97	3.12
Insecta	I ricnoptera	Rhyacophilidae	iyacophila brunnea/vemna gro	U	0	0	0	0	U	U	U	0	0	0	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0	0	0	0	0	0
Malacostraca	Amphipoda	Hyalellidae	Hyalella	0	0	0	0	0	U	U	0	0	0	0	0	0

		Taxon							Area	a-based Kick Sar	nples					
Higher Lovel Cl	assification	Family	Lowest Practical Level					20)19					2020		
Thigher Level Ci	assincation	T anniy	Identification	RG_GHBP-5	RG_GHBP-6	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6	GH_GH1_AS-1	GH_GH1_AS	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3
Bivalvia	Veneroida	Pisidiidae	Pisidiidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Bivalvia	Veneroida	Pisidiidae	Pisidium	14	7.30	1.61	1.95	19	14	8.11	14	32	20	33	14	35
Clitellata	-	Enchytraeidae	Enchytraeidae	1.73	1.38	0.459	0.533	0.563	1.06	1.96	0.286	6.99	1.52	1.09	0.369	0.957
Clitellata	- Lumbriculida	Lumbriculidae	Lumbriculidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Chaetogaster	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais bretscheri	0	0	0	0	0	0	0	0	5.36	6.60	0	0	0
Clitellata	Tubificida	Naididae	Nais communis	0	0	0	0	0	0	0	0	1.63	0	0	0	0
Clitellata	Tubificida	Naididae	Tubificinae	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	0	0	0	0.178	0	0	0	0	0	0	0.364	0	0
Collembola	Collembola	Hypogastruridae	Hypogastruridae	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Sarcoptiformes	- Aturidaa	Oribatida	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Feltriidae	Feltria	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydrynhantidae	Protzia	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0	0	0	0	0	0.532	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	3.46	4.14	0.459	0.266	1.05	2.13	1.68	0.286	0.466	1.02	1.46	0.738	1.67
Euchelicerata	Trombidiformes	Neoacaridae	Neoacaridae	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0.592	0.459	0.266	0	0	0.140	0.286	3.26	8.63	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	0.157	0.197	0.459	0	0	0	0.140	0	0	0	1.46	0.492	0.478
Insecta	Coleoptera	Elmidae	Ontioservus	0	0.197	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Stanhylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Bezzia/ Palpomvia	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0.229	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Mallochohelea	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brundiniella	0	0	0	0	0	0	0	0	0	0	0	0	0.389
Insecta	Diptera	Chironomidae	Corynoneura	0	0	0.271	0.750	0	1.60	0	0	0	0	1.11	1.17	1.17
Insecta	Diplera	Chironomidae	Diamesa	0	0 222	0	0 187	0	0	0.252	0	0.286	0	0 557	0	0
Insecta	Diptera	Chironomidae	Heleniella	0	0.222	0	0.107	0	0	0.252	0	0.200	0	0.557	0	0
Insecta	Diptera	Chironomidae	Hvdrobaenus	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Labrundinia	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0.301	0	0	0	0	0
Insecta	Diptera	Chironomidae	Macropelopia	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	1.86	5.10	2.44	2.25	6.16	7.98	0.755	4.51	4.00	3.43	7.24	1.95	3.50
Insecta	Diptera	Chironomidae	Nanocladius	0.206	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius complex	0	0	0	0	0	0	0	0.301	0.857	0.571	0	0 779	0
Insecta	Diptera	Chironomidae	Padastia	0	0	0	0	0	0	0	0.001	0.007	0.071	0	0.390	0
Insecta	Diptera	Chironomidae	Paramerina	Ő	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0.179	0.532	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paratanytarsus	0	0	0	0	0	0	0	0	0	4.57	0	0	0
Insecta	Diptera	Chironomidae	Parorthocladius	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	1.24	1.78	0.271	0.187	0.179	0.532	0.252	0.602	2.86	0.571	0.557	0.390	1.17
Insecta	Diptera	Chironomidae	Procladius	0	U	0	U	U	0	0	U	U	U	0	U	0
Insecta	Diptera	Chironomidae	Rheotanytareus	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellina	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellinella	Ő	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0.857	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemannimyia complex	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	0	0	0	0	0	0	0	0	0	0	0	0	0

		Taxon							Area	a-based Kick San	nples					
			Lowest Practical Level					20)19					2020		
Higher Level C	Classification	Family	Identification	RG GHBP-5	RG GHBP-6	RG GHBP-1	RG GHBP-2	RG GHBP-3	RG GHBP-4	RG GHBP-5	RG GHBP-6	GH GH1 AS-1	GH GH1 AS	RG GHBP-1	RG GHBP-2	RG GHBP-3
Insecta	Diptera	Dixidae	Dixa	0	0	0.229	0	0	0	0	0	0	0	0	0	0.478
Insecta	Diptera	Empididae	Chelifera/Metachela	0.786	0.197	0.229	0.178	0.0805	0	0	0.571	0.233	1.52	0	0	0
Insecta	Diptera	Empididae	Clinocera	0	0	0	0	0	0	0	0	0	0	0	0.246	0
Insecta	Diptera	Empididae	Neoplasta	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	0	0	0	0	0	0	0.233	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	0.157	0.394	0	0.355	0.885	0	0	0	0	0	0	0	0.478
Insecta	Diptera	Psychodidae	Pericoma	35	18	2.98	5.68	18	9.57	19	3.71	1.17	0.508	24	19	28
Insecta	Diptera	Psychodidae	Pericoma/Telmatoscopus	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0.157	1.58	17	15	6.44	6.91	12	6.86	7.69	8.12	1.46	2.46	0.957
Insecta	Diptera	Simuliidae	Simulium	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Antocha	0.157	0.986	0	0	0.0805	0	0	0	0	0.508	0	0	0.239
Insecta	Diptera	l ipulidae	Dicranota	0.314	0.197	0.229	0.533	0.322	0.532	0.979	1.43	2.09	3.05	0	0.492	0.478
Insecta	Diptera	Tipulidae	Hexatoma	0	0	0	0	0	0	0	0	0.0327	0	0	0	0
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae		0	0	0.688	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletidae	0	5.52	0	0	0	0	0	0	0 600	0 509	0	0	5.26
Insecta	Ephemeroplera	Baelidae	Baells Rectio rhedeni group	3.30	0.52	23	35	33	35	25	44	0.099	0.506	3.04	0.49	5.20
Insecta	Ephemeroptera	Enhomorollidao	Drupollo doddoii	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Hentageniidae	Cinvanula	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Hentageniidae	Hentageniidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecontera	Canniidae	Capniidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecontera	Capniidae	Paracaphia	0	0	0	0	0	0	0	0	0	0	0.364	0	0
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0.314	0.592	2.52	0.533	1 29	2.66	1.82	0.857	0	0	0.364	0.861	0 478
Insecta	Plecoptera	Chloroperlidae	Sweltsa	0	0.002	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Amphinemura	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	5.66	7.50	3.44	3.55	0.885	4.26	1.54	1.14	0	0	0.467	0.373	0.582
Insecta	Plecoptera	Nemouridae	Zapada	20	23	29	19	7.08	6.38	20	6.86	2.10	1.02	15	36	6.12
Insecta	Plecoptera	Nemouridae	Zapada cinctipes	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	0	0	0	0	0	0	0	0	0.233	0	0	0.123	0
Insecta	Plecoptera	Perlodidae	Kogotus	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Megarcys	0	0	0	0	0.161	0	0.280	0.286	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Skwala	0	0.197	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Pteronarcyidae	Pteronarcella	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Brachycentrus	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	1.42	11	0.917	0.533	0.402	0.532	1.54	6.57	0.466	0.508	1.09	1.97	2.63
Insecta	Trichoptera	Hydropsychidae	Arctopsyche	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	0	0	0	0	0.0805	0	0	0	16	21	0	0	0
Insecta	Trichoptera	Hydropsychidae	Hydropsychidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Irichoptera	Hydropsychidae	Parapsyche elsis	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydroptilidae	Hydroptila	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	I richoptera	Hydroptilidae	Hydroptilidae	0.472	1.97	0.229	U	0.241	0	0	0.286	U	U	0	0	U
Insecta	Trichontera	Lepidostomatidae	Lepidostoma	U 5 40	0	0	0	0.005	0 500	U	0	0.400	U 2.54	U 4 07	0	0
Insecta	Trichoptera	Lepidosiomalidae	Eepidostomatidae	5.19	2.17	2.29	1.24	0	0.032	0	2.00	0.400	2.04	4.3/	1.35	0.30
Insecta	Trichoptera	Limnephilidae	Limpenhilidaa	0	0	0.229	0	0	0	0	0.200	0	0	0	0	0
Insecta	Trichontera	Phryganeidae	Phryganeidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichontera	Rhyacophilidae	Rhyacophila	4 25	6 31	8 72	12	3 0/	5 32	3 02	2.86	0	0	2 01	8 /0	6.22
Insecta	Trichontera	Rhyacophilidae	aconhila hrunnea/vemna o		0.51	0.72	0	0.34	0.52	0.92	2.00	0	0	0	0.43	0.22
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0	0	0	0.286	8.62	9.64	0 182	0	0.478
Malacostraca	Amphipoda	Hyalellidae	Hyalella	0	0	0	0	0	0	0	0	1.40	4,06	0	0	0
malaccollada	/ inpinpodu	riyalolliado	riyalona	-				-	-		-			-	-	

	-	Taxon					Are	a-based Kick Sar	nples			
Higher Lovel C	lassification	Family	Lowest Practical Level		2020				20)21		
Higher Level C	lassification	гаппу	Identification	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHB
Bivalvia	Veneroida	Pisidiidae	Pisidiidae	0	0	0	0	0	0	0	0	0
Bivalvia	Veneroida	Pisidiidae	Pisidium	35	45	24	60	14	50	26	23	56
Clitellata	-	Enchytraeidae	Enchytraeidae	0.402	0.810	0.800	0.226	1.20	0.248	0.646	2.09	1.30
Clitellata	-	Enchytraeidae	Enchytraeus	0	0	0	0	0	0	0	0	0
Clitellata	Lumbriculida	Lumbriculidae	Lumbriculidae	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Chaetogaster	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais bretscheri	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Nais communis	0.201	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Tubificinae	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	0	0	0	0	0.133	0	0	0	0
Collembola	Collembola	Hypogastruridae	Hypogastruridae	0	0	0	0	0	0	0	0	0
Euchelicerata	Sarcoptiformes	-	Oribatida	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Aturidae	Aturidae	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Feltriidae	Feltria	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	Protzia	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0.804	0.607	0.160	1.13	0.267	0.496	0.431	0.444	0.557
Euchelicerata	Trombidiformes	Neoacaridae	Neoacaridae	0.201	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0	0.320	0	0	0	0	0	0
Euchelicerata	Trombidiformes	I orrenticolidae	Iorrenticolidae	0	0	0	0	0	0	0.431	0	0
Insecta	Coleoptera	Curculionidae	Curculionidae	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	0.201	0.202	0.160	1.13	0.533	0.248	0.215	0.148	0
Insecta	Coleoptera	Elmidae	Narpus	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Optioservus	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0.201	0	0	0	0	0	0	0.0739	0
Insecta	Diptera	Ceratopogonidae	Bezzia/ Palpomyla	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae	0	0	0	0	0	0.248	0	0	0
Insecta	Diptera	Ceratopogonidae	Ivialiochonelea	0	0	0	0	0	0	0 015	0 0720	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0 280	0	0	0.400	0	0.215	0.0739	0
Insecta	Diptera	Chironomidae	Brindinialla	0	0.260	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae		0 280	0 830	0 209	0	0 610	0	0	0 117	0
Insecta	Diptera	Chironomidae	Diamaga	0.260	0.839	0.206	0	0.010	0	0	0.117	0
Insecta	Diptera	Chironomidae	Diamesa	0	0	0	0	0 205	2.22	0	0	0
Insecta	Diptera	Chironomidae	Holopiollo	0	0	0	0	0.305	2.23	0	0 117	0
Insecta	Diptera	Chironomidae	Helefilella	0	0	0	0	0	0	0	0.117	0
Insecta	Diptera	Chironomidae	Lobrundinio	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Labrununna	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Magrapologia	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	6.44	8.05	3 12	0	0 305	0 7/3	1 0/	2.81	1 30
Insecta	Diptera	Chironomidae	Nanocladius	0.44	0.90	0.12	0	0.303	0.743	n.94	2.01	1.39
Insecta	Diptera	Chironomidae	Orthocladius	0.200	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius complex	0.280	0.280	0	0	2 13	0	0	0	0
Insecta	Diptera	Chironomidae	Pagastia	0.200	0	0	0	0	0	0	0	0 279
Insecta	Diptera	Chironomidae	Paramerina	0	0	0	0	0	0	0	0	0.210
Insecta	Diptera	Chironomidae	Parametriocnemus	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paratanytarsus	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parorthocladius	0	0	0.208	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0.560	1.40	0.624	0.452	0.914	0	0	0.352	0
Insecta	Diptera	Chironomidae	Procladius	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Psectrocladius	0 0	0	0	Ő	0	0	0	0	Ő
Insecta	Diptera	Chironomidae	Rheotanytarsus	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellina	0 0	0	0	Ő	0	0	0	0	Ő
Insecta	Diptera	Chironomidae	Stempellinella	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemanniella	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Thienemannimvia complex	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tyetenia	0	0	0	0	0	0	0	0	0
	2.000	0			-		-	-	-	-		-

	-	Taxon					Area	a-based Kick San	nples			
Higher Level Cla	ssification	Family	Lowest Practical Level		2020				20	21		
	SSINCULION	. anny	Identification	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHB
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0.133	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	0	0	0	0	0	0	0	0.148	0.186
Insecta	Diptera	Empididae	Clinocera	0	0	0.320	0	0	0	0	0	0
Insecta	Diptera	Empididae	Neoplasta	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Muscidae	Muscidae	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecornynchidae	Glutops	0.402	0.405	0.160	0.905	1.87	0.0620	0.0538	0.444	0.186
Insecta	Diptera	Psychodidae	Pericoma	31	13	25	16	35	5.95	17	38	14
Insecta	Diptera	Psychodidae	Pericoma/Telmatoscopus	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0.402	1.42	0.640	0	1.07	1.98	1.29	0.665	0.371
Insecta	Diptera	Simuliidae	Simulium	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Stratiomyidae	Stratiomyidae	0	0	0	0	0	0	0	0	0
Insecta	Diptera	l ipulidae	Antocha	0	0	0.480	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	0.201	0	0	0	0	0	0	0.0739	0
Insecta	Diptera	Tipulidae	Hexatoma	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0	0	0	0
Insecta	Diptera	lipulidae	lipula	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletidae	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	4.63	3.04	13	0	0.133	0.496	0.431	0.444	0.186
Insecta	Ephemeroptera	Baetidae	Baetis rhodani group	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Drunella doddsii	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Cinygmula	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Capniidae	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Paracapnia	0	0.202	0	0.226	0	0	0.215	0	0
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0.804	0.405	0	0.226	0.133	0.743	0	0.739	0
Insecta	Plecoptera	Chloroperlidae	Sweltsa	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0.202	0.160	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Amphinemura	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0.213	0.229	0.236	7.47	6.27	12	9.16	6.96	2.97
Insecta	Plecoptera	Nemouridae	Zapada	7.03	6.86	4.24	4.52	25	14	26	12	9.10
Insecta	Plecoptera	Nemouridae	Zapada cinctipes	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Peltoperlidae	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	0	0	0.480	0	0.133	0	0	0	0
Insecta	Plecoptera	Perlodidae	Kogotus	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Megarcys	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Skwala	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Pteronarcvidae	Pteronarcella	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taenioptervoidae	Taenioptervoidae	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Brachycentrus	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	3.62	2.63	22	1.58	1.87	1.73	3.23	2.22	7.99
Insecta	Trichoptera	Hvdropsvchidae	Arctopsyche	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	0	0	0.160	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Hydropsychidae	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche elsis	0	0	0	0	0	0	0	0	0
Insecta	Trichontera	Hydrontilidae	Hydroptila	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydroptilidae	Hydroptilidae	0	0 202	0.320	0	0 0	0	0	0	0
Insecta	Trichontera		Lepidostoma	0	0.202	0	0	0	0	0	0	0
Insecta	Trichontera	Lepidostomatidae	Lepidostomatidae	3 62	4 86	1 28	0.226	0.533	1 49	0.215	1 11	0 020
Insecta	Trichontera	Limnenhilidae	Ecclisomvia	0.02	4.00	0	0.220	0.000	0	0.210	0	0.329
Insecto	Trichontoro	Linnephilidae		0	0 202	0	0	0	0.249	0	0	0
Insecto	Trichontera	Phryganeidae	Phygopeidae	0	0.202	0	0	0	0.240	0	0	0
Insecta	Trichontoro	Physocrabilidae	Dhyacanhila	3 22	0 8 10	1.20	2 71	6.02	5.51	10	6.20	2 74
Insecta	Trichontera	Rhyacophilidae		3.22	0.10	1.20	2.11	0.93	0.01	12	0.30	3.71
Molosastraas	Amphirode	Commonidae	Commonweal	0.051	0.405	0	0	0.000	0 740	0	0	U 1 01
ivialacostraca	Amphipoda	Gammaridae	Gammarus	0.251	0.405	1.28	2.49	0.333	0.743	1.29	1.29	1.21
Malacostraca	Amphipoda	Hyalellidae	Hyalella	U	U	U	U	U	U	U	U	U

Table E.9: Relative Abundance (Percent[%]) of Benthic Invertebrate Taxa in Samples from Lower Greenhills Creek Based on the Lowest Practical Level of Taxonomy, 2012 to 2021

		Taxon						Abun	dance				
				2012	2014	20	15	2018	2019	2020		2021	
Higher Level C	lassification	Family	Lowest Practical Level Identification	RG GHCKD-1	RG GHCKD-1	RG GHCKD-1	GREE1-50-1	RG GHCKD-1	RG GHCKD-1	RG GHCKD-1	RG GHCKD-1	RG GHCKD-2	RG GHCKD-3
Bivalvia	Veneroida	Pisidiidae	Pisidiidae	20	0	540	167	1 180	590	357	886	1 220	1.580
Clitellata	-	Enchytraeidae	Enchytraeus	0	0	360	133	0	0	0	0	0	0
Clitellata	Lumbriculida	Lumbriculidae	Lumbriculidae	0	0	0	0	0	30	0	0	0	0
Clitellata	Tubificida	Naididae	Nais	220	180	20	0	80	0	0	0	0	0
Clitellata	Tubificida	Naididae	Tubificinae	0	0	1.300	217	0	0	0	42.9	60	40
Collembola	Collembola	Hvpogastruridae	Hypogastruridae	0	0	0	0	0	0	0	14	0	0
Euchelicerata	Sarcoptiformes	-	Oribatida	0	0	20	0	0	0	0	14	20	20
Euchelicerata	Trombidiformes	Aturidae	Aturidae	0	0	108	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Feltriidae	Feltria	0	80	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	Protzia	0	0	0	0	0	0	14	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	30	20	152	0	100	37.5	14	14	20	180
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	30	0	0	0	0	13	0	0	0	0
Insecta	Coleoptera	Curculionidae	Curculionidae	0	0	0	0	0	10	0	14	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	0	0	0	0	0	0	42.9	14	0	0
Insecta	Coleoptera	Elmidae	Optioservus	0	0	40	66.7	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	20	0	0	0	20	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Bezzia/ Palpomyia	0	0	20	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Mallochohelea	20	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0	0	0	0	0	129	0	0	0
Insecta	Diptera	Chironomidae	Corynoneura	0	0	0	0	22.4	20.5	0	0	0	0
Insecta	Diptera	Chironomidae	Diamesa	0	62.3	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	220	62.3	21.2	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Heleniella	0	0	42.4	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Labrundinia	0	62.3	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	5,500	20.8	1,823	144	426	338	0	40	133	84
Insecta	Diptera	Chironomidae	Orthocladius	0	0	127	20.6	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius complex	0	41.5	0	0	0	20.5	0	0	44.4	28
Insecta	Diptera	Chironomidae	Pagastia	0	20.8	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paramerina	0	0	0	0	112	0	0	0	0	0
Insecta	Diptera	Chironomidae	Parametriocnemus	40	0	0	0	0	20.5	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	41.5	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	212	20.6	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Procladius	0	0	42.4	82.3	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Rheotanytarsus	0	768	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stempellinella	0	0	657	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	I hienemanniella	0	0	21.2	82.3	0	0	0	120	178	112
Insecta	Diptera	Chironomidae	I nienemannimyla complex	40	20.8	572	0	0	10	0	0	44.4	56
Insecta	Diptera	Chironomidae	I vetenia	0	0	21.2	0	0	0	0	40	0	0
Insecta	Diptera	Empididae		80	260	180	0	0	0	0	0	0	0
Insecta	Diptera	Delegerbynebidee	Clutene	0	0	0	33.3	0	0	0	0	20	0
Insecta	Diptera	Pelecomynchidae	Giulops Dericeme/Telmeteccenue	1 260	1 520	20	33.3	1 790	40	714	0	1 240	0
Insecta	Diptera	Simuliidaa	Simulium	1,200	1,520	000	2,750	1,700	120	614	457	1,240	2,200
Insecta	Diptera	Simulluae	Strationvidao	31,900	040	920	150	40	120	014	200	100	20
Insecta	Diptera	Tinulidae	Antocha	200	40	0	17	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	120	140	60	33.3	30	0	0	0	0	0
Insecta	Diptera	Tinulidae	Tipula	120	20	60	0	30	0	0	0	0	0
Insecta	Enhemerontera	Ameletidae	Ameletidae	0	0	40	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis rhodani group	0	20	560	333	180	1 030	357	42 9	40	20
Insecta	Enhemerontera	Enhemerellidae	Drunella doddsii	0	0	40	000	0	0	0	14		0
Insecta	Ephemeroptera	Ephemerellidae	Enhemerellidae	0	0	0	0	0	0	57 1	14	0	0
Insecta	Ephemeroptera	Hentageniidae	Cinvamula	0	0	0	0	0	0	0	28.6	0	0
Insecta	Ephemeroptera	Heptageniidae	Hentageniidae	80	0	40	17	0	0	0	0	0	0
Insecta	Plecontera	Cappiidae	Capniidae	0	0	0	0	0	0	14	0	0	0
Insecta	Plecoptera	Chloroperlidae	Sweltsa	20	80	280	50	40	30	28.6	14	40	40

Table E.10: Abundance (No./3-min Kick) of Benthic Invertebrate Taxa in Samples from Lower Greenhills Creek, Based on the Lowest Practical Level of Taxonomy, 2012 to 2021

Notes: No./3-min kick = number of organisms per three minute kick; - = not applicable.

		Taxon						Abun	dance				
Higher Lovel C	accification	Family	Lowest Practical Lovel Identification	2012	2014	20	15	2018	2019	2020		2021	
Higher Level Ci	assincation	ганну	Lowest Practical Level Identification	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-1	GREE1-50-1	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-2	RG_GHCKD-3
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	20	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Amphinemura	0	0	130	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0	0	0	0	716	44.7	122	1,350	799	597
Insecta	Plecoptera	Nemouridae	Zapada cinctipes	300	420	130	1,233	564	145	1,536	1,107	1,681	783
Insecta	Plecoptera	Peltoperlidae	Peltoperlidae	0	20	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Kogotus	0	0	0	0	0	0	14	0	0	0
Insecta	Plecoptera	Perlodidae	Skwala	0	20	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Pteronarcyidae	Pteronarcella	0	0	0	17	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	0	0	0	0	0	0	14	42.9	0	100
Insecta	Trichoptera	Brachycentridae	Brachycentrus	20	0	0	0	0	99.2	0	0	0	0
Insecta	Trichoptera	Brachycentridae	Micrasema	0	40	316	50	96	0	72.7	130	100	230
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	140	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Hydropsychidae	180	0	26.3	17	0	0	43.6	16	0	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche elsis	0	0	0	0	0	0	15	0	0	0
Insecta	Trichoptera	Hydroptilidae	Hydroptila	0	0	184	0	384	33.1	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostoma	0	60	0	0	576	165	131	16	20	126
Insecta	Trichoptera	Limnephilidae	Limnephilidae	20	0	26.3	267	0	0	29.1	48.9	0	0
Insecta	Trichoptera	Phryganeidae	Phryganeidae	20	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	100	640	237	150	96	44.1	174	277	300	272
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila brunnea/vemna group	360	940	211	167	168	88.2	349	440	200	251
Malacostraca	Amphipoda	Gammaridae	Gammarus	440	0	66.7	0	0	0	42.9	143	100	60
Malacostraca	Amphipoda	Hyalellidae	Hyalella	0	20	33.3	0	0	0	0	14	0	0

Table E.10: Abundance (No./3-min Kick) of Benthic Invertebrate Taxa in Samples from Lower Greenhills Creek, Based on the Lowest Practical Level of Taxonomy, 2012 to 2021

Notes: No./3-min kick = number of organisms per three minute kick; - = not applicable.

	Taxon							Der	nsity					
l l'abra l'arral	01	E it			20	16					20	17		
Higher Level	Classification	Family	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6
Bivalvia	Veneroida	Pisidiidae	377	340	272	461	1,430	373	63	50	47	140	540	137
Clitellata	-	Enchytraeidae	28	699	1,039	1,152	2,682	4,507	27	313	443	23	200	697
Clitellata	Tubificida	Naididae	70	19	841	1,190	1,371	2,133	0	0	0	40	67	0
Collembola	Collembola	Collembola	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	78	208	322	422	298	308	57	63	17	87	27	77
Euchelicerata	Trombidiformes	Neoacaridae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	20	0	0	0	0	39	0	0	0	0	0	7
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	7	0	0	0	13
Insecta	Coleoptera	Elmidae	140	117	152	192	0	0	13	10	10	20	7	7
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	14	0	28	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	405	283	1,261	806	1,013	987	153	363	180	453	307	243
Insecta	Diptera	Dixidae	0	0	0	0	0	0	3	0	0	0	0	0
Insecta	Diptera	Empididae	0	38	74	154	60	267	0	7	13	10	0	33
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	42	243	172	77	189	27	3	23	7	10	47	7
Insecta	Diptera	Psychodidae	1,146	1,502	2,254	1,920	1,788	507	577	423	527	277	417	433
Insecta	Diptera	Simuliidae	168	567	247	307	0	613	117	313	273	53	177	357
Insecta	Diptera	Tipulidae	28	76	74	384	179	160	77	60	87	20	80	140
Insecta	Ephemeroptera	Baetidae	84	38	74	115	179	53	60	23	13	3	20	63
Insecta	Ephemeroptera	Ephemerellidae	0	0	0	0	0	0	43	67	7	10	7	0
Insecta	Ephemeroptera	Heptageniidae	14	0	0	0	0	0	23	10	0	0	0	0
Insecta	Plecoptera	Capniidae	0	0	0	0	0	0	0	0	0	0	7	0
Insecta	Plecoptera	Chloroperlidae	112	19	223	77	119	27	10	3	7	43	0	0
Insecta	Plecoptera	Leuctridae	28	0	0	0	60	0	0	0	0	3	0	7
Insecta	Plecoptera	Nemouridae	1,202	1,549	1,120	1,152	1,311	400	750	707	690	480	460	413
Insecta	Plecoptera	Perlodidae	13	0	0	0	0	27	13	7	0	0	7	0
Insecta	Plecoptera	Taeniopterygidae	0	0	25	0	0	27	7	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	14	151	74	269	656	1,467	23	20	30	30	90	257
Insecta	Trichoptera	Hydropsychidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydroptilidae	56	38	420	729	596	880	0	0	0	3	40	110
Insecta	Trichoptera	Lepidostomatidae	126	19	198	38	0	0	43	30	0	10	33	13
Insecta	Trichoptera	Limnephilidae	0	0	0	38	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	233	283	247	576	467	160	77	70	217	0	77	117
Malacostraca	Amphipoda	Gammaridae	0	0	0	0	0	0	0	0	0	0	0	0
Malacostraca	Amphipoda	Hyalellidae	0	0	0	0	0	0	0	0	0	0	0	0

Table E.11: Density (No./m²) of Benthic Invertebrate Taxa in Samples from Lower Greenhills Creek, Based on the Family Level of Taxonomy, 2016 to 2021

	Taxon								Der	nsity						
	o				20)18				-	20	19			20	20
Higher Level	Classification	Family	RG GHBP-1	RG GHBP-2	RG GHBP-3	RG GHBP-4	RG GHBP-5	RG GHBP-6	RG GHBP-1	RG GHBP-2	RG GHBP-3	RG GHBP-4	RG GHBP-5	RG_GHBP-6	GH_GH1_AS-1	GH GH1 AS-2
Bivalvia	Veneroida	Pisidiidae	93	147	320	193	287	123	47	147	777	87	387	333	3,653	2,133
Clitellata	-	Enchytraeidae	0	0	13	67	37	23	13	40	23	7	93	7	800	160
Clitellata	Tubificida	Naididae	0	0	0	20	0	0	0	0	0	0	0	0	800	693
Collembola	Collembola	Collembola	0	0	0	0	0	0	0	13	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	0	0	0	0	0	0	0	0	0	3	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	27	213	40	320	73	70	13	20	43	13	80	7	53	107
Euchelicerata	Trombidiformes	Neoacaridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	13	0	0	20	0	10	13	20	0	0	7	7	373	907
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	13	0	0	27	3	7	13	0	0	0	7	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	7	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	680	707	707	180	70	120	87	253	270	67	60	133	1,013	960
Insecta	Diptera	Dixidae	0	0	0	0	0	0	7	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	0	40	40	20	17	3	7	13	3	0	0	13	27	160
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	0	0	0	0	0	27	0
Insecta	Diptera	Pelecorhynchidae	0	27	27	107	3	7	0	27	37	0	0	0	0	0
Insecta	Diptera	Psychodidae	1,333	3,947	1,267	1,987	750	307	87	427	737	60	927	87	133	53
Insecta	Diptera	Simuliidae	120	227	333	7	3	27	480	1,147	267	43	587	160	880	853
Insecta	Diptera	Tipulidae	40	53	40	27	10	20	27	40	17	3	47	33	243	373
Insecta	Ephemeroptera	Baetidae	173	427	227	293	70	93	720	2,653	1,350	220	1,200	1,033	80	53
Insecta	Ephemeroptera	Ephemerellidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	13	3	13	13	7	10	73	40	53	17	87	20	0	0
Insecta	Plecoptera	Leuctridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	1,787	2,373	1,373	1,413	550	510	953	1,667	330	67	1,013	187	240	107
Insecta	Plecoptera	Perlodidae	13	17	0	0	0	3	0	0	7	0	13	7	27	0
Insecta	Plecoptera	Taeniopterygidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	13	27	13	33	30	180	27	40	17	3	73	153	53	53
Insecta	Trichoptera	Hydropsychidae	27	0	0	0	0	0	0	0	3	0	0	0	1,840	2,187
Insecta	Trichoptera	Hydroptilidae	0	0	0	0	10	33	7	0	10	0	0	7	0	0
Insecta	Trichoptera	Lepidostomatidae	80	267	53	40	110	37	67	93	37	3	0	67	53	267
Insecta	Trichoptera	Limnephilidae	0	0	0	0	0	0	7	0	0	0	0	7	0	0
Insecta	Trichoptera	Rhyacophilidae	387	413	440	153	90	107	253	867	163	33	187	67	0	0
Malacostraca	Amphipoda	Gammaridae	0	0	0	0	0	0	0	0	0	0	0	7	987	1,013
Malacostraca	Amphipoda	Hyalellidae	0	0	0	0	0	0	0	0	0	0	0	0	160	427

Table E.11: Density (No./m²) of Benthic Invertebrate Taxa in Samples from Lower Greenhills Creek, Based on the Family Level of Taxonomy, 2016 to 2021

	Taxon							Der	nsity					
	o	_			20	20					20	21		-
Higner Level	Classification	Family	RG GHBP-1	RG GHBP-2	RG GHBP-3	RG GHBP-4	RG GHBP-5	RG GHBP-6	RG GHBP-1	RG GHBP-2	RG GHBP-3	RG GHBP-4	RG GHBP-5	RG GHBP-6
Bivalvia	Veneroida	Pisidiidae	1,200	373	1,947	2,307	2,947	500	3,204	624	2,436	1,440	3,804	3,588
Clitellata	-	Enchytraeidae	40	10	53	27	53	17	12	54	12	36	339	84
Clitellata	Tubificida	Naididae	0	0	0	13	0	0	0	0	0	0	0	0
Collembola	Collembola	Collembola	13	0	0	0	0	0	0	6	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	53	20	93	53	40	3	60	12	24	24	72	36
Euchelicerata	Trombidiformes	Neoacaridae	0	0	0	13	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	0	0	0	0	0	7	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0	0	24	0	0
Insecta	Coleoptera	Elmidae	53	13	27	13	13	3	60	24	12	12	24	0
Insecta	Coleoptera	Staphylinidae	0	0	0	13	0	0	0	0	0	0	12	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	18	12	12	12	0
Insecta	Diptera	Chironomidae	347	127	347	520	773	87	24	192	144	108	552	108
Insecta	Diptera	Dixidae	0	0	27	0	0	0	0	6	0	0	0	0
Insecta	Diptera	Empididae	0	7	0	0	0	7	0	0	0	0	24	12
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	0	0	27	27	27	3	48	84	3	3	72	12
Insecta	Diptera	Psychodidae	880	517	1,560	2,053	840	517	864	1,560	288	924	6,168	912
Insecta	Diptera	Simuliidae	53	67	53	27	93	13	0	48	96	72	108	24
Insecta	Diptera	Tipulidae	0	13	40	13	0	10	0	0	0	0	12	0
Insecta	Ephemeroptera	Baetidae	133	230	293	307	200	260	0	6	24	24	72	12
Insecta	Ephemeroptera	Ephemerellidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	13	0	0	0	13	0	12	0	0	12	0	0
Insecta	Plecoptera	Chloroperlidae	13	23	27	53	27	0	12	6	36	0	120	0
Insecta	Plecoptera	Leuctridae	0	0	0	0	13	3	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	547	987	373	480	467	93	636	1,419	1,284	1,968	3,054	780
Insecta	Plecoptera	Perlodidae	0	3	0	0	0	10	0	6	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	40	53	147	240	173	460	84	84	84	180	360	516
Insecta	Trichoptera	Hydropsychidae	0	0	0	0	0	3	0	0	0	0	0	0
Insecta	Trichoptera	Hydroptilidae	0	0	0	0	13	7	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	160	37	187	240	320	27	12	24	72	12	180	60
Insecta	Trichoptera	Limnephilidae	0	0	0	0	13	0	0	0	12	0	0	0
Insecta	Trichoptera	Rhyacophilidae	107	230	347	213	533	27	144	312	267	651	1,035	240
Malacostraca	Amphipoda	Gammaridae	7	0	27	17	27	27	132	15	36	72	210	78
Malacostraca	Amphipoda	Hyalellidae	0	0	0	0	0	0	0	0	0	0	0	0

Table E.11: Density (No./m²) of Benthic Invertebrate Taxa in Samples from Lower Greenhills Creek, Based on the Family Level of Taxonomy, 2016 to 2021

	Taxon						Three-minute	Kick Samples					Area	-based Kick Sar	nples
l linh en laval	Classification	F oundly	2012	2014	20	15	2018	2019	2020		2021			2016	
Higher Level	Classification	Family	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-1	GREE1-50-1	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-2	RG_GHCKD-3	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3
Bivalvia	Veneroida	Pisidiidae	0.0483	0	5.11	2.67	18	16	7.31	– 16	19	23	8.58	5.49	2.98
Clitellata	-	Enchytraeidae	0	0	3.41	2.13	0	0	0	0	0	0	0.636	11	11
Clitellata	Lumbriculida	Lumbriculidae	0	0	0	0	0	0.826	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	0.532	2.79	13	3.47	1.20	0	0	0.771	0.935	0.587	1.59	0.305	9.22
Collembola	Collembola	Collembola	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	Hypogastruridae	0	0	0	0	0	0	0	0.257	0	0	0	0	0
Euchelicerata	Trombidiformes	Aturidae	0	0	1.03	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Feltriidae	0	1.24	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	0	0	0	0	0	0	0.292	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	0.0725	0.310	1.44	0	1.51	1.03	0.292	0.257	0.312	2.64	1.78	3.36	3.53
Euchelicerata	Trombidiformes	Neoacaridae	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	0.0725	0	0	0	0	0.344	0	0	0	0	0.445	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	0	0	0	0	0	0.275	0	0.257	0	0	0	0	0
Insecta	Coleoptera	Elmidae	0	0	0.379	1.07	0	0	0.877	0.257	0	0	3.18	1.89	1.66
Insecta	Coleoptera	Staphylinidae	0.0483	0	0	0	0.301	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0.0483	0	0.189	0	0	0	0	0	0	0	0.318	0	0.308
Insecta	Diptera	Chironomidae	14	17	34	5.60	8.43	11	2.63	3.60	6.23	4.11	9.22	4.58	14
Insecta	Diptera	Dixidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	0.193	4.02	1.70	0.533	0	0	0	0	0.312	0	0	0.611	0.814
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	0	0	0.189	0.533	0	1.10	0	0	0	0	0.954	3.93	1.88
Insecta	Diptera	Psychodidae	3.04	24	8.33	44	27	19	15	8.23	19	32	26	24	25
Insecta	Diptera	Simuliidae	77	13	8.71	2.40	0.602	3.31	13	3.60	2.49	0.293	3.81	9.16	2.71
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0	0	0.293	0	0	0
Insecta	Diptera	Tipulidae	0.773	3.10	1.14	0.800	0.904	0	0	0	0	0	0.636	1.22	0.814
Insecta	Ephemeroptera	Ameletidae	0	0	0.379	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	0	0.310	5.30	5.33	2.71	28	7.31	0.771	0.623	0.293	1.91	0.611	0.814
Insecta	Ephemeroptera	Ephemerellidae	0	0	0.379	0	0	0	1.17	0.514	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	0.193	0	0.379	0.267	0	0	0	0.514	0	0	0.318	0	0
Insecta	Plecoptera	Capniidae	0	0	0	0	0	0	0.292	0	0	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0.0483	1.24	2.65	0.800	0.602	0.826	0.585	0.257	0.623	0.587	2.54	0.305	2.44
Insecta	Plecoptera	Leuctridae	0	0	0.189	0	0	0	0	0	0	0	0.636	0	0
Insecta	Plecoptera	Nemouridae	0.725	6.50	2.46	20	19	5.23	34	44	39	20	27	25	12
Insecta	Plecoptera	Peltoperlidae	0	0.310	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	0	0.310	0	0	0	0	0.292	0	0	0	0.303	0	0
Insecta	Plecoptera	Pteronarcyidae	0	0	0	0.267	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	0	0	0	0	0	0	0.292	0.771	0	1.47	0	0	0.271
Insecta	Trichoptera	Brachycentridae	0.0483	0.619	2.99	0.800	1.45	2.73	1.49	2.35	1.56	3.38	0.318	2.44	0.814
Insecta	Trichoptera	Hydropsychidae	0.773	0	0.249	0.267	0	0	1.19	0.293	0	0	0	0	0
Insecta	Trichoptera	Hydroptilidae	0	0	1.74	0	5.78	0.911	0	0	0	0	1.27	0.611	4.61
Insecta	Trichoptera	Lepidostomatidae	0	0.929	0	0	8.67	4.56	2.68	0.293	0.312	1.84	2.86	0.305	2.17
Insecta	Trichoptera	Limnephilidae	0.0483	0	0.249	4.27	0	0	0.595	0.879	0	0	0	0	0
Insecta	Trichoptera	Phryganeidae	0.0483	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	1.11	25	4.24	5.07	3.98	3.64	11	13	7.79	7.68	5.30	4.58	2.71
Malacostraca	Amphipoda	Gammaridae	1.06	0	0.631	0	0	0	0.877	2.57	1.56	0.880	0	0	0
Malacostraca	Amphipoda	Hyalellidae	0	0.310	0.316	0	0	0	0	0.257	0	0	0	0	0

Table E.12: Relative Abundance (Percent[%]) of Benthic Invertebrate Taxa in Samples from Lower Greenhills Creek, Based on the Family Level of Taxonomy, 2012 to 2021

	Taxon							Area-based I	Kick Samples					
	• • • • •			2016				20					2018	
Higher Level	Classification	Family	RG GHBP-4	RG GHBP-5	RG GHBP-6	RG GHBP-1	RG GHBP-2	RG GHBP-3	RG GHBP-4	RG GHBP-5	RG GHBP-6	RG GHBP-1	RG GHBP-2	RG GHBP-3
Bivalvia	Veneroida	Pisidiidae	4.58	12	2.88	2.96	1.95	1.82	8.16	21	4.37	1.94	1.65	6.52
Clitellata	-	Enchytraeidae	11	22	35	1.25	12	17	1.36	7.67	22	0	0	0.272
Clitellata	Lumbriculida	Lumbriculidae	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	12	11	17	0	0	0	2.33	2.56	0	0	0	0
Collembola	Collembola	Collembola	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	Hypogastruridae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Aturidae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Feltriidae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	4.20	2.40	2.38	2.65	2.46	0.649	5.05	1.02	2.45	0.554	2.40	0.815
Euchelicerata	Trombidiformes	Neoacaridae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	0	0	0.297	0	0	0	0	0	0.213	0.277	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0.259	0	0	0	0.426	0	0	0
Insecta	Coleoptera	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	1.91	0	0	0.623	0.389	0.390	1.17	0.256	0.213	0.277	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	8.02	8.17	7.61	7.17	14	7.01	26	12	7.77	14	7.95	14
Insecta	Diptera	Dixidae	0	0	0	0.156	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	1.53	0.481	2.06	0	0.259	0.519	0.583	0	1.06	0	0.450	0.815
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	0.763	1.52	0.206	0.156	0.908	0.260	0.583	1.79	0.213	0	0.300	0.543
Insecta	Diptera	Psychodidae	19	14	3.91	27	17	21	16	16	14	28	44	26
Insecta	Diptera	Simuliidae	3.05	0	4.73	5.45	12	11	3.11	6.78	11	2.49	2.55	6.79
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	3.82	1.44	1.23	3.58	2.33	3.38	1.17	3.07	4.47	0.831	0.600	0.815
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	1.15	1.44	0.412	2.80	0.908	0.519	0.194	0.767	2.02	3.60	4.80	4.62
Insecta	Ephemeroptera	Ephemerellidae	0	0	0	2.02	2.59	0.260	0.583	0.256	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	0	0	0	1.09	0.389	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	0	0	0	0	0	0	0	0.256	0	0	0	0
Insecta	Plecoptera	Chloroperlidae	0.763	0.962	0.206	0.467	0.130	0.260	2.52	0	0	0.277	0.0375	0.272
Insecta	Plecoptera	Leuctridae	0	0.481	0	0	0	0	0.194	0	0.213	0	0	0
Insecta	Plecoptera	Nemouridae	11	11	3.09	35	28	27	28	18	13	37	27	28
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	0	0	0.206	0.623	0.259	0	0	0.256	0	0.277	0.188	0
Insecta	Plecoptera	Pteronarcyidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	0	0	0.206	0.312	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	2.67	5.29	11	1.09	0.778	1.17	1.75	3.45	8.20	0.277	0.300	0.272
Insecta	Trichoptera	Hydropsychidae	0	0	0	0	0	0	0	0	0	0.554	0	0
Insecta	Trichoptera	Hydroptilidae	7.25	4.81	6.79	0	0	0	0.194	1.53	3.51	0	0	0
Insecta	Trichoptera	Lepidostomatidae	0.382	0	0	2.02	1.17	0	0.583	1.28	0.426	1.66	3.00	1.09
Insecta	Trichoptera	Limnephilidae	0.382	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Phryganeidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	5.73	3.77	1.23	3.58	2.72	8.44	0	2.94	3.73	8.03	4.65	8.97
Malacostraca	Amphipoda	Gammaridae	0	0	0	0	0	0	0	0	0	0	0	0
Malacostraca	Amphipoda	Hyalellidae	0	0	0	0	0	0	0	0	0	0	0	0

Table E.12: Relative Abundance (Percent[%]) of Benthic Invertebrate Taxa in Samples from Lower Greenhills Creek, Based on the Family Level of Taxonomy, 2012 to 2021

	Taxon							Area-based	Kick Samples					
Like been been b		F						20)19				2020	
Higner Level	Classification	Family	RG GHBP-4	RG GHBP-5	RG GHBP-6	RG GHBP-1	RG GHBP-2	RG GHBP-3	RG GHBP-4	RG GHBP-5	RG GHBP-6	GH GH1 AS-1	GH GH1 AS	RG GHBP-1
Bivalvia	Veneroida	Pisidiidae	3.93	14	7.30	1.61	1.95	19	14	8.11	14	32	20	33
Clitellata	-	Enchytraeidae	1.36	1.73	1.38	0.459	0.533	0.563	1.06	1.96	0.286	6.99	1.52	1.09
Clitellata	Lumbriculida	Lumbriculidae	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	0.407	0	0	0	0	0	0	0	0	6.99	6.60	0
Collembola	Collembola	Collembola	0	0	0	0	0.178	0	0	0	0	0	0	0.364
Collembola	Collembola	Hypogastruridae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Aturidae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Feltriidae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	0	0	0	0	0	0	0.532	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	6.50	3.46	4.14	0.459	0.266	1.05	2.13	1.68	0.286	0.466	1.02	1.46
Euchelicerata	Trombidiformes	Neoacaridae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	0.407	0	0.592	0.459	0.266	0	0	0.140	0.286	3.26	8.63	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	0.542	0.157	0.394	0.459	0	0	0	0.140	0	0	0	1.46
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0.229	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	3.66	3.30	7.10	2.98	3.37	6.52	11	1.26	5.71	8.86	9.14	9.47
Insecta	Diptera	Dixidae	0	0	0	0.229	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	0.407	0.786	0.197	0.229	0.178	0.0805	0	0	0.571	0.233	1.52	0
Insecta	Diptera	Muscidae	0	0	0	0	0	0	0	0	0	0.233	0	0
Insecta	Diptera	Pelecorhynchidae	2.17	0.157	0.394	0	0.355	0.885	0	0	0	0	0	0
Insecta	Diptera	Psychodidae	40	35	18	2.98	5.68	18	9.57	19	3.71	1.17	0.508	24
Insecta	Diptera	Simuliidae	0.136	0.157	1.58	17	15	6.44	6.91	12	6.86	7.69	8.12	1.46
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	0.542	0.472	1.18	0.917	0.533	0.402	0.532	0.979	1.43	2.13	3.55	0
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	5.96	3.30	5.52	25	35	33	35	25	44	0.699	0.508	3.64
Insecta	Ephemeroptera	Ephemerellidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	0	0	0	0	0	0	0	0	0	0	0	0.364
Insecta	Plecoptera	Chloroperlidae	0.271	0.314	0.592	2.52	0.533	1.29	2.66	1.82	0.857	0	0	0.364
Insecta	Plecoptera	Leuctridae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	29	26	30	33	22	7.96	11	21	8.00	2.10	1.02	15
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	0	0	0.197	0	0	0.161	0	0.280	0.286	0.233	0	0
Insecta	Plecoptera	Pteronarcyidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Brachycentridae	0.678	1.42	11	0.917	0.533	0.402	0.532	1.54	6.57	0.466	0.508	1.09
Insecta	Trichoptera	Hydropsychidae	0	0	0	0	0	0.0805	0	0	0	16	21	0
Insecta	Trichoptera	Hydroptilidae	0	0.472	1.97	0.229	0	0.241	0	0	0.286	0	0	0
Insecta	Trichoptera	Lepidostomatidae	0.813	5.19	2.17	2.29	1.24	0.885	0.532	0	2.86	0.466	2.54	4.37
Insecta	Trichoptera	Limnephilidae	0	0	0	0.229	0	0	0	0	0.286	0	0	0
Insecta	Trichoptera	Phryganeidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	3.12	4.25	6.31	8.72	12	3.94	5.32	3.92	2.86	0	0	2.91
Malacostraca	Amphipoda	Gammaridae	0	0	0	0	0	0	0	0	0.286	8.62	9.64	0.182
Malacostraca	Amphipoda	Hyalellidae	0	0	0	0	0	0	0	0	0	1.40	4.06	0

Table E.12: Relative Abundance (Percent[%]) of Benthic Invertebrate Taxa in Samples from Lower Greenhills Creek, Based on the Family Level of Taxonomy, 2012 to 2021

	Taxon						Area	-based Kick San	nples				
	• • • • •				2020					20	21		
Higher Level	Classification	Family	RG GHBP-2	RG GHBP-3	RG GHBP-4	RG GHBP-5	RG GHBP-6	RG GHBP-1	RG GHBP-2	RG GHBP-3	RG GHBP-4	RG GHBP-5	RG GHBP-6
Bivalvia	Veneroida	Pisidiidae	14	35	35	45	24	60	14	50	26	23	56
Clitellata	-	Enchytraeidae	0.369	0.957	0 402	0.810	0.800	0 226	1 20	0 248	0.646	2 09	1 30
Clitellata	l umbriculida	Lumbriculidae	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	0	0	0 201	0	0	0	0	0	0	0	0
Collembola	Collembola	Collembola	0	0	0	0	0	0	0 133	0	0	0	0
Collembola	Collembola	Hypogastruridae	0	0	0	0	0	0	0	0	0	0	0
Fuchelicerata	Trombidiformes	Aturidae	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Feltriidae	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydrynhantidae	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	0.738	1.67	0.804	0.607	0 160	1 13	0 267	0 496	0 431	0 444	0.557
Euchelicerata	Trombidiformes	Neoacaridae	0.700	0	0.004	0.007	0.100	0	0	0.400	0.401	0.444	0.007
Euchelicerata	Trombidiformes	Sperchontidae	0	0	0.201	0	0 320	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Torrenticolidae	0	0	0	0	0.020	0	0	0	0 431	0	0
Insecta	Coleontera	Curculionidae	0	0	0	0	0	0	0	0	0.401	0	0
Insecta	Coleoptera	Flmidae	0 492	0 478	0.201	0 202	0 160	1 13	0 533	0 248	0 215	0 148	0
Insecta	Coleoptera	Stanhylinidae	0.402	0.470	0.201	0.202	0.100	0	0.000	0.240	0.210	0.0739	0
Insecta	Dintera	Ceratopogonidae	0	0	0.201	0	0	0	0.400	0.248	0.215	0.0739	0
Insecta	Diptera	Chironomidae	4 67	6.22	7 84	12	4 16	0 452	4 27	2 97	1 94	3 40	1.67
Insecta	Diptera	Dixidae	0	0.22	0	0	0	0.402	0.133	0	0	0.40	0
Insecta	Diptera	Empididae	0 246	0.470	0	0	0.320	0	0.100	0	0	0 148	0 186
Insecta	Diptera	Muscidae	0.240	0	0	0	0.020	0	0	0	0	0.140	0.100
Insecta	Diptera	Pelecorhynchidae	0	0.478	0.402	0.405	0 160	0 905	1.87	0.0620	0.0538	0 444	0 186
Insecta	Diptera	Psychodidae	19	28	31	13	25	16	35	5 95	17	38	14
Insecta	Diptera	Simuliidae	2.46	0.957	0 402	1 42	0.640	0	1.07	1 98	1 29	0.665	0.371
Insecta	Diptera	Stratiomvidae	0	0.007	0.402	0	0.040	0	0	0	0	0.000	0.011
Insecta	Diptera	Tipulidae	0 492	0.718	0.201	0	0.480	0	0	0	0	0.0739	0
Insecta	Enhemerontera	Ameletidae	0.402	0.110	0.201	0	0.400	0	0	0	0	0.0100	0
Insecta	Enhemerontera	Baetidae	849	5 26	4 63	3.04	13	0	0 133	0 496	0.431	0 444	0 186
Insecta	Enhemerontera	Enhemerellidae	0.40	0.20	1.00	0.04	0	0	0.100	0.400	0.401	0.111	0.100
Insecta	Enhemerontera	Hentageniidae	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecontera	Canniidae	0	0	0	0 202	0	0 226	0	0	0.215	0	0
Insecta	Plecontera	Chloroperlidae	0.861	0.478	0.804	0.405	0	0.226	0 133	0 743	0	0 739	0
Insecta	Plecontera	Leuctridae	0.001	0.470	0.004	0.400	0 160	0.220	0.100	0.740	0	0.700	0
Insecta	Plecontera	Nemouridae	36	6 70	7 24	7.09	4 48	12	32	27	35	19	12
Insecta	Plecontera	Peltonerlidae	0	0.10	0	0	0	0	0	0	0	0	0
Insecta	Plecontera	Perlodidae	0 123	0	0	0	0.480	0	0 133	0	0	0	0
Insecta	Plecontera	Pteronarcvidae	0.120	0	0	0	0.400	0	0.100	0	0	0	0
Insecta	Plecontera	Taeniontervaidae	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichontera	Brachycentridae	1 97	2.63	3.62	2.63	22	1 58	1.87	1 73	3 23	2 22	7 99
Insecta	Trichontera	Hydronsychidae	0	0	0.02	0	0 160	0	0	0	0.20	0	0
Insecta	Trichontera	Hydrontilidae	0	0	0	0 202	0.320	0	0	0	0	0	0
Insecta	Trichontera	Lenidostomatidae	1.35	3.35	3.62	4.86	1 28	0.226	0.533	1 49	0.215	1 11	0.929
Insecta	Trichontera	Limnenhilidae	0	0.00	0.02	0.202	0	0.220	0.000	0.248	0.210	0	0.525 N
Insecta	Trichontera	Phryganeidae	0	0	0	0.202	0	0	0	0.240	0	0	0
Insecta	Trichontera	Rhyaconhilidae	849	6.22	3.22	8 10	1 28	2 71	6.93	5 51	12	6 38	3 71
Malacostraca	Amphipoda	Gammaridae	0.43	0.22	0.22	0.10	1.20	2.71	0.33	0.743	1 20	1 29	1 21
Malacostraca	Amphipoda	Hyalollidaa	0	0.470	0.201	0.400	0	<u>2.43</u>	0.000	0.743	0	n 1.23	0
พลเลยบอแลยล	πιτριτίρουα	riyalelliuae	0	0	0	5	5	5	5	5	5	5	5

Table E.12: Relative Abundance (Percent[%]) of Benthic Invertebrate Taxa in Samples from Lower Greenhills Creek, Based on the Family Level of Taxonomy, 2012 to 2021

	Taxon						Abun	Idance				
	o		2012	2014	20)15	2018	2019	2020		2021	
Higher Level	Classification	Family	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-1	GREE1-50-1	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-1	RG_GHCKD-2	RG_GHCKD-3
Bivalvia	Veneroida	Pisidiidae	20	0		167			357	886	1,220	1,580
Clitellata	-	Enchytraeidae	0	0	360	133	0	0	0	0	0	0
Clitellata	Lumbriculida	Lumbriculidae	0	0	0	0	0	30	0	0	0	0
Clitellata	Tubificida	Naididae	220	180	1,320	217	80	0	0	43	60	40
Collembola	Collembola	Hypogastruridae	0	0	0	0	0	0	0	14	0	0
Euchelicerata	Trombidiformes	Aturidae	0	0	108	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Feltriidae	0	80	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	0	0	0	0	0	0	14	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	30	20	152	0	100	38	14	14	20	180
Euchelicerata	Trombidiformes	Sperchontidae	30	0	0	0	0	13	0	0	0	0
Insecta	Coleoptera	Curculionidae	0	0	0	0	0	10	0	14	0	0
Insecta	Coleoptera	Elmidae	0	0	40	67	0	0	43	14	0	0
Insecta	Coleoptera	Staphylinidae	20	0	0	0	20	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	20	0	20	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	5,800	1,100	3,540	350	560	410	129	200	400	280
Insecta	Diptera	Empididae	80	260	180	33	0	0	0	0	20	0
Insecta	Diptera	Pelecorhynchidae	0	0	20	33	0	40	0	0	0	0
Insecta	Diptera	Psychodidae	1,260	1,520	880	2,750	1,780	700	714	457	1,240	2,200
Insecta	Diptera	Simuliidae	31,900	840	920	150	40	120	614	200	160	20
Insecta	Diptera	Stratiomyidae	0	0	0	0	0	0	0	0	0	20
Insecta	Diptera	Tipulidae	320	200	120	50	60	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	0	0	40	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	0	20	560	333	180	1,030	357	43	40	20
Insecta	Ephemeroptera	Ephemerellidae	0	0	40	0	0	0	57	29	0	0
Insecta	Ephemeroptera	Heptageniidae	80	0	40	17	0	0	0	29	0	0
Insecta	Plecoptera	Capniidae	0	0	0	0	0	0	14	0	0	0
Insecta	Plecoptera	Chloroperlidae	20	80	280	50	40	30	29	14	40	40
Insecta	Plecoptera	Leuctridae	0	0	20	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	300	420	260	1,233	1,280	190	1,657	2,457	2,480	1,380
Insecta	Plecoptera	Peltoperlidae	0	20	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	0	20	0	0	0	0	14	0	0	0
Insecta	Plecoptera	Pteronarcyidae	0	0	0	17	0	0	0	0	0	0
Insecta	Plecoptera	Taeniopterygidae	0	0	0	0	0	0	14	43	0	100
Insecta	Trichoptera	Brachycentridae	20	40	316	50	96	99	73	130	100	230
Insecta	Trichoptera	Hydropsychidae	320	0	26	17	0	0	58	16	0	0
Insecta	Trichoptera	Hydroptilidae	0	0	184	0	384	33	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	0	60	0	0	576	165	131	16	20	126
Insecta	Trichoptera	Limnephilidae	20	0	26	267	0	0	29	49	0	0
Insecta	Trichoptera	Phryganeidae	20	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	460	1,580	447	317	264	132	523	717	500	524
Malacostraca	Amphipoda	Gammaridae	440	0	67	0	0	0	43	143	100	60
Malacostraca	Amphipoda	Hyalellidae	0	20	33	0	0	0	0	14	0	0

Table E.13: Abundance (No./3-min Kick) of Benthic Invertebrate Taxa in Samples from Lower Greenhills Creek Based on the Family Level of Taxonomy, 2012 to 2021

Notes: No./3-min kick = number of organisms per three minute kick; - = not applicable.

Hole Level Level. Level Ford Level Metalitation Level Metalitati		Та	xon								Den	sity						
Design conversion Design conversion Plantare brack region Ro, AMF 1 Ro, AMF 2 Ro, AMF 2 Ro, AMF 3 <	Higher Loval	Classification	Family	Lowest Practical						20	019						20	20
Website Website Plantice <	Higher Level	Classification	Family	Level Identification	RG_GAUT-1	RG_GAUT-2	RG_GAUT-3	RG_GAUT-4	RG_GAUT-5	RG_GAUT-6	RG_GANF-1	RG_GANF-2	RG_GANF-3	RG_GANF-4	RG_GANF-5	RG_GANF-6	RG_GAUT-1	RG_GAUT-2
Controlation	Bivalvia	Veneroida	Pisidiidae	Pisidium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Clinitala Turbicital Neticitar Current of an analysis Current of an analysi	Clitellata	-	Enchytraeidae	Enchytraeidae	0	0	13	6.67	0	0	0	0	0	23	27	13	0	0
Calemarka Colemarka Colemarka F 113 67 117 53 37 57 67 20 63 133 67 Decembershe 1proteins 0	Clitellata	Tubificida	Naididae	Tubificinae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Electrosofia Tomolificment Photophilic meth	Collembola	Collembola	-	Collembola	67	153	60	13	67	117	53	37	57	87	23	63	133	57
Ecodeficients Turnelscores Hyperclassis Construction Solution Solu	Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	13	0	0	0	0	13	0	0	0	3.33	0	0	27	10
Ebbelowerial Trendförma Löverligen Löverligen O 0	Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	0	6.67	0	0	0	0	0	0	0	0	0	0	13	17
Bedefinition Immediate Dimension Dimension <thdimension< th=""> <thdimension< th=""> <</thdimension<></thdimension<>	Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	0	0	6.67	13	0	0	0	0	0	0	0	27	0
Lebencorras Intercorras Depresentation Depresentatio	Euchelicerata	Trombidiformes	Limnesiidae	Limnesia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Interda Cospigna Description Descripion Description D	Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	6.67	20	6.67	0	0	40	3.33	0	0	0	20	80	6.67
Imbodies Observation Hericals Point Part Part Part Part Part Part Part Par	Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	0	0	0	0	0	0	0	0	0	0	0	13	3.33
Instrict Decompting Description Description <thdescription< th=""> <thdescription< th=""> <th< td=""><td>Insecta</td><td>Coleoptera</td><td>Eimidae</td><td>Heteriimnius</td><td>27</td><td>20</td><td>13</td><td>0</td><td>40</td><td>3.33</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>3.33</td><td>53</td><td>47</td></th<></thdescription<></thdescription<>	Insecta	Coleoptera	Eimidae	Heteriimnius	27	20	13	0	40	3.33	0	0	0	0	0	3.33	53	47
Insola Options Options <th< td=""><td>Insecta</td><td>Coleoptera</td><td>Hydrophilidae</td><td>Hydrophilidae</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>3.33</td></th<>	Insecta	Coleoptera	Hydrophilidae	Hydrophilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	3.33
Intexid: Opperation Opperatio	Insecta	Distare	Staphylinidae	Staphylinidae	0	0	0	0	13	0	0	0	0	0	0	0	0	0
Instatia Dpirata Definita Bilia 216 20 77 21 98 127 0	Insecta	Diptera	Ceratopogonidae	Atrichopogon	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta Dipleta Otheranization Dipleta Otheranization Dipleta Otheranization O </td <td>Insecta</td> <td>Diptera</td> <td>Ceratopogonidae</td> <td>Probezzia</td> <td>215</td> <td>0</td> <td>77</td> <td>0</td> <td>0</td> <td>107</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>125</td>	Insecta	Diptera	Ceratopogonidae	Probezzia	215	0	77	0	0	107	0	0	0	0	0	0	0	125
Inscription Objetion Characteristications 0	Insecta	Diptera	Chironomidae	Brundiniella	215	20	0	21	90	0	0	0	0	0	0	0	28	0
Insecta Dipleta Chimmenidia Convocuta 20 14 14 0 14 0	Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0	0	0	0	0	0	0	0	20	10
Insecta Dipters Chironomidae Dipdensional Chironomidae	Insecta	Diptera	Chironomidae	Corvnoneura	29	14	14	0	14	3 44	0	0	0	0	4 97	0	28	3.47
Insecta Dipteri Chiconomidae Euclefferieira 0 0 677 0 0 3.44 115 31 18 79 25 29 28 3.47 Insecta Dipteria Chiconomidae Hydrobenus 0	Insecta	Diptera	Chironomidae	Diplocladius	0	0	0	0	0	0.44	0	0	0	0		0	14	0.47
Insecta Dipiera Chronomidae Helenella 0 <t< td=""><td>Insecta</td><td>Diptera</td><td>Chironomidae</td><td>Fukiefferiella</td><td>0</td><td>0</td><td>6.97</td><td>0</td><td>0</td><td>3 44</td><td>115</td><td>31</td><td>18</td><td>79</td><td>25</td><td>29</td><td>28</td><td>347</td></t<>	Insecta	Diptera	Chironomidae	Fukiefferiella	0	0	6.97	0	0	3 44	115	31	18	79	25	29	28	347
Insecta Diplera Chinonmidae Hydrobserun 0 0 <	Insecta	Diptera	Chironomidae	Heleniella	0	0	0.07	0	14	0	0	0	0	0	0	0	0	21
Insecta Diptera Chironomidae Kenoamitta 0	Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	0	0	0	0	0	0	0	7 50	9.95	0	0	0
Insecta Díptera Chironomidae Limophysis 43 0 0 0 14 0	Insecta	Diptera	Chironomidae	Krenosmittia	0	0	0	0	0	0	0	0	0	0	0	0	14	0
Insecta Djøra Chironomidae Masr.copekpia 0 0 0 0 3.44 0	Insecta	Diptera	Chironomidae	Limnophyes	43	0	0	0	14	0	0	0	0	0	0	0	0	0
Insecta Diptera Chironomidae Metriconserius 57 28 139 7.14 83 21 0 0 0 0 56 63 Insecta Diptera Chironomidae Micropaetra 57 21 21 14 60 14 0 3.00 0 0 0 10 116 Insecta Diptera Chironomidae Pagasta 0<	Insecta	Diptera	Chironomidae	Macropelopia	0	0	0	0	0	3.44	0	0	0	0	0	0	0	0
Insecta Diptera Chinonnidae Meropsectra 57 21 21 14 69 14 0 3.00 0 0 0 126 17 Insecta Diptera Chinonnidae Paapataio 0 0 0 0 0 14 14 835 55 682 174 130 14 337 Insecta Diptera Chinonnidae Paraphaenocladius 29 6.97 0	Insecta	Diptera	Chironomidae	Metriocnemus	57	28	139	7.14	83	21	0	0	0	0	0	0	56	63
Insecta Diptera Chinonnidae Pagasia 0	Insecta	Diptera	Chironomidae	Micropsectra	57	21	21	14	69	14	0	3.90	0	0	0	0	126	17
Insecta Diptera Chironomidae Paraphenoclatus 29 6.97 0	Insecta	Diptera	Chironomidae	Orthocladius complex	29	21	28	14	14	14	317	39	14	41	85	87	0	10
Insecta Diplera Chironomidae Paraphaenocladius 29 6,97 0 <td>Insecta</td> <td>Diptera</td> <td>Chironomidae</td> <td>Pagastia</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1,914</td> <td>335</td> <td>55</td> <td>682</td> <td>174</td> <td>130</td> <td>14</td> <td>3.47</td>	Insecta	Diptera	Chironomidae	Pagastia	0	0	0	0	0	0	1,914	335	55	682	174	130	14	3.47
Insecta Diptera Chironomidae Pentaneura 0	Insecta	Diptera	Chironomidae	Paraphaenocladius	29	6.97	0	0	14	0	0	0	0	0	0	0	42	28
Insecta Diptera Chironomidae Pseudodianesa 0	Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta Diptera Chironomidae Zaluschia 0 <	Insecta	Diptera	Chironomidae	Pseudodiamesa	0	0	0	0	0	0	0	0	0	0	9.95	0	0	0
Insecta Diptera Chironomidae Zavelinyia 57 21 6.97 14 0 6.87 14 3.90 0 0 4.97 58 98 94 Insecta Diptera Dixidae Meringolixa 0	Insecta	Diptera	Chironomidae	Tvetenia	230	14	14	29	110	24	0	0	0	3.75	0	9.64	0	3.47
Insecta Diptera Chironomidae Zavellmyia 57 21 6.97 14 0 6.87 14 3.90 0 0 4.97 58 98 94 Insecta Diptera Dixidae Dixidae Meringodixa 0	Insecta	Diptera	Chironomidae	Zalutschia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta Diptera Dixidae Dixa 0	Insecta	Diptera	Chironomidae	Zavrelimyia	57	21	6.97	14	0	6.87	14	3.90	0	0	4.97	58	98	94
Insecta Diptera Empididae Meringodixa 0 <t< td=""><td>Insecta</td><td>Diptera</td><td>Dixidae</td><td>Dixa</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta Diptera Empididae Cheilfera/Metachela 0 0 6.67 0 3.38 53 0 0 0 20 57 0 0 0 Insecta Diptera Empididae Oreogeton 0	Insecta	Diptera	Dixidae	Meringodixa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta Diptera Empididae Clinocera 0	Insecta	Diptera	Empididae	Chelifera/Metachela	0	0	6.67	6.67	0	3.38	53	0	0	0	20	57	0	0
Insecta Diptera Empldidae Orcogeton 0	Insecta	Diptera	Empididae	Clinocera	0	0	0	0	0	0	0	0	0	6.67	3.33	0	0	0
Insecta Diptera Empididae Wiedemanna 0 <th< td=""><td>Insecta</td><td>Diptera</td><td>Empididae</td><td>Oreogeton</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>	Insecta	Diptera	Empididae	Oreogeton	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta Diptera Petecomynchidae Gene of the secta O <td>Insecta</td> <td>Diptera</td> <td>Empididae</td> <td>Wiedemannia</td> <td>0</td> <td>3.35</td>	Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	0	0	0	0	0	0	0	0	0	3.35
Insecta Diptera Psychodiade Percona 0 0 0 0 0 0 3.33 0 10 0 0.333 0	Insecta	Diptera	Pelecorhynchidae	Glutops	14	0	0	0	0	0	40	0	0	0	6.67	0	13	0
Insecta Diptera Psycholdae Psycholdae O <t< td=""><td>Insecta</td><td>Diptera</td><td>Psychodidae</td><td>Pericoma</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>3.33</td><td>0</td><td>10</td><td>0</td><td>3.33</td><td>0</td><td>0</td></t<>	Insecta	Diptera	Psychodidae	Pericoma	0	0	0	0	0	0	0	3.33	0	10	0	3.33	0	0
Insecta Diptera Simulidade Simulidade O <t< td=""><td>Insecta</td><td>Diptera</td><td>Psychodidae</td><td>Psychoda</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>12</td><td>0</td><td>0</td></t<>	Insecta	Diptera	Psychodidae	Psychoda	0	0	0	0	0	0	0	0	0	0	0	12	0	0
InsectaDipteraDipteraTipulidaeDipteraDipteraTipulidaeHelius00 <th< td=""><td>Insecta</td><td>Diptera</td><td>Simulidae</td><td>Dioropoto</td><td>0</td><td>12</td><td>10</td><td>0</td><td>12</td><td>6.76</td><td>172</td><td>0</td><td>0</td><td>0</td><td>0.07</td><td>13</td><td>120</td><td>0</td></th<>	Insecta	Diptera	Simulidae	Dioropoto	0	12	10	0	12	6.76	172	0	0	0	0.07	13	120	0
InsectaDipteraTipulidaeTipulidaeLimnophila000 </td <td>Insecta</td> <td>Diptera</td> <td>Tipulidae</td> <td>Holius</td> <td>0</td> <td>13</td> <td>40</td> <td>0</td> <td>13</td> <td>0.70</td> <td>0</td> <td>0</td> <td>0</td> <td>0.07</td> <td>0</td> <td>47</td> <td>120</td> <td>0</td>	Insecta	Diptera	Tipulidae	Holius	0	13	40	0	13	0.70	0	0	0	0.07	0	47	120	0
InsectaDipteraTipulidaeClinitopina00 <th0< td=""><td>Insecta</td><td>Diptera</td><td>Tipulidae</td><td>Limpophilo</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th0<>	Insecta	Diptera	Tipulidae	Limpophilo	0	0	0	0	0	0	0	0	0	0	0	0	0	0
InsectaDipteraTipulidaeFreedominopina00<	Insecta	Diptera	Tipulidae	Pseudolimnonhilo	0	0	0	0	0	0	0	0	0	0	0	0	0	0
InsectaDipteraTipulidaeTipulidaeTipula0000000000000InsectaEphemeropteraAmeletidaeAmeletus00 <td>Insecta</td> <td>Diptera</td> <td>Tipulidae</td> <td>Rhabdomastiv</td> <td>0</td>	Insecta	Diptera	Tipulidae	Rhabdomastiv	0	0	0	0	0	0	0	0	0	0	0	0	0	0
InsectaEphemeropteraAmeletidaeAmeletidaeAmeletidae00 <td>Insecta</td> <td>Diptera</td> <td>Tipulidae</td> <td>Tipula</td> <td>0</td> <td>0</td> <td>13</td> <td>0</td> <td>0</td> <td>3.38</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>3 33</td> <td>0</td> <td>03</td> <td></td>	Insecta	Diptera	Tipulidae	Tipula	0	0	13	0	0	3.38	0	0	0	0	3 33	0	03	
InsectaEphemeropteraBaetidadeFunctional0000000000InsectaEphemeropteraEphemeropteraEphemerellidaeEphemerellidae00	Insecta	Enhemerontera	Ameletidae	Ameletus	0	0	0	6.67	0	0.00	0	0	0	0	0.00	0	0	 0
InsectaEphemeropteraEphemerellidaeEphemerellidae000000000InsectaEphemeropteraHentageniidaeHentageniidae000000000000	Insecta	Enhemerontera	Baetidae	Baetis	67	0	13	6.67	13	0	40	0	0	6.67	6.67	0	0	0
	Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0	0	0	0	0	0	13	0	0	0	0	0	0	0
	Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0	0	6.67	0	0	0	0	0	0	0	0	13	20

	Ta	xon								Der	nsity						
	01	E	Lowest Practical						20)19						20	20
Higher Level	Classification	Family	Level Identification	RG_GAUT-1	RG_GAUT-2	RG_GAUT-3	RG_GAUT-4	RG_GAUT-5	RG_GAUT-6	RG_GANF-1	RG_GANF-2	RG_GANF-3	RG_GANF-4	RG_GANF-5	RG_GANF-6	RG_GAUT-1	RG_GAUT-2
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Paracapnia	6,493	1,007	2,273	1,307	3,693	1,150	587	37	50	167	290	517	1,400	357
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	6.67	6.67	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	0	0	0	0	0	0	0	13	0
Insecta	Plecoptera	Nemouridae	Malenka	13	6.67	0	0	0	6.67	13	0	0	6.67	3.33	3.33	35	29
Insecta	Plecoptera	Nemouridae	Zapada	800	150	283	127	293	167	1,640	107	40	463	223	493	259	58
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0	27	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	0	0	0	0	0	0	0	0	0	0	0	0	27	13
Insecta	Plecoptera	Perlodidae	Megarcys	27	10	47	13	70	13	37	0	0	3.33	3.33	10	0	43
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	107	13	6.67	0	0	3.33	40	6.67	13	67	17	53	0	0
Insecta	Trichoptera	Apataniidae	Apatania	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	40	0	0	0	0	0	27	33
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Chyranda	0	0	0	0	0	13	0	0	0	0	0	0	107	103
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0	0	0	0	0	0	13	0	0	3.33	0	3.33	0	6.67
Insecta	Trichoptera	Limnephilidae	Hesperophylax	0	0	0	0	0	0	0	0	0	0	0	0	40	100
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0	0	0	0	0	0	0	13	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	27	6.67	6.67	3.33	0	3.33	27	0	0	3.33	13	6.67	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	13	10	0	0	77	17	40	0	3.33	6.67	3.33	3.33	53	13
Insecta	Trichoptera	Uenoidae	Neothremma	0	13	0	0	0	0	0	0	0	0	0	0	0	0

	Ta	xon								Den	sity						
Higher Lovel	Classification	Family	Lowest Practical					20	20		-				20	21	
nigher Lever	Classification	Failing	Level Identification	RG_GAUT-3	RG_GAUT-4	RG_GAUT-5	RG_GAUT-6	RG_GANF-1	RG_GANF-2	RG_GANF-3	RG_GANF-4	RG_GANF-5	RG_GANF-6	RG_GAUT-1	RG_GAUT-2	RG_GAUT-3	RG_GAUT-4
Bivalvia	Veneroida	Pisidiidae	Pisidium	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	-	Enchytraeidae	Enchytraeidae	27	0	0	13	67	47	33	27	80	3.33	0	0	6.00	12
Clitellata	I ubificida	Naididae	Tubificinae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	40	333	53	200	20	60	160	310	53	3.33	0	0	0	0
Euchelicerata	Trombidiformes	Hydropatidae	Hydrobates	33 27	0	0	0.07	0	0	0	0	27	3.33	36	24	12	0
Euchelicerata	Trombidiformes	Lehertiidae	l ehertia	0	0	0	13	0	0	0	0	0	0	0	0	42	0
Euchelicerata	Trombidiformes	Limnesiidae	Limnesia	0	0	0	0	0	0	0	0	0	3.33	0	0	0	0
Fuchelicerata	Trombidiformes	Sperchontidae	Sperchon	13	20	27	20	6.67	13	13	6 67	0	3 33	0	0	18	0
Insecta	Coleoptera	Dvtiscidae	Dvtiscidae	13	0	0	6.67	0	0	0	0	0	0	0	12	0	0
Insecta	Coleoptera	Élmidae	Heterlimnius	147	6.67	27	0	6.67	0	0	3.33	40	3.33	12	84	30	108
Insecta	Coleoptera	Hydrophilidae	Hydrophilidae	27	0	0	0	0	0	13	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	6.67	3.33	13	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Atrichopogon	0	0	0	0	0	0	0	0	0	3.33	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	6.79	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	585	20	140	90	0	0	0	0	0	3.38	0	0	0	12
Insecta	Diptera	Chironomidae	Brundiniella	0	7.27	0	21	6.67	0	0	0	0	6.75	0	0	0	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	6.67	28	0	6.67	34	7.91	0	0	0	0	0	9.00	0
Insecta	Diptera	Chironomidae	Corynoneura	0	0	28	6.95	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Diplociadius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukienenella	1.13	0	0	14	0	0	1.91	0.74	55	3.38	0	0	0	0
Insecta	Diplera	Chironomidae	Hydrobaenus	14	0	20	14	0	0	0	10	20	10	0	0	0	0
Insecta	Diptera	Chironomidae	Krenosmittia	0	0	0	0	0	0	0	0	0	3 38	0	0	0	0
Insecta	Diptera	Chironomidae	Limnonhyes	0	0	28	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Macropelopia	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	178	33	112	35	13	0	0	0	14	6.75	0	12	0	0
Insecta	Diptera	Chironomidae	Micropsectra	114	0	560	0	0	14	28	71	344	88	24	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius complex	43	13	196	0	6.67	75	79	51	151	14	0	0	0	12
Insecta	Diptera	Chironomidae	Pagastia	0	6.67	53	0	360	1,871	873	748	1,362	57	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	36	0	0	0	0	0	0	0	14	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	0	0	0	0	12	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0	0	27	0	6.67	6.80	6.92	6.74	28	10	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	7.13	13	28	21	6.67	0	0	0	41	3.38	0	12	0	0
Insecta	Diptera	Chironomidae	Zalutschia	0	0	0	0	0	0	0	0	0	51	0	0	0	0
Insecta	Diptera	Chironomidae	Zavrelimyia	4/1	73	53	104	0	6.80	55	1/	28	0	0	12	9.00	36
Insecta	Diptera	Dixidae	Dixa	0	6.67	0	0	0	0	13	0	13	0	0	0	0	0
Insecta	Diptera	Dixidae	Weringodixa	0	0	0	0	0	0	0	70	0	0	0	0	10	12
Insecta	Diptera	Empididae	Clinocora	14	0	0	0	20	00 35	107	10	67	23	0	0	12	12
Insecta	Diptera	Empididae	Oreogeton	6.83	0	0	0	0		0.07	0	07	0	0	0	0	0
Insecta	Diptera	Empididae	Wiedemannia	0.00	0	0	0	0	0	0	0	0	0	0	0	6.00	0
Insecta	Diptera	Pelecorhynchidae	Glutops	0	6.67	0	6 79	50	20	40	3 33	134	33	0	0	0.00	0
Insecta	Diptera	Psvchodidae	Pericoma	0	13	0	0	6.67	27	27	6.67	67	10	0	0	6.00	0
Insecta	Diptera	Psvchodidae	Psvchoda	0	0	0	0	0	0	0	0	13	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0	0	0	6.67	13	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	123	40	267	48	47	100	53	40	67	27	60	0	36	24
Insecta	Diptera	Tipulidae	Helius	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Limnophila	0	0	27	0	0	0	0	0	0	3.33	0	0	6.00	0
Insecta	Diptera	Tipulidae	Pseudolimnophila	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	6.83	0	0	0	0	0	0	0	0	0	0	0	0	12
Insecta	Diptera	Tipulidae	Tipula	89	6.67	53	6.79	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	6.67	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	6.67	120	27	20	0	0	0	0	0	0	12	24	18	12
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0	6.67	0	6.67	13	0	0	0	0	3.33	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	20	6.67	0	0	0	0	0	0	0	0	12	36	0	0

	Taxon									Da	nalty						
	li	axon								De	nsity						
Higher	Level Classification	Family	Lowest Practical					2	020						20)21	
ingilei		i anny	Level Identification	RG_GAUT-3	RG_GAUT-4	RG_GAUT-5	RG_GAUT-6	RG_GANF-1	RG_GANF-2	RG_GANF-3	RG_GANF-4	RG_GANF-	5 RG_GANF-6	RG_GAUT-1	RG_GAUT-2	RG_GAUT-3	RG_GAUT-4
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0	0	0	0	0	0	103	25	0
Insecta	Plecoptera	Capniidae	Paracapnia	560	673	1,707	613	193	200	127	100	147	160	120	461	353	300
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	67	6.67	53	0	13	0	6.67	3.33	80	20	0	0	12	0
Insecta	Plecoptera	Leuctridae	Leuctridae	6.67	6.67	0	0	0	6.67	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	27	17	0	0	0	0	0	0	17	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	20	69	240	80	367	300	353	420	317	133	12	24	18	24
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0	0	3.33	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	47	6.67	0	6.67	47	100	20	47	133	27	0	24	12	0
Insecta	Plecoptera	Perlodidae	Megarcys	40	20	107	20	3.33	0	17	6.67	77	10	0	6.00	12	18
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	0	0	0	0	0	67	73	50	40	13	0	36	0	12
Insecta	Trichoptera	Apataniidae	Apatania	0	6.67	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0	0	0	0	0	96	12	24	96
Insecta	Trichoptera	Glossosomatidae	Glossosoma	6.67	20	133	0	67	20	0	0	13	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	0	0	3.33	13	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Chyranda	473	0	27	33	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0	0	0	0	47	60	20	20	40	10	24	24	0	12
Insecta	Trichoptera	Limnephilidae	Hesperophylax	160	6.67	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	33	27	6.67	33	13	47	0	0	6.00	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	6.67	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	33	47	187	20	13	20	53	30	60	6.67	0	12	6.00	0
Insecta	Trichoptera	Uenoidae	Neothremma	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Tax	xon					Der	sity			
Lisher Loval	Classification	Family	Lowest Practical				20	21			
Higher Level	Classification	Family	Level Identification	RG_GAUT-5	RG_GAUT-6	RG_GANF-1	RG_GANF-2	RG_GANF-3	RG_GANF-4	RG_GANF-5	RG_GANF-6
Bivalvia	Veneroida	Pisidiidae	Pisidium	0	0	6.00	0	0	0	0	0
Clitellata	-	Enchytraeidae	Enchytraeidae	0	0	6.00	0	30	0	0	12
Clitellata	Tubificida	Naididae	Tubificinae	0	0	0	0	0	12	0	0
Collembola	Collembola	-	Collembola	0	0	0	0	42	24	72	18
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	0	18	0	0	0	0	0
Euchelicerata	Trombidiformes	Limnesiidae	Limnesia	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	6.00	0	0	0	0	0	6.00
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	12	18	12	9.00	0	12	0	0
Insecta	Coleoptera	Hydrophilidae	Hydrophilidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Atrichopogon	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	12	6.86	0	7.23	6.87	14	0	0
Insecta	Diptera	Chironomidae	Brundiniella	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	14	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corynoneura	6.00	0	0	3.61	0	0	0	0
Insecta	Diptera	Chironomidae	Diplocladius	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	0	0	0	7.23	34	14	0	32
Insecta	Diptera	Chironomidae	Heleniella	6.00	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Krenosmittia	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Macropelopia	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	0	0	12	18	21	0	12	0
Insecta	Diptera	Chironomidae	Orthocladius complex	0	6.86	12	11	34	28	0	0
Insecta	Diptera	Chironomidae	Pagastia	0	0	60	90	254	619	294	123
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	0	6.86	0	3.61	0	14	0	0
Insecta	Diptera	Chironomidae	Zalutschia	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Zavrelimyia	6.00	14	18	18	28	69	0	6.48
Insecta	Diptera	Dixidae	Dixa	12	0	0	0	0	12	0	0
Insecta	Diptera	Dixidae	Meringodixa	6.00	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	0	0	30	18	6.00	72	60	66
Insecta	Diptera	Empididae	Clinocera	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Oreogeton	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	0	0	51	12	15	12	0	0
Insecta	Diptera	Psvchodidae	Pericoma	0	0	12	3.00	18	24	18	18
Insecta	Diptera	Psychodidae	Psychoda	0	0	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	6 00	0	6 00	15	6 00	24	18	6.00
Insecta	Diptera	Tipulidae	Helius	0	0	0	0	0	0	6.00	0
Insecta	Diptera	Tipulidae	Limnophila	0	0	n n	0	0	0	0	0
Insecta	Diptera	Tipulidae	Pseudolimnonhila	0	0	0	0	6 00	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0	0.00	0	0	0
Insecta	Diptera	Tinulidae	Tinula	0	0	0	0	0	0	0	0
Insecta	Enhemerontera	Δmelatidaa	Δmeletus	0	0	0	0	0	0	0	0
Insecta	Enhemerontera	Raetidae	Raptie	0	0	24	15	26	228	162	72
Insecta	Enhemerontera	Enhemerellidae	Enhemerellidae	0	0	24 0	6.00	6.00	<u>220</u>	102	0
Insocia	Enhemorontoro	Hentagoniidag	Hentagoniidao	0	10	0	3.00	0.00	0	0	0
insecta	Ephemeropleia	rieplageriiluae	rieplageriiluae	0	12	U	5.00	U	U	U	U

	Та	xon					Der	nsity			
Lisher Loval	Classification	Family	Lowest Practical				20	21			
Higher Level	Classification	Family	Level Identification	RG_GAUT-5	RG_GAUT-6	RG_GANF-1	RG_GANF-2	RG_GANF-3	RG_GANF-4	RG_GANF-5	RG_GANF-6
Insecta	Plecoptera	Capniidae	Eucapnopsis	98	50	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Paracapnia	148	413	180	72	54	336	42	84
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	0	0	18	12	12	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	12	18	3.00	6.00	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Zapada	42	96	306	162	282	1,320	336	390
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	6.00	3.00	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	0	0	0	0	11	84	30	36
Insecta	Plecoptera	Perlodidae	Megarcys	12	33	3.00	12	32	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	12	0	18	9.00	60	240	108	60
Insecta	Trichoptera	Apataniidae	Apatania	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	168	66	12	201	36	24	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	6.00	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Chyranda	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	6.00	0	0	3.00	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Hesperophylax	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	18	12	6.00	24	0	24
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	3.00	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	6.00	18	102	60	48	60	6.00	6.00
Insecta	Trichoptera	Uenoidae	Neothremma	0	0	0	0	0	0	0	0

Table E.14: Density (No./m²) of Benthic Invertebrate Taxa in Samples from Gardine Creek, Based on the Lowest Practical Level of Taxonomy, 2019 to 20

Taxon		kon				Area-bas	ed Kicks		
Higher Level	Classification	Family	Lowest Practical			20	19		
	elacomoution		Level Identification	RG_GAUT-1	RG_GAUT-2	RG_GAUT-3	RG_GAUT-4	RG_GAUT-5	RG_GAUT-6
Bivalvia	Veneroida	Pisidiidae	Pisidium	0	0	0	0	0	0
Clitellata	- Tubificida	Enchytraeldae	Enchytraeidae	0	0	0.429	0.414	0	0
Collembola	Collembola	-	Collembola	0.792	9.73	1.93	0.828	1.41	6.72
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0.158	0	0	0	0	0.768
Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	0	0.423	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	0	0	0.414	0.282	0
Euchelicerata	Trombidiformes	Limnesiidae	Limnesia	0	0	0	0	0	0
Euchelicerata	I rombidiformes	Sperchontidae	Sperchon	0	0.423	0.643	0.414	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	0 317	1 27	0 429	0	0.847	0 192
Insecta	Coleoptera	Hvdrophilidae	Hvdrophilidae	0.017	0	0.423	0	0.047	0.152
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0.282	0
Insecta	Diptera	Ceratopogonidae	Atrichopogon	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	2.56	1.77	2.47	1.33	2.04	7.32
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corvnoneura	0 341	0 884	0 448	0	0 292	0 198
Insecta	Diptera	Chironomidae	Diplocladius	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	0	0	0.224	0	0	0.198
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0.292	0
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Krenosmittia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Limnophyes	0.512	0	0	0	0.292	0 109
Insecta	Diptera	Chironomidae	Metriocnemus	0 682	1 77	4 48	0 444	1 75	1 19
Insecta	Diptera	Chironomidae	Micropsectra	0.682	1.33	0.672	0.887	1.46	0.791
Insecta	Diptera	Chironomidae	Orthocladius complex	0.341	1.33	0.896	0.887	0.292	0.791
Insecta	Diptera	Chironomidae	Pagastia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	0.341	0.442	0	0	0.292	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	I vetenia Zalutschia	2.73	0.884	0.448	1.77	2.33	1.38
Insecta	Diptera	Chironomidae	Zavrelimvia	0.682	1.33	0 224	0 887	0	0.396
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	0	0
Insecta	Diptera	Dixidae	Meringodixa	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	0	0	0.214	0.414	0	0.195
Insecta	Diptera	Empididae	Clinocera	0	0	0	0	0	0
Insecta	Diptera	Empididae	Oreogeton	0	0	0	0	0	0
Insecta	Diptera	Pelecorbynchidae	Glutops	0 164	0	0	0	0	0
Insecta	Diptera	Psychodidae	Pericoma	0.104	0	0	0	0	0
Insecta	Diptera	Psychodidae	Psychoda	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	0	0.846	1.29	0	0.282	0.390
Insecta	Diptera	Tipulidae	Helius	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Tipula	0	0	0.429	0	0	0.195
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0.414	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0.792	0	0.429	0.414	0.282	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0	0	0.414	0	0
Insecta	Plecoptera	Caphildae	Eucapnopsis Paracappia	77	0	U 73	U 81	U 78	0
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	0 423	0.214	0	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0.158	0.423	0	0	0	0.384
Insecta	Plecoptera	Nemouridae	Zapada	9.51	9.51	9.11	7.87	6.21	9.60
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0
Insecta	Plecoptera	Periodidae	Isoperia	0 317	0.634	U 1 50	0.829	U 1 / P	0.769
Insecta	Plecontera	Taeniontervoidae	Taeniontervaidae	1 27	0.034	0.214	0.020	1.40 N	0.700
Insecta	Trichoptera	Apataniidae	Apatania	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecolicomulo	0	0	0	0	0	0.768
Insecta	Trichontera	Linnephilidae	Hesperophylax	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0.317	0.423	0.214	0.207	0	0.192
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0.158	0.634	0	0	1.62	0.960
Insecta	Trichoptera	Uenoidae	Neothremma	0	0.846	0	0	0	0

Note: - = not applicable.

Page 1 of 6

	Ta	xon				Area-bas	ed Kicks		
Higher Level	Classification	Family	Lowest Practical Level Identification	RG GANE-1	RG GANE-2	20 RG GANE-3	19 RG GANE-4	RG GANE-5	RG GANE-6
Bivalvia Clitellata	Veneroida	Pisidiidae Enchytraeidae	Pisidium Enchytraeidae	0	0	0	0	0	0 821
Clitellata	Tubificida	Naididae	Tubificinae	0	0	0	0	0	0.021
Collembola	Collembola	-	Collembola	1.02	6.04	23	5.17	2.38	3.90
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0	0	0	0.199	0	0
Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Limnesiidae	Limnesia	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0.764	0.549	0	0	0	1.23
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	0	0	0	0	0	0.205
Insecta	Coleoptera	Hydrophilidae	Hydrophilidae	0	0	0	0	0	0
Insecta	Diptoro	Staphylinidae	Staphylinidae	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brundiniella	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Corynoneura	0	0	0	0	0.508	0
Insecta	Diptera	Chironomidae	Diplocladius	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	2.20	5.14	7.30	4.69	2.54	1.78
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	0	0.447	1.02	0
Insecta	Diptera	Chironomidae	Krenosmittia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Macropelopia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Micropsectra	0	0.643	0	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius complex	6.05	6.43	5.47	2.46	8.63	5.35
Insecta	Diptera	Chironomidae	Pagastia	37	55	22	41	18	8.02
Insecta	Diptera	Chironomidae	Paraphaenociadius	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentarieura	0	0	0	0	1.02	0
Insecta	Diptera	Chironomidae	Typtonia	0	0	0	0 224	0	0 594
Insecta	Diptera	Chironomidae	Zalutschia	0	0	0	0.224	0	0.004
Insecta	Diptera	Chironomidae	Zavrelimvia	0 275	0.643	0	0	0 508	3 56
Insecta	Diptera	Dixidae	Dixa	0	0.010	0	0	0	0.00
Insecta	Diptera	Dixidae	Meringodixa	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	1.02	0	0	0	2.04	3.49
Insecta	Diptera	Empididae	Clinocera	0	0	0	0.398	0.340	0
Insecta	Diptera	Empididae	Oreogeton	0	0	0	0	0	0
Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	0.764	0	0	0	0.680	0
Insecta	Diptera	Psychodidae	Pericoma	0	0.549	0	0.596	0	0.205
Insecta	Diptera	Psychodidae	Psychoda	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0.680	0.821
Insecta	Diptera	Tipulidae	Dicranota	3.31	0	0	0.398	1.70	2.87
Insecta	Diptera	Tipulidae	Hellus	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Limitophila	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastiv	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Tinula	0	0	0	0	0 340	0
Insecta	Enhemerontera	Ameletidae	Ameletus	0	0	0	0	0.040	0
Insecta	Ephemeroptera	Baetidae	Baetis	0.764	0	0	0.398	0.680	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0.255	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Paracapnia	11	6.04	20	9.94	30	32
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	0	0	0	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0.255	0	0	0.398	0.340	0.205
Insecta	Plecoptera	Nemouridae	Zapada	31	18	16	28	23	30
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0.509	0	0	0	0	0
Insecta	Plecoptera	Periodidae	Isoperia	0 700	0	0	0 100	0	0 616
Insecta	Plecontora		Taeniontervaidae	0.700	1 10	U 5 3 2	3 05	0.340	3 20
Insecto	Trichontera	Anataniidae		0.704	0	0.00	0.90	0	5.29 N
Insecta	Trichontera	Glossosomatidae	Anagapetus	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0.764	0	0	0	0	0
Insecta	Trichoptera	Hydropsvchidae	Parapsyche	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Chyranda	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0.255	0	0	0.199	0	0.205
Insecta	Trichoptera	Limnephilidae	Hesperophylax	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0.509	0	0	0.199	1.36	0.411
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0.764	0	1.33	0.398	0.340	0.205
Insecta	Trichoptera	Uenoidae	Neothremma	0	0	0	0	0	0

Note: - = not applicable.

Page 2 of 6

	Taxon					Area-bas	ed Kicks		
Higher Level	Classification	Family	Lowest Practical		1	20	20	1	
Di Li			Level Identification	RG_GAUT-1	RG_GAUT-2	RG_GAUT-3	RG_GAUT-4	RG_GAUT-5	RG_GAUT-6
Clitellata	Veneroida	Pisidiidae	Pisidium	0	0	0 765	0	0	0 930
Clitellata	Tubificida	Naididae	Tubificinae	0	0	0.705	0	0	0.950
Collembola	Collembola	-	Collembola	3.86	3.92	1.15	21	1.27	14
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0.772	0.691	0.956	0	0	0.465
Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	0.386	1.15	0.765	0	0	0.930
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0.772	0	0	0	0	0.930
Euchelicerata	Trombidiformes	Limnesiidae	Limnesia	0	0 461	0 382	0	0 633	0
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0.386	0.401	0.382	0	0.000	0.465
Insecta	Coleoptera	Elmidae	Heterlimnius	1.54	3.23	4.21	0.410	0.633	0
Insecta	Coleoptera	Hydrophilidae	Hydrophilidae	0	0.230	0.765	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Atrichopogon	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	13	9.36	17	1 23	3.32	6.31
Insecta	Diptera	Chironomidae	Brundiniella	0.808	0.00	0	0.447	0.02	1.46
Insecta	Diptera	Chironomidae	Chaetocladius	0	0.720	0	0.410	0.663	0
Insecta	Diptera	Chironomidae	Corynoneura	0.808	0.240	0	0	0.663	0.485
Insecta	Diptera	Chironomidae	Diplocladius	0.404	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukietteriella	0.808	0.240	0.204	0	0 663	0 070
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	0.409	0	0.003	0.970
Insecta	Diptera	Chironomidae	Krenosmittia	0.404	0	0	0	0	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0.663	0
Insecta	Diptera	Chironomidae	Macropelopia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	1.62	4.32	5.11	2.05	2.65	2.43
Insecta	Diptera	Chironomidae	Micropsectra	3.64	1.20	3.27	0 820	13	0
Insecta	Diptera	Chironomidae	Pagastia	0 404	0.720	0	0.820	4.04	0
Insecta	Diptera	Chironomidae	Paraphaenocladius	1.21	1.92	1.02	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0	0	0	0	0.633	0
Insecta	Diptera	Chironomidae	Tvetenia	0	0.240	0.204	0.820	0.663	1.46
Insecta	Diptera	Chironomidae	Zalutschia	0	0	0	0	0	U 7 28
Insecta	Diptera	Dixidae	Dixa	2.05	0.48	0	0.410	0	0
Insecta	Diptera	Dixidae	Meringodixa	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	0	0	0.392	0	0	0
Insecta	Diptera	Empididae	Clinocera	0	0	0	0	0	0
Insecta	Diptera	Empididae	Oreogeton	0	0	0.196	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	0 386	0.232	0	0 410	0	0 474
Insecta	Diptera	Psvchodidae	Pericoma	0.000	0	0	0.820	0	0.474
Insecta	Diptera	Psychodidae	Psychoda	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	3.47	5.71	3.52	2.46	6.33	3.32
Insecta	Diptera	Tipulidae	Helius	0	0	0	0	0 633	0
Insecta	Diptera	Tipulidae	Pseudolimnophila	0	0	0	0	0.033	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0.196	0	0	0
Insecta	Diptera	Tipulidae	Tipula	2.70	3.33	2.55	0.410	1.27	0.474
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0.410	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0	0	0.191	7.38	0.633	1.40
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0 386	1 38	0 574	0.410	0	0.400
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Paracapnia	41	25	16	41	41	43
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	0	1.91	0.410	1.27	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0.386	0	0.191	0.410	0	0
Insecta	Plecontera	Nemouridae	Zanada	7 49	2.00	0.705	4.26	5 70	5 58
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	0.772	0.922	1.34	0.410	0	0.465
Insecta	Plecoptera	Perlodidae	Megarcys	0	3.00	1.15	1.23	2.53	1.40
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	0	0	0	0	0	0
Insecta	Trichoptera	Apataniidae	Apatania	0	0	0	0.410	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0 772	2 30	0 191	1 23	3 16	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Chyranda	3.09	7.14	14	0	0.633	2.33
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	0	0.461	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limpenhilidae	01.10	0.91	4.59 0	0.410	0	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0.000	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	1.54	0.922	0.956	2.87	4.43	1.40
Insecta	Trichoptera	Uenoidae	Neothremma	0	0	0	0	0	0

Note: - = not applicable.

Page 3 of 6

	Tax	xon	·			Area-bas	ed Kicks		
Higher Level	Classification	Family	Lowest Practical			20	20		
	olussification		Level Identification	RG_GANF-1	RG_GANF-2	RG_GANF-3	RG_GANF-4	RG_GANF-5	RG_GANF-6
Bivalvia	Veneroida	Pisidiidae	Pisidium	0	0	0	0	0	0
Clitellata	- Tubificida	Naididae	Tubificinae	4.65	1.46	1.50	1.26	2.13	0.408
Collembola	Collembola	-	Collembola	1.40	1.88	7.20	15	1.42	0.408
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0	0	0	0	0	0.408
Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	0	0	0	0	0.709	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Limnesiidae	Limnesia	0	0	0	0	0	0.408
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0.465	0.418	0.600	0.315	0	0.408
Insecta	Coleoptera	Elmidae	Heterlimnius	0 465	0	0	0 158	1.06	0 408
Insecta	Coleoptera	Hvdrophilidae	Hvdrophilidae	0.400	0	0.600	0.100	0	0.400
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0.300	0.158	0.354	0
Insecta	Diptera	Ceratopogonidae	Atrichopogon	0	0	0	0	0	0.408
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0	0	0	0	0.414
Insecta	Diptera	Chironomidae	Chaetocladius	0.465	1.07	0 356	0	0	0.827
Insecta	Diptera	Chironomidae	Corvnoneura	0.405	0	0.000	0	0	0
Insecta	Diptera	Chironomidae	Diplocladius	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Eukiefferiella	0	0	0.356	0.319	1.46	0.414
Insecta	Diptera	Chironomidae	Heleniella	0	0	0.712	0.478	0.731	0
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	0	0	0	1.24
Insecta	Diptera	Chironomidae	Krenosmittia	0	0	0	0	0	0.414
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0 930	0	0	0	0.366	0 827
Insecta	Diptera	Chironomidae	Micropsectra	0	0.426	1.25	3.35	9.14	11
Insecta	Diptera	Chironomidae	Orthocladius complex	0.465	2.34	3.56	2.39	4.02	1.65
Insecta	Diptera	Chironomidae	Pagastia	25	59	39	35	36	7.03
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0	0.366	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0.465	0.213	0.311	0.319	0.731	1.24
Insecta	Diptera	Chironomidae	Zalutschia	0.465	0	0	0	1.10	6.20
Insecta	Diptera	Chironomidae	Zavrelimvia	0	0 213	2 49	0 797	0 731	0.20
Insecta	Diptera	Dixidae	Dixa	0	0	0.600	0	0.356	0
Insecta	Diptera	Dixidae	Meringodixa	0	0	0	0	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	1.40	2.65	4.80	3.29	4.27	2.86
Insecta	Diptera	Empididae	Clinocera	0	1.11	0.300	0.494	1.78	1.22
Insecta	Diptera	Empididae	Oreogeton	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	349	0 626	1.80	0 158	3 56	4 08
Insecta	Diptera	Psychodidae	Pericoma	0.465	0.835	1.20	0.315	1.78	1.22
Insecta	Diptera	Psychodidae	Psychoda	0	0	0	0	0.356	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0.315	0.356	0
Insecta	Diptera	Tipulidae	Dicranota	3.26	3.13	2.40	1.89	1.78	3.27
Insecta	Diptera	Tipulidae	Helius	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0.408
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Tipula	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	0	0	0	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	0.930	0	0	0	0	0.408
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0	0	0	0	0
Insecta	Plecontera	Caprilidae	Paracaphia	14	6.26	5 70	ں 4 73	3 90	20
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0.930	0	0.300	0.158	2.13	2.45
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0.209	0	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0	0	0	0	0.443	0
Insecta	Plecoptera	Nemouridae	Zapada	26	9.39	16	20	8.41	16
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0.158	0	0
Insecta	Plecoptera	Periodidae	Megarovs	3.20	3.13	0.900	2.21	3.54	3.27
Insecta	Plecoptera	Taenioptervoidae	Taenioptervoidae	0.200	2.09	3.30	2.37	1.06	1.63
Insecta	Trichoptera	Apataniidae	Apatania	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	4.65	0.626	0	0	0.354	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	0.158	0.354	0
Insecta	I richoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0
Insecta	Trichontera	Linnephilidae	Ecclisomyia	U 3.26	U 1 88	0 000	0 0/6	1.06	U 1 22
Insecta	Trichoptera	Limnephilidae	Hesperophylax	0	0	0.300	0.340	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	2.33	0.835	0.300	1.58	0.354	5.71
Insecta	Trichoptera	Limnephilidae	Philocasca	0.465	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0.930	0.626	2.40	1.42	1.59	0.816
Insecta	Trichoptera	Uenoidae	Neothremma	0	0	0	0	0	0

Note: - = not applicable.

Page 4 of 6

	Tax	kon	1			Area-bas	ed Kicks		
Higher Level	Classification	Family	Lowest Practical		1	20	21		
Bivolvia	Vanaraida	Diaidiidaa	Level Identification	RG_GAUT-1	RG_GAUT-2	RG_GAUT-3	RG_GAUT-4	RG_GAUT-5	RG_GAUT-6
Clitellata	veneroida	Enchytraeidae	Enchytraeidae	0	0	0 885	1 71	0	0
Clitellata	Tubificida	Naididae	Tubificinae	0	0	0	0	0	0
Collembola	Collembola	-	Collembola	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	Wandesia	0	0	1.77	0	0	0
Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	8.57	2.61	6.19	0	0	0
Euchelicerata	Trombidiformes	Lebernidae	Leberlia	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0	2.65	0	0	0.778
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	1.31	0	0	0	0
Insecta	Coleoptera	Elmidae	Heterlimnius	2.86	9.15	4.42	15	2.15	2.33
Insecta	Coleoptera	Hydrophilidae	Hydrophilidae	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0	0	1.71	2.15	0.889
Insecta	Diptera	Chironomidae	Brundiniella	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	1.33	0	0	1.78
Insecta	Diptera	Chironomidae	Corynoneura	0	0	0	0	1.08	0
Insecta	Diptera	Chironomidae	Diplocladius	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Heleniella	0	0	0	0	1.08	0
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Krenosmittia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Macropelopia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	1.31	0	0	0	0
Insecta	Diptera	Chironomidae	Orthocladius complex	0.71	0	0	1 71	0	0 889
Insecta	Diptera	Chironomidae	Pagastia	0	0	0	0	0	0.000
Insecta	Diptera	Chironomidae	Paraphaenocladius	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	2.86	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia Zelute elsia	0	1.31	0	0	0	0.889
Insecta	Diptera	Chironomidae	Zalutschia	0	U 1 31	133	0 5 13	1.08	U 1 78
Insecta	Diptera	Dixidae	Dixa	0	0	0	0	2.15	0
Insecta	Diptera	Dixidae	Meringodixa	0	0	0	0	1.08	0
Insecta	Diptera	Empididae	Chelifera/Metachela	0	0	1.77	1.71	0	0
Insecta	Diptera	Empididae	Clinocera	0	0	0	0	0	0
Insecta	Diptera	Empididae	Oreogeton	0	0	0 895	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	0	0	0.865	0	0	0
Insecta	Diptera	Psychodidae	Pericoma	0	0	0.885	0	0	0
Insecta	Diptera	Psychodidae	Psychoda	0	0	0	0	0	0
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	14	0	5.31	3.42	1.08	0
Insecta	Diptera	Tipulidae	Hellus	0	0	0.885	0	0	0
Insecta	Diptera	Tipulidae	Pseudolimnophila	0	0	0.005	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	1.71	0	0
Insecta	Diptera	Tipulidae	Tipula	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	Baetis	2.86	2.61	2.65	1.71	0	0
Insecta	Ephemeroptera	Hentageniidae	Hentageniidae	2.86	3.92	0	0	0	1.56
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	11	3.64	Ŭ Û	18	6.42
Insecta	Plecoptera	Capniidae	Paracapnia	29	50	52	43	26	54
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	0	1.77	0	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	0	0	0	0	0	1.56
Insecta	Plecoptera	Nemouridae	Zanada	2.86	2.61	2 65	3 4 2	7 53	12
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	Isoperla	0	2.61	1.77	0	0	0
Insecta	Plecoptera	Perlodidae	Megarcys	0	0.654	1.77	2.56	2.15	4.28
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	0	3.92	0	1.71	2.15	0
Insecta	Trichoptera	Apataniidae	Apatania	0 02	U 1 31	U 3.5/	U 1/	U 20	U 8 56
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0.00
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	Lepidostomatidae	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Chyranda	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomyia	5.71	2.61	0	1.71	1.08	0
Insecta	Trichoptera	Limnephilidae	Limpenbilidaa	0	0	U 0.882	0	0	0
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0	0.000	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0	1.31	0.885	0	1.08	2.33
Insecta	Trichoptera	Uenoidae	Neothremma	0	0	0	0	0	0

Note: - = not applicable.

Page 5 of 6

	Tax	xon				Area-bas	ed Kicks		
Higher Level	Classification	Family	Lowest Practical			20	21	-	
riigher Lever	olussilloulion	i anny	Level Identification	RG_GANF-1	RG_GANF-2	RG_GANF-3	RG_GANF-4	RG_GANF-5	RG_GANF-6
Bivalvia	Veneroida	Pisidiidae	Pisidium	0.645	0	0	0	0	0
Clitellata	- Tubificida	Naididae	Tubificinae	0.045	0	2.75	0 366	0	1.20
Collembola	Collembola	-	Collembola	0	0	3.86	0.300	6 19	1.88
Euchelicerata	Trombidiformes	Hvdrvphantidae	Wandesia	0	0	0.00	0	0	0
Euchelicerata	Trombidiformes	Hygrobatidae	Hygrobates	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	1.94	0	0	0	0	0
Euchelicerata	Trombidiformes	Limnesiidae	Limnesia	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	Sperchon	0	0	0	0	0	0.625
Insecta	Coleoptera	Dytiscidae	Dytiscidae	0	0	0	0 266	0	0
Insecta	Coleoptera	Hydronhilidae	Hydrophilidae	1.29	0	0	0.300	0	0
Insecta	Coleoptera	Staphylinidae	Staphylinidae	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Atrichopogon	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Probezzia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Brillia	0	0.899	0.631	0.420	0	0
Insecta	Diptera	Chironomidae	Brundiniella	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chaetocladius	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Diplocladius	0	0.449	0	0	0	0
Insecta	Diptera	Chironomidae	Fukiefferiella	0	0 899	3 16	0 420	0	3 38
Insecta	Diptera	Chironomidae	Heleniella	0	0.000	0.10	0.420	0	0.00
Insecta	Diptera	Chironomidae	Hydrobaenus	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Krenosmittia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Limnophyes	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Macropelopia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Metriocnemus	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Orthoolodius complex	1.29	2.25	1.89	0 830	1.05	0
Insecta	Diptera	Chironomidae	Pagastia	6 4 5	1.55	23	19	25	13
Insecta	Diptera	Chironomidae	Paraphaenocladius	0.40	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pentaneura	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Pseudodiamesa	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tvetenia	0	0.449	0	0.420	0	0
Insecta	Diptera	Chironomidae	Zalutschia	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Zavrelimyia	1.94	2.25	2.52	2.10	0	0.675
Insecta	Diptera	Dixidae	Dixa	0	0	0	0.300	0	0
Insecta	Diptera	Empididae	Chelifera/Metachela	3.23	2.24	0.551	2.20	5.15	6.88
Insecta	Diptera	Empididae	Clinocera	0	0	0	0	0	0
Insecta	Diptera	Empididae	Oreogeton	0	0	0	0	0	0
Insecta	Diptera	Empididae	Wiedemannia	0	0	0	0	0	0
Insecta	Diptera	Pelecorhynchidae	Glutops	5.48	1.49	1.38	0.366	0	0
Insecta	Diptera	Psychodidae	Pericoma	1.29	0.373	1.65	0.733	1.55	1.88
Insecta	Diptera	Simuliidae	Simuliidae	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Dicranota	0.645	1.87	0.551	0 733	1 55	0.625
Insecta	Diptera	Tipulidae	Helius	0	0	0	0	0.515	0
Insecta	Diptera	Tipulidae	Limnophila	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Pseudolimnophila	0	0	0.551	0	0	0
Insecta	Diptera	Tipulidae	Rhabdomastix	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	Tipula	0	0	0	0	0	0
Insecta	Ephemeroptera	Ameletidae	Ameletus	0	0	0	0	0	0
Insecta	Ephemeroptera	Enhemerellidae	Enhemerellidae	2.30	0.746	0.551	0.90	0	7.50
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	0	0.373	0	0	0	0
Insecta	Plecoptera	Capniidae	Eucapnopsis	0	0	0	0	0	0
Insecta	Plecoptera	Capniidae	Paracapnia	19	8.96	4.96	10	3.61	8.75
Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	0	2.24	1.10	0.366	0	0
Insecta	Plecoptera	Leuctridae	Leuctridae	1.94	0.373	0.551	0	0	0
Insecta	Plecoptera	Nemouridae	Malenka	0	0	0	0	0	0
Insecta	Plecoptera	Peltoperlidae	Yoraperla	0.645	0.373	20	40	29	41
Insecta	Plecoptera	Perlodidae	Isoperla	0.040	0.575	0.964	2 56	2.58	375
Insecta	Plecoptera	Perlodidae	Megarcys	0.323	1.49	2.89	0	0	0
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	1.94	1.12	5.51	7.33	9.28	6.25
Insecta	Trichoptera	Apataniidae	Apatania	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	Anagapetus	1.29	25	3.31	0.733	0	0
Insecta	Trichoptera	Glossosomatidae	Glossosoma	0	0	0	0	0	0
Insecta	Trichoptera	Hydropsychidae	Parapsyche	0	0.746	0	0	0	0
Insecta	Trichontera	Limnenhilidae	Chyranda	0	0.740	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Ecclisomvia	0	0.373	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Hesperophylax	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Limnephilidae	1.94	1.49	0.551	0.733	0	2.50
Insecta	Trichoptera	Limnephilidae	Philocasca	0	0.373	0	0	0	0
Insecta	Trichoptera	Limnephilidae	Psychoglypha	0	0	0	0	0	0
Insecta	I richoptera	Rhyacophilidae	Rhyacophila Nactherer	11	7.46	4.41	1.83	0.515	0.625
Insecta	i richoptera	Uenoldae	ineothremma	U	U	U	U	0	U

Note: - = not applicable.

Page 6 of 6

	Taxon								Dei	nsity						
1 Parkson Law		F 14						20)19						20	J20
Higner Lev	el Classification	Family	RG_GAUT-1	RG_GAUT-2	RG_GAUT-3	RG_GAUT-4	RG_GAUT-5	RG_GAUT-6	RG_GANF-1	RG_GANF-2	RG_GANF-3	RG_GANF-4	RG_GANF-5	RG_GANF-6	RG_GAUT-1	RG_GAUT-2
Bivalvia	Veneroida	Pisidiidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	-	Enchytraeidae	0	0	13	7	0	0	0	0	0	23	27	13	0	0
Clitellata	Tubificida	Naididae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	Collembola	67	153	60	13	67	117	53	37	57	87	23	63	133	57
Euchelicerata	Trombidiformes	Hydryphantidae	13	0	0	0	0	13	0	0	0	3	0	0	27	10
Euchelicerata	Trombidiformes	Hygrobatidae	0	7	0	0	0	0	0	0	0	0	0	0	13	17
Euchelicerata	Trombidiformes	Lebertiidae	0	0	0	7	13	0	0	0	0	0	0	0	27	0
Euchelicerata	Trombidiformes	Limnesiidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	0	7	20	7	0	0	40	3	0	0	0	20	80	7
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0	0	0	0	0	13	3
Insecta	Coleoptera	Elmidae	27	20	13	0	40	3	0	0	0	0	0	3	53	47
Insecta	Coleoptera	Hydrophilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	3
Insecta	Coleoptera	Staphylinidae	0	0	0	0	13	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	746	153	307	100	427	216	2,360	413	87	813	313	313	893	392
Insecta	Diptera	Dixidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	0	0	7	7	0	3	53	0	0	7	23	57	0	3
Insecta	Diptera	Pelecorhynchidae	14	0	0	0	0	0	40	0	0	0	7	0	13	0
Insecta	Diptera	Psychodidae	0	0	0	0	0	0	0	3	0	10	0	3	0	0
Insecta	Diptera	Simuliidae	0	0	0	0	0	0	0	0	0	0	7	13	0	0
Insecta	Diptera	Tipulidae	0	13	53	0	13	10	173	0	0	7	20	47	213	131
Insecta	Ephemeroptera	Ameletidae	0	0	0	7	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	67	0	13	7	13	0	40	0	0	7	7	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	0	0	0	0	0	0	13	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	0	0	0	7	0	0	0	0	0	0	0	0	13	20
Insecta	Plecoptera	Capniidae	6,493	1,007	2,273	1,307	3,693	1,150	587	37	50	167	290	517	1,400	357
Insecta	Plecoptera	Chloroperlidae	0	7	7	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Leuctridae	0	0	0	0	0	0	0	0	0	0	0	0	13	0
Insecta	Plecoptera	Nemouridae	813	157	283	127	293	173	1,653	107	40	470	227	497	293	87
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	27	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	27	10	47	13	70	13	37	0	0	3	3	10	27	57
Insecta	Plecoptera	Taeniopterygidae	107	13	7	0	0	3	40	7	13	67	17	53	0	0
Insecta	Trichoptera	Apataniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	0	0	0	0	0	0	40	0	0	0	0	0	27	33
Insecta	Trichoptera	Hydropsychidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	27	7	7	3	0	17	40	0	0	7	13	10	160	210
Insecta	Trichoptera	Rhyacophilidae	13	10	0	0	77	17	40	0	3	7	3	3	53	13
Insecta	Trichoptera	Uenoidae	0	13	0	0	0	0	0	0	0	0	0	0	0	0

	Taxon								Der	nsity						
Like kan barret		E a un lla a					20)20						20	021	
Higher Level	Classification	Family	RG_GAUT-3	RG_GAUT-4	RG_GAUT-5	RG_GAUT-6	RG_GANF-1	RG_GANF-2	RG_GANF-3	RG_GANF-4	RG_GANF-5	RG_GANF-6	RG_GAUT-1	RG_GAUT-2	RG_GAUT-3	RG_GAUT-4
Bivalvia	Veneroida	Pisidiidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	-	Enchytraeidae	27	0	0	13	67	47	33	27	80	3	0	0	6	12
Clitellata	Tubificida	Naididae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	Collembola	40	333	53	200	20	60	160	310	53	3	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	33	0	0	7	0	0	0	0	0	3	0	0	12	0
Euchelicerata	Trombidiformes	Hygrobatidae	27	0	0	13	0	0	0	0	27	0	36	24	42	0
Euchelicerata	Trombidiformes	Lebertiidae	0	0	0	13	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Limnesiidae	0	0	0	0	0	0	0	0	0	3	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	13	20	27	20	7	13	13	7	0	3	0	0	18	0
Insecta	Coleoptera	Dytiscidae	13	0	0	7	0	0	0	0	0	0	0	12	0	0
Insecta	Coleoptera	Elmidae	147	7	27	0	7	0	0	3	40	3	12	84	30	108
Insecta	Coleoptera	Hydrophilidae	27	0	0	0	0	0	13	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	7	3	13	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	7	0	0	0	0	0	3	0	0	0	0
Insecta	Diptera	Chironomidae	1,454	173	1,280	292	407	2,007	1,073	910	2,064	257	36	36	18	60
Insecta	Diptera	Dixidae	0	7	0	0	0	0	13	0	13	0	0	0	0	0
Insecta	Diptera	Empididae	21	0	0	0	20	120	113	80	228	33	0	0	18	12
Insecta	Diptera	Pelecorhynchidae	0	7	0	7	50	20	40	3	134	33	0	0	0	0
Insecta	Diptera	Psychodidae	0	13	0	0	7	27	27	7	80	10	0	0	6	0
Insecta	Diptera	Simuliidae	0	0	0	0	0	0	0	7	13	0	0	0	0	0
Insecta	Diptera	Tipulidae	218	47	347	54	47	100	53	40	67	30	60	0	42	36
Insecta	Ephemeroptera	Ameletidae	0	7	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	7	120	27	20	0	0	0	0	0	0	12	24	18	12
Insecta	Ephemeroptera	Ephemerellidae	0	7	0	7	13	0	0	0	0	3	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	20	7	0	0	0	0	0	0	0	0	12	36	0	0
Insecta	Plecoptera	Capniidae	560	673	1,707	613	193	200	127	100	147	160	120	564	378	300
Insecta	Plecoptera	Chloroperlidae	67	7	53	0	13	0	7	3	80	20	0	0	12	0
Insecta	Plecoptera	Leuctridae	7	7	0	0	0	7	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	47	87	240	80	367	300	353	420	333	133	12	24	18	24
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	3	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	87	27	107	27	50	100	37	53	210	37	0	30	24	18
Insecta	Plecoptera	Taeniopterygidae	0	0	0	0	0	67	73	50	40	13	0	36	0	12
Insecta	Trichoptera	Apataniidae	0	7	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	7	20	133	0	67	20	0	0	13	0	96	12	24	96
Insecta	Trichoptera	Hydropsychidae	0	0	0	0	0	0	0	3	13	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	633	7	27	33	87	87	27	53	53	57	24	24	6	12
Insecta	Trichoptera	Rhyacophilidae	33	47	187	20	13	20	53	30	60	7	0	12	6	0
Insecta	Trichoptera	Uenoidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Taxon					Der	nsity			
Linhan Laval	Classification	Family				20	21			
Higner Level	Classification	Family	RG_GAUT-5	RG_GAUT-6	RG_GANF-1	RG_GANF-2	RG_GANF-3	RG_GANF-4	RG_GANF-5	RG_GANF-6
Bivalvia	Veneroida	Pisidiidae	0	0	6	0	0	0	0	0
Clitellata	-	Enchytraeidae	0	0	6	0	30	0	0	12
Clitellata	Tubificida	Naididae	0	0	0	0	0	12	0	0
Collembola	Collembola	Collembola	0	0	0	0	42	24	72	18
Euchelicerata	Trombidiformes	Hydryphantidae	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hygrobatidae	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	0	0	18	0	0	0	0	0
Euchelicerata	Trombidiformes	Limnesiidae	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	0	6	0	0	0	0	0	6
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	12	18	12	9	0	12	0	0
Insecta	Coleoptera	Hydrophilidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	30	48	102	159	378	756	306	162
Insecta	Diptera	Dixidae	18	0	0	0	0	12	0	0
Insecta	Diptera	Empididae	0	0	30	18	6	72	60	66
Insecta	Diptera	Pelecorhynchidae	0	0	51	12	15	12	0	0
Insecta	Diptera	Psychodidae	0	0	12	3	18	24	18	18
Insecta	Diptera	Simuliidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	6	0	6	15	12	24	24	6
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	0	0	24	15	36	228	162	72
Insecta	Ephemeroptera	Ephemerellidae	0	0	0	6	6	0	0	0
Insecta	Ephemeroptera	Heptageniidae	0	12	0	3	0	0	0	0
Insecta	Plecoptera	Capniidae	246	462	180	72	54	336	42	84
Insecta	Plecoptera	Chloroperlidae	0	0	0	18	12	12	0	0
Insecta	Plecoptera	Leuctridae	0	12	18	3	6	0	0	0
Insecta	Plecoptera	Nemouridae	42	96	306	162	282	1,320	336	390
Insecta	Plecoptera	Peltoperlidae	0	0	6	3	0	0	0	0
Insecta	Plecoptera	Perlodidae	12	33	3	12	42	84	30	36
Insecta	Plecoptera	Taeniopterygidae	12	0	18	9	60	240	108	60
Insecta	Trichoptera	Apataniidae	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	168	66	12	201	36	24	0	0
Insecta	Trichoptera	Hydropsychidae	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	0	0	0	6	0	0	0	0
Insecta	Trichoptera	Limnephilidae	6	0	18	18	6	24	0	24
Insecta	Trichoptera	Rhyacophilidae	6	18	102	60	48	60	6	6
Insecta	Trichoptera	Uenoidae	0	0	0	0	0	0	0	0

	Taxon								Area-based	Kick Samples						
Likeban Laval	Oleasification	Family						20	019						20)20
Higher Level	Classification	Family	RG_GAUT-1	RG_GAUT-2	RG_GAUT-3	RG_GAUT-4	RG_GAUT-5	RG_GAUT-6	RG_GANF-1	RG_GANF-2	RG_GANF-3	RG_GANF-4	RG_GANF-5	RG_GANF-6	RG_GAUT-1	RG_GAUT-2
Bivalvia	Veneroida	Pisidiidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	-	Enchytraeidae	0	0	0.429	0.414	0	0	0	0	0	1.39	2.72	0.821	0	0
Clitellata	Tubificida	Naididae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	Collembola	0.792	9.73	1.93	0.828	1.41	6.72	1.02	6.04	23	5.17	2.38	3.90	3.86	3.92
Euchelicerata	Trombidiformes	Hydryphantidae	0.158	0	0	0	0	0.768	0	0	0	0.199	0	0	0.772	0.691
Euchelicerata	Trombidiformes	Hygrobatidae	0	0.423	0	0	0	0	0	0	0	0	0	0	0.386	1.15
Euchelicerata	Trombidiformes	Lebertiidae	0	0	0	0.414	0.282	0	0	0	0	0	0	0	0.772	0
Euchelicerata	Trombidiformes	Limnesiidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	0	0.423	0.643	0.414	0	0	0.764	0.549	0	0	0	1.23	2.32	0.461
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0	0	0	0	0	0.386	0.230
Insecta	Coleoptera	Elmidae	0.317	1.27	0.429	0	0.847	0.192	0	0	0	0	0	0.205	1.54	3.23
Insecta	Coleoptera	Hydrophilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0.230
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0.282	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	8.87	9.73	9.86	6.21	9.04	13	45	68	35	49	32	19	26	27
Insecta	Diptera	Dixidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Empididae	0	0	0.214	0.414	0	0.195	1.02	0	0	0.398	2.38	3.49	0	0.232
Insecta	Diptera	Pelecorhynchidae	0.164	0	0	0	0	0	0.764	0	0	0	0.680	0	0.386	0
Insecta	Diptera	Psychodidae	0	0	0	0	0	0	0	0.549	0	0.596	0	0.205	0	0
Insecta	Diptera	Simuliidae	0	0	0	0	0	0	0	0	0	0	0.680	0.821	0	0
Insecta	Diptera	Tipulidae	0	0.846	1.71	0	0.282	0.584	3.31	0	0	0.398	2.04	2.87	6.18	9.04
Insecta	Ephemeroptera	Ameletidae	0	0	0	0.414	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	0.792	0	0.429	0.414	0.282	0	0.764	0	0	0.398	0.680	0	0	0
Insecta	Ephemeroptera	Ephemerellidae	0	0	0	0	0	0	0.255	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	0	0	0	0.414	0	0	0	0	0	0	0	0	0.386	1.38
Insecta	Plecoptera	Capniidae	77	64	73	81	78	66	11	6.04	20	9.94	30	32	41	25
Insecta	Plecoptera	Chloroperlidae	0	0.423	0.214	0	0	0	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Leuctridae	0	0	0	0	0	0	0	0	0	0	0	0	0.386	0
Insecta	Plecoptera	Nemouridae	9.67	9.94	9.11	7.87	6.21	9.98	32	18	16	28	23	31	8.49	5.99
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0.509	0	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	0.317	0.634	1.50	0.828	1.48	0.768	0.700	0	0	0.199	0.340	0.616	0.772	3.92
Insecta	Plecoptera	Taeniopterygidae	1.27	0.846	0.214	0	0	0.192	0.764	1.10	5.33	3.98	1.70	3.29	0	0
Insecta	Trichoptera	Apataniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	0	0	0	0	0	0	0.764	0	0	0	0	0	0.772	2.30
Insecta	Trichoptera	Hydropsychidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	0.317	0.423	0.214	0.207	0	0.960	0.764	0	0	0.398	1.36	0.616	4.63	15
Insecta	Trichoptera	Rhyacophilidae	0.158	0.634	0	0	1.62	0.960	0.764	0	1.33	0.398	0.340	0.205	1.54	0.922
Insecta	Trichoptera	Uenoidae	0	0.846	0	0	0	0	0	0	0	0	0	0	0	0

Table E.17: Relative Abundance (Percent[%]) of Benthic Invertebrate Taxa in Samples from Gardine Creek, Based on the Family Level of Taxonomy, 2019 to 2021

	Taxon								Area-based	Kick Samples						
I Balana Laura I		E					20	020		_				20	21	
Higner Level	Classification	Family	RG GAUT-3	RG GAUT-4	RG GAUT-5	RG GAUT-6	RG GANF-1	RG GANF-2	RG GANF-3	RG GANF-4	RG GANF-5	RG GANF-6	RG GAUT-1	RG GAUT-2	RG GAUT-3	RG GAUT-4
Bivalvia	Veneroida	Pisidiidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	-	Enchytraeidae	0.765	0	0	0.930	4.65	1.46	1.50	1.26	2.13	0.408	0	0	0.885	1.71
Clitellata	Tubificida	Naididae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collembola	Collembola	Collembola	1.15	21	1.27	14	1.40	1.88	7.20	15	1.42	0.408	0	0	0	0
Euchelicerata	Trombidiformes	Hydryphantidae	0.956	0	0	0.465	0	0	0	0	0	0.408	0	0	1.77	0
Euchelicerata	Trombidiformes	Hygrobatidae	0.765	0	0	0.930	0	0	0	0	0.709	0	8.57	2.61	6.19	0
Euchelicerata	Trombidiformes	Lebertiidae	0	0	0	0.930	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Limnesiidae	0	0	0	0	0	0	0	0	0	0.408	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	0.382	1.23	0.633	1.40	0.465	0.418	0.600	0.315	0	0.408	0	0	2.65	0
Insecta	Coleoptera	Dytiscidae	0.382	0	0	0.465	0	0	0	0	0	0	0	1.31	0	0
Insecta	Coleoptera	Elmidae	4.21	0.410	0.633	0	0.465	0	0	0.158	1.06	0.408	2.86	9.15	4.42	15
Insecta	Coleoptera	Hydrophilidae	0.765	0	0	0	0	0	0.600	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0.300	0.158	0.354	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0.474	0	0	0	0	0	0.408	0	0	0	0
Insecta	Diptera	Chironomidae	42	11	30	20	28	63	48	43	55	31	8.57	3.92	2.65	8.55
Insecta	Diptera	Dixidae	0	0.410	0	0	0	0	0.600	0	0.356	0	0	0	0	0
Insecta	Diptera	Empididae	0.587	0	0	0	1.40	3.76	5.10	3.79	6.05	4.08	0	0	2.65	1.71
Insecta	Diptera	Pelecorhynchidae	0	0.410	0	0.474	3.49	0.626	1.80	0.158	3.56	4.08	0	0	0	0
Insecta	Diptera	Psychodidae	0	0.820	0	0	0.465	0.835	1.20	0.315	2.14	1.22	0	0	0.885	0
Insecta	Diptera	Simuliidae	0	0	0	0	0	0	0	0.315	0.356	0	0	0	0	0
Insecta	Diptera	Tipulidae	6.27	2.87	8.23	3.79	3.26	3.13	2.40	1.89	1.78	3.67	14	0	6.19	5.13
Insecta	Ephemeroptera	Ameletidae	0	0.410	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	0.191	7.38	0.633	1.40	0	0	0	0	0	0	2.86	2.61	2.65	1.71
Insecta	Ephemeroptera	Ephemerellidae	0	0.410	0	0.465	0.930	0	0	0	0	0.408	0	0	0	0
Insecta	Ephemeroptera	Heptageniidae	0.574	0.410	0	0	0	0	0	0	0	0	2.86	3.92	0	0
Insecta	Plecoptera	Capniidae	16	41	41	43	14	6.26	5.70	4.73	3.90	20	29	61	56	43
Insecta	Plecoptera	Chloroperlidae	1.91	0.410	1.27	0	0.930	0	0.300	0.158	2.13	2.45	0	0	1.77	0
Insecta	Plecoptera	Leuctridae	0.191	0.410	0	0	0	0.209	0	0	0	0	0	0	0	0
Insecta	Plecoptera	Nemouridae	1.34	5.33	5.70	5.58	26	9.39	16	20	8.86	16	2.86	2.61	2.65	3.42
Insecta	Plecoptera	Peltoperlidae	0	0	0	0	0	0	0	0.158	0	0	0	0	0	0
Insecta	Plecoptera	Perlodidae	2.49	1.64	2.53	1.86	3.49	3.13	1.65	2.52	5.58	4.49	0	3.27	3.54	2.56
Insecta	Plecoptera	Taeniopterygidae	0	0	0	0	0	2.09	3.30	2.37	1.06	1.63	0	3.92	0	1.71
Insecta	Trichoptera	Apataniidae	0	0.410	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	0.191	1.23	3.16	0	4.65	0.626	0	0	0.354	0	23	1.31	3.54	14
Insecta	Trichoptera	Hydropsychidae	0	0	0	0	0	0	0	0.158	0.354	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Limnephilidae	18	0.410	0.633	2.33	6.05	2.71	1.20	2.52	1.42	6.94	5.71	2.61	0.885	1.71
Insecta	Trichoptera	Rhyacophilidae	0.956	2.87	4.43	1.40	0.930	0.626	2.40	1.42	1.59	0.816	0	1.31	0.885	0
Insecta	Trichoptera	Uenoidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table E.17: Relative Abundance (Percent[%]) of Benthic Invertebrate Taxa in Samples from Gardine Creek, Based on the Family Level of Taxonomy, 2019 to 2021

	Taxon					Area-based I	Kick Samples			
l linhan Laval	Classification	Familie				20	21			
Higher Level	Classification	Family	RG_GAUT-5	RG_GAUT-6	RG_GANF-1	RG_GANF-2	RG_GANF-3	RG_GANF-4	RG_GANF-5	RG_GANF-6
Bivalvia	Veneroida	Pisidiidae	0	0	0.645	0	0	0	0	0
Clitellata	-	Enchytraeidae	0	0	0.645	0	2.75	0	0	1.25
Clitellata	Tubificida	Naididae	0	0	0	0	0	0.366	0	0
Collembola	Collembola	Collembola	0	0	0	0	3.86	0.733	6.19	1.88
Euchelicerata	Trombidiformes	Hydryphantidae	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Hygrobatidae	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	0	0	1.94	0	0	0	0	0
Euchelicerata	Trombidiformes	Limnesiidae	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Sperchontidae	0	0.778	0	0	0	0	0	0.625
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Elmidae	2.15	2.33	1.29	1.12	0	0.366	0	0
Insecta	Coleoptera	Hydrophilidae	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Staphylinidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	5.38	6.23	11	20	35	23	26	17
Insecta	Diptera	Dixidae	3.23	0	0	0	0	0.366	0	0
Insecta	Diptera	Empididae	0	0	3.23	2.24	0.551	2.20	5.15	6.88
Insecta	Diptera	Pelecorhynchidae	0	0	5.48	1.49	1.38	0.366	0	0
Insecta	Diptera	Psychodidae	0	0	1.29	0.373	1.65	0.733	1.55	1.88
Insecta	Diptera	Simuliidae	0	0	0	0	0	0	0	0
Insecta	Diptera	Tipulidae	1.08	0	0.645	1.87	1.10	0.733	2.06	0.625
Insecta	Ephemeroptera	Ameletidae	0	0	0	0	0	0	0	0
Insecta	Ephemeroptera	Baetidae	0	0	2.58	1.87	3.31	6.96	14	7.50
Insecta	Ephemeroptera	Ephemerellidae	0	0	0	0.746	0.551	0	0	0
Insecta	Ephemeroptera	Heptageniidae	0	1.56	0	0.373	0	0	0	0
Insecta	Plecoptera	Capniidae	44	60	19	8.96	4.96	10	3.61	8.75
Insecta	Plecoptera	Chloroperlidae	0	0	0	2.24	1.10	0.366	0	0
Insecta	Plecoptera	Leuctridae	0	1.56	1.94	0.373	0.551	0	0	0
Insecta	Plecoptera	Nemouridae	7.53	12	33	20	26	40	29	41
Insecta	Plecoptera	Peltoperlidae	0	0	0.645	0.373	0	0	0	0
Insecta	Plecoptera	Perlodidae	2.15	4.28	0.323	1.49	3.86	2.56	2.58	3.75
Insecta	Plecoptera	Taeniopterygidae	2.15	0	1.94	1.12	5.51	7.33	9.28	6.25
Insecta	Trichoptera	Apataniidae	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Glossosomatidae	30	8.56	1.29	25	3.31	0.733	0	0
Insecta	Trichoptera	Hydropsychidae	0	0	0	0	0	0	0	0
Insecta	Trichoptera	Lepidostomatidae	0	0	0	0.746	0	0	0	0
Insecta	Trichoptera	Limnephilidae	1.08	0	1.94	2.24	0.551	0.733	0	2.50
Insecta	Trichoptera	Rhyacophilidae	1.08	2.33	11	7.46	4.41	1.83	0.515	0.625
Insecta	Trichoptera	Uenoidae	0	0	0	0	0	0	0	0

Table E.17: Relative Abundance (Percent[%]) of Benthic Invertebrate Taxa in Samples from Gardine Creek, Based on the Family Level of Taxonomy, 201

Watercourse	Biological Area Code	Station	Density (No. org/m²)	Biomass (g/m²)	LPL Richness (No. of taxa)	Family Richness	EPT (%)	Ephemeroptera (%)	Plecoptera (%)	Trichoptera (%)	Diptera (%)
		1	11,952	7.1	27	15	20	0	19	0.80	76
		2	4,836	2.7	17	12	7.4	0	5.0	2.5	87
		3	6,048	5.9	24	12	19	0	14	4.8	76
	KG_GHUT	4	7,200	4.1	20	12	11	0	5.3	5.7	87
		5	5,472	2.5	15	10	15	0	7.0	8.3	84
		6	6,243	4.3	24	17	27	0.38	20	6.5	70
		1	11,067	4.3	25	12	32	0	31	1.3	66
		2	13,680	6.9	22	11	41	0	38	2.8	59
Upper Greenhills		3	15,504	4.0	21	9.0	28	0	27	0.31	73
Creek	KG_GHNF	4	2,256	0.79	20	12	47	0	37	10	50
		5	2,688	1.8	19	11	43	0	41	2.2	55
		6	14,304	4.0	22	10	33	0	33	0	66
		1	3,360	1.7	9.0	7.0	9.3	0	8.9	0.36	90
		2	1,593	1.0	22	16	7.0	0	5.7	1.3	92
		3	1,128	0.61	18	14	28	0.53	23	4.3	69
	RG_GHFF	4	1,836	1.0	13	10	11	0	11	0.33	88
		5	2,964	1.6	16	13	15	0	13	2.0	83
		6	5,532	3.1	17	10	13	0.22	13	0	85
		1	5,304	12	15	14	17	0	12	4.5	18
		2	4,500	6.4	24	19	41	0.13	32	9.3	42
Lower Greenhills		3	4,842	11	19	17	37	0.50	27	9.0	11
Creek	RG_GHBP	4	5,574	12	18	17	51	0.43	36	15	20
		5	16,230	21	23	19	30	0.44	20	10	43
		6	6,462	12	16	14	25	0.19	12	13	17
		1	420	0.85	12	10	66	5.7	31	29	23
		2	918	1.1	18	13	83	6.5	71	5.2	3.9
		3	678	0.66	23	17	72	2.7	64	5.3	12
	RG_GAUT	4	702	1.1	16	12	68	1.7	50	15	15
		5	558	0.58	17	11	88	0	56	32	10
Quardia e Que els		6	771	1.7	16	10	91	1.6	78	11	6.2
Gardine Creek		1	930	1.1	23	19	74	2.6	57	14	22
		2	804	0.99	30	20	73	3.0	35	36	26
		3	1,089	1.2	25	18	54	3.9	42	8.3	39
	KG_GANF	4	3,276	2.1	24	18	71	7.0	61	3.3	28
		5	1,164	0.77	13	11	59	14	44	0.52	35
		6	960	0.48	17	14	70	7.5	59	3.1	26

Table E.18: Summary of Benthic Invertebrate Endpoints Collected by Area-based (1/3 m²) Kick and Sweep Sampling at Greenhills and Gardine Creeks, September 2021

Notes: No. org/m² = number of organisms per square metre; g/m² = grams per square metre; LPL = lowest practical level; EPT = Ephemeroptera, Plecoptera, and Trichoptera; % = percent.

Watercourse	Biological Area Code	Replicate	Abundance	LPL Richness (No. of taxa)	Family Richness	EPT (%)	Ephemeroptera (%)	Plecoptera (%)	Trichoptera (%)	Diptera (%)	EPT Abundance	Ephemeroptera Abundance	Plecoptera Abundance	Trichoptera Abundance	Diptera Abundance
		1	2,360	20	12	66	0	66	0	33	1,553	0	1,553	0	787
Upper Greenhills Creek	RG_GHNF	2	8,060	23	12	46	0	45	1.5	53	3,740	0	3,620	120	4,280
Creek		3	2,480	17	12	45	0	45	0.4	54	1,120	0	1,110	10	1,335
Lower Greenhills Creek		1	5,557	28	23	64	1.8	45	17	15	3,543	100	2,514	929	857
	RG_GHCKD	2	6,420	20	15	50	0.62	39	9.7	28	3,180	40	2,520	620	1,820
		3	6,820	21	16	36	0.29	22	13	37	2,420	20	1,520	880	2,520

Table E.19: Summary of Benthic Invertebrate Endpoints Collected by Timed Kick and Sweep Sampling at Greenhills Creek, September 2021^a

Notes: LPL = Lowest Practical Level; No. = number; EPT = Ephemeroptera, Plecoptera, Trichoptera; % = percent; CABIN = Canadian Aquatic Biomonitoring Network; RAEMP = Regional Aquatic Effects Monitoring Program.

^a Samples were collected using three-minute kicks consistent with CABIN protocols.

^b Biological monitoring area RG_GHCKD is a RAEMP monitoring area.

		P	-values			Area Contrasts											Temporal	Contrasts	6					
Endpoint	Transformation				Year		МС	ст			Letter C	ontrasts			MOD (%) ^a		RG	GHBP	RG	GHUT	RG	GHNF	RG	GHFF
		Year x Area	Year	Area		RG GHBP	RG GHUT	RG GHFF	RG GHNE	RG GHBP	RG GHUT	RG GHNE	RG GHFF	RG GHUT		RG GHFF	Letter	MOD (%) ^b	Letter	MOD (%) b	l etter	MOD (%) ^b	Letter	MOD (%) ^b
					2016	8 587	2.638	1 956	1.822	A	B	B	<u>в</u>	-2.8	-3.7	-3.5		haseline	B	baseline	BC	haseline	AR	haseline
					2010	2 4 1 4	2,000	810	812	Δ	Δ	B	B	0.94	-5.3	-5.3	B	-3.0		0.20	00 C	_1 2	B	_1 9
Density	1	0.014			2017	3 933	5 522	1 809	3 134	AB	A	AB	B	0.54	-0.37	-1.3	AB	-1.9	AB	1.4	AB	0.83	AB	-0.16
(no./m²)	log ₁₀	0.011	<0.001	<0.001	2019	2,928	3,654	1,550	3,212	A	A	A	A	0.26	0.11	-0.74	B	-2.6	AB	0.63	AB	0.87	AB	-0.49
				-	2020	4,139	7,769	3,799	2,053	AB	Α	В	AB	1.3	-1.4	-0.18	AB	-1.7	А	2.1	BC	0.18	А	1.4
					2021	6,382	6,644	2,380	7,670	A	A	A	В	0.085	0.39	-2.1	AB	-0.70	AB	1.8	А	2.2	А	0.41
				_	2016	6.7	1.2	1.1	1.1	A	В	В	В	-8.8	-9.2	-9.2	AB	baseline	С	baseline	BC	baseline	В	baseline
T (10)				-	2017	2.9	1.9	0.89	0.63	A	AB	C	BC	-1.0	-3.8	-3.0	В	-4.3	ABC	0.64	C	-1.4	B	-0.57
Total Biomass	log ₁₀	0.018	<0.001	<0.001	2018	3.6	3.6	2.0	1.4	A	A	В	AB	0.037	-1.6	-0.96	В	-3.2	AB	1.5	ABC	0.51	AB	1.5
(g/m²)				-	2019	3.0	1.4	0.80	0.95	A	AB	B	B	-0.75	-1.2	-1.3	B	-4.2	BC	0.24	BC	-0.38	<u>В</u>	-0.80
					2020	4.1	4.0	<u> </u>	3.0	AB	B	BC	AB C	-2.8	-1.8	-0.32		-2.5	Δ	1.0	AD	2.6	Α ΑΒ	0.45
					2021	26	19	1.0	20	A	B	B	B	-2.0	-1.6	-1.9	AB	baseline	BC	baseline	A	baseline	AB	baseline
				-	2017	26	24	20	17	A	AB	C	BC	-1.2	-4.7	-3.0	A	0.048	A	1.5	AB	-1.1	AB	0.32
I DI Dishassa		10.001	-0.001	10 001	2018	22	16	20	15	A	В	В	A	-2.6	-2.8	-0.64	ABC	-1.1	С	-0.96	В	-1.6	А	0.38
LPL Richness	none	<0.001	<0.001	<0.001	2019	21	17	19	19	A	Α	Α	Α	-1.4	-0.92	-0.66	BC	-1.3	BC	-0.42	AB	-0.45	AB	0.11
					2020	23	20	22	18	A	AB	В	A	-1.4	-2.5	-0.25	ABC	-0.82	ABC	0.37	AB	-0.73	А	1.0
					2021	19	21	16	21	AB	A	A	В	0.36	0.36	-1.0	С	-1.8	AB	0.58	A	0.17	В	-1.1
					2016	19	12	13	12	A	В	В	В	-3.6	-3.3	-3.0	A	baseline	A	baseline	A	baseline	Α	baseline
				-	2017	19	13	13	11	A	B	В	В	-4.0	-5.4	-3.8	A	-0.083	A	1.0	A	-0.69	A	0.10
Family Richness	none	0.052	0.016	<0.001	2018	17	8.5	14	9.2	A	В	В	A	-5.0	-4.6	-1.5	A	-1.2	<u> </u>	-2.9	A	-1.5	<u>A</u>	0.70
2				-	2019	17	10	13	11	A	В	В	В	-3.0	-2.7	-1.9	A	-0.92	AB	-1.4	A	-0.62	A	-0.10
				-	2020	18	12	14	11	A			B	-3.0	-3.4	-1.9	A	-0.50	AB	-0.86	A	-0.54	A	0.70
					2021	30	30	10	32	A			B	-1.0	-2.0	-2.2	R	-1.2 baseline	A	1.0 baseline	RC A	-0.09	A 0	-0.00
				-	2010	36	23	10	65	B	BC	Δ	C	-0.072	3.2	-3.3	AB	0.80		_0 72		2.6	BC	3 1
					2018	45	19	35	31	A	B	A	A	-5.6	-2.3	-1.7	AB	1.9	ABC	-1.3	BC	-0.12	A	5.9
%EPT	log ₁₀	<0.001	0.001	<0.001	2019	60	13	27	25	A	C	B	B	-9.1	-5.1	-4.8	A	3.3	C	-2.4	C	-0.92	AB	4.6
				-	2020	32	16	30	47	A	В	A	Α	-1.9	1.1	-0.16	В	0.29	BC	-1.8	AB	1.4	AB	5.3
					2021	32	15	12	37	A	В	A	В	-1.8	0.38	-2.4	В	0.23	BC	-1.9	BC	0.46	CD	0.90
					2016	0.98	0	0.15	0	A	В	В	В	-1.6	-1.6	-1.3	BC	baseline	Α	- ^c	AB	- ^c	С	baseline
					2017	1.5	0	1.4	0.51	A	В	В	A	-1.4	-0.92	-0.13	AB	0.88	Α	- ^c	А	- ^c	А	5.6
0/ = 1		10.004	10 004	10.004	2018	4.7	0	1.1	0	A	С	С	В	-3.3	-3.3	-2.5	AB	6.1	А	- c	В	- ^c	AB	4.3
%Epnemeroptera	rank	<0.001	<0.001	<0.001	2019	34	0	0.30	0	А	В	В	В	-4.5	-4.5	-4.4	А	53	А	- c	AB	- ^c	BC	0.69
				-	2020	4.9	0	2.0	0	А	В	В	Α	-2.1	-2.1	-1.3	AB	6.4	А	_ c	AB	_ c	А	8.1
				-	2021	0.31	0	0	0	А	AB	В	AB	-1.3	-1.3	-1.3	С	-1.1	А	_ c	В	c	С	-0.67
					2016	14	26	7.0	32	В	A	A	C	0.88	1.1	-0.88	BC	baseline	A	baseline	B	baseline	D	baseline
					2017	24	22	15	65	В	В	A	В	-0.32	2.6	-1.3	AB	0.78	AB	-0.59	А	2.6	BC	1.9
% Placantara	log	<0.001	<0.001	<0.001	2018	30	18	32	31	A	Α	Α	Α	-3.7	0.37	0.56	Α	1.0	ABC	-1.1	В	-0.056	А	3.9
70F lecoptera	10910	<0.001	~0.001	~0.001	2019	17	11	25	24	AB	В	A	A	-0.78	0.68	0.72	ABC	0.27	С	-2.6	В	-0.97	AB	3.2
				-	2020	11	11	26	45	В	В	A	A	0.058	2.0	1.3	С	-0.34	BC	-2.6	AB	1.3	AB	3.4
					2021	21	10	11	34	A	В	A	В	-1.6	1.0	-1.4	AB	0.59	С	-2.9	AB	0.29	CD	1.2
				-	2016	12	2.1	3.1	0.34	A	B	C	B	-2.1	-2.4	-1.9	A	baseline	AB	baseline	AB	baseline	A	baseline
				-	2017	8.0	0.80	2.3	0	A	BC	C	AB	-2.0	-2.2	-1.5	A	-0.86	BC	-0.99	B	-0.67	<u>A</u>	-0.69
%Trichoptera	rank	0.012	<0.001	<0.001	2018	10	0.26	1.3	0	A	BC		В	-4.1	-4.2	-3.6	A	-0.35		-1.4	B	-0.67	A	-1.6
				-	2019	9.4	6.2	1.2	1.0	A	B	B	B	-1.5	-1.5	-1.5	A	-0.56		-0.79		1.4	A 	-1.0
				-	2020	95	5.2	0.84	1.4	A A	AR	BC	C.	-1.5	-2.0	-2.5	Δ	-0.017	Δ	23		2.2	Δ	-0.00
					2016	39	61	87	60	ĉ	B	B	A	2.6	2.5	5.6	A	baseline		baseline	AB	baseline	A	baseline
					2017	43	70	77	30	B	Ā	B	A	5.2	-2.6	6.7	A	0.50	AB	1.9	C	-2.8	AB	-6.7
0/ Distant	nemle	10.001	0.000	10.004	2018	46	73	64	62	В	A	A	A	4.1	2.4	2.7	А	0.88	Α	2.7	AB	0.24	С	-16
iptera %	rank	<0.001	0.009	<0.001	2019	27	80	73	69	С	А	В	AB	9.0	7.1	7.8	А	-1.4	А	4.3	A	0.85	BC	-9.7
					2020	33	77	66	49	С	A	В	A	6.0	2.2	4.6	Α	-0.68	Α	3.4	BC	-1.0	BC	-14
					2021	19	80	87	63	С	A	В	A	8.3	5.9	9.1	A	-2.3	A	4.3	AB	0.27	A	-0.21

Table E.20: Comparison of Benthic Invertebrate Community Endpoints Among Treated (RG_GHBP) and Untreated Areas of Greenhills Creek, 2016 to 2021

P-value <0.1 and MOD >2. P-value <0.1 and MOD <-2.

P-value <0.1.

Notes: MCT = measure of central tendency; MOD = magnitude of difference; % = percent; no./m² = number or organisms per metre squared; < = less than; g = grams; LPL = lowest practical level; EPT = Ephemeroptera, and Trichoptera; - = not applicable; > = greater than; SD = standard deviation. Letters A, B, and C are used to illustrate similarities and differences among areas and years (e.g., areas assigned "A" and "B" letter contrasts have significantly different organism densities).

^a MOD = (MCT_{Upstream}-MCT_{GHBP})/SD_{GHBP}.

^b MOD = (MCT_{year}-MCT₂₀₁₆)/SD₂₀₁₆.

^c MOD could not be calculated because baseline SD = 0.

Table E.21: Statistical Comparisons of Benthic Invertebrate Community Endpoints for Biological Monitoring Areas on Gardine Creek (RG_GAUT and RG_GANF), 2019 to 2021

Biological Monitoring Area	Endpoints	Teeta	Data	Test		МСТ			MOD ^b	
Biological Mollitoling Alea	Endpoints	Test	Transformation	P-value	2019	2020	2021	2019 vs 2020	2019 vs 2021	2020 vs 2021
	Density (No./m²)	ANOVA	log ₁₀	<0.001	2,858	2,356	655	-0.28	-2.1	-2.6
	Total Biomass (g/m²)	ANOVA	log ₁₀	<0.001	1.8	7.3	0.93	2.4	-1.1	-2.2
	LPL Richness	ANOVA	none	<0.001	21	31	16	5.0	-2.5	-3.9
	Family Richness	ANOVA	log ₁₀	0.002	13	18	12	3.6	-0.56	-2.2
RG_GAUT	%EPT	ANOVA	none	<0.001	85	55	78	-5.3	-1.3	3.2
	%Ephemeroptera	K-W	rank	0.064	0.36	1.1	2.2	1.4	3.5	1.3
	%Plecoptera	ANOVA	none	<0.001	84	43	59	-7.0	-4.3	1.3
	%Trichoptera	ANOVA	none	0.013	1.1	10	16	11	18	0.92
	%Diptera	ANOVA	log ₁₀	<0.001	9.9	31	10	4.7	0.077	-2.7
	Density (No./m²)	ANOVA	log ₁₀	0.358	1,133	2,011	1,200	0.56	0.055	-0.93
	Total Biomass (g/m²)	ANOVA	log ₁₀	0.056	0.49	2.1	1.0	1.0	0.49	-1.2
	LPL Richness	ANOVA	none	0.007	17	29	21	1.9	0.64	-1.7
	Family Richness	ANOVA	log ₁₀	0.022	11	19	16	1.2	0.88	-1.2
RG_GANF	%EPT	ANOVA	none	0.003	47	37	67	-0.69	1.4	2.2
	%Ephemeroptera	K-W	rank	0.002	0.20	0	5.4	-0.67	18	- ^c
	%Plecoptera	ANOVA	none	0.040	46	31	50	-1.00	0.29	1.8
	%Trichoptera	K-W	rank	0.014	1.1	4.0	5.8	4.4	7.0	3.1
	%Diptera	ANOVA	log ₁₀	0.004	43	54	29	0.69	-1.2	-2.4

P-value <0.1. P-value <0.1 and MOD <-2.

P-value <0.1 and MOD >2.

Notes: MCT= Measure of Central Tendency; MOD = Magnitude of Difference; No./m² = number of organisms per square metre; ANOVA = Analysis of Variance; < = less than; g/m² = grams per square metre; LPL = Lowest Practical Level; % = percent; EPT = combined Ephemeroptera, Plecoptera, and Trichoptera; - = not calculated; > = greater than; HSD = Honestly Significant Difference; K-W = Kruskal-Wallis; M-W = Mann-Whitney; SD = standard deviation.

^a Statistical tests included ANOVA followed by Tukey's HSD post hoc tests, or K-W H-tests followed by M-W U-tests.

^b MOD = (MCT_{later year} - MCT_{early yea}r₎/SD_{early year}.

^c MOD could not be calculated because the SD was "0".

 Table E.22:
 Comparison of Benthic Invertebrate Community Endpoints for Treated (RG_GHBP) and Untreated (RG_GHUT, RG_GHNF, and RG_GHFF) Areas Before (2016 and 2017) and After (218 to 2020) Treatment: Significant Year Interactions

					Treated	l Versus Ur	ntreated MC	OD ^{a,b}		
Endpoint	Term	P-value		20	16			201	7	
			2018	2019	2020	2021	2018	2019	2020	2021
	BA	<0.001		<u>.</u>						1
	CI	<0.001								ł
	BA x Cl	0.042				-				ł
Biomass (a/m ²)	Year(BA)	<0.001								ł
Diomass (g/m)	Area(CI)	<0.001								
	Year(BA) x Cl	0.018	2.0	1.1	2.2	0.39	0.79	-0.1	1.1	-0.77
	Area(CI) x BA	0.731								I
	Area(CI) x Year(BA)	0.119				-				
	BA	< 0.001								
	CI	<0.001	1							ł
	BA x CI	<0.001	l			-				ł
%Enhamerontera	Year(BA)	<0.001								
%Ephemeropiera	Area(CI)	0.193	1							
	Year(BA) x Cl	<0.001	-1.9	-18	-2.7	0.32	-1.4	-17	-2.2	0.82
	Area(CI) x BA	0.969								
	Area(CI) x Year(BA)	0.913								
	BA	0.461								
	CI	<0.001								
	BA x CI	0.838	l			-				
% Trichontora	Year(BA)	0.002								
%Trichoptera –	Area(CI)	0.056								
	Year(BA) x Cl	0.060	0.17	1.0	0.028	1.3	-1.2	-0.41	-1.4	-0.12
	Area(CI) x BA	0.202								
	Area(CI) x Year(BA)	0.475	1			-				

P-value for relevant BACI term <0.1.

Treated area decreased relative to untreated area.

Treated area increased relative to untreated area.

Notes: MOD = Magnitude of Difference; g/m² = grams per square metre; BA = Before-After; < = less than; CI = Control-Impact; % = percent; SD = standard deviation.

^a MOD = (AfterYear_{treated} -AfterYear_{untreated})-(BeforeYear_{treated} -BeforeYear_{untreated}) /SD.

^b Unshaded MODs were not significant in the post-hoc analysis. A p-value of 0.1, corrected for the number of tests, was used.

Table E.23: Comparisons of Benthic Invertebrate Community Endpoints for Treated (RG_GHBP) and Untreated (RG_GHUT, RG_GHNF, and RG_GHFF) Areas Before (2016 and 2017) and After (2018 to 2021) Treatment: Significant Year and Area Interactions

										MOD	for Yea	rs Befor	e (2016	& 2017)	and Afte	er (2018	to 2021)) Treatm	ent ^{a,b}					
Endpoint	Term	P-value			RG_G	HBP ve	rsus RG	GHUT					RG_G	HBP ver	sus RG	GHNF					RG_G	HBP ver	sus RG	_GHFF
Enapoint	, cilli	i value		20)16			20)17			20	16			20)17			20	16			2
			2018	2019	2020	2021	2018	2019	2020	2021	2018	2019	2020	2021	2018	2019	2020	2021	2018	2019	2020	2021	2018	2019
	BA	<0.001					1		1	1		1	1				1	1			1	1		-
	CI	< 0.001																						
	BA x CI	0.002																						
Density	Year(BA)	< 0.001					-								-								-	
(No./m ²)	Area(CI)	< 0.001																						
. ,	Year(BA) x Cl	0.566																						
	Area(CI) x BA	0.327																						
	Area(CI) x Year(BA)	0.034	2.3	2.1	2.7	1.8	0.22	0.041	0.64	-0.23	2.0	2.4	1.3	2.6	1.3	1.8	0.57	1.9	1.0	1.3	2.1	0.73	0.47	0.67
	BA	< 0.001																						
	CI	< 0.001																						
	BA x CI	0.007																						
LPL	Year(BA)	0.062					-								-								-	
Richness	Area(CI)	0.178																						
	Year(BA) x Cl	0.308																						
	Area(CI) x BA	0.169																						
	Area(CI) x Year(BA)	< 0.001	0.28	1.1	1.3	2.7	-1.3	-0.50	-0.22	1.2	-0.33	1.1	0.22	2.3	0.78	2.2	1.3	3.4	1.7	1.6	2.0	0.95	1.4	1.3
	BA	0.003							1	1		1	1				1	1			1	1		-
	CI	<0.001																						
	BA x Cl	0.306																						
Family	Year(BA)	0.238					-								-								-	
Richness	Area(CI)	< 0.001																						
	Year(BA) x Cl	0.915																						
	Area(CI) x BA	0.193																						
	Area(CI) x Year(BA)	0.012	-0.47	0.079	0	1.7	-1.1	-0.55	-0.63	1.0	-0.39	0.24	-0.079	0.39	0.24	0.87	0.55	1.0	1.7	0.79	1.0	0.47	1.5	0.63
	BA	0.871				1									1					1			1	_
	CI	< 0.001																						
	BA x CI	0.001																						
0/ EDT	Year(BA)	< 0.001					-								-								-	
%EPT	Area(CI)	< 0.001																						
	Year(BA) x Cl	< 0.001																						
	Area(CI) x BA	< 0.001																						
	Area(CI) x Year(BA)	< 0.001	-2.6	-4.8	-1.6	-1.7	-1.3	-3.6	-0.36	-0.47	-1.6	-3.2	1.1	0.10	-4.3	-5.9	-1.6	-2.6	0.98	-1.3	2.0	0.036	0.51	-1.8
	BA	0.090										•.=												
	CI	0.008																						
	BA x Cl	0.281																						
0/ DI 1	Year(BA)	< 0.001					-								-								-	
%Plecoptera	Area(CI)	< 0.001																						
	Year(BA) x Cl	0.023																						
	Area(CI) x BA	< 0.001																						
	Area(CI) x Year(BA)	< 0.001	-2.3	-2.0	-1.4	-2.4	-0.78	-0.51	0.13	-0.90	-1.5	-0.50	1.7	-0.49	-4.0	-3.0	-0.81	-3.0	1.3	1.7	2.7	-0.19	1.3	1.7
	BA	0.289															0.0.							1
	Cl	< 0.001																						
	BA x CI	0.004																						
	Year(BA)	0.030					-								-								-	
%Diptera	Area(CI)	< 0.001	1																					
1	Year(BA) x Cl	< 0.001	1																					
	Area(CI) x BA	< 0.001	1																					
	Area(CI) x Year(BA)	< 0.001	0.40	2.8	1.8	3.0	0.26	2.7	1.6	2.9	-0.75	1.2	-0.88	1.1	3.1	5.0	3.0	4.9	-3.2	-0.72	-2.0	0.83	-1.6	0.90

P-value for relevant BACI term <0.1.

Treated area decreased relative to untreated area.

Treated area increased relative to untreated area.

Notes: MOD = Magnitude of Difference; No./m² = number of organisms per square metre; BA = Before-After; < = less than; CI = Control-Impact; LPL = Lowest Practical Level; % = percent; EPT = combined Ephemeroptera, Plecoptera, and Trichoptera; SD = standard deviation.

^a MOD = (AfterYear_{treated} -AfterYear_{untreated})-(BeforeYear_{treated} -BeforeYear_{untreated}) /SD.

^b Unshaded MODs were not significant in the post-hoc analysis. A p-value of 0.1, corrected for the number of tests, was used.

Table E.24: Summary of Benthic Invertebrate Taxa Present at RG_GHBP on Lower Greenhills Creek Before (2016 and 2017) But Not After (2018 to 2021) Initation of Antiscalant Addition

		Taxon					I	ncidence of Taxa	Present in 2016 a	and 2017 But Abs	ent in 2018 to 202	1			
Higher Lovel	Classification	Family	Lowest Practical Level			20	16					20	17		
Higher Level	Classification	Failing	Identification	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6	RG_GHBP-1	RG_GHBP-2	RG_GHBP-3	RG_GHBP-4	RG_GHBP-5	RG_GHBP-6
Clitellata	Tubificida	Naididae	Chaetogaster	-	-	-	-	-	-	-	-	-	Х	-	-
Clitellata	Tubificida	Naididae	Tubificinae	Х	Х	Х	-	-	Х	-	-	-	Х	-	-
Insecta	Diptera	Chironomidae	Diamesa	-	-	-	-	-	-	-	-	Х	-	-	-
Insecta	Diptera	Chironomidae	Hydrobaenus	-	-	Х	-	-	-	-	-	-	-	-	-
Insecta	Diptera	Chironomidae	Macropelopia	-	-	-	-	-	-	-	-	-	Х	-	-
Insecta	Diptera	Chironomidae	Psectrocladius	-	-	-	-	-	-	-	-	Х	-	-	-
Insecta	Diptera	Chironomidae	Rheotanytarsus	Х	Х	Х	Х	Х	Х	-	-	-	-	-	-
Insecta	Diptera	Chironomidae	Stempellina	-	-	-	-	-	-	-	-	-	-	-	Х
Insecta	Diptera	Chironomidae	Tanytarsus	-	-	-	-	-	-	-	-	-	Х	Х	Х
Insecta	Diptera	Chironomidae	Tvetenia	-	Х	-	-	-	-	-	Х	Х	-	-	-
Insecta	Diptera	Tipulidae	Limnophila	-	-	-	-	-	-	Х	-	-	-	-	-
Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	-	-	-	-	-	-	Х	Х	Х	Х	Х	-
Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	Х	-	-	-	-	-	Х	Х	-	-	-	-
Insecta	Plecoptera	Taeniopterygidae	Taeniopterygidae	-	-	Х	-	-	Х	Х	-	-	-	-	-
Insecta	Trichoptera	Brachycentridae	Brachycentrus	-	-	-	-	-	-	X	-	-	-	Х	-

Taxon is present in samples from one pre-treatment year (e.g., 2016) but not the other (e.g., 2017). Notes: X = taxon present in sample; - = taxon not present in sample.
Waterbody	1				Greenhill	s Creek S	edimenta	tion Pond	<u></u>			
Biological Area Code						RG_	GHP					
Station ID	RG_C	HP-1	RG_C	GHP-2	RG_C	HP-3	RG_C	HP-4	RG_C	HP-5	RG_C	3HP-6
Measurement Location	Тор	Bottom	Тор	Bottom	Тор	Bottom	Тор	Bottom	Тор	Bottom	Тор	Bottom
Date Sampled	22-Se	əp-21	23-S	ep-21	21-S	ep-21	21-Se	ep-21	23-Se	ep-21	22-S(ep-21
UTMs (NAD83, Zone 11U) - Easting	653	445	653	3654	653	477	653	682	653	537	653	681
UTMs (NAD83, Zone 11U) - Northing	5546	3030	554	6040	554	5992	554	5999	5548	5698	5548	5955
Station Depth (m)	2.	75	2.	.00	4.	50	3.	50	5.	50	4.	50
Habitat Characteristics												!
Temperature (°C)	10.2	10.2	10.4	10.2	10.1	9.5	10.0	10.0	10.3	9.9	10.1	10.0
DO (% sat)	107.1	71.1	111.2	110.8	101.3	98.1	103.4	94.5	107.9	97.4	103.8	89.9
DO (mg/L)	10.04	6.66	10.42	10.44	9.56	9.42	9.85	8.95	10.10	9.21	9.75	8.51
рН	8.32	8.14	8.34	8.33	8.33	8.27	8.28	8.29	8.33	8.22	8.32	8.22
Conductance (µS/cm)	1,207	1,219	1,208	1,201	1,200	1,186	1,196	1,195	1,208	1,200	1,202	1,198
Specific Conductance (µS/cm)	1,680	1,700	1,680	1,680	1,680	1,690	1,680	1,670	1,680	1,690	1,680	1,680
Secchi Depth (m)	2.1	75	2.	00	4.	50	3.	50	2.5	38	3.0	63
Water Colour, Clarity	dark gree tur	n, slightly bid	dark gree tur	n, slightly bid	green, tur	slightly bid	green, tur	slightly bid	dark gree tur	n, slightly bid	dark gree tur	n, slightly bid
Benthic Invertebrate Sampling ^a												
Sample Texture	95% sa fines, 5%	ind and organics	80% sa fines, 10%	and and 6 organics	100% s fin	and and les	99% sa fines, 1%	and and organics	100% sa fin	and and les	100% sa fin	and and les
Macrophytes (in sampler)	1	١	1	A		-	1	٧	1	٧	1	٧
Algae (in sampler)	()	1	N		-	(2	1	١	1	1
Comments	Abur filamento	ıdant us algae.	Unable t sedimer <i>Chara</i> subs	o sample nt due to covering strate.		-	Abur filamento Some pi sedimen	ndant lus algae. resent in t sample.		-		-

Table E.25: Supporting Measures Associated with Petite Ponar Benthic Invertebrate Community Sampling at RG_GHP, September 2021

Notes: ID = identifier; UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; m = metres; $^{\circ}C$ = degrees Celsius; % sat = percent saturation; mg/L = milligrams per litre; μ S/cm = microSiemens per centimetre; % = percent; N = none; A = abundant; - = no data/not recorded; C = common; cm = centimetres.

^a A Petite Ponar was used to collect samples from Greenhills Creek Sedimentation Pond. Each sample was comprised of n = 5 grabs from the top 2 cm of substrate. One sample jar per station was submitted to the laboratory for analysis.

	Та	axon				20	018					20)19		
Higher Level	Classification	Family	Lowest Practical Level Identification	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6
Bivalvia	Veneroida	Pisidiidae	Pisidium	13,847	13,984	6,234	36,683	637	5,408	9,610	4,340	5,304	10,781	1,981	7,543
Clitellata	-	Enchytraeidae	Enchytraeidae	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Hirudinida	Erpobdellidae	Erpobdellidae	0	0	0	0	0	17	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Tubificinae	0	69	0	34	34	0	34	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	0	0	0	0	0	0	69	0	0	0	0
Euchelicerata	Trombidiformes	Mideopsidae	Mideopsis	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Pionidae	Pionidae	0	0	0	0	0	17	69	0	17	0	0	0
Gastropoda	Basommatophora	Planorbidae	Gyraulus	0	276	0	0	0	0	34	1,516	0	34	0	0
Insecta	Coleoptera	Dytiscidae	Hydroporus	0	0	0	0	0	0	0	69	0	0	0	0
Insecta	Coleoptera	Haliplidae	Haliplus	69	0	0	34	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Bezzia	0	0	0	0	52	0	103	69	9	0	0	0
Insecta	Diptera	Chaoboridae	Chaoboridae	0	0	34	0	69	0	0	0	0	0	146	0
Insecta	Diptera	Chironomidae	Ablabesmyia	573	4,684	177	103	0	17	218	1,309	53	212	0	69
Insecta	Diptera	Chironomidae	Apsectrotanypus	0	0	0	0	0	0	36	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chironomus	982	69	989	413	7,602	2,789	145	1,516	115	212	560	451
Insecta	Diptera	Chironomidae	Cryptochironomus	82	276	0	34	70	0	0	0	0	0	9	0
Insecta	Diptera	Chironomidae	Dicrotendipes	0	69	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paramerina	0	0	0	0	0	0	36	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paratanytarsus	82	69	0	34	35	0	36	0	0	0	0	0
Insecta	Diptera	Chironomidae	Polypedilum	0	69	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Procladius	245	276	2,366	3,651	855	5,491	145	138	2,009	1,695	577	3,678
Insecta	Diptera	Chironomidae	Psectrocladius	573	138	177	0	0	0	400	69	79	530	0	0
Insecta	Diptera	Chironomidae	Sergentia	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stictochironomus	0	69	0	0	35	0	0	0	18	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	82	69	459	138	428	314	291	207	1,163	141	1,145	520
Insecta	Ephemeroptera	Baetidae	Callibaetis	207	896	620	551	34	293	241	758	155	34	9	344
Insecta	Ephemeroptera	Caenidae	Caenis	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Hemiptera	Corixidae	Corixidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Odonata	Coenagrionidae	Coenagrionidae	0	215	0	0	0	0	0	69	9	0	0	0
Insecta	Trichoptera	Phryganeidae	Phryganeidae	0	0	0	0	0	0	0	0	26	0	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	103	34	17	121	276	69	146	388	34	138
Malacostraca	Amphipoda	Hyalellidae	Hyalella	413	1,171	103	964	258	413	207	1,929	34	1,068	9	69

Table E.26: Densities (No./m²) of Benthic Invertebrate Taxa in Samples from Greenhills Creek Sedimentation Pond, Based on the Lowest Practical Level of Taxonomy, 2018 to 2021

Notes: No./ m^2 = number of organisms per square metre; - = not applicable.

	Та	axon				20)20					20)21		
Higher Level	Classification	Family	Lowest Practical Level Identification	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6
Bivalvia	Veneroida	Pisidiidae	Pisidium	8,727	5,818	4,069	4,502	2,900	5,879	7,965	9,697	5,307	4,831	6,779	6,952
Clitellata	-	Enchytraeidae	Enchytraeidae	0	0	0	0	0	0	0	0	9	0	0	0
Clitellata	Hirudinida	Erpobdellidae	Erpobdellidae	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Tubificinae	0	0	0	0	0	0	554	0	0	0	0	9
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	0	0	0	0	0	0	0	0	0	0	9
Euchelicerata	Trombidiformes	Mideopsidae	Mideopsis	0	0	0	0	0	0	0	0	0	0	0	9
Euchelicerata	Trombidiformes	Pionidae	Pionidae	139	0	0	69	0	9	0	0	0	0	0	9
Gastropoda	Basommatophora	Planorbidae	Gyraulus	139	13,160	0	139	26	0	554	9,212	9	0	0	26
Insecta	Coleoptera	Dytiscidae	Hydroporus	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Haliplidae	Haliplus	277	0	0	0	0	0	0	69	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Bezzia	277	0	0	0	0	0	139	0	0	0	0	0
Insecta	Diptera	Chaoboridae	Chaoboridae	0	0	0	35	17	9	0	0	17	225	182	190
Insecta	Diptera	Chironomidae	Ablabesmyia	731	416	18	146	0	0	208	416	0	17	0	0
Insecta	Diptera	Chironomidae	Apsectrotanypus	0	0	37	0	9	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chironomus	292	3,602	1,502	803	1,768	796	416	277	87	0	502	199
Insecta	Diptera	Chironomidae	Cryptochironomus	0	0	0	0	0	9	69	416	69	139	43	17
Insecta	Diptera	Chironomidae	Dicrotendipes	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paramerina	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paratanytarsus	146	0	0	0	0	0	0	69	0	0	0	0
Insecta	Diptera	Chironomidae	Polypedilum	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Procladius	292	139	421	621	37	70	554	139	251	779	130	1,255
Insecta	Diptera	Chironomidae	Psectrocladius	1,024	0	55	1,607	37	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Sergentia	0	139	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stictochironomus	0	0	0	0	0	0	0	139	9	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	146	139	183	183	131	17	139	0	52	52	182	459
Insecta	Ephemeroptera	Baetidae	Callibaetis	0	1,801	139	208	0	9	416	623	0	312	0	9
Insecta	Ephemeroptera	Caenidae	Caenis	0	0	0	0	0	0	69	0	0	0	0	0
Insecta	Hemiptera	Corixidae	Corixidae	0	0	0	0	0	0	0	0	9	0	0	0
Insecta	Odonata	Coenagrionidae	Coenagrionidae	0	0	0	0	0	0	69	78	0	0	0	0
Insecta	Trichoptera	Phryganeidae	Phryganeidae	0	139	0	0	9	0	9	0	0	0	0	9
Malacostraca	Amphipoda	Gammaridae	Gammarus	831	554	234	797	43	225	69	407	147	450	139	173
Malacostraca	Amphipoda	Hyalellidae	Hyalella	416	139	17	242	0	0	69	2,078	0	17	0	26

Table E.26: Densities (No./m²) of Benthic Invertebrate Taxa in Samples from Greenhills Creek Sedimentation Pond, Based on the Lowest Practical Level of Taxonomy, 2018 to 2021

Note: No./m² = number of organisms per square metre; - = not applicable.

	Та	axon				20	18					20)19		
Higher Level	l Classification	Family	Lowest Practical Level Identification	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6
Bivalvia	Veneroida	Pisidiidae	Pisidium	81	62	55	86	6.3	36	81	36	58	71	44	59
Clitellata	-	Enchytraeidae	Enchytraeidae	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Hirudinida	Erpobdellidae	Erpobdellidae	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Tubificinae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	0	0	0	0	0	0	0.57	0	0	0	0
Euchelicerata	Trombidiformes	Mideopsidae	Mideopsis	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Pionidae	Pionidae	0	0	0	0	0	0	0.58	0	0	0	0	0
Gastropoda	Basommatophora	Planorbidae	Gyraulus	0	1.2	0	0	0	0	0	13	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Hydroporus	0	0	0	0	0	0	0	0.57	0	0	0	0
Insecta	Coleoptera	Haliplidae	Haliplus	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Bezzia	0	0	0	0	0.51	0	0.87	0.57	0	0	0	0
Insecta	Diptera	Chaoboridae	Chaoboridae	0	0	0	0	0.68	0	0	0	0	0	3.3	0
Insecta	Diptera	Chironomidae	Ablabesmyia	3.3	21	1.6	0	0	0	1.8	11	0.58	1.4	0	0.54
Insecta	Diptera	Chironomidae	Apsectrotanypus	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chironomus	5.7	0	8.8	0.97	75	19	1.2	13	1.3	1.4	13	3.5
Insecta	Diptera	Chironomidae	Cryptochironomus	0	1.2	0	0	0.69	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Dicrotendipes	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paramerina	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paratanytarsus	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Polypedilum	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Procladius	1.4	1.2	21	8.6	8.4	37	1.2	1.1	22	11	13	29
Insecta	Diptera	Chironomidae	Psectrocladius	3.3	0.62	1.6	0	0	0	3.4	0.57	0.87	3.5	0	0
Insecta	Diptera	Chironomidae	Sergentia	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stictochironomus	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	0	0	4.1	0	4.2	2.1	2.4	1.7	13	0.94	26	4.1
Insecta	Ephemeroptera	Baetidae	Callibaetis	1.2	4.0	5.5	1.3	0	2.0	2.0	6.2	1.7	0	0	2.7
Insecta	Ephemeroptera	Caenidae	Caenis	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Hemiptera	Corixidae	Corixidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Odonata	Coenagrionidae	Coenagrionidae	0	0.96	0	0	0	0	0	0.57	0	0	0	0
Insecta	Trichoptera	Phryganeidae	Phryganeidae	0	0	0	0	0	0	0	0	0	0	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0.92	0	0	0.81	2.3	0.57	1.6	2.6	0.77	1.1
Malacostraca	Amphipoda	Hyalellidae	Hyalella	2.4	5.2	0.92	2.3	2.6	2.8	1.7	16	0	7.1	0	0.54

Table E.27: Relative Abundance (Percent[%]) of Benthic Invertebrate Taxa in Samples from Greenhills Creek Sedimentation Pond, Based on the Lowest Practical Level of Taxonomy, 2018 to 2021

Note: - = not applicable.

	Т	axon				20	20					20	21		
Higher Level	l Classification	Family	Lowest Practical Level Identification	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6
Bivalvia	Veneroida	Pisidiidae	Pisidium	65	22	61	48	58	84	70	41	89	71	85	74
Clitellata	-	Enchytraeidae	Enchytraeidae	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Hirudinida	Erpobdellidae	Erpobdellidae	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	Tubificinae	0	0	0	0	0	0	4.9	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	Lebertia	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Mideopsidae	Mideopsis	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Pionidae	Pionidae	1.0	0	0	0.74	0	0	0	0	0	0	0	0
Gastropoda	Basommatophora	Planorbidae	Gyraulus	1.0	51	0	1.5	0.52	0	4.9	39	0	0	0	0
Insecta	Coleoptera	Dytiscidae	Hydroporus	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Haliplidae	Haliplus	2.1	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	Bezzia	2.1	0	0	0	0	0	1.2	0	0	0	0	0
Insecta	Diptera	Chaoboridae	Chaoboridae	0	0	0	0	0	0	0	0	0	3.3	2.3	2.0
Insecta	Diptera	Chironomidae	Ablabesmyia	5.4	1.6	0	1.6	0	0	1.8	1.8	0	0	0	0
Insecta	Diptera	Chironomidae	Apsectrotanypus	0	0	0.55	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Chironomus	2.2	14	23	8.6	36	11	3.7	1.2	1.5	0	6.3	2.1
Insecta	Diptera	Chironomidae	Cryptochironomus	0	0	0	0	0	0	0.61	1.8	1.2	2.0	0.54	0
Insecta	Diptera	Chironomidae	Dicrotendipes	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paramerina	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Paratanytarsus	1.1	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Polypedilum	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Procladius	2.2	0.53	6.3	6.6	0.75	1.0	4.9	0.59	4.2	11	1.6	13
Insecta	Diptera	Chironomidae	Psectrocladius	7.6	0	0.82	17	0.75	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Sergentia	0	0.53	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Chironomidae	Stictochironomus	0	0	0	0	0	0	0	0.59	0	0	0	0
Insecta	Diptera	Chironomidae	Tanytarsus	1.1	0.53	2.7	2.0	2.6	0	1.2	0	0.87	0.76	2.3	4.9
Insecta	Ephemeroptera	Baetidae	Callibaetis	0	6.9	2.1	2.2	0	0	3.7	2.6	0	4.6	0	0
Insecta	Ephemeroptera	Caenidae	Caenis	0	0	0	0	0	0	0.61	0	0	0	0	0
Insecta	Hemiptera	Corixidae	Corixidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Odonata	Coenagrionidae	Coenagrionidae	0	0	0	0	0	0	0.61	0	0	0	0	0
Insecta	Trichoptera	Phryganeidae	Phryganeidae	0	0.53	0	0	0	0	0	0	0	0	0	0
Malacostraca	Amphipoda	Gammaridae	Gammarus	6.2	2.1	3.5	8.5	0.87	3.2	0.61	1.7	2.5	6.6	1.7	1.9
Malacostraca	Amphipoda	Hyalellidae	Hyalella	3.1	0.53	0	2.6	0	0	0.61	8.8	0	0	0	0

Table E.27: Relative Abundance (Percent[%]) of Benthic Invertebrate Taxa in Samples from Greenhills Creek Sedimentation Pond, Based on the Lowest Practical Level of Taxonomy, 2018 to 2021

Note: - = not applicable.

	Taxon				20)18					20)19		
Higher Level	Classification	Family	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6
Bivalvia	Veneroida	Pisidiidae	13,847	13,984	6,234	36,683	637	5,408	9,610	4,340	5,304	10,781	1,981	7,543
Clitellata	-	Enchytraeidae	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Hirudinida	Erpobdellidae	0	0	0	0	0	17	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	0	69	0	34	34	0	34	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	0	0	0	0	0	0	0	69	0	0	0	0
Euchelicerata	Trombidiformes	Mideopsidae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Pionidae	0	0	0	0	0	17	69	0	17	0	0	0
Gastropoda	Basommatophora	Planorbidae	0	276	0	0	0	0	34	1,516	0	34	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	69	0	0	0	0
Insecta	Coleoptera	Haliplidae	69	0	0	34	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	52	0	103	69	9	0	0	0
Insecta	Diptera	Chaoboridae	0	0	34	0	69	0	0	0	0	0	146	0
Insecta	Diptera	Chironomidae	2,618	5,787	4,168	4,374	9,024	8,611	1,309	3,238	3,436	2,790	2,291	4,719
Insecta	Ephemeroptera	Baetidae	207	896	620	551	34	293	241	758	155	34	9	344
Insecta	Ephemeroptera	Caenidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Hemiptera	Corixidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Odonata	Coenagrionidae	0	215	0	0	0	0	0	69	9	0	0	0
Insecta	Trichoptera	Phryganeidae	0	0	0	0	0	0	0	0	26	0	0	0
Malacostraca	Amphipoda	Gammaridae	0	0	103	34	17	121	276	69	146	388	34	138
Malacostraca	Amphipoda	Hyalellidae	413	1,171	103	964	258	413	207	1,929	34	1,068	9	69

Table E.28: Densities (No./m²) of Benthic Invertebrate Taxa in Samples from Greenhills Creek Sedimentation Pond, Based on the Family Level of Taxonomy, 2018 to 2021

Notes: No./ m^2 = number of organisms per square metre; - = not applicable.

	Taxon				20)20					20)21		
Higher Level	I Classification	Family	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6
Bivalvia	Veneroida	Pisidiidae	8,727	5,818	4,069	4,502	2,900	5,879	7,965	9,697	5,307	4,831	6,779	6,952
Clitellata	-	Enchytraeidae	0	0	0	0	0	0	0	0	9	0	0	0
Clitellata	Hirudinida	Erpobdellidae	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	0	0	0	0	0	0	554	0	0	0	0	9
Euchelicerata	Trombidiformes	Lebertiidae	0	0	0	0	0	0	0	0	0	0	0	9
Euchelicerata	Trombidiformes	Mideopsidae	0	0	0	0	0	0	0	0	0	0	0	9
Euchelicerata	Trombidiformes	Pionidae	139	0	0	69	0	9	0	0	0	0	0	9
Gastropoda	Basommatophora	Planorbidae	139	13,160	0	139	26	0	554	9,212	9	0	0	26
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Haliplidae	277	0	0	0	0	0	0	69	0	0	0	0
Insecta	Diptera	Ceratopogonidae	277	0	0	0	0	0	139	0	0	0	0	0
Insecta	Diptera	Chaoboridae	0	0	0	35	17	9	0	0	17	225	182	190
Insecta	Diptera	Chironomidae	2,632	4,433	2,216	3,359	1,983	892	1,385	1,455	468	987	857	1,931
Insecta	Ephemeroptera	Baetidae	0	1,801	139	208	0	9	416	623	0	312	0	9
Insecta	Ephemeroptera	Caenidae	0	0	0	0	0	0	69	0	0	0	0	0
Insecta	Hemiptera	Corixidae	0	0	0	0	0	0	0	0	9	0	0	0
Insecta	Odonata	Coenagrionidae	0	0	0	0	0	0	69	78	0	0	0	0
Insecta	Trichoptera	Phryganeidae	0	139	0	0	9	0	9	0	0	0	0	9
Malacostraca	Amphipoda	Gammaridae	831	554	234	797	43	225	69	407	147	450	139	173
Malacostraca	Amphipoda	Hyalellidae	416	139	17	242	0	0	69	2,078	0	17	0	26

Table E.28: Densities (No./m²) of Benthic Invertebrate Taxa in Samples from Greenhills Creek Sedimentation Pond, Based on the Family Level of Taxonomy, 2018 to 2021

Notes: No./ m^2 = number of organisms per square metre; - = not applicable.

	Taxon				20	18					20	19		
Higher Level	Classification	Family	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6
Bivalvia	Veneroida	Pisidiidae	81	62	55	86	6.3	36	81	36	58	71	44	59
Clitellata	-	Enchytraeidae	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Hirudinida	Erpobdellidae	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	0	0	0	0	0	0	0	0.57	0	0	0	0
Euchelicerata	Trombidiformes	Mideopsidae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Pionidae	0	0	0	0	0	0	0.58	0	0	0	0	0
Gastropoda	Basommatophora	Planorbidae	0	1.2	0	0	0	0	0	13	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0.57	0	0	0	0
Insecta	Coleoptera	Haliplidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	0	0	0	0	0.51	0	0.87	0.57	0	0	0	0
Insecta	Diptera	Chaoboridae	0	0	0	0	0.68	0	0	0	0	0	3.3	0
Insecta	Diptera	Chironomidae	15	26	37	10	89	58	11	27	38	18	51	37
Insecta	Ephemeroptera	Baetidae	1.2	4.0	5.5	1.3	0	2.0	2.0	6.2	1.7	0	0	2.7
Insecta	Ephemeroptera	Caenidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Hemiptera	Corixidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Odonata	Coenagrionidae	0	0.96	0	0	0	0	0	0.57	0	0	0	0
Insecta	Trichoptera	Phryganeidae	0	0	0	0	0	0	0	0	0	0	0	0
Malacostraca	Amphipoda	Gammaridae	0	0	0.92	0	0	0.81	2.3	0.57	1.6	2.6	0.77	1.1
Malacostraca	Amphipoda	Hyalellidae	2.4	5.2	0.92	2.3	2.6	2.8	1.7	16	0	7.1	0	0.54

Table E.29: Relative Abundance (Percent[%]) of Benthic Invertebrate Taxa in Samples from Greenhills Creek Sedimentation Pond, Based on the Family Level of Taxonomy, 2018 to 2021

Note: - = not applicable.

	Taxon				20	20					20	21		
Higher Level	Classification	Family	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6	RG_GHP-1	RG_GHP-2	RG_GHP-3	RG_GHP-4	RG_GHP-5	RG_GHP-6
Bivalvia	Veneroida	Pisidiidae	65	22	61	48	58	84	70	41	89	71	85	74
Clitellata	-	Enchytraeidae	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Hirudinida	Erpobdellidae	0	0	0	0	0	0	0	0	0	0	0	0
Clitellata	Tubificida	Naididae	0	0	0	0	0	0	4.9	0	0	0	0	0
Euchelicerata	Trombidiformes	Lebertiidae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Mideopsidae	0	0	0	0	0	0	0	0	0	0	0	0
Euchelicerata	Trombidiformes	Pionidae	1.0	0	0	0.74	0	0	0	0	0	0	0	0
Gastropoda	Basommatophora	Planorbidae	1.0	51	0	1.5	0.52	0	4.9	39	0	0	0	0
Insecta	Coleoptera	Dytiscidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Coleoptera	Haliplidae	2.1	0	0	0	0	0	0	0	0	0	0	0
Insecta	Diptera	Ceratopogonidae	2.1	0	0	0	0	0	1.2	0	0	0	0	0
Insecta	Diptera	Chaoboridae	0	0	0	0	0	0	0	0	0	3.3	2.3	2.0
Insecta	Diptera	Chironomidae	20	17	33	36	40	13	12	6.2	7.8	14	11	21
Insecta	Ephemeroptera	Baetidae	0	6.9	2.1	2.2	0	0	3.7	2.6	0	4.6	0	0
Insecta	Ephemeroptera	Caenidae	0	0	0	0	0	0	0.61	0	0	0	0	0
Insecta	Hemiptera	Corixidae	0	0	0	0	0	0	0	0	0	0	0	0
Insecta	Odonata	Coenagrionidae	0	0	0	0	0	0	0.61	0	0	0	0	0
Insecta	Trichoptera	Phryganeidae	0	0.53	0	0	0	0	0	0	0	0	0	0
Malacostraca	Amphipoda	Gammaridae	6.2	2.1	3.5	8.5	0.87	3.2	0.61	1.7	2.5	6.6	1.7	1.9
Malacostraca	Amphipoda	Hyalellidae	3.1	0.53	0	2.6	0	0	0.61	8.8	0	0	0	0

Table E.29: Relative Abundance (Percent[%]) of Benthic Invertebrate Taxa in Samples from Greenhills Creek Sedimentation Pond, Based on the Family Level of Taxonomy, 2018 to 2021

Note: - = not applicable.

Biological Area Code	Replicate	Density (No. org/m ²)	Biomass (g/m²)	LPL Richness (No. of taxa)	Family Richness	%EPT	%Ephemeroptera	%Plecoptera	%Trichoptera	%Diptera	%Bivalvia	%Gastropoda
	1	11,299	28	15	11	4.4	4.3	0	0.077	14	71	4.9
	2	23,619	63	13	8.0	2.64	2.64	0	0	6.2	41	39
	3	5,965	19	11	7.0	0	0	0	0	8.1	89	0.15
KG_GHP	4	6,823	27	9.0	6.0	4.6	4.6	0	0	18	71	0
	5	7,957	34	7.0	4.0	0	0	0	0	13	85	0
	6	9,351	28	15	12	0.19	0.093	0	0.093	23	74	0.28

Table E.30: Summary of Benthic Invertebrate Community Endpoints Associated with Petite Ponar Sampling in Greenhills Creek Sedimentation Pond, September 2021

Notes: No. org/m² = number of organisms per square metre; g/m² = grams per square metre; LPL = Lowest Practical Level; % = percent; EPT = Ephemeroptera, Plecoptera, and Trichoptera.

APPENDIX F COMPARISON OF KICK SAMPLING METHODS

0))

APPENDIX F COMPARISON OF KICK SAMPLING METHODS

F1	INTRODUCTION	1
F1.1	Background	1
F1.2	Objectives	2
F2	METHODS	3
F2.1	Data Set	3
F2.2	Data Analysis	3
F3	RESULTS	5
F4	SUMMARY	7
F5	REFERENCES	8

F1 INTRODUCTION

F1.1 Background

At its outset in 2016, the objective of the Greenhills and Gardine Creeks Aquatic Monitoring Program was to measure changes (i.e., improvement or degradation) in aquatic ecosystem health of Greenhills Creek in response to calcite management.¹ Surber sampling was recommended by Minnow in 2016 to assess benthic invertebrate biomass and total density (as general indicators of the amount of food available to fish) as well as endpoints related to taxon richness (as an indication of diversity) and proportions of major taxa (e.g., the proportion of Ephemeroptera, Plecoptera, and Trichoptera [%EPT]; Minnow 2016). However, Surber and other types of area-based sampling (e.g., Hess sampling) could not be completed effectively in Greenhills Creek due to calcification of the substrates. Consequently, area-based kick sampling was implemented in place of Surber sampling in Greenhills Creek starting in 2016, and in Gardine Creek starting in 2019.² Additionally, the presence of barrage tufa and calcified woody debris, which together create step-pools within the creek channels, prevent the safe collection of three-minute Canadian Aquatic Biomonitoring Network (CABIN) kicks (i.e., timed kicks) at some stations or limit the area of true riffle habitat that can be covered. For these reasons, area-based kicks continue to be used to support the Greenhills and Gardine Creeks Aquatic Monitoring Program and timed kicks are completed at specific locations (as site conditions allow) to address specific data needs (see Sections 2.4 and 3.3 of the main report and Minnow 2021a).

In previous years of monitoring and reporting for the Greenhills and Gardine Creeks Aquatic Monitoring Program, data collected using the area-based kick sampling method were compared to regional reference area normal ranges. The regional reference area normal ranges are used in the Regional Aquatic Effects Monitoring Program (RAEMP) to evaluate benthic invertebrate community endpoints and were calculated using all timed kick data collected from reference areas between 2012 and 2019 (i.e., n = 175 samples from 46 reference sampling areas; Minnow 2020).

The study team acknowledged the inconsistencies in the methods underlying the area-based kick data and the reference area normal ranges (in addition to biological triggers;

⋞.

0

¹ The overarching objective of the program was unchanged until 2021, when the scope of the program was updated to address other influences and activities that are proposed or underway in the Greenhills Creek watershed (see Section 1.1 of the main report).

² The area-based approach used for the Greenhills and Gardine Creeks Aquatic Monitoring Program was reviewed and approved by Teck Coal Limited's (Teck's) Environmental Monitoring Committee (EMC).

see Appendix G). Therefore, to support improvements to the Greenhills and Gardine Creeks Aquatic Monitoring Program study design and data interpretation, timed kick sampling stations were added to Upper Greenhills Creek (i.e., at RG_GHNF) in 2021 (see Section 2.4 of the main report). Additional timed stations are planned for inclusion at RG_GHFF on Upper Greenhills Creek in 2022 (Minnow 2022). Timed kick data collected from RG_GHNF and the RAEMP monitoring area on Lower Greenhills Creek (RG_GHCKD) were used in 2021 to facilitate comparisons to regional data. The approach followed in 2021 will be similar for 2022 (Minnow 2022). Additionally, the analyses presented herein were completed to determine the comparability of benthic invertebrate community endpoints calculated from area-based kick samples versus timed kick samples collected from the same location.

F1.2 Objectives

The objectives of the comparisons were to:

- Determine whether benthic invertebrate community data collected using area-based kicks and timed kicks can be directly compared;
- Determine if and how the area-based versus timed kick methods differ in their representation of the benthic invertebrate community; and
- Assess which kick method has the greatest ability to detect changes in benthic invertebrate community endpoints over time.

Ultimately, the comparisons will support interpretation of benthic invertebrate community data collected as part of the Greenhills and Gardine Creeks Aquatic Monitoring Program.

F2 METHODS

F2.1 Data Set

Comparisons among benthic invertebrate community data collected using area-based kick and timed kick methods were completed using data from RG_GHBP (area-based) and RG_GHCKD (timed) on Lower Greenhills Creek (Appendix Figure F.1). These areas are co-located on Reach 2 of Greenhills Creek, about 0.35 kilometres (km) upstream from the confluence with the Fording River and, as such, represent comparable habitat without inputs between them. Biological monitoring area RG_GHBP is sampled annually as part of the Greenhills and Gardine Creeks Aquatic Effects Monitoring Program (see Sections 2.4 and 3.3 of the main report) and RG_GHCKD is sampled annually as part of the RAEMP (Minnow 2020, 2021b).³ A detailed description of field sampling methods for the area-based and timed kick samples can be found in Section 2.4.1 of the main report. Details related to laboratory analyses can be found in report Section 2.4.2.

Benthic invertebrate community data collected from RG_GHBP and RG_GHCKD between 2018 and 2021 were included in the comparisons. For the area-based kicks at RG_GHBP, six replicate samples were collected per year. For the timed kicks at RG_GHCKD, one replicate per year was collected from 2018 to 2020 and three replicates were collected in 2021.

F2.2 Data Analysis

⋞.

0

The benthic invertebrate community data were compiled and standardized at the lowest practical level (LPL) of taxonomy to ensure consistent resolution among taxa. Benthic invertebrate community endpoints that reflect the diversity, richness, and percent composition of sensitive (e.g., Ephemeroptera) and tolerant (e.g., Diptera) organisms were calculated. Organism densities (i.e., the number of organisms per square metre [no./m²]) were calculated from area-based kick samples and directly compared to abundance data from timed kick samples (i.e., number of organisms per three-minute kick [no./3-min kick]).

Comparisons between sampling methods were conducted using Generalized Linear Models (GLMs). Error distributions were selected to match the distributions of each endpoint (i.e., richness endpoints were fit with a quasipoisson distribution, percent composition and evenness endpoints were fit with a quasibinomial distribution, and abundance/density were fit with a log-gaussian distribution). To assess the magnitude of effects attributed to sampling

³ Data for RG_GHBP are reported annually in the Greenhills and Gardine Creeks Aquatic Monitoring Program annual report, whereas data for RG_GHCKD are primarily reported under the RAEMP, which operates on a three-year reporting cycle (Minnow 2020, 2021b).

Document Path: C:\Users\MLaPalme\Trinity Consultants, Inc\Teck - 227202.0016 - 2022 GGCAMP\D - GIS\2021 GGCAMP Report\22-16 Figure F.1 BI Sampling Locations on Lower Greenhills Creek.mxd

methods, a full interaction model was fit for each endpoint that included a *Method* and *Year* factor term, as well as a *Method x Year* interaction. The significance of each term was evaluated using an Analysis of Variance (ANOVA) with Type 3 sums of squares. The magnitude of variance explained by each term was evaluated using partial η^2 (Eta²). Partial Eta² describes the proportion of the total variation attributable to a given term, partialing out (excluding) other terms from the total explained variation. To investigate each method's result more closely, two additional models were built using only area-based and only timed kick data. These method models only had a *Year* factor term. To evaluate the methods' abilities to capture differences over time, the standard deviation of each method models estimated marginal means (EMMs) was divided by the full interaction model's residual standard deviation. To evaluate each method in consistent units of standard deviation. This provides a measure of variation over time for each method in which interaction model's residual standard deviation. This provides a measure of variation was divided by the full interaction within each method in consistent units of standard deviation.

F3 RESULTS

Benthic invertebrate densities (area-based kicks) and abundances (timed kicks) were not directly comparable. The model results suggested the area-based and timed kick methods differ in a consistent manner over time (i.e., non-significant interaction p-value) with abundances tending to be higher than densities. However, the interaction p-value was close to significant and visual inspection of the endpoints suggested different trends over time depending on which sampling method was used (Appendix Figure F.2; Appendix Table F.1). The non-significant interaction p-value was likely due to the imbalanced sample sizes. Had additional replicates of timed kick samples been collected in 2018 to 2020, the interaction would have likely been significant (based on variances seen among timed kick replicates collected from RG_GHCKD in 2021 and the relatively high interaction Eta² of 0.20, compared to 0.16 for the *Method* term; Appendix Table F.1).

Relative to the area-based kick samples, co-located timed kick samples were typically indicative of more diverse benthic invertebrate communities with higher EPT richness (sensitive taxa) and lower dipteran richness (tolerant taxa) compared to area-based samples (Appendix Figure F.2; Appendix Table F.2). Overall, the community composition endpoints varied between the two field sampling methods, and the patterns were inconsistent over time (Appendix Figure F.2). This is consistent with previous observations, which suggests that rarer taxa are less likely to be present in samples collected from a smaller area (area-based kicks; Minnow 2018).

The *Method* term, or the *Method x Year* interaction was significant in six of 12 endpoints in the full interaction models (Appendix Table F.1). When *Method* alone was significant, it explained about 15 percent (%) of the explained variance in the model. When the interaction term was significant, it explained 22 to 25% of the explained variance in the model. Overall, the method models suggested significant differences between years for both area-based and timed kick samples for four endpoints: abundance/density, %Ephemeroptera, %Plecoptera, and %Chironomidae (Appendix Table F.1). The area-based kick method detected significant differences between years for three additional endpoints: %EPT and %Diptera. The timed kick method detected significant differences between years for three additional endpoints: Simpson's evenness, %Oligochaeta, and dipteran richness (Appendix Table F.1).

Overall, the data for the timed kick method tended to show greater differences between years for richness endpoints and most percent composition endpoints. Differences in sample sizes made robust conclusions difficult, but if the patterns remained consistent with more replicates being collected, it would suggest the timed kick method may be more sensitive to differences

Method

Area-Based Kick

Timed Kick

Figure F.2: Comparisons of Benthic Invertebrate Community Endpoints for Area–Based and Timed Kick Samples, Lower Greenhills Creek, September 2018 to 2021

Notes: Black bars represent Estimated Marginal Means from Generalized Linear Models. CABIN = Canadian Aquatic Biomonitoring Network). EPT = Ephemeroptera, Plecoptera, Trichoptera.

Method

Area-Based Kick

Timed Kick

Figure F.2: Comparisons of Benthic Invertebrate Community Endpoints for Area–Based and Timed Kick Samples, Lower Greenhills Creek, September 2018 to 2021

Notes: Black bars represent Estimated Marginal Means from Generalized Linear Models. CABIN = Canadian Aquatic Biomonitoring Network). EPT = Ephemeroptera, Plecoptera, Trichoptera.

				Full Mo	odel ^a					Method I	Differences ^d		
Endpoint	Model	٦	Ferm Effect-size	b	1	Ferm P-value	s ^c	Year P	-value ^e	Between-ye	ars Variance ^f	Residua	Variance ^g
		Year	Method	Interaction	Year	Method	Interaction	Timed	Area-Kick	Timed	Area-Kick	Timed	Area-Kick
Richness (no. of Taxa)	Quasipoisson	0.18	0.013	0.095	0.18	0.59	0.51	0.93	0.15	2.5	2.8	1.5	1.6
CABIN Abundance (no./3-minute kick) / Area-based Density (no./m²)	Log-Gaussian	0.54	0.16	0.20	<0.001	0.042	0.15	<0.001	<0.001	0.66	1.4	0.31	2.2
Simpson's Evenness	Quasibinomial	0.18	0.14	0.045	0.18	0.056	0.79	0.084	0.20	0.38	0.26	0.60	1.1
EPT Richness	Quasipoisson	0.13	0.013	0.22	0.34	0.59	0.096	0.37	0.24	6.8	1.4	1.9	0.66
%EPT	Quasibinomial	0.50	0.0025	0.24	<0.001	0.82	0.068	0.82	<0.001	0.37	0.63	1.4	1.3
%Ephemeroptera	Quasibinomial	0.93	0.031	0.12	<0.001	0.40	0.39	<0.001	<0.001	1.3	1.6	0.87	0.47
%Trichoptera	Quasibinomial	0.13	0.10	0.036	0.34	0.11	0.85	0.35	0.36	0.28	0.16	0.82	0.96
%Plecoptera	Quasibinomial	0.27	0.030	0.26	0.047	0.41	0.052	0.061	0.048	0.66	0.32	1.2	1.1
%Chironomidae	Quasibinomial	0.40	0.00000029	0.21	0.0020	1.0	0.11	<0.001	0.0030	0.34	0.23	0.57	0.82
%Oligochaeta	Quasibinomial	0.013	0.011	0.13	0.96	0.63	0.35	<0.001	0.97	0.082	0.013	0.33	1.2
Dipteran Richness	Quasipoisson	0.21	0.048	0.25	0.12	0.29	0.067	0.0060	0.13	3.7	1.8	0.81	1.9
%Diptera	Quasibinomial	0.39	0.021	0.053	0.0030	0.49	0.75	0.86	0.0020	0.25	0.48	1.4	1.7

Table F.1: Generalized Linear Model Results Comparing Benthic Invertebrate Community Data from Area-based and Timed Kick and Sweep Samples, Lower Greenhills Creek, September 2018 to 2021

P-value <0.1.

Notes: CABIN = Canadian Aquatic Biomonitoring Network; no. = number; n² = square metre; < = less than; EPT = combined Ephemeroptera, Plecoptera, and Trichoptera; % = percent.

^a Full model fit with *Method* and Year terms as well as their interactions in a Generalized Linear Model using error distribution listed in Model column.

^b Effect size measured as Partial Eta² reflecting the proportion of variance explained by each term in the model.

^c Term significance assessed using Type-3 Sums of Squares.

^d Method differences evaluated as separate models fit to CABIN and area-based kick data with aYear factor as the only predictor.

^e P-value of the Year term in the two method specific models.

^f The amount of inter-annual variation represented as the standard deviation of annual mean endpoints (as estimated marginal means of the full model) divided by the residual standard deviation of the full model.

^g The amount of intra-annual variation represented as the standard deviation of each method's 2021 data divided by the residual standard deviation of the full model.

Table F.2: Generalized Linear Model Results By Year and Method for Benthic InvertebrateCommunity Data Collected Using Area-based and Timed Kick and Sweep Samples, Lower GreenhillsCreek, September 2018 to 2021

2018 22 20 2019 21 22 2020 23 23 2021 18 23 2021 18 23 2021 18 23 2021 18 6.840 2018 1.367 6.840 2021 7.152 6.266 2021 7.152 6.266 2018 0.26 0.36 2020 0.21 0.28 2020 0.21 0.28 2020 0.26 0.36 2020 0.20 0.27 2021 0.20 0.27 2021 0.20 0.20 2020 8.5 15 2020 8.5 15 2021 7.2 10 2021 233 50 2021 33 50 2021 0.30 0.90 2021 0.30 0.90 2021	Endpoint	Year	Area-based Mean	Timed Mean	Timed SD
Richness (no. of Taxa) 2019 21 223 233 233 2021 19 23 23 203 203 203 CABIN Abundance (no./3-minute kick) / Area-based Density (no./m ²) 2018 1.367 6.640 645 2020 4.541 4.883 645 645 2021 7.152 6.266 6.268 0.062 2019 0.26 0.28 0.062 0.27 2021 0.20 0.21 0.28 0.062 2020 0.21 0.28 0.062 2021 0.20 0.85 15 2021 7.2 10 0.82 2021 7.2 10 20 2021 7.2 10 20 2021 7.2 10 20 %EPT 2018 4.6 2.7 2020 3.4 61 20 2020 6.3 8.5 20 %Eptemeroptera 2019		2018	22	20	0.79
Richless (no. bir (ak)) 2020 23 23 2021 19 23 2021 19 23 CABIN Abundance (no /3-minute kick) / Area-based Density (no./m ²) 2018 1,367 6,640 645 2019 1,114 3,630 645 645 Simpson's Evenness 2018 0.25 0.36 0.062 2020 0.21 0.28 0.062 0.28 2021 0.20 0.27 0.20 0.27 2018 8.2 9.0 0.32 0.062 2020 0.21 0.20 0.27 0.20 2018 8.5 15 0 0.82 2019 6.3 9.0 0.32 0.33 50 2020 3.3 50 0 20 33 50 2019 3.3 28 20 3 60 20 %Ephemeroptera 2018 11 20 20 14 35 20201	Richness (no. of Taxa)	2019	21	22	
2021 19 23 CABIN Abundance (no /3-minute kick) / Area-based Density (no.)m ²) 2018 1,367 6,640 2019 1,114 3,630 645 2020 4,541 4,886 645 2021 7,152 6,266 6.28 2019 0.26 0.28 0.062 2021 0.20 0.27 0.28 2020 0.21 0.28 0.062 2021 0.20 0.27 0.28 2021 0.20 0.27 0.28 2019 8.3 9.0 0.82 2019 8.3 9.0 0.82 2021 7.2 10 0.82 %EPT 2018 4.5 4.3 %Ephemeroptera 2019 3.3 2.6 2021 0.30 0.90 0.90 %Ephemeroptera 2018 11 200 %Ephemeroptera 2018 3.0 20 2021 0.30		2020	23	23	
CABIN Abundance (no./3-minute kick) / Area-based Density (no./m ²) 2018 1,367 6,640 2019 1,114 3,630 645 2020 4,541 4,886 645 2021 7,152 6,286 0.36 2018 0.25 0.36 0.062 Simpson's Evenness 2019 0.26 0.28 0.062 2020 0.21 0.28 0.062 0.28 2018 8.2 9.0 0.26 0.28 2020 8.5 15 0.062 2020 8.5 15 0.062 2020 8.5 15 0.082 %EPT 2018 4.5 4.3 %Ephemeroptera 2018 4.6 2.7 2018 4.6 2.7 3 8.0 %Ephemeroptera 2019 9.3 12 10 2021 0.30 0.90 20 1.4 17 %Piecoptera 2019 3.0 20		2021	19	23	
CABIN Abundance (no./3-minute kick) / Area-based Density (no./m²) 2019 1.114 3.630 645 2020 4.541 4.886 2021 7.152 6.266 2019 0.26 0.28 0.062 0.062 Simpson's Evenness 2019 0.26 0.28 0.062 2018 8.2 9.0 0.27 0.20 2019 8.3 9.0 0.82 0.82 2019 8.3 9.0 0.82 0.82 2019 8.3 9.0 0.82 0.82 2020 8.5 15 0.82 0.82 %EPT 2018 4.6 2.7 20 2020 3.4 61 28 20 %Ephemeroptera 2018 3.6 28 20 2020 6.3 8.5 16 10 %Ephemeroptera 2018 8.0 20 20 %Otipochera 2019 9.3 12 10 <td< td=""><td></td><td>2018</td><td>1,367</td><td>6,640</td><td></td></td<>		2018	1,367	6,640	
kick) / Area-based Density (no./m ²) 2020 4,541 4,886 043 2018 0.25 0.36 0.28 0.062 Simpson's Evenness 2019 0.26 0.28 0.062 2020 0.21 0.28 0.062 2021 0.20 0.27 0.062 2020 8.5 15 0.82 2020 8.5 15 0.82 2021 7.2 10 0.82 2020 8.5 15 0.82 2021 7.2 10 0.82 2020 8.5 15 0.82 2021 7.2 10 28 2020 8.5 43 28 2021 33 50 26 2021 0.30 0.90 9 %Ephemeroptera 2018 11 20 2020 14 17 10 2020 14 17 25 2019	CABIN Abundance (no./3-minute	2019	1,114	3,630	0.45
2021 7,152 6,266 2018 0.25 0.36 2019 0.26 0.28 2020 0.21 0.28 2021 0.20 0.27 2021 0.20 0.27 2021 0.20 0.27 2021 0.20 0.27 2019 6.3 9.0 2020 8.5 15 2020 8.5 15 2020 8.5 15 2021 7.2 10 2021 7.2 10 2021 3.3 50 2021 3.3 50 2021 3.3 50 2021 0.30 0.90 2021 0.30 0.90 2021 0.30 0.90 2019 9.3 12 2020 14 13 2020 14 35 2019 5.1 11 2020 <td< td=""><td>kick) / Area-based Density (no./m²)</td><td>2020</td><td>4,541</td><td>4,886</td><td>- 045</td></td<>	kick) / Area-based Density (no./m ²)	2020	4,541	4,886	- 045
Simpson's Evenness 2018 0.25 0.36 0.062 2019 0.26 0.28 0.062 2020 0.21 0.28 0.062 2019 8.3 9.0 0.062 2019 8.3 9.0 0.062 2019 8.5 15 0.062 2020 8.5 15 0.062 2020 8.5 15 0.02 2020 8.5 43 0.0 2020 3.4 61 26 2020 3.4 61 26 2020 3.4 61 26 2020 6.3 8.5 26 2020 6.3 8.5 26 2020 14 17 20 2019 9.3 12 20 2019 9 11 20 2020 14 17 20 2020 14 11 20 2019		2021	7,152	6,266	1
Simpson's Evenness 2019 0.26 0.28 0.062 2020 0.21 0.28 0.28 2021 0.20 0.27 0.28 2018 8.2 9.0 0.83 0.062 2018 8.5 15 0.82 2020 8.5 15 0.82 2021 7.2 10 0.82 2020 3.4 61 46 2021 3.3 50 2020 3.4 61 28 2020 3.4 61 26 2021 0.30 0.90 3 2020 6.3 8.5 30 2020 14 11 20 2020 14 13 10 %Tichoptera 2018 30 20 %Vhironomidae 2019 11 11 2020 7.4 2.6 20 %Oligochaeta 2018 8.4 8.4		2018	0.25	0.36	0.062
Simpson's Eveniness 2020 0.21 0.28 0.002 2011 0.20 0.27 0.00 0.27 2018 8.2 9.0 0.00 0.00 2019 8.3 9.0 0.00 0.00 2019 8.3 9.0 0.00 0.00 2010 8.5 15 0.00 0.00 2021 7.2 10 0.00 0.00 %EPT 2018 45 43 20 2020 3.3 50 20 20 20 20 %Ephemeroptera 2019 3.3 2.8 8.0 20 %Ephemeroptera 2018 11 20 20 14 17 2020 14 17 10 13 20	Simpson's Evenness	2019	0.26	0.28	
2021 0.20 0.27 2018 8.2 9.0 2019 8.3 9.0 2020 8.5 15 2021 7.2 10 2018 45 43 2019 61 46 2019 61 46 2020 34 61 2021 33 50 2020 6.3 8.5 2020 6.3 8.5 2021 0.30 0.90 2018 11 20 2019 9.3 12 2018 11 20 2021 10 13 2020 14 35 2020 14 35 2020 14 35 2020 14 35 2020 7.4 26 %Olipochaeta 2018 8.4 2019 0.81 0.82 2020 7.4 2		2020	0.21	0.28	
EPT Richness 2018 8.2 9.0 2020 8.5 15 2021 7.2 10 2021 7.2 10 %EPT 2018 45 43 2019 61 46 28 2018 4.6 2.7 28 2018 4.6 2.7 28 2018 4.6 2.7 20 2019 33 28 3.0 2019 33 28 3.0 2020 6.3 8.5 2.0 2021 0.30 0.90 3.0 1.0 %Ephemeroptera 2019 9.3 12 10 2021 10 13 20		2021	0.20	0.27	
EPT Richness 2019 8.3 9.0 0.82 2020 8.5 15 0 2021 7.2 10 0 %EPT 2018 45 43 2019 61 46 2020 34 61 2020 34 61 2020 33 50 201 2020 33 50 201 2020 6.3 8.5 201 2020 6.3 8.5 30 20 202 201 203 201 201 201 201 201 202 201		2018	8.2	9.0	0.82
2020 8.5 15 0.32 2021 7.2 10 0 2018 455 43 2019 61 46 20 2020 34 61 46 20 33 50 2020 34 61 46 2.7 20 6.3 8.5 8.0 %Ephemeroptera 2019 33 28 20 6.3 8.5 10 10 13 20 10 13 10		2019	8.3	9.0	
2021 7.2 10 2018 45 43 %EPT 2019 61 46 2020 34 61 20 2020 34 61 20 2020 33 50 20 2019 33 50 20 2019 33 28 30 2019 33 28 30 2019 33 28 30 2020 6.3 8.5 30 2018 11 20 20 %Trichoptera 2018 30 20 2018 11 20 20 2020 14 17 20 2021 10 13 25 2021 21 36 20 2020 14 35 25 2019 5.1 11 25 2020 7.4 2.6 20 %Oligochaeta	EFT RICHNESS	2020	8.5	15	
%EPT 2018 45 43 2019 61 46 2019 28 2019 61 46 2020 33 50 2018 4.6 2.7 2019 33 28 3.0 8.5 2019 33 28 2020 6.3 8.5 2021 0.30 0.90 %Ephemeroptera 2018 11 20 2020 14 17 2019 10 %Trichoptera 2018 30 20 2018 36 20 20 14 17 10 %Plecoptera 2018 30 20		2021	7.2	10	
%EPT 2019 61 46 28 2020 34 61 61 20 2020 33 50 50 2018 4.6 2.7 2019 33 28 2019 33 28 20 6.3 8.5 2020 6.3 8.5 20 6.3 8.5 2021 0.30 0.90 9		2018	45	43	
%EP1 2020 34 61 26 2021 33 50 33 50 2018 4.6 2.7 33 8.0 2019 33 28 8.0 2020 6.3 8.5 8.0 2021 0.30 0.90 9.3 12 2019 9.3 12 10 14 2020 14 17 20 201 2021 10 13 10 10 2021 10 13 20 201 20 %Plecoptera 2018 8.4 8.4 20 20 %Chironomidae 2018 8.4 8.4 20 %Chironomidae 2018 0.86 1.2 20 %Oligochaeta 2018 0.86 1.2 2.0 2020 0.77 0 2.0 2.0 2019 0.81 0.83 3.0 2.0 2019	0/ FRT	2019	61	46	
2021 33 50 2018 4.6 2.7 2019 33 28 2020 6.3 8.5 2021 0.30 0.90 2019 9.3 12 2019 9.3 12 2019 9.3 12 2019 9.3 12 2020 14 17 2021 10 13 2021 10 13 2021 10 13 %Plecoptera 2018 8.4 8.4 2021 23 36 25 2021 23 36 25 %Chironomidae 2018 8.4 8.4 2019 5.1 11 7.0 2020 7.4 2.6 20 2019 0.81 0.83 2.0 %Oligochaeta 2018 0.85 3.0 2020 0.77 0 0.47	%EP1	2020	34	61	- 28
%Ephemeroptera 2018 4.6 2.7 %Ephemeroptera 2019 33 28 2020 6.3 8.5 2021 0.30 0.90 %Trichoptera 2018 11 20 %Trichoptera 2018 11 20 %Velcoptera 2018 30 20 %Plecoptera 2018 30 20 %Chironomidae 2018 8.4 8.4 %Chironomidae 2019 19 6.1 %Oligochaeta 2018 8.4 8.4 %Oligochaeta 2019 5.1 11 2020 7.4 2.6 2021 2021 2.5 4.6 2.0 %Oligochaeta 2018 0.86 1.2 %Oligochaeta 2019 0.81 0.83 2020 0.77 0 2.0 2021 0.95 0.76 2020 8.5 3.0 20219 8		2021	33	50	-
%Ephemeroptera 2019 33 28 8.0 2020 6.3 8.5 8.0 2001 0.30 0.90 %Trichoptera 2018 11 20 %Trichoptera 2019 9.3 12 2020 14 17 10 2021 10 13 20 2021 10 13 20 2019 19 6.1 20 2020 14 35 20 2019 19 6.1 20 2020 14 35 25 2021 23 36 20 2021 23 36 25 %Chironomidae 2019 5.1 11 7.0 2020 7.4 2.6 20 20 7.0 %Oligochaeta 2019 0.81 0.83 2.0 2021 0.95 0.76 2.0 2.0 2020 8.5		2018	4.6	2.7	8.0
%Ephemeroptera 2020 6.3 8.5 8.0 2021 0.30 0.90 0.90 0.90 0.90 %Trichoptera 2018 11 20 0.90 0.90 %Trichoptera 2018 11 20 0.90 0.90 %Oligochaeta 2018 10 13 10 10 %Plecoptera 2019 19 6.1 25 25 2020 14 35 25 26 20		2019	33	28	
2021 0.30 0.90 %Trichoptera 2018 11 20 2019 9.3 12 10 2019 9.3 12 10 2020 14 17 202 2021 10 13 10 %Plecoptera 2018 30 20 2020 14 35 20 2020 14 35 20 2020 14 35 20 2020 14 35 20 2020 14 35 20 2020 7.4 2.6 7.0 2021 2.5 4.6 20 2019 0.81 0.83 2.0 %Oligochaeta 2019 0.81 0.83 2.0 2019 2.01 0.95 0.76 2.0 2019 8.2 8.0 0.47 2.0 2019 8.5 3.0 0.47 <	%Epnemeroptera	2020	6.3	8.5	
%Trichoptera 2018 11 20 %Trichoptera 2019 9.3 12 10 2020 14 17 2021 10 13 2018 300 20		2021	0.30	0.90	
%Trichoptera 2019 9.3 12 10 2020 14 17 10 13 2021 10 13 201 10 13 %Plecoptera 2018 30 20 201<		2018	11	20	10
$\frac{2020}{2021} = \frac{14}{10} = \frac{17}{10}$ $\frac{2021}{2021} = \frac{10}{13}$ $\frac{2021}{2021} = \frac{10}{13}$ $\frac{2021}{2020} = \frac{14}{13} = \frac{10}{13}$ $\frac{2018}{2020} = \frac{30}{200}$ $\frac{2019}{2020} = \frac{14}{14} = \frac{35}{36}$ $\frac{2019}{2020} = \frac{14}{23} = \frac{36}{36}$ $\frac{2021}{2020} = \frac{23}{36} = \frac{36}{2021}$ $\frac{2018}{2020} = \frac{8.4}{6} = \frac{8.4}{2019}$ $\frac{2019}{2020} = \frac{7.4}{2.5} = \frac{4.6}{2021}$ $\frac{2019}{2020} = \frac{0.86}{1.2} = \frac{7.0}{202}$ $\frac{2019}{2020} = \frac{0.86}{0.77} = \frac{0.47}{20}$ $\frac{2019}{2021} = \frac{0.95}{0.76} = \frac{0.47}{2019}$ $\frac{2018}{2020} = \frac{9.2}{7.0} = \frac{2018}{2021} = \frac{9.2}{7.0} = \frac{10}{7.0} = \frac{10}{7$		2019	9.3	12	
2021 10 13 2018 30 20 2019 19 6.1 2020 14 35 2021 23 36 2021 23 36 2020 14 35 2021 23 36 2021 23 36 2019 5.1 11 2020 7.4 2.6 2021 2.5 4.6 2020 7.4 2.6 2018 0.86 1.2 2019 0.81 0.83 2020 0.77 0 2021 0.95 0.76 2020 8.5 3.0 2019 8.2 8.0 2021 6.7 6.3 2020 8.5 3.0 2021 6.7 6.3 2020 3.3 30 %Diptera 2019 27 35 2020	% inchoptera	2020	14	17	
%Plecoptera 2018 30 20 2019 19 6.1 25 2020 14 35 20 2021 23 36 20 %Chironomidae 2018 8.4 8.4 8.4 2019 5.1 11 7.0 2020 7.4 2.6 2021 2.5 %Oligochaeta 2018 0.86 1.2 7.0 %Oligochaeta 2019 0.81 0.83 2.0 %Oligochaeta 2019 0.81 0.83 2.0 %Oligochaeta 2018 9.2 7.0 2.0 %Oligochaeta 2019 8.2 8.0 2.0 %Oligochaeta 2018 9.2 7.0 2.0 %Oligochaeta 2018 9.2 7.0 2.0 %Oligochaeta 2019 8.5 3.0 0.47 %Diptera 2018 45 37 2019 2020 33		2021	10	13	
%Plecoptera 2019 19 6.1 25 2020 14 35 201 23 36 2021 23 36 36 36 36 %Chironomidae 2019 5.1 11 7.0 2020 7.4 2.6 36 7.0 %Oligochaeta 2018 0.86 1.2 7.0 %Oligochaeta 2019 0.81 0.83 2.0 %Oligochaeta 2018 0.86 1.2 2.0 %Oligochaeta 2019 0.81 0.83 2.0 %Oligochaeta 2020 0.77 0 2.0 %Oligochaeta 9.2 7.0 2.0 2.0 %Oligochaeta 9.2 7.0 2.0 2.0 %Oligochaeta 9.2 7.0 2.0 2.0 %Oligochaeta 9.2 7.0 3.0 2.0 2018 9.2 3.0 3.0 2.47 %Diptera		2018	30	20	25
%Plecoptera 2020 14 35 25 2021 23 36 36 2018 8.4 8.4 8.4 %Chironomidae 2019 5.1 11 7.0 2020 7.4 2.6 2021 2.5 4.6 2020 7.4 2.6 2021 2.5 4.6 2020 7.4 2.6 2021 2.5 4.6 %Oligochaeta 2019 0.81 0.83 2.0 %Oligochaeta 2020 0.77 0 2.0 2021 0.95 0.76 2.0 2019 8.2 8.0 0.47 2019 8.2 8.0 0.47 2019 8.5 3.0 0.47 2020 8.5 3.0 0.47 %Diptera 2018 45 37 2020 33 30 25	%Plecoptera	2019	19	6.1	
2021 23 36 2018 8.4 8.4 2019 5.1 11 2020 7.4 2.6 2021 2.5 4.6 2019 0.86 1.2 2019 0.81 0.83 2020 0.77 0 2021 0.95 0.76 2021 0.95 0.76 2019 8.2 8.0 2019 8.2 8.0 2019 8.2 8.0 2020 6.7 6.3 2021 6.7 6.3 2018 45 37 2019 27 35 2019 27 35 2019 27 35 2019 27 35 2019 27 35 2020 33 30 2021 25 27		2020	14	35	
2018 8.4 2019 5.1 11 7.0 <td>2021</td> <td>23</td> <td>36</td>		2021	23	36	
%Chironomidae 2019 5.1 11 7.0 2020 7.4 2.6 7.0 7.0 7.0 2021 2.5 4.6 1.2 7.0 7.0 7.0 %Oligochaeta 2019 0.86 1.2 7.0		2018	8.4	8.4	7.0
Schirohomidae 2020 7.4 2.6 7.0 2021 2.5 4.6 2021 2.5 4.6 %Oligochaeta 2018 0.86 1.2 2.0 %Oligochaeta 2020 0.77 0 2.0 2021 0.95 0.76 2.0 Dipteran Richness 2019 8.2 8.0 0.47 2020 8.5 3.0 0.47 2021 6.7 6.3 0.47 %Diptera 2018 45 37 2019 27 35 25 %Diptera 2020 33 30	%Chironomidae	2019	5.1	11	
2021 2.5 4.6 2018 0.86 1.2 2019 0.81 0.83 2020 0.77 0 2021 0.95 0.76 2019 8.2 8.0 2019 8.2 8.0 2019 8.5 3.0 2020 8.5 3.0 2021 6.7 6.3 2019 27 35 2019 27 35 2019 27 35 2020 33 30 2021 25 27		2020	7.4	2.6	
%Oligochaeta 2018 0.86 1.2 2019 0.81 0.83 0.83 2020 0.77 0 0 2021 0.95 0.76 0 2019 8.2 7.0 0 2019 8.2 8.0 0.47 2020 8.5 3.0 0.47 2021 6.7 6.3 0.47 %Diptera 2019 27 35 2020 33 30 25		2021	2.5	4.6	
%Oligochaeta 2019 0.81 0.83 2.0 2020 0.77 0	%Oligochaeta	2018	0.86	1.2	2.0
2020 0.77 0 2.0 2021 0.95 0.76 0 2021 0.95 0.76 0 Dipteran Richness 2018 9.2 7.0 0 2019 8.2 8.0 0.47 2020 8.5 3.0 0.47 2021 6.7 6.3 0.47 %Diptera 2019 27 35 2020 33 30 25		2019	0.81	0.83	
2021 0.95 0.76 2018 9.2 7.0 2019 8.2 8.0 2020 8.5 3.0 2021 6.7 6.3 2019 27 35 2019 27 35 2020 33 30 2021 25 27		2020	0.77	0	
2018 9.2 7.0 2019 8.2 8.0 2020 8.5 3.0 2021 6.7 6.3 2019 27 35 2020 33 30 2021 25 27		2021	0.95	0.76	
Dipteran Richness 2019 8.2 8.0 0.47 2020 8.5 3.0 0 2021 6.7 6.3 0 %Diptera 2019 27 35 25 2020 33 30 25		2018	9.2	7.0	0.47
2020 8.5 3.0 0.47 2021 6.7 6.3	Dipteran Richness	2019	8.2	8.0	
2021 6.7 6.3 2018 45 37 2019 27 35 2020 33 30 2021 25 27		2020	8.5	3.0	
2018 45 37 %Diptera 2019 27 35 2020 33 30 25 2021 25 27		2021	6.7	6.3	
2019273525202033302520212527	%Diptera	2018	45	37	- 25
%Diptera 2020 33 30 25 2021 25 27		2019	27	35	
2021 25 27		2020	33	30	
		2021	25	27	

Mean result for the area-based kick samples falls outside the mean ± SD of the timed kick data.

Notes: SD = standard deviation; no. = number; m^2 = square metre; < = less than; EPT = combined Ephemeroptera, Plecoptera, and Trichoptera; % = percent; ± = plus or minus.

in these endpoints over time. Additionally, based on 2021 data, the timed kick method used at RG_GHCKD tended to result in lower variance between replicates for most endpoints, relative to the area-based kicks (RG_GHBP). This suggest the timed kick data may have more power to detect changes over time than area-based kick samples.

F4 SUMMARY

Comparisons of benthic invertebrate community endpoints calculated from co-located area-based and timed kick samples were completed in an effort to improve data interpretation (starting in 2021) and study design development (starting in 2022) for the Greenhills and Gardine Creeks Aquatic Monitoring Program. The results of the comparisons indicated that benthic invertebrate density (area-based) and abundance (timed) data collected from the same areas were not directly comparable. Additionally, timed kick samples were typically indicative of more diverse benthic invertebrate communities with higher EPT richness and lower dipteran richness, which is consistent with previous observations. Overall, the community composition endpoints varied between the two field sampling methods, and the patterns were inconsistent over time.

Overall, the timed kick sampling method showed greater differences between years for richness and most community composition endpoints. Despite the smaller number of replicates in the RG_GHCKD data set (see Section F2.1, above), the results suggested the timed kick method may be most sensitive to differences in richness and percent composition endpoints. This, coupled with the lower variance between replicates for most endpoints relative to area-based sampling, suggests the timed kick data may have more power to detect changes in community endpoints over time.

F5 REFERENCES

- Minnow Environmental Inc. (Minnow). 2016. Proposal to Evaluate Aquatic Ecosystem Changes Associated with Calcite Treatment in Greenhills Creek. Prepared for Teck Coal Limited, Sparwood, BC.
- Minnow. 2018. Upper Greenhills Creek Aquatic Baseline. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 177202.0032.
- Minnow. 2020. Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2017 to 2019. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 187202.0011.
- Minnow. 2021a. Study Design for the 2021 Greenhills and Gardine Creeks Aquatic Monitoring Program. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 217202.0052.
- Minnow. 2021b. Study Design for the Regional Aquatic Effects Monitoring Program, 2021 to 2023. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 207202.0006.
- Minnow. 2022. Study Design for the 2022 Greenhills and Gardine Creeks Aquatic Monitoring Program. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 227202.0016.

APPENDIX G BIOLOGICAL TRIGGERS

0

≺

APPENDIX G BIOLOGICAL TRIGGERS

G1	INTRODUCTION	1
G1.1	Overview of Biological Triggers	1
G1.2	Application of Biological Triggers to Greenhills Creek	2
G2	METHODS	5
G2.1	Percent Ephemeroptera, Plecoptera, and Trichoptera	5
G2.2	Benthic Invertebrate Tissue Selenium	5
G2.3	Westslope Cutthroat Trout Muscle Tissue Selenium	6
G3	BESULTS	8
G3.1	Percent Ephemeroptera. Plecoptera, and Trichoptera	8
G3.2	Benthic Invertebrate Tissue Selenium	8
G3.3	Westslope Cutthroat Trout Muscle Tissue Selenium	8
G4	SUMMARY1	0
G5	REFERENCES1	1

G1 INTRODUCTION

0

- -

G1.1 Overview of Biological Triggers

Biological triggers for potential monitoring and management action are required as part of Teck Coal Limited's (Teck's) Adaptive Management Plan (AMP; Teck 2018, 2021). Generally, triggers are intended as a simple way to identify and communicate potentially unexpected monitoring results that may require management action. Additionally, information obtained from the analysis of biological triggers may lead to responses under the AMP response framework, if necessary, and as such would be reported within the annual AMP report.

Draft biological triggers were developed in consultation with Teck's Environmental Monitoring Committee (EMC) for a subset of biological monitoring endpoints that are effective indicators of changes at the ecosystem level. Development of the triggers was completed under Management Question (MQ) 5 of the 2018 AMP (Teck 2018). The biological triggers were finalized in 2021, prior to the December 15, 2021 AMP update (Teck 2021). The methods applied in this report reflect the finalized biological triggers. However, it is important to note that the process and/or biological triggers may be adjusted over time, given that the purpose of the biological triggers is to reflect not only changes in the Elk River watershed, but also the current state of knowledge for the area.

The finalized biological triggers include three measurement endpoints (Teck 2021):

- percent Ephemeroptera, Plecoptera, and Trichoptera (%EPT);
- selenium concentrations in benthic invertebrate tissues; and
- selenium concentrations in westslope cutthroat trout (WCT; *Oncorhynchus clarkia lewisi*) muscle.

The biological trigger endpoint for %EPT is based on three-minute (Canadian Aquatic Biomonitoring Network [CABIN] protocol) kicks (i.e., timed kicks) and typically three replicates per location per sampling event. For selenium concentrations in benthic invertebrate tissues, there are generally several replicates collected per location per sampling event, and each replicate is a composite-taxa tissue sample. For WCT, the biological trigger can be applied to selenium concentrations in individual muscle tissue samples.

Evaluation of these three biological trigger endpoints is complementary to the fulsome evaluation of biological endpoints that is integrated into the Regional Aquatic Effects Monitoring Program (RAEMP), Local Aquatic Effects Monitoring Program (LAEMP), and Greenhills and Gardine Creeks Aquatic Monitoring Program reports. The more fulsome

(0))

€.

evaluation of biological endpoints in the overarching monitoring program reports is used to answer specific study questions through the consideration of not only the endpoints used in the biological trigger evaluation, but also a full suite of additional biological, chemical, and physical endpoints. Biological triggers do not provide information on cause and effect or report on trends. Instead, the biological triggers act to flag areas for further evaluation; these evaluations would then take place under existing monitoring programs, through the development of supporting studies, or through the response framework, as necessary.

The 2021 Greenhills and Gardine Creeks Aquatic Monitoring Program represents the second time that biological triggers have been evaluated and reported (i.e., implemented) as part of focused monitoring on Lower Greenhills Creek (Minnow 2021a). The year 2021 is also the first year during which biological triggers were applied to Upper Greenhills Creek. To date, biological triggers have not been applied to Gardine Creek.

G1.2 Application of Biological Triggers to Greenhills Creek

As outlined in Section G1.1, analyses for biological triggers are meant to be complementary to other analyses completed to support answering the Greenhills and Gardine Creeks Aquatic Monitoring Program study questions, as well as analyses presented in the RAEMP and LAEMP reports. The biological trigger analyses for 2021 included each of the three measurement endpoints (%EPT and selenium concentrations in benthic invertebrate tissues and WCT muscle). Fish tissue chemistry sampling was not completed as part of the 2021 Greenhills and Gardine Creeks Aquatic Monitoring Program as a proactive response to the reported WCT population decline in Management Unit 1 (Cope 2020). However, tissue selenium concentrations were quantified for one incidental WCT mortality that occurred in Reach 1 of Lower Greenhills Creek in 2021 (see Appendix I of the main report). The biological triggers pertaining to selenium concentrations in WCT muscle were applied to this individual fish.

For Upper Greenhills Creek, biological triggers for %EPT and selenium concentrations in composite-taxa benthic invertebrate tissue samples were assessed based on the 2021 data for one location, RG_GHNF¹, which is located in Reach 9 (Appendix Figure G.1). For the purposes of the biological triggers analysis, predictions were based on projected water quality rather than measured water quality. The assessment is designed in this manner so the triggers should detect biological results that were unexpected, regardless of whether those results are

¹ Three, timed kick samples were collected from RG_GHNF, in addition to the area-based kick samples typical of the Greenhills and Gardine Creeks Aquatic Monitoring Program, to support comparisons to biological triggers for %EPT (Minnow 2021b).

Document Path: C:\Users\capo\\Trinity Consultants, Inc\Teck - 227202.0016 - 2022 GGCAMP\D - GIS\2021 GGCAMP Report\22-16 Figure G.1 WQ and BI Sampling Locations for the Evaluation of Bio Triggers.mxd

due to unexpected water quality or due to unexpected relationships between water quality and biological endpoints. Water quality projections for routine water quality monitoring station GH_HWGH_BRB, which is located in Reach 7 of Upper Greenhills Creek, above the confluence with Gardine Creek, were used (Appendix Figure G.1).

For Lower Greenhills Creek, the evaluations of biological triggers for %EPT and selenium concentrations in benthic invertebrate and WCT tissues were based on water quality projections for routine water quality monitoring station GH_GH1. Station GH_GH1 is the permitted water quality station downstream from the Greenhills Creek Sedimentation Pond and the Stilling Basin V-notch but upstream from the antiscalant addition facility (Appendix Figure G.1). This station was the only location on Lower Greenhills Creek that had water quality projections. The projections for GH_GH1 were used in conjunction with benthic invertebrate community and tissue chemistry data from RG_GHCKD, benthic invertebrate tissue chemistry data from RG_GHBP, and WCT tissue chemistry data from Reach 1 of Lower Greenhills Creek. Monitoring area RG_GHCKD is a long-term monitoring location that has been evaluated as part of the RAEMP since 2012 (Minnow 2014, 2020a, 2021c) and is located approximately 285 metres (m) downstream from routine water quality monitoring station GH_GH1 (Appendix Figure G.1). Monitoring area RG_GHBP is co-located with RG_GHCKD and is routinely monitored as part of the Greenhills and Gardine Creeks Aquatic Monitoring Program (Appendix Figure G.1; Minnow 2018, 2019, 2020b, 2021a,b).²

Other monitoring areas on Greenhills and Gardine creeks were not used to evaluate biological triggers because nearby water quality projections were unavailable and/or the methods for assessing benthic invertebrate communities were incompatible with the methods underlying the %EPT predictions. Due to excessive calcite formation in Greenhills and Gardine creeks and a focus on invertebrate densities and biomass in the system, a modified CABIN method used (i.e., the sampler kicks within a fixed area of 1/3 square metres [m²], rather than collecting samples using timed kicks).³ Additionally, the greater within-area variability that is typical of fixed-area samples relative to travelling samples was not accounted for in the habitat model used to generate the predictions for %EPT. By using timed kick data for RG_GHNF and RG_GHCKD, it was possible to make a more accurate assessment of the %EPT biological trigger, which relies on comparisons to the habitat-adjusted normal range for %EPT and

€.

² The 2021 benthic invertebrate community data for RG_GHCKD was used because the sampling method for RG_GHCKD is consistent with the method that underlies the %EPT biological trigger (i.e., timed kicks characteristic of CABIN sampling). Benthic invertebrate community sampling at RG_GHBP is area-based and is therefore inconsistent with the method underlying the %EPT biological trigger.

³ For further details regarding the benthic invertebrate community sampling completed as part of the Greenhills Creek and Gardine Creek Aquatic Monitoring Program, see Section 2.4.1 of the main report.

expectations based on the predicted Aquatic Data Integration Tool (ADIT) score. Although data for monitoring areas other than RG_GHNF and RG_GHCKD/RG_GHBP could not been included in in the evaluations of biological triggers for %EPT and selenium concentrations in benthic invertebrate tissues, data for these areas were assessed in detail through other aspects of the 2021 monitoring program report.

G2 METHODS

G2.1 Percent Ephemeroptera, Plecoptera, and Trichoptera

Proportions of EPT in the timed kick and sweep benthic invertebrate community samples collected from RG_GHNF (n = 3) and RG_GHCKD (n = 3) in 2021 were compared to the lower limits (i.e., the 2.5th percentiles) of site-specific habitat-adjusted normal ranges and expectations based on the predicted ADIT scores for these locations. The process for deriving habitat-adjusted normal ranges is described in detail in Appendix J of the 2020 RAEMP report, and is based on consideration of more than 30 habitat, substrate, Geographic Information Systems (GIS), and cover variables (Minnow 2020a). Predicted ADIT scores correspond to potential effects on benthic invertebrate community endpoints, based on relationships between water quality projections (for nitrate, sulphate, and cadmium) and invertebrate toxicity endpoints originally developed for the Elk Valley Water Quality Plan (EVWQP; Teck 2014). A predicted ADIT score of 3 corresponds to 50 percent (%) or greater reduction in reproduction of the water flea *Ceriodaphnia dubia*, 2 corresponds to a 20 to 50% reduction, 1 corresponds to a 10 to 20% reduction, and 0 corresponds to a reduction of 10% or less. Once %EPT is measured, the measured results are converted to a measured ADIT score in relation to the habitat adjusted normal range as follows:

- an ADIT score of 0 corresponds to expected %EPT greater than or equal to (≥) the 10th percentile of the habitat adjusted normal range;
- an ADIT score of 1 corresponds to expected %EPT between the 10th percentile and the 2.5th percentile of the habitat-adjusted normal range (and is therefore identical in application to the lower limit of normal range);
- an ADIT score of 2 corresponds to expected %EPT between the 2.5th percentile and half of the 2.5th percentile of the habitat-adjusted normal range; and
- an ADIT score of 3 corresponds to expected %EPT less than or equal to (≤) half of the
- 2.5^{th} percentile and ≥ 0 .

In summary, this component of the biological trigger for %EPT asks whether the measured ADIT score (calculated based on measured %EPT relative to normal ranges) is greater than the ADIT score that was predicted based on water quality projections.

G2.2 Benthic Invertebrate Tissue Selenium

Selenium concentrations in composite-taxa benthic invertebrate tissue samples collected from RG_GHNF (Upper Greenhills Creek) and RG_GHCKD and RG_GHBP (Lower Greenhills Creek) in 2021 were compared to the regional reference area normal range

and expectations based on the lotic bioaccumulation model that was updated by Golder Associates (Golder) in 2020 (Golder 2014, 2020). The reference area normal range represents the 2.5th and 97.5th percentiles of the reference area data set for selenium concentrations in benthic invertebrate tissues (Minnow 2020a). In the case of biological triggers, the upper boundary of the reference area normal range is the primary point of comparison (i.e., "Is the concentration within or above the regional reference area normal range?").

Expectations associated with the bioaccumulation model focus on the upper limit of the 95% prediction interval for the water to benthic invertebrate tissue bioaccumulation model. The model was originally developed for the EVWQP (Golder 2014; Teck 2014) and was updated in 2020 as follows (Golder 2020):

$log_{10}[Se]_{benthic invertebrate} = 0.720 + 0.071 \times log_{10}[Se]_{aqueous}$

Prediction intervals were estimated for selenium concentrations in individual replicate samples. Benthic invertebrate tissue selenium data collected from RG_GHBP in February 2021 were included in the biological trigger analysis, although normal range information is based on fall (September) sampling. Although effects benchmarks are not part of the trigger for selenium concentrations in benthic invertebrate tissues, they are relevant for interpreting potential biological significance and responses. Consequently, the EVWQP Level 1, 2 and 3 Benchmarks for the most sensitive receptor (juvenile fish via dietary exposure; 11, 18, and 26 micrograms per gram dry weight [µg/g dw], respectively) were included in relevant plots.

G2.3 Westslope Cutthroat Trout Muscle Tissue Selenium

≪-

000

As indicated in Section G1.2, the biological trigger for selenium concentrations in WCT muscle was applied to a single incidental mortality identified in Reach 1 of Greenhills Creek in September 2021.⁴ The selenium concentration reported for the WCT muscle sample was compared to the upper limit of the regional reference area normal range (i.e., the 97.5th percentile concentration for reference area data). Up-to-date reference area normal ranges are reported in the RAEMP and LAEMPs and are recalculated, as needed, when new data become available (Minnow 2021c; Teck 2019). The WCT muscle tissue selenium concentration was also compared to the upper limit of the selenium concentration in water, the best estimate of the expected WCT muscle selenium concentration was generated using a two-step

⁴ The incidental mortality was a juvenile WCT with a fork length of 5.7 centimetres (cm) and weight of 2 grams (g). No external health anomalies (e.g., fin erosion, tumours) were noted.

bioaccumulation model (water to invertebrates and then invertebrates to fish eggs) followed by application of a conversion factor for translating egg selenium concentrations to muscle selenium concentrations. Prediction errors for new replicate samples (i.e., individual fish) are based on a different data set that relates fish directly to water. The detailed methods for estimating the upper limit of the 95% prediction interval for selenium concentrations in WCT muscle (given any projected value of aqueous selenium) are discussed in detail in the Biological Trigger Development for the Elk Valley Adaptive Management Plan (Azimuth, *in prep*).

G3 RESULTS

G3.1 Percent Ephemeroptera, Plecoptera, and Trichoptera

For the benthic invertebrate community samples collected from RG GHNF and RG GHCKD (three samples per area) in 2021, %EPT was consistently lower than habitat-adjusted normal but generally higher than predicted ADIT scores for each location ranges (Appendix Figure G.2; Appendix Table G.1). The only exception was a single sample from RG GHCKD; %EPT in RG GHCKD-3 (36%) was lower than the 2.5th percentile of the range (i.e., 76%) and predicted habitat-adjusted normal the ADIT score (37%; Appendix Figure G.2; Appendix Table G.1). Therefore, it can be concluded that biological triggers were not exceeded at RG GHNF on Upper Greenhills Creek, but that the biological trigger was exceeded at RG GHCKD on Lower Greenhills Creek in 2021.

G3.2 Benthic Invertebrate Tissue Selenium

None of the samples collected from RG_GHNF on Upper Greenhills Creek in September 2021 (n = 3) exceeded the biological trigger for benthic invertebrate tissue selenium concentrations, but all of the samples from Lower Greenhills Creek (n = 3 at RG_GHBP in February 2021 and n = 3 in two areas in September 2021) exceeded the biological trigger (Appendix Figure G.3; Appendix Table G.2). Selenium concentrations in benthic invertebrate tissues from RG_GHNF were lower overall (i.e., ranging from 10 to 11 μ g/g dw) compared to samples collected from RG_GHCKD (i.e., ranging from 16 to 22 μ g/g dw) and RG_GHBP (i.e., ranging from 21 to 34 μ g/g dw; Appendix Table G.2).

The high frequency and magnitude of exceedances at RG_GHCKD and RG_GHBP is likely attributed to proximity to the Greenhills Creek Sedimentation Pond discharge. Processes within the pond environment can enhance formation of organoselenium species and there can be elevated bioavailable selenium in lotic habitats immediately downstream (i.e., RG_GHCKD and RG_GHBP) (Golder 2021). As indicated in the main report, combined concentrations of dimethylselenoxide and methylseleninic acid were highest in the Greenhills Creek Sedimentation Pond and downstream at RG_GHBP in 2021 and likely contributed to enhanced selenium bioaccumulation (ADEPT 2022).

G3.3 Westslope Cutthroat Trout Muscle Tissue Selenium

The single WCT muscle sample collected opportunistically from Reach 1 of Lower Greenhills Creek in September 2021 exceeded the biological trigger for selenium. The selenium concentration in the WCT muscle sample (29 μ g/g dw) was higher than the upper 97.5th

Figure G.2: Measured Proportion of Ephemeroptera, Plecoptera, and Trichoptera Combined (%EPT) Relative to Predictions, Upper (RG_GHNF) and Lower (RG_GHCKD) Greenhills Creek, 2021

Notes: Grey shading represents the habitat-adjusted normal range for each replicate. Black bars indicate the lower limit of the predicted Aquatic Data Integration Tool (ADIT) score for the location. Blue dots represent values exceeding the biological trigger (i.e., values below the 2.5th percentile of the habitat-adjusted normal range and the lower limit of the predicted ADIT score).

Table G.1: Biological Trigger Analysis for Combined Proportions ofEphemeroptera, Plecoptera, and Trichoptera (%EPT) in Benthic InvertebrateCommunity Samples from Greenhills Creek, September 2021

Watercourse	Biological Monitoring Area	Replicate	Reported Value	ADIT Score	Lower 2.5 th Percentile of the Habitat Adjusted Normal Range
Upper Greenhills		1	66	40	79
	RG_GHNF	2	46	41	81
Creek		3	45	40	81
		1	64	36	72
Lower Greenhills Creek	RG_GHCKD	2	50	35	70
0.000		3	35	37	74

Shaded cells signify individual replicates that were associated with a biological trigger (i.e. %EPT was below both the lower 2.5th percentile of the habitat-adjusted normal range and the predicted ADIT score Note: ADIT = Aquatic Data Integration Tool.

Figure G.3: Measured Selenium Concentrations in Composite-Taxa Benthic Invertebrate Tissue Samples Relative to Predictions Upper (RG_GHNF) and Lower (RG_GHCKD and RG_GHBP) Greenhills Creek, 2021

Notes: Grey shading represents the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) from the Regional Aquatic Effects Monitoring Program (RAEMP). Black bars indicate the upper 95th prediction interval of the bioaccumulation model. Blue dots represent values exceeding the biological trigger (i.e., values above the 97.5th percentile of the reference area normal range and above upper 95% prediction interval). Dotted lines indicate EVWQP benchmarks (11, 18, and 26 mg/kg dw, respectively) for dietary effects to juvenile fish.

 Table G.2:
 Biological Trigger Analysis for Selenium Concentrations in Benthic Invertebrate Tissue Samples from

 Greenhills Creek, September 2021

			Predicted	Benthic Invertebrate Selenium Tissue				
Watercourse	Biological Monitoring Area	Date	Selenium Water Concentration (mg/L)	Upper 95% Prediction Limit (mg/kg dw)	Upper 97.5 th Percentile of Normal Range (mg/kg dw)	Reported Concentration (mg/kg dw)		
Upper		10-Sen-21	221	16	8.7	10		
Greenhills RG_GHNF Creek	RG_GHNF	10-000-21	221	16	8.7	11		
		11-Sep-21	221	16	8.7	10		
			198	15	8.7	20		
	RG_GHCKD	11-Sep-21	198	15	8.7	16		
			198	15	8.7	22		
Lower			198	15	8.7	33		
Greenhills		17-Feb-21	198	15	8.7	33		
Creek			198	15	8.7	32		
	KG_GHBF		198	15	8.7	21		
		14-Sep-21	198	15	8.7	34		
			198	15	8.7	24		

Shaded cells signify individual replicates that were associated with a biological trigger (i.e. higher than both the upper 95% prediction limit [as based on predicted water quality] and the upper 97.5th percentile of the habitat-adjusted normal range).

Notes: mg/L = milligrams per litre; % = percent; mg/kg dw = milligrams per kilogram dry weight.

percentile concentration of the reference area normal range (5.7 μ g/g dw) and the upper 95% prediction limit (16 μ g/g dw) that was calculated based on projected water quality.

G4 SUMMARY

Biological triggers for %EPT and benthic invertebrate tissue selenium concentrations were not exceeded at Upper Greenhills Creek; however, biological triggers for %EPT and selenium concentrations in benthic invertebrate tissues and WCT muscle were exceeded at Lower Greenhills Creek. Specifically, the biological trigger for %EPT was exceeded in one (n = 3) sample and tissue selenium concentrations in all benthic invertebrate (n = 9) and WCT muscle (n = 1) samples from Lower Greenhills Creek exceeded the biological trigger. The results for benthic invertebrate and WCT muscle tissue selenium in Lower Greenhills Creek are likely attributed to enhanced generation of organoselenium species upstream in the Greenhills Creek Sedimentation Pond.

Overall, current biological triggers were sufficient to identify monitoring areas where biological responses are occurring, and no additional triggers are recommended at this time. The results of the biological trigger evaluations are generally consistent with the findings of the overarching Greenhills and Gardine Creeks Aquatic Monitoring Program. However, uncertainty remains around the cause of the observed %EPT response in one of the n = 3 samples from RG_GHCKD on Lower Greenhills Creek. Efforts to resolve uncertainty around the combined and individual effects of water quality, habitat, and other mine-related stressors on benthic invertebrate communities in lotic habitats of the Elk River watershed are underway. Minnow Environmental Inc. (Minnow) is developing a predictive model for benthic invertebrate community endpoints. Additionally, monitoring or potential management responses will continue to be assessed through Teck's adaptive management framework.

G5 REFERENCES

000

- ADEPT (ADEPT Environmental Sciences Ltd.). 2022. Elk Valley Selenium Speciation Monitoring Program – 2021 Annual Report. Prepared for Teck Coal Limited, Sparwood, BC.
- Cope, S. 2020. Upper Fording River Westslope Cutthroat Trout Population Monitoring Project:
 2019. Prepared for Teck Coal Limited, Sparwood, BC. Report prepared by Westslope
 Fisheries Ltd., Cranbrook, BC. 48 p. + 2 app.
- Golder Associates (Golder). 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited, Sparwood, BC.
- Golder. 2020. Updates to the Lotic and Lentic Bioaccumulation Models for Selenium in the Elk Valley. Prepared for Teck Coal Limited, Sparwood, BC.
- Golder. 2021. Elk Valley Selenium Speciation Program 2021 Study Design. Prepared for Teck Coal Limited, Sparwood, BC.
- Minnow (Minnow Environmental Inc.). 2014. 2012 Biological Monitoring Program for Coal Mines in the Elk River Valley, BC. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 2456.
- Minnow. 2018. Lower Greenhills Creek Aquatic Baseline. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 177202.0043.
- Minnow. 2019. Lower Greenhills Creek Monitoring Program Report 2018. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 187202.0028.
- Minnow. 2020a. Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2017 to 2019. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 187202.0011.
- Minnow. 2020b. Greenhills Creek Aquatic Monitoring Program 2019 Report. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 197202.0005.
- Minnow. 2021a. Greenhills Creek and Gardine Creek Aquatic Monitoring Program Report 2020. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 207202.0014.
- Minnow. 2021b. Study Design for the 2021 Greenhills and Gardine Creeks Aquatic Monitoring Program. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 217202.0052.
- Minnow. 2021c. Study Design for the Regional Aquatic Effects Monitoring Program, 2021 to 2023. Prepared for Teck Coal Limited, Sparwood, BC. Minnow Project 207202.0006.

- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2018. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley. December 21, 2018.
- Teck. 2019. Elk Valley Water Quality Plan 2019 Implementation Plan Adjustment. July 2019.
- Teck. 2021. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2021 Update. December 15, 2021.

APPENDIX H BENTHIC INVERTEBRATE TISSUE CHEMISTRY

Table H.1: Chemist	ry Data for Benthic	Invertebrate Tissue	Samples Col	lected from Gr	reenhills and (Gardine Creeks,	February and S	eptember 2021

							L	Ipper Greenhills C	reek					
				RG_	GHUT				RG_GHNF			RG	_GHFF	
Analyte	Units		February			September		September				Sep	tember	
		RG_GHUT-1	RG_GHUT-2	RG_GHUT-3	RG_GHUT-1	RG_GHUT-3	RG_GHUT-5	RG_GHNF-1	RG_GHNF-3	RG_GHNF-5	RG_GHFF-1	RG_GHFF-3	RG_GHFF-5	RG_GHFF_LUM-1 ^a
		17-Feb-21	17-Feb-21	17-Feb-21	13-Sep-21	13-Sep-21	13-Sep-21	10-Sep-21	10-Sep-21	10-Sep-21	10-Sep-21	10-Sep-21	10-Sep-21	10-Sep-21
% Moisture	%	85.1	84.1	87	78.7	83.1	79.8	82.7	83.9	84.4	82.1	78.1	79.9	60.5
Aluminum (Al)	µg/g dw	414	730	930	3944	4933	2245	1211	1089	1059	965	1220	2058	59
Antimony (Sb)	µg/g dw	0.042	0.054	0.067	0.166	0.223	0.105	0.058	0.061	0.052	0.058	0.068	0.100	0.024
Arsenic (As)	µg/g dw	<0.431	0.509	0.538	1.1	0.961	0.576	0.615	0.615	0.643	<0.423	0.494	0.522	<0.423
Barium (Ba)	µg/g dw	7.1	9.4	15	49	61	23	22	17	19	33	29	56	19
Boron (B)	µg/g dw	0.596	0.830	1.1	2.8	3.8	1.6	1.1	1.6	1.0	1.6	1.9	2.6	0.117
Cadmium (Cd)	µg/g dw	3.1	2.7	2.8	3.8	3.6	2.9	1.5	1.2	0.689	0.488	0.436	0.418	2.00
Calcium (Ca)	µg/g dw	3965	4854	5123	7,889	9,146	4,946	10,478	6,189	9,311	11,361	9,154	15,104	5,611
Chromium (Cr)	µg/g dw	9.7	7.4	9.3	9.3	20	9.0	7.5	5.3	6.0	7.7	16	20	7.3
Cobalt (Co)	µg/g dw	0.663	0.580	0.848	1.60	2.30	1.60	0.642	0.447	0.384	0.330	0.911	1.3	0.339
Copper (Cu)	µg/g dw	12	12	16	32	43	39	17	16	17	17	18	19	14
Iron (Fe)	µg/g dw	396	416	533	1243	1524	672	457	369	359	435	678	863	192
Lead (Pb)	µg/g dw	0.124	0.210	0.258	1.1	1.5	0.758	0.285	0.251	0.243	0.315	0.637	0.401	0.0440
Lithium (Li)	µg/g dw	1.3	1.5	1.6	1.7	2.1	1.5	1.3	1.1	0.914	1.2	1.2	1.3	0.342
Magnesium (Mg)	µg/g dw	2170	2385	2690	3,073	2,996	3,083	3,243	2,625	2,606	2,841	2,847	3,155	2,469
Manganese (Mn)	µg/g dw	30	33	33	49	61	43	42	32	29	36	29	28	13
Mercury (Hg)	µg/g dw	<0.032	0.036	0.036	0.081	0.072	0.072	0.035	0.052	0.087	0.068	0.041	0.072	0.081
Molybdenum (Mo)	µg/g dw	0.246	0.266	0.307	0.474	0.502	0.418	0.290	0.232	0.203	0.335	0.251	0.223	0.139
Nickel (Ni)	µg/g dw	24	19	22	27	47	24	20	21	17	22	40	51	12
Phosphorus (P)	µg/g dw	13516	14081	12712	15,254	14,261	15,069	14,220	13,850	12,973	15,742	12,935	13,083	10,814
Potassium (K)	µg/g dw	9421	12352	9770	15,637	14,627	15,451	12,196	13,164	9,905	14,794	13,541	13,943	8,402
Selenium (Se)	µg/g dw	8.8	6.4	5.9	7.9	7.5	7.9	10	11	10	14	8.4	8.4	13
Silver (Ag)	µg/g dw	0.025	0.028	0.032	0.099	0.135	0.117	0.050	0.084	0.092	0.117	0.135	0.216	0.171
Sodium (Na)	µg/g dw	5375	6380	5096	5,109	4,785	6,161	4,797	4,968	3,061	5,928	5,098	3,973	5,043
Strontium (Sr)	µg/g dw	2.6	3.0	4.3	7.1	8.7	3.8	6.0	5.4	4.8	9.1	7.4	9.1	8.2
Thallium (TI)	µg/g dw	0.036	0.047	0.045	0.116	0.126	0.087	0.068	0.066	0.101	0.041	0.038	0.049	0.009
Tin (Sn)	µg/g dw	0.569	0.809	1.6	1.1	1.1	0.851	0.909	0.877	1.3	1.1	0.630	1.3	0.256
Titanium (Ti)	µg/g dw	30	56	73	284	389	181	89	69	58	67	85	147	3.8
Uranium (U)	µg/g dw	0.145	0.134	0.213	0.241	0.307	0.208	0.201	0.273	0.191	0.209	0.215	0.287	0.018
Vanadium (V)	µg/g dw	1.1	1.5	2.2	5.3	8.0	3.2	2.0	2.1	1.7	1.3	2.1	2.7	0.266
Zinc (Zn)	µg/g dw	245	145	156	238	218	178	147	135	220	176	164	151	174

Selenium concentration exceeds the 45 µg/g dw preliminary Level 1 Benchmark for maternal amphibian diet (Mass é et al. 2015).

Selenium concentration exceeds the 41 µg/g dw Level 3 Benchmark for dietary effects to juvenile birds (EVWQP; Golder 2014).

Selenium concentration exceeds the 22 µg/g dw Level 2 Benchmark for dietary effects to juvenile birds (EVWQP; Golder 2014).

Selenium concentration exceeds the 15 µg/g dw Level 1 Benchmark for dietary effects to juvenile birds (EVWQP; Golder 2014).

Selenium concentration exceeds the 27 µg/g dw Level 3 Benchmark for growth, reproduction, and survival of benthic invertebrates (EVWQP; Golder 2014).

Selenium concentration exceeds the 20 µg/g dw Level 2 Benchmark for growth, reproduction, and survival of benthic invertebrates (EVWQP; Golder 2014).

Selenium concentration exceeds the 13 µg/g dw Level 1 Benchmark for growth, reproduction, and survival of benthic invertebrates (EVWQP; Golder 2014).

Selenium concentration exceeds the 26 µg/g dw Level 3 Benchmark for dietary effects to juvenile fish (EVWQP; Golder 2014).

Selenium concentration exceeds the 18 µg/g dw Level 2 Benchmark for dietary effects to juvenile fish (EVWQP; Golder 2014).

Selenium concentration exceeds the 11 µg/g dw Level 1 Benchmark for dietary effects to juvenile fish (EVWQP; Golder 2014).

Selenium concentration exceeds the 8.74 µg/g dw 97.5th percentile reference concentration (i.e., the upper boundary of the normal range) used to identify a difference from reference (Minnow 2020).

Notes: % = percent; µg/g dw = micrograms per gram dry weight; < = less than; EVWQP = Elk Valley Water Quality Plan.

^a This sample is a single-taxa sample containing annelids (LUM) only; all other creek samples are composite-taxa samples.

				Lower Gree	enhills Creek					Gardin	e Creek		
				RG_0	GHBP				RG_GAUT			RG_GANF	
Analyte	Units		February			September		September			September		
		RG GHBP-1	RG GHBP-2	RG GHBP-3	RG GHBP-1	RG GHBP-2	RG GHBP-3	RG GAUT-1	RG GAUT-2	RG GAUT-5	RG GANF-1	RG GANF-2	RG GANF-3
		17-Feb-21	17-Feb-21	17-Feb-21	14-Sep-21	14-Sep-21	14-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	15-Sep-21	15-Sep-21	15-Sep-21
% Moisture	%	82.6	82.1	80.1	80.0	81.1	79.3	80.0	79.5	85.5	69.9	75.4	77.6
Aluminum (Al)	µg/g dw	1,144	1,251	655	1,506	977	878	6,541	14,715	13,927	1164	766	2867
Antimony (Sb)	µg/g dw	0.076	0.111	0.062	0.057	0.070	0.053	0.258	0.495	0.432	0.053	0.053	0.125
Arsenic (As)	µg/g dw	1.1	0.768	0.499	1.8	1.2	1.3	0.818	1.2	1.2	<0.423	<0.423	0.961
Barium (Ba)	µg/g dw	25	37	15	147	78	98	123	281	265	59	27	77
Boron (B)	µg/g dw	1.9	3.4	0.915	2.4	2.1	1.5	6.4	15.0	17.0	1.6	1.2	3.1
Cadmium (Cd)	µg/g dw	0.816	0.917	0.374	0.671	0.763	0.549	1.9	4.00	1.3	0.458	0.671	0.907
Calcium (Ca)	µg/g dw	2339	3887	2727	83,627	39,060	57,497	3,442	5,141	4,859	5,808	4,870	16,862
Chromium (Cr)	µg/g dw	6.2	7.5	3.0	7.4	6.9	7.8	21	31	28	6.0	8.7	28
Cobalt (Co)	µg/g dw	1.10	0.995	0.781	0.806	0.557	0.720	1.9	3.8	3.8	0.511	0.585	2.5
Copper (Cu)	µg/g dw	17	25	23	64	50	50	31	28	18	16	16	22
Iron (Fe)	µg/g dw	533	646	207	552	479	428	1,574	3,922	4,001	448	373	1276
Lead (Pb)	µg/g dw	0.347	0.503	0.213	0.277	0.308	0.201	1.2	2.6	2.4	0.340	0.228	0.585
Lithium (Li)	µg/g dw	0.703	1.1	0.445	3.1	2.7	2.3	2.8	5.2	4.5	0.767	0.600	1.5
Magnesium (Mg)	µg/g dw	2144	2723	2407	3,188	2,769	3,019	1,501	2,384	2,626	1,906	1,556	2,533
Manganese (Mn)	µg/g dw	74	67	62	27	47	39	120	325	115	43	39	45
Mercury (Hg)	µg/g dw	0.120	0.120	0.084	0.054	0.085	0.047	0.0930	0.116	0.101	0.109	0.081	0.0540
Molybdenum (Mo)	µg/g dw	0.246	0.430	0.246	0.679	0.601	0.496	0.653	0.993	1.30	0.287	0.209	0.655
Nickel (Ni)	µg/g dw	23	29	17	24	23	23	41	57	61	13	15	56
Phosphorus (P)	µg/g dw	9137	10329	12142	11,315	12,447	12,659	10,741	13,436	9,501	11,621	10,625	13,497
Potassium (K)	µg/g dw	7674	7791	10117	11,045	13,656	11,908	12,441	17,449	21,859	10,182	8,016	13,301
Selenium (Se)	µg/g dw	33	33	32	21	34	24	3.9	5.1	3.9	4.8	3.8	5.0
Silver (Ag)	µg/g dw	0.107	0.151	0.145	0.715	0.606	0.538	0.184	0.273	0.136	0.143	0.129	0.234
Sodium (Na)	µg/g dw	2445	3377	3605	4,905	6,472	5,091	4,988	5,078	10,209	4,285	2,228	3,183
Strontium (Sr)	µg/g dw	5.3	8.6	3.9	80	42	61	13	23	21	9.8	5.6	15
Thallium (TI)	µg/g dw	0.089	0.040	0.039	0.120	0.127	0.122	0.103	0.204	0.208	0.041	0.035	0.107
Tin (Sn)	µg/g dw	0.305	0.516	0.179	0.481	0.422	0.343	1.00	1.90	0.906	0.218	0.376	1.9
Titanium (Ti)	µg/g dw	85	100	39	102	57	49	373	990	841	70	44	196
Uranium (U)	µg/g dw	0.122	0.252	0.093	0.272	0.141	0.124	0.161	0.359	0.407	0.059	0.044	0.133
Vanadium (V)	µg/g dw	2.2	2.5	1.2	2.3	1.8	1.4	7.4	21	18	1.90	1.10	3.9
Zinc (Zn)	µg/g dw	246	267	237	74	157	96	185	255	137	146	152	113

Table H.1: Chemistry Data for Benthic Invertebrate Tissue Samples Collected from Greenhills and Gardine Creeks, February and September 2021

Selenium concentration exceeds the 45 µg/g dw preliminary Level 1 Benchmark for maternal amphibian diet (Mass é et al. 2015).

Selenium concentration exceeds the 41 µg/g dw Level 3 Benchmark for dietary effects to juvenile birds (EVWQP; Golder 2014).

Selenium concentration exceeds the 22 µg/g dw Level 2 Benchmark for dietary effects to juvenile birds (EVWQP; Golder 2014).

Selenium concentration exceeds the 15 µg/g dw Level 1 Benchmark for dietary effects to juvenile birds (EVWQP; Golder 2014).

Selenium concentration exceeds the 27 µg/g dw Level 3 Benchmark for growth, reproduction, and survival of benthic invertebrates (EVWQP; Golder 2014).

Selenium concentration exceeds the 20 µg/g dw Level 2 Benchmark for growth, reproduction, and survival of benthic invertebrates (EVWQP; Golder 2014).

Selenium concentration exceeds the 13 µg/g dw Level 1 Benchmark for growth, reproduction, and survival of benthic invertebrates (EVWQP; Golder 2014).

Selenium concentration exceeds the 26 µg/g dw Level 3 Benchmark for dietary effects to juvenile fish (EVWQP; Golder 2014).

Selenium concentration exceeds the 18 µg/g dw Level 2 Benchmark for dietary effects to juvenile fish (EVWQP; Golder 2014).

Selenium concentration exceeds the 11 µg/g dw Level 1 Benchmark for dietary effects to juvenile fish (EVWQP; Golder 2014).

Selenium concentration exceeds the 8.74 µg/g dw 97.5th percentile reference concentration (i.e., the upper boundary of the normal range) used to identify a difference from reference (Minnow 2020).

Notes: % = percent; µg/g dw = micrograms per gram dry weight; < = less than; EVWQP = Elk Valley Water Quality Plan.

^a This sample is a single-taxa sample containing annelids (LUM) only; all other creek samples are composite-taxa samples.

 Table H.2: Comparisons Among Areas for Selenium Concentrations in Composite-taxa Benthic Invertebrate Tissue

 Samples from Greenhills and Gardine Creeks, September 2018 to 2021

	ANOVA	Model		Spatial Post-hoc Comparisons						
Transformation	Station	Year	Station:Year	Area 1	Area 2	MOD ^a				
	otation	. our	• tation i oui	7.104	/	2018	2019	2020	2021	
					RG_GHUT	-72	-80	-68	-70	
					RG_GHNF	ns	-63	-46	-60	
				RG_GHBP	RG_GHFF	-69	-77	-69	-61	
				RG_GAUT	-	-90	-76	-84		
					RG_GANF	-	-84	-80	-83	
					RG_GHNF	150	84 -80 150 81 ns	ns	ns	
					RG_GHFF	ns	ns	ns	ns	
log ₁₀	<0.001	0.045	0.045 <0.001 RG_GHUI RG_G	RG_GAUT	-	-53	ns	-45		
					RG_GANF	-	ns	-37	-42	
					RG_GHFF	-56	-38	ns	ns	
				RG_GHNF	RG_GAUT	-	-74	-55	-59	
					RG_GANF	-	-56	-63	-56	
					RG_GAUT	-	-58	ns	-57	
				RG_GHFF	RG_GANF	-	ns	-37	-55	
				RG_GAUT	RG_GANF	-	69	ns	ns	

P-value <0.05.

Significant increase relative to Area 1.

Significant decrease relative to Area 1.

Notes: ANOVA = Analysis of Variance; MOD = Magnitude of Difference; < = less than; ns = not significant; - = no data; MCT = Measure of Central Tendency (back-transformed marginal estimated means).

^a MOD = (MCT_{Area 2} - MCT_{Area 1})/MCT_{Area 1}*100.

 Table H.3:
 Comparisons Among Years for Selenium Concentrations in Composite-taxa Benthic Invertebrate Tissue

 Samples from Greenhills and Gardine Creeks, September 2018 to 2021

	ANOVA	Area	Temporal Post-hoc Comparisons to 2018 (or base year)					
Transformation	Station	Year	Station:Year	Alea	MOD ^a			
Tunoronnation	otation	i cui	otation. real		2019	2020	2021	
		0.045	10.001	RG_GHBP	ns	ns	ns	
				RG_GHUT	ns	ns	ns	
log	-0.001			RG_GHNF	-33	ns	-43	
10g ₁₀	<0.001	0.045	<0.001	RG_GHFF	ns	ns	ns	
				RG_GAUT	Base Year	54	ns	
				RG_GANF	Base Year	ns	ns	

P-value <0.05. Significant incre

Significant increase relative to Area 1.

Significant decrease relative to Area 1.

Notes: ANOVA = Analysis of Variance; MOD = Magnitude of Difference; < = less than; ns = not significant; MCT = Measure of Central Tendency (back-transformed marginal estimated means).

^a MOD = (MCT_{Examined Year} - MCT_{Base Year})/MCT_{Base Year} *100.

 Table H.4:
 Comparison of Selenium Concentrations in Composite-taxa Benthic Invertebrate Tissue Samples Collected from

 Greenhills and Gardine Creeks in February Versus September, 2019 to 2021

ANOVA Model ^a							Area	Do February samples differ from September samples within a given year?			
							MOD ^b				
Area	Year	Month	Area:Year	Area:Month	Year:Month	Area:Year:Month		2019	2019 2020		
							RG_GHUT	ns	ns	ns	
-0.001	0.455	0.059	0.400	0.004	0 1 2 1	0.011	RG_GHFF	-35	ns	-	
<0.001	0.155	0.058	0.409	0.004	0.131 0.011	RG_GHBP	ns	145	ns		
							RG_GANF	-	ns	-	

P-value <0.05.

Concentration in February is significantly higher relative to September within a given year.

Concentration in February is significantly lower relative to September within a given year.

Notes: ANOVA = Analysis of Variance; MOD = Magnitude of Difference; < = less than; ns = not significant; - = no data; MCT = Measure of Central Tendency (back-transformed marginal estimated means).

^a The ANOVA was performed on log 10⁻transformed data and only areas that had both February and September samples within a given year were included in the analyses. Post-hoc tests were conducted to compare February and September samples within a given year only.

^b MOD = (MCT_{February} - MCT_{September})/MCT_{September}*100.

Table H.5: Mean Observed and Predicted Benthic Invertebrate Tissue SeleniumConcentrations for Lotic Sampling Areas, Greenhills and Gardine Creeks, 2018 to 2021 ^a

Watercourse	Biological Monitoring	Year	Month	Tissue Selenium (μg/g	Predictio	on Interval	(ug/g dw)
	Area			aw)	Lower	Mean	Upper
				7.2			
		2018	September	7.3	4.0	7.9	15
				7.1			
				5.6			
			February	11	4.0	7.8	15
		2019		20			
				6.4			
			September	9.2	4.0	7.8	15
				7.1			
	RG_GHUT		Februarv	6.8	4.0	7.7	15
			·,	5.0			-
		2020	0 - mto mile - m	9.1			
			September	6.0	4.0	7.9	15
				7.0			
				8.8			
			February	6.4	4.0	7.9	15
Upper		2021		5.9			
Greenhills			September	7.9	4.0	7.0	45
Стеек				7.5		7.8	15
				7.9			
		0040	Quest 1	17	4.0	7.0	45
		2018	September	15	4.0	7.9	15
				23			
		2010	Sontomber	15	2.0	77	15
		2019	September	10	3.9	1.1	ID
	RG_GHNF			12			
		2020	Contomber	9.9	4.0	7.0	15
		2020	September	9.5	4.0	7.9	ID
				11			
		2024	Contempor	10	4.0	77	15
		2021	September	11	4.0	1.1	15
				10			
		2019	Contomber	8.8	2.0	7.6	15
	KG_GHFF	2018	Septemper	8.8	3.9	0. <i>1</i>	15
				6.3			

Mean selenium concentration exceeds the upper predicted limit.

Mean selenium concentration is less than the lower predicted limit.

Notes: $\mu g/g dw = micrograms per gram dry weight.$

^a Data are for composite-taxa benthic invertebrate tissue chemistry samples unless otherwise indicated.

^b This sample is an annelid-only sample.

 $^{\rm c}$ This sample is an annelid-only sample whereas annelids were removed from the remaining September 2020 samples from RG_GHBP (i.e., the samples with selenium concentrations of 17, 24, and 21 μ g/g dw).

Table H.5: Mean Observed and Predicted Benthic Invertebrate Tissue SeleniumConcentrations for Lotic Sampling Areas, Greenhills and Gardine Creeks, 2018 to 2021 ^a

Watercourse	Biological Monitoring	Year	Month	Tissue Selenium (µg/g	Predictio	on Interval	(ug/g dw)
	Area 1011 Area 2019 RG_GHFF 2020 GH_GH1_AS 2020 GH_GHBP 2019 RG_GHBP 2020 2020 2021			uw)	Lower	Mean	Upper
				5.5			
			February	4.9	3.8	7.5	15
		2019		4.5			
		2010		5.9			
			September	8.5	3.8	7.5	15
				8.7			
Upper			February	6.4	3.8	75	15
Greenhills	RG_GHFF		rebraary	6.6	0.0	1.0	10
Creek		2020		6.8			
			September	6.7	3.9	7.6	15
				5.8			
				14			
			Sontombor	8.4			
		2021	September	8.4	3.9	7.6	15
				13 ^b			
				16			4.5
	GH_GH1_AS	2020	September	14	3.8	7.5	15
				25			
		2018	September	30	3.8	7.5	15
				22			
				54		7.5	45
			February	32	3.8	7.5	15
		2019		31			
			September	36	37	73	14
			Coptonisor	28	0.1	1.0	
Lower				58			
Greenhills			February	53	3.8	7.4	15
Creek	KG_GHDP			41			
		2020		88 ^c			
			September	17	3.9	7.6	15
				24			
				21			
			Fobruary	33	3.0	76	15
			rebiuary	32	3.9	1.0	15
		2021		21			
			September	34	3.8	7.5	15
				24	-	-	

Mean selenium concentration exceeds the upper predicted limit.

Mean selenium concentration is less than the lower predicted limit.

Notes: µg/g dw = micrograms per gram dry weight.

^a Data are for composite-taxa benthic invertebrate tissue chemistry samples unless otherwise indicated.

^b This sample is an annelid-only sample.

^c This sample is an annelid-only sample whereas annelids were removed from the remaining September 2020 samples from RG_GHBP (i.e., the samples with selenium concentrations of 17, 24, and 21 μ g/g dw).

Table H.5: Mean Observed and Predicted Benthic Invertebrate Tissue SeleniumConcentrations for Lotic Sampling Areas, Greenhills and Gardine Creeks, 2018 to 2021 ^a

Watercourse	Biological Monitoring	Year	Month	Tissue Selenium (μg/g	Prediction Interval (ug/g dw)			
	Area			dw)	Lower	Mean	Upper	
				3.5			10	
		2019	September	3.4	2.6	5.1		
				2.7				
		2020		4.3				
	RG_GAUT		September	5.0	2.5	5.0	9.8	
				5.5				
		2021	September	3.9			9.9	
				5.1	2.6	5.1		
				3.9				
Cardina Crook		2019	September	5.5	2.9	5.6	11	
Galuine Creek				4.9				
				5.7				
		2020	Fobruary	4.4	3.0	5.0	10	
		2020	rebiuary	5.6	5.0	5.9	12	
	RG_GANF			3.8				
		2020	September	5.4	2.8	5.4	11	
				3.3				
				4.8				
		2021	September	3.8	3.0	5.9	12	
				5.0				

Mean selenium concentration exceeds the upper predicted limit.

Mean selenium concentration is less than the lower predicted limit.

Notes: $\mu g/g dw = micrograms per gram dry weight.$

^a Data are for composite-taxa benthic invertebrate tissue chemistry samples unless otherwise indicated.

^b This sample is an annelid-only sample.

^c This sample is an annelid-only sample whereas annelids were removed from the remaining September 2020 samples from RG_GHBP (i.e., the samples with selenium concentrations of 17, 24, and 21 μ g/g dw).

 Table H.6: Comparison of Selenium Concentrations Measured in Benthic Invertebrate Tissues and Concentrations

 Predicted Using the Selenium Species Bioaccumulation Tool^a, 2021

		B-tool Pi	rediction	Field Measurements		
Watercourse/ Waterbody	Biological Monitoring Area	Water Sample Date	Predicted selenium concentration in benthic invertebrate tissues	Tissue Sample Date	Mean selenium concentrations in benthic invertebrate tissues ^b	
			µg/g dw		µg/g dw	
		17-Feb-21	7.1	17-Feb-21	7.0	
Upper Greenbills Creek	NG_GHUT	13-Sep-21	6.3	13-Sep-21	7.8	
Opper Greennins Creek	RG_GHNF	10-Sep-21	8.6	10-Sep-21	10	
	RG_GHFF	9-Sep-21	9.5	9-Sep-21	10	
Greenhills Creek Sedimentation Pond	RG_GHP	23-Sep-21	35	23-Sep-21	16	
Lower Groenhills Creek		18-Feb-21	15	17-Feb-21	33	
Lower Greennills Creek		13-Sep-21	38	14-Sep-21	26	
Cardina Crook	RG_GAUT	16-Sep-21	4.0	16-Sep-21	4.3	
Galuine Creek	RG_GANF	15-Sep-21	3.6	15-Sep-21	4.5	

Mean benthic invertebrate tissue selenium concentration is higher than predicted.

Notes: B-tool = Selenium Speciation Bioaccumulation Tool, µg/g dw = micrograms per gram dry weight.

^a Predictions of benthic invertebrate tissue selenium concentrations were derived using aqueous selenium speciation data and sulphate concentrations for each area and sampling event (February or September 2021) (de Bruyn and Luoma 2021).

^b Mean selenium concentrations are for composite-taxa benthic invertebrate samples only (i.e., the annelid-only and bivalve-only samples collected from RG_GHFF and RG_GHP, respectively, in September 2021 are not included).

			Gre	eenhills Creek Sedimentation P	ond	
A walk to	11			RG_GHP		
Analyte	Unite	RG_GHP-1 ^ª	RG_GHP-3	RG_GHP_BIV-3 ^a	RG_GHP-5	RG_GHP_BIV-5 ^ª
			22-Sep-21		23-Sep-21	
% Moisture	%	67.9	80.1	48.0	82.9	41.5
Aluminum (Al)	µg/g dw	5,711	10,651	5,872	12,090	13,669
Antimony (Sb)	µg/g dw	0.244	0.345	0.220	0.263	0.405
Arsenic (As)	µg/g dw	0.951	3.7	1.5	3.1	2.0
Barium (Ba)	µg/g dw	169	335	338	270	255
Boron (B)	µg/g dw	5.2	9.7	5.4	11	11
Cadmium (Cd)	µg/g dw	0.517	0.720	0.751	1.2	1.5
Calcium (Ca)	µg/g dw	215,780	134,919	319,525	96,029	500,159
Chromium (Cr)	µg/g dw	77	19	163	29	437
Cobalt (Co)	µg/g dw	4.2	1.8	7.3	2.9	21
Copper (Cu)	µg/g dw	9.6	77	36	71	61
Iron (Fe)	µg/g dw	3,218	2,807	4,342	3530	10,575
Lead (Pb)	µg/g dw	1.4	2.0	1.2	2.5	2.3
Lithium (Li)	µg/g dw	1.9	6.5	2.9	5.3	5.3
Magnesium (Mg)	µg/g dw	1,267	5,038	1,742	3,794	2,363
Manganese (Mn)	µg/g dw	38	86	91	84	207
Mercury (Hg)	µg/g dw	0.052	0.074	0.052	0.078	0.052
Molybdenum (Mo)	µg/g dw	0.406	1.0	0.638	0.638	2.6
Nickel (Ni)	µg/g dw	138	52	315	62	740
Phosphorus (P)	µg/g dw	1,187	12,801	4,839	10,876	5,461
Potassium (K)	µg/g dw	1,942	13,876	7,596	11,851	9,996
Selenium (Se)	µg/g dw	12	17	9.4	20	11
Silver (Ag)	µg/g dw	0.218	1.4	0.916	1.10	0.983
Sodium (Na)	µg/g dw	924	5,863	3,827	5,544	5,967
Strontium (Sr)	µg/g dw	181	125	669	90	176
Thallium (TI)	µg/g dw	0.084	0.263	0.100	0.305	0.199
Tin (Sn)	µg/g dw	0.642	0.886	0.670	1.0	1.3
Titanium (Ti)	µg/g dw	475	1,036	439	878	998
Uranium (U)	µg/q dw	0.385	0.390	0.402	0.357	0.448
Vanadium (V)	µg/g dw	11	18	14	18	31
Zinc (Zn)	ua/a dw	26	65	49	82	68

Table H.7: Chemistry Data for Benthic Invertebrate Tissue Samples Collected from Greenhills Creek Sedimentation Pond, September 2021

Selenium concentration exceeds the 45 µg/g dw preliminary Level 1 Benchmark for maternal amphibian diet (Massé et al. 2015).

Selenium concentration exceeds the 41 µg/g dw Level 3 Benchmark for dietary effects to juvenile birds (EVWQP; Golder 2014).

Selenium concentration exceeds the 22 µg/g dw Level 2 Benchmark for dietary effects to juvenile birds (EVWQP; Golder 2014).

Selenium concentration exceeds the 15 µg/g dw Level 1 Benchmark for dietary effects to juvenile birds (EVWQP; Golder 2014).

Selenium concentration exceeds the 27 µg/g dw Level 3 Benchmark for growth, reproduction, and survival of benthic invertebrates (EVWQP; Golder 2014).

Selenium concentration exceeds the 20 µg/g dw Level 2 Benchmark for growth, reproduction, and survival of benthic invertebrates (EVWQP; Golder 2014).

Selenium concentration exceeds the 13 µg/g dw Level 1 Benchmark for growth, reproduction, and survival of benthic invertebrates (EVWQP; Golder 2014).

Selenium concentration exceeds the 26 µg/g dw Level 3 Benchmark for dietary effects to juvenile fish (EVWQP; Golder 2014).

Selenium concentration exceeds the 18 µg/g dw Level 2 Benchmark for dietary effects to juvenile fish (EVWQP; Golder 2014).

Selenium concentration exceeds the 11 µg/g dw Level 1 Benchmark for dietary effects to juvenile fish (EVWQP; Golder 2014).

Selenium concentration exceeds the 11 µg/g dw 97.5th percentile lentic reference concentration (i.e., the upper boundary of the normal range) used to identify a difference from reference (Minnow 2020).

Notes: % = percent; μ g/g dw = micrograms per gram dry weight; < = less than; EVWQP = Elk Valley Water Quality Plan.

^a These samples are single-taxa samples containing bivalves (BIV) only. No other taxa were found in the grab from RG_GHP-1. Due to the high proportions of bivalves in the composite-taxa samples collected from RG_GHP-3 and RG_GHP-5, each sample was divided into aliquots containing bivalves-only and "other" taxa prior to analysis.

APPENDIX I WESTSLOPE CUTTHROAT TROUT

Figure I.1: Length-frequency Distribution for Westslope Cutthroat Trout Captured from Upper Greenhills and Gardine Creeks, 2017 to 2021

	Area	Station ID	Upstre Coord (NAD 83,	am UTM dinates Zone 11U)	Downstr Coord (NAD 83, 1	eam UTM linates Zone 11U)	Date	Length of Run (m)	Mean Width (m)	Pass	Effort (seconds)	Number of Fish Caught	Fish Biomass Caught (g wet	Abund	lance Esti	mate by St	ation ^a	Estim (no./1	ated Fish D 00 m ²) by S	ensity station	Estima (g/100	ted Fish B m²) by Sta	iomass ation ^b
			Easting	Northing	Easting	Northing							weight)	N	SE	LCI	UCI	N	LCI	UCI	N	LCI	UCI
										1	451	0	0										
		RG_GHUT-EF1	654149	5549772	654161	5549749	13-Sep-21	35	3.0	2	454	0	0	0	0	0	0	0	0	0	0	0	0
										3	458	0	0	-	-	-	-	-		•	-	-	-
								1	1	lotal	1,363	0	0										
			054440	5540070	054454	5540000	10.0.01	40		1	353	0	0										
	RG GHUT	RG_GHUT-EF2	654146	5549870	654151	5549829	13-Sep-21	40	2.8	2	347	0	0	0	0	0	0	0	0	0	0	0	0
	_									3	330	0	0										
					-					Iotal	1,030	0	0										
			CE 44 40	EE40004	654405	FF40047	16 Can 01	20	2.5	1	248	0	0										
		RG_GHUI-EF3	004142	5549691	054125	5549917	16-Sep-21	30	2.5	2	241	0	0	0	0	0	0	0	0	0	0	0	0
										J Total	261	0	0										
			1		r		(T	r	Iotal	750	U	0										
										1	284	0	0										
		RG_GHNF-EF1	654382	5548964	654384	5549006	17-Sep-21	40	2.5	2	282	0	0	1.0	4.0	0	<u> </u>	4.0	0		400	•	200
		_					-			3	280	1	100	1.0	1.2	0	3.3	1.0	0	3.3	100	0	329
¥										4	285	0	0										
ee			1					T	1	lotal	1,131	1	100		-						-		
Ū			054000	5540044	054070	5540007	04 0 04	20	2.0	1	269	1	36										
llic	RG GHNF	RG_GHNF-EF2	654380	5549011	654372	5548937	21-Sep-21	30	3.0	2	251	1	57	2.0	0.38	1.2	2.8	2.2	1.4	3.1	103	64	142
ent	_									3	250	0	0										
je			1		r		(T	T	Iotal	770	2	93		-						-		
5										1	305	0	0										
be		RG GHNF-EF3	654363	5549042	654374	5549073	22-Sep-21	35	2.5	2	297	0	0		0.0		0.0	0.0	0	7 5	00	•	000
Ľ		_					•			3	296	1	45	2.0	2.3	0	6.6	2.3	0	1.5	92	0	302
										4 T atal	310	1	35										
			1			1		Т	T	lotal	1,208	2	81										
										1	2/6	1	5.1										
		RG_GHFF-EF1	654059	5547078	654020	5547046	15-Sep-21	50	2.8	2	316	0	0	2.0	4.5	0.000	~ ^	0.4	0.004	4.0	44	0.40	04
		_					-			3	300	1	5.1	3.0	1.5	0.029	6.0	Z.1	0.021	4.3	11	0.10	21
										4	300	1	4.6										
			1		r		(T	T	Iotal	1,192	3	15		-						-		
										1	354	0	0										
	RG GHFF	RG GHFF-EF2	654128	5547156	654111	5547113	15-Sep-21	40	3.0	2	319	0	0		0.0		0.0	47				•	
	_	_								3	308	1	5.2	2.0	2.3	U	6.6	1.7	U	5.5	8.6	U	28
										4	342	1	5.1										
				1						Iotal	1,323	2	10										
			054405	FF 4706 1	054405	FF 47477		40		1	355	1	5.7										
		KG_GHFF-EF3	654165	5547204	654135	554/1/7	20-Sep-21	43	3.0	2	349	1	30	2.0	0.38	1.2	2.8	1.6	0.97	2.1	28	17	38
						I				3	363	0	0										
										Total	1,067	2	36										

Table I.1: Catch, Abundance, Density, and Biomass Data for Westslope Cutthroat Trout Captured by Closed-station Electrofishing in Upper Greenhills Creek, September 2021

Notes: ID = identifier; UTM = Universal Transverse Mercator; NAD = North American Datum; m = metres; g = grams; N = number; SE = standard error; LCI = lower limit of the 95% confidence interval; UCI = upper limit of the 95% confidence interval; no./100 m₂ = number of fish per 100 square meters; g/100 m₂ = grams of fish biomass per 100 square metres; % = percent. Negative LCIs were truncated at 0.

^a Mean abundance and 95% confidence intervals were estimated using multiple-pass depletion estimation (Carle and Strub 1978) as implemented in the FSA R package (Ogle et al. 2020). Each station was approximately 100 m².

^b Biomass estimates were derived by multiplying population abundance by mean biomass of all captured fish.

	Area	Station ID	Upstrea Coord (NAD 83,	am UTM linates Zone 11U)	Downstr Coord (NAD 83,	eam UTM linates Zone 11U)	Date	Length of Run (m)	Mean Width (m)	Pass	Effort (seconds)	Number of Fish Caught	Fish Biomass Caught (g wet	Abuno	lance Estir	nate by St	ation ^a	Estima (no./10	ated Fish Do 00 m²) by S	ensity tation	Estima (g/100	ited Fish B) m ²) by St	iomass ation ^b
			Easting	Northing	Easting	Northing							weight)	Ν	SE	LCI	UCI	N	LCI	UCI	N	LCI	UCI
			653551	5548836	653551	5548836	9 Sep 21	3.6	33	1	28	11	141										
ee X		NG_GAUTELT	000001	3340030	000001	3340030	9-0ep-21	5.0	0.0	2	27	17	142	-	-	-	-	-	-	-	-	-	-
e C									-	Total	55	28	282										
ardin	RG_GAUT °	RG_GAUT-EF2	653538	5548845	653538	5548845	10-Sep-21	1.1	1.4	1	81	4	11										
ar Go			J		1		L	1		Total	81	4	11	-	-	-	-	-	-	-	-	-	-
əddr		RG_GAUT-EF3	653576	5543797	653576	5548797	10-Sep-21	1.2	1.8	1	120	2	21										
										Total	120	2	21	-	-	-	-	-	-	-	-	-	-
										1	733	22	257										
		RG GANF-EF1	654261	5547781	654193	5547820	10-Sep-21	90	1.3	2	537	4	61										
		_								3	676	0	0	26	0.27	25	27	23	23	24	282	276	288
										Total	1.946	26	317										
										1	894	0	0										
reek										2	900	2	22										
D e		RG_GANF-EF2	654191	5547843	654109	5547834	29-Sep-21	80	1.0	2	034	0	0	2.0	0.56	0.91	3.1	2.5	1 1	3.0	28	13	13
ardir	RG_GANF									3	706	0	0	2.0	0.00	0.01	5.1	2.0	1.1	0.0	20	10	40
er G										4 Totol	720	0	0										
Low										Total	3,454	2	22										
										1	934	/	124										
		RG_GANF-EF3	654038	5547848	654103	5547841	30-Sep-21	76	1.4	2	800	7	115										
										3	755	5	62	30	8.9	13	47	28	12	45	448	188	708
										4	803	4	65										
										Total	3,292	23	365										

Table I.2: Catch, Abundance, Density, and Biomass Data for Westslope Cutthroat Trout Captured by Closed-station and Spot Electrofishing in Gardine Creek, September 2021

Notes: ID = identifier; UTM = Universal Transverse Mercator; NAD = North American Datum; m = metres; g = grams; N = number; SE = standard error; LCI = lower limit of the 95% confidence interval; no./100 m² = number of fish per 100 square metres; g/100 m² = grams of fish biomass per 100 square metres; - = no data/not calculated; % = percent. Negative LCIs were truncated at 0.

^a Mean abundance and 95% confidence intervals were estimated using multiple-pass depletion estimation (Carle and Strub 1978) as implemented in the FSA R package (Ogle et al. 2020). Each station was approximately 100 m² unless otherwise indicated. ^b Biomass estimates were derived by multiplying population abundance by mean biomass of all captured fish.

^c Due to limited passes, population, density, and biomass estimations could not be calculated. The sampling locations were small pools.

Table I.3: Catch, Abundance, Density, and Biomass Data for Westslope Cutthroat Trout Captured by Closed-station Electrofishing in Lower Greenhills Creek, September 2021

	Area	Station ID	UTM Co (NAD 83,	ordinates Zone 11U)	Date	Length of Run (m)	Mean Width (m)	Pass	Effort (seconds)	Number of Fish Caught	Fish Biomass Caught (g wet	Abun	dance Est	imate by St	ation ^a	Estim (no./1	ated Fish I 00 m ²) by S	Density Station	Estima (g/10	ated Fish B 0 m ²) by St	Biomass ation ^b
			Easting	Northing						_	weight)	N	SE	LCI	UCI	N	LCI	UCI	N	LCI	UCI
¥		CRE1 2	653530	5545618	0/15/2021	20	2.5	1	194	1	5.2										
je.		GILL 1_2	033330	3343018	9/13/2021	20	2.5	2	171	0	0.0	1.0	0	1.0	1.0	2.0	2.0	2.0	10	10	10
s								Total	365	1	5.2										
lie		CPE1 3	653535	5545627	0/15/2021	18	2.5	1	178	1	14										
en	Reach 1	GIVE 1_5	000000	5545027	9/13/2021	10	2.5	2	149	0	0	1.0	0	1.0	1.0	2.2	2.2	2.2	31	31	31
Gre						-		Total	327	1	14										
r O		CPE1 4	652515	5545597	0/15/2021	50	2	1	195	1	4.8										
9MG		GRE1_4	055515	5545567	9/15/2021	50	2	2	170	1	27	2.0	1	0.040	3.96	2.0	0	4.0	31	0.63	62
Lo								Tota	365	2	31										

Notes: ID = identifier; UTM = Universal Transverse Mercator; NAD = North American Datum; m = metres; g = grams; N = number; SE = standard error; LCI = lower limit of the 95% confidence interval; UCI = upper limit of the 95% confidence interval; no./100 m² = number of fish per 100 square meters; g/100 m² = grams of fish biomass per 100 square metres; - = no data/not calculated; % = percent. Negative LCIs were truncated at 0.

^a Mean abundance and 95% confidence intervals were estimated using multiple-pass depletion estimation (Carle and Strub 1978) as implemented in the FSA R package (Ogle et al. 2020). Each station was approximately 100 m² unless otherwise indicated. ^b Biomass estimates were derived by multiplying population abundance by mean biomass of all captured fish.

Image: Field conditioned integrate integrat		Area	Station ID	Upstrea Coord (NAD 83,	am UTM linates Zone 11U)	Downstr Coord (NAD 83,	ream UTM dinates Zone 11U)	Date	Length of Run (m)	Mean Width (m)	Pass	Effort (seconds)	Number of Fish Caught	Fish Biomass Caught (g wet weight)	Abune	dance Estir	nate by St	ation ^a	Estima (no./1	ated Fish D 00 m ²) by S	ensity Station	Estima (g/100	ted Fish B m ²) by Sta	iomass ation ^b
Normal line line line line line line line lin				Easting	Northing	Easting	Northing		. ,	()					Ν	SE	LCI	UCI	N	LCI	UCI	N	LCI	UCI
Figher biase CHUEF Solid biase Solid biase <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>320</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											1	320	0	0										
Normal basis Image: state indicating indindicating indicating indindindinating indindicating			GHUT-EF1	654131	5549959	654157	5549944	14-Sep-17	12	1.6	2	261	0	0	0	-	-	-	0	-	-	-	-	-
Nerror Autor Autor <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td>283</td><td>0</td><td>0</td><td>Ũ</td><td></td><td></td><td></td><td>Ũ</td><td></td><td></td><td></td><td></td><td></td></t<>											3	283	0	0	Ũ				Ũ					
Nerver Normal and any angle and any any any angle and any any angle angle any any angle angle and				(1					Total	864	0	0										
No official Order				054445	5540050	054447	5540044	44.0 47	4.4	1.0	1	198	1	98										
Vert propertyImage: state in the image: s		RG_GHUT	GHU1-EF2	004140	5549859	004147	5549844	14-Sep-17	14	1.9	2	223	0	0	1.0	0	1.0	1.0	3.8	3.8	3.8	377	377	377
Image: constraint of the state in		-									Total	761	1	98										
Image: conditione of the condi											1	229	0	0										
Image: Finite problemImage: Finit problemImage: Finite problem			GHUT-EF3	654149	5549762	654154	5549752	14-Sep-17	12	2.6	2	219	0	0										
Image: propertion of the state of the sta								•			3	250	0	0	0	-	-	-	0	-	-	-	-	-
NAME AMM BAM					1	1	1				Total	698	0	0										
NUMP CHNF-EF1 ESABSE S548090 654855 S548071 10 2.7 2 273 0 0 0 10 10 2.3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>259</td><td>1</td><td>23</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											1	259	1	23										
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			GHNF-EF1	654385	5548986	654385	5548972	16-Sep-17	16	2.7	2	273	0	0	10	0	10	1.0	23	23	23	53	53	53
No per	eek										3	553	0	0	1.0	Ŭ	1.0	1.0	2.0	2.0	2.0	00	00	00
RG_GHIF GHNF-EF2 64383 554890 654895 16-8ep-17 16 2 244 1 10 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	ō			T	1		1				Total	1,085	1	23										
RG_GHNF GHM-EFZ GB430 S0400 GB438 S0400 S0400 S0 S0 S0 L S0 L S0 L S0 L S0 L S0 S0 S0 M	sliic			054000	5540040	054000	5540000	10.0 17	10	0.5	1	274	1	10										
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	ent	RG_GHNF	GHNF-EF2	654383	5549010	654383	5548996	16-Sep-17	10	2.5	2	214	0	0	1.0	0	1.0	1.0	2.5	2.5	2.5	24	24	24
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	<u>e</u>	-									্য Total	2/3	0	0										
No. or contract with the contract withere anding with the contract with the contract with the contract	er (1 1	280	0	0										
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	dd		GHNE-EE3	654372	5549057	654363	5549043	16-Sep-17	17	2.5	2	200	0	0										
Image: condition of c			0	00.012						2.0	3	299	1	94	1.0	2.0	0	5.0	2.4	0	12	222	0	1105
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		-							11		Total	870	1	94										
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$											1	343	1	37										
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			GHFF-EF1	654050	5547067	654036	5547058	17-Sep-17	18	3.7	2	290	0	0	10	0	1.0	1.0	16	16	16	58	58	58
NAME Image: Free Preparity of the											3	281	0	0	1.0	0	1.0	1.0	1.0	1.0	1.0	50	50	50
RG_GHFF GHFF-EF2 65410 554712 654712 17-Sep-17 18 2.8 1 218 2 372 MC_GHFF GHFF-EF2 654100 5547129 654712 17-Sep-17 18 2.8 1 218 2 360 0 0 0 0.54 2.9 5.1 8.1 5.9 10 127 93 161				r		1	1				Total	914	1	37										
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$											1	218	2	37										
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		RG GHFF	GHFF-EF2	654108	5547129	654111	5547122	17-Sep-17	18	2.8	2	350	2	26	4.0	0.54	2.9	5.1	8.1	5.9	10	127	93	161
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_									3 Total	450	0	0										
NAME GHFF-EF3 654130 5547168 654131 5547154 17.Sep-17 17 2.6 1 2.07 5.7 3.5 6.9 5.7 8.1 317 262 37.2 V </td <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 0 0 0 1</td> <td>291</td> <td>4 2</td> <td>63</td> <td></td>											1 0 0 0 1	291	4 2	63										
NM E-10 OF NO			GHEE-EE3	654130	5547168	654131	5547154	17-Sep-17	17	26	2	201	<u> </u>	52										
New part of the par				001100	0011100	001101	0011101	ii eep ii		2.0	3	356	0	0	3.0	0.27	2.5	3.5	6.9	5.7	8.1	317	262	372
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-									Total	911	3	138										
N P P P P P P P P P P P P P P P P P P P											1	281	14	164										
NAME CHBP-EF1 CHBP-EF1 COSSUM				652500	EE 4 E E O O	652400	EE 4 E E 9 O	12 Can 17	11	2.2	2	342	9	40										
Image: Porper proper	×		GHBP-EFT	000009	0040088	053499	5545569	13-Sep-17	11	2.2	3	478	10	34	46	8.4	30	62	197	127	268	1,547	994	2,100
No begin begi	ree										4	232	4	52										
RG_GHBP GHBP-EF2 653552 5545676 653544 5545663 13-Sep-17 15 3.2 1 652 26 244 2 526 12 129 54 6.1 42 66 115 90 140 1,012 789 1,235 90 140 1,012 789 1,235 13-Sep-17 13 2.6 1 585 17 94 2 653542 5545683 653552 5545676 13-Sep-17 13 2.6 2.6 15 94 2 6.1 42 6.1 42 66 115 90 140 1,012 789 1,235 3 6400 9 42 61 42 66 115 90 140 1,012 789 1,235 3 6400 9 42 61 42 66 115 90 140 1,012 789 1,235 4 6 653552 5545676 13-Sep-17 13 2.6 2 615 8 27 26 0.96 24 28 78 73 84 372 345 399	s S	_									Total	1,333	37	290										
RG_GHBP GHBP-EF2 653552 5545676 653544 5545663 13-Sep-17 15 3.2 2 526 12 129 54 6.1 42 66 115 90 140 1,012 789 1,235 Main 6.1 42 66 115 90 140 1,012 789 1,235 Main Mai	llidi								. –	• -	1	652	26	244										
Open	eeu	RG_GHBP	GHBP-EF2	653552	5545676	653544	5545663	13-Sep-17	15	3.2	2	526	12	129	54	6.1	42	66	115	90	140	1,012	789	1,235
Image: Normal state of the	Ğ										3	640	9	42			-					,		,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ver			1							I otal	1,818	47	414										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Lov			653543	5545692	653553	5545676	12 Son 17	12	26	1	585	0	94										
	_		GHDF-EF3	000042	0040003	000002	5545070	13-3ep-17	10	2.0	2	625	0	21	26	0.96	24	28	78	73	84	372	345	399
Total 1.823 26 123				I	1	1	1		I		Total	1.823	26	123										

 Table I.4:
 Catch, Abundance, Density, and Biomass Data for Westslope Cutthroat Trout Captured by Electrofishing in Upper and Lower Greenhills Creek, September 2017

Notes: ID = identifier; UTM = Universal Transverse Mercator; NAD = North American Datum; m = metres; g = grams; g ww = grams wet weight N = number; SE = standard error; LCI = lower limit of the 95% confidence interval; UCI = upper limit of the 95% confidence interval; no./100 m² = number of fish per 100 square meters; g/100 m² = grams of fish biomass per 100 square metres; - = no data/not calculated; % = percent. Negative LCIs were truncated at 0.

^a Mean abundance and 95% confidence intervals were estimated using multiple-pass depletion estimation (Carle and Strub 1978) as implemented in the FSA R package (Ogle et al. 2020).

^b Biomass estimates were derived by multiplying population abundance by mean biomass of all captured fish.

	Area	Station ID	Upstre Coorc (NAD 83,	am UTM linates Zone 11U)	Downstr Coor (NAD 83,	ream UTM dinates Zone 11U)	Date	Length of Run (m)	Mean Width (m)	Pass	Effort (seconds)	Number of Fish Caught	Fish Biomass Caught (g wet weight)	Abune	lance Estir	nate by Sta	ation ^a	Estima (no./1	ated Fish D 00 m²) by S	ensity itation	Estima (g/100	ted Fish Bi m²) by Sta	iomass ation ^b
			Easting	Northing	Easting	Northing		(,	(,				inoigint,	Ν	SE	LCI	UCI	N	LCI	UCI	Ν	LCI	UCI
										1	522	0	0										
		RG_GHUT-EF1	654143	5549873	654129	5549906	12-Sep-18	27	1.7	2	555	0	0	0	_	_	_	0	_	_	_	_	_
										3	382	0	0	0	-	-	_	Ŭ	_	_	-	-	_
			1		1	1				Total	1,459	0	0										
					054440	5540054	10.0 10			1	301	0	0										
	RG GHUT	RG_GHUT-EF2	654143	5549873	654146	5549851	12-Sep-18	21	1.8	2	305	0	0	0	-	-	-	0	-	-	-	-	-
	_									3 Total	287	0	0										
										10001	893	0	0										
			654156	5549784	654151	5549756	12-Sen-18	27	1.8	2	385	0	0										
			004100	5545704	004101	0040700	12-00p-10	21	1.0	3	507	0	0	0	-	-	-	0	-	-	-	-	-
										Total	1.537	ů 0	Ő										
										1	664	2	108										
		RG_GHNF-EF1	654384	5548993	654385	5548972	11-Sep-18	22	1.8	2	510	0	0	0.0	0	0.0	0.0	F 4	F 4	F 4	070	070	070
		_							·	3	539	0	0	2.0	0	2.0	2.0	5.1	5.1	5.1	272	272	272
ek										Total	1,713	2	108										
S.										1	338	1	33										
lls	RG GHNE	RG_GHNF-EF2	654383	5549010	654379	5548998	12-Sep-18	10	1.9	2	301	0	0	10	0	10	10	53	53	53	175	175	175
hné										3	312	0	0	1.0	Ū	1.0	1.0	0.0	0.0	0.0	110	170	170
lree			r	1	1	1				Total	951	1	33										
5			054070	5540057	054077	5540007	40.0 40	00		1	655	2	67										
bpe		RG_GHNF-EF3	654373	5549057	654377	5549027	12-Sep-18	32	2.3	2	645	1	45	3.0	0.27	2.5	3.5	4.1	3.4	4.8	152	126	179
n										3 Total	007	0	0										
										10101	1,907	3	0										
		RG GHEF-EE1	654063	5547075	654036	5547058	11-Sen-18	35	22	2	400	0	0										
			004000	0041010	004000	0047000	11 000 10	00	2.2	3	443	0	0	0	-	-	-	0	-	-	-	-	-
										Total	1.362	0	0										
										1	661	4	281										
			654400	EE 474E0	654440	EE 47440	11 Cam 10	40	26	2	509	1	32										
		RG_GHFF-EFZ	004122	5547150	054110	5547116	11-Sep-18	40	2.0	3	509	1	28	6.0	0.32	5.4	6.6	5.8	5.2	6.4	327	293	361
	KG_GHFF									4	441	0	0										
										Total	2,120	6	340										
										1	589	3	183										
		RG GHFF-EF3	654145	5547100	654132	5547159	11-Sep-18	34	2.6	2	524	0	0										
							1		-	3	518	1	74	4.0	0.26	3.5	4.5	4.5	3.9	5.1	291	253	328
										4	547	0	0										
										Iotal	2,178	4	257										
										1	330	2	194										
		RG_GHBP-EF1	653519	5545621	653503	5545599	10-Sep-18	34	1.8	2	202	2	24	15	0 35	14	16	25	24	26	430	410	450
¥											292	0	0	10	0.00	14	10	20	27	20	400	410	400
Creek			l						ļ	Total	1 264	15	15										
s 0										1	467	20	308										
lidr			050507	FF 45040	050500	FF 45040	40.0 40	45	10	2	414	4	26										
eel	KG_GHBP	KG_GHBP-EF2	653567	5545610	653528	5545610	10-Sep-18	45	1.8	3	310	4	38	28	0.54	27	29	36	34	37	472	454	490
ū										4	392	0	0										
ver										Total	1,583	28	28										
Γo										1	863	47	437										
		RG_GHBP-EF3	653536	5545691	653544	5545661	10-Sep-18	27	2.0	2	649	16	162	70	21	66	74	130	122	137	1,199	1,129	1,269
										3	651	5	29								.,	.,.20	.,_00
										Total	2,163	68	68										

Table I.5: Catch, Abundance, Density, and Biomass Data for Westslope Cutthroat Trout Captured by Electrofishing in Upper and Lower Greenhills Creek, September 2018

Notes: ID = identifier; UTM = Universal Transverse Mercator; NAD = North American Datum; m = metres; g = grams; N = number; SE = standard error; LCI = lower limit of the 95% confidence interval; UCI = upper limit of the 95% confidence interval; no./100 m² = number of fish per 100 square meters; g/100 m² = grams of fish biomass per 100 square meters; - = no data/not calculated; % = percent. Negative LCIs were truncated at 0.

^a Mean abundance and 95% confidence intervals were estimated using multiple-pass depletion estimation (Carle and Strub 1978) as implemented in the FSA R package (Ogle et al. 2020). ^b Biomass estimates were derived by multiplying population abundance by mean biomass of all captured fish.

	Area	Station ID	Upstrea Coord (NAD 83,	am UTM linates Zone 11U)	Downstr Coorc (NAD 83,	eam UTM linates Zone 11U)	Date	Length of Run (m)	Mean Width (m)	Pass	Effort (seconds)	Number of Fish Caught	Fish Biomass Caught (g wet weight)	Abun	dance Estir	nate by St	ation ^a	Estima (no./1	ated Fish D 00 m²) by S	ensity Station	Estima (g/100	ted Fish B m²) by Sta	iomass ation ^b
			Easting	Northing	Easting	Northing			. ,					Ν	SE	LCI	UCI	Ν	LCI	UCI	N	LCI	UCI
										1	519	0	0										
		RG_GHUT-EF1	654156	5549784	654151	5549756	17-Sep-19	30	1.2	2	408	0	0	0	-	-	_	0	_	-	-	-	_
										3	481	0	0	°,				°,					
										Total	1,408	0	0										
			054444	FFF000F	054440	5540000	47.0 40	40	1.0	1	408	0	0										
	RG_GHUT	RG_GHUT-EF2	654141	5550035	654142	5549889	17-Sep-19	42	1.0	2	417	0	0	0	-	-	-	0	-	-	-	-	-
										3 Total	448	0	0										
										10101	1,273	0	0										
		RG GHUT-FF3	654129	5550073	654141	5550035	17-Sen-19	43	10	2	407	0	0										
			004120	0000070	004141	0000000	17-0cp-13	75	1.0	2	433	0	0	0	-	-	-	0	-	-	-	-	-
			l		l					Total	1 339	0	0										
										1	593	0	0										
		RG GHNF-EF1	654383	5549001	654382	5548971	18-Sep-19	32	2.0	2	588	1	64						_			_	
×									-	3	549	0	0	1.0	0.73	0	2.4	1.6	0	3.8	100	0	244
ee										Total	1,730	1	64										
Ū										1	481	1	52										
sllic		RG_GHNF-EF2	654379	5549026	654383	5549007	18-Sep-19	30	1.8	2	375	0	0	1.0	0	1.0	1.0	1.0	1.0	1.0	06	06	06
en	KG_GHNF									3	425	0	0	1.0	0	1.0	1.0	1.9	1.9	1.9	90	90	90
e e										Total	1,281	1	52										
er (1	880	2	99										
dd		RG_GHNF-EF3	654370	5549057	654379	5549026	18-Sep-19	40	2.0	2	862	1	65	30	0 27	2.5	3.5	3.8	3.1	44	205	170	241
ر										3	775	0	0	0.0	0.27	2.0	0.0	0.0	0.1		200		2
				1		1	1			Total	2,517	3	164										
										1	359	0	0										
		RG GHFF-EF1	654058	5547083	654037	5547059	16-Sep-19	44	2.7	2	645	4	79		0.5	o 17				10		.	470
		_					-			3	501	1	5.1	7.0	3.5	0.17	14	5.9	0.14	12	87	2.1	172
										4 Total	424	1	4.8										
							1				1,929	6	89										
	RC CHEE	RC CHEE EE2	65/127	5547144	65/100	5547116	16 Sep 10	46	28	2	502	0	49										
	NG_GHIT		004127	3347 144	034103	3347110	10-Sep-19	40	2.0	2	583	0	0	1.0	0.0	1.0	1.0	0.78	0.78	0.78	38	38	38
										Total	1 752	1	49										
										1	788	4	95										
		RG GHFF-EF3	654130	5547150	645144	5547196	16-Sep-19	42	3.0	2	632	0	0	4.5	0.0	4.0	4.0			0.0	75		
										3	522	0	0	4.0	0.0	4.0	4.0	3.2	3.2	3.2	75	75	75
										Total	1,942	4	95										
										1	525	5	154										
		RG_GHBP-EF1	653521	5545619	653500	5545598	13-Sep-19	42	1.2	2	633	2	50	0.0	0.77	6 5	10	10	10	10	450	267	520
<u>Å</u>										3	554	1	24	8.0	0.77	0.0	10	10	13	19	452	307	536
C			-		-					Total	1,712	8	228										
s										1	778	8	373										
RG_GH	RG GHBP	RG_GHBP-EF2	653500	5545598	653521	5545619	13-Sep-19	65	1.7	2	686	4	49	14	12	12	16	13	10	15	449	372	526
										3	678	2	74	. 7		12	.0		.0	.0	1 10	012	020
Ū Ū			1		1		ſ	1		Total	2,142	14	496										
Ňe										1	717	10	213										
Г		KG_GHBP-EF3	653539	5545171	653555	5545666	13-Sep-19	52	2.2	2	615	5	68	21	3.4	14	28	18	13	24	309	212	406
										3	593	4	39										
										Total	1,925	19	320										

Table I.6: Catch, Abundance, Density, and Biomass Data for Westslope Cutthroat Trout Captured by Electrofishing in Upper and Lower Greenhills Creek, September 2019

^a Mean abundance and 95% confidence intervals were estimated using multiple-pass depletion estimation (Carle and Strub 1978) as implemented in the FSA R package (Ogle et al. 2020).

^b Biomass estimates were derived by multiplying population abundance by mean biomass of all captured fish.

Notes: ID = identifier; UTM = Universal Transverse Mercator; NAD = North American Datum; m = metres; g = grams; N = number; SE = standard error; LCI = lower limit of the 95% confidence interval; uCI = upper limit of the 95% confidence interval; no./100 m² = number; SE = standard error; LCI = lower limit of the 95% confidence interval; no./100 m² = number; SE = standard error; LCI = lower limit of the 95% confidence interval; no./100 m² = number of fish per 100 square meters; g/100 m² = grams; N = number; SE = standard error; LCI = lower limit of the 95% confidence interval; uCI = upper limit of the 95% confidence interval; no./100 m² = number; SE = standard error; LCI = lower limit of the 95% confidence interval; uCI = upper limit of the 95% confidence interval; upper limit of the 95\% confidence interval; upper limit of the 95\% confidence interval; upper limit of the 95\% co biomass per 100 square metres; - = no data/not calculated; % = percent. Negative LCIs were truncated at 0.

Watercourse													Gr	eenhil	ls Cre	ek											
Biological Area Code													-	RG G	SHUT												
Station ID						RG	GHUT	-EF1												RG	GHUT	-EF2					
Date sampled						1		21												13	B-Sep-2	21					
Time (24 hrs)							10:15														13:40						
Start UTMs (NAD83, Zone 11U) -				654	125					55	54991	7						65414	16					554	9870		
End UTMs (NAD83, Zone 11U) -				654	142					55	54989	1						6541	51					554	19829		
Easting, Northing												-															
Physical Characteristics																											
Temperature (°C)							6.26														6.58						
рН							8.44														8.24						
DO (% sat)							93.4														95.2						
DO (mg/L)																					11.57						
Conductance (µS/cm)							1,432														1,487						
Specific Conductance (µS/cm)							2,308														2,294						
ORP							79.1														277.3						
Habitat Characteristics																											
Station Length (m)							40														40						
Station Width (m)							3														2.8						
Mean Depth (cm)							20														25						
Max Depth (cm)							50														60						
Water Appearance						Sli	ghtly tu	bid													Clear						
			Pool	/Pond				Riffle				R	un			F	ool/	Pond				Riffle				Run	
General Morphology (%)			4	10				10				5	50				3	0				10				60	
Bank Condition						Stable -	no Banl	k Erosi	ion											Stable - r	io Ban	k Erosion					
	В	edroc	k	I	Boulde	r	Cobble	•		Gravel		Sa	and/Fin	es	E	edrock		Bo	ulde	r (Cobble)	Gra	vel		Sand/Fi	nes
Substrate (%)					(Calcite - no d	liscerna	ble su	bstrate										(Calcite - no di	scerna	ble substra	te.				-
	Unde	rcut B	anks	I	Boulde	r Wo	ody De	bris	D	eep Poo	ol	Ма	crophy	rtes	Unde	rcut Ba	ıks	Bo	ulde	r Woo	ody De	bris	Deep	Pool	N	acroph	vtes
Instream Cover (% of total		0			0		10			20			0			0			0		5		. 10)		0	-
surface)		O O 10 20 0 0 0 5 O 0 10 20 0 0 0 5 Other Calcite = 10; OHV = 50 Other Other Partially Open Open Dense Dense Dense Dense Dense Dense Dense Dense Dense <t< td=""><td>Calcit</td><td>e = 50</td><td>: OH</td><td>V = 10</td><td></td><td></td></t<>															Calcit	e = 50	: OH	V = 10							
		Other Calcite = 10; OHV = 50 Other Dense Partially Open Open Dense 10 70 20 0															F	Partiall	v Open		, -		Open				
Overhead Canopy (%)	Other Calcite = 10; OHV = 50 Dense Partially Open Open 10 70 20															0			-	3	0				70		
		Emor	raont			Submorger		F	loatin	a	۸	ttacho	-v ad Alas			Emoro	ont			Submorgant		- Float	ina		Attac		120
Aquatic Vegetation (% aerial		Line	gent			oubilierger			loatin	9		litaciie	su Aiga			Linerg	7116			Submergent		Tioat	ing		Allac	ieu Aig	ae
coverage and dominant species)		C)			0		Ę	ō, gree	n	15, 9	green f	filamen	tous		0				0		15, gr filamer	een itous		10, gree	n filamei	ntous
Stream Features						Cal	cite terra	aces												Calc	ite terr	aces					
Anthropogenic Disturbances	Calcite terraces																			Calcite; Logo	jed a lo	ong time ag	0				
Surrounding Land Use							Forest	-													Forest						-
Weather	Forest Clear, frosty, cool																		Clear, co	ld, fros	ty, sunny						
Riparian Vegetation types (descending dominance)						Shr	ubs, gra	sses												Shru	bs, gra	sses					
Transect Number	1 2 3 4 5 1 2 3														4			5									
Wetted width (m)	1 2 3 4 5 1 2 3 3.5 2.8 4.6 2.7 2.5 1.9 2.2 3.1														2	7		3.1									
Bankfull width (m)		7.8			10.2		13.2			6.4			11.3			4.5			54		7.8		10	0		10.0	
Water Depth (am) Asrees		1.0			10.2		10.2			0.1			11.0			1.0			0.1		1.0					10.0	1
Channel	13.0	10.0	20.0	27.0	32.0	20.0 16.5	41.0	5.0	10.0	20.0	21.5	23.0	28.0	24.0	15.0	20.0 1	3.0	22.0 2	9.0	13.0 20.0	19.0	15.0 12.	0 36	.0 1	8.0 85.	23.0	32.0
Water Depth (cm) - Average							20.7														24.8						
Water Velocity (m/s) - Across Channel		0.011			0.039		0.060			0.430			0.084			0.035		0	.293		0.229		0.0	92		0.149	•
Water Velocity (m/s) Average						·	0.12														0.16						

Notes: ID = identifier; hrs = hours; UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; °C = degrees Celsius; - = no data/not applicable; DO = dissolved oxygen; % sat = percent saturation; mg/L = milligrams per litre; µS/cm = microSiemens per centimetre; ORP = oxidation-reduction potential; m = metres; cm = centimetres; ~ = approximately; % = percent; < = less than; OHV = overhanging vegetation; m/s = metres per second.

^a Very overgrown with shrubs and difficult to access.

^b All three electrofishing stations at RG_GAUT were isolated pools. Therefore, no flow measurements were taken at these stations.

^c Side-channel was not measured.

		Greenhills Creek RG_GHUT-EF3 14-Sep-21 08:56 08:56 654161 5549749 654149 5549772 654149 5549772 08:56 8.54 81.9 10.27 1,426 2,278 2,278 - 30 2.5 20 50 Clear, some hydrocarbon film Pool/Pond Riffle Run 60 15 25 Stable - no Bank Erosion Stable - Stable - No Bank Erosion Bedrock Boulder Cobble Gravel Sand/Fin Calcite - no discernable substrate. dercut Banks Boulder Woody Debris Deep Pool Macroph 0 0 0 30 0 0 Calcite - son 50 0 0 0 0 0																											
Watercourse							Gree	nhills Cr	ek												G	reer	hills (Creek					
Biological Area Code							R	G_GHUT														RC	GHN	IF					
Station ID							RG	GHUT-E	F3												F	G (GHNF	EF1					
Date sampled							1	- 4-Sep-21														13	-Sep-2	21					
Time (24 hrs)								08:56															15:20						
Start UTMs (NAD83, Zone 11U) -				65	4161						55	54974	9						654	382							55439	64	
End UTMs (NAD83, Zone 11U) -				65	4149						55	54977	2						654	384							55490	06	
Easting, Northing																													
Physical Characteristics								5.40								1							_						
Temperature (°C)								5.42															5						
рн								8.54															1.18						
DO (% sat)	61.9 10.27 1,426 2,278 - 30 2.5 20 50 Clear, some hydrocarbon film Pool/Pond Riffle 60 15 Stable - no Bank Erosion Bedrock Boulder Cobble Gravel Calcite - no discernable substrate. Undercut Banks Boulder																						98.7						
DO (mg/L)	10.27 10.27 1,426 2,278 - 30 2.5 20 50 Clear, some hydrocarbon film Pool/Pond Riffle 60 15 Stable - no Bank Erosion Bedrock Boulder Cobble Gravel Calcite - no discernable substrate. Undercut Banks Boulder Woody Debris Deep Poo																						10.13						
Conductance (µS/cm)	10.27 1,426 2,278 - - 30 2.5 20 50 Clear, some hydrocarbon film Pool/Pond Riffle 60 15 Stable - no Bank Erosion Bedrock Boulder Calcite - no discernable substrate. Undercut Banks Boulder Woody Debris Deep F																						1,355						
Specific Conductance (µS/cm)								2,278															2,194						
ORP																							147.2						
Habitat Characteristics	- 30 2.5 20 50 Clear, some hydrocarbon film Pool/Pond Riffle Ru 60 15 2! Stable - no Bank Erosion Bedrock Boulder Cobble Gravel Sar Calcite - no discernable substrate. Undercut Banks Boulder Woody Debris Deep Pool Mac																												
Station Length (m)	2,278 - 30 2.5 20 50 Clear, some hydrocarbon film Pool/Pond Riffle Ru 60 15 20 Stable - no Bank Erosion Bedrock Boulder Calcite - no discernable substrate. Undercut Banks Boulder 0 0 0 0 0 0 Other Calcite = 5; OHV = 50																						40						
Station Width (m)	2,278 - 30 2.5 20 50 Clear, some hydrocarbon film Pool/Pond Riffle 60 15 Stable - no Bank Erosion Bedrock Boulder Calcite - no discernable substrate. Undercut Banks Boulder 0 0																						2.5						
Mean Depth (cm)	30 2.5 20 50 Clear, some hydrocarbon film Pool/Pond Riffle Run 60 15 Stable - no Bank Erosion Bedrock Boulder Calcite - no discernable substrate. Undercut Banks Boulder 0 0 0 0 0 0 Other Calcite = 5; OHV = 50																						-						
Max Depth (cm)	2.5 20 50 Clear, some hydrocarbon film Pool/Pond Riffle Run 60 15 25 Stable - no Bank Erosion Bedrock Boulder Cobble Gravel Sand/Fines Calcite - no discernable substrate.																						-						
Water Appearance	2.5 20 50 Clear, some hydrocarbon film Pool/Pond Riffle Run 60 15 25 Stable - no Bank Erosion Stable - no Bank Erosion Sand/Fine Bedrock Boulder Cobble Gravel Sand/Fine Clear, some hydrocarbon film 0 0 0 0 0 Bedrock Boulder Cobble Gravel Sand/Fine Calcite - no discernable substrate. Undercut Banks Boulder Woody Debris Deep Pool Macrophyt 0 0 0 30 0 0 0 0 0																						Clear						
General Morphology (%)	30 2.5 20 50 Clear, some hydrocarbon film Pool/Pond Riffle 60 15 Stable - no Bank Erosion Bedrock Boulder Clacite - no discernable substrate. Undercut Banks Boulder 0 0 0 0 Other Calcite = 5; OH Dense Partially Open 50 50													un				Pool	/Pond					Riffle				R	un
				60					15				2	25				8	35					10					5
Bank Condition						S	able -	no Bank E	rosi	on											Stable	e - n	o Ban	< Eros	ion				
Substrate (%)	E	Bedr	ock		Bould	ər		Cobble			Gravel		Sa	and/Fi	ines	E	Bedroc	:k	B	oulder		C	obble	•		Grave	əl	Sa	nd/Fines
						Calcite	e - no d	iscernable	e sub	ostrate										Calo	ite - n	o dis	scerna	ble su	bstrate				
Instream Cover (% of total	Unde	ercu	t Banks		Bould	ər	Wo	ody Debr	is	De	eep Poo	ol	Ma	croph	hytes	Unde	ercut E	Banks	B	oulder	١	Noo	dy De	bris	De	eep P	ool	Ma	crophytes
surface)		0)		0			0			30			0			10			5			5			60			5
	Bedrock Boulder Cobble Gravel Calcite - no discernable substrate. Undercut Banks Boulder Woody Debris Deep Pool 0 0 0 30 Other Calcite = 5; OHV Dense Partially Open 50 50 Emergent Submergent Floating																	Ot	her						Ca	lcite =	: 10		
	Undercut Banks Boulder Woody Debris Deep Pool M 0 0 0 30 0 Other Calcite = 5; OHV = 50 Dense Partially Open 0 50 50 50 Emergent Submergent Floating Attact																	Dense)			Ρ	artiall	у Оре	n			0	en
Overnead Canopy (%)	Dense Partially Open 50 50													0				0					1(00)
		Er	nergent			Subr	ergen	t	F	loatin	g	A	ttache	d Alg	gae		Eme	rgent		Sul	merg	ent		F	Floatin	g		Attache	d Algae
Aquatic Vegetation (% aerial coverage and dominant species)			0				0			0	_	25, 9	green f	filame	entous			0			0				0			1	0
Stream Features						Ca	lcite te	races, ste	ep po	ools											(Calci	te terra	aces					
Anthropogenic Disturbances								Calcite														(Calcite						
Surrounding Land Use								Forest															Forest						
Weather							Cold	, frosty, cl	ear													Cle	ar, sur	ny					
Riparian Vegetation types (descending dominance)	Shrubs, grasses, deciduous trees																				S	hrut	os, gra	sses					
Transect Number	1 2 3 4													5			1			2			3			4			5
Wetted width (m)	1 2 3 4 2.7 2.6 2.2 2.9													2.5	5		2.2			3.3			3.3			2.4			3.4
Bankfull width (m)		4.	5		6.0			5.6			9.2			5.9)		7.5			8.0			9.0			6.3			6.5
Water Depth (cm) - Across	20.0	24	.0 27.0	24.0	16.0	12.0	7.0	33.0 2	3.0	15.5	25.0	13.0	15.0	42.0	0 21.0	21.0	31.0	21.0	34.0	10.0 10	.0 57	7.0	30.5	33.5	22.0	28.0	15.0	16.0	15.0 14.0
Water Donth (cm) Average				1		I		21.2						I									23.0		I		1		
Water Velocity (m/s) - Across		0.2	71		0.366	;		0.203			0.024			0.06	60		0.715			0.118			0.151			0.064	1		0.183
Water Velocity (m/s) Average				<u> </u>				0.18															0.25						

Notes: ID = identifier; hrs = hours; UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; °C = degrees Celsius; - = no data/not applicable; DO = dissolved oxygen; % sat = percent saturation; mg/L = milligrams per litre; µS/cm = microSiemens per centimetre; ORP = oxidation-reduction potential; m = metres; cm = centimetres; ~ = approximately; % = percent; < = less than; OHV = overhanging vegetation; m/s = metres per second.

^a Very overgrown with shrubs and difficult to access.

^b All three electrofishing stations at RG_GAUT were isolated pools. Therefore, no flow measurements were taken at these stations.

^c Side-channel was not measured.

Watercourse													Gr	eenhil	ls Cre	ek													
Biological Area Code														RG_C	GHNF														
Station ID						RG	GHNF-E	EF2 ^a												F	kG_G	HNF-E	EF3 ^a						
Date sampled							16-Sep-2	1													16-	-Sep-2	21						
Time (24 hrs)							09:15															10:30							
Start UTMs (NAD83, Zone 11U) - Easting, Northing				654	380					5	54901	1						6543	363						55	549042	2		
End UTMs (NAD83, Zone 11U) - Easting, Northing				654	372					5	54903	37						6543	374						55	549073	3		
Physical Characteristics																						1							
Temperature (°C)							-															5.42							
pH							-															8.54							
DO (% sat)							-															81.9							
DO (mg/L)							-															10.27							
Conductance (µS/cm)							-															1,426							
Specific Conductance (µS/cm)							-														2	2,278							
ORP							-															-							
Habitat Characteristics																													
Station Length (m)							30															35							
Station Width (m)							-															-							
Mean Depth (cm)							15															15							
Max Depth (cm)							~100															50							
Water Appearance							Clear														(Clear							
General Marphology (%)			Pool	Pond				Riffle				R	un				Pool/	Pond					Riffle				Ru	n	
	Pool/Pond Rime Run Pool/Pond 70 5 25 70 Stable - no Bank Erosion Bedrock Boulder Cobble Gravel Sand/Fines Bedrock Boulder Calcite - no discernable substrate.																	5				25							
Bank Condition						Stable -	no Bank	Erosi	ion												Mo	oderate	е						
Substrato (%)	В	edroc	k	I	Boulde	r	Cobble			Gravel		Sa	nd/Fin	es	В	edrock		В	oulde	r	С	obble		(Gravel		Sar	d/Fin	es
Substrate (70)					(Calcite - no	discernal	ole su	bstrate	e.									(Calcite - r	no dis	cernal	ble sub	strate.					
Instraam Cover (%) of total	Unde	rcut B	anks	I	Boulde	r We	ody De	bris	D	eep Po	ol	Ma	crophy	rtes	Unde	rcut Ba	nks	В	oulde	r	Woo	dy Del	bris	De	ep Poo	bl	Мас	rophy	tes
Instream Cover (% of total surface)	<5 0 <5 20 0 <5 Other OHV = 90 OHV = 90 Other Dense Partially Open Open Dense																0			5			15			0			
Sundooy			Ot	her					C)HV = 9	0						Ot	ner						0	HV = 90	C			
Overhead Capapy (%)	Dense Partially Open Open 100 0 0 Emergent Submergent Floating Attached Algae															C	ense				Pa	artially	y Open				Оре	en	
Overnead Carlopy (%)	100 0 Emergent Submergent Floating Attack																100					0)				0		
		Emer	rgent			Submerge	nt	F	loatin	g	A	Attache	d Alga	e		Emerg	jent			Submer	gent		FI	oating	3	A	tached	l Alga	e
Aquatic Vegetation (% aerial coverage and dominant species)		C)			0			0		20,	green f	ilamen	tous		0				0				0		2), filam	entous	3
Stream Features						Step poo										Step r	ools forn	ned b	v calci	ite. calc	ite ter	races							
Anthropogenic Disturbances	Step pools, calcite terraces Calcite																				C	, Calcite	,						
Surrounding Land Use	Calcite Forest																				F	orest							
Weather	Sunny, below freezing, frosty																			Clea	r, sur	nny, co	old/frost	v					
Riparian Vegetation types (descending dominance)					Shrul	os (very dor	ninant), h	orseta	ails, gra	asses									Shrub	s, grasse	es, de	ciduou	us trees	, hors	etails				
Transect Number	1 2 3 4 5 1																2			3			4			5			
Wetted width (m)	1 2 3 4 5 1 2 3.5 2.3 2.6 4.5 3.0 3.0 3.8																5.7			2.8			3.4						
Bankfull width (m)		6.1			6.0		8.8			6.7			5.1			7.4			7.0			5.4			5.7			10.8	
Water Depth (cm) - Across	9.0	26.5	15.0	19.5	13.5	26.0 16.0	11.0	7.5	24.0	44.0	6.5	17.5	9.0	20.0	18.0	17.0	11.5	25.5	19.0	11.5	9.0	13.0	22.5	51.5	17.0	5.5	17.0	15.0	11.0
Water Depth (cm) - Average				L	L		17 7		L	1		1	I									17.6							
Water Velocity (m/s) - Across Channel		0.009			0.269		0.139			0.045			0.065 ^d			0.094			0.191		(0.068			0.074		(0.019	
Water Velocity (m/s) Average						1	0.12					1										0.09							

Notes: ID = identifier; hrs = hours; UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; °C = degrees Celsius; - = no data/not applicable; DO = dissolved oxygen; % sat = percent saturation; mg/L = milligrams per litre; µS/cm = microSiemens per centimetre; ORP = oxidation-reduction potential; m = metres; cm = centimetres; ~ = approximately; % = percent; < = less than; OHV = overhanging vegetation; m/s = metres per second.

^a Very overgrown with shrubs and difficult to access.

^b All three electrofishing stations at RG_GAUT were isolated pools. Therefore, no flow measurements were taken at these stations.

^c Side-channel was not measured.

Watercourse												Greenhi	lls Cre	ek												
Biological Area Code												RG_	GHFF													
Station ID						RG_GHFF	F-EF1												RG	_GHFF	EF2					
Date sampled						13-Sep-	-21												1	3-Sep-2	21					
Time (24 hrs)						10:50	00													11:34						
Start UTMs (NAD83, Zone 11U) - Easting, Northing			65	4059					55470	78						654	4128						5	5471	56	
End UTMs (NAD83, Zone 11U) - Easting, Northing			65	4020					55470	46						65	4111						5	5471	13	
Physical Characteristics																										
Temperature (°C)						5.88														6.6						
pH						8.76														8.66						
DO (% sat)						99.1														101.2						
DO(mg/l)						12.3														12 35						
Conductance (uS/cm)						1 089	9													1 111						
Specific Conductance (uS/cm)						1,000	3													1 71/						
						216.7	7													245.3						
						210.7														240.0						
Station Longth (m)						50							1							15						
Station Length (III)						50														45						
						-														-						
						15														15						
Max Depth (cm)						00	_													0						
water Appearance						Clear	r 									-				Clear	B 1661				_	
General Morphology (%)		Pool. 2				Pool	/Pond 30					Riffle 50	1			Ri 2	in D									
Bank Condition										1	Moderat	e					-									
	Be	edrock	Fines	E	Bedroc	k		Bou	der		Cobble	•		Gravel		Sa	nd/Fines									
Substrate (%)		0	0		0			5			60			10			25									
	Under	cut Banks	phytes	Unde	ercut E	anks		Bou	der	Wo	ody De	bris	De	en Po	ol	Mad	rophytes									
Instream Cover (% of total	0.1.4.01	0 10 60 10 20 Undercut Banks Boulder Woody Debris Deep Pool Macrophytes 5 5 15 5 0 Other - Dense Partially Open Open															5			20			5			0
surface)				•	O	her							-			•										
	Dense Partially Open Open 0 100 0														Dons	<u></u>				Partiall	v One	n			On	on
Overhead Canopy (%)		DensePartially OpenOpen01000														5					5 5	11				5
		lass		F				C h.		•		Tlaatin	-		, 											
Aquatic Vegetation (% aerial		Emergent			Subm	ergent		loatin	y .	Allaci	neu A	Aigae		Eme	rgent			Subi	nergen	L	ſ	rioatin	g		Attache	u Algae
coverage and dominant species)		0				0		0		10, fila	amen	tous		(D				0			0			5, filam	entous
Stream Features						Falls (sh	nort)										1		l	Log jam	s					
Anthropogenic Disturbances						Calcifie	ed													Calcifie	d					
Surrounding Land Use						Fores	st													Forest						
Weather						Clear, c	ool											С	lean, si	unny, w	arminc	qup				
Riparian Vegetation types (descending dominance)	Clear, cool Horsetail, grasses, forbs, moss, shrubs (very mixed)																	Grass	ses, forl	os, hors	etails,	shrubs	;			
Transect Number	1 2 3 4 5													1			2			3			4			5
Wetted width (m)		3		5.2			2	>		3.9			3.3			31										
Bankfull width (m)		5.2		7.4		5.2			4.3		5	6		12.6			4 (c		8.9			9.7			9.4
Mater Denth (am)		0.2		1.1		0.2			1.0		0.	.0		12.0			4.0			0.0			0.1			0.1
Channel	7.5	12.5 17.0	6.5	16.5	5.5	14.0 28.0	25.5	21.0	9.0 17.5	16.0	0 14	12.0	7.0	16.0	5.0	11.5	10	0 8.5	13.5	8.0	6.5	5.0	13.0	8.5	21.0	18.5 10.0
Water Depth (cm) - Average						14.8														10.8					1	
Water Velocity (m/s) - Across Channel	(0.786		0.161		0.068	3		0.197		0.8	318		0.275			0.3	39		0.413			0.248			0.135
Water Velocity (m/s) Average						0.41													•	0.29						

Notes: ID = identifier; hrs = hours; UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; °C = degrees Celsius; - = no data/not applicable; DO = dissolved oxygen; % sat = percent saturation; mg/L = milligrams per litre; μ S/cm = microSiemens per centimetre; ORP = oxidation-reduction potential; m = metres; cm = centimetres; ~ = approximately; % = percent; < = less than; OHV = overhanging vegetation; m/s = metres per second.

^a Very overgrown with shrubs and difficult to access.

^b All three electrofishing stations at RG_GAUT were isolated pools. Therefore, no flow measurements were taken at these stations.

^c Side-channel was not measured.

Watercourse				Greenhills Cre	ek											Gar	line Cree	k				
Biological Area Code				RG GHFF												RG	GAUT ^b					
Station ID				RG GHFF-EF	-3											RG	GAUT-EF	1				
Date sampled				13-Sep-21	•											9	-Sep-21	•				
Time (24 hrs)				12:15												-	13:15					
Start UTMs (NAD83, Zone 11U) - Easting, Northing		6541	165				554720	04						65355	1					5548836		
End UTMs (NAD83, Zone 11U) -		6541	135				554717	77						-						-		
Physical Characteristics																						
Temperature (°C)				57													6.36					
nH				8.12													8.47					
DO (% sat)				91.2													82					
DO(mg/l)				95													10.09					
Conductance (uS/cm)				1 123													200					
Specific Conductance (µS/cm)				1,123													299					
				1,700													260.9					
URF Habitat Characteristics				131.1													200.0					
Station Longth (m)				10													4					
				43								4										
				-							(4	3.3										
				15								- (1	(Did turbid)									
Max Depth (cm)				25								40										
Water Appearance										r	Clear											
General Morphology (%)	Pool	/Pond		Ri				Poo	/Pond			Rit	fle			F	lun					
	2	20		Ne devete				1	00				•				-					
Bank Condition	Bullet			Moderate	_	_				N . 11.	IV	oderate										
Substrate (%)	Bedrock	B	oulder	Cobble	Sand/Fine	s	E	Sedro	OCK		Boulder	(Jobble		G	ravel	S	and/Fines				
	0		10	60	20			0			0		0			5		95				
Instream Cover (% of total	Undercut Banks	B	oulder	Woody Debri	es	Unde	ercut	Banks		Boulder	Woo	ody Debri	s	Dee	ep Pool	Ma	crophytes					
surface)	0		5	15			5			0		5			0		0					
,	Ot	her					0	ther					OH	V = 20								
Overhead Canopy (%)	Dense	•					Dens	e		F	artially O	pen			0	pen						
eveniedd edilepy (x)	0			100					0				0				100					0
	Emergent		Subm	ergent	Flo	oating		Attacl	hed Algae)		Em	ergent		Subm	ergent		Flo	ating		Attach	ed Algae
Aquatic Vegetation (% aerial coverage and dominant species)	0		(0		0		5, fila	amentous				0			0			0			0
Stream Features				Log jams													Culvert					
Anthropogenic Disturbances				Calcified												Roa	d Crossing	g				
Surrounding Land Use				Forest												Fore	est, mining	3				
Weather				Clear, Sunny	v												Clear		-			
Riparian Vegetation types (descending dominance)		Grass	ses, Forbs, S	Shrubs, Deciduou	us tree	es, les	s horsetail								S	Shrubs,	grasses, t	forbs				
Transect Number	1		2	3			4		5			1			2		3			4		5
Wetted width (m)	2.7		3.4	3.1			3.2		3.3								3.3					
Bankfull width (m)	4.0		5.2	7.1			9.8		5.6								4.0					
Water Depth (cm) - Across Channel	25.0 26.5 11.5	16.5	20.0 14.0	12.0 12.0 4	1.5	8.0	13.0 12.0	15.0	0 17.5	12.0	-	-	-	-		-		-	-		-	
Water Depth (cm) - Average		1	1	14.6			1					1	1	1			-			I		1 1
Water Velocity (m/s) - Across Channel	0.268	(0.106	0.332		(0.426		0.290			-			-		-			-		-
Water Velocity (m/s) Average		I		0.28				1						1		1	-					

Notes: ID = identifier; hrs = hours; UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; °C = degrees Celsius; - = no data/not applicable; DO = dissolved oxygen; % sat = percent saturation; mg/L = milligrams per litre; μ S/cm = microSiemens per centimetre; ORP = oxidation-reduction potential; m = metres; cm = centimetres; ~ = approximately; % = percent; < = less than; OHV = overhanging vegetation; m/s = metres per second.

^a Very overgrown with shrubs and difficult to access.

^b All three electrofishing stations at RG_GAUT were isolated pools. Therefore, no flow measurements were taken at these stations.

^c Side-channel was not measured.

Watercourse						Gardin	e Creek										
Biological Area Code						RG_0	GAUT ^b										
Station ID			RG_GA	UT-EF2		-	RG_GAUT-EF3										
Date sampled			10-S	ep-21			10-Sep-21										
Time (24 hrs)			08	:38			10:25										
Start UTMs (NAD83, Zone 11U) - Easting, Northing		653538			55488	45	653576 5543797										
End UTMs (NAD83, Zone 11U) - Easting, Northing		-			-												
Physical Characteristics																	
Temperature (°C)			1(0.2			6.18										
рН			7.	16			8.42										
DO (% sat)			10	1.4			87.7										
DO (mg/L)			11	.43					10.66								
Conductance (µS/cm)				-					303								
Specific Conductance (µS/cm)			3	29					464								
ORP			27	1.2			255.1										
Habitat Characteristics																	
Station Length (m)			1	.1			1.15										
Station Width (m)			1	.4			1.8										
Mean Depth (cm)				-			17										
Max Depth (cm)			1	16			23.5										
Water Appearance			CI	ear			Clear										
General Morphology (%)	Pool/	Pond		Riffle	•	Run	Pool/	Pond	Riffle	iffle Run 0 0							
Pank Canditian	10	10	Mad	U		0	N	J0	Madarata		0						
Bank Condition	Bedrook			Crevel	Sand/Fines	Bedreek	Dauldar	Cobble	Sand/Fines								
Substrate (%)	Бейгоск	Boulder	Co	elda	Gravei	Sand/Fines	Bedrock	Boulder	eiddoJ	Graver	Sand/Fines						
	U	0			15	75	U	U Da Maria		20	80						
Instream Cover (% of total	Undercut Banks	Boulder	woody	/ Debris	Deep Pool	Macrophytes	Undercut Banks	Boulder	woody Debris	Deep Pool	Macrophytes						
surface)	5	0		30	0	0	5	0									
	Otr	ier			-	0	Uti	ner	Durine Duri	-	0						
Overhead Canopy (%)	Dense		Par	tially Ope	en	Open	Dense	1	Partially Ope	n	Open						
	0			0		100	0		100		0						
Aquatic Vegetation (% aerial	Emergent	1	Submergent	F	Floating	Attached Algae	Emergent	Subr	nergent	Floating	Attached Algae						
coverage and dominant species)	0		0		0	0	0		0	0 0							
Stream Features		L	P	ool			Pool										
Anthropogenic Disturbances		Cu	vert, staff gaug	e upstrea	m of road		None										
Surrounding Land Use			Forest	, mining			Forest										
Weather			CI	ear					Clear, some haze								
Riparian Vegetation types (descending dominance)			Grasses, s	hrubs, fort	bs		Moss, horsetails, shrubs, forbs										
Transect Number	1	2		3	4	5	1	2	3	4	5						
Wetted width (m)			1	.5			1.8										
Bankfull width (m)			2	.0			2.0										
Water Depth (cm) - Across Channel																	
Water Depth (cm) - Average		I	I	-	<u> </u>					<u> </u>							
Water Velocity (m/s) - Across Channel	-	-		-	-	-	-	-	-	-	-						
Water Velocity (m/s) Average			I						-		1						

Notes: ID = identifier; hrs = hours; UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; °C = degrees Celsius; - = no data/not applicable; DO = dissolved oxygen; % sat = percent saturation; mg/L = milligrams per litre; μ S/cm = microSiemens per centimetre; ORP = oxidation-reduction potential; m = metres; cm = centimetres; ~ = approximately; % = percent; < = less than; OHV = overhanging vegetation; m/s = metres per second.

^a Very overgrown with shrubs and difficult to access.

^b All three electrofishing stations at RG_GAUT were isolated pools. Therefore, no flow measurements were taken at these stations.

^c Side-channel was not measured.

Watercourse													G	ardine	e Cree	k													
Biological Area Code	RG GANF																												
Station ID	RG_GANF-EF1													RG_GANF-EF2															
Date sampled												 16-Sep-21																	
Time (24 hrs)	12:36											15:20										-							
Start UTMs (NAD83, Zone 11U) - Easting, Northing	654261 5547781								781			654103								5547841									
End UTMs (NAD83, Zone 11U) - Easting, Northing	6541923									55478	320						(654038	3		5547848								
Physical Characteristics	1 ' '																												
Temperature (°C)	7.45																		5										
рН	8.67											7.14																	
DO (% sat)							88.6								88.1														
DO (mg/L)							10.59								9.19														
Conductance (µS/cm)							771															2,209							
Specific Conductance (µS/cm)							1,159															3,595							
ORP	268.9											· ·																	
Habitat Characteristics																													
Station Length (m)		90 50																											
Station Width (m)	1.25 -																												
Mean Depth (cm)	10 6																												
Max Depth (cm)	40									40																			
Water Appearance	Clear							Clear														Clear							
General Morphology (%)		Pool/Pond				Riffle					Ru	un		Pool/Pond			Pond	<u> </u>				Riffle	Riffle			Ru	<u>a</u>		
	60				10 Madarata						4	0		50						IU						40			
Bank Condition		Destant Destates						0.1			De due els				e	0													
Substrate (%)	Bed	Bedrock Boulder			Cobble G		oravei		Sa	na/Fin	es	Bedrock		E	soulder		Cobble		1	Gravel		Sand/Fines							
	Undercu	ut Banks		ZO	r	20 Woody Debris		Deen Pool		1	Mar	cronhy	tas	Unde	orcut F	Ranks	20 Boulder			Woody Debris		hris	Deen Pool		ol Macronhytes		tas		
Instream Cover (% of total	1			15		25		15					.05	5			15		20		5113		10	0		.03			
surface)	Other					-							Other							20			-						
	Dense					F	Partially Open Open								Dense						F	Partially Open Op				One	'n		
Overhead Canopy (%)		30				60						40)				30			Failially 6(60			0			
	F	mergent			Subm	ubmorgant		F	loating	r	۵	ttacho	d Alaa	•		Emo	raent			Suhm	bmergent		F	Electing		Δ++	acher		•
Aquatic Vegetation (% aerial	-	mergent			Subin	ergen	•		loating	3		llache	u Aiga	6		Line	igent			Jubin	ergent			ioatinį	9	7.1	achec	Aigad	-
coverage and dominant species)		0			()			0			C)				0			()			0			0		
Stream Features				A nu	mber c	of impa	ssable up	strea	am log i	falls											A few	log jam	s/falls						
Anthropogenic Disturbances					N	one, ot	her than o	calcit	e											Ν	one, ot	her tha	n calci	te					
Surrounding Land Use							Forest															Forest							
Weather				Rai	n in me	orning,	cool, clea	ar in a	afterno	oon												-							
Riparian Vegetation types (descending dominance)				М	oss, sł	nrubs, t	forbs, dec	iduo	us tree	s											Shrubs	s, moss	, forbs						
Transect Number	1 2					3 4			4			5			1				2		3		4		5				
Wetted width (m)	1	1.3 1.5 1.2				0.6			2.0		1.4			2.4			1.9			0.6		2.0							
Bankfull width (m)	2.1 3.1			2.7	2.0		2.0			3.9			2.1		2.4			5.1			3.9			3.9					
Water Depth (cm) - Across Channel	10.0 11	1.0 5.0	5.0	9.0	11.0	6.5	7.0 1	5.0	5.0	8.0	4.0	10.0	18.5	9.0	6.5	8.5	8.0	4.5	4.5	6.0	2.5	7.0	4.5	6.0	3.5	3.5	5.0	2.0	3.0
Water Depth (cm) - Average											I	5.0																	
Water Velocity (m/s) - Across Channel	0.130 0.080					0.130	0.130 0.190 0.020					0.208 0.325 0.187 0.371							().357									
Water Velocity (m/s) Average	0.11 0.29																												

Notes: ID = identifier; hrs = hours; UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; °C = degrees Celsius; - = no data/not applicable; DO = dissolved oxygen; % sat = percent saturation; mg/L = milligrams per litre; µS/cm = microSiemens per centimetre; ORP = oxidation-reduction potential; m = metres; cm = centimetres; ~ = approximately; % = percent; < = less than; OHV = overhanging vegetation; m/s = metres per second.

^a Very overgrown with shrubs and difficult to access.

^b All three electrofishing stations at RG_GAUT were isolated pools. Therefore, no flow measurements were taken at these stations.

^c Side-channel was not measured.

Watercourse	Gardine Creek														
Biological Area Code					R	G_GAI	NF								
Station ID	RG_GANF-EF3														
Date sampled	11-Sep-21														
Time (24 hrs)	14:52														
Start UTMs (NAD83, Zone 11U) - Easting, Northing	654109 5547834														
End UTMs (NAD83, Zone 11U) - Easting, Northing	654191 5547843									7843					
Physical Characteristics															
Temperature (°C)	5.9														
pH		7.54											-		
DO (% sat)						90.2									
DO (ma/L)						9.17									
Conductance (µS/cm)						2.300									
Specific Conductance (µS/cm)						3.635									
ORP						-									
Habitat Characteristics															
Station Length (m)						76									
Station Width (m)						1.4									
Mean Depth (cm)	10														
Max Depth (cm)	25														
Water Annearance	Clear														
	Pr	ol/Pon	Ч			Cica.	Riffle				R	n			
General Morphology (%)		20	u				40				4	0			
Bank Condition															
	Bedrock		Boulde	or		Cohble	n		Gravel		Sa	nd/Fin	105		
Substrate (%)	0		25			25			25			25			
	Undercut Bani	· e	Boulder			Woody Debris			Deen Pool			Macrophytes			
Instream Cover (% of total	- Undercat Ball		-	51	-			0			1116	0	/103		
surface)		Other				-			-			0			
	Dei				F	Partiall	v One	n			Or	on			
Overhead Canopy (%)	3	ו סכ ר				6	0 OPC					n -			
	Emorgo	•		Subm	araant	0		loatin	~	^					
Aquatic Vegetation (% aerial	Emerge	IL		Subm	ergent		Г	loatin	g	A	Attached Algae				
coverage and dominant species)	0			0 0											
Stream Features				Ca	scades	/falls/s	step po	ols				-			
Anthropogenic Disturbances				N	one, ot	her tha	an calc	ite				-			
Surrounding Land Use						Forest									
Weather	[CI	ear, co	ool								
Riparian Vegetation types (descending dominance)			Μ	loss, he	orsetails	s, shru	bs, for	bs, gra	ss						
Transect Number	1		2	3					4		5				
Wetted width (m)	1.5		2.1			1.7			1.7	0.6					
Bankfull width (m)	2.4		2.6			2.4			5.0			6.2			
Water Depth (cm) - Across Channel	3.5 9.0 11	.5 13	.0 11.5	4.0	30.0	10.0	11.5	6.5	18.5	9.0	6.5	3.5	3.0		
Water Depth (cm) - Average						10.1							·		
Water Velocity (m/s) - Across Channel	0.030		0.230)		0.210			Pool			0.300			
Water Velocity (m/s) Average					1	0.19		I			I				

Notes: ID = identifier; hrs = hours; UTMs = Universal Transverse Mercator Coordinates; NAD = North American Datum; $^{\circ}C$ = degrees Celsius; - = no data/not applicable; DO = dissolved oxygen; % sat = percent saturation; mg/L = milligrams per litre; μ S/cm = microSiemens per centimetre; ORP = oxidation-reduction potential; m = metres; cm = centimetres; ~ = approximately; % = percent; < = less than; OHV = overhanging vegetation; m/s = metres per second.

^a Very overgrown with shrubs and difficult to access.

^b All three electrofishing stations at RG_GAUT were isolated pools. Therefore, no flow measurements were taken at these stations.

^c Side-channel was not measured.

Processing Date	Biological Monitoring	Station ID	Pass No.	Fish ID	Total Length (cm)	Fork Length (cm)	Weight (g)	Seve	Severity of External Anomalies (0 to 3)		Caudal Fin Length (mm)	Relative Caudal Fin Length (%)	Comments	
	Alea							0	1	2	3			
17-Sep-21		EF1 ^a	3	GHNF1-66	19.9	18.8	100.2	х	-	-	-	25	13	-
			1	GHNF2-69	17.4	16.6	36.5	х	-	-	-	23.23	13	-
21-Sep-21		EF2	1	GHNF2-70	23.6	22.8	71.3	-	х	-	-	26.10	11	Lip/jaw nodule
	RG_GHNF		2	GHNF2-71	18.5	17.5	56.5	х	-	-	-	21.67	12	-
			3	GHNF3-72	17.4	16.5	45.2	х	-	-	-	22.19	13	-
21-Sep-21		EF3	4	GHNF3-73	16.0	15.0	35.4	х	-	-	-	20.10	13	-
			1	GHFF1-61	8.5	8.2	5.1	х	-	-	-	12	14	-
15-Sep-21		EF1 ^a	3	GHFF1-62	8.6	8.2	5.1	х	-	-	-	12	14	-
			4	GHFF1-63	8.4	8.1	4.6	х	-	-	-	12	14	-
45.0.04	RG_GHFF	EE0 a	3	GHFF2-64	8.6	8.1	5.2	х	-	-	-	12	14	-
15-Sep-21		EF2 "	4	GHFF2-65	8.6	8.2	5.1	-	х	-	-	13	15	Minor/light active erosion on dorsal and caudal fins
			1	GHFF3-67	8.7	8.3	5.7	х	-	-	-	12	14	-
20-Sep-21		EF3 ^a	2	GHFF3-68	16.1	15.1	30.3	x	-	-	-	23	14	Body appeared "pinched" with wounds on both sides (suspected predation-related injury)
			•	Sample Size	e 13	13	13	-	-	-	-	13	13	-
				Average	ə 14	13	31	-	-	-	-	18	13	-
				Mediar	n 16	15	30	-	-	-	-	20	14	-
All Fish				Standard Deviation	n 5.4	5.2	31	-	-	-	-	5.8	1.2	-
				Standard Erro	r 1.5	1.4	8.5	-	-	-	-	1.6	0.32	-
				Minimun	า 8.4	8.1	4.6	-	-	-	-	12	11	-
				Maximun	า 24	23	100	-	-	-	-	26	15	-

 Table I.8:
 Measurements and External Health Data for Individual Westslope Cutthroat Trout Captured from Upper Greenhills Creek, 2021

Notes: ID = identifier; No. = number; cm = centimetres; g = grams; mm = millimetres; % = percent; X = severity of external anomaly (0 = no anomalies, 1 = minor, 2 = moderate; 3 = severe anomaly); = no data/not applicable. ^a Due to an equipment malfunction, caudal fin measurements were read manually (i.e., the calipers did not have a functioning digital read-out).
Processing Date	Biological Monitoring Area	Station ID	Pass No.	Fish ID	Total Length (cm)	Fork Length (cm)	Weight (g)	Seve	erity of Exte (0 t	ernal Anon o 3)	nalies	Caudal Fin Length (mm)	Relative Caudal Fin Length (%)	Comments
	-				15.2	15.0	25.9	U V	1	2	3	22	11	
				GAUT1-01	10.0	11.0	25.0	X	-		_	18	14	
				GAUT1-02	76	73	33	X		_	_	10	16	
				GAUT1-04	13.0	12.4	20.5	X	-	_	_	12	10	
				GAUT1-05	6.8	6.4	2.7	X	-	_	-	12	18	-
			1	GAUT1-06	6.0	5.6	2.0	X	-	-	-	8	13	-
				GAUT1-07	9.4	9.0	7.2	Х	-	-	-	14	15	-
				GAUT1-08	10.1	9.5	7.4	Х	-	-	-	15	15	-
				GAUT1-09	14.3	13.8	20.2	Х	-	-	-	19	13	-
				GAUT1-10	13.3	12.7	17.7	Х	-	-	-	19	14	-
				GAUT1-11	12.7	12.3	18.2	Х	-	-	-	21	17	-
				GAUT1-12	13.3	12.7	19.2	Х	-	-	-	20	15	-
				GAUT1-13	10.4	9.9	9.9	-	Х	-	-	16	15	Minor/light active erosion on caudal fin
9 Sep 21				GAUT1-14	6.5	6.2	2.4		See co	omment		11	17	Deformed caudal fin
9-0ep-21				GAUT1-15	8.4	7.9	5.7	Х	-	-	-	12	14	-
				GAUT1-16	9.0	8.5	6.0	Х	-	-	-	13	14	-
	RG GAUT			GAUT1-17	9.5	9.1	7.2	X	-	-	-	15	16	-
	110_0/101			GAUT1-18	7.4	7.1	3.2	X	-	-	-	11	15	-
				GAUT1-19	9.8	9.3	6.8	X	-	-	-	14	14	-
			2	GAUT1-20	9.3	8.7	6.3	X	-	-	-	14	15	Caudal fin partly bitten off
				GAUT1-21	13.1	12.7	19.8	X	-	-	-	19	15	-
				GAUT1-22	8.4	8.1	5.4	X	-	-	-	12	14	-
				GAUT1-23	13.3	12.6	19.1	X	-	-	-	19	14	-
				GAUT1-24	1.1	7.4	4.3	X	-	-	-	14	18	-
				GAUT1-25	8.1	7.7	4.1	X	-	-	-	13	16	-
				GAUTI-20	1.0	11.1	3.2		-	-	-	12	10	-
				GAUTI-27	11.9	0.1	7.1		-	-	-	17	14	-
				GAUTT2-20	9.0	9.1	7.1	^	- V	-	-	10	10	- Minor/light active fin erosion
				GAUT2-20	83	7.9	6.0	×	~		_	12	16	
10-Sep-21		EF2 ^a	1	GAUT2-30	4.5	4.2	0.0	X	_	_	-	7	16	
				GAUT2-32	4 1	4.0	0.66	X	_	_	-	6	15	Mortality
				GAUT3-33	11.3	10.7	14.3	X	-	-	-	17	15	-
10-Sep-21		EF3 °	1	GAUT3-34	8.7	8.4	6.7		See co	mment		12	14	Shortened lower lobe on caudal fin
				Sample Size	34	34	34	-	-	-	-	34	34	-
				Average	9.6	9.2	9.2	-	-	-	-	14	15	-
				Median	9.4	8.9	6.8	-	-	-	-	14	15	-
All Fish				Standard Deviation	2.8	2.7	7.0	-	-	-	-	3.9	1.2	-
				Standard Error	0.48	0.47	1.2	-	-	-	-	0.67	0.20	-
				Minimum	4.1	4.0	0.66	-	-	-	-	6.0	13	-
				Maximum	15	15	26	-	-	-	-	22	18	-
				GANF1-35	11.2	10.9	12.8	X	-	-	-	15	13	Mortality
				GANE1-36	11.8	11.3	15.6	X	-	-	-	18	15	Mortality
				GANE1-37	8.4	8.0	6.0	X	-	-	-	13	15	-
10-Sep-21	RG GANF ^b	EF1 ^a	1	GANE1-38	10.4	9.9	11.1	X	-	-	-	16	15	-
				GANE1-39	0.0	0.1	0.3	X V	-	-	-	14	10	-
				GANE 1-40	0.0	1.0	4.0		-	-	-	10	10	-
				GANEL 42	9.0	9.4	40.0		-	-	-	23 12	14	-
				GAINE 1-42	0.9	0.4	1.0	∧	-	-	-	13	10	-

 Table I.9: Measurements and External Health Data for Individual Westslope Cutthroat Trout Captured from Gardine Creek, 2021

Notes: ID = identifier; No. = number; cm = centimetres; g = grams; mm = millimetres; % = percent; X = severity of external anomaly (0 = no anomalies, 1 = minor, 2 = moderate; 3 = severe anomaly); = no data/not applicable.

^a Due to an equipment malfunction, caudal fin measurements were read manually (i.e., the calipers did not have a functioning digital read-out).

^b Fishing at stations RG_GANF-EF2 and RG_GANF-EF3 was postponed due to bear activity in the area. The upstream end of RG_GANF-1 and downstream end of RG_GANF-2 were separated by a barrier that was deemed impassible (i.e., movement of fish upstream into RG_GANF-EF2 between September 10 and 29, 2021 was considered unlikely).

Processing Date	Biological Monitoring Area	Station ID	Pass No.	Fish ID	Total Length (cm)	Fork Length (cm)	Weight (g)	Seve	rity of Exte (0 t	ernal Anomalies o 3)	Caudal Fin Length (mm)	Relative Caudal Fin Length (%)	Comments
					0.4	7.0	4.0	0	1	2	3	40	
				GANF1-43	8.1	7.0	4.2	X	-	-	. 13	10	-
				GANE1 45	12.9	12.3	10.3	X	-	-	10	12	-
				GANE1-46	0.1	87	7.5	×	-	-	- 17	14	-
				GANE1-47	13.4	12.0	14.5	X			10	14	
				GANF1-48	8.0	7.6	4 0	-	X	-	. 13	16	Split in caudal fin
				GANF1-49	8.7	8.3	6.0	Х	-	-	. 14	16	-
10-Sep-21			1	GANF1-50	7.6	7.2	4.3	X	-	-	. 11	14	_
				GANF1-51	11.8	11.1	13.5	Х	-	-	- 17	14	-
		EF1 ^a		GANF1-52	8.3	7.8	4.9	Х	-	-	. 12	14	_
				GANF1-53	8.5	8.2	5.3	Х	-	-	- 13	15	-
				GANF1-54	13.2	12.6	18.9	Х	-	-	- 19	14	-
				GANF1-55	11.7	11.4	13.8	-	-	-	۲ 17	15	Severely shortened operculum
				GANF1-56	14.3	13.7	24.5	Х	-	-	- 21	15	-
				GANF1-57	7.5	7.1	3.6	Х	-	-	- 12	16	-
			-	GANF1-58	10.9	9.9	10.5	Х	-	-	- 15	14	-
11-Sep-21			2	GANF1-59	13.4	12.8	22.9	Х	-	-	- 18	13	-
				GANF1-60	12.6	12.0	23.6	Х	-	-	- 18	14	-
				GANF2-01	12.6	12.1	17.6	Х	-	-	- 18.08	14	-
29-Sep-21		EF2	2	GANF2-02	8.0	7.6	4.7	Х	-	-	- 11.31	14	-
				GANF3-01	13.8	13.0	23.4	Х	-	-	- 17.22	12	-
	RG GANE b			GANF3-02	12.8	12.1	13.8	Х	-	-	- 16.25	13	-
				GANF3-03	11.6	10.9	13.6	-	Х	-	- 13.43	12	Parasite - bulge between fins
			1	GANF3-04	10.7	10.0	10.1	Х	-	-	- 15.31	14	-
				GANF3-05	12.7	12.0	18.6	Х	-	-	- 17.75	14	-
				GANF3-06	14.8	14.2	26.5	Х	-	-	- 18.86	13	_
				GANF3-07	12.9	12.3	17.7	Х	-	-	- 16.49	13	-
				GANF3-08	14.7	13.9	24.2	Х	-	-	- 17.47	12	-
				GANF3-09	11.8	11.0	15.4	Х	-	-	- 16.03	14	-
				GANF3-10	14.1	13.4	25.1	Х	-	-	- 19.50	14	-
			2	GANF3-11	8.3	7.8	4.2	Х	-	-	- 9.55	12	-
30-Sep-21		EF3		GANF3-12	13.4	12.6	21.1	Х	-	-	- 17.37	13	-
				GANF3-13	10.4	9.8	8.7	Х	-	-	- 13.57	13	-
				GANF3-14	12.6	12.0	16.3	Х	-	-	- 13.34	11	-
				GANF3-15	13.5	12.7	21.8	Х	-	-	- 18.51	14	-
				GANF3-16	13.8	13.0	22.3	Х	-	-	- 18.18	13	-
			3	GANF3-17	8.8	8.4	5.6	Х	-	-	- 11.05	13	-
				GANF3-18	9.2	8.7	5.8	Х	-	-	- 11.67	13	-
				GANF3-19	9.5	9.0	6.4	Х	-	-	- 11.58	12	-
				GANF3-20	12.5	11.9	16.6	Х	-	-	- 17	14	-
				GANF3-21	12.4	11.8	16.6	Х	-	-	- 19	15	-
			4 [°]	GANF3-22	14.6	13.9	26.4	Х	-	-	- 20	14	-
				GANF3-23	8.6	8.2	5.3	Х	-	-	- 13	15	-
			•	Sample Size	51	51	51	-	-	-	- 51	51	-
				Average	11	11	14	-	-	-	- 16	14	-
				Median	12	11	14	-	-	-	- 16	14	-
All Fish				Standard Deviation	2.4	2.3	8.2	-	-	-	- 3.0	1.3	-
				Standard Error	0.34	0.32	1.1	-	-	-	- 0.42	0.19	-
				Minimum	7.5	7.1	3.6	-	-	-	9.6	11	-
				Maximum	17	16	40	-	-	-	- 23	16	-

Table I.9: Measurements and External Health Data for Individual Westslope Cutthroat Trout Captured from Gardine Creek, 2021

Notes: ID = identifier; No. = number; cm = centimetres; g = grams; mm = millimetres; % = percent; X = severity of external anomaly (0 = no anomalies, 1 = minor, 2 = moderate; 3 = severe anomaly); = no data/not applicable.

^a Due to an equipment malfunction, caudal fin measurements were read manually (i.e., the calipers did not have a functioning digital read-out).

^b Fishing at stations RG_GANF-EF2 and RG_GANF-EF3 was postponed due to bear activity in the area. The upstream end of RG_GANF-1 and downstream end of RG_GANF-2 were separated by a barrier that was deemed impassible (i.e., movement of fish upstream into RG_GANF-EF2 between September 10 and 29, 2021 was considered unlikely).

 Table I.10:
 Measurements and External Health Data for Individual Westslope Cutthroat Trout Captured from Upper Greenhills Creek, 2017 to 2019

Pro	cessing Date	Station ID	Fish ID	Total Length (cm)	Fork Length (cm)	Weight (g)	(Sev	DE vere [S] Abse	ELT ; Minor nt [A])	[M]; T	Caudal Length (mm)	Relative Caudal Fin Length (%)	Tag ID	Other Information (aging structure, fate)
	14 Cap 17			20.2	10.4	08.2	D ^	<u>د</u>	L ^	1	27.0	10	200 0020022696	Scales, released
	14-Sep-17	RG_GHUT-EF2		20.3	19.4	90.2	A	A	A	A	37.0	19	3DD.003C022080	Scales, released
	40.0 47	RG_GHNF-EF1	GHNF-WCT-01	12.8	12.2	23.2	A	A	A	A	27.9	22	3DD.003C022690	Scales, released
	16-Sep-17	RG_GHNF-EF2	GHNF-WC1-02	9.9	9.4	9.7	A	A	A	A	21.4	22	3DD.003C02266C	Scales, released
_		RG_GHNF-EF3	GHNF-WCT-03	19.7	18.7	94.1	A	A	A	A	40.2	20	3DD.003C02267E	Scales, released
		RG_GHFF-EF1	GHFF-WCT-01	15.8	15.1	37.5	A	Α	A	A	29.9	19	3DD.003C022640	Scales, released
			GHFF-WCT-02	10.3	9.6	11.6	Α	Α	Α	Α	22.2	22	3DD.003C022679	Scales, released
			GHFF-WCT-03	13.7	12.9	25.0	Α	А	Α	Α	27.6	20	3DD.003C02267F	Scales, released
	17 Can 17	KG_GHFF-EFZ	GHFF-WCT-04	11.1	10.4	12.0	А	А	Α	Α	21.7	20	3DD.003C02266B	Scales, released
	17-Sep-17		GHFF-WCT-05	11.3	10.6	14.4	Α	А	Α	Α	22.2	20	3DD.003C02264D	Scales, released
017		RG GHFF-EF3	GHFF-WCT-06	17.4	16.5	65.1	Α	А	Α	Α	34.0	20	3DD.003C022671	Scales, released
5		RG GHFF-EF3	GHFF-WCT-07	12.3	11.6	20.2	А	А	Α	Α	23.5	19	3DD.003C02265D	Scales, released
		RG_GHFF-FF3	GHFF-WCT-08	16.4	15.6	52.2	A	Α	A	A	32.0	19	3DD.003C022645	Scales, released
			Sample Size	12	12	12	_	_	-	-	12	12	-	_
			Average	14	14	30					28	20		
			Modian	14	14	39	-	-	-	-	20	20	-	-
			Standard Daviation	13	13	24	-	-	•	-	20	20	•	-
				3.0	3.5	32	-	-	-	-	6.5	1.1	-	-
			Standard Error	1.0	1.0	9.2	-	-	-	-	1.9	0.32	-	•
			Minimum	9.9	9.4	9.7	-	-	-	-	21	19	-	-
			Maximum	20	19	98	-	-	-	-	40	22	-	-
			GHNF-EF1-01	16.4	15.7	53.4	A	A	A	A	-	-	3DD.003BF666EB	-
	11-Sep-18	RG_GHNF-EF1	GHNF-EF1-02	16.5	15.8	54.2	A	<u>A</u>	A	A	-	-	3DD.003BF666E1	-
_			GHNF-EF1-03	23.2	22.4	141.Z	A	A 	A	A	-	-	3DD.003BF666703	-
			GHNF-EF2-01 GHNF-EF3-01	14.7	14.0	33.2		Δ	A A	A	-	-	3DD.003BF66706	-
	12-Sep-18	RG GHNF-EF3	GHNF-EF3-02	14.7	13.9	34.7	A	A	A	A	-	-	3DD.003BF666FB	-
			GHNF-EF3-03	15.9	15.3	45.3	A	A	A	A	-	-	3DD.003BF66700	-
			GHFF-EF2-01	18.4	17.4	72.4	Α	А	Α	Α	-	-	3DD.003BF66705	-
		-	GHFF-EF2-02	20.7	19.8	101.4	Α	А	Α	Α	-	-	3DD.003BF666FC	-
		RG GHFF-EF2	GHFF-EF2-03	17.3	16.4	60.7	Α	Α	Α	Α	-	-	3DD.003BF666C6	-
			GHFF-EF2-04	16.7	16.0	46.1	A	A	A	A	-	-	3DD.003C02267F	Recap
8	11 Son 19	-	GHFF-EF2-05	14.2	13.5	31.9	A	A	A	A	-	-	3DD.003BF666EO	-
20,	11-Sep-16		GHFF-EF2-00	13.8	13.2	27.0	A	A 	A	A	-	-	3DD.003BF000DC	-
		-	GHFF-FF3-02	21.3	20.1	103.5		A A		A	-	-	3DD.003BF666F6	
		RG GHFF-EF3	GHFF-EF3-03	19.4	18.5	80.8	A	A	A	A	-	-	3DD.003BF6670D	-
			GHFF-EF3-04	14.9	14.6	34.5	A	A	A	A	-	-	3DD.003BF666E3	-
			GHFF-EF3-05	18.0	17.4	74.0	Α	А	А	Α	-	-	3DD.003BF666F7	-
			Sample Size	18	18	18	-	-	-	-	-	-	•	-
			Average	17	16	61	-	-	-	-	-	-	-	-
			Median	17	16	54	-	-	-	-	-	-	-	-
	All Fish		Standard Deviation	2.4	2.3	26	-	-	-	-	-	-	-	-
			Standard Error	0.57	0.54	6.1	-	-	-	-	-	-	-	-
			Maximum	14	13	28	-	-	-	-	-	-	-	-
			waximum	23	22	141	-	-	-	-	-	-	-	-

Notes: ID = identifier; cm = centimetres; g = grams; D = Deformity, E = Erosion, L =Lesion, T = Tumor; mm = millimetres; % = percent; - = no data/not applicable; recap = recaptured fish.

 Table I.10:
 Measurements and External Health Data for Individual Westslope Cutthroat Trout Captured from Upper Greenhills Creek, 2017 to 2019

Pr	ocessing Date	Station ID	Fish ID	Total Length (cm)	Fork Length (cm)	Weight (g)	(Se	DE vere [S] Abse	LT ; Minor nt [A])	[M];	Caudal Length (mm)	Relative Caudal Fin Length (%)	Tag ID
							D	E	L	Т			
		RG_GHNF-EF1	GHNF-EF1-01	17.0	16.3	64.3	Α	Α	Α	Α	2.3	14	3DD.003C022655
		RG_GHNF-EF2	GHNF-EF2-01	17.1	16.4	52.4	Α	Α	Α	Α	2.1	12	3DD.003C02263F
	18 Son 10		GHNF-EF3-01	21.4	20.4	124.0	Α	Α	Α	Α	2.9	14	3DD.003C02267E
	10-0ep-19		GHNF-EF3-02	17.5	16.9	35.0	Α	Μ	Α	Α	2.1	12	3DD.003BF66706
			GHNF-EF3-03	18.0	17.2	64.2	Α	Α	Α	Α	2.0	11	3DD.003C022664
			GHNF-EF3-04	17.5	16.7	65.1	Α	Α	Α	Α	2.3	13	3DD.003C02264A
			GHFF-EF1-01	17.5	16.9	65.8	М	Α	Α	Α	2.0	11	3DD.003BF666E3
			GHFF-EF1-02	7.7	7.5	5.4	Α	Α	Α	Α	1.1	14	-
			GHFF-EF1-03	6.5	6.2	3.4	А	Α	Α	Α	1.0	15	-
			GHFF-EF1-04	7.0	6.7	4.4	М	Α	Α	Α	1.0	14	-
			GHFF-EF1-05	7.6	7.3	5.1	Α	Α	Α	Α	1.0	13	-
19	16-Sep-19		GHFF-EF1-06	7.2	6.9	4.8	Α	Α	Α	Α	1.1	15	-
20		RG_GHFF-EF2 GHFF-EF2-01		16.6	15.8	48.9	Α	Α	Α	Α	2.2	13	3DD.003BF666E0
			GHFF-EF3-01	19.5	18.6	80.2	Α	Α	Α	Α	2.3	12	3DD.003C022639
		RG CHEE-EE3	GHFF-EF3-02	7.6	7.2	5.1	Α	Α	Α	Α	1.1	14	-
			GHFF-EF3-03	7.3	7.0	4.6	Α	Α	Α	Α	1.0	14	-
			GHFF-EF3-04	7.7	7.4	5.2	Α	Α	Α	Α	1.1	14	-
			Sample Size	11	11	11	-	-	-	-	11	11	-
			Average	10	10	21	-	-	-	-	1.4	14	-
			Median	8	7	5	-	-	-	-	1.1	14	-
	All Fish		Standard Deviation	5.0	4.8	29	-	-	-	-	0.53	1.3	-
			Standard Error	1.5	1.4	8.7	-	-	-	-	0.16	0.38	-
		Minimum	6.5	6.2	3.4	-	-	-	-	1.0	11	-	
			Maximum	20	19	80	-	-	-	-	2.3	15	•

Notes: ID = identifier; cm = centimetres; g = grams; D = Deformity, E = Erosion, L =Lesion, T = Tumor; mm = millimetres; % = percent; - = no data/not applicable; recap = recaptured fish.

 Table I.11: Measurements and External Health Data for Individual Westslope Cutthroat Trout Captured from Gardine Creek, 2019

								DEI T					
Pr	ocessing Date	Station ID	Fish ID	Total Length	Fork Length	Weight	(Severe [S];	Minor [/I]; Abse	nt Caudal	Relative Caudal	Tag ID	Other Information
				(em)	(ciii)	(9)	DF		т	Length (cm)	r in Eengui (70)		
			GALIT-EE1-01	18.4	17 4	49.7			Δ	2.4	13	3DD 003C02263E	Minor erosion on upper caudal fin
			GAUT-EF1-01	17.5	16.6	43.8			Δ	2.4	12	3DD 003C022637	
			GAUT-EE1-03	19.1	18.3	68.7			Δ	2.1	12	3DD 003C022670	
			GAUT-EF1-04	15.1	15	40.1			Δ	2.0	12	3DD 003C022654	
	20-Sep-19	RG_GAUT	GAUT-EE1-05	10.0	16.3	41.3			Δ	2.0	10	3DD 003C022631	
			GAUT-EF1-06	14.6	14	26.1	A M		A	11	7.5	3DD 003C022634	Moderate erosion on anal and dorsal fins
			GAUT-FF1-07	15.3	14.6	31.5	AN		A	1.9	12	3DD 003C02262F	Minor erosion on anal and dorsal fins
			GAUT-EF1-08	7.2	6.7	3.9		A	A	1.1	15	-	-
			GANF-EF1-01	14.3	13.5	24.6		A	A	1.8	13	3DD.003C022641	-
			GANF-EF1-02	13.1	12.4	18.0	A A	A	A	1.6	12	3DD.003C02263B	-
			GANF-EF1-03	7.9	7.5	4.6		A	A	1.3	16	-	-
			GANF-EF1-04	7.1	6.8	3.4		A	A	1.0	14	-	-
			GANE-EE1-05	11.3	10.5	12.4		A	A	1.6	14	-	
			GANE-EE1-06	7.6	7.3	4.5			A	1.0	16	-	
			GANF-FF1-07	6.4	6.1	2.4	MN		A	1.0	16	-	Small head, minor dorsal erosion
		GANF-EF1	GANF-EF1-08	10.5	10.0	10.2	A N	1 A	A	1.5	14	-	Top lobe of caudal fin 1.0 cm shorter than bottom lobe
			GANF-EF1-09	12.9	12.3	18.3	A A	A	A	1.7	13	3DD.003C022657	-
			GANF-EF1-10	7.4	7.0	4.2	AA	A	A	1.1	15	-	-
			GANF-EF1-11	13.0	12.3	20.7	A A	A	A	1.8	14	3DD.003C022642	-
_	19-Sep-19		GANF-EF1-12	12	11.3	15.1	A M	I A	A	1.8	15	-	Minor erosion on lower caudal fin
19			GANF-EF1-13	7.2	6.7	3.7	A A	A	A	1.2	17	-	-
2019			GANF-EF1-14	7.1	6.8	3.3	A A	A	A	1.1	15	-	-
			GANF-EF1-15	12.6	12.0	18.5	A A	A	A	1.7	13	-	-
			GANF-EF2-01	7.5	7.0	3.9	A A	A	A	1.0	13	-	-
			GANF-EF2-02	7.7	7.4	4.7	A A	A	A	1.1	14	-	-
			GANF-EF2-03	9.8	9.5	9.7	A A	A	A	1.4	14	-	-
			GANF-EF2-04	12.3	11.8	16.2	A A	A	A	1.3	11	-	-
		GANI-LIZ	GANF-EF2-05	15.3	14.5	29.9	A A	A	A	2.0	13	3DD.003C0226SE	-
			GANF-EF2-06	11.4	10.7	11.9	A A	A	A	1.5	13	-	-
			GANF-EF2-07	6.5	6.2	3.2	A A	A	A	1.0	15	-	-
			GANF-EF2-08	13.3	12.6	20.6	A A	A	A	1.8	14	3DD.003C022649	-
			GANF-EF3-01	16.9	15.8	41.8	A A	A	A	2.1	12	3DD.003C02264F	-
			GANF-EF3-02	17.3	16.4	49.3	A A	A	A	2.1	12	3DD.003C02266F	-
			GANF-EF3-03	17.0	16.1	43.1	A M	1 A	A	2.0	12	3DD.003C02266D	Minor erosion on dorsal fin
			GANF-EF3-04	12.5	11.9	18.0	A A	A	A	1.8	14	-	-
			GANF-EF3-05	7.8	7.5	4.3	A A	A	A	1.1	14	-	-
	20-Sep-19	GANF-EF3	GANF-EF3-06	7.9	7.5	5.0	A A	A	A	1.2	15	-	-
			GANF-EF3-07	7.6	7.2	4.3	A A	A	A	1.1	14	-	-
			GANF-EF3-08	11.0	10.4	12.2	A A	A	A	1.2	11	-	-
			GANF-EF3-09	11.0	10.5	12.6	A A	A	A	1.8	16	-	-
			GANF-EF3-10	8.2	7.7	5.9	A A	A	A	1.3	16	-	-
			GANF-EF3-11	13.1	12.4	19.3	A A	A	A	1.9	15	3DD.003C0226BD	-
			Sample Size	34	34	34		-	-	-	34	-	-
			Average	11	10	14		-		-	14	-	-
			Median	11	10	12		-		-	14	-	-
	All Fish		Standard Deviation	3.3	3.2	13		-		-	1.5	-	-
			Standard Error	0.57	0.54	2.2	- -	-		-	0.26	-	-
		Minimum		6.4	6.1	2.4		-		-	11	-	-
			Maximum	17	16	49		-	-	-	17	-	-

Processing Date	Biological Monitoring	Station ID	Pass No.	Fish ID	Fork Length (cm)	Weight (g)	Seve	erity of Exte (0 t	ernal Anon to 3)	nalies	Comments
	Area				、 ,	(0)	0	1	2	3	-
		2	1	-	7.2	5.2	Х	-	-	-	-
15 Son 21	Peach 1	3	1	-	10.9	14.1	Х	-	-	-	-
10-0ep-21	Reactin	4	1	-	7.7	4.8	Х	-	-	-	-
		4	2	-	12.6	26.6	Х	-	-	-	-
				Sample Size	4	4	-	-	-	-	-
				Average	9.6	13	-	-	-	-	-
				Median	9.3	9.6	-	-	-	-	-
All Fish			Star	ndard Deviation	2.6	10	-	-	-	-	-
				Standard Error	1.3	5.1	-	-	-	nalies Common 3 	-
				Minimum	7.2	4.8	-	-	-	-	-
15-Sep-21				Maximum	13	27	-	-	-	-	-

Table I.12: Measurements for Individual Westslope Cutthroat Trout Captured from Lower Greenhills Creek, 2021^a

Notes: ID = identifier; No. = number; cm = centimetres; g = grams; X = severity of external anomaly (0 = no anomalies, 1 = minor, 2 = moderate; 3 = severe anomaly); - = no data/not applicable. ^a Fishing was completed by consultants other than Minnow and under a separate scope from the Greenhills and Gardine Creeks Aquatic Monitoring Program.

DELT **Relative Caudal Total Length** Fork Length Caudal (Severe [S]; Minor [M]; Absent [A]) Station ID Fish ID Weight (g) Tag ID Year Length (cm) Fin Length (%) (cm) (cm) Е Т D L Μ GHBP-WCT-01 12.7 18.60 27.9 11.8 А А Α 22 -GHBP-WCT-02 12.1 11.2 14.43 А А А А 24.7 20 -GHBP-WCT-03 14.1 13.2 25.11 Α 29.3 21 А А А -GHBP-WCT-04 5.3 5.1 1.06 А А А А 11.5 22 -GHBP-WCT-05 11.9 11.2 17.88 А А А А 24.7 21 C02263C GHBP-WCT-06 15.4 14.6 36.29 А 21 Α А А 32.6 GHBP-WCT-07 9.5 8.9 6.83 Α Α Α 19.4 20 А GHBP-WCT-08 7.1 6.6 3.33 Α Α А 14.3 20 А -GHBP-WCT-09 10.3 9.5 21 9.41 Α Α А Α 21.2 -GHBP-WCT-10 6.9 6.3 2.33 А А А А 11.9 17 -GHBP-WCT-11 5.4 5.1 1.49 А А А А 11.7 22 -GHBP-WCT-12 5.7 1.71 5.3 12.8 22 Α А А А -GHBP-WCT-13 9.1 8.4 7.43 20.1 22 А А А А -GHBP-WCT-14 12.2 18.13 11.4 А Α А Α 28.2 23 GHBP-WCT-15 5.5 5.2 1.43 А 11.2 20 А А А GHBP-WCT-16 4.6 4.3 0.94 А А А А 9.4 20 GHBP-WCT-17 6.6 6.2 2.42 11.3 17 А А А А -GHBP-WCT-18 9.8 9.1 7.82 20.3 21 Α А А А -RG GHBP EF1 GHBP-WCT-19 11.2 10.5 13.08 24.4 22 А А А А -GHBP-WCT-20 4.2 4.0 0.79 А А А Α 7.9 19 -GHBP-WCT-21 7.1 6.7 3.10 Α 15.0 21 А А Α -GHBP-WCT-22 10.9 9.4 9.02 А А А А 20.9 19 -GHBP-WCT-23 4.9 4.6 1.10 А 20 Α А А 10.0 -GHBP-WCT-24 6.2 5.8 2.00 Α 19 Α А А 11.7 -GHBP-WCT-25 5.6 5.3 1.73 А Α Α А 10.5 19 -GHBP-WCT-26 10.6 10.0 9.81 А А Α 21.1 20 А 2017 GHBP-WCT-27 10.1 9.5 10.20 А Α Α Α 21.7 22 GHBP-WCT-28 6.1 5.7 2.23 А А А А 12.4 20 GHBP-WCT-29 5.5 1.97 А 6.0 А А А 11.9 20 -GHBP-WCT-30 5.7 5.3 1.64 Α Α Α А 12.2 21 -GHBP-WCT-31 4.7 4.4 1.02 10.0 21 А А А А GHBP-WCT-32 5.6 5.2 1.58 А 12.5 22 А А А GHBP-WCT-33 6.5 6.1 2.28 А А А А 12.8 20 -GHBP-WCT-34 7.9 8.6 6.55 17.6 20 А А А А -GHBP-WCT-35 9.0 8.5 6.09 19.8 22 А Α А А -GHBP-WCT-36 12.9 12.1 20.99 А А А А 28.6 22 -GHBP-WCT-37 12.9 12.1 18.41 26.6 21 А А А А C02268D GHBP-WCT-38 20.2 19.1 79.50 Α А А 41.0 20 А GHBP-WCT-39 11.2 10.5 12.78 А А А 23.2 21 А -GHBP-WCT-40 7.1 6.8 3.22 15.1 21 А А А А -GHBP-WCT-41 6.0 5.6 1.98 А А А А 12.2 20 -GHBP-WCT-42 6.5 6.0 2.54 А 14.6 22 А А А -GHBP-WCT-43 12.3 11.5 16.79 А 27.4 22 А А А -GHBP-WCT-44 10.2 9.4 9.57 А А А А 23.8 23 -RG GHBP EF2 GHBP-WCT-45 4.4 4.1 0.82 А А А А 9.5 22 -GHBP-WCT-46 5.9 5.7 1.93 21 А А А А 12.4 -GHBP-WCT-47 12.8 12.0 19.88 Α А Α А 27.5 21 5.6 5.3 1.50 Μ 22 GHBP-WCT-48 А Μ 12.4 А 6.5 6.2 GHBP-WCT-49 2.53 А А А 13.0 20 А GHBP-WCT-50 6.4 6.0 2.50 Μ А А А 13.2 21 GHBP-WCT-51 4.8 4.5 1.22 Μ А А А 9.0 19 -GHBP-WCT-52 6.0 5.6 1.93 А А А А 11.1 19

 Table I.13:
 Measurements and External Health Data for Individual Westslope Cutthroat Trout Captured from Lower Greenhills Creek, 2017 to 2019

Other Information (aging structure, fate)
Shortened operculum
-
-
-
-
- No non nonlo
NO PART MARKS
-
-
-
-
-
-
-
-
-
-
Whole fish taken
-
-
- Described in stars not
Drowned in stop het
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Shortened operculum
- Slightly shortened operculum
Curvature of spine from top
-

Year	Station ID	Fish ID	Total Length (cm)	Fork Length (cm)	Weight (g)	g) DELT (Severe [S]; Minor [M]; Absent [A]) D E L T		Caudal Length (cm)	Relative Caudal Fin Length (%)	Tag ID	Other Information (aging structure, fate)		
						D	E	L	Т				
	-	GHBP-WCT-53	12.0	11.3	16.89	A	A	A	A	25.7	21	-	-
	-	GHBP-WCT-54	5.8	5.4	1.88	A	A	A	A	13.5	23	-	-
	-	GHBP-WCT-55	5.9	5.6	1.99	A	A	A	A	11.8	20	-	-
		GHBP-WCT-56	5.6	5.3	1.50	Α	A	A	A	11.3	20	-	-
		GHBP-WCT-57	11.0	10.3	11.31	Α	Α	Α	A	22.2	20	-	-
		GHBP-WCT-58	9.4	8.8	7.36	Α	Α	Α	Α	22.3	24	-	-
		GHBP-WCT-59	10.7	10.0	12.51	Α	Α	Α	A	23.3	22	-	-
		GHBP-WCT-60	11.1	10.3	11.49	Α	Α	Α	Α	21.9	20	-	-
		GHBP-WCT-61	10.2	9.6	9.11	Α	Α	Α	Α	19.8	19	-	-
		GHBP-WCT-62	9.3	8.7	7.01	Α	Α	Α	Α	19.2	21	-	-
		GHBP-WCT-63	7.2	6.8	3.83	Α	Α	Α	Α	15.3	21	-	-
		GHBP-WCT-64	5.6	5.3	1.75	Α	Α	А	Α	11.4	20	-	-
		GHBP-WCT-65	5.3	5.0	1.41	М	Α	А	Α	10.7	20	-	Slightly shortened operculum on left side
		GHBP-WCT-66	6.3	5.9	2.38	М	Α	Α	Α	12.7	20	-	Shortened operculum
		GHBP-WCT-67	13.2	12.3	20.62	Α	Α	А	Α	26.0	20	-	-
		GHBP-WCT-68	6.7	6.4	3.02	Α	Α	А	Α	13.6	20	-	-
	RG_GHBP_EFZ	GHBP-WCT-69	5.9	5.6	2.22	Α	Α	А	Α	11.1	19	-	-
2017		GHBP-WCT-70	5.1	4.8	1.28	Α	Α	А	Α	9.8	19	-	-
		GHBP-WCT-71	10.6	9.9	9.71	Α	Α	Α	Α	21.6	20	-	-
		GHBP-WCT-72	16.1	15.1	41.79	Α	Α	Α	Α	33.4	21	C02268F	-
		GHBP-WCT-73	5.2	4.9	1.51	Α	Α	А	А	11.7	22	-	-
		GHBP-WCT-74	15.7	14.7	40.26	Α	Α	Α	А	32.0	20	C022673	-
		GHBP-WCT-75	6.4	6.0	2.82	Α	Α	Α	А	12.7	20		-
		GHBP-WCT-76	10.6	9.8	10.58	M	A	A	A	21.2	20	-	Shortened operculum on left side
		GHBP-WCT-77	5.5	5.2	1.49	A	A	A	A	12.3	22	-	-
		GHBP-WCT-78	5.6	5.3	1.67	A	A	Α	A	12.9	23	-	-
	-	GHBP-WCT-79	7.0	6.6	3.22	A	A	A	A	14.4	21	_	
	-	GHBP-WCT-80	6.9	6.6	3.10	Δ	Δ	Δ	Δ	15.2	22		
	-	GHBP-WCT-81	6.0	5.8	1 98	Δ	Δ	Δ	Δ	11.7	19		
		GHBP-WCT-82	5.5	5.2	1.56	Δ	Δ	Δ	Δ	11.7	21		
		GHBP-WCT-83	11.0	11 1	15.09	Δ	Δ	Δ	Δ	25.0	21		
		GHBP_WCT_84	7.0	66	2 05	M		Δ	Δ	1/ 8	21	-	- Slightly shortoned operaulum
		GHBP_WCT_85	6.1	5.8	2.95	M		Δ	Δ	13.5	21	-	Slightly shortened operculum left side
		GHBP-WCT-86	10.8	10.1	11.38	A	A	A	A	23.8	22		-
		GHBP-WCT-87	7.1	6.7	2.93	A	A	A	A	13.5	19	-	-
		GHBP-WCT-88	6.7	6.3	2.72	A	A	A	A	13.9	21	-	No parr marks, but dots on dorsal
		GHBP-WCT-89	6.2	5.8	2.35	Α	Α	Α	А	14.2	23	-	-
		GHBP-WCT-90	11.9	11.2	16.97	Α	Α	А	А	25.9	22	-	-
		GHBP-WCT-91	6.6	6.1	2.69	Α	Α	Α	Α	13.1	20	-	-
		GHBP-WCT-92	5.2	5.0	1.41	М	Α	Α	A	10.7	21	-	Shortened operculum on left side
	RG GHBP FF3	GHBP-WCT-93	10.4	9.7	9.29	М	A	A	A	21.7	21	-	-
		GHBP-WCT-94	4.9	4.6	1.18	Α	A	Α	A	11.6	24	-	-
		GHBP-WCT-95	11.2	10.4	12.35	A	A	A	A	24.9	22	-	-
		GHBP-WCT-96	1.0	6.6	2.94	A	A	A	A	14.8	21	-	-
			9.4	8.8	ö.14	A	A	A	A	20.7	22	-	- Chartened an and sub-
			0.5	0.0	2.30	IVI A	A	A	A	13.7	21	-	Snortenea operculum
			0.0 11.2	0.3 10.6	1.07	A	A	A	A A	12.0	22	-	-
			61	5.7	1 00	Α Δ	Α Δ	A	Δ	11.6	10	-	-
		GHBP-WCT-102	7.5	7 1	4 17	A	A	A	A	18.5	25	-	-
	1	01121 1101 102	1.0		1 1.17		73		~ ~ ~				1

 Table I.13:
 Measurements and External Health Data for Individual Westslope Cutthroat Trout Captured from Lower Greenhills Creek, 2017 to 2019

Year	Station ID	Fish ID	Total Length (cm)	Fork Length (cm)	Weight (g)	(Severe	DE [S]; Mino	:LT r [M]; Ab	sent [A])	Caudal Length (cm)	Relative Caudal Fin Length (%)	Tag ID	
						D	Е	L	Т				
		GHBP-WCT-103	9.2	8.6	7.10	Α	А	Α	А	22.6	25	-	
		GHBP-WCT-104	6.8	6.4	3.11	A	A	A	A	17.5	26	-	
		GHBP-WCT-105	7.2	6.8	3.57	Α	А	Α	А	16.2	23	-	
		GHBP-WCT-106	6.7	6.3	3.04	A	A	A	A	16.1	24	-	
	RG_GHBP_EF3	GHBP-WCT-107	6.6	6.2	2.83	M	A	A	A	13.2	20		
		GHBP-WCT-108	5.0	4.6	1.30	A	A	A	A	11.9	24	_	
		GHBP-WCT-109	6.2	5.8	2 25	A	A	A	A	15.4	25	_	
2017		GHBP-WCT-110	5.4	5.0	1.65	A	A	A	A	11.5	21		
		Sample Size	110	110	110	-	-	-	-	110	110		
		Average	8.2	7.7	7.5	-	-	-	-	17	21	-	
		Median	6.9	6.4	2.9	-	-	-	-	15	21	-	
		Standard Deviation	3.1	2.9	11	-	-	-	-	6.6	1.5	-	
		Standard Error	0.30	0.28	1.0	-	-	-	-	0.63	0.15	-	
		Minimum	4.2	4.0	0.79	-	-	-	-	7.9	17	-	
		Maximum	20	19	80	-	-	-	-	41	26	-	
		GHBP-FF1-01	13.4	12.7	25.78	Α	Α	Α	Α	_	-	3DD 003BF666F6	
		GHBP-FF1-02	12.0	11.5	16.62	A	A	A	A	_	-	3DD 003BE666E5	
		GHBP-FF1-03	12.0	12.1	20.32	A	A	A	A	_	-	3DD 003BF66716	
		GHBP-FF1-04	11.3	10.8	16.41	A	A	A	A	_	-	3DD 003BF6666B9	
		GHBP-EF1-05	9.0	8.8	8 71	A	A	A	A	_	-	-	
		GHBP-EF1-06	10.3	9.6	9.62	A	A	A	A	_	-		
		GHBP-FF1-07	10.9	10.2	10.15	A	A	A	A	_	-	3DD 003BE666B6	
	RG GHBP-EF1	GHBP-FF1-08	14.8	13.9	36.29	A	A	A	A	_	-	3DD 003BF666CC	
		GHBP-FF1-09	15.8	15.0	38.94	A	A	A	A	_	-	3D6 00187AA3C2	
		GHBP-FF1-10	10.0	9.4	9.02	A	A	A	A	_	-	-	
		GHBP-FF1-11	6.3	6.0	2 43	A	A	A	A	_	-		
		GHBP-FF1-12	13.8	13.0	21.78	A	A	A	A	_	-	3DD 003BE666D1	
		GHBP-FF1-13	12.0	11.6	15.66	A	A	A	A	-	-	3DD 003BF6670F	
		GHBP-FF1-14	10.9	10.2	13.37	A	A	A	A	-	-	3DD 003BF666F3	
		GHBP-EF1-15	10.8	10.3	10.56	A	A	A	A	_	-	3DD.003BF666CA	
		GHBP-EF2-01	17.8	16.8	62.14	Α	Α	Α	Α	-	-	3DD.003BF6670B	
		GHBP-EF2-02	16.8	15.9	42.75	A	A	A	A	-	-	3DD.003BF666C4	
		GHBP-EF2-03	10.8	10.0	12.07	Α	А	Α	Α	-	-	3DD.003BF666C4	
		GHBP-EF2-04	14.1	13.3	24.52	Α	А	Α	Α	-	-	3DD.003BF666B7	
2018		GHBP-EF2-05	11.6	11.0	14.07	Α	А	Α	Α	-	-	3DD.003BF666DD	
		GHBP-EF2-06	13.9	13.0	22.71	Α	А	Α	Α	-	-	3DD.003BF666E5	
		GHBP-EF2-07	15.4	14.8	33.98	Α	А	Α	Α	-	-	3DD.003BF666F1	
		GHBP-EF2-08	6.8	6.5	2.62	Α	А	Α	Α	-	-	-	
		GHBP-EF2-09	12.3	11.7	17.75	Α	А	Α	Α	-	-	3DD.003BF666EE	
		GHBP-EF2-10	6.3	5.9	2.21	Α	Α	Α	Α	-	-	-	
		GHBP-EF2-11	11.9	11.4	15.63	Α	Α	Α	Α	-	-	3DD.003BF666D3	
		GHBP-EF2-12	9.2	8.7	6.50	Α	Α	Α	Α	-	-	-	
		GHBP-EF2-13	6.8	6.6	3.16	Α	А	Α	Α	-	-	-	
		GHBP-EF2-14	11.3	10.6	11.12	Α	Α	Α	Α	-	-	3DD.003BF666C7	
		GHBP-EF2-15	6.8	6.5	2.63	Α	А	Α	Α	-	-	-	
		GHBP-EF2-16	10.2	9.7	9.94	Α	Α	Α	Α	-	-	3DD.003BF666BC	
		GHBP-EF2-17	9.9	9.5	8.53	Α	Α	Α	A	-	-	-	
		GHBP-EF2-18	7.2	6.8	2.91	Α	Α	Α	Α	-	-	-	
		GHBP-EF2-19	7.0	6.7	2.92	Α	A	A	Α	-	-	-	
		GHBP-EF2-20	10.6	10.0	9.67	Α	А	Α	Α	-	-	3DD.003BF666CF	
		GHBP-EF2-21	11.1	10.6	12.54	Α	А	Α	А	-	-	3DD.003BF666BA	
		GHBP-EF2-22	6.5	6.2	2.42	Α	А	Α	Α	-	-	-	
		GHBP-EF2-23	6.8	6.5	2.88	Α	А	Α	Α	-	-	-	
		GHBP-EF2-24	9.8	8.9	8.23	Α	А	Α	A	-	-	-	

 Table I.13:
 Measurements and External Health Data for Individual Westslope Cutthroat Trout Captured from Lower Greenhills Creek, 2017 to 2019

Other Information (aging structure, fate)
Top caudal split
No parr marks
-
-
Shortened operculum
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Recanture
-
-
-
-
-
Skinny
Light abrasion on flank
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

			Total Longth	Fork Longth			DE	ELT		Courdel	Deletive Courdel		
Year	Station ID	Fish ID	(cm)	cm)	Weight (g)	(Severe	[S]; Mino	or [M]; Ab	osent [A])	Length (cm)	Fin Length (%)	Tag ID	
						D	E	L	Т				
		GHBP-EF2-25	12.8	12.1	19.85	A	A	A	A	-	-	3DD.003BF666BB	
	RG GHBP-EF2	GHBP-EF2-26	9.7	9.3	8.20	A	A	A	A	-	-	-	
		GHBP-EF2-27	9.6	9.1	7.14	A	A	A	A	-	-	-	
		GHBP-EF2-28	6.8	6.5	2.84	A	A	A	A	-	-	-	
		GHBP-EF3-01	6.4	6.2	2.47	A	A	A	A	-	-	-	
		GHBP-EF3-02	6.2	5.9	2.17	A	A	A	A	-	-	-	
		GHBP-EF3-03	6.4	6.1	2.63	A	A	A	A	-	-		
			12.8	12.2	18.88	A	A	A	A	-	-	3DD.003BF000C5	
			9.0	9.2	1.15	A	A	A	A	-	-		
			10.0	10.5	40.52	A	A	A	A	-	-		
			7.1	6.7	15.12	A	A	A	A	-	-	3DD.0036F000DB	
		GHBP EE3 00	15.0	1/ 3	33.00	~			A 	-	-		
			15.0	67	2 15	A	A	A	A	-	-	3DD.003BF000C9	
		GHBP-EF3-10 GHBP-EF3-11	0.9	13.6	26.43	A	A	A	A	-	-		
			0.6	0.1	20.43	~			A	-	-	3DD:003DI 000C8	
		GHBP-EF3-13	9.0	9.1 6.4	2.47					-	-	-	
		GHBP-EF3-14	10.0	10.4	12.43					-	-		
		GHBP-EF3-15	5.8	5.6	1 99		Δ	Δ	Δ	_		-	
		GHBP-EF3-16	12.5	11.8	16.70	Δ	Δ	Δ	Δ	-			
	RG GHBP-FE3	GHBP_EE3_17	6.4	61	2 21					_		300.00361 00006	
		GHBP-EF3-18	12.8	12.2	10.84		Δ	Δ	Δ	-			
		GHBP-EF3-19	12.0	11.4	16.24	Δ	Δ	Δ	Δ	_	_	3DD 003BE666BD	
		GHBP-EF3-20	11.8	11.4	14 47	Δ	Δ	Δ	Δ	_	_	3DD 003BE666D7	
		GHBP-FF3-21	67	6.3	2.82	A	A	A	A	-	_	-	
		GHBP-EF3-22	11.8	11.2	13.47	A	A	A	A	-	_	3DD 003BE666D5	
		GHBP-EF3-23	10.2	97	9.12	A	A	A	A	-	-	3DD 003BF666C2	
2018		GHBP-FF3-24	11.3	10.8	13.97	A	A	A	A	-	_	3DD 003BF6666F9	
		GHBP-EF3-25	7.1	6.9	3.08	A	A	A	A	-	-	-	
		GHBP-EF3-26	5.9	5.7	1.97	A	A	A	A	-	-	-	
		GHBP-EF3-27	6.6	6.3	3.27	Α	Α	А	Α	-	-	-	
		GHBP-EF3-28	6.0	5.8	2.22	A	A	A	A	-	-	-	
		GHBP-EF3-29	10.1	9.6	9.72	A	A	A	A	-	-	3DD.003BF666DF	
		GHBP-EF3-30	11.1	10.4	12.02	Α	А	А	Α	-	-	3DD.003BF666D8	
		GHBP-EF3-31	5.4	5.2	1.50	Α	Α	А	Α	-	-	-	
		GHBP-EF3-32	6.3	6.0	2.21	Α	А	А	Α	-	-	-	
		GHBP-EF3-33	5.9	5.6	2.28	Α	Α	А	Α	-	-	-	
		GHBP-EF3-34	11.7	11.0	12.95	Α	Α	А	Α	-	-	3DD.003BF666D6	
		GHBP-EF3-35	6.7	6.5	2.96	Α	Α	Α	Α	-	-	-	
		GHBP-EF3-36	6.2	6.0	2.23	Α	Α	Α	Α	-	-	-	
		GHBP-EF3-37	14.2	13.7	26.96	Α	Α	Α	Α	-	-	3DD.003BF666B5	
		GHBP-EF3-38	12.0	11.6	14.45	Α	Α	А	Α	-	-	3DD.003BF666F0	
		GHBP-EF3-39	5.9	5.7	1.92	Α	Α	А	Α	-	-	-	
		GHBP-EF3-40	11.2	10.9	11.88	Α	A	Α	Α	-	-	3DD.003BF666D0	
		GHBP-EF3-41	5.9	5.6	2.03	Α	A	Α	Α	-	-	-	
	RG_GHBP-EF3	GHBP-EF3-42	5.6	5.4	1.75	Α	Α	Α	Α	-	-	-	
		GHBP-EF3-43	6.7	6.5	2.94	A	A	A	Α	-	-	-	
		GHBP-EF3-44	8.9	8.5	5.99	Α	A	А	Α	-	-	-	
		GHBP-EF3-45	5.7	5.6	1.98	A	A	A	Α	-	-	-	
		GHBP-EF3-46	9.2	8.8	6.46	A	A	A	Α	-	-	-	
		GHBP-EF3-47	12.0	11.4	14.00	A	A	A	A	-	-	3DD.003BF666D2	
		GHBP-EF3-48	13.4	12.6	22.50	A	A	A	A	-	-	3DD.003BF666E4	
		GHBP-EF3-49	12.0	11.4	15.24	A	A	A	A	-	-	3DD.003BF666EC	
		GHBP-EF3-50	5.9	5.6	1.98	A	A	A	A	-	-	-	

Table I.13: Measurements and External Health Data for Individual Westslope Cutthroat Trout Captured from Lower Greenhills Creek, 2017 to 2019

Other Information (aging structure, fate)	
-	
-	
-	
-	
-	
-	
-	
-	
-	
Dark mark on flank	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
_	
-	
Dark mark on flank	
-	
-	
-	
-	
-	
-	
-	_
-	
-	
-	_
-	
	_
-	
	-

Year	Station ID	Fish ID	Total Length (cm)	Fork Length (cm)	Weight (g)	(g) DELT (Severe [S]; Minor [M]; Absent [A]) D E L T		Caudal Length (cm)	Relative Caudal Fin Length (%)	Tag ID	Other Information (aging structure, fate)		
						D	E	L	Т	-			
		GHBP-EF3-51	5.6	5.3	1.87	Α	Α	Α	Α	-	-	-	-
		GHBP-EF3-52	10.5	10.1	11.33	Α	Α	Α	Α	-	-	3DD.003BF666E2	-
		GHBP-EF3-53	5.4	5.2	1.62	А	Α	A	A	-	-	-	-
		GHBP-EF3-54	6.0	5.8	2.00	Α	Α	Α	Α	-	-	-	-
		GHBP-EF3-55	13.5	12.9	25.68	Α	A	A	A	-	-	3DD.003BF666FF	-
		GHBP-EF3-56	6.3	6.1	2.38	A	A	A	A	-	-	-	-
		GHBP-EF3-57	10.7	10.3	15.27	A	A	A	A	-	-	3DD.003BF666CD	-
		GHBP-EF3-58	7.3	7.2	3.45	A	A	A	A	-	-	-	-
	RG GHBP-EF3	GHBP-EF3-59	5.9	5.7	2.14	Α	Α	A	A	-	-	-	-
		GHBP-EF3-60	10.8	10.2	13.26	A	A	A	A	-	-	-	-
		GHBP-EF3-61	6.5	6.3	2.66	A	A	A	A	-	-	3DD.003BF66709	-
0040		GHBP-EF3-62	13.4	12.6	22.72	A	A	A	A	-	-	3DD.003BF666D9	-
2018		GHBP-EF3-63	11.6	11.0	17.97	A	A	A	A	-	-	3DD.003BF66707	-
		GHBP-EF3-64	10.6	10.0	10.54	A	A	A	A	-	-	3DD.003BF66710	-
		GHBP-EF3-65	10.7	10.3	12.17	A	A	A	A	-	-	3DD.003BF666F2	-
		GHBP-EF3-66	5.7	5.5	1.98	A	A	A	A	-	-	-	-
		GHBP-EF3-67	6.5	6.3	2.30	A	A	A	A	-	-	-	Mortality
	ļ	GHBP-EF3-68	6.0	5./	2.22	A	A	A	A	-	-	-	Mortality
		Sample Size	111	111	111	-	-	-	-	-	-	-	•
		Average	9.7	9.2	11		-	-	-	-	-	-	•
		Median	10	9.6	9.1		-	-	-	-	-	-	•
		Standard Deviation	3.1	3.0	11		-	-	- 1	-	-	•	-
		Standard Error	0.30	0.28	1.0		-	-	- 1	-	-	•	-
		Maximum	5.4	5.2	1.5		-	-	- 1	-	-	•	-
			10	14.5	28.0	-	-	-	-	-	-		- Cought with tagy released alive
		CHRP EE1 02	17.3	14.5	61.0	~				2.0	12.02	3D6 1D506DCEA6	Caught with tag: released alive
		GHBP-EF1-03	17.5	11.0	32.0	Δ				2.3	16.13	3D6 1D596DCEA0	Caught with tag; released alive
		CHBP-EF1-04	12.4	11.3	10.0			Δ		1.0	15.83		Caught with tag; released alive
	GHBP-EF1	GHBP-EF1-05	69	65	3.6			Δ		1.5	15.03	300.1033000LDA	Released alive
		GHBP-EF1-06	12.5	12.0	13.0	S	Δ	Δ	Δ	1.1	13.60	3DD 003C0225E7	Missing gill plate: released alive
		GHBP-EF1-07	12.0	14.5	37.0	M	Δ	Δ	Δ	22	13.00	3DD.003C0225CC	Deformed upper caudal: released alive
		GHBP-EF1-08	13.0	12.2	24.0	Δ	Δ	Δ	Δ	1.8	13.85	3DD 003C02261C	Released alive
		GHBP-FF2-01	17.6	16.6	52.0	Δ	Δ	Δ	Δ	2.0	11.36	3DD 003C022623	Released alive
		GHBF-EF2-02	12.6	11.9	31.0	A	A	A	A	1.8	14 29	3DD 003C022619	Released alive
		GHBF-EF2-03	21.7	20.6	82.0	A	M	A	A	1.0	5.53	3DD 003C022624	Released alive
		GHBF-FF2-04	17.6	16.6	50.0	A	A	A	A	2.1	11.93	3DD 003C02262B	Released alive
		GHBF-FF2-05	19.6	18.9	78.0	M	A	A	A	2.1	10.71	3DD 003C0225DA	Deformed gill plate
		GHBF-EF2-06	12.0	11.4	11.0	A	A	A	A	1.6	13.33	3DD.003C0225F8	Released alive
2019		GHBF-EF2-07	16.6	15.7	45.0	A	A	A	A	1.8	10.84	3DD.003C0225E0	Released alive
	GHBP-EF2	GHBF-EF2-08	13.8	12.9	24.0	A	A	A	A	1.9	13.77	3DD.003C022626	Released alive
		GHBF-EF2-09	13.5	12.9	26.0	A	A	A	A	2.0	14.81	3DD.003C022648	Released alive
		GHBF-EF2-10	10.7	10.1	15.0	A	A	A	A	1.6	14.95		Released alive
		GHBF-EF2-11	9.7	9.1	8.0	A	A	A	A	1.3	13.40	-	Released alive
		GHBF-EF2-12	18.0	17.1	55.0	А	Α	Α	Α	2.3	12.78	3DD.003BF666DD	Caught with tag: released alive
		GHBF-EF2-13	14.4	13.6	22.0	Α	Α	А	А	2.1	14.58	3D6.1D596DCEC7	Caught with tag: released alive
		GHBF-EF2-14	18.2	13.6	52.0	М	Α	А	А	2.3	12.64	3D6.1D596DCEDF	Deformed operculum; caught with tag; released
		GHBP-EF3-01	19.0	18.1	61.0	М	Α	Α	А	2.8	14.74	3DD.003C02268B	Deformed operculum; released alive
		GHBP-EF3-02	17.1	16.4	35.0	А	Α	Α	А	2.7	15.79	3DD.003C02265C	Released alive
		GHBP-EF3-03	12.5	11.8	9.0	А	Α	А	А	1.7	13.60	3DD.003C02263A	Released alive
	GHBP-EF3	GHBP-EF3-04	14.1	15.1	19.0	А	Α	Α	Α	2.1	14.89	3DD.003C02261B	Released alive
		GHBP-EF3-05	15.3	14.6	22.0	А	Α	А	А	2.1	13.73	3DD.003C02260E	Released alive
		GHBP-EF3-06	13.6	12.9	13.0	А	А	А	А	2.0	14.71	3DD.003C02261A	Released alive

 Table I.13:
 Measurements and External Health Data for Individual Westslope Cutthroat Trout Captured from Lower Greenhills Creek, 2017 to 2019

Year	Station ID	Fish ID	Total Length (cm)	Fork Length (cm)	Weight (g)	(Severe	DE [S]; Minc	ELT or [M]; Ab	sent [A])	Caudal Length (cm)	Relative Caudal Fin Length (%)	Tag ID	
						D	E	L	Т				
		GHBP-EF3-07	14.9	14.3	22.0	Α	Α	A	A	1.8	12.08	3DD.003C022615	
		GHBP-EF3-08	12.3	11.8	8.0	Α	A	A	A	1.7	13.82	3DD.003C022609	
		GHBP-EF3-09	6.8	6.4	3.2	Α	Α	A	A	1.1	16.18	-	
		GHBP-EF3-10	12.8	12.1	20.9	Α	Α	A	A	1.9	14.84	3DD.003C02260B	
		GHBP-EF3-11	10.7	10.4	12.8	М	А	А	Α	1.5	14.02	-	
		GHBP-EF3-12	9.4	9.0	8.5	Α	А	А	Α	1.1	11.70	-	
	GHBP-EF3	GHBP-EF3-13	11.6	10.9	16.1	Α	Α	A	A	1.7	14.66	-	
		GHBP-EF3-14	12.6	12.0	21.3	Α	Α	Α	Α	2.0	15.87	3DD.003C022638	
		GHBP-EF3-15	9.2	8.7	9.8	Α	Α	Α	Α	1.6	17.39	-	
2010		GHBP-EF3-16	9.5	9.2	8.4	Α	А	А	Α	1.4	14.74	-	
2019		GHBP-EF3-17	9.9	9.4	9.6	Α	А	A	Α	1.6	16.16	-	
		GHBP-EF3-18	10.1	9.7	11.5	Α	Α	Α	Α	1.5	14.85	-	
		GHBP-EF3-19	9.5	9.0	9.4	Α	Α	Α	Α	1.4	14.74	-	
		Sample Size	41	41	41	-	-	-	-		41		
		Average	13	13	27	-	-	-	-		14		
		Median	13	12	21	-	-	-	-		14		
		Standard Deviation	3.5	3.3	20	-	-	-	-	-	2.0	-	
	Standard Error		0.54	0.51	3.2	-	-	-	-]	0.32		
		Minimum	6.8	6.4	3.2	-	-	-	-]	5.5		
		Maximum	22	21	82	-	-	-	-		17		

 Table I.13:
 Measurements and External Health Data for Individual Westslope Cutthroat Trout Captured from Lower Greenhills Creek, 2017 to 2019

Other Information (aging structure, fate)

-

Released alive	
Released alive	
Released alive	
Released alive	
Deformed caudal	
Released alive	

Table I.14: Statistical Comparisons of Westslope Cutthroat Trout Health Endpoints, Upper Greenhills Creek, 2017 to 2021

	Variables				Sample Size			ANCOVA Model Statisti		tistics							0047						
									Interaction	Parallel Slope	Covariate		Summ	ary Stati	stics [®]		Test P-	2017	vs. 2018	2017	vs. 2019	2017	vs. 2021
Indicator	Endpoint	Response	Covariate	2017	2018	2019	2021	Test	Model Interaction P-value	Model Covariate P-value	Model Value for Covariate Comparisons ^a S P-value		2017	2018	2019	2021	value (Year)	P-Value	MOD (%) ^c	P-Value	MOD (%) ^c	P-Value	MOD (%) ^c
Body Size	Fork Length	Fork Length (cm)	-	12	18	17	13	K-W	-	-	-	Median	12.6	15.9	15.8	15.1	0.16	ns	ns	ns	ns	ns	ns
Dody Size	Body Weight	Body Weight (g)	-	12	18	17	13	K-W	-	-	-	Median	24.1	53.8	35.0	30.3	0.047	0.095	123	0.65	45	0.51	26
Energy	Condition	log ₁₀ [Body Weight (g)]	log ₁₀ [Fork Length (cm)]	12	18	17	13	ANCOVA	0.33	<0.001	13	Adjusted Mean	29.2	29.3	29.9	21.5	<0.001	1.0	0.33	0.98	2.4	<0.001	-26
Storage	Condition (Outliers Removed)	log ₁₀ [Body Weight (g)]	log ₁₀ [Fork Length (cm)]	12	18	16 ^d	11 ^e	ANCOVA	0.11	<0.001	13	Adjusted Mean	27.5	27.3	29.4	20.2	<0.001	1.0	-0.74	0.20	7.0	<0.001	-26

Area p-value <0.1 or interaction p-value <0.05.

MOD >25% for (or >10% for condition).

Covariate P-value >0.05.

Notes: ANCOVA = Analysis of Covariance; vs. = versus; MOD = Magnitude of Difference; % = percent; cm = centimetres; - = no data/not applicable; K-W = Kruskal-Wallis; ns = not significant; g = grams; < = less than; > = greater than; MCT = Measure of Central Tendency. Fish with fork lengths <6.5 cm were excluded from the analyses.

^a The mean value of the covariate (that corresponds to the adjusted means for the response variable) for the parallel slope ANCOVA model or the minimum and maximum values of the overlap in covariate values for the interaction ANCOVA model.

^b The median and adjusted mean are reported for K-W and ANCOVA, respectively, and the predicted means of the regression line equations for minimum and maximum values of the covariate (where the data sets overlap) for ANCOVAs where a significant interaction (i.e., different slopes) occurs.

^d One outlier (GHNF-EF3-02, Studentized residual = -4.7) was removed from analysis.

^e Two outliers (GHNF-EF1-P3-WCT-66, Studentized residual = 4.4; GHNF-EF2-P1-WCT-70, Studentized residual = -4.1) were removed from analysis.

		Vari	Variables				ANC	OVA Model St	atistics			h		
Indiantar	Findmaint					Toet	Interaction	Parallel	Covariate	Summa	ary Statis	tics ⁵	Test P-	
indicator	Επαροιήτ	Response	Covariate	2019	2021	Test	Model Interaction P-value	Slope Model Covariate P-value	Value for Comparisons ^a	Statistic	2019	2021	(Year)	MOD (%) ⁻
Pody Size	Fork Length	Fork Length (cm)	-	8	29	tequal	-	-	-	Mean	14.9	9.86	<0.001	-34
Body Size	Body Weight	Body Weight (g)	-	8	29	tunequal	-	-	-	Geometric Mean	30.7	8.57	0.004	-72
Energy Storage	Condition	log₁₀[Body Weight (g)]	log ₁₀ [Fork Length (cm)]	8	29	ANCOVA	0.55	<0.001	11	Adjusted Mean	12.7	10.9	0.01	-14

Table I.15: Statistical Comparisons of Westslope Cutthroat Trout Health Endpoints, Upper Gardine Creek, 2019 and 2021

Area p-value <0.1 or interaction p-value <0.05.

MOD >25% for (or >10% for condition).

Covariate P-value >0.05.

Notes: ANCOVA = Analysis of Covariance; MOD = Magnitude of Difference; % = percent; cm = centimetres; - = no data/not applicable; tequal = equal variances t-test; < = less than; g = grams; > = greater than; MCT = Measure of Central Tendency. Fish with fork lengths <6.5 cm were excluded from the analyses.

^a The mean value of the covariate (that corresponds to the adjusted means for the response variable) for the parallel slope ANCOVA model or the minimum and maximum values of the overlap in covariate values for the interaction ANCOVA model.

^b The mean (geometric mean for log₁₀-transformed variables) and adjusted mean are reported for tequal and ANCOVA, respectively, and the predicted means of the regression line equations for minimum and maximum values of the covariate (where the data sets overlap) for ANCOVAs where a significant interaction (i.e., different slopes) occurs.

^c Calculated as the difference in the MCT between years (expressed as a percentage of the MCT for 2019).

	Vari	ablas	Samo	Sample Size		ANC	OVA Model St	tatistics						
Indicator	Endnoint	Valle		Samp		Test	Interaction	Parallel	Covariate	Summa	ary Statis	tics ^b	Test P-	
mulcator	Епаропі	Response	Covariate	2019	2021	Test	Model Interaction P-value	Covariate P-value	Value for Comparisons ^a	Statistic	2019	2021	(Year)	MOD (%)
Pody Sizo	Fork Length	Fork Length (cm)	-	32	51	M-W	-	-	-	Median	10.5	11.1	0.29	5.7
Dody Size	Body Weight	Body Weight (g)	-	32	51	M-W	-	-	-	Median	12.3	13.8	0.59	12
Energy	Condition	log₁₀[Body Weight (g)]	log ₁₀ [Fork Length (cm)]	32	51	ANCOVA	0.27	<0.001	10	Adjusted Mean	11.6	10.9	0.0030	-6.7
Storage	Condition (Outliers Removed)	log ₁₀ [Body Weight (g)]	log ₁₀ [Fork Length (cm)]	32	50 ^d	ANCOVA	0.10	<0.001	10	Adjusted Mean	11.6	10.9	0.0030	-6.1

Table I.16: Statistical Comparisons of Westslope Cutthroat Trout Health Endpoints, Lower Gardine Creek, 2019 and 2021

Area p-value <0.1 or interaction p-value <0.05.

MOD >25% for (or >10% for condition).

Covariate P-value >0.05.

Notes: ANCOVA = Analysis of Covariance; MOD = Magnitude of Difference; % = percent; cm = centimetres; - = no data/not applicable; M-W = Mann-Whitney; g = grams; < = less than; > = greater than; MCT = Measure of Central Tendency. Fish with fork lengths <6.5 cm were excluded from the analyses.

^a The mean value of the covariate (that corresponds to the adjusted means for the response variable) for the parallel slope ANCOVA model or the minimum and maximum values of the overlap in covariate values for the interaction ANCOVA model.

^b The median and adjusted mean are reported for M-W and ANCOVA, respectively, and the predicted means of the regression line equations for minimum and maximum values of the covariate (where the data sets overlap) for ANCOVAs where a significant interaction (i.e., different slopes) occurs.

^c Calculated as the difference in the MCT between years (expressed as a percentage of the MCT for 2019).

^d One outlier (GANF-EF1-P1-WCT-47, Studentized residual = -4.4) was removed from analysis.

	Area	Station ID	Upstre Coord (NAD 83,	am UTM linates Zone 11U)	Downstr Coord (NAD 83,	eam UTM linates Zone 11U)	Date	Length of Run (m)	Mean Width (m)	Pass	Effort (seconds)	Number of Fish Caught	Fish Biomass Caught (g wet weight)	Abun	dance Estir	nate by St	ation ^a	Estim (no./1	ated Fish D 00 m ²) by S	ensity Station	Estima (g/100	ted Fish B m²) by St	liomass ation ^b
			Easting	Northing	Easting	Northing		()	()					Ν	SE	LCI	UCI	Ν	LCI	UCI	N	LCI	UCI
(I)		RG_GAUT-EF1	653553	5548832	-	-	20-Sep-19	-	-	1	48	8	305										
rdine										Total	48	8	305	-	-	-	-	-	-	-	-	-	-
r Ga Creel	RG_GAUT °		652400	EE 49906			20 Son 10			1	-	3	d										
ppe		KG_GAUT-EF2	055490	5546690	-	-	20-Sep-19	-	-	2	-	2		-	-	-	-	-	-	-	-	-	-
				1				• • •		Total	-	5	-										
										1	599	7	70										
		RG_GANF-EF1	654273	5547746	654284	5547717	19-Sep-19	40	1.5	2	683	5	68	47	2.0	10	04	00	40	40	240	400	100
										3	737	3	26	17	3.0	10	24	28	10	40	310	180	439
×				1				1		Total	2,019	15	164										
Cree										1	661	5	64										
line		RG_GANF-EF2	654192	5547828	654216	5547814	19-Sep-19	40	1.7	2	579	2	15		0.77	0.5	10	10	0.5		4.47	110	475
Garc	RG_GANF									3	582	1	21	8.0	0.77	0.5	10	12	9.5	14	147	119	175
wer				1						Total	1,822	8	100										
Γo	R									1	782	11	216										
		RG_GANF-EF3	653975	5547935	653983	5547921	20-Sep-19	40	2.0	2	615	0	0									070	070
										3	682	0	0	<u> </u>	11	11	14	14	14	270	270	270	
				1	1			1		Total	2,079	11	216										

Table I.17: Catch, Abundance, Density, and Biomass Data for Westslope Cutthroat Trout Captured by Electrofishing in Gardine Creek, September 2019

Notes: ID = identifier; UTM = Universal Transverse Mercator; NAD = North American Datum; m = metres; g = grams; N = number; SE = standard error; LCI = lower limit of the 95% confidence interval; UCI = upper limit of the 95% confidence interval; no./100 m² = number of fish per 100 square metres; g/100 m² = grams of fish biomass per 100 square metres; - = no data/not calculated; % = percent. Negative LCIs were truncated at 0.

^a Mean abundance and 95% confidence intervals were estimated using multiple-pass depletion estimation (Carle and Strub 1978) as implemented in the FSA R package (Ogle et al. 2020).

^b Biomass estimates were derived by multiplying population abundance by mean biomass of all captured fish.

^c Due to limited passes, abundance, density, and biomass estimations could not be calculated. The sampling locations were small pools.

^d Fish were not measured due to lack of time.

Year	Station	Upstre Coord (NAD 83,	am UTM dinates Zone 11U)	Downstr Coord (NAD 83, .	eam UTM linates Zone 11U)	Date	Length of Run (m)	Mean Width (m)	Pass	Effort (seconds)	Number of Fish Caught	Fish Biomass Caught (g wet weight)	Abun	dance Esti	mate by St	ation ^b	Estima (no./1)	ated Fish D 00 m ²) by S	ensity Station	Estima (g/100	ted Fish B) m ²) by St	iomass ation ^c
		Easting	Northing	Easting	Northing								Ν	SE	LCI	UCI	N	LCI	UCI	N	LCI	UCI
									1	645	2	11										
	Reach 1-EF1	653495	5545585	-	-	28-Sep-15	33	2.2	2	595	1	2	2.0	0.07	25	25	4.4	2.4	10	17	11	20
									3	499	0	0	3.0	0.27	2.0	3.5	4.1	3.4	4.9	17	14	20
									Total	1,739	3	12										
									1	472	1	11										
2015	Reach 1-EF2	653525	5545637	-	-	28-Sep-15	25	2.0	2	325	0	0	10	0	10	10	2.0	2.0	2.0	21	21	21
2015									3	-	-	-	1.0	0	1.0	1.0	2.0	2.0	2.0	21	21	21
									Total	797	1	11										
									1	437	3	52										
	Reach 1-EF3	653440	5545653	-	-	28-Sep-15	30	2.3	2	409	0	0	3.0	0	3.0	3.0	4.3	43	43	75	75	75
									3	-	-	-	0.0	, i i i i i i i i i i i i i i i i i i i	0.0	0.0						
		1	1					r	Total	846	3	52										
									1	560	21	156										
	Reach 1-EF1	653497	5545590	-	-	25-Aug-17	7 33 2.3	2	634	12	74	42	4.0	34	50	55	45	66	372	302	442	
							3	537	5	26												
		r	1		1				Total	1,731	38	255										
	D 1 4 550	050500	5545004			05 4 47	05		1	623	16	82										
2017	Reach 1-EF2	653528	5545624	-	-	25-Aug-17	25	2.3	2 [°] 586	14	26	51	13	3 26 76	76	89	46	131	369	191	547	
									3° •	518	8	39										
	-		1					r	l otal	1,727	38	146										
		050540	5545050			05 4 47	20	0.0	1	559	15	169										
	Reach I-EFS	000040	5545656	-	-	25-Aug-17	30	2.3	2	485	12	64	31	2.7	26	36	45	37	53	366	303	430
									্য Total	460	2	3.0										
								T	1 01.01	074	29	230										
	Reach 1-FF1	653500	5545500	_	_	28-Aug-19	33	23	2	874	0	10										
		000000	0040000	-	_	20-Aug-10	00	2.0	2	728	0	0	6.0	0.0	6.0	6.0	7.9	7.9	7.9	100	100	100
									Total	2 573	6	76										
									1	613	4	87										
	Reach 1-EE2	653527	5545622	_	_	28-Aug-19	25	2.0	2	630	1	25										
2019	riouon r Er E	000021	0010022			207/03/10	20	25 2.0 -	3	570	1	18	6.0	0.67	4.7	7.3	12	9.4	15	258	202	314
		1					Aug-19 30 2.3	Total	1 813	6	129											
								1	782	3	24											
	Reach 1-EF3	653540	5545609	-	_	28-Aua-19		2	642	2	21		-					_		_	_	_
			20-Aug-19			3	587	-	66	6.0	1.0	4.0	8.0	8.7	5.8	12	74	50	98			
		1	1		I			Ĺ	Total	2.011	6	51										

Table I.18: Catch, Abundance, Density, and Biomass Data for Westslope Cutthroat Trout Captured by Electrofishing in Reach 1 of Lower Greenhills Creek, 2015 to 2019^a

Notes: ID = identifier; UTM = Universal Transverse Mercator; NAD = North American Datum; m = metres; g = grams; N = number; SE = standard error; LCI = lower limit of the 95% confidence interval; UCI = upper limit of the 95% confidence interval; no./100 m² = number of fish per 100 square meters; g/100 m² = grams of fish biomass per 100 square metres; - = no data/not calculated; % = percent. Negative LCIs were truncated at 0.

^a Fishing in Reach 1 of Lower Greenhills Creek was completed by Westslope Fisheries.

^b Mean abundance and 95% confidence intervals were estimated using multiple-pass depletion estimation (Carle and Strub 1978) as implemented in the FSA R package (Ogle et al. 2020).

^c Biomass estimates were derived by multiplying population abundance by mean biomass of all captured fish.

^d Biomass estimates for pass 2 and pass 3 exclude data that were missing for two and one fish, respectively.

Table I.19: Chemistry Data for Muscle Tissue Collected from Westslope **Cutthroat Trout (Incidental Mortality), September 2021**

		Lower Greenhills Creek
Analyte	Units	RG_GHBP
		23-Sep-21
% Moisture	%	75.3
Wet Weight	g	0.097
Dry Weight	g	0.024
Aluminum (Al)	µg/g dw	12
Antimony (Sb)	µg/g dw	0.013
Arsenic (As)	µg/g dw	<0.439
Barium (Ba)	µg/g dw	0.569
Boron (B)	µg/g dw	0.300
Cadmium (Cd)	µg/g dw	<0.047
Calcium (Ca)	µg/g dw	1,763
Chromium (Cr)	µg/g dw	2.7
Cobalt (Co)	µg/g dw	0.217
Copper (Cu)	µg/g dw	2.6
Iron (Fe)	µg/g dw	53
Lead (Pb)	µg/g dw	0.049
Lithium (Li)	µg/g dw	1.7
Magnesium (Mg)	µg/g dw	1,341
Manganese (Mn)	µg/g dw	1.2
Mercury (Hg) ^a	µg/g dw	0.029
Molybdenum (Mo)	µg/g dw	0.097
Nickel (Ni)	μg/g dw	2.5
Phosphorus (P)	µg/g dw	8,056
Potassium (K)	µg/g dw	14,169
Selenium (Se) - Muscle	μg/g dw	29
Selenium (Se) - Ovary ^b	μg/g dw	46
Silver (Ag)	µg/g dw	0.005
Sodium (Na)	μg/g dw	1,202
Strontium (Sr)	µg/g dw	1.0
Thallium (TI)	µg/g dw	0.023
Tin (Sn)	μg/g dw	0.850
Titanium (Ti)	μg/g dw	2.3
Uranium (U)	µg/g dw	0.003
Vanadium (V)	µg/g dw	0.059
Zinc (Zn)	μg/g dw	38

Muscle mercury concentration exceeds the British Columbia guideline (0.033 µg/g ww).

Muscle selenium concentration exceeds the estimated effects threshold (15.5 µg/g dw).

Estimated ovary selenium concentration exceeds the site-specific Level 1 Benchmark (25 µg/g dw; EC10 equivalent) for WCT ovaries (Teck 2014).

Estimated ovary selenium concentration exceeds the site-specific Level 2 Benchmark (27 μ g/g dw; EC20 equivalent) for WCT ovaries (Teck 2014).

Estimated ovary selenium concentration exceeds the site-specific Level 3 Benchmark (33 µg/g dw; EC50 equivalent) for WCT ovaries (Teck 2014).

Notes: % = percent; g = grams; µg/g dw = micrograms per gram dry weight'; < = less than; µg/g ww = micrograms per gram wet weight; EC = effective concentration; WCT = westslope cutthroat trout.

^a The British Columbia guideline for methyl mercury was applied based on the assumption that all mercury in the fish tissue was methyl mercury. The wet-weight concentration was calculated by multiplying the dry weight concentration by % moisture.

^b The ovary selenium concentration was estimated using an ovary:muscle ratio of 1.6:1.0 (Nautilus and Interior Reforestation 2011).

FISH COLLECTION PERMIT Environmental Impact Assessment

File: 34770-20

Permit No.: CB21-631191

Permit Holder: Minnow Environmental Inc. – Amy Wiebe 110 – 2750 Faithful Avenue Saskatoon SK S7K 6M6

Authorized Persons: Amy Wiebe, Jeremy Benson, Peter Schnurr, Chad Apol, Maddy Stokes, Brianna Barnhart, Dave Hasek, Tyler Mehler, Katharina Batchelar, Patrick Shaefer, Alex McClymont, Jess Tester, Clare Nelligan, Marc Giorgini, Jennifer Ings

Pursuant to section 18 of the Angling and Scientific Collection Regulation, B.C. Reg. 125/90, the above-named persons are authorized to collect fish for scientific purposes (from non-tidal waters) subject to the terms set forth in this Permit:

Permitted Sampling Period: September 1, 2021 to October 31, 2021 Permitted Waterbodies: Kootenay-Boundary Region - Greenhills Creek/Settling Pond (349-248100-48300-32200) Kootenay-Boundary Region - Gardine Creek (349-248100-48300-32200-2720) Permitted Sampling Techniques: EF (subject to permit terms) Potential Species: WCT (subject to permit terms)

Provincial Terms: (Permit holder and authorized persons must be aware of all terms): See Appendix A. Region Specific Terms: See Appendix A.

Authorized by:

oun

Albert Chirico, Regional Information Specialist/Fisheries As authorized by the Regional Manager Recreational Fisheries & Wildlife Programs **Kootenay-Boundary Region**

Date: August 20, 2021

Last Updated: 01-SEPT-2020

Fish and Aquatic Habitat Branch PO Box 9363 Stn Prov Gov Victoria BC V8W 9M3 Permit Fee \$25

Appendix A: Fish Collection Permit Terms

Any Variation of the following terms will require explicit authorization by the appropriate regional Fish & Wildlife Section Head.

Provincial Terms

1. This collecting permit is **only** valid for species listed as threatened, endangered or extirpated under the *Species at Risk Act* (SARA) **in conjunction with a permit issued under Section 73 of SARA from Fisheries and Oceans Canada.**

NOTE: Contact the Department of Fisheries and Oceans for fish collecting permits for salmon, eulachon or SARA listed species (see Appendix B).

- 2. Any specimen's surplus to scientific requirements and any species not authorized for collection in this permit must be immediately and carefully released at the point of capture.
- 3. Fish collected under authority of this permit must not be used for food or any purpose other than the objectives set out in this permit. Dead fish must be disposed of in a manner that will not constitute a health hazard, nuisance or a threat to wildlife.
- 4. No fish collected under authority of this permit must be transplanted unless separately authorized by the Federal/Provincial Introductions and Transfers Committee.
- 5. The permit holder must, within 90 days (120 days for the Kootenay/Boundary region and Peace region) of the expiry of this permit, submit a report of fish collection activities. Interim reports may also be required and must be submitted as required by the permit issuer. All submissions must be filed electronically to: https://www2.gov.bc.ca/fish-data-submission-process.

Reporting specifications, information and templates are available from this website and outline the mandatory information requirements. Prior notification of submission or questions regarding data report standards can be made to: <u>fishdatasub@gov.bc.ca</u>

- 6. The permit holder must comply with all Workers' Compensation Board requirements and other regulatory requirements. The permit holder is responsible for ensuring authorized persons listed on the permit are properly certified for specific sampling methods or activities (e.g. electroshocking).
- 7. Any workers not listed on the permit must be supervised by the permit holder or one of the authorized persons named on the permit.
- 8. All sampling equipment that has been previously used outside of B.C. must be cleaned of mud and dirt and disinfected with 100mg/L chlorine bleach before using in any water course to prevent the spread of fish pathogens (e.g. whirling disease) and/or invasive plant species. Any washed off dirt or mud must be disposed of in a manner such that it cannot enter a watercourse untreated.
- 9. No electrofishing is to take place in waters having a temperature less than five degrees C.
- 10. No sampling of fish in waters having a temperature greater than twenty degrees C.
- 11. Electrofishing must not be conducted in the vicinity of spawning gravel, redds, or spawning fish, or around gravels which are capable of supporting eggs or developing embryos of any species of salmonid at a time of year when such eggs or embryos may be present.

Provincial Terms continued

When work requires de-watering or isolation of the worksite in the stream, a permit for the salvage of fish and wildlife (Scientific Fish Collection permit) must be obtained prior to commencing work. All required salvage permits must be obtained from FrontCounter BC: <u>http://www.frontcounterbc.gov.bc.ca/</u>

Any fish or wildlife salvage must be carried out by a qualified environmental professional registered with a professional association (such as an R.P.Bio.). The qualified professional conducting salvage work must adhere to the conditions below in addition to those required in the Scientific Fish Collection permit.

• Salvage activities must be conducted to the Provincial Resource Information Standards Committee (RISC) standards for capture, data collection, handling and release:

STREAM ISOLATION

• The QP must follow the standards and practices outlined in the Work Area Isolation Appendix found in the Standards and Best Practices for Instream Works.

http://www.env.gov.bc.ca/wld/documents/bmp/iswstdsbpsmarch2004.pdf

• A QP must ensure that the worksite has be substantively isolated to prevent any fishes from entering the work area and efforts must be made to exclude fish from entrapment during installation of isolation works. (See section 14.2 of the Standards and Best Practices for Instream Works (MWLAP 2004).

• Dewatering must not result in HADD to fish habitat or the death of fish unless authorized by Fisheries and Oceans Canada.

• While dewatering the work site and dewatering during fish capture, all pump intakes are required to meet the federal COP for fish intake screening guidelines <u>https://www.dfo-mpo.gc.ca/pnw-ppe/codes/screen-ecran-eng.html</u>.

FISH CAPTURE

• Qualified professionals must determine appropriate sampling methods from the RISC standards based on water body type and habitat conditions <u>https://www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/nr-laws-policy/risc/fishml04.pdf.</u>

• Qualified professionals must use a risk hierarchy of passive to active and low risk to higher risk in collection methods (e.g., minnow traps, fyke nets, beach pole seines, electroshocking, angling).

• Qualified professional must conduct a <u>minimum of three</u> non-lethal collection methods in all fish salvages.

• For active collection methods a minimum of two consecutive passes of each method that produces a zero catch must be completed as per total population removal methodology (at a minimum 95% fish removal must be achieved). (<u>https://www.wildsalmoncenter.org/resources/field-protocols-best-monitoring-practices/</u>).

• Where work site isolation cannot be fully achieved (e.g., fast flowing streams, imperfect seal due to substrate) additional efforts are needed to prevent harm to fish. At the end of each workday, a passive form of fish capture (e.g., baited minnow traps) are to be placed in the isolation site. If fish are captured overnight, you must restart isolation procedures at the start of the workday.

• If species at risk are captured, work must stop until proper permits are obtained.

DATA COLLECTION

• Sampling/data collection is a requirement of the Scientific Collection Permit. Sample size requirements are listed in the table below.

• Scientific Fish Collection Permits require a Fish Data Submission Template to be completed. Step 4 (Stream Site Data) of the Fish Data Submission Template must be filled out for the location where fish are salvaged from. <u>https://www2.gov.bc.ca/gov/content/environment/plants-animals-ecosystems/fish/fish-and-fish-habitat-data-information/fish-data-submission/submit-fish-data</u>

FISH RELEASE

• Fish must be released following RISC standards.

• All species are to be released in the same watercourse downstream of the work areas or a sufficient distance upstream (5 channel widths to a maximum of 100 meters) into waters of equivalent baseline quality and habitat type (pool, riffle, run).

Minimum Standards During Salvage for Fish Collection Sampling Effort*

Fish Species	Age Class	Size range	Minimum Sampling Size for lengths	Sample column required (from Individual Fish Data form)	Notes
Salmonids, including RB, CT(CCT), DV, BT, GR, LT, KO	fry	20 to 80 mm	up to 30 after 30 count	J (if possible), K	
	juvenile	81 mm-250 mm	Measure all fish caught	J, K, L	
	adult	greater than 250 mm	Measure all fish caught	J, K, L, M, N	
Coarse Fish (cyprinids, stickleback, dace, shiner, carp, pikeminnow)	Adult	under 200 mm over 200 mm	up to 30 after 30 count All	J, K J, K, L, M	
Sport other (bass, perch, sunfish, walleye, northern pike)		all	up to 30 after 30 count	Ј, К, L	
Sculpin sp.		0-150mm (total length) Over 150mm	up to 30 after 30 count All	J, K J, K, L	
Burbot, Lamprey		0-150 mm (total length)	All	J, K, L, N	
Listed Species (salish sucker, sturgeon, etc.)	В	All	All	SH	Refer to SAR permit for conditions
All fishes not listed above		All	minimum 10 of each then count only	J, K, L	
Abbreviations for saln	nonids				

Abbreviations for salmonids

RB-Rainbow CT(CCT)-Cutthroat **DV-Dolly Varden BT- Bull Trout GR- Arctic Grayling** LT- Lake Trout KO- Kokanee

Region Specific Terms

West Coast Region

- Within the boundaries of Management Units 1-1 through 1-13, there is no electrofishing in: (1) streams above 630 meters elevation, (2) in anadromous rivers from January 1 to June 30, (3) or any lake tributaries from January 1 to June 30.
- All sampling gear follow Association of Professional Biologists' advisory practice bulletin #5. Practice Advisory – Dydimo, see: <u>http://a100.gov.bc.ca/pub/eirs/viewDocumentDetail.do?fromStatic=true&repository=BDP&documentId=9</u> <u>469</u>
- The permit holder must advise the West Coast Region of sampling activities 24 hrs. prior to field operations. Please complete the following notification form: http://www.env.gov.bc.ca/pasb/reports/fish/permit_notify1.html

South Coast Region

- The permit holder must notify Fish and Aquatic Habitat Branch of the Ministry of Forests, Lands, Natural Resource Operations and Rural Development at <u>SCFishandAquaticWildlife@gov.bc.ca</u> with the following information at least 24 hours prior to undertaking work:
 - approved SFC permit number
 - o company
 - o contact
 - o address
 - o phone
 - water body
 - o purpose of collection
 - o start date
 - end date
- All streams sampled, for which a watershed code does not presently exist, will require a map showing the location of the stream and sampling location with the map scale identified at time of reporting.
- Electrofishing and minnow trapping can harm or kill non-target species of management concern such as the endangered Coastal Giant Salamander (within the Chilliwack River drainage system), Oregon Spotted Frog, and Pacific Water Shrew (within the lower Fraser River Valley). Any incidental captures (alive or dead) of any red-listed or blue-listed wildlife species must be reported to the Ministry of Forest, Lands, Natural Resources and Rural Development, South Coast Region. For further information on these species or to report incidental captures, please contact the Fish and Aquatic Habitat Branch by e-mail at <u>SCFishandAquaticWildlife@gov.bc.ca</u>.
- All non-native fish species captured under this permit are to be humanely euthanized and disposed of appropriately. Within 48 hours of capture, a record of the species, capture location, date, waterbody, number, size range (mm) and digital imagery must be submitted to the Fish and Aquatic Habitat Branch by email at <u>SCFishandAquaticWildlife@gov.bc.ca</u>. Non-native fish species include but are not limited to: American Shad; Black Catfish; Black Crappie; Brown Catfish; Carp; Goldfish; Largemouth or Smallmouth Bass; Pumpkinseed Sunfish; and Weather-fish.
- Please refer to the following website for the least risk in-stream work windows: <u>https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/water-licensing-rights/working-around-water/regional-terms-conditions-timing-windows</u>. Where possible, collection should be conducted during the least risk work windows identified. The exception is seasonal or ephemeral streams where sampling may not be possible during the prescribed window due to flow conditions.
- The permit holder must refer to the following when sampling Salish Sucker, Nooksack Dace and Stickleback species. Salish sucker sampling guidelines -

http://www.frontcounterbc.gov.bc.ca/pdf/SalishSuckerCollectionGuidelines2015.pdf

Nooksack dace sampling guidelines –

http://www.frontcounterbc.gov.bc.ca/pdf/NooksackDaceCollectionGuidelines2015.pdf

Stickleback species pairs sampling guidelines - <u>http://www.dfo-mpo.gc.ca/species-especes/publications/sara-lep/stickleback-epinoches/index-eng.html</u>

Thompson/Okanagan Region

• Please refer to information at: <u>https://www2.gov.bc.ca/gov/content/environment/air-land-</u> <u>water/water/water-licensing-rights/working-around-water/regional-terms-conditions-timing-windows</u> for the appropriate in stream work windows.

Kootenay/Boundary Region

- No electrofishing is permitted between September 15 and June 15 in streams containing bull trout.
- The permit holder must contact the local zone Conservation Officer Service prior to initiating the field collections.
- All burbot traps must have a section in the top or sidewall that has been secured by a length of untreated, 100% cotton twine no greater than No. 30 (e.g. 30 thread count) or 3 mm diameter. When twine deteriorates, this must produce a square opening with a minimum size of 20 cm x 20 cm. This is intended to ensure that if the trap is lost, the section secured by the twine will rot, allowing captive fish to escape, and preventing the trap from continuing to fish.
- All sampling gear follow Association of Professional Biologist's advisory practice bulletin #5. Practice Advisory Dydimo, see: <u>http://a100.gov.bc.ca/pub/eirs/viewDocumentDetail.do?fromStatic=true&repository=BDP&documentId=9</u> 469
- All fishing gear (e.g. gill nets, minnow traps, etc.) that are left unattended must have the permit holders contact information (name and phone number).
- Within 120 days of expiry of this permit, the permit holder must submit a report that summarizes all field and any laboratory analysis data related to the sampling program (typically location of catch, species, individual fish tissue metals analysis, moisture content, fish length and weight, etc., and as applicable) and all associated raw laboratory data.

The digital final written report (e.g. report, summary, memo, letter) is required and shall be submitted along with the standard format Excel data submission template.

Cariboo Region

- Cariboo Region requires seven days (7) written notice, complete with waterbody and watershed codes for the proposed areas prior to sampling in the Cariboo Region. Please submit written email notice to: Lee.Williston@gov.bc.ca or fax to 250 398 4214.
- Until such time as the permit holder has discussed specific activities with the Regional Manager and obtains written permission, fish collection, fish sampling or fish salvage may not be undertaken within the boundaries of Management Units 5-04 or 5-05.

<u>Skeena Region</u>

- For information related to Fish Collection Permit Activities in the Skeena Region, please contact Kristin Charleton at 250-876-7131 or Kristin.Charleton@gov.bc.ca.
- Accidental fish mortalities and or injuries that occur during salvage activities, related to this permit, must be reported to the Skeena Regional office within 48 hrs. Contact Troy Larden at <u>Troy.Larden@gov.bc.ca</u> or Kristin Charleton at <u>Kristin.Charleton@gov.bc.ca</u> to report.

Omineca Region

- The permit holder must advise Region 7A (Omineca) of sampling activities 48 hrs. prior to field operations by completion of the following form: <u>http://www.env.gov.bc.ca/pasb/reports/fish/permit_notify7a.html</u>
- No electrofishing is permitted between September 15 and June 15 in streams containing bull trout.
- Voucher specimens for all regionally significant red and blue-listed species (3 per species), with exception to SARA-listed white sturgeon (*Acipenser transmontanus*), must be submitted to the Regional Fish Information Specialist as per RISC standards.
- All sampling gear follow Association of Professional Biologist's advisory practice bulletin #5. Practice Advisory Dydimo, see: <u>http://a100.gov.bc.ca/pub/eirs/viewDocumentDetail.do?fromStatic=true&repository=BDP&documentId=9</u> 469.When lethal sampling has occurred for the purposes of environmental effects monitoring or impact

assessment, the permit holder must, within 90 days of the expiry of this permit, submit a report that summarizes all raw data related to the lethal program. This would typically include location of catch, species, fish tissue metals analysis, fish tissue moisture content, fish length and fish weight, at minimum. Interim reports may also be required and must be submitted as required by the permit issuer. All fish tissue analysis data related to the lethal program must be submitted ALONG with the standard sampling effort data submission template to https://www2.gov.bc.ca/fish-data-submission-process. Questions regarding submission requirements for lethal sampling may be directed to <a href="https://wwb.ca/fish-data-submission-weber@gov.bc.ca/fish-data

Peace Region

- No electrofishing is permitted between September 15 and June 15 in streams containing bull trout.
- All sampling gear follow Association of Professional Biologists' advisory practice bulletin #5. Practice Advisory – Dydimo, see: <u>http://a100.gov.bc.ca/pub/eirs/viewDocumentDetail.do?fromStatic=true&repository=BDP&documentId=9</u> 469
- All fishing gear (e.g. gill nets, minnow traps, etc.) that are left unattended must have the permit holders contact information (name and phone number).
- Within 120 days of expiry of this permit, the permit holder must submit a report that summarizes all field and any laboratory analysis data related to the sampling program (typically location of catch, species, individual fish tissue metals analysis, moisture content, fish length and weight, etc., and as applicable) and all associated raw laboratory data.

The digital final written report (e.g. report, summary, memo, letter) is required and shall be submitted along with the standard format Excel data submission template.

Appendix B: Table 1 - Species at Risk

The following are species at risk that have been listed by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) as either endangered, threatened or a species of special concern. Species also listed under the Species at Risk Act (SARA) are identified with an asterisk and are subject to additional permitting requirements through the Federal Department of Fisheries and Oceans (DFO).

Common Name	Scientific Name
Benthic Paxton Lake Stickleback	*Gasterosteus sp.
Benthic Vananda Creek Stickleback	*Gasterosteus sp.
Limnetic Paxton Lake Stickleback	*Gasterosteus sp.
Limnetic Vananda Creek Stickleback	*Gasterosteus sp.
Nooksack Dace	*Rhinichthys sp.
Morrison Creek Lamprey	*Lampetra richardsoni
Vancouver Lamprey (Cowichan Lake Lamprey)	*Lampetra macrostoma
Cultus Pygmy Sculpin	*Cottus sp.
Shorthead Sculpin	*Cottus confusus
Hotwater Physa	*Physella wrighti
Limnetic Enos Lake Stickleback	Gasterosteus sp.
Benthic Enos Lake Stickleback	Gasterosteus sp.
Salish Sucker	Catostomus sp.
Speckled Dace	Rhinichthys osculus
Charlotte Unarmoured Stickleback	Gastero <mark>steus aculeat</mark> us
Columbia Mottled Sculpin	Cottus bai <mark>rdi hubbsi</mark>
Giant Stickleback	Gasterosteus sp.
Green Sturgeon	Acipenser medirostris
Umatilla Dace	Rhinichthys umatilla
West Slope Cutthroat Trout	*Oncorhynchus clarki lewisi
White Sturgeon	Acipenser transmontanus

Applications for permits to specifically collect and retain listed species must be reviewed by the appropriate provincial expert, who will screen permits to ensure that any impacts on listed species are acceptable. For white sturgeon the contact is Steve McAdam (<u>steve.mcadam@gov.bc.ca</u>). For listed non-game freshwater fish the contact is Jordan Rosenfeld (jordan.rosenfeld@gov.bc.ca).

GENERAL

- It is the permit holder's responsibility to be aware of all applicable laws and the limits of this permit. For example,
 - This permit **does not** authorize the collection of fish in national or provincial parks.
 - This permit does not authorize the collection of fish in tidal waters.
 - This permit does not authorize the collection of eulachon or for salmon, other than kokanee.
 - This permit is NOT authority to angle for fish without a valid angling licence.
 - It is the responsibility of the permit holder to obtain proper authorization.
- > The Province is not liable for any illness contracted through fish handling. It is the responsibility of the permit holder to inform themselves of possible health hazards, and to ensure that all reasonably necessary safety measures are undertaken.
- If applicable, the permit holder is responsible for renewing his or her own permit. The issuer is not obliged to send a reminder notice.

LEGISLATION

Below is a non-exhaustive list of provisions under the *Wildlife Act* and regulations that are relevant to this permit. It is the permit holder's responsibility to be aware of any provisions under the Act or regulations that may apply to this permit.

<u>Wildlife Act</u>

Suspension and cancellation of permits

- 25 (1) A regional manager, for any cause he or she considers sufficient, and after providing an opportunity for the person to be heard, may suspend or cancel a permit held by a person, may order that the person is ineligible to obtain or renew a permit for a period and, if he or she does make an order, must inform the person of the period of ineligibility.
 - (2) An officer may, without the necessity of holding a hearing, exercise the powers of a regional manager under this section to suspend a permit and, if a permit is suspended by an officer, the matter must be referred to the regional manager, who may confirm, reduce, extend or terminate the suspension.

Documents not transferable

- **81** Except as authorized by regulation or as otherwise provided under this Act, a licence, permit or limited entry hunting authorization is not transferable, and a person commits an offence if the person
 - (a) allows his or her licence, permit or limited entry hunting authorization to be used by another person, or
 - (b) uses another person's licence, permit or limited entry hunting authorization.

Failure to pay fine

- **85** (1) This section applies if a person
 - (a) fails to pay, within the time required by law, a fine imposed as a result of the person's conviction for an offence under this Act or the *Firearm Act*, and
 - (b) has been served with notice of this section.
 - (2) In the circumstances referred to in subsection (1),
 - (a) the person's right to apply for or obtain a licence, permit or limited entry hunting authorization under this Act is suspended immediately and automatically on the failure to pay the fine,
 - (b) all licences, permits and limited entry hunting authorizations issued to that person under this Act are cancelled immediately and automatically on the failure to pay the fine,
 - (b.1) the person must not apply for employment as an assistant guide,
 - (b.2) the person must not guide as an assistant guide, and
 - (c) the person commits an offence if, before that fine is paid, the person
 - (i) applies for, or in any way obtains, a licence, permit or limited entry hunting authorization under this Act,
 - (ii) does anything for which a licence, permit or limited entry hunting authorization under this Act is required,
 - (iii) applies for employment as an assistant guide, or
 - (iv) guides as an assistant guide.

Proof of identity and authorization

97 (1) In this section, "authorization" means a licence, permit or limited entry hunting authorization issued under this Act.

(2) Subject to subsection (5), a person who is required to hold an authorization must, on the request of an officer,

- (a) state the person's name and address,
- (b) produce prescribed photo identification, and
- (c) demonstrate in accordance with subsection (3) that the person holds the authorization.
- (3) A person may demonstrate that the person holds an authorization by
 - (a) producing the authorization, or
 - (b) unless the regulations require that the original authorization be produced,
 - (i) producing a legible copy of the authorization, or
 - (ii) if authorized by the regulations, stating a number assigned to the person by the director as an
 - identification number for the person.
- (4) Subject to subsection (5), a person who would be required to hold a licence or permit issued under this Act were the person not exempt under section 11 (9) or 12 (b) must, on the request of an officer,
 - (a) state the person's name and address, and
 - (b) produce prescribed photo identification.
- (5) Subsections (2) (b) and (4) (b) do not apply to a person in a prescribed class of persons.
- (6) A person who contravenes subsection (2) or (4) commits an offence.

Wildlife Act General Regulation

Proof of identity

21.01 (1) For the purposes of section 97 (2)(b) and (4)(b) of the Act, the following photo identification is prescribed:

- (a) valid photo identification issued to a person by any of the following:
 - (i) the government of Canada;
 - (ii) the government of a province or territory, or an agent of the government of a province or territory, in
 - which the person has a current address;
 - (iii) the Nisga'a Nation, if the person is a Nisga'a citizen;
 - (iv) a treaty first nation, if the person is a treaty first nation member of the treaty first nation;
- (b) in the case of a person who is a non-resident alien,
 - (i) valid photo identification in the form of
 - (A) a passport, or
 - (B) a driver's licence issued to the person by a foreign jurisdiction in which the person has a current address, or
 - (ii) a copy of a photo identification referred to in subparagraph (i) that has been certified as a true copy by
 - (A) a lawyer, or
 - (B) a notary who is a member in good standing under the Notaries Act
- (c) in any case, a valid NEXUS card.
- (2) For the purposes of section 97 (5) of the Act, persons under 16 years of age are prescribed as exempt from the requirement to produce photo identification.

Freshwater Fish Regulation

Offences

- 2 A person commits an offence where the person
 - (a) has in possession,
 - (b) transports, or
 - (c) traffics in
 - live fish unless authorized by a permit or a licence.